Comparisons of neural networks to standard techniques for image classification and correlation
NASA Technical Reports Server (NTRS)
Paola, Justin D.; Schowengerdt, Robert A.
1994-01-01
Neural network techniques for multispectral image classification and spatial pattern detection are compared to the standard techniques of maximum-likelihood classification and spatial correlation. The neural network produced a more accurate classification than maximum-likelihood of a Landsat scene of Tucson, Arizona. Some of the errors in the maximum-likelihood classification are illustrated using decision region and class probability density plots. As expected, the main drawback to the neural network method is the long time required for the training stage. The network was trained using several different hidden layer sizes to optimize both the classification accuracy and training speed, and it was found that one node per class was optimal. The performance improved when 3x3 local windows of image data were entered into the net. This modification introduces texture into the classification without explicit calculation of a texture measure. Larger windows were successfully used for the detection of spatial features in Landsat and Magellan synthetic aperture radar imagery.
12-mode OFDM transmission using reduced-complexity maximum likelihood detection.
Lobato, Adriana; Chen, Yingkan; Jung, Yongmin; Chen, Haoshuo; Inan, Beril; Kuschnerov, Maxim; Fontaine, Nicolas K; Ryf, Roland; Spinnler, Bernhard; Lankl, Berthold
2015-02-01
We report the transmission of 163-Gb/s MDM-QPSK-OFDM and 245-Gb/s MDM-8QAM-OFDM transmission over 74 km of few-mode fiber supporting 12 spatial and polarization modes. A low-complexity maximum likelihood detector is employed to enhance the performance of a system impaired by mode-dependent loss.
Spatial design and strength of spatial signal: Effects on covariance estimation
Irvine, Kathryn M.; Gitelman, Alix I.; Hoeting, Jennifer A.
2007-01-01
In a spatial regression context, scientists are often interested in a physical interpretation of components of the parametric covariance function. For example, spatial covariance parameter estimates in ecological settings have been interpreted to describe spatial heterogeneity or “patchiness” in a landscape that cannot be explained by measured covariates. In this article, we investigate the influence of the strength of spatial dependence on maximum likelihood (ML) and restricted maximum likelihood (REML) estimates of covariance parameters in an exponential-with-nugget model, and we also examine these influences under different sampling designs—specifically, lattice designs and more realistic random and cluster designs—at differing intensities of sampling (n=144 and 361). We find that neither ML nor REML estimates perform well when the range parameter and/or the nugget-to-sill ratio is large—ML tends to underestimate the autocorrelation function and REML produces highly variable estimates of the autocorrelation function. The best estimates of both the covariance parameters and the autocorrelation function come under the cluster sampling design and large sample sizes. As a motivating example, we consider a spatial model for stream sulfate concentration.
Ma, Yue; Yin, Fei; Zhang, Tao; Zhou, Xiaohua Andrew; Li, Xiaosong
2016-01-01
Spatial scan statistics are widely used in various fields. The performance of these statistics is influenced by parameters, such as maximum spatial cluster size, and can be improved by parameter selection using performance measures. Current performance measures are based on the presence of clusters and are thus inapplicable to data sets without known clusters. In this work, we propose a novel overall performance measure called maximum clustering set-proportion (MCS-P), which is based on the likelihood of the union of detected clusters and the applied dataset. MCS-P was compared with existing performance measures in a simulation study to select the maximum spatial cluster size. Results of other performance measures, such as sensitivity and misclassification, suggest that the spatial scan statistic achieves accurate results in most scenarios with the maximum spatial cluster sizes selected using MCS-P. Given that previously known clusters are not required in the proposed strategy, selection of the optimal maximum cluster size with MCS-P can improve the performance of the scan statistic in applications without identified clusters.
Ma, Yue; Yin, Fei; Zhang, Tao; Zhou, Xiaohua Andrew; Li, Xiaosong
2016-01-01
Spatial scan statistics are widely used in various fields. The performance of these statistics is influenced by parameters, such as maximum spatial cluster size, and can be improved by parameter selection using performance measures. Current performance measures are based on the presence of clusters and are thus inapplicable to data sets without known clusters. In this work, we propose a novel overall performance measure called maximum clustering set–proportion (MCS-P), which is based on the likelihood of the union of detected clusters and the applied dataset. MCS-P was compared with existing performance measures in a simulation study to select the maximum spatial cluster size. Results of other performance measures, such as sensitivity and misclassification, suggest that the spatial scan statistic achieves accurate results in most scenarios with the maximum spatial cluster sizes selected using MCS-P. Given that previously known clusters are not required in the proposed strategy, selection of the optimal maximum cluster size with MCS-P can improve the performance of the scan statistic in applications without identified clusters. PMID:26820646
The effect of lossy image compression on image classification
NASA Technical Reports Server (NTRS)
Paola, Justin D.; Schowengerdt, Robert A.
1995-01-01
We have classified four different images, under various levels of JPEG compression, using the following classification algorithms: minimum-distance, maximum-likelihood, and neural network. The training site accuracy and percent difference from the original classification were tabulated for each image compression level, with maximum-likelihood showing the poorest results. In general, as compression ratio increased, the classification retained its overall appearance, but much of the pixel-to-pixel detail was eliminated. We also examined the effect of compression on spatial pattern detection using a neural network.
Spatial Prediction and Optimized Sampling Design for Sodium Concentration in Groundwater
Shabbir, Javid; M. AbdEl-Salam, Nasser; Hussain, Tajammal
2016-01-01
Sodium is an integral part of water, and its excessive amount in drinking water causes high blood pressure and hypertension. In the present paper, spatial distribution of sodium concentration in drinking water is modeled and optimized sampling designs for selecting sampling locations is calculated for three divisions in Punjab, Pakistan. Universal kriging and Bayesian universal kriging are used to predict the sodium concentrations. Spatial simulated annealing is used to generate optimized sampling designs. Different estimation methods (i.e., maximum likelihood, restricted maximum likelihood, ordinary least squares, and weighted least squares) are used to estimate the parameters of the variogram model (i.e, exponential, Gaussian, spherical and cubic). It is concluded that Bayesian universal kriging fits better than universal kriging. It is also observed that the universal kriging predictor provides minimum mean universal kriging variance for both adding and deleting locations during sampling design. PMID:27683016
NASA Technical Reports Server (NTRS)
Emerson, Charles W.; Sig-NganLam, Nina; Quattrochi, Dale A.
2004-01-01
The accuracy of traditional multispectral maximum-likelihood image classification is limited by the skewed statistical distributions of reflectances from the complex heterogenous mixture of land cover types in urban areas. This work examines the utility of local variance, fractal dimension and Moran's I index of spatial autocorrelation in segmenting multispectral satellite imagery. Tools available in the Image Characterization and Modeling System (ICAMS) were used to analyze Landsat 7 imagery of Atlanta, Georgia. Although segmentation of panchromatic images is possible using indicators of spatial complexity, different land covers often yield similar values of these indices. Better results are obtained when a surface of local fractal dimension or spatial autocorrelation is combined as an additional layer in a supervised maximum-likelihood multispectral classification. The addition of fractal dimension measures is particularly effective at resolving land cover classes within urbanized areas, as compared to per-pixel spectral classification techniques.
Population Synthesis of Radio and Gamma-ray Pulsars using the Maximum Likelihood Approach
NASA Astrophysics Data System (ADS)
Billman, Caleb; Gonthier, P. L.; Harding, A. K.
2012-01-01
We present the results of a pulsar population synthesis of normal pulsars from the Galactic disk using a maximum likelihood method. We seek to maximize the likelihood of a set of parameters in a Monte Carlo population statistics code to better understand their uncertainties and the confidence region of the model's parameter space. The maximum likelihood method allows for the use of more applicable Poisson statistics in the comparison of distributions of small numbers of detected gamma-ray and radio pulsars. Our code simulates pulsars at birth using Monte Carlo techniques and evolves them to the present assuming initial spatial, kick velocity, magnetic field, and period distributions. Pulsars are spun down to the present and given radio and gamma-ray emission characteristics. We select measured distributions of radio pulsars from the Parkes Multibeam survey and Fermi gamma-ray pulsars to perform a likelihood analysis of the assumed model parameters such as initial period and magnetic field, and radio luminosity. We present the results of a grid search of the parameter space as well as a search for the maximum likelihood using a Markov Chain Monte Carlo method. We express our gratitude for the generous support of the Michigan Space Grant Consortium, of the National Science Foundation (REU and RUI), the NASA Astrophysics Theory and Fundamental Program and the NASA Fermi Guest Investigator Program.
NASA Technical Reports Server (NTRS)
Gramenopoulos, N. (Principal Investigator)
1973-01-01
The author has identified the following significant results. For the recognition of terrain types, spatial signatures are developed from the diffraction patterns of small areas of ERTS-1 images. This knowledge is exploited for the measurements of a small number of meaningful spatial features from the digital Fourier transforms of ERTS-1 image cells containing 32 x 32 picture elements. Using these spatial features and a heuristic algorithm, the terrain types in the vicinity of Phoenix, Arizona were recognized by the computer with a high accuracy. Then, the spatial features were combined with spectral features and using the maximum likelihood criterion the recognition accuracy of terrain types increased substantially. It was determined that the recognition accuracy with the maximum likelihood criterion depends on the statistics of the feature vectors. Nonlinear transformations of the feature vectors are required so that the terrain class statistics become approximately Gaussian. It was also determined that for a given geographic area the statistics of the classes remain invariable for a period of a month but vary substantially between seasons.
Estimating Function Approaches for Spatial Point Processes
NASA Astrophysics Data System (ADS)
Deng, Chong
Spatial point pattern data consist of locations of events that are often of interest in biological and ecological studies. Such data are commonly viewed as a realization from a stochastic process called spatial point process. To fit a parametric spatial point process model to such data, likelihood-based methods have been widely studied. However, while maximum likelihood estimation is often too computationally intensive for Cox and cluster processes, pairwise likelihood methods such as composite likelihood, Palm likelihood usually suffer from the loss of information due to the ignorance of correlation among pairs. For many types of correlated data other than spatial point processes, when likelihood-based approaches are not desirable, estimating functions have been widely used for model fitting. In this dissertation, we explore the estimating function approaches for fitting spatial point process models. These approaches, which are based on the asymptotic optimal estimating function theories, can be used to incorporate the correlation among data and yield more efficient estimators. We conducted a series of studies to demonstrate that these estmating function approaches are good alternatives to balance the trade-off between computation complexity and estimating efficiency. First, we propose a new estimating procedure that improves the efficiency of pairwise composite likelihood method in estimating clustering parameters. Our approach combines estimating functions derived from pairwise composite likeli-hood estimation and estimating functions that account for correlations among the pairwise contributions. Our method can be used to fit a variety of parametric spatial point process models and can yield more efficient estimators for the clustering parameters than pairwise composite likelihood estimation. We demonstrate its efficacy through a simulation study and an application to the longleaf pine data. Second, we further explore the quasi-likelihood approach on fitting second-order intensity function of spatial point processes. However, the original second-order quasi-likelihood is barely feasible due to the intense computation and high memory requirement needed to solve a large linear system. Motivated by the existence of geometric regular patterns in the stationary point processes, we find a lower dimension representation of the optimal weight function and propose a reduced second-order quasi-likelihood approach. Through a simulation study, we show that the proposed method not only demonstrates superior performance in fitting the clustering parameter but also merits in the relaxation of the constraint of the tuning parameter, H. Third, we studied the quasi-likelihood type estimating funciton that is optimal in a certain class of first-order estimating functions for estimating the regression parameter in spatial point process models. Then, by using a novel spectral representation, we construct an implementation that is computationally much more efficient and can be applied to more general setup than the original quasi-likelihood method.
Bayesian image reconstruction - The pixon and optimal image modeling
NASA Technical Reports Server (NTRS)
Pina, R. K.; Puetter, R. C.
1993-01-01
In this paper we describe the optimal image model, maximum residual likelihood method (OptMRL) for image reconstruction. OptMRL is a Bayesian image reconstruction technique for removing point-spread function blurring. OptMRL uses both a goodness-of-fit criterion (GOF) and an 'image prior', i.e., a function which quantifies the a priori probability of the image. Unlike standard maximum entropy methods, which typically reconstruct the image on the data pixel grid, OptMRL varies the image model in order to find the optimal functional basis with which to represent the image. We show how an optimal basis for image representation can be selected and in doing so, develop the concept of the 'pixon' which is a generalized image cell from which this basis is constructed. By allowing both the image and the image representation to be variable, the OptMRL method greatly increases the volume of solution space over which the image is optimized. Hence the likelihood of the final reconstructed image is greatly increased. For the goodness-of-fit criterion, OptMRL uses the maximum residual likelihood probability distribution introduced previously by Pina and Puetter (1992). This GOF probability distribution, which is based on the spatial autocorrelation of the residuals, has the advantage that it ensures spatially uncorrelated image reconstruction residuals.
Maximum-Likelihood Methods for Processing Signals From Gamma-Ray Detectors
Barrett, Harrison H.; Hunter, William C. J.; Miller, Brian William; Moore, Stephen K.; Chen, Yichun; Furenlid, Lars R.
2009-01-01
In any gamma-ray detector, each event produces electrical signals on one or more circuit elements. From these signals, we may wish to determine the presence of an interaction; whether multiple interactions occurred; the spatial coordinates in two or three dimensions of at least the primary interaction; or the total energy deposited in that interaction. We may also want to compute listmode probabilities for tomographic reconstruction. Maximum-likelihood methods provide a rigorous and in some senses optimal approach to extracting this information, and the associated Fisher information matrix provides a way of quantifying and optimizing the information conveyed by the detector. This paper will review the principles of likelihood methods as applied to gamma-ray detectors and illustrate their power with recent results from the Center for Gamma-ray Imaging. PMID:20107527
Development of advanced acreage estimation methods
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr. (Principal Investigator)
1980-01-01
The use of the AMOEBA clustering/classification algorithm was investigated as a basis for both a color display generation technique and maximum likelihood proportion estimation procedure. An approach to analyzing large data reduction systems was formulated and an exploratory empirical study of spatial correlation in LANDSAT data was also carried out. Topics addressed include: (1) development of multiimage color images; (2) spectral spatial classification algorithm development; (3) spatial correlation studies; and (4) evaluation of data systems.
Two stochastic models useful in petroleum exploration
NASA Technical Reports Server (NTRS)
Kaufman, G. M.; Bradley, P. G.
1972-01-01
A model of the petroleum exploration process that tests empirically the hypothesis that at an early stage in the exploration of a basin, the process behaves like sampling without replacement is proposed along with a model of the spatial distribution of petroleum reserviors that conforms to observed facts. In developing the model of discovery, the following topics are discussed: probabilitistic proportionality, likelihood function, and maximum likelihood estimation. In addition, the spatial model is described, which is defined as a stochastic process generating values of a sequence or random variables in a way that simulates the frequency distribution of areal extent, the geographic location, and shape of oil deposits
Galka, Andreas; Siniatchkin, Michael; Stephani, Ulrich; Groening, Kristina; Wolff, Stephan; Bosch-Bayard, Jorge; Ozaki, Tohru
2010-12-01
The analysis of time series obtained by functional magnetic resonance imaging (fMRI) may be approached by fitting predictive parametric models, such as nearest-neighbor autoregressive models with exogeneous input (NNARX). As a part of the modeling procedure, it is possible to apply instantaneous linear transformations to the data. Spatial smoothing, a common preprocessing step, may be interpreted as such a transformation. The autoregressive parameters may be constrained, such that they provide a response behavior that corresponds to the canonical haemodynamic response function (HRF). We present an algorithm for estimating the parameters of the linear transformations and of the HRF within a rigorous maximum-likelihood framework. Using this approach, an optimal amount of both the spatial smoothing and the HRF can be estimated simultaneously for a given fMRI data set. An example from a motor-task experiment is discussed. It is found that, for this data set, weak, but non-zero, spatial smoothing is optimal. Furthermore, it is demonstrated that activated regions can be estimated within the maximum-likelihood framework.
NASA Astrophysics Data System (ADS)
Hasegawa, Hideyuki
2017-07-01
The range spatial resolution is an important factor determining the image quality in ultrasonic imaging. The range spatial resolution in ultrasonic imaging depends on the ultrasonic pulse length, which is determined by the mechanical response of the piezoelectric element in an ultrasonic probe. To improve the range spatial resolution without replacing the transducer element, in the present study, methods based on maximum likelihood (ML) estimation and multiple signal classification (MUSIC) were proposed. The proposed methods were applied to echo signals received by individual transducer elements in an ultrasonic probe. The basic experimental results showed that the axial half maximum of the echo from a string phantom was improved from 0.21 mm (conventional method) to 0.086 mm (ML) and 0.094 mm (MUSIC).
NASA Technical Reports Server (NTRS)
Gramenopoulos, N. (Principal Investigator)
1974-01-01
The author has identified the following significant results. A diffraction pattern analysis of MSS images led to the development of spatial signatures for farm land, urban areas and mountains. Four spatial features are employed to describe the spatial characteristics of image cells in the digital data. Three spectral features are combined with the spatial features to form a seven dimensional vector describing each cell. Then, the classification of the feature vectors is accomplished by using the maximum likelihood criterion. It was determined that the recognition accuracy with the maximum likelihood criterion depends on the statistics of the feature vectors. It was also determined that for a given geographic area the statistics of the classes remain invariable for a period of a month, but vary substantially between seasons. Three ERTS-1 images from the Phoenix, Arizona area were processed, and recognition rates between 85% and 100% were obtained for the terrain classes of desert, farms, mountains, and urban areas. To eliminate the need for training data, a new clustering algorithm has been developed. Seven ERTS-1 images from four test sites have been processed through the clustering algorithm, and high recognition rates have been achieved for all terrain classes.
NASA Astrophysics Data System (ADS)
Tsou, Haiping; Yan, Tsun-Yee
1999-04-01
This paper describes an extended-source spatial acquisition and tracking scheme for planetary optical communications. This scheme uses the Sun-lit Earth image as the beacon signal, which can be computed according to the current Sun-Earth-Probe angle from a pre-stored Earth image or a received snapshot taken by other Earth-orbiting satellite. Onboard the spacecraft, the reference image is correlated in the transform domain with the received image obtained from a detector array, which is assumed to have each of its pixels corrupted by an independent additive white Gaussian noise. The coordinate of the ground station is acquired and tracked, respectively, by an open-loop acquisition algorithm and a closed-loop tracking algorithm derived from the maximum likelihood criterion. As shown in the paper, the optimal spatial acquisition requires solving two nonlinear equations, or iteratively solving their linearized variants, to estimate the coordinate when translation in the relative positions of onboard and ground transceivers is considered. Similar assumption of linearization leads to the closed-loop spatial tracking algorithm in which the loop feedback signals can be derived from the weighted transform-domain correlation. Numerical results using a sample Sun-lit Earth image demonstrate that sub-pixel resolutions can be achieved by this scheme in a high disturbance environment.
NASA Astrophysics Data System (ADS)
Hiemer, S.; Woessner, J.; Basili, R.; Danciu, L.; Giardini, D.; Wiemer, S.
2014-08-01
We present a time-independent gridded earthquake rate forecast for the European region including Turkey. The spatial component of our model is based on kernel density estimation techniques, which we applied to both past earthquake locations and fault moment release on mapped crustal faults and subduction zone interfaces with assigned slip rates. Our forecast relies on the assumption that the locations of past seismicity is a good guide to future seismicity, and that future large-magnitude events occur more likely in the vicinity of known faults. We show that the optimal weighted sum of the corresponding two spatial densities depends on the magnitude range considered. The kernel bandwidths and density weighting function are optimized using retrospective likelihood-based forecast experiments. We computed earthquake activity rates (a- and b-value) of the truncated Gutenberg-Richter distribution separately for crustal and subduction seismicity based on a maximum likelihood approach that considers the spatial and temporal completeness history of the catalogue. The final annual rate of our forecast is purely driven by the maximum likelihood fit of activity rates to the catalogue data, whereas its spatial component incorporates contributions from both earthquake and fault moment-rate densities. Our model constitutes one branch of the earthquake source model logic tree of the 2013 European seismic hazard model released by the EU-FP7 project `Seismic HAzard haRmonization in Europe' (SHARE) and contributes to the assessment of epistemic uncertainties in earthquake activity rates. We performed retrospective and pseudo-prospective likelihood consistency tests to underline the reliability of our model and SHARE's area source model (ASM) using the testing algorithms applied in the collaboratory for the study of earthquake predictability (CSEP). We comparatively tested our model's forecasting skill against the ASM and find a statistically significant better performance for testing periods of 10-20 yr. The testing results suggest that our model is a viable candidate model to serve for long-term forecasting on timescales of years to decades for the European region.
NASA Astrophysics Data System (ADS)
Sivaguru, Mayandi; Kabir, Mohammad M.; Gartia, Manas Ranjan; Biggs, David S. C.; Sivaguru, Barghav S.; Sivaguru, Vignesh A.; Berent, Zachary T.; Wagoner Johnson, Amy J.; Fried, Glenn A.; Liu, Gang Logan; Sadayappan, Sakthivel; Toussaint, Kimani C.
2017-02-01
Second-harmonic generation (SHG) microscopy is a label-free imaging technique to study collagenous materials in extracellular matrix environment with high resolution and contrast. However, like many other microscopy techniques, the actual spatial resolution achievable by SHG microscopy is reduced by out-of-focus blur and optical aberrations that degrade particularly the amplitude of the detectable higher spatial frequencies. Being a two-photon scattering process, it is challenging to define a point spread function (PSF) for the SHG imaging modality. As a result, in comparison with other two-photon imaging systems like two-photon fluorescence, it is difficult to apply any PSF-engineering techniques to enhance the experimental spatial resolution closer to the diffraction limit. Here, we present a method to improve the spatial resolution in SHG microscopy using an advanced maximum likelihood estimation (AdvMLE) algorithm to recover the otherwise degraded higher spatial frequencies in an SHG image. Through adaptation and iteration, the AdvMLE algorithm calculates an improved PSF for an SHG image and enhances the spatial resolution by decreasing the full-width-at-halfmaximum (FWHM) by 20%. Similar results are consistently observed for biological tissues with varying SHG sources, such as gold nanoparticles and collagen in porcine feet tendons. By obtaining an experimental transverse spatial resolution of 400 nm, we show that the AdvMLE algorithm brings the practical spatial resolution closer to the theoretical diffraction limit. Our approach is suitable for adaptation in micro-nano CT and MRI imaging, which has the potential to impact diagnosis and treatment of human diseases.
Rayan, D Mark; Mohamad, Shariff Wan; Dorward, Leejiah; Aziz, Sheema Abdul; Clements, Gopalasamy Reuben; Christopher, Wong Chai Thiam; Traeholt, Carl; Magintan, David
2012-12-01
The endangered Asian tapir (Tapirus indicus) is threatened by large-scale habitat loss, forest fragmentation and increased hunting pressure. Conservation planning for this species, however, is hampered by a severe paucity of information on its ecology and population status. We present the first Asian tapir population density estimate from a camera trapping study targeting tigers in a selectively logged forest within Peninsular Malaysia using a spatially explicit capture-recapture maximum likelihood based framework. With a trap effort of 2496 nights, 17 individuals were identified corresponding to a density (standard error) estimate of 9.49 (2.55) adult tapirs/100 km(2) . Although our results include several caveats, we believe that our density estimate still serves as an important baseline to facilitate the monitoring of tapir population trends in Peninsular Malaysia. Our study also highlights the potential of extracting vital ecological and population information for other cryptic individually identifiable animals from tiger-centric studies, especially with the use of a spatially explicit capture-recapture maximum likelihood based framework. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.
Using optimal transport theory to estimate transition probabilities in metapopulation dynamics
Nichols, Jonathan M.; Spendelow, Jeffrey A.; Nichols, James D.
2017-01-01
This work considers the estimation of transition probabilities associated with populations moving among multiple spatial locations based on numbers of individuals at each location at two points in time. The problem is generally underdetermined as there exists an extremely large number of ways in which individuals can move from one set of locations to another. A unique solution therefore requires a constraint. The theory of optimal transport provides such a constraint in the form of a cost function, to be minimized in expectation over the space of possible transition matrices. We demonstrate the optimal transport approach on marked bird data and compare to the probabilities obtained via maximum likelihood estimation based on marked individuals. It is shown that by choosing the squared Euclidean distance as the cost, the estimated transition probabilities compare favorably to those obtained via maximum likelihood with marked individuals. Other implications of this cost are discussed, including the ability to accurately interpolate the population's spatial distribution at unobserved points in time and the more general relationship between the cost and minimum transport energy.
Reliability-Weighted Integration of Audiovisual Signals Can Be Modulated by Top-down Attention
Noppeney, Uta
2018-01-01
Abstract Behaviorally, it is well established that human observers integrate signals near-optimally weighted in proportion to their reliabilities as predicted by maximum likelihood estimation. Yet, despite abundant behavioral evidence, it is unclear how the human brain accomplishes this feat. In a spatial ventriloquist paradigm, participants were presented with auditory, visual, and audiovisual signals and reported the location of the auditory or the visual signal. Combining psychophysics, multivariate functional MRI (fMRI) decoding, and models of maximum likelihood estimation (MLE), we characterized the computational operations underlying audiovisual integration at distinct cortical levels. We estimated observers’ behavioral weights by fitting psychometric functions to participants’ localization responses. Likewise, we estimated the neural weights by fitting neurometric functions to spatial locations decoded from regional fMRI activation patterns. Our results demonstrate that low-level auditory and visual areas encode predominantly the spatial location of the signal component of a region’s preferred auditory (or visual) modality. By contrast, intraparietal sulcus forms spatial representations by integrating auditory and visual signals weighted by their reliabilities. Critically, the neural and behavioral weights and the variance of the spatial representations depended not only on the sensory reliabilities as predicted by the MLE model but also on participants’ modality-specific attention and report (i.e., visual vs. auditory). These results suggest that audiovisual integration is not exclusively determined by bottom-up sensory reliabilities. Instead, modality-specific attention and report can flexibly modulate how intraparietal sulcus integrates sensory signals into spatial representations to guide behavioral responses (e.g., localization and orienting). PMID:29527567
A maximum likelihood method for high resolution proton radiography/proton CT
NASA Astrophysics Data System (ADS)
Collins-Fekete, Charles-Antoine; Brousmiche, Sébastien; Portillo, Stephen K. N.; Beaulieu, Luc; Seco, Joao
2016-12-01
Multiple Coulomb scattering (MCS) is the largest contributor to blurring in proton imaging. In this work, we developed a maximum likelihood least squares estimator that improves proton radiography’s spatial resolution. The water equivalent thickness (WET) through projections defined from the source to the detector pixels were estimated such that they maximizes the likelihood of the energy loss of every proton crossing the volume. The length spent in each projection was calculated through the optimized cubic spline path estimate. The proton radiographies were produced using Geant4 simulations. Three phantoms were studied here: a slanted cube in a tank of water to measure 2D spatial resolution, a voxelized head phantom for clinical performance evaluation as well as a parametric Catphan phantom (CTP528) for 3D spatial resolution. Two proton beam configurations were used: a parallel and a conical beam. Proton beams of 200 and 330 MeV were simulated to acquire the radiography. Spatial resolution is increased from 2.44 lp cm-1 to 4.53 lp cm-1 in the 200 MeV beam and from 3.49 lp cm-1 to 5.76 lp cm-1 in the 330 MeV beam. Beam configurations do not affect the reconstructed spatial resolution as investigated between a radiography acquired with the parallel (3.49 lp cm-1 to 5.76 lp cm-1) or conical beam (from 3.49 lp cm-1 to 5.56 lp cm-1). The improved images were then used as input in a photon tomography algorithm. The proton CT reconstruction of the Catphan phantom shows high spatial resolution (from 2.79 to 5.55 lp cm-1 for the parallel beam and from 3.03 to 5.15 lp cm-1 for the conical beam) and the reconstruction of the head phantom, although qualitative, shows high contrast in the gradient region. The proposed formulation of the optimization demonstrates serious potential to increase the spatial resolution (up by 65 % ) in proton radiography and greatly accelerate proton computed tomography reconstruction.
