Sample records for maximum likelihood phylogeny

  1. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.

    PubMed

    Guindon, Stéphane; Dufayard, Jean-François; Lefort, Vincent; Anisimova, Maria; Hordijk, Wim; Gascuel, Olivier

    2010-05-01

    PhyML is a phylogeny software based on the maximum-likelihood principle. Early PhyML versions used a fast algorithm performing nearest neighbor interchanges to improve a reasonable starting tree topology. Since the original publication (Guindon S., Gascuel O. 2003. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696-704), PhyML has been widely used (>2500 citations in ISI Web of Science) because of its simplicity and a fair compromise between accuracy and speed. In the meantime, research around PhyML has continued, and this article describes the new algorithms and methods implemented in the program. First, we introduce a new algorithm to search the tree space with user-defined intensity using subtree pruning and regrafting topological moves. The parsimony criterion is used here to filter out the least promising topology modifications with respect to the likelihood function. The analysis of a large collection of real nucleotide and amino acid data sets of various sizes demonstrates the good performance of this method. Second, we describe a new test to assess the support of the data for internal branches of a phylogeny. This approach extends the recently proposed approximate likelihood-ratio test and relies on a nonparametric, Shimodaira-Hasegawa-like procedure. A detailed analysis of real alignments sheds light on the links between this new approach and the more classical nonparametric bootstrap method. Overall, our tests show that the last version (3.0) of PhyML is fast, accurate, stable, and ready to use. A Web server and binary files are available from http://www.atgc-montpellier.fr/phyml/.

  2. Genetic distances and phylogenetic trees of different Awassi sheep populations based on DNA sequencing.

    PubMed

    Al-Atiyat, R M; Aljumaah, R S

    2014-08-27

    This study aimed to estimate evolutionary distances and to reconstruct phylogeny trees between different Awassi sheep populations. Thirty-two sheep individuals from three different geographical areas of Jordan and the Kingdom of Saudi Arabia (KSA) were randomly sampled. DNA was extracted from the tissue samples and sequenced using the T7 promoter universal primer. Different phylogenetic trees were reconstructed from 0.64-kb DNA sequences using the MEGA software with the best general time reverse distance model. Three methods of distance estimation were then used. The maximum composite likelihood test was considered for reconstructing maximum likelihood, neighbor-joining and UPGMA trees. The maximum likelihood tree indicated three major clusters separated by cytosine (C) and thymine (T). The greatest distance was shown between the South sheep and North sheep. On the other hand, the KSA sheep as an outgroup showed shorter evolutionary distance to the North sheep population than to the others. The neighbor-joining and UPGMA trees showed quite reliable clusters of evolutionary differentiation of Jordan sheep populations from the Saudi population. The overall results support geographical information and ecological types of the sheep populations studied. Summing up, the resulting phylogeny trees may contribute to the limited information about the genetic relatedness and phylogeny of Awassi sheep in nearby Arab countries.

  3. Phylogeny of Salsoleae s.l. (Chenopodiaceae) based on DNA sequence data from ITS, psbB-psbH, and rbcL, with emphasis on taxa of northwestern China

    Treesearch

    Zhi-Bin Wen; Ming-Li Zhang; Ge-Lin Zhu; Stewart C. Sanderson

    2010-01-01

    To reconstruct phylogeny and verify the monophyly of major subgroups, a total of 52 species representing almost all species of Salsoleae s.l. in China were sampled, with analysis based on three molecular markers (nrDNA ITS, cpDNA psbB-psbH and rbcL), using maximum parsimony, maximum likelihood, and Bayesian inference methods. Our molecular evidence provides strong...

  4. Using MOEA with Redistribution and Consensus Branches to Infer Phylogenies.

    PubMed

    Min, Xiaoping; Zhang, Mouzhao; Yuan, Sisi; Ge, Shengxiang; Liu, Xiangrong; Zeng, Xiangxiang; Xia, Ningshao

    2017-12-26

    In recent years, to infer phylogenies, which are NP-hard problems, more and more research has focused on using metaheuristics. Maximum Parsimony and Maximum Likelihood are two effective ways to conduct inference. Based on these methods, which can also be considered as the optimal criteria for phylogenies, various kinds of multi-objective metaheuristics have been used to reconstruct phylogenies. However, combining these two time-consuming methods results in those multi-objective metaheuristics being slower than a single objective. Therefore, we propose a novel, multi-objective optimization algorithm, MOEA-RC, to accelerate the processes of rebuilding phylogenies using structural information of elites in current populations. We compare MOEA-RC with two representative multi-objective algorithms, MOEA/D and NAGA-II, and a non-consensus version of MOEA-RC on three real-world datasets. The result is, within a given number of iterations, MOEA-RC achieves better solutions than the other algorithms.

  5. Correcting for sequencing error in maximum likelihood phylogeny inference.

    PubMed

    Kuhner, Mary K; McGill, James

    2014-11-04

    Accurate phylogenies are critical to taxonomy as well as studies of speciation processes and other evolutionary patterns. Accurate branch lengths in phylogenies are critical for dating and rate measurements. Such accuracy may be jeopardized by unacknowledged sequencing error. We use simulated data to test a correction for DNA sequencing error in maximum likelihood phylogeny inference. Over a wide range of data polymorphism and true error rate, we found that correcting for sequencing error improves recovery of the branch lengths, even if the assumed error rate is up to twice the true error rate. Low error rates have little effect on recovery of the topology. When error is high, correction improves topological inference; however, when error is extremely high, using an assumed error rate greater than the true error rate leads to poor recovery of both topology and branch lengths. The error correction approach tested here was proposed in 2004 but has not been widely used, perhaps because researchers do not want to commit to an estimate of the error rate. This study shows that correction with an approximate error rate is generally preferable to ignoring the issue. Copyright © 2014 Kuhner and McGill.

  6. GASP: Gapped Ancestral Sequence Prediction for proteins

    PubMed Central

    Edwards, Richard J; Shields, Denis C

    2004-01-01

    Background The prediction of ancestral protein sequences from multiple sequence alignments is useful for many bioinformatics analyses. Predicting ancestral sequences is not a simple procedure and relies on accurate alignments and phylogenies. Several algorithms exist based on Maximum Parsimony or Maximum Likelihood methods but many current implementations are unable to process residues with gaps, which may represent insertion/deletion (indel) events or sequence fragments. Results Here we present a new algorithm, GASP (Gapped Ancestral Sequence Prediction), for predicting ancestral sequences from phylogenetic trees and the corresponding multiple sequence alignments. Alignments may be of any size and contain gaps. GASP first assigns the positions of gaps in the phylogeny before using a likelihood-based approach centred on amino acid substitution matrices to assign ancestral amino acids. Important outgroup information is used by first working down from the tips of the tree to the root, using descendant data only to assign probabilities, and then working back up from the root to the tips using descendant and outgroup data to make predictions. GASP was tested on a number of simulated datasets based on real phylogenies. Prediction accuracy for ungapped data was similar to three alternative algorithms tested, with GASP performing better in some cases and worse in others. Adding simple insertions and deletions to the simulated data did not have a detrimental effect on GASP accuracy. Conclusions GASP (Gapped Ancestral Sequence Prediction) will predict ancestral sequences from multiple protein alignments of any size. Although not as accurate in all cases as some of the more sophisticated maximum likelihood approaches, it can process a wide range of input phylogenies and will predict ancestral sequences for gapped and ungapped residues alike. PMID:15350199

  7. The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits

    Treesearch

    C.L. Schoch; G.-H. Sung; F. Lopez-Giraldez

    2009-01-01

    We present a six-gene, 420-species maximum-likelihood phylogeny of Ascomycota, the largest phylum of fungi. This analysis is the most taxonomically complete to date with species sampled from all 15 currently circumscribed classes. A number of superclass-level nodes that have previously evaded resolution and were unnamed in classifications of the fungi are resolved for...

  8. Testing deep reticulate evolution in Amaryllidaceae Tribe Hippeastreae (Asparagales) with ITS and chloroplast sequence data

    USDA-ARS?s Scientific Manuscript database

    The phylogeny of Amaryllidaceae tribe Hippeastreae was inferred using chloroplast (3’ycf1, ndhF, trnL-F) and nuclear (ITS rDNA) sequence data under maximum parsimony and maximum likelihood frameworks. Network analyses were applied to resolve conflicting signals among data sets and putative scenarios...

  9. Phylogeny of marattioid ferns (Marattiaceae): inferring a root in the absence of a closely related outgroup.

    PubMed

    Murdock, Andrew G

    2008-05-01

    Closely related outgroups are optimal for rooting phylogenetic trees; however, such ideal outgroups are not always available. A phylogeny of the marattioid ferns (Marattiaceae), an ancient lineage with no close relatives, was reconstructed using nucleotide sequences of multiple chloroplast regions (rps4 + rps4-trnS spacer, trnS-trnG spacer + trnG intron, rbcL, atpB), from 88 collections, selected to cover the broadest possible range of morphologies and geographic distributions within the extant taxa. Because marattioid ferns are phylogenetically isolated from other lineages, and internal branches are relatively short, rooting was problematic. Root placement was strongly affected by long-branch attraction under maximum parsimony and by model choice under maximum likelihood. A multifaceted approach to rooting was employed to isolate the sources of bias and produce a consensus root position. In a statistical comparison of all possible root positions with three different outgroups, most root positions were not significantly less optimal than the maximum likelihood root position, including the consensus root position. This phylogeny has several important taxonomic implications for marattioid ferns: Marattia in the broad sense is paraphyletic; the Hawaiian endemic Marattia douglasii is most closely related to tropical American taxa; and Angiopteris is monophyletic only if Archangiopteris and Macroglossum are included.

  10. Global population structure and adaptive evolution of aflatoxin-producing fungi

    USDA-ARS?s Scientific Manuscript database

    We employed interspecific principal component analyses for six different categories (geography, species, precipitation, temperature, aflatoxin chemotype profile, and mating type) and inferred maximum likelihood phylogenies for six combined loci, including two aflatoxin cluster regions (aflM/alfN and...

  11. A tree island approach to inferring phylogeny in the ant subfamily Formicinae, with especial reference to the evolution of weaving.

    PubMed

    Johnson, Rebecca N; Agapow, Paul-Michael; Crozier, Ross H

    2003-11-01

    The ant subfamily Formicinae is a large assemblage (2458 species (J. Nat. Hist. 29 (1995) 1037), including species that weave leaf nests together with larval silk and in which the metapleural gland-the ancestrally defining ant character-has been secondarily lost. We used sequences from two mitochondrial genes (cytochrome b and cytochrome oxidase 2) from 18 formicine and 4 outgroup taxa to derive a robust phylogeny, employing a search for tree islands using 10000 randomly constructed trees as starting points and deriving a maximum likelihood consensus tree from the ML tree and those not significantly different from it. Non-parametric bootstrapping showed that the ML consensus tree fit the data significantly better than three scenarios based on morphology, with that of Bolton (Identification Guide to the Ant Genera of the World, Harvard University Press, Cambridge, MA) being the best among these alternative trees. Trait mapping showed that weaving had arisen at least four times and possibly been lost once. A maximum likelihood analysis showed that loss of the metapleural gland is significantly associated with the weaver life-pattern. The graph of the frequencies with which trees were discovered versus their likelihood indicates that trees with high likelihoods have much larger basins of attraction than those with lower likelihoods. While this result indicates that single searches are more likely to find high- than low-likelihood tree islands, it also indicates that searching only for the single best tree may lose important information.

  12. L.U.St: a tool for approximated maximum likelihood supertree reconstruction.

    PubMed

    Akanni, Wasiu A; Creevey, Christopher J; Wilkinson, Mark; Pisani, Davide

    2014-06-12

    Supertrees combine disparate, partially overlapping trees to generate a synthesis that provides a high level perspective that cannot be attained from the inspection of individual phylogenies. Supertrees can be seen as meta-analytical tools that can be used to make inferences based on results of previous scientific studies. Their meta-analytical application has increased in popularity since it was realised that the power of statistical tests for the study of evolutionary trends critically depends on the use of taxon-dense phylogenies. Further to that, supertrees have found applications in phylogenomics where they are used to combine gene trees and recover species phylogenies based on genome-scale data sets. Here, we present the L.U.St package, a python tool for approximate maximum likelihood supertree inference and illustrate its application using a genomic data set for the placental mammals. L.U.St allows the calculation of the approximate likelihood of a supertree, given a set of input trees, performs heuristic searches to look for the supertree of highest likelihood, and performs statistical tests of two or more supertrees. To this end, L.U.St implements a winning sites test allowing ranking of a collection of a-priori selected hypotheses, given as a collection of input supertree topologies. It also outputs a file of input-tree-wise likelihood scores that can be used as input to CONSEL for calculation of standard tests of two trees (e.g. Kishino-Hasegawa, Shimidoara-Hasegawa and Approximately Unbiased tests). This is the first fully parametric implementation of a supertree method, it has clearly understood properties, and provides several advantages over currently available supertree approaches. It is easy to implement and works on any platform that has python installed. bitBucket page - https://afro-juju@bitbucket.org/afro-juju/l.u.st.git. Davide.Pisani@bristol.ac.uk.

  13. Phylogenetic place of guinea pigs: no support of the rodent-polyphyly hypothesis from maximum-likelihood analyses of multiple protein sequences.

    PubMed

    Cao, Y; Adachi, J; Yano, T; Hasegawa, M

    1994-07-01

    Graur et al.'s (1991) hypothesis that the guinea pig-like rodents have an evolutionary origin within mammals that is separate from that of other rodents (the rodent-polyphyly hypothesis) was reexamined by the maximum-likelihood method for protein phylogeny, as well as by the maximum-parsimony and neighbor-joining methods. The overall evidence does not support Graur et al.'s hypothesis, which radically contradicts the traditional view of rodent monophyly. This work demonstrates that we must be careful in choosing a proper method for phylogenetic inference and that an argument based on a small data set (with respect to the length of the sequence and especially the number of species) may be unstable.

  14. Identifying the Basal Angiosperm Node in Chloroplast GenomePhylogenies: Sampling One's Way Out of the Felsenstein Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leebens-Mack, Jim; Raubeson, Linda A.; Cui, Liying

    2005-05-27

    While there has been strong support for Amborella and Nymphaeales (water lilies) as branching from basal-most nodes in the angiosperm phylogeny, this hypothesis has recently been challenged by phylogenetic analyses of 61 protein-coding genes extracted from the chloroplast genome sequences of Amborella, Nymphaea and 12 other available land plant chloroplast genomes. These character-rich analyses placed the monocots, represented by three grasses (Poaceae), as sister to all other extant angiosperm lineages. We have extracted protein-coding regions from draft sequences for six additional chloroplast genomes to test whether this surprising result could be an artifact of long-branch attraction due to limited taxonmore » sampling. The added taxa include three monocots (Acorus, Yucca and Typha), a water lily (Nuphar), a ranunculid(Ranunculus), and a gymnosperm (Ginkgo). Phylogenetic analyses of the expanded DNA and protein datasets together with microstructural characters (indels) provided unambiguous support for Amborella and the Nymphaeales as branching from the basal-most nodes in the angiospermphylogeny. However, their relative positions proved to be dependent on method of analysis, with parsimony favoring Amborella as sister to all other angiosperms, and maximum likelihood and neighbor-joining methods favoring an Amborella + Nympheales clade as sister. The maximum likelihood phylogeny supported the later hypothesis, but the likelihood for the former hypothesis was not significantly different. Parametric bootstrap analysis, single gene phylogenies, estimated divergence dates and conflicting in del characters all help to illuminate the nature of the conflict in resolution of the most basal nodes in the angiospermphylogeny. Molecular dating analyses provided median age estimates of 161 mya for the most recent common ancestor of all extant angiosperms and 145 mya for the most recent common ancestor of monocots, magnoliids andeudicots. Whereas long sequences reduce variance in branch lengths and molecular dating estimates, the impact of improved taxon sampling on the rooting of the angiosperm phylogeny together with the results of parametric bootstrap analyses demonstrate how long-branch attraction can mislead genome-scale phylogenetic analyses.« less

  15. Comprehensive Phylogenetic Analysis of Bovine Non-aureus Staphylococci Species Based on Whole-Genome Sequencing

    PubMed Central

    Naushad, Sohail; Barkema, Herman W.; Luby, Christopher; Condas, Larissa A. Z.; Nobrega, Diego B.; Carson, Domonique A.; De Buck, Jeroen

    2016-01-01

    Non-aureus staphylococci (NAS), a heterogeneous group of a large number of species and subspecies, are the most frequently isolated pathogens from intramammary infections in dairy cattle. Phylogenetic relationships among bovine NAS species are controversial and have mostly been determined based on single-gene trees. Herein, we analyzed phylogeny of bovine NAS species using whole-genome sequencing (WGS) of 441 distinct isolates. In addition, evolutionary relationships among bovine NAS were estimated from multilocus data of 16S rRNA, hsp60, rpoB, sodA, and tuf genes and sequences from these and numerous other single genes/proteins. All phylogenies were created with FastTree, Maximum-Likelihood, Maximum-Parsimony, and Neighbor-Joining methods. Regardless of methodology, WGS-trees clearly separated bovine NAS species into five monophyletic coherent clades. Furthermore, there were consistent interspecies relationships within clades in all WGS phylogenetic reconstructions. Except for the Maximum-Parsimony tree, multilocus data analysis similarly produced five clades. There were large variations in determining clades and interspecies relationships in single gene/protein trees, under different methods of tree constructions, highlighting limitations of using single genes for determining bovine NAS phylogeny. However, based on WGS data, we established a robust phylogeny of bovine NAS species, unaffected by method or model of evolutionary reconstructions. Therefore, it is now possible to determine associations between phylogeny and many biological traits, such as virulence, antimicrobial resistance, environmental niche, geographical distribution, and host specificity. PMID:28066335

  16. Coalescent-based species tree inference from gene tree topologies under incomplete lineage sorting by maximum likelihood.

    PubMed

    Wu, Yufeng

    2012-03-01

    Incomplete lineage sorting can cause incongruence between the phylogenetic history of genes (the gene tree) and that of the species (the species tree), which can complicate the inference of phylogenies. In this article, I present a new coalescent-based algorithm for species tree inference with maximum likelihood. I first describe an improved method for computing the probability of a gene tree topology given a species tree, which is much faster than an existing algorithm by Degnan and Salter (2005). Based on this method, I develop a practical algorithm that takes a set of gene tree topologies and infers species trees with maximum likelihood. This algorithm searches for the best species tree by starting from initial species trees and performing heuristic search to obtain better trees with higher likelihood. This algorithm, called STELLS (which stands for Species Tree InfErence with Likelihood for Lineage Sorting), has been implemented in a program that is downloadable from the author's web page. The simulation results show that the STELLS algorithm is more accurate than an existing maximum likelihood method for many datasets, especially when there is noise in gene trees. I also show that the STELLS algorithm is efficient and can be applied to real biological datasets. © 2011 The Author. Evolution© 2011 The Society for the Study of Evolution.

  17. DNA barcoding and phylogeny of Calidris and Tringa (Aves: Scolopacidae).

    PubMed

    Huang, Zuhao; Tu, Feiyun

    2017-07-01

    The avian genera Calidris and Tringa are the largest of the widespread family of Scolopacidae. The phylogeny of members of the two genera is still a matter of controversial. Mitochondrial cytochrome c oxidase subunit I (COI) can serve as a fast and accurate marker for the identification and phylogeny of animal species. In this study, we analyzed the COI barcodes of thirty-one species of the two genera. All the species had distinct COI sequences. Two hundred and twenty-one variable sites were identified. Kimura two-parameter distances were calculated between barcodes. Neighbor-joining and maximum likelihood methods were used to construct phylogenetic trees. All the species could be discriminated by their distinct clades in the phylogenetic trees. The phylogenetic trees grouped all the species of Calidris and Tringa into different monophyletic clade, respectively. COI data showed a well-supported phylogeny for Calidris and Tringa species.

  18. TOWARD A MOLECULAR PHYLOGENY FOR PEROMYSCUS: EVIDENCE FROM MITOCHONDRIAL CYTOCHROME-b SEQUENCES

    PubMed Central

    Bradley, Robert D.; Durish, Nevin D.; Rogers, Duke S.; Miller, Jacqueline R.; Engstrom, Mark D.; Kilpatrick, C. William

    2009-01-01

    One hundred DNA sequences from the mitochondrial cytochrome-b gene of 44 species of deer mice (Peromyscus (sensu stricto), 1 of Habromys, 1 of Isthmomys, 2 of Megadontomys, and the monotypic genera Neotomodon, Osgoodomys, and Podomys were used to develop a molecular phylogeny for Peromyscus. Phylogenetic analyses (maximum parsimony, maximum likelihood, and Bayesian inference) were conducted to evaluate alternative hypotheses concerning taxonomic arrangements (sensu stricto versus sensu lato) of the genus. In all analyses, monophyletic clades were obtained that corresponded to species groups proposed by previous authors; however, relationships among species groups generally were poorly resolved. The concept of the genus Peromyscus based on molecular data differed significantly from the most current taxonomic arrangement. Maximum-likelihood and Bayesian trees depicted strong support for a clade placing Habromys, Megadontomys, Neotomodon, Osgoodomys, and Podomys within Peromyscus. If Habromys, Megadontomys, Neotomodon, Osgoodomys, and Podomys are regarded as genera, then several species groups within Peromyscus (sensu stricto) should be elevated to generic rank. Isthmomys was associated with the genus Reithrodontomys; in turn this clade was sister to Baiomys, indicating a distant relationship of Isthmomys to Peromyscus. A formal taxonomic revision awaits synthesis of additional sequence data from nuclear markers together with inclusion of available allozymic and karyotypic data. PMID:19924266

  19. Advances in the use of DNA barcodes to build a community phylogeny for tropical trees in a Puerto Rican forest dynamics plot.

    PubMed

    Kress, W John; Erickson, David L; Swenson, Nathan G; Thompson, Jill; Uriarte, Maria; Zimmerman, Jess K

    2010-11-09

    Species number, functional traits, and phylogenetic history all contribute to characterizing the biological diversity in plant communities. The phylogenetic component of diversity has been particularly difficult to quantify in species-rich tropical tree assemblages. The compilation of previously published (and often incomplete) data on evolutionary relationships of species into a composite phylogeny of the taxa in a forest, through such programs as Phylomatic, has proven useful in building community phylogenies although often of limited resolution. Recently, DNA barcodes have been used to construct a robust community phylogeny for nearly 300 tree species in a forest dynamics plot in Panama using a supermatrix method. In that study sequence data from three barcode loci were used to generate a well-resolved species-level phylogeny. Here we expand upon this earlier investigation and present results on the use of a phylogenetic constraint tree to generate a community phylogeny for a diverse, tropical forest dynamics plot in Puerto Rico. This enhanced method of phylogenetic reconstruction insures the congruence of the barcode phylogeny with broadly accepted hypotheses on the phylogeny of flowering plants (i.e., APG III) regardless of the number and taxonomic breadth of the taxa sampled. We also compare maximum parsimony versus maximum likelihood estimates of community phylogenetic relationships as well as evaluate the effectiveness of one- versus two- versus three-gene barcodes in resolving community evolutionary history. As first demonstrated in the Panamanian forest dynamics plot, the results for the Puerto Rican plot illustrate that highly resolved phylogenies derived from DNA barcode sequence data combined with a constraint tree based on APG III are particularly useful in comparative analysis of phylogenetic diversity and will enhance research on the interface between community ecology and evolution.

  20. Archaeal phylogenomics provides evidence in support of a methanogenic origin of the Archaea and a thaumarchaeal origin for the eukaryotes.

    PubMed

    Kelly, S; Wickstead, B; Gull, K

    2011-04-07

    We have developed a machine-learning approach to identify 3537 discrete orthologue protein sequence groups distributed across all available archaeal genomes. We show that treating these orthologue groups as binary detection/non-detection data is sufficient to capture the majority of archaeal phylogeny. We subsequently use the sequence data from these groups to infer a method and substitution-model-independent phylogeny. By holding this phylogeny constrained and interrogating the intersection of this large dataset with both the Eukarya and the Bacteria using Bayesian and maximum-likelihood approaches, we propose and provide evidence for a methanogenic origin of the Archaea. By the same criteria, we also provide evidence in support of an origin for Eukarya either within or as sisters to the Thaumarchaea.

  1. Toward reconstructing the hyper-diverse radiation of ditrysian Lepidoptera (Insecta): initial evidence from 123 exemplars and 5 protein-coding nuclear genes

    USDA-ARS?s Scientific Manuscript database

    In the mega-diverse insect order Lepidoptera (butterflies and moths; 165,000 species total), 98% of the species fall in the clade Ditrysia, relationships within which are little understood. As the first step in a long-term study of ditrysian phylogeny, we tested the ability of maximum likelihood ana...

  2. MetaPIGA v2.0: maximum likelihood large phylogeny estimation using the metapopulation genetic algorithm and other stochastic heuristics.

    PubMed

    Helaers, Raphaël; Milinkovitch, Michel C

    2010-07-15

    The development, in the last decade, of stochastic heuristics implemented in robust application softwares has made large phylogeny inference a key step in most comparative studies involving molecular sequences. Still, the choice of a phylogeny inference software is often dictated by a combination of parameters not related to the raw performance of the implemented algorithm(s) but rather by practical issues such as ergonomics and/or the availability of specific functionalities. Here, we present MetaPIGA v2.0, a robust implementation of several stochastic heuristics for large phylogeny inference (under maximum likelihood), including a Simulated Annealing algorithm, a classical Genetic Algorithm, and the Metapopulation Genetic Algorithm (metaGA) together with complex substitution models, discrete Gamma rate heterogeneity, and the possibility to partition data. MetaPIGA v2.0 also implements the Likelihood Ratio Test, the Akaike Information Criterion, and the Bayesian Information Criterion for automated selection of substitution models that best fit the data. Heuristics and substitution models are highly customizable through manual batch files and command line processing. However, MetaPIGA v2.0 also offers an extensive graphical user interface for parameters setting, generating and running batch files, following run progress, and manipulating result trees. MetaPIGA v2.0 uses standard formats for data sets and trees, is platform independent, runs in 32 and 64-bits systems, and takes advantage of multiprocessor and multicore computers. The metaGA resolves the major problem inherent to classical Genetic Algorithms by maintaining high inter-population variation even under strong intra-population selection. Implementation of the metaGA together with additional stochastic heuristics into a single software will allow rigorous optimization of each heuristic as well as a meaningful comparison of performances among these algorithms. MetaPIGA v2.0 gives access both to high customization for the phylogeneticist, as well as to an ergonomic interface and functionalities assisting the non-specialist for sound inference of large phylogenetic trees using nucleotide sequences. MetaPIGA v2.0 and its extensive user-manual are freely available to academics at http://www.metapiga.org.

  3. MetaPIGA v2.0: maximum likelihood large phylogeny estimation using the metapopulation genetic algorithm and other stochastic heuristics

    PubMed Central

    2010-01-01

    Background The development, in the last decade, of stochastic heuristics implemented in robust application softwares has made large phylogeny inference a key step in most comparative studies involving molecular sequences. Still, the choice of a phylogeny inference software is often dictated by a combination of parameters not related to the raw performance of the implemented algorithm(s) but rather by practical issues such as ergonomics and/or the availability of specific functionalities. Results Here, we present MetaPIGA v2.0, a robust implementation of several stochastic heuristics for large phylogeny inference (under maximum likelihood), including a Simulated Annealing algorithm, a classical Genetic Algorithm, and the Metapopulation Genetic Algorithm (metaGA) together with complex substitution models, discrete Gamma rate heterogeneity, and the possibility to partition data. MetaPIGA v2.0 also implements the Likelihood Ratio Test, the Akaike Information Criterion, and the Bayesian Information Criterion for automated selection of substitution models that best fit the data. Heuristics and substitution models are highly customizable through manual batch files and command line processing. However, MetaPIGA v2.0 also offers an extensive graphical user interface for parameters setting, generating and running batch files, following run progress, and manipulating result trees. MetaPIGA v2.0 uses standard formats for data sets and trees, is platform independent, runs in 32 and 64-bits systems, and takes advantage of multiprocessor and multicore computers. Conclusions The metaGA resolves the major problem inherent to classical Genetic Algorithms by maintaining high inter-population variation even under strong intra-population selection. Implementation of the metaGA together with additional stochastic heuristics into a single software will allow rigorous optimization of each heuristic as well as a meaningful comparison of performances among these algorithms. MetaPIGA v2.0 gives access both to high customization for the phylogeneticist, as well as to an ergonomic interface and functionalities assisting the non-specialist for sound inference of large phylogenetic trees using nucleotide sequences. MetaPIGA v2.0 and its extensive user-manual are freely available to academics at http://www.metapiga.org. PMID:20633263

  4. Archaeal phylogenomics provides evidence in support of a methanogenic origin of the Archaea and a thaumarchaeal origin for the eukaryotes

    PubMed Central

    Kelly, S.; Wickstead, B.; Gull, K.

    2011-01-01

    We have developed a machine-learning approach to identify 3537 discrete orthologue protein sequence groups distributed across all available archaeal genomes. We show that treating these orthologue groups as binary detection/non-detection data is sufficient to capture the majority of archaeal phylogeny. We subsequently use the sequence data from these groups to infer a method and substitution-model-independent phylogeny. By holding this phylogeny constrained and interrogating the intersection of this large dataset with both the Eukarya and the Bacteria using Bayesian and maximum-likelihood approaches, we propose and provide evidence for a methanogenic origin of the Archaea. By the same criteria, we also provide evidence in support of an origin for Eukarya either within or as sisters to the Thaumarchaea. PMID:20880885

  5. Evaluation of properties over phylogenetic trees using stochastic logics.

    PubMed

    Requeno, José Ignacio; Colom, José Manuel

    2016-06-14

    Model checking has been recently introduced as an integrated framework for extracting information of the phylogenetic trees using temporal logics as a querying language, an extension of modal logics that imposes restrictions of a boolean formula along a path of events. The phylogenetic tree is considered a transition system modeling the evolution as a sequence of genomic mutations (we understand mutation as different ways that DNA can be changed), while this kind of logics are suitable for traversing it in a strict and exhaustive way. Given a biological property that we desire to inspect over the phylogeny, the verifier returns true if the specification is satisfied or a counterexample that falsifies it. However, this approach has been only considered over qualitative aspects of the phylogeny. In this paper, we repair the limitations of the previous framework for including and handling quantitative information such as explicit time or probability. To this end, we apply current probabilistic continuous-time extensions of model checking to phylogenetics. We reinterpret a catalog of qualitative properties in a numerical way, and we also present new properties that couldn't be analyzed before. For instance, we obtain the likelihood of a tree topology according to a mutation model. As case of study, we analyze several phylogenies in order to obtain the maximum likelihood with the model checking tool PRISM. In addition, we have adapted the software for optimizing the computation of maximum likelihoods. We have shown that probabilistic model checking is a competitive framework for describing and analyzing quantitative properties over phylogenetic trees. This formalism adds soundness and readability to the definition of models and specifications. Besides, the existence of model checking tools hides the underlying technology, omitting the extension, upgrade, debugging and maintenance of a software tool to the biologists. A set of benchmarks justify the feasibility of our approach.

  6. Phylogeny of the cycads based on multiple single-copy nuclear genes: congruence of concatenated parsimony, likelihood and species tree inference methods.

    PubMed

    Salas-Leiva, Dayana E; Meerow, Alan W; Calonje, Michael; Griffith, M Patrick; Francisco-Ortega, Javier; Nakamura, Kyoko; Stevenson, Dennis W; Lewis, Carl E; Namoff, Sandra

    2013-11-01

    Despite a recent new classification, a stable phylogeny for the cycads has been elusive, particularly regarding resolution of Bowenia, Stangeria and Dioon. In this study, five single-copy nuclear genes (SCNGs) are applied to the phylogeny of the order Cycadales. The specific aim is to evaluate several gene tree-species tree reconciliation approaches for developing an accurate phylogeny of the order, to contrast them with concatenated parsimony analysis and to resolve the erstwhile problematic phylogenetic position of these three genera. DNA sequences of five SCNGs were obtained for 20 cycad species representing all ten genera of Cycadales. These were analysed with parsimony, maximum likelihood (ML) and three Bayesian methods of gene tree-species tree reconciliation, using Cycas as the outgroup. A calibrated date estimation was developed with Bayesian methods, and biogeographic analysis was also conducted. Concatenated parsimony, ML and three species tree inference methods resolve exactly the same tree topology with high support at most nodes. Dioon and Bowenia are the first and second branches of Cycadales after Cycas, respectively, followed by an encephalartoid clade (Macrozamia-Lepidozamia-Encephalartos), which is sister to a zamioid clade, of which Ceratozamia is the first branch, and in which Stangeria is sister to Microcycas and Zamia. A single, well-supported phylogenetic hypothesis of the generic relationships of the Cycadales is presented. However, massive extinction events inferred from the fossil record that eliminated broader ancestral distributions within Zamiaceae compromise accurate optimization of ancestral biogeographical areas for that hypothesis. While major lineages of Cycadales are ancient, crown ages of all modern genera are no older than 12 million years, supporting a recent hypothesis of mostly Miocene radiations. This phylogeny can contribute to an accurate infrafamilial classification of Zamiaceae.

  7. A machine-learning approach reveals that alignment properties alone can accurately predict inference of lateral gene transfer from discordant phylogenies.

    PubMed

    Roettger, Mayo; Martin, William; Dagan, Tal

    2009-09-01

    Among the methods currently used in phylogenomic practice to detect the presence of lateral gene transfer (LGT), one of the most frequently employed is the comparison of gene tree topologies for different genes. In cases where the phylogenies for different genes are incompatible, or discordant, for well-supported branches there are three simple interpretations for the result: 1) gene duplications (paralogy) followed by many independent gene losses have occurred, 2) LGT has occurred, or 3) the phylogeny is well supported but for reasons unknown is nonetheless incorrect. Here, we focus on the third possibility by examining the properties of 22,437 published multiple sequence alignments, the Bayesian maximum likelihood trees for which either do or do not suggest the occurrence of LGT by the criterion of discordant branches. The alignments that produce discordant phylogenies differ significantly in several salient alignment properties from those that do not. Using a support vector machine, we were able to predict the inference of discordant tree topologies with up to 80% accuracy from alignment properties alone.

  8. Phylogenetic analyses of mode of larval development.

    PubMed

    Hart, M

    2000-12-01

    Phylogenies based on morphological or molecular characters have been used to provide an evolutionary context for analysis of larval evolution. Studies of gastropods, bivalves, tunicates, sea stars, sea urchins, and polychaetes have revealed massive parallel evolution of similar larval forms. Some of these studies were designed to test, and have rejected, the species selection hypothesis for evolutionary trends in the frequency of derived larvae or life history traits. However, the lack of well supported models of larval character evolution leave some doubt about the quality of inferences of larval evolution from phylogenies of living taxa. Better models based on maximum likelihood methods and known prior probabilities of larval character state changes will improve our understanding of the history of larval evolution. Copyright 2000 Academic Press.

  9. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.

    PubMed

    Stamatakis, Alexandros

    2006-11-01

    RAxML-VI-HPC (randomized axelerated maximum likelihood for high performance computing) is a sequential and parallel program for inference of large phylogenies with maximum likelihood (ML). Low-level technical optimizations, a modification of the search algorithm, and the use of the GTR+CAT approximation as replacement for GTR+Gamma yield a program that is between 2.7 and 52 times faster than the previous version of RAxML. A large-scale performance comparison with GARLI, PHYML, IQPNNI and MrBayes on real data containing 1000 up to 6722 taxa shows that RAxML requires at least 5.6 times less main memory and yields better trees in similar times than the best competing program (GARLI) on datasets up to 2500 taxa. On datasets > or =4000 taxa it also runs 2-3 times faster than GARLI. RAxML has been parallelized with MPI to conduct parallel multiple bootstraps and inferences on distinct starting trees. The program has been used to compute ML trees on two of the largest alignments to date containing 25,057 (1463 bp) and 2182 (51,089 bp) taxa, respectively. icwww.epfl.ch/~stamatak

  10. Phylogenetic congruence of parasitic smut fungi (Anthracoidea, Anthracoideaceae) and their host plants (Carex, Cyperaceae): Cospeciation or host-shift speciation?

    PubMed

    Escudero, Marcial

    2015-07-01

    • Fahrenholz's rule states that common ancestors of extant parasites were parasites of the common ancestors of extant hosts. Consequently, parasite phylogeny should mirror host phylogeny. The smut fungi genus Anthracoidea (Anthracoideaceae) is mainly hosted by species of the genus Carex (Cyperaceae). Whether smut fungi phylogeny mirrors sedge phylogeny is still under debate.• The nuclear large subunit DNA region (LSU; 57 accessions) from 31 Anthracoidea species and the ITS, ETS, and trnL-F spacer-trnL intron complex from 41 Carex species were used to infer the phylogenetic history of parasites and their hosts using a maximum likelihood approach. Event-based and distance-based cophylogenetic methods were used to test the hypothesis of whether the phylogeny of smut fungi from the genus Anthracoidea matches the phylogeny of the sedge Carex species they host.• Cophylogenetic reconstructions taking into account phylogenetic uncertainties based on event-based analyses demonstrated that the Anthracoidea phylogeny has significant topological congruence with the phylogeny of their Carex hosts. A distance-based test was also significant; therefore, the phylogenies of Anthracoide and Carex are partially congruent.• The phylogenetic congruence of Anthracoidea and Carex is partially based on smut fungi species being preferentially hosted by closely related sedges (host conservatism). In addition, many different events rather than only codivergence events are inferred. All of this evidence suggests that host-shift speciation rather than cospeciation seems to explain the cophylogenetic patterns of Anthracoidea and Carex. © 2015 Botanical Society of America, Inc.

  11. Phylogeny of the Paracalanidae Giesbrecht, 1888 (Crustacea: Copepoda: Calanoida).

    PubMed

    Cornils, Astrid; Blanco-Bercial, Leocadio

    2013-12-01

    The Paracalanidae are ecologically-important marine planktonic copepods that occur in the epipelagic zone in temperate and tropical waters. They are often the dominant taxon - in terms of biomass and abundance - in continental shelf regions. As primary consumers, they form a vital link in the pelagic food web between primary producers and higher trophic levels. Despite the ecological importance of the taxon, evolutionary and systematic relationships within the family remain largely unknown. A multigene phylogeny including 24 species, including representatives for all seven genera, was determined based on two nuclear genes, small-subunit (18S) ribosomal RNA and Histone 3 (H3) and one mitochondrial gene, cytochrome c oxidase subunit I (COI). The molecular phylogeny was well supported by Maximum likelihood and Bayesian inference analysis; all genera were found to be monophyletic, except for Paracalanus, which was separated into two distinct clades: the Paracalanus aculeatus group and Paracalanus parvus group. The molecular phylogeny also confirmed previous findings that Mecynocera and Calocalanus are genera of the family Paracalanidae. For comparison, a morphological phylogeny was created for 35 paracalanid species based on 54 morphological characters derived from published descriptions. The morphological phylogeny did not resolve all genera as monophyletic and bootstrap support was not strong. Molecular and morphological phylogenies were not congruent in the positioning of Bestiolina and the Paracalanus species groups, possibly due to the lack of sufficient phylogenetically-informative morphological characters. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Three-gene based phylogeny of the Urostyloidea (Protista, Ciliophora, Hypotricha), with notes on classification of some core taxa☆

    PubMed Central

    Huang, Jie; Chen, Zigui; Song, Weibo; Berger, Helmut

    2014-01-01

    Classifications of the Urostyloidea were mainly based on morphology and morphogenesis. Since molecular phylogeny largely focused on limited sampling using mostly the one-gene information, the incongruence between morphological data and gene sequences have risen. In this work, the three-gene data (SSU-rDNA, ITS1-5.8S-ITS2 and LSU-rDNA) comprising 12 genera in the “core urostyloids” are sequenced, and the phylogenies based on these different markers are compared using maximum-likelihood and Bayesian algorithms and tested by unconstrained and constrained analyses. The molecular phylogeny supports the following conclusions: (1) the monophyly of the core group of Urostyloidea is well supported while the whole Urostyloidea is not monophyletic; (2) Thigmokeronopsis and Apokeronopsis are clearly separated from the pseudokeronopsids in analyses of all three gene markers, supporting their exclusion from the Pseudokeronopsidae and the inclusion in the Urostylidae; (3) Diaxonella and Apobakuella should be assigned to the Urostylidae; (4) Bergeriella, Monocoronella and Neourostylopsis flavicana share a most recent common ancestor; (5) all molecular trees support the transfer of Metaurostylopsis flavicana to the recently proposed genus Neourostylopsis; (6) all molecular phylogenies fail to separate the morphologically well-defined genera Uroleptopsis and Pseudokeronopsis; and (7) Arcuseries gen. nov. containing three distinctly deviating Anteholosticha species is established. PMID:24140978

  13. A phylogeny of robber flies (Diptera: Asilidae) at the subfamilial level: molecular evidence.

    PubMed

    Bybee, Seth M; Taylor, Sean D; Riley Nelson, C; Whiting, Michael F

    2004-03-01

    We present the first formal analysis of phylogenetic relationships among the Asilidae, based on four genes: 16S rDNA, 18S rDNA, 28S rDNA, and cytochrome oxidase II. Twenty-six ingroup taxa representing 11 of the 12 described subfamilies were selected to produce a phylogenetic estimate of asilid subfamilial relationships via optimization alignment, parsimony, and maximum likelihood techniques. Phylogenetic analyses support the monophyly of Asilidae with Leptogastrinae as the most basal robber fly lineage. Apocleinae+(Asilinae+Ommatiinae) is supported as monophyletic. The laphriinae-group (Laphriinae+Laphystiinae) and the dasypogoninae-group (Dasypogoninae+Stenopogoninae+Stichopogoninae+ Trigonomiminae) are paraphyletic. These results suggest that current subfamilial classification only partially reflects robber fly phylogeny, indicating the need for further phylogenetic investigation of this group.

  14. Higher-level phylogeny of paraneopteran insects inferred from mitochondrial genome sequences

    PubMed Central

    Li, Hu; Shao, Renfu; Song, Nan; Song, Fan; Jiang, Pei; Li, Zhihong; Cai, Wanzhi

    2015-01-01

    Mitochondrial (mt) genome data have been proven to be informative for animal phylogenetic studies but may also suffer from systematic errors, due to the effects of accelerated substitution rate and compositional heterogeneity. We analyzed the mt genomes of 25 insect species from the four paraneopteran orders, aiming to better understand how accelerated substitution rate and compositional heterogeneity affect the inferences of the higher-level phylogeny of this diverse group of hemimetabolous insects. We found substantial heterogeneity in base composition and contrasting rates in nucleotide substitution among these paraneopteran insects, which complicate the inference of higher-level phylogeny. The phylogenies inferred with concatenated sequences of mt genes using maximum likelihood and Bayesian methods and homogeneous models failed to recover Psocodea and Hemiptera as monophyletic groups but grouped, instead, the taxa that had accelerated substitution rates together, including Sternorrhyncha (a suborder of Hemiptera), Thysanoptera, Phthiraptera and Liposcelididae (a family of Psocoptera). Bayesian inference with nucleotide sequences and heterogeneous models (CAT and CAT + GTR), however, recovered Psocodea, Thysanoptera and Hemiptera each as a monophyletic group. Within Psocodea, Liposcelididae is more closely related to Phthiraptera than to other species of Psocoptera. Furthermore, Thysanoptera was recovered as the sister group to Hemiptera. PMID:25704094

  15. Replicate phylogenies and post-glacial range expansion of the pitcher-plant mosquito, Wyeomyia smithii, in North America.

    PubMed

    Merz, Clayton; Catchen, Julian M; Hanson-Smith, Victor; Emerson, Kevin J; Bradshaw, William E; Holzapfel, Christina M

    2013-01-01

    Herein we tested the repeatability of phylogenetic inference based on high throughput sequencing by increased taxon sampling using our previously published techniques in the pitcher-plant mosquito, Wyeomyia smithii in North America. We sampled 25 natural populations drawn from different localities nearby 21 previous collection localities and used these new data to construct a second, independent phylogeny, expressly to test the reproducibility of phylogenetic patterns. Comparison of trees between the two data sets based on both maximum parsimony and maximum likelihood with Bayesian posterior probabilities showed close correspondence in the grouping of the most southern populations into clear clades. However, discrepancies emerged, particularly in the middle of W. smithii's current range near the previous maximum extent of the Laurentide Ice Sheet, especially concerning the most recent common ancestor to mountain and northern populations. Combining all 46 populations from both studies into a single maximum parsimony tree and taking into account the post-glacial historical biogeography of associated flora provided an improved picture of W. smithii's range expansion in North America. In a more general sense, we propose that extensive taxon sampling, especially in areas of known geological disruption is key to a comprehensive approach to phylogenetics that leads to biologically meaningful phylogenetic inference.

  16. Phylogeny of the cycads based on multiple single-copy nuclear genes: congruence of concatenated parsimony, likelihood and species tree inference methods

    PubMed Central

    Salas-Leiva, Dayana E.; Meerow, Alan W.; Calonje, Michael; Griffith, M. Patrick; Francisco-Ortega, Javier; Nakamura, Kyoko; Stevenson, Dennis W.; Lewis, Carl E.; Namoff, Sandra

    2013-01-01

    Background and aims Despite a recent new classification, a stable phylogeny for the cycads has been elusive, particularly regarding resolution of Bowenia, Stangeria and Dioon. In this study, five single-copy nuclear genes (SCNGs) are applied to the phylogeny of the order Cycadales. The specific aim is to evaluate several gene tree–species tree reconciliation approaches for developing an accurate phylogeny of the order, to contrast them with concatenated parsimony analysis and to resolve the erstwhile problematic phylogenetic position of these three genera. Methods DNA sequences of five SCNGs were obtained for 20 cycad species representing all ten genera of Cycadales. These were analysed with parsimony, maximum likelihood (ML) and three Bayesian methods of gene tree–species tree reconciliation, using Cycas as the outgroup. A calibrated date estimation was developed with Bayesian methods, and biogeographic analysis was also conducted. Key Results Concatenated parsimony, ML and three species tree inference methods resolve exactly the same tree topology with high support at most nodes. Dioon and Bowenia are the first and second branches of Cycadales after Cycas, respectively, followed by an encephalartoid clade (Macrozamia–Lepidozamia–Encephalartos), which is sister to a zamioid clade, of which Ceratozamia is the first branch, and in which Stangeria is sister to Microcycas and Zamia. Conclusions A single, well-supported phylogenetic hypothesis of the generic relationships of the Cycadales is presented. However, massive extinction events inferred from the fossil record that eliminated broader ancestral distributions within Zamiaceae compromise accurate optimization of ancestral biogeographical areas for that hypothesis. While major lineages of Cycadales are ancient, crown ages of all modern genera are no older than 12 million years, supporting a recent hypothesis of mostly Miocene radiations. This phylogeny can contribute to an accurate infrafamilial classification of Zamiaceae. PMID:23997230

  17. Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification.

    PubMed

    Jones, Christopher M; Stres, Blaz; Rosenquist, Magnus; Hallin, Sara

    2008-09-01

    Denitrification is a facultative respiratory pathway in which nitrite (NO2(-)), nitric oxide (NO), and nitrous oxide (N2O) are successively reduced to nitrogen gas (N(2)), effectively closing the nitrogen cycle. The ability to denitrify is widely dispersed among prokaryotes, and this polyphyletic distribution has raised the possibility of horizontal gene transfer (HGT) having a substantial role in the evolution of denitrification. Comparisons of 16S rRNA and denitrification gene phylogenies in recent studies support this possibility; however, these results remain speculative as they are based on visual comparisons of phylogenies from partial sequences. We reanalyzed publicly available nirS, nirK, norB, and nosZ partial sequences using Bayesian and maximum likelihood phylogenetic inference. Concomitant analysis of denitrification genes with 16S rRNA sequences from the same organisms showed substantial differences between the trees, which were supported by examining the posterior probability of monophyletic constraints at different taxonomic levels. Although these differences suggest HGT of denitrification genes, the presence of structural variants for nirK, norB, and nosZ makes it difficult to determine HGT from other evolutionary events. Additional analysis using phylogenetic networks and likelihood ratio tests of phylogenies based on full-length sequences retrieved from genomes also revealed significant differences in tree topologies among denitrification and 16S rRNA gene phylogenies, with the exception of the nosZ gene phylogeny within the data set of the nirK-harboring genomes. However, inspection of codon usage and G + C content plots from complete genomes gave no evidence for recent HGT. Instead, the close proximity of denitrification gene copies in the genomes of several denitrifying bacteria suggests duplication. Although HGT cannot be ruled out as a factor in the evolution of denitrification genes, our analysis suggests that other phenomena, such gene duplication/divergence and lineage sorting, may have differently influenced the evolution of each denitrification gene.

  18. Rapid radiation events in the family Ursidae indicated by likelihood phylogenetic estimation from multiple fragments of mtDNA.

    PubMed

    Waits, L P; Sullivan, J; O'Brien, S J; Ward, R H

    1999-10-01

    The bear family (Ursidae) presents a number of phylogenetic ambiguities as the evolutionary relationships of the six youngest members (ursine bears) are largely unresolved. Recent mitochondrial DNA analyses have produced conflicting results with respect to the phylogeny of ursine bears. In an attempt to resolve these issues, we obtained 1916 nucleotides of mitochondrial DNA sequence data from six gene segments for all eight bear species and conducted maximum likelihood and maximum parsimony analyses on all fragments separately and combined. All six single-region gene trees gave different phylogenetic estimates; however, only for control region data was this significantly incongruent with the results from the combined data. The optimal phylogeny for the combined data set suggests that the giant panda is most basal followed by the spectacled bear. The sloth bear is the basal ursine bear, and there is weak support for a sister taxon relationship of the American and Asiatic black bears. The sun bear is sister taxon to the youngest clade containing brown bears and polar bears. Statistical analyses of alternate hypotheses revealed a lack of strong support for many of the relationships. We suggest that the difficulties surrounding the resolution of the evolutionary relationships of the Ursidae are linked to the existence of sequential rapid radiation events in bear evolution. Thus, unresolved branching orders during these time periods may represent an accurate representation of the evolutionary history of bear species. Copyright 1999 Academic Press.

  19. Dynamically heterogenous partitions and phylogenetic inference: an evaluation of analytical strategies with cytochrome b and ND6 gene sequences in cranes.

    PubMed

    Krajewski, C; Fain, M G; Buckley, L; King, D G

    1999-11-01

    ki ctes over whether molecular sequence data should be partitioned for phylogenetic analysis often confound two types of heterogeneity among partitions. We distinguish historical heterogeneity (i.e., different partitions have different evolutionary relationships) from dynamic heterogeneity (i.e., different partitions show different patterns of sequence evolution) and explore the impact of the latter on phylogenetic accuracy and precision with a two-gene, mitochondrial data set for cranes. The well-established phylogeny of cranes allows us to contrast tree-based estimates of relevant parameter values with estimates based on pairwise comparisons and to ascertain the effects of incorporating different amounts of process information into phylogenetic estimates. We show that codon positions in the cytochrome b and NADH dehydrogenase subunit 6 genes are dynamically heterogenous under both Poisson and invariable-sites + gamma-rates versions of the F84 model and that heterogeneity includes variation in base composition and transition bias as well as substitution rate. Estimates of transition-bias and relative-rate parameters from pairwise sequence comparisons were comparable to those obtained as tree-based maximum likelihood estimates. Neither rate-category nor mixed-model partitioning strategies resulted in a loss of phylogenetic precision relative to unpartitioned analyses. We suggest that weighted-average distances provide a computationally feasible alternative to direct maximum likelihood estimates of phylogeny for mixed-model analyses of large, dynamically heterogenous data sets. Copyright 1999 Academic Press.

  20. Lateral Gene Transfer from the Dead

    PubMed Central

    Szöllősi, Gergely J.; Tannier, Eric; Lartillot, Nicolas; Daubin, Vincent

    2013-01-01

    In phylogenetic studies, the evolution of molecular sequences is assumed to have taken place along the phylogeny traced by the ancestors of extant species. In the presence of lateral gene transfer, however, this may not be the case, because the species lineage from which a gene was transferred may have gone extinct or not have been sampled. Because it is not feasible to specify or reconstruct the complete phylogeny of all species, we must describe the evolution of genes outside the represented phylogeny by modeling the speciation dynamics that gave rise to the complete phylogeny. We demonstrate that if the number of sampled species is small compared with the total number of existing species, the overwhelming majority of gene transfers involve speciation to and evolution along extinct or unsampled lineages. We show that the evolution of genes along extinct or unsampled lineages can to good approximation be treated as those of independently evolving lineages described by a few global parameters. Using this result, we derive an algorithm to calculate the probability of a gene tree and recover the maximum-likelihood reconciliation given the phylogeny of the sampled species. Examining 473 near-universal gene families from 36 cyanobacteria, we find that nearly a third of transfer events (28%) appear to have topological signatures of evolution along extinct species, but only approximately 6% of transfers trace their ancestry to before the common ancestor of the sampled cyanobacteria. [Gene tree reconciliation; lateral gene transfer; macroevolution; phylogeny.] PMID:23355531

  1. Phylogenetic modeling of lateral gene transfer reconstructs the pattern and relative timing of speciations

    PubMed Central

    Szöllősi, Gergely J.; Boussau, Bastien; Abby, Sophie S.; Tannier, Eric; Daubin, Vincent

    2012-01-01

    The timing of the evolution of microbial life has largely remained elusive due to the scarcity of prokaryotic fossil record and the confounding effects of the exchange of genes among possibly distant species. The history of gene transfer events, however, is not a series of individual oddities; it records which lineages were concurrent and thus provides information on the timing of species diversification. Here, we use a probabilistic model of genome evolution that accounts for differences between gene phylogenies and the species tree as series of duplication, transfer, and loss events to reconstruct chronologically ordered species phylogenies. Using simulations we show that we can robustly recover accurate chronologically ordered species phylogenies in the presence of gene tree reconstruction errors and realistic rates of duplication, transfer, and loss. Using genomic data we demonstrate that we can infer rooted species phylogenies using homologous gene families from complete genomes of 10 bacterial and archaeal groups. Focusing on cyanobacteria, distinguished among prokaryotes by a relative abundance of fossils, we infer the maximum likelihood chronologically ordered species phylogeny based on 36 genomes with 8,332 homologous gene families. We find the order of speciation events to be in full agreement with the fossil record and the inferred phylogeny of cyanobacteria to be consistent with the phylogeny recovered from established phylogenomics methods. Our results demonstrate that lateral gene transfers, detected by probabilistic models of genome evolution, can be used as a source of information on the timing of evolution, providing a valuable complement to the limited prokaryotic fossil record. PMID:23043116

  2. Evolution at the tips: Asclepias phylogenomics and new perspectives on leaf surfaces.

    PubMed

    Fishbein, Mark; Straub, Shannon C K; Boutte, Julien; Hansen, Kimberly; Cronn, Richard C; Liston, Aaron

    2018-03-01

    Leaf surface traits, such as trichome density and wax production, mediate important ecological processes such as anti-herbivory defense and water-use efficiency. We present a phylogenetic analysis of Asclepias plastomes as a framework for analyzing the evolution of trichome density and presence of epicuticular waxes. We produced a maximum-likelihood phylogeny using plastomes of 103 species of Asclepias. We reconstructed ancestral states and used model comparisons in a likelihood framework to analyze character evolution across Asclepias. We resolved the backbone of Asclepias, placing the Sonoran Desert clade and Incarnatae clade as successive sisters to the remaining species. We present novel findings about leaf surface evolution of Asclepias-the ancestor is reconstructed as waxless and sparsely hairy, a macroevolutionary optimal trichome density is supported, and the rate of evolution of trichome density has accelerated. Increased sampling and selection of best-fitting models of evolution provide more resolved and robust estimates of phylogeny and character evolution than obtained in previous studies. Evolutionary inferences are more sensitive to character coding than model selection. © 2018 The Authors. American Journal of Botany is published by Wiley Periodicals, Inc. on behalf of the Botanical Society of America.

  3. Disintegration of the Micareaceae (lichenized Ascomycota): a molecular phylogeny based on mitochondrial rDNA sequences.

    PubMed

    Andersen, Heidi L; Ekman, Stefan

    2005-01-01

    The phylogeny of the family Micareaceae and the genus Micarea was studied using mitochondrial small subunit ribosomal DNA sequences. Phylogenetic reconstructions were performed using Bayesian MCMC tree sampling and a maximum likelihood approach. The Micareaceae in its current sense is highly heterogeneous, and Helocarpon, Psilolechia, and Scutula, all thought to be close relatives of Micarea, are shown to be only distantly related. The genus Micarea is paraphyletic unless the entire Pilocarpaceae and Ectolechiaceae are included, as also indicated by an expected likelihood weights test. It is suggested that the Micareaceae is reduced to synonymy with the Pilocarpaceae, which also includes the Ectolechiaceae, and that Micarea may have to be divided into a series of smaller genera in the future. Micarea species with a 'non-micareoid' photobiont group with Psora and the Ramalinaceae, whereas Micarea intrusa appears to belong in Scoliciosporum. Three species fall inside the paraphyletic Micarea: Szczawinskia tsugae, Catillaria contristans, and Fellhaneropsis vezdae. Tropical foliicolous taxa are nested within groups of mainly temperate and arctic-alpine distribution. A 'micareoid' photobiont appears to be plesiomorphic in the Pilocarpaceae but has been lost a few times.

  4. Molecular phylogeny and larval morphological diversity of the lanternfish genus Hygophum (Teleostei: Myctophidae).

    PubMed

    Yamaguchi, M; Miya, M; Okiyama, M; Nishida, M

    2000-04-01

    Larvae of the deep-sea lanternfish genus Hygophum (Myctophidae) exhibit a remarkable morphological diversity that is quite unexpected, considering their homogeneous adult morphology. In an attempt to elucidate the evolutionary patterns of such larval morphological diversity, nucleotide sequences of a portion of the mitochondrially encoded 16S ribosomal RNA gene were determined for seven Hygophum species and three outgroup taxa. Secondary structure-based alignment resulted in a character matrix consisting of 1172 bp of unambiguously aligned sequences, which were subjected to phylogenetic analyses using maximum-parsimony, maximum-likelihood, and neighbor-joining methods. The resultant tree topologies from the three methods were congruent, with most nodes, including that of the genus Hygophum, being strongly supported by various tree statistics. The most parsimonious reconstruction of the three previously recognized, distinct larval morphs onto the molecular phylogeny revealed that one of the morphs had originated as the common ancestor of the genus, the other two having diversified separately in two subsequent major clades. The patterns of such diversification are discussed in terms of the unusual larval eye morphology and geographic distribution. Copyright 2000 Academic Press.

  5. Phylogeny of the Gadidae (sensu Svetovidov, 1948) based on their morphology and two mitochondrial genes.

    PubMed

    Teletchea, Fabrice; Laudet, Vincent; Hänni, Catherine

    2006-01-01

    Although Codfishes are probably one of the most studied groups of all teleost fishes worldwide owing to their great importance to fisheries, their phylogeny and classification are still far from being firmly established. In this study, we present phylogenetic relationships of 19 out of 22 genera traditionally included in the Gadidae based on the analysis of entire cytochrome b and partial cytochrome oxidase I genes (1530 bp). Maximum Parsimony, Maximum Likelihood, and Bayesian analyses all recovered five main clades that correspond to traditionally recognized groupings within Gadoids. The same clades were recovered with MP analysis based on 30 morphological characters (collected from the literature). Given these findings, we propose a revised provisional classification of Gadoids: one suborder Gadoidei containing two families, the Merlucciidae (1 genus) and the Gadidae (21 genera) distributed into four subfamilies: the Gadinae (12 genera), the Lotinae (3 genera), the Gaidropsarinae (3 genera), and the Phycinae (3 genera). Lastly, nuclear inserts of mitochondrial DNA (Numts) were identified in two species, i.e., Gadiculus argenteus and Melanogrammus aeglefinus.

  6. Plastome phylogeny and early diversification of Brassicaceae.

    PubMed

    Guo, Xinyi; Liu, Jianquan; Hao, Guoqian; Zhang, Lei; Mao, Kangshan; Wang, Xiaojuan; Zhang, Dan; Ma, Tao; Hu, Quanjun; Al-Shehbaz, Ihsan A; Koch, Marcus A

    2017-02-16

    The family Brassicaceae encompasses diverse species, many of which have high scientific and economic importance. Early diversifications and phylogenetic relationships between major lineages or clades remain unclear. Here we re-investigate Brassicaceae phylogeny with complete plastomes from 51 species representing all four lineages or 5 of 6 major clades (A, B, C, E and F) as identified in earlier studies. Bayesian and maximum likelihood phylogenetic analyses using a partitioned supermatrix of 77 protein coding genes resulted in nearly identical tree topologies exemplified by highly supported relationships between clades. All four lineages were well identified and interrelationships between them were resolved. The previously defined Clade C was found to be paraphyletic (the genus Megadenia formed a separate lineage), while the remaining clades were monophyletic. Clade E (lineage III) was sister to clades B + C rather than to all core Brassicaceae (clades A + B + C or lineages I + II), as suggested by a previous transcriptome study. Molecular dating based on plastome phylogeny supported the origin of major lineages or clades between late Oligocene and early Miocene, and the following radiative diversification across the family took place within a short timescale. In addition, gene losses in the plastomes occurred multiple times during the evolutionary diversification of the family. Plastome phylogeny illustrates the early diversification of cruciferous species. This phylogeny will facilitate our further understanding of evolution and adaptation of numerous species in the model family Brassicaceae.

  7. Three-gene based phylogeny of the Urostyloidea (Protista, Ciliophora, Hypotricha), with notes on classification of some core taxa.

    PubMed

    Huang, Jie; Chen, Zigui; Song, Weibo; Berger, Helmut

    2014-01-01

    Classifications of the Urostyloidea were mainly based on morphology and morphogenesis. Since molecular phylogeny largely focused on limited sampling using mostly the one-gene information, the incongruence between morphological data and gene sequences have risen. In this work, the three-gene data (SSU-rDNA, ITS1-5.8S-ITS2 and LSU-rDNA) comprising 12 genera in the "core urostyloids" are sequenced, and the phylogenies based on these different markers are compared using maximum-likelihood and Bayesian algorithms and tested by unconstrained and constrained analyses. The molecular phylogeny supports the following conclusions: (1) the monophyly of the core group of Urostyloidea is well supported while the whole Urostyloidea is not monophyletic; (2) Thigmokeronopsis and Apokeronopsis are clearly separated from the pseudokeronopsids in analyses of all three gene markers, supporting their exclusion from the Pseudokeronopsidae and the inclusion in the Urostylidae; (3) Diaxonella and Apobakuella should be assigned to the Urostylidae; (4) Bergeriella, Monocoronella and Neourostylopsis flavicana share a most recent common ancestor; (5) all molecular trees support the transfer of Metaurostylopsis flavicana to the recently proposed genus Neourostylopsis; (6) all molecular phylogenies fail to separate the morphologically well-defined genera Uroleptopsis and Pseudokeronopsis; and (7) Arcuseries gen. nov. containing three distinctly deviating Anteholosticha species is established. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  8. A Well-Resolved Phylogeny of the Trees of Puerto Rico Based on DNA Barcode Sequence Data

    PubMed Central

    Muscarella, Robert; Uriarte, María; Erickson, David L.; Swenson, Nathan G.; Zimmerman, Jess K.; Kress, W. John

    2014-01-01

    Background The use of phylogenetic information in community ecology and conservation has grown in recent years. Two key issues for community phylogenetics studies, however, are (i) low terminal phylogenetic resolution and (ii) arbitrarily defined species pools. Methodology/principal findings We used three DNA barcodes (plastid DNA regions rbcL, matK, and trnH-psbA) to infer a phylogeny for 527 native and naturalized trees of Puerto Rico, representing the vast majority of the entire tree flora of the island (89%). We used a maximum likelihood (ML) approach with and without a constraint tree that enforced monophyly of recognized plant orders. Based on 50% consensus trees, the ML analyses improved phylogenetic resolution relative to a comparable phylogeny generated with Phylomatic (proportion of internal nodes resolved: constrained ML = 74%, unconstrained ML = 68%, Phylomatic = 52%). We quantified the phylogenetic composition of 15 protected forests in Puerto Rico using the constrained ML and Phylomatic phylogenies. We found some evidence that tree communities in areas of high water stress were relatively phylogenetically clustered. Reducing the scale at which the species pool was defined (from island to soil types) changed some of our results depending on which phylogeny (ML vs. Phylomatic) was used. Overall, the increased terminal resolution provided by the ML phylogeny revealed additional patterns that were not observed with a less-resolved phylogeny. Conclusions/significance With the DNA barcode phylogeny presented here (based on an island-wide species pool), we show that a more fully resolved phylogeny increases power to detect nonrandom patterns of community composition in several Puerto Rican tree communities. Especially if combined with additional information on species functional traits and geographic distributions, this phylogeny will (i) facilitate stronger inferences about the role of historical processes in governing the assembly and composition of Puerto Rican forests, (ii) provide insight into Caribbean biogeography, and (iii) aid in incorporating evolutionary history into conservation planning. PMID:25386879

  9. A well-resolved phylogeny of the trees of Puerto Rico based on DNA barcode sequence data.

    PubMed

    Muscarella, Robert; Uriarte, María; Erickson, David L; Swenson, Nathan G; Zimmerman, Jess K; Kress, W John

    2014-01-01

    The use of phylogenetic information in community ecology and conservation has grown in recent years. Two key issues for community phylogenetics studies, however, are (i) low terminal phylogenetic resolution and (ii) arbitrarily defined species pools. We used three DNA barcodes (plastid DNA regions rbcL, matK, and trnH-psbA) to infer a phylogeny for 527 native and naturalized trees of Puerto Rico, representing the vast majority of the entire tree flora of the island (89%). We used a maximum likelihood (ML) approach with and without a constraint tree that enforced monophyly of recognized plant orders. Based on 50% consensus trees, the ML analyses improved phylogenetic resolution relative to a comparable phylogeny generated with Phylomatic (proportion of internal nodes resolved: constrained ML = 74%, unconstrained ML = 68%, Phylomatic = 52%). We quantified the phylogenetic composition of 15 protected forests in Puerto Rico using the constrained ML and Phylomatic phylogenies. We found some evidence that tree communities in areas of high water stress were relatively phylogenetically clustered. Reducing the scale at which the species pool was defined (from island to soil types) changed some of our results depending on which phylogeny (ML vs. Phylomatic) was used. Overall, the increased terminal resolution provided by the ML phylogeny revealed additional patterns that were not observed with a less-resolved phylogeny. With the DNA barcode phylogeny presented here (based on an island-wide species pool), we show that a more fully resolved phylogeny increases power to detect nonrandom patterns of community composition in several Puerto Rican tree communities. Especially if combined with additional information on species functional traits and geographic distributions, this phylogeny will (i) facilitate stronger inferences about the role of historical processes in governing the assembly and composition of Puerto Rican forests, (ii) provide insight into Caribbean biogeography, and (iii) aid in incorporating evolutionary history into conservation planning.

  10. Maximum parsimony, substitution model, and probability phylogenetic trees.

    PubMed

    Weng, J F; Thomas, D A; Mareels, I

    2011-01-01

    The problem of inferring phylogenies (phylogenetic trees) is one of the main problems in computational biology. There are three main methods for inferring phylogenies-Maximum Parsimony (MP), Distance Matrix (DM) and Maximum Likelihood (ML), of which the MP method is the most well-studied and popular method. In the MP method the optimization criterion is the number of substitutions of the nucleotides computed by the differences in the investigated nucleotide sequences. However, the MP method is often criticized as it only counts the substitutions observable at the current time and all the unobservable substitutions that really occur in the evolutionary history are omitted. In order to take into account the unobservable substitutions, some substitution models have been established and they are now widely used in the DM and ML methods but these substitution models cannot be used within the classical MP method. Recently the authors proposed a probability representation model for phylogenetic trees and the reconstructed trees in this model are called probability phylogenetic trees. One of the advantages of the probability representation model is that it can include a substitution model to infer phylogenetic trees based on the MP principle. In this paper we explain how to use a substitution model in the reconstruction of probability phylogenetic trees and show the advantage of this approach with examples.

  11. MANTIS: a phylogenetic framework for multi-species genome comparisons.

    PubMed

    Tzika, Athanasia C; Helaers, Raphaël; Van de Peer, Yves; Milinkovitch, Michel C

    2008-01-15

    Practitioners of comparative genomics face huge analytical challenges as whole genome sequences and functional/expression data accumulate. Furthermore, the field would greatly benefit from a better integration of this wealth of data with evolutionary concepts. Here, we present MANTIS, a relational database for the analysis of (i) gains and losses of genes on specific branches of the metazoan phylogeny, (ii) reconstructed genome content of ancestral species and (iii) over- or under-representation of functions/processes and tissue specificity of gained, duplicated and lost genes. MANTIS estimates the most likely positions of gene losses on the true phylogeny using a maximum-likelihood function. A user-friendly interface and an extensive query system allow to investigate questions pertaining to gene identity, phylogenetic mapping and function/expression parameters. MANTIS is freely available at http://www.mantisdb.org and constitutes the missing link between multi-species genome comparisons and functional analyses.

  12. Towards resolving the complete fern tree of life.

    PubMed

    Lehtonen, Samuli

    2011-01-01

    In the past two decades, molecular systematic studies have revolutionized our understanding of the evolutionary history of ferns. The availability of large molecular data sets together with efficient computer algorithms, now enables us to reconstruct evolutionary histories with previously unseen completeness. Here, the most comprehensive fern phylogeny to date, representing over one-fifth of the extant global fern diversity, is inferred based on four plastid genes. Parsimony and maximum-likelihood analyses provided a mostly congruent results and in general supported the prevailing view on the higher-level fern systematics. At a deep phylogenetic level, the position of horsetails depended on the optimality criteria chosen, with horsetails positioned as the sister group either of Marattiopsida-Polypodiopsida clade or of the Polypodiopsida. The analyses demonstrate the power of using a 'supermatrix' approach to resolve large-scale phylogenies and reveal questionable taxonomies. These results provide a valuable background for future research on fern systematics, ecology, biogeography and other evolutionary studies.

  13. Increased phylogenetic resolution within the ecologically important Rhizopogon subgenus Amylopogon using 10 anonymous nuclear loci.

    PubMed

    Dowie, Nicholas J; Grubisha, Lisa C; Burton, Brent A; Klooster, Matthew R; Miller, Steven L

    2017-01-01

    Rhizopogon species are ecologically significant ectomycorrhizal fungi in conifer ecosystems. The importance of this system merits the development and utilization of a more robust set of molecular markers specifically designed to evaluate their evolutionary ecology. Anonymous nuclear loci (ANL) were developed for R. subgenus Amylopogon. Members of this subgenus occur throughout the United States and are exclusive fungal symbionts associated with Pterospora andromedea, a threatened mycoheterotrophic plant endemic to disjunct eastern and western regions of North America. Candidate ANL were developed from 454 shotgun pyrosequencing and assessed for positive amplification across targeted species, sequencing success, and recovery of phylogenetically informative sites. Ten ANL were successfully developed and were subsequently used to sequence representative taxa, herbaria holotype and paratype specimens in R. subgenus Amylopogon. Phylogenetic reconstructions were performed on individual and concatenated data sets by Bayesian inference and maximum likelihood methods. Phylogenetic analyses of these 10 ANL were compared with a phylogeny traditionally constructed using the universal fungal barcode nuc rDNA ITS1-5.8S-ITS2 region (ITS). The resulting ANL phylogeny was consistent with most of the species designations delineated by ITS. However, the ANL phylogeny provided much greater phylogenetic resolution, yielding new evidence for cryptic species within previously defined species of R. subgenus Amylopogon. Additionally, the rooted ANL phylogeny provided an alternate topology to the ITS phylogeny, which inferred a novel set of evolutionary relationships not identified in prior phylogenetic studies.

  14. A novel molecular marker for the study of Neotropical cichlid phylogeny.

    PubMed

    Fabrin, T M C; Gasques, L S; Prioli, S M A P; Prioli, A J

    2015-12-22

    The use of molecular markers has contributed to phylogeny and to the reconstruction of species' evolutionary history. Each region of the genome has different evolution rates, which may or may not identify phylogenetic signal at different levels. Therefore, it is important to assess new molecular markers that can be used for phylogenetic reconstruction. Regions that may be associated with species characteristics and are subject to selective pressure, such as opsin genes, which encode proteins related to the visual system and are widely expressed by Cichlidae family members, are interesting. Our aim was to identify a new nuclear molecular marker that could establish the phylogeny of Neotropical cichlids and is potentially correlated with the visual system. We used Bayesian inference and maximum likelihood analysis to support the use of the nuclear opsin LWS gene in the phylogeny of eight Neotropical cichlid species. Their use concatenated to the mitochondrial gene COI was also tested. The LWS gene fragment comprised the exon 2-4 region, including the introns. The LWS gene provided good support for both analyses up to the genus level, distinguishing the studied species, and when concatenated to the COI gene, there was a good support up to the species level. Another benefit of utilizing this region, is that some polymorphisms are associated with changes in spectral properties of the LWS opsin protein, which constitutes the visual pigment that absorbs red light. Thus, utilization of this gene as a molecular marker to study the phylogeny of Neotropical cichlids is promising.

  15. Molecular phylogeny of the spoonbills (Aves: Threskiornithidae) based on mitochondrial DNA

    USGS Publications Warehouse

    Chesser, R. Terry; Yeung, Carol K.L.; Yao, Cheng-Te; Tian, Xiu-Hua; Li, Shou-Hsien

    2010-01-01

    Spoonbills (genus Platalea) are a small group of wading birds, generally considered to constitute the subfamily Plataleinae (Aves: Threskiornithidae). We reconstructed phylogenetic relationships among the six species of spoonbills using variation in sequences of the mitochondrial genes ND2 and cytochrome b (total 1796 bp). Topologies of phylogenetic trees reconstructed using maximum likelihood, maximum parsimony, and Bayesian analyses were virtually identical and supported monophyly of the spoonbills. Most relationships within Platalea received strong support: P. minor and P. regia were closely related sister species, P. leucorodia was sister to the minor-regia clade, and P. alba was sister to the minor-regia-leucorodia clade. Relationships of P. flavipes and P. ajaja were less well resolved: these species either formed a clade that was sister to the four-species clade, or were successive sisters to this clade. This phylogeny is consistent with ideas of relatedness derived from spoonbill morphology. Our limited sampling of the Threskiornithinae (ibises), the putative sister group to the spoonbills, indicated that this group is paraphyletic, in agreement with previous molecular data; this suggests that separation of the Threskiornithidae into subfamilies Plataleinae and Threskiornithinae may not be warranted.

  16. A revised phylogeny of Antilopini (Bovidae, Artiodactyla) using combined mitochondrial and nuclear genes.

    PubMed

    Bärmann, Eva Verena; Rössner, Gertrud Elisabeth; Wörheide, Gert

    2013-05-01

    Antilopini (gazelles and their allies) are one of the most diverse but phylogenetically controversial groups of bovids. Here we provide a molecular phylogeny of this poorly understood taxon using combined analyses of mitochondrial (CYTB, COIII, 12S, 16S) and nuclear (KCAS, SPTBN1, PRKCI, MC1R, THYR) genes. We explore the influence of data partitioning and different analytical methods, including Bayesian inference, maximum likelihood and maximum parsimony, on the inferred relationships within Antilopini. We achieve increased resolution and support compared to previous analyses especially in the two most problematic parts of their tree. First, taxa commonly referred to as "gazelles" are recovered as paraphyletic, as the genus Gazella appears more closely related to the Indian blackbuck (Antilope cervicapra) than to the other two gazelle genera (Nanger and Eudorcas). Second, we recovered a strongly supported sister relationship between one of the dwarf antelopes (Ourebia) and the Antilopini subgroup Antilopina (Saiga, Gerenuk, Springbok, Blackbuck and gazelles). The assessment of the influence of taxon sampling, outgroup rooting, and data partitioning in Bayesian analyses helps explain the contradictory results of previous studies. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Effectiveness of phylogenomic data and coalescent species-tree methods for resolving difficult nodes in the phylogeny of advanced snakes (Serpentes: Caenophidia).

    PubMed

    Pyron, R Alexander; Hendry, Catriona R; Chou, Vincent M; Lemmon, Emily M; Lemmon, Alan R; Burbrink, Frank T

    2014-12-01

    Next-generation genomic sequencing promises to quickly and cheaply resolve remaining contentious nodes in the Tree of Life, and facilitates species-tree estimation while taking into account stochastic genealogical discordance among loci. Recent methods for estimating species trees bypass full likelihood-based estimates of the multi-species coalescent, and approximate the true species-tree using simpler summary metrics. These methods converge on the true species-tree with sufficient genomic sampling, even in the anomaly zone. However, no studies have yet evaluated their efficacy on a large-scale phylogenomic dataset, and compared them to previous concatenation strategies. Here, we generate such a dataset for Caenophidian snakes, a group with >2500 species that contains several rapid radiations that were poorly resolved with fewer loci. We generate sequence data for 333 single-copy nuclear loci with ∼100% coverage (∼0% missing data) for 31 major lineages. We estimate phylogenies using neighbor joining, maximum parsimony, maximum likelihood, and three summary species-tree approaches (NJst, STAR, and MP-EST). All methods yield similar resolution and support for most nodes. However, not all methods support monophyly of Caenophidia, with Acrochordidae placed as the sister taxon to Pythonidae in some analyses. Thus, phylogenomic species-tree estimation may occasionally disagree with well-supported relationships from concatenated analyses of small numbers of nuclear or mitochondrial genes, a consideration for future studies. In contrast for at least two diverse, rapid radiations (Lamprophiidae and Colubridae), phylogenomic data and species-tree inference do little to improve resolution and support. Thus, certain nodes may lack strong signal, and larger datasets and more sophisticated analyses may still fail to resolve them. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Phylogeny of the gymnosperm genus Cycas L. (Cycadaceae) as inferred from plastid and nuclear loci based on a large-scale sampling: Evolutionary relationships and taxonomical implications.

    PubMed

    Liu, Jian; Zhang, Shouzhou; Nagalingum, Nathalie S; Chiang, Yu-Chung; Lindstrom, Anders J; Gong, Xun

    2018-05-18

    The gymnosperm genus Cycas is the sole member of Cycadaceae, and is the largest genus of extant cycads. There are about 115 accepted Cycas species mainly distributed in the paleotropics. Based on morphology, the genus has been divided into six sections and eight subsections, but this taxonomy has not yet been tested in a molecular phylogenetic framework. Although the monophyly of Cycas is broadly accepted, the intrageneric relationships inferred from previous molecular phylogenetic analyses are unclear due to insufficient sampling or uninformative DNA sequence data. In this study, we reconstructed a phylogeny of Cycas using four chloroplast intergenic spacers and seven low-copy nuclear genes and sampling 90% of extant Cycas species. The maximum likelihood and Bayesian inference phylogenies suggest: (1) matrices of either concatenated cpDNA markers or of concatenated nDNA lack sufficient informative sites to resolve the phylogeny alone, however, the phylogeny from the combined cpDNA-nDNA dataset suggests the genus can be roughly divided into 13 clades and six sections that are in agreement with the current classification of the genus; (2) although with partial support, a clade combining sections Panzhihuaenses + Asiorientales is resolved as the earliest diverging branch; (3) section Stangerioides is not monophyletic because the species resolve as a grade; (4) section Indosinenses is not monophyletic as it includes Cycas macrocarpa and C. pranburiensis from section Cycas; (5) section Cycas is the most derived group and its subgroups correspond with geography. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Efficient computation of the phylogenetic likelihood function on multi-gene alignments and multi-core architectures.

    PubMed

    Stamatakis, Alexandros; Ott, Michael

    2008-12-27

    The continuous accumulation of sequence data, for example, due to novel wet-laboratory techniques such as pyrosequencing, coupled with the increasing popularity of multi-gene phylogenies and emerging multi-core processor architectures that face problems of cache congestion, poses new challenges with respect to the efficient computation of the phylogenetic maximum-likelihood (ML) function. Here, we propose two approaches that can significantly speed up likelihood computations that typically represent over 95 per cent of the computational effort conducted by current ML or Bayesian inference programs. Initially, we present a method and an appropriate data structure to efficiently compute the likelihood score on 'gappy' multi-gene alignments. By 'gappy' we denote sampling-induced gaps owing to missing sequences in individual genes (partitions), i.e. not real alignment gaps. A first proof-of-concept implementation in RAXML indicates that this approach can accelerate inferences on large and gappy alignments by approximately one order of magnitude. Moreover, we present insights and initial performance results on multi-core architectures obtained during the transition from an OpenMP-based to a Pthreads-based fine-grained parallelization of the ML function.

  20. Phylogeny, Systematics and Biogeography of the Genus Panolis (Lepidoptera: Noctuidae) Based on Morphological and Molecular Evidence

    PubMed Central

    Wang, Houshuai; Fan, Xiaoling; Owada, Mamoru; Wang, Min; Nylin, Sören

    2014-01-01

    The genus Panolis is a small group of noctuid moths with six recognized species distributed from Europe to East Asia, and best known for containing the widespread Palearctic pest species P. flammea, the pine beauty moth. However, a reliable classification and robust phylogenetic framework for this group of potentially economic importance are currently lacking. Here, we use morphological and molecular data (mitochondrial genes cytochrome c oxidase subunit I and 16S ribosomal RNA, nuclear gene elongation factor-1 alpha) to reconstruct the phylogeny of this genus, with a comprehensive systematic revision of all recognized species and a new one, P. ningshan sp. nov. The analysis results of maximum parsimony, maximum likelihood and Bayesian inferring methods for the combined morphological and molecular data sets are highly congruent, resulting in a robust phylogeny and identification of two clear species groups, i.e., the P. flammea species group and the P. exquisita species group. We also estimate the divergence times of Panolis moths using two conventional mutation rates for the arthropod mitochondrial COI gene with a comparison of two molecular clock models, as well as reconstruct their ancestral areas. Our results suggest that 1) Panolis is a young clade, originating from the Oriental region in China in the Late Miocene (6–10Mya), with an ancestral species in the P. flammea group extending northward to the Palearctic region some 3–6 Mya; 2) there is a clear possibility for a representative of the Palearctic clade to become established as an invasive species in the Nearctic taiga. PMID:24603596

  1. Maximum likelihood of phylogenetic networks.

    PubMed

    Jin, Guohua; Nakhleh, Luay; Snir, Sagi; Tuller, Tamir

    2006-11-01

    Horizontal gene transfer (HGT) is believed to be ubiquitous among bacteria, and plays a major role in their genome diversification as well as their ability to develop resistance to antibiotics. In light of its evolutionary significance and implications for human health, developing accurate and efficient methods for detecting and reconstructing HGT is imperative. In this article we provide a new HGT-oriented likelihood framework for many problems that involve phylogeny-based HGT detection and reconstruction. Beside the formulation of various likelihood criteria, we show that most of these problems are NP-hard, and offer heuristics for efficient and accurate reconstruction of HGT under these criteria. We implemented our heuristics and used them to analyze biological as well as synthetic data. In both cases, our criteria and heuristics exhibited very good performance with respect to identifying the correct number of HGT events as well as inferring their correct location on the species tree. Implementation of the criteria as well as heuristics and hardness proofs are available from the authors upon request. Hardness proofs can also be downloaded at http://www.cs.tau.ac.il/~tamirtul/MLNET/Supp-ML.pdf

  2. Molecular phylogeny of black fungus gnats (Diptera: Sciaroidea: Sciaridae) and the evolution of larval habitats.

    PubMed

    Shin, Seunggwan; Jung, Sunghoon; Menzel, Frank; Heller, Kai; Lee, Heungsik; Lee, Seunghwan

    2013-03-01

    The phylogeny of the family Sciaridae is reconstructed, based on maximum likelihood, maximum parsimony, and Bayesian analyses of 4809bp from two mitochondrial (COI and 16S) and two nuclear (18S and 28S) genes for 100 taxa including the outgroup taxa. According to the present phylogenetic analyses, Sciaridae comprise three subfamilies and two genus groups: Sciarinae, Chaetosciara group, Cratyninae, and Pseudolycoriella group+Megalosphyinae. Our molecular results are largely congruent with one of the former hypotheses based on morphological data with respect to the monophyly of genera and subfamilies (Sciarinae, Megalosphyinae, and part of postulated "new subfamily"); however, the subfamily Cratyninae is shown to be polyphyletic, and the genera Bradysia, Corynoptera, Leptosciarella, Lycoriella, and Phytosciara are also recognized as non-monophyletic groups. While the ancestral larval habitat state of the family Sciaridae, based on Bayesian inference, is dead plant material (plant litter+rotten wood), the common ancestors of Phytosciara and Bradysia are inferred to living plants habitat. Therefore, shifts in larval habitats from dead plant material to living plants may have occurred within the Sciaridae at least once. Based on the results, we discuss phylogenetic relationships within the family, and present an evolutionary scenario of development of larval habitats. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Molecular phylogeny of the red panda (Ailurus fulgens).

    PubMed

    Slattery, J P; O'Brien, S J

    1995-01-01

    The phylogenetic placement of the red panda (Ailurus fulgens) and the giant panda (Ailuropoda melanoleuca) has been an evolutionary enigma since their original descriptions in the nineteenth century. A series of recent molecular analyses led to a consensus that the giant panda's ancestors were derived from early bears (Ursidae), but left unsettled the phylogenetic relationship of the red panda. Previous molecular and morphological phylogenies were inconclusive and varied among placement of the red panda within the raccoon family (Procyonidae), within the bear family (Ursidae), or in a separate family of carnivores equidistant between the two. To examine a relatively ancient (circa 20-30 million years before the present, MYBP) phylogenetic divergence, we used two slowly evolving genetic markers: mitochondrial 12S rRNA sequence and 592 fibroblast proteins resolved by two dimensional gel electrophoresis. Four different carnivore outgroup species, including dog (Canidae: Canis familiaris), cat (Felidae: Felis catus), fanaloka (Viverridae: Fossa fossa), and mongoose (Herpestidae: Galidia elegans), were selected to identify the root of the phylogenetic topologies. Phylogenetic reconstruction by distance-based methods, maximum parsimony, and maximum likelihood clearly indicate a distinct bifurcation forming the Ursidae and the Procyonidae. Further, our data consistently place the red panda as an early divergence within the Procyonidae radiation and confirm the inclusion of giant panda in the Ursidae lineage.

  4. Mitochondrial phylogeny of Chinese barred species of the cyprinid genus Acrossocheilus Oshima, 1919 (Teleostei: Cypriniformes) and its taxonomic implications.

    PubMed

    Yuan, Le-Yang; Liu, Xiao-Xiang; Zhang, E

    2015-12-21

    Sequences from the mitochondrial control region of 14 putative species of Acrossocheilus (Cyprinidae) were examined to elucidate phylogenetic relationships within species of the barred group in that genus. Phylogenetic reconstructions were generated using three tree-building methods: maximum parsimony, maximum likelihood, and Bayesian inference. The resultant phylogenies were consistent with monophyly of the majority of the morphologically recognized species. However, mitochondrial DNA sequence evidence is incongruent with monophyly of A. fasciatus, as currently conceived. This species occurs only in the upper Qiantang-Jiang basin in Zhejiang and Anhui provinces, and coastal rivers in the Zhejiang Province. The species formerly recognized as A. paradoxus from Zhejiang Province is A. fasciatus. The specimens previously reported as A. fasciatus from river basins in Fujian Province are misidentified A. wuyiensis. The barred group of Acrossocheilus is shown to be polyphyletic. Acrossocheilus is restricted to the barred species here placed in "Clade II," containing A. paradoxus and relatives. Separate generic status is recommended for A. monticola and for A. longipinnis and their closest relatives, although more information on phylogenetic relationships based on multiple genes is required to develop robust phylogenetic hypotheses and diagnoses. Masticbarbus Tang, 1942 is available for A. longipinnis and three allied species (A. iridescens, A. microstomus and A. lamus).