SU-C-207A-01: A Novel Maximum Likelihood Method for High-Resolution Proton Radiography/proton CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins-Fekete, C; Centre Hospitalier University de Quebec, Quebec, QC; Mass General Hospital
2016-06-15
Purpose: Multiple Coulomb scattering is the largest contributor to blurring in proton imaging. Here we tested a maximum likelihood least squares estimator (MLLSE) to improve the spatial resolution of proton radiography (pRad) and proton computed tomography (pCT). Methods: The object is discretized into voxels and the average relative stopping power through voxel columns defined from the source to the detector pixels is optimized such that it maximizes the likelihood of the proton energy loss. The length spent by individual protons in each column is calculated through an optimized cubic spline estimate. pRad images were first produced using Geant4 simulations. Anmore » anthropomorphic head phantom and the Catphan line-pair module for 3-D spatial resolution were studied and resulting images were analyzed. Both parallel and conical beam have been investigated for simulated pRad acquisition. Then, experimental data of a pediatric head phantom (CIRS) were acquired using a recently completed experimental pCT scanner. Specific filters were applied on proton angle and energy loss data to remove proton histories that underwent nuclear interactions. The MTF10% (lp/mm) was used to evaluate and compare spatial resolution. Results: Numerical simulations showed improvement in the pRad spatial resolution for the parallel (2.75 to 6.71 lp/cm) and conical beam (3.08 to 5.83 lp/cm) reconstructed with the MLLSE compared to averaging detector pixel signals. For full tomographic reconstruction, the improved pRad were used as input into a simultaneous algebraic reconstruction algorithm. The Catphan pCT reconstruction based on the MLLSE-enhanced projection showed spatial resolution improvement for the parallel (2.83 to 5.86 lp/cm) and conical beam (3.03 to 5.15 lp/cm). The anthropomorphic head pCT displayed important contrast gains in high-gradient regions. Experimental results also demonstrated significant improvement in spatial resolution of the pediatric head radiography. Conclusion: The proposed MLLSE shows promising potential to increase the spatial resolution (up to 244%) in proton imaging.« less
A maximum likelihood method for high resolution proton radiography/proton CT.
Collins-Fekete, Charles-Antoine; Brousmiche, Sébastien; Portillo, Stephen K N; Beaulieu, Luc; Seco, Joao
2016-12-07
Multiple Coulomb scattering (MCS) is the largest contributor to blurring in proton imaging. In this work, we developed a maximum likelihood least squares estimator that improves proton radiography's spatial resolution. The water equivalent thickness (WET) through projections defined from the source to the detector pixels were estimated such that they maximizes the likelihood of the energy loss of every proton crossing the volume. The length spent in each projection was calculated through the optimized cubic spline path estimate. The proton radiographies were produced using Geant4 simulations. Three phantoms were studied here: a slanted cube in a tank of water to measure 2D spatial resolution, a voxelized head phantom for clinical performance evaluation as well as a parametric Catphan phantom (CTP528) for 3D spatial resolution. Two proton beam configurations were used: a parallel and a conical beam. Proton beams of 200 and 330 MeV were simulated to acquire the radiography. Spatial resolution is increased from 2.44 lp cm -1 to 4.53 lp cm -1 in the 200 MeV beam and from 3.49 lp cm -1 to 5.76 lp cm -1 in the 330 MeV beam. Beam configurations do not affect the reconstructed spatial resolution as investigated between a radiography acquired with the parallel (3.49 lp cm -1 to 5.76 lp cm -1 ) or conical beam (from 3.49 lp cm -1 to 5.56 lp cm -1 ). The improved images were then used as input in a photon tomography algorithm. The proton CT reconstruction of the Catphan phantom shows high spatial resolution (from 2.79 to 5.55 lp cm -1 for the parallel beam and from 3.03 to 5.15 lp cm -1 for the conical beam) and the reconstruction of the head phantom, although qualitative, shows high contrast in the gradient region. The proposed formulation of the optimization demonstrates serious potential to increase the spatial resolution (up by 65[Formula: see text]) in proton radiography and greatly accelerate proton computed tomography reconstruction.
Del Monego, Maurici; Ribeiro, Paulo Justiniano; Ramos, Patrícia
2015-04-01
In this work, kriging with covariates is used to model and map the spatial distribution of salinity measurements gathered by an autonomous underwater vehicle in a sea outfall monitoring campaign aiming to distinguish the effluent plume from the receiving waters and characterize its spatial variability in the vicinity of the discharge. Four different geostatistical linear models for salinity were assumed, where the distance to diffuser, the west-east positioning, and the south-north positioning were used as covariates. Sample variograms were fitted by the Matèrn models using weighted least squares and maximum likelihood estimation methods as a way to detect eventual discrepancies. Typically, the maximum likelihood method estimated very low ranges which have limited the kriging process. So, at least for these data sets, weighted least squares showed to be the most appropriate estimation method for variogram fitting. The kriged maps show clearly the spatial variation of salinity, and it is possible to identify the effluent plume in the area studied. The results obtained show some guidelines for sewage monitoring if a geostatistical analysis of the data is in mind. It is important to treat properly the existence of anomalous values and to adopt a sampling strategy that includes transects parallel and perpendicular to the effluent dispersion.
NASA Astrophysics Data System (ADS)
Becker, Brian L.
Great Lakes wetlands are increasingly being recognized as vital ecosystem components that provide valuable functions such as sediment retention, wildlife habitat, and nutrient removal. Aerial photography has traditionally provided a cost effective means to inventory and monitor coastal wetlands, but is limited by its broad spectral sensitivity and non-digital format. Airborne sensor advancements have now made the acquisition of digital imagery with high spatial and spectral resolution a reality. In this investigation, we selected two Lake Huron coastal wetlands, each from a distinct eco-region, over which, digital, airborne imagery (AISA or CASI-II) was acquired. The 1-meter images contain approximately twenty, 10-nanometer-wide spectral bands strategically located throughout the visible and near-infrared. The 4-meter hyperspectral imagery contains 48 contiguous bands across the visible and short-wavelength near-infrared. Extensive, in-situ, reflectance spectra (SE-590) and sub-meter GPS locations were acquired for the dominant botanical and substrate classes field-delineated at each location. Normalized in-situ spectral signatures were subjected to Principal Components and 2nd Derivative analyses in order to identify the most botanically explanative image bands. Three image-based investigations were implemented in order to evaluate the ability of three classification algorithms (ISODATA, Spectral Angle Mapper and Maximum-Likelihood) to differentiate botanical regions-of-interest. Two additional investigations were completed in order to assess classification changes associated with the independent manipulation of both spatial and spectral resolution. Of the three algorithms tested, the Maximum-Likelihood classifier best differentiated (89%) the regions-of-interest in both study sites. Covariance-based PCA rotation consistently enhanced the performance of the Maximum-Likelihood classifier. Seven non-overlapping bands (425.4, 514.9, 560.1, 685.5, 731.5, 812.3 and 916.7 nanometers) were identified that represented the best performing bands with respect to classification performance. A spatial resolution of 2 meters or less was determined to be the as being most appropriate in Great Lakes coastal wetland environments. This research represents the first step in evaluating the effectiveness of applying high-resolution, narrow-band imagery to the detailed mapping of coastal wetlands in the Great Lakes region.
Local neighborhood transition probability estimation and its use in contextual classification
NASA Technical Reports Server (NTRS)
Chittineni, C. B.
1979-01-01
The problem of incorporating spatial or contextual information into classifications is considered. A simple model that describes the spatial dependencies between the neighboring pixels with a single parameter, Theta, is presented. Expressions are derived for updating the posteriori probabilities of the states of nature of the pattern under consideration using information from the neighboring patterns, both for spatially uniform context and for Markov dependencies in terms of Theta. Techniques for obtaining the optimal value of the parameter Theta as a maximum likelihood estimate from the local neighborhood of the pattern under consideration are developed.
A flexible spatial scan statistic with a restricted likelihood ratio for detecting disease clusters.
Tango, Toshiro; Takahashi, Kunihiko
2012-12-30
Spatial scan statistics are widely used tools for detection of disease clusters. Especially, the circular spatial scan statistic proposed by Kulldorff (1997) has been utilized in a wide variety of epidemiological studies and disease surveillance. However, as it cannot detect noncircular, irregularly shaped clusters, many authors have proposed different spatial scan statistics, including the elliptic version of Kulldorff's scan statistic. The flexible spatial scan statistic proposed by Tango and Takahashi (2005) has also been used for detecting irregularly shaped clusters. However, this method sets a feasible limitation of a maximum of 30 nearest neighbors for searching candidate clusters because of heavy computational load. In this paper, we show a flexible spatial scan statistic implemented with a restricted likelihood ratio proposed by Tango (2008) to (1) eliminate the limitation of 30 nearest neighbors and (2) to have surprisingly much less computational time than the original flexible spatial scan statistic. As a side effect, it is shown to be able to detect clusters with any shape reasonably well as the relative risk of the cluster becomes large via Monte Carlo simulation. We illustrate the proposed spatial scan statistic with data on mortality from cerebrovascular disease in the Tokyo Metropolitan area, Japan. Copyright © 2012 John Wiley & Sons, Ltd.
Integrating Entropy-Based Naïve Bayes and GIS for Spatial Evaluation of Flood Hazard.
Liu, Rui; Chen, Yun; Wu, Jianping; Gao, Lei; Barrett, Damian; Xu, Tingbao; Li, Xiaojuan; Li, Linyi; Huang, Chang; Yu, Jia
2017-04-01
Regional flood risk caused by intensive rainfall under extreme climate conditions has increasingly attracted global attention. Mapping and evaluation of flood hazard are vital parts in flood risk assessment. This study develops an integrated framework for estimating spatial likelihood of flood hazard by coupling weighted naïve Bayes (WNB), geographic information system, and remote sensing. The north part of Fitzroy River Basin in Queensland, Australia, was selected as a case study site. The environmental indices, including extreme rainfall, evapotranspiration, net-water index, soil water retention, elevation, slope, drainage proximity, and density, were generated from spatial data representing climate, soil, vegetation, hydrology, and topography. These indices were weighted using the statistics-based entropy method. The weighted indices were input into the WNB-based model to delineate a regional flood risk map that indicates the likelihood of flood occurrence. The resultant map was validated by the maximum inundation extent extracted from moderate resolution imaging spectroradiometer (MODIS) imagery. The evaluation results, including mapping and evaluation of the distribution of flood hazard, are helpful in guiding flood inundation disaster responses for the region. The novel approach presented consists of weighted grid data, image-based sampling and validation, cell-by-cell probability inferring and spatial mapping. It is superior to an existing spatial naive Bayes (NB) method for regional flood hazard assessment. It can also be extended to other likelihood-related environmental hazard studies. © 2016 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Chakraborty, A.; Goto, H.
2017-12-01
The 2011 off the Pacific coast of Tohoku earthquake caused severe damage in many areas further inside the mainland because of site-amplification. Furukawa district in Miyagi Prefecture, Japan recorded significant spatial differences in ground motion even at sub-kilometer scales. The site responses in the damage zone far exceeded the levels in the hazard maps. A reason why the mismatch occurred is that mapping follow only the mean value at the measurement locations with no regard to the data uncertainties and thus are not always reliable. Our research objective is to develop a methodology to incorporate data uncertainties in mapping and propose a reliable map. The methodology is based on a hierarchical Bayesian modeling of normally-distributed site responses in space where the mean (μ), site-specific variance (σ2) and between-sites variance(s2) parameters are treated as unknowns with a prior distribution. The observation data is artificially created site responses with varying means and variances for 150 seismic events across 50 locations in one-dimensional space. Spatially auto-correlated random effects were added to the mean (μ) using a conditionally autoregressive (CAR) prior. The inferences on the unknown parameters are done using Markov Chain Monte Carlo methods from the posterior distribution. The goal is to find reliable estimates of μ sensitive to uncertainties. During initial trials, we observed that the tau (=1/s2) parameter of CAR prior controls the μ estimation. Using a constraint, s = 1/(k×σ), five spatial models with varying k-values were created. We define reliability to be measured by the model likelihood and propose the maximum likelihood model to be highly reliable. The model with maximum likelihood was selected using a 5-fold cross-validation technique. The results show that the maximum likelihood model (μ*) follows the site-specific mean at low uncertainties and converges to the model-mean at higher uncertainties (Fig.1). This result is highly significant as it successfully incorporates the effect of data uncertainties in mapping. This novel approach can be applied to any research field using mapping techniques. The methodology is now being applied to real records from a very dense seismic network in Furukawa district, Miyagi Prefecture, Japan to generate a reliable map of the site responses.
NASA Technical Reports Server (NTRS)
Horvath, R. (Principal Investigator); Cicone, R.; Crist, E.; Kauth, R. J.; Lambeck, P.; Malila, W. A.; Richardson, W.
1979-01-01
The author has identified the following significant results. An outgrowth of research and development activities in support of LACIE was a multicrop area estimation procedure, Procedure M. This procedure was a flexible, modular system that could be operated within the LACIE framework. Its distinctive features were refined preprocessing (including spatially varying correction for atmospheric haze), definition of field like spatial features for labeling, spectral stratification, and unbiased selection of samples to label and crop area estimation without conventional maximum likelihood classification.
Robust geostatistical analysis of spatial data
NASA Astrophysics Data System (ADS)
Papritz, Andreas; Künsch, Hans Rudolf; Schwierz, Cornelia; Stahel, Werner A.
2013-04-01
Most of the geostatistical software tools rely on non-robust algorithms. This is unfortunate, because outlying observations are rather the rule than the exception, in particular in environmental data sets. Outliers affect the modelling of the large-scale spatial trend, the estimation of the spatial dependence of the residual variation and the predictions by kriging. Identifying outliers manually is cumbersome and requires expertise because one needs parameter estimates to decide which observation is a potential outlier. Moreover, inference after the rejection of some observations is problematic. A better approach is to use robust algorithms that prevent automatically that outlying observations have undue influence. Former studies on robust geostatistics focused on robust estimation of the sample variogram and ordinary kriging without external drift. Furthermore, Richardson and Welsh (1995) proposed a robustified version of (restricted) maximum likelihood ([RE]ML) estimation for the variance components of a linear mixed model, which was later used by Marchant and Lark (2007) for robust REML estimation of the variogram. We propose here a novel method for robust REML estimation of the variogram of a Gaussian random field that is possibly contaminated by independent errors from a long-tailed distribution. It is based on robustification of estimating equations for the Gaussian REML estimation (Welsh and Richardson, 1997). Besides robust estimates of the parameters of the external drift and of the variogram, the method also provides standard errors for the estimated parameters, robustified kriging predictions at both sampled and non-sampled locations and kriging variances. Apart from presenting our modelling framework, we shall present selected simulation results by which we explored the properties of the new method. This will be complemented by an analysis a data set on heavy metal contamination of the soil in the vicinity of a metal smelter. Marchant, B.P. and Lark, R.M. 2007. Robust estimation of the variogram by residual maximum likelihood. Geoderma 140: 62-72. Richardson, A.M. and Welsh, A.H. 1995. Robust restricted maximum likelihood in mixed linear models. Biometrics 51: 1429-1439. Welsh, A.H. and Richardson, A.M. 1997. Approaches to the robust estimation of mixed models. In: Handbook of Statistics Vol. 15, Elsevier, pp. 343-384.
Maximum Likelihood and Restricted Likelihood Solutions in Multiple-Method Studies
Rukhin, Andrew L.
2011-01-01
A formulation of the problem of combining data from several sources is discussed in terms of random effects models. The unknown measurement precision is assumed not to be the same for all methods. We investigate maximum likelihood solutions in this model. By representing the likelihood equations as simultaneous polynomial equations, the exact form of the Groebner basis for their stationary points is derived when there are two methods. A parametrization of these solutions which allows their comparison is suggested. A numerical method for solving likelihood equations is outlined, and an alternative to the maximum likelihood method, the restricted maximum likelihood, is studied. In the situation when methods variances are considered to be known an upper bound on the between-method variance is obtained. The relationship between likelihood equations and moment-type equations is also discussed. PMID:26989583
Maximum Likelihood and Restricted Likelihood Solutions in Multiple-Method Studies.
Rukhin, Andrew L
2011-01-01
A formulation of the problem of combining data from several sources is discussed in terms of random effects models. The unknown measurement precision is assumed not to be the same for all methods. We investigate maximum likelihood solutions in this model. By representing the likelihood equations as simultaneous polynomial equations, the exact form of the Groebner basis for their stationary points is derived when there are two methods. A parametrization of these solutions which allows their comparison is suggested. A numerical method for solving likelihood equations is outlined, and an alternative to the maximum likelihood method, the restricted maximum likelihood, is studied. In the situation when methods variances are considered to be known an upper bound on the between-method variance is obtained. The relationship between likelihood equations and moment-type equations is also discussed.
Mapping grass communities based on multi-temporal Landsat TM imagery and environmental variables
NASA Astrophysics Data System (ADS)
Zeng, Yuandi; Liu, Yanfang; Liu, Yaolin; de Leeuw, Jan
2007-06-01
Information on the spatial distribution of grass communities in wetland is increasingly recognized as important for effective wetland management and biological conservation. Remote sensing techniques has been proved to be an effective alternative to intensive and costly ground surveys for mapping grass community. However, the mapping accuracy of grass communities in wetland is still not preferable. The aim of this paper is to develop an effective method to map grass communities in Poyang Lake Natural Reserve. Through statistic analysis, elevation is selected as an environmental variable for its high relationship with the distribution of grass communities; NDVI stacked from images of different months was used to generate Carex community map; the image in October was used to discriminate Miscanthus and Cynodon communities. Classifications were firstly performed with maximum likelihood classifier using single date satellite image with and without elevation; then layered classifications were performed using multi-temporal satellite imagery and elevation with maximum likelihood classifier, decision tree and artificial neural network separately. The results show that environmental variables can improve the mapping accuracy; and the classification with multitemporal imagery and elevation is significantly better than that with single date image and elevation (p=0.001). Besides, maximum likelihood (a=92.71%, k=0.90) and artificial neural network (a=94.79%, k=0.93) perform significantly better than decision tree (a=86.46%, k=0.83).
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, R. Derek; Gunther, Jacob H.; Moon, Todd K.
In this study, we derive a comprehensive forward model for the data collected by stripmap synthetic aperture radar (SAR) that is linear in the ground reflectivity parameters. It is also shown that if the noise model is additive, then the forward model fits into the linear statistical model framework, and the ground reflectivity parameters can be estimated by statistical methods. We derive the maximum likelihood (ML) estimates for the ground reflectivity parameters in the case of additive white Gaussian noise. Furthermore, we show that obtaining the ML estimates of the ground reflectivity requires two steps. The first step amounts tomore » a cross-correlation of the data with a model of the data acquisition parameters, and it is shown that this step has essentially the same processing as the so-called convolution back-projection algorithm. The second step is a complete system inversion that is capable of mitigating the sidelobes of the spatially variant impulse responses remaining after the correlation processing. We also state the Cramer-Rao lower bound (CRLB) for the ML ground reflectivity estimates.We show that the CRLB is linked to the SAR system parameters, the flight path of the SAR sensor, and the image reconstruction grid.We demonstrate the ML image formation and the CRLB bound for synthetically generated data.« less
West, R. Derek; Gunther, Jacob H.; Moon, Todd K.
2016-12-01
In this study, we derive a comprehensive forward model for the data collected by stripmap synthetic aperture radar (SAR) that is linear in the ground reflectivity parameters. It is also shown that if the noise model is additive, then the forward model fits into the linear statistical model framework, and the ground reflectivity parameters can be estimated by statistical methods. We derive the maximum likelihood (ML) estimates for the ground reflectivity parameters in the case of additive white Gaussian noise. Furthermore, we show that obtaining the ML estimates of the ground reflectivity requires two steps. The first step amounts tomore » a cross-correlation of the data with a model of the data acquisition parameters, and it is shown that this step has essentially the same processing as the so-called convolution back-projection algorithm. The second step is a complete system inversion that is capable of mitigating the sidelobes of the spatially variant impulse responses remaining after the correlation processing. We also state the Cramer-Rao lower bound (CRLB) for the ML ground reflectivity estimates.We show that the CRLB is linked to the SAR system parameters, the flight path of the SAR sensor, and the image reconstruction grid.We demonstrate the ML image formation and the CRLB bound for synthetically generated data.« less
2010-06-01
GMKPF represents a better and more flexible alternative to the Gaussian Maximum Likelihood (GML), and Exponential Maximum Likelihood ( EML ...accurate results relative to GML and EML when the network delays are modeled in terms of a single non-Gaussian/non-exponential distribution or as a...to the Gaussian Maximum Likelihood (GML), and Exponential Maximum Likelihood ( EML ) estimators for clock offset estimation in non-Gaussian or non
MXLKID: a maximum likelihood parameter identifier. [In LRLTRAN for CDC 7600
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gavel, D.T.
MXLKID (MaXimum LiKelihood IDentifier) is a computer program designed to identify unknown parameters in a nonlinear dynamic system. Using noisy measurement data from the system, the maximum likelihood identifier computes a likelihood function (LF). Identification of system parameters is accomplished by maximizing the LF with respect to the parameters. The main body of this report briefly summarizes the maximum likelihood technique and gives instructions and examples for running the MXLKID program. MXLKID is implemented LRLTRAN on the CDC7600 computer at LLNL. A detailed mathematical description of the algorithm is given in the appendices. 24 figures, 6 tables.
Lin, Feng-Chang; Zhu, Jun
2012-01-01
We develop continuous-time models for the analysis of environmental or ecological monitoring data such that subjects are observed at multiple monitoring time points across space. Of particular interest are additive hazards regression models where the baseline hazard function can take on flexible forms. We consider time-varying covariates and take into account spatial dependence via autoregression in space and time. We develop statistical inference for the regression coefficients via partial likelihood. Asymptotic properties, including consistency and asymptotic normality, are established for parameter estimates under suitable regularity conditions. Feasible algorithms utilizing existing statistical software packages are developed for computation. We also consider a simpler additive hazards model with homogeneous baseline hazard and develop hypothesis testing for homogeneity. A simulation study demonstrates that the statistical inference using partial likelihood has sound finite-sample properties and offers a viable alternative to maximum likelihood estimation. For illustration, we analyze data from an ecological study that monitors bark beetle colonization of red pines in a plantation of Wisconsin.
NASA Technical Reports Server (NTRS)
Walker, H. F.
1976-01-01
Likelihood equations determined by the two types of samples which are necessary conditions for a maximum-likelihood estimate were considered. These equations suggest certain successive approximations iterative procedures for obtaining maximum likelihood estimates. The procedures, which are generalized steepest ascent (deflected gradient) procedures, contain those of Hosmer as a special case.
Maximum Likelihood Detection of Electro-Optic Moving Targets
1992-01-16
indicates intensity. The Infrared Measurements Sensor (IRMS) is a scanning sensor that collects both long wave- length infrared ( LWIR , 8 to 12 fim...moving clutter. Nonstationary spatial statistics correspond to the nonuniform intensity of the background scene. An equivalent viewpoint is to...Figure 6 compares theory and experiment for 10 frames of the Longjump LWIR data obtained from the IRMS scanning sensor, which is looking at a background
Finite mixture model: A maximum likelihood estimation approach on time series data
NASA Astrophysics Data System (ADS)
Yen, Phoong Seuk; Ismail, Mohd Tahir; Hamzah, Firdaus Mohamad
2014-09-01
Recently, statistician emphasized on the fitting of finite mixture model by using maximum likelihood estimation as it provides asymptotic properties. In addition, it shows consistency properties as the sample sizes increases to infinity. This illustrated that maximum likelihood estimation is an unbiased estimator. Moreover, the estimate parameters obtained from the application of maximum likelihood estimation have smallest variance as compared to others statistical method as the sample sizes increases. Thus, maximum likelihood estimation is adopted in this paper to fit the two-component mixture model in order to explore the relationship between rubber price and exchange rate for Malaysia, Thailand, Philippines and Indonesia. Results described that there is a negative effect among rubber price and exchange rate for all selected countries.
Local multiplicity adjustment for the spatial scan statistic using the Gumbel distribution.
Gangnon, Ronald E
2012-03-01
The spatial scan statistic is an important and widely used tool for cluster detection. It is based on the simultaneous evaluation of the statistical significance of the maximum likelihood ratio test statistic over a large collection of potential clusters. In most cluster detection problems, there is variation in the extent of local multiplicity across the study region. For example, using a fixed maximum geographic radius for clusters, urban areas typically have many overlapping potential clusters, whereas rural areas have relatively few. The spatial scan statistic does not account for local multiplicity variation. We describe a previously proposed local multiplicity adjustment based on a nested Bonferroni correction and propose a novel adjustment based on a Gumbel distribution approximation to the distribution of a local scan statistic. We compare the performance of all three statistics in terms of power and a novel unbiased cluster detection criterion. These methods are then applied to the well-known New York leukemia dataset and a Wisconsin breast cancer incidence dataset. © 2011, The International Biometric Society.
Local multiplicity adjustment for the spatial scan statistic using the Gumbel distribution
Gangnon, Ronald E.
2011-01-01
Summary The spatial scan statistic is an important and widely used tool for cluster detection. It is based on the simultaneous evaluation of the statistical significance of the maximum likelihood ratio test statistic over a large collection of potential clusters. In most cluster detection problems, there is variation in the extent of local multiplicity across the study region. For example, using a fixed maximum geographic radius for clusters, urban areas typically have many overlapping potential clusters, while rural areas have relatively few. The spatial scan statistic does not account for local multiplicity variation. We describe a previously proposed local multiplicity adjustment based on a nested Bonferroni correction and propose a novel adjustment based on a Gumbel distribution approximation to the distribution of a local scan statistic. We compare the performance of all three statistics in terms of power and a novel unbiased cluster detection criterion. These methods are then applied to the well-known New York leukemia dataset and a Wisconsin breast cancer incidence dataset. PMID:21762118
Determining the accuracy of maximum likelihood parameter estimates with colored residuals
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.; Klein, Vladislav
1994-01-01
An important part of building high fidelity mathematical models based on measured data is calculating the accuracy associated with statistical estimates of the model parameters. Indeed, without some idea of the accuracy of parameter estimates, the estimates themselves have limited value. In this work, an expression based on theoretical analysis was developed to properly compute parameter accuracy measures for maximum likelihood estimates with colored residuals. This result is important because experience from the analysis of measured data reveals that the residuals from maximum likelihood estimation are almost always colored. The calculations involved can be appended to conventional maximum likelihood estimation algorithms. Simulated data runs were used to show that the parameter accuracy measures computed with this technique accurately reflect the quality of the parameter estimates from maximum likelihood estimation without the need for analysis of the output residuals in the frequency domain or heuristically determined multiplication factors. The result is general, although the application studied here is maximum likelihood estimation of aerodynamic model parameters from flight test data.
NASA Technical Reports Server (NTRS)
Peters, B. C., Jr.; Walker, H. F.
1975-01-01
A general iterative procedure is given for determining the consistent maximum likelihood estimates of normal distributions. In addition, a local maximum of the log-likelihood function, Newtons's method, a method of scoring, and modifications of these procedures are discussed.
Bian, Liheng; Suo, Jinli; Chung, Jaebum; Ou, Xiaoze; Yang, Changhuei; Chen, Feng; Dai, Qionghai
2016-06-10
Fourier ptychographic microscopy (FPM) is a novel computational coherent imaging technique for high space-bandwidth product imaging. Mathematically, Fourier ptychographic (FP) reconstruction can be implemented as a phase retrieval optimization process, in which we only obtain low resolution intensity images corresponding to the sub-bands of the sample's high resolution (HR) spatial spectrum, and aim to retrieve the complex HR spectrum. In real setups, the measurements always suffer from various degenerations such as Gaussian noise, Poisson noise, speckle noise and pupil location error, which would largely degrade the reconstruction. To efficiently address these degenerations, we propose a novel FP reconstruction method under a gradient descent optimization framework in this paper. The technique utilizes Poisson maximum likelihood for better signal modeling, and truncated Wirtinger gradient for effective error removal. Results on both simulated data and real data captured using our laser-illuminated FPM setup show that the proposed method outperforms other state-of-the-art algorithms. Also, we have released our source code for non-commercial use.
Occupancy Modeling Species-Environment Relationships with Non-ignorable Survey Designs.
Irvine, Kathryn M; Rodhouse, Thomas J; Wright, Wilson J; Olsen, Anthony R
2018-05-26
Statistical models supporting inferences about species occurrence patterns in relation to environmental gradients are fundamental to ecology and conservation biology. A common implicit assumption is that the sampling design is ignorable and does not need to be formally accounted for in analyses. The analyst assumes data are representative of the desired population and statistical modeling proceeds. However, if datasets from probability and non-probability surveys are combined or unequal selection probabilities are used, the design may be non ignorable. We outline the use of pseudo-maximum likelihood estimation for site-occupancy models to account for such non-ignorable survey designs. This estimation method accounts for the survey design by properly weighting the pseudo-likelihood equation. In our empirical example, legacy and newer randomly selected locations were surveyed for bats to bridge a historic statewide effort with an ongoing nationwide program. We provide a worked example using bat acoustic detection/non-detection data and show how analysts can diagnose whether their design is ignorable. Using simulations we assessed whether our approach is viable for modeling datasets composed of sites contributed outside of a probability design Pseudo-maximum likelihood estimates differed from the usual maximum likelihood occu31 pancy estimates for some bat species. Using simulations we show the maximum likelihood estimator of species-environment relationships with non-ignorable sampling designs was biased, whereas the pseudo-likelihood estimator was design-unbiased. However, in our simulation study the designs composed of a large proportion of legacy or non-probability sites resulted in estimation issues for standard errors. These issues were likely a result of highly variable weights confounded by small sample sizes (5% or 10% sampling intensity and 4 revisits). Aggregating datasets from multiple sources logically supports larger sample sizes and potentially increases spatial extents for statistical inferences. Our results suggest that ignoring the mechanism for how locations were selected for data collection (e.g., the sampling design) could result in erroneous model-based conclusions. Therefore, in order to ensure robust and defensible recommendations for evidence-based conservation decision-making, the survey design information in addition to the data themselves must be available for analysts. Details for constructing the weights used in estimation and code for implementation are provided. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Zin, Wan Zawiah Wan; Shinyie, Wendy Ling; Jemain, Abdul Aziz
2015-02-01
In this study, two series of data for extreme rainfall events are generated based on Annual Maximum and Partial Duration Methods, derived from 102 rain-gauge stations in Peninsular from 1982-2012. To determine the optimal threshold for each station, several requirements must be satisfied and Adapted Hill estimator is employed for this purpose. A semi-parametric bootstrap is then used to estimate the mean square error (MSE) of the estimator at each threshold and the optimal threshold is selected based on the smallest MSE. The mean annual frequency is also checked to ensure that it lies in the range of one to five and the resulting data is also de-clustered to ensure independence. The two data series are then fitted to Generalized Extreme Value and Generalized Pareto distributions for annual maximum and partial duration series, respectively. The parameter estimation methods used are the Maximum Likelihood and the L-moment methods. Two goodness of fit tests are then used to evaluate the best-fitted distribution. The results showed that the Partial Duration series with Generalized Pareto distribution and Maximum Likelihood parameter estimation provides the best representation for extreme rainfall events in Peninsular Malaysia for majority of the stations studied. Based on these findings, several return values are also derived and spatial mapping are constructed to identify the distribution characteristic of extreme rainfall in Peninsular Malaysia.
Spatial Statistics of Large Astronomical Databases: An Algorithmic Approach
NASA Technical Reports Server (NTRS)
Szapudi, Istvan
2004-01-01
In this AISRP, the we have demonstrated that the correlation function i) can be calculated for MAP in minutes (about 45 minutes for Planck) on a modest 500Mhz workstation ii) the corresponding method, although theoretically suboptimal, produces nearly optimal results for realistic noise and cut sky. This trillion fold improvement in speed over the standard maximum likelihood technique opens up tremendous new possibilities, which will be persued in the follow up.
A Comparison of a Bayesian and a Maximum Likelihood Tailored Testing Procedure.
ERIC Educational Resources Information Center
McKinley, Robert L.; Reckase, Mark D.
A study was conducted to compare tailored testing procedures based on a Bayesian ability estimation technique and on a maximum likelihood ability estimation technique. The Bayesian tailored testing procedure selected items so as to minimize the posterior variance of the ability estimate distribution, while the maximum likelihood tailored testing…
Maximum likelihood solution for inclination-only data in paleomagnetism
NASA Astrophysics Data System (ADS)
Arason, P.; Levi, S.
2010-08-01
We have developed a new robust maximum likelihood method for estimating the unbiased mean inclination from inclination-only data. In paleomagnetic analysis, the arithmetic mean of inclination-only data is known to introduce a shallowing bias. Several methods have been introduced to estimate the unbiased mean inclination of inclination-only data together with measures of the dispersion. Some inclination-only methods were designed to maximize the likelihood function of the marginal Fisher distribution. However, the exact analytical form of the maximum likelihood function is fairly complicated, and all the methods require various assumptions and approximations that are often inappropriate. For some steep and dispersed data sets, these methods provide estimates that are significantly displaced from the peak of the likelihood function to systematically shallower inclination. The problem locating the maximum of the likelihood function is partly due to difficulties in accurately evaluating the function for all values of interest, because some elements of the likelihood function increase exponentially as precision parameters increase, leading to numerical instabilities. In this study, we succeeded in analytically cancelling exponential elements from the log-likelihood function, and we are now able to calculate its value anywhere in the parameter space and for any inclination-only data set. Furthermore, we can now calculate the partial derivatives of the log-likelihood function with desired accuracy, and locate the maximum likelihood without the assumptions required by previous methods. To assess the reliability and accuracy of our method, we generated large numbers of random Fisher-distributed data sets, for which we calculated mean inclinations and precision parameters. The comparisons show that our new robust Arason-Levi maximum likelihood method is the most reliable, and the mean inclination estimates are the least biased towards shallow values.
Spatial generalised linear mixed models based on distances.
Melo, Oscar O; Mateu, Jorge; Melo, Carlos E
2016-10-01
Risk models derived from environmental data have been widely shown to be effective in delineating geographical areas of risk because they are intuitively easy to understand. We present a new method based on distances, which allows the modelling of continuous and non-continuous random variables through distance-based spatial generalised linear mixed models. The parameters are estimated using Markov chain Monte Carlo maximum likelihood, which is a feasible and a useful technique. The proposed method depends on a detrending step built from continuous or categorical explanatory variables, or a mixture among them, by using an appropriate Euclidean distance. The method is illustrated through the analysis of the variation in the prevalence of Loa loa among a sample of village residents in Cameroon, where the explanatory variables included elevation, together with maximum normalised-difference vegetation index and the standard deviation of normalised-difference vegetation index calculated from repeated satellite scans over time. © The Author(s) 2013.
The recursive maximum likelihood proportion estimator: User's guide and test results
NASA Technical Reports Server (NTRS)
Vanrooy, D. L.
1976-01-01
Implementation of the recursive maximum likelihood proportion estimator is described. A user's guide to programs as they currently exist on the IBM 360/67 at LARS, Purdue is included, and test results on LANDSAT data are described. On Hill County data, the algorithm yields results comparable to the standard maximum likelihood proportion estimator.
New applications of maximum likelihood and Bayesian statistics in macromolecular crystallography.
McCoy, Airlie J
2002-10-01
Maximum likelihood methods are well known to macromolecular crystallographers as the methods of choice for isomorphous phasing and structure refinement. Recently, the use of maximum likelihood and Bayesian statistics has extended to the areas of molecular replacement and density modification, placing these methods on a stronger statistical foundation and making them more accurate and effective.
NASA Astrophysics Data System (ADS)
Chu, A.
2016-12-01
Modern earthquake catalogs are often analyzed using spatial-temporal point process models such as the epidemic-type aftershock sequence (ETAS) models of Ogata (1998). My work implements three of the homogeneous ETAS models described in Ogata (1998). With a model's log-likelihood function, my software finds the Maximum-Likelihood Estimates (MLEs) of the model's parameters to estimate the homogeneous background rate and the temporal and spatial parameters that govern triggering effects. EM-algorithm is employed for its advantages of stability and robustness (Veen and Schoenberg, 2008). My work also presents comparisons among the three models in robustness, convergence speed, and implementations from theory to computing practice. Up-to-date regional seismic data of seismic active areas such as Southern California and Japan are used to demonstrate the comparisons. Data analysis has been done using computer languages Java and R. Java has the advantages of being strong-typed and easiness of controlling memory resources, while R has the advantages of having numerous available functions in statistical computing. Comparisons are also made between the two programming languages in convergence and stability, computational speed, and easiness of implementation. Issues that may affect convergence such as spatial shapes are discussed.
Theory and Measurement of Partially Correlated Persistent Scatterers
NASA Astrophysics Data System (ADS)
Lien, J.; Zebker, H. A.
2011-12-01
Interferometric synthetic aperture radar (InSAR) time-series methods can effectively estimate temporal surface changes induced by geophysical phenomena. However, such methods are susceptible to decorrelation due to spatial and temporal baselines (radar pass separation), changes in orbital geometries, atmosphere, and noise. These effects limit the number of interferograms that can be used for differential analysis and obscure the deformation signal. InSAR decorrelation effects may be ameliorated by exploiting pixels that exhibit phase stability across the stack of interferograms. These so-called persistent scatterer (PS) pixels are dominated by a single point-like scatterer that remains phase-stable over the spatial and temporal baseline. By identifying a network of PS pixels for use in phase unwrapping, reliable deformation measurements may be obtained even in areas of low correlation, where traditional InSAR techniques fail to produce useful observations. PS identification is challenging in natural terrain, due to low reflectivity and few corner reflectors. Shanker and Zebker [1] proposed a PS pixel selection technique based on maximum-likelihood estimation of the associated signal-to-clutter ratio (SCR). In this study, we further develop the underlying theory for their technique, starting from statistical backscatter characteristics of PS pixels. We derive closed-form expressions for the spatial, rotational, and temporal decorrelation of PS pixels as a function of baseline and signal-to-clutter ratio. We show that previous decorrelation and critical baseline expressions [2] are limiting cases of our result. We then describe a series of radar scattering simulations and show that the simulated decorrelation matches well with our analytic results. Finally, we use our decorrelation expressions with maximum-likelihood SCR estimation to analyze an area of the Hayward Fault Zone in the San Francisco Bay Area. A series of 38 images of the area were obtained from C-band ERS radar satellite passes between May 1995 and December 2000. We show that the interferogram stack exhibits PS decorrelation trends in agreement with our analytic results. References 1. P. Shanker and H. Zebker, "Persistent scatterer selection using maximum likelihood estimation," Geophysical Research Letters, Vol. 34, L22301, 2007. 2. H. Zebker and J. Villasenor, "Decorrelation in Interferometric Radar Echos," IEEE Transactions on Geoscience and Remote Sensing, Vol. 30, No. 5, Sept. 1992.
On the existence of maximum likelihood estimates for presence-only data
Hefley, Trevor J.; Hooten, Mevin B.
2015-01-01
It is important to identify conditions for which maximum likelihood estimates are unlikely to be identifiable from presence-only data. In data sets where the maximum likelihood estimates do not exist, penalized likelihood and Bayesian methods will produce coefficient estimates, but these are sensitive to the choice of estimation procedure and prior or penalty term. When sample size is small or it is thought that habitat preferences are strong, we propose a suite of estimation procedures researchers can consider using.
NASA Technical Reports Server (NTRS)
Walker, H. F.
1976-01-01
Likelihood equations determined by the two types of samples which are necessary conditions for a maximum-likelihood estimate are considered. These equations, suggest certain successive-approximations iterative procedures for obtaining maximum-likelihood estimates. These are generalized steepest ascent (deflected gradient) procedures. It is shown that, with probability 1 as N sub 0 approaches infinity (regardless of the relative sizes of N sub 0 and N sub 1, i=1,...,m), these procedures converge locally to the strongly consistent maximum-likelihood estimates whenever the step size is between 0 and 2. Furthermore, the value of the step size which yields optimal local convergence rates is bounded from below by a number which always lies between 1 and 2.
Spatial extremes modeling applied to extreme precipitation data in the state of Paraná
NASA Astrophysics Data System (ADS)
Olinda, R. A.; Blanchet, J.; dos Santos, C. A. C.; Ozaki, V. A.; Ribeiro, P. J., Jr.
2014-11-01
Most of the mathematical models developed for rare events are based on probabilistic models for extremes. Although the tools for statistical modeling of univariate and multivariate extremes are well developed, the extension of these tools to model spatial extremes includes an area of very active research nowadays. A natural approach to such a modeling is the theory of extreme spatial and the max-stable process, characterized by the extension of infinite dimensions of multivariate extreme value theory, and making it possible then to incorporate the existing correlation functions in geostatistics and therefore verify the extremal dependence by means of the extreme coefficient and the Madogram. This work describes the application of such processes in modeling the spatial maximum dependence of maximum monthly rainfall from the state of Paraná, based on historical series observed in weather stations. The proposed models consider the Euclidean space and a transformation referred to as space weather, which may explain the presence of directional effects resulting from synoptic weather patterns. This method is based on the theorem proposed for de Haan and on the models of Smith and Schlather. The isotropic and anisotropic behavior of these models is also verified via Monte Carlo simulation. Estimates are made through pairwise likelihood maximum and the models are compared using the Takeuchi Information Criterion. By modeling the dependence of spatial maxima, applied to maximum monthly rainfall data from the state of Paraná, it was possible to identify directional effects resulting from meteorological phenomena, which, in turn, are important for proper management of risks and environmental disasters in countries with its economy heavily dependent on agribusiness.
Computation of nonparametric convex hazard estimators via profile methods.
Jankowski, Hanna K; Wellner, Jon A
2009-05-01
This paper proposes a profile likelihood algorithm to compute the nonparametric maximum likelihood estimator of a convex hazard function. The maximisation is performed in two steps: First the support reduction algorithm is used to maximise the likelihood over all hazard functions with a given point of minimum (or antimode). Then it is shown that the profile (or partially maximised) likelihood is quasi-concave as a function of the antimode, so that a bisection algorithm can be applied to find the maximum of the profile likelihood, and hence also the global maximum. The new algorithm is illustrated using both artificial and real data, including lifetime data for Canadian males and females.
A maximum likelihood map of chromosome 1.
Rao, D C; Keats, B J; Lalouel, J M; Morton, N E; Yee, S
1979-01-01
Thirteen loci are mapped on chromosome 1 from genetic evidence. The maximum likelihood map presented permits confirmation that Scianna (SC) and a fourteenth locus, phenylketonuria (PKU), are on chromosome 1, although the location of the latter on the PGM1-AMY segment is uncertain. Eight other controversial genetic assignments are rejected, providing a practical demonstration of the resolution which maximum likelihood theory brings to mapping. PMID:293128
ERIC Educational Resources Information Center
Mahmud, Jumailiyah; Sutikno, Muzayanah; Naga, Dali S.
2016-01-01
The aim of this study is to determine variance difference between maximum likelihood and expected A posteriori estimation methods viewed from number of test items of aptitude test. The variance presents an accuracy generated by both maximum likelihood and Bayes estimation methods. The test consists of three subtests, each with 40 multiple-choice…
Maximum likelihood estimation of signal-to-noise ratio and combiner weight
NASA Technical Reports Server (NTRS)
Kalson, S.; Dolinar, S. J.
1986-01-01
An algorithm for estimating signal to noise ratio and combiner weight parameters for a discrete time series is presented. The algorithm is based upon the joint maximum likelihood estimate of the signal and noise power. The discrete-time series are the sufficient statistics obtained after matched filtering of a biphase modulated signal in additive white Gaussian noise, before maximum likelihood decoding is performed.
Changren Weng; Thomas L. Kubisiak; C. Dana Nelson; James P. Geaghan; Michael Stine
1999-01-01
Single marker regression and single marker maximum likelihood estimation were tied to detect quantitative trait loci (QTLs) controlling the early height growth of longleaf pine and slash pine using a ((longleaf pine x slash pine) x slash pine) BC, population consisting of 83 progeny. Maximum likelihood estimation was found to be more power than regression and could...
Maximum likelihood estimation of finite mixture model for economic data
NASA Astrophysics Data System (ADS)
Phoong, Seuk-Yen; Ismail, Mohd Tahir
2014-06-01
Finite mixture model is a mixture model with finite-dimension. This models are provides a natural representation of heterogeneity in a finite number of latent classes. In addition, finite mixture models also known as latent class models or unsupervised learning models. Recently, maximum likelihood estimation fitted finite mixture models has greatly drawn statistician's attention. The main reason is because maximum likelihood estimation is a powerful statistical method which provides consistent findings as the sample sizes increases to infinity. Thus, the application of maximum likelihood estimation is used to fit finite mixture model in the present paper in order to explore the relationship between nonlinear economic data. In this paper, a two-component normal mixture model is fitted by maximum likelihood estimation in order to investigate the relationship among stock market price and rubber price for sampled countries. Results described that there is a negative effect among rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia.
NASA Technical Reports Server (NTRS)
Peters, B. C., Jr.; Walker, H. F.
1975-01-01
New results and insights concerning a previously published iterative procedure for obtaining maximum-likelihood estimates of the parameters for a mixture of normal distributions were discussed. It was shown that the procedure converges locally to the consistent maximum likelihood estimate as long as a specified parameter is bounded between two limits. Bound values were given to yield optimal local convergence.
Parameter Estimation for a Model of Space-Time Rainfall
NASA Astrophysics Data System (ADS)
Smith, James A.; Karr, Alan F.
1985-08-01
In this paper, parameter estimation procedures, based on data from a network of rainfall gages, are developed for a class of space-time rainfall models. The models, which are designed to represent the spatial distribution of daily rainfall, have three components, one that governs the temporal occurrence of storms, a second that distributes rain cells spatially for a given storm, and a third that determines the rainfall pattern within a rain cell. Maximum likelihood and method of moments procedures are developed. We illustrate that limitations on model structure are imposed by restricting data sources to rain gage networks. The estimation procedures are applied to a 240-mi2 (621 km2) catchment in the Potomac River basin.
NASA Technical Reports Server (NTRS)
Hoffbeck, Joseph P.; Landgrebe, David A.
1994-01-01
Many analysis algorithms for high-dimensional remote sensing data require that the remotely sensed radiance spectra be transformed to approximate reflectance to allow comparison with a library of laboratory reflectance spectra. In maximum likelihood classification, however, the remotely sensed spectra are compared to training samples, thus a transformation to reflectance may or may not be helpful. The effect of several radiance-to-reflectance transformations on maximum likelihood classification accuracy is investigated in this paper. We show that the empirical line approach, LOWTRAN7, flat-field correction, single spectrum method, and internal average reflectance are all non-singular affine transformations, and that non-singular affine transformations have no effect on discriminant analysis feature extraction and maximum likelihood classification accuracy. (An affine transformation is a linear transformation with an optional offset.) Since the Atmosphere Removal Program (ATREM) and the log residue method are not affine transformations, experiments with Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were conducted to determine the effect of these transformations on maximum likelihood classification accuracy. The average classification accuracy of the data transformed by ATREM and the log residue method was slightly less than the accuracy of the original radiance data. Since the radiance-to-reflectance transformations allow direct comparison of remotely sensed spectra with laboratory reflectance spectra, they can be quite useful in labeling the training samples required by maximum likelihood classification, but these transformations have only a slight effect or no effect at all on discriminant analysis and maximum likelihood classification accuracy.
SubspaceEM: A Fast Maximum-a-posteriori Algorithm for Cryo-EM Single Particle Reconstruction
Dvornek, Nicha C.; Sigworth, Fred J.; Tagare, Hemant D.
2015-01-01
Single particle reconstruction methods based on the maximum-likelihood principle and the expectation-maximization (E–M) algorithm are popular because of their ability to produce high resolution structures. However, these algorithms are computationally very expensive, requiring a network of computational servers. To overcome this computational bottleneck, we propose a new mathematical framework for accelerating maximum-likelihood reconstructions. The speedup is by orders of magnitude and the proposed algorithm produces similar quality reconstructions compared to the standard maximum-likelihood formulation. Our approach uses subspace approximations of the cryo-electron microscopy (cryo-EM) data and projection images, greatly reducing the number of image transformations and comparisons that are computed. Experiments using simulated and actual cryo-EM data show that speedup in overall execution time compared to traditional maximum-likelihood reconstruction reaches factors of over 300. PMID:25839831
Hock, Sabrina; Hasenauer, Jan; Theis, Fabian J
2013-01-01
Diffusion is a key component of many biological processes such as chemotaxis, developmental differentiation and tissue morphogenesis. Since recently, the spatial gradients caused by diffusion can be assessed in-vitro and in-vivo using microscopy based imaging techniques. The resulting time-series of two dimensional, high-resolutions images in combination with mechanistic models enable the quantitative analysis of the underlying mechanisms. However, such a model-based analysis is still challenging due to measurement noise and sparse observations, which result in uncertainties of the model parameters. We introduce a likelihood function for image-based measurements with log-normal distributed noise. Based upon this likelihood function we formulate the maximum likelihood estimation problem, which is solved using PDE-constrained optimization methods. To assess the uncertainty and practical identifiability of the parameters we introduce profile likelihoods for diffusion processes. As proof of concept, we model certain aspects of the guidance of dendritic cells towards lymphatic vessels, an example for haptotaxis. Using a realistic set of artificial measurement data, we estimate the five kinetic parameters of this model and compute profile likelihoods. Our novel approach for the estimation of model parameters from image data as well as the proposed identifiability analysis approach is widely applicable to diffusion processes. The profile likelihood based method provides more rigorous uncertainty bounds in contrast to local approximation methods.
NASA Technical Reports Server (NTRS)
Scholz, D.; Fuhs, N.; Hixson, M.
1979-01-01
The overall objective of this study was to apply and evaluate several of the currently available classification schemes for crop identification. The approaches examined were: (1) a per point Gaussian maximum likelihood classifier, (2) a per point sum of normal densities classifier, (3) a per point linear classifier, (4) a per point Gaussian maximum likelihood decision tree classifier, and (5) a texture sensitive per field Gaussian maximum likelihood classifier. Three agricultural data sets were used in the study: areas from Fayette County, Illinois, and Pottawattamie and Shelby Counties in Iowa. The segments were located in two distinct regions of the Corn Belt to sample variability in soils, climate, and agricultural practices.
NASA Astrophysics Data System (ADS)
Bargaoui, Zoubeida Kebaili; Bardossy, Andràs
2015-10-01
The paper aims to develop researches on the spatial variability of heavy rainfall events estimation using spatial copula analysis. To demonstrate the methodology, short time resolution rainfall time series from Stuttgart region are analyzed. They are constituted by rainfall observations on continuous 30 min time scale recorded over a network composed by 17 raingages for the period July 1989-July 2004. The analysis is performed aggregating the observations from 30 min up to 24 h. Two parametric bivariate extreme copula models, the Husler-Reiss model and the Gumbel model are investigated. Both involve a single parameter to be estimated. Thus, model fitting is operated for every pair of stations for a giving time resolution. A rainfall threshold value representing a fixed rainfall quantile is adopted for model inference. Generalized maximum pseudo-likelihood estimation is adopted with censoring by analogy with methods of univariate estimation combining historical and paleoflood information with systematic data. Only pairs of observations greater than the threshold are assumed as systematic data. Using the estimated copula parameter, a synthetic copula field is randomly generated and helps evaluating model adequacy which is achieved using Kolmogorov Smirnov distance test. In order to assess dependence or independence in the upper tail, the extremal coefficient which characterises the tail of the joint bivariate distribution is adopted. Hence, the extremal coefficient is reported as a function of the interdistance between stations. If it is less than 1.7, stations are interpreted as dependent in the extremes. The analysis of the fitted extremal coefficients with respect to stations inter distance highlights two regimes with different dependence structures: a short spatial extent regime linked to short duration intervals (from 30 min to 6 h) with an extent of about 8 km and a large spatial extent regime related to longer rainfall intervals (from 12 h to 24 h) with an extent of 34 to 38 km.
Maximum-Likelihood Detection Of Noncoherent CPM
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Simon, Marvin K.
1993-01-01
Simplified detectors proposed for use in maximum-likelihood-sequence detection of symbols in alphabet of size M transmitted by uncoded, full-response continuous phase modulation over radio channel with additive white Gaussian noise. Structures of receivers derived from particular interpretation of maximum-likelihood metrics. Receivers include front ends, structures of which depends only on M, analogous to those in receivers of coherent CPM. Parts of receivers following front ends have structures, complexity of which would depend on N.
Cramer-Rao Bound, MUSIC, and Maximum Likelihood. Effects of Temporal Phase Difference
1990-11-01
Technical Report 1373 November 1990 Cramer-Rao Bound, MUSIC , And Maximum Likelihood Effects of Temporal Phase o Difference C. V. TranI OTIC Approved... MUSIC , and Maximum Likelihood (ML) asymptotic variances corresponding to the two-source direction-of-arrival estimation where sources were modeled as...1pI = 1.00, SNR = 20 dB ..................................... 27 2. MUSIC for two equipowered signals impinging on a 5-element ULA (a) IpI = 0.50, SNR
Stochastic control system parameter identifiability
NASA Technical Reports Server (NTRS)
Lee, C. H.; Herget, C. J.
1975-01-01
The parameter identification problem of general discrete time, nonlinear, multiple input/multiple output dynamic systems with Gaussian white distributed measurement errors is considered. The knowledge of the system parameterization was assumed to be known. Concepts of local parameter identifiability and local constrained maximum likelihood parameter identifiability were established. A set of sufficient conditions for the existence of a region of parameter identifiability was derived. A computation procedure employing interval arithmetic was provided for finding the regions of parameter identifiability. If the vector of the true parameters is locally constrained maximum likelihood (CML) identifiable, then with probability one, the vector of true parameters is a unique maximal point of the maximum likelihood function in the region of parameter identifiability and the constrained maximum likelihood estimation sequence will converge to the vector of true parameters.