  5. Phylogenetic estimation and morphological evolution of Arundinarieae (Bambusoideae: Poaceae) based on plastome phylogenomic analysis.

    PubMed

    Attigala, Lakshmi; Wysocki, William P; Duvall, Melvin R; Clark, Lynn G

    2016-08-01

    We explored phylogenetic relationships among the twelve lineages of the temperate woody bamboo clade (tribe Arundinarieae) based on plastid genome (plastome) sequence data. A representative sample of 28 taxa was used and maximum parsimony, maximum likelihood and Bayesian inference analyses were conducted to estimate the Arundinarieae phylogeny. All the previously recognized clades of Arundinarieae were supported, with Ampelocalamus calcareus (Clade XI) as sister to the rest of the temperate woody bamboos. Well supported sister relationships between Bergbambos tessellata (Clade I) and Thamnocalamus spathiflorus (Clade VII) and between Kuruna (Clade XII) and Chimonocalmus (Clade III) were revealed by the current study. The plastome topology was tested by taxon removal experiments and alternative hypothesis testing and the results supported the current plastome phylogeny as robust. Neighbor-net analyses showed few phylogenetic signal conflicts, but suggested some potentially complex relationships among these taxa. Analyses of morphological character evolution of rhizomes and reproductive structures revealed that pachymorph rhizomes were most likely the ancestral state in Arundinarieae. In contrast leptomorph rhizomes either evolved once with reversions to the pachymorph condition or multiple times in Arundinarieae. Further, pseudospikelets evolved independently at least twice in the Arundinarieae, but the ancestral state is ambiguous. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The mitogenomic phylogeny of the Elasmobranchii (Chondrichthyes).

    PubMed

    Amaral, Cesar R L; Pereira, Filipe; Silva, Dayse A; Amorim, António; de Carvalho, Elizeu F

    2017-09-20

    Here we present a mitogenomic perspective on the evolution of sharks and rays, being a first glance on the complete mitochondrial history of such an old and diversified group of vertebrates. The Elasmobranchii is a diverse subclass of Chondrichthyes, or cartilaginous fish, with about 1200 species of ocean- and freshwater-dwelling fishes spread all over the world's seas, including some of the ocean's largest fishes. The group dates back about 400 million years near the Devonian-Silurian boundary, being nowadays represented by several derivative lineages, mainly related to Mesozoic forms. Although considered of ecological, commercial and conservation importance, the phylogeny of this old group is poorly studied and still under debate. Here we apply a molecular systematic approach on 82 complete mitochondrial genomes to investigate the phylogeny of the Elasmobranchii. By using maximum likelihood (ML) and Bayesian analyses, we found a clear separation within the shark clade between the Galeomorphii and the Squalomorphii, as well as sister taxa relationships between the Carcharhiniformes and the Lamniformes. Moreover, we found that Pristoidei clusters within the Rhinobatoidei, having been recovered as the sister taxon of the Rhinobatos genus in a clade which also includes the basal Zapteryx. Our results also reject the Hypnosqualea hypothesis, which proposes that the Batoidea should be placed within the Selachii.

  7. Lactarius subgenus Russularia (Basidiomycota, Russulales): novel Asian species, worldwide phylogeny and evolutionary relationships.

    PubMed

    Wisitrassameewong, Komsit; Looney, Brian P; Le, Huyen T; De Crop, Eske; Das, Kanad; Van de Putte, Kobeke; Eberhardt, Ursula; Jiayu, Guo; Stubbe, Dirk; Hyde, Kevin D; Verbeken, Annemieke; Nuytinck, Jorinde

    2016-12-01

    Lactarius subg. Russularia is a large group of milkcaps occurring almost worldwide and dominant in many ecosystems. In this study we focus on new diversity, evolutionary relationships, divergence time, and origin of the subgenus. Six conifer symbionts are described as new to science: Lactarius atrii, L. aurantionitidus, L. dombangensis, L. flavigalactus, L. lachungensis, and L. sikkimensis. Species delimitation is assessed based on the concordance between morphological characteristics and an ITS phylogeny. Infrageneric relationships were studied using a phylogeny constructed from concatenated ITS-rpb2 data using Maximum Likelihood and Bayesian inference. Results show that species in this subgenus do not cluster together according to their geographic origin. Intercontinental sister relationships between Europe/Asia/North America are common but actual conspecificity is rare. This result suggests that allopatric speciation has played an important role within this subgenus. Only few morphological characteristics tend to be phylogenetically informative, with the most important being presence or absence of true cystidia and the pileipellis structure. Two datasets were generated in order to estimate the age of L. subg. Russularia. The results suggest the origin of L. subg. Russularia to be in the Mid Miocene period. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  8. The phylogenetic utility of acetyltransferase (ARD1) and glutaminyl tRNA synthetase (QtRNA) for reconstructing Cenozoic relationships as exemplified by the large Australian cicada Pauropsalta generic complex.

    PubMed

    Owen, Christopher L; Marshall, David C; Hill, Kathy B R; Simon, Chris

    2015-02-01

    The Pauropsalta generic complex is a large group of cicadas (72 described spp.; >82 undescribed spp.) endemic to Australia. No previous molecular work on deep level relationships within this complex has been conducted, but a recent morphological revision and phylogenetic analysis proposed relationships among the 11 genera. We present here the first comprehensive molecular phylogeny of the complex using five loci (1 mtDNA, 4 nDNA), two of which are from nuclear genes new to cicada systematics. We compare the molecular phylogeny to the morphological phylogeny. We evaluate the phylogenetic informativeness of the new loci to traditional cicada systematics loci to generate a baseline of performance and behavior to aid in gene choice decisions in future systematic and phylogenomic studies. Our maximum likelihood and Bayesian inference phylogenies strongly support the monophyly of most of the newly described genera; however, relationships among genera differ from the morphological phylogeny. A comparison of phylogenetic informativeness among all loci revealed that COI 3rd positions dominate the informativeness profiles relative to all other loci but exhibit some among taxon nucleotide bias. After removing COI 3rd positions, COI 1st positions dominate near the terminals, while the period intron has the most phylogenetic informativeness near the root. Among the nuclear loci, ARD1 and QtRNA have lower phylogenetic informativeness than period intron and elongation factor 1 alpha intron, but the informativeness increases at you move from the tips to the root. The increase in phylogenetic informativeness deeper in the tree suggests these loci may be useful for resolving older relationships. Copyright © 2015. Published by Elsevier Inc.

  9. Inferring epidemiological parameters from phylogenies using regression-ABC: A comparative study

    PubMed Central

    Gascuel, Olivier

    2017-01-01

    Inferring epidemiological parameters such as the R0 from time-scaled phylogenies is a timely challenge. Most current approaches rely on likelihood functions, which raise specific issues that range from computing these functions to finding their maxima numerically. Here, we present a new regression-based Approximate Bayesian Computation (ABC) approach, which we base on a large variety of summary statistics intended to capture the information contained in the phylogeny and its corresponding lineage-through-time plot. The regression step involves the Least Absolute Shrinkage and Selection Operator (LASSO) method, which is a robust machine learning technique. It allows us to readily deal with the large number of summary statistics, while avoiding resorting to Markov Chain Monte Carlo (MCMC) techniques. To compare our approach to existing ones, we simulated target trees under a variety of epidemiological models and settings, and inferred parameters of interest using the same priors. We found that, for large phylogenies, the accuracy of our regression-ABC is comparable to that of likelihood-based approaches involving birth-death processes implemented in BEAST2. Our approach even outperformed these when inferring the host population size with a Susceptible-Infected-Removed epidemiological model. It also clearly outperformed a recent kernel-ABC approach when assuming a Susceptible-Infected epidemiological model with two host types. Lastly, by re-analyzing data from the early stages of the recent Ebola epidemic in Sierra Leone, we showed that regression-ABC provides more realistic estimates for the duration parameters (latency and infectiousness) than the likelihood-based method. Overall, ABC based on a large variety of summary statistics and a regression method able to perform variable selection and avoid overfitting is a promising approach to analyze large phylogenies. PMID:28263987

  10. A Radical Solution: The Phylogeny of the Nudibranch Family Fionidae

    PubMed Central

    Cella, Kristen; Ekimova, Irina; Chichvarkhin, Anton; Schepetov, Dimitry; Gosliner, Terrence M.

    2016-01-01

    Tergipedidae represents a diverse and successful group of aeolid nudibranchs, with approximately 200 species distributed throughout most marine ecosystems and spanning all biogeographical regions of the oceans. However, the systematics of this family remains poorly understood since no modern phylogenetic study has been undertaken to support any of the proposed classifications. The present study is the first molecular phylogeny of Tergipedidae based on partial sequences of two mitochondrial (COI and 16S) genes and one nuclear gene (H3). Maximum likelihood, maximum parsimony and Bayesian analysis were conducted in order to elucidate the systematics of this family. Our results do not recover the traditional Tergipedidae as monophyletic, since it belongs to a larger clade that includes the families Eubranchidae, Fionidae and Calmidae. This newly recovered clade is here referred to as Fionidae, the oldest name for this taxon. In addition, the present molecular phylogeny does not recover the traditional systematic relationships at a generic level, and therefore, systematic changes are required. We recognize the following clades within Fionidae: Calma, Cuthona, Cuthonella, Eubranchus, Fiona, Murmania, Tenellia, Tergipes, Tergiposacca gen. nov., Rubramoena gen. nov. and Abronica gen. nov. The type species of Tergiposacca, T. longicerata nov. sp. is described. The other two new genera have a previously described species as their type species. Most of these taxa, with the exceptions of Eubranchus, Tergipes and Fiona are composed of radically different constituent species from their traditional membership, but appear to be supported by morphological synapomorphies as well as molecular data. Aenigmastyletus, Catriona, Phestilla, Tenellia and Trinchesia are nested within other clades and, thus are here considered as synonyms of the larger clades. The phylogenetic position and validity of Myja, Guyvalvoria, Leostyletus and Subcuthona still need to be tested in future studies when material becomes available. PMID:27977703

  11. Combining high-throughput sequencing and targeted loci data to infer the phylogeny of the "Adenocalymma-Neojobertia" clade (Bignonieae, Bignoniaceae).

    PubMed

    Fonseca, Luiz Henrique M; Lohmann, Lúcia G

    2018-06-01

    Combining high-throughput sequencing data with amplicon sequences allows the reconstruction of robust phylogenies based on comprehensive sampling of characters and taxa. Here, we combine Next Generation Sequencing (NGS) and Sanger sequencing data to infer the phylogeny of the "Adenocalymma-Neojobertia" clade (Bignonieae, Bignoniaceae), a diverse lineage of Neotropical plants, using Maximum Likelihood and Bayesian approaches. We used NGS to obtain complete or nearly-complete plastomes of members of this clade, leading to a final dataset with 54 individuals, representing 44 members of ingroup and 10 outgroups. In addition, we obtained Sanger sequences of two plastid markers (ndhF and rpl32-trnL) for 44 individuals (43 ingroup and 1 outgroup) and the nuclear PepC for 64 individuals (63 ingroup and 1 outgroup). Our final dataset includes 87 individuals of members of the "Adenocalymma-Neojobertia" clade, representing 66 species (ca. 90% of the diversity), plus 11 outgroups. Plastid and nuclear datasets recovered congruent topologies and were combined. The combined analysis recovered a monophyletic "Adenocalymma-Neojobertia" clade and a paraphyletic Adenocalymma that also contained a monophyletic Neojobertia plus Pleonotoma albiflora. Relationships are strongly supported in all analyses, with most lineages within the "Adenocalymma-Neojobertia" clade receiving maximum posterior probabilities. Ancestral character state reconstructions using Bayesian approaches identified six morphological synapomorphies of clades namely, prophyll type, petiole and petiolule articulation, tendril ramification, inflorescence ramification, calyx shape, and fruit wings. Other characters such as habit, calyx cupular trichomes, corolla color, and corolla shape evolved multiple times. These characters are putatively related with the clade diversification and can be further explored in diversification studies. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Molecular phylogeny of extant Holothuroidea (Echinodermata).

    PubMed

    Miller, Allison K; Kerr, Alexander M; Paulay, Gustav; Reich, Mike; Wilson, Nerida G; Carvajal, Jose I; Rouse, Greg W

    2017-06-01

    Sea cucumbers (Holothuroidea) are a morphologically diverse, ecologically important, and economically valued clade of echinoderms; however, the understanding of the overall systematics of the group remains controversial. Here, we present a phylogeny of extant Holothuroidea assessed with maximum parsimony, maximum likelihood, and Bayesian approaches using approximately 4.3kb of mt- (COI, 16S, 12S) and nDNA (H3, 18S, 28S) sequences from 82 holothuroid terminals representing 23 of the 27 widely-accepted family-ranked taxa. Currently five holothuroid taxa of ordinal rank are accepted. We find that three of the five orders are non-monophyletic, and we revise the taxonomy of the groups accordingly. Apodida is sister to the rest of Holothuroidea, here considered Actinopoda. Within Actinopoda, Elasipodida in part is sister to the remaining Actinopoda. This latter clade, comprising holothuroids with respiratory trees, is now called Pneumonophora. The traditional Aspidochirotida is paraphyletic, with representatives from three orders (Molpadida, Dendrochirotida, and Elasipodida in part) nested within. Therefore, we discontinue the use of Aspidochirotida and instead erect Holothuriida as the sister group to the remaining Pneumonophora, here termed Neoholothuriida. We found four well-supported major clades in Neoholothuriida: Dendrochirotida, Molpadida and two new clades, Synallactida and Persiculida. The mapping of traditionally-used morphological characters in holothuroid systematics onto the phylogeny revealed marked homoplasy in most characters demonstrating that further taxonomic revision of Holothuroidea is required. Two time-tree analyses, one based on calibrations for uncontroversial crown group dates for Eleutherozoa, Echinozoa and Holothuroidea and another using these calibrations plus four more from within Holothuroidea, showed major discrepancies, suggesting that fossils of Holothuroidea may need reassessment in terms of placing these forms with existing crown clades. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The Tree of Life and a New Classification of Bony Fishes

    PubMed Central

    Betancur-R., Ricardo; Broughton, Richard E.; Wiley, Edward O.; Carpenter, Kent; López, J. Andrés; Li, Chenhong; Holcroft, Nancy I.; Arcila, Dahiana; Sanciangco, Millicent; Cureton II, James C; Zhang, Feifei; Buser, Thaddaeus; Campbell, Matthew A.; Ballesteros, Jesus A; Roa-Varon, Adela; Willis, Stuart; Borden, W. Calvin; Rowley, Thaine; Reneau, Paulette C.; Hough, Daniel J.; Lu, Guoqing; Grande, Terry; Arratia, Gloria; Ortí, Guillermo

    2013-01-01

    The tree of life of fishes is in a state of flux because we still lack a comprehensive phylogeny that includes all major groups. The situation is most critical for a large clade of spiny-finned fishes, traditionally referred to as percomorphs, whose uncertain relationships have plagued ichthyologists for over a century. Most of what we know about the higher-level relationships among fish lineages has been based on morphology, but rapid influx of molecular studies is changing many established systematic concepts. We report a comprehensive molecular phylogeny for bony fishes that includes representatives of all major lineages. DNA sequence data for 21 molecular markers (one mitochondrial and 20 nuclear genes) were collected for 1410 bony fish taxa, plus four tetrapod species and two chondrichthyan outgroups (total 1416 terminals). Bony fish diversity is represented by 1093 genera, 369 families, and all traditionally recognized orders. The maximum likelihood tree provides unprecedented resolution and high bootstrap support for most backbone nodes, defining for the first time a global phylogeny of fishes. The general structure of the tree is in agreement with expectations from previous morphological and molecular studies, but significant new clades arise. Most interestingly, the high degree of uncertainty among percomorphs is now resolved into nine well-supported supraordinal groups. The order Perciformes, considered by many a polyphyletic taxonomic waste basket, is defined for the first time as a monophyletic group in the global phylogeny. A new classification that reflects our phylogenetic hypothesis is proposed to facilitate communication about the newly found structure of the tree of life of fishes. Finally, the molecular phylogeny is calibrated using 60 fossil constraints to produce a comprehensive time tree. The new time-calibrated phylogeny will provide the basis for and stimulate new comparative studies to better understand the evolution of the amazing diversity of fishes. PMID:23653398

  14. Relationships in subtribe Diocleinae (Leguminosae; Papilionoideae) inferred from internal transcribed spacer sequences from nuclear ribosomal DNA.

    PubMed

    Varela, Eduardo S; Lima, João P M S; Galdino, Alexsandro S; Pinto, Luciano da S; Bezerra, Walderly M; Nunes, Edson P; Alves, Maria A O; Grangeiro, Thalles B

    2004-01-01

    The complete sequences of nuclear ribosomal DNA (nrDNA) internal transcribed spacer regions (ITS/5.8S) were determined for species belonging to six genera from the subtribe Diocleinae as well as for the anomalous genera Calopogonium and Pachyrhizus. Phylogenetic trees constructed by distance matrix, maximum parsimony and maximum likelihood methods showed that Calopogonium and Pachyrhizus were outside the clade Diocleinae (Canavalia, Camptosema, Cratylia, Dioclea, Cymbosema, and Galactia). This finding supports previous morphological, phytochemical, and molecular evidence that Calopogonium and Pachyrhizus do not belong to the subtribe Diocleinae. Within the true Diocleinae clade, the clustering of genera and species were congruent with morphology-based classifications, suggesting that ITS/5.8S sequences can provide enough informative sites to allow resolution below the genus level. This is the first evidence of the phylogeny of subtribe Diocleinae based on nuclear DNA sequences.

  15. A century of paraphyly: a molecular phylogeny of katydids (Orthoptera: Tettigoniidae) supports multiple origins of leaf-like wings.

    PubMed

    Mugleston, Joseph D; Song, Hojun; Whiting, Michael F

    2013-12-01

    The phylogenetic relationships of Tettigoniidae (katydids and bush-crickets) were inferred using molecular sequence data. Six genes (18S rDNA, 28S rDNA, Cytochrome Oxidase II, Histone 3, Tubulin Alpha I, and Wingless) were sequenced for 135 ingroup taxa representing 16 of the 19 extant katydid subfamilies. Five subfamilies (Tettigoniinae, Pseudophyllinae, Mecopodinae, Meconematinae, and Listroscelidinae) were found to be paraphyletic under various tree reconstruction methods (Maximum Likelihood, Bayesisan Inference and Maximum Parsimony). Seven subfamilies - Conocephalinae, Hetrodinae, Hexacentrinae, Saginae, Phaneropterinae, Phyllophorinae, and Lipotactinae - were each recovered as well-supported monophyletic groups. We mapped the small and exposed thoracic auditory spiracle (a defining character of the subfamily Pseudophyllinae) and found it to be homoplasious. We also found the leaf-like wings of katydids have been derived independently in at least six lineages. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Phylogenetic Analysis of a ‘Jewel Orchid’ Genus Goodyera (Orchidaceae) Based on DNA Sequence Data from Nuclear and Plastid Regions

    PubMed Central

    Hu, Chao; Tian, Huaizhen; Li, Hongqing; Hu, Aiqun; Xing, Fuwu; Bhattacharjee, Avishek; Hsu, Tianchuan; Kumar, Pankaj; Chung, Shihwen

    2016-01-01

    A molecular phylogeny of Asiatic species of Goodyera (Orchidaceae, Cranichideae, Goodyerinae) based on the nuclear ribosomal internal transcribed spacer (ITS) region and two chloroplast loci (matK and trnL-F) was presented. Thirty-five species represented by 132 samples of Goodyera were analyzed, along with other 27 genera/48 species, using Pterostylis longifolia and Chloraea gaudichaudii as outgroups. Bayesian inference, maximum parsimony and maximum likelihood methods were used to reveal the intrageneric relationships of Goodyera and its intergeneric relationships to related genera. The results indicate that: 1) Goodyera is not monophyletic; 2) Goodyera could be divided into four sections, viz., Goodyera, Otosepalum, Reticulum and a new section; 3) sect. Reticulum can be further divided into two subsections, viz., Reticulum and Foliosum, whereas sect. Goodyera can in turn be divided into subsections Goodyera and a new subsection. PMID:26927946

  17. Phylogenetic Analysis of a 'Jewel Orchid' Genus Goodyera (Orchidaceae) Based on DNA Sequence Data from Nuclear and Plastid Regions.

    PubMed

    Hu, Chao; Tian, Huaizhen; Li, Hongqing; Hu, Aiqun; Xing, Fuwu; Bhattacharjee, Avishek; Hsu, Tianchuan; Kumar, Pankaj; Chung, Shihwen

    2016-01-01

    A molecular phylogeny of Asiatic species of Goodyera (Orchidaceae, Cranichideae, Goodyerinae) based on the nuclear ribosomal internal transcribed spacer (ITS) region and two chloroplast loci (matK and trnL-F) was presented. Thirty-five species represented by 132 samples of Goodyera were analyzed, along with other 27 genera/48 species, using Pterostylis longifolia and Chloraea gaudichaudii as outgroups. Bayesian inference, maximum parsimony and maximum likelihood methods were used to reveal the intrageneric relationships of Goodyera and its intergeneric relationships to related genera. The results indicate that: 1) Goodyera is not monophyletic; 2) Goodyera could be divided into four sections, viz., Goodyera, Otosepalum, Reticulum and a new section; 3) sect. Reticulum can be further divided into two subsections, viz., Reticulum and Foliosum, whereas sect. Goodyera can in turn be divided into subsections Goodyera and a new subsection.

  18. Biogeography and floral evolution of baobabs (Adansonia, Bombacaceae) as inferred from multiple data sets.

    PubMed

    Baum, D A; Small, R L; Wendel, J F

    1998-06-01

    The phylogeny of baobab trees was analyzed using four data sets: chloroplast DNA restriction sites, sequences of the chloroplast rpl16 intron, sequences of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA, and morphology. We sampled each of the eight species of Adansonia plus three outgroup taxa from tribe Adansonieae. These data were analyzed singly and in combination using parsimony. ITS and morphology provided the greatest resolution and were largely concordant. The two chloroplast data sets showed concordance with one another but showed significant conflict with ITS and morphology. A possible explanation for the conflict is genealogical discordance within the Malagasy Longitubae, perhaps due to introgression events. A maximum-likelihood analysis of branching times shows that the dispersal between Africa and Australia occurred well after the fragmentation of Gondwana and therefore involved overwater dispersal. The phylogeny does not permit unambiguous reconstruction of floral evolution but suggests the plausible hypothesis that hawkmoth pollination was ancestral in Adansonia and that there were two parallel switches to pollination by mammals in the genus.

  19. Molecular phylogeny and biogeographic history of the armored neotropical catfish subfamilies hypoptopomatinae, neoplecostominae and otothyrinae (siluriformes: loricariidae).

    PubMed

    Roxo, Fábio F; Albert, James S; Silva, Gabriel S C; Zawadzki, Cláudio H; Foresti, Fausto; Oliveira, Claudio

    2014-01-01

    The main objectives of this study are estimate a species-dense, time-calibrated molecular phylogeny of Hypoptopomatinae, Neoplecostominae, and Otothyrinae, which together comprise a group of armoured catfishes that is widely distributed across South America, to place the origin of major clades in time and space, and to demonstrate the role of river capture on patterns of diversification in these taxa. We used maximum likelihood and Bayesian methods to estimate a time-calibrated phylogeny of 115 loricariid species, using three mitochondrial and one nuclear genes to generate a matrix of 4,500 base pairs, and used parametric biogeographic analyses to estimate ancestral geographic ranges and to infer the effects of river capture events on the geographic distributions of these taxa. Our analysis recovered Hypoptopomatinae, Neoplecostominae, and Otothyrinae as monophyletic with strong statistical support, and Neoplecostominae as more closely related to Otothyrinae than to Hypoptopomatinae. Our time-calibrated phylogeny and ancestral-area estimations indicate an origin of Hypoptopomatinae, Neoplecostominae, and Otothyrinae during the Lower Eocene in the Atlantic Coastal Drainages, from which it is possible to infer several dispersal events to adjacent river basins during the Neogene. In conclusion we infer a strong influence of river capture in: (1) the accumulation of modern clade species-richness values; (2) the formation of the modern basin-wide species assemblages, and (3) the presence of many low-diversity, early-branching lineages restricted to the Atlantic Coastal Drainages. We further infer the importance of headwater stream capture and marine transgressions in shaping patterns in the distributions of Hypoptopomatinae, Neoplecostominae and Otothyrinae throughout South America.

  20. Molecular Phylogeny and Biogeographic History of the Armored Neotropical Catfish Subfamilies Hypoptopomatinae, Neoplecostominae and Otothyrinae (Siluriformes: Loricariidae)

    PubMed Central

    Roxo, Fábio F.; Albert, James S.; Silva, Gabriel S. C.; Zawadzki, Cláudio H.; Foresti, Fausto; Oliveira, Claudio

    2014-01-01

    The main objectives of this study are estimate a species-dense, time-calibrated molecular phylogeny of Hypoptopomatinae, Neoplecostominae, and Otothyrinae, which together comprise a group of armoured catfishes that is widely distributed across South America, to place the origin of major clades in time and space, and to demonstrate the role of river capture on patterns of diversification in these taxa. We used maximum likelihood and Bayesian methods to estimate a time-calibrated phylogeny of 115 loricariid species, using three mitochondrial and one nuclear genes to generate a matrix of 4,500 base pairs, and used parametric biogeographic analyses to estimate ancestral geographic ranges and to infer the effects of river capture events on the geographic distributions of these taxa. Our analysis recovered Hypoptopomatinae, Neoplecostominae, and Otothyrinae as monophyletic with strong statistical support, and Neoplecostominae as more closely related to Otothyrinae than to Hypoptopomatinae. Our time-calibrated phylogeny and ancestral-area estimations indicate an origin of Hypoptopomatinae, Neoplecostominae, and Otothyrinae during the Lower Eocene in the Atlantic Coastal Drainages, from which it is possible to infer several dispersal events to adjacent river basins during the Neogene. In conclusion we infer a strong influence of river capture in: (1) the accumulation of modern clade species-richness values; (2) the formation of the modern basin-wide species assemblages, and (3) the presence of many low-diversity, early-branching lineages restricted to the Atlantic Coastal Drainages. We further infer the importance of headwater stream capture and marine transgressions in shaping patterns in the distributions of Hypoptopomatinae, Neoplecostominae and Otothyrinae throughout South America. PMID:25148406

  1. Ancestral State Reconstruction Reveals Rampant Homoplasy of Diagnostic Morphological Characters in Urticaceae, Conflicting with Current Classification Schemes

    PubMed Central

    Wu, Zeng-Yuan; Milne, Richard I.; Chen, Chia-Jui; Liu, Jie; Wang, Hong; Li, De-Zhu

    2015-01-01

    Urticaceae is a family with more than 2000 species, which contains remarkable morphological diversity. It has undergone many taxonomic reorganizations, and is currently the subject of further systematic studies. To gain more resolution in systematic studies and to better understand the general patterns of character evolution in Urticaceae, based on our previous phylogeny including 169 accessions comprising 122 species across 47 Urticaceae genera, we examined 19 diagnostic characters, and analysed these employing both maximum-parsimony and maximum-likelihood approaches. Our results revealed that 16 characters exhibited multiple state changes within the family, with ten exhibiting >eight changes and three exhibiting between 28 and 40. Morphological synapomorphies were identified for many clades, but the diagnostic value of these was often limited due to reversals within the clade and/or homoplasies elsewhere. Recognition of the four clades comprising the family at subfamily level can be supported by a small number carefully chosen defining traits for each. Several non-monophyletic genera appear to be defined only by characters that are plesiomorphic within their clades, and more detailed work would be valuable to find defining traits for monophyletic clades within these. Some character evolution may be attributed to adaptive evolution in Urticaceae due to shifts in habitat or vegetation type. This study demonstrated the value of using phylogeny to trace character evolution, and determine the relative importance of morphological traits for classification. PMID:26529598

  2. Phylogeny of Morella rubra and Its Relatives (Myricaceae) and Genetic Resources of Chinese Bayberry Using RAD Sequencing

    PubMed Central

    Liu, Luxian; Jin, Xinjie; Chen, Nan; Li, Xian; Li, Pan; Fu, Chengxin

    2015-01-01

    Phylogenetic relationships among Chinese species of Morella (Myricaceae) are unresolved. Here, we use restriction site-associated DNA sequencing (RAD-seq) to identify candidate loci that will help in determining phylogenetic relationships among Morella rubra, M. adenophora, M. nana and M. esculenta. Three methods for inferring phylogeny, maximum parsimony (MP), maximum likelihood (ML) and Bayesian concordance, were applied to data sets including as many as 4253 RAD loci with 8360 parsimony informative variable sites. All three methods significantly favored the topology of (((M. rubra, M. adenophora), M. nana), M. esculenta). Two species from North America (M. cerifera and M. pensylvanica) were placed as sister to the four Chinese species. According to BEAST analysis, we deduced speciation of M. rubra to be at about the Miocene-Pliocene boundary (5.28 Ma). Intraspecific divergence in M. rubra occurred in the late Pliocene (3.39 Ma). From pooled data, we assembled 29378, 21902 and 23552 de novo contigs with an average length of 229, 234 and 234 bp for M. rubra, M. nana and M. esculenta respectively. The contigs were used to investigate functional classification of RAD tags in a BLASTX search. Additionally, we identified 3808 unlinked SNP sites across the four populations of M. rubra and discovered genes associated with fruit ripening and senescence, fruit quality and disease/defense metabolism based on KEGG database. PMID:26431030

  3. Phylogeny and character evolution of the fern genus Tectaria (Tectariaceae) in the Old World inferred from chloroplast DNA sequences.

    PubMed

    Ding, Hui-Hui; Chao, Yi-Shan; Callado, John Rey; Dong, Shi-Yong

    2014-11-01

    In this study we provide a phylogeny for the pantropical fern genus Tectaria, with emphasis on the Old World species, based on sequences of five plastid regions (atpB, ndhF plus ndhF-trnL, rbcL, rps16-matK plus matK, and trnL-F). Maximum parsimony, maximum likelihood, and Bayesian inference are used to analyze 115 individuals, representing ca. 56 species of Tectaria s.l. and 36 species of ten related genera. The results strongly support the monophyly of Tectaria in a broad sense, in which Ctenitopsis, Hemigramma, Heterogonium, Psomiocarpa, Quercifilix, Stenosemia, and Tectaridium should be submerged. Such broadly circumscribed Tectaria is supported by the arising pattern of veinlets and the base chromosome number (x=40). Four primary clades are well resolved within Tectaria, one from the Neotropic (T. trifoliata clade) and three from the Old World (T. subtriphylla clade, Ctenitopsis clade, and T. crenata clade). Tectaria crenata clade is the largest one including six subclades. Of the genera previously recognized as tectarioid ferns, Ctenitis, Lastreopsis, and Pleocnemia, are confirmed to be members in Dryopteridaceae; while Pteridrys and Triplophyllum are supported in Tectariaceae. To infer morphological evolution, 13 commonly used characters are optimized on the resulting phylogenetic trees and in result, are all homoplastic in Tectaria. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Phylogeny with introgression in Habronattus jumping spiders (Araneae: Salticidae).

    PubMed

    Leduc-Robert, Geneviève; Maddison, Wayne P

    2018-02-22

    Habronattus is a diverse clade of jumping spiders with complex courtship displays and repeated evolution of Y chromosomes. A well-resolved species phylogeny would provide an important framework to study these traits, but has not yet been achieved, in part because the few genes available in past studies gave conflicting signals. Such discordant gene trees could be the result of incomplete lineage sorting (ILS) in recently diverged parts of the phylogeny, but there are indications that introgression could be a source of conflict. To infer Habronattus phylogeny and investigate the cause of gene tree discordance, we assembled transcriptomes for 34 Habronattus species and 2 outgroups. The concatenated 2.41 Mb of nuclear data (1877 loci) resolved phylogeny by Maximum Likelihood (ML) with high bootstrap support (95-100%) at most nodes, with some uncertainty surrounding the relationships of H. icenoglei, H. cambridgei, H. oregonensis, and Pellenes canadensis. Species tree analyses by ASTRAL and SVDQuartets gave almost completely congruent results. Several nodes in the ML phylogeny from 12.33 kb of mitochondrial data are incongruent with the nuclear phylogeny and indicate possible mitochondrial introgression: the internal relationships of the americanus and the coecatus groups, the relationship between the altanus, decorus, banksi, and americanus group, and between H. clypeatus and the coecatus group. To determine the relative contributions of ILS and introgression, we analyzed gene tree discordance for nuclear loci longer than 1 kb using Bayesian Concordance Analysis (BCA) for the americanus group (679 loci) and the VCCR clade (viridipes/clypeatus/coecatus/roberti groups) (517 loci) and found signals of introgression in both. Finally, we tested specifically for introgression in the concatenated nuclear matrix with Patterson's D statistics and D FOIL . We found nuclear introgression resulting in substantial admixture between americanus group species, between H. roberti and the clypeatus group, and between the clypeatus and coecatus groups. Our results indicate that the phylogenetic history of Habronattus is predominantly a diverging tree, but that hybridization may have been common between phylogenetically distant species, especially in subgroups with complex courtship displays.

  5. Detecting local diversity-dependence in diversification.

    PubMed

    Xu, Liang; Etienne, Rampal S

    2018-04-06

    Whether there are ecological limits to species diversification is a hotly debated topic. Molecular phylogenies show slowdowns in lineage accumulation, suggesting that speciation rates decline with increasing diversity. A maximum-likelihood (ML) method to detect diversity-dependent (DD) diversification from phylogenetic branching times exists, but it assumes that diversity-dependence is a global phenomenon and therefore ignores that the underlying species interactions are mostly local, and not all species in the phylogeny co-occur locally. Here, we explore whether this ML method based on the nonspatial diversity-dependence model can detect local diversity-dependence, by applying it to phylogenies, simulated with a spatial stochastic model of local DD speciation, extinction, and dispersal between two local communities. We find that type I errors (falsely detecting diversity-dependence) are low, and the power to detect diversity-dependence is high when dispersal rates are not too low. Interestingly, when dispersal is high the power to detect diversity-dependence is even higher than in the nonspatial model. Moreover, estimates of intrinsic speciation rate, extinction rate, and ecological limit strongly depend on dispersal rate. We conclude that the nonspatial DD approach can be used to detect diversity-dependence in clades of species that live in not too disconnected areas, but parameter estimates must be interpreted cautiously. © 2018 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  6. Phylogeny and diversification of mountain vipers (Montivipera, Nilson et al., 2001) triggered by multiple Plio-Pleistocene refugia and high-mountain topography in the Near and Middle East.

    PubMed

    Stümpel, Nikolaus; Rajabizadeh, Mehdi; Avcı, Aziz; Wüster, Wolfgang; Joger, Ulrich

    2016-08-01

    The Near and Middle East is a hotspot of biodiversity, but the region remains underexplored at the level of genetic biodiversity. Here, we present an extensive molecular phylogeny of the viperid snake genus Montivipera, including all known taxa. Based on nuclear and mitochondrial data, we present novel insights into the phylogeny of the genus and review the status of its constituent species. Maximum likelihood methods revealed a montane origin of Montivipera at 12.3Mya. We then analyzed factors of mountain viper diversity. Our data support substantial changes in effective population size through Plio-Pleistocene periods. We conclude that climatic oscillations were drivers of allopatric speciation, and that mountain systems of the Near and Middle East have strongly influenced the evolution and survival of taxa, because climatic and topographical heterogeneities induced by mountains have played a crucial role as filters for dispersal and as multiple refugia. The wide diversity of montane microhabitats enabled mountain vipers to retain their ecological niche during climatic pessima. In consequence the varied geological and topographical conditions between refugia favoured genetic isolation and created patterns of species richness resulting in the formation of neoendemic taxa. Our data support high concordance between geographic distributions of Montivipera haplotypes with putative plant refugia. Copyright © 2016. Published by Elsevier Inc.

  7. Molecular phylogeny and biogeography of the fern genus Pteris (Pteridaceae).

    PubMed

    Chao, Yi-Shan; Rouhan, Germinal; Amoroso, Victor B; Chiou, Wen-Liang

    2014-07-01

    Pteris (Pteridaceae), comprising over 250 species, had been thought to be a monophyletic genus until the three monotypic genera Neurocallis, Ochropteris and Platyzoma were included. However, the relationships between the type species of the genus Pteris, P. longifolia, and other species are still unknown. Furthermore, several infrageneric morphological classifications have been proposed, but are debated. To date, no worldwide phylogenetic hypothesis has been proposed for the genus, and no comprehensive biogeographical history of Pteris, crucial to understanding its cosmopolitan distribution, has been presented. A molecular phylogeny of Pteris is presented for 135 species, based on cpDNA rbcL and matK and using maximum parsimony, maximum likelihood and Bayesian inference approaches. The inferred phylogeny was used to assess the biogeographical history of Pteris and to reconstruct the evolution of one ecological and four morphological characters commonly used for infrageneric classifications. The monophyly of Pteris remains uncertain, especially regarding the relationship of Pteris with Actiniopteris + Onychium and Platyzoma. Pteris comprises 11 clades supported by combinations of ecological and morphological character states, but none of the characters used in previous classifications were found to be exclusive synapomorphies. The results indicate that Pteris diversified around 47 million years ago, and when species colonized new geographical areas they generated new lineages, which are associated with morphological character transitions. This first phylogeny of Pteris on a global scale and including more than half of the diversity of the genus should contribute to a new, more reliable infrageneric classification of Pteris, based not only on a few morphological characters but also on ecological traits and geographical distribution. The inferred biogeographical history highlights long-distance dispersal as a major process shaping the worldwide distribution of the species. Colonization of different niches was followed by subsequent morphological diversification. Dispersal events followed by allopatric and parapatric speciation contribute to the species diversity of Pteris. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Multi-gene phylogeny of jacks and pompanos (Carangidae), including placement of monotypic vadigo Campogramma glaycos.

    PubMed

    Damerau, M; Freese, M; Hanel, R

    2018-01-01

    In this study, the phylogenetic trees of jacks and pompanos (Carangidae), an ecologically and morphologically diverse, globally distributed fish family, are inferred from a complete, concatenated data set of two mitochondrial (cytochrome c oxidase I, cytochrome b) loci and one nuclear (myosin heavy chain 6) locus. Maximum likelihood and Bayesian inferences are largely congruent and show a clear separation of Carangidae into the four subfamilies: Scomberoidinae, Trachinotinae, Naucratinae and Caranginae. The inclusion of the carangid sister lineages Coryphaenidae (dolphinfishes) and Rachycentridae (cobia), however, render Carangidae paraphyletic. The phylogenetic trees also show with high statistical support that the monotypic vadigo Campogramma glaycos is the sister to all other species within the Naucratinae. © 2017 The Fisheries Society of the British Isles.

  9. Phylogeny and divergence of the pinnipeds (Carnivora: Mammalia) assessed using a multigene dataset

    PubMed Central

    Higdon, Jeff W; Bininda-Emonds, Olaf RP; Beck, Robin MD; Ferguson, Steven H

    2007-01-01

    Background Phylogenetic comparative methods are often improved by complete phylogenies with meaningful branch lengths (e.g., divergence dates). This study presents a dated molecular supertree for all 34 world pinniped species derived from a weighted matrix representation with parsimony (MRP) supertree analysis of 50 gene trees, each determined under a maximum likelihood (ML) framework. Divergence times were determined by mapping the same sequence data (plus two additional genes) on to the supertree topology and calibrating the ML branch lengths against a range of fossil calibrations. We assessed the sensitivity of our supertree topology in two ways: 1) a second supertree with all mtDNA genes combined into a single source tree, and 2) likelihood-based supermatrix analyses. Divergence dates were also calculated using a Bayesian relaxed molecular clock with rate autocorrelation to test the sensitivity of our supertree results further. Results The resulting phylogenies all agreed broadly with recent molecular studies, in particular supporting the monophyly of Phocidae, Otariidae, and the two phocid subfamilies, as well as an Odobenidae + Otariidae sister relationship; areas of disagreement were limited to four more poorly supported regions. Neither the supertree nor supermatrix analyses supported the monophyly of the two traditional otariid subfamilies, supporting suggestions for the need for taxonomic revision in this group. Phocid relationships were similar to other recent studies and deeper branches were generally well-resolved. Halichoerus grypus was nested within a paraphyletic Pusa, although relationships within Phocina tend to be poorly supported. Divergence date estimates for the supertree were in good agreement with other studies and the available fossil record; however, the Bayesian relaxed molecular clock divergence date estimates were significantly older. Conclusion Our results join other recent studies and highlight the need for a re-evaluation of pinniped taxonomy, especially as regards the subfamilial classification of otariids and the generic nomenclature of Phocina. Even with the recent publication of new sequence data, the available genetic sequence information for several species, particularly those in Arctocephalus, remains very limited, especially for nuclear markers. However, resolution of parts of the tree will probably remain difficult, even with additional data, due to apparent rapid radiations. Our study addresses the lack of a recent pinniped phylogeny that includes all species and robust divergence dates for all nodes, and will therefore prove indispensable to comparative and macroevolutionary studies of this group of carnivores. PMID:17996107

  10. A Species-Level Phylogeny of Extant Snakes with Description of a New Colubrid Subfamily and Genus.

    PubMed

    Figueroa, Alex; McKelvy, Alexander D; Grismer, L Lee; Bell, Charles D; Lailvaux, Simon P

    2016-01-01

    With over 3,500 species encompassing a diverse range of morphologies and ecologies, snakes make up 36% of squamate diversity. Despite several attempts at estimating higher-level snake relationships and numerous assessments of generic- or species-level phylogenies, a large-scale species-level phylogeny solely focusing on snakes has not been completed. Here, we provide the largest-yet estimate of the snake tree of life using maximum likelihood on a supermatrix of 1745 taxa (1652 snake species + 7 outgroup taxa) and 9,523 base pairs from 10 loci (5 nuclear, 5 mitochondrial), including previously unsequenced genera (2) and species (61). Increased taxon sampling resulted in a phylogeny with a new higher-level topology and corroborate many lower-level relationships, strengthened by high nodal support values (> 85%) down to the species level (73.69% of nodes). Although the majority of families and subfamilies were strongly supported as monophyletic with > 88% support values, some families and numerous genera were paraphyletic, primarily due to limited taxon and loci sampling leading to a sparse supermatrix and minimal sequence overlap between some closely-related taxa. With all rogue taxa and incertae sedis species eliminated, higher-level relationships and support values remained relatively unchanged, except in five problematic clades. Our analyses resulted in new topologies at higher- and lower-levels; resolved several previous topological issues; established novel paraphyletic affiliations; designated a new subfamily, Ahaetuliinae, for the genera Ahaetulla, Chrysopelea, Dendrelaphis, and Dryophiops; and appointed Hemerophis (Coluber) zebrinus to a new genus, Mopanveldophis. Although we provide insight into some distinguished problematic nodes, at the deeper phylogenetic scale, resolution of these nodes may require sampling of more slowly-evolving nuclear genes.

  11. A Species-Level Phylogeny of Extant Snakes with Description of a New Colubrid Subfamily and Genus

    PubMed Central

    McKelvy, Alexander D.; Grismer, L. Lee; Bell, Charles D.; Lailvaux, Simon P.

    2016-01-01

    Background With over 3,500 species encompassing a diverse range of morphologies and ecologies, snakes make up 36% of squamate diversity. Despite several attempts at estimating higher-level snake relationships and numerous assessments of generic- or species-level phylogenies, a large-scale species-level phylogeny solely focusing on snakes has not been completed. Here, we provide the largest-yet estimate of the snake tree of life using maximum likelihood on a supermatrix of 1745 taxa (1652 snake species + 7 outgroup taxa) and 9,523 base pairs from 10 loci (5 nuclear, 5 mitochondrial), including previously unsequenced genera (2) and species (61). Results Increased taxon sampling resulted in a phylogeny with a new higher-level topology and corroborate many lower-level relationships, strengthened by high nodal support values (> 85%) down to the species level (73.69% of nodes). Although the majority of families and subfamilies were strongly supported as monophyletic with > 88% support values, some families and numerous genera were paraphyletic, primarily due to limited taxon and loci sampling leading to a sparse supermatrix and minimal sequence overlap between some closely-related taxa. With all rogue taxa and incertae sedis species eliminated, higher-level relationships and support values remained relatively unchanged, except in five problematic clades. Conclusion Our analyses resulted in new topologies at higher- and lower-levels; resolved several previous topological issues; established novel paraphyletic affiliations; designated a new subfamily, Ahaetuliinae, for the genera Ahaetulla, Chrysopelea, Dendrelaphis, and Dryophiops; and appointed Hemerophis (Coluber) zebrinus to a new genus, Mopanveldophis. Although we provide insight into some distinguished problematic nodes, at the deeper phylogenetic scale, resolution of these nodes may require sampling of more slowly-evolving nuclear genes. PMID:27603205

  12. Rearrangement moves on rooted phylogenetic networks

    PubMed Central

    Gambette, Philippe; van Iersel, Leo; Jones, Mark; Scornavacca, Celine

    2017-01-01

    Phylogenetic tree reconstruction is usually done by local search heuristics that explore the space of the possible tree topologies via simple rearrangements of their structure. Tree rearrangement heuristics have been used in combination with practically all optimization criteria in use, from maximum likelihood and parsimony to distance-based principles, and in a Bayesian context. Their basic components are rearrangement moves that specify all possible ways of generating alternative phylogenies from a given one, and whose fundamental property is to be able to transform, by repeated application, any phylogeny into any other phylogeny. Despite their long tradition in tree-based phylogenetics, very little research has gone into studying similar rearrangement operations for phylogenetic network—that is, phylogenies explicitly representing scenarios that include reticulate events such as hybridization, horizontal gene transfer, population admixture, and recombination. To fill this gap, we propose “horizontal” moves that ensure that every network of a certain complexity can be reached from any other network of the same complexity, and “vertical” moves that ensure reachability between networks of different complexities. When applied to phylogenetic trees, our horizontal moves—named rNNI and rSPR—reduce to the best-known moves on rooted phylogenetic trees, nearest-neighbor interchange and rooted subtree pruning and regrafting. Besides a number of reachability results—separating the contributions of horizontal and vertical moves—we prove that rNNI moves are local versions of rSPR moves, and provide bounds on the sizes of the rNNI neighborhoods. The paper focuses on the most biologically meaningful versions of phylogenetic networks, where edges are oriented and reticulation events clearly identified. Moreover, our rearrangement moves are robust to the fact that networks with higher complexity usually allow a better fit with the data. Our goal is to provide a solid basis for practical phylogenetic network reconstruction. PMID:28763439

  13. Flexible colour patterns obscure identification and mimicry in Indo-Pacific Chromodoris nudibranchs (Gastropoda: Chromodorididae).

    PubMed

    Layton, Kara K S; Gosliner, Terrence M; Wilson, Nerida G

    2018-07-01

    Chromodoris is a genus of colourful nudibranchs that feed on sponges and is found across the Indo-Pacific. While this was once the most diverse chromodorid genus, recent work has shown that the genus should be restricted to a monophyletic lineage that contains only 22 species, all of which exhibit black pigmentation and planar spawning behaviour. Earlier phylogenies of this group are poorly resolved and thus additional work is needed to clarify species boundaries within Chromodoris. This study presents a maximum-likelihood phylogeny based on mitochondrial loci (COI, 16S) for 345 Chromodoris specimens, including data from 323 new specimens and 22 from GenBank, from across the Indo-Pacific. Species hypotheses and phylogenetic analysis uncovered 39 taxa in total containing 18 undescribed species, with only five of 39 taxa showing stable colour patterns and distinct morphotypes. This study also presents the first evidence for regional mimicry in this genus, with C. colemani and C. joshi displaying geographically-based variation in colour patterns which appear to match locally abundant congenerics, highlighting the flexibility of these colour patterns in Chromodoris nudibranchs. The current phylogeny contains short branch lengths, polytomies and poor support at interior nodes, which is indicative of a recent radiation. As such, future work will employ a transcriptome-based exon capture approach for resolving the phylogeny of this group. In all, this study included 21 of the 22 described species in the Chromodoris sensu stricto group with broad sampling coverage from across the Indo-Pacific, constituting the most comprehensive sampling of this group to date. This work highlights several cases of undocumented diversity, ultimately expanding our knowledge of species boundaries in this group, while also demonstrating the limitations of colour patterns for species identification in this genus. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. IDEA: Interactive Display for Evolutionary Analyses.

    PubMed

    Egan, Amy; Mahurkar, Anup; Crabtree, Jonathan; Badger, Jonathan H; Carlton, Jane M; Silva, Joana C

    2008-12-08

    The availability of complete genomic sequences for hundreds of organisms promises to make obtaining genome-wide estimates of substitution rates, selective constraints and other molecular evolution variables of interest an increasingly important approach to addressing broad evolutionary questions. Two of the programs most widely used for this purpose are codeml and baseml, parts of the PAML (Phylogenetic Analysis by Maximum Likelihood) suite. A significant drawback of these programs is their lack of a graphical user interface, which can limit their user base and considerably reduce their efficiency. We have developed IDEA (Interactive Display for Evolutionary Analyses), an intuitive graphical input and output interface which interacts with PHYLIP for phylogeny reconstruction and with codeml and baseml for molecular evolution analyses. IDEA's graphical input and visualization interfaces eliminate the need to edit and parse text input and output files, reducing the likelihood of errors and improving processing time. Further, its interactive output display gives the user immediate access to results. Finally, IDEA can process data in parallel on a local machine or computing grid, allowing genome-wide analyses to be completed quickly. IDEA provides a graphical user interface that allows the user to follow a codeml or baseml analysis from parameter input through to the exploration of results. Novel options streamline the analysis process, and post-analysis visualization of phylogenies, evolutionary rates and selective constraint along protein sequences simplifies the interpretation of results. The integration of these functions into a single tool eliminates the need for lengthy data handling and parsing, significantly expediting access to global patterns in the data.

  15. IDEA: Interactive Display for Evolutionary Analyses

    PubMed Central

    Egan, Amy; Mahurkar, Anup; Crabtree, Jonathan; Badger, Jonathan H; Carlton, Jane M; Silva, Joana C

    2008-01-01

    Background The availability of complete genomic sequences for hundreds of organisms promises to make obtaining genome-wide estimates of substitution rates, selective constraints and other molecular evolution variables of interest an increasingly important approach to addressing broad evolutionary questions. Two of the programs most widely used for this purpose are codeml and baseml, parts of the PAML (Phylogenetic Analysis by Maximum Likelihood) suite. A significant drawback of these programs is their lack of a graphical user interface, which can limit their user base and considerably reduce their efficiency. Results We have developed IDEA (Interactive Display for Evolutionary Analyses), an intuitive graphical input and output interface which interacts with PHYLIP for phylogeny reconstruction and with codeml and baseml for molecular evolution analyses. IDEA's graphical input and visualization interfaces eliminate the need to edit and parse text input and output files, reducing the likelihood of errors and improving processing time. Further, its interactive output display gives the user immediate access to results. Finally, IDEA can process data in parallel on a local machine or computing grid, allowing genome-wide analyses to be completed quickly. Conclusion IDEA provides a graphical user interface that allows the user to follow a codeml or baseml analysis from parameter input through to the exploration of results. Novel options streamline the analysis process, and post-analysis visualization of phylogenies, evolutionary rates and selective constraint along protein sequences simplifies the interpretation of results. The integration of these functions into a single tool eliminates the need for lengthy data handling and parsing, significantly expediting access to global patterns in the data. PMID:19061522

  16. Placing cryptic, recently extinct, or hypothesized taxa into an ultrametric phylogeny using continuous character data: a case study with the lizard Anolis roosevelti.

    PubMed

    Revell, Liam J; Mahler, D Luke; Reynolds, R Graham; Slater, Graham J

    2015-04-01

    In recent years, enormous effort and investment has been put into assembling the tree of life: a phylogenetic history for all species on Earth. Overwhelmingly, this progress toward building an ever increasingly complete phylogeny of living things has been accomplished through sophisticated analysis of molecular data. In the modern genomic age, molecular genetic data have become very easy and inexpensive to obtain for many species. However, some lineages are poorly represented in or absent from tissue collections, or are unavailable for molecular analysis for other reasons such as restrictive biological sample export laws. Other species went extinct recently and are only available in formalin museum preparations or perhaps even as subfossils. In this brief communication we present a new method for placing cryptic, recently extinct, or hypothesized taxa into an ultrametric phylogeny of extant taxa using continuous character data. This method is based on a relatively simple modification of an established maximum likelihood (ML) method for phylogeny inference from continuous traits. We show that the method works well on simulated trees and data. We then apply it to the case of placing the Culebra Island Giant Anole (Anolis roosevelti) into a phylogeny of Caribbean anoles. Anolis roosevelti is a "crown-giant" ecomorph anole hypothesized to have once been found throughout the Spanish, United States, and British Virgin Islands, but that has not been encountered or collected since the 1930s. Although this species is widely thought to be closely related to the Puerto Rican giant anole, A. cuvieri, our ML method actually places A. roosevelti in a different part of the tree and closely related to a clade of morphologically similar species. We are unable, however, to reject a phylogenetic position for A. roosevelti that places it as sister taxon to A. cuvieri; although close relationship with the remainder of Puerto Rican anole species is strongly rejected by our method. © 2015 The Author(s).

  17. Second-generation sequencing of entire mitochondrial coding-regions (∼15.4 kb) holds promise for study of the phylogeny and taxonomy of human body lice and head lice.

    PubMed

    Xiong, H; Campelo, D; Pollack, R J; Raoult, D; Shao, R; Alem, M; Ali, J; Bilcha, K; Barker, S C

    2014-08-01

    The Illumina Hiseq platform was used to sequence the entire mitochondrial coding-regions of 20 body lice, Pediculus humanus Linnaeus, and head lice, P. capitis De Geer (Phthiraptera: Pediculidae), from eight towns and cities in five countries: Ethiopia, France, China, Australia and the U.S.A. These data (∼310 kb) were used to see how much more informative entire mitochondrial coding-region sequences were than partial mitochondrial coding-region sequences, and thus to guide the design of future studies of the phylogeny, origin, evolution and taxonomy of body lice and head lice. Phylogenies were compared from entire coding-region sequences (∼15.4 kb), entire cox1 (∼1.5 kb), partial cox1 (∼700 bp) and partial cytb (∼600 bp) sequences. On the one hand, phylogenies from entire mitochondrial coding-region sequences (∼15.4 kb) were much more informative than phylogenies from entire cox1 sequences (∼1.5 kb) and partial gene sequences (∼600 to ∼700 bp). For example, 19 branches had > 95% bootstrap support in our maximum likelihood tree from the entire mitochondrial coding-regions (∼15.4 kb) whereas the tree from 700 bp cox1 had only two branches with bootstrap support > 95%. Yet, by contrast, partial cytb (∼600 bp) and partial cox1 (∼486 bp) sequences were sufficient to genotype lice to Clade A, B or C. The sequences of the mitochondrial genomes of the P. humanus, P. capitis and P. schaeffi Fahrenholz studied are in NCBI GenBank under the accession numbers KC660761-800, KC685631-6330, KC241882-97, EU219988-95, HM241895-8 and JX080388-407. © 2014 The Royal Entomological Society.

  18. A molecular phylogeny of rose chafers (Coleoptera: Scarabaeidae: Cetoniinae) reveals a complex and concerted morphological evolution related to their flight mode.

    PubMed

    Šípek, Petr; Fabrizi, Silvia; Eberle, Jonas; Ahrens, Dirk

    2016-08-01

    Rose chafers (Cetoniinae) are a large group of flower visitors within the pleurostict Scarabaeidae that are characterized by their distinctive flight mode with nearly closed forewings. Despite their popularity, this is the first study to use molecular data to infer their phylogenetic relationships. We used partial gene sequences for 28S rRNA, cytochrome oxidase I (cox1) and 16S rRNA (rrnL) for 299 species, representing most recognized subfamilies of Scarabaeidae, including 125 species of Cetoniinae. Combined analyses using maximum parsimony, maximum likelihood and Bayesian inferences recovered Cetoniinae as monophyletic in all analyses, with the sister clade composed of Rutelinae and Dynastinae. Rutelinae was always recovered as paraphyletic with respect to Dynastinae. Trichiini sensu lato (s.l.) was recovered as a polyphyletic clade, while Cetoniini s.l. was recovered as paraphyletic. The inferred topologies were also supported by site bootstrapping of the ML trees. With the exception of Cremastochelini, most tribes of Cetoniinae were poly- or paraphyletic, indicating the critical need for a careful revision of rose chafer classification. Analysis of elytral base structure (including 11 scored characters) in the context of phylogeny, revealed a complex, concerted and rapid transformation of the single trait elements linked to a modified flight mode with closed elytra. This appears to be unlinked to the lateral sinuation of the elytra, which originated independently several times at later stages in the evolution of the group. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The First Comprehensive Phylogeny of Coptis (Ranunculaceae) and Its Implications for Character Evolution and Classification

    PubMed Central

    Xiang, Kun-Li; Wu, Sheng-Dan; Yu, Sheng-Xian; Liu, Yang; Jabbour, Florian; Erst, Andrey S.; Zhao, Liang; Wang, Wei; Chen, Zhi-Duan

    2016-01-01

    Coptis (Ranunculaceae) contains 15 species and is one of the pharmaceutically most important plant genera in eastern Asia. Understanding of the evolution of morphological characters and phylogenetic relationships within the genus is very limited. Here, we present the first comprehensive phylogenetic analysis of the genus based on two plastid and one nuclear markers. The phylogeny was reconstructed using Bayesian inference, as well as maximum parsimony and maximum likelihood methods. The Swofford-Olsen-Waddell-Hillis and Bayesian tests were used to assess the strength of the conflicts between traditional taxonomic units and those suggested by the phylogenetic inferences. Evolution of morphological characters was inferred using Bayesian method to identify synapomorphies for the infrageneric lineages. Our data recognize two strongly supported clades within Coptis. The first clade contains subgenus Coptis and section Japonocoptis of subgenus Metacoptis, supported by morphological characters, such as traits of the central leaflet base, petal color, and petal shape. The second clade consists of section Japonocoptis of subgenus Metacoptis. Coptis morii is not united with C. quinquefolia, in contrast with the view that C. morii is a synonym of C. quinquefolia. Two varieties of C. chinensis do not cluster together. Coptis groenlandica and C. lutescens are reduced to C. trifolia and C. japonica, respectively. Central leaflet base, sepal shape, and petal blade carry a strong phylogenetic signal in Coptis, while leaf type, sepal and petal color, and petal shape exhibit relatively higher levels of evolutionary flexibility. PMID:27044035

  20. Molecular phylogenetics of Echinopsis (Cactaceae): Polyphyly at all levels and convergent evolution of pollination modes and growth forms.

    PubMed

    Schlumpberger, Boris O; Renner, Susanne S

    2012-08-01

    In its current circumscription, Echinopsis with 100-150 species is one of the largest and morphologically most diverse genera of Cactaceae. This diversity and an absence of correlated characters have resulted in numerous attempts to subdivide Echinopsis into more homogeneous subgroups. To infer natural species groups in this alliance, we here provide a plastid phylogeny and use it to infer changes in growth form, pollination mode, and ploidy level. We sequenced 3800 nucleotides of chloroplast DNA from 162 plants representing 144 species and subspecies. The sample includes the type species of all genera close to, or included in, Echinopsis as well as a dense sample of other genera of the Trichocereeae and further outgroups. New and published chromosome counts were compiled and traced on the phylogeny, as were pollination modes and growth habits. A maximum likelihood phylogeny confirms that Echinopsis s.l. is not monophyletic nor are any of the previously recognized genera that have more than one species. Pollination mode and, to a lesser extent, growth habit are evolutionarily labile, and diploidy is the rule in Echinopsis s.l., with the few polyploids clustered in just a few clades. The use of evolutionary labile floral traits and growth habit has led to nonnatural classifications. Taxonomic realignments are required, but further study of less evolutionary labile traits suitable for circumscribing genera are needed. Surprisingly, polyploidy seems infrequent in the Echinopsis alliance and hybridization may thus be of minor relevance in the evolution of this clade.

  1. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA.

    PubMed

    Medina, M; Collins, A G; Silberman, J D; Sogin, M L

    2001-08-14

    We studied the evolutionary relationships among basal metazoan lineages by using complete large subunit (LSU) and small subunit (SSU) ribosomal RNA sequences for 23 taxa. After identifying competing hypotheses, we performed maximum likelihood searches for trees conforming to each hypothesis. Kishino-Hasegawa tests were used to determine whether the data (LSU, SSU, and combined) reject any of the competing hypotheses. We also conducted unconstrained tree searches, compared the resulting topologies, and calculated bootstrap indices. Shimodaira-Hasegawa tests were applied to determine whether the data reject any of the topologies resulting from the constrained and unconstrained tree searches. LSU, SSU, and the combined data strongly contradict two assertions pertaining to sponge phylogeny. Hexactinellid sponges are not likely to be the basal lineage of a monophyletic Porifera or the sister group to all other animals. Instead, Hexactinellida and Demospongia form a well-supported clade of siliceous sponges, Silicea. It remains unclear, on the basis of these data alone, whether the calcarean sponges are more closely related to Silicea or to nonsponge animals. The SSU and combined data reject the hypothesis that Bilateria is more closely related to Ctenophora than it is to Cnidaria, whereas LSU data alone do not refute either hypothesis. LSU and SSU data agree in supporting the monophyly of Bilateria, Cnidaria, Ctenophora, and Metazoa. LSU sequence data reveal phylogenetic structure in a data set with limited taxon sampling. Continued accumulation of LSU sequences should increase our understanding of animal phylogeny.

  2. Plastome sequences and exploration of tree-space help to resolve the phylogeny of riceflowers (Thymelaeaceae: Pimelea).

    PubMed

    Foster, Charles S P; Henwood, Murray J; Ho, Simon Y W

    2018-05-25

    Data sets comprising small numbers of genetic markers are not always able to resolve phylogenetic relationships. This has frequently been the case in molecular systematic studies of plants, with many analyses being based on sequence data from only two or three chloroplast genes. An example of this comes from the riceflowers Pimelea Banks & Sol. ex Gaertn. (Thymelaeaceae), a large genus of flowering plants predominantly distributed in Australia. Despite the considerable morphological variation in the genus, low sequence divergence in chloroplast markers has led to the phylogeny of Pimelea remaining largely uncertain. In this study, we resolve the backbone of the phylogeny of Pimelea in comprehensive Bayesian and maximum-likelihood analyses of plastome sequences from 41 taxa. However, some relationships received only moderate to poor support, and the Pimelea clade contained extremely short internal branches. By using topology-clustering analyses, we demonstrate that conflicting phylogenetic signals can be found across the trees estimated from individual chloroplast protein-coding genes. A relaxed-clock dating analysis reveals that Pimelea arose in the mid-Miocene, with most divergences within the genus occurring during a subsequent rapid diversification. Our new phylogenetic estimate offers better resolution and is more strongly supported than previous estimates, providing a platform for future taxonomic revisions of both Pimelea and the broader subfamily. Our study has demonstrated the substantial improvements in phylogenetic resolution that can be achieved using plastome-scale data sets in plant molecular systematics. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Applications of Ecophylogenetics to Benthic Communities in the Northern Gulf of Mexico: Do Functional Traits Follow Phylogeny?

    NASA Astrophysics Data System (ADS)

    Gadeken, K.; Dorgan, K. M.; Moore, J.; Berke, S. K.

    2016-02-01

    Evolutionary relationships may shed light on observed patterns of diversity and functional traits when viewed through the lens of phylogeny. The potential for phylogenetic information to be used to explain patterns in community structure, such as niche partitioning and responses to stress, is extensive. Differential distribution of related species with similar functional traits suggests niche partitioning, and local redundancy in functional traits may indicate the potential for interspecific competition. In this study, we investigated phylogenetic and functional diversity as a function of habitat for sites with varying levels of oil contamination in the Northern Gulf of Mexico. Our study was conducted in a shallow benthic community at the Chandeleur Islands, a group of uninhabited barrier islands. Infauna were sampled from seagrass (Halodule wrightii) and bare sediment at three sites along the island chain that experienced variable levels of oil impact from the Deepwater Horizon oil spill. Individuals were preserved and 18S and COI genes sequenced, and a phylogenetic tree was constructed of the local community using maximum likelihood. Phylogenetic diversity and evenness were quantified. Ecologically important functional traits were then compiled into respective distance matrices, evaluated through different functional diversity indices, and assessed for correlation with the phylogeny. This integration of functional and phylogenetic diversity has the potential to provide greater insight into factors driving community structure than either metric alone. Determining relevant metrics of diversity is critical to understanding the ecological effects of major disturbances such as oil spills.

  4. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medina, Monica; Collins, Allen G.; Silberman, Jeffrey

    2001-06-21

    We studied the evolutionary relationships among basal metazoan lineages by using complete large subunit (LSU) and small subunit (SSU) ribosomal RNA sequences for 23 taxa. After identifying competing hypotheses, we performed maximum likelihood searches for trees conforming to each hypothesis. Kishino-Hasegawa tests were used to determine whether the data (LSU, SSU, and combined) reject any of the competing hypotheses. We also conducted unconstrained tree searches, compared the resulting topologies, and calculated bootstrap indices. Shimodaira-Hasegawa tests were applied to determine whether the data reject any of the topologies resulting from the constrained and unconstrained tree searches. LSU, SSU, and the combinedmore » data strongly contradict two assertions pertaining to sponge phylogeny. Hexactinellid sponges are not likely to be the basal lineage of amonophyletic Porifera or the sister group to all other animals. Instead, Hexactinellida and Demospongia form a well-supported clade of siliceous sponges, Silicea. It remains unclear, on the basis of these data alone, whether the calcarean sponges are more closely related to Silicea or to nonsponge animals. The SSU and combined data reject the hypothesis that Bilateria is more closely related to Ctenophora than it is to Cnidaria, whereas LSU data alone do not refute either hypothesis. LSU and SSU data agree in supporting the monophyly of Bilateria, Cnidaria, Ctenophora, and Metazoa. LSU sequence data reveal phylogenetic structure in a data set with limited taxon sampling. Continued accumulation of LSU sequences should increase our understanding of animal phylogeny.« less

  5. Mitochondrial DNA phylogeny of camel spiders (Arachnida: Solifugae) from Iran.

    PubMed

    Maddahi, Hassan; Khazanehdari, Mahsa; Aliabadian, Mansour; Kami, Haji Gholi; Mirshamsi, Amin; Mirshamsi, Omid

    2017-11-01

    In the present study, the mitochondrial DNA phylogeny of five solifuge families of Iran is presented using phylogenetic analysis of mitochondrial cytochrome c oxidase, subunit 1 (COI) sequence data. Moreover, we included available representatives from seven families from GenBank to examine the genetic distance between Old and New World taxa and test the phylogenetic relationships among more solifuge families. Phylogenetic relationships were reconstructed based on the two most probabilistic methods, Maximum Likelihood (ML) and Bayesian inference (BI) approaches. Resulting topologies demonstrated the monophyly of the families Daesiidae, Eremobatidae, Galeodidae, Karschiidae and Rhagodidae, whereas the monophyly of the families Ammotrechidae and Gylippidae was not supported. Also, within the family Eremobatidae, the subfamilies Eremobatinae and Therobatinae and the genus Hemerotrecha were paraphyletic or polyphyletic. According to the resulted topologies, the taxonomic placements of Trichotoma michaelseni (Gylippidae) and Nothopuga sp. 1 (Ammotrechidae) are still remain under question and their revision might be appropriate. According to the results of this study, within the family Galeodidae, the validity of the genus Galeodopsis is supported, while the validity of the genus Paragaleodes still remains uncertain. Moreover, our results revealed that the species Galeodes bacillatus, and Rhagodes melanochaetus are junior synonyms of G. caspius, and R. eylandti, respectively.

  6. The Centipede Genus Scolopendra in Mainland Southeast Asia: Molecular Phylogenetics, Geometric Morphometrics and External Morphology as Tools for Species Delimitation

    PubMed Central

    Siriwut, Warut; Edgecombe, Gregory D.; Sutcharit, Chirasak; Panha, Somsak

    2015-01-01

    Seven Scolopendra species from the Southeast Asian mainland delimited based on standard external morphological characters represent monophyletic groups in phylogenetic trees inferred from concatenated sequences of three gene fragments (cytochrome c oxidase subunit 1, 16S rRNA and 28S rRNA) using Maximum likelihood and Bayesian inference. Geometric morphometric description of shape variation in the cephalic plate, forcipular coxosternite, and tergite of the ultimate leg-bearing segment provides additional criteria for distinguishing species. Colouration patterns in some Scolopendra species show a high degree of fit to phylogenetic trees at the population level. The most densely sampled species, Scolopendra dehaani Brandt, 1840, has three subclades with allopatric distributions in mainland SE Asia. The molecular phylogeny of S. pinguis Pocock, 1891, indicated ontogenetic colour variation among its populations. The taxonomic validation of S. dawydoffi Kronmüller, 2012, S. japonica Koch, 1878, and S. dehaani Brandt, 1840, each a former subspecies of S. subspinipes Leach, 1814 sensu Lewis, 2010, as full species was supported by molecular information and additional morphological data. Species delimitation in these taxonomically challenging animals is facilitated by an integrative approach that draws on both morphology and molecular phylogeny. PMID:26270342

  7. Progress, pitfalls and parallel universes: a history of insect phylogenetics

    PubMed Central

    Simon, Chris; Yavorskaya, Margarita; Beutel, Rolf G.

    2016-01-01

    The phylogeny of insects has been both extensively studied and vigorously debated for over a century. A relatively accurate deep phylogeny had been produced by 1904. It was not substantially improved in topology until recently when phylogenomics settled many long-standing controversies. Intervening advances came instead through methodological improvement. Early molecular phylogenetic studies (1985–2005), dominated by a few genes, provided datasets that were too small to resolve controversial phylogenetic problems. Adding to the lack of consensus, this period was characterized by a polarization of philosophies, with individuals belonging to either parsimony or maximum-likelihood camps; each largely ignoring the insights of the other. The result was an unfortunate detour in which the few perceived phylogenetic revolutions published by both sides of the philosophical divide were probably erroneous. The size of datasets has been growing exponentially since the mid-1980s accompanied by a wave of confidence that all relationships will soon be known. However, large datasets create new challenges, and a large number of genes does not guarantee reliable results. If history is a guide, then the quality of conclusions will be determined by an improved understanding of both molecular and morphological evolution, and not simply the number of genes analysed. PMID:27558853

  8. Diverse sampling of East African haemosporidians reveals chiropteran origin of malaria parasites in primates and rodents.

    PubMed

    Lutz, Holly L; Patterson, Bruce D; Kerbis Peterhans, Julian C; Stanley, William T; Webala, Paul W; Gnoske, Thomas P; Hackett, Shannon J; Stanhope, Michael J

    2016-06-01

    Phylogenies of parasites provide hypotheses on the history of their movements between hosts, leading to important insights regarding the processes of host switching that underlie modern-day epidemics. Haemosporidian (malaria) parasites lack a well resolved phylogeny, which has impeded the study of evolutionary processes associated with host-switching in this group. Here we present a novel phylogenetic hypothesis that suggests bats served as the ancestral hosts of malaria parasites in primates and rodents. Expanding upon current taxon sampling of Afrotropical bat and bird parasites, we find strong support for all major nodes in the haemosporidian tree using both Bayesian and maximum likelihood approaches. Our analyses support a single transition of haemosporidian parasites from saurian to chiropteran hosts, and do not support a monophyletic relationship between Plasmodium parasites of birds and mammals. We find, for the first time, that Hepatocystis and Plasmodium parasites of mammals represent reciprocally monophyletic evolutionary lineages. These results highlight the importance of broad taxonomic sampling when analyzing phylogenetic relationships, and have important implications for our understanding of key host switching events in the history of malaria parasite evolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Molecular phylogeny of the Achatinoidea (Mollusca: Gastropoda).

    PubMed

    Fontanilla, Ian Kendrich; Naggs, Fred; Wade, Christopher Mark

    2017-09-01

    This study presents a multi-gene phylogenetic analysis of the Achatinoidea and provides an initial basis for a taxonomic re-evaluation of family level groups within the superfamily. A total of 5028 nucleotides from the nuclear rRNA, actin and histone 3 genes and the 1st and 2nd codon positions of the mitochondrial cytochrome c oxidase subunit I gene were sequenced from 24 species, representing six currently recognised families. Results from maximum likelihood, neighbour joining, maximum parsimony and Bayesian inference trees revealed that, of currently recognised families, only the Achatinidae are monophyletic. For the Ferussaciidae, Ferussacia folliculus fell separately to Cecilioides gokweanus and formed a sister taxon to the rest of the Achatinoidea. For the Coeliaxidae, Coeliaxis blandii and Pyrgina umbilicata did not group together. The Subulinidae was not resolved, with some subulinids clustering with the Coeliaxidae and Thyrophorellidae. Three subfamilies currently included within the Subulinidae based on current taxonomy likewise did not form monophyletic groups. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Molecular diversification of Trichuris spp. from Sigmodontinae (Cricetidae) rodents from Argentina based on mitochondrial DNA sequences.

    PubMed

    Callejón, Rocío; Robles, María Del Rosario; Panei, Carlos Javier; Cutillas, Cristina

    2016-08-01

    A molecular phylogenetic hypothesis is presented for the genus Trichuris based on sequence data from mitochondrial cytochrome c oxidase 1 (cox1) and cytochrome b (cob). The taxa consisted of nine populations of whipworm from five species of Sigmodontinae rodents from Argentina. Bayesian Inference, Maximum Parsimony, and Maximum Likelihood methods were used to infer phylogenies for each gene separately but also for the combined mitochondrial data and the combined mitochondrial and nuclear dataset. Phylogenetic results based on cox1 and cob mitochondrial DNA (mtDNA) revealed three clades strongly resolved corresponding to three different species (Trichuris navonae, Trichuris bainae, and Trichuris pardinasi) showing phylogeographic variation, but relationships among Trichuris species were poorly resolved. Phylogenetic reconstruction based on concatenated sequences had greater phylogenetic resolution for delimiting species and populations intra-specific of Trichuris than those based on partitioned genes. Thus, populations of T. bainae and T. pardinasi could be affected by geographical factors and co-divergence parasite-host.

  11. Molecular systematics and biogeography of the circumglobally distributed genus Seriola (Pisces: Carangidae).

    PubMed

    Swart, Belinda L; von der Heyden, Sophie; Bester-van der Merwe, Aletta; Roodt-Wilding, Rouvay

    2015-12-01

    The genus Seriola includes several important commercially exploited species and has a disjunct distribution globally; yet phylogenetic relationships within this genus have not been thoroughly investigated. This study reports the first comprehensive molecular phylogeny for this genus based on mitochondrial (Cytb) and nuclear gene (RAG1 and Rhod) DNA sequence data for all extant Seriola species (nine species, n=27). All species were found to be monophyletic based on Maximum parsimony, Maximum likelihood and Bayesian inference. The closure of the Tethys Sea (12-20 MYA) coincides with the divergence of a clade containing ((S. fasciata and S. peruana), S. carpenteri) from the rest of the Seriola species, while the formation of the Isthmus of Panama (±3 MYA) played an important role in the divergence of S. fasciata and S. peruana. Furthermore, factors such as climate and water temperature fluctuations during the Pliocene played important roles during the divergence of the remaining Seriola species. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Combined molecular and morphological phylogenetic analyses of the New Zealand wolf spider genus Anoteropsis (Araneae: Lycosidae).

    PubMed

    Vink, Cor J; Paterson, Adrian M

    2003-09-01

    Datasets from the mitochondrial gene regions NADH dehydrogenase subunit I (ND1) and cytochrome c oxidase subunit I (COI) of the 20 species in the New Zealand wolf spider (Lycosidae) genus Anoteropsis were generated. Sequence data were phylogenetically analysed using parsimony and maximum likelihood analyses. The phylogenies generated from the ND1 and COI sequence data and a previously generated morphological dataset were significantly congruent (p<0.001). Sequence data were combined with morphological data and phylogenetically analysed using parsimony. The ND1 region sequenced included part of tRNA(Leu(CUN)), which appears to have an unstable amino-acyl arm and no TpsiC arm in lycosids. Analyses supported the existence of five species groups within Anoteropsis and the monophyly of species represented by multiple samples. A radiation of Anoteropsis species within the last five million years is inferred from the ND1 and COI likelihood phylograms, habitat and geological data, which also indicates that Anoteropsis arrived in New Zealand some time after it separated from Gondwana.

  13. Reconstructing the evolutionary history of the Lorisidae using morphological, molecular, and geological data.

    PubMed

    Masters, J C; Anthony, N M; de Wit, M J; Mitchell, A

    2005-08-01

    Major aspects of lorisid phylogeny and systematics remain unresolved, despite several studies (involving morphology, histology, karyology, immunology, and DNA sequencing) aimed at elucidating them. Our study is the first to investigate the evolution of this enigmatic group using molecular and morphological data for all four well-established genera: Arctocebus, Loris, Nycticebus, and Perodicticus. Data sets consisting of 386 bp of 12S rRNA, 535 bp of 16S rRNA, and 36 craniodental characters were analyzed separately and in combination, using maximum parsimony and maximum likelihood. Outgroups, consisting of two galagid taxa (Otolemur and Galagoides) and a lemuroid (Microcebus), were also varied. The morphological data set yielded a paraphyletic lorisid clade with the robust Nycticebus and Perodicticus grouped as sister taxa, and the galagids allied with Arctocebus. All molecular analyses maximum parsimony (MP) or maximum likelihood (ML) which included Microcebus as an outgroup rendered a paraphyletic lorisid clade, with one exception: the 12S + 16S data set analyzed with ML. The position of the galagids in these paraphyletic topologies was inconsistent, however, and bootstrap values were low. Exclusion of Microcebus generated a monophyletic Lorisidae with Asian and African subclades; bootstrap values for all three clades in the total evidence tree were over 90%. We estimated mean genetic distances for lemuroids vs. lorisoids, lorisids vs. galagids, and Asian vs. African lorisids as a guide to relative divergence times. We present information regarding a temporary land bridge that linked the two now widely separated regions inhabited by lorisids that may explain their distribution. Finally, we make taxonomic recommendations based on our results. (c) 2005 Wiley-Liss, Inc.

  14. The conquering of North America: dated phylogenetic and biogeographic inference of migratory behavior in bee hummingbirds.

    PubMed

    Licona-Vera, Yuyini; Ornelas, Juan Francisco

    2017-06-05

    Geographical and temporal patterns of diversification in bee hummingbirds (Mellisugini) were assessed with respect to the evolution of migration, critical for colonization of North America. We generated a dated multilocus phylogeny of the Mellisugini based on a dense sampling using Bayesian inference, maximum-likelihood and maximum parsimony methods, and reconstructed the ancestral states of distributional areas in a Bayesian framework and migratory behavior using maximum parsimony, maximum-likelihood and re-rooting methods. All phylogenetic analyses confirmed monophyly of the Mellisugini and the inclusion of Atthis, Calothorax, Doricha, Eulidia, Mellisuga, Microstilbon, Myrmia, Tilmatura, and Thaumastura. Mellisugini consists of two clades: (1) South American species (including Tilmatura dupontii), and (2) species distributed in North and Central America and the Caribbean islands. The second clade consists of four subclades: Mexican (Calothorax, Doricha) and Caribbean (Archilochus, Calliphlox, Mellisuga) sheartails, Calypte, and Selasphorus (incl. Atthis). Coalescent-based dating places the origin of the Mellisugini in the mid-to-late Miocene, with crown ages of most subclades in the early Pliocene, and subsequent species splits in the Pleistocene. Bee hummingbirds reached western North America by the end of the Miocene and the ancestral mellisuginid (bee hummingbirds) was reconstructed as sedentary, with four independent gains of migratory behavior during the evolution of the Mellisugini. Early colonization of North America and subsequent evolution of migration best explained biogeographic and diversification patterns within the Mellisugini. The repeated evolution of long-distance migration by different lineages was critical for the colonization of North America, contributing to the radiation of bee hummingbirds. Comparative phylogeography is needed to test whether the repeated evolution of migration resulted from northward expansion of southern sedentary populations.

  15. A global phylogeny of the fern genus Tectaria (Tectariaceae: Polypodiales) based on plastid and nuclear markers identifies major evolutionary lineages and suggests repeated evolution of free venation from anastomosing venation.

    PubMed

    Zhang, Liang; Zhou, Xin-Mao; Chen, De-Kui; Schuettpelz, Eric; Knapp, Ralf; Lu, Ngan Thi; Luong, Thien Tam; Dang, Minh Tri; Duan, Yi-Fan; He, Hai; Gao, Xin-Fen; Zhang, Li-Bing

    2017-09-01

    Tectaria (Tectariaceae) is one of the most confusing fern genera in terms of its circumscription and phylogeny. Since its original description, a number of genera had been moved into or related with this genus, while others had been segregated from it. Tectaria is also among the largest fern genera, comprising 150-210 mostly tropical species. Previous molecular studies have been far from comprehensive (sampling no more than 76 accessions from 52 species), limited in geographic scope (mainly restricted to Asia), and based exclusively on plastid markers. In the present study, DNA sequences of eight plastid and one nuclear marker of 360 accessions representing ca. 130 species of Tectaria, ca. 36 species of six non-Tectaria genera in Tectariaceae, 12 species of Davalliaceae, Oleandraceae, and Polypodiaceae, and 13 species of Lomariopsidaceae were used to infer a phylogeny with maximum likelihood, Bayesian inference, and maximum parsimony approaches. Our major results include: (1) the most recently proposed circumscription of Tectaria is strongly supported as monophyletic; (2) the genera Lenda, Microbrochis, Phlebiogonium, and Sagenia, sampled here for the first time, are resolved as part of Tectaria; (3) four superclades representing early splits in Tectaria are identified, with the Old World species being sister to the New World species; (4) 12 well-supported major clades in Tectaria are revealed, differing from one another in molecular, morphological, and geographical features; (5) evolution of 13 morphological characters is inferred in a phylogenetic context and morphological synapomorphies of various clades are identified; and in particular (6) free venation in Tectaria is inferred to be repeatedly derived from anastomosing venation, an evolutionary phenomenon not documented previously in vascular plants in a phylogenetic context based on both plastid and nuclear evidence. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. DiscML: an R package for estimating evolutionary rates of discrete characters using maximum likelihood.

    PubMed

    Kim, Tane; Hao, Weilong

    2014-09-27

    The study of discrete characters is crucial for the understanding of evolutionary processes. Even though great advances have been made in the analysis of nucleotide sequences, computer programs for non-DNA discrete characters are often dedicated to specific analyses and lack flexibility. Discrete characters often have different transition rate matrices, variable rates among sites and sometimes contain unobservable states. To obtain the ability to accurately estimate a variety of discrete characters, programs with sophisticated methodologies and flexible settings are desired. DiscML performs maximum likelihood estimation for evolutionary rates of discrete characters on a provided phylogeny with the options that correct for unobservable data, rate variations, and unknown prior root probabilities from the empirical data. It gives users options to customize the instantaneous transition rate matrices, or to choose pre-determined matrices from models such as birth-and-death (BD), birth-death-and-innovation (BDI), equal rates (ER), symmetric (SYM), general time-reversible (GTR) and all rates different (ARD). Moreover, we show application examples of DiscML on gene family data and on intron presence/absence data. DiscML was developed as a unified R program for estimating evolutionary rates of discrete characters with no restriction on the number of character states, and with flexibility to use different transition models. DiscML is ideal for the analyses of binary (1s/0s) patterns, multi-gene families, and multistate discrete morphological characteristics.

  17. Stasis and convergence characterize morphological evolution in eupolypod II ferns.

    PubMed

    Sundue, Michael A; Rothfels, Carl J

    2014-01-01

    Patterns of morphological evolution at levels above family rank remain underexplored in the ferns. The present study seeks to address this gap through analysis of 79 morphological characters for 81 taxa, including representatives of all ten families of eupolypod II ferns. Recent molecular phylogenetic studies demonstrate that the evolution of the large eupolypod II clade (which includes nearly one-third of extant fern species) features unexpected patterns. The traditional 'athyrioid' ferns are scattered across the phylogeny despite their apparent morphological cohesiveness, and mixed among these seemingly conservative taxa are morphologically dissimilar groups that lack any obvious features uniting them with their relatives. Maximum-likelihood and maximum-parsimony character optimizations are used to determine characters that unite the seemingly disparate groups, and to test whether the polyphyly of the traditional athyrioid ferns is due to evolutionary stasis (symplesiomorphy) or convergent evolution. The major events in eupolypod II character evolution are reviewed, and character and character state concepts are reappraised, as a basis for further inquiries into fern morphology. Characters were scored from the literature, live plants and herbarium specimens, and optimized using maximum-parsimony and maximum-likelihood, onto a highly supported topology derived from maximum-likelihood and Bayesian analysis of molecular data. Phylogenetic signal of characters were tested for using randomization methods and fitdiscrete. The majority of character state changes within the eupolypod II phylogeny occur at the family level or above. Relative branch lengths for the morphological data resemble those from molecular data and fit an ancient rapid radiation model (long branches subtended by very short backbone internodes), with few characters uniting the morphologically disparate clades. The traditional athyrioid ferns were circumscribed based upon a combination of symplesiomorphic and homoplastic characters. Petiole vasculature consisting of two bundles is ancestral for eupolypods II and a synapomorphy for eupolypods II under deltran optimization. Sori restricted to one side of the vein defines the recently recognized clade comprising Rhachidosoraceae through Aspleniaceae, and sori present on both sides of the vein is a synapomorphy for the Athyriaceae sensu stricto. The results indicate that a chromosome base number of x =41 is synapomorphic for all eupolypods, a clade that includes over two-thirds of extant fern species. The integrated approach synthesizes morphological studies with current phylogenetic hypotheses and provides explicit statements of character evolution in the eupolypod II fern families. Strong character support is found for previously recognized clades, whereas few characters support previously unrecognized clades. Sorus position appears to be less complicated than previously hypothesized, and linear sori restricted to one side of the vein support the clade comprising Aspleniaceae, Diplaziopsidaceae, Hemidictyaceae and Rachidosoraceae - a lineage only recently identified. Despite x =41 being a frequent number among extant species, to our knowledge it has not previously been demonstrated as the ancestral state. This is the first synapomorphy proposed for the eupolypod clade, a lineage comprising 67 % of extant fern species. This study provides some of the first hypotheses of character evolution at the family level and above in light of recent phylogenetic results, and promotes further study in an area that remains open for original observation.

  18. Stasis and convergence characterize morphological evolution in eupolypod II ferns

    PubMed Central

    Sundue, Michael A.; Rothfels, Carl J.