A general methodology for maximum likelihood inference from band-recovery data
Conroy, M.J.; Williams, B.K.
1984-01-01
A numerical procedure is described for obtaining maximum likelihood estimates and associated maximum likelihood inference from band- recovery data. The method is used to illustrate previously developed one-age-class band-recovery models, and is extended to new models, including the analysis with a covariate for survival rates and variable-time-period recovery models. Extensions to R-age-class band- recovery, mark-recapture models, and twice-yearly marking are discussed. A FORTRAN program provides computations for these models.
NASA Technical Reports Server (NTRS)
Peters, B. C., Jr.; Walker, H. F.
1978-01-01
This paper addresses the problem of obtaining numerically maximum-likelihood estimates of the parameters for a mixture of normal distributions. In recent literature, a certain successive-approximations procedure, based on the likelihood equations, was shown empirically to be effective in numerically approximating such maximum-likelihood estimates; however, the reliability of this procedure was not established theoretically. Here, we introduce a general iterative procedure, of the generalized steepest-ascent (deflected-gradient) type, which is just the procedure known in the literature when the step-size is taken to be 1. We show that, with probability 1 as the sample size grows large, this procedure converges locally to the strongly consistent maximum-likelihood estimate whenever the step-size lies between 0 and 2. We also show that the step-size which yields optimal local convergence rates for large samples is determined in a sense by the 'separation' of the component normal densities and is bounded below by a number between 1 and 2.
NASA Technical Reports Server (NTRS)
Peters, B. C., Jr.; Walker, H. F.
1976-01-01
The problem of obtaining numerically maximum likelihood estimates of the parameters for a mixture of normal distributions is addressed. In recent literature, a certain successive approximations procedure, based on the likelihood equations, is shown empirically to be effective in numerically approximating such maximum-likelihood estimates; however, the reliability of this procedure was not established theoretically. Here, a general iterative procedure is introduced, of the generalized steepest-ascent (deflected-gradient) type, which is just the procedure known in the literature when the step-size is taken to be 1. With probability 1 as the sample size grows large, it is shown that this procedure converges locally to the strongly consistent maximum-likelihood estimate whenever the step-size lies between 0 and 2. The step-size which yields optimal local convergence rates for large samples is determined in a sense by the separation of the component normal densities and is bounded below by a number between 1 and 2.
ERIC Educational Resources Information Center
Wothke, Werner; Burket, George; Chen, Li-Sue; Gao, Furong; Shu, Lianghua; Chia, Mike
2011-01-01
It has been known for some time that item response theory (IRT) models may exhibit a likelihood function of a respondent's ability which may have multiple modes, flat modes, or both. These conditions, often associated with guessing of multiple-choice (MC) questions, can introduce uncertainty and bias to ability estimation by maximum likelihood…
Computational Software for Fitting Seismic Data to Epidemic-Type Aftershock Sequence Models
NASA Astrophysics Data System (ADS)
Chu, A.
2014-12-01
Modern earthquake catalogs are often analyzed using spatial-temporal point process models such as the epidemic-type aftershock sequence (ETAS) models of Ogata (1998). My work introduces software to implement two of ETAS models described in Ogata (1998). To find the Maximum-Likelihood Estimates (MLEs), my software provides estimates of the homogeneous background rate parameter and the temporal and spatial parameters that govern triggering effects by applying the Expectation-Maximization (EM) algorithm introduced in Veen and Schoenberg (2008). Despite other computer programs exist for similar data modeling purpose, using EM-algorithm has the benefits of stability and robustness (Veen and Schoenberg, 2008). Spatial shapes that are very long and narrow cause difficulties in optimization convergence and problems with flat or multi-modal log-likelihood functions encounter similar issues. My program uses a robust method to preset a parameter to overcome the non-convergence computational issue. In addition to model fitting, the software is equipped with useful tools for examining modeling fitting results, for example, visualization of estimated conditional intensity, and estimation of expected number of triggered aftershocks. A simulation generator is also given with flexible spatial shapes that may be defined by the user. This open-source software has a very simple user interface. The user may execute it on a local computer, and the program also has potential to be hosted online. Java language is used for the software's core computing part and an optional interface to the statistical package R is provided.
Probabilistic atlas based labeling of the cerebral vessel tree
NASA Astrophysics Data System (ADS)
Van de Giessen, Martijn; Janssen, Jasper P.; Brouwer, Patrick A.; Reiber, Johan H. C.; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke
2015-03-01
Preoperative imaging of the cerebral vessel tree is essential for planning therapy on intracranial stenoses and aneurysms. Usually, a magnetic resonance angiography (MRA) or computed tomography angiography (CTA) is acquired from which the cerebral vessel tree is segmented. Accurate analysis is helped by the labeling of the cerebral vessels, but labeling is non-trivial due to anatomical topological variability and missing branches due to acquisition issues. In recent literature, labeling the cerebral vasculature around the Circle of Willis has mainly been approached as a graph-based problem. The most successful method, however, requires the definition of all possible permutations of missing vessels, which limits application to subsets of the tree and ignores spatial information about the vessel locations. This research aims to perform labeling using probabilistic atlases that model spatial vessel and label likelihoods. A cerebral vessel tree is aligned to a probabilistic atlas and subsequently each vessel is labeled by computing the maximum label likelihood per segment from label-specific atlases. The proposed method was validated on 25 segmented cerebral vessel trees. Labeling accuracies were close to 100% for large vessels, but dropped to 50-60% for small vessels that were only present in less than 50% of the set. With this work we showed that using solely spatial information of the vessel labels, vessel segments from stable vessels (>50% presence) were reliably classified. This spatial information will form the basis for a future labeling strategy with a very loose topological model.
Mismatch removal via coherent spatial relations
NASA Astrophysics Data System (ADS)
Chen, Jun; Ma, Jiayi; Yang, Changcai; Tian, Jinwen
2014-07-01
We propose a method for removing mismatches from the given putative point correspondences in image pairs based on "coherent spatial relations." Under the Bayesian framework, we formulate our approach as a maximum likelihood problem and solve a coherent spatial relation between the putative point correspondences using an expectation-maximization (EM) algorithm. Our approach associates each point correspondence with a latent variable indicating it as being either an inlier or an outlier, and alternatively estimates the inlier set and recovers the coherent spatial relation. It can handle not only the case of image pairs with rigid motions but also the case of image pairs with nonrigid motions. To parameterize the coherent spatial relation, we choose two-view geometry and thin-plate spline as models for rigid and nonrigid cases, respectively. The mismatches could be successfully removed via the coherent spatial relations after the EM algorithm converges. The quantitative results on various experimental data demonstrate that our method outperforms many state-of-the-art methods, it is not affected by low initial correct match percentages, and is robust to most geometric transformations including a large viewing angle, image rotation, and affine transformation.
ERIC Educational Resources Information Center
Jones, Douglas H.
The progress of modern mental test theory depends very much on the techniques of maximum likelihood estimation, and many popular applications make use of likelihoods induced by logistic item response models. While, in reality, item responses are nonreplicate within a single examinee and the logistic models are only ideal, practitioners make…
Bias Correction for the Maximum Likelihood Estimate of Ability. Research Report. ETS RR-05-15
ERIC Educational Resources Information Center
Zhang, Jinming
2005-01-01
Lord's bias function and the weighted likelihood estimation method are effective in reducing the bias of the maximum likelihood estimate of an examinee's ability under the assumption that the true item parameters are known. This paper presents simulation studies to determine the effectiveness of these two methods in reducing the bias when the item…
Incorporating spatial context into statistical classification of multidimensional image data
NASA Technical Reports Server (NTRS)
Bauer, M. E. (Principal Investigator); Tilton, J. C.; Swain, P. H.
1981-01-01
Compound decision theory is employed to develop a general statistical model for classifying image data using spatial context. The classification algorithm developed from this model exploits the tendency of certain ground-cover classes to occur more frequently in some spatial contexts than in others. A key input to this contextural classifier is a quantitative characterization of this tendency: the context function. Several methods for estimating the context function are explored, and two complementary methods are recommended. The contextural classifier is shown to produce substantial improvements in classification accuracy compared to the accuracy produced by a non-contextural uniform-priors maximum likelihood classifier when these methods of estimating the context function are used. An approximate algorithm, which cuts computational requirements by over one-half, is presented. The search for an optimal implementation is furthered by an exploration of the relative merits of using spectral classes or information classes for classification and/or context function estimation.
Estimating parameter of Rayleigh distribution by using Maximum Likelihood method and Bayes method
NASA Astrophysics Data System (ADS)
Ardianti, Fitri; Sutarman
2018-01-01
In this paper, we use Maximum Likelihood estimation and Bayes method under some risk function to estimate parameter of Rayleigh distribution to know the best method. The prior knowledge which used in Bayes method is Jeffrey’s non-informative prior. Maximum likelihood estimation and Bayes method under precautionary loss function, entropy loss function, loss function-L 1 will be compared. We compare these methods by bias and MSE value using R program. After that, the result will be displayed in tables to facilitate the comparisons.
NASA Technical Reports Server (NTRS)
Colwell, R. N. (Principal Investigator)
1984-01-01
The spatial, geometric, and radiometric qualities of LANDSAT 4 thematic mapper (TM) and multispectral scanner (MSS) data were evaluated by interpreting, through visual and computer means, film and digital products for selected agricultural and forest cover types in California. Multispectral analyses employing Bayesian maximum likelihood, discrete relaxation, and unsupervised clustering algorithms were used to compare the usefulness of TM and MSS data for discriminating individual cover types. Some of the significant results are as follows: (1) for maximizing the interpretability of agricultural and forest resources, TM color composites should contain spectral bands in the visible, near-reflectance infrared, and middle-reflectance infrared regions, namely TM 4 and TM % and must contain TM 4 in all cases even at the expense of excluding TM 5; (2) using enlarged TM film products, planimetric accuracy of mapped poins was within 91 meters (RMSE east) and 117 meters (RMSE north); (3) using TM digital products, planimetric accuracy of mapped points was within 12.0 meters (RMSE east) and 13.7 meters (RMSE north); and (4) applying a contextual classification algorithm to TM data provided classification accuracies competitive with Bayesian maximum likelihood.
Identifying irregularly shaped crime hot-spots using a multiobjective evolutionary algorithm
NASA Astrophysics Data System (ADS)
Wu, Xiaolan; Grubesic, Tony H.
2010-12-01
Spatial cluster detection techniques are widely used in criminology, geography, epidemiology, and other fields. In particular, spatial scan statistics are popular and efficient techniques for detecting areas of elevated crime or disease events. The majority of spatial scan approaches attempt to delineate geographic zones by evaluating the significance of clusters using likelihood ratio statistics tested with the Poisson distribution. While this can be effective, many scan statistics give preference to circular clusters, diminishing their ability to identify elongated and/or irregular shaped clusters. Although adjusting the shape of the scan window can mitigate some of these problems, both the significance of irregular clusters and their spatial structure must be accounted for in a meaningful way. This paper utilizes a multiobjective evolutionary algorithm to find clusters with maximum significance while quantitatively tracking their geographic structure. Crime data for the city of Cincinnati are utilized to demonstrate the advantages of the new approach and highlight its benefits versus more traditional scan statistics.
Closed-loop carrier phase synchronization techniques motivated by likelihood functions
NASA Technical Reports Server (NTRS)
Tsou, H.; Hinedi, S.; Simon, M.
1994-01-01
This article reexamines the notion of closed-loop carrier phase synchronization motivated by the theory of maximum a posteriori phase estimation with emphasis on the development of new structures based on both maximum-likelihood and average-likelihood functions. The criterion of performance used for comparison of all the closed-loop structures discussed is the mean-squared phase error for a fixed-loop bandwidth.
Fast maximum likelihood estimation of mutation rates using a birth-death process.
Wu, Xiaowei; Zhu, Hongxiao
2015-02-07
Since fluctuation analysis was first introduced by Luria and Delbrück in 1943, it has been widely used to make inference about spontaneous mutation rates in cultured cells. Under certain model assumptions, the probability distribution of the number of mutants that appear in a fluctuation experiment can be derived explicitly, which provides the basis of mutation rate estimation. It has been shown that, among various existing estimators, the maximum likelihood estimator usually demonstrates some desirable properties such as consistency and lower mean squared error. However, its application in real experimental data is often hindered by slow computation of likelihood due to the recursive form of the mutant-count distribution. We propose a fast maximum likelihood estimator of mutation rates, MLE-BD, based on a birth-death process model with non-differential growth assumption. Simulation studies demonstrate that, compared with the conventional maximum likelihood estimator derived from the Luria-Delbrück distribution, MLE-BD achieves substantial improvement on computational speed and is applicable to arbitrarily large number of mutants. In addition, it still retains good accuracy on point estimation. Published by Elsevier Ltd.
Hyperspectral image reconstruction for x-ray fluorescence tomography
Gürsoy, Doǧa; Biçer, Tekin; Lanzirotti, Antonio; ...
2015-01-01
A penalized maximum-likelihood estimation is proposed to perform hyperspectral (spatio-spectral) image reconstruction for X-ray fluorescence tomography. The approach minimizes a Poisson-based negative log-likelihood of the observed photon counts, and uses a penalty term that has the effect of encouraging local continuity of model parameter estimates in both spatial and spectral dimensions simultaneously. The performance of the reconstruction method is demonstrated with experimental data acquired from a seed of arabidopsis thaliana collected at the 13-ID-E microprobe beamline at the Advanced Photon Source. The resulting element distribution estimates with the proposed approach show significantly better reconstruction quality than the conventional analytical inversionmore » approaches, and allows for a high data compression factor which can reduce data acquisition times remarkably. In particular, this technique provides the capability to tomographically reconstruct full energy dispersive spectra without compromising reconstruction artifacts that impact the interpretation of results.« less
Low-complexity approximations to maximum likelihood MPSK modulation classification
NASA Technical Reports Server (NTRS)
Hamkins, Jon
2004-01-01
We present a new approximation to the maximum likelihood classifier to discriminate between M-ary and M'-ary phase-shift-keying transmitted on an additive white Gaussian noise (AWGN) channel and received noncoherentl, partially coherently, or coherently.
2014-01-01
Background We propose a mathematical model for multichannel assessment of the trial-to-trial variability of auditory evoked brain responses in magnetoencephalography (MEG). Methods Following the work of de Munck et al., our approach is based on the maximum likelihood estimation and involves an approximation of the spatio-temporal covariance of the contaminating background noise by means of the Kronecker product of its spatial and temporal covariance matrices. Extending the work of de Munck et al., where the trial-to-trial variability of the responses was considered identical to all channels, we evaluate it for each individual channel. Results Simulations with two equivalent current dipoles (ECDs) with different trial-to-trial variability, one seeded in each of the auditory cortices, were used to study the applicability of the proposed methodology on the sensor level and revealed spatial selectivity of the trial-to-trial estimates. In addition, we simulated a scenario with neighboring ECDs, to show limitations of the method. We also present an illustrative example of the application of this methodology to real MEG data taken from an auditory experimental paradigm, where we found hemispheric lateralization of the habituation effect to multiple stimulus presentation. Conclusions The proposed algorithm is capable of reconstructing lateralization effects of the trial-to-trial variability of evoked responses, i.e. when an ECD of only one hemisphere habituates, whereas the activity of the other hemisphere is not subject to habituation. Hence, it may be a useful tool in paradigms that assume lateralization effects, like, e.g., those involving language processing. PMID:24939398
Maximum likelihood decoding analysis of accumulate-repeat-accumulate codes
NASA Technical Reports Server (NTRS)
Abbasfar, A.; Divsalar, D.; Yao, K.
2004-01-01
In this paper, the performance of the repeat-accumulate codes with (ML) decoding are analyzed and compared to random codes by very tight bounds. Some simple codes are shown that perform very close to Shannon limit with maximum likelihood decoding.
NASA Technical Reports Server (NTRS)
Thadani, S. G.
1977-01-01
The Maximum Likelihood Estimation of Signature Transformation (MLEST) algorithm is used to obtain maximum likelihood estimates (MLE) of affine transformation. The algorithm has been evaluated for three sets of data: simulated (training and recognition segment pairs), consecutive-day (data gathered from Landsat images), and geographical-extension (large-area crop inventory experiment) data sets. For each set, MLEST signature extension runs were made to determine MLE values and the affine-transformed training segment signatures were used to classify the recognition segments. The classification results were used to estimate wheat proportions at 0 and 1% threshold values.
Maximum-likelihood block detection of noncoherent continuous phase modulation
NASA Technical Reports Server (NTRS)
Simon, Marvin K.; Divsalar, Dariush
1993-01-01
This paper examines maximum-likelihood block detection of uncoded full response CPM over an additive white Gaussian noise (AWGN) channel. Both the maximum-likelihood metrics and the bit error probability performances of the associated detection algorithms are considered. The special and popular case of minimum-shift-keying (MSK) corresponding to h = 0.5 and constant amplitude frequency pulse is treated separately. The many new receiver structures that result from this investigation can be compared to the traditional ones that have been used in the past both from the standpoint of simplicity of implementation and optimality of performance.
Design of simplified maximum-likelihood receivers for multiuser CPM systems.
Bing, Li; Bai, Baoming
2014-01-01
A class of simplified maximum-likelihood receivers designed for continuous phase modulation based multiuser systems is proposed. The presented receiver is built upon a front end employing mismatched filters and a maximum-likelihood detector defined in a low-dimensional signal space. The performance of the proposed receivers is analyzed and compared to some existing receivers. Some schemes are designed to implement the proposed receivers and to reveal the roles of different system parameters. Analysis and numerical results show that the proposed receivers can approach the optimum multiuser receivers with significantly (even exponentially in some cases) reduced complexity and marginal performance degradation.
Maximum likelihood clustering with dependent feature trees
NASA Technical Reports Server (NTRS)
Chittineni, C. B. (Principal Investigator)
1981-01-01
The decomposition of mixture density of the data into its normal component densities is considered. The densities are approximated with first order dependent feature trees using criteria of mutual information and distance measures. Expressions are presented for the criteria when the densities are Gaussian. By defining different typs of nodes in a general dependent feature tree, maximum likelihood equations are developed for the estimation of parameters using fixed point iterations. The field structure of the data is also taken into account in developing maximum likelihood equations. Experimental results from the processing of remotely sensed multispectral scanner imagery data are included.
Spatial forecast of landslides in three gorges based on spatial data mining.
Wang, Xianmin; Niu, Ruiqing
2009-01-01
The Three Gorges is a region with a very high landslide distribution density and a concentrated population. In Three Gorges there are often landslide disasters, and the potential risk of landslides is tremendous. In this paper, focusing on Three Gorges, which has a complicated landform, spatial forecasting of landslides is studied by establishing 20 forecast factors (spectra, texture, vegetation coverage, water level of reservoir, slope structure, engineering rock group, elevation, slope, aspect, etc). China-Brazil Earth Resources Satellite (Cbers) images were adopted based on C4.5 decision tree to mine spatial forecast landslide criteria in Guojiaba Town (Zhigui County) in Three Gorges and based on this knowledge, perform intelligent spatial landslide forecasts for Guojiaba Town. All landslides lie in the dangerous and unstable regions, so the forecast result is good. The method proposed in the paper is compared with seven other methods: IsoData, K-Means, Mahalanobis Distance, Maximum Likelihood, Minimum Distance, Parallelepiped and Information Content Model. The experimental results show that the method proposed in this paper has a high forecast precision, noticeably higher than that of the other seven methods.
Spatial Forecast of Landslides in Three Gorges Based On Spatial Data Mining
Wang, Xianmin; Niu, Ruiqing
2009-01-01
The Three Gorges is a region with a very high landslide distribution density and a concentrated population. In Three Gorges there are often landslide disasters, and the potential risk of landslides is tremendous. In this paper, focusing on Three Gorges, which has a complicated landform, spatial forecasting of landslides is studied by establishing 20 forecast factors (spectra, texture, vegetation coverage, water level of reservoir, slope structure, engineering rock group, elevation, slope, aspect, etc). China-Brazil Earth Resources Satellite (Cbers) images were adopted based on C4.5 decision tree to mine spatial forecast landslide criteria in Guojiaba Town (Zhigui County) in Three Gorges and based on this knowledge, perform intelligent spatial landslide forecasts for Guojiaba Town. All landslides lie in the dangerous and unstable regions, so the forecast result is good. The method proposed in the paper is compared with seven other methods: IsoData, K-Means, Mahalanobis Distance, Maximum Likelihood, Minimum Distance, Parallelepiped and Information Content Model. The experimental results show that the method proposed in this paper has a high forecast precision, noticeably higher than that of the other seven methods. PMID:22573999
ERIC Educational Resources Information Center
Magis, David; Raiche, Gilles
2010-01-01
In this article the authors focus on the issue of the nonuniqueness of the maximum likelihood (ML) estimator of proficiency level in item response theory (with special attention to logistic models). The usual maximum a posteriori (MAP) method offers a good alternative within that framework; however, this article highlights some drawbacks of its…
Fitting and Modeling in the ASC Data Analysis Environment
NASA Astrophysics Data System (ADS)
Doe, S.; Siemiginowska, A.; Joye, W.; McDowell, J.
As part of the AXAF Science Center (ASC) Data Analysis Environment, we will provide to the astronomical community a Fitting Application. We present a design of the application in this paper. Our design goal is to give the user the flexibility to use a variety of optimization techniques (Levenberg-Marquardt, maximum entropy, Monte Carlo, Powell, downhill simplex, CERN-Minuit, and simulated annealing) and fit statistics (chi (2) , Cash, variance, and maximum likelihood); our modular design allows the user easily to add their own optimization techniques and/or fit statistics. We also present a comparison of the optimization techniques to be provided by the Application. The high spatial and spectral resolutions that will be obtained with AXAF instruments require a sophisticated data modeling capability. We will provide not only a suite of astronomical spatial and spectral source models, but also the capability of combining these models into source models of up to four data dimensions (i.e., into source functions f(E,x,y,t)). We will also provide tools to create instrument response models appropriate for each observation.
Cosmic shear measurement with maximum likelihood and maximum a posteriori inference
NASA Astrophysics Data System (ADS)
Hall, Alex; Taylor, Andy
2017-06-01
We investigate the problem of noise bias in maximum likelihood and maximum a posteriori estimators for cosmic shear. We derive the leading and next-to-leading order biases and compute them in the context of galaxy ellipticity measurements, extending previous work on maximum likelihood inference for weak lensing. We show that a large part of the bias on these point estimators can be removed using information already contained in the likelihood when a galaxy model is specified, without the need for external calibration. We test these bias-corrected estimators on simulated galaxy images similar to those expected from planned space-based weak lensing surveys, with promising results. We find that the introduction of an intrinsic shape prior can help with mitigation of noise bias, such that the maximum a posteriori estimate can be made less biased than the maximum likelihood estimate. Second-order terms offer a check on the convergence of the estimators, but are largely subdominant. We show how biases propagate to shear estimates, demonstrating in our simple set-up that shear biases can be reduced by orders of magnitude and potentially to within the requirements of planned space-based surveys at mild signal-to-noise ratio. We find that second-order terms can exhibit significant cancellations at low signal-to-noise ratio when Gaussian noise is assumed, which has implications for inferring the performance of shear-measurement algorithms from simplified simulations. We discuss the viability of our point estimators as tools for lensing inference, arguing that they allow for the robust measurement of ellipticity and shear.
Some Small Sample Results for Maximum Likelihood Estimation in Multidimensional Scaling.
ERIC Educational Resources Information Center
Ramsay, J. O.
1980-01-01
Some aspects of the small sample behavior of maximum likelihood estimates in multidimensional scaling are investigated with Monte Carlo techniques. In particular, the chi square test for dimensionality is examined and a correction for bias is proposed and evaluated. (Author/JKS)
An ERTS-1 investigation for Lake Ontario and its basin
NASA Technical Reports Server (NTRS)
Polcyn, F. C.; Falconer, A. (Principal Investigator); Wagner, T. W.; Rebel, D. L.
1975-01-01
The author has identified the following significant results. Methods of manual, semi-automatic, and automatic (computer) data processing were evaluated, as were the requirements for spatial physiographic and limnological information. The coupling of specially processed ERTS data with simulation models of the watershed precipitation/runoff process provides potential for water resources management. Optimal and full use of the data requires a mix of data processing and analysis techniques, including single band editing, two band ratios, and multiband combinations. A combination of maximum likelihood ratio and near-IR/red band ratio processing was found to be particularly useful.
ATAC Autocuer Modeling Analysis.
1981-01-01
the analysis of the simple rectangular scrnentation (1) is based on detection and estimation theory (2). This approach uses the concept of maximum ...continuous wave forms. In order to develop the principles of maximum likelihood, it is con- venient to develop the principles for the "classical...the concept of maximum likelihood is significant in that it provides the optimum performance of the detection/estimation problem. With a knowledge of
Campos-Filho, N; Franco, E L
1989-02-01
A frequent procedure in matched case-control studies is to report results from the multivariate unmatched analyses if they do not differ substantially from the ones obtained after conditioning on the matching variables. Although conceptually simple, this rule requires that an extensive series of logistic regression models be evaluated by both the conditional and unconditional maximum likelihood methods. Most computer programs for logistic regression employ only one maximum likelihood method, which requires that the analyses be performed in separate steps. This paper describes a Pascal microcomputer (IBM PC) program that performs multiple logistic regression by both maximum likelihood estimation methods, which obviates the need for switching between programs to obtain relative risk estimates from both matched and unmatched analyses. The program calculates most standard statistics and allows factoring of categorical or continuous variables by two distinct methods of contrast. A built-in, descriptive statistics option allows the user to inspect the distribution of cases and controls across categories of any given variable.
The Maximum Likelihood Solution for Inclination-only Data
NASA Astrophysics Data System (ADS)
Arason, P.; Levi, S.
2006-12-01
The arithmetic means of inclination-only data are known to introduce a shallowing bias. Several methods have been proposed to estimate unbiased means of the inclination along with measures of the precision. Most of the inclination-only methods were designed to maximize the likelihood function of the marginal Fisher distribution. However, the exact analytical form of the maximum likelihood function is fairly complicated, and all these methods require various assumptions and approximations that are inappropriate for many data sets. For some steep and dispersed data sets, the estimates provided by these methods are significantly displaced from the peak of the likelihood function to systematically shallower inclinations. The problem in locating the maximum of the likelihood function is partly due to difficulties in accurately evaluating the function for all values of interest. This is because some elements of the log-likelihood function increase exponentially as precision parameters increase, leading to numerical instabilities. In this study we succeeded in analytically cancelling exponential elements from the likelihood function, and we are now able to calculate its value for any location in the parameter space and for any inclination-only data set, with full accuracy. Furtermore, we can now calculate the partial derivatives of the likelihood function with desired accuracy. Locating the maximum likelihood without the assumptions required by previous methods is now straight forward. The information to separate the mean inclination from the precision parameter will be lost for very steep and dispersed data sets. It is worth noting that the likelihood function always has a maximum value. However, for some dispersed and steep data sets with few samples, the likelihood function takes its highest value on the boundary of the parameter space, i.e. at inclinations of +/- 90 degrees, but with relatively well defined dispersion. Our simulations indicate that this occurs quite frequently for certain data sets, and relatively small perturbations in the data will drive the maxima to the boundary. We interpret this to indicate that, for such data sets, the information needed to separate the mean inclination and the precision parameter is permanently lost. To assess the reliability and accuracy of our method we generated large number of random Fisher-distributed data sets and used seven methods to estimate the mean inclination and precision paramenter. These comparisons are described by Levi and Arason at the 2006 AGU Fall meeting. The results of the various methods is very favourable to our new robust maximum likelihood method, which, on average, is the most reliable, and the mean inclination estimates are the least biased toward shallow values. Further information on our inclination-only analysis can be obtained from: http://www.vedur.is/~arason/paleomag
Estimation Methods for Non-Homogeneous Regression - Minimum CRPS vs Maximum Likelihood
NASA Astrophysics Data System (ADS)
Gebetsberger, Manuel; Messner, Jakob W.; Mayr, Georg J.; Zeileis, Achim
2017-04-01
Non-homogeneous regression models are widely used to statistically post-process numerical weather prediction models. Such regression models correct for errors in mean and variance and are capable to forecast a full probability distribution. In order to estimate the corresponding regression coefficients, CRPS minimization is performed in many meteorological post-processing studies since the last decade. In contrast to maximum likelihood estimation, CRPS minimization is claimed to yield more calibrated forecasts. Theoretically, both scoring rules used as an optimization score should be able to locate a similar and unknown optimum. Discrepancies might result from a wrong distributional assumption of the observed quantity. To address this theoretical concept, this study compares maximum likelihood and minimum CRPS estimation for different distributional assumptions. First, a synthetic case study shows that, for an appropriate distributional assumption, both estimation methods yield to similar regression coefficients. The log-likelihood estimator is slightly more efficient. A real world case study for surface temperature forecasts at different sites in Europe confirms these results but shows that surface temperature does not always follow the classical assumption of a Gaussian distribution. KEYWORDS: ensemble post-processing, maximum likelihood estimation, CRPS minimization, probabilistic temperature forecasting, distributional regression models
NASA Astrophysics Data System (ADS)
Voss, Sebastian; Zimmermann, Beate; Zimmermann, Alexander
2016-04-01
In the last three decades, an increasing number of studies analyzed spatial patterns in throughfall to investigate the consequences of rainfall redistribution for biogeochemical and hydrological processes in forests. In the majority of cases, variograms were used to characterize the spatial properties of the throughfall data. The estimation of the variogram from sample data requires an appropriate sampling scheme: most importantly, a large sample and an appropriate layout of sampling locations that often has to serve both variogram estimation and geostatistical prediction. While some recommendations on these aspects exist, they focus on Gaussian data and high ratios of the variogram range to the extent of the study area. However, many hydrological data, and throughfall data in particular, do not follow a Gaussian distribution. In this study, we examined the effect of extent, sample size, sampling design, and calculation methods on variogram estimation of throughfall data. For our investigation, we first generated non-Gaussian random fields based on throughfall data with heavy outliers. Subsequently, we sampled the fields with three extents (plots with edge lengths of 25 m, 50 m, and 100 m), four common sampling designs (two grid-based layouts, transect and random sampling), and five sample sizes (50, 100, 150, 200, 400). We then estimated the variogram parameters by method-of-moments and residual maximum likelihood. Our key findings are threefold. First, the choice of the extent has a substantial influence on the estimation of the variogram. A comparatively small ratio of the extent to the correlation length is beneficial for variogram estimation. Second, a combination of a minimum sample size of 150, a design that ensures the sampling of small distances and variogram estimation by residual maximum likelihood offers a good compromise between accuracy and efficiency. Third, studies relying on method-of-moments based variogram estimation may have to employ at least 200 sampling points for reliable variogram estimates. These suggested sample sizes exceed the numbers recommended by studies dealing with Gaussian data by up to 100 %. Given that most previous throughfall studies relied on method-of-moments variogram estimation and sample sizes << 200, our current knowledge about throughfall spatial variability stands on shaky ground.
Algorithms of maximum likelihood data clustering with applications
NASA Astrophysics Data System (ADS)
Giada, Lorenzo; Marsili, Matteo
2002-12-01
We address the problem of data clustering by introducing an unsupervised, parameter-free approach based on maximum likelihood principle. Starting from the observation that data sets belonging to the same cluster share a common information, we construct an expression for the likelihood of any possible cluster structure. The likelihood in turn depends only on the Pearson's coefficient of the data. We discuss clustering algorithms that provide a fast and reliable approximation to maximum likelihood configurations. Compared to standard clustering methods, our approach has the advantages that (i) it is parameter free, (ii) the number of clusters need not be fixed in advance and (iii) the interpretation of the results is transparent. In order to test our approach and compare it with standard clustering algorithms, we analyze two very different data sets: time series of financial market returns and gene expression data. We find that different maximization algorithms produce similar cluster structures whereas the outcome of standard algorithms has a much wider variability.
NASA Technical Reports Server (NTRS)
Mccallister, R. D.; Crawford, J. J.
1981-01-01
It is pointed out that the NASA 30/20 GHz program will place in geosynchronous orbit a technically advanced communication satellite which can process time-division multiple access (TDMA) information bursts with a data throughput in excess of 4 GBPS. To guarantee acceptable data quality during periods of signal attenuation it will be necessary to provide a significant forward error correction (FEC) capability. Convolutional decoding (utilizing the maximum-likelihood techniques) was identified as the most attractive FEC strategy. Design trade-offs regarding a maximum-likelihood convolutional decoder (MCD) in a single-chip CMOS implementation are discussed.
PAMLX: a graphical user interface for PAML.
Xu, Bo; Yang, Ziheng
2013-12-01
This note announces pamlX, a graphical user interface/front end for the paml (for Phylogenetic Analysis by Maximum Likelihood) program package (Yang Z. 1997. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 13:555-556; Yang Z. 2007. PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol. 24:1586-1591). pamlX is written in C++ using the Qt library and communicates with paml programs through files. It can be used to create, edit, and print control files for paml programs and to launch paml runs. The interface is available for free download at http://abacus.gene.ucl.ac.uk/software/paml.html.
On the assessment of spatial resolution of PET systems with iterative image reconstruction
NASA Astrophysics Data System (ADS)
Gong, Kuang; Cherry, Simon R.; Qi, Jinyi
2016-03-01
Spatial resolution is an important metric for performance characterization in PET systems. Measuring spatial resolution is straightforward with a linear reconstruction algorithm, such as filtered backprojection, and can be performed by reconstructing a point source scan and calculating the full-width-at-half-maximum (FWHM) along the principal directions. With the widespread adoption of iterative reconstruction methods, it is desirable to quantify the spatial resolution using an iterative reconstruction algorithm. However, the task can be difficult because the reconstruction algorithms are nonlinear and the non-negativity constraint can artificially enhance the apparent spatial resolution if a point source image is reconstructed without any background. Thus, it was recommended that a background should be added to the point source data before reconstruction for resolution measurement. However, there has been no detailed study on the effect of the point source contrast on the measured spatial resolution. Here we use point source scans from a preclinical PET scanner to investigate the relationship between measured spatial resolution and the point source contrast. We also evaluate whether the reconstruction of an isolated point source is predictive of the ability of the system to resolve two adjacent point sources. Our results indicate that when the point source contrast is below a certain threshold, the measured FWHM remains stable. Once the contrast is above the threshold, the measured FWHM monotonically decreases with increasing point source contrast. In addition, the measured FWHM also monotonically decreases with iteration number for maximum likelihood estimate. Therefore, when measuring system resolution with an iterative reconstruction algorithm, we recommend using a low-contrast point source and a fixed number of iterations.
NASA Astrophysics Data System (ADS)
Wang, C.; Rubin, Y.
2014-12-01
Spatial distribution of important geotechnical parameter named compression modulus Es contributes considerably to the understanding of the underlying geological processes and the adequate assessment of the Es mechanics effects for differential settlement of large continuous structure foundation. These analyses should be derived using an assimilating approach that combines in-situ static cone penetration test (CPT) with borehole experiments. To achieve such a task, the Es distribution of stratum of silty clay in region A of China Expo Center (Shanghai) is studied using the Bayesian-maximum entropy method. This method integrates rigorously and efficiently multi-precision of different geotechnical investigations and sources of uncertainty. Single CPT samplings were modeled as a rational probability density curve by maximum entropy theory. Spatial prior multivariate probability density function (PDF) and likelihood PDF of the CPT positions were built by borehole experiments and the potential value of the prediction point, then, preceding numerical integration on the CPT probability density curves, the posterior probability density curve of the prediction point would be calculated by the Bayesian reverse interpolation framework. The results were compared between Gaussian Sequential Stochastic Simulation and Bayesian methods. The differences were also discussed between single CPT samplings of normal distribution and simulated probability density curve based on maximum entropy theory. It is shown that the study of Es spatial distributions can be improved by properly incorporating CPT sampling variation into interpolation process, whereas more informative estimations are generated by considering CPT Uncertainty for the estimation points. Calculation illustrates the significance of stochastic Es characterization in a stratum, and identifies limitations associated with inadequate geostatistical interpolation techniques. This characterization results will provide a multi-precision information assimilation method of other geotechnical parameters.
Maximum Likelihood Estimation of Nonlinear Structural Equation Models.
ERIC Educational Resources Information Center
Lee, Sik-Yum; Zhu, Hong-Tu
2002-01-01
Developed an EM type algorithm for maximum likelihood estimation of a general nonlinear structural equation model in which the E-step is completed by a Metropolis-Hastings algorithm. Illustrated the methodology with results from a simulation study and two real examples using data from previous studies. (SLD)
ERIC Educational Resources Information Center
Hamaker, Ellen L.; Dolan, Conor V.; Molenaar, Peter C. M.
2003-01-01
Demonstrated, through simulation, that stationary autoregressive moving average (ARMA) models may be fitted readily when T>N, using normal theory raw maximum likelihood structural equation modeling. Also provides some illustrations based on real data. (SLD)
Maximum likelihood phase-retrieval algorithm: applications.
Nahrstedt, D A; Southwell, W H
1984-12-01
The maximum likelihood estimator approach is shown to be effective in determining the wave front aberration in systems involving laser and flow field diagnostics and optical testing. The robustness of the algorithm enables convergence even in cases of severe wave front error and real, nonsymmetrical, obscured amplitude distributions.
Wu, Yufeng
2012-03-01
Incomplete lineage sorting can cause incongruence between the phylogenetic history of genes (the gene tree) and that of the species (the species tree), which can complicate the inference of phylogenies. In this article, I present a new coalescent-based algorithm for species tree inference with maximum likelihood. I first describe an improved method for computing the probability of a gene tree topology given a species tree, which is much faster than an existing algorithm by Degnan and Salter (2005). Based on this method, I develop a practical algorithm that takes a set of gene tree topologies and infers species trees with maximum likelihood. This algorithm searches for the best species tree by starting from initial species trees and performing heuristic search to obtain better trees with higher likelihood. This algorithm, called STELLS (which stands for Species Tree InfErence with Likelihood for Lineage Sorting), has been implemented in a program that is downloadable from the author's web page. The simulation results show that the STELLS algorithm is more accurate than an existing maximum likelihood method for many datasets, especially when there is noise in gene trees. I also show that the STELLS algorithm is efficient and can be applied to real biological datasets. © 2011 The Author. Evolution© 2011 The Society for the Study of Evolution.
Estimating the variance for heterogeneity in arm-based network meta-analysis.
Piepho, Hans-Peter; Madden, Laurence V; Roger, James; Payne, Roger; Williams, Emlyn R
2018-04-19
Network meta-analysis can be implemented by using arm-based or contrast-based models. Here we focus on arm-based models and fit them using generalized linear mixed model procedures. Full maximum likelihood (ML) estimation leads to biased trial-by-treatment interaction variance estimates for heterogeneity. Thus, our objective is to investigate alternative approaches to variance estimation that reduce bias compared with full ML. Specifically, we use penalized quasi-likelihood/pseudo-likelihood and hierarchical (h) likelihood approaches. In addition, we consider a novel model modification that yields estimators akin to the residual maximum likelihood estimator for linear mixed models. The proposed methods are compared by simulation, and 2 real datasets are used for illustration. Simulations show that penalized quasi-likelihood/pseudo-likelihood and h-likelihood reduce bias and yield satisfactory coverage rates. Sum-to-zero restriction and baseline contrasts for random trial-by-treatment interaction effects, as well as a residual ML-like adjustment, also reduce bias compared with an unconstrained model when ML is used, but coverage rates are not quite as good. Penalized quasi-likelihood/pseudo-likelihood and h-likelihood are therefore recommended. Copyright © 2018 John Wiley & Sons, Ltd.
On Muthen's Maximum Likelihood for Two-Level Covariance Structure Models
ERIC Educational Resources Information Center
Yuan, Ke-Hai; Hayashi, Kentaro
2005-01-01
Data in social and behavioral sciences are often hierarchically organized. Special statistical procedures that take into account the dependence of such observations have been developed. Among procedures for 2-level covariance structure analysis, Muthen's maximum likelihood (MUML) has the advantage of easier computation and faster convergence. When…
Maximum Likelihood Estimation of Nonlinear Structural Equation Models with Ignorable Missing Data
ERIC Educational Resources Information Center
Lee, Sik-Yum; Song, Xin-Yuan; Lee, John C. K.
2003-01-01
The existing maximum likelihood theory and its computer software in structural equation modeling are established on the basis of linear relationships among latent variables with fully observed data. However, in social and behavioral sciences, nonlinear relationships among the latent variables are important for establishing more meaningful models…
Mixture Rasch Models with Joint Maximum Likelihood Estimation
ERIC Educational Resources Information Center
Willse, John T.
2011-01-01
This research provides a demonstration of the utility of mixture Rasch models. Specifically, a model capable of estimating a mixture partial credit model using joint maximum likelihood is presented. Like the partial credit model, the mixture partial credit model has the beneficial feature of being appropriate for analysis of assessment data…
Consistency of Rasch Model Parameter Estimation: A Simulation Study.
ERIC Educational Resources Information Center
van den Wollenberg, Arnold L.; And Others
1988-01-01
The unconditional--simultaneous--maximum likelihood (UML) estimation procedure for the one-parameter logistic model produces biased estimators. The UML method is inconsistent and is not a good alternative to conditional maximum likelihood method, at least with small numbers of items. The minimum Chi-square estimation procedure produces unbiased…
Model uncertainty estimation and risk assessment is essential to environmental management and informed decision making on pollution mitigation strategies. In this study, we apply a probabilistic methodology, which combines Bayesian Monte Carlo simulation and Maximum Likelihood e...
ERIC Educational Resources Information Center
Casabianca, Jodi M.; Lewis, Charles
2015-01-01
Loglinear smoothing (LLS) estimates the latent trait distribution while making fewer assumptions about its form and maintaining parsimony, thus leading to more precise item response theory (IRT) item parameter estimates than standard marginal maximum likelihood (MML). This article provides the expectation-maximization algorithm for MML estimation…
A Study of Item Bias for Attitudinal Measurement Using Maximum Likelihood Factor Analysis.
ERIC Educational Resources Information Center
Mayberry, Paul W.
A technique for detecting item bias that is responsive to attitudinal measurement considerations is a maximum likelihood factor analysis procedure comparing multivariate factor structures across various subpopulations, often referred to as SIFASP. The SIFASP technique allows for factorial model comparisons in the testing of various hypotheses…
The Effects of Model Misspecification and Sample Size on LISREL Maximum Likelihood Estimates.
ERIC Educational Resources Information Center
Baldwin, Beatrice
The robustness of LISREL computer program maximum likelihood estimates under specific conditions of model misspecification and sample size was examined. The population model used in this study contains one exogenous variable; three endogenous variables; and eight indicator variables, two for each latent variable. Conditions of model…
An EM Algorithm for Maximum Likelihood Estimation of Process Factor Analysis Models
ERIC Educational Resources Information Center
Lee, Taehun
2010-01-01
In this dissertation, an Expectation-Maximization (EM) algorithm is developed and implemented to obtain maximum likelihood estimates of the parameters and the associated standard error estimates characterizing temporal flows for the latent variable time series following stationary vector ARMA processes, as well as the parameters defining the…
Application of change-point problem to the detection of plant patches.
López, I; Gámez, M; Garay, J; Standovár, T; Varga, Z
2010-03-01
In ecology, if the considered area or space is large, the spatial distribution of individuals of a given plant species is never homogeneous; plants form different patches. The homogeneity change in space or in time (in particular, the related change-point problem) is an important research subject in mathematical statistics. In the paper, for a given data system along a straight line, two areas are considered, where the data of each area come from different discrete distributions, with unknown parameters. In the paper a method is presented for the estimation of the distribution change-point between both areas and an estimate is given for the distributions separated by the obtained change-point. The solution of this problem will be based on the maximum likelihood method. Furthermore, based on an adaptation of the well-known bootstrap resampling, a method for the estimation of the so-called change-interval is also given. The latter approach is very general, since it not only applies in the case of the maximum-likelihood estimation of the change-point, but it can be also used starting from any other change-point estimation known in the ecological literature. The proposed model is validated against typical ecological situations, providing at the same time a verification of the applied algorithms.
NASA Technical Reports Server (NTRS)
1979-01-01
The computer program Linear SCIDNT which evaluates rotorcraft stability and control coefficients from flight or wind tunnel test data is described. It implements the maximum likelihood method to maximize the likelihood function of the parameters based on measured input/output time histories. Linear SCIDNT may be applied to systems modeled by linear constant-coefficient differential equations. This restriction in scope allows the application of several analytical results which simplify the computation and improve its efficiency over the general nonlinear case.
Maximum likelihood positioning and energy correction for scintillation detectors
NASA Astrophysics Data System (ADS)
Lerche, Christoph W.; Salomon, André; Goldschmidt, Benjamin; Lodomez, Sarah; Weissler, Björn; Solf, Torsten
2016-02-01
An algorithm for determining the crystal pixel and the gamma ray energy with scintillation detectors for PET is presented. The algorithm uses Likelihood Maximisation (ML) and therefore is inherently robust to missing data caused by defect or paralysed photo detector pixels. We tested the algorithm on a highly integrated MRI compatible small animal PET insert. The scintillation detector blocks of the PET gantry were built with the newly developed digital Silicon Photomultiplier (SiPM) technology from Philips Digital Photon Counting and LYSO pixel arrays with a pitch of 1 mm and length of 12 mm. Light sharing was used to readout the scintillation light from the 30× 30 scintillator pixel array with an 8× 8 SiPM array. For the performance evaluation of the proposed algorithm, we measured the scanner’s spatial resolution, energy resolution, singles and prompt count rate performance, and image noise. These values were compared to corresponding values obtained with Center of Gravity (CoG) based positioning methods for different scintillation light trigger thresholds and also for different energy windows. While all positioning algorithms showed similar spatial resolution, a clear advantage for the ML method was observed when comparing the PET scanner’s overall single and prompt detection efficiency, image noise, and energy resolution to the CoG based methods. Further, ML positioning reduces the dependence of image quality on scanner configuration parameters and was the only method that allowed achieving highest energy resolution, count rate performance and spatial resolution at the same time.
Statistical analyses support power law distributions found in neuronal avalanches.
Klaus, Andreas; Yu, Shan; Plenz, Dietmar
2011-01-01
The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with exponent close to -1.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However, identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested the power law hypothesis for neuronal avalanches by using more stringent statistical analyses. In particular, we performed the following steps: (i) analysis of finite-size scaling to identify scale-free dynamics in neuronal avalanches, (ii) model parameter estimation to determine the specific exponent of the power law, and (iii) comparison of the power law to alternative model distributions. Consistent with critical state dynamics, avalanche size distributions exhibited robust scaling behavior in which the maximum avalanche size was limited only by the spatial extent of sampling ("finite size" effect). This scale-free dynamics suggests the power law as a model for the distribution of avalanche sizes. Using both the Kolmogorov-Smirnov statistic and a maximum likelihood approach, we found the slope to be close to -1.5, which is in line with previous reports. Finally, the power law model for neuronal avalanches was compared to the exponential and to various heavy-tail distributions based on the Kolmogorov-Smirnov distance and by using a log-likelihood ratio test. Both the power law distribution without and with exponential cut-off provided significantly better fits to the cluster size distributions in neuronal avalanches than the exponential, the lognormal and the gamma distribution. In summary, our findings strongly support the power law scaling in neuronal avalanches, providing further evidence for critical state dynamics in superficial layers of cortex.
Maximum-likelihood soft-decision decoding of block codes using the A* algorithm
NASA Technical Reports Server (NTRS)
Ekroot, L.; Dolinar, S.
1994-01-01
The A* algorithm finds the path in a finite depth binary tree that optimizes a function. Here, it is applied to maximum-likelihood soft-decision decoding of block codes where the function optimized over the codewords is the likelihood function of the received sequence given each codeword. The algorithm considers codewords one bit at a time, making use of the most reliable received symbols first and pursuing only the partially expanded codewords that might be maximally likely. A version of the A* algorithm for maximum-likelihood decoding of block codes has been implemented for block codes up to 64 bits in length. The efficiency of this algorithm makes simulations of codes up to length 64 feasible. This article details the implementation currently in use, compares the decoding complexity with that of exhaustive search and Viterbi decoding algorithms, and presents performance curves obtained with this implementation of the A* algorithm for several codes.
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Dutra, L. V.; Mascarenhas, N. D. A.; Mitsuo, Fernando Augusta, II
1984-01-01
A study area near Ribeirao Preto in Sao Paulo state was selected, with predominance in sugar cane. Eight features were extracted from the 4 original bands of LANDSAT image, using low-pass and high-pass filtering to obtain spatial features. There were 5 training sites in order to acquire the necessary parameters. Two groups of four channels were selected from 12 channels using JM-distance and entropy criterions. The number of selected channels was defined by physical restrictions of the image analyzer and computacional costs. The evaluation was performed by extracting the confusion matrix for training and tests areas, with a maximum likelihood classifier, and by defining performance indexes based on those matrixes for each group of channels. Results show that in spatial features and supervised classification, the entropy criterion is better in the sense that allows a more accurate and generalized definition of class signature. On the other hand, JM-distance criterion strongly reduces the misclassification within training areas.
Spatial Aspects of Multi-Sensor Data Fusion: Aerosol Optical Thickness
NASA Technical Reports Server (NTRS)
Leptoukh, Gregory; Zubko, V.; Gopalan, A.
2007-01-01
The Goddard Earth Sciences Data and Information Services Center (GES DISC) investigated the applicability and limitations of combining multi-sensor data through data fusion, to increase the usefulness of the multitude of NASA remote sensing data sets, and as part of a larger effort to integrate this capability in the GES-DISC Interactive Online Visualization and Analysis Infrastructure (Giovanni). This initial study focused on merging daily mean Aerosol Optical Thickness (AOT), as measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites, to increase spatial coverage and produce complete fields to facilitate comparison with models and station data. The fusion algorithm used the maximum likelihood technique to merge the pixel values where available. The algorithm was applied to two regional AOT subsets (with mostly regular and irregular gaps, respectively) and a set of AOT fields that differed only in the size and location of artificially created gaps. The Cumulative Semivariogram (CSV) was found to be sensitive to the spatial distribution of gap areas and, thus, useful for assessing the sensitivity of the fused data to spatial gaps.
Maximum likelihood resampling of noisy, spatially correlated data
NASA Astrophysics Data System (ADS)
Goff, J.; Jenkins, C.
2005-12-01
In any geologic application, noisy data are sources of consternation for researchers, inhibiting interpretability and marring images with unsightly and unrealistic artifacts. Filtering is the typical solution to dealing with noisy data. However, filtering commonly suffers from ad hoc (i.e., uncalibrated, ungoverned) application, which runs the risk of erasing high variability components of the field in addition to the noise components. We present here an alternative to filtering: a newly developed methodology for correcting noise in data by finding the "best" value given the data value, its uncertainty, and the data values and uncertainties at proximal locations. The motivating rationale is that data points that are close to each other in space cannot differ by "too much", where how much is "too much" is governed by the field correlation properties. Data with large uncertainties will frequently violate this condition, and in such cases need to be corrected, or "resampled." The best solution for resampling is determined by the maximum of the likelihood function defined by the intersection of two probability density functions (pdf): (1) the data pdf, with mean and variance determined by the data value and square uncertainty, respectively, and (2) the geostatistical pdf, whose mean and variance are determined by the kriging algorithm applied to proximal data values. A Monte Carlo sampling of the data probability space eliminates non-uniqueness, and weights the solution toward data values with lower uncertainties. A test with a synthetic data set sampled from a known field demonstrates quantitatively and qualitatively the improvement provided by the maximum likelihood resampling algorithm. The method is also applied to three marine geology/geophysics data examples: (1) three generations of bathymetric data on the New Jersey shelf with disparate data uncertainties; (2) mean grain size data from the Adriatic Sea, which is combination of both analytic (low uncertainty) and word-based (higher uncertainty) sources; and (3) sidescan backscatter data from the Martha's Vineyard Coastal Observatory which are, as is typical for such data, affected by speckly noise.
An evaluation of percentile and maximum likelihood estimators of weibull paremeters
Stanley J. Zarnoch; Tommy R. Dell
1985-01-01
Two methods of estimating the three-parameter Weibull distribution were evaluated by computer simulation and field data comparison. Maximum likelihood estimators (MLB) with bias correction were calculated with the computer routine FITTER (Bailey 1974); percentile estimators (PCT) were those proposed by Zanakis (1979). The MLB estimators had superior smaller bias and...
ERIC Educational Resources Information Center
Klein, Andreas G.; Muthen, Bengt O.
2007-01-01
In this article, a nonlinear structural equation model is introduced and a quasi-maximum likelihood method for simultaneous estimation and testing of multiple nonlinear effects is developed. The focus of the new methodology lies on efficiency, robustness, and computational practicability. Monte-Carlo studies indicate that the method is highly…
Maximum Likelihood Analysis of Nonlinear Structural Equation Models with Dichotomous Variables
ERIC Educational Resources Information Center
Song, Xin-Yuan; Lee, Sik-Yum
2005-01-01
In this article, a maximum likelihood approach is developed to analyze structural equation models with dichotomous variables that are common in behavioral, psychological and social research. To assess nonlinear causal effects among the latent variables, the structural equation in the model is defined by a nonlinear function. The basic idea of the…
Unclassified Publications of Lincoln Laboratory, 1 January - 31 December 1990. Volume 16
1990-12-31
Apr. 1990 ADA223419 Hopped Communication Systems with Nonuniform Hopping Distributions 880 Bistatic Radar Cross Section of a Fenn, A.J. 2 May1990...EXPERIMENT JA-6241 MS-8424 LUNAR PERTURBATION MAXIMUM LIKELIHOOD ALGORITHM JA-6241 JA-6467 LWIR SPECTRAL BAND MAXIMUM LIKELIHOOD ESTIMATOR JA-6476 MS-8466
Expected versus Observed Information in SEM with Incomplete Normal and Nonnormal Data
ERIC Educational Resources Information Center
Savalei, Victoria
2010-01-01
Maximum likelihood is the most common estimation method in structural equation modeling. Standard errors for maximum likelihood estimates are obtained from the associated information matrix, which can be estimated from the sample using either expected or observed information. It is known that, with complete data, estimates based on observed or…
ERIC Educational Resources Information Center
Yang, Xiangdong; Poggio, John C.; Glasnapp, Douglas R.