    2014-01-01

    Background and Aims Patterns of morphological evolution at levels above family rank remain underexplored in the ferns. The present study seeks to address this gap through analysis of 79 morphological characters for 81 taxa, including representatives of all ten families of eupolypod II ferns. Recent molecular phylogenetic studies demonstrate that the evolution of the large eupolypod II clade (which includes nearly one-third of extant fern species) features unexpected patterns. The traditional ‘athyrioid’ ferns are scattered across the phylogeny despite their apparent morphological cohesiveness, and mixed among these seemingly conservative taxa are morphologically dissimilar groups that lack any obvious features uniting them with their relatives. Maximum-likelihood and maximum-parsimony character optimizations are used to determine characters that unite the seemingly disparate groups, and to test whether the polyphyly of the traditional athyrioid ferns is due to evolutionary stasis (symplesiomorphy) or convergent evolution. The major events in eupolypod II character evolution are reviewed, and character and character state concepts are reappraised, as a basis for further inquiries into fern morphology. Methods Characters were scored from the literature, live plants and herbarium specimens, and optimized using maximum-parsimony and maximum-likelihood, onto a highly supported topology derived from maximum-likelihood and Bayesian analysis of molecular data. Phylogenetic signal of characters were tested for using randomization methods and fitdiscrete. Key Results The majority of character state changes within the eupolypod II phylogeny occur at the family level or above. Relative branch lengths for the morphological data resemble those from molecular data and fit an ancient rapid radiation model (long branches subtended by very short backbone internodes), with few characters uniting the morphologically disparate clades. The traditional athyrioid ferns were circumscribed based upon a combination of symplesiomorphic and homoplastic characters. Petiole vasculature consisting of two bundles is ancestral for eupolypods II and a synapomorphy for eupolypods II under deltran optimization. Sori restricted to one side of the vein defines the recently recognized clade comprising Rhachidosoraceae through Aspleniaceae, and sori present on both sides of the vein is a synapomorphy for the Athyriaceae sensu stricto. The results indicate that a chromosome base number of x =41 is synapomorphic for all eupolypods, a clade that includes over two-thirds of extant fern species. Conclusions The integrated approach synthesizes morphological studies with current phylogenetic hypotheses and provides explicit statements of character evolution in the eupolypod II fern families. Strong character support is found for previously recognized clades, whereas few characters support previously unrecognized clades. Sorus position appears to be less complicated than previously hypothesized, and linear sori restricted to one side of the vein support the clade comprising Aspleniaceae, Diplaziopsidaceae, Hemidictyaceae and Rachidosoraceae – a lineage only recently identified. Despite x =41 being a frequent number among extant species, to our knowledge it has not previously been demonstrated as the ancestral state. This is the first synapomorphy proposed for the eupolypod clade, a lineage comprising 67 % of extant fern species. This study provides some of the first hypotheses of character evolution at the family level and above in light of recent phylogenetic results, and promotes further study in an area that remains open for original observation. PMID:24197753

  19. Basal jawed vertebrate phylogeny inferred from multiple nuclear DNA-coded genes

    PubMed Central

    Kikugawa, Kanae; Katoh, Kazutaka; Kuraku, Shigehiro; Sakurai, Hiroshi; Ishida, Osamu; Iwabe, Naoyuki; Miyata, Takashi

    2004-01-01

    Background Phylogenetic analyses of jawed vertebrates based on mitochondrial sequences often result in confusing inferences which are obviously inconsistent with generally accepted trees. In particular, in a hypothesis by Rasmussen and Arnason based on mitochondrial trees, cartilaginous fishes have a terminal position in a paraphyletic cluster of bony fishes. No previous analysis based on nuclear DNA-coded genes could significantly reject the mitochondrial trees of jawed vertebrates. Results We have cloned and sequenced seven nuclear DNA-coded genes from 13 vertebrate species. These sequences, together with sequences available from databases including 13 jawed vertebrates from eight major groups (cartilaginous fishes, bichir, chondrosteans, gar, bowfin, teleost fishes, lungfishes and tetrapods) and an outgroup (a cyclostome and a lancelet), have been subjected to phylogenetic analyses based on the maximum likelihood method. Conclusion Cartilaginous fishes have been inferred to be basal to other jawed vertebrates, which is consistent with the generally accepted view. The minimum log-likelihood difference between the maximum likelihood tree and trees not supporting the basal position of cartilaginous fishes is 18.3 ± 13.1. The hypothesis by Rasmussen and Arnason has been significantly rejected with the minimum log-likelihood difference of 123 ± 23.3. Our tree has also shown that living holosteans, comprising bowfin and gar, form a monophyletic group which is the sister group to teleost fishes. This is consistent with a formerly prevalent view of vertebrate classification, although inconsistent with both of the current morphology-based and mitochondrial sequence-based trees. Furthermore, the bichir has been shown to be the basal ray-finned fish. Tetrapods and lungfish have formed a monophyletic cluster in the tree inferred from the concatenated alignment, being consistent with the currently prevalent view. It also remains possible that tetrapods are more closely related to ray-finned fishes than to lungfishes. PMID:15070407

  20. Branch length estimation and divergence dating: estimates of error in Bayesian and maximum likelihood frameworks.

    PubMed

    Schwartz, Rachel S; Mueller, Rachel L

    2010-01-11

    Estimates of divergence dates between species improve our understanding of processes ranging from nucleotide substitution to speciation. Such estimates are frequently based on molecular genetic differences between species; therefore, they rely on accurate estimates of the number of such differences (i.e. substitutions per site, measured as branch length on phylogenies). We used simulations to determine the effects of dataset size, branch length heterogeneity, branch depth, and analytical framework on branch length estimation across a range of branch lengths. We then reanalyzed an empirical dataset for plethodontid salamanders to determine how inaccurate branch length estimation can affect estimates of divergence dates. The accuracy of branch length estimation varied with branch length, dataset size (both number of taxa and sites), branch length heterogeneity, branch depth, dataset complexity, and analytical framework. For simple phylogenies analyzed in a Bayesian framework, branches were increasingly underestimated as branch length increased; in a maximum likelihood framework, longer branch lengths were somewhat overestimated. Longer datasets improved estimates in both frameworks; however, when the number of taxa was increased, estimation accuracy for deeper branches was less than for tip branches. Increasing the complexity of the dataset produced more misestimated branches in a Bayesian framework; however, in an ML framework, more branches were estimated more accurately. Using ML branch length estimates to re-estimate plethodontid salamander divergence dates generally resulted in an increase in the estimated age of older nodes and a decrease in the estimated age of younger nodes. Branch lengths are misestimated in both statistical frameworks for simulations of simple datasets. However, for complex datasets, length estimates are quite accurate in ML (even for short datasets), whereas few branches are estimated accurately in a Bayesian framework. Our reanalysis of empirical data demonstrates the magnitude of effects of Bayesian branch length misestimation on divergence date estimates. Because the length of branches for empirical datasets can be estimated most reliably in an ML framework when branches are <1 substitution/site and datasets are > or =1 kb, we suggest that divergence date estimates using datasets, branch lengths, and/or analytical techniques that fall outside of these parameters should be interpreted with caution.

  1. A Multilocus Molecular Phylogeny of the Parrots (Psittaciformes): Support for a Gondwanan Origin during the Cretaceous

    PubMed Central

    Schirtzinger, Erin E.; Matsumoto, Tania; Eberhard, Jessica R.; Graves, Gary R.; Sanchez, Juan J.; Capelli, Sara; Müller, Heinrich; Scharpegge, Julia; Chambers, Geoffrey K.; Fleischer, Robert C.

    2008-01-01

    The question of when modern birds (Neornithes) first diversified has generated much debate among avian systematists. Fossil evidence generally supports a Tertiary diversification, whereas estimates based on molecular dating favor an earlier diversification in the Cretaceous period. In this study, we used an alternate approach, the inference of historical biogeographic patterns, to test the hypothesis that the initial radiation of the Order Psittaciformes (the parrots and cockatoos) originated on the Gondwana supercontinent during the Cretaceous. We utilized broad taxonomic sampling (representatives of 69 of the 82 extant genera and 8 outgroup taxa) and multilocus molecular character sampling (3,941 bp from mitochondrial DNA (mtDNA) genes cytochrome oxidase I and NADH dehydrogenase 2 and nuclear introns of rhodopsin intron 1, tropomyosin alpha-subunit intron 5, and transforming growth factor ß-2) to generate phylogenetic hypotheses for the Psittaciformes. Analyses of the combined character partitions using maximum parsimony, maximum likelihood, and Bayesian criteria produced well-resolved and topologically similar trees in which the New Zealand taxa Strigops and Nestor (Psittacidae) were sister to all other psittaciforms and the cockatoo clade (Cacatuidae) was sister to a clade containing all remaining parrots (Psittacidae). Within this large clade of Psittacidae, some traditionally recognized tribes and subfamilies were monophyletic (e.g., Arini, Psittacini, and Loriinae), whereas several others were polyphyletic (e.g., Cyclopsittacini, Platycercini, Psittaculini, and Psittacinae). Ancestral area reconstructions using our Bayesian phylogenetic hypothesis and current distributions of genera supported the hypothesis of an Australasian origin for the Psittaciformes. Separate analyses of the timing of parrot diversification constructed with both Bayesian relaxed-clock and penalized likelihood approaches showed better agreement between geologic and diversification events in the chronograms based on a Cretaceous dating of the basal split within parrots than the chronograms based on a Tertiary dating of this split, although these data are more equivocal. Taken together, our results support a Cretaceous origin of Psittaciformes in Gondwana after the separation of Africa and the India/Madagascar block with subsequent diversification through both vicariance and dispersal. These well-resolved molecular phylogenies will be of value for comparative studies of behavior, ecology, and life history in parrots. PMID:18653733

  2. The evolutionary history of holometabolous insects inferred from transcriptome-based phylogeny and comprehensive morphological data.

    PubMed

    Peters, Ralph S; Meusemann, Karen; Petersen, Malte; Mayer, Christoph; Wilbrandt, Jeanne; Ziesmann, Tanja; Donath, Alexander; Kjer, Karl M; Aspöck, Ulrike; Aspöck, Horst; Aberer, Andre; Stamatakis, Alexandros; Friedrich, Frank; Hünefeld, Frank; Niehuis, Oliver; Beutel, Rolf G; Misof, Bernhard

    2014-03-20

    Despite considerable progress in systematics, a comprehensive scenario of the evolution of phenotypic characters in the mega-diverse Holometabola based on a solid phylogenetic hypothesis was still missing. We addressed this issue by de novo sequencing transcriptome libraries of representatives of all orders of holometabolan insects (13 species in total) and by using a previously published extensive morphological dataset. We tested competing phylogenetic hypotheses by analyzing various specifically designed sets of amino acid sequence data, using maximum likelihood (ML) based tree inference and Four-cluster Likelihood Mapping (FcLM). By maximum parsimony-based mapping of the morphological data on the phylogenetic relationships we traced evolutionary transformations at the phenotypic level and reconstructed the groundplan of Holometabola and of selected subgroups. In our analysis of the amino acid sequence data of 1,343 single-copy orthologous genes, Hymenoptera are placed as sister group to all remaining holometabolan orders, i.e., to a clade Aparaglossata, comprising two monophyletic subunits Mecopterida (Amphiesmenoptera + Antliophora) and Neuropteroidea (Neuropterida + Coleopterida). The monophyly of Coleopterida (Coleoptera and Strepsiptera) remains ambiguous in the analyses of the transcriptome data, but appears likely based on the morphological data. Highly supported relationships within Neuropterida and Antliophora are Raphidioptera + (Neuroptera + monophyletic Megaloptera), and Diptera + (Siphonaptera + Mecoptera). ML tree inference and FcLM yielded largely congruent results. However, FcLM, which was applied here for the first time to large phylogenomic supermatrices, displayed additional signal in the datasets that was not identified in the ML trees. Our phylogenetic results imply that an orthognathous larva belongs to the groundplan of Holometabola, with compound eyes and well-developed thoracic legs, externally feeding on plants or fungi. Ancestral larvae of Aparaglossata were prognathous, equipped with single larval eyes (stemmata), and possibly agile and predacious. Ancestral holometabolan adults likely resembled in their morphology the groundplan of adult neopteran insects. Within Aparaglossata, the adult's flight apparatus and ovipositor underwent strong modifications. We show that the combination of well-resolved phylogenies obtained by phylogenomic analyses and well-documented extensive morphological datasets is an appropriate basis for reconstructing complex morphological transformations and for the inference of evolutionary histories.

  3. Phylogeny and evolutionary radiation of the marine mussels (Bivalvia: Mytilidae) based on mitochondrial and nuclear genes.

    PubMed

    Liu, Jun; Liu, Helu; Zhang, Haibin

    2018-04-22

    The marine mussels (Mytilidae) are distributed in the oceans worldwide and occupy various habitats with diverse life styles. However, their taxonomy and phylogeny remain unclear from genus to family level due to equivocal morphological and anatomical characters among some taxa. In this study, we inferred the deep phylogenetic relationships among 42 mytiloid species, 19 genera, and five subfamilies of the extant marine mussels by using two mitochondrial (COI and 16S rRNA) and three nuclear (18S and 28S rRNA, and histone H3) genes. Phylogeny was reconstructed with a combination of five genes using Bayesian inference and maximum likelihood method, and divergence time was estimated for the major nodes using a relaxed clock model with three fossil calibrations. Phylogenetic trees revealed two major clades (Clades 1 and 2). In Clade 1, the deep-sea mussels (subfamily Bathymodiolinae) were sister to subfamily Modiolinae (represented by Modiolus), and then was clustered with Leiosolenus (subfamily Lithophaginae). Clade 2 comprised Lithophaga (Lithophaginae) and subfamily Mytilinae. Additionally, a Modiolus species and Musculus senhousia (subfamily Crenellinae) were positioned within the subfamily Mytilinae. The phylogenetic results strongly indicated monophyly of Mytilidae and Bathymodiolinae, polyphyly of Modiolinae and Lithophaginae, and paraphyly of Mytilinae. Divergence time estimation showed an ancient and gradual divergence in most mussel groups, whereas the deep-sea mussels originated recently and diverged rapidly during the Paleogene. The present study provides new insight into the evolutionary history of the marine mussels, and supports taxonomic revision for this important bivalve group. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Phylogenetic relationships among the North American cleomoids (Cleomaceae): a test of Iltis's reduction series.

    PubMed

    Riser, James P; Cardinal-McTeague, Warren M; Hall, Jocelyn C; Hahn, William J; Sytsma, Kenneth J; Roalson, Eric H

    2013-10-01

    A monophyletic group composed of five genera of the Cleomaceae represents an intriguing lineage with outstanding taxonomic and evolutionary questions. Generic boundaries are poorly defined, and historical hypotheses regarding the evolution of fruit type and phylogenetic relationships provide testable questions. This is the first detailed phylogenetic investigation of all 22 species in this group. We use this phylogenetic framework to assess generic monophyly and test Iltis's evolutionary "reduction series" hypothesis regarding phylogeny and fruit type/seed number. • Maximum likelihood and Bayesian analyses of four plastid intergenic spacer region sequences (rpl32-trnL, trnQ-rps16, ycf1-rps15, and psbA-trnH) and one nuclear (ITS) region were used to reconstruct phylogenetic relationships among the NA cleomoid species. Stochastic mapping and ancestral-state reconstruction were used to study the evolution of fruit type. • Both analyses recovered nearly identical phylogenies. Three of the currently recognized genera (Wislizenia, Carsonia, and Oxystylis) are monophyletic while two (Cleomella and Peritoma) are para- or polyphyletic. There was a single origin of the two-seeded schizocarp in the ancestor of the Oxystylis-Wislizenia clade and a secondary derivation of elongated capsule-type fruits in Peritoma from a truncated capsule state in Cleomella. • Our well-resolved phylogeny supports most of the current species circumscriptions but not current generic circumscriptions. Additionally, our results are inconsistent with Iltis's hypothesis of species with elongated many-seed fruits giving rise to species with truncated few-seeded fruits. Instead, we find support for the reversion to elongated multiseeded fruits from a truncate few-seeded ancestor in Peritoma.

  5. Long-Branch Attraction Bias and Inconsistency in Bayesian Phylogenetics

    PubMed Central

    Kolaczkowski, Bryan; Thornton, Joseph W.

    2009-01-01

    Bayesian inference (BI) of phylogenetic relationships uses the same probabilistic models of evolution as its precursor maximum likelihood (ML), so BI has generally been assumed to share ML's desirable statistical properties, such as largely unbiased inference of topology given an accurate model and increasingly reliable inferences as the amount of data increases. Here we show that BI, unlike ML, is biased in favor of topologies that group long branches together, even when the true model and prior distributions of evolutionary parameters over a group of phylogenies are known. Using experimental simulation studies and numerical and mathematical analyses, we show that this bias becomes more severe as more data are analyzed, causing BI to infer an incorrect tree as the maximum a posteriori phylogeny with asymptotically high support as sequence length approaches infinity. BI's long branch attraction bias is relatively weak when the true model is simple but becomes pronounced when sequence sites evolve heterogeneously, even when this complexity is incorporated in the model. This bias—which is apparent under both controlled simulation conditions and in analyses of empirical sequence data—also makes BI less efficient and less robust to the use of an incorrect evolutionary model than ML. Surprisingly, BI's bias is caused by one of the method's stated advantages—that it incorporates uncertainty about branch lengths by integrating over a distribution of possible values instead of estimating them from the data, as ML does. Our findings suggest that trees inferred using BI should be interpreted with caution and that ML may be a more reliable framework for modern phylogenetic analysis. PMID:20011052

  6. Long-branch attraction bias and inconsistency in Bayesian phylogenetics.

    PubMed

    Kolaczkowski, Bryan; Thornton, Joseph W

    2009-12-09

    Bayesian inference (BI) of phylogenetic relationships uses the same probabilistic models of evolution as its precursor maximum likelihood (ML), so BI has generally been assumed to share ML's desirable statistical properties, such as largely unbiased inference of topology given an accurate model and increasingly reliable inferences as the amount of data increases. Here we show that BI, unlike ML, is biased in favor of topologies that group long branches together, even when the true model and prior distributions of evolutionary parameters over a group of phylogenies are known. Using experimental simulation studies and numerical and mathematical analyses, we show that this bias becomes more severe as more data are analyzed, causing BI to infer an incorrect tree as the maximum a posteriori phylogeny with asymptotically high support as sequence length approaches infinity. BI's long branch attraction bias is relatively weak when the true model is simple but becomes pronounced when sequence sites evolve heterogeneously, even when this complexity is incorporated in the model. This bias--which is apparent under both controlled simulation conditions and in analyses of empirical sequence data--also makes BI less efficient and less robust to the use of an incorrect evolutionary model than ML. Surprisingly, BI's bias is caused by one of the method's stated advantages--that it incorporates uncertainty about branch lengths by integrating over a distribution of possible values instead of estimating them from the data, as ML does. Our findings suggest that trees inferred using BI should be interpreted with caution and that ML may be a more reliable framework for modern phylogenetic analysis.

  7. Phylogeny of haemosporidian blood parasites revealed by a multi-gene approach.

    PubMed

    Borner, Janus; Pick, Christian; Thiede, Jenny; Kolawole, Olatunji Matthew; Kingsley, Manchang Tanyi; Schulze, Jana; Cottontail, Veronika M; Wellinghausen, Nele; Schmidt-Chanasit, Jonas; Bruchhaus, Iris; Burmester, Thorsten

    2016-01-01

    The apicomplexan order Haemosporida is a clade of unicellular blood parasites that infect a variety of reptilian, avian and mammalian hosts. Among them are the agents of human malaria, parasites of the genus Plasmodium, which pose a major threat to human health. Illuminating the evolutionary history of Haemosporida may help us in understanding their enormous biological diversity, as well as tracing the multiple host switches and associated acquisitions of novel life-history traits. However, the deep-level phylogenetic relationships among major haemosporidian clades have remained enigmatic because the datasets employed in phylogenetic analyses were severely limited in either gene coverage or taxon sampling. Using a PCR-based approach that employs a novel set of primers, we sequenced fragments of 21 nuclear genes from seven haemosporidian parasites of the genera Leucocytozoon, Haemoproteus, Parahaemoproteus, Polychromophilus and Plasmodium. After addition of genomic data from 25 apicomplexan species, the unreduced alignment comprised 20,580 bp from 32 species. Phylogenetic analyses were performed based on nucleotide, codon and amino acid data employing Bayesian inference, maximum likelihood and maximum parsimony. All analyses resulted in highly congruent topologies. We found consistent support for a basal position of Leucocytozoon within Haemosporida. In contrast to all previous studies, we recovered a sister group relationship between the genera Polychromophilus and Plasmodium. Within Plasmodium, the sauropsid and mammal-infecting lineages were recovered as sister clades. Support for these relationships was high in nearly all trees, revealing a novel phylogeny of Haemosporida, which is robust to the choice of the outgroup and the method of tree inference. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Toward a Tree-of-Life for the boas and pythons: multilocus species-level phylogeny with unprecedented taxon sampling.

    PubMed

    Graham Reynolds, R; Niemiller, Matthew L; Revell, Liam J

    2014-02-01

    Snakes in the families Boidae and Pythonidae constitute some of the most spectacular reptiles and comprise an enormous diversity of morphology, behavior, and ecology. While many species of boas and pythons are familiar, taxonomy and evolutionary relationships within these families remain contentious and fluid. A major effort in evolutionary and conservation biology is to assemble a comprehensive Tree-of-Life, or a macro-scale phylogenetic hypothesis, for all known life on Earth. No previously published study has produced a species-level molecular phylogeny for more than 61% of boa species or 65% of python species. Using both novel and previously published sequence data, we have produced a species-level phylogeny for 84.5% of boid species and 82.5% of pythonid species, contextualized within a larger phylogeny of henophidian snakes. We obtained new sequence data for three boid, one pythonid, and two tropidophiid taxa which have never previously been included in a molecular study, in addition to generating novel sequences for seven genes across an additional 12 taxa. We compiled an 11-gene dataset for 127 taxa, consisting of the mitochondrial genes CYTB, 12S, and 16S, and the nuclear genes bdnf, bmp2, c-mos, gpr35, rag1, ntf3, odc, and slc30a1, totaling up to 7561 base pairs per taxon. We analyzed this dataset using both maximum likelihood and Bayesian inference and recovered a well-supported phylogeny for these species. We found significant evidence of discordance between taxonomy and evolutionary relationships in the genera Tropidophis, Morelia, Liasis, and Leiopython, and we found support for elevating two previously suggested boid species. We suggest a revised taxonomy for the boas (13 genera, 58 species) and pythons (8 genera, 40 species), review relationships between our study and the many other molecular phylogenetic studies of henophidian snakes, and present a taxonomic database and alignment which may be easily used and built upon by other researchers. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Approximate likelihood calculation on a phylogeny for Bayesian estimation of divergence times.

    PubMed

    dos Reis, Mario; Yang, Ziheng

    2011-07-01

    The molecular clock provides a powerful way to estimate species divergence times. If information on some species divergence times is available from the fossil or geological record, it can be used to calibrate a phylogeny and estimate divergence times for all nodes in the tree. The Bayesian method provides a natural framework to incorporate different sources of information concerning divergence times, such as information in the fossil and molecular data. Current models of sequence evolution are intractable in a Bayesian setting, and Markov chain Monte Carlo (MCMC) is used to generate the posterior distribution of divergence times and evolutionary rates. This method is computationally expensive, as it involves the repeated calculation of the likelihood function. Here, we explore the use of Taylor expansion to approximate the likelihood during MCMC iteration. The approximation is much faster than conventional likelihood calculation. However, the approximation is expected to be poor when the proposed parameters are far from the likelihood peak. We explore the use of parameter transforms (square root, logarithm, and arcsine) to improve the approximation to the likelihood curve. We found that the new methods, particularly the arcsine-based transform, provided very good approximations under relaxed clock models and also under the global clock model when the global clock is not seriously violated. The approximation is poorer for analysis under the global clock when the global clock is seriously wrong and should thus not be used. The results suggest that the approximate method may be useful for Bayesian dating analysis using large data sets.

  10. Accurate Phylogenetic Tree Reconstruction from Quartets: A Heuristic Approach

    PubMed Central

    Reaz, Rezwana; Bayzid, Md. Shamsuzzoha; Rahman, M. Sohel

    2014-01-01

    Supertree methods construct trees on a set of taxa (species) combining many smaller trees on the overlapping subsets of the entire set of taxa. A ‘quartet’ is an unrooted tree over taxa, hence the quartet-based supertree methods combine many -taxon unrooted trees into a single and coherent tree over the complete set of taxa. Quartet-based phylogeny reconstruction methods have been receiving considerable attentions in the recent years. An accurate and efficient quartet-based method might be competitive with the current best phylogenetic tree reconstruction methods (such as maximum likelihood or Bayesian MCMC analyses), without being as computationally intensive. In this paper, we present a novel and highly accurate quartet-based phylogenetic tree reconstruction method. We performed an extensive experimental study to evaluate the accuracy and scalability of our approach on both simulated and biological datasets. PMID:25117474

  11. Asexual-sexual morph connection in the type species of Berkleasmium.

    PubMed

    Tanney, Joey; Miller, Andrew N

    2017-06-01

    Berkleasmium is a polyphyletic genus comprising 37 dematiaceous hyphomycetous species. In this study, independent collections of the type species, B. concinnum , were made from Eastern North America. Nuclear internal transcribed spacer rDNA (ITS) and partial nuc 28S large subunit rDNA (LSU) sequences obtained from collections and subsequent cultures showed that Berkleasmium concinnum is the asexual morph of Neoacanthostigma septoconstrictum ( Tubeufiaceae , Tubeufiales ). Phylogenies inferred from Bayesian inference and maximum likelihood analyses of ITS-LSU sequence data confirmed this asexual-sexual morph connection and a re-examination of fungarium reference specimens also revealed the co-occurrence of N. septoconstrictum ascomata and B. concinnum sporodochia. Neoacanthostigma septoconstrictum is therefore synonymized under B. concinnum on the basis of priority. A specimen identified as N. septoconstrictum from Thailand is described as N. thailandicum sp. nov., based on morphological and genetic distinctiveness.

  12. Phylogeny suggests nondirectional and isometric evolution of sexual size dimorphism in argiopine spiders.

    PubMed

    Cheng, Ren-Chung; Kuntner, Matjaž

    2014-10-01

    Sexual dimorphism describes substantial differences between male and female phenotypes. In spiders, sexual dimorphism research almost exclusively focuses on size, and recent studies have recovered steady evolutionary size increases in females, and independent evolutionary size changes in males. Their discordance is due to negative allometric size patterns caused by different selection pressures on male and female sizes (converse Rensch's rule). Here, we investigated macroevolutionary patterns of sexual size dimorphism (SSD) in Argiopinae, a global lineage of orb-weaving spiders with varying degrees of SSD. We devised a Bayesian and maximum-likelihood molecular species-level phylogeny, and then used it to reconstruct sex-specific size evolution, to examine general hypotheses and different models of size evolution, to test for sexual size coevolution, and to examine allometric patterns of SSD. Our results, revealing ancestral moderate sizes and SSD, failed to reject the Brownian motion model, which suggests a nondirectional size evolution. Contrary to predictions, male and female sizes were phylogenetically correlated, and SSD evolution was isometric. We interpret these results to question the classical explanations of female-biased SSD via fecundity, gravity, and differential mortality. In argiopines, SSD evolution may be driven by these or additional selection mechanisms, but perhaps at different phylogenetic scales. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  13. Phylogenetic Relationships of American Willows (Salix L., Salicaceae)

    PubMed Central

    Lauron-Moreau, Aurélien; Pitre, Frédéric E.; Argus, George W.; Labrecque, Michel; Brouillet, Luc

    2015-01-01

    Salix L. is the largest genus in the family Salicaceae (450 species). Several classifications have been published, but taxonomic subdivision has been under continuous revision. Our goal is to establish the phylogenetic structure of the genus using molecular data on all American willows, using three DNA markers. This complete phylogeny of American willows allows us to propose a biogeographic framework for the evolution of the genus. Material was obtained for the 122 native and introduced willow species of America. Sequences were obtained from the ITS (ribosomal nuclear DNA) and two plastid regions, matK and rbcL. Phylogenetic analyses (parsimony, maximum likelihood, Bayesian inference) were performed on the data. Geographic distribution was mapped onto the tree. The species tree provides strong support for a division of the genus into two subgenera, Salix and Vetrix. Subgenus Salix comprises temperate species from the Americas and Asia, and their disjunction may result from Tertiary events. Subgenus Vetrix is composed of boreo-arctic species of the Northern Hemisphere and their radiation may coincide with the Quaternary glaciations. Sixteen species have ambiguous positions; genetic diversity is lower in subg. Vetrix. A molecular phylogeny of all species of American willows has been inferred. It needs to be tested and further resolved using other molecular data. Nonetheless, the genus clearly has two clades that have distinct biogeographic patterns. PMID:25880993

  14. DendroBLAST: approximate phylogenetic trees in the absence of multiple sequence alignments.

    PubMed

    Kelly, Steven; Maini, Philip K

    2013-01-01

    The rapidly growing availability of genome information has created considerable demand for both fast and accurate phylogenetic inference algorithms. We present a novel method called DendroBLAST for reconstructing phylogenetic dendrograms/trees from protein sequences using BLAST. This method differs from other methods by incorporating a simple model of sequence evolution to test the effect of introducing sequence changes on the reliability of the bipartitions in the inferred tree. Using realistic simulated sequence data we demonstrate that this method produces phylogenetic trees that are more accurate than other commonly-used distance based methods though not as accurate as maximum likelihood methods from good quality multiple sequence alignments. In addition to tests on simulated data, we use DendroBLAST to generate input trees for a supertree reconstruction of the phylogeny of the Archaea. This independent analysis produces an approximate phylogeny of the Archaea that has both high precision and recall when compared to previously published analysis of the same dataset using conventional methods. Taken together these results demonstrate that approximate phylogenetic trees can be produced in the absence of multiple sequence alignments, and we propose that these trees will provide a platform for improving and informing downstream bioinformatic analysis. A web implementation of the DendroBLAST method is freely available for use at http://www.dendroblast.com/.

  15. First Record of Raillietina celebensis (Cestoda: Cyclophyllidea) in South America: Redescription and Phylogeny.

    PubMed

    de Oliveira Simões, Raquel; Simões, Susana Balmant Enrique; Luque, José Luis; Iñiguez, Alena Mayo; Júnior, Arnaldo Maldonado

    2017-08-01

    Raillietina celebensis is a cestode that parasitizes the small intestine of rats and humans. Here, we detail the morphology and morphometry of R. celebensis based on specimens collected from Rattus norvegicus in the municipality of São Gonçalo, state of Rio de Janeiro, Brazil, by light and confocal scanning laser microscopies and also report the results of molecular phylogenetic analyses to determine its relationships within the family Davaineidae. Analysis of the number and size of testes, number and shape of rostellar hooks, cirrus sac length, capsules and eggs per capsule, and morphology of the mature proglottid allowed concluding that the present specimens constitute a new record of R. celebensis in South America. Our genetic and phylogenetic analyses, based on the partial small subunit 18S rRNA gene, revealed R. celebensis to be in the family Davaineidae within the genus Raillietina, in agreement with the morphological taxonomy. Phylogenetic trees obtained by neighbor-joining and maximum likelihood methods demonstrated R. celebensis as a unique taxonomic unit, and also demonstrated some taxonomic inconsistences. The incorporation of Brazilian R. celebensis sequences derived from mammals in the phylogeny of davaineids is consistent with the assertion that neither Raillietina nor Fuhrmannetta can be supported as distinct genera.

  16. Using nearly full-genome HIV sequence data improves phylogeny reconstruction in a simulated epidemic

    PubMed Central

    Yebra, Gonzalo; Hodcroft, Emma B.; Ragonnet-Cronin, Manon L.; Pillay, Deenan; Brown, Andrew J. Leigh; Fraser, Christophe; Kellam, Paul; de Oliveira, Tulio; Dennis, Ann; Hoppe, Anne; Kityo, Cissy; Frampton, Dan; Ssemwanga, Deogratius; Tanser, Frank; Keshani, Jagoda; Lingappa, Jairam; Herbeck, Joshua; Wawer, Maria; Essex, Max; Cohen, Myron S.; Paton, Nicholas; Ratmann, Oliver; Kaleebu, Pontiano; Hayes, Richard; Fidler, Sarah; Quinn, Thomas; Novitsky, Vladimir; Haywards, Andrew; Nastouli, Eleni; Morris, Steven; Clark, Duncan; Kozlakidis, Zisis

    2016-01-01

    HIV molecular epidemiology studies analyse viral pol gene sequences due to their availability, but whole genome sequencing allows to use other genes. We aimed to determine what gene(s) provide(s) the best approximation to the real phylogeny by analysing a simulated epidemic (created as part of the PANGEA_HIV project) with a known transmission tree. We sub-sampled a simulated dataset of 4662 sequences into different combinations of genes (gag-pol-env, gag-pol, gag, pol, env and partial pol) and sampling depths (100%, 60%, 20% and 5%), generating 100 replicates for each case. We built maximum-likelihood trees for each combination using RAxML (GTR + Γ), and compared their topologies to the corresponding true tree’s using CompareTree. The accuracy of the trees was significantly proportional to the length of the sequences used, with the gag-pol-env datasets showing the best performance and gag and partial pol sequences showing the worst. The lowest sampling depths (20% and 5%) greatly reduced the accuracy of tree reconstruction and showed high variability among replicates, especially when using the shortest gene datasets. In conclusion, using longer sequences derived from nearly whole genomes will improve the reliability of phylogenetic reconstruction. With low sample coverage, results can be highly variable, particularly when based on short sequences. PMID:28008945

  17. Using nearly full-genome HIV sequence data improves phylogeny reconstruction in a simulated epidemic.

    PubMed

    Yebra, Gonzalo; Hodcroft, Emma B; Ragonnet-Cronin, Manon L; Pillay, Deenan; Brown, Andrew J Leigh

    2016-12-23

    HIV molecular epidemiology studies analyse viral pol gene sequences due to their availability, but whole genome sequencing allows to use other genes. We aimed to determine what gene(s) provide(s) the best approximation to the real phylogeny by analysing a simulated epidemic (created as part of the PANGEA_HIV project) with a known transmission tree. We sub-sampled a simulated dataset of 4662 sequences into different combinations of genes (gag-pol-env, gag-pol, gag, pol, env and partial pol) and sampling depths (100%, 60%, 20% and 5%), generating 100 replicates for each case. We built maximum-likelihood trees for each combination using RAxML (GTR + Γ), and compared their topologies to the corresponding true tree's using CompareTree. The accuracy of the trees was significantly proportional to the length of the sequences used, with the gag-pol-env datasets showing the best performance and gag and partial pol sequences showing the worst. The lowest sampling depths (20% and 5%) greatly reduced the accuracy of tree reconstruction and showed high variability among replicates, especially when using the shortest gene datasets. In conclusion, using longer sequences derived from nearly whole genomes will improve the reliability of phylogenetic reconstruction. With low sample coverage, results can be highly variable, particularly when based on short sequences.

  18. Toward the resolution of an explosive radiation--a multilocus phylogeny of oceanic dolphins (Delphinidae).

    PubMed

    McGowen, Michael R

    2011-09-01

    Oceanic dolphins (Delphinidae) are the product of a rapid radiation that yielded ∼36 extant species of small to medium-sized cetaceans that first emerged in the Late Miocene. Although they are a charismatic group of organisms that have become poster children for marine conservation, many phylogenetic relationships within Delphinidae remain elusive due to the slow molecular evolution of the group and the difficulty of resolving short branches from successive cladogenic events. Here I combine existing and newly generated sequences from four mitochondrial (mt) genes and 20 nuclear (nu) genes to reconstruct a well-supported phylogenetic hypothesis for Delphinidae. This study compares maximum-likelihood and Bayesian inference methods of several data sets including mtDNA, combined nuDNA, gene trees of individual nuDNA loci, and concatenated mtDNA+nuDNA. In addition, I contrast these standard phylogenetic analyses with the species tree reconstruction method of Bayesian concordance analysis (BCA). Despite finding discordance between mtDNA and individual nuDNA loci, the concatenated matrix recovers a completely resolved and robustly supported phylogeny that is also broadly congruent with BCA trees. This study strongly supports groupings such as Delphininae, Lissodelphininae, Globicephalinae, Sotalia+Delphininae, Steno+Orcaella+Globicephalinae, and Leucopleurus acutus, Lagenorhynchus albirostris, and Orcinus orca as basal delphinid taxa. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. A comprehensive molecular phylogeny for the hornbills (Aves: Bucerotidae).

    PubMed

    Gonzalez, Juan-Carlos T; Sheldon, Ben C; Collar, Nigel J; Tobias, Joseph A

    2013-05-01

    The hornbills comprise a group of morphologically and behaviorally distinct Palaeotropical bird species that feature prominently in studies of ecology and conservation biology. Although the monophyly of hornbills is well established, previous phylogenetic hypotheses were based solely on mtDNA and limited sampling of species diversity. We used parsimony, maximum likelihood and Bayesian methods to reconstruct relationships among all 61 extant hornbill species, based on nuclear and mtDNA gene sequences extracted largely from historical samples. The resulting phylogenetic trees closely match vocal variation across the family but conflict with current taxonomic treatments. In particular, they highlight a new arrangement for the six major clades of hornbills and reveal that three groups traditionally treated as genera (Tockus, Aceros, Penelopides) are non-monophyletic. In addition, two other genera (Anthracoceros, Ocyceros) were non-monophyletic in the mtDNA gene tree. Our findings resolve some longstanding problems in hornbill systematics, including the placement of 'Penelopides exharatus' (embedded in Aceros) and 'Tockus hartlaubi' (sister to Tropicranus albocristatus). We also confirm that an Asiatic lineage (Berenicornis) is sister to a trio of Afrotropical genera (Tropicranus [including 'Tockus hartlaubi'], Ceratogymna, Bycanistes). We present a summary phylogeny as a robust basis for further studies of hornbill ecology, evolution and historical biogeography. Copyright © 2013. Published by Elsevier Inc.

  20. Multigene Molecular Phylogeny and Biogeographic Diversification of the Earth Tongue Fungi in the Genera Cudonia and Spathularia (Rhytismatales, Ascomycota)

    PubMed Central

    Ge, Zai-Wei; Yang, Zhu L.; Pfister, Donald H.; Carbone, Matteo; Bau, Tolgor; Smith, Matthew E.

    2014-01-01

    The family Cudoniaceae (Rhytismatales, Ascomycota) was erected to accommodate the “earth tongue fungi” in the genera Cudonia and Spathularia. There have been no recent taxonomic studies of these genera, and the evolutionary relationships within and among these fungi are largely unknown. Here we explore the molecular phylogenetic relationships within Cudonia and Spathularia using maximum likelihood and Bayesian inference analyses based on 111 collections from across the Northern Hemisphere. Phylogenies based on the combined data from ITS, nrLSU, rpb2 and tef-1α sequences support the monophyly of three main clades, the /flavida, /velutipes, and /cudonia clades. The genus Cudonia and the family Cudoniaceae are supported as monophyletic groups, while the genus Spathularia is not monophyletic. Although Cudoniaceae is monophyletic, our analyses agree with previous studies that this family is nested within the Rhytismataceae. Our phylogenetic analyses circumscribes 32 species-level clades, including the putative recognition of 23 undescribed phylogenetic species. Our molecular phylogeny also revealed an unexpectedly high species diversity of Cudonia and Spathularia in eastern Asia, with 16 (out of 21) species-level clades of Cudonia and 8 (out of 11) species-level clades of Spathularia. We estimate that the divergence time of the Cudoniaceae was in the Paleogene approximately 28 Million years ago (Mya) and that the ancestral area for this group of fungi was in Eastern Asia based on the current data. We hypothesize that the large-scale geological and climatic events in Oligocene (e.g. the global cooling and the uplift of the Tibetan plateau) may have triggered evolutionary radiations in this group of fungi in East Asia. This work provides a foundation for future studies on the phylogeny, diversity, and evolution of Cudonia and Spathularia and highlights the need for more molecular studies on collections from Europe and North America. PMID:25084276

  1. A Molecular Phylogeny for the Leaf-Roller Moths (Lepidoptera: Tortricidae) and Its Implications for Classification and Life History Evolution

    PubMed Central

    Regier, Jerome C.; Brown, John W.; Mitter, Charles; Baixeras, Joaquín; Cho, Soowon; Cummings, Michael P.; Zwick, Andreas

    2012-01-01

    Background Tortricidae, one of the largest families of microlepidopterans, comprise about 10,000 described species worldwide, including important pests, biological control agents and experimental models. Understanding of tortricid phylogeny, the basis for a predictive classification, is currently provisional. We present the first detailed molecular estimate of relationships across the tribes and subfamilies of Tortricidae, assess its concordance with previous morphological evidence, and re-examine postulated evolutionary trends in host plant use and biogeography. Methodology/Principal Findings We sequenced up to five nuclear genes (6,633 bp) in each of 52 tortricids spanning all three subfamilies and 19 of the 22 tribes, plus up to 14 additional genes, for a total of 14,826 bp, in 29 of those taxa plus all 14 outgroup taxa. Maximum likelihood analyses yield trees that, within Tortricidae, differ little among data sets and character treatments and are nearly always strongly supported at all levels of divergence. Support for several nodes was greatly increased by the additional 14 genes sequenced in just 29 of 52 tortricids, with no evidence of phylogenetic artifacts from deliberately incomplete gene sampling. There is strong support for the monophyly of Tortricinae and of Olethreutinae, and for grouping of these to the exclusion of Chlidanotinae. Relationships among tribes are robustly resolved in Tortricinae and mostly so in Olethreutinae. Feeding habit (internal versus external) is strongly conserved on the phylogeny. Within Tortricinae, a clade characterized by eggs being deposited in large clusters, in contrast to singly or in small batches, has markedly elevated incidence of polyphagous species. The five earliest-branching tortricid lineages are all species-poor tribes with mainly southern/tropical distributions, consistent with a hypothesized Gondwanan origin for the family. Conclusions/Significance We present the first robustly supported phylogeny for Tortricidae, and a revised classification in which all of the sampled tribes are now monophyletic. PMID:22536410

  2. Unraveling the rapid radiation of crested newts (Triturus cristatus superspecies) using complete mitogenomic sequences.

    PubMed

    Wielstra, Ben; Arntzen, Jan W

    2011-06-14

    The rapid radiation of crested newts (Triturus cristatus superspecies) comprises four morphotypes: 1) the T. karelinii group, 2) T. carnifex - T. macedonicus, 3) T. cristatus and 4) T. dobrogicus. These vary in body build and the number of rib-bearing pre-sacral vertebrae (NRBV). The phylogenetic relationships of the morphotypes have not yet been settled, despite several previous attempts, employing a variety of molecular markers. We here resolve the crested newt phylogeny by using complete mitochondrial genome sequences. Bayesian inference based on the mitogenomic data yields a fully bifurcating, significantly supported tree, though Maximum Likelihood inference yields low support values. The internal branches connecting the morphotypes are short relative to the terminal branches. Seen from the root of Triturus (NRBV = 13), a basal dichotomy separates the T. karelinii group (NRBV = 13) from the remaining crested newts. The next split divides the latter assortment into T. carnifex - T. macedonicus (NRBV = 14) versus T. cristatus (NRBV = 15) and T. dobrogicus (NRBV = 16 or 17). We argue that the Bayesian full mitochondrial DNA phylogeny is superior to previous attempts aiming to recover the crested newt species tree. Furthermore, our new phylogeny involves a maximally parsimonious interpretation of NRBV evolution. Calibrating the phylogeny allows us to evaluate potential drivers for crested newt cladogenesis. The split between the T. karelinii group and the three other morphotypes, at ca. 10.4 Ma, is associated with the separation of the Balkan and Anatolian landmasses (12-9 Ma). No currently known vicariant events can be ascribed to the other two splits, first at ca. 9.3 Ma, separating T. carnifex - T. macedonicus, and second at ca. 8.8 Ma, splitting T. cristatus and T. dobrogicus. The crested newt morphotypes differ in the duration of their annual aquatic period. We speculate on the role that this ecological differentiation could have played during speciation.

  3. Phylogenetic relationships and morphological evolution in Lentinus, Polyporellus and Neofavolus, emphasizing southeastern Asian taxa.

    PubMed

    Seelan, Jaya Seelan Sathiya; Justo, Alfredo; Nagy, Laszlo G; Grand, Edward A; Redhead, Scott A; Hibbett, David

    2015-01-01

    The genus Lentinus (Polyporaceae, Basidiomycota) is widely documented from tropical and temperate forests and is taxonomically controversial. Here we studied the relationships between Lentinus subg. Lentinus sensu Pegler (i.e. sections Lentinus, Tigrini, Dicholamellatae, Rigidi, Lentodiellum and Pleuroti and polypores that share similar morphological characters). We generated sequences of internal transcribed spacers (ITS) and partial 28S regions of nuc rDNA and genes encoding the largest subunit of RNA polymerase II (RPB1), focusing on Lentinus subg. Lentinus sensu Pegler and the Neofavolus group, combined these data with sequences from GenBank (including RPB2 gene sequences) and performed phylogenetic analyses with maximum likelihood and Bayesian methods. We also evaluated the transition in hymenophore morphology between Lentinus, Neofavolus and related polypores with ancestral state reconstruction. Single-gene phylogenies and phylogenies combining ITS and 28S with RPB1 and RPB2 genes all support existence of a Lentinus/Polyporellus clade and a separate Neofavolus clade. Polyporellus (represented by P. arcularius, P. ciliatus, P. brumalis) forms a clade with species representing Lentinus subg. Lentinus sensu Pegler (1983), excluding L. suavissimus. Lentinus tigrinus appears as the sister group of Polyporellus in the four-gene phylogeny, but this placement was weakly supported. All three multigene analyses and the single-gene analysis using ITS strongly supported Polyporus tricholoma as the sister group of the Lentinus/Polyporellus clade; only the 28S rRNA phylogeny failed to support this placement. Under parsimony the ancestral hymenophoral configuration for the Lentinus/Polyporellus clade is estimated to be circular pores, with independent transitions to angular pores and lamellae. The ancestral state for the Neofavolus clade is estimated to be angular pores, with a single transition to lamellae in L. suavissimus. We propose that Lentinus suavissimus (section Pleuroti) should be reclassified as Neofavolus suavissimus comb. nov. © 2015 by The Mycological Society of America.

  4. Two C++ Libraries for Counting Trees on a Phylogenetic Terrace.

    PubMed

    Biczok, R; Bozsoky, P; Eisenmann, P; Ernst, J; Ribizel, T; Scholz, F; Trefzer, A; Weber, F; Hamann, M; Stamatakis, A

    2018-05-08

    The presence of terraces in phylogenetic tree space, that is, a potentially large number of distinct tree topologies that have exactly the same analytical likelihood score, was first described by Sanderson et al. (2011). However, popular software tools for maximum likelihood and Bayesian phylogenetic inference do not yet routinely report, if inferred phylogenies reside on a terrace, or not. We believe, this is due to the lack of an efficient library to (i) determine if a tree resides on a terrace, (ii) calculate how many trees reside on a terrace, and (iii) enumerate all trees on a terrace. In our bioinformatics practical that is set up as a programming contest we developed two efficient and independent C++ implementations of the SUPERB algorithm by Constantinescu and Sankoff (1995) for counting and enumerating trees on a terrace. Both implementations yield exactly the same results, are more than one order of magnitude faster, and require one order of magnitude less memory than a previous 3rd party python implementation. The source codes are available under GNU GPL at https://github.com/terraphast. Alexandros.Stamatakis@h-its.org. Supplementary data are available at Bioinformatics online.

  5. Plastid phylogenomics of the cool-season grass subfamily: clarification of relationships among early-diverging tribes

    PubMed Central

    Saarela, Jeffery M.; Wysocki, William P.; Barrett, Craig F.; Soreng, Robert J.; Davis, Jerrold I.; Clark, Lynn G.; Kelchner, Scot A.; Pires, J. Chris; Edger, Patrick P.; Mayfield, Dustin R.; Duvall, Melvin R.

    2015-01-01

    Whole plastid genomes are being sequenced rapidly from across the green plant tree of life, and phylogenetic analyses of these are increasing resolution and support for relationships that have varied among or been unresolved in earlier single- and multi-gene studies. Pooideae, the cool-season grass lineage, is the largest of the 12 grass subfamilies and includes important temperate cereals, turf grasses and forage species. Although numerous studies of the phylogeny of the subfamily have been undertaken, relationships among some ‘early-diverging’ tribes conflict among studies, and some relationships among subtribes of Poeae have not yet been resolved. To address these issues, we newly sequenced 25 whole plastomes, which showed rearrangements typical of Poaceae. These plastomes represent 9 tribes and 11 subtribes of Pooideae, and were analysed with 20 existing plastomes for the subfamily. Maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) robustly resolve most deep relationships in the subfamily. Complete plastome data provide increased nodal support compared with protein-coding data alone at nodes that are not maximally supported. Following the divergence of Brachyelytrum, Phaenospermateae, Brylkinieae–Meliceae and Ampelodesmeae–Stipeae are the successive sister groups of the rest of the subfamily. Ampelodesmeae are nested within Stipeae in the plastome trees, consistent with its hybrid origin between a phaenospermatoid and a stipoid grass (the maternal parent). The core Pooideae are strongly supported and include Brachypodieae, a Bromeae–Triticeae clade and Poeae. Within Poeae, a novel sister group relationship between Phalaridinae and Torreyochloinae is found, and the relative branching order of this clade and Aveninae, with respect to an Agrostidinae–Brizinae clade, are discordant between MP and ML/BI trees. Maximum likelihood and Bayesian analyses strongly support Airinae and Holcinae as the successive sister groups of a Dactylidinae–Loliinae clade. PMID:25940204

  6. Applying a multiobjective metaheuristic inspired by honey bees to phylogenetic inference.

    PubMed

    Santander-Jiménez, Sergio; Vega-Rodríguez, Miguel A

    2013-10-01

    The development of increasingly popular multiobjective metaheuristics has allowed bioinformaticians to deal with optimization problems in computational biology where multiple objective functions must be taken into account. One of the most relevant research topics that can benefit from these techniques is phylogenetic inference. Throughout the years, different researchers have proposed their own view about the reconstruction of ancestral evolutionary relationships among species. As a result, biologists often report different phylogenetic trees from a same dataset when considering distinct optimality principles. In this work, we detail a multiobjective swarm intelligence approach based on the novel Artificial Bee Colony algorithm for inferring phylogenies. The aim of this paper is to propose a complementary view of phylogenetics according to the maximum parsimony and maximum likelihood criteria, in order to generate a set of phylogenetic trees that represent a compromise between these principles. Experimental results on a variety of nucleotide data sets and statistical studies highlight the relevance of the proposal with regard to other multiobjective algorithms and state-of-the-art biological methods. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Highly conserved intragenic HSV-2 sequences: Results from next-generation sequencing of HSV-2 UL and US regions from genital swabs collected from 3 continents.

    PubMed

    Johnston, Christine; Magaret, Amalia; Roychoudhury, Pavitra; Greninger, Alexander L; Cheng, Anqi; Diem, Kurt; Fitzgibbon, Matthew P; Huang, Meei-Li; Selke, Stacy; Lingappa, Jairam R; Celum, Connie; Jerome, Keith R; Wald, Anna; Koelle, David M

    2017-10-01

    Understanding the variability in circulating herpes simplex virus type 2 (HSV-2) genomic sequences is critical to the development of HSV-2 vaccines. Genital lesion swabs containing ≥ 10 7 log 10 copies HSV DNA collected from Africa, the USA, and South America underwent next-generation sequencing, followed by K-mer based filtering and de novo genomic assembly. Sites of heterogeneity within coding regions in unique long and unique short (U L _U S ) regions were identified. Phylogenetic trees were created using maximum likelihood reconstruction. Among 46 samples from 38 persons, 1468 intragenic base-pair substitutions were identified. The maximum nucleotide distance between strains for concatenated U L_ U S segments was 0.4%. Phylogeny did not reveal geographic clustering. The most variable proteins had non-synonymous mutations in < 3% of amino acids. Unenriched HSV-2 DNA can undergo next-generation sequencing to identify intragenic variability. The use of clinical swabs for sequencing expands the information that can be gathered directly from these specimens. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Comprehensive Molecular Sampling Yields a Robust Phylogeny for Geometrid Moths (Lepidoptera: Geometridae)

    PubMed Central

    Sihvonen, Pasi; Mutanen, Marko; Kaila, Lauri; Brehm, Gunnar; Hausmann, Axel; Staude, Hermann S.

    2011-01-01

    Background The moth family Geometridae (inchworms or loopers), with approximately 23 000 described species, is the second most diverse family of the Lepidoptera. Apart from a few recent attempts based on morphology and molecular studies, the phylogeny of these moths has remained largely uninvestigated. Methodology/Principal Findings We performed a rigorous and extensive molecular analysis of eight genes to examine the geometrid affinities in a global context, including a search for its potential sister-taxa. Our maximum likelihood analyses included 164 taxa distributed worldwide, of which 150 belong to the Geometridae. The selected taxa represent all previously recognized subfamilies and nearly 90% of recognized tribes, and originate from all over world. We found the Geometridae to be monophyletic with the Sematuridae+Epicopeiidae clade potentially being its sister-taxon. We found all previously recognized subfamilies to be monophyletic, with a few taxa misplaced, except the Oenochrominae+Desmobathrinae complex that is a polyphyletic assemblage of taxa and the Orthostixinae, which was positioned within the Ennominae. The Sterrhinae and Larentiinae were found to be sister to the remaining taxa, followed by Archiearinae, the polyphyletic assemblage of Oenochrominae+Desmobathrinae moths, Geometrinae and Ennominae. Conclusions/Significance Our study provides the first comprehensive phylogeny of the Geometridae in a global context. Our results generally agree with the other, more restricted studies, suggesting that the general phylogenetic patterns of the Geometridae are now well-established. Generally the subfamilies, many tribes, and assemblages of tribes were well supported but their interrelationships were often weakly supported by our data. The Eumeleini were particularly difficult to place in the current system, and several tribes were found to be para- or polyphyletic. PMID:21673814

  9. Comprehensive species set revealing the phylogeny and biogeography of Feliformia (Mammalia, Carnivora) based on mitochondrial DNA

    PubMed Central

    Ma, Jian-Zhang

    2017-01-01

    Extant Feliformia species are one of the most diverse radiations of Carnivora (~123 species). Despite substantial recent interest in their conservation, diversification, and systematic study, no previous phylogeny contains a comprehensive species set, and no biogeography of this group is available. Here, we present a phylogenetic estimate for Feliformia with a comprehensive species set and establish a historical biogeography based on mitochondrial DNA. Both the Bayesian and maximum likelihood phylogeny for Feliformia are elucidated in our analyses and are strongly consistent with many groups recognized in previous studies. The mitochondrial phylogenetic relationships of Felidae were for the first time successfully reconstructed in our analyses with strong supported. When divergence times and dispersal/vicariance histories were compared with historical sea level changes, four dispersal and six vicariance events were identified. These vicariance events were closely related with global sea level changes. The transgression of sea into the lowland plains between Eurasia and Africa may have caused the vicariance in these regions. A fall in the sea level during late Miocene to Pliocene produced the Bering strait land bridge, which assisted the migration of American Feliformia ancestors from Asia to North America. In contrast with the ‘sweepstakes hypothesis’, our results suggest that the climate cooling during 30–27 Ma assisted Feliformia migration from the African mainland to Madagascar by creating a short-lived ice bridge across the Mozambique Channel. Lineages-through-time plots revealed a large increase in lineages since the Mid-Miocene. During the Mid-Miocene Climatic Optimum, the ecosystems and population of Feliformia rapidly expanded. Subsequent climate cooling catalyzed immigration, speciation, and the extinction of Feliformia. PMID:28358848

  10. New Perspectives on Ebola Virus Evolution.

    PubMed

    Brown, Celeste J; Quates, Caleb J; Mirabzadeh, Christopher A; Miller, Craig R; Wichman, Holly A; Miura, Tanya A; Ytreberg, F Marty

    2016-01-01

    Since the recent devastating outbreak of Ebola virus disease in western Africa, there has been significant effort to understand the evolution of the deadly virus that caused the outbreak. There has been a considerable investment in sequencing Ebola virus (EBOV) isolates, and the results paint an important picture of how the virus has spread in western Africa. EBOV evolution cannot be understood outside the context of previous outbreaks, however. We have focused this study on the evolution of the EBOV glycoprotein gene (GP) because one of its products, the spike glycoprotein (GP1,2), is central to the host immune response and because it contains a large amount of the phylogenetic signal for this virus. We inferred the maximum likelihood phylogeny of 96 nonredundant GP gene sequences representing each of the outbreaks since 1976 up to the end of 2014. We tested for positive selection and considered the placement of adaptive amino acid substitutions along the phylogeny and within the protein structure of GP1,2. We conclude that: 1) the common practice of rooting the phylogeny of EBOV between the first known outbreak in 1976 and the next outbreak in 1995 provides a misleading view of EBOV evolution that ignores the fact that there is a non-human EBOV host between outbreaks; 2) the N-terminus of GP1 may be constrained from evolving in response to the host immune system by the highly expressed, secreted glycoprotein, which is encoded by the same region of the GP gene; 3) although the mucin-like domain of GP1 is essential for EBOV in vivo, it evolves rapidly without losing its twin functions: providing O-linked glycosylation sites and a flexible surface.

  11. Phylogeny, classification, and fruit evolution of the species-rich Neotropical bellflowers (Campanulaceae: Lobelioideae).

    PubMed

    Lagomarsino, Laura P; Antonelli, Alexandre; Muchhala, Nathan; Timmermann, Allan; Mathews, Sarah; Davis, Charles C

    2014-12-01

    • The species-rich Neotropical genera Centropogon, Burmeistera, and Siphocampylus represent more than half of the ∼1200 species in the subfamily Lobelioideae (Campanulaceae). They exhibit remarkable morphological variation in floral morphology and habit. Limited taxon sampling and phylogenetic resolution, however, obscures our understanding of relationships between and within these genera and underscores our uncertainty of the systematic value of fruit type as a major diagnostic character.• We inferred a phylogeny from five plastid DNA regions (rpl32-trnL, ndhF-rpl32, rps16-trnK, trnG-trnG-trns, rbcL) using maximum-likelihood and Bayesian inference. Ancestral character reconstructions were applied to infer patterns of fruit evolution.• Our results demonstrate that the majority of species in the genera Centropogon, Burmeistera, and Siphocampylus together form a primarily mainland Neotropical clade, collectively termed the "centropogonids." Caribbean Siphocampylus, however, group with other Caribbean lobelioid species. We find high support for the monophyly of Burmeistera and the polyphyly of Centropogon and mainland Siphocampylus. The ancestral fruit type of the centropogonids is a capsule; berries have evolved independently multiple times.• Our plastid phylogeny greatly improves the phylogenetic resolution within Neotropical Lobelioideae and highlights the need for taxonomic revisions in the subfamily. Inference of ancestral character states identifies a dynamic pattern of fruit evolution within the centropogonids, emphasizing the difficulty of diagnosing broad taxonomic groups on the basis of fruit type. Finally, we identify that the centropogonids, Lysipomia, and Lobelia section Tupa form a Pan-Andean radiation with broad habitat diversity. This clade is a prime candidate for investigations of Neotropical biogeography and morphological evolution. © 2014 Botanical Society of America, Inc.

  12. Molecular phylogeny of the Afroedura nivaria (Reptilia: Gekkonidae) species complex in South Africa provides insight on cryptic speciation.

    PubMed

    Makhubo, Buyisile G; Tolley, Krystal A; Bates, Michael F

    2015-01-01

    The Afroedura nivaria species complex (A. nivaria, A. karroica, A. amatolica, A. tembulica and A. halli) is a morphologically conservative group of medium-sized flat geckos endemic to South Africa and Lesotho. Species are allopatric, as are some populations within species that are separated by large expanses of unsuitable habitat. Because of this isolation of populations we hypothesised that several cryptic species may be present. To investigate this hypothesis we constructed a molecular phylogeny using multiple markers, and included representatives of other Afroedura species. Bayesian inference and maximum likelihood analyses (439bp 16S, 593bp ND4, 948bp RAG1) strongly supported the genetic distinctiveness of the five described species. However, the A. nivaria species complex as currently described is not monophyletic, as A. karroica was positioned outside a clade containing all other Afroedura species, and A. pondolia (which was presumed to belong to a different species complex) was recovered within the A. nivaria complex. Several distinct clades within A. halli and A. nivaria were also recovered, and the narrowly-distributed A. amatolica consisted of two highly divergent clades. We also conducted a multivariate analysis using 19 morphological characters to investigate whether the clades recovered by the phylogeny were distinct in terms of head, body and limb shape. The analysis showed some variation between clades in terms of locomotor apparatus (forelimbs and feet), head and body dimensions, but overall the morphological differences were minor. This morphological conservatism in the A. nivaria complex may be a result of adaptation to similar microhabitats. Exclusive of A. karroica, the results suggest that there are at least nine species in this complex, of which four are cryptic and undescribed. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. A jungle tale: Molecular phylogeny and divergence time estimates of the Desmopsis-Stenanona clade (Annonaceae) in Mesoamerica.

    PubMed

    Ortiz-Rodriguez, Andrés Ernesto; Ornelas, Juan Francisco; Ruiz-Sanchez, Eduardo

    2018-05-01

    The predominantly Asian tribe Miliuseae (Annonaceae) includes over 37 Neotropical species that are mainly distributed across Mesoamerica, from southern Mexico to northern Colombia. The tremendous ecological and morphological diversity of this clade, including ramiflory, cauliflory, flagelliflory, and clonality, suggests adaptive radiation. Despite the spectacular phenotypic divergence of this clade, little is known about its phylogenetic and evolutionary history. In this study we used a nuclear DNA marker and seven chloroplast markers, and maximum parsimony, maximum likelihood and Bayesian inference methods to reconstruct a comprehensive time-calibrated phylogeny of tribe Miliuseae, especially focusing on the Desmopsis-Stenanona clade. We also perform ancestral area reconstructions to infer the biogeographic history of this group. Finally, we use ecological niche modeling, lineage distribution models, and niche overlap tests to assess whether geographic isolation and ecological specialization influenced the diversification of lineages within this clade. We reconstructed a monophyletic Miliuseae that is divided into two strongly supported clades: (i) a Sapranthus-Tridimeris clade and (ii) a Desmopsis-Stenanona clade. The colonization of the Neotropics and subsequent diversification of Neotropical Miliuseae seems to have been associated with the expansion of the boreotropical forests during the late Eocene and their subsequent fragmentation and southern displacement. Further speciation within Neotropical Miliuseae out of the Maya block seems to have occurred during the last 15 million years. Lastly, the geographic structuring of major lineages of the Desmopsis-Stenanona clade seems to have followed a climatic gradient, supporting the hypothesis that morphological differentiation between closely related species resulted from both long-term isolation between geographic ranges and adaptation to environmental conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Phylogenetic relationships among four new complete mitogenome sequences of Pelophylax (Amphibia: Anura) from the Balkans and Cyprus.

    PubMed

    Hofman, Sebastian; Pabijan, Maciej; Osikowski, Artur; Litvinchuk, Spartak N; Szymura, Jacek M

    2016-09-01

    We present the full-length mitogenome sequences of four European water frog species: Pelophylax cypriensis, P. epeiroticus, P. kurtmuelleri and P. shqipericus. The mtDNA size varied from 17,363 to 17,895 bp, and its organization with the LPTF tRNA gene cluster preceding the 12 S rRNA gene displayed the typical Neobatrachian arrangement. Maximum likelihood and Bayesian inference revealed a well-resolved mtDNA phylogeny of seven European Pelophylax species. The uncorrected p-distance for among Pelophylax mitogenomes was 9.6 (range 0.01-0.13). Most divergent was the P. shqipericus mitogenome, clustering with the "P. lessonae" group, in contrast to the other three new Pelophylax mitogenomes related to the "P. bedriagae/ridibundus" lineage. The new mitogenomes resolve ambiguities of the phylogenetic placement of P. cretensis and P. epeiroticus.

  15. Likelihood inference of non-constant diversification rates with incomplete taxon sampling.

    PubMed

    Höhna, Sebastian

    2014-01-01

    Large-scale phylogenies provide a valuable source to study background diversification rates and investigate if the rates have changed over time. Unfortunately most large-scale, dated phylogenies are sparsely sampled (fewer than 5% of the described species) and taxon sampling is not uniform. Instead, taxa are frequently sampled to obtain at least one representative per subgroup (e.g. family) and thus to maximize diversity (diversified sampling). So far, such complications have been ignored, potentially biasing the conclusions that have been reached. In this study I derive the likelihood of a birth-death process with non-constant (time-dependent) diversification rates and diversified taxon sampling. Using simulations I test if the true parameters and the sampling method can be recovered when the trees are small or medium sized (fewer than 200 taxa). The results show that the diversification rates can be inferred and the estimates are unbiased for large trees but are biased for small trees (fewer than 50 taxa). Furthermore, model selection by means of Akaike's Information Criterion favors the true model if the true rates differ sufficiently from alternative models (e.g. the birth-death model is recovered if the extinction rate is large and compared to a pure-birth model). Finally, I applied six different diversification rate models--ranging from a constant-rate pure birth process to a decreasing speciation rate birth-death process but excluding any rate shift models--on three large-scale empirical phylogenies (ants, mammals and snakes with respectively 149, 164 and 41 sampled species). All three phylogenies were constructed by diversified taxon sampling, as stated by the authors. However only the snake phylogeny supported diversified taxon sampling. Moreover, a parametric bootstrap test revealed that none of the tested models provided a good fit to the observed data. The model assumptions, such as homogeneous rates across species or no rate shifts, appear to be violated.

  16. Markov-modulated Markov chains and the covarion process of molecular evolution.

    PubMed

    Galtier, N; Jean-Marie, A

    2004-01-01

    The covarion (or site specific rate variation, SSRV) process of biological sequence evolution is a process by which the evolutionary rate of a nucleotide/amino acid/codon position can change in time. In this paper, we introduce time-continuous, space-discrete, Markov-modulated Markov chains as a model for representing SSRV processes, generalizing existing theory to any model of rate change. We propose a fast algorithm for diagonalizing the generator matrix of relevant Markov-modulated Markov processes. This algorithm makes phylogeny likelihood calculation tractable even for a large number of rate classes and a large number of states, so that SSRV models become applicable to amino acid or codon sequence datasets. Using this algorithm, we investigate the accuracy of the discrete approximation to the Gamma distribution of evolutionary rates, widely used in molecular phylogeny. We show that a relatively large number of classes is required to achieve accurate approximation of the exact likelihood when the number of analyzed sequences exceeds 20, both under the SSRV and among site rate variation (ASRV) models.

  17. Phylogeny of a genomically diverse group of elymus (poaceae) allopolyploids reveals multiple levels of reticulation.

    PubMed

    Mason-Gamer, Roberta J

    2013-01-01

    The grass tribe Triticeae (=Hordeeae) comprises only about 300 species, but it is well known for the economically important crop plants wheat, barley, and rye. The group is also recognized as a fascinating example of evolutionary complexity, with a history shaped by numerous events of auto- and allopolyploidy and apparent introgression involving diploids and polyploids. The genus Elymus comprises a heterogeneous collection of allopolyploid genome combinations, all of which include at least one set of homoeologs, designated St, derived from Pseudoroegneria. The current analysis includes a geographically and genomically diverse collection of 21 tetraploid Elymus species, and a single hexaploid species. Diploid and polyploid relationships were estimated using four molecular data sets, including one that combines two regions of the chloroplast genome, and three from unlinked nuclear genes: phosphoenolpyruvate carboxylase, β-amylase, and granule-bound starch synthase I. Four gene trees were generated using maximum likelihood, and the phylogenetic placement of the polyploid sequences reveals extensive reticulation beyond allopolyploidy alone. The trees were interpreted with reference to numerous phenomena known to complicate allopolyploid phylogenies, and introgression was identified as a major factor in their history. The work illustrates the interpretation of complicated phylogenetic results through the sequential consideration of numerous possible explanations, and the results highlight the value of careful inspection of multiple independent molecular phylogenetic estimates, with particular focus on the differences among them.

  18. Evolutionary analysis of the TPP-dependent enzyme family.

    PubMed

    Costelloe, Seán J; Ward, John M; Dalby, Paul A

    2008-01-01

    The evolutionary relationships of the thiamine pyrophosphate (TPP)-dependent family of enzymes was investigated by generation of a neighbor joining phylogenetic tree using sequences from the conserved pyrophosphate (PP) and pyrimidine (Pyr) binding domains of 17 TPP-dependent enzymes. This represents the most comprehensive analysis of TPP-dependent enzyme evolution to date. The phylogeny was shown to be robust by comparison with maximum likelihood trees generated for each individual enzyme and also broadly confirms the evolutionary history proposed recently from structural comparisons alone (Duggleby 2006). The phylogeny is most parsimonious with the TPP enzymes having arisen from a homotetramer which subsequently diverged into an alpha(2)beta(2) heterotetramer. The relationship between the PP- and Pyr-domains and the recruitment of additional protein domains was examined using the transketolase C-terminal (TKC)-domain as an example. This domain has been recruited by several members of the family and yet forms no part of the active site and has unknown function. Removal of the TKC-domain was found to increase activity toward beta-hydroxypyruvate and glycolaldehyde. Further truncations of the Pyr-domain yielded several variants with retained activity. This suggests that the influence of TKC-domain recruitment on the evolution of the mechanism and specificity of transketolase (TK) has been minor, and that the smallest functioning unit of TK comprises the PP- and Pyr-domains, whose evolutionary histories extend to all TPP-dependent enzymes.

  19. Comparison of climate space and phylogeny of Marmota (Mammalia: Rodentia) indicates a connection between evolutionary history and climate preference

    PubMed Central

    Davis, Edward Byrd

    2005-01-01

    Palaeobiologists have investigated the evolutionary responses of extinct organisms to climate change, and have also used extinct organisms to reconstruct palaeoclimates. There is evidence of a disconnection between climate change and evolution that suggests that organisms may not be accurate palaeoclimate indicators. Here, marmots (Marmota sp.) are used as a case study to examine whether similarity of climate preferences is correlated with evolutionary relatedness of species. This study tests for a relationship between phylogenetic distance and `climate distance' of species within a clade. There should be a significant congruence between maximum likelihood distance and standardized Euclidian distance between climates if daughter species tend to stay in environments similar to parent species. Marmots make a good test case because there are many extant species, their phylogenies are well established and individual survival is linked to climatic factors. A Mantel test indicates a significant correlation between climate and phylogenetic distance matrices, but this relationship explains only a small fraction of the variance (regression R2=0.114). These results suggest that (i) closely related species of marmots tend to stay in similar environments; (ii) marmots may be more susceptible than many mammals to global climate change; and (iii) because of the considerable noise in this system, the correlation cannot be used for detailed palaeoclimate reconstruction. PMID:15799948

  20. A transcriptome approach to ecdysozoan phylogeny.

    PubMed

    Borner, Janus; Rehm, Peter; Schill, Ralph O; Ebersberger, Ingo; Burmester, Thorsten

    2014-11-01

    The monophyly of Ecdysozoa, which comprise molting phyla, has received strong support from several lines of evidence. However, the internal relationships of Ecdysozoa are still contended. We generated expressed sequence tags from a priapulid (penis worm), a kinorhynch (mud dragon), a tardigrade (water bear) and five chelicerate taxa by 454 transcriptome sequencing. A multigene alignment was assembled from 63 taxa, which comprised after matrix optimization 24,249 amino acid positions with high data density (2.6% gaps, 19.1% missing data). Phylogenetic analyses employing various models support the monophyly of Ecdysozoa. A clade combining Priapulida and Kinorhyncha (i.e. Scalidophora) was recovered as the earliest branch among Ecdysozoa. We conclude that Cycloneuralia, a taxon erected to combine Priapulida, Kinorhyncha and Nematoda (and others), are paraphyletic. Rather Arthropoda (including Onychophora) are allied with Nematoda and Tardigrada. Within Arthropoda, we found strong support for most clades, including monophyletic Mandibulata and Pancrustacea. The phylogeny within the Euchelicerata remained largely unresolved. There is conflicting evidence on the position of tardigrades: While Bayesian and maximum likelihood analyses of only slowly evolving genes recovered Tardigrada as a sister group to Arthropoda, analyses of the full data set, and of subsets containing genes evolving at fast and intermediate rates identified a clade of Tardigrada and Nematoda. Notably, the latter topology is also supported by the analyses of indel patterns. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity.

    PubMed

    Hipp, Andrew L; Manos, Paul S; González-Rodríguez, Antonio; Hahn, Marlene; Kaproth, Matthew; McVay, John D; Avalos, Susana Valencia; Cavender-Bares, Jeannine

    2018-01-01

    Oaks (Quercus, Fagaceae) are the dominant tree genus of North America in species number and biomass, and Mexico is a global center of oak diversity. Understanding the origins of oak diversity is key to understanding biodiversity of northern temperate forests. A phylogenetic study of biogeography, niche evolution and diversification patterns in Quercus was performed using 300 samples, 146 species. Next-generation sequencing data were generated using the restriction-site associated DNA (RAD-seq) method. A time-calibrated maximum likelihood phylogeny was inferred and analyzed with bioclimatic, soils, and leaf habit data to reconstruct the biogeographic and evolutionary history of the American oaks. Our highly resolved phylogeny demonstrates sympatric parallel diversification in climatic niche, leaf habit, and diversification rates. The two major American oak clades arose in what is now the boreal zone and radiated, in parallel, from eastern North America into Mexico and Central America. Oaks adapted rapidly to niche transitions. The Mexican oaks are particularly numerous, not because Mexico is a center of origin, but because of high rates of lineage diversification associated with high rates of evolution along moisture gradients and between the evergreen and deciduous leaf habits. Sympatric parallel diversification in the oaks has shaped the diversity of North American forests. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  2. Divergence times and the evolution of morphological complexity in an early land plant lineage (Marchantiopsida) with a slow molecular rate.

    PubMed

    Villarreal A, Juan Carlos; Crandall-Stotler, Barbara J; Hart, Michelle L; Long, David G; Forrest, Laura L

    2016-03-01

    We present a complete generic-level phylogeny of the complex thalloid liverworts, a lineage that includes the model system Marchantia polymorpha. The complex thalloids are remarkable for their slow rate of molecular evolution and for being the only extant plant lineage to differentiate gas exchange tissues in the gametophyte generation. We estimated the divergence times and analyzed the evolutionary trends of morphological traits, including air chambers, rhizoids and specialized reproductive structures. A multilocus dataset was analyzed using maximum likelihood and Bayesian approaches. Relative rates were estimated using local clocks. Our phylogeny cements the early branching in complex thalloids. Marchantia is supported in one of the earliest divergent lineages. The rate of evolution in organellar loci is slower than for other liverwort lineages, except for two annual lineages. Most genera diverged in the Cretaceous. Marchantia polymorpha diversified in the Late Miocene, giving a minimum age estimate for the evolution of its sex chromosomes. The complex thalloid ancestor, excluding Blasiales, is reconstructed as a plant with a carpocephalum, with filament-less air chambers opening via compound pores, and without pegged rhizoids. Our comprehensive study of the group provides a temporal framework for the analysis of the evolution of critical traits essential for plants during land colonization. © 2015 Royal Botanic Garden Edinburgh. New Phytologist © 2015 New Phytologist Trust.

  3. Congruent Deep Relationships in the Grape Family (Vitaceae) Based on Sequences of Chloroplast Genomes and Mitochondrial Genes via Genome Skimming

    PubMed Central

    Zhang, Ning; Wen, Jun; Zimmer, Elizabeth A.

    2015-01-01

    Vitaceae is well-known for having one of the most economically important fruits, i.e., the grape (Vitis vinifera). The deep phylogeny of the grape family was not resolved until a recent phylogenomic analysis of 417 nuclear genes from transcriptome data. However, it has been reported extensively that topologies based on nuclear and organellar genes may be incongruent due to differences in their evolutionary histories. Therefore, it is important to reconstruct a backbone phylogeny of the grape family using plastomes and mitochondrial genes. In this study, next-generation sequencing data sets of 27 species were obtained using genome skimming with total DNAs from silica-gel preserved tissue samples on an Illumina HiSeq 2500 instrument. Plastomes were assembled using the combination of de novo and reference genome (of V. vinifera) methods. Sixteen mitochondrial genes were also obtained via genome skimming using the reference genome of V. vinifera. Extensive phylogenetic analyses were performed using maximum likelihood and Bayesian methods. The topology based on either plastome data or mitochondrial genes is congruent with the one using hundreds of nuclear genes, indicating that the grape family did not exhibit significant reticulation at the deep level. The results showcase the power of genome skimming in capturing extensive phylogenetic data: especially from chloroplast and mitochondrial DNAs. PMID:26656830

  4. Congruent Deep Relationships in the Grape Family (Vitaceae) Based on Sequences of Chloroplast Genomes and Mitochondrial Genes via Genome Skimming.

    PubMed

    Zhang, Ning; Wen, Jun; Zimmer, Elizabeth A

    2015-01-01

    Vitaceae is well-known for having one of the most economically important fruits, i.e., the grape (Vitis vinifera). The deep phylogeny of the grape family was not resolved until a recent phylogenomic analysis of 417 nuclear genes from transcriptome data. However, it has been reported extensively that topologies based on nuclear and organellar genes may be incongruent due to differences in their evolutionary histories. Therefore, it is important to reconstruct a backbone phylogeny of the grape family using plastomes and mitochondrial genes. In this study,next-generation sequencing data sets of 27 species were obtained using genome skimming with total DNAs from silica-gel preserved tissue samples on an Illumina NextSeq 500 instrument [corrected]. Plastomes were assembled using the combination of de novo and reference genome (of V. vinifera) methods. Sixteen mitochondrial genes were also obtained via genome skimming using the reference genome of V. vinifera. Extensive phylogenetic analyses were performed using maximum likelihood and Bayesian methods. The topology based on either plastome data or mitochondrial genes is congruent with the one using hundreds of nuclear genes, indicating that the grape family did not exhibit significant reticulation at the deep level. The results showcase the power of genome skimming in capturing extensive phylogenetic data: especially from chloroplast and mitochondrial DNAs.

  5. Computational Evaluation of the Strict Master and Random Template Models of Endogenous Retrovirus Evolution

    PubMed Central

    Nascimento, Fabrícia F.; Rodrigo, Allen G.

    2016-01-01

    Transposable elements (TEs) are DNA sequences that are able to replicate and move within and between host genomes. Their mechanism of replication is also shared with endogenous retroviruses (ERVs), which are also a type of TE that represent an ancient retroviral infection within animal genomes. Two models have been proposed to explain TE proliferation in host genomes: the strict master model (SMM), and the random template (or transposon) model (TM). In SMM only a single copy of a given TE lineage is able to replicate, and all other genomic copies of TEs are derived from that master copy. In TM, any element of a given family is able to replicate in the host genome. In this paper, we simulated ERV phylogenetic trees under variations of SMM and TM. To test whether current phylogenetic programs can recover the simulated ERV phylogenies, DNA sequence alignments were simulated and maximum likelihood trees were reconstructed and compared to the simulated phylogenies. Results indicate that visual inspection of phylogenetic trees alone can be misleading. However, if a set of statistical summaries is calculated, we are able to distinguish between models with high accuracy by using a data mining algorithm that we introduce here. We also demonstrate the use of our data mining algorithm with empirical data for the porcine endogenous retrovirus (PERV), an ERV that is able to replicate in human and pig cells in vitro. PMID:27649303

  6. Diversification of the yellow-shouldered bats, genus Sturnira (Chiroptera, Phyllostomidae), in the New World tropics.

    PubMed

    Velazco, Paúl M; Patterson, Bruce D

    2013-09-01

    The Yellow-shouldered bats, Genus Sturnira, are widespread, diverse, and abundant throughout the Neotropical Region, but little is known of their phylogeny and biogeography. We collected 4409 bp of DNA from three mitochondrial (cyt-b, ND2, D-loop) and two nuclear (RAG1, RAG2) sequences from 138 individuals representing all but two recognized species of Sturnira and five other phyllostomid bats used as outgroups. The sequence data were subjected to maximum parsimony, maximum likelihood, and Bayesian inference analyses. Results overwhelmingly support the monophyly of the genus Sturnira but not continued recognition of Corvira as a subgenus; the two species (bidens and nana) allocated to that group constitute separate, basal branches on the phylogeny. A total of 21 monophyletic putatively species-level groups were recovered; pairs were separated by an average 7.09% (SD=1.61) pairwise genetic distance in cyt-b, and three of these groups are apparently unnamed. Several well-supported clades are evident, including a complex of seven species formerly confused with S. lilium, a species that is actually limited to the Brazilian Shield. We used four calibration points to construct a time-tree for Sturnira, using BEAST. Sturnira diverged from other stenodermatines in the mid-Miocene, and by the end of that epoch (5.3 Ma), three basal lineages were present. Most living species belong to one of two clades, A and B, which appeared and diversified shortly afterwards, during the Pliocene. Both parsimony (DIVA) and likelihood (Lagrange) methods for reconstructing ancestral ranges indicate that the radiation of Sturnira is rooted in the Andes; all three basal lineages (in order, bidens, nana, and aratathomasi) have strictly or mainly Andean distributions. Only later did Sturnira colonize the Pacific lowlands (Chocó) and thence Central America. Sturnira species that are endemic to Central America appeared after the final emergence of the Panamanian landbridge ~3 Ma. Despite its ability to fly and to colonize the Antilles overwater, this genus probably accompanied the "legions" of South American taxa that moved overland during the Great American Biotic Interchange. Its eventual colonization of the Lesser Antilles and the appearance of two endemic lineages there did not take place until the Pleistocene. Because of its continual residence and diversification in South America, Andean assemblages of Sturnira contain both basal and highly derived members of the genus. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Measuring Transcription Factor–Binding Site Turnover: A Maximum Likelihood Approach Using Phylogenies

    PubMed Central

    Otto, Wolfgang; Stadler, Peter F.; López-Giraldéz, Francesc; Townsend, Jeffrey P.; Lynch, Vincent J.

    2009-01-01

    A major mode of gene expression evolution is based on changes in cis-regulatory elements (CREs) whose function critically depends on the presence of transcription factor–binding sites (TFBS). Because CREs experience extensive TFBS turnover even with conserved function, alignment-based studies of CRE sequence evolution are limited to very closely related species. Here, we propose an alternative approach based on a stochastic model of TFBS turnover. We implemented a maximum likelihood model that permits variable turnover rates in different parts of the species tree. This model can be used to detect changes in turnover rate as a proxy for differences in the selective pressures acting on TFBS in different clades. We applied this method to five TFBS in the fungi methionine biosynthesis pathway and three TFBS in the HoxA clusters of vertebrates. We find that the estimated turnover rate is generally high, with half-life ranging between ∼5 and 150 My and a mode around tens of millions of years. This rate is consistent with the finding that even functionally conserved enhancers can show very low sequence similarity. We also detect statistically significant differences in the equilibrium densities of estrogen- and progesterone-response elements in the HoxA clusters between mammal and nonmammal vertebrates. Even more extreme clade-specific differences were found in the fungal data. We conclude that stochastic models of TFBS turnover enable the detection of shifts in the selective pressures acting on CREs in different organisms. The analysis tool, called CRETO (Cis-Regulatory Element Turn-Over) can be downloaded from http://www.bioinf.uni-leipzig.de/Software/creto/. PMID:20333180

  8. Comprehensive phylogenetic analysis of all species of swordtails and platies (Pisces: Genus Xiphophorus) uncovers a hybrid origin of a swordtail fish, Xiphophorus monticolus, and demonstrates that the sexually selected sword originated in the ancestral lineage of the genus, but was lost again secondarily.

    PubMed

    Kang, Ji Hyoun; Schartl, Manfred; Walter, Ronald B; Meyer, Axel

    2013-01-29

    Males in some species of the genus Xiphophorus, small freshwater fishes from Meso-America, have an extended caudal fin, or sword - hence their common name "swordtails". Longer swords are preferred by females from both sworded and - surprisingly also, non-sworded (platyfish) species that belong to the same genus. Swordtails have been studied widely as models in research on sexual selection. Specifically, the pre-existing bias hypothesis was interpreted to best explain the observed bias of females in presumed ancestral lineages of swordless species that show a preference for assumed derived males with swords over their conspecific swordless males. However, many of the phylogenetic relationships within this genus still remained unresolved. Here we construct a comprehensive molecular phylogeny of all 26 known Xiphophorus species, including the four recently described species (X. kallmani, X. mayae, X. mixei and X. monticolus). We use two mitochondrial and six new nuclear markers in an effort to increase the understanding of the evolutionary relationships among the species in this genus. Based on the phylogeny, the evolutionary history and character state evolution of the sword was reconstructed and found to have originated in the common ancestral lineage of the genus Xiphophorus and that it was lost again secondarily. We estimated the evolutionary relationships among all known species of the genus Xiphophorus based on the largest set of DNA markers so far. The phylogeny indicates that one of the newly described swordtail species, Xiphophorus monticolus, is likely to have arisen through hybridization since it is placed with the southern platyfish in the mitochondrial phylogeny, but with the southern swordtails in the nuclear phylogeny. Such discordance between these two types of markers is a strong indication for a hybrid origin. Additionally, by using a maximum likelihood approach the possession of the sexually selected sword trait is shown to be the most likely ancestral state for the genus Xiphophorus. Further, we provide a well supported estimation of the phylogenetic relationships between the previously unresolved northern swordtail groups. This comprehensive molecular phylogeny of the entire genus Xiphophorus provides evidence that a second swordtail species, X. monticolus, arose through hybridization. Previously, we demonstrated that X. clemenciae, another southern swordtail species, arose via hybridization. These findings highlight the potential key role of hybridization in the evolution of this genus and suggest the need for further investigations into how hybridization contributes to speciation more generally.

  9. Phylogenetic analysis in Myrcia section Aulomyrcia and inferences on plant diversity in the Atlantic rainforest

    PubMed Central

    Staggemeier, Vanessa Graziele; Diniz-Filho, José Alexandre Felizola; Forest, Félix; Lucas, Eve

    2015-01-01

    Background and Aims Myrcia section Aulomyrcia includes ∼120 species that are endemic to the Neotropics and disjunctly distributed in the moist Amazon and Atlantic coastal forests of Brazil. This paper presents the first comprehensive phylogenetic study of this group and this phylogeny is used as a basis to evaluate recent classification systems and to test alternative hypotheses associated with the history of this clade. Methods Fifty-three taxa were sampled out of the 120 species currently recognized, plus 40 outgroup taxa, for one nuclear marker (ribosomal internal transcribed spacer) and four plastid markers (psbA-trnH, trnL-trnF, trnQ-rpS16 and ndhF). The relationships were reconstructed based on Bayesian and maximum likelihood analyses. Additionally, a likelihood approach, ‘geographic state speciation and extinction’, was used to estimate region- dependent rates of speciation, extinction and dispersal, comparing historically climatic stable areas (refugia) and unstable areas. Key Results Maximum likelihood and Bayesian inferences indicate that Myrcia and Marlierea are polyphyletic, and the internal groupings recovered are characterized by combinations of morphological characters. Phylogenetic relationships support a link between Amazonian and north-eastern species and between north-eastern and south-eastern species. Lower extinction rates within glacial refugia suggest that these areas were important in maintaining diversity in the Atlantic forest biodiversity hotspot. Conclusions This study provides a robust phylogenetic framework to address important ecological questions for Myrcia s.l. within an evolutionary context, and supports the need to unite taxonomically the two traditional genera Myrcia and Marlierea in an expanded Myrcia s.l. Furthermore, this study offers valuable insights into the diversification of plant species in the highly impacted Atlantic forest of South America; evidence is presented that the lowest extinction rates are found inside refugia and that range expansion from unstable areas contributes to the highest levels of plant diversity in the Bahian refugium. PMID:25757471

  10. Comparative genomic and phylogenetic approaches to characterize the role of genetic recombination in mycobacterial evolution.