2006-01-01
The effects of five ability estimators, that is, maximum likelihood estimator, weighted likelihood estimator, maximum a posteriori, expected a posteriori, and Owen's sequential estimator, on the performances of the item response theory-based adaptive classification procedure on multiple categories were studied via simulations. The following…
Bias and Efficiency in Structural Equation Modeling: Maximum Likelihood versus Robust Methods
ERIC Educational Resources Information Center
Zhong, Xiaoling; Yuan, Ke-Hai
2011-01-01
In the structural equation modeling literature, the normal-distribution-based maximum likelihood (ML) method is most widely used, partly because the resulting estimator is claimed to be asymptotically unbiased and most efficient. However, this may not hold when data deviate from normal distribution. Outlying cases or nonnormally distributed data,…
Five Methods for Estimating Angoff Cut Scores with IRT
ERIC Educational Resources Information Center
Wyse, Adam E.
2017-01-01
This article illustrates five different methods for estimating Angoff cut scores using item response theory (IRT) models. These include maximum likelihood (ML), expected a priori (EAP), modal a priori (MAP), and weighted maximum likelihood (WML) estimators, as well as the most commonly used approach based on translating ratings through the test…
High-Dimensional Exploratory Item Factor Analysis by a Metropolis-Hastings Robbins-Monro Algorithm
ERIC Educational Resources Information Center
Cai, Li
2010-01-01
A Metropolis-Hastings Robbins-Monro (MH-RM) algorithm for high-dimensional maximum marginal likelihood exploratory item factor analysis is proposed. The sequence of estimates from the MH-RM algorithm converges with probability one to the maximum likelihood solution. Details on the computer implementation of this algorithm are provided. The…
John Hogland; Nedret Billor; Nathaniel Anderson
2013-01-01
Discriminant analysis, referred to as maximum likelihood classification within popular remote sensing software packages, is a common supervised technique used by analysts. Polytomous logistic regression (PLR), also referred to as multinomial logistic regression, is an alternative classification approach that is less restrictive, more flexible, and easy to interpret. To...
NASA Technical Reports Server (NTRS)
Grove, R. D.; Bowles, R. L.; Mayhew, S. C.
1972-01-01
A maximum likelihood parameter estimation procedure and program were developed for the extraction of the stability and control derivatives of aircraft from flight test data. Nonlinear six-degree-of-freedom equations describing aircraft dynamics were used to derive sensitivity equations for quasilinearization. The maximum likelihood function with quasilinearization was used to derive the parameter change equations, the covariance matrices for the parameters and measurement noise, and the performance index function. The maximum likelihood estimator was mechanized into an iterative estimation procedure utilizing a real time digital computer and graphic display system. This program was developed for 8 measured state variables and 40 parameters. Test cases were conducted with simulated data for validation of the estimation procedure and program. The program was applied to a V/STOL tilt wing aircraft, a military fighter airplane, and a light single engine airplane. The particular nonlinear equations of motion, derivation of the sensitivity equations, addition of accelerations into the algorithm, operational features of the real time digital system, and test cases are described.
NASA Astrophysics Data System (ADS)
Mahaboob, B.; Venkateswarlu, B.; Sankar, J. Ravi; Balasiddamuni, P.
2017-11-01
This paper uses matrix calculus techniques to obtain Nonlinear Least Squares Estimator (NLSE), Maximum Likelihood Estimator (MLE) and Linear Pseudo model for nonlinear regression model. David Pollard and Peter Radchenko [1] explained analytic techniques to compute the NLSE. However the present research paper introduces an innovative method to compute the NLSE using principles in multivariate calculus. This study is concerned with very new optimization techniques used to compute MLE and NLSE. Anh [2] derived NLSE and MLE of a heteroscedatistic regression model. Lemcoff [3] discussed a procedure to get linear pseudo model for nonlinear regression model. In this research article a new technique is developed to get the linear pseudo model for nonlinear regression model using multivariate calculus. The linear pseudo model of Edmond Malinvaud [4] has been explained in a very different way in this paper. David Pollard et.al used empirical process techniques to study the asymptotic of the LSE (Least-squares estimation) for the fitting of nonlinear regression function in 2006. In Jae Myung [13] provided a go conceptual for Maximum likelihood estimation in his work “Tutorial on maximum likelihood estimation
Can, Seda; van de Schoot, Rens; Hox, Joop
2015-06-01
Because variables may be correlated in the social and behavioral sciences, multicollinearity might be problematic. This study investigates the effect of collinearity manipulated in within and between levels of a two-level confirmatory factor analysis by Monte Carlo simulation. Furthermore, the influence of the size of the intraclass correlation coefficient (ICC) and estimation method; maximum likelihood estimation with robust chi-squares and standard errors and Bayesian estimation, on the convergence rate are investigated. The other variables of interest were rate of inadmissible solutions and the relative parameter and standard error bias on the between level. The results showed that inadmissible solutions were obtained when there was between level collinearity and the estimation method was maximum likelihood. In the within level multicollinearity condition, all of the solutions were admissible but the bias values were higher compared with the between level collinearity condition. Bayesian estimation appeared to be robust in obtaining admissible parameters but the relative bias was higher than for maximum likelihood estimation. Finally, as expected, high ICC produced less biased results compared to medium ICC conditions.
Maximum Likelihood Estimation with Emphasis on Aircraft Flight Data
NASA Technical Reports Server (NTRS)
Iliff, K. W.; Maine, R. E.
1985-01-01
Accurate modeling of flexible space structures is an important field that is currently under investigation. Parameter estimation, using methods such as maximum likelihood, is one of the ways that the model can be improved. The maximum likelihood estimator has been used to extract stability and control derivatives from flight data for many years. Most of the literature on aircraft estimation concentrates on new developments and applications, assuming familiarity with basic estimation concepts. Some of these basic concepts are presented. The maximum likelihood estimator and the aircraft equations of motion that the estimator uses are briefly discussed. The basic concepts of minimization and estimation are examined for a simple computed aircraft example. The cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to help illustrate the minimization process. Finally, the basic concepts are generalized, and estimation from flight data is discussed. Specific examples of estimation of structural dynamics are included. Some of the major conclusions for the computed example are also developed for the analysis of flight data.
A composite likelihood approach for spatially correlated survival data
Paik, Jane; Ying, Zhiliang
2013-01-01
The aim of this paper is to provide a composite likelihood approach to handle spatially correlated survival data using pairwise joint distributions. With e-commerce data, a recent question of interest in marketing research has been to describe spatially clustered purchasing behavior and to assess whether geographic distance is the appropriate metric to describe purchasing dependence. We present a model for the dependence structure of time-to-event data subject to spatial dependence to characterize purchasing behavior from the motivating example from e-commerce data. We assume the Farlie-Gumbel-Morgenstern (FGM) distribution and then model the dependence parameter as a function of geographic and demographic pairwise distances. For estimation of the dependence parameters, we present pairwise composite likelihood equations. We prove that the resulting estimators exhibit key properties of consistency and asymptotic normality under certain regularity conditions in the increasing-domain framework of spatial asymptotic theory. PMID:24223450
A composite likelihood approach for spatially correlated survival data.
Paik, Jane; Ying, Zhiliang
2013-01-01
The aim of this paper is to provide a composite likelihood approach to handle spatially correlated survival data using pairwise joint distributions. With e-commerce data, a recent question of interest in marketing research has been to describe spatially clustered purchasing behavior and to assess whether geographic distance is the appropriate metric to describe purchasing dependence. We present a model for the dependence structure of time-to-event data subject to spatial dependence to characterize purchasing behavior from the motivating example from e-commerce data. We assume the Farlie-Gumbel-Morgenstern (FGM) distribution and then model the dependence parameter as a function of geographic and demographic pairwise distances. For estimation of the dependence parameters, we present pairwise composite likelihood equations. We prove that the resulting estimators exhibit key properties of consistency and asymptotic normality under certain regularity conditions in the increasing-domain framework of spatial asymptotic theory.
Approximated maximum likelihood estimation in multifractal random walks
NASA Astrophysics Data System (ADS)
Løvsletten, O.; Rypdal, M.
2012-04-01
We present an approximated maximum likelihood method for the multifractal random walk processes of [E. Bacry , Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.64.026103 64, 026103 (2001)]. The likelihood is computed using a Laplace approximation and a truncation in the dependency structure for the latent volatility. The procedure is implemented as a package in the r computer language. Its performance is tested on synthetic data and compared to an inference approach based on the generalized method of moments. The method is applied to estimate parameters for various financial stock indices.
Maximum Likelihood Analysis of a Two-Level Nonlinear Structural Equation Model with Fixed Covariates
ERIC Educational Resources Information Center
Lee, Sik-Yum; Song, Xin-Yuan
2005-01-01
In this article, a maximum likelihood (ML) approach for analyzing a rather general two-level structural equation model is developed for hierarchically structured data that are very common in educational and/or behavioral research. The proposed two-level model can accommodate nonlinear causal relations among latent variables as well as effects…
ERIC Educational Resources Information Center
Han, Kyung T.; Guo, Fanmin
2014-01-01
The full-information maximum likelihood (FIML) method makes it possible to estimate and analyze structural equation models (SEM) even when data are partially missing, enabling incomplete data to contribute to model estimation. The cornerstone of FIML is the missing-at-random (MAR) assumption. In (unidimensional) computerized adaptive testing…
Constrained Maximum Likelihood Estimation for Two-Level Mean and Covariance Structure Models
ERIC Educational Resources Information Center
Bentler, Peter M.; Liang, Jiajuan; Tang, Man-Lai; Yuan, Ke-Hai
2011-01-01
Maximum likelihood is commonly used for the estimation of model parameters in the analysis of two-level structural equation models. Constraints on model parameters could be encountered in some situations such as equal factor loadings for different factors. Linear constraints are the most common ones and they are relatively easy to handle in…
Maximum Likelihood Item Easiness Models for Test Theory without an Answer Key
ERIC Educational Resources Information Center
France, Stephen L.; Batchelder, William H.
2015-01-01
Cultural consensus theory (CCT) is a data aggregation technique with many applications in the social and behavioral sciences. We describe the intuition and theory behind a set of CCT models for continuous type data using maximum likelihood inference methodology. We describe how bias parameters can be incorporated into these models. We introduce…
ERIC Educational Resources Information Center
Kelderman, Henk
1992-01-01
Describes algorithms used in the computer program LOGIMO for obtaining maximum likelihood estimates of the parameters in loglinear models. These algorithms are also useful for the analysis of loglinear item-response theory models. Presents modified versions of the iterative proportional fitting and Newton-Raphson algorithms. Simulated data…
ERIC Educational Resources Information Center
Penfield, Randall D.; Bergeron, Jennifer M.
2005-01-01
This article applies a weighted maximum likelihood (WML) latent trait estimator to the generalized partial credit model (GPCM). The relevant equations required to obtain the WML estimator using the Newton-Raphson algorithm are presented, and a simulation study is described that compared the properties of the WML estimator to those of the maximum…
ERIC Educational Resources Information Center
Kieftenbeld, Vincent; Natesan, Prathiba
2012-01-01
Markov chain Monte Carlo (MCMC) methods enable a fully Bayesian approach to parameter estimation of item response models. In this simulation study, the authors compared the recovery of graded response model parameters using marginal maximum likelihood (MML) and Gibbs sampling (MCMC) under various latent trait distributions, test lengths, and…
Maximum Likelihood Dynamic Factor Modeling for Arbitrary "N" and "T" Using SEM
ERIC Educational Resources Information Center
Voelkle, Manuel C.; Oud, Johan H. L.; von Oertzen, Timo; Lindenberger, Ulman
2012-01-01
This article has 3 objectives that build on each other. First, we demonstrate how to obtain maximum likelihood estimates for dynamic factor models (the direct autoregressive factor score model) with arbitrary "T" and "N" by means of structural equation modeling (SEM) and compare the approach to existing methods. Second, we go beyond standard time…
NASA Technical Reports Server (NTRS)
Kelly, D. A.; Fermelia, A.; Lee, G. K. F.
1990-01-01
An adaptive Kalman filter design that utilizes recursive maximum likelihood parameter identification is discussed. At the center of this design is the Kalman filter itself, which has the responsibility for attitude determination. At the same time, the identification algorithm is continually identifying the system parameters. The approach is applicable to nonlinear, as well as linear systems. This adaptive Kalman filter design has much potential for real time implementation, especially considering the fast clock speeds, cache memory and internal RAM available today. The recursive maximum likelihood algorithm is discussed in detail, with special attention directed towards its unique matrix formulation. The procedure for using the algorithm is described along with comments on how this algorithm interacts with the Kalman filter.
Maximum Likelihood Compton Polarimetry with the Compton Spectrometer and Imager
NASA Astrophysics Data System (ADS)
Lowell, A. W.; Boggs, S. E.; Chiu, C. L.; Kierans, C. A.; Sleator, C.; Tomsick, J. A.; Zoglauer, A. C.; Chang, H.-K.; Tseng, C.-H.; Yang, C.-Y.; Jean, P.; von Ballmoos, P.; Lin, C.-H.; Amman, M.
2017-10-01
Astrophysical polarization measurements in the soft gamma-ray band are becoming more feasible as detectors with high position and energy resolution are deployed. Previous work has shown that the minimum detectable polarization (MDP) of an ideal Compton polarimeter can be improved by ˜21% when an unbinned, maximum likelihood method (MLM) is used instead of the standard approach of fitting a sinusoid to a histogram of azimuthal scattering angles. Here we outline a procedure for implementing this maximum likelihood approach for real, nonideal polarimeters. As an example, we use the recent observation of GRB 160530A with the Compton Spectrometer and Imager. We find that the MDP for this observation is reduced by 20% when the MLM is used instead of the standard method.
NASA Technical Reports Server (NTRS)
Thomas, Randall W.; Ustin, Susan L.
1987-01-01
A preliminary assessment was made of Airborne Imaging Spectrometer (AIS) data for discriminating and characterizing vegetation in a semiarid environment. May and October AIS data sets were acquired over a large alluvial fan in eastern California, on which were found Great Basin desert shrub communities. Maximum likelihood classification of a principal components representation of the May AIS data enabled discrimination of subtle spatial detail in images relating to vegetation and soil characteristics. The spatial patterns in the May AIS classification were, however, too detailed for complete interpretation with existing ground data. A similar analysis of the October AIS data yielded poor results. Comparison of AIS results with a similar analysis of May Landsat Thematic Mapper data showed that the May AIS data contained approximately three to four times as much spectrally coherent information. When only two shortwave infrared TM bands were used, results were similar to those from AIS data acquired in October.
Maximum likelihood estimation for Cox's regression model under nested case-control sampling.
Scheike, Thomas H; Juul, Anders
2004-04-01
Nested case-control sampling is designed to reduce the costs of large cohort studies. It is important to estimate the parameters of interest as efficiently as possible. We present a new maximum likelihood estimator (MLE) for nested case-control sampling in the context of Cox's proportional hazards model. The MLE is computed by the EM-algorithm, which is easy to implement in the proportional hazards setting. Standard errors are estimated by a numerical profile likelihood approach based on EM aided differentiation. The work was motivated by a nested case-control study that hypothesized that insulin-like growth factor I was associated with ischemic heart disease. The study was based on a population of 3784 Danes and 231 cases of ischemic heart disease where controls were matched on age and gender. We illustrate the use of the MLE for these data and show how the maximum likelihood framework can be used to obtain information additional to the relative risk estimates of covariates.
Bootstrap Standard Errors for Maximum Likelihood Ability Estimates When Item Parameters Are Unknown
ERIC Educational Resources Information Center
Patton, Jeffrey M.; Cheng, Ying; Yuan, Ke-Hai; Diao, Qi
2014-01-01
When item parameter estimates are used to estimate the ability parameter in item response models, the standard error (SE) of the ability estimate must be corrected to reflect the error carried over from item calibration. For maximum likelihood (ML) ability estimates, a corrected asymptotic SE is available, but it requires a long test and the…
NASA Technical Reports Server (NTRS)
Benjauthrit, B.; Mulhall, B.; Madsen, B. D.; Alberda, M. E.
1976-01-01
The DSN telemetry system performance with convolutionally coded data using the operational maximum-likelihood convolutional decoder (MCD) being implemented in the Network is described. Data rates from 80 bps to 115.2 kbps and both S- and X-band receivers are reported. The results of both one- and two-way radio losses are included.
ERIC Educational Resources Information Center
Wollack, James A.; Bolt, Daniel M.; Cohen, Allan S.; Lee, Young-Sun
2002-01-01
Compared the quality of item parameter estimates for marginal maximum likelihood (MML) and Markov Chain Monte Carlo (MCMC) with the nominal response model using simulation. The quality of item parameter recovery was nearly identical for MML and MCMC, and both methods tended to produce good estimates. (SLD)
ERIC Educational Resources Information Center
Khattab, Ali-Maher; And Others
1982-01-01
A causal modeling system, using confirmatory maximum likelihood factor analysis with the LISREL IV computer program, evaluated the construct validity underlying the higher order factor structure of a given correlation matrix of 46 structure-of-intellect tests emphasizing the product of transformations. (Author/PN)
NASA Astrophysics Data System (ADS)
Sutawanir
2015-12-01
Mortality tables play important role in actuarial studies such as life annuities, premium determination, premium reserve, valuation pension plan, pension funding. Some known mortality tables are CSO mortality table, Indonesian Mortality Table, Bowers mortality table, Japan Mortality table. For actuary applications some tables are constructed with different environment such as single decrement, double decrement, and multiple decrement. There exist two approaches in mortality table construction : mathematics approach and statistical approach. Distribution model and estimation theory are the statistical concepts that are used in mortality table construction. This article aims to discuss the statistical approach in mortality table construction. The distributional assumptions are uniform death distribution (UDD) and constant force (exponential). Moment estimation and maximum likelihood are used to estimate the mortality parameter. Moment estimation methods are easier to manipulate compared to maximum likelihood estimation (mle). However, the complete mortality data are not used in moment estimation method. Maximum likelihood exploited all available information in mortality estimation. Some mle equations are complicated and solved using numerical methods. The article focus on single decrement estimation using moment and maximum likelihood estimation. Some extension to double decrement will introduced. Simple dataset will be used to illustrated the mortality estimation, and mortality table.
Maximum-likelihood methods in wavefront sensing: stochastic models and likelihood functions
Barrett, Harrison H.; Dainty, Christopher; Lara, David
2008-01-01
Maximum-likelihood (ML) estimation in wavefront sensing requires careful attention to all noise sources and all factors that influence the sensor data. We present detailed probability density functions for the output of the image detector in a wavefront sensor, conditional not only on wavefront parameters but also on various nuisance parameters. Practical ways of dealing with nuisance parameters are described, and final expressions for likelihoods and Fisher information matrices are derived. The theory is illustrated by discussing Shack–Hartmann sensors, and computational requirements are discussed. Simulation results show that ML estimation can significantly increase the dynamic range of a Shack–Hartmann sensor with four detectors and that it can reduce the residual wavefront error when compared with traditional methods. PMID:17206255
On non-parametric maximum likelihood estimation of the bivariate survivor function.
Prentice, R L
The likelihood function for the bivariate survivor function F, under independent censorship, is maximized to obtain a non-parametric maximum likelihood estimator &Fcirc;. &Fcirc; may or may not be unique depending on the configuration of singly- and doubly-censored pairs. The likelihood function can be maximized by placing all mass on the grid formed by the uncensored failure times, or half lines beyond the failure time grid, or in the upper right quadrant beyond the grid. By accumulating the mass along lines (or regions) where the likelihood is flat, one obtains a partially maximized likelihood as a function of parameters that can be uniquely estimated. The score equations corresponding to these point mass parameters are derived, using a Lagrange multiplier technique to ensure unit total mass, and a modified Newton procedure is used to calculate the parameter estimates in some limited simulation studies. Some considerations for the further development of non-parametric bivariate survivor function estimators are briefly described.
Bayesian logistic regression approaches to predict incorrect DRG assignment.
Suleiman, Mani; Demirhan, Haydar; Boyd, Leanne; Girosi, Federico; Aksakalli, Vural
2018-05-07
Episodes of care involving similar diagnoses and treatments and requiring similar levels of resource utilisation are grouped to the same Diagnosis-Related Group (DRG). In jurisdictions which implement DRG based payment systems, DRGs are a major determinant of funding for inpatient care. Hence, service providers often dedicate auditing staff to the task of checking that episodes have been coded to the correct DRG. The use of statistical models to estimate an episode's probability of DRG error can significantly improve the efficiency of clinical coding audits. This study implements Bayesian logistic regression models with weakly informative prior distributions to estimate the likelihood that episodes require a DRG revision, comparing these models with each other and to classical maximum likelihood estimates. All Bayesian approaches had more stable model parameters than maximum likelihood. The best performing Bayesian model improved overall classification per- formance by 6% compared to maximum likelihood, with a 34% gain compared to random classification, respectively. We found that the original DRG, coder and the day of coding all have a significant effect on the likelihood of DRG error. Use of Bayesian approaches has improved model parameter stability and classification accuracy. This method has already lead to improved audit efficiency in an operational capacity.
Maximum Likelihood Compton Polarimetry with the Compton Spectrometer and Imager
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowell, A. W.; Boggs, S. E; Chiu, C. L.
2017-10-20
Astrophysical polarization measurements in the soft gamma-ray band are becoming more feasible as detectors with high position and energy resolution are deployed. Previous work has shown that the minimum detectable polarization (MDP) of an ideal Compton polarimeter can be improved by ∼21% when an unbinned, maximum likelihood method (MLM) is used instead of the standard approach of fitting a sinusoid to a histogram of azimuthal scattering angles. Here we outline a procedure for implementing this maximum likelihood approach for real, nonideal polarimeters. As an example, we use the recent observation of GRB 160530A with the Compton Spectrometer and Imager. Wemore » find that the MDP for this observation is reduced by 20% when the MLM is used instead of the standard method.« less
Modeling the Impact of White-Plague Coral Disease in Climate Change Scenarios
Loya, Yossi; Stone, Lewi
2015-01-01
Coral reefs are in global decline, with coral diseases increasing both in prevalence and in space, a situation that is expected only to worsen as future thermal stressors increase. Through intense surveillance, we have collected a unique and highly resolved dataset from the coral reef of Eilat (Israel, Red Sea), that documents the spatiotemporal dynamics of a White Plague Disease (WPD) outbreak over the course of a full season. Based on modern statistical methodologies, we develop a novel spatial epidemiological model that uses a maximum-likelihood procedure to fit the data and assess the transmission pattern of WPD. We link the model to sea surface temperature (SST) and test the possible effect of increasing temperatures on disease dynamics. Our results reveal that the likelihood of a susceptible coral to become infected is governed both by SST and by its spatial location relative to nearby infected corals. The model shows that the magnitude of WPD epidemics strongly depends on demographic circumstances; under one extreme, when recruitment is free-space regulated and coral density remains relatively constant, even an increase of only 0.5°C in SST can cause epidemics to double in magnitude. In reality, however, the spatial nature of transmission can effectively protect the community, restricting the magnitude of annual epidemics. This is because the probability of susceptible corals to become infected is negatively associated with coral density. Based on our findings, we expect that infectious diseases having a significant spatial component, such as Red-Sea WPD, will never lead to a complete destruction of the coral community under increased thermal stress. However, this also implies that signs of recovery of local coral communities may be misleading; indicative more of spatial dynamics than true rehabilitation of these communities. In contrast to earlier generic models, our approach captures dynamics of WPD both in space and time, accounting for the highly seasonal nature of annual WPD outbreaks. PMID:26086846
NASA Astrophysics Data System (ADS)
Luo, L.; Fan, M.; Shen, M. Z.
2007-07-01
Atmospheric turbulence greatly limits the spatial resolution of astronomical images acquired by the large ground-based telescope. The record image obtained from telescope was thought as a convolution result of the object function and the point spread function. The statistic relationship of the images measured data, the estimated object and point spread function was in accord with the Bayes conditional probability distribution, and the maximum-likelihood formulation was found. A blind deconvolution approach based on the maximum-likelihood estimation technique with real optical band limitation constraint is presented for removing the effect of atmospheric turbulence on this class images through the minimization of the convolution error function by use of the conjugation gradient optimization algorithm. As a result, the object function and the point spread function could be estimated from a few record images at the same time by the blind deconvolution algorithm. According to the principle of Fourier optics, the relationship between the telescope optical system parameters and the image band constraint in the frequency domain was formulated during the image processing transformation between the spatial domain and the frequency domain. The convergence of the algorithm was increased by use of having the estimated function variable (also is the object function and the point spread function) nonnegative and the point-spread function band limited. Avoiding Fourier transform frequency components beyond the cut off frequency lost during the image processing transformation when the size of the sampled image data, image spatial domain and frequency domain were the same respectively, the detector element (e.g. a pixels in the CCD) should be less than the quarter of the diffraction speckle diameter of the telescope for acquiring the images on the focal plane. The proposed method can easily be applied to the case of wide field-view turbulent-degraded images restoration because of no using the object support constraint in the algorithm. The performance validity of the method is examined by the computer simulation and the restoration of the real Alpha Psc astronomical image data. The results suggest that the blind deconvolution with the real optical band constraint can remove the effect of the atmospheric turbulence on the observed images and the spatial resolution of the object image can arrive at or exceed the diffraction-limited level.
Lod scores for gene mapping in the presence of marker map uncertainty.
Stringham, H M; Boehnke, M
2001-07-01
Multipoint lod scores are typically calculated for a grid of locus positions, moving the putative disease locus across a fixed map of genetic markers. Changing the order of a set of markers and/or the distances between the markers can make a substantial difference in the resulting lod score curve and the location and height of its maximum. The typical approach of using the best maximum likelihood marker map is not easily justified if other marker orders are nearly as likely and give substantially different lod score curves. To deal with this problem, we propose three weighted multipoint lod score statistics that make use of information from all plausible marker orders. In each of these statistics, the information conditional on a particular marker order is included in a weighted sum, with weight equal to the posterior probability of that order. We evaluate the type 1 error rate and power of these three statistics on the basis of results from simulated data, and compare these results to those obtained using the best maximum likelihood map and the map with the true marker order. We find that the lod score based on a weighted sum of maximum likelihoods improves on using only the best maximum likelihood map, having a type 1 error rate and power closest to that of using the true marker order in the simulation scenarios we considered. Copyright 2001 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Simons, F. J.; Eggers, G. L.; Lewis, K. W.; Olhede, S. C.
2015-12-01
What numbers "capture" topography? If stationary, white, and Gaussian: mean and variance. But "whiteness" is strong; we are led to a "baseline" over which to compute means and variances. We then have subscribed to topography as a correlated process, and to the estimation (noisy, afftected by edge effects) of the parameters of a spatial or spectral covariance function. What if the covariance function or the point process itself aren't Gaussian? What if the region under study isn't regularly shaped or sampled? How can results from differently sized patches be compared robustly? We present a spectral-domain "Whittle" maximum-likelihood procedure that circumvents these difficulties and answers the above questions. The key is the Matern form, whose parameters (variance, range, differentiability) define the shape of the covariance function (Gaussian, exponential, ..., are all special cases). We treat edge effects in simulation and in estimation. Data tapering allows for the irregular regions. We determine the estimation variance of all parameters. And the "best" estimate may not be "good enough": we test whether the "model" itself warrants rejection. We illustrate our methodology on geologically mapped patches of Venus. Surprisingly few numbers capture planetary topography. We derive them, with uncertainty bounds, we simulate "new" realizations of patches that look to the geologists exactly as if they were derived from similar processes. Our approach holds in 1, 2, and 3 spatial dimensions, and generalizes to multiple variables, e.g. when topography and gravity are being considered jointly (perhaps linked by flexural rigidity, erosion, or other surface and sub-surface modifying processes). Our results have widespread implications for the study of planetary topography in the Solar System, and are interpreted in the light of trying to derive "process" from "parameters", the end goal to assign likely formation histories for the patches under consideration. Our results should also be relevant for whomever needed to perform spatial interpolation or out-of-sample extension (e.g. kriging), machine learning and feature detection, on geological data. We present procedural details but focus on high-level results that have real-world implications for the study of Venus, Earth, other planets, and moons.
Use of multiple relocation techniques to better understand seismotectonic structure in Greece
NASA Astrophysics Data System (ADS)
Bozionelos, George; Ganas, Athanassios; Karastathis, Vassilios; Moshou, Alexandra
2015-04-01
The identification of the structure of seismicity associated with active faults is of great significance particularly for the densely populated areas of Greece, such as Corinth Gulf, SW Peloponnese and central Crete. Manual analysis of the seismicity that has been recorded by the Hellenic Unified Seismological Network (HUSN) for the recent years provides the opportunity to determine accurate hypocentral solutions using the weighted P and S wave arrival times for these regions. The purpose is to perform precise event location and relative relocation so as to obtain the spatial distribution of the recorded seismicity with the needed resolution. In order to investigate the influence of the velocity model on the seismicity distribution and to find the most reliable hypocentral locations, different velocity models (both 1-D and 3-D) and location schemes are adopted and thoroughly tested. Initially, to test the models, the hypocentral locations, including the determination of the location uncertainties, are obtained applying the non-linear location tool, NonLinLoc. To approximate the likelihood function, the much more robust in the presence of outliers, Equal Differential Time (EDT) is selected. To locate the earthquakes the Oct-tree search is used. Histograms with the RMS error, the spatial errors and the maximum half-axis (LEN3) of the 68% confidence ellipsoid are created. Moreover, the form of density scatterplots and the difference between maximum likelihood and expectation locations is taken into account. As an additional procedure, the travel-time residuals are examined separately for each station as a function of epicentral distance. Finaly, several cross sections are constructed in various azimuths and the spatial distribution of the earthquakes is evaluated and compared with the active fault structures. In order to highlight the activated faults, an additional relocation procedure is performed, using the double-difference algorithm HYPODD and incorporating the traveltime data of the best fitting velocity models. The accurate determination of seismicity will play a key role in revealing the mechanisms that contribute to the crustal deformation and to active tectonics. Note: this research was funded by the ASPIDA project.
On the Existence and Uniqueness of JML Estimates for the Partial Credit Model
ERIC Educational Resources Information Center
Bertoli-Barsotti, Lucio
2005-01-01
A necessary and sufficient condition is given in this paper for the existence and uniqueness of the maximum likelihood (the so-called joint maximum likelihood) estimate of the parameters of the Partial Credit Model. This condition is stated in terms of a structural property of the pattern of the data matrix that can be easily verified on the basis…
ERIC Educational Resources Information Center
Paek, Insu; Wilson, Mark
2011-01-01
This study elaborates the Rasch differential item functioning (DIF) model formulation under the marginal maximum likelihood estimation context. Also, the Rasch DIF model performance was examined and compared with the Mantel-Haenszel (MH) procedure in small sample and short test length conditions through simulations. The theoretically known…
Analysis of spatial autocorrelation patterns of heavy and super-heavy rainfall in Iran
NASA Astrophysics Data System (ADS)
Rousta, Iman; Doostkamian, Mehdi; Haghighi, Esmaeil; Ghafarian Malamiri, Hamid Reza; Yarahmadi, Parvane
2017-09-01
Rainfall is a highly variable climatic element, and rainfall-related changes occur in spatial and temporal dimensions within a regional climate. The purpose of this study is to investigate the spatial autocorrelation changes of Iran's heavy and super-heavy rainfall over the past 40 years. For this purpose, the daily rainfall data of 664 meteorological stations between 1971 and 2011 are used. To analyze the changes in rainfall within a decade, geostatistical techniques like spatial autocorrelation analysis of hot spots, based on the Getis-Ord G i statistic, are employed. Furthermore, programming features in MATLAB, Surfer, and GIS are used. The results indicate that the Caspian coast, the northwest and west of the western foothills of the Zagros Mountains of Iran, the inner regions of Iran, and southern parts of Southeast and Northeast Iran, have the highest likelihood of heavy and super-heavy rainfall. The spatial pattern of heavy rainfall shows that, despite its oscillation in different periods, the maximum positive spatial autocorrelation pattern of heavy rainfall includes areas of the west, northwest and west coast of the Caspian Sea. On the other hand, a negative spatial autocorrelation pattern of heavy rainfall is observed in central Iran and parts of the east, particularly in Zabul. Finally, it is found that patterns of super-heavy rainfall are similar to those of heavy rainfall.
Do lower income areas have more pedestrian casualties?
Noland, Robert B; Klein, Nicholas J; Tulach, Nicholas K
2013-10-01
Pedestrian and motor vehicle casualties are analyzed for the State of New Jersey with the objective of determining how the income of an area may be associated with casualties. We develop a maximum-likelihood negative binomial model to examine how various spatially defined variables, including road, income, and vehicle ownership, may be associated with casualties using census block-group level data. Due to suspected spatial correlation in the data we also employ a conditional autoregressive Bayesian model using Markov Chain Monte Carlo simulation, implemented with Crimestat software. Results suggest that spatial correlation is an issue as some variables are not statistically significant in the spatial model. We find that both pedestrian and motor vehicle casualties are greater in lower income block groups. Both are also associated with less household vehicle ownership, which is not surprising for pedestrian casualties, but is a surprising result for motor vehicle casualties. Controls for various road categories provide expected relationships. Individual level data is further examined to determine relationships between the location of a crash victim and their residence zip code, and this largely confirms a residual effect associated with both lower income individuals and lower income areas. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bayesian image reconstruction for improving detection performance of muon tomography.
Wang, Guobao; Schultz, Larry J; Qi, Jinyi
2009-05-01
Muon tomography is a novel technology that is being developed for detecting high-Z materials in vehicles or cargo containers. Maximum likelihood methods have been developed for reconstructing the scattering density image from muon measurements. However, the instability of maximum likelihood estimation often results in noisy images and low detectability of high-Z targets. In this paper, we propose using regularization to improve the image quality of muon tomography. We formulate the muon reconstruction problem in a Bayesian framework by introducing a prior distribution on scattering density images. An iterative shrinkage algorithm is derived to maximize the log posterior distribution. At each iteration, the algorithm obtains the maximum a posteriori update by shrinking an unregularized maximum likelihood update. Inverse quadratic shrinkage functions are derived for generalized Laplacian priors and inverse cubic shrinkage functions are derived for generalized Gaussian priors. Receiver operating characteristic studies using simulated data demonstrate that the Bayesian reconstruction can greatly improve the detection performance of muon tomography.
Comparison of wheat classification accuracy using different classifiers of the image-100 system
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Chen, S. C.; Moreira, M. A.; Delima, A. M.
1981-01-01
Classification results using single-cell and multi-cell signature acquisition options, a point-by-point Gaussian maximum-likelihood classifier, and K-means clustering of the Image-100 system are presented. Conclusions reached are that: a better indication of correct classification can be provided by using a test area which contains various cover types of the study area; classification accuracy should be evaluated considering both the percentages of correct classification and error of commission; supervised classification approaches are better than K-means clustering; Gaussian distribution maximum likelihood classifier is better than Single-cell and Multi-cell Signature Acquisition Options of the Image-100 system; and in order to obtain a high classification accuracy in a large and heterogeneous crop area, using Gaussian maximum-likelihood classifier, homogeneous spectral subclasses of the study crop should be created to derive training statistics.
Donato, David I.
2012-01-01
This report presents the mathematical expressions and the computational techniques required to compute maximum-likelihood estimates for the parameters of the National Descriptive Model of Mercury in Fish (NDMMF), a statistical model used to predict the concentration of methylmercury in fish tissue. The expressions and techniques reported here were prepared to support the development of custom software capable of computing NDMMF parameter estimates more quickly and using less computer memory than is currently possible with available general-purpose statistical software. Computation of maximum-likelihood estimates for the NDMMF by numerical solution of a system of simultaneous equations through repeated Newton-Raphson iterations is described. This report explains the derivation of the mathematical expressions required for computational parameter estimation in sufficient detail to facilitate future derivations for any revised versions of the NDMMF that may be developed.
Nagelkerke, Nico; Fidler, Vaclav
2015-01-01
The problem of discrimination and classification is central to much of epidemiology. Here we consider the estimation of a logistic regression/discrimination function from training samples, when one of the training samples is subject to misclassification or mislabeling, e.g. diseased individuals are incorrectly classified/labeled as healthy controls. We show that this leads to zero-inflated binomial model with a defective logistic regression or discrimination function, whose parameters can be estimated using standard statistical methods such as maximum likelihood. These parameters can be used to estimate the probability of true group membership among those, possibly erroneously, classified as controls. Two examples are analyzed and discussed. A simulation study explores properties of the maximum likelihood parameter estimates and the estimates of the number of mislabeled observations.
Cloud classification from satellite data using a fuzzy sets algorithm: A polar example
NASA Technical Reports Server (NTRS)
Key, J. R.; Maslanik, J. A.; Barry, R. G.
1988-01-01
Where spatial boundaries between phenomena are diffuse, classification methods which construct mutually exclusive clusters seem inappropriate. The Fuzzy c-means (FCM) algorithm assigns each observation to all clusters, with membership values as a function of distance to the cluster center. The FCM algorithm is applied to AVHRR data for the purpose of classifying polar clouds and surfaces. Careful analysis of the fuzzy sets can provide information on which spectral channels are best suited to the classification of particular features, and can help determine likely areas of misclassification. General agreement in the resulting classes and cloud fraction was found between the FCM algorithm, a manual classification, and an unsupervised maximum likelihood classifier.
Arnold, Terri L.; Warner, Kelly L.; Groschen, George E.; Caldwell, James P.; Kalkhoff, Stephen J.
2008-01-01
The glacial aquifer system in the United States is a large (953,000 square miles) regional aquifer system of heterogeneous composition. As described in this report, the glacial aquifer system includes all unconsolidated geologic material above bedrock that lies on or north of the line of maximum glacial advance within the United States. Examining ground-water quality on a regional scale indicates that variations in the concentrations of major and minor ions and some trace elements most likely are the result of natural variations in the geologic and physical environment. Study of the glacial aquifer system was designed around a regional framework based on the assumption that two primary characteristics of the aquifer system can affect water quality: intrinsic susceptibility (hydraulic properties) and vulnerability (geochemical properties). The hydrochemical regions described in this report were developed to identify and explain regional spatial variations in ground-water quality in the glacial aquifer system within the hypothetical framework context. Data analyzed for this study were collected from 1991 to 2003 at 1,716 wells open to the glacial aquifer system. Cluster analysis was used to group wells with similar ground-water concentrations of calcium, chloride, fluoride, magnesium, potassium, sodium, sulfate, and bicarbonate into five unique groups. Maximum Likelihood Classification was used to make the extrapolation from clustered groups of wells, defined by points, to areas of similar water quality (hydrochemical regions) defined in a geospatial model. Spatial data that represented average annual precipitation, average annual temperature, land use, land-surface slope, vertical soil permeability, average soil clay content, texture of surficial deposits, type of surficial deposit, and potential for ground-water recharge were used in the Maximum Likelihood Classification to classify the areas so the characteristics of the hydrochemical regions would resemble the characteristics of the clusters. The result of the Maximum Likelihood Classification is a map showing five hydrochemical regions of the glacial aquifer system. Statistical analysis of ion concentrations (calcium, chloride, fluoride, magnesium, sodium, potassium, sulfate, and bicarbonate) in samples collected from wells completed in the glacial aquifer system illustrates that variations in water quality can be explained, in part, by related environmental characteristics that control the movement of ground water through the aquifer system. A comparison of median concentrations of chemical constituents in ground water among the five hydrochemical regions indicates that ground water in the Midwestern Agricultural Region, the Urban-Influenced Region, and the Western Agriculture and Grassland Region has the highest concentrations of major and minor ions, whereas ground water in the Northern and Great Lakes Forested Region and the Mountain and Coastal Forested Region has the lowest concentrations of these ions. Median concentrations of barium, arsenic, lithium, boron, strontium, and nitrite plus nitrate as nitrogen also are significantly different among the hydrochemical regions.
ERIC Educational Resources Information Center
Molenaar, Peter C. M.; Nesselroade, John R.
1998-01-01
Pseudo-Maximum Likelihood (p-ML) and Asymptotically Distribution Free (ADF) estimation methods for estimating dynamic factor model parameters within a covariance structure framework were compared through a Monte Carlo simulation. Both methods appear to give consistent model parameter estimates, but only ADF gives standard errors and chi-square…
Statistical Bias in Maximum Likelihood Estimators of Item Parameters.
1982-04-01
34 a> E r’r~e r ,C Ie I# ne,..,.rVi rnd Id.,flfv b1 - bindk numb.r) I; ,t-i i-cd I ’ tiie bias in the maximum likelihood ,st i- i;, ’ t iIeiIrs in...NTC, IL 60088 Psychometric Laboratory University of North Carolina I ERIC Facility-Acquisitions Davie Hall 013A 4833 Rugby Avenue Chapel Hill, NC
ERIC Educational Resources Information Center
Beauducel, Andre; Herzberg, Philipp Yorck
2006-01-01
This simulation study compared maximum likelihood (ML) estimation with weighted least squares means and variance adjusted (WLSMV) estimation. The study was based on confirmatory factor analyses with 1, 2, 4, and 8 factors, based on 250, 500, 750, and 1,000 cases, and on 5, 10, 20, and 40 variables with 2, 3, 4, 5, and 6 categories. There was no…
Zeng, Chan; Newcomer, Sophia R; Glanz, Jason M; Shoup, Jo Ann; Daley, Matthew F; Hambidge, Simon J; Xu, Stanley
2013-12-15
The self-controlled case series (SCCS) method is often used to examine the temporal association between vaccination and adverse events using only data from patients who experienced such events. Conditional Poisson regression models are used to estimate incidence rate ratios, and these models perform well with large or medium-sized case samples. However, in some vaccine safety studies, the adverse events studied are rare and the maximum likelihood estimates may be biased. Several bias correction methods have been examined in case-control studies using conditional logistic regression, but none of these methods have been evaluated in studies using the SCCS design. In this study, we used simulations to evaluate 2 bias correction approaches-the Firth penalized maximum likelihood method and Cordeiro and McCullagh's bias reduction after maximum likelihood estimation-with small sample sizes in studies using the SCCS design. The simulations showed that the bias under the SCCS design with a small number of cases can be large and is also sensitive to a short risk period. The Firth correction method provides finite and less biased estimates than the maximum likelihood method and Cordeiro and McCullagh's method. However, limitations still exist when the risk period in the SCCS design is short relative to the entire observation period.
Huang, Chiung-Yu; Qin, Jing
2013-01-01
The Canadian Study of Health and Aging (CSHA) employed a prevalent cohort design to study survival after onset of dementia, where patients with dementia were sampled and the onset time of dementia was determined retrospectively. The prevalent cohort sampling scheme favors individuals who survive longer. Thus, the observed survival times are subject to length bias. In recent years, there has been a rising interest in developing estimation procedures for prevalent cohort survival data that not only account for length bias but also actually exploit the incidence distribution of the disease to improve efficiency. This article considers semiparametric estimation of the Cox model for the time from dementia onset to death under a stationarity assumption with respect to the disease incidence. Under the stationarity condition, the semiparametric maximum likelihood estimation is expected to be fully efficient yet difficult to perform for statistical practitioners, as the likelihood depends on the baseline hazard function in a complicated way. Moreover, the asymptotic properties of the semiparametric maximum likelihood estimator are not well-studied. Motivated by the composite likelihood method (Besag 1974), we develop a composite partial likelihood method that retains the simplicity of the popular partial likelihood estimator and can be easily performed using standard statistical software. When applied to the CSHA data, the proposed method estimates a significant difference in survival between the vascular dementia group and the possible Alzheimer’s disease group, while the partial likelihood method for left-truncated and right-censored data yields a greater standard error and a 95% confidence interval covering 0, thus highlighting the practical value of employing a more efficient methodology. To check the assumption of stable disease for the CSHA data, we also present new graphical and numerical tests in the article. The R code used to obtain the maximum composite partial likelihood estimator for the CSHA data is available in the online Supplementary Material, posted on the journal web site. PMID:24000265
Chen, Rui; Hyrien, Ollivier
2011-01-01
This article deals with quasi- and pseudo-likelihood estimation in a class of continuous-time multi-type Markov branching processes observed at discrete points in time. “Conventional” and conditional estimation are discussed for both approaches. We compare their properties and identify situations where they lead to asymptotically equivalent estimators. Both approaches possess robustness properties, and coincide with maximum likelihood estimation in some cases. Quasi-likelihood functions involving only linear combinations of the data may be unable to estimate all model parameters. Remedial measures exist, including the resort either to non-linear functions of the data or to conditioning the moments on appropriate sigma-algebras. The method of pseudo-likelihood may also resolve this issue. We investigate the properties of these approaches in three examples: the pure birth process, the linear birth-and-death process, and a two-type process that generalizes the previous two examples. Simulations studies are conducted to evaluate performance in finite samples. PMID:21552356
A Solution to Separation and Multicollinearity in Multiple Logistic Regression
Shen, Jianzhao; Gao, Sujuan
2010-01-01
In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27–38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth’s penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study. PMID:20376286
A Solution to Separation and Multicollinearity in Multiple Logistic Regression.
Shen, Jianzhao; Gao, Sujuan
2008-10-01
In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27-38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth's penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study.
Lirio, R B; Dondériz, I C; Pérez Abalo, M C
1992-08-01
The methodology of Receiver Operating Characteristic curves based on the signal detection model is extended to evaluate the accuracy of two-stage diagnostic strategies. A computer program is developed for the maximum likelihood estimation of parameters that characterize the sensitivity and specificity of two-stage classifiers according to this extended methodology. Its use is briefly illustrated with data collected in a two-stage screening for auditory defects.
ERIC Educational Resources Information Center
Kelderman, Henk
In this paper, algorithms are described for obtaining the maximum likelihood estimates of the parameters in log-linear models. Modified versions of the iterative proportional fitting and Newton-Raphson algorithms are described that work on the minimal sufficient statistics rather than on the usual counts in the full contingency table. This is…
Maximum Likelihood Item Easiness Models for Test Theory Without an Answer Key
Batchelder, William H.
2014-01-01
Cultural consensus theory (CCT) is a data aggregation technique with many applications in the social and behavioral sciences. We describe the intuition and theory behind a set of CCT models for continuous type data using maximum likelihood inference methodology. We describe how bias parameters can be incorporated into these models. We introduce two extensions to the basic model in order to account for item rating easiness/difficulty. The first extension is a multiplicative model and the second is an additive model. We show how the multiplicative model is related to the Rasch model. We describe several maximum-likelihood estimation procedures for the models and discuss issues of model fit and identifiability. We describe how the CCT models could be used to give alternative consensus-based measures of reliability. We demonstrate the utility of both the basic and extended models on a set of essay rating data and give ideas for future research. PMID:29795812
NASA Technical Reports Server (NTRS)
Chittineni, C. B.
1979-01-01
The problem of estimating label imperfections and the use of the estimation in identifying mislabeled patterns is presented. Expressions for the maximum likelihood estimates of classification errors and a priori probabilities are derived from the classification of a set of labeled patterns. Expressions also are given for the asymptotic variances of probability of correct classification and proportions. Simple models are developed for imperfections in the labels and for classification errors and are used in the formulation of a maximum likelihood estimation scheme. Schemes are presented for the identification of mislabeled patterns in terms of threshold on the discriminant functions for both two-class and multiclass cases. Expressions are derived for the probability that the imperfect label identification scheme will result in a wrong decision and are used in computing thresholds. The results of practical applications of these techniques in the processing of remotely sensed multispectral data are presented.
Bayesian structural equation modeling in sport and exercise psychology.
Stenling, Andreas; Ivarsson, Andreas; Johnson, Urban; Lindwall, Magnus
2015-08-01
Bayesian statistics is on the rise in mainstream psychology, but applications in sport and exercise psychology research are scarce. In this article, the foundations of Bayesian analysis are introduced, and we will illustrate how to apply Bayesian structural equation modeling in a sport and exercise psychology setting. More specifically, we contrasted a confirmatory factor analysis on the Sport Motivation Scale II estimated with the most commonly used estimator, maximum likelihood, and a Bayesian approach with weakly informative priors for cross-loadings and correlated residuals. The results indicated that the model with Bayesian estimation and weakly informative priors provided a good fit to the data, whereas the model estimated with a maximum likelihood estimator did not produce a well-fitting model. The reasons for this discrepancy between maximum likelihood and Bayesian estimation are discussed as well as potential advantages and caveats with the Bayesian approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, M.
1980-12-01
The maximum likelihood method for the multivariate normal distribution is applied to the case of several individual eigenvalues. Correlated Monte Carlo estimates of the eigenvalue are assumed to follow this prescription and aspects of the assumption are examined. Monte Carlo cell calculations using the SAM-CE and VIM codes for the TRX-1 and TRX-2 benchmark reactors, and SAM-CE full core results are analyzed with this method. Variance reductions of a few percent to a factor of 2 are obtained from maximum likelihood estimation as compared with the simple average and the minimum variance individual eigenvalue. The numerical results verify that themore » use of sample variances and correlation coefficients in place of the corresponding population statistics still leads to nearly minimum variance estimation for a sufficient number of histories and aggregates.« less
A Maximum Likelihood Approach to Functional Mapping of Longitudinal Binary Traits
Wang, Chenguang; Li, Hongying; Wang, Zhong; Wang, Yaqun; Wang, Ningtao; Wang, Zuoheng; Wu, Rongling
2013-01-01
Despite their importance in biology and biomedicine, genetic mapping of binary traits that change over time has not been well explored. In this article, we develop a statistical model for mapping quantitative trait loci (QTLs) that govern longitudinal responses of binary traits. The model is constructed within the maximum likelihood framework by which the association between binary responses is modeled in terms of conditional log odds-ratios. With this parameterization, the maximum likelihood estimates (MLEs) of marginal mean parameters are robust to the misspecification of time dependence. We implement an iterative procedures to obtain the MLEs of QTL genotype-specific parameters that define longitudinal binary responses. The usefulness of the model was validated by analyzing a real example in rice. Simulation studies were performed to investigate the statistical properties of the model, showing that the model has power to identify and map specific QTLs responsible for the temporal pattern of binary traits. PMID:23183762
A Gateway for Phylogenetic Analysis Powered by Grid Computing Featuring GARLI 2.0
Bazinet, Adam L.; Zwickl, Derrick J.; Cummings, Michael P.
2014-01-01
We introduce molecularevolution.org, a publicly available gateway for high-throughput, maximum-likelihood phylogenetic analysis powered by grid computing. The gateway features a garli 2.0 web service that enables a user to quickly and easily submit thousands of maximum likelihood tree searches or bootstrap searches that are executed in parallel on distributed computing resources. The garli web service allows one to easily specify partitioned substitution models using a graphical interface, and it performs sophisticated post-processing of phylogenetic results. Although the garli web service has been used by the research community for over three years, here we formally announce the availability of the service, describe its capabilities, highlight new features and recent improvements, and provide details about how the grid system efficiently delivers high-quality phylogenetic results. [garli, gateway, grid computing, maximum likelihood, molecular evolution portal, phylogenetics, web service.] PMID:24789072
Profile-Likelihood Approach for Estimating Generalized Linear Mixed Models with Factor Structures
ERIC Educational Resources Information Center
Jeon, Minjeong; Rabe-Hesketh, Sophia
2012-01-01
In this article, the authors suggest a profile-likelihood approach for estimating complex models by maximum likelihood (ML) using standard software and minimal programming. The method works whenever setting some of the parameters of the model to known constants turns the model into a standard model. An important class of models that can be…
Gruebner, Oliver; Lowe, Sarah R; Tracy, Melissa; Cerdá, Magdalena; Joshi, Spruha; Norris, Fran H; Galea, Sandro
2016-04-01
To demonstrate a spatial epidemiologic approach that could be used in the aftermath of disasters to (1) detect spatial clusters and (2) explore geographic heterogeneity in predictors for mental health and general wellness. We used a cohort study of Hurricane Ike survivors (n=508) to assess the spatial distribution of postdisaster mental health wellness (most likely resilience trajectory for posttraumatic stress symptoms [PTSS] and depression) and general wellness (most likely resilience trajectory for PTSS, depression, functional impairment, and days of poor health) in Galveston, Texas. We applied the spatial scan statistic (SaTScan) and geographically weighted regression. We found spatial clusters of high likelihood wellness in areas north of Texas City and spatial concentrations of low likelihood wellness in Galveston Island. Geographic variation was found in predictors of wellness, showing increasing associations with both forms of wellness the closer respondents were located to Galveston City in Galveston Island. Predictors for postdisaster wellness may manifest differently across geographic space with concentrations of lower likelihood wellness and increased associations with predictors in areas of higher exposure. Our approach could be used to inform geographically targeted interventions to promote mental health and general wellness in disaster-affected communities.
Love, Jeffrey J.; Rigler, E. Joshua; Pulkkinen, Antti; Riley, Pete
2015-01-01
An examination is made of the hypothesis that the statistics of magnetic-storm-maximum intensities are the realization of a log-normal stochastic process. Weighted least-squares and maximum-likelihood methods are used to fit log-normal functions to −Dst storm-time maxima for years 1957-2012; bootstrap analysis is used to established confidence limits on forecasts. Both methods provide fits that are reasonably consistent with the data; both methods also provide fits that are superior to those that can be made with a power-law function. In general, the maximum-likelihood method provides forecasts having tighter confidence intervals than those provided by weighted least-squares. From extrapolation of maximum-likelihood fits: a magnetic storm with intensity exceeding that of the 1859 Carrington event, −Dst≥850 nT, occurs about 1.13 times per century and a wide 95% confidence interval of [0.42,2.41] times per century; a 100-yr magnetic storm is identified as having a −Dst≥880 nT (greater than Carrington) but a wide 95% confidence interval of [490,1187] nT.
Maximum likelihood convolutional decoding (MCD) performance due to system losses
NASA Technical Reports Server (NTRS)
Webster, L.
1976-01-01
A model for predicting the computational performance of a maximum likelihood convolutional decoder (MCD) operating in a noisy carrier reference environment is described. This model is used to develop a subroutine that will be utilized by the Telemetry Analysis Program to compute the MCD bit error rate. When this computational model is averaged over noisy reference phase errors using a high-rate interpolation scheme, the results are found to agree quite favorably with experimental measurements.
Maximum Likelihood Shift Estimation Using High Resolution Polarimetric SAR Clutter Model
NASA Astrophysics Data System (ADS)
Harant, Olivier; Bombrun, Lionel; Vasile, Gabriel; Ferro-Famil, Laurent; Gay, Michel
2011-03-01
This paper deals with a Maximum Likelihood (ML) shift estimation method in the context of High Resolution (HR) Polarimetric SAR (PolSAR) clutter. Texture modeling is exposed and the generalized ML texture tracking method is extended to the merging of various sensors. Some results on displacement estimation on the Argentiere glacier in the Mont Blanc massif using dual-pol TerraSAR-X (TSX) and quad-pol RADARSAT-2 (RS2) sensors are finally discussed.