    PubMed

    Smith, Silvia E; Showers-Corneli, Patrice; Dardenne, Caitlin N; Harpending, Henry H; Martin, Darren P; Beiko, Robert G

    2012-01-01

    The genus Mycobacterium encompasses over one hundred named species of environmental and pathogenic organisms, including the causative agents of devastating human diseases such as tuberculosis and leprosy. The success of these human pathogens is due in part to their ability to rapidly adapt to their changing environment and host. Recombination is the fastest way for bacterial genomes to acquire genetic material, but conflicting results about the extent of recombination in the genus Mycobacterium have been reported. We examined a data set comprising 18 distinct strains from 13 named species for evidence of recombination. Genomic regions common to all strains (accounting for 10% to 22% of the full genomes of all examined species) were aligned and concatenated in the chromosomal order of one mycobacterial reference species. The concatenated sequence was screened for evidence of recombination using a variety of statistical methods, with each proposed event evaluated by comparing maximum-likelihood phylogenies of the recombinant section with the non-recombinant portion of the dataset. Incongruent phylogenies were identified by comparing the site-wise log-likelihoods of each tree using multiple tests. We also used a phylogenomic approach to identify genes that may have been acquired through horizontal transfer from non-mycobacterial sources. The most frequent associated lineages (and potential gene transfer partners) in the Mycobacterium lineage-restricted gene trees are other members of suborder Corynebacterinae, but more-distant partners were identified as well. In two examined cases of potentially frequent and habitat-directed transfer (M. abscessus to Segniliparus and M. smegmatis to Streptomyces), observed sequence distances were small and consistent with a hypothesis of transfer, while in a third case (M. vanbaalenii to Streptomyces) distances were larger. The analyses described here indicate that whereas evidence of recombination in core regions within the genus is relatively sparse, the acquisition of genes from non-mycobacterial lineages is a significant feature of mycobacterial evolution.

  11. Using a multi-gene approach to infer the complicated phylogeny and evolutionary history of lorises (Order Primates: Family Lorisidae).

    PubMed

    Munds, Rachel A; Titus, Chelsea L; Eggert, Lori S; Blomquist, Gregory E

    2018-05-25

    Extensive phylogenetic studies have found robust phylogenies are modeled by using a multi-gene approach and sampling from the majority of the taxa of interest. Yet, molecular studies focused on the lorises, a cryptic primate family, have often relied on one gene, or just mitochondrial DNA, and many were unable to include all four genera in the analyses, resulting in inconclusive phylogenies. Past phylogenetic loris studies resulted in lorises being monophyletic, paraphyletic, or an unresolvable trichotomy with the closely related galagos. The purpose of our study is to improve our understanding of loris phylogeny and evolutionary history by using a multi-gene approach. We used the mitochondrial genes cytochrome b, and cytochrome c oxidase subunit 1, along with a nuclear intron (recombination activating gene 2) and nuclear exon (the melanocortin 1 receptor). Maximum Likelihood and Bayesian phylogenetic analyses were conducted based on data from each locus, as well as on the concatenated sequences. The robust, concatenated results found lorises to be a monophyletic family (Lorisidae) (PP ≥ 0.99) with two distinct subfamilies: the African Perodictinae (PP ≥ 0.99) and the Asian Lorisinae (PP ≥ 0.99). Additionally, from these analyses all four genera were all recovered as monophyletic (PP ≥ 0.99). Some of our single-gene analyses recovered monophyly, but many had discordances, with some showing paraphyly or a deep-trichotomy. Bayesian partitioned analyses inferred the most recent common ancestors of lorises emerged ∼42 ± 6 million years ago (mya), the Asian Lorisinae separated ∼30 ± 9 mya, and Perodictinae arose ∼26 ± 10 mya. These times fit well with known historical tectonic shifts of the area, as well as with the sparse loris fossil record. Additionally, our results agree with previous multi-gene studies on Lorisidae which found lorises to be monophyletic and arising ∼40 mya (Perelman et al., 2011; Pozzi et al., 2014). By taking a multi-gene approach, we were able to recover a well-supported, monophyletic loris phylogeny and inferred the evolutionary history of this cryptic family. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. A Distance Measure for Genome Phylogenetic Analysis

    NASA Astrophysics Data System (ADS)

    Cao, Minh Duc; Allison, Lloyd; Dix, Trevor

    Phylogenetic analyses of species based on single genes or parts of the genomes are often inconsistent because of factors such as variable rates of evolution and horizontal gene transfer. The availability of more and more sequenced genomes allows phylogeny construction from complete genomes that is less sensitive to such inconsistency. For such long sequences, construction methods like maximum parsimony and maximum likelihood are often not possible due to their intensive computational requirement. Another class of tree construction methods, namely distance-based methods, require a measure of distances between any two genomes. Some measures such as evolutionary edit distance of gene order and gene content are computational expensive or do not perform well when the gene content of the organisms are similar. This study presents an information theoretic measure of genetic distances between genomes based on the biological compression algorithm expert model. We demonstrate that our distance measure can be applied to reconstruct the consensus phylogenetic tree of a number of Plasmodium parasites from their genomes, the statistical bias of which would mislead conventional analysis methods. Our approach is also used to successfully construct a plausible evolutionary tree for the γ-Proteobacteria group whose genomes are known to contain many horizontally transferred genes.

  13. Molecular phylogeny of the armored catfish family Callichthyidae (Ostariophysi, Siluriformes).

    PubMed

    Shimabukuro-Dias, Cristiane Kioko; Oliveira, Claudio; Reis, Roberto E; Foresti, Fausto

    2004-07-01

    The family Callichthyidae comprises eight genera of fishes widely distributed across the Neotropical region. In the present study, sequences of the mitochondrial genes 12S rRNA, 16S rRNA, ND4, tRNAHis, and tRNASer were obtained from 28 callichthyid specimens. The sample included 12 species of Corydoras, three species of Aspidoras, two species of Brochis, Dianema, Lepthoplosternum, and Megalechis, and two local populations of Callichthys and Hoplosternum. Sequences of Nematogenys inermis (Nematogenyidae), Trichomycterus areolatus, and Henonemus punctatus (Trichomycteridae), Astroblepus sp. (Astroblepidae), and Neoplecostomus paranensis, Delturus parahybae, and Hemipsilichthys nimius (Loricariidae) were included as the outgroup. Phylogenetic analyses were performed by using the methods of maximum parsimony and maximum likelihood. The results of almost all analyses were very similar. The family Callichthyidae is monophyletic and comprises two natural groups: the subfamilies Corydoradinae (Aspidoras, Brochis, and Corydoras) and Callichthyinae (Callichthys, Dianema, Hoplosternum, Lepthoplosternum, and Megalechis), as previously demonstrated by morphological studies. The relationships observed within these subfamilies are in several ways different from those previously proposed on the basis of morphological data. Molecular results were compared with the morphologic and cytogenetic data available on the family. Copyright 2003 Elsevier Inc.

  14. Molecular and Clinical Characterization of Chikungunya Virus Infections in Southeast Mexico.

    PubMed

    Galán-Huerta, Kame A; Martínez-Landeros, Erik; Delgado-Gallegos, Juan L; Caballero-Sosa, Sandra; Malo-García, Iliana R; Fernández-Salas, Ildefonso; Ramos-Jiménez, Javier; Rivas-Estilla, Ana M

    2018-05-09

    Chikungunya fever is an arthropod-borne infection caused by Chikungunya virus (CHIKV). Even though clinical features of Chikungunya fever in the Mexican population have been described before, there is no detailed information. The aim of this study was to perform a full description of the clinical features in confirmed Chikungunya-infected patients and describe the molecular epidemiology of CHIKV. We evaluated febrile patients who sought medical assistance in Tapachula, Chiapas, Mexico, from June through July 2015. Infection was confirmed with molecular and serological methods. Viruses were isolated and the E1 gene was sequenced. Phylogeny reconstruction was inferred using maximum-likelihood and maximum clade credibility approaches. We studied 52 patients with confirmed CHIKV infection. They were more likely to have wrist, metacarpophalangeal, and knee arthralgia. Two combinations of clinical features were obtained to differentiate between Chikungunya fever and acute undifferentiated febrile illness. We obtained 10 CHIKV E1 sequences that grouped with the Asian lineage. Seven strains diverged from the formerly reported. Patients infected with the divergent CHIKV strains showed a broader spectrum of clinical manifestations. We defined the complete clinical features of Chikungunya fever in patients from Southeastern Mexico. Our results demonstrate co-circulation of different CHIKV strains in the state of Chiapas.

  15. Phylogenetic study of Class Armophorea (Alveolata, Ciliophora) based on 18S-rDNA data.

    PubMed

    da Silva Paiva, Thiago; do Nascimento Borges, Bárbara; da Silva-Neto, Inácio Domingos

    2013-12-01

    The 18S rDNA phylogeny of Class Armophorea, a group of anaerobic ciliates, is proposed based on an analysis of 44 sequences (out of 195) retrieved from the NCBI/GenBank database. Emphasis was placed on the use of two nucleotide alignment criteria that involved variation in the gap-opening and gap-extension parameters and the use of rRNA secondary structure to orientate multiple-alignment. A sensitivity analysis of 76 data sets was run to assess the effect of variations in indel parameters on tree topologies. Bayesian inference, maximum likelihood and maximum parsimony phylogenetic analyses were used to explore how different analytic frameworks influenced the resulting hypotheses. A sensitivity analysis revealed that the relationships among higher taxa of the Intramacronucleata were dependent upon how indels were determined during multiple-alignment of nucleotides. The phylogenetic analyses rejected the monophyly of the Armophorea most of the time and consistently indicated that the Metopidae and Nyctotheridae were related to the Litostomatea. There was no consensus on the placement of the Caenomorphidae, which could be a sister group of the Metopidae + Nyctorheridae, or could have diverged at the base of the Spirotrichea branch or the Intramacronucleata tree.

  16. Phylogenetic study of Class Armophorea (Alveolata, Ciliophora) based on 18S-rDNA data

    PubMed Central

    da Silva Paiva, Thiago; do Nascimento Borges, Bárbara; da Silva-Neto, Inácio Domingos

    2013-01-01

    The 18S rDNA phylogeny of Class Armophorea, a group of anaerobic ciliates, is proposed based on an analysis of 44 sequences (out of 195) retrieved from the NCBI/GenBank database. Emphasis was placed on the use of two nucleotide alignment criteria that involved variation in the gap-opening and gap-extension parameters and the use of rRNA secondary structure to orientate multiple-alignment. A sensitivity analysis of 76 data sets was run to assess the effect of variations in indel parameters on tree topologies. Bayesian inference, maximum likelihood and maximum parsimony phylogenetic analyses were used to explore how different analytic frameworks influenced the resulting hypotheses. A sensitivity analysis revealed that the relationships among higher taxa of the Intramacronucleata were dependent upon how indels were determined during multiple-alignment of nucleotides. The phylogenetic analyses rejected the monophyly of the Armophorea most of the time and consistently indicated that the Metopidae and Nyctotheridae were related to the Litostomatea. There was no consensus on the placement of the Caenomorphidae, which could be a sister group of the Metopidae + Nyctorheridae, or could have diverged at the base of the Spirotrichea branch or the Intramacronucleata tree. PMID:24385862

  17. Maximum Likelihood and Restricted Likelihood Solutions in Multiple-Method Studies

    PubMed Central

    Rukhin, Andrew L.

    2011-01-01

    A formulation of the problem of combining data from several sources is discussed in terms of random effects models. The unknown measurement precision is assumed not to be the same for all methods. We investigate maximum likelihood solutions in this model. By representing the likelihood equations as simultaneous polynomial equations, the exact form of the Groebner basis for their stationary points is derived when there are two methods. A parametrization of these solutions which allows their comparison is suggested. A numerical method for solving likelihood equations is outlined, and an alternative to the maximum likelihood method, the restricted maximum likelihood, is studied. In the situation when methods variances are considered to be known an upper bound on the between-method variance is obtained. The relationship between likelihood equations and moment-type equations is also discussed. PMID:26989583

  18. Maximum Likelihood and Restricted Likelihood Solutions in Multiple-Method Studies.

    PubMed

    Rukhin, Andrew L

    2011-01-01

    A formulation of the problem of combining data from several sources is discussed in terms of random effects models. The unknown measurement precision is assumed not to be the same for all methods. We investigate maximum likelihood solutions in this model. By representing the likelihood equations as simultaneous polynomial equations, the exact form of the Groebner basis for their stationary points is derived when there are two methods. A parametrization of these solutions which allows their comparison is suggested. A numerical method for solving likelihood equations is outlined, and an alternative to the maximum likelihood method, the restricted maximum likelihood, is studied. In the situation when methods variances are considered to be known an upper bound on the between-method variance is obtained. The relationship between likelihood equations and moment-type equations is also discussed.

  19. Challenges in Species Tree Estimation Under the Multispecies Coalescent Model

    PubMed Central

    Xu, Bo; Yang, Ziheng

    2016-01-01

    The multispecies coalescent (MSC) model has emerged as a powerful framework for inferring species phylogenies while accounting for ancestral polymorphism and gene tree-species tree conflict. A number of methods have been developed in the past few years to estimate the species tree under the MSC. The full likelihood methods (including maximum likelihood and Bayesian inference) average over the unknown gene trees and accommodate their uncertainties properly but involve intensive computation. The approximate or summary coalescent methods are computationally fast and are applicable to genomic datasets with thousands of loci, but do not make an efficient use of information in the multilocus data. Most of them take the two-step approach of reconstructing the gene trees for multiple loci by phylogenetic methods and then treating the estimated gene trees as observed data, without accounting for their uncertainties appropriately. In this article we review the statistical nature of the species tree estimation problem under the MSC, and explore the conceptual issues and challenges of species tree estimation by focusing mainly on simple cases of three or four closely related species. We use mathematical analysis and computer simulation to demonstrate that large differences in statistical performance may exist between the two classes of methods. We illustrate that several counterintuitive behaviors may occur with the summary methods but they are due to inefficient use of information in the data by summary methods and vanish when the data are analyzed using full-likelihood methods. These include (i) unidentifiability of parameters in the model, (ii) inconsistency in the so-called anomaly zone, (iii) singularity on the likelihood surface, and (iv) deterioration of performance upon addition of more data. We discuss the challenges and strategies of species tree inference for distantly related species when the molecular clock is violated, and highlight the need for improving the computational efficiency and model realism of the likelihood methods as well as the statistical efficiency of the summary methods. PMID:27927902

  20. Molecular phylogeny and evolutionary history of Moricandia DC (Brassicaceae).

    PubMed

    Perfectti, Francisco; Gómez, José M; González-Megías, Adela; Abdelaziz, Mohamed; Lorite, Juan

    2017-01-01

    The phylogeny of tribe Brassiceae (Brassicaceae) has not yet been resolved because of its complex evolutionary history. This tribe comprises economically relevant species, including the genus Moricandia DC. This genus is currently distributed in North Africa, Middle East, Central Asia and Southern Europe, where it is associated with arid and semi-arid environments. Although some species of Moricandia have been used in several phylogenetic studies, the phylogeny of this genus is not well established. Here we present a phylogenetic analysis of the genus Moricandia using a nuclear (the internal transcribed spacers of the ribosomal DNA) and two plastidial regions (parts of the NADH dehydrogenase subunit F gene and the trn T- trn F region). We also included in the analyses members of their sister genus Rytidocarpus and from the close genus Eruca . The phylogenetic analyses showed a clear and robust phylogeny of the genus Moricandia . The Bayesian inference tree was concordant with the maximum likelihood and timing trees, with the plastidial and nuclear trees showing only minor discrepancies. The genus Moricandia appears to be formed by two main lineages: the Iberian clade including three species, and the African clade including the four species inhabiting the Southern Mediterranean regions plus M. arvensis . We dated the main evolutionary events of this genus, showing that the origin of the Iberian clade probably occurred after a range expansion during the Messinian period, between 7.25 and 5.33 Ma. In that period, an extensive African-Iberian floral and faunal interchange occurred due to the existence of land bridges between Africa and Europa in what is, at present-days, the Strait of Gibraltar. We have demonstrated that a Spanish population previously ascribed to Rytidocarpus moricandioides is indeed a Moricandia species, and we propose to name it as M. rytidocarpoides sp. nov. In addition, in all the phylogenetic analyses, M. foleyi appeared outside the Moricandia lineage but within the genus Eruca . Therefore, M. foleyi should be excluded from the genus Moricandia and be ascribed, at least provisionally, to the genus Eruca .

  1. A method for inferring the rate of evolution of homologous characters that can potentially improve phylogenetic inference, resolve deep divergence and correct systematic biases.

    PubMed

    Cummins, Carla A; McInerney, James O

    2011-12-01

    Current phylogenetic methods attempt to account for evolutionary rate variation across characters in a matrix. This is generally achieved by the use of sophisticated evolutionary models, combined with dense sampling of large numbers of characters. However, systematic biases and superimposed substitutions make this task very difficult. Model adequacy can sometimes be achieved at the cost of adding large numbers of free parameters, with each parameter being optimized according to some criterion, resulting in increased computation times and large variances in the model estimates. In this study, we develop a simple approach that estimates the relative evolutionary rate of each homologous character. The method that we describe uses the similarity between characters as a proxy for evolutionary rate. In this article, we work on the premise that if the character-state distribution of a homologous character is similar to many other characters, then this character is likely to be relatively slowly evolving. If the character-state distribution of a homologous character is not similar to many or any of the rest of the characters in a data set, then it is likely to be the result of rapid evolution. We show that in some test cases, at least, the premise can hold and the inferences are robust. Importantly, the method does not use a "starting tree" to make the inference and therefore is tree independent. We demonstrate that this approach can work as well as a maximum likelihood (ML) approach, though the ML method needs to have a known phylogeny, or at least a very good estimate of that phylogeny. We then demonstrate some uses for this method of analysis, including the improvement in phylogeny reconstruction for both deep-level and recent relationships and overcoming systematic biases such as base composition bias. Furthermore, we compare this approach to two well-established methods for reweighting or removing characters. These other methods are tree-based and we show that they can be systematically biased. We feel this method can be useful for phylogeny reconstruction, understanding evolutionary rate variation, and for understanding selection variation on different characters.

  2. Phylogeny and biogeography of Maclura (Moraceae) and the origin of an anachronistic fruit.

    PubMed

    Gardner, Elliot M; Sarraf, Paya; Williams, Evelyn W; Zerega, Nyree J C

    2017-12-01

    Maclura (ca. 12spp., Moraceae) is a widespread genus of trees and woody climbers found on five continents. Maclura pomifera, the Osage orange, is considered a classic example of an anachronistic fruit. Native to the central USA, the grapefruit-sized Osage oranges are unpalatable and have no known extant native dispersers, leading to speculation that the fruits were adapted to extinct megafauna. Our aim was to reconstruct the phylogeny, estimate divergence dates, and infer ancestral ranges of Maclura in order to test the monophyly of subgeneric classifications and to understand evolution and dispersal patterns in this globally distributed group. Employing Bayesian and maximum-likelihood methods, we reconstructed the Maclura phylogeny using two nuclear and five chloroplast loci from all Maclura species and outgroups representing all Moraceae tribes. We reconstructed ancestral ranges and syncarp sizes using a family level dated tree, and used Ornstein-Uhlenbeck models to test for significant changes in syncarp size in the Osage orange lineage. Our analyses support a monophyletic Maclura with a Paleocene crown. Subgeneric sections were monophyletic except for the geographically-disjunct Cardiogyne. There was strong support for current species delineations except in the widespread M. cochinchinensis. South America was reconstructed as the ancestral range for Maclura with subsequent colonization of Africa and the northern hemisphere. The clade containing M. pomifera likely diverged in the Oligocene, closely coinciding with crown divergence dates of the mammoth/mastodon and sloth clades that contain possible extinct dispersers. The best fitting model for syncarp size evolution indicated an increase in both syncarp size and the rate of syncarp size evolution in the Osage orange lineage. We conclude that our findings are consistent with the hypothesis that M. pomifera was adapted to dispersal by extinct megafauna. In addition, we consider dispersal rather than vicariance to be most likely responsible for the present distribution of Maclura, as crown divergence post-dated the separation of Africa and South America. We propose revised sectional delimitations based on the phylogeny. This study represents a complete phylogenetic and biogeographic analysis of this globally distributed genus and provides a basis for future work, including a taxonomic revision. Copyright © 2017. Published by Elsevier Inc.

  3. Out of Borneo: biogeography, phylogeny and divergence date estimates of Artocarpus (Moraceae)

    PubMed Central

    Gardner, Elliot M.; Harris, Robert; Chaveerach, Arunrat; Pereira, Joan T.

    2017-01-01

    Abstract Background and Aims The breadfruit genus (Artocarpus, Moraceae) includes valuable underutilized fruit tree crops with a centre of diversity in Southeast Asia. It belongs to the monophyletic tribe Artocarpeae, whose only other members include two small neotropical genera. This study aimed to reconstruct the phylogeny, estimate divergence dates and infer ancestral ranges of Artocarpeae, especially Artocarpus, to better understand spatial and temporal evolutionary relationships and dispersal patterns in a geologically complex region. Methods To investigate the phylogeny and biogeography of Artocarpeae, this study used Bayesian and maximum likelihood approaches to analyze DNA sequences from six plastid and two nuclear regions from 75% of Artocarpus species, both neotropical Artocarpeae genera, and members of all other Moraceae tribes. Six fossil-based calibrations within the Moraceae family were used to infer divergence times. Ancestral areas and estimated dispersal events were also inferred. Key Results Artocarpeae, Artocarpus and four monophyletic Artocarpus subgenera were well supported. A late Cretaceous origin of the Artocarpeae tribe in the Americas is inferred, followed by Eocene radiation of Artocarpus in Asia, with the greatest diversification occurring during the Miocene. Borneo is reconstructed as the ancestral range of Artocarpus, with dozens of independent in situ diversification events inferred there, as well as dispersal events to other regions of Southeast Asia. Dispersal pathways of Artocarpus and its ancestors are proposed. Conclusions Borneo was central in the diversification of the genus Artocarpus and probably served as the centre from which species dispersed and diversified in several directions. The greatest amount of diversification is inferred to have occurred during the Miocene, when sea levels fluctuated and land connections frequently existed between Borneo, mainland Asia, Sumatra and Java. Many species found in these areas have extant overlapping ranges, suggesting that sympatric speciation may have occurred. By contrast, Artocarpus diversity east of Borneo (where many of the islands have no historical connections to the landmasses of the Sunda and Sahul shelves) is unique and probably the product of over water long-distance dispersal events and subsequent diversification in allopatry. This work represents the most comprehensive Artocarpus phylogeny and biogeography study to date and supports Borneo as an evolutionary biodiversity hotspot. PMID:28073771

  4. High-Performance Clock Synchronization Algorithms for Distributed Wireless Airborne Computer Networks with Applications to Localization and Tracking of Targets

    DTIC Science & Technology

    2010-06-01

    GMKPF represents a better and more flexible alternative to the Gaussian Maximum Likelihood (GML), and Exponential Maximum Likelihood ( EML ...accurate results relative to GML and EML when the network delays are modeled in terms of a single non-Gaussian/non-exponential distribution or as a...to the Gaussian Maximum Likelihood (GML), and Exponential Maximum Likelihood ( EML ) estimators for clock offset estimation in non-Gaussian or non

  5. MXLKID: a maximum likelihood parameter identifier. [In LRLTRAN for CDC 7600

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavel, D.T.

    MXLKID (MaXimum LiKelihood IDentifier) is a computer program designed to identify unknown parameters in a nonlinear dynamic system. Using noisy measurement data from the system, the maximum likelihood identifier computes a likelihood function (LF). Identification of system parameters is accomplished by maximizing the LF with respect to the parameters. The main body of this report briefly summarizes the maximum likelihood technique and gives instructions and examples for running the MXLKID program. MXLKID is implemented LRLTRAN on the CDC7600 computer at LLNL. A detailed mathematical description of the algorithm is given in the appendices. 24 figures, 6 tables.

  6. Phylogenies support out-of-equilibrium models of biodiversity.

    PubMed

    Manceau, Marc; Lambert, Amaury; Morlon, Hélène

    2015-04-01

    There is a long tradition in ecology of studying models of biodiversity at equilibrium. These models, including the influential Neutral Theory of Biodiversity, have been successful at predicting major macroecological patterns, such as species abundance distributions. But they have failed to predict macroevolutionary patterns, such as those captured in phylogenetic trees. Here, we develop a model of biodiversity in which all individuals have identical demographic rates, metacommunity size is allowed to vary stochastically according to population dynamics, and speciation arises naturally from the accumulation of point mutations. We show that this model generates phylogenies matching those observed in nature if the metacommunity is out of equilibrium. We develop a likelihood inference framework that allows fitting our model to empirical phylogenies, and apply this framework to various mammalian families. Our results corroborate the hypothesis that biodiversity dynamics are out of equilibrium. © 2015 John Wiley & Sons Ltd/CNRS.

  7. The numerical evaluation of maximum-likelihood estimates of the parameters for a mixture of normal distributions from partially identified samples

    NASA Technical Reports Server (NTRS)

    Walker, H. F.

    1976-01-01

    Likelihood equations determined by the two types of samples which are necessary conditions for a maximum-likelihood estimate were considered. These equations suggest certain successive approximations iterative procedures for obtaining maximum likelihood estimates. The procedures, which are generalized steepest ascent (deflected gradient) procedures, contain those of Hosmer as a special case.

  8. Finite mixture model: A maximum likelihood estimation approach on time series data

    NASA Astrophysics Data System (ADS)

    Yen, Phoong Seuk; Ismail, Mohd Tahir; Hamzah, Firdaus Mohamad

    2014-09-01

    Recently, statistician emphasized on the fitting of finite mixture model by using maximum likelihood estimation as it provides asymptotic properties. In addition, it shows consistency properties as the sample sizes increases to infinity. This illustrated that maximum likelihood estimation is an unbiased estimator. Moreover, the estimate parameters obtained from the application of maximum likelihood estimation have smallest variance as compared to others statistical method as the sample sizes increases. Thus, maximum likelihood estimation is adopted in this paper to fit the two-component mixture model in order to explore the relationship between rubber price and exchange rate for Malaysia, Thailand, Philippines and Indonesia. Results described that there is a negative effect among rubber price and exchange rate for all selected countries.

  9. Determining the accuracy of maximum likelihood parameter estimates with colored residuals

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Klein, Vladislav

    1994-01-01

    An important part of building high fidelity mathematical models based on measured data is calculating the accuracy associated with statistical estimates of the model parameters. Indeed, without some idea of the accuracy of parameter estimates, the estimates themselves have limited value. In this work, an expression based on theoretical analysis was developed to properly compute parameter accuracy measures for maximum likelihood estimates with colored residuals. This result is important because experience from the analysis of measured data reveals that the residuals from maximum likelihood estimation are almost always colored. The calculations involved can be appended to conventional maximum likelihood estimation algorithms. Simulated data runs were used to show that the parameter accuracy measures computed with this technique accurately reflect the quality of the parameter estimates from maximum likelihood estimation without the need for analysis of the output residuals in the frequency domain or heuristically determined multiplication factors. The result is general, although the application studied here is maximum likelihood estimation of aerodynamic model parameters from flight test data.

  10. Plastid phylogenomics of the cool-season grass subfamily: clarification of relationships among early-diverging tribes.

    PubMed

    Saarela, Jeffery M; Wysocki, William P; Barrett, Craig F; Soreng, Robert J; Davis, Jerrold I; Clark, Lynn G; Kelchner, Scot A; Pires, J Chris; Edger, Patrick P; Mayfield, Dustin R; Duvall, Melvin R

    2015-05-04

    Whole plastid genomes are being sequenced rapidly from across the green plant tree of life, and phylogenetic analyses of these are increasing resolution and support for relationships that have varied among or been unresolved in earlier single- and multi-gene studies. Pooideae, the cool-season grass lineage, is the largest of the 12 grass subfamilies and includes important temperate cereals, turf grasses and forage species. Although numerous studies of the phylogeny of the subfamily have been undertaken, relationships among some 'early-diverging' tribes conflict among studies, and some relationships among subtribes of Poeae have not yet been resolved. To address these issues, we newly sequenced 25 whole plastomes, which showed rearrangements typical of Poaceae. These plastomes represent 9 tribes and 11 subtribes of Pooideae, and were analysed with 20 existing plastomes for the subfamily. Maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) robustly resolve most deep relationships in the subfamily. Complete plastome data provide increased nodal support compared with protein-coding data alone at nodes that are not maximally supported. Following the divergence of Brachyelytrum, Phaenospermateae, Brylkinieae-Meliceae and Ampelodesmeae-Stipeae are the successive sister groups of the rest of the subfamily. Ampelodesmeae are nested within Stipeae in the plastome trees, consistent with its hybrid origin between a phaenospermatoid and a stipoid grass (the maternal parent). The core Pooideae are strongly supported and include Brachypodieae, a Bromeae-Triticeae clade and Poeae. Within Poeae, a novel sister group relationship between Phalaridinae and Torreyochloinae is found, and the relative branching order of this clade and Aveninae, with respect to an Agrostidinae-Brizinae clade, are discordant between MP and ML/BI trees. Maximum likelihood and Bayesian analyses strongly support Airinae and Holcinae as the successive sister groups of a Dactylidinae-Loliinae clade. Published by Oxford University Press on behalf of the Annals of Botany Company.

  11. An iterative procedure for obtaining maximum-likelihood estimates of the parameters for a mixture of normal distributions

    NASA Technical Reports Server (NTRS)

    Peters, B. C., Jr.; Walker, H. F.

    1975-01-01

    A general iterative procedure is given for determining the consistent maximum likelihood estimates of normal distributions. In addition, a local maximum of the log-likelihood function, Newtons's method, a method of scoring, and modifications of these procedures are discussed.

  12. Higher level phylogeny and the first divergence time estimation of Heteroptera (Insecta: Hemiptera) based on multiple genes.

    PubMed

    Li, Min; Tian, Ying; Zhao, Ying; Bu, Wenjun

    2012-01-01

    Heteroptera, or true bugs, are the largest, morphologically diverse and economically important group of insects with incomplete metamorphosis. However, the phylogenetic relationships within Heteroptera are still in dispute and most of the previous studies were based on morphological characters or with single gene (partial or whole 18S rDNA). Besides, so far, divergence time estimates for Heteroptera totally rely on the fossil record, while no studies have been performed on molecular divergence rates. Here, for the first time, we used maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) with multiple genes (18S rDNA, 28S rDNA, 16S rDNA and COI) to estimate phylogenetic relationships among the infraorders, and meanwhile, the Penalized Likelihood (r8s) and Bayesian (BEAST) molecular dating methods were employed to estimate divergence time of higher taxa of this suborder. Major results of the present study included: Nepomorpha was placed as the most basal clade in all six trees (MP trees, ML trees and Bayesian trees of nuclear gene data and four-gene combined data, respectively) with full support values. The sister-group relationship of Cimicomorpha and Pentatomomorpha was also strongly supported. Nepomorpha originated in early Triassic and the other six infraorders originated in a very short period of time in middle Triassic. Cimicomorpha and Pentatomomorpha underwent a radiation at family level in Cretaceous, paralleling the proliferation of the flowering plants. Our results indicated that the higher-group radiations within hemimetabolous Heteroptera were simultaneously with those of holometabolous Coleoptera and Diptera which took place in the Triassic. While the aquatic habitat was colonized by Nepomorpha already in the Triassic, the Gerromorpha independently adapted to the semi-aquatic habitat in the Early Jurassic.

  13. Temporal and spatial diversification of Pteroglossus araçaris (AVES: Ramphastidae) in the neotropics: constant rate of diversification does not support an increase in radiation during the Pleistocene.

    PubMed

    Patel, Swati; Weckstein, Jason D; Patané, José S L; Bates, John M; Aleixo, Alexandre

    2011-01-01

    We use the small-bodied toucan genus Pteroglossus to test hypotheses about diversification in the lowland Neotropics. We sequenced three mitochondrial genes and one nuclear intron from all Pteroglossus species and used these data to reconstruct phylogenetic trees based on maximum parsimony, maximum likelihood, and Bayesian analyses. These phylogenetic trees were used to make inferences regarding both the pattern and timing of diversification for the group. We used the uplift of the Talamanca highlands of Costa Rica and western Panama as a geologic calibration for estimating divergence times on the Pteroglossus tree and compared these results with a standard molecular clock calibration. Then, we used likelihood methods to model the rate of diversification. Based on our analyses, the onset of the Pteroglossus radiation predates the Pleistocene, which has been predicted to have played a pivotal role in diversification in the Amazon rainforest biota. We found a constant rate of diversification in Pteroglossus evolutionary history, and thus no support that events during the Pleistocene caused an increase in diversification. We compare our data to other avian phylogenies to better understand major biogeographic events in the Neotropics. These comparisons support recurring forest connections between the Amazonian and Atlantic forests, and the splitting of cis/trans Andean species after the final uplift of the Andes. At the subspecies level, there is evidence for reciprocal monophyly and groups are often separated by major rivers, demonstrating the important role of rivers in causing or maintaining divergence. Because some of the results presented here conflict with current taxonomy of Pteroglossus, new taxonomic arrangements are suggested. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. The evolution of autodigestion in the mushroom family Psathyrellaceae (Agaricales) inferred from Maximum Likelihood and Bayesian methods.

    PubMed

    Nagy, László G; Urban, Alexander; Orstadius, Leif; Papp, Tamás; Larsson, Ellen; Vágvölgyi, Csaba

    2010-12-01

    Recently developed comparative phylogenetic methods offer a wide spectrum of applications in evolutionary biology, although it is generally accepted that their statistical properties are incompletely known. Here, we examine and compare the statistical power of the ML and Bayesian methods with regard to selection of best-fit models of fruiting-body evolution and hypothesis testing of ancestral states on a real-life data set of a physiological trait (autodigestion) in the family Psathyrellaceae. Our phylogenies are based on the first multigene data set generated for the family. Two different coding regimes (binary and multistate) and two data sets differing in taxon sampling density are examined. The Bayesian method outperformed Maximum Likelihood with regard to statistical power in all analyses. This is particularly evident if the signal in the data is weak, i.e. in cases when the ML approach does not provide support to choose among competing hypotheses. Results based on binary and multistate coding differed only modestly, although it was evident that multistate analyses were less conclusive in all cases. It seems that increased taxon sampling density has favourable effects on inference of ancestral states, while model parameters are influenced to a smaller extent. The model best fitting our data implies that the rate of losses of deliquescence equals zero, although model selection in ML does not provide proper support to reject three of the four candidate models. The results also support the hypothesis that non-deliquescence (lack of autodigestion) has been ancestral in Psathyrellaceae, and that deliquescent fruiting bodies represent the preferred state, having evolved independently several times during evolution. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Higher Level Phylogeny and the First Divergence Time Estimation of Heteroptera (Insecta: Hemiptera) Based on Multiple Genes

    PubMed Central

    Zhao, Ying; Bu, Wenjun

    2012-01-01

    Heteroptera, or true bugs, are the largest, morphologically diverse and economically important group of insects with incomplete metamorphosis. However, the phylogenetic relationships within Heteroptera are still in dispute and most of the previous studies were based on morphological characters or with single gene (partial or whole 18S rDNA). Besides, so far, divergence time estimates for Heteroptera totally rely on the fossil record, while no studies have been performed on molecular divergence rates. Here, for the first time, we used maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) with multiple genes (18S rDNA, 28S rDNA, 16S rDNA and COI) to estimate phylogenetic relationships among the infraorders, and meanwhile, the Penalized Likelihood (r8s) and Bayesian (BEAST) molecular dating methods were employed to estimate divergence time of higher taxa of this suborder. Major results of the present study included: Nepomorpha was placed as the most basal clade in all six trees (MP trees, ML trees and Bayesian trees of nuclear gene data and four-gene combined data, respectively) with full support values. The sister-group relationship of Cimicomorpha and Pentatomomorpha was also strongly supported. Nepomorpha originated in early Triassic and the other six infraorders originated in a very short period of time in middle Triassic. Cimicomorpha and Pentatomomorpha underwent a radiation at family level in Cretaceous, paralleling the proliferation of the flowering plants. Our results indicated that the higher-group radiations within hemimetabolous Heteroptera were simultaneously with those of holometabolous Coleoptera and Diptera which took place in the Triassic. While the aquatic habitat was colonized by Nepomorpha already in the Triassic, the Gerromorpha independently adapted to the semi-aquatic habitat in the Early Jurassic. PMID:22384163

  16. Slowdowns in diversification rates from real phylogenies may not be real.

    PubMed

    Cusimano, Natalie; Renner, Susanne S

    2010-07-01

    Studies of diversification patterns often find a slowing in lineage accumulation toward the present. This seemingly pervasive pattern of rate downturns has been taken as evidence for adaptive radiations, density-dependent regulation, and metacommunity species interactions. The significance of rate downturns is evaluated with statistical tests (the gamma statistic and Monte Carlo constant rates (MCCR) test; birth-death likelihood models and Akaike Information Criterion [AIC] scores) that rely on null distributions, which assume that the included species are a random sample of the entire clade. Sampling in real phylogenies, however, often is nonrandom because systematists try to include early-diverging species or representatives of previous intrataxon classifications. We studied the effects of biased sampling, structured sampling, and random sampling by experimentally pruning simulated trees (60 and 150 species) as well as a completely sampled empirical tree (58 species) and then applying the gamma statistic/MCCR test and birth-death likelihood models/AIC scores to assess rate changes. For trees with random species sampling, the true model (i.e., the one fitting the complete phylogenies) could be inferred in most cases. Oversampling deep nodes, however, strongly biases inferences toward downturns, with simulations of structured and biased sampling suggesting that this occurs when sampling percentages drop below 80%. The magnitude of the effect and the sensitivity of diversification rate models is such that a useful rule of thumb may be not to infer rate downturns from real trees unless they have >80% species sampling.

  17. From sea to land and beyond – New insights into the evolution of euthyneuran Gastropoda (Mollusca)

    PubMed Central

    2008-01-01

    Background The Euthyneura are considered to be the most successful and diverse group of Gastropoda. Phylogenetically, they are riven with controversy. Previous morphology-based phylogenetic studies have been greatly hampered by rampant parallelism in morphological characters or by incomplete taxon sampling. Based on sequences of nuclear 18S rRNA and 28S rRNA as well as mitochondrial 16S rRNA and COI DNA from 56 taxa, we reconstructed the phylogeny of Euthyneura utilising Maximum Likelihood and Bayesian inference methods. The evolution of colonization of freshwater and terrestrial habitats by pulmonate Euthyneura, considered crucial in the evolution of this group of Gastropoda, is reconstructed with Bayesian approaches. Results We found several well supported clades within Euthyneura, however, we could not confirm the traditional classification, since Pulmonata are paraphyletic and Opistobranchia are either polyphyletic or paraphyletic with several clades clearly distinguishable. Sacoglossa appear separately from the rest of the Opisthobranchia as sister taxon to basal Pulmonata. Within Pulmonata, Basommatophora are paraphyletic and Hygrophila and Eupulmonata form monophyletic clades. Pyramidelloidea are placed within Euthyneura rendering the Euthyneura paraphyletic. Conclusion Based on the current phylogeny, it can be proposed for the first time that invasion of freshwater by Pulmonata is a unique evolutionary event and has taken place directly from the marine environment via an aquatic pathway. The origin of colonisation of terrestrial habitats is seeded in marginal zones and has probably occurred via estuaries or semi-terrestrial habitats such as mangroves. PMID:18294406

  18. Prevalence and differential host-specificity of two avian blood parasite genera in the Australo-Papuan region

    USGS Publications Warehouse

    Beadell, J.S.; Gering, E.; Austin, J.; Dumbacher, J.P.; Peirce, M.A.; Pratt, T.K.; Atkinson, C.T.; Fleischer, R.C.

    2004-01-01

    The degree to which widespread avian blood parasites in the genera Plasmodium and Haemoproteus pose a threat to novel hosts depends in part on the degree to which they are constrained to a particular host or host family. We examined the host distribution and host-specificity of these parasites in birds from two relatively understudied and isolated locations: Australia and Papua New Guinea. Using polymerase chain reaction (PCR), we detected infection in 69 of 105 species, representing 44% of individuals surveyed (n = 428). Across host families, prevalence of Haemoproteus ranged from 13% (Acanthizidae) to 56% (Petroicidae) while prevalence of Plasmodium ranged from 3% (Petroicidae) to 47% (Ptilonorhynchidae). We recovered 78 unique mitochondrial lineages from 155 sequences. Related lineages of Haemoproteus were more likely to derive from the same host family than predicted by chance at shallow (average LogDet genetic distance = 0, n = 12, P = 0.001) and greater depths (average distance = 0.014, n = 11, P < 0.001) within the parasite phylogeny. Within two major Haemoproteus subclades identified in a maximum likelihood phylogeny, host-specificity was evident up to parasite genetic distances of 0.029 and 0.007 based on logistic regression. We found no significant host relationship among lineages of Plasmodium by any method of analysis. These results support previous evidence of strong host-family specificity in Haemoproteus and suggest that lineages of Plasmodium are more likely to form evolutionarily-stable associations with novel hosts.

  19. Molecular phylogeny of Pasiphaeidae (Crustacea, Decapoda, Caridea) reveals systematic incongruence of the current classification.

    PubMed

    Liao, Yunshi; De Grave, Sammy; Ho, Tsz Wai; Ip, Brian H Y; Tsang, Ling Ming; Chan, Tin-Yam; Chu, Ka Hou

    2017-10-01

    Caridean shrimps constitute one of the most diverse groups of decapod crustaceans, notwithstanding their poorly resolved infraordinal relationships. One of the systematically controversial families in Caridea is the predominantly pelagic Pasiphaeidae, comprises 101 species in seven genera. Pasiphaeidae species exhibit high morphological disparity, as well as ecological niche width, inhabiting shallow to very deep waters (>4000m). The present work presents the first molecular phylogeny of the family, based on a combined dataset of six mitochondrial and nuclear gene markers (12S rDNA, 16S rDNA, histone 3, sodium-potassium ATPase α-subunit, enolase and ATP synthase β-subunit) from 33 species belonged to six genera of Pasiphaeidae with 19 species from 12 other caridean families as outgroup taxa. Maximum likelihood and Bayesian inference analyses conducted on the concatenated dataset of 2265bp suggest the family Pasiphaeidae is not monophyletic, with Psathyrocaris more closely related to other carideans than to the other five pasiphaeid genera included in this analysis. Leptochela occupies a sister position to the remaining genera and is genetically quite distant from them. At the generic level, the analysis supports the monophyly of Pasiphaea, Leptochela and Psathyrocaris, while Eupasiphae is shown to be paraphyletic, closely related to Parapasiphae and Glyphus. The present molecular result strongly implies that certain morphological characters used in the present systematic delineation within Pasiphaeidae may not be synapomorphies and the classification within the family needs to be urgently revised. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Complete Mitochondrial Genome of Suwallia teleckojensis (Plecoptera: Chloroperlidae) and Implications for the Higher Phylogeny of Stoneflies

    PubMed Central

    Cao, Jin-Jun; Li, Wei-Hai

    2018-01-01

    Stoneflies comprise an ancient group of insects, but the phylogenetic position of Plecoptera and phylogenetic relations within Plecoptera have long been controversial, and more molecular data is required to reconstruct precise phylogeny. Herein, we present the complete mitogenome of a stonefly, Suwallia teleckojensis, which is 16146 bp in length and consists of 13 protein-coding genes (PCGs), 2 ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs) and a control region (CR). Most PCGs initiate with the standard start codon ATN. However, ND5 and ND1 started with GTG and TTG. Typical termination codons TAA and TAG were found in eleven PCGs, and the remaining two PCGs (COII and ND5) have incomplete termination codons. All transfer RNA genes (tRNAs) have the classic cloverleaf secondary structures, with the exception of tRNASer(AGN), which lacks the dihydrouridine (DHU) arm. Secondary structures of the two ribosomal RNAs were shown referring to previous models. A large tandem repeat region, two potential stem-loop (SL) structures, Poly N structure (2 poly-A, 1 poly-T and 1 poly-C), and four conserved sequence blocks (CSBs) were detected in the control region. Finally, both maximum likelihood (ML) and Bayesian inference (BI) analyses suggested that the Capniidae was monophyletic, and the other five stonefly families form a monophyletic group. In this study, S. teleckojensis was closely related to Sweltsa longistyla, and Chloroperlidae and Perlidae were herein supported to be a sister group. PMID:29495588

  1. Complete Mitochondrial Genome of Suwallia teleckojensis (Plecoptera: Chloroperlidae) and Implications for the Higher Phylogeny of Stoneflies.

    PubMed

    Wang, Ying; Cao, Jin-Jun; Li, Wei-Hai

    2018-02-28

    Stoneflies comprise an ancient group of insects, but the phylogenetic position of Plecoptera and phylogenetic relations within Plecoptera have long been controversial, and more molecular data is required to reconstruct precise phylogeny. Herein, we present the complete mitogenome of a stonefly, Suwallia teleckojensis , which is 16146 bp in length and consists of 13 protein-coding genes (PCGs), 2 ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs) and a control region (CR). Most PCGs initiate with the standard start codon ATN. However, ND5 and ND1 started with GTG and TTG. Typical termination codons TAA and TAG were found in eleven PCGs, and the remaining two PCGs ( COII and ND5 ) have incomplete termination codons. All transfer RNA genes (tRNAs) have the classic cloverleaf secondary structures, with the exception of tRNA Ser(AGN) , which lacks the dihydrouridine (DHU) arm. Secondary structures of the two ribosomal RNAs were shown referring to previous models. A large tandem repeat region, two potential stem-loop (SL) structures, Poly N structure (2 poly-A, 1 poly-T and 1 poly-C), and four conserved sequence blocks (CSBs) were detected in the control region. Finally, both maximum likelihood (ML) and Bayesian inference (BI) analyses suggested that the Capniidae was monophyletic, and the other five stonefly families form a monophyletic group. In this study, S. teleckojensis was closely related to Sweltsa longistyla , and Chloroperlidae and Perlidae were herein supported to be a sister group.

  2. The discovery of Halictivirus resolves the Sinaivirus phylogeny.

    PubMed

    Bigot, Diane; Dalmon, Anne; Roy, Bronwen; Hou, Chunsheng; Germain, Michèle; Romary, Manon; Deng, Shuai; Diao, Qingyun; Weinert, Lucy A; Cook, James M; Herniou, Elisabeth A; Gayral, Philippe

    2017-11-01

    By providing pollination services, bees are among the most important insects, both in ecological and economical terms. Combined next-generation and classical sequencing approaches were applied to discover and study new insect viruses potentially harmful to bees. A bioinformatics virus discovery pipeline was used on individual Illumina transcriptomes of 13 wild bees from three species from the genus Halictus and 30 ants from six species of the genera Messor and Aphaenogaster. This allowed the discovery and description of three sequences of a new virus termed Halictus scabiosae Adlikon virus (HsAV). Phylogenetic analyses of ORF1, RNA-dependent RNA-polymerase (RdRp) and capsid genes showed that HsAV is closely related to (+)ssRNA viruses of the unassigned Sinaivirus genus but distant enough to belong to a different new genus we called Halictivirus. In addition, our study of ant transcriptomes revealed the first four sinaivirus sequences from ants (Messor barbarus, M. capitatus and M. concolor). Maximum likelihood phylogenetic analyses were performed on a 594 nt fragment of the ORF1/RdRp region from 84 sinaivirus sequences, including 31 new Lake Sinai viruses (LSVs) from honey bees collected in five countries across the globe and the four ant viral sequences. The phylogeny revealed four main clades potentially representing different viral species infecting honey bees. Moreover, the ant viruses belonged to the LSV4 clade, suggesting a possible cross-species transmission between bees and ants. Lastly, wide honey bee screening showed that all four LSV clades have worldwide distributions with no obvious geographical segregation.

  3. Topological congruence between phylogenies of Anacanthorus spp. (Monogenea: Dactylogyridae) and their Characiformes (Actinopterygii) hosts: A case of host-parasite cospeciation

    PubMed Central

    Fabrin, Thomaz M. C.; Gasques, Luciano S.; Prioli, Sônia M. A. P.; Balbuena, Juan A.; Prioli, Alberto J.; Takemoto, Ricardo M.

    2018-01-01

    Cophylogenetic studies aim at testing specific hypotheses to understand the nature of coevolving associations between sets of organisms, such as host and parasites. Monogeneans and their hosts provide and interesting platform for these studies due to their high host specificity. In this context, the objective of the present study was to establish whether the relationship between Anacanthorus spp. with their hosts from the upper Paraná River and its tributaries can be explained by means of cospeciation processes. Nine fish species and 14 monogenean species, most of them host specific, were studied. Partial DNA sequences of the genes RAG1, 16S and COI of the fish hosts and of the genes ITS2, COI and 5.8S of the parasite species were used for phylogenetic reconstruction. Maximum likelihood phylogenetic trees of the host and parasite species were built and used for analyses of topological congruence with PACo and ParaFit. The program Jane was used to estimate the nature of cospeciation events. The comparison of the two phylogenies revealed high topological congruence between them. Both PACo and ParaFit supported the hypothesis of global cospeciation. Results from Jane pointed to duplications as the most frequent coevolutionary event, followed by cospeciation, whereas duplications followed by host-switching were the least common event in Anacanthorus spp. studied. Host-sharing (spreading) was also identified but only between congeneric host species. PMID:29538463

  4. Topological congruence between phylogenies of Anacanthorus spp. (Monogenea: Dactylogyridae) and their Characiformes (Actinopterygii) hosts: A case of host-parasite cospeciation.

    PubMed

    da Graça, Rodrigo J; Fabrin, Thomaz M C; Gasques, Luciano S; Prioli, Sônia M A P; Balbuena, Juan A; Prioli, Alberto J; Takemoto, Ricardo M

    2018-01-01

    Cophylogenetic studies aim at testing specific hypotheses to understand the nature of coevolving associations between sets of organisms, such as host and parasites. Monogeneans and their hosts provide and interesting platform for these studies due to their high host specificity. In this context, the objective of the present study was to establish whether the relationship between Anacanthorus spp. with their hosts from the upper Paraná River and its tributaries can be explained by means of cospeciation processes. Nine fish species and 14 monogenean species, most of them host specific, were studied. Partial DNA sequences of the genes RAG1, 16S and COI of the fish hosts and of the genes ITS2, COI and 5.8S of the parasite species were used for phylogenetic reconstruction. Maximum likelihood phylogenetic trees of the host and parasite species were built and used for analyses of topological congruence with PACo and ParaFit. The program Jane was used to estimate the nature of cospeciation events. The comparison of the two phylogenies revealed high topological congruence between them. Both PACo and ParaFit supported the hypothesis of global cospeciation. Results from Jane pointed to duplications as the most frequent coevolutionary event, followed by cospeciation, whereas duplications followed by host-switching were the least common event in Anacanthorus spp. studied. Host-sharing (spreading) was also identified but only between congeneric host species.

  5. The phylogenetic relationships of known mosquito (Diptera: Culicidae) mitogenomes.

    PubMed

    Chu, Hongliang; Li, Chunxiao; Guo, Xiaoxia; Zhang, Hengduan; Luo, Peng; Wu, Zhonghua; Wang, Gang; Zhao, Tongyan

    2018-01-01

    The known mosquito mitogenomes, containing a total of 34 species, which belong to five genera, were collected from GenBank, and the practicality and effectiveness of the variation in the complete mitochondrial DNA genome and portions of mitochondrial COI gene were assessed to reconstruct the phylogeny of mosquitoes. Phylogenetic trees were reconstructed on the basis of parsimony, maximum likelihood, and Bayesian (BI) methods. It is concluded that: (1) Both mitogenomes and COI gene support the monophly of following taxa: Subgenus Nyssorhynchus, Subgenus Cellia, Anopheles albitarsis complex, Anopheles gambiae complex, and Anopheles punctulatus group; (2) Genus Aedes is not monophyletic relative to Ochlerotatus vigilax; (3) The mitogenome results indicate a close relationship between Anopheles epiroticus and Anopheles gambiae complex, Anopheles dirus complex and Anopheles punctulatus group, respectively; (4) The Bayesian posterior probability (BPP) within phylogenetic tree reconstructed by mitogenomes is higher than COI tree. The results show that phylogenetic relationships reconstructed using the mitogenomes were more similar to those based on morphological data.

  6. Using multi-locus allelic sequence data to estimate genetic divergence among four Lilium (Liliaceae) cultivars

    PubMed Central

    Shahin, Arwa; Smulders, Marinus J. M.; van Tuyl, Jaap M.; Arens, Paul; Bakker, Freek T.

    2014-01-01

    Next Generation Sequencing (NGS) may enable estimating relationships among genotypes using allelic variation of multiple nuclear genes simultaneously. We explored the potential and caveats of this strategy in four genetically distant Lilium cultivars to estimate their genetic divergence from transcriptome sequences using three approaches: POFAD (Phylogeny of Organisms from Allelic Data, uses allelic information of sequence data), RAxML (Randomized Accelerated Maximum Likelihood, tree building based on concatenated consensus sequences) and Consensus Network (constructing a network summarizing among gene tree conflicts). Twenty six gene contigs were chosen based on the presence of orthologous sequences in all cultivars, seven of which also had an orthologous sequence in Tulipa, used as out-group. The three approaches generated the same topology. Although the resolution offered by these approaches is high, in this case there was no extra benefit in using allelic information. We conclude that these 26 genes can be widely applied to construct a species tree for the genus Lilium. PMID:25368628

  7. Molecular Phylogeny of Hantaviruses Harbored by Insectivorous Bats in Côte d’Ivoire and Vietnam

    PubMed Central

    Gu, Se Hun; Lim, Burton K.; Kadjo, Blaise; Arai, Satoru; Kim, Jeong-Ah; Nicolas, Violaine; Lalis, Aude; Denys, Christiane; Cook, Joseph A.; Dominguez, Samuel R.; Holmes, Kathryn V.; Urushadze, Lela; Sidamonidze, Ketevan; Putkaradze, Davit; Kuzmin, Ivan V.; Kosoy, Michael Y.; Song, Jin-Won; Yanagihara, Richard

    2014-01-01

    The recent discovery of genetically distinct hantaviruses in multiple species of shrews and moles prompted a further exploration of their host diversification by analyzing frozen, ethanol-fixed and RNAlater®-preserved archival tissues and fecal samples from 533 bats (representing seven families, 28 genera and 53 species in the order Chiroptera), captured in Asia, Africa and the Americas in 1981–2012, using RT-PCR. Hantavirus RNA was detected in Pomona roundleaf bats (Hipposideros pomona) (family Hipposideridae), captured in Vietnam in 1997 and 1999, and in banana pipistrelles (Neoromicia nanus) (family Vespertilionidae), captured in Côte d’Ivoire in 2011. Phylogenetic analysis, based on the full-length S- and partial M- and L-segment sequences using maximum likelihood and Bayesian methods, demonstrated that the newfound hantaviruses formed highly divergent lineages, comprising other recently recognized bat-borne hantaviruses in Sierra Leone and China. The detection of bat-associated hantaviruses opens a new era in hantavirology and provides insights into their evolutionary origins. PMID:24784569

  8. Species trees for the tree swallows (Genus Tachycineta): an alternative phylogenetic hypothesis to the mitochondrial gene tree.

    PubMed

    Dor, Roi; Carling, Matthew D; Lovette, Irby J; Sheldon, Frederick H; Winkler, David W

    2012-10-01

    The New World swallow genus Tachycineta comprises nine species that collectively have a wide geographic distribution and remarkable variation both within- and among-species in ecologically important traits. Existing phylogenetic hypotheses for Tachycineta are based on mitochondrial DNA sequences, thus they provide estimates of a single gene tree. In this study we sequenced multiple individuals from each species at 16 nuclear intron loci. We used gene concatenated approaches (Bayesian and maximum likelihood) as well as coalescent-based species tree inference to reconstruct phylogenetic relationships of the genus. We examined the concordance and conflict between the nuclear and mitochondrial trees and between concatenated and coalescent-based inferences. Our results provide an alternative phylogenetic hypothesis to the existing mitochondrial DNA estimate of phylogeny. This new hypothesis provides a more accurate framework in which to explore trait evolution and examine the evolution of the mitochondrial genome in this group. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Convergence among cave catfishes: long-branch attraction and a Bayesian relative rates test.

    PubMed

    Wilcox, T P; García de León, F J; Hendrickson, D A; Hillis, D M

    2004-06-01

    Convergence has long been of interest to evolutionary biologists. Cave organisms appear to be ideal candidates for studying convergence in morphological, physiological, and developmental traits. Here we report apparent convergence in two cave-catfishes that were described on morphological grounds as congeners: Prietella phreatophila and Prietella lundbergi. We collected mitochondrial DNA sequence data from 10 species of catfishes, representing five of the seven genera in Ictaluridae, as well as seven species from a broad range of siluriform outgroups. Analysis of the sequence data under parsimony supports a monophyletic Prietella. However, both maximum-likelihood and Bayesian analyses support polyphyly of the genus, with P. lundbergi sister to Ictalurus and P. phreatophila sister to Ameiurus. The topological difference between parsimony and the other methods appears to result from long-branch attraction between the Prietella species. Similarly, the sequence data do not support several other relationships within Ictaluridae supported by morphology. We develop a new Bayesian method for examining variation in molecular rates of evolution across a phylogeny.

  10. Algal endosymbionts in European Hydra strains reflect multiple origins of the zoochlorella symbiosis.

    PubMed

    Rajević, Nives; Kovačević, Goran; Kalafatić, Mirjana; Gould, Sven B; Martin, William F; Franjević, Damjan

    2015-12-01

    Symbiotic associations are of broad significance in evolution and biodiversity. Green Hydra is a classic example of endosymbiosis. In its gastrodermal myoepithelial cells it harbors endosymbiotic unicellular green algae, most commonly from the genus Chlorella. We reconstructed the phylogeny of cultured algal endosymbionts isolated and maintained in laboratory conditions for years from green Hydra strains collected from four different geographical sites within Croatia, one from Germany and one from Israel. Nuclear (18S rDNA, ITS region) and chloroplast markers (16S, rbcL) for maximum likelihood phylogenetic analyses were used. We focused on investigating the positions of these algal endosymbiotic strains within the chlorophyte lineage. Molecular analyses established that different genera and species of unicellular green algae are present as endosymbionts in green Hydra, showing that endosymbiotic algae growing within green Hydra sampled from four Croatian localities are not monophyletic. Our results indicate that the intracellular algal endosymbionts of green Hydra have become established several times independently in evolution. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis.

    PubMed

    Kumar, Sudhir; Stecher, Glen; Peterson, Daniel; Tamura, Koichiro

    2012-10-15

    There is a growing need in the research community to apply the molecular evolutionary genetics analysis (MEGA) software tool for batch processing a large number of datasets and to integrate it into analysis workflows. Therefore, we now make available the computing core of the MEGA software as a stand-alone executable (MEGA-CC), along with an analysis prototyper (MEGA-Proto). MEGA-CC provides users with access to all the computational analyses available through MEGA's graphical user interface version. This includes methods for multiple sequence alignment, substitution model selection, evolutionary distance estimation, phylogeny inference, substitution rate and pattern estimation, tests of natural selection and ancestral sequence inference. Additionally, we have upgraded the source code for phylogenetic analysis using the maximum likelihood methods for parallel execution on multiple processors and cores. Here, we describe MEGA-CC and outline the steps for using MEGA-CC in tandem with MEGA-Proto for iterative and automated data analysis. http://www.megasoftware.net/.

  12. A Comparison of a Bayesian and a Maximum Likelihood Tailored Testing Procedure.

    ERIC Educational Resources Information Center

    McKinley, Robert L.; Reckase, Mark D.

    A study was conducted to compare tailored testing procedures based on a Bayesian ability estimation technique and on a maximum likelihood ability estimation technique. The Bayesian tailored testing procedure selected items so as to minimize the posterior variance of the ability estimate distribution, while the maximum likelihood tailored testing…

  13. Comprehensive phylogenetic analysis of all species of swordtails and platies (Pisces: Genus Xiphophorus) uncovers a hybrid origin of a swordtail fish, Xiphophorus monticolus, and demonstrates that the sexually selected sword originated in the ancestral lineage of the genus, but was lost again secondarily

    PubMed Central

    2013-01-01

    Background Males in some species of the genus Xiphophorus, small freshwater fishes from Meso-America, have an extended caudal fin, or sword – hence their common name “swordtails”. Longer swords are preferred by females from both sworded and – surprisingly also, non-sworded (platyfish) species that belong to the same genus. Swordtails have been studied widely as models in research on sexual selection. Specifically, the pre-existing bias hypothesis was interpreted to best explain the observed bias of females in presumed ancestral lineages of swordless species that show a preference for assumed derived males with swords over their conspecific swordless males. However, many of the phylogenetic relationships within this genus still remained unresolved. Here we construct a comprehensive molecular phylogeny of all 26 known Xiphophorus species, including the four recently described species (X. kallmani, X. mayae, X. mixei and X. monticolus). We use two mitochondrial and six new nuclear markers in an effort to increase the understanding of the evolutionary relationships among the species in this genus. Based on the phylogeny, the evolutionary history and character state evolution of the sword was reconstructed and found to have originated in the common ancestral lineage of the genus Xiphophorus and that it was lost again secondarily. Results We estimated the evolutionary relationships among all known species of the genus Xiphophorus based on the largest set of DNA markers so far. The phylogeny indicates that one of the newly described swordtail species, Xiphophorus monticolus, is likely to have arisen through hybridization since it is placed with the southern platyfish in the mitochondrial phylogeny, but with the southern swordtails in the nuclear phylogeny. Such discordance between these two types of markers is a strong indication for a hybrid origin. Additionally, by using a maximum likelihood approach the possession of the sexually selected sword trait is shown to be the most likely ancestral state for the genus Xiphophorus. Further, we provide a well supported estimation of the phylogenetic relationships between the previously unresolved northern swordtail groups. Conclusions This comprehensive molecular phylogeny of the entire genus Xiphophorus provides evidence that a second swordtail species, X. monticolus, arose through hybridization. Previously, we demonstrated that X. clemenciae, another southern swordtail species, arose via hybridization. These findings highlight the potential key role of hybridization in the evolution of this genus and suggest the need for further investigations into how hybridization contributes to speciation more generally. PMID:23360326

  14. Maximum likelihood solution for inclination-only data in paleomagnetism

    NASA Astrophysics Data System (ADS)

    Arason, P.; Levi, S.

    2010-08-01

    We have developed a new robust maximum likelihood method for estimating the unbiased mean inclination from inclination-only data. In paleomagnetic analysis, the arithmetic mean of inclination-only data is known to introduce a shallowing bias. Several methods have been introduced to estimate the unbiased mean inclination of inclination-only data together with measures of the dispersion. Some inclination-only methods were designed to maximize the likelihood function of the marginal Fisher distribution. However, the exact analytical form of the maximum likelihood function is fairly complicated, and all the methods require various assumptions and approximations that are often inappropriate. For some steep and dispersed data sets, these methods provide estimates that are significantly displaced from the peak of the likelihood function to systematically shallower inclination. The problem locating the maximum of the likelihood function is partly due to difficulties in accurately evaluating the function for all values of interest, because some elements of the likelihood function increase exponentially as precision parameters increase, leading to numerical instabilities. In this study, we succeeded in analytically cancelling exponential elements from the log-likelihood function, and we are now able to calculate its value anywhere in the parameter space and for any inclination-only data set. Furthermore, we can now calculate the partial derivatives of the log-likelihood function with desired accuracy, and locate the maximum likelihood without the assumptions required by previous methods. To assess the reliability and accuracy of our method, we generated large numbers of random Fisher-distributed data sets, for which we calculated mean inclinations and precision parameters. The comparisons show that our new robust Arason-Levi maximum likelihood method is the most reliable, and the mean inclination estimates are the least biased towards shallow values.

  15. Is multiple-sequence alignment required for accurate inference of phylogeny?

    PubMed

    Höhl, Michael; Ragan, Mark A

    2007-04-01

    The process of inferring phylogenetic trees from molecular sequences almost always starts with a multiple alignment of these sequences but can also be based on methods that do not involve multiple sequence alignment. Very little is known about the accuracy with which such alignment-free methods recover the correct phylogeny or about the potential for increasing their accuracy. We conducted a large-scale comparison of ten alignment-free methods, among them one new approach that does not calculate distances and a faster variant of our pattern-based approach; all distance-based alignment-free methods are freely available from http://www.bioinformatics.org.au (as Python package decaf+py). We show that most methods exhibit a higher overall reconstruction accuracy in the presence of high among-site rate variation. Under all conditions that we considered, variants of the pattern-based approach were significantly better than the other alignment-free methods. The new pattern-based variant achieved a speed-up of an order of magnitude in the distance calculation step, accompanied by a small loss of tree reconstruction accuracy. A method of Bayesian inference from k-mers did not improve on classical alignment-free (and distance-based) methods but may still offer other advantages due to its Bayesian nature. We found the optimal word length k of word-based methods to be stable across various data sets, and we provide parameter ranges for two different alphabets. The influence of these alphabets was analyzed to reveal a trade-off in reconstruction accuracy between long and short branches. We have mapped the phylogenetic accuracy for many alignment-free methods, among them several recently introduced ones, and increased our understanding of their behavior in response to biologically important parameters. In all experiments, the pattern-based approach emerged as superior, at the expense of higher resource consumption. Nonetheless, no alignment-free method that we examined recovers the correct phylogeny as accurately as does an approach based on maximum-likelihood distance estimates of multiply aligned sequences.

  16. A Large-Scale, Higher-Level, Molecular Phylogenetic Study of the Insect Order Lepidoptera (Moths and Butterflies)

    PubMed Central

    Regier, Jerome C.; Mitter, Charles; Zwick, Andreas; Bazinet, Adam L.; Cummings, Michael P.; Kawahara, Akito Y.; Sohn, Jae-Cheon; Zwickl, Derrick J.; Cho, Soowon; Davis, Donald R.; Baixeras, Joaquin; Brown, John; Parr, Cynthia; Weller, Susan; Lees, David C.; Mitter, Kim T.

    2013-01-01

    Background Higher-level relationships within the Lepidoptera, and particularly within the species-rich subclade Ditrysia, are generally not well understood, although recent studies have yielded progress. We present the most comprehensive molecular analysis of lepidopteran phylogeny to date, focusing on relationships among superfamilies. Methodology / Principal Findings 483 taxa spanning 115 of 124 families were sampled for 19 protein-coding nuclear genes, from which maximum likelihood tree estimates and bootstrap percentages were obtained using GARLI. Assessment of heuristic search effectiveness showed that better trees and higher bootstrap percentages probably remain to be discovered even after 1000 or more search replicates, but further search proved impractical even with grid computing. Other analyses explored the effects of sampling nonsynonymous change only versus partitioned and unpartitioned total nucleotide change; deletion of rogue taxa; and compositional heterogeneity. Relationships among the non-ditrysian lineages previously inferred from morphology were largely confirmed, plus some new ones, with strong support. Robust support was also found for divergences among non-apoditrysian lineages of Ditrysia, but only rarely so within Apoditrysia. Paraphyly for Tineoidea is strongly supported by analysis of nonsynonymous-only signal; conflicting, strong support for tineoid monophyly when synonymous signal was added back is shown to result from compositional heterogeneity. Conclusions / Significance Support for among-superfamily relationships outside the Apoditrysia is now generally strong. Comparable support is mostly lacking within Apoditrysia, but dramatically increased bootstrap percentages for some nodes after rogue taxon removal, and concordance with other evidence, strongly suggest that our picture of apoditrysian phylogeny is approximately correct. This study highlights the challenge of finding optimal topologies when analyzing hundreds of taxa. It also shows that some nodes get strong support only when analysis is restricted to nonsynonymous change, while total change is necessary for strong support of others. Thus, multiple types of analyses will be necessary to fully resolve lepidopteran phylogeny. PMID:23554903

  17. A Molecular Phylogeny for Yponomeutoidea (Insecta, Lepidoptera, Ditrysia) and Its Implications for Classification, Biogeography and the Evolution of Host Plant Use

    PubMed Central

    Sohn, Jae-Cheon; Regier, Jerome C.; Mitter, Charles; Davis, Donald; Landry, Jean-François; Zwick, Andreas; Cummings, Michael P.

    2013-01-01

    Background Yponomeutoidea, one of the early-diverging lineages of ditrysian Lepidoptera, comprise about 1,800 species worldwide, including notable pests and insect-plant interaction models. Yponomeutoids were one of the earliest lepidopteran clades to evolve external feeding and to extensively colonize herbaceous angiosperms. Despite the group’s economic importance, and its value for tracing early lepidopteran evolution, the biodiversity and phylogeny of Yponomeutoidea have been relatively little studied. Methodology/Principal Findings Eight nuclear genes (8 kb) were initially sequenced for 86 putative yponomeutoid species, spanning all previously recognized suprageneric groups, and 53 outgroups representing 22 families and 12 superfamilies. Eleven to 19 additional genes, yielding a total of 14.8 to 18.9 kb, were then sampled for a subset of taxa, including 28 yponomeutoids and 43 outgroups. Maximum likelihood analyses were conducted on data sets differing in numbers of genes, matrix completeness, inclusion/weighting of synonymous substitutions, and inclusion/exclusion of “rogue” taxa. Monophyly for Yponomeutoidea was supported very strongly when the 18 “rogue” taxa were excluded, and moderately otherwise. Results from different analyses are highly congruent and relationships within Yponomeutoidea are well supported overall. There is strong support overall for monophyly of families previously recognized on morphological grounds, including Yponomeutidae, Ypsolophidae, Plutellidae, Glyphipterigidae, Argyresthiidae, Attevidae, Praydidae, Heliodinidae, and Bedelliidae. We also assign family rank to Scythropiinae (Scythropiidae stat. rev.), which in our trees are strongly grouped with Bedelliidae, in contrast to all previous proposals. We present a working hypothesis of among-family relationships, and an informal higher classification. Host plant family associations of yponomeutoid subfamilies and families are non-random, but show no trends suggesting parallel phylogenesis. Our analyses suggest that previous characterizations of yponomeutoids as predominantly Holarctic were based on insufficient sampling. Conclusions/Significance We provide the first robust molecular phylogeny for Yponomeutoidea, together with a revised classification and new insights into their life history evolution and biogeography. PMID:23383061

  18. Molecular phylogenetics of the siphonophora (Cnidaria), with implications for the evolution of functional specialization.

    PubMed

    Dunn, Casey W; Pugh, Philip R; Haddock, Steven H D

    2005-12-01

    Siphonophores are a group of pelagic colonial hydrozoans (Cnidaria) that have long been of general interest because of the division of labor between the polyps and medusae that make up these "superorganisms." These polyps and medusae are each homologous to free living animals but are generated by an incomplete asexual budding process that leaves them physiologically integrated. They are functionally specialized for different tasks and are precisely organized within each colony. The number of functional types of polyps and medusae varies across taxa, and different authors have used this character to construct phylogenies polarized in opposite directions, depending on whether they thought siphonophore evolution proceeded by a reduction or an increase in functional specialization. We have collected taxa across all major groups of siphonophores, many of which are found exclusively in the deep sea, using remotely operated underwater vehicles (ROVs) and by SCUBA diving from ships in the open ocean. We have used 52 siphonophores and four outgroup taxa to estimate the siphonophore phylogeny with molecular data from the nuclear small subunit ribosomal RNA gene (18S) and the mitochondrial large subunit ribosomal RNA gene (16S). Parsimony reconstructions indicate that functionally specialized polyps and medusae have been gained and lost across the phylogeny. Maximum likelihood and Bayesian analyses of morphological data suggest that the transition rate for decreased functional specialization is greater than the transition rate for increased functional specialization for three out of the four investigated categories of polyps and medusae. The present analysis also bears on several long-standing questions about siphonophore systematics. It indicates that the cystonects are sister to all other siphonophores, a group that we call the Codonophora. We also find that the Calycophorae are nested within the Physonectae, and that the Brachystelia, a historically recognized grouping of short-stemmed taxa, are polyphyletic. [Cnidaria; colonial animals; deep sea; division of labor; functional specialization; Hydrozoa; phylogenetics; Siphonophores.].

  19. Phylogeny and biogeography of South Chinese brown frogs (Ranidae, Anura).

    PubMed

    Zhou, Yu; Wang, Sirui; Zhu, Hedan; Li, Pipeng; Yang, Baotian; Ma, Jianzhang

    2017-01-01

    Few studies have explored the role of Cenozoic tectonic evolution in shaping the patterns and processes of extant animal distributions in and around East Asia. In this study, we selected South Chinese brown frogs as a model to examine the phylogenetic and biogeographical consequences of Miocene tectonic events within South China and its margins. We used mitochondrial and nuclear molecular data to reconstruct phylogenetic interrelationships among Chinese brown frogs using Bayesian and maximum likelihood analyses. The phylogeny results show that there are four main clades of Chinese brown frogs. Excepting the three commonly known Chinese brown frog species groups, R. maoershanensis forms an independent clade nearest to the R. japonica group. Phylogeny and P-distance analyses confirmed R. maoershanensis as a valid species. Among South Chinese brown frogs, there are four subclades associated with four geographical areas: (I) R. maoershanensis; (II) R. japonica; (III) R. chaochiaoensis; and (IV) other species of the R. longicrus species group. Divergence times, estimated using mitochondrial sequences, place the vicariance events among the four subclades in the middle to late Miocene epoch. Our results suggest that (1) South Chinese brown frogs originated due to a vicariance event separating them from the R. chensinensis species group at the time of the Geological movement (~18 million years ago, Ma) in southern Tibet and the Himalayan region; (2) the separation and speciation of R. maoershanensis from the R. japonica group occurred due to the dry climate at approximately 16 Ma; (3) South Chinese brown frogs migrated from South China to Japan at the time (~10.8 Ma) that the global sea-level fell and the East China Sea Shelf Basin was swamp facies, when a land gallery may have formed across the sea to connect the two areas; and (4) R. chaochiaoensis separated from other species of the R. longicrus species group during the uplift of the Tibetan Plateau at approximately 9.5 Ma.

  20. Phylogenomic analysis of the Chilean clade of Liolaemus lizards (Squamata: Liolaemidae) based on sequence capture data.

    PubMed

    Panzera, Alejandra; Leaché, Adam D; D'Elía, Guillermo; Victoriano, Pedro F

    2017-01-01

    The genus Liolaemus is one of the most ecologically diverse and species-rich genera of lizards worldwide. It currently includes more than 250 recognized species, which have been subject to many ecological and evolutionary studies. Nevertheless, Liolaemus lizards have a complex taxonomic history, mainly due to the incongruence between morphological and genetic data, incomplete taxon sampling, incomplete lineage sorting and hybridization. In addition, as many species have restricted and remote distributions, this has hampered their examination and inclusion in molecular systematic studies. The aims of this study are to infer a robust phylogeny for a subsample of lizards representing the Chilean clade (subgenus Liolaemus sensu stricto ), and to test the monophyly of several of the major species groups. We use a phylogenomic approach, targeting 541 ultra-conserved elements (UCEs) and 44 protein-coding genes for 16 taxa. We conduct a comparison of phylogenetic analyses using maximum-likelihood and several species tree inference methods. The UCEs provide stronger support for phylogenetic relationships compared to the protein-coding genes; however, the UCEs outnumber the protein-coding genes by 10-fold. On average, the protein-coding genes contain over twice the number of informative sites. Based on our phylogenomic analyses, all the groups sampled are polyphyletic. Liolaemus tenuis tenuis is difficult to place in the phylogeny, because only a few loci (nine) were recovered for this species. Topologies or support values did not change dramatically upon exclusion of L. t. tenuis from analyses, suggesting that missing data did not had a significant impact on phylogenetic inference in this data set. The phylogenomic analyses provide strong support for sister group relationships between L. fuscus , L. monticola , L. nigroviridis and L. nitidus , and L. platei and L. velosoi . Despite our limited taxon sampling, we have provided a reliable starting hypothesis for the relationships among many major groups of the Chilean clade of Liolaemus that will help future work aimed at resolving the Liolaemus phylogeny.

  1. The recursive maximum likelihood proportion estimator: User's guide and test results

    NASA Technical Reports Server (NTRS)

    Vanrooy, D. L.

    1976-01-01

    Implementation of the recursive maximum likelihood proportion estimator is described. A user's guide to programs as they currently exist on the IBM 360/67 at LARS, Purdue is included, and test results on LANDSAT data are described. On Hill County data, the algorithm yields results comparable to the standard maximum likelihood proportion estimator.

  2. New applications of maximum likelihood and Bayesian statistics in macromolecular crystallography.

    PubMed

    McCoy, Airlie J

    2002-10-01

    Maximum likelihood methods are well known to macromolecular crystallographers as the methods of choice for isomorphous phasing and structure refinement. Recently, the use of maximum likelihood and Bayesian statistics has extended to the areas of molecular replacement and density modification, placing these methods on a stronger statistical foundation and making them more accurate and effective.

  3. High-Throughput Sequencing of Six Bamboo Chloroplast Genomes: Phylogenetic Implications for Temperate Woody Bamboos (Poaceae: Bambusoideae)

    PubMed Central

    Li, De-Zhu

    2011-01-01

    Background Bambusoideae is the only subfamily that contains woody members in the grass family, Poaceae. In phylogenetic analyses, Bambusoideae, Pooideae and Ehrhartoideae formed the BEP clade, yet the internal relationships of this clade are controversial. The distinctive life history (infrequent flowering and predominance of asexual reproduction) of woody bamboos makes them an interesting but taxonomically difficult group. Phylogenetic analyses based on large DNA fragments could only provide a moderate resolution of woody bamboo relationships, although a robust phylogenetic tree is needed to elucidate their evolutionary history. Phylogenomics is an alternative choice for resolving difficult phylogenies. Methodology/Principal Findings Here we present the complete nucleotide sequences of six woody bamboo chloroplast (cp) genomes using Illumina sequencing. These genomes are similar to those of other grasses and rather conservative in evolution. We constructed a phylogeny of Poaceae from 24 complete cp genomes including 21 grass species. Within the BEP clade, we found strong support for a sister relationship between Bambusoideae and Pooideae. In a substantial improvement over prior studies, all six nodes within Bambusoideae were supported with ≥0.95 posterior probability from Bayesian inference and 5/6 nodes resolved with 100% bootstrap support in maximum parsimony and maximum likelihood analyses. We found that repeats in the cp genome could provide phylogenetic information, while caution is needed when using indels in phylogenetic analyses based on few selected genes. We also identified relatively rapidly evolving cp genome regions that have the potential to be used for further phylogenetic study in Bambusoideae. Conclusions/Significance The cp genome of Bambusoideae evolved slowly, and phylogenomics based on whole cp genome could be used to resolve major relationships within the subfamily. The difficulty in resolving the diversification among three clades of temperate woody bamboos, even with complete cp genome sequences, suggests that these lineages may have diverged very rapidly. PMID:21655229

  4. Phylogeny and chromosomal diversification in the Dichroplus elongatus species group (Orthoptera, Melanoplinae).

    PubMed

    Castillo, Elio R D; Taffarel, Alberto; Maronna, Maximiliano M; Cigliano, María Marta; Palacios-Gimenez, Octavio M; Cabral-de-Mello, Diogo C; Martí, Dardo A

    2017-01-01

    In an attempt to track the chromosomal differentiation in the Dichroplus elongatus species group, we analyzed the karyotypes of four species with classical cytogenetic and mapping several multigene families through fluorescent in situ hybridization (FISH). We improved the taxon sampling of the D. elongatus species group adding new molecular data to infer the phylogeny of the genus and reconstruct the karyotype evolution. Our molecular analyses recovered a fully resolved tree with no evidence for the monophyly of Dichroplus. However, we recovered several stable clades within the genus, including the D. elongatus species group, under the different strategies of tree analyses (Maximum Parsimony and Maximum Likelihood). The chromosomal data revealed minor variation in the D. elongatus species group's karyotypes caused by chromosome rearrangements compared to the phylogenetically related D. maculipennis species group. The karyotypes of D. intermedius and D. exilis described herein showed the standard characteristics found in most Dichroplini, 2n = 23/24, X0♂ XX♀, Fundamental number (FN) = 23/24. However, we noticed two established pericentric inversions in D. intermedius karyotype, raising the FN to 27♂/28♀. A strong variation in the heterochromatic blocks distribution was evidenced at interespecific level. The multigene families' mapping revealed significant variation, mainly in rDNA clusters. These variations are probably caused by micro chromosomal changes, such as movement of transposable elements (TEs) and ectopic recombination. These observations suggest a high genomic dynamism for these repetitive DNA sequences in related species. The reconstruction of the chromosome character "variation in the FN" posits the FN = 23/24 as the ancestral state, and it is hypothesized that variations due to pericentric inversions has arisen independently three times in the evolutionary history of Dichroplus. One of these independent events occurred in the D. elongatus species group, where D. intermedius is the unique case with the highest FN described in the tribe Dichroplini.

  5. Mitogenomic analysis of the genus Panthera.

    PubMed

    Wei, Lei; Wu, Xiaobing; Zhu, Lixin; Jiang, Zhigang

    2011-10-01

    The complete sequences of the mitochondrial DNA genomes of Panthera tigris, Panthera pardus, and Panthera uncia were determined using the polymerase chain reaction method. The lengths of the complete mitochondrial DNA sequences of the three species were 16990, 16964, and 16773 bp, respectively. Each of the three mitochondrial DNA genomes included 13 protein-coding genes, 22 tRNA, two rRNA, one O(L)R, and one control region. The structures of the genomes were highly similar to those of Felis catus, Acinonyx jubatus, and Neofelis nebulosa. The phylogenies of the genus Panthera were inferred from two combined mitochondrial sequence data sets and the complete mitochondrial genome sequences, by MP (maximum parsimony), ML (maximum likelihood), and Bayesian analysis. The results showed that Panthera was composed of Panthera leo, P. uncia, P. pardus, Panthera onca, P. tigris, and N. nebulosa, which was included as the most basal member. The phylogeny within Panthera genus was N. nebulosa (P. tigris (P. onca (P. pardus, (P. leo, P. uncia)))). The divergence times for Panthera genus were estimated based on the ML branch lengths and four well-established calibration points. The results showed that at about 11.3 MYA, the Panthera genus separated from other felid species and then evolved into the several species of the genus. In detail, N. nebulosa was estimated to be founded about 8.66 MYA, P. tigris about 6.55 MYA, P. uncia about 4.63 MYA, and P. pardus about 4.35 MYA. All these estimated times were older than those estimated from the fossil records. The divergence event, evolutionary process, speciation, and distribution pattern of P. uncia, a species endemic to the central Asia with core habitats on the Qinghai-Tibetan Plateau and surrounding highlands, mostly correlated with the geological tectonic events and intensive climate shifts that happened at 8, 3.6, 2.5, and 1.7 MYA on the plateau during the late Cenozoic period.

  6. Phylogenetic Analysis of Seven WRKY Genes across the Palm Subtribe Attaleinae (Arecaceae) Identifies Syagrus as Sister Group of the Coconut

    PubMed Central

    Meerow, Alan W.; Noblick, Larry; Borrone, James W.; Couvreur, Thomas L. P.; Mauro-Herrera, Margarita; Hahn, William J.; Kuhn, David N.; Nakamura, Kyoko; Oleas, Nora H.; Schnell, Raymond J.

    2009-01-01

    Background The Cocoseae is one of 13 tribes of Arecaceae subfam. Arecoideae, and contains a number of palms with significant economic importance, including the monotypic and pantropical Cocos nucifera L., the coconut, the origins of which have been one of the “abominable mysteries” of palm systematics for decades. Previous studies with predominantly plastid genes weakly supported American ancestry for the coconut but ambiguous sister relationships. In this paper, we use multiple single copy nuclear loci to address the phylogeny of the Cocoseae subtribe Attaleinae, and resolve the closest extant relative of the coconut. Methodology/Principal Findings We present the results of combined analysis of DNA sequences of seven WRKY transcription factor loci across 72 samples of Arecaceae tribe Cocoseae subtribe Attaleinae, representing all genera classified within the subtribe, and three outgroup taxa with maximum parsimony, maximum likelihood, and Bayesian approaches, producing highly congruent and well-resolved trees that robustly identify the genus Syagrus as sister to Cocos and resolve novel and well-supported relationships among the other genera of the Attaleinae. We also address incongruence among the gene trees with gene tree reconciliation analysis, and assign estimated ages to the nodes of our tree. Conclusions/Significance This study represents the as yet most extensive phylogenetic analyses of Cocoseae subtribe Attaleinae. We present a well-resolved and supported phylogeny of the subtribe that robustly indicates a sister relationship between Cocos and Syagrus. This is not only of biogeographic interest, but will also open fruitful avenues of inquiry regarding evolution of functional genes useful for crop improvement. Establishment of two major clades of American Attaleinae occurred in the Oligocene (ca. 37 MYBP) in Eastern Brazil. The divergence of Cocos from Syagrus is estimated at 35 MYBP. The biogeographic and morphological congruence that we see for clades resolved in the Attaleinae suggests that WRKY loci are informative markers for investigating the phylogenetic relationships of the palm family. PMID:19806212

  7. Multilocus phylogeny and phylogenomics of Eriochrysis P. Beauv. (Poaceae-Andropogoneae): Taxonomic implications and evidence of interspecific hybridization.

    PubMed

    Welker, Cassiano A D; Souza-Chies, Tatiana T; Longhi-Wagner, Hilda M; Peichoto, Myriam Carolina; McKain, Michael R; Kellogg, Elizabeth A

    2016-06-01

    Species delimitation is a vital issue concerning evolutionary biology and conservation of biodiversity. However, it is a challenging task for several reasons, including the low interspecies variability of markers currently used in phylogenetic reconstructions and the occurrence of reticulate evolution and polyploidy in many lineages of flowering plants. The first phylogeny of the grass genus Eriochrysis is presented here, focusing on the New World species, in order to examine its relationships to other genera of the subtribe Saccharinae/tribe Andropogoneae and to define the circumscriptions of its taxonomically complicated species. Molecular cloning and sequencing of five regions of four low-copy nuclear genes (apo1, d8, ep2-ex7 and ep2-ex8, kn1) were performed, as well as complete plastome sequencing. Trees were reconstructed using maximum parsimony, maximum likelihood, and Bayesian inference analyses. The present phylogenetic analyses indicate that Eriochrysis is monophyletic and the Old World E. pallida is sister to the New World species. Subtribe Saccharinae is polyphyletic, as is the genus Eulalia. Based on nuclear and plastome sequences plus morphology, we define the circumscriptions of the New World species of Eriochrysis: E. laxa is distinct from E. warmingiana, and E. villosa is distinct from E. cayennensis. Natural hybrids occur between E. laxa and E. villosa. The hybrids are probably tetraploids, based on the number of paralogues in the nuclear gene trees. This is the first record of a polyploid taxon in the genus Eriochrysis. Some incongruities between nuclear genes and plastome analyses were detected and are potentially caused by incomplete lineage sorting and/or ancient hybridization. The set of low-copy nuclear genes used in this study seems to be sufficient to resolve phylogenetic relationships and define the circumscriptions of other species complexes in the grass family and relatives, even in the presence of polyploidy and reticulate evolution. Complete plastome sequencing is also a promising tool for phylogenetic inference. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Phylogeny of Kinorhyncha Based on Morphology and Two Molecular Loci

    PubMed Central

    Sørensen, Martin V.; Dal Zotto, Matteo; Rho, Hyun Soo; Herranz, Maria; Sánchez, Nuria; Pardos, Fernando; Yamasaki, Hiroshi

    2015-01-01

    The phylogeny of Kinorhyncha was analyzed using morphology and the molecular loci 18S rRNA and 28S rRNA. The different datasets were analyzed separately and in combination, using maximum likelihood and Bayesian Inference. Bayesian inference of molecular sequence data in combination with morphology supported the division of Kinorhyncha into two major clades: Cyclorhagida comb. nov. and Allomalorhagida nom. nov. The latter clade represents a new kinorhynch class, and accommodates Dracoderes, Franciscideres, a yet undescribed genus which is closely related with Franciscideres, and the traditional homalorhagid genera. Homalorhagid monophyly was not supported by any analyses with molecular sequence data included. Analysis of the combined molecular and morphological data furthermore supported a cyclorhagid clade which included all traditional cyclorhagid taxa, except Dracoderes that no longer should be considered a cyclorhagid genus. Accordingly, Cyclorhagida is divided into three main lineages: Echinoderidae, Campyloderidae, and a large clade, ‘Kentrorhagata’, which except for species of Campyloderes, includes all species with a midterminal spine present in adult individuals. Maximum likelihood analysis of the combined datasets produced a rather unresolved tree that was not regarded in the following discussion. Results of the analyses with only molecular sequence data included were incongruent at different points. However, common for all analyses was the support of several major clades, i.e., Campyloderidae, Kentrorhagata, Echinoderidae, Dracoderidae, Pycnophyidae, and a clade with Paracentrophyes + New Genus and Franciscideres (in those analyses where the latter was included). All molecular analyses including 18S rRNA sequence data furthermore supported monophyly of Allomalorhagida. Cyclorhagid monophyly was only supported in analyses of combined 18S rRNA and 28S rRNA (both ML and BI), and only in a restricted dataset where taxa with incomplete information from 28S rRNA had been omitted. Analysis of the morphological data produced results that were similar with those from the combined molecular and morphological analysis. E.g., the morphological data also supported exclusion of Dracoderes from Cyclorhagida. The main differences between the morphological analysis and analyses based on the combined datasets include: 1) Homalorhagida appears as monophyletic in the morphological tree only, 2) the morphological analyses position Franciscideres and the new genus within Cyclorhagida near Zelinkaderidae and Cateriidae, whereas analyses including molecular data place the two genera inside Allomalorhagida, and 3) species of Campyloderes appear in a basal trichotomy within Kentrorhagata in the morphological tree, whereas analysis of the combined datasets places species of Campyloderes as a sister clade to Echinoderidae and Kentrorhagata. PMID:26200115

  9. On the existence of maximum likelihood estimates for presence-only data

    USGS Publications Warehouse

    Hefley, Trevor J.; Hooten, Mevin B.

    2015-01-01

    It is important to identify conditions for which maximum likelihood estimates are unlikely to be identifiable from presence-only data. In data sets where the maximum likelihood estimates do not exist, penalized likelihood and Bayesian methods will produce coefficient estimates, but these are sensitive to the choice of estimation procedure and prior or penalty term. When sample size is small or it is thought that habitat preferences are strong, we propose a suite of estimation procedures researchers can consider using.

  10. The tempo and mode of New World monkey evolution and biogeography in the context of phylogenomic analysis.

    PubMed

    Jameson Kiesling, Natalie M; Yi, Soojin V; Xu, Ke; Gianluca Sperone, F; Wildman, Derek E

    2015-01-01

    The development and evolution of organisms is heavily influenced by their environment. Thus, understanding the historical biogeography of taxa can provide insights into their evolutionary history, adaptations and trade-offs realized throughout time. In the present study we have taken a phylogenomic approach to infer New World monkey phylogeny, upon which we have reconstructed the biogeographic history of extant platyrrhines. In order to generate sufficient phylogenetic signal within the New World monkey clade, we carried out a large-scale phylogenetic analysis of approximately 40 kb of non-genic genomic DNA sequence in a 36 species subset of extant New World monkeys. Maximum parsimony, maximum likelihood and Bayesian inference analysis all converged on a single optimal tree topology. Divergence dating and biogeographic analysis reconstruct the timing and geographic location of divergence events. The ancestral area reconstruction describes the geographic locations of the last common ancestor of extant platyrrhines and provides insight into key biogeographic events occurring during platyrrhine diversification. Through these analyses we conclude that the diversification of the platyrrhines took place concurrently with the establishment and diversification of the Amazon rainforest. This suggests that an expanding rainforest environment rather than geographic isolation drove platyrrhine diversification. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Breaking up and getting together: evolution of symbiosis and cloning by fission in sea anemones (Genus Anthopleura).

    PubMed

    Geller, J B; Walton, E D

    2001-09-01

    Clonal growth and symbiosis with photosynthetic zooxanthellae typify many genera of marine organisms, suggesting that these traits are usually conserved. However, some, such as Anthopleura, a genus of sea anemones, contain members lacking one or both of these traits. The evolutionary origins of these traits in 13 species of Anthopleura were inferred from a molecular phylogeny derived from 395 bp of the mitochondrial 16S rRNA gene and 410 bp of the mitochondrial cytochrome oxidase subunit III gene. Sequences from these genes were combined and analyzed by maximum-parsimony, maximum-likelihood, and neighbor-joining methods. Best trees from each method indicated a minimum of four changes in growth mode and that symbiosis with zooxanthellae has arisen independently in eastern and western Pacific species. Alternative trees in which species sharing growth modes or the symbiotic condition were constrained to be monophyletic were significantly worse than best trees. Although clade composition was mostly consistent with geographic sympatry, A. artemisia from California was included in the western Pacific clade. Likewise, A. midori from Japan was not placed in a clade containing only other Asian congeners. The history of Anthopleura includes repeated shifts between clonality and solitariness, repeated attainment of symbiosis with zooxanthellae, and intercontinental dispersal.

  12. Structural analysis of the α subunit of Na(+)/K(+) ATPase genes in invertebrates.

    PubMed

    Thabet, Rahma; Rouault, J-D; Ayadi, Habib; Leignel, Vincent

    2016-01-01

    The Na(+)/K(+) ATPase is a ubiquitous pump coordinating the transport of Na(+) and K(+) across the membrane of cells and its role is fundamental to cellular functions. It is heteromer in eukaryotes including two or three subunits (α, β and γ which is specific to the vertebrates). The catalytic functions of the enzyme have been attributed to the α subunit. Several complete α protein sequences are available, but only few gene structures were characterized. We identified the genomic sequences coding the α-subunit of the Na(+)/K(+) ATPase, from the whole-genome shotgun contigs (WGS), NCBI Genomes (chromosome), Genomic Survey Sequences (GSS) and High Throughput Genomic Sequences (HTGS) databases across distinct phyla. One copy of the α subunit gene was found in Annelida, Arthropoda, Cnidaria, Echinodermata, Hemichordata, Mollusca, Placozoa, Porifera, Platyhelminthes, Urochordata, but the nematodes seem to possess 2 to 4 copies. The number of introns varied from 0 (Platyhelminthes) to 26 (Porifera); and their localization and length are also highly variable. Molecular phylogenies (Maximum Likelihood and Maximum Parsimony methods) showed some clusters constituted by (Chordata/(Echinodermata/Hemichordata)) or (Plathelminthes/(Annelida/Mollusca)) and a basal position for Porifera. These structural analyses increase our knowledge about the evolutionary events of the α subunit genes in the invertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Molecular and Clinical Characterization of Chikungunya Virus Infections in Southeast Mexico

    PubMed Central

    Martínez-Landeros, Erik; Delgado-Gallegos, Juan L.; Caballero-Sosa, Sandra; Malo-García, Iliana R.

    2018-01-01

    Chikungunya fever is an arthropod-borne infection caused by Chikungunya virus (CHIKV). Even though clinical features of Chikungunya fever in the Mexican population have been described before, there is no detailed information. The aim of this study was to perform a full description of the clinical features in confirmed Chikungunya-infected patients and describe the molecular epidemiology of CHIKV. We evaluated febrile patients who sought medical assistance in Tapachula, Chiapas, Mexico, from June through July 2015. Infection was confirmed with molecular and serological methods. Viruses were isolated and the E1 gene was sequenced. Phylogeny reconstruction was inferred using maximum-likelihood and maximum clade credibility approaches. We studied 52 patients with confirmed CHIKV infection. They were more likely to have wrist, metacarpophalangeal, and knee arthralgia. Two combinations of clinical features were obtained to differentiate between Chikungunya fever and acute undifferentiated febrile illness. We obtained 10 CHIKV E1 sequences that grouped with the Asian lineage. Seven strains diverged from the formerly reported. Patients infected with the divergent CHIKV strains showed a broader spectrum of clinical manifestations. We defined the complete clinical features of Chikungunya fever in patients from Southeastern Mexico. Our results demonstrate co-circulation of different CHIKV strains in the state of Chiapas. PMID:29747416

  14. The numerical evaluation of maximum-likelihood estimates of the parameters for a mixture of normal distributions from partially identified samples

    NASA Technical Reports Server (NTRS)

    Walker, H. F.

    1976-01-01

    Likelihood equations determined by the two types of samples which are necessary conditions for a maximum-likelihood estimate are considered. These equations, suggest certain successive-approximations iterative procedures for obtaining maximum-likelihood estimates. These are generalized steepest ascent (deflected gradient) procedures. It is shown that, with probability 1 as N sub 0 approaches infinity (regardless of the relative sizes of N sub 0 and N sub 1, i=1,...,m), these procedures converge locally to the strongly consistent maximum-likelihood estimates whenever the step size is between 0 and 2. Furthermore, the value of the step size which yields optimal local convergence rates is bounded from below by a number which always lies between 1 and 2.

  15. Phylogenetic estimates of diversification rate are affected by molecular rate variation.

    PubMed

    Duchêne, D A; Hua, X; Bromham, L

    2017-10-01

    Molecular phylogenies are increasingly being used to investigate the patterns and mechanisms of macroevolution. In particular, node heights in a phylogeny can be used to detect changes in rates of diversification over time. Such analyses rest on the assumption that node heights in a phylogeny represent the timing of diversification events, which in turn rests on the assumption that evolutionary time can be accurately predicted from DNA sequence divergence. But there are many influences on the rate of molecular evolution, which might also influence node heights in molecular phylogenies, and thus affect estimates of diversification rate. In particular, a growing number of studies have revealed an association between the net diversification rate estimated from phylogenies and the rate of molecular evolution. Such an association might, by influencing the relative position of node heights, systematically bias estimates of diversification time. We simulated the evolution of DNA sequences under several scenarios where rates of diversification and molecular evolution vary through time, including models where diversification and molecular evolutionary rates are linked. We show that commonly used methods, including metric-based, likelihood and Bayesian approaches, can have a low power to identify changes in diversification rate when molecular substitution rates vary. Furthermore, the association between the rates of speciation and molecular evolution rate can cause the signature of a slowdown or speedup in speciation rates to be lost or misidentified. These results suggest that the multiple sources of variation in molecular evolutionary rates need to be considered when inferring macroevolutionary processes from phylogenies. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  16. Computation of nonparametric convex hazard estimators via profile methods.

    PubMed

    Jankowski, Hanna K; Wellner, Jon A

    2009-05-01

    This paper proposes a profile likelihood algorithm to compute the nonparametric maximum likelihood estimator of a convex hazard function. The maximisation is performed in two steps: First the support reduction algorithm is used to maximise the likelihood over all hazard functions with a given point of minimum (or antimode). Then it is shown that the profile (or partially maximised) likelihood is quasi-concave as a function of the antimode, so that a bisection algorithm can be applied to find the maximum of the profile likelihood, and hence also the global maximum. The new algorithm is illustrated using both artificial and real data, including lifetime data for Canadian males and females.

  17. Phylogenetic analysis in Myrcia section Aulomyrcia and inferences on plant diversity in the Atlantic rainforest.

    PubMed

    Staggemeier, Vanessa Graziele; Diniz-Filho, José Alexandre Felizola; Forest, Félix; Lucas, Eve

    2015-04-01

    Myrcia section Aulomyrcia includes ∼120 species that are endemic to the Neotropics and disjunctly distributed in the moist Amazon and Atlantic coastal forests of Brazil. This paper presents the first comprehensive phylogenetic study of this group and this phylogeny is used as a basis to evaluate recent classification systems and to test alternative hypotheses associated with the history of this clade. Fifty-three taxa were sampled out of the 120 species currently recognized, plus 40 outgroup taxa, for one nuclear marker (ribosomal internal transcribed spacer) and four plastid markers (psbA-trnH, trnL-trnF, trnQ-rpS16 and ndhF). The relationships were reconstructed based on Bayesian and maximum likelihood analyses. Additionally, a likelihood approach, 'geographic state speciation and extinction', was used to estimate region- dependent rates of speciation, extinction and dispersal, comparing historically climatic stable areas (refugia) and unstable areas. Maximum likelihood and Bayesian inferences indicate that Myrcia and Marlierea are polyphyletic, and the internal groupings recovered are characterized by combinations of morphological characters. Phylogenetic relationships support a link between Amazonian and north-eastern species and between north-eastern and south-eastern species. Lower extinction rates within glacial refugia suggest that these areas were important in maintaining diversity in the Atlantic forest biodiversity hotspot. This study provides a robust phylogenetic framework to address important ecological questions for Myrcia s.l. within an evolutionary context, and supports the need to unite taxonomically the two traditional genera Myrcia and Marlierea in an expanded Myrcia s.l. Furthermore, this study offers valuable insights into the diversification of plant species in the highly impacted Atlantic forest of South America; evidence is presented that the lowest extinction rates are found inside refugia and that range expansion from unstable areas contributes to the highest levels of plant diversity in the Bahian refugium. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Molecular phylogeny and timing of diversification in South American Cynolebiini seasonal killifishes.

    PubMed

    Costa, Wilson J E M; Amorim, Pedro F; Mattos, José Leonardo O

    2017-11-01

    The rich biological diversity of South America has motivated a series of studies associating evolution of endemic taxa with the dramatic geologic and climatic changes that occurred during the Cainozoic. The organism here studied is the killifish tribe Cynolebiini, a group of seasonal fishes uniquely inhabiting temporary pools formed during the rainy seasons. The Cynolebiini are found in open vegetation areas inserted in the main tropical and subtropical South American phytogeographical regions east of the Andes. Here, we present the first molecular phylogeny sampling all the eight genera of the Cynolebiini, using fragments of two mitochondrial and four nuclear genes for 35 species of Cynolebiini plus 19 species as outgroups. The dataset, 4448bp, was analysed under Bayesian and maximum likelihood approaches, providing a relatively well solved tree, which retrieves high support values for the Cynolebiini and most included clades. The resulting tree was used to estimate the time of divergence in included lineages using two cyprinodontiform fossils to calibrate the tree. We further investigated historical biogeography through the likelihood-based DEC model. Our estimates indicate that divergence between the clades comprising New World and Old World aplocheiloids occurred during the Eocene, about 50Mya, much more recent than the Gondwanan fragmentation scenario assumed in previous studies. This estimation is nearly synchronous to estimated splits involving other South American and African vertebrate clades, which have been explained by transoceanic dispersal through an ancient Atlantic island chain during the Palaeogene. We estimate that Cynolebiini split from its sister group Cynopoecilini in the Oligocene, about 25Mya and that Cynolebiini started to diversify giving origin to the present genera during the Miocene, about 20-14Mya. The Cynolebiini had an ancestral origin in the Atlantic Forest and probably were not present in the open vegetation formations of central and northeastern South America until the Middle Miocene, when expansion of dry open vegetation was favoured by cool temperatures and strike seasonality. Initial splitting between the genera Cynolebias and Simpsonichthys during the Miocene (about 14Mya) is attributed to the uplift of the Central Brazilian Plateau. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. A maximum likelihood map of chromosome 1.

    PubMed Central

    Rao, D C; Keats, B J; Lalouel, J M; Morton, N E; Yee, S

    1979-01-01

    Thirteen loci are mapped on chromosome 1 from genetic evidence. The maximum likelihood map presented permits confirmation that Scianna (SC) and a fourteenth locus, phenylketonuria (PKU), are on chromosome 1, although the location of the latter on the PGM1-AMY segment is uncertain. Eight other controversial genetic assignments are rejected, providing a practical demonstration of the resolution which maximum likelihood theory brings to mapping. PMID:293128

  20. Variance Difference between Maximum Likelihood Estimation Method and Expected A Posteriori Estimation Method Viewed from Number of Test Items

    ERIC Educational Resources Information Center

    Mahmud, Jumailiyah; Sutikno, Muzayanah; Naga, Dali S.

    2016-01-01

    The aim of this study is to determine variance difference between maximum likelihood and expected A posteriori estimation methods viewed from number of test items of aptitude test. The variance presents an accuracy generated by both maximum likelihood and Bayes estimation methods. The test consists of three subtests, each with 40 multiple-choice…

  1. Maximum likelihood estimation of signal-to-noise ratio and combiner weight

    NASA Technical Reports Server (NTRS)

    Kalson, S.; Dolinar, S. J.

    1986-01-01

    An algorithm for estimating signal to noise ratio and combiner weight parameters for a discrete time series is presented. The algorithm is based upon the joint maximum likelihood estimate of the signal and noise power. The discrete-time series are the sufficient statistics obtained after matched filtering of a biphase modulated signal in additive white Gaussian noise, before maximum likelihood decoding is performed.

  2. Comparison of Maximum Likelihood Estimation Approach and Regression Approach in Detecting Quantitative Trait Lco Using RAPD Markers

    Treesearch

    Changren Weng; Thomas L. Kubisiak; C. Dana Nelson; James P. Geaghan; Michael Stine

    1999-01-01

    Single marker regression and single marker maximum likelihood estimation were tied to detect quantitative trait loci (QTLs) controlling the early height growth of longleaf pine and slash pine using a ((longleaf pine x slash pine) x slash pine) BC, population consisting of 83 progeny. Maximum likelihood estimation was found to be more power than regression and could...

  3. GET_PHYLOMARKERS, a Software Package to Select Optimal Orthologous Clusters for Phylogenomics and Inferring Pan-Genome Phylogenies, Used for a Critical Geno-Taxonomic Revision of the Genus Stenotrophomonas.

    PubMed

    Vinuesa, Pablo; Ochoa-Sánchez, Luz E; Contreras-Moreira, Bruno

    2018-01-01

    The massive accumulation of genome-sequences in public databases promoted the proliferation of genome-level phylogenetic analyses in many areas of biological research. However, due to diverse evolutionary and genetic processes, many loci have undesirable properties for phylogenetic reconstruction. These, if undetected, can result in erroneous or biased estimates, particularly when estimating species trees from concatenated datasets. To deal with these problems, we developed GET_PHYLOMARKERS, a pipeline designed to identify high-quality markers to estimate robust genome phylogenies from the orthologous clusters, or the pan-genome matrix (PGM), computed by GET_HOMOLOGUES. In the first context, a set of sequential filters are applied to exclude recombinant alignments and those producing anomalous or poorly resolved trees. Multiple sequence alignments and maximum likelihood (ML) phylogenies are computed in parallel on multi-core computers. A ML species tree is estimated from the concatenated set of top-ranking alignments at the DNA or protein levels, using either FastTree or IQ-TREE (IQT). The latter is used by default due to its superior performance revealed in an extensive benchmark analysis. In addition, parsimony and ML phylogenies can be estimated from the PGM. We demonstrate the practical utility of the software by analyzing 170 Stenotrophomonas genome sequences available in RefSeq and 10 new complete genomes of Mexican environmental S. maltophilia complex (Smc) isolates reported herein. A combination of core-genome and PGM analyses was used to revise the molecular systematics of the genus. An unsupervised learning approach that uses a goodness of clustering statistic identified 20 groups within the Smc at a core-genome average nucleotide identity (cgANIb) of 95.9% that are perfectly consistent with strongly supported clades on the core- and pan-genome trees. In addition, we identified 16 misclassified RefSeq genome sequences, 14 of them labeled as S. maltophilia , demonstrating the broad utility of the software for phylogenomics and geno-taxonomic studies. The code, a detailed manual and tutorials are freely available for Linux/UNIX servers under the GNU GPLv3 license at https://github.com/vinuesa/get_phylomarkers. A docker image bundling GET_PHYLOMARKERS with GET_HOMOLOGUES is available at https://hub.docker.com/r/csicunam/get_homologues/, which can be easily run on any platform.

  4. Comprehensive phylogeny, biogeography and new classification of the diverse bee tribe Megachilini: Can we use DNA barcodes in phylogenies of large genera?

    PubMed

    Trunz, V; Packer, L; Vieu, J; Arrigo, N; Praz, C J

    2016-10-01

    Classification and evolutionary studies of particularly speciose clades pose important challenges, as phylogenetic analyses typically sample a small proportion of the existing diversity. We examine here one of the largest bee genera, the genus Megachile - the dauber and leafcutting bees. Besides presenting a phylogeny based on five nuclear genes (5480 aligned nucleotide positions), we attempt to use the phylogenetic signal of mitochondrial DNA barcodes, which are rapidly accumulating and already include a substantial proportion of the known species diversity in the genus. We used barcodes in two ways: first, to identify particularly divergent lineages and thus to guide taxon sampling in our nuclear phylogeny; second, to augment taxon sampling by combining nuclear markers (as backbone for ancient divergences) with DNA barcodes. Our results indicate that DNA barcodes bear phylogenetic signal limited to very recent divergences (3-4 my before present). Sampling within clades of very closely related species may be augmented using this technique, but our results also suggest statistically supported, but incongruent placements of some taxa. However, the addition of one single nuclear gene (LW-rhodopsin) to the DNA barcode data was enough to recover meaningful placement with high clade support values for nodes up to 15 million years old. We discuss different proposals for the generic classification of the tribe Megachilini. Finding a classification that is both in agreement with our phylogenetic hypotheses and practical in terms of diagnosability is particularly challenging as our analyses recover several well-supported clades that include morphologically heterogeneous lineages. We favour a classification that recognizes seven morphologically well-delimited genera in Megachilini: Coelioxys, Gronoceras, Heriadopsis, Matangapis, Megachile, Noteriades and Radoszkowskiana. Our results also lead to the following classification changes: the groups known as Dinavis, Neglectella, Eurymella and Phaenosarus are reestablished as valid subgenera of the genus Megachile, while the subgenus Alocanthedon is placed in synonymy with M. (Callomegachile), the subgenera Parachalicodoma and Largella with M. (Pseudomegachile), Anodonteutricharaea with M. (Paracella), Platysta with M. (Eurymella), and Grosapis and Eumegachile with M. (Megachile) (new synonymies). In addition, we use maximum likelihood reconstructions of ancestral geographic ranges to infer the origin of the tribe and reconstruct the main dispersal routes explaining the current, cosmopolitan distribution of this genus. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Out of Borneo: biogeography, phylogeny and divergence date estimates of Artocarpus (Moraceae).

    PubMed

    Williams, Evelyn W; Gardner, Elliot M; Harris, Robert; Chaveerach, Arunrat; Pereira, Joan T; Zerega, Nyree J C

    2017-03-01

    The breadfruit genus ( Artocarpus , Moraceae) includes valuable underutilized fruit tree crops with a centre of diversity in Southeast Asia. It belongs to the monophyletic tribe Artocarpeae, whose only other members include two small neotropical genera. This study aimed to reconstruct the phylogeny, estimate divergence dates and infer ancestral ranges of Artocarpeae, especially Artocarpus , to better understand spatial and temporal evolutionary relationships and dispersal patterns in a geologically complex region. To investigate the phylogeny and biogeography of Artocarpeae, this study used Bayesian and maximum likelihood approaches to analyze DNA sequences from six plastid and two nuclear regions from 75% of Artocarpus species, both neotropical Artocarpeae genera, and members of all other Moraceae tribes. Six fossil-based calibrations within the Moraceae family were used to infer divergence times. Ancestral areas and estimated dispersal events were also inferred. Artocarpeae, Artocarpus and four monophyletic Artocarpus subgenera were well supported. A late Cretaceous origin of the Artocarpeae tribe in the Americas is inferred, followed by Eocene radiation of Artocarpus in Asia, with the greatest diversification occurring during the Miocene. Borneo is reconstructed as the ancestral range of Artocarpus , with dozens of independent in situ diversification events inferred there, as well as dispersal events to other regions of Southeast Asia. Dispersal pathways of Artocarpus and its ancestors are proposed. Borneo was central in the diversification of the genus Artocarpus and probably served as the centre from which species dispersed and diversified in several directions. The greatest amount of diversification is inferred to have occurred during the Miocene, when sea levels fluctuated and land connections frequently existed between Borneo, mainland Asia, Sumatra and Java. Many species found in these areas have extant overlapping ranges, suggesting that sympatric speciation may have occurred. By contrast, Artocarpus diversity east of Borneo (where many of the islands have no historical connections to the landmasses of the Sunda and Sahul shelves) is unique and probably the product of over water long-distance dispersal events and subsequent diversification in allopatry. This work represents the most comprehensive Artocarpus phylogeny and biogeography study to date and supports Borneo as an evolutionary biodiversity hotspot. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  6. Maximum likelihood estimation of finite mixture model for economic data

    NASA Astrophysics Data System (ADS)

    Phoong, Seuk-Yen; Ismail, Mohd Tahir

    2014-06-01

    Finite mixture model is a mixture model with finite-dimension. This models are provides a natural representation of heterogeneity in a finite number of latent classes. In addition, finite mixture models also known as latent class models or unsupervised learning models. Recently, maximum likelihood estimation fitted finite mixture models has greatly drawn statistician's attention. The main reason is because maximum likelihood estimation is a powerful statistical method which provides consistent findings as the sample sizes increases to infinity. Thus, the application of maximum likelihood estimation is used to fit finite mixture model in the present paper in order to explore the relationship between nonlinear economic data. In this paper, a two-component normal mixture model is fitted by maximum likelihood estimation in order to investigate the relationship among stock market price and rubber price for sampled countries. Results described that there is a negative effect among rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia.

  7. Generalized Buneman Pruning for Inferring the Most Parsimonious Multi-state Phylogeny

    NASA Astrophysics Data System (ADS)

    Misra, Navodit; Blelloch, Guy; Ravi, R.; Schwartz, Russell

    Accurate reconstruction of phylogenies remains a key challenge in evolutionary biology. Most biologically plausible formulations of the problem are formally NP-hard, with no known efficient solution. The standard in practice are fast heuristic methods that are empirically known to work very well in general, but can yield results arbitrarily far from optimal. Practical exact methods, which yield exponential worst-case running times but generally much better times in practice, provide an important alternative. We report progress in this direction by introducing a provably optimal method for the weighted multi-state maximum parsimony phylogeny problem. The method is based on generalizing the notion of the Buneman graph, a construction key to efficient exact methods for binary sequences, so as to apply to sequences with arbitrary finite numbers of states with arbitrary state transition weights. We implement an integer linear programming (ILP) method for the multi-state problem using this generalized Buneman graph and demonstrate that the resulting method is able to solve data sets that are intractable by prior exact methods in run times comparable with popular heuristics. Our work provides the first method for provably optimal maximum parsimony phylogeny inference that is practical for multi-state data sets of more than a few characters.

  8. An iterative procedure for obtaining maximum-likelihood estimates of the parameters for a mixture of normal distributions, Addendum

    NASA Technical Reports Server (NTRS)

    Peters, B. C., Jr.; Walker, H. F.

    1975-01-01

    New results and insights concerning a previously published iterative procedure for obtaining maximum-likelihood estimates of the parameters for a mixture of normal distributions were discussed. It was shown that the procedure converges locally to the consistent maximum likelihood estimate as long as a specified parameter is bounded between two limits. Bound values were given to yield optimal local convergence.

  9. Effect of radiance-to-reflectance transformation and atmosphere removal on maximum likelihood classification accuracy of high-dimensional remote sensing data

    NASA Technical Reports Server (NTRS)

    Hoffbeck, Joseph P.; Landgrebe, David A.

    1994-01-01

    Many analysis algorithms for high-dimensional remote sensing data require that the remotely sensed radiance spectra be transformed to approximate reflectance to allow comparison with a library of laboratory reflectance spectra. In maximum likelihood classification, however, the remotely sensed spectra are compared to training samples, thus a transformation to reflectance may or may not be helpful. The effect of several radiance-to-reflectance transformations on maximum likelihood classification accuracy is investigated in this paper. We show that the empirical line approach, LOWTRAN7, flat-field correction, single spectrum method, and internal average reflectance are all non-singular affine transformations, and that non-singular affine transformations have no effect on discriminant analysis feature extraction and maximum likelihood classification accuracy. (An affine transformation is a linear transformation with an optional offset.) Since the Atmosphere Removal Program (ATREM) and the log residue method are not affine transformations, experiments with Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were conducted to determine the effect of these transformations on maximum likelihood classification accuracy. The average classification accuracy of the data transformed by ATREM and the log residue method was slightly less than the accuracy of the original radiance data. Since the radiance-to-reflectance transformations allow direct comparison of remotely sensed spectra with laboratory reflectance spectra, they can be quite useful in labeling the training samples required by maximum likelihood classification, but these transformations have only a slight effect or no effect at all on discriminant analysis and maximum likelihood classification accuracy.

  10. Phylogenetic relationships within Echinococcus and Taenia tapeworms (Cestoda: Taeniidae): an inference from nuclear protein-coding genes.

    PubMed

    Knapp, Jenny; Nakao, Minoru; Yanagida, Tetsuya; Okamoto, Munehiro; Saarma, Urmas; Lavikainen, Antti; Ito, Akira

    2011-12-01

    The family Taeniidae of tapeworms is composed of two genera, Echinococcus and Taenia, which obligately parasitize mammals including humans. Inferring phylogeny via molecular markers is the only way to trace back their evolutionary histories. However, molecular dating approaches are lacking so far. Here we established new markers from nuclear protein-coding genes for RNA polymerase II second largest subunit (rpb2), phosphoenolpyruvate carboxykinase (pepck) and DNA polymerase delta (pold). Bayesian inference and maximum likelihood analyses of the concatenated gene sequences allowed us to reconstruct phylogenetic trees for taeniid parasites. The tree topologies clearly demonstrated that Taenia is paraphyletic and that the clade of Echinococcus oligarthrus and Echinococcusvogeli is sister to all other members of Echinococcus. Both species are endemic in Central and South America, and their definitive hosts originated from carnivores that immigrated from North America after the formation of the Panamanian land bridge about 3 million years ago (Ma). A time-calibrated phylogeny was estimated by a Bayesian relaxed-clock method based on the assumption that the most recent common ancestor of E. oligarthrus and E. vogeli existed during the late Pliocene (3.0 Ma). The results suggest that a clade of Taenia including human-pathogenic species diversified primarily in the late Miocene (11.2 Ma), whereas Echinococcus started to diversify later, in the end of the Miocene (5.8 Ma). Close genetic relationships among the members of Echinococcus imply that the genus is a young group in which speciation and global radiation occurred rapidly. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. SubspaceEM: A Fast Maximum-a-posteriori Algorithm for Cryo-EM Single Particle Reconstruction

    PubMed Central

    Dvornek, Nicha C.; Sigworth, Fred J.; Tagare, Hemant D.

    2015-01-01

    Single particle reconstruction methods based on the maximum-likelihood principle and the expectation-maximization (E–M) algorithm are popular because of their ability to produce high resolution structures. However, these algorithms are computationally very expensive, requiring a network of computational servers. To overcome this computational bottleneck, we propose a new mathematical framework for accelerating maximum-likelihood reconstructions. The speedup is by orders of magnitude and the proposed algorithm produces similar quality reconstructions compared to the standard maximum-likelihood formulation. Our approach uses subspace approximations of the cryo-electron microscopy (cryo-EM) data and projection images, greatly reducing the number of image transformations and comparisons that are computed. Experiments using simulated and actual cryo-EM data show that speedup in overall execution time compared to traditional maximum-likelihood reconstruction reaches factors of over 300. PMID:25839831

  12. An evaluation of several different classification schemes - Their parameters and performance. [maximum likelihood decision for crop identification

    NASA Technical Reports Server (NTRS)

    Scholz, D.; Fuhs, N.; Hixson, M.

    1979-01-01

    The overall objective of this study was to apply and evaluate several of the currently available classification schemes for crop identification. The approaches examined were: (1) a per point Gaussian maximum likelihood classifier, (2) a per point sum of normal densities classifier, (3) a per point linear classifier, (4) a per point Gaussian maximum likelihood decision tree classifier, and (5) a texture sensitive per field Gaussian maximum likelihood classifier. Three agricultural data sets were used in the study: areas from Fayette County, Illinois, and Pottawattamie and Shelby Counties in Iowa. The segments were located in two distinct regions of the Corn Belt to sample variability in soils, climate, and agricultural practices.

  13. Molecular Infectious Disease Epidemiology: Survival Analysis and Algorithms Linking Phylogenies to Transmission Trees

    PubMed Central

    Kenah, Eben; Britton, Tom; Halloran, M. Elizabeth; Longini, Ira M.

    2016-01-01

    Recent work has attempted to use whole-genome sequence data from pathogens to reconstruct the transmission trees linking infectors and infectees in outbreaks. However, transmission trees from one outbreak do not generalize to future outbreaks. Reconstruction of transmission trees is most useful to public health if it leads to generalizable scientific insights about disease transmission. In a survival analysis framework, estimation of transmission parameters is based on sums or averages over the possible transmission trees. A phylogeny can increase the precision of these estimates by providing partial information about who infected whom. The leaves of the phylogeny represent sampled pathogens, which have known hosts. The interior nodes represent common ancestors of sampled pathogens, which have unknown hosts. Starting from assumptions about disease biology and epidemiologic study design, we prove that there is a one-to-one correspondence between the possible assignments of interior node hosts and the transmission trees simultaneously consistent with the phylogeny and the epidemiologic data on person, place, and time. We develop algorithms to enumerate these transmission trees and show these can be used to calculate likelihoods that incorporate both epidemiologic data and a phylogeny. A simulation study confirms that this leads to more efficient estimates of hazard ratios for infectiousness and baseline hazards of infectious contact, and we use these methods to analyze data from a foot-and-mouth disease virus outbreak in the United Kingdom in 2001. These results demonstrate the importance of data on individuals who escape infection, which is often overlooked. The combination of survival analysis and algorithms linking phylogenies to transmission trees is a rigorous but flexible statistical foundation for molecular infectious disease epidemiology. PMID:27070316

  14. Complete chloroplast genome sequences of Drimys, Liriodendron, andPiper: Implications for the phylogeny of magnoliids and the evolution ofGC content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhengqiu, C.; Penaflor, C.; Kuehl, J.V.

    2006-06-01

    The magnoliids represent the largest basal angiosperm clade with four orders, 19 families and 8,500 species. Although several recent angiosperm molecular phylogenies have supported the monophyly of magnoliids and suggested relationships among the orders, the limited number of genes examined resulted in only weak support, and these issues remain controversial. Furthermore, considerable incongruence has resulted in phylogenies supporting three different sets of relationships among magnoliids and the two large angiosperm clades, monocots and eudicots. This is one of the most important remaining issues concerning relationships among basal angiosperms. We sequenced the chloroplast genomes of three magnoliids, Drimys (Canellales), Liriodendron (Magnoliales),more » and Piper (Piperales), and used these data in combination with 32 other completed angiosperm chloroplast genomes to assess phylogenetic relationships among magnoliids. The Drimys and Piper chloroplast genomes are nearly identical in size at 160,606 and 160,624 bp, respectively. The genomes include a pair of inverted repeats of 26,649 bp (Drimys) and 27,039 (Piper), separated by a small single copy region of 18,621 (Drimys) and 18,878 (Piper) and a large single copy region of 88,685 bp (Drimys) and 87,666 bp (Piper). The gene order of both taxa is nearly identical to many other unrearranged angiosperm chloroplast genomes, including Calycanthus, the other published magnoliid genome. Comparisons of angiosperm chloroplast genomes indicate that GC content is not uniformly distributed across the genome. Overall GC content ranges from 34-39%, and coding regions have a substantially higher GC content than non-coding regions (both intergenic spacers and introns). Among protein-coding genes, GC content varies by codon position with 1st codon > 2nd codon > 3rd codon, and it varies by functional group with photosynthetic genes having the highest percentage and NADH genes the lowest. Across the genome, GC content is highest in the inverted repeat due to the presence of rRNA genes and lowest in the small single copy region where most NADH genes are located. Phylogenetic analyses using maximum parsimony and maximum likelihood methods were performed on DNA sequences of 61 protein-coding genes. Trees from both analyses provided strong support for the monophyly of magnoliids and two strongly supported groups were identified, the Canellales/Piperales and the Laurales/Magnoliales. The phylogenies also provided moderate to strong support for the basal position of Amborella, and a sister relationship of magnoliids to a clade that includes monocots and eudicots. The complete sequences of three magnoliid chloroplast genomes provide new data from the largest basal angiosperm clade. Evolutionary comparisons of these new genome sequences, combined with other published angiosperm genome, confirm that GC content is unevenly distributed across the genome by location, codon position, and functional group. Furthermore, phylogenetic analyses provide the strongest support so far for the hypothesis that the magnoliids are sister to a large clade that includes both monocots and eudicots.« less

  15. Maximum-Likelihood Detection Of Noncoherent CPM

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Simon, Marvin K.

    1993-01-01

    Simplified detectors proposed for use in maximum-likelihood-sequence detection of symbols in alphabet of size M transmitted by uncoded, full-response continuous phase modulation over radio channel with additive white Gaussian noise. Structures of receivers derived from particular interpretation of maximum-likelihood metrics. Receivers include front ends, structures of which depends only on M, analogous to those in receivers of coherent CPM. Parts of receivers following front ends have structures, complexity of which would depend on N.

  16. Cramer-Rao Bound, MUSIC, and Maximum Likelihood. Effects of Temporal Phase Difference

    DTIC Science & Technology

    1990-11-01

    Technical Report 1373 November 1990 Cramer-Rao Bound, MUSIC , And Maximum Likelihood Effects of Temporal Phase o Difference C. V. TranI OTIC Approved... MUSIC , and Maximum Likelihood (ML) asymptotic variances corresponding to the two-source direction-of-arrival estimation where sources were modeled as...1pI = 1.00, SNR = 20 dB ..................................... 27 2. MUSIC for two equipowered signals impinging on a 5-element ULA (a) IpI = 0.50, SNR

  17. Coalescent-Based Analyses of Genomic Sequence Data Provide a Robust Resolution of Phylogenetic Relationships among Major Groups of Gibbons

    PubMed Central

    Shi, Cheng-Min; Yang, Ziheng

    2018-01-01

    Abstract The phylogenetic relationships among extant gibbon species remain unresolved despite numerous efforts using morphological, behavorial, and genetic data and the sequencing of whole genomes. A major challenge in reconstructing the gibbon phylogeny is the radiative speciation process, which resulted in extremely short internal branches in the species phylogeny and extensive incomplete lineage sorting with extensive gene-tree heterogeneity across the genome. Here, we analyze two genomic-scale data sets, with ∼10,000 putative noncoding and exonic loci, respectively, to estimate the species tree for the major groups of gibbons. We used the Bayesian full-likelihood method bpp under the multispecies coalescent model, which naturally accommodates incomplete lineage sorting and uncertainties in the gene trees. For comparison, we included three heuristic coalescent-based methods (mp-est, SVDQuartets, and astral) as well as concatenation. From both data sets, we infer the phylogeny for the four extant gibbon genera to be (Hylobates, (Nomascus, (Hoolock, Symphalangus))). We used simulation guided by the real data to evaluate the accuracy of the methods used. Astral, while not as efficient as bpp, performed well in estimation of the species tree even in presence of excessive incomplete lineage sorting. Concatenation, mp-est and SVDQuartets were unreliable when the species tree contains very short internal branches. Likelihood ratio test of gene flow suggests a small amount of migration from Hylobates moloch to H. pileatus, while cross-genera migration is absent or rare. Our results highlight the utility of coalescent-based methods in addressing challenging species tree problems characterized by short internal branches and rampant gene tree-species tree discordance. PMID:29087487

  18. Phylogeny and active ingredients of artificial Ophiocordyceps lanpingensis ascomata

    NASA Astrophysics Data System (ADS)

    Chen, Zihong; Xu, Ling; Yu, Hong; Zeng, Wenbo; Dai, Yongdong; Wang, Yuanbing

    2018-04-01

    To evaluate the morphological character, phylogenesis and functional components of artificial Ophiocordyceps lanpingensis, a related species of O. sinensis. The ascomata of O. lanpingensis was induced with its asexual strain, HLANY0707 and its microscopic feature was described. Phylogenesis was analyzed with ITS-5.8S sequences of HLANY0707, its cultured stroma, and 39 relative sequences of Hirsutella and Ophiocordyceps based on the maximum likelihood tree. Six nucleosides of artificial O. lanpingensis, natural O. lanpingensis and natural O. sinensis were compared with HPLC analysis. Artificial ascomata of O. lanpingensis could be massively produced with HLANY0707 and had similar microscopic features as the nature specimens. Phylogenetic analysis showed that both the artificial and natural O. lanpingensis had closer relationship with O. sinensis, O. xuefengensis, H. uncinata and O. robertsii, the species whose massively cultured ascomata being not reported. Nucleosides of artificial O. lanpingensis were very similar to natural O. sinensis, implying a promising application prospect of artificial O. lanpingensis as an alternative to O. sinensis. It showed a promising way to develop artificial O. lanpingensis and conserve the rare and endangered species, O. sinensis.

  19. Molecular phylogeny of a genetically divergent hantavirus harbored by the Geoffroy's rousette (Rousettus amplexicaudatus), a frugivorous bat species in the Philippines.

    PubMed

    Arai, Satoru; Taniguchi, Satoshi; Aoki, Keita; Yoshikawa, Yasuhiro; Kyuwa, Shigeru; Tanaka-Taya, Keiko; Masangkay, Joseph S; Omatsu, Tsutomu; Puentespina, Roberto; Watanabe, Shumpei; Alviola, Phillip; Alvarez, James; Eres, Eduardo; Cosico, Edison; Quibod, Ma Niña Regina M; Morikawa, Shigeru; Yanagihara, Richard; Oishi, Kazunori

    2016-11-01

    The recent discovery of genetically distinct hantaviruses in multiple species of shrews and moles (order Eulipotyphla, families Soricidae and Talpidae) prompted a further exploration of their host diversification and geographic distribution by analyzing lung tissues from 376 fruit bats representing six genera (order Chiroptera, suborder Yinpterochiroptera, family Pteropodidae), collected in the Republic of the Philippines during 2008 to 2013. Hantavirus RNA was detected by RT-PCR in one of 15 Geoffroy's rousettes (Rousettus amplexicaudatus), captured in Quezon Memorial National Park on Luzon Island in 2009. Phylogenetic analyses of the S, M and L segments, using maximum-likelihood and Bayesian methods, showed that the newfound hantavirus, designated Quezon virus (QZNV), shared a common ancestry with hantaviruses hosted by insectivorous bats, in keeping with their evolutionary relationships and suggests that ancestral bats may have served as the early or original mammalian hosts of primordial hantaviruses. As the first hantavirus detected in a megabat or flying fox species, QZNV extends our knowledge about the reservoir host range. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Multi-locus phylogeny and divergence time estimates of Enallagma damselflies (Odonata: Coenagrionidae).

    PubMed

    Callahan, Melissa S; McPeek, Mark A

    2016-01-01

    Reconstructing evolutionary patterns of species and populations provides a framework for asking questions about the impacts of climate change. Here we use a multilocus dataset to estimate gene trees under maximum likelihood and Bayesian models to obtain a robust estimate of relationships for a genus of North American damselflies, Enallagma. Using a relaxed molecular clock, we estimate the divergence times for this group. Furthermore, to account for the fact that gene tree analyses can overestimate ages of population divergences, we use a multi-population coalescent model to gain a more accurate estimate of divergence times. We also infer diversification rates using a method that allows for variation in diversification rate through time and among lineages. Our results reveal a complex evolutionary history of Enallagma, in which divergence events both predate and occur during Pleistocene climate fluctuations. There is also evidence of diversification rate heterogeneity across the tree. These divergence time estimates provide a foundation for addressing the relative significance of historical climatic events in the diversification of this genus. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Christmas tree worms of Indo-Pacific coral reefs: untangling the Spirobranchus corniculatus (Grube, 1862) complex

    NASA Astrophysics Data System (ADS)

    Willette, Demian A.; Iñiguez, Abril R.; Kupriyanova, Elena K.; Starger, Craig J.; Varman, Tristan; Toha, Abdul Hamid; Maralit, Benedict A.; Barber, Paul H.

    2015-09-01

    Christmas tree worm is the common name of a group of colorful serpulid polychaetes from the genus Spirobranchus that are symbionts of hermatypic corals. As is increasingly common with reef-associated organisms, Spirobranchus is arranged as a complex of species with overlapping geographic ranges. Current species delimitations based largely on opercular morphology are problematic because of high intraspecific variation. Here, a multi-gene phylogeny of the Spirobranchus corniculatus complex, which tentatively includes S. corniculatus, S. cruciger, and S. gaymardi, sampled from the Coral Triangle, Australia, and Fiji, was reconstructed to test whether the complex includes three genetically distinct lineages identifiable by their opercula. Maximum-likelihood analyses of nuclear and mitochondrial markers revealed a single, monophyletic clade for the S. corniculatus complex. Furthermore, the genetic and morphological variation observed is not geographically based, indicating that the former S. corniculatus complex of three morphospecies is a single, morphologically variable species across the Central Indo-Pacific. Resolving the taxonomy of S. corniculatus presents novel opportunities to utilize this tentative bio-indicator species for monitoring reef health.

  2. Mitochondrial DNA variation and phylogenetic relationships among five tuna species based on sequencing of D-loop region.

    PubMed

    Kumar, Girish; Kocour, Martin; Kunal, Swaraj Priyaranjan

    2016-05-01

    In order to assess the DNA sequence variation and phylogenetic relationship among five tuna species (Auxis thazard, Euthynnus affinis, Katsuwonus pelamis, Thunnus tonggol, and T. albacares) out of all four tuna genera, partial sequences of the mitochondrial DNA (mtDNA) D-loop region were analyzed. The estimate of intra-specific sequence variation in studied species was low, ranging from 0.027 to 0.080 [Kimura's two parameter distance (K2P)], whereas values of inter-specific variation ranged from 0.049 to 0.491. The longtail tuna (T. tonggol) and yellowfin tuna (T. albacares) were found to share a close relationship (K2P = 0.049) while skipjack tuna (K. pelamis) was most divergent studied species. Phylogenetic analysis using Maximum-Likelihood (ML) and Neighbor-Joining (NJ) methods supported the monophyletic origin of Thunnus species. Similarly, phylogeny of Auxis and Euthynnus species substantiate the monophyly. However, results showed a distinct origin of K. pelamis from genus Thunnus as well as Auxis and Euthynnus. Thus, the mtDNA D-loop region sequence data supports the polyphyletic origin of tuna species.

  3. The first complete mitochondrial genome of Dacus longicornis (Diptera: Tephritidae) using next-generation sequencing and mitochondrial genome phylogeny of Dacini tribe

    PubMed Central

    Jiang, Fan; Pan, Xubin; Li, Xuankun; Yu, Yanxue; Zhang, Junhua; Jiang, Hongshan; Dou, Liduo; Zhu, Shuifang

    2016-01-01

    The genus Dacus is one of the most economically important tephritid fruit flies. The first complete mitochondrial genome (mitogenome) of Dacus species – D. longicornis was sequenced by next-generation sequencing in order to develop the mitogenome data for this genus. The circular 16,253 bp mitogenome is the typical set and arrangement of 37 genes present in the ancestral insect. The mitogenome data of D. longicornis was compared to all the published homologous sequences of other tephritid species. We discovered the subgenera Bactrocera, Daculus and Tetradacus differed from the subgenus Zeugodacus, the genera Dacus, Ceratitis and Procecidochares in the possession of TA instead of TAA stop codon for COI gene. There is a possibility that the TA stop codon in COI is the synapomorphy in Bactrocera group in the genus Bactrocera comparing with other Tephritidae species. Phylogenetic analyses based on the mitogenome data from Tephritidae were inferred by Bayesian and Maximum-likelihood methods, strongly supported the sister relationship between Zeugodacus and Dacus. PMID:27812024

  4. Complete mitochondrial genome of the stonefly Cryptoperla stilifera Sivec (Plecoptera: Peltoperlidae) and the phylogeny of Polyneopteran insects.

    PubMed

    Wu, Hai-Yan; Ji, Xiao-Yu; Yu, Wei-Wei; Du, Yu-Zhou

    2014-03-10

    We present the complete mitogenome of a stonefly, Cryptoperla stilifera Sivec (Plecoptera; Peltoperlidae). The mitogenome was a circular molecule consisting of 15,633 nucleotides, 37 genes and a A+T-rich region. C. stilifera mitogenome was similar to Pteronarcys princeps mitogenome (Plecoptera; Pteronarcyidae). All transfer RNA genes (tRNAs) had typical cloverleaf secondary structures except for trnSer (AGN), where the stem-loop structure of the dihydrouridine (DHU) arm was missing. The A+T-rich region of C. stilifera had two stem-loops and each had two interlink. Three conserved sequence blocks (CSBs) were present in the A+T-rich regions of C. stilifera, Peltoperla tarteri and Peltoperla arcuata. Moreover, many polynucleotide stretches (Poly N, N=A, T and C) in the A+T-rich region of C. stilifera Phylogenetic relationships of Polyneopteran species were constructed based on the nucleotide sequences of 13 protein coding genes (PCGs). Both maximum likelihood (ML) and Bayesian inference (BI) analyses supported Grylloblattodea as the sister group to Plecoptera+Dermaptera and Embiidina and Phasmatodea as sister groups. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data.

    PubMed

    Lee, Tae-Ho; Guo, Hui; Wang, Xiyin; Kim, Changsoo; Paterson, Andrew H

    2014-02-26

    Phylogenetic trees are widely used for genetic and evolutionary studies in various organisms. Advanced sequencing technology has dramatically enriched data available for constructing phylogenetic trees based on single nucleotide polymorphisms (SNPs). However, massive SNP data makes it difficult to perform reliable analysis, and there has been no ready-to-use pipeline to generate phylogenetic trees from these data. We developed a new pipeline, SNPhylo, to construct phylogenetic trees based on large SNP datasets. The pipeline may enable users to construct a phylogenetic tree from three representative SNP data file formats. In addition, in order to increase reliability of a tree, the pipeline has steps such as removing low quality data and considering linkage disequilibrium. A maximum likelihood method for the inference of phylogeny is also adopted in generation of a tree in our pipeline. Using SNPhylo, users can easily produce a reliable phylogenetic tree from a large SNP data file. Thus, this pipeline can help a researcher focus more on interpretation of the results of analysis of voluminous data sets, rather than manipulations necessary to accomplish the analysis.

  6. Defining the phylogenetic position of Amanita species from Andean Colombia.

    PubMed

    Vargas, Natalia; Pardo-de La Hoz, Carlos José; Danies, Giovanna; Franco-Molano, Ana Esperanza; Jiménez, Pedro; Restrepo, Silvia; Grajales, Alejandro

    2017-01-01

    Amanita is a worldwide-distributed fungal genus, with approximately 600 known species. Most species within the genus are ectomycorrhizal (ECM), with some saprotrophic representatives. In this study, we constructed the first comprehensive phylogeny including ECM species from Colombia collected in native Quercus humboldtii forests and in introduced Pinus patula plantations. We included 8 species (A. brunneolocularis, A. colombiana, A. flavoconia, A. fuligineodisca, A. muscaria, A. rubescens, A. sororcula, and A. xylinivolva) out of 16 species reported for the country, two new reports: A. citrina and A. virosa, and a new variety A. brunneolocularis var. pallida. Morphological taxonomic keys together with a phylogenetic approach using three nuclear gene regions: partial nuc rDNA 28S nuc rDNA internal transcribed spacers ITS1 and ITS2 and partial translation elongation factor 1-α gene (TEF1), were used to classify the specimens. Several highly supported clades were obtained from the phylogenetic hypotheses obtained by Bayesian inference and maximum likelihood approaches, allowing us to position the Colombian collections in a coherent infrageneric level and to contribute to the knowledge of local Amanita diversity.

  7. bcgTree: automatized phylogenetic tree building from bacterial core genomes.

    PubMed

    Ankenbrand, Markus J; Keller, Alexander

    2016-10-01

    The need for multi-gene analyses in scientific fields such as phylogenetics and DNA barcoding has increased in recent years. In particular, these approaches are increasingly important for differentiating bacterial species, where reliance on the standard 16S rDNA marker can result in poor resolution. Additionally, the assembly of bacterial genomes has become a standard task due to advances in next-generation sequencing technologies. We created a bioinformatic pipeline, bcgTree, which uses assembled bacterial genomes either from databases or own sequencing results from the user to reconstruct their phylogenetic history. The pipeline automatically extracts 107 essential single-copy core genes, found in a majority of bacteria, using hidden Markov models and performs a partitioned maximum-likelihood analysis. Here, we describe the workflow of bcgTree and, as a proof-of-concept, its usefulness in resolving the phylogeny of 293 publically available bacterial strains of the genus Lactobacillus. We also evaluate its performance in both low- and high-level taxonomy test sets. The tool is freely available at github ( https://github.com/iimog/bcgTree ) and our institutional homepage ( http://www.dna-analytics.biozentrum.uni-wuerzburg.de ).

  8. Stochastic control system parameter identifiability

    NASA Technical Reports Server (NTRS)

    Lee, C. H.; Herget, C. J.

    1975-01-01

    The parameter identification problem of general discrete time, nonlinear, multiple input/multiple output dynamic systems with Gaussian white distributed measurement errors is considered. The knowledge of the system parameterization was assumed to be known. Concepts of local parameter identifiability and local constrained maximum likelihood parameter identifiability were established. A set of sufficient conditions for the existence of a region of parameter identifiability was derived. A computation procedure employing interval arithmetic was provided for finding the regions of parameter identifiability. If the vector of the true parameters is locally constrained maximum likelihood (CML) identifiable, then with probability one, the vector of true parameters is a unique maximal point of the maximum likelihood function in the region of parameter identifiability and the constrained maximum likelihood estimation sequence will converge to the vector of true parameters.

  9. Timing and Order of Transmission Events Is Not Directly Reflected in a Pathogen Phylogeny

    PubMed Central

    Romero-Severson, Ethan; Skar, Helena; Bulla, Ingo; Albert, Jan; Leitner, Thomas

    2014-01-01

    Pathogen phylogenies are often used to infer spread among hosts. There is, however, not an exact match between the pathogen phylogeny and the host transmission history. Here, we examine in detail the limitations of this relationship. First, all splits in a pathogen phylogeny of more than 1 host occur within hosts, not at the moment of transmission, predating the transmission events as described by the pretransmission interval. Second, the order in which nodes in a phylogeny occur may be reflective of the within-host dynamics rather than epidemiologic relationships. To investigate these phenomena, motivated by within-host diversity patterns, we developed a two-phase coalescent model that includes a transmission bottleneck followed by linear outgrowth to a maximum population size followed by either stabilization or decline of the population. The model predicts that the pretransmission interval shrinks compared with predictions based on constant population size or a simple transmission bottleneck. Because lineages coalesce faster in a small population, the probability of a pathogen phylogeny to resemble the transmission history depends on when after infection a donor transmits to a new host. We also show that the probability of inferring the incorrect order of multiple transmissions from the same host is high. Finally, we compare time of HIV-1 infection informed by genetic distances in phylogenies to independent biomarker data, and show that, indeed, the pretransmission interval biases phylogeny-based estimates of when transmissions occurred. We describe situations where caution is needed not to misinterpret which parts of a phylogeny that may indicate outbreaks and tight transmission clusters. PMID:24874208

  10. A general methodology for maximum likelihood inference from band-recovery data

    USGS Publications Warehouse

    Conroy, M.J.; Williams, B.K.

    1984-01-01

    A numerical procedure is described for obtaining maximum likelihood estimates and associated maximum likelihood inference from band- recovery data. The method is used to illustrate previously developed one-age-class band-recovery models, and is extended to new models, including the analysis with a covariate for survival rates and variable-time-period recovery models. Extensions to R-age-class band- recovery, mark-recapture models, and twice-yearly marking are discussed. A FORTRAN program provides computations for these models.

  11. Why do morphological phylogenies vary in quality? An investigation based on the comparative history of lizard clades.

    PubMed

    Arnold, E N

    1990-05-22

    Phylogenies based on morphology vary considerably in their quality: some are robust and explicit with little conflict in the data set, whereas others are far more tenuous, with much conflict and many possible alternatives. The main primary reasons for untrue or inexplicit morphological phylogenies are: not enough characters developed between branching points, uncertain character polarity, poorly differentiated character states, homoplasy caused by parallelism or reversal, and extinction, which may remove species entirely from consideration and can make originally conflicting data sets misleadingly compatible, increasing congruence at the expense of truth. Extinction differs from other confounding factors in not being apparent either in the data set or in subsequent analysis. One possibility is that variation in the quality of morphological phylogenies has resulted from exposure to different ecological situations. To investigate this, it is necessary to compare the histories of the clades concerned. In the case of explicit morphological phylogenies, ecological and behavioural data can be integrated with them and it may then be possible to decide whether morphological characters are likely to have been elicited by the environments through which the clade has passed. The credibility of such results depends not only on the phylogeny being robust but also on its detailed topology: a pectinate phylogeny will often allow more certain and more explicit statements to be made about historical events. In the case of poor phylogenies, it is not possible to produce detailed histories, but they can be compared with robust phylogenies in the range of ecological situations occupied, and whether they occupy novel situations in comparison with their outgroups. LeQuesne testing can give information about niche homoplasy, and it may also be possible to see if morphological features are functionally associated with ecological parameters, even if the direction of change is unknown. Examination of the robust and explicit phylogeny of the semaphore geckoes (Pristurus) suggests that its quality does stem from a variety of environmental factors. The group has progressed along an ecological continuum, passing through a series of increasingly severe niches that appear to have elicited many morphological changes. The fact that niches are progressively filled reduces the likelihood of species reinvading a previous one with related character reversal. Because the niches of advanced Pristurus are virtually unique within the Gekkonidae the morphological changes produced are also very rare and therefore easy to polarize. Ecological changes on the main stem of the phylogeny are abrupt and associated character states consequently well differentiated.(ABSTRACT TRUNCATED AT 400 WORDS)

  12. An iterative procedure for obtaining maximum-likelihood estimates of the parameters for a mixture of normal distributions

    NASA Technical Reports Server (NTRS)

    Peters, B. C., Jr.; Walker, H. F.

    1978-01-01

    This paper addresses the problem of obtaining numerically maximum-likelihood estimates of the parameters for a mixture of normal distributions. In recent literature, a certain successive-approximations procedure, based on the likelihood equations, was shown empirically to be effective in numerically approximating such maximum-likelihood estimates; however, the reliability of this procedure was not established theoretically. Here, we introduce a general iterative procedure, of the generalized steepest-ascent (deflected-gradient) type, which is just the procedure known in the literature when the step-size is taken to be 1. We show that, with probability 1 as the sample size grows large, this procedure converges locally to the strongly consistent maximum-likelihood estimate whenever the step-size lies between 0 and 2. We also show that the step-size which yields optimal local convergence rates for large samples is determined in a sense by the 'separation' of the component normal densities and is bounded below by a number between 1 and 2.

  13. An iterative procedure for obtaining maximum-likelihood estimates of the parameters for a mixture of normal distributions, 2

    NASA Technical Reports Server (NTRS)

    Peters, B. C., Jr.; Walker, H. F.

    1976-01-01

    The problem of obtaining numerically maximum likelihood estimates of the parameters for a mixture of normal distributions is addressed. In recent literature, a certain successive approximations procedure, based on the likelihood equations, is shown empirically to be effective in numerically approximating such maximum-likelihood estimates; however, the reliability of this procedure was not established theoretically. Here, a general iterative procedure is introduced, of the generalized steepest-ascent (deflected-gradient) type, which is just the procedure known in the literature when the step-size is taken to be 1. With probability 1 as the sample size grows large, it is shown that this procedure converges locally to the strongly consistent maximum-likelihood estimate whenever the step-size lies between 0 and 2. The step-size which yields optimal local convergence rates for large samples is determined in a sense by the separation of the component normal densities and is bounded below by a number between 1 and 2.

  14. Multimodal Likelihoods in Educational Assessment: Will the Real Maximum Likelihood Score Please Stand up?

    ERIC Educational Resources Information Center

    Wothke, Werner; Burket, George; Chen, Li-Sue; Gao, Furong; Shu, Lianghua; Chia, Mike

    2011-01-01

    It has been known for some time that item response theory (IRT) models may exhibit a likelihood function of a respondent's ability which may have multiple modes, flat modes, or both. These conditions, often associated with guessing of multiple-choice (MC) questions, can introduce uncertainty and bias to ability estimation by maximum likelihood…

  15. Sex and the Catasetinae (Darwin's favourite orchids).

    PubMed

    Pérez-Escobar, Oscar Alejandro; Gottschling, Marc; Whitten, W Mark; Salazar, Gerardo; Gerlach, Günter

    2016-04-01

    Two sexual systems are predominant in Catasetinae (Orchidaceae), namely protandry (which has evolved in other orchid lineages as well) and environmental sex determination (ESD) being a unique trait among Orchidaceae. Yet, the lack of a robust phylogenetic framework for Catasetinae has hampered deeper insights in origin and evolution of sexual systems. To investigate the origins of protandry and ESD in Catasetinae, we sequenced nuclear and chloroplast loci from 77 species, providing the most extensive data matrix of Catasetinae available so far with all major lineages represented. We used Maximum Parsimony, Maximum Likelihood and Bayesian methods to infer phylogenetic relationships and evolution of sexual systems. Irrespectively of the methods used, Catasetinae were monophyletic in molecular phylogenies, with all established generic lineages and their relationships resolved and highly supported. According to comparative reconstruction approaches, the last common ancestor of Catasetinae was inferred as having bisexual flowers (i.e., lacking protandry and ESD as well), and protandry originated once in core Catasetinae (comprising Catasetum, Clowesia, Cycnoches, Dressleria and Mormodes). In addition, three independent gains of ESD are reliably inferred, linked to corresponding loss of protandry within core Catasetinae. Thus, prior gain of protandry appears as the necessary prerequisite for gain of ESD in orchids. Our results contribute to a comprehensive evolutionary scenario for sexual systems in Catasetinae and more generally in orchids as well. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Long-Term, Low-Frequency Cluster of a German-Imipenemase-1-Producing Enterobacter hormaechei ssp. steigerwaltii ST89 in a Tertiary Care Hospital in Germany.

    PubMed

    Wendel, Andreas F; Meyer, Sebastian; Deenen, René; Köhrer, Karl; Kolbe-Busch, Susanne; Pfeffer, Klaus; Willmann, Matthias; Kaasch, Achim J; MacKenzie, Colin R

    2018-05-11

    Enterobacter cloacae complex is a common cause of hospital outbreaks. A retrospective and prospective molecular analysis of carbapenem-resistant clinical isolates in a tertiary care center demonstrated an outbreak of a German-imipenemase-1 (GIM-1) metallo-beta-lactamase-producing Enterobacter hormaechei ssp. steigerwaltii affecting 23 patients between 2009 and 2016. Thirty-three isolates were sequence type 89 by conventional multilocus sequence typing (MLST) and displayed a maximum difference of 49 out of 3,643 targets in the ad-hoc core-genome MLST (cgMLST) scheme (SeqSphere+ software; Ridom, Münster, Germany). The relatedness of all isolates was confirmed by further maximum-likelihood phylogeny. One clonal complex of highly related isolates (≤15 allele difference in cgMLST) contained 17 patients, but epidemiological data only suggested five transmission events. The bla GIM-1 -gene was embedded in a class-1-integron (In770) and the Tn21-subgroup transposon Tn6216 (KC511628) on a 25-kb plasmid. Environmental screening detected one colonized sink trap in a service room. The outbreak was self-limited as no further bla GIM-1 -positive E. hormaechei has been isolated since 2016. Routine molecular screening of carbapenem-nonsusceptible gram-negative isolates detected a long-term, low-frequency outbreak of a GIM-1-producing E. hormaechei ssp. steigerwaltii clone. This highlights the necessity of molecular surveillance.

  17. Paleogene Radiation of a Plant Pathogenic Mushroom

    PubMed Central

    Coetzee, Martin P. A.; Bloomer, Paulette; Wingfield, Michael J.; Wingfield, Brenda D.

    2011-01-01

    Background The global movement and speciation of fungal plant pathogens is important, especially because of the economic losses they cause and the ease with which they are able to spread across large areas. Understanding the biogeography and origin of these plant pathogens can provide insights regarding their dispersal and current day distribution. We tested the hypothesis of a Gondwanan origin of the plant pathogenic mushroom genus Armillaria and the currently accepted premise that vicariance accounts for the extant distribution of the species. Methods The phylogeny of a selection of Armillaria species was reconstructed based on Maximum Parsimony (MP), Maximum Likelihood (ML) and Bayesian Inference (BI). A timeline was then placed on the divergence of lineages using a Bayesian relaxed molecular clock approach. Results Phylogenetic analyses of sequenced data for three combined nuclear regions provided strong support for three major geographically defined clades: Holarctic, South American-Australasian and African. Molecular dating placed the initial radiation of the genus at 54 million years ago within the Early Paleogene, postdating the tectonic break-up of Gondwana. Conclusions The distribution of extant Armillaria species is the result of ancient long-distance dispersal rather than vicariance due to continental drift. As these finding are contrary to most prior vicariance hypotheses for fungi, our results highlight the important role of long-distance dispersal in the radiation of fungal pathogens from the Southern Hemisphere. PMID:22216099

  18. Identification, Classification, and Phylogeny of the Pathogenic Species Exophiala jeanselmei and Related Species by Mitochondrial Cytochrome b Gene Analysis

    PubMed Central

    Wang, Li; Yokoyama, Koji; Miyaji, Makoto; Nishimura, Kazuko

    2001-01-01

    We analyzed a 402-bp sequence of the mitochondrial cytochrome b gene of 34 strains of Exophiala jeanselmei and 16 strains representing 12 related species. The strains of E. jeanselmei were classified into 20 DNA types and 17 amino acid types. The differences between these strains were found in 1 to 60 nucleotides and 1 to 17 amino acids. On the basis of the identities and similarities of nucleotide and amino acid sequences, some strains were reidentified: i.e., two strains of E. jeanselmei var. hetermorpha and one strain of E. castellanii as E. dermatitidis (including the type strain), three strains of E. jeanselmei as E. jeanselmei var. lecanii-corni (including the type strain), three strains of E. jeanselmei as E. bergeri (including the type strain), seven strains of E. jeanselmei as E. pisciphila (including the type strain), seven strains of E. jeanselmei as E. jeanselmei var. jeanselmei (including the type strain), one strain of E. jeanselmei as Fonsecaea pedrosoi (including the type strain), and one strain of E. jeanselmei as E. spinifera (including the type strain). Some E. jeanselmei strains showed distinct nucleotide and amino acid sequences. The amino-acid-based UPGMA (unweighted pair group method with the arithmetic mean) tree exhibited nearly the same topology as those of the DNA-based trees obtained by neighbor joining, maximum parsimony, and maximum likelihood methods. PMID:11724862

  19. Molecular and morphological data reveal non-monophyly and speciation in imperiled freshwater mussels (Anodontoides and Strophitus)

    USGS Publications Warehouse

    Smith, Chase; Johnson, Nathan A.; Pfeiffer, John M.; Gangloff, Michael M.

    2018-01-01

    Accurate taxonomic placement is vital to conservation efforts considering many intrinsic biological characteristics of understudied species are inferred from closely related taxa. The rayed creekshell, Anodontoides radiatus (Conrad, 1834), exists in the Gulf of Mexico drainages from western Florida to Louisiana and has been petitioned for listing under the Endangered Species Act. We set out to resolve the evolutionary history of A. radiatus, primarily generic placement and species boundaries, using phylogenetic, morphometric, and geographic information. Our molecular matrix contained 3 loci: cytochrome c oxidase subunit I, NADH dehydrogenase subunit I, and the nuclear-encoded ribosomal internal transcribed spacer I. We employed maximum likelihood and Bayesian inference to estimate a phylogeny and test the monophyly of Anodontoides and Strophitus. We implemented two coalescent-based species delimitation models to test seven species models and evaluate species boundaries within A. radiatus. Concomitant to molecular data, we also employed linear morphometrics and geographic information to further evaluate species boundaries. Molecular and morphological evidence supports the inclusion of A. radiatus in the genus Strophitus, and we resurrect the binomial Strophitus radiatus to reflect their shared common ancestry. We also found strong support for polyphyly in Strophitus and advocate the resurrection of the genus Pseudodontoideus to represent ‘Strophitus’ connasaugaensis and ‘Strophitus’ subvexus. Strophitus radiatus exists in six well-supported clades that were distinguished as evolutionary independent lineages using Bayesian inference, maximum likelihood, and coalescent-based species delimitation models. Our integrative approach found evidence for as many as 4 evolutionary divergent clades within S. radiatus. Therefore, we formally describe two new species from the S. radiatus species complex (Strophitus williamsi and Strophitus pascagoulaensis) and recognize the potential for a third putative species (Strophitus sp. cf. pascagoulaensis). Our findings aid stakeholders in establishing conservation and management strategies for the members of Anodontoides, Strophitus, and Pseudodontoideus.

  20. Phylogeny and Evolutionary Patterns in the Dwarf Crayfish Subfamily (Decapoda: Cambarellinae)

    PubMed Central

    Pedraza-Lara, Carlos; Doadrio, Ignacio; Breinholt, Jesse W.; Crandall, Keith A.

    2012-01-01

    The Dwarf crayfish or Cambarellinae, is a morphologically singular subfamily of decapod crustaceans that contains only one genus, Cambarellus. Its intriguing distribution, along the river basins of the Gulf Coast of United States (Gulf Group) and into Central México (Mexican Group), has until now lacked of satisfactory explanation. This study provides a comprehensive sampling of most of the extant species of Cambarellus and sheds light on its evolutionary history, systematics and biogeography. We tested the impact of Gulf Group versus Mexican Group geography on rates of cladogenesis using a maximum likelihood framework, testing different models of birth/extinction of lineages. We propose a comprehensive phylogenetic hypothesis for the subfamily based on mitochondrial and nuclear loci (3,833 bp) using Bayesian and Maximum Likelihood methods. The phylogenetic structure found two phylogenetic groups associated to the two main geographic components (Gulf Group and Mexican Group) and is partially consistent with the historical structure of river basins. The previous hypothesis, which divided the genus into three subgenera based on genitalia morphology was only partially supported (P = 0.047), resulting in a paraphyletic subgenus Pandicambarus. We found at least two cases in which phylogenetic structure failed to recover monophyly of recognized species while detecting several cases of cryptic diversity, corresponding to lineages not assigned to any described species. Cladogenetic patterns in the entire subfamily are better explained by an allopatric model of speciation. Diversification analyses showed similar cladogenesis patterns between both groups and did not significantly differ from the constant rate models. While cladogenesis in the Gulf Group is coincident in time with changes in the sea levels, in the Mexican Group, cladogenesis is congruent with the formation of the Trans-Mexican Volcanic Belt. Our results show how similar allopatric divergence in freshwater organisms can be promoted through diverse vicariant factors. PMID:23155379

  1. Estimating the Effect of Competition on Trait Evolution Using Maximum Likelihood Inference.

    PubMed

    Drury, Jonathan; Clavel, Julien; Manceau, Marc; Morlon, Hélène

    2016-07-01

    Many classical ecological and evolutionary theoretical frameworks posit that competition between species is an important selective force. For example, in adaptive radiations, resource competition between evolving lineages plays a role in driving phenotypic diversification and exploration of novel ecological space. Nevertheless, current models of trait evolution fit to phylogenies and comparative data sets are not designed to incorporate the effect of competition. The most advanced models in this direction are diversity-dependent models where evolutionary rates depend on lineage diversity. However, these models still treat changes in traits in one branch as independent of the value of traits on other branches, thus ignoring the effect of species similarity on trait evolution. Here, we consider a model where the evolutionary dynamics of traits involved in interspecific interactions are influenced by species similarity in trait values and where we can specify which lineages are in sympatry. We develop a maximum likelihood based approach to fit this model to combined phylogenetic and phenotypic data. Using simulations, we demonstrate that the approach accurately estimates the simulated parameter values across a broad range of parameter space. Additionally, we develop tools for specifying the biogeographic context in which trait evolution occurs. In order to compare models, we also apply these biogeographic methods to specify which lineages interact sympatrically for two diversity-dependent models. Finally, we fit these various models to morphological data from a classical adaptive radiation (Greater Antillean Anolis lizards). We show that models that account for competition and geography perform better than other models. The matching competition model is an important new tool for studying the influence of interspecific interactions, in particular competition, on phenotypic evolution. More generally, it constitutes a step toward a better integration of interspecific interactions in many ecological and evolutionary processes. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. The evolutionary history of Eugenia sect. Phyllocalyx (Myrtaceae) corroborates historically stable areas in the southern Atlantic forests

    PubMed Central

    de Oliveira Bünger, Mariana; Fernanda Mazine, Fiorella; Forest, Félix; Leandro Bueno, Marcelo; Renato Stehmann, João; Lucas, Eve J.

    2016-01-01

    Background and Aims Eugenia sect. Phyllocalyx Nied. includes 14 species endemic to the Neotropics, mostly distributed in the Atlantic coastal forests of Brazil. Here the first comprehensive phylogenetic study of this group is presented, and this phylogeny is used as the basis to evaluate the recent infrageneric classification in Eugenia sensu lato (s.l.) to test the history of the evolution of traits in the group and test hypotheses associated with the history of this clade. Methods A total of 42 taxa were sampled, of which 14 were Eugenia sect. Phyllocalyx for one nuclear (ribosomal internal transcribed spacer) and four plastid markers (psbA-trnH, rpl16, trnL-rpl32 and trnQ-rps16). The relationships were reconstructed based on Bayesian analysis and maximum likelihood. Additionally, ancestral area analysis and modelling methods were used to estimate species dispersal, comparing historically climatic stable (refuges) and unstable areas. Key Results Maximum likelihood and Bayesian inferences indicate that Eugenia sect. Phyllocalyx is paraphyletic and the two clades recovered are characterized by combinations of morphological characters. Phylogenetic relationships support a link between Cerrado and south-eastern species and a difference in the composition of species from north-eastern and south-eastern Atlantic forest. Refugia and stable areas identified within unstable areas suggest that these areas were important to maintain diversity in the Atlantic forest biodiversity hotspot. Conclusion This study provides a robust phylogenetic framework to address important historical questions for Eugenia s.l. within an evolutionary context, supporting the need for better taxonomic study of one of the largest genera in the Neotropics. Furthermore, valuable insight is offered into diversification and biome shifts of plant species in the highly environmentally impacted Atlantic forest of South America. Evidence is presented that climate stability in the south-eastern Atlantic forest during the Quaternary contributed to the highest levels of plant diversity in this region that acted as a refugium. PMID:27974324

  3. Chloroplast phylogenomic analysis resolves deep-level relationships within the green algal class Trebouxiophyceae.

    PubMed

    Lemieux, Claude; Otis, Christian; Turmel, Monique

    2014-10-01

    The green algae represent one of the most successful groups of photosynthetic eukaryotes, but compared to their land plant relatives, surprisingly little is known about their evolutionary history. This is in great part due to the difficulty of recognizing species diversity behind morphologically similar organisms. The Trebouxiophyceae is a species-rich class of the Chlorophyta that includes symbionts (e.g. lichenized algae) as well as free-living green algae. Members of this group display remarkable ecological variation, occurring in aquatic, terrestrial and aeroterrestrial environments. Because a reliable backbone phylogeny is essential to understand the evolutionary history of the Trebouxiophyceae, we sought to identify the relationships among the major trebouxiophycean lineages that have been previously recognized in nuclear-encoded 18S rRNA phylogenies. To this end, we used a chloroplast phylogenomic approach. We determined the sequences of 29 chlorophyte chloroplast genomes and assembled amino acid and nucleotide data sets derived from 79 chloroplast genes of 61 chlorophytes, including 35 trebouxiophyceans. The amino acid- and nucleotide-based phylogenies inferred using maximum likelihood and Bayesian methods and various models of sequence evolution revealed essentially the same relationships for the trebouxiophyceans. Two major groups were identified: a strongly supported clade of 29 taxa (core trebouxiophyceans) that is sister to the Chlorophyceae + Ulvophyceae and a clade comprising the Chlorellales and Pedinophyceae that represents a basal divergence relative to the former group. The core trebouxiophyceans form a grade of strongly supported clades that include a novel lineage represented by the desert crust alga Pleurastrosarcina brevispinosa. The assemblage composed of the Oocystis and Geminella clades is the deepest divergence of the core trebouxiophyceans. Like most of the chlorellaleans, early-diverging core trebouxiophyceans are predominantly planktonic species, whereas core trebouxiophyceans occupying more derived lineages are mostly terrestrial or aeroterrestrial algae. Our phylogenomic study provides a solid foundation for addressing fundamental questions related to the biology and ecology of the Trebouxiophyceae. The inferred trees reveal that this class is not monophyletic; they offer new insights not only into the internal structure of the class but also into the lifestyle of its founding members and subsequent adaptations to changing environments.

  4. Asymptotic Properties of Induced Maximum Likelihood Estimates of Nonlinear Models for Item Response Variables: The Finite-Generic-Item-Pool Case.

    ERIC Educational Resources Information Center

    Jones, Douglas H.

    The progress of modern mental test theory depends very much on the techniques of maximum likelihood estimation, and many popular applications make use of likelihoods induced by logistic item response models. While, in reality, item responses are nonreplicate within a single examinee and the logistic models are only ideal, practitioners make…

  5. Bias Correction for the Maximum Likelihood Estimate of Ability. Research Report. ETS RR-05-15

    ERIC Educational Resources Information Center

    Zhang, Jinming

    2005-01-01

    Lord's bias function and the weighted likelihood estimation method are effective in reducing the bias of the maximum likelihood estimate of an examinee's ability under the assumption that the true item parameters are known. This paper presents simulation studies to determine the effectiveness of these two methods in reducing the bias when the item…

  6. Estimating parameter of Rayleigh distribution by using Maximum Likelihood method and Bayes method

    NASA Astrophysics Data System (ADS)

    Ardianti, Fitri; Sutarman

    2018-01-01

    In this paper, we use Maximum Likelihood estimation and Bayes method under some risk function to estimate parameter of Rayleigh distribution to know the best method. The prior knowledge which used in Bayes method is Jeffrey’s non-informative prior. Maximum likelihood estimation and Bayes method under precautionary loss function, entropy loss function, loss function-L 1 will be compared. We compare these methods by bias and MSE value using R program. After that, the result will be displayed in tables to facilitate the comparisons.

  7. On simulated annealing phase transitions in phylogeny reconstruction.

    PubMed

    Strobl, Maximilian A R; Barker, Daniel

    2016-08-01

    Phylogeny reconstruction with global criteria is NP-complete or NP-hard, hence in general requires a heuristic search. We investigate the powerful, physically inspired, general-purpose heuristic simulated annealing, applied to phylogeny reconstruction. Simulated annealing mimics the physical process of annealing, where a liquid is gently cooled to form a crystal. During the search, periods of elevated specific heat occur, analogous to physical phase transitions. These simulated annealing phase transitions play a crucial role in the outcome of the search. Nevertheless, they have received comparably little attention, for phylogeny or other optimisation problems. We analyse simulated annealing phase transitions during searches for the optimal phylogenetic tree for 34 real-world multiple alignments. In the same way in which melting temperatures differ between materials, we observe distinct specific heat profiles for each input file. We propose this reflects differences in the search landscape and can serve as a measure for problem difficulty and for suitability of the algorithm's parameters. We discuss application in algorithmic optimisation and as a diagnostic to assess parameterisation before computationally costly, large phylogeny reconstructions are launched. Whilst the focus here lies on phylogeny reconstruction under maximum parsimony, it is plausible that our results are more widely applicable to optimisation procedures in science and industry. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Plant DNA barcodes and assessment of phylogenetic community structure of a tropical mixed dipterocarp forest in Brunei Darussalam (Borneo)

    PubMed Central

    Abu Salim, Kamariah; Chase, Mark W.; Dexter, Kyle G.; Pennington, R. Toby; Tan, Sylvester; Kaye, Maria Ellen; Samuel, Rosabelle

    2017-01-01

    DNA barcoding is a fast and reliable tool to assess and monitor biodiversity and, via community phylogenetics, to investigate ecological and evolutionary processes that may be responsible for the community structure of forests. In this study, DNA barcodes for the two widely used plastid coding regions rbcL and matK are used to contribute to identification of morphologically undetermined individuals, as well as to investigate phylogenetic structure of tree communities in 70 subplots (10 × 10m) of a 25-ha forest-dynamics plot in Brunei (Borneo, Southeast Asia). The combined matrix (rbcL + matK) comprised 555 haplotypes (from ≥154 genera, 68 families and 25 orders sensu APG, Angiosperm Phylogeny Group, 2016), making a substantial contribution to tree barcode sequences from Southeast Asia. Barcode sequences were used to reconstruct phylogenetic relationships using maximum likelihood, both with and without constraining the topology of taxonomic orders to match that proposed by the Angiosperm Phylogeny Group. A third phylogenetic tree was reconstructed using the program Phylomatic to investigate the influence of phylogenetic resolution on results. Detection of non-random patterns of community assembly was determined by net relatedness index (NRI) and nearest taxon index (NTI). In most cases, community assembly was either random or phylogenetically clustered, which likely indicates the importance to community structure of habitat filtering based on phylogenetically correlated traits in determining community structure. Different phylogenetic trees gave similar overall results, but the Phylomatic tree produced greater variation across plots for NRI and NTI values, presumably due to noise introduced by using an unresolved phylogenetic tree. Our results suggest that using a DNA barcode tree has benefits over the traditionally used Phylomatic approach by increasing precision and accuracy and allowing the incorporation of taxonomically unidentified individuals into analyses. PMID:29049301

  9. Convergent, Parallel and Correlated Evolution of Trophic Morphologies in the Subfamily Schizothoracinae from the Qinghai-Tibetan Plateau

    PubMed Central

    Qi, Delin; Chao, Yan; Guo, Songchang; Zhao, Lanying; Li, Taiping; Wei, Fulei; Zhao, Xinquan

    2012-01-01

    Schizothoracine fishes distributed in the water system of the Qinghai-Tibetan plateau (QTP) and adjacent areas are characterized by being highly adaptive to the cold and hypoxic environment of the plateau, as well as by a high degree of diversity in trophic morphology due to resource polymorphisms. Although convergent and parallel evolution are prevalent in the organisms of the QTP, it remains unknown whether similar evolutionary patterns have occurred in the schizothoracine fishes. Here, we constructed for the first time a tentative molecular phylogeny of the schizothoracine fishes based on the complete sequences of the cytochrome b gene. We employed this molecular phylogenetic framework to examine the evolution of trophic morphologies. We used Pagel's maximum likelihood method to estimate the evolutionary associations of trophic morphologies and food resource use. Our results showed that the molecular and published morphological phylogenies of Schizothoracinae are partially incongruent with respect to some intergeneric relationships. The phylogenetic results revealed that four character states of five trophic morphologies and of food resource use evolved at least twice during the diversification of the subfamily. State transitions are the result of evolutionary patterns including either convergence or parallelism or both. Furthermore, our analyses indicate that some characters of trophic morphologies in the Schizothoracinae have undergone correlated evolution, which are somewhat correlated with different food resource uses. Collectively, our results reveal new examples of convergent and parallel evolution in the organisms of the QTP. The adaptation to different trophic niches through the modification of trophic morphologies and feeding behaviour as found in the schizothoracine fishes may account for the formation and maintenance of the high degree of diversity and radiations in fish communities endemic to QTP. PMID:22470515

  10. Floral evolution of Philodendron subgenus Meconostigma (Araceae).

    PubMed

    de Oliveira, Letícia Loss; Calazans, Luana Silva Braucks; de Morais, Érica Barroso; Mayo, Simon Joseph; Schrago, Carlos Guerra; Sakuragui, Cassia Mônica

    2014-01-01

    Elucidating the evolutionary patterns of flower and inflorescence structure is pivotal to understanding the phylogenetic relationships of Angiosperms as a whole. The inflorescence morphology and anatomy of Philodendron subgenus Meconostigma, belonging to the monocot family Araceae, has been widely studied but the evolutionary relationships of subgenus Meconostigma and the evolution of its flower characters have hitherto remained unclear. This study examines gynoecium evolution in subgenus Meconostigma in the context of an estimated molecular phylogeny for all extant species of subgenus Meconostigma and analysis of ancestral character reconstructions of some gynoecial structures. The phylogenetic reconstructions of all extant Meconostigma species were conducted under a maximum likelihood approach based on the sequences of two chloroplast (trnk and matK) and two nuclear (ETS and 18S) markers. This topology was used to reconstruct the ancestral states of seven floral characters and to elucidate their evolutionary pattern in the Meconostigma lineage. Our phylogeny shows that Meconostigma is composed of two major clades, one comprising two Amazonian species and the other all the species from the Atlantic Forest and Cerrado biomes with one Amazonian species. The common ancestor of the species of subgenus Meconostigma probably possessed short stylar lobes, long stylar canals, a stylar body, a vascular plexus in the gynoecium and druses in the stylar parenchyma but it is uncertain whether raphide inclusions were present in the parenchyma. The ancestral lineage also probably possessed up to 10 ovary locules. The evolution of these characters seems to have occurred independently in some lineages. We propose that the morphological and anatomical diversity observed in the gynoecial structures of subgenus Meconostigma is the result of an ongoing process of fusion of floral structures leading to a reduction of energy wastage and increase in stigmatic surface.

  11. Family matters: The first molecular phylogeny of the Onchidorididae Gray, 1827 (Mollusca, Gastropoda, Nudibranchia).

    PubMed

    Hallas, Joshua M; Gosliner, Terrence M

    2015-07-01

    Recent investigations into the evolution of the Onchidorididae using morphological based methods have resulted in low support for relationships among genera. This study aims to determine if molecular data corroborates recent morphological interpretations of the evolution of Onchidorididae. Five genetic markers: 16S, 18S, 28S, cytochrome c oxidase 1 (COI) and histone 3 (H3), were sequenced from 32 species comprising Onchidorididae and five other families, three from Phanerobranchia and two from Cryptobranchia. Phylogenies were estimated using maximum likelihood, and Bayesian inference analyses; with both yielding similar topologies. Molecular analyses resulted in high support for the monophyly of the suctorian clade and the placement of the genera within Onchidorididae. However, the Onchidorididae forms a paraphyletic grouping due to the recovery of the Goniodorididae and the Akiodorididae nested within family. In addition, the placement of Corambe as the most derived member of Onchidorididae is contradicted by the present study. Rather it is sister to a large clade that includes Acanthodoris and the species traditionally placed in Onchidoris and Adalaria, now defined as Onchidorididae. We have chosen to maintain Corambidae as a distinct taxon (including Corambe and Loy), sister to Onchidorididae. We also maintain Goniodorididae, Akiodorididae and Calycidoridae (including Calycidoris and Diaphorodoris), which along with the Onchidorididae and Corambidae comprise the suctorian superfamily Onchidoridoidea. Ancestral character reconstruction also suggests that the formation of a gill pocket, a character that currently defines the Cryptobranchia, may have evolved multiple times from an ancestor that lacked the ability to retract its gills into a fully formed gill pocket. The diversity of gill morphology displayed by the Onchidoridoidea will help give new insight into the evolution of this complex character within the Nudibranchia. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. A new phylogeny of the Cephalaspidea (Gastropoda: Heterobranchia) based on expanded taxon sampling and gene markers.

    PubMed

    Oskars, Trond R; Bouchet, Philippe; Malaquias, Manuel António E

    2015-08-01

    The Cephalaspidea is a diverse marine clade of euthyneuran gastropods with many groups still known largely from shells or scant anatomical data. The definition of the group and the relationships between members has been hampered by the difficulty of establishing sound synapomorphies, but the advent of molecular phylogenetics is helping to change significantly this situation. Yet, because of limited taxon sampling and few genetic markers employed in previous studies, many questions about the sister relationships and monophyletic status of several families remained open. In this study 109 species of Cephalaspidea were included covering 100% of traditional family-level diversity (12 families) and 50% of all genera (33 genera). Bayesian and maximum likelihood phylogenetics analyses based on two mitochondrial (COI, 16S rRNA) and two nuclear gene markers (28S rRNA and Histone-3) were used to infer the relationships of Cephalaspidea. The monophyly of the Cephalaspidea was confirmed. The families Cylichnidae, Diaphanidae, Haminoeidae, Philinidae, and Retusidae were found non-monophyletic. This result suggests that the family level taxonomy of the Cephalaspidea warrants a profound revision and several new family and genus names are required to reflect the new phylogenetic hypothesis presented here. We propose a new classification of the Cephalaspidea including five new families (Alacuppidae, Colinatydidae, Colpodaspididae, Mnestiidae, Philinorbidae) and one new genus (Alacuppa). Two family names (Acteocinidae, Laonidae) and two genera (Laona, Philinorbis) are reinstated as valid. An additional lineage with family rank (Philinidae "Clade 4") was unravelled, but no genus and species names are available to reflect the phylogeny and formal description will take place elsewhere. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Analysis of the Opsin Repertoire in the Tardigrade Hypsibius dujardini Provides Insights into the Evolution of Opsin Genes in Panarthropoda

    PubMed Central

    Hering, Lars; Mayer, Georg

    2014-01-01

    Screening of a deeply sequenced transcriptome using Illumina sequencing as well as the genome of the tardigrade Hypsibius dujardini revealed a set of five opsin genes. To clarify the phylogenetic position of these genes and to elucidate the evolutionary history of opsins in Panarthropoda (Onychophora + Tardigrada + Arthropoda), we reconstructed the phylogeny of broadly sampled metazoan opsin genes using maximum likelihood and Bayesian inference methods in conjunction with carefully selected substitution models. According to our findings, the opsin repertoire of H. dujardini comprises representatives of all three major bilaterian opsin clades, including one r-opsin, three c-opsins, and a Group 4 opsin (neuropsin/opsin-5). The identification of the tardigrade ortholog of neuropsin/opsin-5 is the first record of this opsin type in a protostome, but our screening of available metazoan genomes revealed that it is also present in other protostomes. Our opsin phylogeny further suggests that two r-opsins, including an “arthropsin,” were present in the last common ancestor of Panarthropoda. Although both r-opsin lineages were retained in Onychophora and Arthropoda, the arthropsin was lost in Tardigrada. The single (most likely visual) r-opsin found in H. dujardini supports the hypothesis of monochromatic vision in the panarthropod ancestor, whereas two duplications of the ancestral panarthropod c-opsin have led to three c-opsins in tardigrades. Although the early-branching nodes are unstable within the metazoans, our findings suggest that the last common ancestor of Bilateria possessed six opsins: Two r-opsins, one c-opsin, and three Group 4 opsins, one of which (Go opsin) was lost in the ecdysozoan lineage. PMID:25193307

  14. Two Distinct Patterns of Clostridium Difficile Diversity Across Europe Indicates Contrasting Routes of Spread.

    PubMed

    Eyre, David W; Davies, Kerrie A; Davis, Georgina; Fawley, Warren N; Dingle, Kate E; De Maio, Nicola; Karas, Andreas; Crook, Derrick W; Peto, Tim E A; Walker, A Sarah; Wilcox, Mark H

    2018-04-06

    Rates of Clostridium difficile infection vary widely across Europe, as do prevalent ribotypes. The extent of Europe-wide diversity within each ribotype is however unknown. Inpatient diarrhoeal faecal samples submitted on one day in summer and winter (2012-2013) to laboratories in 482 European hospitals were cultured for C. difficile, and isolates ribotyped; those from the 10 most prevalent ribotypes were Illumina whole-genome sequenced. Pairwise single nucleotide differences (SNPs) were obtained from recombination-corrected maximum-likelihood phylogenies. Within each ribotype, country-based sequence clustering was assessed using the ratio of the median SNPs between isolates within versus across different countries using permutation tests. Time-scaled Bayesian phylogenies where used to reconstruct the historic location of each lineage. Sequenced isolates (n=624) were from 19 countries. Five ribotypes had within-country clustering: ribotype-356, only in Italy; ribotype-018, predominantly in Italy; ribotype-176, with distinct Czech and German clades; ribotype-001/072, including distinct German, Slovakian, and Spanish clades; and ribotype-027, with multiple predominantly country-specific clades including in Hungary, Italy, Germany, Romania and Poland. By contrast, we found no within-country clustering for ribotypes 078, 015, 002, 014, and 020, consistent with a Europe-wide distribution. Fluoroquinolone-resistance was significantly more common in within-country clustered ribotypes (p=0.009). Fluoroquinolone-resistant isolates were also more tightly geographically clustered, median (IQR) 43 (0-213) miles between each isolate and the most closely genetically-related isolate vs. 421 (204-680) in non-resistant pairs (p<0.001). Two distinct patterns of C. difficile ribotype spread were observed, consistent with either predominantly healthcare-associated acquisition or Europe-wide dissemination via other routes/sources, e.g. the food chain.

  15. Phylogeny reconstruction in the Caesalpinieae grade (Leguminosae) based on duplicated copies of the sucrose synthase gene and plastid markers.

    PubMed

    Manzanilla, Vincent; Bruneau, Anne

    2012-10-01

    The Caesalpinieae grade (Leguminosae) forms a morphologically and ecologically diverse group of mostly tropical tree species with a complex evolutionary history. This grade comprises several distinct lineages, but the exact delimitation of the group relative to subfamily Mimosoideae and other members of subfamily Caesalpinioideae, as well as phylogenetic relationships among the lineages are uncertain. With the aim of better resolving phylogenetic relationships within the Caesalpinieae grade, we investigated the utility of several nuclear markers developed from genomic studies in the Papilionoideae. We cloned and sequenced the low copy nuclear gene sucrose synthase (SUSY) and combined the data with plastid trnL and matK sequences. SUSY has two paralogs in the Caesalpinieae grade and in the Mimosoideae, but occurs as a single copy in all other legumes tested. Bayesian and maximum likelihood phylogenetic analyses suggest the two nuclear markers are congruent with plastid DNA data. The Caesalpinieae grade is divided into four well-supported clades (Cassia, Caesalpinia, Tachigali and Peltophorum clades), a poorly supported clade of Dimorphandra Group genera, and two paraphyletic groups, one with other Dimorphandra Group genera and the other comprising genera previously recognized as the Umtiza clade. A selection analysis of the paralogs, using selection models from PAML, suggests that SUSY genes are subjected to a purifying selection. One of the SUSY paralogs, under slightly stronger positive selection, may be undergoing subfunctionalization. The low copy SUSY gene is useful for phylogeny reconstruction in the Caesalpinieae despite the presence of duplicate copies. This study confirms that the Caesalpinieae grade is an artificial group, and highlights the need for further analyses of lineages at the base of the Mimosoideae. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Analysis of the opsin repertoire in the tardigrade Hypsibius dujardini provides insights into the evolution of opsin genes in panarthropoda.

    PubMed

    Hering, Lars; Mayer, Georg

    2014-09-04

    Screening of a deeply sequenced transcriptome using Illumina sequencing as well as the genome of the tardigrade Hypsibius dujardini revealed a set of five opsin genes. To clarify the phylogenetic position of these genes and to elucidate the evolutionary history of opsins in Panarthropoda (Onychophora + Tardigrada + Arthropoda), we reconstructed the phylogeny of broadly sampled metazoan opsin genes using maximum likelihood and Bayesian inference methods in conjunction with carefully selected substitution models. According to our findings, the opsin repertoire of H. dujardini comprises representatives of all three major bilaterian opsin clades, including one r-opsin, three c-opsins, and a Group 4 opsin (neuropsin/opsin-5). The identification of the tardigrade ortholog of neuropsin/opsin-5 is the first record of this opsin type in a protostome, but our screening of available metazoan genomes revealed that it is also present in other protostomes. Our opsin phylogeny further suggests that two r-opsins, including an "arthropsin," were present in the last common ancestor of Panarthropoda. Although both r-opsin lineages were retained in Onychophora and Arthropoda, the arthropsin was lost in Tardigrada. The single (most likely visual) r-opsin found in H. dujardini supports the hypothesis of monochromatic vision in the panarthropod ancestor, whereas two duplications of the ancestral panarthropod c-opsin have led to three c-opsins in tardigrades. Although the early-branching nodes are unstable within the metazoans, our findings suggest that the last common ancestor of Bilateria possessed six opsins: Two r-opsins, one c-opsin, and three Group 4 opsins, one of which (Go opsin) was lost in the ecdysozoan lineage. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Phylogeny and character evolution in the bee-assassins (Insecta: Heteroptera: Reduviidae).

    PubMed

    Forero, D; Berniker, L; Weirauch, C

    2013-01-01

    Apiomerus, the charismatic bee-assassins (>108 spp.), belong to the New World resin bugs in the harpactorine tribe Apiomerini (12 extant genera) that is characterized by a novel predation strategy, resin trap predation. Apiomerini also exhibit striking genitalic diversity that has shaped subgeneric classifications within the genus Apiomerus and females of some species of Apiomerus are known to engage in unique maternal care behaviors. The lack of a phylogenetic framework currently hinders evolutionary interpretations of genitalic morphology and maternal care. We here present a molecular phylogeny based on 4, 477 bp of six ribosomal and protein coding genes and 95 terminal taxa using parsimony and maximum likelihood approaches as a way of addressing these shortcomings. Apiomerini are monophyletic, with Heniartes being the sistergroup to all remaining taxa that form the monophyletic Manicocoris (Calliclopius, Manicocoris, Micrauchenus, and Ponerobia) and Apiomerus (Agriocoris, Apiomerus, and Sphodrolestes) clades. Previously proposed subgeneric groups are polyphyletic, but several proposed species groups are recovered as monophyletic. Ancestral state reconstruction of the metatibial comb indicates that this structure evolved in the ancestor of all Apiomerini where it was present in males and in females; it became strongly sexually dimorphic (better developed in females than in males) in the Apiomerus clade (Apiomerus + Agriocoris + Sphodrolestes). Genitalic features reveal a pattern of homoplasy, but frequently are nonetheless useful to diagnose supraspecific groups within Apiomerus. The complex genitalia found within Apiomerus are derived for that clade. We conclude that, using the metatibial comb as a proxy, maternal care is relatively common in the tribe Apiomerini and propose that it likely evolved at the base of the Apiomerus clade if not at the base of Apiomerini. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Molecular phylogeny of the Haplosplanchnata Olson, Cribb, Tkach, Bray and Littlewood, 2003, with a description of Schikhobalotrema huffmani n. sp.

    PubMed

    Huston, Daniel C; Cutmore, Scott C; Cribb, Thomas H

    2017-09-26

    We describe Schikhobalotrema huffmani n. sp. from Tylosurus crocodilus (Péron and Leseur) (Belonidae) collected off Lizard Island, Great Barrier Reef, Queensland, Australia and Tylosurus gavialoides (Castelnau) collected from Moreton Bay, Queensland. Schikhobalotrema huffmani n. sp., along with Schikhobalotrema ablennis (Abdul-Salam and Khalil, 1987) Madhavi, 2005, Schikhobalotrema acutum (Linton, 1910) Skrjabin and Guschanskaja, 1955 and Schikhobalotrema adacutum (Manter, 1937) Skrjabin and Guschanskaja, 1955 are distinguished from all other species of Schikhobalotrema Skrjabin and Guschanskaja, 1955 in having ventral suckers which bear lateral lobes and have longitudinal apertures. Schikhobalotrema huffmani n. sp. differs from S. ablennis in having an obvious post-vitelline region and a longer forebody. From S. acutum, S. huffmani n. sp. differs in having a prostatic bulb smaller than the pharynx and more anterior testis. From S. adacutum, S. huffmani n. sp. differs in having more prominent ventral sucker lobes, a conspicuous prostatic bulb and a longer forebody. We also report the first Australian record of Haplosplanchnus pachysomus (Eysenhardt, 1829) Looss, 1902, from Mugil cephalus Linnaeus (Mugilidae) collected in Moreton Bay. Molecular sequence data (ITS2, 18S and 28S rDNA) were generated for Schikhobalotrema huffmani n. sp., H. pachysomus and archived specimens of Hymenocotta mulli Manter, 1961. The new 18S and 28S molecular data were combined with published data of five other haplosplanchnid taxa to expand the phylogeny for the Haplosplanchnata. Bayesian inference and Maximum Likelihood analyses recovered identical tree topology and demonstrated the Haplosplanchnata as a well-supported monophyletic group. However, relationships at and below the subfamily level remain poorly resolved.

  19. Molecular systematics of the new world screech-owls (Megascops: Aves, Strigidae): biogeographic and taxonomic implications.

    PubMed

    Dantas, Sidnei M; Weckstein, Jason D; Bates, John M; Krabbe, Niels K; Cadena, Carlos Daniel; Robbins, Mark B; Valderrama, Eugenio; Aleixo, Alexandre

    2016-01-01

    Megascops screech-owls are endemic to the New World and range from southern Canada to the southern cone of South America. The 22 currently recognized Megascops species occupy a wide range of habitats and elevations, from desert to humid montane forest, and from sea level to the Andean tree line. Species and subspecies diagnoses of Megascops are notoriously difficult due to subtle plumage differences among taxa with frequent plumage polymorphism. Using three mitochondrial and three nuclear genes we estimated a phylogeny for all but one Megascops species. Phylogenies were estimated with Maximum Likelihood and Bayesian Inference, and a Bayesian chronogram was reconstructed to assess the spatio-temporal context of Megascops diversification. Megascops was paraphyletic in the recovered tree topologies if the Puerto Rican endemic M. nudipes is included in the genus. However, the remaining taxa are monophyletic and form three major clades: (1) M. choliba, M. koepckeae, M. albogularis, M. clarkii, and M. trichopsis; (2) M. petersoni, M. marshalli, M. hoyi, M. ingens, and M. colombianus; and (3) M. asio, M. kennicottii, M. cooperi, M. barbarus, M. sanctaecatarinae, M. roboratus, M. watsonii, M. atricapilla, M. guatemalae, and M. vermiculatus. Megascops watsonii is paraphyletic with some individuals more closely related to M. atricapilla than to other members in that polytypic species. Also, allopatric populations of some other Megascops species were highly divergent, with levels of genetic differentiation greater than between some recognized species-pairs. Diversification within the genus is hypothesized to have taken place during the last 8 million years, with a likely origin in Central America. The genus later expanded over much of the Americas and then diversified via multiple dispersal events from the Andes into the Neotropical lowlands. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Analysis of Genetic Variation and Phylogeny of the Predatory Bug, Pilophorus typicus, in Japan using Mitochondrial Gene Sequences

    PubMed Central

    Ito, Katsura; Nishikawa, Hiroshi; Shimada, Takuji; Ogawa, Kohei; Minamiya, Yukio; Tomoda, Masafumi; Nakahira, Kengo; Kodama, Rika; Fukuda, Tatsuya; Arakawa, Ryo

    2011-01-01

    Pilophorus typicus (Distant) (Heteroptera: Miridae) is a predatory bug occurring in East, Southeast, and South Asia. Because the active stages of P. typicus prey on various agricultural pest insects and mites, this species is a candidate insect as an indigenous natural enemy for use in biological control programs. However, the mass releasing of introduced natural enemies into agricultural fields may incur the risk of affecting the genetic integrity of species through hybridization with a local population. To clarify the genetic characteristics of the Japanese populations of P. typicus two portions of the mitochondrial DNA, the cytochrome oxidase subunit I (COI) (534 bp) and the cytochrome B (cytB) (217 bp) genes, were sequenced for 64 individuals collected from 55 localities in a wide range of Japan. Totals of 18 and 10 haplotypes were identified for the COI and cytB sequences, respectively (25 haplotypes over regions). Phylogenetic analysis using the maximum likelihood method revealed the existence of two genetically distinct groups in P. typicus in Japan. These groups were distributed in different geographic ranges: one occurred mainly from the Pacific coastal areas of the Kii Peninsula, the Shikoku Island, and the Ryukyu Islands; whereas the other occurred from the northern Kyushu district to the Kanto and Hokuriku districts of mainland Japan. However, both haplotypes were found in a single locality of the southern coast of the Shikoku Island. COI phylogeny incorporating other Pilophorus species revealed that these groups were only recently differentiated. Therefore, use of a certain population of P. typicus across its distribution range should be done with caution because genetic hybridization may occur. PMID:21526929

  1. A dated molecular phylogeny of manta and devil rays (Mobulidae) based on mitogenome and nuclear sequences.

    PubMed

    Poortvliet, Marloes; Olsen, Jeanine L; Croll, Donald A; Bernardi, Giacomo; Newton, Kelly; Kollias, Spyros; O'Sullivan, John; Fernando, Daniel; Stevens, Guy; Galván Magaña, Felipe; Seret, Bernard; Wintner, Sabine; Hoarau, Galice

    2015-02-01

    Manta and devil rays are an iconic group of globally distributed pelagic filter feeders, yet their evolutionary history remains enigmatic. We employed next generation sequencing of mitogenomes for nine of the 11 recognized species and two outgroups; as well as additional Sanger sequencing of two mitochondrial and two nuclear genes in an extended taxon sampling set. Analysis of the mitogenome coding regions in a Maximum Likelihood and Bayesian framework provided a well-resolved phylogeny. The deepest divergences distinguished three clades with high support, one containing Manta birostris, Manta alfredi, Mobula tarapacana, Mobula japanica and Mobula mobular; one containing Mobula kuhlii, Mobula eregoodootenkee and Mobula thurstoni; and one containing Mobula munkiana, Mobula hypostoma and Mobula rochebrunei. Mobula remains paraphyletic with the inclusion of Manta, a result that is in agreement with previous studies based on molecular and morphological data. A fossil-calibrated Bayesian random local clock analysis suggests that mobulids diverged from Rhinoptera around 30 Mya. Subsequent divergences are characterized by long internodes followed by short bursts of speciation extending from an initial episode of divergence in the Early and Middle Miocene (19-17 Mya) to a second episode during the Pliocene and Pleistocene (3.6 Mya - recent). Estimates of divergence dates overlap significantly with periods of global warming, during which upwelling intensity - and related high primary productivity in upwelling regions - decreased markedly. These periods are hypothesized to have led to fragmentation and isolation of feeding regions leading to possible regional extinctions, as well as the promotion of allopatric speciation. The closely shared evolutionary history of mobulids in combination with ongoing threats from fisheries and climate change effects on upwelling and food supply, reinforces the case for greater protection of this charismatic family of pelagic filter feeders. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Species delimitation in Trametes: a comparison of ITS, RPB1, RPB2 and TEF1 gene phylogenies.

    PubMed

    Carlson, Alexis; Justo, Alfredo; Hibbett, David S

    2014-01-01

    Trametes is a cosmopolitan genus of white rot polypores, including the "turkey tail" fungus, T. versicolor. Although Trametes is one of the most familiar genera of polypores, its species-level taxonomy is unsettled. The ITS region is the most commonly used molecular marker for species delimitation in fungi, but it has been shown to have a low molecular variation in Trametes resulting in poorly resolved phylogenies and unclear species boundaries, especially in the T. versicolor species complex (T. versicolor sensu stricto, T. ochracea, T. pubescens, T. ectypa). Here we evaluate the performance of three protein-coding genes (TEF1, RPB1, RPB2) for species delimitation and phylogenetic reconstruction in Trametes. We obtained 59 TEF1, 34 RPB1 and 55 RPB2 sequences from 69 individuals, focusing on the T. versicolor complex and performed phylogenetic analyses with maximum likelihood and parsimony methods. All three protein-coding genes outperformed ITS for separating species in the T. versicolor complex. The multigene phylogenetic analysis shows the highest amount of resolution and supported nodes separating T. ectypa, T. ochracea, T. pubescens and T. versicolor with strong support. In addition three slineages are resolved in the species complex of T. elegans. The T. elegans complex includes three species: T. elegans (based on material from Puerto Rico, Belize, the Philippines), T. aesculi (from North America) and T. repanda (from Papua New Guinea, the Philippines, Venezuela). The utility of gene markers varies, with TEF1 having the highest PCR and sequencing success rate and RPB1 offering the best backbone resolution for the genus. © 2014 by The Mycological Society of America.

  3. Multigene phylogeny of the Mustelidae: Resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation

    PubMed Central

    Koepfli, Klaus-Peter; Deere, Kerry A; Slater, Graham J; Begg, Colleen; Begg, Keith; Grassman, Lon; Lucherini, Mauro; Veron, Geraldine; Wayne, Robert K

    2008-01-01

    Background Adaptive radiation, the evolution of ecological and phenotypic diversity from a common ancestor, is a central concept in evolutionary biology and characterizes the evolutionary histories of many groups of organisms. One such group is the Mustelidae, the most species-rich family within the mammalian order Carnivora, encompassing 59 species classified into 22 genera. Extant mustelids display extensive ecomorphological diversity, with different lineages having evolved into an array of adaptive zones, from fossorial badgers to semi-aquatic otters. Mustelids are also widely distributed, with multiple genera found on different continents. As with other groups that have undergone adaptive radiation, resolving the phylogenetic history of mustelids presents a number of challenges because ecomorphological convergence may potentially confound morphologically based phylogenetic inferences, and because adaptive radiations often include one or more periods of rapid cladogenesis that require a large amount of data to resolve. Results We constructed a nearly complete generic-level phylogeny of the Mustelidae using a data matrix comprising 22 gene segments (~12,000 base pairs) analyzed with maximum parsimony, maximum likelihood and Bayesian inference methods. We show that mustelids are consistently resolved with high nodal support into four major clades and three monotypic lineages. Using Bayesian dating techniques, we provide evidence that mustelids underwent two bursts of diversification that coincide with major paleoenvironmental and biotic changes that occurred during the Neogene and correspond with similar bursts of cladogenesis in other vertebrate groups. Biogeographical analyses indicate that most of the extant diversity of mustelids originated in Eurasia and mustelids have colonized Africa, North America and South America on multiple occasions. Conclusion Combined with information from the fossil record, our phylogenetic and dating analyses suggest that mustelid diversification may have been spurred by a combination of faunal turnover events and diversification at lower trophic levels, ultimately caused by climatically driven environmental changes. Our biogeographic analyses show Eurasia as the center of origin of mustelid diversity and that mustelids in Africa, North America and South America have been assembled over time largely via dispersal, which has important implications for understanding the ecology of mustelid communities. PMID:18275614

  4. Morphological variability and molecular identification of Uncinaria spp. (Nematoda: Ancylostomatidae) from grizzly and black bears: new species or phenotypic plasticity?

    PubMed

    Catalano, Stefano; Lejeune, Manigandan; van Paridon, Bradley; Pagan, Christopher A; Wasmuth, James D; Tizzani, Paolo; Duignan, Pádraig J; Nadler, Steven A

    2015-04-01

    The hookworms Uncinaria rauschi Olsen, 1968 and Uncinaria yukonensis ( Wolfgang, 1956 ) were formally described from grizzly ( Ursus arctos horribilis) and black bears ( Ursus americanus ) of North America. We analyzed the intestinal tracts of 4 grizzly and 9 black bears from Alberta and British Columbia, Canada and isolated Uncinaria specimens with anatomical traits never previously documented. We applied morphological and molecular techniques to investigate the taxonomy and phylogeny of these Uncinaria parasites. The morphological analysis supported polymorphism at the vulvar region for females of both U. rauschi and U. yukonensis. The hypothesis of morphological plasticity for U. rauschi and U. yukonensis was confirmed by genetic analysis of the internal transcribed spacers (ITS-1 and ITS-2) of the nuclear ribosomal DNA. Two distinct genotypes were identified, differing at 5 fixed sites for ITS-1 (432 base pairs [bp]) and 7 for ITS-2 (274 bp). Morphometric data for U. rauschi revealed host-related size differences: adult U. rauschi were significantly larger in black bears than in grizzly bears. Interpretation of these results, considering the historical biogeography of North American bears, suggests a relatively recent host-switching event of U. rauschi from black bears to grizzly bears which likely occurred after the end of the Wisconsin glaciation. Phylogenetic maximum parsimony (MP) and maximum likelihood (ML) analyses of the concatenated ITS-1 and ITS-2 datasets strongly supported monophyly of U. rauschi and U. yukonensis and their close relationship with Uncinaria stenocephala (Railliet, 1884), the latter a parasite primarily of canids and felids. Relationships among species within this group, although resolved by ML, were unsupported by MP and bootstrap resampling. The clade of U. rauschi, U. yukonensis, and U. stenocephala was recovered as sister to the clade represented by Uncinaria spp. from otariid pinnipeds. These results support the absence of strict host-parasite co-phylogeny for Uncinaria spp. and their carnivore hosts. Phylogenetic relationships among Uncinaria spp. provided a framework to develop the hypothesis of similar transmission patterns for the closely related U. rauschi, U. yukonensis, and U. stenocephala.

  5. Complete plastid genome sequence of Daucus carota: implications for biotechnology and phylogeny of angiosperms.

    PubMed

    Ruhlman, Tracey; Lee, Seung-Bum; Jansen, Robert K; Hostetler, Jessica B; Tallon, Luke J; Town, Christopher D; Daniell, Henry

    2006-08-31

    Carrot (Daucus carota) is a major food crop in the US and worldwide. Its capacity for storage and its lifecycle as a biennial make it an attractive species for the introduction of foreign genes, especially for oral delivery of vaccines and other therapeutic proteins. Until recently efforts to express recombinant proteins in carrot have had limited success in terms of protein accumulation in the edible tap roots. Plastid genetic engineering offers the potential to overcome this limitation, as demonstrated by the accumulation of BADH in chromoplasts of carrot taproots to confer exceedingly high levels of salt resistance. The complete plastid genome of carrot provides essential information required for genetic engineering. Additionally, the sequence data add to the rapidly growing database of plastid genomes for assessing phylogenetic relationships among angiosperms. The complete carrot plastid genome is 155,911 bp in length, with 115 unique genes and 21 duplicated genes within the IR. There are four ribosomal RNAs, 30 distinct tRNA genes and 18 intron-containing genes. Repeat analysis reveals 12 direct and 2 inverted repeats > or = 30 bp with a sequence identity > or = 90%. Phylogenetic analysis of nucleotide sequences for 61 protein-coding genes using both maximum parsimony (MP) and maximum likelihood (ML) were performed for 29 angiosperms. Phylogenies from both methods provide strong support for the monophyly of several major angiosperm clades, including monocots, eudicots, rosids, asterids, eurosids II, euasterids I, and euasterids II. The carrot plastid genome contains a number of dispersed direct and inverted repeats scattered throughout coding and non-coding regions. This is the first sequenced plastid genome of the family Apiaceae and only the second published genome sequence of the species-rich euasterid II clade. Both MP and ML trees provide very strong support (100% bootstrap) for the sister relationship of Daucus with Panax in the euasterid II clade. These results provide the best taxon sampling of complete chloroplast genomes and the strongest support yet for the sister relationship of Caryophyllales to the asterids. The availability of the complete plastid genome sequence should facilitate improved transformation efficiency and foreign gene expression in carrot through utilization of endogenous flanking sequences and regulatory elements.

  6. Closed-loop carrier phase synchronization techniques motivated by likelihood functions

    NASA Technical Reports Server (NTRS)

    Tsou, H.; Hinedi, S.; Simon, M.

    1994-01-01

    This article reexamines the notion of closed-loop carrier phase synchronization motivated by the theory of maximum a posteriori phase estimation with emphasis on the development of new structures based on both maximum-likelihood and average-likelihood functions. The criterion of performance used for comparison of all the closed-loop structures discussed is the mean-squared phase error for a fixed-loop bandwidth.

  7. Fast maximum likelihood estimation of mutation rates using a birth-death process.

    PubMed

    Wu, Xiaowei; Zhu, Hongxiao

    2015-02-07

    Since fluctuation analysis was first introduced by Luria and Delbrück in 1943, it has been widely used to make inference about spontaneous mutation rates in cultured cells. Under certain model assumptions, the probability distribution of the number of mutants that appear in a fluctuation experiment can be derived explicitly, which provides the basis of mutation rate estimation. It has been shown that, among various existing estimators, the maximum likelihood estimator usually demonstrates some desirable properties such as consistency and lower mean squared error. However, its application in real experimental data is often hindered by slow computation of likelihood due to the recursive form of the mutant-count distribution. We propose a fast maximum likelihood estimator of mutation rates, MLE-BD, based on a birth-death process model with non-differential growth assumption. Simulation studies demonstrate that, compared with the conventional maximum likelihood estimator derived from the Luria-Delbrück distribution, MLE-BD achieves substantial improvement on computational speed and is applicable to arbitrarily large number of mutants. In addition, it still retains good accuracy on point estimation. Published by Elsevier Ltd.

  8. Phylogeny of world stag beetles (Coleoptera: Lucanidae) reveals a Gondwanan origin of Darwin's stag beetle.

    PubMed

    Kim, Sang Il; Farrell, Brian D

    2015-05-01

    Stag beetles (family Lucanidae Latreille, 1804) are one of the earliest branching lineages of scarab beetles that are characterized by the striking development of the male mandibles. Despite stag beetles' popularity among traditional taxonomists and amateur collectors, there has been almost no study of lucanid relationships and evolution. Entomologists, including Jeannel (1942), have long recognized resemblance between the austral stag beetles of the tribes Chiasognathini, Colophonini, Lamprimini, Pholidotini, Rhyssonotini, and Streptocerini, but this hypothesis of their close relationship across the continents has never been tested. To gain further insight into lucanid phylogeny and biogeography, we reconstructed the first molecular phylogeny of world stag beetles using DNA sequences from mitochondrial 16S rDNA, nuclear 18S and 28S rDNA, and the nuclear protein-coding (NPC) gene wingless for 93 lucanid species representing all extant subfamilies and 24 out of the 27 tribes, together with 14 representative samples of other early branching scarabaeoid families and two staphyliniform beetle families as outgroups. Both Bayesian inference (BI) and maximum likelihood inference (MLI) strongly supported the monophyly of Lucanidae sensu lato that includes Diphyllostomatidae. Within Lucanidae sensu stricto, the subfamilies Lucaninae and Lampriminae appeared monophyletic under both methods of phylogenetic inferences; however, Aesalinae and Syndesinae were found to be polyphyletic. A time-calibrated phylogeny based on five fossil data estimated the origin of crown group Lucanidae as circa 160 million years ago (MYA). Divergence between the Neotropical and Australasian groups of the Chiasognathini was estimated to be circa 47MYA, with the South African Colophonini branching off from the ancient Chiasognathini lineage around 87MYA. Another Gondwanan relationship was recovered between the Australasian Eucarteria and the Neotropical Casignetus, which diverged circa 58MYA. Lastly, as Jeannel's hypothesis predicted, divergence within Lampriminae between the Australasian Lamprima and the Neotropical Streptocerus was estimated to be circa 37MYA. The split of these lineages were generally concordant with the pattern of continental break-up of the super-continent Gondwana, and our biogeographic reconstructions based on the dispersal-extinction-cladogenesis model (DEC) corroborate our view that the divergences in these austral lineages were caused by vicariance events following the Gondwanan break-up. In addition, the phylogenetic position and geographic origin of the Hawaiian genus Apterocyclus was revealed for the first time. Overall, our results provide the framework toward studying lucanid relationships and divergence time estimates, which allowed for more accurate biogeographic explanations and discussions on ancestral lucanids and the evolutionary origin of the enlarged male mandibles. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Low-complexity approximations to maximum likelihood MPSK modulation classification

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon

    2004-01-01

    We present a new approximation to the maximum likelihood classifier to discriminate between M-ary and M'-ary phase-shift-keying transmitted on an additive white Gaussian noise (AWGN) channel and received noncoherentl, partially coherently, or coherently.

  10. PyEvolve: a toolkit for statistical modelling of molecular evolution.

    PubMed

    Butterfield, Andrew; Vedagiri, Vivek; Lang, Edward; Lawrence, Cath; Wakefield, Matthew J; Isaev, Alexander; Huttley, Gavin A

    2004-01-05

    Examining the distribution of variation has proven an extremely profitable technique in the effort to identify sequences of biological significance. Most approaches in the field, however, evaluate only the conserved portions of sequences - ignoring the biological significance of sequence differences. A suite of sophisticated likelihood based statistical models from the field of molecular evolution provides the basis for extracting the information from the full distribution of sequence variation. The number of different problems to which phylogeny-based maximum likelihood calculations can be applied is extensive. Available software packages that can perform likelihood calculations suffer from a lack of flexibility and scalability, or employ error-prone approaches to model parameterisation. Here we describe the implementation of PyEvolve, a toolkit for the application of existing, and development of new, statistical methods for molecular evolution. We present the object architecture and design schema of PyEvolve, which includes an adaptable multi-level parallelisation schema. The approach for defining new methods is illustrated by implementing a novel dinucleotide model of substitution that includes a parameter for mutation of methylated CpG's, which required 8 lines of standard Python code to define. Benchmarking was performed using either a dinucleotide or codon substitution model applied to an alignment of BRCA1 sequences from 20 mammals, or a 10 species subset. Up to five-fold parallel performance gains over serial were recorded. Compared to leading alternative software, PyEvolve exhibited significantly better real world performance for parameter rich models with a large data set, reducing the time required for optimisation from approximately 10 days to approximately 6 hours. PyEvolve provides flexible functionality that can be used either for statistical modelling of molecular evolution, or the development of new methods in the field. The toolkit can be used interactively or by writing and executing scripts. The toolkit uses efficient processes for specifying the parameterisation of statistical models, and implements numerous optimisations that make highly parameter rich likelihood functions solvable within hours on multi-cpu hardware. PyEvolve can be readily adapted in response to changing computational demands and hardware configurations to maximise performance. PyEvolve is released under the GPL and can be downloaded from http://cbis.anu.edu.au/software.

  11. Maximum likelihood decoding analysis of accumulate-repeat-accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, A.; Divsalar, D.; Yao, K.

    2004-01-01

    In this paper, the performance of the repeat-accumulate codes with (ML) decoding are analyzed and compared to random codes by very tight bounds. Some simple codes are shown that perform very close to Shannon limit with maximum likelihood decoding.

  12. The Maximum Likelihood Estimation of Signature Transformation /MLEST/ algorithm. [for affine transformation of crop inventory data

    NASA Technical Reports Server (NTRS)

    Thadani, S. G.

    1977-01-01

    The Maximum Likelihood Estimation of Signature Transformation (MLEST) algorithm is used to obtain maximum likelihood estimates (MLE) of affine transformation. The algorithm has been evaluated for three sets of data: simulated (training and recognition segment pairs), consecutive-day (data gathered from Landsat images), and geographical-extension (large-area crop inventory experiment) data sets. For each set, MLEST signature extension runs were made to determine MLE values and the affine-transformed training segment signatures were used to classify the recognition segments. The classification results were used to estimate wheat proportions at 0 and 1% threshold values.

  13. Maximum-likelihood block detection of noncoherent continuous phase modulation

    NASA Technical Reports Server (NTRS)

    Simon, Marvin K.; Divsalar, Dariush

    1993-01-01

    This paper examines maximum-likelihood block detection of uncoded full response CPM over an additive white Gaussian noise (AWGN) channel. Both the maximum-likelihood metrics and the bit error probability performances of the associated detection algorithms are considered. The special and popular case of minimum-shift-keying (MSK) corresponding to h = 0.5 and constant amplitude frequency pulse is treated separately. The many new receiver structures that result from this investigation can be compared to the traditional ones that have been used in the past both from the standpoint of simplicity of implementation and optimality of performance.

  14. Design of simplified maximum-likelihood receivers for multiuser CPM systems.

    PubMed

    Bing, Li; Bai, Baoming

    2014-01-01

    A class of simplified maximum-likelihood receivers designed for continuous phase modulation based multiuser systems is proposed. The presented receiver is built upon a front end employing mismatched filters and a maximum-likelihood detector defined in a low-dimensional signal space. The performance of the proposed receivers is analyzed and compared to some existing receivers. Some schemes are designed to implement the proposed receivers and to reveal the roles of different system parameters. Analysis and numerical results show that the proposed receivers can approach the optimum multiuser receivers with significantly (even exponentially in some cases) reduced complexity and marginal performance degradation.

  15. Maximum likelihood clustering with dependent feature trees

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B. (Principal Investigator)

    1981-01-01

    The decomposition of mixture density of the data into its normal component densities is considered. The densities are approximated with first order dependent feature trees using criteria of mutual information and distance measures. Expressions are presented for the criteria when the densities are Gaussian. By defining different typs of nodes in a general dependent feature tree, maximum likelihood equations are developed for the estimation of parameters using fixed point iterations. The field structure of the data is also taken into account in developing maximum likelihood equations. Experimental results from the processing of remotely sensed multispectral scanner imagery data are included.

  16. An Iterative Maximum a Posteriori Estimation of Proficiency Level to Detect Multiple Local Likelihood Maxima

    ERIC Educational Resources Information Center

    Magis, David; Raiche, Gilles

    2010-01-01

    In this article the authors focus on the issue of the nonuniqueness of the maximum likelihood (ML) estimator of proficiency level in item response theory (with special attention to logistic models). The usual maximum a posteriori (MAP) method offers a good alternative within that framework; however, this article highlights some drawbacks of its…

  17. One tree to link them all: a phylogenetic dataset for the European tetrapoda.

    PubMed

    Roquet, Cristina; Lavergne, Sébastien; Thuiller, Wilfried

    2014-08-08

    Since the ever-increasing availability of phylogenetic informative data, the last decade has seen an upsurge of ecological studies incorporating information on evolutionary relationships among species. However, detailed species-level phylogenies are still lacking for many large groups and regions, which are necessary for comprehensive large-scale eco-phylogenetic analyses. Here, we provide a dataset of 100 dated phylogenetic trees for all European tetrapods based on a mixture of supermatrix and supertree approaches. Phylogenetic inference was performed separately for each of the main Tetrapoda groups of Europe except mammals (i.e. amphibians, birds, squamates and turtles) by means of maximum likelihood (ML) analyses of supermatrix applying a tree constraint at the family (amphibians and squamates) or order (birds and turtles) levels based on consensus knowledge. For each group, we inferred 100 ML trees to be able to provide a phylogenetic dataset that accounts for phylogenetic uncertainty, and assessed node support with bootstrap analyses. Each tree was dated using penalized-likelihood and fossil calibration. The trees obtained were well-supported by existing knowledge and previous phylogenetic studies. For mammals, we modified the most complete supertree dataset available on the literature to include a recent update of the Carnivora clade. As a final step, we merged the phylogenetic trees of all groups to obtain a set of 100 phylogenetic trees for all European Tetrapoda species for which data was available (91%). We provide this phylogenetic dataset (100 chronograms) for the purpose of comparative analyses, macro-ecological or community ecology studies aiming to incorporate phylogenetic information while accounting for phylogenetic uncertainty.

  18. Inferring HIV-1 Transmission Dynamics in Germany From Recently Transmitted Viruses.

    PubMed

    Pouran Yousef, Kaveh; Meixenberger, Karolin; Smith, Maureen R; Somogyi, Sybille; Gromöller, Silvana; Schmidt, Daniel; Gunsenheimer-Bartmeyer, Barbara; Hamouda, Osamah; Kücherer, Claudia; von Kleist, Max

    2016-11-01

    Although HIV continues to spread globally, novel intervention strategies such as treatment as prevention (TasP) may bring the epidemic to a halt. However, their effective implementation requires a profound understanding of the underlying transmission dynamics. We analyzed parameters of the German HIV epidemic based on phylogenetic clustering of viral sequences from recently infected seroconverters with known infection dates. Viral baseline and follow-up pol sequences (n = 1943) from 1159 drug-naïve individuals were selected from a nationwide long-term observational study initiated in 1997. Putative transmission clusters were computed based on a maximum likelihood phylogeny. Using individual follow-up sequences, we optimized our clustering threshold to maximize the likelihood of co-clustering individuals connected by direct transmission. The sizes of putative transmission clusters scaled inversely with their abundance and their distribution exhibited a heavy tail. Clusters based on the optimal clustering threshold were significantly more likely to contain members of the same or bordering German federal states. Interinfection times between co-clustered individuals were significantly shorter (26 weeks; interquartile range: 13-83) than in a null model. Viral intraindividual evolution may be used to select criteria that maximize co-clustering of transmission pairs in the absence of strong adaptive selection pressure. Interinfection times of co-clustered individuals may then be an indicator of the typical time to onward transmission. Our analysis suggests that onward transmission may have occurred early after infection, when individuals are typically unaware of their serological status. The latter argues that TasP should be combined with HIV testing campaigns to reduce the possibility of transmission before TasP initiation.

  19. Cosmic shear measurement with maximum likelihood and maximum a posteriori inference

    NASA Astrophysics Data System (ADS)

    Hall, Alex; Taylor, Andy

    2017-06-01

    We investigate the problem of noise bias in maximum likelihood and maximum a posteriori estimators for cosmic shear. We derive the leading and next-to-leading order biases and compute them in the context of galaxy ellipticity measurements, extending previous work on maximum likelihood inference for weak lensing. We show that a large part of the bias on these point estimators can be removed using information already contained in the likelihood when a galaxy model is specified, without the need for external calibration. We test these bias-corrected estimators on simulated galaxy images similar to those expected from planned space-based weak lensing surveys, with promising results. We find that the introduction of an intrinsic shape prior can help with mitigation of noise bias, such that the maximum a posteriori estimate can be made less biased than the maximum likelihood estimate. Second-order terms offer a check on the convergence of the estimators, but are largely subdominant. We show how biases propagate to shear estimates, demonstrating in our simple set-up that shear biases can be reduced by orders of magnitude and potentially to within the requirements of planned space-based surveys at mild signal-to-noise ratio. We find that second-order terms can exhibit significant cancellations at low signal-to-noise ratio when Gaussian noise is assumed, which has implications for inferring the performance of shear-measurement algorithms from simplified simulations. We discuss the viability of our point estimators as tools for lensing inference, arguing that they allow for the robust measurement of ellipticity and shear.

  20. Treating fossils as terminal taxa in divergence time estimation reveals ancient vicariance patterns in the palpimanoid spiders.

    PubMed

    Wood, Hannah Marie; Matzke, Nicholas J; Gillespie, Rosemary G; Griswold, Charles E

    2013-03-01

    Incorporation of fossils into biogeographic studies can have a profound effect on the conclusions that result, particularly when fossil ranges are nonoverlapping with extant ranges. This is the case in archaeid spiders, where there are known fossils from the Northern Hemisphere, yet all living members are restricted to the Southern Hemisphere. To better understand the biogeographic patterns of archaeid spiders and their palpimanoid relatives, we estimate a dated phylogeny using a relaxed clock on a combined molecular and morphological data set. Dating information is compared with treating the archaeid fossil taxa as both node calibrations and as noncontemporaneous terminal tips, both with and without additional calibration points. Estimation of ancestral biogeographic ranges is then performed, using likelihood and Bayesian methods to take into account uncertainty in phylogeny and in dating. We find that treating the fossils as terminal tips within a Bayesian framework, as opposed to dating the phylogeny based only on molecular data with the dates coming from node calibrations, removes the subjectivity involved in assigning priors, which has not been possible with previous methods. Our analyses suggest that the diversification of the northern and southern archaeid lineages was congruent with the breakup of Pangaea into Laurasia and Gondwanaland. This analysis provides a rare example, and perhaps the most strongly supported, where a dated phylogeny confirms a biogeographical hypothesis based on vicariance due to the breakup of the ancient continental plates.

  1. Evidence for a Higher Number of Species of Odontotermes (Isoptera) than Currently Known from Peninsular Malaysia from Mitochondrial DNA Phylogenies

    PubMed Central

    Cheng, Shawn; Kirton, Laurence G.; Panandam, Jothi M.; Siraj, Siti S.; Ng, Kevin Kit-Siong; Tan, Soon-Guan

    2011-01-01

    Termites of the genus Odontotermes are important decomposers in the Old World tropics and are sometimes important pests of crops, timber and trees. The species within the genus often have overlapping size ranges and are difficult to differentiate based on morphology. As a result, the taxonomy of Odontotermes in Peninsular Malaysia has not been adequately worked out. In this study, we examined the phylogeny of 40 samples of Odontotermes from Peninsular Malaysia using two mitochondrial DNA regions, that is, the 16S ribosomal RNA and cytochrome oxidase subunit I genes, to aid in elucidating the number of species in the peninsula. Phylogenies were reconstructed from the individual gene and combined gene data sets using parsimony and likelihood criteria. The phylogenies supported the presence of up to eleven species in Peninsular Malaysia, which were identified as O. escherichi, O. hainanensis, O. javanicus, O. longignathus, O. malaccensis, O. oblongatus, O. paraoblongatus, O. sarawakensis, and three possibly new species. Additionally, some of our taxa are thought to comprise a complex of two or more species. The number of species found in this study using DNA methods was more than the initial nine species thought to occur in Peninsular Malaysia. The support values for the clades and morphology of the soldiers provided further evidence for the existence of eleven or more species. Higher resolution genetic markers such as microsatellites would be required to confirm the presence of cryptic species in some taxa. PMID:21687629

  2. Some Small Sample Results for Maximum Likelihood Estimation in Multidimensional Scaling.

    ERIC Educational Resources Information Center

    Ramsay, J. O.

    1980-01-01

    Some aspects of the small sample behavior of maximum likelihood estimates in multidimensional scaling are investigated with Monte Carlo techniques. In particular, the chi square test for dimensionality is examined and a correction for bias is proposed and evaluated. (Author/JKS)

  3. ATAC Autocuer Modeling Analysis.

    DTIC Science & Technology

    1981-01-01

    the analysis of the simple rectangular scrnentation (1) is based on detection and estimation theory (2). This approach uses the concept of maximum ...continuous wave forms. In order to develop the principles of maximum likelihood, it is con- venient to develop the principles for the "classical...the concept of maximum likelihood is significant in that it provides the optimum performance of the detection/estimation problem. With a knowledge of

  4. Epidemiologic programs for computers and calculators. A microcomputer program for multiple logistic regression by unconditional and conditional maximum likelihood methods.

    PubMed

    Campos-Filho, N; Franco, E L

    1989-02-01

    A frequent procedure in matched case-control studies is to report results from the multivariate unmatched analyses if they do not differ substantially from the ones obtained after conditioning on the matching variables. Although conceptually simple, this rule requires that an extensive series of logistic regression models be evaluated by both the conditional and unconditional maximum likelihood methods. Most computer programs for logistic regression employ only one maximum likelihood method, which requires that the analyses be performed in separate steps. This paper describes a Pascal microcomputer (IBM PC) program that performs multiple logistic regression by both maximum likelihood estimation methods, which obviates the need for switching between programs to obtain relative risk estimates from both matched and unmatched analyses. The program calculates most standard statistics and allows factoring of categorical or continuous variables by two distinct methods of contrast. A built-in, descriptive statistics option allows the user to inspect the distribution of cases and controls across categories of any given variable.

  5. The Maximum Likelihood Solution for Inclination-only Data

    NASA Astrophysics Data System (ADS)

    Arason, P.; Levi, S.

    2006-12-01

    The arithmetic means of inclination-only data are known to introduce a shallowing bias. Several methods have been proposed to estimate unbiased means of the inclination along with measures of the precision. Most of the inclination-only methods were designed to maximize the likelihood function of the marginal Fisher distribution. However, the exact analytical form of the maximum likelihood function is fairly complicated, and all these methods require various assumptions and approximations that are inappropriate for many data sets. For some steep and dispersed data sets, the estimates provided by these methods are significantly displaced from the peak of the likelihood function to systematically shallower inclinations. The problem in locating the maximum of the likelihood function is partly due to difficulties in accurately evaluating the function for all values of interest. This is because some elements of the log-likelihood function increase exponentially as precision parameters increase, leading to numerical instabilities. In this study we succeeded in analytically cancelling exponential elements from the likelihood function, and we are now able to calculate its value for any location in the parameter space and for any inclination-only data set, with full accuracy. Furtermore, we can now calculate the partial derivatives of the likelihood function with desired accuracy. Locating the maximum likelihood without the assumptions required by previous methods is now straight forward. The information to separate the mean inclination from the precision parameter will be lost for very steep and dispersed data sets. It is worth noting that the likelihood function always has a maximum value. However, for some dispersed and steep data sets with few samples, the likelihood function takes its highest value on the boundary of the parameter space, i.e. at inclinations of +/- 90 degrees, but with relatively well defined dispersion. Our simulations indicate that this occurs quite frequently for certain data sets, and relatively small perturbations in the data will drive the maxima to the boundary. We interpret this to indicate that, for such data sets, the information needed to separate the mean inclination and the precision parameter is permanently lost. To assess the reliability and accuracy of our method we generated large number of random Fisher-distributed data sets and used seven methods to estimate the mean inclination and precision paramenter. These comparisons are described by Levi and Arason at the 2006 AGU Fall meeting. The results of the various methods is very favourable to our new robust maximum likelihood method, which, on average, is the most reliable, and the mean inclination estimates are the least biased toward shallow values. Further information on our inclination-only analysis can be obtained from: http://www.vedur.is/~arason/paleomag

  6. Estimation Methods for Non-Homogeneous Regression - Minimum CRPS vs Maximum Likelihood

    NASA Astrophysics Data System (ADS)

    Gebetsberger, Manuel; Messner, Jakob W.; Mayr, Georg J.; Zeileis, Achim

    2017-04-01

    Non-homogeneous regression models are widely used to statistically post-process numerical weather prediction models. Such regression models correct for errors in mean and variance and are capable to forecast a full probability distribution. In order to estimate the corresponding regression coefficients, CRPS minimization is performed in many meteorological post-processing studies since the last decade. In contrast to maximum likelihood estimation, CRPS minimization is claimed to yield more calibrated forecasts. Theoretically, both scoring rules used as an optimization score should be able to locate a similar and unknown optimum. Discrepancies might result from a wrong distributional assumption of the observed quantity. To address this theoretical concept, this study compares maximum likelihood and minimum CRPS estimation for different distributional assumptions. First, a synthetic case study shows that, for an appropriate distributional assumption, both estimation methods yield to similar regression coefficients. The log-likelihood estimator is slightly more efficient. A real world case study for surface temperature forecasts at different sites in Europe confirms these results but shows that surface temperature does not always follow the classical assumption of a Gaussian distribution. KEYWORDS: ensemble post-processing, maximum likelihood estimation, CRPS minimization, probabilistic temperature forecasting, distributional regression models

  7. Algorithms of maximum likelihood data clustering with applications

    NASA Astrophysics Data System (ADS)

    Giada, Lorenzo; Marsili, Matteo

    2002-12-01

    We address the problem of data clustering by introducing an unsupervised, parameter-free approach based on maximum likelihood principle. Starting from the observation that data sets belonging to the same cluster share a common information, we construct an expression for the likelihood of any possible cluster structure. The likelihood in turn depends only on the Pearson's coefficient of the data. We discuss clustering algorithms that provide a fast and reliable approximation to maximum likelihood configurations. Compared to standard clustering methods, our approach has the advantages that (i) it is parameter free, (ii) the number of clusters need not be fixed in advance and (iii) the interpretation of the results is transparent. In order to test our approach and compare it with standard clustering algorithms, we analyze two very different data sets: time series of financial market returns and gene expression data. We find that different maximization algorithms produce similar cluster structures whereas the outcome of standard algorithms has a much wider variability.

  8. A low-power, high-throughput maximum-likelihood convolutional decoder chip for NASA's 30/20 GHz program

    NASA Technical Reports Server (NTRS)

    Mccallister, R. D.; Crawford, J. J.

    1981-01-01

    It is pointed out that the NASA 30/20 GHz program will place in geosynchronous orbit a technically advanced communication satellite which can process time-division multiple access (TDMA) information bursts with a data throughput in excess of 4 GBPS. To guarantee acceptable data quality during periods of signal attenuation it will be necessary to provide a significant forward error correction (FEC) capability. Convolutional decoding (utilizing the maximum-likelihood techniques) was identified as the most attractive FEC strategy. Design trade-offs regarding a maximum-likelihood convolutional decoder (MCD) in a single-chip CMOS implementation are discussed.

  9. PAMLX: a graphical user interface for PAML.

    PubMed

    Xu, Bo; Yang, Ziheng

    2013-12-01

    This note announces pamlX, a graphical user interface/front end for the paml (for Phylogenetic Analysis by Maximum Likelihood) program package (Yang Z. 1997. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 13:555-556; Yang Z. 2007. PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol. 24:1586-1591). pamlX is written in C++ using the Qt library and communicates with paml programs through files. It can be used to create, edit, and print control files for paml programs and to launch paml runs. The interface is available for free download at http://abacus.gene.ucl.ac.uk/software/paml.html.

  10. Characterization of the complete mitochondrial genomes of Nematodirus oiratianus and Nematodirus spathiger of small ruminants

    PubMed Central

    2014-01-01

    Background Nematodirus spp. are among the most common nematodes of ruminants worldwide. N. oiratianus and N. spathiger are distributed worldwide as highly prevalent gastrointestinal nematodes, which cause emerging health problems and economic losses. Accurate identification of Nematodirus species is essential to develop effective control strategies for Nematodirus infection in ruminants. Mitochondrial DNA (mtDNA) could provide powerful genetic markers for identifying these closely related species and resolving phylogenetic relationships at different taxonomic levels. Methods In the present study, the complete mitochondrial (mt) genomes of N. oiratianus and N. spathiger from small ruminants in China were obtained using Long-range PCR and sequencing. Results The complete mt genomes of N. oiratianus and N. spathiger were 13,765 bp and 13,519 bp in length, respectively. Both mt genomes were circular and consisted of 36 genes, including 12 genes encoding proteins, 2 genes encoding rRNA, and 22 genes encoding tRNA. Phylogenetic analyses based on the concatenated amino acid sequence data of all 12 protein-coding genes by Bayesian inference (BI), Maximum likelihood (ML) and Maximum parsimony (MP) showed that the two Nematodirus species (Molineidae) were closely related to Dictyocaulidae. Conclusions The availability of the complete mtDNA sequences of N. oiratianus and N. spathiger not only provides new mtDNA sources for a better understanding of nematode mt genomics and phylogeny, but also provides novel and useful genetic markers for studying diagnosis, population genetics and molecular epidemiology of Nematodirus spp. in small ruminants. PMID:25015379

  11. Characterization of the complete mitochondrial genomes of Nematodirus oiratianus and Nematodirus spathiger of small ruminants.

    PubMed

    Zhao, Guang-Hui; Jia, Yan-Qing; Cheng, Wen-Yu; Zhao, Wen; Bian, Qing-Qing; Liu, Guo-Hua

    2014-07-11

    Nematodirus spp. are among the most common nematodes of ruminants worldwide. N. oiratianus and N. spathiger are distributed worldwide as highly prevalent gastrointestinal nematodes, which cause emerging health problems and economic losses. Accurate identification of Nematodirus species is essential to develop effective control strategies for Nematodirus infection in ruminants. Mitochondrial DNA (mtDNA) could provide powerful genetic markers for identifying these closely related species and resolving phylogenetic relationships at different taxonomic levels. In the present study, the complete mitochondrial (mt) genomes of N. oiratianus and N. spathiger from small ruminants in China were obtained using Long-range PCR and sequencing. The complete mt genomes of N. oiratianus and N. spathiger were 13,765 bp and 13,519 bp in length, respectively. Both mt genomes were circular and consisted of 36 genes, including 12 genes encoding proteins, 2 genes encoding rRNA, and 22 genes encoding tRNA. Phylogenetic analyses based on the concatenated amino acid sequence data of all 12 protein-coding genes by Bayesian inference (BI), Maximum likelihood (ML) and Maximum parsimony (MP) showed that the two Nematodirus species (Molineidae) were closely related to Dictyocaulidae. The availability of the complete mtDNA sequences of N. oiratianus and N. spathiger not only provides new mtDNA sources for a better understanding of nematode mt genomics and phylogeny, but also provides novel and useful genetic markers for studying diagnosis, population genetics and molecular epidemiology of Nematodirus spp. in small ruminants.

  12. Maximum Likelihood Estimation of Nonlinear Structural Equation Models.

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Zhu, Hong-Tu

    2002-01-01

    Developed an EM type algorithm for maximum likelihood estimation of a general nonlinear structural equation model in which the E-step is completed by a Metropolis-Hastings algorithm. Illustrated the methodology with results from a simulation study and two real examples using data from previous studies. (SLD)

  13. ARMA-Based SEM When the Number of Time Points T Exceeds the Number of Cases N: Raw Data Maximum Likelihood.

    ERIC Educational Resources Information Center

    Hamaker, Ellen L.; Dolan, Conor V.; Molenaar, Peter C. M.

    2003-01-01

    Demonstrated, through simulation, that stationary autoregressive moving average (ARMA) models may be fitted readily when T>N, using normal theory raw maximum likelihood structural equation modeling. Also provides some illustrations based on real data. (SLD)

  14. Maximum likelihood phase-retrieval algorithm: applications.

    PubMed

    Nahrstedt, D A; Southwell, W H

    1984-12-01

    The maximum likelihood estimator approach is shown to be effective in determining the wave front aberration in systems involving laser and flow field diagnostics and optical testing. The robustness of the algorithm enables convergence even in cases of severe wave front error and real, nonsymmetrical, obscured amplitude distributions.

  15. Mitochondrial genomes of two Australian fishflies with an evolutionary timescale of Chauliodinae.

    PubMed

    Yang, Fan; Jiang, Yunlan; Yang, Ding; Liu, Xingyue

    2017-06-30

    Fishflies (Corydalidae: Chauliodinae) with a total of ca. 130 extant species are one of the major groups of the holometabolous insect order Megaloptera. As a group which originated during the Mesozoic, the phylogeny and historical biogeography of fishflies are of high interest. The previous hypothesis on the evolutionary history of fishflies was based primarily on morphological data. To further test the existing phylogenetic relationships and to understand the divergence pattern of fishflies, we conducted a molecule-based study. We determined the complete mitochondrial (mt) genomes of two Australian fishfly species, Archichauliodes deceptor Kimmins, 1954 and Protochauliodes biconicus Kimmins, 1954, both members of a major subgroup of Chauliodinae with high phylogenetic significance. A phylogenomic analysis was carried out based on 13 mt protein coding genes (PCGs) and two rRNAs genes from the megalopteran species with determined mt genomes. Both maximum likelihood and Bayesian inference analyses recovered the Dysmicohermes clade as the sister group of the Archichauliodes clade + the Protochauliodes clade, which is consistent with the previous morphology-based hypothesis. The divergence time estimation suggested that the divergence among the three major subgroups of fishflies occurred during the Late Jurassic and Early Cretaceous when the supercontinent Pangaea was undergoing sequential breakup.

  16. Temperate radiations and dying embers of a tropical past: the diversification of Viburnum.

    PubMed

    Spriggs, Elizabeth L; Clement, Wendy L; Sweeney, Patrick W; Madriñán, Santiago; Edwards, Erika J; Donoghue, Michael J

    2015-07-01

    We used a near-complete phylogeny for the angiosperm clade Viburnum to assess lineage diversification rates, and to examine possible morphological and ecological factors driving radiations. Maximum-likelihood and Bayesian approaches identified shifts in diversification rate and possible links to character evolution. We inferred the ancestral environment for Viburnum and changes in diversification dynamics associated with subsequent biome shifts. Viburnum probably diversified in tropical forests of Southeast Asia in the Eocene, with three subsequent radiations in temperate clades during the Miocene. Four traits (purple fruits, extrafloral nectaries, bud scales and toothed leaves) were statistically associated with higher rates of diversification. However, we argue that these traits are unlikely to be driving diversification directly. Instead, two radiations were associated with the occupation of mountainous regions and a third with repeated shifts between colder and warmer temperate forests. Early-branching depauperate lineages imply that the rare lowland tropical species are 'dying embers' of once more diverse lineages; net diversification rates in Viburnum likely decreased in these tropical environments after the Oligocene. We suggest that 'taxon pulse' dynamics might characterize other temperate plant lineages. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. Phylogenetic position of Loricifera inferred from nearly complete 18S and 28S rRNA gene sequences.

    PubMed

    Yamasaki, Hiroshi; Fujimoto, Shinta; Miyazaki, Katsumi

    2015-01-01

    Loricifera is an enigmatic metazoan phylum; its morphology appeared to place it with Priapulida and Kinorhyncha in the group Scalidophora which, along with Nematoida (Nematoda and Nematomorpha), comprised the group Cycloneuralia. Scarce molecular data have suggested an alternative phylogenetic hypothesis, that the phylum Loricifera is a sister taxon to Nematomorpha, although the actual phylogenetic position of the phylum remains unclear. Ecdysozoan phylogeny was reconstructed through maximum-likelihood (ML) and Bayesian inference (BI) analyses of nuclear 18S and 28S rRNA gene sequences from 60 species representing all eight ecdysozoan phyla, and including a newly collected loriciferan species. Ecdysozoa comprised two clades with high support values in both the ML and BI trees. One consisted of Priapulida and Kinorhyncha, and the other of Loricifera, Nematoida, and Panarthropoda (Tardigrada, Onychophora, and Arthropoda). The relationships between Loricifera, Nematoida, and Panarthropoda were not well resolved. Loricifera appears to be closely related to Nematoida and Panarthropoda, rather than grouping with Priapulida and Kinorhyncha, as had been suggested by previous studies. Thus, both Scalidophora and Cycloneuralia are a polyphyletic or paraphyletic groups. In addition, Loricifera and Nematomorpha did not emerge as sister groups.

  18. Description and Phylogeny of Urostyla grandis wiackowskii subsp. nov. (Ciliophora, Hypotricha) from an Estuarine Mangrove in Brazil.

    PubMed

    Paiva, Thiago da Silva; Shao, Chen; Fernandes, Noemi Mendes; Borges, Bárbara do Nascimento; da Silva-Neto, Inácio Domingos

    2016-01-01

    Interphase specimens, aspects of physiological reorganization and divisional morphogenesis were investigated in a strain of a hypotrichous ciliate highly similar to Urostyla grandis Ehrenberg, (type species of Urostyla), collected from a mangrove area in the estuary of the Paraíba do Sul river (Rio de Janeiro, Brazil). The results revealed that albeit interphase specimens match with the known morphologic variability in U. grandis, morphogenetic processes have conspicuous differences. Parental adoral zone is entirely renewed during morphogenesis, and marginal cirri exhibit a unique combination of developmental modes, in which left marginal rows originate from multiple anlagen arising from innermost left marginal cirral row, whereas right marginal ciliature originates from individual within-row anlagen. Based on such characteristics, a new subspecies, namely U. grandis wiackowskii subsp. nov. is proposed, and consequently, U. grandis grandis Ehrenberg, stat. nov. is established. Bayesian and maximum-likelihood analyses of the 18S rDNA unambiguously placed U. grandis wiackowskii as adelphotaxon of a cluster formed by other U. grandis sequences. The implications of such findings to the systematics of Urostyla are discussed. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.

  19. Isolation, screening and molecular identification of novel bacterial strain removing methylene blue from water solutions

    NASA Astrophysics Data System (ADS)

    Kilany, Mona

    2017-11-01

    The potentially deleterious effects of methylene blue (MB) on human health drove the interest in its removal promptly. Bioremediation is an effective and eco friendly for removing MB. Soil bacteria were isolated and examined for their potential to remove MB. The most potent bacterial candidate was characterized and identified using 16S rRNA sequence technique. The evolutionary history of the isolate was conducted by maximum likelihood method. Some physiochemical parameters were optimized for maximum decolorization. Decolorization mechanism and microbial toxicity study of MB (100 mg/l) and by-products were investigated. Participation of heat killed bacteria in color adsorption have been investigated too. The bacterial isolate was identified as Stenotrophomonas maltophilia strain Kilany_MB 16S ribosomal RNA gene with 99% sequence similarity. The sequence was submitted to NCBI (Accession number = KU533726). Phylogeny depicted the phylogenetic relationships between 16S ribosomal RNA gene, partial sequence (1442 bp), of the isolated strain and other strains related to Stenotrophomonas maltophilia in the GenBank database. The optimal conditions were investigated to be pH 5 at 30 °C, after 24 h using 5 mg/l MB showing optimum decolorization percentage (61.3%). Microbial toxicity study demonstrated relative reduction in the toxicity of MB decolorized products on test bacteria. Mechanism of color removal was proved by both biosorption and biodegradation, where heat-killed and live cells showed 43 and 52% of decolorization, respectively, as a maximum value after 24-h incubation. It was demonstrated that the mechanism of color removal is by adsorption. Therefore, good performance of S maltophilia in MB color removal reinforces the exploitation of these bacteria in environmental clean-up and restoration of the ecosystem.

  20. Population Synthesis of Radio and Gamma-ray Pulsars using the Maximum Likelihood Approach

    NASA Astrophysics Data System (ADS)

    Billman, Caleb; Gonthier, P. L.; Harding, A. K.

    2012-01-01

    We present the results of a pulsar population synthesis of normal pulsars from the Galactic disk using a maximum likelihood method. We seek to maximize the likelihood of a set of parameters in a Monte Carlo population statistics code to better understand their uncertainties and the confidence region of the model's parameter space. The maximum likelihood method allows for the use of more applicable Poisson statistics in the comparison of distributions of small numbers of detected gamma-ray and radio pulsars. Our code simulates pulsars at birth using Monte Carlo techniques and evolves them to the present assuming initial spatial, kick velocity, magnetic field, and period distributions. Pulsars are spun down to the present and given radio and gamma-ray emission characteristics. We select measured distributions of radio pulsars from the Parkes Multibeam survey and Fermi gamma-ray pulsars to perform a likelihood analysis of the assumed model parameters such as initial period and magnetic field, and radio luminosity. We present the results of a grid search of the parameter space as well as a search for the maximum likelihood using a Markov Chain Monte Carlo method. We express our gratitude for the generous support of the Michigan Space Grant Consortium, of the National Science Foundation (REU and RUI), the NASA Astrophysics Theory and Fundamental Program and the NASA Fermi Guest Investigator Program.

  1. Estimating the variance for heterogeneity in arm-based network meta-analysis.

    PubMed

    Piepho, Hans-Peter; Madden, Laurence V; Roger, James; Payne, Roger; Williams, Emlyn R

    2018-04-19

    Network meta-analysis can be implemented by using arm-based or contrast-based models. Here we focus on arm-based models and fit them using generalized linear mixed model procedures. Full maximum likelihood (ML) estimation leads to biased trial-by-treatment interaction variance estimates for heterogeneity. Thus, our objective is to investigate alternative approaches to variance estimation that reduce bias compared with full ML. Specifically, we use penalized quasi-likelihood/pseudo-likelihood and hierarchical (h) likelihood approaches. In addition, we consider a novel model modification that yields estimators akin to the residual maximum likelihood estimator for linear mixed models. The proposed methods are compared by simulation, and 2 real datasets are used for illustration. Simulations show that penalized quasi-likelihood/pseudo-likelihood and h-likelihood reduce bias and yield satisfactory coverage rates. Sum-to-zero restriction and baseline contrasts for random trial-by-treatment interaction effects, as well as a residual ML-like adjustment, also reduce bias compared with an unconstrained model when ML is used, but coverage rates are not quite as good. Penalized quasi-likelihood/pseudo-likelihood and h-likelihood are therefore recommended. Copyright © 2018 John Wiley & Sons, Ltd.

  2. On Muthen's Maximum Likelihood for Two-Level Covariance Structure Models

    ERIC Educational Resources Information Center

    Yuan, Ke-Hai; Hayashi, Kentaro

    2005-01-01

    Data in social and behavioral sciences are often hierarchically organized. Special statistical procedures that take into account the dependence of such observations have been developed. Among procedures for 2-level covariance structure analysis, Muthen's maximum likelihood (MUML) has the advantage of easier computation and faster convergence. When…

  3. Maximum Likelihood Estimation of Nonlinear Structural Equation Models with Ignorable Missing Data

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Song, Xin-Yuan; Lee, John C. K.

    2003-01-01

    The existing maximum likelihood theory and its computer software in structural equation modeling are established on the basis of linear relationships among latent variables with fully observed data. However, in social and behavioral sciences, nonlinear relationships among the latent variables are important for establishing more meaningful models…

  4. Mixture Rasch Models with Joint Maximum Likelihood Estimation

    ERIC Educational Resources Information Center

    Willse, John T.

    2011-01-01

    This research provides a demonstration of the utility of mixture Rasch models. Specifically, a model capable of estimating a mixture partial credit model using joint maximum likelihood is presented. Like the partial credit model, the mixture partial credit model has the beneficial feature of being appropriate for analysis of assessment data…

  5. Consistency of Rasch Model Parameter Estimation: A Simulation Study.

    ERIC Educational Resources Information Center

    van den Wollenberg, Arnold L.; And Others

    1988-01-01

    The unconditional--simultaneous--maximum likelihood (UML) estimation procedure for the one-parameter logistic model produces biased estimators. The UML method is inconsistent and is not a good alternative to conditional maximum likelihood method, at least with small numbers of items. The minimum Chi-square estimation procedure produces unbiased…

  6. Bayesian Monte Carlo and Maximum Likelihood Approach for Uncertainty Estimation and Risk Management: Application to Lake Oxygen Recovery Model

    EPA Science Inventory

    Model uncertainty estimation and risk assessment is essential to environmental management and informed decision making on pollution mitigation strategies. In this study, we apply a probabilistic methodology, which combines Bayesian Monte Carlo simulation and Maximum Likelihood e...

  7. IRT Item Parameter Recovery with Marginal Maximum Likelihood Estimation Using Loglinear Smoothing Models

    ERIC Educational Resources Information Center

    Casabianca, Jodi M.; Lewis, Charles

    2015-01-01

    Loglinear smoothing (LLS) estimates the latent trait distribution while making fewer assumptions about its form and maintaining parsimony, thus leading to more precise item response theory (IRT) item parameter estimates than standard marginal maximum likelihood (MML). This article provides the expectation-maximization algorithm for MML estimation…

  8. A Study of Item Bias for Attitudinal Measurement Using Maximum Likelihood Factor Analysis.

    ERIC Educational Resources Information Center

    Mayberry, Paul W.

    A technique for detecting item bias that is responsive to attitudinal measurement considerations is a maximum likelihood factor analysis procedure comparing multivariate factor structures across various subpopulations, often referred to as SIFASP. The SIFASP technique allows for factorial model comparisons in the testing of various hypotheses…

  9. The Effects of Model Misspecification and Sample Size on LISREL Maximum Likelihood Estimates.

    ERIC Educational Resources Information Center

    Baldwin, Beatrice

    The robustness of LISREL computer program maximum likelihood estimates under specific conditions of model misspecification and sample size was examined. The population model used in this study contains one exogenous variable; three endogenous variables; and eight indicator variables, two for each latent variable. Conditions of model…

  10. An EM Algorithm for Maximum Likelihood Estimation of Process Factor Analysis Models

    ERIC Educational Resources Information Center

    Lee, Taehun

    2010-01-01

    In this dissertation, an Expectation-Maximization (EM) algorithm is developed and implemented to obtain maximum likelihood estimates of the parameters and the associated standard error estimates characterizing temporal flows for the latent variable time series following stationary vector ARMA processes, as well as the parameters defining the…

  11. SCI Identification (SCIDNT) program user's guide. [maximum likelihood method for linear rotorcraft models

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The computer program Linear SCIDNT which evaluates rotorcraft stability and control coefficients from flight or wind tunnel test data is described. It implements the maximum likelihood method to maximize the likelihood function of the parameters based on measured input/output time histories. Linear SCIDNT may be applied to systems modeled by linear constant-coefficient differential equations. This restriction in scope allows the application of several analytical results which simplify the computation and improve its efficiency over the general nonlinear case.

  12. Maximum-likelihood soft-decision decoding of block codes using the A* algorithm

    NASA Technical Reports Server (NTRS)

    Ekroot, L.; Dolinar, S.

    1994-01-01

    The A* algorithm finds the path in a finite depth binary tree that optimizes a function. Here, it is applied to maximum-likelihood soft-decision decoding of block codes where the function optimized over the codewords is the likelihood function of the received sequence given each codeword. The algorithm considers codewords one bit at a time, making use of the most reliable received symbols first and pursuing only the partially expanded codewords that might be maximally likely. A version of the A* algorithm for maximum-likelihood decoding of block codes has been implemented for block codes up to 64 bits in length. The efficiency of this algorithm makes simulations of codes up to length 64 feasible. This article details the implementation currently in use, compares the decoding complexity with that of exhaustive search and Viterbi decoding algorithms, and presents performance curves obtained with this implementation of the A* algorithm for several codes.

  13. An evaluation of percentile and maximum likelihood estimators of weibull paremeters

    Treesearch

    Stanley J. Zarnoch; Tommy R. Dell

    1985-01-01

    Two methods of estimating the three-parameter Weibull distribution were evaluated by computer simulation and field data comparison. Maximum likelihood estimators (MLB) with bias correction were calculated with the computer routine FITTER (Bailey 1974); percentile estimators (PCT) were those proposed by Zanakis (1979). The MLB estimators had superior smaller bias and...

  14. Quasi-Maximum Likelihood Estimation of Structural Equation Models with Multiple Interaction and Quadratic Effects

    ERIC Educational Resources Information Center

    Klein, Andreas G.; Muthen, Bengt O.

    2007-01-01

    In this article, a nonlinear structural equation model is introduced and a quasi-maximum likelihood method for simultaneous estimation and testing of multiple nonlinear effects is developed. The focus of the new methodology lies on efficiency, robustness, and computational practicability. Monte-Carlo studies indicate that the method is highly…

  15. Maximum Likelihood Analysis of Nonlinear Structural Equation Models with Dichotomous Variables

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lee, Sik-Yum

    2005-01-01

    In this article, a maximum likelihood approach is developed to analyze structural equation models with dichotomous variables that are common in behavioral, psychological and social research. To assess nonlinear causal effects among the latent variables, the structural equation in the model is defined by a nonlinear function. The basic idea of the…

  16. Unclassified Publications of Lincoln Laboratory, 1 January - 31 December 1990. Volume 16

    DTIC Science & Technology

    1990-12-31

    Apr. 1990 ADA223419 Hopped Communication Systems with Nonuniform Hopping Distributions 880 Bistatic Radar Cross Section of a Fenn, A.J. 2 May1990...EXPERIMENT JA-6241 MS-8424 LUNAR PERTURBATION MAXIMUM LIKELIHOOD ALGORITHM JA-6241 JA-6467 LWIR SPECTRAL BAND MAXIMUM LIKELIHOOD ESTIMATOR JA-6476 MS-8466

  17. Expected versus Observed Information in SEM with Incomplete Normal and Nonnormal Data

    ERIC Educational Resources Information Center

    Savalei, Victoria

    2010-01-01

    Maximum likelihood is the most common estimation method in structural equation modeling. Standard errors for maximum likelihood estimates are obtained from the associated information matrix, which can be estimated from the sample using either expected or observed information. It is known that, with complete data, estimates based on observed or…

  18. Effects of Estimation Bias on Multiple-Category Classification with an IRT-Based Adaptive Classification Procedure

    ERIC Educational Resources Information Center

    Yang, Xiangdong; Poggio, John C.; Glasnapp, Douglas R.

    2006-01-01

    The effects of five ability estimators, that is, maximum likelihood estimator, weighted likelihood estimator, maximum a posteriori, expected a posteriori, and Owen's sequential estimator, on the performances of the item response theory-based adaptive classification procedure on multiple categories were studied via simulations. The following…

  19. Bias and Efficiency in Structural Equation Modeling: Maximum Likelihood versus Robust Methods

    ERIC Educational Resources Information Center

    Zhong, Xiaoling; Yuan, Ke-Hai

    2011-01-01

    In the structural equation modeling literature, the normal-distribution-based maximum likelihood (ML) method is most widely used, partly because the resulting estimator is claimed to be asymptotically unbiased and most efficient. However, this may not hold when data deviate from normal distribution. Outlying cases or nonnormally distributed data,…

  20. Five Methods for Estimating Angoff Cut Scores with IRT

    ERIC Educational Resources Information Center

    Wyse, Adam E.

    2017-01-01

    This article illustrates five different methods for estimating Angoff cut scores using item response theory (IRT) models. These include maximum likelihood (ML), expected a priori (EAP), modal a priori (MAP), and weighted maximum likelihood (WML) estimators, as well as the most commonly used approach based on translating ratings through the test…

  1. High-Dimensional Exploratory Item Factor Analysis by a Metropolis-Hastings Robbins-Monro Algorithm

    ERIC Educational Resources Information Center

    Cai, Li

    2010-01-01

    A Metropolis-Hastings Robbins-Monro (MH-RM) algorithm for high-dimensional maximum marginal likelihood exploratory item factor analysis is proposed. The sequence of estimates from the MH-RM algorithm converges with probability one to the maximum likelihood solution. Details on the computer implementation of this algorithm are provided. The…

  2. Comparison of standard maximum likelihood classification and polytomous logistic regression used in remote sensing

    Treesearch

    John Hogland; Nedret Billor; Nathaniel Anderson

    2013-01-01

    Discriminant analysis, referred to as maximum likelihood classification within popular remote sensing software packages, is a common supervised technique used by analysts. Polytomous logistic regression (PLR), also referred to as multinomial logistic regression, is an alternative classification approach that is less restrictive, more flexible, and easy to interpret. To...

  3. Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera

    PubMed Central

    Watson, Linda E; Bates, Paul L; Evans, Timothy M; Unwin, Matthew M; Estes, James R

    2002-01-01

    Background Subtribe Artemisiinae of Tribe Anthemideae (Asteraceae) is composed of 18 largely Asian genera that include the sagebrushes and mugworts. The subtribe includes the large cosmopolitan, wind-pollinated genus Artemisia, as well as several smaller genera and Seriphidium, that altogether comprise the Artemisia-group. Circumscription and taxonomic boundaries of Artemisia and the placements of these small segregate genera is currently unresolved. Results We constructed a molecular phylogeny for the subtribe using the internal transcribed spacers (ITS) of nuclear ribosomal DNA analyzed with parsimony, likelihood, and Bayesian criteria. The resulting tree is comprised of three major clades that correspond to the radiate genera (e.g., Arctanthemum and Dendranthema), and two clades of Artemisia species. All three clades have allied and segregate genera embedded within each. Conclusions The data support a broad concept of Artemisia s.l. that includes Neopallasia, Crossostephium, Filifolium, Seriphidium, and Sphaeromeria. However, the phylogeny excludes Elachanthemum, Kaschgaria, and Stilnolepis from the Artemisia-group. Additionally, the monophyly of the four subgenera of Artemisia is also not supported, with the exception of subg. Dracunculus. Homogamous, discoid capitula appear to have arisen in parallel four to seven times, with the loss of ray florets. Thus capitular morphology is not a reliable taxonomic character, which traditionally has been one of the defining characters. PMID:12350234

  4. Procedure for estimating stability and control parameters from flight test data by using maximum likelihood methods employing a real-time digital system

    NASA Technical Reports Server (NTRS)

    Grove, R. D.; Bowles, R. L.; Mayhew, S. C.

    1972-01-01

    A maximum likelihood parameter estimation procedure and program were developed for the extraction of the stability and control derivatives of aircraft from flight test data. Nonlinear six-degree-of-freedom equations describing aircraft dynamics were used to derive sensitivity equations for quasilinearization. The maximum likelihood function with quasilinearization was used to derive the parameter change equations, the covariance matrices for the parameters and measurement noise, and the performance index function. The maximum likelihood estimator was mechanized into an iterative estimation procedure utilizing a real time digital computer and graphic display system. This program was developed for 8 measured state variables and 40 parameters. Test cases were conducted with simulated data for validation of the estimation procedure and program. The program was applied to a V/STOL tilt wing aircraft, a military fighter airplane, and a light single engine airplane. The particular nonlinear equations of motion, derivation of the sensitivity equations, addition of accelerations into the algorithm, operational features of the real time digital system, and test cases are described.

  5. Computation of nonlinear least squares estimator and maximum likelihood using principles in matrix calculus

    NASA Astrophysics Data System (ADS)

    Mahaboob, B.; Venkateswarlu, B.; Sankar, J. Ravi; Balasiddamuni, P.

    2017-11-01

    This paper uses matrix calculus techniques to obtain Nonlinear Least Squares Estimator (NLSE), Maximum Likelihood Estimator (MLE) and Linear Pseudo model for nonlinear regression model. David Pollard and Peter Radchenko [1] explained analytic techniques to compute the NLSE. However the present research paper introduces an innovative method to compute the NLSE using principles in multivariate calculus. This study is concerned with very new optimization techniques used to compute MLE and NLSE. Anh [2] derived NLSE and MLE of a heteroscedatistic regression model. Lemcoff [3] discussed a procedure to get linear pseudo model for nonlinear regression model. In this research article a new technique is developed to get the linear pseudo model for nonlinear regression model using multivariate calculus. The linear pseudo model of Edmond Malinvaud [4] has been explained in a very different way in this paper. David Pollard et.al used empirical process techniques to study the asymptotic of the LSE (Least-squares estimation) for the fitting of nonlinear regression function in 2006. In Jae Myung [13] provided a go conceptual for Maximum likelihood estimation in his work “Tutorial on maximum likelihood estimation

  6. Collinear Latent Variables in Multilevel Confirmatory Factor Analysis: A Comparison of Maximum Likelihood and Bayesian Estimations.

    PubMed

    Can, Seda; van de Schoot, Rens; Hox, Joop

    2015-06-01

    Because variables may be correlated in the social and behavioral sciences, multicollinearity might be problematic. This study investigates the effect of collinearity manipulated in within and between levels of a two-level confirmatory factor analysis by Monte Carlo simulation. Furthermore, the influence of the size of the intraclass correlation coefficient (ICC) and estimation method; maximum likelihood estimation with robust chi-squares and standard errors and Bayesian estimation, on the convergence rate are investigated. The other variables of interest were rate of inadmissible solutions and the relative parameter and standard error bias on the between level. The results showed that inadmissible solutions were obtained when there was between level collinearity and the estimation method was maximum likelihood. In the within level multicollinearity condition, all of the solutions were admissible but the bias values were higher compared with the between level collinearity condition. Bayesian estimation appeared to be robust in obtaining admissible parameters but the relative bias was higher than for maximum likelihood estimation. Finally, as expected, high ICC produced less biased results compared to medium ICC conditions.

  7. Maximum Likelihood Estimation with Emphasis on Aircraft Flight Data

    NASA Technical Reports Server (NTRS)

    Iliff, K. W.; Maine, R. E.

    1985-01-01

    Accurate modeling of flexible space structures is an important field that is currently under investigation. Parameter estimation, using methods such as maximum likelihood, is one of the ways that the model can be improved. The maximum likelihood estimator has been used to extract stability and control derivatives from flight data for many years. Most of the literature on aircraft estimation concentrates on new developments and applications, assuming familiarity with basic estimation concepts. Some of these basic concepts are presented. The maximum likelihood estimator and the aircraft equations of motion that the estimator uses are briefly discussed. The basic concepts of minimization and estimation are examined for a simple computed aircraft example. The cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to help illustrate the minimization process. Finally, the basic concepts are generalized, and estimation from flight data is discussed. Specific examples of estimation of structural dynamics are included. Some of the major conclusions for the computed example are also developed for the analysis of flight data.

  8. Phylogenetic reconstruction in the Order Nymphaeales: ITS2 secondary structure analysis and in silico testing of maturase k (matK) as a potential marker for DNA bar coding

    PubMed Central

    2012-01-01

    Background The Nymphaeales (waterlilly and relatives) lineage has diverged as the second branch of basal angiosperms and comprises of two families: Cabombaceae and Nymphaceae. The classification of Nymphaeales and phylogeny within the flowering plants are quite intriguing as several systems (Thorne system, Dahlgren system, Cronquist system, Takhtajan system and APG III system (Angiosperm Phylogeny Group III system) have attempted to redefine the Nymphaeales taxonomy. There have been also fossil records consisting especially of seeds, pollen, stems, leaves and flowers as early as the lower Cretaceous. Here we present an in silico study of the order Nymphaeales taking maturaseK (matK) and internal transcribed spacer (ITS2) as biomarkers for phylogeny reconstruction (using character-based methods and Bayesian approach) and identification of motifs for DNA barcoding. Results The Maximum Likelihood (ML) and Bayesian approach yielded congruent fully resolved and well-supported trees using a concatenated (ITS2+ matK) supermatrix aligned dataset. The taxon sampling corroborates the monophyly of Cabombaceae. Nuphar emerges as a monophyletic clade in the family Nymphaeaceae while there are slight discrepancies in the monophyletic nature of the genera Nymphaea owing to Victoria-Euryale and Ondinea grouping in the same node of Nymphaeaceae. ITS2 secondary structures alignment corroborate the primary sequence analysis. Hydatellaceae emerged as a sister clade to Nymphaeaceae and had a basal lineage amongst the water lilly clades. Species from Cycas and Ginkgo were taken as outgroups and were rooted in the overall tree topology from various methods. Conclusions MatK genes are fast evolving highly variant regions of plant chloroplast DNA that can serve as potential biomarkers for DNA barcoding and also in generating primers for angiosperms with identification of unique motif regions. We have reported unique genus specific motif regions in the Order Nymphaeles from matK dataset which can be further validated for barcoding and designing of PCR primers. Our analysis using a novel approach of sequence-structure alignment and phylogenetic reconstruction using molecular morphometrics congrue with the current placement of Hydatellaceae within the early-divergent angiosperm order Nymphaeales. The results underscore the fact that more diverse genera, if not fully resolved to be monophyletic, should be represented by all major lineages. PMID:23282079

  9. A molecular phylogeny of the Australian huntsman spiders (Sparassidae, Deleninae): implications for taxonomy and social behaviour.

    PubMed

    Agnarsson, Ingi; Rayor, Linda S

    2013-12-01

    Huntsman spiders (Sparassidae) are a diverse group with a worldwide distribution, yet are poorly known both taxonomically and phylogenetically. They are particularly diverse in Australia where an endemic lineage, Deleninae, has diversified to form nearly 100 species. One unusual species, Delena cancerides, has been believed to be the sole group-living sparassid. Unlike all of the other subsocial and social spiders which are capture-web based or live in silken tunnels, D. cancerides are non-web building spiders that live in large matrilineal colonies of a single adult female and her offspring from multiple clutches of under the bark of dead trees. Here we report the discovery of two additional prolonged subsocial sparassid species, currently in Eodelena but here formally proposed as a synonomy of Delena (new synonoymy), Delena (Eodelena) lapidicola and D. (E.) melanochelis. We briefly describe their social demographics, behavior, and habitat use. In order to understand the evolutionary relationships among these species, and thus origin of sociality and other traits in this group, we also offer the first molecular phylogeny of Deleninae and relatives. We employ model based phylogenetic analyses on two mtDNA and three nuDNA loci using maximum likelihood and Bayesian methods, including both 'classical' concatenation approach as well as coalescent-based analysis of species trees from gene trees. Our results support the hypothesis that the delenine huntsman spiders are a monophyletic Australian radiation, approximately 23 million year old, and indicate that the current ten genera should be merged to six genera in four clades. Our findings are inconsistent with some relatively recent changes in the taxonomy of Deleninae. The three known group-living delenine species are related and likely represent a single origin of sociality with a single reversal to solitary life-styles. Our results provide strong support for the classical Isopeda, but not for the recent splitting of that taxon into Isopeda, Isopedella, and Holconia. Another moderately supported clade within Deleninae unites three genera (Pediana, Beregama, Typostola) that, while morphologically diverse, all share extraordinary locomotory speed. A fourth clade is comprised of the speciose Neosparassus, containing Zachria. In sum, our study results in a robust phylogeny of Deleninae, casting light on the origin of sociality in the group, and facilitating future work on these unusual spiders. Copyright © 2013. Published by Elsevier Inc.

  10. Multigene phylogeny of land plants with special reference to bryophytes and the earliest land plants.

    PubMed

    Nickrent, D L; Parkinson, C L; Palmer, J D; Duff, R J

    2000-12-01

    A widely held view of land plant relationships places liverworts as the first branch of the land plant tree, whereas some molecular analyses and a cladistic study of morphological characters indicate that hornworts are the earliest land plants. To help resolve this conflict, we used parsimony and likelihood methods to analyze a 6, 095-character data set composed of four genes (chloroplast rbcL and small-subunit rDNA from all three plant genomes) from all major land plant lineages. In all analyses, significant support was obtained for the monophyly of vascular plants, lycophytes, ferns (including PSILOTUM: and EQUISETUM:), seed plants, and angiosperms. Relationships among the three bryophyte lineages were unresolved in parsimony analyses in which all positions were included and weighted equally. However, in parsimony and likelihood analyses in which rbcL third-codon-position transitions were either excluded or downweighted (due to apparent saturation), hornworts were placed as sister to all other land plants, with mosses and liverworts jointly forming the second deepest lineage. Decay analyses and Kishino-Hasegawa tests of the third-position-excluded data set showed significant support for the hornwort-basal topology over several alternative topologies, including the commonly cited liverwort-basal topology. Among the four genes used, mitochondrial small-subunit rDNA showed the lowest homoplasy and alone recovered essentially the same topology as the multigene tree. This molecular phylogeny presents new opportunities to assess paleontological evidence and morphological innovations that occurred during the early evolution of terrestrial plants.

  11. The influence of ignoring secondary structure on divergence time estimates from ribosomal RNA genes.

    PubMed

    Dohrmann, Martin

    2014-02-01

    Genes coding for ribosomal RNA molecules (rDNA) are among the most popular markers in molecular phylogenetics and evolution. However, coevolution of sites that code for pairing regions (stems) in the RNA secondary structure can make it challenging to obtain accurate results from such loci. While the influence of ignoring secondary structure on multiple sequence alignment and tree topology has been investigated in numerous studies, its effect on molecular divergence time estimates is still poorly known. Here, I investigate this issue in Bayesian Markov Chain Monte Carlo (BMCMC) and penalized likelihood (PL) frameworks, using empirical datasets from dragonflies (Odonata: Anisoptera) and glass sponges (Porifera: Hexactinellida). My results indicate that highly biased inferences under substitution models that ignore secondary structure only occur if maximum-likelihood estimates of branch lengths are used as input to PL dating, whereas in a BMCMC framework and in PL dating based on Bayesian consensus branch lengths, the effect is far less severe. I conclude that accounting for coevolution of paired sites in molecular dating studies is not as important as previously suggested, as long as the estimates are based on Bayesian consensus branch lengths instead of ML point estimates. This finding is especially relevant for studies where computational limitations do not allow the use of secondary-structure specific substitution models, or where accurate consensus structures cannot be predicted. I also found that the magnitude and direction (over- vs. underestimating node ages) of bias in age estimates when secondary structure is ignored was not distributed randomly across the nodes of the phylogenies, a phenomenon that requires further investigation. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Approximated maximum likelihood estimation in multifractal random walks

    NASA Astrophysics Data System (ADS)

    Løvsletten, O.; Rypdal, M.

    2012-04-01

    We present an approximated maximum likelihood method for the multifractal random walk processes of [E. Bacry , Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.64.026103 64, 026103 (2001)]. The likelihood is computed using a Laplace approximation and a truncation in the dependency structure for the latent volatility. The procedure is implemented as a package in the r computer language. Its performance is tested on synthetic data and compared to an inference approach based on the generalized method of moments. The method is applied to estimate parameters for various financial stock indices.

  13. The evolutionary history of Eugenia sect. Phyllocalyx (Myrtaceae) corroborates historically stable areas in the southern Atlantic forests.

    PubMed

    de Oliveira Bünger, Mariana; Fernanda Mazine, Fiorella; Forest, Félix; Leandro Bueno, Marcelo; Renato Stehmann, João; Lucas, Eve J

    2016-12-01

    Eugenia sect. Phyllocalyx Nied. includes 14 species endemic to the Neotropics, mostly distributed in the Atlantic coastal forests of Brazil. Here the first comprehensive phylogenetic study of this group is presented, and this phylogeny is used as the basis to evaluate the recent infrageneric classification in Eugenia sensu lato (s.l.) to test the history of the evolution of traits in the group and test hypotheses associated with the history of this clade. A total of 42 taxa were sampled, of which 14 were Eugenia sect. Phyllocalyx for one nuclear (ribosomal internal transcribed spacer) and four plastid markers (psbA-trnH, rpl16, trnL-rpl32 and trnQ-rps16). The relationships were reconstructed based on Bayesian analysis and maximum likelihood. Additionally, ancestral area analysis and modelling methods were used to estimate species dispersal, comparing historically climatic stable (refuges) and unstable areas. Maximum likelihood and Bayesian inferences indicate that Eugenia sect. Phyllocalyx is paraphyletic and the two clades recovered are characterized by combinations of morphological characters. Phylogenetic relationships support a link between Cerrado and south-eastern species and a difference in the composition of species from north-eastern and south-eastern Atlantic forest. Refugia and stable areas identified within unstable areas suggest that these areas were important to maintain diversity in the Atlantic forest biodiversity hotspot. This study provides a robust phylogenetic framework to address important historical questions for Eugenia s.l. within an evolutionary context, supporting the need for better taxonomic study of one of the largest genera in the Neotropics. Furthermore, valuable insight is offered into diversification and biome shifts of plant species in the highly environmentally impacted Atlantic forest of South America. Evidence is presented that climate stability in the south-eastern Atlantic forest during the Quaternary contributed to the highest levels of plant diversity in this region that acted as a refugium. © The Authors 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Phylogenomic analysis of a rapid radiation of misfit fishes (Syngnathiformes) using ultraconserved elements.

    PubMed

    Longo, S J; Faircloth, B C; Meyer, A; Westneat, M W; Alfaro, M E; Wainwright, P C

    2017-08-01

    Phylogenetics is undergoing a revolution as large-scale molecular datasets reveal unexpected but repeatable rearrangements of clades that were previously thought to be disparate lineages. One of the most unusual clades of fishes that has been found using large-scale molecular datasets is an expanded Syngnathiformes including traditional long-snouted syngnathiform lineages (Aulostomidae, Centriscidae, Fistulariidae, Solenostomidae, Syngnathidae), as well as a diverse set of largely benthic-associated fishes (Callionymoidei, Dactylopteridae, Mullidae, Pegasidae) that were previously dispersed across three orders. The monophyly of this surprising clade of fishes has been upheld by recent studies utilizing both nuclear and mitogenomic data, but the relationships among major lineages within Syngnathiformes remain ambiguous; previous analyses have inconsistent topologies and are plagued by low support at deep divergences between the major lineages. In this study, we use a dataset of ultraconserved elements (UCEs) to conduct the first phylogenomic study of Syngnathiformes. UCEs have been effective markers for resolving deep phylogenetic relationships in fishes and, combined with increased taxon sampling, we expected UCEs to resolve problematic syngnathiform relationships. Overall, UCEs were effective at resolving relationships within Syngnathiformes at a range of evolutionary timescales. We find consistent support for the monophyly of traditional long-snouted syngnathiform lineages (Aulostomidae, Centriscidae, Fistulariidae, Solenostomidae, Syngnathidae), which better agrees with morphological hypotheses than previously published topologies from molecular data. This result was supported by all Bayesian and maximum likelihood analyses, was robust to differences in matrix completeness and potential sources of bias, and was highly supported in coalescent-based analyses in ASTRAL when matrices were filtered to contain the most phylogenetically informative loci. While Bayesian and maximum likelihood analyses found support for a benthic-associated clade (Callionymidae, Dactylopteridae, Mullidae, and Pegasidae) as sister to the long-snouted clade, this result was not replicated in the ASTRAL analyses. The base of our phylogeny is characterized by short internodes separating major syngnathiform lineages and is consistent with the hypothesis of an ancient rapid radiation at the base of Syngnathiformes. Syngnathiformes therefore present an exciting opportunity to study patterns of morphological variation and functional innovation arising from rapid but ancient radiation. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Maximum Likelihood Analysis of a Two-Level Nonlinear Structural Equation Model with Fixed Covariates

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Song, Xin-Yuan

    2005-01-01

    In this article, a maximum likelihood (ML) approach for analyzing a rather general two-level structural equation model is developed for hierarchically structured data that are very common in educational and/or behavioral research. The proposed two-level model can accommodate nonlinear causal relations among latent variables as well as effects…

  16. 12-mode OFDM transmission using reduced-complexity maximum likelihood detection.

    PubMed

    Lobato, Adriana; Chen, Yingkan; Jung, Yongmin; Chen, Haoshuo; Inan, Beril; Kuschnerov, Maxim; Fontaine, Nicolas K; Ryf, Roland; Spinnler, Bernhard; Lankl, Berthold

    2015-02-01

    We report the transmission of 163-Gb/s MDM-QPSK-OFDM and 245-Gb/s MDM-8QAM-OFDM transmission over 74 km of few-mode fiber supporting 12 spatial and polarization modes. A low-complexity maximum likelihood detector is employed to enhance the performance of a system impaired by mode-dependent loss.

  17. Impact of Violation of the Missing-at-Random Assumption on Full-Information Maximum Likelihood Method in Multidimensional Adaptive Testing

    ERIC Educational Resources Information Center

    Han, Kyung T.; Guo, Fanmin

    2014-01-01

    The full-information maximum likelihood (FIML) method makes it possible to estimate and analyze structural equation models (SEM) even when data are partially missing, enabling incomplete data to contribute to model estimation. The cornerstone of FIML is the missing-at-random (MAR) assumption. In (unidimensional) computerized adaptive testing…

  18. Constrained Maximum Likelihood Estimation for Two-Level Mean and Covariance Structure Models

    ERIC Educational Resources Information Center

    Bentler, Peter M.; Liang, Jiajuan; Tang, Man-Lai; Yuan, Ke-Hai

    2011-01-01

    Maximum likelihood is commonly used for the estimation of model parameters in the analysis of two-level structural equation models. Constraints on model parameters could be encountered in some situations such as equal factor loadings for different factors. Linear constraints are the most common ones and they are relatively easy to handle in…

  19. Maximum Likelihood Item Easiness Models for Test Theory without an Answer Key

    ERIC Educational Resources Information Center

    France, Stephen L.; Batchelder, William H.

    2015-01-01

    Cultural consensus theory (CCT) is a data aggregation technique with many applications in the social and behavioral sciences. We describe the intuition and theory behind a set of CCT models for continuous type data using maximum likelihood inference methodology. We describe how bias parameters can be incorporated into these models. We introduce…

  20. Computing Maximum Likelihood Estimates of Loglinear Models from Marginal Sums with Special Attention to Loglinear Item Response Theory.

    ERIC Educational Resources Information Center

    Kelderman, Henk

    1992-01-01

    Describes algorithms used in the computer program LOGIMO for obtaining maximum likelihood estimates of the parameters in loglinear models. These algorithms are also useful for the analysis of loglinear item-response theory models. Presents modified versions of the iterative proportional fitting and Newton-Raphson algorithms. Simulated data…

  1. Applying a Weighted Maximum Likelihood Latent Trait Estimator to the Generalized Partial Credit Model

    ERIC Educational Resources Information Center

    Penfield, Randall D.; Bergeron, Jennifer M.

    2005-01-01

    This article applies a weighted maximum likelihood (WML) latent trait estimator to the generalized partial credit model (GPCM). The relevant equations required to obtain the WML estimator using the Newton-Raphson algorithm are presented, and a simulation study is described that compared the properties of the WML estimator to those of the maximum…

  2. Recovery of Graded Response Model Parameters: A Comparison of Marginal Maximum Likelihood and Markov Chain Monte Carlo Estimation

    ERIC Educational Resources Information Center

    Kieftenbeld, Vincent; Natesan, Prathiba

    2012-01-01

    Markov chain Monte Carlo (MCMC) methods enable a fully Bayesian approach to parameter estimation of item response models. In this simulation study, the authors compared the recovery of graded response model parameters using marginal maximum likelihood (MML) and Gibbs sampling (MCMC) under various latent trait distributions, test lengths, and…

  3. Maximum Likelihood Dynamic Factor Modeling for Arbitrary "N" and "T" Using SEM

    ERIC Educational Resources Information Center

    Voelkle, Manuel C.; Oud, Johan H. L.; von Oertzen, Timo; Lindenberger, Ulman

    2012-01-01

    This article has 3 objectives that build on each other. First, we demonstrate how to obtain maximum likelihood estimates for dynamic factor models (the direct autoregressive factor score model) with arbitrary "T" and "N" by means of structural equation modeling (SEM) and compare the approach to existing methods. Second, we go beyond standard time…

  4. Attitude determination and calibration using a recursive maximum likelihood-based adaptive Kalman filter

    NASA Technical Reports Server (NTRS)

    Kelly, D. A.; Fermelia, A.; Lee, G. K. F.

    1990-01-01

    An adaptive Kalman filter design that utilizes recursive maximum likelihood parameter identification is discussed. At the center of this design is the Kalman filter itself, which has the responsibility for attitude determination. At the same time, the identification algorithm is continually identifying the system parameters. The approach is applicable to nonlinear, as well as linear systems. This adaptive Kalman filter design has much potential for real time implementation, especially considering the fast clock speeds, cache memory and internal RAM available today. The recursive maximum likelihood algorithm is discussed in detail, with special attention directed towards its unique matrix formulation. The procedure for using the algorithm is described along with comments on how this algorithm interacts with the Kalman filter.

  5. Maximum Likelihood Compton Polarimetry with the Compton Spectrometer and Imager

    NASA Astrophysics Data System (ADS)

    Lowell, A. W.; Boggs, S. E.; Chiu, C. L.; Kierans, C. A.; Sleator, C.; Tomsick, J. A.; Zoglauer, A. C.; Chang, H.-K.; Tseng, C.-H.; Yang, C.-Y.; Jean, P.; von Ballmoos, P.; Lin, C.-H.; Amman, M.

    2017-10-01

    Astrophysical polarization measurements in the soft gamma-ray band are becoming more feasible as detectors with high position and energy resolution are deployed. Previous work has shown that the minimum detectable polarization (MDP) of an ideal Compton polarimeter can be improved by ˜21% when an unbinned, maximum likelihood method (MLM) is used instead of the standard approach of fitting a sinusoid to a histogram of azimuthal scattering angles. Here we outline a procedure for implementing this maximum likelihood approach for real, nonideal polarimeters. As an example, we use the recent observation of GRB 160530A with the Compton Spectrometer and Imager. We find that the MDP for this observation is reduced by 20% when the MLM is used instead of the standard method.

  6. Discovery and phylogenetic analysis of a riverine species flock of African electric fishes (Mormyridae: Teleostei).

    PubMed

    Sullivan, John P; Lavoué, Sébastien; Hopkins, Carl D

    2002-03-01

    The evolution of species-specific mate recognition signals is of particular interest within speciose monophyletic groups with restricted distributions (known as "species flocks"). However, the explosive nature of speciation in these clades makes difficult the reconstruction of their phylogenetic history. Here we describe a species flock of riverine mormyrid fishes from west-central Africa in which electric signals may play a role in the reproductive isolation of sympatric species. In our recent field collections, totaling more than 1400 specimens from many localities, we recognize 38 forms that are distinct in their morphologies and electric organ discharge (EOD) characteristics. Of these 38, only four clearly correspond to described species. Here we treat these forms as operational taxonomic units (OTUs) in a phylogenetic analysis of cytochrome b sequence data from a sample of 86 specimens. We examined support in the molecular data for the monophyly of these 38 OTUs considered together, the monophyly of each phenotypically delimited OTU considered individually, and for relationships among OTUs congruent with those inferred from the distribution of morphological and EOD character states. Trees obtained by both maximum-parsimony and maximum-likelihood analyses, rooted with sequence data from outgroup taxa, provide evidence for the monophyly of these 38 OTUs with respect to other mormyrid fishes. The small genetic distances between many distinct forms suggest their recent divergence. However, in many instances the cytochrome b tree topology fails to support the monophyly of individual OTUs and close relationships between OTUs that are similar in morphology and EOD characteristics. In other cases, individuals from distinct OTUs share identical or nearly identical haplotypes. Close examination of these cases suggests that unnatural OTU definition is not the sole cause of this pattern, and we infer an incongruence between the mitochondrial gene tree and the organismal phylogeny caused by incomplete mitochondrial lineage sorting and/ or introgression across forms. The apparently rapid diversification in this clade of riverine electric fishes and the problems associated with recovering a meaningful species-level phylogeny from mitochondrial data parallel findings in other species flocks. Selection on EOD waveforms as mate recognition signals may be involved in the radiation of these fishes. This is the first description of a freshwater fish species flock from a riverine, as opposed to a lacustrine, environment.

  7. Complete plastid genome sequence of Daucus carota: Implications for biotechnology and phylogeny of angiosperms

    PubMed Central

    Ruhlman, Tracey; Lee, Seung-Bum; Jansen, Robert K; Hostetler, Jessica B; Tallon, Luke J; Town, Christopher D; Daniell, Henry

    2006-01-01

    Background Carrot (Daucus carota) is a major food crop in the US and worldwide. Its capacity for storage and its lifecycle as a biennial make it an attractive species for the introduction of foreign genes, especially for oral delivery of vaccines and other therapeutic proteins. Until recently efforts to express recombinant proteins in carrot have had limited success in terms of protein accumulation in the edible tap roots. Plastid genetic engineering offers the potential to overcome this limitation, as demonstrated by the accumulation of BADH in chromoplasts of carrot taproots to confer exceedingly high levels of salt resistance. The complete plastid genome of carrot provides essential information required for genetic engineering. Additionally, the sequence data add to the rapidly growing database of plastid genomes for assessing phylogenetic relationships among angiosperms. Results The complete carrot plastid genome is 155,911 bp in length, with 115 unique genes and 21 duplicated genes within the IR. There are four ribosomal RNAs, 30 distinct tRNA genes and 18 intron-containing genes. Repeat analysis reveals 12 direct and 2 inverted repeats ≥ 30 bp with a sequence identity ≥ 90%. Phylogenetic analysis of nucleotide sequences for 61 protein-coding genes using both maximum parsimony (MP) and maximum likelihood (ML) were performed for 29 angiosperms. Phylogenies from both methods provide strong support for the monophyly of several major angiosperm clades, including monocots, eudicots, rosids, asterids, eurosids II, euasterids I, and euasterids II. Conclusion The carrot plastid genome contains a number of dispersed direct and inverted repeats scattered throughout coding and non-coding regions. This is the first sequenced plastid genome of the family Apiaceae and only the second published genome sequence of the species-rich euasterid II clade. Both MP and ML trees provide very strong support (100% bootstrap) for the sister relationship of Daucus with Panax in the euasterid II clade. These results provide the best taxon sampling of complete chloroplast genomes and the strongest support yet for the sister relationship of Caryophyllales to the asterids. The availability of the complete plastid genome sequence should facilitate improved transformation efficiency and foreign gene expression in carrot through utilization of endogenous flanking sequences and regulatory elements. PMID:16945140

  8. Maximum likelihood estimation for Cox's regression model under nested case-control sampling.

    PubMed

    Scheike, Thomas H; Juul, Anders

    2004-04-01

    Nested case-control sampling is designed to reduce the costs of large cohort studies. It is important to estimate the parameters of interest as efficiently as possible. We present a new maximum likelihood estimator (MLE) for nested case-control sampling in the context of Cox's proportional hazards model. The MLE is computed by the EM-algorithm, which is easy to implement in the proportional hazards setting. Standard errors are estimated by a numerical profile likelihood approach based on EM aided differentiation. The work was motivated by a nested case-control study that hypothesized that insulin-like growth factor I was associated with ischemic heart disease. The study was based on a population of 3784 Danes and 231 cases of ischemic heart disease where controls were matched on age and gender. We illustrate the use of the MLE for these data and show how the maximum likelihood framework can be used to obtain information additional to the relative risk estimates of covariates.

  9. Bootstrap Standard Errors for Maximum Likelihood Ability Estimates When Item Parameters Are Unknown

    ERIC Educational Resources Information Center

    Patton, Jeffrey M.; Cheng, Ying; Yuan, Ke-Hai; Diao, Qi

    2014-01-01

    When item parameter estimates are used to estimate the ability parameter in item response models, the standard error (SE) of the ability estimate must be corrected to reflect the error carried over from item calibration. For maximum likelihood (ML) ability estimates, a corrected asymptotic SE is available, but it requires a long test and the…

  10. DSN telemetry system performance with convolutionally coded data using operational maximum-likelihood convolutional decoders

    NASA Technical Reports Server (NTRS)

    Benjauthrit, B.; Mulhall, B.; Madsen, B. D.; Alberda, M. E.

    1976-01-01

    The DSN telemetry system performance with convolutionally coded data using the operational maximum-likelihood convolutional decoder (MCD) being implemented in the Network is described. Data rates from 80 bps to 115.2 kbps and both S- and X-band receivers are reported. The results of both one- and two-way radio losses are included.

  11. Recovery of Item Parameters in the Nominal Response Model: A Comparison of Marginal Maximum Likelihood Estimation and Markov Chain Monte Carlo Estimation.

    ERIC Educational Resources Information Center

    Wollack, James A.; Bolt, Daniel M.; Cohen, Allan S.; Lee, Young-Sun

    2002-01-01

    Compared the quality of item parameter estimates for marginal maximum likelihood (MML) and Markov Chain Monte Carlo (MCMC) with the nominal response model using simulation. The quality of item parameter recovery was nearly identical for MML and MCMC, and both methods tended to produce good estimates. (SLD)

  12. The Construct Validity of Higher Order Structure-of-Intellect Abilities in a Battery of Tests Emphasizing the Product of Transformations: A Confirmatory Maximum Likelihood Factor Analysis.

    ERIC Educational Resources Information Center

    Khattab, Ali-Maher; And Others

    1982-01-01

    A causal modeling system, using confirmatory maximum likelihood factor analysis with the LISREL IV computer program, evaluated the construct validity underlying the higher order factor structure of a given correlation matrix of 46 structure-of-intellect tests emphasizing the product of transformations. (Author/PN)

  13. Mortality table construction

    NASA Astrophysics Data System (ADS)

    Sutawanir

    2015-12-01

    Mortality tables play important role in actuarial studies such as life annuities, premium determination, premium reserve, valuation pension plan, pension funding. Some known mortality tables are CSO mortality table, Indonesian Mortality Table, Bowers mortality table, Japan Mortality table. For actuary applications some tables are constructed with different environment such as single decrement, double decrement, and multiple decrement. There exist two approaches in mortality table construction : mathematics approach and statistical approach. Distribution model and estimation theory are the statistical concepts that are used in mortality table construction. This article aims to discuss the statistical approach in mortality table construction. The distributional assumptions are uniform death distribution (UDD) and constant force (exponential). Moment estimation and maximum likelihood are used to estimate the mortality parameter. Moment estimation methods are easier to manipulate compared to maximum likelihood estimation (mle). However, the complete mortality data are not used in moment estimation method. Maximum likelihood exploited all available information in mortality estimation. Some mle equations are complicated and solved using numerical methods. The article focus on single decrement estimation using moment and maximum likelihood estimation. Some extension to double decrement will introduced. Simple dataset will be used to illustrated the mortality estimation, and mortality table.

  14. Maximum-likelihood methods in wavefront sensing: stochastic models and likelihood functions

    PubMed Central

    Barrett, Harrison H.; Dainty, Christopher; Lara, David

    2008-01-01

    Maximum-likelihood (ML) estimation in wavefront sensing requires careful attention to all noise sources and all factors that influence the sensor data. We present detailed probability density functions for the output of the image detector in a wavefront sensor, conditional not only on wavefront parameters but also on various nuisance parameters. Practical ways of dealing with nuisance parameters are described, and final expressions for likelihoods and Fisher information matrices are derived. The theory is illustrated by discussing Shack–Hartmann sensors, and computational requirements are discussed. Simulation results show that ML estimation can significantly increase the dynamic range of a Shack–Hartmann sensor with four detectors and that it can reduce the residual wavefront error when compared with traditional methods. PMID:17206255

  15. On non-parametric maximum likelihood estimation of the bivariate survivor function.

    PubMed

    Prentice, R L

    The likelihood function for the bivariate survivor function F, under independent censorship, is maximized to obtain a non-parametric maximum likelihood estimator &Fcirc;. &Fcirc; may or may not be unique depending on the configuration of singly- and doubly-censored pairs. The likelihood function can be maximized by placing all mass on the grid formed by the uncensored failure times, or half lines beyond the failure time grid, or in the upper right quadrant beyond the grid. By accumulating the mass along lines (or regions) where the likelihood is flat, one obtains a partially maximized likelihood as a function of parameters that can be uniquely estimated. The score equations corresponding to these point mass parameters are derived, using a Lagrange multiplier technique to ensure unit total mass, and a modified Newton procedure is used to calculate the parameter estimates in some limited simulation studies. Some considerations for the further development of non-parametric bivariate survivor function estimators are briefly described.

  16. Evolutionary history of Stratiomyidae (Insecta: Diptera): the molecular phylogeny of a diverse family of flies.

    PubMed

    Brammer, Colin A; von Dohlen, Carol D

    2007-05-01

    Stratiomyidae is a cosmopolitan family of Brachycera (Diptera) that contains over 2800 species. This study focused on the relationships of members of the subfamily Clitellariinae, which has had a complicated taxonomic history. To investigate the monophyly of the Clitellariinae, the relationships of its genera, and the ages of Stratiomyidae lineages, representatives for all 12 subfamilies of Stratiomyidae, totaling 68 taxa, were included in a phylogenetic reconstruction. A Xylomyidae representative, Solva sp., was used as an outgroup. Sequences of EF-1alpha and 28S rRNA genes were analyzed under maximum parsimony with bootstrapping, and Bayesian methods to recover the best estimate of phylogeny. A chronogram with estimated dates for all nodes in the phylogeny was generated with the program, r8s, and divergence dates and confidence intervals were further explored with the program, multidivtime. All subfamilies of Stratiomyidae with more than one representative were found to be monophyletic, except for Stratiomyinae and Clitellariinae. Clitellariinae were distributed among five separate clades in the phylogeny, and Raphiocerinae were nested within Stratiomyinae. Dating analysis suggested an early Cretaceous origin for the common ancestor of extant Stratiomyidae, and a radiation of several major Stratiomyidae lineages in the Late Cretaceous.

  17. Complete sequence of two tick-borne flaviviruses isolated from Siberia and the UK: analysis and significance of the 5' and 3'-UTRs.

    PubMed

    Gritsun, T S; Venugopal, K; Zanotto, P M; Mikhailov, M V; Sall, A A; Holmes, E C; Polkinghorne, I; Frolova, T V; Pogodina, V V; Lashkevich, V A; Gould, E A

    1997-05-01

    The complete nucleotide sequence of two tick-transmitted flaviviruses, Vasilchenko (Vs) from Siberia and louping ill (LI) from the UK, have been determined. The genomes were respectively, 10928 and 10871 nucleotides (nt) in length. The coding strategy and functional protein sequence motifs of tick-borne flaviviruses are presented in both Vs and LI viruses. The phylogenies based on maximum likelihood, maximum parsimony and distance analysis of the polyproteins, identified Vs virus as a member of the tick-borne encephalitis virus subgroup within the tick-borne serocomplex, genus Flavivirus, family Flaviviridae. Comparative alignment of the 3'-untranslated regions revealed deletions of different lengths essentially at the same position downstream of the stop codon for all tick-borne viruses. Two direct 27 nucleotide repeats at the 3'-end were found only for Vs and LI virus. Immediately following the deletions a region of 332-334 nt with relatively conserved primary structure (67-94% identity) was observed at the 3'-non-coding end of the virus genome. Pairwise comparisons of the nucleotide sequence data revealed similar levels of variation between the coding region, and the 5' and 3'-termini of the genome, implying an equivalent strong selective control for translated and untranslated regions. Indeed the predicted folding of the 5' and 3'-untranslated regions revealed patterns of stem and loop structures conserved for all tick-borne flaviviruses suggesting a purifying selection for preservation of essential RNA secondary structures which could be involved in translational control and replication. The possible implications of these findings are discussed.

  18. Bayesian logistic regression approaches to predict incorrect DRG assignment.

    PubMed

    Suleiman, Mani; Demirhan, Haydar; Boyd, Leanne; Girosi, Federico; Aksakalli, Vural

    2018-05-07

    Episodes of care involving similar diagnoses and treatments and requiring similar levels of resource utilisation are grouped to the same Diagnosis-Related Group (DRG). In jurisdictions which implement DRG based payment systems, DRGs are a major determinant of funding for inpatient care. Hence, service providers often dedicate auditing staff to the task of checking that episodes have been coded to the correct DRG. The use of statistical models to estimate an episode's probability of DRG error can significantly improve the efficiency of clinical coding audits. This study implements Bayesian logistic regression models with weakly informative prior distributions to estimate the likelihood that episodes require a DRG revision, comparing these models with each other and to classical maximum likelihood estimates. All Bayesian approaches had more stable model parameters than maximum likelihood. The best performing Bayesian model improved overall classification per- formance by 6% compared to maximum likelihood, with a 34% gain compared to random classification, respectively. We found that the original DRG, coder and the day of coding all have a significant effect on the likelihood of DRG error. Use of Bayesian approaches has improved model parameter stability and classification accuracy. This method has already lead to improved audit efficiency in an operational capacity.

  19. Integrating restriction site-associated DNA sequencing (RAD-seq) with morphological cladistic analysis clarifies evolutionary relationships among major species groups of bee orchids

    PubMed Central

    Sramkó, Gábor; Paun, Ovidiu

    2018-01-01

    Abstract Background and Aims Bee orchids (Ophrys) have become the most popular model system for studying reproduction via insect-mediated pseudo-copulation and for exploring the consequent, putatively adaptive, evolutionary radiations. However, despite intensive past research, both the phylogenetic structure and species diversity within the genus remain highly contentious. Here, we integrate next-generation sequencing and morphological cladistic techniques to clarify the phylogeny of the genus. Methods At least two accessions of each of the ten species groups previously circumscribed from large-scale cloned nuclear ribosomal internal transcibed spacer (nrITS) sequencing were subjected to restriction site-associated sequencing (RAD-seq). The resulting matrix of 4159 single nucleotide polymorphisms (SNPs) for 34 accessions was used to construct an unrooted network and a rooted maximum likelihood phylogeny. A parallel morphological cladistic matrix of 43 characters generated both polymorphic and non-polymorphic sets of parsimony trees before being mapped across the RAD-seq topology. Key Results RAD-seq data strongly support the monophyly of nine out of ten groups previously circumscribed using nrITS and resolve three major clades; in contrast, supposed microspecies are barely distinguishable. Strong incongruence separated the RAD-seq trees from both the morphological trees and traditional classifications; mapping of the morphological characters across the RAD-seq topology rendered them far more homoplastic. Conclusions The comparatively high level of morphological homoplasy reflects extensive convergence, whereas the derived placement of the fusca group is attributed to paedomorphic simplification. The phenotype of the most recent common ancestor of the extant lineages is inferred, but it post-dates the majority of the character-state changes that typify the genus. RAD-seq may represent the high-water mark of the contribution of molecular phylogenetics to understanding evolution within Ophrys; further progress will require large-scale population-level studies that integrate phenotypic and genotypic data in a cogent conceptual framework. PMID:29325077

  20. Mitogenomes of Giant-Skipper Butterflies reveal an ancient split between deep and shallow root feeders.

    PubMed

    Zhang, Jing; Cong, Qian; Fan, Xiao-Ling; Wang, Rongjiang; Wang, Min; Grishin, Nick V

    2017-01-01

    Background: Giant-Skipper butterflies from the genus Megathymus are North American endemics. These large and thick-bodied Skippers resemble moths and are unique in their life cycles. Grub-like at the later stages of development, caterpillars of these species feed and live inside yucca roots. Adults do not feed and are mostly local, not straying far from the patches of yucca plants. Methods: Pieces of muscle were dissected from the thorax of specimens and genomic DNA was extracted (also from the abdomen of a specimen collected nearly 60 years ago). Paired-end libraries were prepared and sequenced for 150bp from both ends. The mitogenomes were assembled from the reads followed by a manual gap-closing procedure and a phylogenetic tree was constructed using a maximum likelihood method from an alignment of the mitogenomes. Results: We determined mitogenome sequences of nominal subspecies of all five known species of Megathymus and Agathymus mariae to confidently root the phylogenetic tree. Pairwise sequence identity indicates the high similarity, ranging from 88-96% among coding regions for 13 proteins, 22 tRNAs and 2 rRNA, with a gene order typical for mitogenomes of Lepidoptera. Phylogenetic analysis confirms that Giant-Skippers (Megathymini) originate within the subfamily Hesperiinae and do not warrant a subfamily rank. Genus Megathymus is monophyletic and splits into two species groups. M. streckeri and M. cofaqui caterpillars feed deep in the main root system of yucca plants and deposit frass underground. M. ursus , M. beulahae and M. yuccae feed in the yucca caudex and roots near the ground, and deposit frass outside through a "tent" (a silk tube projecting from the center of yucca plant). M. yuccae and M. beulahae are sister species consistently with morphological similarities between them. Conclusions: We constructed the first DNA-based phylogeny of the genus Megathymus from their mitogenomes. The phylogeny agrees with morphological considerations.

  1. Phylogeny of the beaked whale genus Mesoplodon (Ziphiidae: Cetacea) revealed by nuclear introns: implications for the evolution of male tusks.

    PubMed

    Dalebout, Merel L; Steel, Debbie; Baker, C Scott

    2008-12-01

    With 14 species currently recognized, the beaked whale genus Mesoplodon (family Ziphiidae) is the most speciose in the order Cetacea. Beaked whales are widely distributed but are rarely seen at sea due to their oceanic distribution, deep-diving capacity, and apparent low abundance. Morphological differentiation among Mesoplodon species is relatively limited, with the exception of tooth form in adult males. Based on scarring patterns, males appear to use their tusk-like teeth as weapons in aggressive encounters with other males. Females are effectively toothless. We used sequences from seven nuclear introns (3348 base pairs) to construct a robust and highly resolved phylogeny, which was then used as a framework to test predictions from four hypotheses seeking to explain patterns of Mesoplodon tusk morphology and/or the processes that have driven the diversification of this genus: (1) linear progression of tusk form; (2) allopatric speciation through isolation in adjacent deep-sea canyons; (3) sympatric speciation through sexual selection on tusks; and (4) selection for species-recognition cues. Maximum-likelihood and Bayesian reconstructions confirmed the monophyly of the genus and revealed that what were considered ancestral and derived tusk forms have in fact arisen independently on several occasions, contrary to predictions from the linear-progression hypothesis. Further, none of the three well-supported species clades was confined to a single ocean basin, as might have been expected from the deep-sea canyon-isolation or sexual-selection hypotheses, and some species with similar tusks have overlapping distributions, contrary to predictions from the species-recognition hypothesis. However, the divergent tusk forms and sympatric distributions of three of the four sister-species pairs identified suggest that sexual selection on male tusks has likely played an important role in this unique radiation, although other forces are clearly also involved. To our knowledge, this is the first time that sexual selection has been explicitly implicated in the radiation of a mammalian group outside terrestrial ungulates.

  2. A comprehensive phylogeny of the genus Kurixalus (Rhacophoridae, Anura) sheds light on the geographical range evolution of frilled swamp treefrogs.

    PubMed

    Lv, Yun-Yun; He, Kai; Klaus, Sebastian; Brown, Rafe M; Li, Jia-Tang

    2018-04-01

    Currently, the genus Kurixalus comprises 14 species distributed in Southern, Southeast and East Asia. Because of their relatively low dispersal capability and intolerance of seawater, this group is ideal for the study of terrestrial range evolution, especially that portion of its range that extends into the island archipelagos of Southern Asia. We assembled a large dataset of mitochondrial and nuclear genes, and estimated phylogeny by maximum likelihood and Bayesian methods, and we explored the history of each species via divergence-time estimation based on fossil-calibrations. A variety of ancestral-area reconstruction strategies were employed to estimate past changes of the species' geographical range, and to evaluate the impact of different abiotic barriers on range evolution. We found that frilled swamp treefrogs probably originated in Taiwan or South Vietnam in the Oligocene. Alternatively, the lineage leading to Kurixalus appendiculatus strongly supports a hypothesis of terrestrial connection between the Indian and Asian continents in the Oligocene. The outcome of both our divergence-time estimates and ancestral-area reconstruction suggests that the divergence between species from Indochina and Taiwan can probably be attributed to the opening of the South China Sea, approximately 33 million years ago. We could not find evidence for dispersal between mainland China and Taiwan Island. Formation of both Mekong and Red River valleys did not have any impact on Kurixalus species diversification. However, coincidence in timing of climate change and availability of plausible dispersal routes from the Oligocene to the middle Miocene, plausibly implied that Kurixalus diversification in Asia resulted from contemporaneous, climate-induced environmental upheaval (Late Oligocene Warming at 29 Ma; Mi-1 glaciation since 24.4-21.5 Ma; Mid-Miocene Climatic Optimum at 14 Ma), which alternatively opened and closed dispersal routes. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. A Time-Calibrated Mitogenome Phylogeny of Catfish (Teleostei: Siluriformes)

    PubMed Central

    Kappas, Ilias; Vittas, Spiros; Pantzartzi, Chrysoula N.; Drosopoulou, Elena; Scouras, Zacharias G.

    2016-01-01

    A very significant part of the world’s freshwater ichthyofauna is represented by ancient, exceptionally diverse and cosmopolitan ray-finned teleosts of the order Siluriformes. Over the years, catfish have been established as an exemplary model for probing historical biogeography at various scales. Yet, several tantalizing gaps still exist in their phylogenetic history, timeline and mode of diversification. Here, we re-examine the phylogeny of catfish by assembling and analyzing almost all publicly available mitogenome data. We constructed an ingroup matrix of 62 full-length mitogenome sequences from 20 catfish families together with four cypriniform outgroups, spanning 15,557 positions in total. Partitioned maximum likelihood analyses and Bayesian relaxed clock dating using fossil age constraints provide some useful and novel insights into the evolutionary history of this group. Loricarioidei are recovered as the first siluriform group to diversify, rendering Neotropics the cradle of the order. The next deepest clade is the South American Diplomystoidei placed as a sister group to all the remaining Siluroidei. The two multifamilial clades of “Big Asia” and “Big Africa” are also recovered, albeit nodal support for the latter is poor. Within “Big Asia”, Bagridae are clearly polyphyletic. Other interfamilial relationships, including Clariidae + Heteropneustidae, Doradidae + Auchenipteridae and Ictaluridae + Cranoglanididae are robustly resolved. Our chronogram shows that siluriforms have a Pangaean origin, at least as far back as the Early Cretaceous. The inferred timeline of the basal splits corroborates the “Out-of-South America” hypothesis and accords well with the fossil record. The divergence of Siluroidei most likely postdated the final separation of Africa and South America. An appealing case of phylogenetic affinity elaborated by biogeographic dispersal is exemplified by the Early Paleogene split between the Southeast Asian Cranoglanididae and Ictaluridae, with the latter radiating into North America’s freshwater realm by Eocene. The end of Cretaceous probably concludes the major bout of diversification at the family level while with the dawn of the Cenozoic a prolific radiation is evident at the generic level. PMID:27907107

  4. Molecular phylogeny of broken-back shrimps (genus Lysmata and allies): a test of the 'Tomlinson-Ghiselin' hypothesis explaining the evolution of hermaphroditism.

    PubMed

    Baeza, J Antonio

    2013-10-01

    The 'Tomlinson-Ghiselin' hypothesis (TGh) predicts that outcrossing simultaneous hermaphroditism (SH) is advantageous when population density is low because the probability of finding sexual partners is negligible. In shrimps from the family Lysmatidae, Bauer's historical contingency hypothesis (HCh) suggests that SH evolved in an ancestral tropical species that adopted a symbiotic lifestyle with, e.g., sea anemones and became a specialized fish-cleaner. Restricted mobility of shrimps due to their association with a host, and hence, reduced probability of encountering mating partners, would have favored SH. The HCh is a special case of the TGh. Herein, I examined within a phylogenetic framework whether the TGh/HCh explains the origin of SH in shrimps. A phylogeny of caridean broken-back shrimps in the families Lysmatidae, Barbouriidae, Merguiidae was first developed using nuclear and mitochondrial makers. Complete evidence phylogenetic analyses using maximum likelihood (ML) and Bayesian inference (BI) demonstrated that Lysmatidae+Barbouriidae are monophyletic. In turn, Merguiidae is sister to the Lysmatidae+Barbouriidae. ML and BI ancestral character-state reconstruction in the resulting phylogenetic trees indicated that the ancestral Lysmatidae was either gregarious or lived in small groups and was not symbiotic. Four different evolutionary transitions from a free-living to a symbiotic lifestyle occurred in shrimps. Therefore, the evolution of SH in shrimps cannot be explained by the TGh/HCh; reduced probability of encountering mating partners in an ancestral species due to its association with a sessile host did not favor SH in the Lysmatidae. It is proposed that two conditions acting together in the past; low male mating opportunities and brooding constraints, might have favored SH in the ancestral Lysmatidae+Barbouridae. Additional studies on the life history and phylogenetics of broken-back shrimps are needed to understand the evolution of SH in the ecologically diverse Caridea. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Macroevolution of venom apparatus innovations in auger snails (Gastropoda; Conoidea; Terebridae)

    PubMed Central

    Castelin, M.; Puillandre, N.; Kantor, Yu. I.; Modica, M.V.; Terryn, Y.; Cruaud, C.; Bouchet, P.; Holford, M.

    2012-01-01

    The Terebridae are a diverse family of tropical and subtropical marine gastropods that use a complex and modular venom apparatus to produce toxins that capture polychaete and enteropneust preys. The complexity of the terebrid venom apparatus suggests that venom apparatus development in the Terebridae could be linked to the diversification of the group and can be analyzed within a molecular phylogenetic scaffold to better understand terebrid evolution. Presented here is a molecular phylogeny of 89 terebrid species belonging to 12 of the 15 currently accepted genera, based on Bayesian inference and Maximum Likelihood analyses of amplicons of 3 mitochondrial (COI, 16S and 12S) and one nuclear (28S) genes. The evolution of the anatomy of the terebrid venom apparatus was assessed by mapping traits of six related characters: proboscis, venom gland, odontophore, accessory proboscis structure, radula, and salivary glands. A novel result concerning terebrid phylogeny was the discovery of a previously unrecognized lineage, which includes species of Euterebra and Duplicaria. The non- monophyly of most terebrid genera analyzed indicates that the current genus-level classification of the group is plagued with homoplasy and requires further taxonomic investigations. Foregut anatomy in the family Terebridae reveals an inordinate diversity of features that covers the range of variability within the entire superfamily Conoidea, and that hypodermic radulae have likely evolved independently on at least three occasions. These findings illustrate that terebrid venom apparatus evolution is not perfunctory, and involves independent and numerous changes of central features in the foregut anatomy. The multiple emergence of hypodermic marginal radular teeth in terebrids are presumably associated with variable functionalities, suggesting that terebrids have adapted to dietary changes that may have resulted from predator-prey relationships. The anatomical and phylogenetic results presented serve as a starting point to advance investigations about the role of predator-prey interactions in the diversification of the Terebridae and the impact on their peptide toxins, which are promising bioactive compounds for biomedical research and therapeutic drug development. PMID:22440724

  6. Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria)

    PubMed Central

    2012-01-01

    Background The morphological peculiarities of turtles have, for a long time, impeded their accurate placement in the phylogeny of amniotes. Molecular data used to address this major evolutionary question have so far been limited to a handful of markers and/or taxa. These studies have supported conflicting topologies, positioning turtles as either the sister group to all other reptiles, to lepidosaurs (tuatara, lizards and snakes), to archosaurs (birds and crocodiles), or to crocodilians. Genome-scale data have been shown to be useful in resolving other debated phylogenies, but no such adequate dataset is yet available for amniotes. Results In this study, we used next-generation sequencing to obtain seven new transcriptomes from the blood, liver, or jaws of four turtles, a caiman, a lizard, and a lungfish. We used a phylogenomic dataset based on 248 nuclear genes (187,026 nucleotide sites) for 16 vertebrate taxa to resolve the origins of turtles. Maximum likelihood and Bayesian concatenation analyses and species tree approaches performed under the most realistic models of the nucleotide and amino acid substitution processes unambiguously support turtles as a sister group to birds and crocodiles. The use of more simplistic models of nucleotide substitution for both concatenation and species tree reconstruction methods leads to the artefactual grouping of turtles and crocodiles, most likely because of substitution saturation at third codon positions. Relaxed molecular clock methods estimate the divergence between turtles and archosaurs around 255 million years ago. The most recent common ancestor of living turtles, corresponding to the split between Pleurodira and Cryptodira, is estimated to have occurred around 157 million years ago, in the Upper Jurassic period. This is a more recent estimate than previously reported, and questions the interpretation of controversial Lower Jurassic fossils as being part of the extant turtles radiation. Conclusions These results provide a phylogenetic framework and timescale with which to interpret the evolution of the peculiar morphological, developmental, and molecular features of turtles within the amniotes. PMID:22839781

  7. Comprehensive cross-genome survey and phylogeny of Glycoside Hydrolase Family 16 members reveals the evolutionary origin of EG16 and XTH proteins in plant lineages.

    PubMed

    Behar, Hila; Graham, Sean W; Brumer, Harry

    2018-06-22

    Carbohydrate-active enzymes (CAZymes) are central to the biosynthesis and modification of the plant cell wall. An ancient clade of bifunctional plant endo-glucanases (EG16 members) was recently revealed and proposed to represent a transitional group uniting plant xyloglucan endo-transglycosylase/hydrolase (XTH) gene products and bacterial mixed-linkage endo-glucanases in the phylogeny of Glycoside Hydrolase Family 16 (GH16). To gain broader insights into the distribution and frequency of EG16 and other GH16 members in plants, the Phytozome, Plaza, NCBI, and 1000 Plants databases were mined to build a comprehensive census among 1289 species spanning the broad phylogenetic diversity of multiple algae through recent plant lineages. EG16, newly identified EG16-2, and XTH members appeared first in the green algae. Extant EG16 members represent the early adoption of the β-jelly-roll protein scaffold from a bacterial or early-lineage eukaryotic GH16 gene, which is characterized by loop deletion and extension of the N-terminus (in EG16-2 members) or C-terminus (in XTH members). Maximum-likelihood phylogenetic analysis of EG16 and EG16-2 sequences are directly concordant with contemporary estimates of plant evolution. The lack of expansion of EG16 members into multi-gene families across green plants may point to a core metabolic role under tight control, in contrast to XTH genes that have undergone extensive duplications typical of cell-wall CAZymes. The present census will underpin future studies to elucidate the physiological role of EG16 members across plant species, and serve as roadmap for delineating the closely related EG16 and XTH gene products in bioinformatic analyses of emerging genomes and transcriptomes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Characterization of CYCLOIDEA-like genes in Proteaceae, a basal eudicot family with multiple shifts in floral symmetry

    PubMed Central

    Citerne, Hélène L.; Reyes, Elisabeth; Le Guilloux, Martine; Delannoy, Etienne; Simonnet, Franck; Sauquet, Hervé; Weston, Peter H.; Nadot, Sophie; Damerval, Catherine

    2017-01-01

    Background and Aims The basal eudicot family Proteaceae (approx. 1700 species) shows considerable variation in floral symmetry but has received little attention in studies of evolutionary development at the genetic level. A framework for understanding the shifts in floral symmetry in Proteaceae is provided by reconstructing ancestral states on an upated phylogeny of the family, and homologues of CYCLOIDEA (CYC), a key gene for the control of floral symmetry in both monocots and eudicots, are characterized. Methods Perianth symmetry transitions were reconstructed on a new species-level tree using parsimony and maximum likelihood. CYC-like genes in 35 species (31 genera) of Proteaceae were sequenced and their phylogeny was reconstructed. Shifts in selection pressure following gene duplication were investigated using nested branch-site models of sequence evolution. Expression patterns of CYC homologues were characterized in three species of Grevillea with different types of floral symmetry. Key Results Zygomorphy has evolved 10–18 times independently in Proteaceae from actinomorphic ancestors, with at least four reversals to actinomorphy. A single duplication of CYC-like genes occurred prior to the diversification of Proteaceae, with putative loss or divergence of the ProtCYC1 paralogue in more than half of the species sampled. No shifts in selection pressure were detected in the branches subtending the two ProtCYC paralogues. However, the amino acid sequence preceding the TCP domain is strongly divergent in Grevillea ProtCYC1 compared with other species. ProtCYC genes were expressed in developing flowers of both actinomorphic and zygomorphic Grevillea species, with late asymmetric expression in the perianth of the latter. Conclusion Proteaceae is a remarkable family in terms of the number of transitions in floral symmetry. Furthermore, although CYC-like genes in Grevillea have unusual sequence characteristics, they display patterns of expression that make them good candidates for playing a role in the establishment of floral symmetry. PMID:28025288

  9. Historical biogeography of Reticulitermes termites (Isoptera: Rhinotermitidae) inferred from analyses of mitochondrial and nuclear loci.

    PubMed

    Dedeine, Franck; Dupont, Simon; Guyot, Sylvain; Matsuura, Kenji; Wang, Changlu; Habibpour, Behzad; Bagnères, Anne-Geneviève; Mantovani, Barbara; Luchetti, Andrea

    2016-01-01

    Termites of the genus Reticulitermes are ecologically and economically important wood-feeding social insects that are widespread in the Holarctic region. Despite their importance, no study has yet attempted to reconstruct a global time-scaled phylogeny of Reticulitermes termites. In this study, we sequenced mitochondrial (2096bp) and nuclear (829bp) loci from 61 Reticulitermes specimens, collected across the genus' entire range, and one specimen of Coptotermes formosanus, which served as an outgroup. Bayesian and Maximum likelihood analyses conducted on the mitochondrial and nuclear sequences support the existence of four main lineages that span four global geographical regions: North America (NA lineage), western Europe (WE lineage), a region including eastern Europe and western Asia (EA+WA lineage), and eastern Asia (EA lineage). The mitochondrial data allowed us to clarify the phylogenetic relationships among these lineages. They were also used to infer a chronogram that was time scaled based on age estimates for termite fossils (including the oldest Reticulitermes fossils, which date back to the late Eocene-early Oligocene). Our results support the hypothesis that the extant Reticulitermes lineage first differentiated in North America. The first divergence event in the ancestral lineage of Reticulitermes occurred in the early Miocene and separated the Nearctic lineages (i.e., the NA lineages) from the Palearctic lineages (i.e., WE, EE+WA, and EA lineages). Our analyses revealed that the main lineages of Reticulitermes diversified because of vicariance and migration events, which were probably induced by major paleogeographic and paleoclimatic changes that occurred during the Cenozoic era. This is the first global and comprehensive phylogenetic study of Reticulitermes termites, and it provides a crucial foundation for studying the evolution of phenotypic and life-history traits in Reticulitermes. For instance, the phylogeny we obtained suggested that 'asexual queen succession', a unique reproductive system, independently evolved at least three times during the diversification of the genus. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Phylogenetic Reconstruction of the Calosphaeriales and Togniniales Using Five Genes and Predicted RNA Secondary Structures of ITS, and Flabellascus tenuirostris gen. et sp. nov.

    PubMed Central

    Réblová, Martina; Jaklitsch, Walter M.; Réblová, Kamila; Štěpánek, Václav

    2015-01-01

    The Calosphaeriales is revisited with new collection data, living cultures, morphological studies of ascoma centrum, secondary structures of the internal transcribed spacer (ITS) rDNA and phylogeny based on novel DNA sequences of five nuclear ribosomal and protein-coding loci. Morphological features, molecular evidence and information from predicted RNA secondary structures of ITS converged upon robust phylogenies of the Calosphaeriales and Togniniales. The current concept of the Calosphaeriales includes the Calosphaeriaceae and Pleurostomataceae encompassing five monophyletic genera, Calosphaeria, Flabellascus gen. nov., Jattaea, Pleurostoma and Togniniella, strongly supported by Bayesian and Maximum Likelihood methods. The structural elements of ITS1 form characteristic patterns that are phylogenetically conserved, corroborate observations based on morphology and have a high predictive value at the generic level. Three major clades containing 44 species of Phaeoacremonium were recovered in the closely related Togniniales based on ITS, actin and β-tubulin sequences. They are newly characterized by sexual and RNA structural characters and ecology. This approach is a first step towards understanding of the molecular systematics of Phaeoacremonium and possibly its new classification. In the Calosphaeriales, Jattaea aphanospora sp. nov. and J. ribicola sp. nov. are introduced, Calosphaeria taediosa is combined in Jattaea and epitypified. The sexual morph of Phaeoacremonium cinereum was encountered for the first time on decaying wood and obtained in vitro. In order to achieve a single nomenclature, the genera of asexual morphs linked with the Calosphaeriales are transferred to synonymy of their sexual morphs following the principle of priority, i.e. Calosphaeriophora to Calosphaeria, Phaeocrella to Togniniella and Pleurostomophora to Pleurostoma. Three new combinations are proposed, i.e. Pleurostoma ochraceum comb. nov., P. repens comb. nov. and P. richardsiae comb. nov. The morphology-based key is provided to facilitate identification of genera accepted in the Calosphaeriales. PMID:26699541

  11. Integrating restriction site-associated DNA sequencing (RAD-seq) with morphological cladistic analysis clarifies evolutionary relationships among major species groups of bee orchids.

    PubMed

    Bateman, Richard M; Sramkó, Gábor; Paun, Ovidiu

    2018-01-25

    Bee orchids (Ophrys) have become the most popular model system for studying reproduction via insect-mediated pseudo-copulation and for exploring the consequent, putatively adaptive, evolutionary radiations. However, despite intensive past research, both the phylogenetic structure and species diversity within the genus remain highly contentious. Here, we integrate next-generation sequencing and morphological cladistic techniques to clarify the phylogeny of the genus. At least two accessions of each of the ten species groups previously circumscribed from large-scale cloned nuclear ribosomal internal transcibed spacer (nrITS) sequencing were subjected to restriction site-associated sequencing (RAD-seq). The resulting matrix of 4159 single nucleotide polymorphisms (SNPs) for 34 accessions was used to construct an unrooted network and a rooted maximum likelihood phylogeny. A parallel morphological cladistic matrix of 43 characters generated both polymorphic and non-polymorphic sets of parsimony trees before being mapped across the RAD-seq topology. RAD-seq data strongly support the monophyly of nine out of ten groups previously circumscribed using nrITS and resolve three major clades; in contrast, supposed microspecies are barely distinguishable. Strong incongruence separated the RAD-seq trees from both the morphological trees and traditional classifications; mapping of the morphological characters across the RAD-seq topology rendered them far more homoplastic. The comparatively high level of morphological homoplasy reflects extensive convergence, whereas the derived placement of the fusca group is attributed to paedomorphic simplification. The phenotype of the most recent common ancestor of the extant lineages is inferred, but it post-dates the majority of the character-state changes that typify the genus. RAD-seq may represent the high-water mark of the contribution of molecular phylogenetics to understanding evolution within Ophrys; further progress will require large-scale population-level studies that integrate phenotypic and genotypic data in a cogent conceptual framework. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company.

  12. Polyphyly of Arundinoideae (Poaceae) and evolution of the twisted geniculate lemma awn.

    PubMed

    Teisher, J K; McKain, M R; Schaal, B A; Kellogg, E A

    2017-11-10

    Subfamily Arundinoideae represents one of the last unsolved taxonomic mysteries in the grass family (Poaceae) due to the narrow and remote distributions of many of its 19 morphologically and ecologically heterogeneous genera. Resolving the phylogenetic relationships of these genera could have substantial implications for understanding character evolution in the grasses, for example the twisted geniculate awn - a hygroscopic awn that has been shown to be important in seed germination for some grass species. In this study, the phylogenetic positions of most arundinoid genera were determined using DNA from herbarium specimens, and their placement affects interpretation of this ecologically important trait. A phylogenetic analysis was conducted on a matrix of full-plastome sequences from 123 species in 107 genera representing all grass subfamilies, with 15 of the 19 genera in subfamily Arundinoideae. Parsimony and maximum likelihood mapping approaches were used to estimate ancestral states for presence of a geniculate lemma awn with a twisted column across Poaceae. Lastly, anatomical characters were examined for former arundinoid taxa using light microscopy and scanning electron microscopy. Four genera traditionally included in Arundinoideae fell outside the subfamily in the plastome phylogeny, with the remaining 11 genera forming Arundinoideae sensu stricto . The twisted geniculate awn has originated independently at least five times in the PACMAD grasses, in the subfamilies Panicoideae, Danthonioideae/Chloridoideae and Arundinoideae. Morphological and anatomical characters support the new positions of the misplaced arundinoid genera in the phylogeny, but also highlight convergent and parallel evolution in the grasses. In placing the majority of arundinoid genera in a phylogenetic framework, our study answers one of the last remaining big questions in grass taxonomy while highlighting examples of convergent evolution in an ecologically important trait, the hygroscopic, twisted geniculate awn. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  13. Evolutionary History of Assassin Bugs (Insecta: Hemiptera: Reduviidae): Insights from Divergence Dating and Ancestral State Reconstruction

    PubMed Central

    Hwang, Wei Song; Weirauch, Christiane

    2012-01-01

    Assassin bugs are one of the most successful clades of predatory animals based on their species numbers (∼6,800 spp.) and wide distribution in terrestrial ecosystems. Various novel prey capture strategies and remarkable prey specializations contribute to their appeal as a model to study evolutionary pathways involved in predation. Here, we reconstruct the most comprehensive reduviid phylogeny (178 taxa, 18 subfamilies) to date based on molecular data (5 markers). This phylogeny tests current hypotheses on reduviid relationships emphasizing the polyphyletic Reduviinae and the blood-feeding, disease-vectoring Triatominae, and allows us, for the first time in assassin bugs, to reconstruct ancestral states of prey associations and microhabitats. Using a fossil-calibrated molecular tree, we estimated divergence times for key events in the evolutionary history of Reduviidae. Our results indicate that the polyphyletic Reduviinae fall into 11–14 separate clades. Triatominae are paraphyletic with respect to the reduviine genus Opisthacidius in the maximum likelihood analyses; this result is in contrast to prior hypotheses that found Triatominae to be monophyletic or polyphyletic and may be due to the more comprehensive taxon and character sampling in this study. The evolution of blood-feeding may thus have occurred once or twice independently among predatory assassin bugs. All prey specialists evolved from generalist ancestors, with multiple evolutionary origins of termite and ant specializations. A bark-associated life style on tree trunks is ancestral for most of the lineages of Higher Reduviidae; living on foliage has evolved at least six times independently. Reduviidae originated in the Middle Jurassic (178 Ma), but significant lineage diversification only began in the Late Cretaceous (97 Ma). The integration of molecular phylogenetics with fossil and life history data as presented in this paper provides insights into the evolutionary history of reduviids and clears the way for in-depth evolutionary hypothesis testing in one of the most speciose clades of predators. PMID:23029072

  14. Maximum Likelihood Compton Polarimetry with the Compton Spectrometer and Imager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowell, A. W.; Boggs, S. E; Chiu, C. L.

    2017-10-20

    Astrophysical polarization measurements in the soft gamma-ray band are becoming more feasible as detectors with high position and energy resolution are deployed. Previous work has shown that the minimum detectable polarization (MDP) of an ideal Compton polarimeter can be improved by ∼21% when an unbinned, maximum likelihood method (MLM) is used instead of the standard approach of fitting a sinusoid to a histogram of azimuthal scattering angles. Here we outline a procedure for implementing this maximum likelihood approach for real, nonideal polarimeters. As an example, we use the recent observation of GRB 160530A with the Compton Spectrometer and Imager. Wemore » find that the MDP for this observation is reduced by 20% when the MLM is used instead of the standard method.« less

  15. Lod scores for gene mapping in the presence of marker map uncertainty.

    PubMed

    Stringham, H M; Boehnke, M

    2001-07-01

    Multipoint lod scores are typically calculated for a grid of locus positions, moving the putative disease locus across a fixed map of genetic markers. Changing the order of a set of markers and/or the distances between the markers can make a substantial difference in the resulting lod score curve and the location and height of its maximum. The typical approach of using the best maximum likelihood marker map is not easily justified if other marker orders are nearly as likely and give substantially different lod score curves. To deal with this problem, we propose three weighted multipoint lod score statistics that make use of information from all plausible marker orders. In each of these statistics, the information conditional on a particular marker order is included in a weighted sum, with weight equal to the posterior probability of that order. We evaluate the type 1 error rate and power of these three statistics on the basis of results from simulated data, and compare these results to those obtained using the best maximum likelihood map and the map with the true marker order. We find that the lod score based on a weighted sum of maximum likelihoods improves on using only the best maximum likelihood map, having a type 1 error rate and power closest to that of using the true marker order in the simulation scenarios we considered. Copyright 2001 Wiley-Liss, Inc.

  16. On the Existence and Uniqueness of JML Estimates for the Partial Credit Model

    ERIC Educational Resources Information Center

    Bertoli-Barsotti, Lucio

    2005-01-01

    A necessary and sufficient condition is given in this paper for the existence and uniqueness of the maximum likelihood (the so-called joint maximum likelihood) estimate of the parameters of the Partial Credit Model. This condition is stated in terms of a structural property of the pattern of the data matrix that can be easily verified on the basis…

  17. Formulating the Rasch Differential Item Functioning Model under the Marginal Maximum Likelihood Estimation Context and Its Comparison with Mantel-Haenszel Procedure in Short Test and Small Sample Conditions

    ERIC Educational Resources Information Center

    Paek, Insu; Wilson, Mark

    2011-01-01

    This study elaborates the Rasch differential item functioning (DIF) model formulation under the marginal maximum likelihood estimation context. Also, the Rasch DIF model performance was examined and compared with the Mantel-Haenszel (MH) procedure in small sample and short test length conditions through simulations. The theoretically known…

  18. Probabilistic modeling of the evolution of gene synteny within reconciled phylogenies

    PubMed Central

    2015-01-01

    Background Most models of genome evolution concern either genetic sequences, gene content or gene order. They sometimes integrate two of the three levels, but rarely the three of them. Probabilistic models of gene order evolution usually have to assume constant gene content or adopt a presence/absence coding of gene neighborhoods which is blind to complex events modifying gene content. Results We propose a probabilistic evolutionary model for gene neighborhoods, allowing genes to be inserted, duplicated or lost. It uses reconciled phylogenies, which integrate sequence and gene content evolution. We are then able to optimize parameters such as phylogeny branch lengths, or probabilistic laws depicting the diversity of susceptibility of syntenic regions to rearrangements. We reconstruct a structure for ancestral genomes by optimizing a likelihood, keeping track of all evolutionary events at the level of gene content and gene synteny. Ancestral syntenies are associated with a probability of presence. We implemented the model with the restriction that at most one gene duplication separates two gene speciations in reconciled gene trees. We reconstruct ancestral syntenies on a set of 12 drosophila genomes, and compare the evolutionary rates along the branches and along the sites. We compare with a parsimony method and find a significant number of results not supported by the posterior probability. The model is implemented in the Bio++ library. It thus benefits from and enriches the classical models and methods for molecular evolution. PMID:26452018

  19. A conceptual and statistical framework for adaptive radiations with a key role for diversity dependence.

    PubMed

    Etienne, Rampal S; Haegeman, Bart

    2012-10-01

    In this article we propose a new framework for studying adaptive radiations in the context of diversity-dependent diversification. Diversity dependence causes diversification to decelerate at the end of an adaptive radiation but also plays a key role in the initial pulse of diversification. In particular, key innovations (which in our definition include novel traits as well as new environments) may cause decoupling of the diversity-dependent dynamics of the innovative clade from the diversity-dependent dynamics of its ancestral clade. We present a likelihood-based inference method to test for decoupling of diversity dependence using molecular phylogenies. The method, which can handle incomplete phylogenies, identifies when the decoupling took place and which diversification parameters are affected. We illustrate our approach by applying it to the molecular phylogeny of the North American clade of the legume tribe Psoraleeae (47 extant species, of which 4 are missing). Two diversification rate shifts were previously identified for this clade; our analysis shows that the first, positive shift can be associated with decoupling of two Pediomelum subgenera from the other Psoraleeae lineages, while we argue that the second, negative shift can be attributed to speciation being protracted. The latter explanation yields nonzero extinction rates, in contrast to previous findings. Our framework offers a new perspective on macroevolution: new environments and novel traits (ecological opportunity) and diversity dependence (ecological limits) cannot be considered separately.

  20. Fast simulation of reconstructed phylogenies under global time-dependent birth-death processes.

    PubMed

    Höhna, Sebastian

    2013-06-01

    Diversification rates and patterns may be inferred from reconstructed phylogenies. Both the time-dependent and the diversity-dependent birth-death process can produce the same observed patterns of diversity over time. To develop and test new models describing the macro-evolutionary process of diversification, generic and fast algorithms to simulate under these models are necessary. Simulations are not only important for testing and developing models but play an influential role in the assessment of model fit. In the present article, I consider as the model a global time-dependent birth-death process where each species has the same rates but rates may vary over time. For this model, I derive the likelihood of the speciation times from a reconstructed phylogenetic tree and show that each speciation event is independent and identically distributed. This fact can be used to simulate efficiently reconstructed phylogenetic trees when conditioning on the number of species, the time of the process or both. I show the usability of the simulation by approximating the posterior predictive distribution of a birth-death process with decreasing diversification rates applied on a published bird phylogeny (family Cettiidae). The methods described in this manuscript are implemented in the R package TESS, available from the repository CRAN (http://cran.r-project.org/web/packages/TESS/). Supplementary data are available at Bioinformatics online.

  1. Comparative Study of Lectin Domains in Model Species: New Insights into Evolutionary Dynamics

    PubMed Central

    Van Holle, Sofie; De Schutter, Kristof; Eggermont, Lore; Tsaneva, Mariya; Dang, Liuyi; Van Damme, Els J. M.

    2017-01-01

    Lectins are present throughout the plant kingdom and are reported to be involved in diverse biological processes. In this study, we provide a comparative analysis of the lectin families from model species in a phylogenetic framework. The analysis focuses on the different plant lectin domains identified in five representative core angiosperm genomes (Arabidopsis thaliana, Glycine max, Cucumis sativus, Oryza sativa ssp. japonica and Oryza sativa ssp. indica). The genomes were screened for genes encoding lectin domains using a combination of Basic Local Alignment Search Tool (BLAST), hidden Markov models, and InterProScan analysis. Additionally, phylogenetic relationships were investigated by constructing maximum likelihood phylogenetic trees. The results demonstrate that the majority of the lectin families are present in each of the species under study. Domain organization analysis showed that most identified proteins are multi-domain proteins, owing to the modular rearrangement of protein domains during evolution. Most of these multi-domain proteins are widespread, while others display a lineage-specific distribution. Furthermore, the phylogenetic analyses reveal that some lectin families evolved to be similar to the phylogeny of the plant species, while others share a closer evolutionary history based on the corresponding protein domain architecture. Our results yield insights into the evolutionary relationships and functional divergence of plant lectins. PMID:28587095

  2. Molecular Phylogenies indicate a Paleo-Tibetan Origin of Himalayan Lazy Toads (Scutiger).

    PubMed

    Hofmann, Sylvia; Stöck, Matthias; Zheng, Yuchi; Ficetola, Francesco G; Li, Jia-Tang; Scheidt, Ulrich; Schmidt, Joachim

    2017-06-12

    The Himalaya presents an outstanding geologically active orogen and biodiversity hotspot. However, our understanding of the historical biogeography of its fauna is far from comprehensive. Many taxa are commonly assumed to have originated from China-Indochina and dispersed westward along the Himalayan chain. Alternatively, the "Tibetan-origin hypothesis" suggests primary diversification of lineages in Paleo-Tibet, and secondary diversification along the slopes of the later uplifted Greater Himalaya. We test these hypotheses in high-mountain megophryid anurans (Scutiger). Extensive sampling from High Asia, and analyses of mitochondrial (2839 bp) and nuclear DNA (2208 bp), using Bayesian and Maximum likelihood phylogenetics, suggest that the Himalayan species form a distinct clade, possibly older than those from the eastern Himalaya-Tibet orogen. While immigration from China-Indochina cannot be excluded, our data may indicate that Himalayan Scutiger originated to the north of the Himalaya by colonization from Paleo-Tibet and then date back to the Oligocene. High intraspecific diversity of Scutiger implies limited migration across mountains and drainages along the Himalaya. While our study strengthens support for a "Tibetan-origin hypothesis", current sampling (10/22 species; 1 revalidated: S. occidentalis) remains insufficient to draw final conclusions on Scutiger but urges comparative phylogeographers to test alternative, geologically supported hypotheses for a true future understanding of Himalayan biogeography.

  3. A comprehensive multilocus phylogeny for the wood-warblers and a revised classification of the Parulidae (Aves)

    USGS Publications Warehouse

    Lovette, I.J.; Perez-Eman, J. L.; Sullivan, J.P.; Banks, R.C.; Fiorentino, I.; Cordoba-Cordoba, S.; Echeverry-Galvis, M.; Barker, F.K.; Burns, K.J.; Klicka, J.; Lanyon, Scott M.; Bermingham, E.

    2010-01-01

    The birds in the family Parulidae-commonly termed the New World warblers or wood-warblers-are a classic model radiation for studies of ecological and behavioral differentiation. Although the monophyly of a 'core' wood-warbler clade is well established, no phylogenetic hypothesis for this group has included a full sampling of wood-warbler species diversity. We used parsimony, maximum likelihood, and Bayesian methods to reconstruct relationships among all genera and nearly all wood-warbler species, based on a matrix of mitochondrial DNA (5840 nucleotides) and nuclear DNA (6 loci, 4602 nucleotides) characters. The resulting phylogenetic hypotheses provide a highly congruent picture of wood-warbler relationships, and indicate that the traditional generic classification of these birds recognizes many non-monophyletic groups. We recommend a revised taxonomy in which each of 14 genera (Seiurus, Helmitheros, Mniotilta, Limnothlypis, Protonotaria, Parkesia, Vermivora, Oreothlypis, Geothlypis, Setophaga, Myioborus, Cardellina, Basileuterus, Myiothlypis) corresponds to a well-supported clade; these nomenclatural changes also involve subsuming a number of well-known, traditional wood-warbler genera (Catharopeza, Dendroica, Ergaticus, Euthlypis, Leucopeza, Oporornis, Parula, Phaeothlypis, Wilsonia). We provide a summary phylogenetic hypothesis that will be broadly applicable to investigations of the historical biogeography, processes of diversification, and evolution of trait variation in this well studied avian group. ?? 2010 Elsevier Inc.

  4. Description and molecular phylogeny of a new species of Phoronis (Phoronida) from Japan, with a redescription of topotypes of P. ijimai Oka, 1897

    PubMed Central

    Hirose, Masato; Fukiage, Ryuma; Katoh, Toru; Kajihara, Hiroshi

    2014-01-01

    Abstract We describe Phoronis emigi sp. n. as the eighth member of the genus based on specimens collected from a sandy bottom at 33.2 m depth in Tomioka Bay, Amakusa, Japan. The new species is morphologically similar to P. psammophila Cori, 1889, but can be distinguished from the latter by the number of longitudinal muscle bundles in the body wall (56–72 vs. 25–50 in P. psammophila) and the position of the nephridiopores (situated level with the anus vs. lower than the anus in P. psammophila). Using sequences of the nuclear 18S and 28S rRNA genes and the mitochondrial cytochrome c oxidase subunit I (COI) gene, we inferred the relationship of P. emigi to other phoronids by the maximum likelihood method and Bayesian analysis. The analyses showed that P. emigi is closely related to P. hippocrepia Wright, 1856 and P. psammophila Cori, 1889. We describe the morphology of the topotypes and additional material for P. ijimai Oka, 1897. Neither our morphological observations of P. ijimai, nor the phylogenetic analyses based on 18S and COI sequences, contradicts that P. vancouverensis Pixell, 1912 is conspecific with P. ijimai, a synonymy that has long been disputed. PMID:24715799

  5. Kerion and Tinea Corporis Caused by Rabbit-Derived Trichophyton interdigitale in Three Siblings and One Consulting Doctor Using β-Tubulin Gene to Identify the Pathogen.

    PubMed

    Yang, Yan-Ping; Sheng, Ping; Liu, Zhong; Li, Wen; Wang, Jie-Di; Huang, Wen-Ming; Fan, Yi-Ming

    2016-08-01

    Trichophyton interdigitale is generally deemed as an anamorph of Arthroderma vanbreuseghemii based on internal transcribed spacer (ITS) sequencing, but recently their anamorph/teleomorph connection should be cautioned based on β-tubulin phylogeny. We report three siblings and one consulting doctor who developed kerion and tinea corporis after contact with domestic rabbits. Seven same strains were isolated from four patients and three regions of a sick rabbit. The ITS and D1/D2 sequences of our isolate were 99 % homologous to A. Vanbreuseghemii, while β-tubulin sequence was 100 % identical to T. interdigitale. Our isolate was identified as T. interdigitale based on maximum likelihood analysis of β-tubulin. Random amplified polymorphic DNA revealed that the band patterns of five isolated strains and another rabbit-derived strain WCH023 were identical for OPF-03 and OPF-12. Skin lesions of all patients resolved completely for 2- to 6-week therapy of oral terbinafine and topical 1 % bifonazole or 1 % terbinafine cream. This study demonstrates that T. interdigitale of rabbit origin can cause various types of human dermatophytosis by mild scratch. Terbinafine may be the first choice for dermatophytosis caused by T. interdigitale.

  6. Mitochondrial phylogeny of an Asian tree frog genus Theloderma (Anura: Rhacophoridae).

    PubMed

    Nguyen, Tao Thien; Matsui, Masafumi; Eto, Koshiro

    2015-04-01

    We assessed phylogenetic and systematic relationships among 17 out of 23 species of Theloderma and all three species of Nyctixalus from 2412bp sequences of the mitochondrial DNA genes of 12S rRNA, tRNA(val), and 16S rRNA using maximum likelihood and Bayesian inference methods. With the exception of T. moloch, Theloderma and Nyctixalus are confirmed to form a clade, in which each genus also forms a clade. Theloderma moloch is phylogenetically outside these clades and closer to samples from Chiromantis, Feihyla, Gracixalus, Kurixalus, Philautus, Polypedates, Raorchestes, and Rhacophorus. Within Theloderma, T. horridum and T. stellatum form the sister taxon to a clade comprising the remaining species. The basal split within the latter clade groups T. asperum, T. licin, T. petilum, and T. ryabovi as the sister to a clade comprising T. bicolor, T. chuyangsinense, T. corticale, T. gordoni, T. laeve, T. lateriticum, T. nebulosum, T. rhododiscus, and T. truongsonense. Our phylogenetic results indicate homoplastic evolution of four morphological characters: small vs. large body size, presence of vomerine teeth, presence of a vocal opening in males, and interdigital webbing on hands. The common ancestor of Theloderma and Nyctixalus is inferred to have arisen in the area including the current Sunda region. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Origin of the hungry caterpillar: Evolution of fasting in slug moths (Insecta: Lepidoptera: Limacodidae).

    PubMed

    Zaspel, J M; Weller, S J; Epstein, M E

    2016-01-01

    Studies of caterpillar defense strategy evolution typically focus on aposematic coloration, gregarious behavior, and/or chemical defense. In the slug moth family Limacodidae, the evolution of chemical defense is coupled to the life history trait of first instar feeding behaviors. In nettle caterpillars, the first instars fast and molt into a second instar that feeds. In contrast, gelatines and monkey slug larval forms feed in the first instar. This study focused on whether the evolution of fasting associated with the nettle morphology was a derived trait of single or multiple origins. Twenty-nine species of Limacodidae (including one Chrysopolominae) representing 27 genera and four outgroup species with known first and final instar morphologies and behaviors were included. Four out-group species representing Megalopygidae (1 sp), Dalceridae (1 sp) and Aididae (2 sp) were included. These were sequenced for three molecular markers for a total of 4073 bp, mitochondrial COI (∼1500 bp), 18S (∼1900 bp) and the D2 region of 28S (approximately 670 bp). Maximum likelihood and Bayesian analyses were conducted. The resulting phylogeny and comparative analysis of feeding strategy revealed that the nettle caterpillar morphology and behavior of larval fasting may have a single origin. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Fine Structure and Molecular Phylogeny of Parametopidium circumlabens (Ciliophora: Armophorea), Endocommensal of Sea Urchins.

    PubMed

    da Silva-Neto, Inácio Domingos; da Silva Paiva, Thiago; do Nascimento Borges, Bárbara; Harada, Maria Lúcia

    2016-01-01

    Metopid armophoreans are ciliates commonly found in anaerobic environments worldwide; however, very little is known of their fine structure. In this study, the metopid Parametopidium circumlabens (Biggar and Wenrich 1932) Aescht, 1980, a common endocommensal of sea urchins, is investigated for the first time with emphasis on transmission electron microscopy, revealing several previously unknown elements of its morphology. Somatic dikinetids of P. circumlabens have a typical ribbon of transverse microtubules, an isolated microtubule near triplets 4 and 5 of the anterior kinetosome, plus two other microtubules between anterior and posterior kinetosomes, a short kinetodesmal striated fiber and long postciliary microtubules. In the dikinetids of the perizonal stripe, the kinetodesmal fiber is very pronounced, and there is a conspicuous microfibrillar network system associated with the kinetosomes. A new structure, shaped as a dense, roughly cylindrical mass surrounded by microtubules, is found associated with the posterior kinetosome of perizonal dikinetids. The paroral membrane is diplostichomonad and the adoral membranelles are of the "paramembranelle" type. Bayesian inference and maximum-likelihood analysis of the 18S-rDNA gene unambiguously placed P. circumlabens as sister group of the cluster formed by ((Atopospira galeata, Atopospira violacea) Metopus laminarius) + Clevelandellida, corroborating its classification within the Metopida. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.

  9. Evolution of larval life mode of Oecophoridae (Lepidoptera: Gelechioidea) inferred from molecular phylogeny.

    PubMed

    Kim, Sora; Kaila, Lauri; Lee, Seunghwan

    2016-08-01

    Phylogenetic relationships within family Oecophoridae have been poorly understood. Consequently the subfamily and genus level classifications with this family problematic. A comprehensive phylogenetic analysis of Oecophoridae, the concealer moths, was performed based on analysis of 4444 base pairs of mitochondrial COI, nuclear ribosomal RNA genes (18S and 28S) and nuclear protein coding genes (IDH, MDH, Rps5, EF1a and wingless) for 82 taxa. Data were analyzed using maximum likelihood (ML), parsimony (MP) and Bayesian (BP) phylogenetic frameworks. Phylogenetic analyses indicated that (i) genera Casmara, Tyrolimnas and Pseudodoxia did not belong to Oecophoridae, suggesting that Oecophoridae s. authors was not monophyletic; (ii) other oecophorids comprising two subfamilies, Pleurotinae and Oecophorinae, were nested within the same clade, and (iii) Martyringa, Acryptolechia and Periacmini were clustered with core Xyloryctidae. They appeared to be sister lineage with core Oecophoridae. BayesTraits were implemented to explore the ancestral character states to infer historical microhabitat patterns and sheltering strategy of larvae. Reconstruction of ancestral microhabitat of oecophorids indicated that oecophorids might have evolved from dried plant feeders and further convergently specialized. The ancestral larva sheltering strategy of oecophorids might have used a silk tube by making itself, shifting from mining leaves. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Genome Data Provides High Support for Generic Boundaries in Burkholderia Sensu Lato

    PubMed Central

    Beukes, Chrizelle W.; Palmer, Marike; Manyaka, Puseletso; Chan, Wai Y.; Avontuur, Juanita R.; van Zyl, Elritha; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Palaniappan, Krishnaveni; Varghese, Neha; Mikhailova, Natalia; Stamatis, Dimitrios; Reddy, T. B. K.; Daum, Chris; Shapiro, Nicole; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Woyke, Tanja; Blom, Jochen; Whitman, William B.; Venter, Stephanus N.; Steenkamp, Emma T.

    2017-01-01

    Although the taxonomy of Burkholderia has been extensively scrutinized, significant uncertainty remains regarding the generic boundaries and composition of this large and heterogeneous taxon. Here we used the amino acid and nucleotide sequences of 106 conserved proteins from 92 species to infer robust maximum likelihood phylogenies with which to investigate the generic structure of Burkholderia sensu lato. These data unambiguously supported five distinct lineages, of which four correspond to Burkholderia sensu stricto and the newly introduced genera Paraburkholderia, Caballeronia, and Robbsia. The fifth lineage was represented by P. rhizoxinica. Based on these findings, we propose 13 new combinations for those species previously described as members of Burkholderia but that form part of Caballeronia. These findings also suggest revision of the taxonomic status of P. rhizoxinica as it is does not form part of any of the genera currently recognized in Burkholderia sensu lato. From a phylogenetic point of view, Burkholderia sensu stricto has a sister relationship with the Caballeronia+Paraburkholderia clade. Also, the lineages represented by P. rhizoxinica and R. andropogonis, respectively, emerged prior to the radiation of the Burkholderia sensu stricto+Caballeronia+Paraburkholderia clade. Our findings therefore constitute a solid framework, not only for supporting current and future taxonomic decisions, but also for studying the evolution of this assemblage of medically, industrially and agriculturally important species. PMID:28694797

  11. Bayesian image reconstruction for improving detection performance of muon tomography.

    PubMed

    Wang, Guobao; Schultz, Larry J; Qi, Jinyi

    2009-05-01

    Muon tomography is a novel technology that is being developed for detecting high-Z materials in vehicles or cargo containers. Maximum likelihood methods have been developed for reconstructing the scattering density image from muon measurements. However, the instability of maximum likelihood estimation often results in noisy images and low detectability of high-Z targets. In this paper, we propose using regularization to improve the image quality of muon tomography. We formulate the muon reconstruction problem in a Bayesian framework by introducing a prior distribution on scattering density images. An iterative shrinkage algorithm is derived to maximize the log posterior distribution. At each iteration, the algorithm obtains the maximum a posteriori update by shrinking an unregularized maximum likelihood update. Inverse quadratic shrinkage functions are derived for generalized Laplacian priors and inverse cubic shrinkage functions are derived for generalized Gaussian priors. Receiver operating characteristic studies using simulated data demonstrate that the Bayesian reconstruction can greatly improve the detection performance of muon tomography.

  12. Comparison of wheat classification accuracy using different classifiers of the image-100 system

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Chen, S. C.; Moreira, M. A.; Delima, A. M.

    1981-01-01

    Classification results using single-cell and multi-cell signature acquisition options, a point-by-point Gaussian maximum-likelihood classifier, and K-means clustering of the Image-100 system are presented. Conclusions reached are that: a better indication of correct classification can be provided by using a test area which contains various cover types of the study area; classification accuracy should be evaluated considering both the percentages of correct classification and error of commission; supervised classification approaches are better than K-means clustering; Gaussian distribution maximum likelihood classifier is better than Single-cell and Multi-cell Signature Acquisition Options of the Image-100 system; and in order to obtain a high classification accuracy in a large and heterogeneous crop area, using Gaussian maximum-likelihood classifier, homogeneous spectral subclasses of the study crop should be created to derive training statistics.

  13. Computing maximum-likelihood estimates for parameters of the National Descriptive Model of Mercury in Fish

    USGS Publications Warehouse

    Donato, David I.

    2012-01-01

    This report presents the mathematical expressions and the computational techniques required to compute maximum-likelihood estimates for the parameters of the National Descriptive Model of Mercury in Fish (NDMMF), a statistical model used to predict the concentration of methylmercury in fish tissue. The expressions and techniques reported here were prepared to support the development of custom software capable of computing NDMMF parameter estimates more quickly and using less computer memory than is currently possible with available general-purpose statistical software. Computation of maximum-likelihood estimates for the NDMMF by numerical solution of a system of simultaneous equations through repeated Newton-Raphson iterations is described. This report explains the derivation of the mathematical expressions required for computational parameter estimation in sufficient detail to facilitate future derivations for any revised versions of the NDMMF that may be developed.

  14. Estimating a Logistic Discrimination Functions When One of the Training Samples Is Subject to Misclassification: A Maximum Likelihood Approach.

    PubMed

    Nagelkerke, Nico; Fidler, Vaclav

    2015-01-01

    The problem of discrimination and classification is central to much of epidemiology. Here we consider the estimation of a logistic regression/discrimination function from training samples, when one of the training samples is subject to misclassification or mislabeling, e.g. diseased individuals are incorrectly classified/labeled as healthy controls. We show that this leads to zero-inflated binomial model with a defective logistic regression or discrimination function, whose parameters can be estimated using standard statistical methods such as maximum likelihood. These parameters can be used to estimate the probability of true group membership among those, possibly erroneously, classified as controls. Two examples are analyzed and discussed. A simulation study explores properties of the maximum likelihood parameter estimates and the estimates of the number of mislabeled observations.

  15. An experimental phylogeny to benchmark ancestral sequence reconstruction

    PubMed Central

    Randall, Ryan N.; Radford, Caelan E.; Roof, Kelsey A.; Natarajan, Divya K.; Gaucher, Eric A.

    2016-01-01

    Ancestral sequence reconstruction (ASR) is a still-burgeoning method that has revealed many key mechanisms of molecular evolution. One criticism of the approach is an inability to validate its algorithms within a biological context as opposed to a computer simulation. Here we build an experimental phylogeny using the gene of a single red fluorescent protein to address this criticism. The evolved phylogeny consists of 19 operational taxonomic units (leaves) and 17 ancestral bifurcations (nodes) that display a wide variety of fluorescent phenotypes. The 19 leaves then serve as ‘modern' sequences that we subject to ASR analyses using various algorithms and to benchmark against the known ancestral genotypes and ancestral phenotypes. We confirm computer simulations that show all algorithms infer ancient sequences with high accuracy, yet we also reveal wide variation in the phenotypes encoded by incorrectly inferred sequences. Specifically, Bayesian methods incorporating rate variation significantly outperform the maximum parsimony criterion in phenotypic accuracy. Subsampling of extant sequences had minor effect on the inference of ancestral sequences. PMID:27628687

  16. A Comparison of Pseudo-Maximum Likelihood and Asymptotically Distribution-Free Dynamic Factor Analysis Parameter Estimation in Fitting Covariance Structure Models to Block-Toeplitz Matrices Representing Single-Subject Multivariate Time-Series.

    ERIC Educational Resources Information Center

    Molenaar, Peter C. M.; Nesselroade, John R.

    1998-01-01

    Pseudo-Maximum Likelihood (p-ML) and Asymptotically Distribution Free (ADF) estimation methods for estimating dynamic factor model parameters within a covariance structure framework were compared through a Monte Carlo simulation. Both methods appear to give consistent model parameter estimates, but only ADF gives standard errors and chi-square…

  17. Statistical Bias in Maximum Likelihood Estimators of Item Parameters.

    DTIC Science & Technology

    1982-04-01

    34 a> E r’r~e r ,C Ie I# ne,..,.rVi rnd Id.,flfv b1 - bindk numb.r) I; ,t-i i-cd I ’ tiie bias in the maximum likelihood ,st i- i;, ’ t iIeiIrs in...NTC, IL 60088 Psychometric Laboratory University of North Carolina I ERIC Facility-Acquisitions Davie Hall 013A 4833 Rugby Avenue Chapel Hill, NC

  18. On the Performance of Maximum Likelihood versus Means and Variance Adjusted Weighted Least Squares Estimation in CFA

    ERIC Educational Resources Information Center

    Beauducel, Andre; Herzberg, Philipp Yorck

    2006-01-01

    This simulation study compared maximum likelihood (ML) estimation with weighted least squares means and variance adjusted (WLSMV) estimation. The study was based on confirmatory factor analyses with 1, 2, 4, and 8 factors, based on 250, 500, 750, and 1,000 cases, and on 5, 10, 20, and 40 variables with 2, 3, 4, 5, and 6 categories. There was no…

  19. Bias correction of risk estimates in vaccine safety studies with rare adverse events using a self-controlled case series design.

    PubMed

    Zeng, Chan; Newcomer, Sophia R; Glanz, Jason M; Shoup, Jo Ann; Daley, Matthew F; Hambidge, Simon J; Xu, Stanley

    2013-12-15

    The self-controlled case series (SCCS) method is often used to examine the temporal association between vaccination and adverse events using only data from patients who experienced such events. Conditional Poisson regression models are used to estimate incidence rate ratios, and these models perform well with large or medium-sized case samples. However, in some vaccine safety studies, the adverse events studied are rare and the maximum likelihood estimates may be biased. Several bias correction methods have been examined in case-control studies using conditional logistic regression, but none of these methods have been evaluated in studies using the SCCS design. In this study, we used simulations to evaluate 2 bias correction approaches-the Firth penalized maximum likelihood method and Cordeiro and McCullagh's bias reduction after maximum likelihood estimation-with small sample sizes in studies using the SCCS design. The simulations showed that the bias under the SCCS design with a small number of cases can be large and is also sensitive to a short risk period. The Firth correction method provides finite and less biased estimates than the maximum likelihood method and Cordeiro and McCullagh's method. However, limitations still exist when the risk period in the SCCS design is short relative to the entire observation period.

  20. Composite Partial Likelihood Estimation Under Length-Biased Sampling, With Application to a Prevalent Cohort Study of Dementia

    PubMed Central

    Huang, Chiung-Yu; Qin, Jing

    2013-01-01

    The Canadian Study of Health and Aging (CSHA) employed a prevalent cohort design to study survival after onset of dementia, where patients with dementia were sampled and the onset time of dementia was determined retrospectively. The prevalent cohort sampling scheme favors individuals who survive longer. Thus, the observed survival times are subject to length bias. In recent years, there has been a rising interest in developing estimation procedures for prevalent cohort survival data that not only account for length bias but also actually exploit the incidence distribution of the disease to improve efficiency. This article considers semiparametric estimation of the Cox model for the time from dementia onset to death under a stationarity assumption with respect to the disease incidence. Under the stationarity condition, the semiparametric maximum likelihood estimation is expected to be fully efficient yet difficult to perform for statistical practitioners, as the likelihood depends on the baseline hazard function in a complicated way. Moreover, the asymptotic properties of the semiparametric maximum likelihood estimator are not well-studied. Motivated by the composite likelihood method (Besag 1974), we develop a composite partial likelihood method that retains the simplicity of the popular partial likelihood estimator and can be easily performed using standard statistical software. When applied to the CSHA data, the proposed method estimates a significant difference in survival between the vascular dementia group and the possible Alzheimer’s disease group, while the partial likelihood method for left-truncated and right-censored data yields a greater standard error and a 95% confidence interval covering 0, thus highlighting the practical value of employing a more efficient methodology. To check the assumption of stable disease for the CSHA data, we also present new graphical and numerical tests in the article. The R code used to obtain the maximum composite partial likelihood estimator for the CSHA data is available in the online Supplementary Material, posted on the journal web site. PMID:24000265

  1. Quasi- and pseudo-maximum likelihood estimators for discretely observed continuous-time Markov branching processes

    PubMed Central

    Chen, Rui; Hyrien, Ollivier

    2011-01-01

    This article deals with quasi- and pseudo-likelihood estimation in a class of continuous-time multi-type Markov branching processes observed at discrete points in time. “Conventional” and conditional estimation are discussed for both approaches. We compare their properties and identify situations where they lead to asymptotically equivalent estimators. Both approaches possess robustness properties, and coincide with maximum likelihood estimation in some cases. Quasi-likelihood functions involving only linear combinations of the data may be unable to estimate all model parameters. Remedial measures exist, including the resort either to non-linear functions of the data or to conditioning the moments on appropriate sigma-algebras. The method of pseudo-likelihood may also resolve this issue. We investigate the properties of these approaches in three examples: the pure birth process, the linear birth-and-death process, and a two-type process that generalizes the previous two examples. Simulations studies are conducted to evaluate performance in finite samples. PMID:21552356

  2. A Solution to Separation and Multicollinearity in Multiple Logistic Regression

    PubMed Central

    Shen, Jianzhao; Gao, Sujuan

    2010-01-01

    In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27–38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth’s penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study. PMID:20376286

  3. A Solution to Separation and Multicollinearity in Multiple Logistic Regression.

    PubMed

    Shen, Jianzhao; Gao, Sujuan

    2008-10-01

    In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27-38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth's penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study.

  4. Maximum likelihood estimation of signal detection model parameters for the assessment of two-stage diagnostic strategies.

    PubMed

    Lirio, R B; Dondériz, I C; Pérez Abalo, M C

    1992-08-01

    The methodology of Receiver Operating Characteristic curves based on the signal detection model is extended to evaluate the accuracy of two-stage diagnostic strategies. A computer program is developed for the maximum likelihood estimation of parameters that characterize the sensitivity and specificity of two-stage classifiers according to this extended methodology. Its use is briefly illustrated with data collected in a two-stage screening for auditory defects.

  5. Computing Maximum Likelihood Estimates of Loglinear Models from Marginal Sums with Special Attention to Loglinear Item Response Theory. [Project Psychometric Aspects of Item Banking No. 53.] Research Report 91-1.

    ERIC Educational Resources Information Center

    Kelderman, Henk

    In this paper, algorithms are described for obtaining the maximum likelihood estimates of the parameters in log-linear models. Modified versions of the iterative proportional fitting and Newton-Raphson algorithms are described that work on the minimal sufficient statistics rather than on the usual counts in the full contingency table. This is…

  6. Maximum Likelihood Item Easiness Models for Test Theory Without an Answer Key

    PubMed Central

    Batchelder, William H.

    2014-01-01

    Cultural consensus theory (CCT) is a data aggregation technique with many applications in the social and behavioral sciences. We describe the intuition and theory behind a set of CCT models for continuous type data using maximum likelihood inference methodology. We describe how bias parameters can be incorporated into these models. We introduce two extensions to the basic model in order to account for item rating easiness/difficulty. The first extension is a multiplicative model and the second is an additive model. We show how the multiplicative model is related to the Rasch model. We describe several maximum-likelihood estimation procedures for the models and discuss issues of model fit and identifiability. We describe how the CCT models could be used to give alternative consensus-based measures of reliability. We demonstrate the utility of both the basic and extended models on a set of essay rating data and give ideas for future research. PMID:29795812

  7. Maximum likelihood estimation of label imperfections and its use in the identification of mislabeled patterns

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B.

    1979-01-01

    The problem of estimating label imperfections and the use of the estimation in identifying mislabeled patterns is presented. Expressions for the maximum likelihood estimates of classification errors and a priori probabilities are derived from the classification of a set of labeled patterns. Expressions also are given for the asymptotic variances of probability of correct classification and proportions. Simple models are developed for imperfections in the labels and for classification errors and are used in the formulation of a maximum likelihood estimation scheme. Schemes are presented for the identification of mislabeled patterns in terms of threshold on the discriminant functions for both two-class and multiclass cases. Expressions are derived for the probability that the imperfect label identification scheme will result in a wrong decision and are used in computing thresholds. The results of practical applications of these techniques in the processing of remotely sensed multispectral data are presented.

  8. Bayesian structural equation modeling in sport and exercise psychology.

    PubMed

    Stenling, Andreas; Ivarsson, Andreas; Johnson, Urban; Lindwall, Magnus

    2015-08-01

    Bayesian statistics is on the rise in mainstream psychology, but applications in sport and exercise psychology research are scarce. In this article, the foundations of Bayesian analysis are introduced, and we will illustrate how to apply Bayesian structural equation modeling in a sport and exercise psychology setting. More specifically, we contrasted a confirmatory factor analysis on the Sport Motivation Scale II estimated with the most commonly used estimator, maximum likelihood, and a Bayesian approach with weakly informative priors for cross-loadings and correlated residuals. The results indicated that the model with Bayesian estimation and weakly informative priors provided a good fit to the data, whereas the model estimated with a maximum likelihood estimator did not produce a well-fitting model. The reasons for this discrepancy between maximum likelihood and Bayesian estimation are discussed as well as potential advantages and caveats with the Bayesian approach.

  9. A comparison of maximum likelihood and other estimators of eigenvalues from several correlated Monte Carlo samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, M.

    1980-12-01

    The maximum likelihood method for the multivariate normal distribution is applied to the case of several individual eigenvalues. Correlated Monte Carlo estimates of the eigenvalue are assumed to follow this prescription and aspects of the assumption are examined. Monte Carlo cell calculations using the SAM-CE and VIM codes for the TRX-1 and TRX-2 benchmark reactors, and SAM-CE full core results are analyzed with this method. Variance reductions of a few percent to a factor of 2 are obtained from maximum likelihood estimation as compared with the simple average and the minimum variance individual eigenvalue. The numerical results verify that themore » use of sample variances and correlation coefficients in place of the corresponding population statistics still leads to nearly minimum variance estimation for a sufficient number of histories and aggregates.« less

  10. A Maximum Likelihood Approach to Functional Mapping of Longitudinal Binary Traits

    PubMed Central

    Wang, Chenguang; Li, Hongying; Wang, Zhong; Wang, Yaqun; Wang, Ningtao; Wang, Zuoheng; Wu, Rongling

    2013-01-01

    Despite their importance in biology and biomedicine, genetic mapping of binary traits that change over time has not been well explored. In this article, we develop a statistical model for mapping quantitative trait loci (QTLs) that govern longitudinal responses of binary traits. The model is constructed within the maximum likelihood framework by which the association between binary responses is modeled in terms of conditional log odds-ratios. With this parameterization, the maximum likelihood estimates (MLEs) of marginal mean parameters are robust to the misspecification of time dependence. We implement an iterative procedures to obtain the MLEs of QTL genotype-specific parameters that define longitudinal binary responses. The usefulness of the model was validated by analyzing a real example in rice. Simulation studies were performed to investigate the statistical properties of the model, showing that the model has power to identify and map specific QTLs responsible for the temporal pattern of binary traits. PMID:23183762

  11. A Gateway for Phylogenetic Analysis Powered by Grid Computing Featuring GARLI 2.0

    PubMed Central

    Bazinet, Adam L.; Zwickl, Derrick J.; Cummings, Michael P.

    2014-01-01

    We introduce molecularevolution.org, a publicly available gateway for high-throughput, maximum-likelihood phylogenetic analysis powered by grid computing. The gateway features a garli 2.0 web service that enables a user to quickly and easily submit thousands of maximum likelihood tree searches or bootstrap searches that are executed in parallel on distributed computing resources. The garli web service allows one to easily specify partitioned substitution models using a graphical interface, and it performs sophisticated post-processing of phylogenetic results. Although the garli web service has been used by the research community for over three years, here we formally announce the availability of the service, describe its capabilities, highlight new features and recent improvements, and provide details about how the grid system efficiently delivers high-quality phylogenetic results. [garli, gateway, grid computing, maximum likelihood, molecular evolution portal, phylogenetics, web service.] PMID:24789072

  12. Partially incorrect fossil data augment analyses of discrete trait evolution in living species.

    PubMed

    Puttick, Mark N

    2016-08-01

    Ancestral state reconstruction of discrete character traits is often vital when attempting to understand the origins and homology of traits in living species. The addition of fossils has been shown to alter our understanding of trait evolution in extant taxa, but researchers may avoid using fossils alongside extant species if only few are known, or if the designation of the trait of interest is uncertain. Here, I investigate the impacts of fossils and incorrectly coded fossils in the ancestral state reconstruction of discrete morphological characters under a likelihood model. Under simulated phylogenies and data, likelihood-based models are generally accurate when estimating ancestral node values. Analyses with combined fossil and extant data always outperform analyses with extant species alone, even when around one quarter of the fossil information is incorrect. These results are especially pronounced when model assumptions are violated, such as when there is a trend away from the root value. Fossil data are of particular importance when attempting to estimate the root node character state. Attempts should be made to include fossils in analysis of discrete traits under likelihood, even if there is uncertainty in the fossil trait data. © 2016 The Authors.

  13. The Complete Genome Phylogeny of Geographically Distinct Dengue Virus Serotype 2 Isolates (1944-2013) Supports Further Groupings within the Cosmopolitan Genotype

    PubMed Central

    Ali, Akhtar; Ali, Ijaz

    2015-01-01

    Dengue virus serotype 2 (DENV-2) isolates have been implicated in deadly outbreaks of dengue fever (DF) and dengue hemorrhagic fever (DHF) in several regions of the world. Phylogenetic analysis of DENV-2 isolates collected from particular countries has been performed using partial or individual genes but only a few studies have examined complete whole-genome sequences collected worldwide. Herein, 50 complete genome sequences of DENV-2 isolates, reported over the past 70 years from 19 different countries, were downloaded from GenBank. Phylogenetic analysis was conducted and evolutionary distances of the 50 DENV-2 isolates were determined using maximum likelihood (ML) trees or Bayesian phylogenetic analysis created from complete genome nucleotide (nt) and amino acid (aa) sequences or individual gene sequences. The results showed that all DENV-2 isolates fell into seven main groups containing five previously defined genotypes. A Cosmopolitan genotype showed further division into three groups (C-I, C-II, and C-III) with the C-I group containing two subgroups (C-IA and C-IB). Comparison of the aa sequences showed specific mutations among the various groups of DENV-2 isolates. A maximum number of aa mutations was observed in the NS5 gene, followed by the NS2A, NS3 and NS1 genes, while the smallest number of aa substitutions was recorded in the capsid gene, followed by the PrM/M, NS4A, and NS4B genes. Maximum evolutionary distances were found in the NS2A gene, followed by the NS4A and NS4B genes. Based on these results, we propose that genotyping of DENV-2 isolates in future studies should be performed on entire genome sequences in order to gain a complete understanding of the evolution of various isolates reported from different geographical locations around the world. PMID:26414178

  14. Profile-Likelihood Approach for Estimating Generalized Linear Mixed Models with Factor Structures

    ERIC Educational Resources Information Center

    Jeon, Minjeong; Rabe-Hesketh, Sophia

    2012-01-01

    In this article, the authors suggest a profile-likelihood approach for estimating complex models by maximum likelihood (ML) using standard software and minimal programming. The method works whenever setting some of the parameters of the model to known constants turns the model into a standard model. An important class of models that can be…

  15. Evolutionary Relations of Hexanchiformes Deep-Sea Sharks Elucidated by Whole Mitochondrial Genome Sequences

    PubMed Central

    Tanaka, Keiko; Tomita, Taketeru; Suzuki, Shingo; Hosomichi, Kazuyoshi; Sano, Kazumi; Doi, Hiroyuki; Kono, Azumi; Inoko, Hidetoshi; Kulski, Jerzy K.; Tanaka, Sho

    2013-01-01

    Hexanchiformes is regarded as a monophyletic taxon, but the morphological and genetic relationships between the five extant species within the order are still uncertain. In this study, we determined the whole mitochondrial DNA (mtDNA) sequences of seven sharks including representatives of the five Hexanchiformes, one squaliform, and one carcharhiniform and inferred the phylogenetic relationships among those species and 12 other Chondrichthyes (cartilaginous fishes) species for which the complete mitogenome is available. The monophyly of Hexanchiformes and its close relation with all other Squaliformes sharks were strongly supported by likelihood and Bayesian phylogenetic analysis of 13,749 aligned nucleotides of 13 protein coding genes and two rRNA genes that were derived from the whole mDNA sequences of the 19 species. The phylogeny suggested that Hexanchiformes is in the superorder Squalomorphi, Chlamydoselachus anguineus (frilled shark) is the sister species to all other Hexanchiformes, and the relations within Hexanchiformes are well resolved as Chlamydoselachus, (Notorynchus, (Heptranchias, (Hexanchus griseus, H. nakamurai))). Based on our phylogeny, we discussed evolutionary scenarios of the jaw suspension mechanism and gill slit numbers that are significant features in the sharks. PMID:24089661

  16. Myrteae phylogeny, calibration, biogeography and diversification patterns: Increased understanding in the most species rich tribe of Myrtaceae.

    PubMed

    Vasconcelos, Thais N C; Proença, Carol E B; Ahmad, Berhaman; Aguilar, Daniel S; Aguilar, Reinaldo; Amorim, Bruno S; Campbell, Keron; Costa, Itayguara R; De-Carvalho, Plauto S; Faria, Jair E Q; Giaretta, Augusto; Kooij, Pepijn W; Lima, Duane F; Mazine, Fiorella F; Peguero, Brigido; Prenner, Gerhard; Santos, Matheus F; Soewarto, Julia; Wingler, Astrid; Lucas, Eve J

    2017-04-01

    Myrteae (c. 2500 species; 51 genera) is the largest tribe of Myrtaceae and an ecologically important groups of angiosperms in the Neotropics. Systematic relationships in Myrteae are complex, hindering conservation initiatives and jeopardizing evolutionary modelling. A well-supported and robust phylogenetic hypothesis was here targeted towards a comprehensive understanding of the relationships within the tribe. The resultant topology was used as a base for key evolutionary analyses such as age estimation, historical biogeography and diversification rate patterns. One nuclear (ITS) and seven chloroplast (psbA-trnH, matK, ndhF, trnl-trnF, trnQ-rps16, rpl16 and rpl32-trnL) DNA regions for 115 taxa representing 46 out of the 51 genera in the tribe were accessed and analysed using maximum likelihood and Bayesian inference tools for phylogenetic reconstruction. Dates of diversification events were estimated and contrasted using two distinct fossil sets (macro and pollen) in BEAST. The subsequent dated phylogenies were compared and analysed for biogeographical patterns using BioGeoBEARS and diversification rates using BAMM. Myrteae phylogeny presents strong statistical support for three major clades within the tribe: Australasian group, Myrtus group and Main Neotropical Lineage. Dating results from calibration using macrofossil are an average of 20 million years older and show an early Paleocene origin of Myrteae, against a mid-Eocene one from the pollen fossil calibration. Biogeographic analysis shows the origin of Myrteae in Zealandia in both calibration approaches, followed by a widespread distribution throughout the still-linked Gondwana continents and diversification of Neotropical endemic lineages by later vicariance. Best configuration shift indicates three points of acceleration in diversification rates, all of them occurring in the Main Neotropical Lineage. Based on the reconstructed topology, several new taxonomic placements were recovered, including: the relative position of Myrtus communis, the placement of the Blepharocalyx group, the absence of generic endemism in the Caribbean, and the paraphyletism of the former Pimenta group. Distinct calibration approaches affect biogeography interpretation, increasing the number of necessary long distance dispersal events in the topology with older nodes. It is hypothesised that biological intrinsic factors such as modifications of embryo type and polyploidy might have played a role in accelerating shifts of diversification rates in Neotropical lineages. Future perspectives include formal subtribal classification, standardization of fossil calibration approaches and better links between diversification shifts and trait evolution. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Monogenean anchor morphometry: systematic value, phylogenetic signal, and evolution

    PubMed Central

    Soo, Oi Yoon Michelle; Tan, Wooi Boon; Lim, Lee Hong Susan

    2016-01-01

    Background. Anchors are one of the important attachment appendages for monogenean parasites. Common descent and evolutionary processes have left their mark on anchor morphometry, in the form of patterns of shape and size variation useful for systematic and evolutionary studies. When combined with morphological and molecular data, analysis of anchor morphometry can potentially answer a wide range of biological questions. Materials and Methods. We used data from anchor morphometry, body size and morphology of 13 Ligophorus (Monogenea: Ancyrocephalidae) species infecting two marine mugilid (Teleostei: Mugilidae) fish hosts: Moolgarda buchanani (Bleeker) and Liza subviridis (Valenciennes) from Malaysia. Anchor shape and size data (n = 530) were generated using methods of geometric morphometrics. We used 28S rRNA, 18S rRNA, and ITS1 sequence data to infer a maximum likelihood phylogeny. We discriminated species using principal component and cluster analysis of shape data. Adams’s Kmult was used to detect phylogenetic signal in anchor shape. Phylogeny-correlated size and shape changes were investigated using continuous character mapping and directional statistics, respectively. We assessed morphological constraints in anchor morphometry using phylogenetic regression of anchor shape against body size and anchor size. Anchor morphological integration was studied using partial least squares method. The association between copulatory organ morphology and anchor shape and size in phylomorphospace was used to test the Rohde-Hobbs hypothesis. We created monogeneaGM, a new R package that integrates analyses of monogenean anchor geometric morphometric data with morphological and phylogenetic data. Results. We discriminated 12 of the 13 Ligophorus species using anchor shape data. Significant phylogenetic signal was detected in anchor shape. Thus, we discovered new morphological characters based on anchor shaft shape, the length between the inner root point and the outer root point, and the length between the inner root point and the dent point. The species on M. buchanani evolved larger, more robust anchors; those on L. subviridis evolved smaller, more delicate anchors. Anchor shape and size were significantly correlated, suggesting constraints in anchor evolution. Tight integration between the root and the point compartments within anchors confirms the anchor as a single, fully integrated module. The correlation between male copulatory organ morphology and size with anchor shape was consistent with predictions from the Rohde-Hobbs hypothesis. Conclusions. Monogenean anchors are tightly integrated structures, and their shape variation correlates strongly with phylogeny, thus underscoring their value for systematic and evolutionary biology studies. Our MonogeneaGM R package provides tools for researchers to mine biological insights from geometric morphometric data of speciose monogenean genera. PMID:26966649

  18. Middle Pleistocene protein sequences from the rhinoceros genus Stephanorhinus and the phylogeny of extant and extinct Middle/Late Pleistocene Rhinocerotidae

    PubMed Central

    Smith, Geoff M.; Hutson, Jarod M.; Kindler, Lutz; Garcia-Moreno, Alejandro; Villaluenga, Aritza; Turner, Elaine

    2017-01-01

    Background Ancient protein sequences are increasingly used to elucidate the phylogenetic relationships between extinct and extant mammalian taxa. Here, we apply these recent developments to Middle Pleistocene bone specimens of the rhinoceros genus Stephanorhinus. No biomolecular sequence data is currently available for this genus, leaving phylogenetic hypotheses on its evolutionary relationships to extant and extinct rhinoceroses untested. Furthermore, recent phylogenies based on Rhinocerotidae (partial or complete) mitochondrial DNA sequences differ in the placement of the Sumatran rhinoceros (Dicerorhinus sumatrensis). Therefore, studies utilising ancient protein sequences from Middle Pleistocene contexts have the potential to provide further insights into the phylogenetic relationships between extant and extinct species, including Stephanorhinus and Dicerorhinus. Methods ZooMS screening (zooarchaeology by mass spectrometry) was performed on several Late and Middle Pleistocene specimens from the genus Stephanorhinus, subsequently followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to obtain ancient protein sequences from a Middle Pleistocene Stephanorhinus specimen. We performed parallel analysis on a Late Pleistocene woolly rhinoceros specimen and extant species of rhinoceroses, resulting in the availability of protein sequence data for five extant species and two extinct genera. Phylogenetic analysis additionally included all extant Perissodactyla genera (Equus, Tapirus), and was conducted using Bayesian (MrBayes) and maximum-likelihood (RAxML) methods. Results Various ancient proteins were identified in both the Middle and Late Pleistocene rhinoceros samples. Protein degradation and proteome complexity are consistent with an endogenous origin of the identified proteins. Phylogenetic analysis of informative proteins resolved the Perissodactyla phylogeny in agreement with previous studies in regards to the placement of the families Equidae, Tapiridae, and Rhinocerotidae. Stephanorhinus is shown to be most closely related to the genera Coelodonta and Dicerorhinus. The protein sequence data further places the Sumatran rhino in a clade together with the genus Rhinoceros, opposed to forming a clade with the black and white rhinoceros species. Discussion The first biomolecular dataset available for Stephanorhinus places this genus together with the extinct genus Coelodonta and the extant genus Dicerorhinus. This is in agreement with morphological studies, although we are unable to resolve the order of divergence between these genera based on the protein sequences available. Our data supports the placement of the genus Dicerorhinus in a clade together with extant Rhinoceros species. Finally, the availability of protein sequence data for both extinct European rhinoceros genera allows future investigations into their geographic distribution and extinction chronologies. PMID:28316883

  19. Middle Pleistocene protein sequences from the rhinoceros genus Stephanorhinus and the phylogeny of extant and extinct Middle/Late Pleistocene Rhinocerotidae.

    PubMed

    Welker, Frido; Smith, Geoff M; Hutson, Jarod M; Kindler, Lutz; Garcia-Moreno, Alejandro; Villaluenga, Aritza; Turner, Elaine; Gaudzinski-Windheuser, Sabine

    2017-01-01

    Ancient protein sequences are increasingly used to elucidate the phylogenetic relationships between extinct and extant mammalian taxa. Here, we apply these recent developments to Middle Pleistocene bone specimens of the rhinoceros genus Stephanorhinus . No biomolecular sequence data is currently available for this genus, leaving phylogenetic hypotheses on its evolutionary relationships to extant and extinct rhinoceroses untested. Furthermore, recent phylogenies based on Rhinocerotidae (partial or complete) mitochondrial DNA sequences differ in the placement of the Sumatran rhinoceros ( Dicerorhinus sumatrensis ). Therefore, studies utilising ancient protein sequences from Middle Pleistocene contexts have the potential to provide further insights into the phylogenetic relationships between extant and extinct species, including Stephanorhinus and Dicerorhinus . ZooMS screening (zooarchaeology by mass spectrometry) was performed on several Late and Middle Pleistocene specimens from the genus Stephanorhinus , subsequently followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to obtain ancient protein sequences from a Middle Pleistocene Stephanorhinus specimen. We performed parallel analysis on a Late Pleistocene woolly rhinoceros specimen and extant species of rhinoceroses, resulting in the availability of protein sequence data for five extant species and two extinct genera. Phylogenetic analysis additionally included all extant Perissodactyla genera ( Equus , Tapirus ), and was conducted using Bayesian (MrBayes) and maximum-likelihood (RAxML) methods. Various ancient proteins were identified in both the Middle and Late Pleistocene rhinoceros samples. Protein degradation and proteome complexity are consistent with an endogenous origin of the identified proteins. Phylogenetic analysis of informative proteins resolved the Perissodactyla phylogeny in agreement with previous studies in regards to the placement of the families Equidae, Tapiridae, and Rhinocerotidae. Stephanorhinus is shown to be most closely related to the genera Coelodonta and Dicerorhinus . The protein sequence data further places the Sumatran rhino in a clade together with the genus Rhinoceros , opposed to forming a clade with the black and white rhinoceros species. The first biomolecular dataset available for Stephanorhinus places this genus together with the extinct genus Coelodonta and the extant genus Dicerorhinus . This is in agreement with morphological studies, although we are unable to resolve the order of divergence between these genera based on the protein sequences available. Our data supports the placement of the genus Dicerorhinus in a clade together with extant Rhinoceros species. Finally, the availability of protein sequence data for both extinct European rhinoceros genera allows future investigations into their geographic distribution and extinction chronologies.

  20. On the log-normality of historical magnetic-storm intensity statistics: implications for extreme-event probabilities

    USGS Publications Warehouse

    Love, Jeffrey J.; Rigler, E. Joshua; Pulkkinen, Antti; Riley, Pete

    2015-01-01

    An examination is made of the hypothesis that the statistics of magnetic-storm-maximum intensities are the realization of a log-normal stochastic process. Weighted least-squares and maximum-likelihood methods are used to fit log-normal functions to −Dst storm-time maxima for years 1957-2012; bootstrap analysis is used to established confidence limits on forecasts. Both methods provide fits that are reasonably consistent with the data; both methods also provide fits that are superior to those that can be made with a power-law function. In general, the maximum-likelihood method provides forecasts having tighter confidence intervals than those provided by weighted least-squares. From extrapolation of maximum-likelihood fits: a magnetic storm with intensity exceeding that of the 1859 Carrington event, −Dst≥850 nT, occurs about 1.13 times per century and a wide 95% confidence interval of [0.42,2.41] times per century; a 100-yr magnetic storm is identified as having a −Dst≥880 nT (greater than Carrington) but a wide 95% confidence interval of [490,1187] nT.

  1. Maximum likelihood convolutional decoding (MCD) performance due to system losses

    NASA Technical Reports Server (NTRS)

    Webster, L.

    1976-01-01

    A model for predicting the computational performance of a maximum likelihood convolutional decoder (MCD) operating in a noisy carrier reference environment is described. This model is used to develop a subroutine that will be utilized by the Telemetry Analysis Program to compute the MCD bit error rate. When this computational model is averaged over noisy reference phase errors using a high-rate interpolation scheme, the results are found to agree quite favorably with experimental measurements.

  2. Maximum Likelihood Shift Estimation Using High Resolution Polarimetric SAR Clutter Model

    NASA Astrophysics Data System (ADS)

    Harant, Olivier; Bombrun, Lionel; Vasile, Gabriel; Ferro-Famil, Laurent; Gay, Michel

    2011-03-01

    This paper deals with a Maximum Likelihood (ML) shift estimation method in the context of High Resolution (HR) Polarimetric SAR (PolSAR) clutter. Texture modeling is exposed and the generalized ML texture tracking method is extended to the merging of various sensors. Some results on displacement estimation on the Argentiere glacier in the Mont Blanc massif using dual-pol TerraSAR-X (TSX) and quad-pol RADARSAT-2 (RS2) sensors are finally discussed.

  3. Short-Term Dynamic and Local Epidemiological Trends in the South American HIV-1B Epidemic.

    PubMed

    Junqueira, Dennis Maletich; de Medeiros, Rubia Marília; Gräf, Tiago; Almeida, Sabrina Esteves de Matos

    2016-01-01

    The human displacement and sexual behavior are the main factors driving the HIV-1 pandemic to the current profile. The intrinsic structure of the HIV transmission among different individuals has valuable importance for the understanding of the epidemic and for the public health response. The aim of this study was to characterize the HIV-1 subtype B (HIV-1B) epidemic in South America through the identification of transmission links and infer trends about geographical patterns and median time of transmission between individuals. Sequences of the protease and reverse transcriptase coding regions from 4,810 individuals were selected from GenBank. Maximum likelihood phylogenies were inferred and submitted to ClusterPicker to identify transmission links. Bayesian analyses were applied only for clusters including ≥5 dated samples in order to estimate the median maximum inter-transmission interval. This study analyzed sequences sampled from 12 South American countries, from individuals of different exposure categories, under different antiretroviral profiles, and from a wide period of time (1989-2013). Continentally, Brazil, Argentina and Venezuela were revealed important sites for the spread of HIV-1B among countries inside South America. Of note, from all the clusters identified about 70% of the HIV-1B infections are primarily occurring among individuals living in the same geographic region. In addition, these transmissions seem to occur early after the infection of an individual, taking in average 2.39 years (95% CI 1.48-3.30) to succeed. Homosexual/Bisexual individuals transmit the virus as quickly as almost half time of that estimated for the general population sampled here. Public health services can be broadly benefitted from this kind of information whether to focus on specific programs of response to the epidemic whether as guiding of prevention campaigns to specific risk groups.

  4. Evidence of Repeated and Independent Saltational Evolution in a Peculiar Genus of Sphinx Moths (Proserpinus: Sphingidae)

    PubMed Central

    Rubinoff, Daniel; Le Roux, Johannes J.

    2008-01-01

    Background Saltational evolution in which a particular lineage undergoes relatively rapid, significant, and unparalleled change as compared with its closest relatives is rarely invoked as an alternative model to the dominant paradigm of gradualistic evolution. Identifying saltational events is an important first-step in assessing the importance of this discontinuous model in generating evolutionary novelty. We offer evidence for three independent instances of saltational evolution in a charismatic moth genus with only eight species. Methodology/Principal Findings Maximum parsimony, maximum likelihood and Bayesian search criteria offered congruent, well supported phylogenies based on 1,965 base pairs of DNA sequence using the mitochondrial gene cytochrome oxidase subunit I, and the nuclear genes elongation factor-1 alpha and wingless. Using a comparative methods approach, we examined three taxa exhibiting novelty in the form of Batesian mimicry, host plant shift, and dramatic physiological differences in light of the phylogenetic data. All three traits appear to have evolved relatively rapidly and independently in three different species of Proserpinus. Each saltational species exhibits a markedly different and discrete example of discontinuous trait evolution while remaining canalized for other typical traits shared by the rest of the genus. All three saltational taxa show insignificantly different levels of overall genetic change as compared with their congeners, implying that their divergence is targeted to particular traits and not genome-wide. Conclusions/Significance Such rapid evolution of novel traits in individual species suggests that the pace of evolution can be quick, dramatic, and isolated—even on the species level. These results may be applicable to other groups in which specific taxa have generated pronounced evolutionary novelty. Genetic mechanisms and methods for assessing such relatively rapid changes are postulated. PMID:19107205

  5. Evidence of repeated and independent saltational evolution in a peculiar genus of sphinx moths (Proserpinus: Sphingidae).

    PubMed

    Rubinoff, Daniel; Le Roux, Johannes J

    2008-01-01

    Saltational evolution in which a particular lineage undergoes relatively rapid, significant, and unparalleled change as compared with its closest relatives is rarely invoked as an alternative model to the dominant paradigm of gradualistic evolution. Identifying saltational events is an important first-step in assessing the importance of this discontinuous model in generating evolutionary novelty. We offer evidence for three independent instances of saltational evolution in a charismatic moth genus with only eight species. Maximum parsimony, maximum likelihood and Bayesian search criteria offered congruent, well supported phylogenies based on 1,965 base pairs of DNA sequence using the mitochondrial gene cytochrome oxidase subunit I, and the nuclear genes elongation factor-1 alpha and wingless. Using a comparative methods approach, we examined three taxa exhibiting novelty in the form of Batesian mimicry, host plant shift, and dramatic physiological differences in light of the phylogenetic data. All three traits appear to have evolved relatively rapidly and independently in three different species of Proserpinus. Each saltational species exhibits a markedly different and discrete example of discontinuous trait evolution while remaining canalized for other typical traits shared by the rest of the genus. All three saltational taxa show insignificantly different levels of overall genetic change as compared with their congeners, implying that their divergence is targeted to particular traits and not genome-wide. Such rapid evolution of novel traits in individual species suggests that the pace of evolution can be quick, dramatic, and isolated--even on the species level. These results may be applicable to other groups in which specific taxa have generated pronounced evolutionary novelty. Genetic mechanisms and methods for assessing such relatively rapid changes are postulated.

  6. A molecular phylogeny of the Canidae based on six nuclear loci.

    PubMed

    Bardeleben, Carolyne; Moore, Rachael L; Wayne, Robert K

    2005-12-01

    We have reconstructed the phylogenetic relationships of 23 species in the dog family, Canidae, using DNA sequence data from six nuclear loci. Individual gene trees were generated with maximum parsimony (MP) and maximum likelihood (ML) analysis. In general, these individual gene trees were not well resolved, but several identical groupings were supported by more than one locus. Phylogenetic analysis with a data set combining the six nuclear loci using MP, ML, and Bayesian approaches produced a more resolved tree that agreed with previously published mitochondrial trees in finding three well-defined clades, including the red fox-like canids, the South American foxes, and the wolf-like canids. In addition, the nuclear data set provides novel indel support for several previously inferred clades. Differences between trees derived from the nuclear data and those from the mitochondrial data include the grouping of the bush dog and maned wolf into a clade with the South American foxes, the grouping of the side-striped jackal (Canis adustus) and black-backed jackal (Canis mesomelas) and the grouping of the bat-eared fox (Otocyon megalotis) with the raccoon dog (Nycteruetes procyonoides). We also analyzed the combined nuclear+mitochondrial tree. Many nodes that were strongly supported in the nuclear tree or the mitochondrial tree remained strongly supported in the nuclear+mitochondrial tree. Relationships within the clades containing the red fox-like canids and South American canids are well resolved, whereas the relationships among the wolf-like canids remain largely undetermined. The lack of resolution within the wolf-like canids may be due to their recent divergence and insufficient time for the accumulation of phylogenetically informative signal.

  7. Revisiting the phylogeny of Bombacoideae (Malvaceae): Novel relationships, morphologically cohesive clades, and a new tribal classification based on multilocus phylogenetic analyses.

    PubMed

    Carvalho-Sobrinho, Jefferson G; Alverson, William S; Alcantara, Suzana; Queiroz, Luciano P; Mota, Aline C; Baum, David A

    2016-08-01

    Bombacoideae (Malvaceae) is a clade of deciduous trees with a marked dominance in many forests, especially in the Neotropics. The historical lack of a well-resolved phylogenetic framework for Bombacoideae hinders studies in this ecologically important group. We reexamined phylogenetic relationships in this clade based on a matrix of 6465 nuclear (ETS, ITS) and plastid (matK, trnL-trnF, trnS-trnG) DNA characters. We used maximum parsimony, maximum likelihood, and Bayesian inference to infer relationships among 108 species (∼70% of the total number of known species). We analyzed the evolution of selected morphological traits: trunk or branch prickles, calyx shape, endocarp type, seed shape, and seed number per fruit, using ML reconstructions of their ancestral states to identify possible synapomorphies for major clades. Novel phylogenetic relationships emerged from our analyses, including three major lineages marked by fruit or seed traits: the winged-seed clade (Bernoullia, Gyranthera, and Huberodendron), the spongy endocarp clade (Adansonia, Aguiaria, Catostemma, Cavanillesia, and Scleronema), and the Kapok clade (Bombax, Ceiba, Eriotheca, Neobuchia, Pachira, Pseudobombax, Rhodognaphalon, and Spirotheca). The Kapok clade, the most diverse lineage of the subfamily, includes sister relationships (i) between Pseudobombax and "Pochota fendleri" a historically incertae sedis taxon, and (ii) between the Paleotropical genera Bombax and Rhodognaphalon, implying just two bombacoid dispersals to the Old World, the other one involving Adansonia. This new phylogenetic framework offers new insights and a promising avenue for further evolutionary studies. In view of this information, we present a new tribal classification of the subfamily, accompanied by an identification key. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The Complete Mitochondrial Genome of Coptotermes ‘suzhouensis’ (syn. Coptotermes formosanus) (Isoptera: Rhinotermitidae) and Molecular Phylogeny Analysis

    PubMed Central

    Li, Juan; Zhu, Jin-long; Lou, Shi-di; Wang, Ping; Zhang, You-sen; Wang, Lin; Yin, Ruo-chun; Zhang, Ping-ping

    2018-01-01

    Abstract Coptotermes suzhouensis (Isoptera: Rhinotermitidae) is a significant subterranean termite pest of wooden structures and is widely distributed in southeastern China. The complete mitochondrial DNA sequence of C. suzhouensis was analyzed in this study. The mitogenome was a circular molecule of 15,764 bp in length, which contained 13 protein-coding genes (PCGs), 22 transfer RNA genes, two ribosomal RNA genes, and an A+T-rich region with a gene arrangement typical of Isoptera mitogenomes. All PCGs were initiated by ATN codons and terminated by complete termination codons (TAA), except COX2, ND5, and Cytb, which ended with an incomplete termination codon T. All tRNAs displayed a typical clover-leaf structure, except for tRNASer(AGN), which did not contain the stem-loop structure in the DHU arm. The A+T content (69.23%) of the A+T-rich region (949 bp) was higher than that of the entire mitogenome (65.60%), and two different sets of repeat units (A+B) were distributed in this region. Comparison of complete mitogenome sequences with those of Coptotermes formosanus indicated that the two taxa have very high genetic similarity. Forty-one representative termite species were used to construct phylogenetic trees by maximum likelihood, maximum parsimony, and Bayesian inference methods. The phylogenetic analyses also strongly supported (BPP, MLBP, and MPBP = 100%) that all C. suzhouensis and C. formosanus samples gathered into one clade with genetic distances between 0.000 and 0.002. This study provides molecular evidence for a more robust phylogenetic position of C. suzhouensis and inferrs that C. suzhouensis was the synonymy of C. formosanus. PMID:29718488

  9. Branch architecture in Ginkgo biloba: wood anatomy and long shoot-short shoot interactions.

    PubMed

    Little, Stefan A; Jacobs, Brooke; McKechnie, Steven J; Cooper, Ranessa L; Christianson, Michael L; Jernstedt, Judith A

    2013-10-01

    Ginkgo, centrally placed in seed plant phylogeny, is considered important in many phylogenetic and evolutionary studies. Shoot dimorphism of Ginkgo has been long noted, but no work has yet been done to evaluate the relationships between overall branch architecture and wood ring characters, shoot growth, and environmental conditions. • Branches, sampled from similar canopy heights, were mapped with the age of each long shoot segment determined by counting annual leaf-scar series on its short shoots. Transverse sections were made for each long shoot segment and an adjacent short shoot; wood ring thickness, number of rings, and number of tracheids/ring were determined. Using branch maps, we identified wood rings for each long shoot segment to year and developmental context of each year (distal short shoot growth only vs. at least one distal long shoot). Climate data were also analyzed in conjunction with developmental context. • Significantly thicker wood rings occur in years with distal long shoot development. The likelihood that a branch produced long shoots in a given year was lower with higher maximum annual temperature. Annual maximum temperature was negatively correlated with ring thickness in microsporangiate trees only. Annual minimum temperatures were correlated differently with ring thickness of megasporangiate and microsporangiate trees, depending on the developmental context. There were no significant effects associated with precipitation. • Overall, developmental context alone predicts wood ring thickness about as well as models that include temperature. This suggests that although climatic factors may be strongly correlated with wood ring data among many gymnosperm taxa, at least for Ginkgo, correlations with climate data are primarily due to changes in proportions of shoot developmental types (LS vs. SS) across branches.

  10. Phylogeny of Comatulidae (Echinodermata: Crinoidea: Comatulida): a new classification and an assessment of morphological characters for crinoid taxonomy.

    PubMed

    Summers, Mindi M; Messing, Charles G; Rouse, Greg W

    2014-11-01

    Comatulidae Fleming, 1828 (previously, and incorrectly, Comasteridae A.H. Clark, 1908a), is a group of feather star crinoids currently divided into four accepted subfamilies, 21 genera and approximately 95 nominal species. Comatulidae is the most commonly-encountered and species-rich crinoid group on shallow tropical coral reefs, particularly in the Indo-western Pacific region (IWP). We conducted a molecular phylogenetic analysis of the group with concatenated data from up to seven genes for 43 nominal species spanning 17 genera and all subfamilies. Basal nodes returned low support, but maximum likelihood, maximum parsimony, and Bayesian analyses were largely congruent, permitting an evaluation of current taxonomy and analysis of morphological character transformations. Two of the four current subfamilies were paraphyletic, whereas 15 of the 17 included genera returned as monophyletic. We provide a new classification with two subfamilies, Comatulinae and Comatellinae n. subfamily Summers, Messing, & Rouse, the former containing five tribes. We revised membership of analyzed genera to make them all clades and erected Anneissia n. gen. Summers, Messing, & Rouse. Transformation analyses for morphological features generally used in feather star classification (e.g., ray branching patterns, articulations) and those specifically for Comatulidae (e.g., comb pinnule form, mouth placement) were labile with considerable homoplasy. These traditional characters, in combination, allow for generic diagnoses, but in most cases we did not recover apomorphies for subfamilies, tribes, and genera. New morphological characters that will be informative for crinoid taxonomy and identification are still needed. DNA sequence data currently provides the most reliable method of identification to the species-level for many taxa of Comatulidae. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Insights into the evolution, biogeography and natural history of the acorn ants, genus Temnothorax Mayr (hymenoptera: Formicidae).

    PubMed

    Prebus, Matthew

    2017-12-13

    Temnothorax (Formicidae: Myrmicinae) is a diverse genus of ants found in a broad spectrum of ecosystems across the northern hemisphere. These diminutive ants have long served as models for social insect behavior, leading to discoveries about social learning and inspiring hypotheses about the process of speciation and the evolution of social parasitism. This genus is highly morphologically and behaviorally diverse, and this has caused a great deal of taxonomic confusion in recent years. Past efforts to estimate the phylogeny of this genus have been limited in taxonomic scope, leaving the broader evolutionary patterns in Temnothorax unclear. To establish the monophyly of Temnothorax, resolve the evolutionary relationships, reconstruct the historical biogeography and investigate trends in the evolution of key traits, I generated, assembled, and analyzed two molecular datasets: a traditional multi-locus Sanger sequencing dataset, and an ultra-conserved element (UCE) dataset. Using maximum likelihood, Bayesian, and summary-coalescent based approaches, I analyzed 22 data subsets consisting of 103 ingroup taxa and a maximum of 1.8 million base pairs in 2485 loci. The results of this study suggest an origin of Temnothorax at the Eocene-Oligocene transition, concerted transitions to arboreal nesting habits in several clades during the Oligocene, coinciding with ancient global cooling, and several convergent origins of social parasitism in the Miocene and Pliocene. As with other Holarctic taxa, Temnothorax has a history of migration across Beringia during the Miocene. Temnothorax is corroborated as a natural group, and the notion that many of the historical subgeneric and species group concepts are artificial is reinforced. The strict form of Emery's Rule, in which a socially parasitic species is sister to its host species, is not well supported in Temnothorax.

  12. Evolution of Epiphytism and Fruit Traits Act Unevenly on the Diversification of the Species-Rich Genus Peperomia (Piperaceae).

    PubMed

    Frenzke, Lena; Goetghebeur, Paul; Neinhuis, Christoph; Samain, Marie-Stéphanie; Wanke, Stefan

    2016-01-01

    The species-rich genus Peperomia (Black Pepper relatives) is the only genus among early diverging angiosperms where epiphytism evolved. The majority of fruits of Peperomia release sticky secretions or exhibit hook-shaped appendages indicative of epizoochorous dispersal, which is in contrast to other flowering plants, where epiphytes are generally characterized by fruit morphological adaptations for anemochory or endozoochory. We investigate fruit characters using Cryo-SEM. Comparative phylogenetic analyses are applied for the first time to include life form and fruit character information to study diversification in Peperomia. Likelihood ratio tests uncover correlated character evolution. We demonstrate that diversification within Peperomia is not homogenous across its phylogeny, and that net diversification rates increase by twofold within the most species-rich subgenus. In contrast to former land plant studies that provide general evidence for increased diversification in epiphytic lineages, we demonstrate that the evolution of epiphytism within Peperomia predates the diversification shift. An epiphytic-dependent diversification is only observed for the background phylogeny. An elevated frequency of life form transitions between epiphytes and terrestrials and thus evolutionary flexibility of life forms is uncovered to coincide with the diversification shift. The evolution of fruits showing dispersal related structures is key to diversification in the foreground region of the phylogeny and postdates the evolution of epiphytism. We conclude that the success of Peperomia, measured in species numbers, is likely the result of enhanced vertical and horizontal dispersal ability and life form flexibility but not the evolution of epiphytism itself.

  13. Maximum likelihood estimates, from censored data, for mixed-Weibull distributions

    NASA Astrophysics Data System (ADS)

    Jiang, Siyuan; Kececioglu, Dimitri

    1992-06-01

    A new algorithm for estimating the parameters of mixed-Weibull distributions from censored data is presented. The algorithm follows the principle of maximum likelihood estimate (MLE) through the expectation and maximization (EM) algorithm, and it is derived for both postmortem and nonpostmortem time-to-failure data. It is concluded that the concept of the EM algorithm is easy to understand and apply (only elementary statistics and calculus are required). The log-likelihood function cannot decrease after an EM sequence; this important feature was observed in all of the numerical calculations. The MLEs of the nonpostmortem data were obtained successfully for mixed-Weibull distributions with up to 14 parameters in a 5-subpopulation, mixed-Weibull distribution. Numerical examples indicate that some of the log-likelihood functions of the mixed-Weibull distributions have multiple local maxima; therefore, the algorithm should start at several initial guesses of the parameter set.

  14. Simple Penalties on Maximum-Likelihood Estimates of Genetic Parameters to Reduce Sampling Variation

    PubMed Central

    Meyer, Karin

    2016-01-01

    Multivariate estimates of genetic parameters are subject to substantial sampling variation, especially for smaller data sets and more than a few traits. A simple modification of standard, maximum-likelihood procedures for multivariate analyses to estimate genetic covariances is described, which can improve estimates by substantially reducing their sampling variances. This is achieved by maximizing the likelihood subject to a penalty. Borrowing from Bayesian principles, we propose a mild, default penalty—derived assuming a Beta distribution of scale-free functions of the covariance components to be estimated—rather than laboriously attempting to determine the stringency of penalization from the data. An extensive simulation study is presented, demonstrating that such penalties can yield very worthwhile reductions in loss, i.e., the difference from population values, for a wide range of scenarios and without distorting estimates of phenotypic covariances. Moreover, mild default penalties tend not to increase loss in difficult cases and, on average, achieve reductions in loss of similar magnitude to computationally demanding schemes to optimize the degree of penalization. Pertinent details required for the adaptation of standard algorithms to locate the maximum of the likelihood function are outlined. PMID:27317681

  15. Maximum Likelihood Estimations and EM Algorithms with Length-biased Data

    PubMed Central

    Qin, Jing; Ning, Jing; Liu, Hao; Shen, Yu

    2012-01-01

    SUMMARY Length-biased sampling has been well recognized in economics, industrial reliability, etiology applications, epidemiological, genetic and cancer screening studies. Length-biased right-censored data have a unique data structure different from traditional survival data. The nonparametric and semiparametric estimations and inference methods for traditional survival data are not directly applicable for length-biased right-censored data. We propose new expectation-maximization algorithms for estimations based on full likelihoods involving infinite dimensional parameters under three settings for length-biased data: estimating nonparametric distribution function, estimating nonparametric hazard function under an increasing failure rate constraint, and jointly estimating baseline hazards function and the covariate coefficients under the Cox proportional hazards model. Extensive empirical simulation studies show that the maximum likelihood estimators perform well with moderate sample sizes and lead to more efficient estimators compared to the estimating equation approaches. The proposed estimates are also more robust to various right-censoring mechanisms. We prove the strong consistency properties of the estimators, and establish the asymptotic normality of the semi-parametric maximum likelihood estimators under the Cox model using modern empirical processes theory. We apply the proposed methods to a prevalent cohort medical study. Supplemental materials are available online. PMID:22323840

  16. Models and analysis for multivariate failure time data

    NASA Astrophysics Data System (ADS)

    Shih, Joanna Huang

    The goal of this research is to develop and investigate models and analytic methods for multivariate failure time data. We compare models in terms of direct modeling of the margins, flexibility of dependency structure, local vs. global measures of association, and ease of implementation. In particular, we study copula models, and models produced by right neutral cumulative hazard functions and right neutral hazard functions. We examine the changes of association over time for families of bivariate distributions induced from these models by displaying their density contour plots, conditional density plots, correlation curves of Doksum et al, and local cross ratios of Oakes. We know that bivariate distributions with same margins might exhibit quite different dependency structures. In addition to modeling, we study estimation procedures. For copula models, we investigate three estimation procedures. the first procedure is full maximum likelihood. The second procedure is two-stage maximum likelihood. At stage 1, we estimate the parameters in the margins by maximizing the marginal likelihood. At stage 2, we estimate the dependency structure by fixing the margins at the estimated ones. The third procedure is two-stage partially parametric maximum likelihood. It is similar to the second procedure, but we estimate the margins by the Kaplan-Meier estimate. We derive asymptotic properties for these three estimation procedures and compare their efficiency by Monte-Carlo simulations and direct computations. For models produced by right neutral cumulative hazards and right neutral hazards, we derive the likelihood and investigate the properties of the maximum likelihood estimates. Finally, we develop goodness of fit tests for the dependency structure in the copula models. We derive a test statistic and its asymptotic properties based on the test of homogeneity of Zelterman and Chen (1988), and a graphical diagnostic procedure based on the empirical Bayes approach. We study the performance of these two methods using actual and computer generated data.

  17. Towards improving searches for optimal phylogenies.

    PubMed

    Ford, Eric; St John, Katherine; Wheeler, Ward C

    2015-01-01

    Finding the optimal evolutionary history for a set of taxa is a challenging computational problem, even when restricting possible solutions to be "tree-like" and focusing on the maximum-parsimony optimality criterion. This has led to much work on using heuristic tree searches to find approximate solutions. We present an approach for finding exact optimal solutions that employs and complements the current heuristic methods for finding optimal trees. Given a set of taxa and a set of aligned sequences of characters, there may be subsets of characters that are compatible, and for each such subset there is an associated (possibly partially resolved) phylogeny with edges corresponding to each character state change. These perfect phylogenies serve as anchor trees for our constrained search space. We show that, for sequences with compatible sites, the parsimony score of any tree [Formula: see text] is at least the parsimony score of the anchor trees plus the number of inferred changes between [Formula: see text] and the anchor trees. As the maximum-parsimony optimality score is additive, the sum of the lower bounds on compatible character partitions provides a lower bound on the complete alignment of characters. This yields a region in the space of trees within which the best tree is guaranteed to be found; limiting the search for the optimal tree to this region can significantly reduce the number of trees that must be examined in a search of the space of trees. We analyze this method empirically using four different biological data sets as well as surveying 400 data sets from the TreeBASE repository, demonstrating the effectiveness of our technique in reducing the number of steps in exact heuristic searches for trees under the maximum-parsimony optimality criterion. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Using phylogenetically-informed annotation (PIA) to search for light-interacting genes in transcriptomes from non-model organisms.

    PubMed

    Speiser, Daniel I; Pankey, M Sabrina; Zaharoff, Alexander K; Battelle, Barbara A; Bracken-Grissom, Heather D; Breinholt, Jesse W; Bybee, Seth M; Cronin, Thomas W; Garm, Anders; Lindgren, Annie R; Patel, Nipam H; Porter, Megan L; Protas, Meredith E; Rivera, Ajna S; Serb, Jeanne M; Zigler, Kirk S; Crandall, Keith A; Oakley, Todd H

    2014-11-19

    Tools for high throughput sequencing and de novo assembly make the analysis of transcriptomes (i.e. the suite of genes expressed in a tissue) feasible for almost any organism. Yet a challenge for biologists is that it can be difficult to assign identities to gene sequences, especially from non-model organisms. Phylogenetic analyses are one useful method for assigning identities to these sequences, but such methods tend to be time-consuming because of the need to re-calculate trees for every gene of interest and each time a new data set is analyzed. In response, we employed existing tools for phylogenetic analysis to produce a computationally efficient, tree-based approach for annotating transcriptomes or new genomes that we term Phylogenetically-Informed Annotation (PIA), which places uncharacterized genes into pre-calculated phylogenies of gene families. We generated maximum likelihood trees for 109 genes from a Light Interaction Toolkit (LIT), a collection of genes that underlie the function or development of light-interacting structures in metazoans. To do so, we searched protein sequences predicted from 29 fully-sequenced genomes and built trees using tools for phylogenetic analysis in the Osiris package of Galaxy (an open-source workflow management system). Next, to rapidly annotate transcriptomes from organisms that lack sequenced genomes, we repurposed a maximum likelihood-based Evolutionary Placement Algorithm (implemented in RAxML) to place sequences of potential LIT genes on to our pre-calculated gene trees. Finally, we implemented PIA in Galaxy and used it to search for LIT genes in 28 newly-sequenced transcriptomes from the light-interacting tissues of a range of cephalopod mollusks, arthropods, and cubozoan cnidarians. Our new trees for LIT genes are available on the Bitbucket public repository ( http://bitbucket.org/osiris_phylogenetics/pia/ ) and we demonstrate PIA on a publicly-accessible web server ( http://galaxy-dev.cnsi.ucsb.edu/pia/ ). Our new trees for LIT genes will be a valuable resource for researchers studying the evolution of eyes or other light-interacting structures. We also introduce PIA, a high throughput method for using phylogenetic relationships to identify LIT genes in transcriptomes from non-model organisms. With simple modifications, our methods may be used to search for different sets of genes or to annotate data sets from taxa outside of Metazoa.

  19. Vector Antenna and Maximum Likelihood Imaging for Radio Astronomy

    DTIC Science & Technology

    2016-03-05

    Maximum Likelihood Imaging for Radio Astronomy Mary Knapp1, Frank Robey2, Ryan Volz3, Frank Lind3, Alan Fenn2, Alex Morris2, Mark Silver2, Sarah Klein2...haystack.mit.edu Abstract1— Radio astronomy using frequencies less than ~100 MHz provides a window into non-thermal processes in objects ranging from planets...observational astronomy . Ground-based observatories including LOFAR [1], LWA [2], [3], MWA [4], and the proposed SKA-Low [5], [6] are improving access to

  20. A maximum pseudo-profile likelihood estimator for the Cox model under length-biased sampling

    PubMed Central

    Huang, Chiung-Yu; Qin, Jing; Follmann, Dean A.

    2012-01-01

    This paper considers semiparametric estimation of the Cox proportional hazards model for right-censored and length-biased data arising from prevalent sampling. To exploit the special structure of length-biased sampling, we propose a maximum pseudo-profile likelihood estimator, which can handle time-dependent covariates and is consistent under covariate-dependent censoring. Simulation studies show that the proposed estimator is more efficient than its competitors. A data analysis illustrates the methods and theory. PMID:23843659

  1. The effect of lossy image compression on image classification

    NASA Technical Reports Server (NTRS)

    Paola, Justin D.; Schowengerdt, Robert A.

    1995-01-01

    We have classified four different images, under various levels of JPEG compression, using the following classification algorithms: minimum-distance, maximum-likelihood, and neural network. The training site accuracy and percent difference from the original classification were tabulated for each image compression level, with maximum-likelihood showing the poorest results. In general, as compression ratio increased, the classification retained its overall appearance, but much of the pixel-to-pixel detail was eliminated. We also examined the effect of compression on spatial pattern detection using a neural network.

  2. Chloroplast and ITS phylogenies to understand the evolutionary history of southern South American Azorella, Laretia and Mulinum (Azorelloideae, Apiaceae).

    PubMed

    Fernández, Martina; Ezcurra, Cecilia; Calviño, Carolina I

    2017-03-01

    Azorella, Laretia and Mulinum are taxonomically complex, and good candidates to study evolutionary radiations in the Andes and the importance of hybridizations. Previous phylogenetic studies of subfamily Azorelloideae agree that Azorella and Mulinum as currently conceived are not monophyletic, and hence a revision of their circumscription is necessary. However, these phylogenies were based only on chloroplast DNA sequence data. Here, phylogenetic relationships within Azorelloideae were inferred using sequence data from five chloroplast DNA (rps16 intron, trnQ-rps16, rps16-trnK UUU 5' -exon, trnG GCC -trnS GCU and rpL32-trnL UAG ), and from nuclear rDNA ITS regions to assess the monophyly of Azorella and Mulinum and discuss generic re-circumscriptions, determine hybridization and radiation events, identify and characterize important lineages, and propose hypotheses on evolution of key morphological characters. In total, 121 accessions of Azorelloideae were analyzed. Phylogenetic analyses of the different genomes were conducted separately and combined, with and without indels, using maximum parsimony, maximum likelihood, and Bayesian methods. To analyze the incongruence between plastid and nuclear-derived trees a consensus network from strongly supported nodes from cpDNA and ITS trees was constructed. Internode certainty values were calculated to evaluate the reliability of the relationships estimated from the individual cpDNA and ITS data sets and to examine the degree of conflict within the total evidence data set. Azorella and Mulinum were confirmed as not monophyletic. Except three Azorella species, the remaining azorellas, all species of Mulinum, and Laretia form a monophyletic group, designated here as Andean-Patagonian. The three species of Azorella that are not part of the Andean-Patagonian lineage are grouped together with Huanaca and Schizeilema in another lineage, designated here as Austral. Within the Andean-Patagonian clade, three major lineages can be recognized: Diversifolia, Trifurcata, and Spinosum. Each of these lineages have different leaf morpho-anatomies, Diversifolia species being more mesomorphic compared to species of Trifurcata, and species of Spinosum being the most xeromorphic. Hybridizations have been important in the evolution of the group, especially within Diversifolia, with at least six reticulation events resulting in putative homoploid and allopolyploid hybrid species. Evidence from branch lengths and low sequence divergences suggest a rapid radiation in the Spinosum group, probably associated with the acquisition of wings in the fruits. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Identifying the true oysters (Bivalvia: Ostreidae) with mitochondrial phylogeny and distance-based DNA barcoding.

    PubMed

    Liu, Jun; Li, Qi; Kong, Lingfeng; Yu, Hong; Zheng, Xiaodong

    2011-09-01

    Oysters (family Ostreidae), with high levels of phenotypic plasticity and wide geographic distribution, are a challenging group for taxonomists and phylogenetics. As a useful tool for molecular species identification, DNA barcoding might offer significant potential for oyster identification and taxonomy. This study used two mitochondrial fragments, cytochrome c oxidase I (COI) and the large ribosomal subunit (16S rDNA), to assess whether oyster species could be identified by phylogeny and distance-based DNA barcoding techniques. Relationships among species were estimated by the phylogenetic analyses of both genes, and then pairwise inter- and intraspecific genetic divergences were assessed. Species forming well-differentiated clades in the molecular phylogenies were identical for both genes even when the closely related species were included. Intraspecific variability of 16S rDNA overlapped with interspecific divergence. However, average intra- and interspecific genetic divergences for COI were 0-1.4% (maximum 2.2%) and 2.6-32.2% (minimum 2.2%), respectively, indicating the existence of a barcoding gap. These results confirm the efficacy of species identification in oysters via DNA barcodes and phylogenetic analysis. © 2011 Blackwell Publishing Ltd.

  4. Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures

    PubMed Central

    Moore, Brian R.; Höhna, Sebastian; May, Michael R.; Rannala, Bruce; Huelsenbeck, John P.

    2016-01-01

    Bayesian analysis of macroevolutionary mixtures (BAMM) has recently taken the study of lineage diversification by storm. BAMM estimates the diversification-rate parameters (speciation and extinction) for every branch of a study phylogeny and infers the number and location of diversification-rate shifts across branches of a tree. Our evaluation of BAMM reveals two major theoretical errors: (i) the likelihood function (which estimates the model parameters from the data) is incorrect, and (ii) the compound Poisson process prior model (which describes the prior distribution of diversification-rate shifts across branches) is incoherent. Using simulation, we demonstrate that these theoretical issues cause statistical pathologies; posterior estimates of the number of diversification-rate shifts are strongly influenced by the assumed prior, and estimates of diversification-rate parameters are unreliable. Moreover, the inability to correctly compute the likelihood or to correctly specify the prior for rate-variable trees precludes the use of Bayesian approaches for testing hypotheses regarding the number and location of diversification-rate shifts using BAMM. PMID:27512038

  5. THESEUS: maximum likelihood superpositioning and analysis of macromolecular structures

    PubMed Central

    Theobald, Douglas L.; Wuttke, Deborah S.

    2008-01-01

    Summary THESEUS is a command line program for performing maximum likelihood (ML) superpositions and analysis of macromolecular structures. While conventional superpositioning methods use ordinary least-squares (LS) as the optimization criterion, ML superpositions provide substantially improved accuracy by down-weighting variable structural regions and by correcting for correlations among atoms. ML superpositioning is robust and insensitive to the specific atoms included in the analysis, and thus it does not require subjective pruning of selected variable atomic coordinates. Output includes both likelihood-based and frequentist statistics for accurate evaluation of the adequacy of a superposition and for reliable analysis of structural similarities and differences. THESEUS performs principal components analysis for analyzing the complex correlations found among atoms within a structural ensemble. PMID:16777907

  6. Diversification of Angraecum (Orchidaceae, Vandeae) in Madagascar: Revised Phylogeny Reveals Species Accumulation through Time Rather than Rapid Radiation

    PubMed Central

    2016-01-01

    Angraecum is the largest genus of subtribe Angraecinae (Orchidaceae) with about 221 species. Madagascar is the center of the diversity for the genus with ca. 142 species, of which 90% are endemic. The great morphological diversity associated with species diversification in the genus on the island of Madagascar offers valuable insights for macroevolutionary studies. Phylogenies of the Angraecinae have been published but a lack of taxon and character sampling and their limited taxonomic resolution limit their uses for macroevolutionary studies. We present a new phylogeny of Angraecum based on chloroplast sequence data (matk, rps16, trnL), nuclear ribosomal (ITS2) and 39 morphological characters from 194 Angraecinae species of which 69 were newly sampled. Using this phylogeny, we evaluated the monophyly of the sections of Angraecum as defined by Garay and investigated the patterns of species diversification within the genus. We used maximum parsimony and bayesian analyses to generate phylogenetic trees and dated divergence times of the phylogeny. We analyzed diversification patterns within Angraecinae and Angraecum with an emphasis on four floral characters (flower color, flower size, labellum position, spur length) using macroevolutionary models to evaluate which characters or character states are associated with speciation rates, and inferred ancestral states of these characters. The phylogenetic analysis showed the polyphyly of Angraecum sensu lato and of all Angraecum sections except sect. Hadrangis, and that morphology can be consistent with the phylogeny. It appeared that the characters (flower color, flower size, spur length) formerly used by many authors to delineate Angraecum groups were insufficient to do so. However, the newly described character, position of the labellum (uppermost and lowermost), was the main character delimiting clades within a monophyletic Angraecum sensu stricto. This character also appeared to be associated with speciation rates in Angraecum. The macroevolutionary model-based phylogeny failed to detect shifts in diversification that could be associated directly with morphological diversification. Diversification in Angraecum resulted from gradual species accumulation through time rather than from rapid radiation, a diversification pattern often encountered in tropical rain forests. PMID:27669569

  7. Diversification of Angraecum (Orchidaceae, Vandeae) in Madagascar: Revised Phylogeny Reveals Species Accumulation through Time Rather than Rapid Radiation.

    PubMed

    Andriananjamanantsoa, Herinandrianina N; Engberg, Shannon; Louis, Edward E; Brouillet, Luc

    Angraecum is the largest genus of subtribe Angraecinae (Orchidaceae) with about 221 species. Madagascar is the center of the diversity for the genus with ca. 142 species, of which 90% are endemic. The great morphological diversity associated with species diversification in the genus on the island of Madagascar offers valuable insights for macroevolutionary studies. Phylogenies of the Angraecinae have been published but a lack of taxon and character sampling and their limited taxonomic resolution limit their uses for macroevolutionary studies. We present a new phylogeny of Angraecum based on chloroplast sequence data (matk, rps16, trnL), nuclear ribosomal (ITS2) and 39 morphological characters from 194 Angraecinae species of which 69 were newly sampled. Using this phylogeny, we evaluated the monophyly of the sections of Angraecum as defined by Garay and investigated the patterns of species diversification within the genus. We used maximum parsimony and bayesian analyses to generate phylogenetic trees and dated divergence times of the phylogeny. We analyzed diversification patterns within Angraecinae and Angraecum with an emphasis on four floral characters (flower color, flower size, labellum position, spur length) using macroevolutionary models to evaluate which characters or character states are associated with speciation rates, and inferred ancestral states of these characters. The phylogenetic analysis showed the polyphyly of Angraecum sensu lato and of all Angraecum sections except sect. Hadrangis, and that morphology can be consistent with the phylogeny. It appeared that the characters (flower color, flower size, spur length) formerly used by many authors to delineate Angraecum groups were insufficient to do so. However, the newly described character, position of the labellum (uppermost and lowermost), was the main character delimiting clades within a monophyletic Angraecum sensu stricto. This character also appeared to be associated with speciation rates in Angraecum. The macroevolutionary model-based phylogeny failed to detect shifts in diversification that could be associated directly with morphological diversification. Diversification in Angraecum resulted from gradual species accumulation through time rather than from rapid radiation, a diversification pattern often encountered in tropical rain forests.

  8. Optimization of Multilocus Sequence Analysis for Identification of Species in the Genus Vibrio

    PubMed Central

    Gabriel, Michael W.; Matsui, George Y.; Friedman, Robert

    2014-01-01

    Multilocus sequence analysis (MLSA) is an important method for identification of taxa that are not well differentiated by 16S rRNA gene sequences alone. In this procedure, concatenated sequences of selected genes are constructed and then analyzed. The effects that the number and the order of genes used in MLSA have on reconstruction of phylogenetic relationships were examined. The recA, rpoA, gapA, 16S rRNA gene, gyrB, and ftsZ sequences from 56 species of the genus Vibrio were used to construct molecular phylogenies, and these were evaluated individually and using various gene combinations. Phylogenies from two-gene sequences employing recA and rpoA in both possible gene orders were different. The addition of the gapA gene sequence, producing all six possible concatenated sequences, reduced the differences in phylogenies to degrees of statistical (bootstrap) support for some nodes. The overall statistical support for the phylogenetic tree, assayed on the basis of a reliability score (calculated from the number of nodes having bootstrap values of ≥80 divided by the total number of nodes) increased with increasing numbers of genes used, up to a maximum of four. No further improvement was observed from addition of the fifth gene sequence (ftsZ), and addition of the sixth gene (gyrB) resulted in lower proportions of strongly supported nodes. Reductions in the numbers of strongly supported nodes were also observed when maximum parsimony was employed for tree construction. Use of a small number of gene sequences in MLSA resulted in accurate identification of Vibrio species. PMID:24951781

  9. Transcriptome Data Reveal Syndermatan Relationships and Suggest the Evolution of Endoparasitism in Acanthocephala via an Epizoic Stage

    PubMed Central

    Rieger, Benjamin; Rosenkranz, David; Witek, Alexander; Welch, David B. Mark; Ebersberger, Ingo; Hankeln, Thomas

    2014-01-01

    The taxon Syndermata comprises the biologically interesting wheel animals (“Rotifera”: Bdelloidea + Monogononta + Seisonidea) and thorny-headed worms (Acanthocephala), and is central for testing superordinate phylogenetic hypotheses (Platyzoa, Gnathifera) in the metazoan tree of life. Recent analyses of syndermatan phylogeny suggested paraphyly of Eurotatoria (free-living bdelloids and monogononts) with respect to endoparasitic acanthocephalans. Data of epizoic seisonids, however, were absent, which may have affected the branching order within the syndermatan clade. Moreover, the position of Seisonidea within Syndermata should help in understanding the evolution of acanthocephalan endoparasitism. Here, we report the first phylogenomic analysis that includes all four higher-ranked groups of Syndermata. The analyzed data sets comprise new transcriptome data for Seison spec. (Seisonidea), Brachionus manjavacas (Monogononta), Adineta vaga (Bdelloidea), and Paratenuisentis ambiguus (Acanthocephala). Maximum likelihood and Bayesian trees for a total of 19 metazoan species were reconstructed from up to 410 functionally diverse proteins. The results unanimously place Monogononta basally within Syndermata, and Bdelloidea appear as the sister group to a clade comprising epizoic Seisonidea and endoparasitic Acanthocephala. Our results support monophyly of Syndermata, Hemirotifera (Bdelloidea + Seisonidea + Acanthocephala), and Pararotatoria (Seisonidea + Acanthocephala), rejecting monophyly of traditional Rotifera and Eurotatoria. This serves as an indication that early acanthocephalans lived epizoically or as ectoparasites on arthropods, before their complex lifecycle with arthropod intermediate and vertebrate definite hosts evolved. PMID:24520404

  10. Morphology and Molecular Phylogeny of Raillietina spp. (Cestoda: Cyclophyllidea: Davaineidae) from Domestic Chickens in Thailand.

    PubMed

    Butboonchoo, Preeyaporn; Wongsawad, Chalobol; Rojanapaibul, Amnat; Chai, Jong-Yil

    2016-12-01

    Raillietina species are prevalent in domestic chickens ( Gallus gallus domesticus ) in Phayao province, northern Thailand. Their infection may cause disease and death, which affects the public health and economic situation in chicken farms. The identification of Raillietina has been based on morphology and molecular analysis. In this study, morphological observations using light (LM) and scanning electron microscopies (SEM) coupled with molecular analysis of the internal transcribed spacer 2 (ITS2) region and the nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) gene were employed for precise identification and phylogenetic relationship studies of Raillietina spp. Four Raillietina species, including R. echinobothrida, R. tetragona, R. cesticillus , and Raillietina sp., were recovered in domestic chickens from 4 districts in Phayao province, Thailand. LM and SEM observations revealed differences in the morphology of the scolex, position of the genital pore, number of eggs per egg capsule, and rostellar opening surface structures in all 4 species. Phylogenetic relationships were found among the phylogenetic trees obtained by the maximum likelihood and distance-based neighbor-joining methods. ITS2 and ND1 sequence data recorded from Raillietina sp. appeared to be monophyletic. The query sequences of R. echinobothrida, R. tetragona, R. cesticillus , and Raillietina sp. were separated according to the different morphological characters. This study confirmed that morphological studies combined with molecular analyses can differentiate related species within the genus Raillietina in Thailand.

  11. Molecular phylogeny of the Ellobiidae (Gastropoda: Panpulmonata) supports independent terrestrial invasions.

    PubMed

    Romero, Pedro E; Pfenninger, Markus; Kano, Yasunori; Klussmann-Kolb, Annette

    2016-04-01

    Gastropods of the family Ellobiidae are an interesting group in which to study transitions from intertidal to terrestrial realms. However, the phylogenetic relationships within this family still lack resolution. We present a phylogenetic hypothesis of the Ellobiidae based on Bayesian and maximum likelihood phylograms. We used nuclear (18S, 28S, H3) and mitochondrial (16S, 12S, COI) data, increasing the numbers of markers and data, and making this the most comprehensive phylogenetic study of the family to date. Our results support phylogenetic hypotheses derived from morphological data, and provide a supported framework to evaluate the internal relationships within Ellobiidae. The resulting phylogenetic trees support the previous hypothesis that the Ellobiidae are monophyletic only if the Trimusculinae (Otina, Smeagol and Trimusculus) are considered part of this family. In addition, we found that the Carychiinae, Ellobiinae and Pythiinae are reciprocally monophyletic and closely related, with the Carychiinae as sister group to Ellobiinae. Relationships within Melampodinae and Pedipedinae and their phylogenetic positions remain unresolved. Land invasion by the Ellobiidae occurred independently in Carychiinae and Pythia during different geological times (Mesozoic and Cenozoic, respectively). Diversification in the family does not appear to be related to past climate and biotic changes, neither the Cretaceous-Paleogene boundary nor the lowering of the sea level in the Oligocene. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. No recent adaptive selection on the apyrase of Mediterranean Phlebotomus: implications for using salivary peptides to vaccinate against canine leishmaniasis.

    PubMed

    Mahamdallie, Shazia S; Ready, Paul D

    2012-04-01

    Vaccine development is informed by a knowledge of genetic variation among antigen alleles, especially the distribution of positive and balancing selection in populations and species. A combined approach using population genetic and phylogenetic methods to detect selective signatures can therefore be informative for identifying vaccine candidates. Parasitic Leishmania species cause the disease leishmaniasis in humans and mammalian reservoir hosts after inoculation by female phlebotomine sandflies. Like other arthropod vectors of disease agents, sandflies use salivary peptides to counteract host haemostatic and immunomodulatory responses during bloodfeeding, and these peptides are vaccine candidates because they can protect against Leishmania infection. We detected no contemporary adaptive selection on one salivary peptide, apyrase, in 20 populations of Phlebotomus ariasi, a European vector of Leishmania infantum. Maximum likelihood branch models on a gene phylogeny showed apyrase to be a single copy in P. ariasi but an ancient duplication event associated with temporary positive selection was observed in its sister group, which contains most Mediterranean vectors of L. infantum. The absence of contemporary adaptive selection on the apyrase of P. ariasi may result from this sandfly's opportunistic feeding behaviour. Our study illustrates how the molecular population genetics of arthropods can help investigate the potential of salivary peptides for disease control and for understanding geographical variation in vector competence.

  13. Exhaustive sample set among Viverridae reveals the sister-group of felids: the linsangs as a case of extreme morphological convergence within Feliformia.

    PubMed Central

    Gaubert, Philippe; Veron, Géraldine

    2003-01-01

    Although molecular studies have helped to clarify the phylogeny of the problematic family Viverridae, a recent phylogenetic investigation based on cytochrome b (cyt b) has excluded the Asiatic linsangs (genus Prionodon) from the family. To assess the phylogenetic position of the Asiatic linsangs within the Feliformia, we analysed an exhaustive taxonomic sample set with cyt b and newly produced transthyretin intron I sequences (TR-I-I). TR-I-I alone and cyt b +TR-I-I combined (maximum-likelihood analysis) highly support the position of Asiatic linsangs as sister-group of the Felidae. The estimation of minimum divergence dates from molecular data suggests a splitting event ca. 33.3 million years (Myr) ago, which lends support to historical assertions that the Asiatic linsangs are "living fossils" that share a plesiomorphic morphotype with the Oligocene feliform Paleoprionodon. The African linsang is estimated to appear more than 20 Myr later and represents the sister-group of the genus Genetta. Our phylogenetic results illustrate numerous morphological convergences of "diagnostic" characters among Feliformia that might be problematic for the identification of fossil taxa. The morphotype reappearance from the Asiatic to the African linsangs suggests that the genome of the Feliformia conserved its potential ability of expression for a peculiar adaptive phenotype throughout evolution, in this case arboreality and hypercarnivory in tropical forest. PMID:14667345

  14. Phylogeny of the Asparagales based on three plastid and two mitochondrial genes.

    PubMed

    Seberg, Ole; Petersen, Gitte; Davis, Jerrold I; Pires, J Chris; Stevenson, Dennis W; Chase, Mark W; Fay, Michael F; Devey, Dion S; Jørgensen, Tina; Sytsma, Kenneth J; Pillon, Yohan

    2012-05-01

    The Asparagales, with ca. 40% of all monocotyledons, include a host of commercially important ornamentals in families such as Orchidaceae, Alliaceae, and Iridaceae, and several important crop species in genera such as Allium, Aloe, Asparagus, Crocus, and Vanilla. Though the order is well defined, the number of recognized families, their circumscription, and relationships are somewhat controversial. Phylogenetic analyses of Asparagales were based on parsimony and maximum likelihood using nucleotide sequence variation in three plastid genes (matK, ndhF, and rbcL) and two mitochondrial genes (atp1 and cob). Branch support was assessed using both jackknife analysis implementing strict-consensus (SC) and bootstrap analysis implementing frequency-within-replicates (FWR). The contribution of edited sites in the mitochondrial genes to topology and branch support was investigated. The topologies recovered largely agree with previous results, though some clades remain poorly resolved (e.g., Ruscaceae). When the edited sites were included in the analysis, the plastid and mitochondrial genes were highly incongruent. However, when the edited sites were removed, the two partitions became congruent. Some deeper nodes in the Asparagales tree remain poorly resolved or unresolved as do the relationships of certain monogeneric families (e.g., Aphyllanthaceae, Ixioliriaceae, Doryanthaceae), whereas support for many families increases. However, the increased support is dominated by plastid data, and the potential influence of mitochondrial and biparentially inherited single or low-copy nuclear genes should be investigated.

  15. Transcriptome data reveal Syndermatan relationships and suggest the evolution of endoparasitism in Acanthocephala via an epizoic stage.

    PubMed

    Wey-Fabrizius, Alexandra R; Herlyn, Holger; Rieger, Benjamin; Rosenkranz, David; Witek, Alexander; Welch, David B Mark; Ebersberger, Ingo; Hankeln, Thomas

    2014-01-01

    The taxon Syndermata comprises the biologically interesting wheel animals ("Rotifera": Bdelloidea + Monogononta + Seisonidea) and thorny-headed worms (Acanthocephala), and is central for testing superordinate phylogenetic hypotheses (Platyzoa, Gnathifera) in the metazoan tree of life. Recent analyses of syndermatan phylogeny suggested paraphyly of Eurotatoria (free-living bdelloids and monogononts) with respect to endoparasitic acanthocephalans. Data of epizoic seisonids, however, were absent, which may have affected the branching order within the syndermatan clade. Moreover, the position of Seisonidea within Syndermata should help in understanding the evolution of acanthocephalan endoparasitism. Here, we report the first phylogenomic analysis that includes all four higher-ranked groups of Syndermata. The analyzed data sets comprise new transcriptome data for Seison spec. (Seisonidea), Brachionus manjavacas (Monogononta), Adineta vaga (Bdelloidea), and Paratenuisentis ambiguus (Acanthocephala). Maximum likelihood and Bayesian trees for a total of 19 metazoan species were reconstructed from up to 410 functionally diverse proteins. The results unanimously place Monogononta basally within Syndermata, and Bdelloidea appear as the sister group to a clade comprising epizoic Seisonidea and endoparasitic Acanthocephala. Our results support monophyly of Syndermata, Hemirotifera (Bdelloidea + Seisonidea + Acanthocephala), and Pararotatoria (Seisonidea + Acanthocephala), rejecting monophyly of traditional Rotifera and Eurotatoria. This serves as an indication that early acanthocephalans lived epizoically or as ectoparasites on arthropods, before their complex lifecycle with arthropod intermediate and vertebrate definite hosts evolved.

  16. Morphology and Molecular Phylogeny of Raillietina spp. (Cestoda: Cyclophyllidea: Davaineidae) from Domestic Chickens in Thailand

    PubMed Central

    Butboonchoo, Preeyaporn; Wongsawad, Chalobol; Rojanapaibul, Amnat; Chai, Jong-Yil

    2016-01-01

    Raillietina species are prevalent in domestic chickens (Gallus gallus domesticus) in Phayao province, northern Thailand. Their infection may cause disease and death, which affects the public health and economic situation in chicken farms. The identification of Raillietina has been based on morphology and molecular analysis. In this study, morphological observations using light (LM) and scanning electron microscopies (SEM) coupled with molecular analysis of the internal transcribed spacer 2 (ITS2) region and the nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) gene were employed for precise identification and phylogenetic relationship studies of Raillietina spp. Four Raillietina species, including R. echinobothrida, R. tetragona, R. cesticillus, and Raillietina sp., were recovered in domestic chickens from 4 districts in Phayao province, Thailand. LM and SEM observations revealed differences in the morphology of the scolex, position of the genital pore, number of eggs per egg capsule, and rostellar opening surface structures in all 4 species. Phylogenetic relationships were found among the phylogenetic trees obtained by the maximum likelihood and distance-based neighbor-joining methods. ITS2 and ND1 sequence data recorded from Raillietina sp. appeared to be monophyletic. The query sequences of R. echinobothrida, R. tetragona, R. cesticillus, and Raillietina sp. were separated according to the different morphological characters. This study confirmed that morphological studies combined with molecular analyses can differentiate related species within the genus Raillietina in Thailand. PMID:28095663

  17. Human immunodeficiency viruses appear compartmentalized to the female genital tract in cross-sectional analyses but genital lineages do not persist over time.

    PubMed

    Bull, Marta E; Heath, Laura M; McKernan-Mullin, Jennifer L; Kraft, Kelli M; Acevedo, Luis; Hitti, Jane E; Cohn, Susan E; Tapia, Kenneth A; Holte, Sarah E; Dragavon, Joan A; Coombs, Robert W; Mullins, James I; Frenkel, Lisa M

    2013-04-15

    Whether unique human immunodeficiency type 1 (HIV) genotypes occur in the genital tract is important for vaccine development and management of drug resistant viruses. Multiple cross-sectional studies suggest HIV is compartmentalized within the female genital tract. We hypothesize that bursts of HIV replication and/or proliferation of infected cells captured in cross-sectional analyses drive compartmentalization but over time genital-specific viral lineages do not form; rather viruses mix between genital tract and blood. Eight women with ongoing HIV replication were studied during a period of 1.5 to 4.5 years. Multiple viral sequences were derived by single-genome amplification of the HIV C2-V5 region of env from genital secretions and blood plasma. Maximum likelihood phylogenies were evaluated for compartmentalization using 4 statistical tests. In cross-sectional analyses compartmentalization of genital from blood viruses was detected in three of eight women by all tests; this was associated with tissue specific clades containing multiple monotypic sequences. In longitudinal analysis, the tissues-specific clades did not persist to form viral lineages. Rather, across women, HIV lineages were comprised of both genital tract and blood sequences. The observation of genital-specific HIV clades only in cross-sectional analysis and an absence of genital-specific lineages in longitudinal analyses suggest a dynamic interchange of HIV variants between the female genital tract and blood.

  18. Spatial Temporal Dynamics and Molecular Evolution of Re-Emerging Rabies Virus in Taiwan.

    PubMed

    Lin, Yung-Cheng; Chu, Pei-Yu; Chang, Mei-Yin; Hsiao, Kuang-Liang; Lin, Jih-Hui; Liu, Hsin-Fu

    2016-03-17

    Taiwan has been recognized by the World Organization for Animal Health as rabies-free since 1961. Surprisingly, rabies virus (RABV) was identified in a dead Formosan ferret badger in July 2013. Later, more infected ferret badgers were reported from different geographic regions of Taiwan. In order to know its evolutionary history and spatial temporal dynamics of this virus, phylogeny was reconstructed by maximum likelihood and Bayesian methods based on the full-length of glycoprotein (G), matrix protein (M), and nucleoprotein (N) genes. The evolutionary rates and phylogeographic were determined using Beast and SPREAD software. Phylogenetic trees showed a monophyletic group containing all of RABV isolates from Taiwan and it further separated into three sub-groups. The estimated nucleotide substitution rates of G, M, and N genes were between 2.49 × 10(-4)-4.75 × 10(-4) substitutions/site/year, and the mean ratio of dN/dS was significantly low. The time of the most recent common ancestor was estimated around 75, 89, and 170 years, respectively. Phylogeographic analysis suggested the origin of the epidemic could be in Eastern Taiwan, then the Formosan ferret badger moved across the Central Range of Taiwan to western regions and separated into two branches. In this study, we illustrated the evolution history and phylogeographic of RABV in Formosan ferret badgers.

  19. A RAD-based phylogenetics for Orestias fishes from Lake Titicaca.

    PubMed

    Takahashi, Tetsumi; Moreno, Edmundo

    2015-12-01

    The fish genus Orestias is endemic to the Andes highlands, and Lake Titicaca is the centre of the species diversity of the genus. Previous phylogenetic studies based on a single locus of mitochondrial and nuclear DNA strongly support the monophyly of a group composed of many of species endemic to the Lake Titicaca basin (the Lake Titicaca radiation), but the relationships among the species in the radiation remain unclear. Recently, restriction site-associated DNA (RAD) sequencing, which can produce a vast number of short sequences from various loci of nuclear DNA, has emerged as a useful way to resolve complex phylogenetic problems. To propose a new phylogenetic hypothesis of Orestias fishes of the Lake Titicaca radiation, we conducted a cluster analysis based on morphological similarities among fish samples and a molecular phylogenetic analysis based on RAD sequencing. From a morphological cluster analysis, we recognised four species groups in the radiation, and three of the four groups were resolved as monophyletic groups in maximum-likelihood trees based on RAD sequencing data. The other morphology-based group was not resolved as a monophyletic group in molecular phylogenies, and some members of the group were diverged from its sister group close to the root of the Lake Titicaca radiation. The evolution of these fishes is discussed from the phylogenetic relationships. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Rosid radiation and the rapid rise of angiosperm-dominated forests

    PubMed Central

    Wang, Hengchang; Moore, Michael J.; Soltis, Pamela S.; Bell, Charles D.; Brockington, Samuel F.; Alexandre, Roolse; Davis, Charles C.; Latvis, Maribeth; Manchester, Steven R.; Soltis, Douglas E.

    2009-01-01

    The rosid clade (70,000 species) contains more than one-fourth of all angiosperm species and includes most lineages of extant temperate and tropical forest trees. Despite progress in elucidating relationships within the angiosperms, rosids remain the largest poorly resolved major clade; deep relationships within the rosids are particularly enigmatic. Based on parsimony and maximum likelihood (ML) analyses of separate and combined 12-gene (10 plastid genes, 2 nuclear; >18,000 bp) and plastid inverted repeat (IR; 24 genes and intervening spacers; >25,000 bp) datasets for >100 rosid species, we provide a greatly improved understanding of rosid phylogeny. Vitaceae are sister to all other rosids, which in turn form 2 large clades, each with a ML bootstrap value of 100%: (i) eurosids I (Fabidae) include the nitrogen-fixing clade, Celastrales, Huaceae, Zygophyllales, Malpighiales, and Oxalidales; and (ii) eurosids II (Malvidae) include Tapisciaceae, Brassicales, Malvales, Sapindales, Geraniales, Myrtales, Crossosomatales, and Picramniaceae. The rosid clade diversified rapidly into these major lineages, possibly over a period of <15 million years, and perhaps in as little as 4 to 5 million years. The timing of the inferred rapid radiation of rosids [108 to 91 million years ago (Mya) and 107–83 Mya for Fabidae and Malvidae, respectively] corresponds with the rapid rise of angiosperm-dominated forests and the concomitant diversification of other clades that inhabit these forests, including amphibians, ants, placental mammals, and ferns. PMID:19223592

Top