Wildlife tradeoffs based on landscape models of habitat
Loehle, C.; Mitchell, M.S.
2000-01-01
It is becoming increasingly clear that the spatial structure of landscapes affects the habitat choices and abundance of wildlife. In contrast to wildlife management based on preservation of critical habitat features such as nest sites on a beach or mast trees, it has not been obvious how to incorporate spatial structure into management plans. We present techniques to accomplish this goal. We used multiscale logistic regression models developed previously for neotropical migrant bird species habitat use in South Carolina (USA) as a basis for these techniques. Based on these models we used a spatial optimization technique to generate optimal maps (probability of occurrence, P = 1.0) for each of seven species. To emulate management of a forest for maximum species diversity, we defined the objective function of the algorithm as the sum of probabilities over the seven species, resulting in a complex map that allowed all seven species to coexist. The map that allowed for coexistence is not obvious, must be computed algorithmically, and would be difficult to realize using rules of thumb for habitat management. To assess how management of a forest for a single species of interest might affect other species, we analyzed tradeoffs by gradually increasing the weighting on a single species in the objective function over a series of simulations. We found that as habitat was increasingly modified to favor that species, the probability of presence for two of the other species was driven to zero. This shows that whereas it is not possible to simultaneously maximize the likelihood of presence for multiple species with divergent habitat preferences, compromise solutions are possible at less than maximal likelihood in many cases. Our approach suggests that efficiency of habitat management for species diversity can by maximized for even small landscapes by incorporating spatial context. The methods we present are suitable for wildlife management, endangered species conservation, and nature reserve design.
Maximum likelihood estimates, from censored data, for mixed-Weibull distributions
NASA Astrophysics Data System (ADS)
Jiang, Siyuan; Kececioglu, Dimitri
1992-06-01
A new algorithm for estimating the parameters of mixed-Weibull distributions from censored data is presented. The algorithm follows the principle of maximum likelihood estimate (MLE) through the expectation and maximization (EM) algorithm, and it is derived for both postmortem and nonpostmortem time-to-failure data. It is concluded that the concept of the EM algorithm is easy to understand and apply (only elementary statistics and calculus are required). The log-likelihood function cannot decrease after an EM sequence; this important feature was observed in all of the numerical calculations. The MLEs of the nonpostmortem data were obtained successfully for mixed-Weibull distributions with up to 14 parameters in a 5-subpopulation, mixed-Weibull distribution. Numerical examples indicate that some of the log-likelihood functions of the mixed-Weibull distributions have multiple local maxima; therefore, the algorithm should start at several initial guesses of the parameter set.
Nonlocal maximum likelihood estimation method for denoising multiple-coil magnetic resonance images.
Rajan, Jeny; Veraart, Jelle; Van Audekerke, Johan; Verhoye, Marleen; Sijbers, Jan
2012-12-01
Effective denoising is vital for proper analysis and accurate quantitative measurements from magnetic resonance (MR) images. Even though many methods were proposed to denoise MR images, only few deal with the estimation of true signal from MR images acquired with phased-array coils. If the magnitude data from phased array coils are reconstructed as the root sum of squares, in the absence of noise correlations and subsampling, the data is assumed to follow a non central-χ distribution. However, when the k-space is subsampled to increase the acquisition speed (as in GRAPPA like methods), noise becomes spatially varying. In this note, we propose a method to denoise multiple-coil acquired MR images. Both the non central-χ distribution and the spatially varying nature of the noise is taken into account in the proposed method. Experiments were conducted on both simulated and real data sets to validate and to demonstrate the effectiveness of the proposed method. Copyright © 2012 Elsevier Inc. All rights reserved.
Impact of the Fano Factor on Position and Energy Estimation in Scintillation Detectors.
Bora, Vaibhav; Barrett, Harrison H; Jha, Abhinav K; Clarkson, Eric
2015-02-01
The Fano factor for an integer-valued random variable is defined as the ratio of its variance to its mean. Light from various scintillation crystals have been reported to have Fano factors from sub-Poisson (Fano factor < 1) to super-Poisson (Fano factor > 1). For a given mean, a smaller Fano factor implies a smaller variance and thus less noise. We investigated if lower noise in the scintillation light will result in better spatial and energy resolutions. The impact of Fano factor on the estimation of position of interaction and energy deposited in simple gamma-camera geometries is estimated by two methods - calculating the Cramér-Rao bound and estimating the variance of a maximum likelihood estimator. The methods are consistent with each other and indicate that when estimating the position of interaction and energy deposited by a gamma-ray photon, the Fano factor of a scintillator does not affect the spatial resolution. A smaller Fano factor results in a better energy resolution.
Linear functional minimization for inverse modeling
Barajas-Solano, David A.; Wohlberg, Brendt Egon; Vesselinov, Velimir Valentinov; ...
2015-06-01
In this paper, we present a novel inverse modeling strategy to estimate spatially distributed parameters of nonlinear models. The maximum a posteriori (MAP) estimators of these parameters are based on a likelihood functional, which contains spatially discrete measurements of the system parameters and spatiotemporally discrete measurements of the transient system states. The piecewise continuity prior for the parameters is expressed via Total Variation (TV) regularization. The MAP estimator is computed by minimizing a nonquadratic objective equipped with the TV operator. We apply this inversion algorithm to estimate hydraulic conductivity of a synthetic confined aquifer from measurements of conductivity and hydraulicmore » head. The synthetic conductivity field is composed of a low-conductivity heterogeneous intrusion into a high-conductivity heterogeneous medium. Our algorithm accurately reconstructs the location, orientation, and extent of the intrusion from the steady-state data only. Finally, addition of transient measurements of hydraulic head improves the parameter estimation, accurately reconstructing the conductivity field in the vicinity of observation locations.« less
NASA Astrophysics Data System (ADS)
Putri Utami, Nadia; Ahamed, Tofael
2018-05-01
Karawang, a suburban area of Greater Jakarta, is known as the second largest rice-producing region in West Java, Indonesia. However, expansion of urban sprawl and industrial area from Greater Jakarta have created rapid agricultural land use/cover changes, especially paddy field, in Karawang. This study analyzed the land use/cover changes of paddy field from 2000 to 2016. Landsat 4-5 TM and Landsat 8 OLI/TIRS images were acquired from USGS Earth Explorer, UTM zone 48 south. Satellite image pre-processing, ground truth data collection, supervised maximum likelihood classifications, and Post-Classification Comparison (PCC) were performed in ArcGIS 10.3®. It was observed between 2000 and 2016, urban area increased 4.46% (8530 ha) from initial area of 10,004 ha. Meanwhile paddy field decreased 3.18% (6091 ha) from initial area of 115,720 ha. The spatial analysis showed that paddy field in the fringe of urban area are more susceptible for changes.
Simple Penalties on Maximum-Likelihood Estimates of Genetic Parameters to Reduce Sampling Variation
Meyer, Karin
2016-01-01
Multivariate estimates of genetic parameters are subject to substantial sampling variation, especially for smaller data sets and more than a few traits. A simple modification of standard, maximum-likelihood procedures for multivariate analyses to estimate genetic covariances is described, which can improve estimates by substantially reducing their sampling variances. This is achieved by maximizing the likelihood subject to a penalty. Borrowing from Bayesian principles, we propose a mild, default penalty—derived assuming a Beta distribution of scale-free functions of the covariance components to be estimated—rather than laboriously attempting to determine the stringency of penalization from the data. An extensive simulation study is presented, demonstrating that such penalties can yield very worthwhile reductions in loss, i.e., the difference from population values, for a wide range of scenarios and without distorting estimates of phenotypic covariances. Moreover, mild default penalties tend not to increase loss in difficult cases and, on average, achieve reductions in loss of similar magnitude to computationally demanding schemes to optimize the degree of penalization. Pertinent details required for the adaptation of standard algorithms to locate the maximum of the likelihood function are outlined. PMID:27317681
Maximum Likelihood Estimations and EM Algorithms with Length-biased Data
Qin, Jing; Ning, Jing; Liu, Hao; Shen, Yu
2012-01-01
SUMMARY Length-biased sampling has been well recognized in economics, industrial reliability, etiology applications, epidemiological, genetic and cancer screening studies. Length-biased right-censored data have a unique data structure different from traditional survival data. The nonparametric and semiparametric estimations and inference methods for traditional survival data are not directly applicable for length-biased right-censored data. We propose new expectation-maximization algorithms for estimations based on full likelihoods involving infinite dimensional parameters under three settings for length-biased data: estimating nonparametric distribution function, estimating nonparametric hazard function under an increasing failure rate constraint, and jointly estimating baseline hazards function and the covariate coefficients under the Cox proportional hazards model. Extensive empirical simulation studies show that the maximum likelihood estimators perform well with moderate sample sizes and lead to more efficient estimators compared to the estimating equation approaches. The proposed estimates are also more robust to various right-censoring mechanisms. We prove the strong consistency properties of the estimators, and establish the asymptotic normality of the semi-parametric maximum likelihood estimators under the Cox model using modern empirical processes theory. We apply the proposed methods to a prevalent cohort medical study. Supplemental materials are available online. PMID:22323840
Models and analysis for multivariate failure time data
NASA Astrophysics Data System (ADS)
Shih, Joanna Huang
The goal of this research is to develop and investigate models and analytic methods for multivariate failure time data. We compare models in terms of direct modeling of the margins, flexibility of dependency structure, local vs. global measures of association, and ease of implementation. In particular, we study copula models, and models produced by right neutral cumulative hazard functions and right neutral hazard functions. We examine the changes of association over time for families of bivariate distributions induced from these models by displaying their density contour plots, conditional density plots, correlation curves of Doksum et al, and local cross ratios of Oakes. We know that bivariate distributions with same margins might exhibit quite different dependency structures. In addition to modeling, we study estimation procedures. For copula models, we investigate three estimation procedures. the first procedure is full maximum likelihood. The second procedure is two-stage maximum likelihood. At stage 1, we estimate the parameters in the margins by maximizing the marginal likelihood. At stage 2, we estimate the dependency structure by fixing the margins at the estimated ones. The third procedure is two-stage partially parametric maximum likelihood. It is similar to the second procedure, but we estimate the margins by the Kaplan-Meier estimate. We derive asymptotic properties for these three estimation procedures and compare their efficiency by Monte-Carlo simulations and direct computations. For models produced by right neutral cumulative hazards and right neutral hazards, we derive the likelihood and investigate the properties of the maximum likelihood estimates. Finally, we develop goodness of fit tests for the dependency structure in the copula models. We derive a test statistic and its asymptotic properties based on the test of homogeneity of Zelterman and Chen (1988), and a graphical diagnostic procedure based on the empirical Bayes approach. We study the performance of these two methods using actual and computer generated data.
Multisite EPR oximetry from multiple quadrature harmonics.
Ahmad, R; Som, S; Johnson, D H; Zweier, J L; Kuppusamy, P; Potter, L C
2012-01-01
Multisite continuous wave (CW) electron paramagnetic resonance (EPR) oximetry using multiple quadrature field modulation harmonics is presented. First, a recently developed digital receiver is used to extract multiple harmonics of field modulated projection data. Second, a forward model is presented that relates the projection data to unknown parameters, including linewidth at each site. Third, a maximum likelihood estimator of unknown parameters is reported using an iterative algorithm capable of jointly processing multiple quadrature harmonics. The data modeling and processing are applicable for parametric lineshapes under nonsaturating conditions. Joint processing of multiple harmonics leads to 2-3-fold acceleration of EPR data acquisition. For demonstration in two spatial dimensions, both simulations and phantom studies on an L-band system are reported. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Othman, Arsalan A.; Gloaguen, Richard
2017-09-01
Lithological mapping in mountainous regions is often impeded by limited accessibility due to relief. This study aims to evaluate (1) the performance of different supervised classification approaches using remote sensing data and (2) the use of additional information such as geomorphology. We exemplify the methodology in the Bardi-Zard area in NE Iraq, a part of the Zagros Fold - Thrust Belt, known for its chromite deposits. We highlighted the improvement of remote sensing geological classification by integrating geomorphic features and spatial information in the classification scheme. We performed a Maximum Likelihood (ML) classification method besides two Machine Learning Algorithms (MLA): Support Vector Machine (SVM) and Random Forest (RF) to allow the joint use of geomorphic features, Band Ratio (BR), Principal Component Analysis (PCA), spatial information (spatial coordinates) and multispectral data of the Advanced Space-borne Thermal Emission and Reflection radiometer (ASTER) satellite. The RF algorithm showed reliable results and discriminated serpentinite, talus and terrace deposits, red argillites with conglomerates and limestone, limy conglomerates and limestone conglomerates, tuffites interbedded with basic lavas, limestone and Metamorphosed limestone and reddish green shales. The best overall accuracy (∼80%) was achieved by Random Forest (RF) algorithms in the majority of the sixteen tested combination datasets.
Vector Antenna and Maximum Likelihood Imaging for Radio Astronomy
2016-03-05
Maximum Likelihood Imaging for Radio Astronomy Mary Knapp1, Frank Robey2, Ryan Volz3, Frank Lind3, Alan Fenn2, Alex Morris2, Mark Silver2, Sarah Klein2...haystack.mit.edu Abstract1— Radio astronomy using frequencies less than ~100 MHz provides a window into non-thermal processes in objects ranging from planets...observational astronomy . Ground-based observatories including LOFAR [1], LWA [2], [3], MWA [4], and the proposed SKA-Low [5], [6] are improving access to
A maximum pseudo-profile likelihood estimator for the Cox model under length-biased sampling
Huang, Chiung-Yu; Qin, Jing; Follmann, Dean A.
2012-01-01
This paper considers semiparametric estimation of the Cox proportional hazards model for right-censored and length-biased data arising from prevalent sampling. To exploit the special structure of length-biased sampling, we propose a maximum pseudo-profile likelihood estimator, which can handle time-dependent covariates and is consistent under covariate-dependent censoring. Simulation studies show that the proposed estimator is more efficient than its competitors. A data analysis illustrates the methods and theory. PMID:23843659
THESEUS: maximum likelihood superpositioning and analysis of macromolecular structures
Theobald, Douglas L.; Wuttke, Deborah S.
2008-01-01
Summary THESEUS is a command line program for performing maximum likelihood (ML) superpositions and analysis of macromolecular structures. While conventional superpositioning methods use ordinary least-squares (LS) as the optimization criterion, ML superpositions provide substantially improved accuracy by down-weighting variable structural regions and by correcting for correlations among atoms. ML superpositioning is robust and insensitive to the specific atoms included in the analysis, and thus it does not require subjective pruning of selected variable atomic coordinates. Output includes both likelihood-based and frequentist statistics for accurate evaluation of the adequacy of a superposition and for reliable analysis of structural similarities and differences. THESEUS performs principal components analysis for analyzing the complex correlations found among atoms within a structural ensemble. PMID:16777907
Brain tumor segmentation from multimodal magnetic resonance images via sparse representation.
Li, Yuhong; Jia, Fucang; Qin, Jing
2016-10-01
Accurately segmenting and quantifying brain gliomas from magnetic resonance (MR) images remains a challenging task because of the large spatial and structural variability among brain tumors. To develop a fully automatic and accurate brain tumor segmentation algorithm, we present a probabilistic model of multimodal MR brain tumor segmentation. This model combines sparse representation and the Markov random field (MRF) to solve the spatial and structural variability problem. We formulate the tumor segmentation problem as a multi-classification task by labeling each voxel as the maximum posterior probability. We estimate the maximum a posteriori (MAP) probability by introducing the sparse representation into a likelihood probability and a MRF into the prior probability. Considering the MAP as an NP-hard problem, we convert the maximum posterior probability estimation into a minimum energy optimization problem and employ graph cuts to find the solution to the MAP estimation. Our method is evaluated using the Brain Tumor Segmentation Challenge 2013 database (BRATS 2013) and obtained Dice coefficient metric values of 0.85, 0.75, and 0.69 on the high-grade Challenge data set, 0.73, 0.56, and 0.54 on the high-grade Challenge LeaderBoard data set, and 0.84, 0.54, and 0.57 on the low-grade Challenge data set for the complete, core, and enhancing regions. The experimental results show that the proposed algorithm is valid and ranks 2nd compared with the state-of-the-art tumor segmentation algorithms in the MICCAI BRATS 2013 challenge. Copyright © 2016 Elsevier B.V. All rights reserved.
Maximum Likelihood Analysis in the PEN Experiment
NASA Astrophysics Data System (ADS)
Lehman, Martin
2013-10-01
The experimental determination of the π+ -->e+ ν (γ) decay branching ratio currently provides the most accurate test of lepton universality. The PEN experiment at PSI, Switzerland, aims to improve the present world average experimental precision of 3 . 3 ×10-3 to 5 ×10-4 using a stopped beam approach. During runs in 2008-10, PEN has acquired over 2 ×107 πe 2 events. The experiment includes active beam detectors (degrader, mini TPC, target), central MWPC tracking with plastic scintillator hodoscopes, and a spherical pure CsI electromagnetic shower calorimeter. The final branching ratio will be calculated using a maximum likelihood analysis. This analysis assigns each event a probability for 5 processes (π+ -->e+ ν , π+ -->μ+ ν , decay-in-flight, pile-up, and hadronic events) using Monte Carlo verified probability distribution functions of our observables (energies, times, etc). A progress report on the PEN maximum likelihood analysis will be presented. Work supported by NSF grant PHY-0970013.
The Extended-Image Tracking Technique Based on the Maximum Likelihood Estimation
NASA Technical Reports Server (NTRS)
Tsou, Haiping; Yan, Tsun-Yee
2000-01-01
This paper describes an extended-image tracking technique based on the maximum likelihood estimation. The target image is assume to have a known profile covering more than one element of a focal plane detector array. It is assumed that the relative position between the imager and the target is changing with time and the received target image has each of its pixels disturbed by an independent additive white Gaussian noise. When a rotation-invariant movement between imager and target is considered, the maximum likelihood based image tracking technique described in this paper is a closed-loop structure capable of providing iterative update of the movement estimate by calculating the loop feedback signals from a weighted correlation between the currently received target image and the previously estimated reference image in the transform domain. The movement estimate is then used to direct the imager to closely follow the moving target. This image tracking technique has many potential applications, including free-space optical communications and astronomy where accurate and stabilized optical pointing is essential.
Reyes-Valdés, M H; Stelly, D M
1995-01-01
Frequencies of meiotic configurations in cytogenetic stocks are dependent on chiasma frequencies in segments defined by centromeres, breakpoints, and telomeres. The expectation maximization algorithm is proposed as a general method to perform maximum likelihood estimations of the chiasma frequencies in the intervals between such locations. The estimates can be translated via mapping functions into genetic maps of cytogenetic landmarks. One set of observational data was analyzed to exemplify application of these methods, results of which were largely concordant with other comparable data. The method was also tested by Monte Carlo simulation of frequencies of meiotic configurations from a monotelodisomic translocation heterozygote, assuming six different sample sizes. The estimate averages were always close to the values given initially to the parameters. The maximum likelihood estimation procedures can be extended readily to other kinds of cytogenetic stocks and allow the pooling of diverse cytogenetic data to collectively estimate lengths of segments, arms, and chromosomes. Images Fig. 1 PMID:7568226
Schminkey, Donna L; von Oertzen, Timo; Bullock, Linda
2016-08-01
With increasing access to population-based data and electronic health records for secondary analysis, missing data are common. In the social and behavioral sciences, missing data frequently are handled with multiple imputation methods or full information maximum likelihood (FIML) techniques, but healthcare researchers have not embraced these methodologies to the same extent and more often use either traditional imputation techniques or complete case analysis, which can compromise power and introduce unintended bias. This article is a review of options for handling missing data, concluding with a case study demonstrating the utility of multilevel structural equation modeling using full information maximum likelihood (MSEM with FIML) to handle large amounts of missing data. MSEM with FIML is a parsimonious and hypothesis-driven strategy to cope with large amounts of missing data without compromising power or introducing bias. This technique is relevant for nurse researchers faced with ever-increasing amounts of electronic data and decreasing research budgets. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Methods for estimating drought streamflow probabilities for Virginia streams
Austin, Samuel H.
2014-01-01
Maximum likelihood logistic regression model equations used to estimate drought flow probabilities for Virginia streams are presented for 259 hydrologic basins in Virginia. Winter streamflows were used to estimate the likelihood of streamflows during the subsequent drought-prone summer months. The maximum likelihood logistic regression models identify probable streamflows from 5 to 8 months in advance. More than 5 million streamflow daily values collected over the period of record (January 1, 1900 through May 16, 2012) were compiled and analyzed over a minimum 10-year (maximum 112-year) period of record. The analysis yielded the 46,704 equations with statistically significant fit statistics and parameter ranges published in two tables in this report. These model equations produce summer month (July, August, and September) drought flow threshold probabilities as a function of streamflows during the previous winter months (November, December, January, and February). Example calculations are provided, demonstrating how to use the equations to estimate probable streamflows as much as 8 months in advance.
DECONV-TOOL: An IDL based deconvolution software package
NASA Technical Reports Server (NTRS)
Varosi, F.; Landsman, W. B.
1992-01-01
There are a variety of algorithms for deconvolution of blurred images, each having its own criteria or statistic to be optimized in order to estimate the original image data. Using the Interactive Data Language (IDL), we have implemented the Maximum Likelihood, Maximum Entropy, Maximum Residual Likelihood, and sigma-CLEAN algorithms in a unified environment called DeConv_Tool. Most of the algorithms have as their goal the optimization of statistics such as standard deviation and mean of residuals. Shannon entropy, log-likelihood, and chi-square of the residual auto-correlation are computed by DeConv_Tool for the purpose of determining the performance and convergence of any particular method and comparisons between methods. DeConv_Tool allows interactive monitoring of the statistics and the deconvolved image during computation. The final results, and optionally, the intermediate results, are stored in a structure convenient for comparison between methods and review of the deconvolution computation. The routines comprising DeConv_Tool are available via anonymous FTP through the IDL Astronomy User's Library.
F-8C adaptive flight control laws
NASA Technical Reports Server (NTRS)
Hartmann, G. L.; Harvey, C. A.; Stein, G.; Carlson, D. N.; Hendrick, R. C.
1977-01-01
Three candidate digital adaptive control laws were designed for NASA's F-8C digital flyby wire aircraft. Each design used the same control laws but adjusted the gains with a different adaptative algorithm. The three adaptive concepts were: high-gain limit cycle, Liapunov-stable model tracking, and maximum likelihood estimation. Sensors were restricted to conventional inertial instruments (rate gyros and accelerometers) without use of air-data measurements. Performance, growth potential, and computer requirements were used as criteria for selecting the most promising of these candidates for further refinement. The maximum likelihood concept was selected primarily because it offers the greatest potential for identifying several aircraft parameters and hence for improved control performance in future aircraft application. In terms of identification and gain adjustment accuracy, the MLE design is slightly superior to the other two, but this has no significant effects on the control performance achievable with the F-8C aircraft. The maximum likelihood design is recommended for flight test, and several refinements to that design are proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washeleski, Robert L.; Meyer, Edmond J. IV; King, Lyon B.
2013-10-15
Laser Thomson scattering (LTS) is an established plasma diagnostic technique that has seen recent application to low density plasmas. It is difficult to perform LTS measurements when the scattered signal is weak as a result of low electron number density, poor optical access to the plasma, or both. Photon counting methods are often implemented in order to perform measurements in these low signal conditions. However, photon counting measurements performed with photo-multiplier tubes are time consuming and multi-photon arrivals are incorrectly recorded. In order to overcome these shortcomings a new data analysis method based on maximum likelihood estimation was developed. Themore » key feature of this new data processing method is the inclusion of non-arrival events in determining the scattered Thomson signal. Maximum likelihood estimation and its application to Thomson scattering at low signal levels is presented and application of the new processing method to LTS measurements performed in the plume of a 2-kW Hall-effect thruster is discussed.« less
Washeleski, Robert L; Meyer, Edmond J; King, Lyon B
2013-10-01
Laser Thomson scattering (LTS) is an established plasma diagnostic technique that has seen recent application to low density plasmas. It is difficult to perform LTS measurements when the scattered signal is weak as a result of low electron number density, poor optical access to the plasma, or both. Photon counting methods are often implemented in order to perform measurements in these low signal conditions. However, photon counting measurements performed with photo-multiplier tubes are time consuming and multi-photon arrivals are incorrectly recorded. In order to overcome these shortcomings a new data analysis method based on maximum likelihood estimation was developed. The key feature of this new data processing method is the inclusion of non-arrival events in determining the scattered Thomson signal. Maximum likelihood estimation and its application to Thomson scattering at low signal levels is presented and application of the new processing method to LTS measurements performed in the plume of a 2-kW Hall-effect thruster is discussed.
Zhao, Xing; Zhou, Xiao-Hua; Feng, Zijian; Guo, Pengfei; He, Hongyan; Zhang, Tao; Duan, Lei; Li, Xiaosong
2013-01-01
As a useful tool for geographical cluster detection of events, the spatial scan statistic is widely applied in many fields and plays an increasingly important role. The classic version of the spatial scan statistic for the binary outcome is developed by Kulldorff, based on the Bernoulli or the Poisson probability model. In this paper, we apply the Hypergeometric probability model to construct the likelihood function under the null hypothesis. Compared with existing methods, the likelihood function under the null hypothesis is an alternative and indirect method to identify the potential cluster, and the test statistic is the extreme value of the likelihood function. Similar with Kulldorff's methods, we adopt Monte Carlo test for the test of significance. Both methods are applied for detecting spatial clusters of Japanese encephalitis in Sichuan province, China, in 2009, and the detected clusters are identical. Through a simulation to independent benchmark data, it is indicated that the test statistic based on the Hypergeometric model outweighs Kulldorff's statistics for clusters of high population density or large size; otherwise Kulldorff's statistics are superior.
NASA Technical Reports Server (NTRS)
Lei, Ning; Chiang, Kwo-Fu; Oudrari, Hassan; Xiong, Xiaoxiong
2011-01-01
Optical sensors aboard Earth orbiting satellites such as the next generation Visible/Infrared Imager/Radiometer Suite (VIIRS) assume that the sensors radiometric response in the Reflective Solar Bands (RSB) is described by a quadratic polynomial, in relating the aperture spectral radiance to the sensor Digital Number (DN) readout. For VIIRS Flight Unit 1, the coefficients are to be determined before launch by an attenuation method, although the linear coefficient will be further determined on-orbit through observing the Solar Diffuser. In determining the quadratic polynomial coefficients by the attenuation method, a Maximum Likelihood approach is applied in carrying out the least-squares procedure. Crucial to the Maximum Likelihood least-squares procedure is the computation of the weight. The weight not only has a contribution from the noise of the sensor s digital count, with an important contribution from digitization error, but also is affected heavily by the mathematical expression used to predict the value of the dependent variable, because both the independent and the dependent variables contain random noise. In addition, model errors have a major impact on the uncertainties of the coefficients. The Maximum Likelihood approach demonstrates the inadequacy of the attenuation method model with a quadratic polynomial for the retrieved spectral radiance. We show that using the inadequate model dramatically increases the uncertainties of the coefficients. We compute the coefficient values and their uncertainties, considering both measurement and model errors.
Factors associated with persons with disability employment in India: a cross-sectional study.
Naraharisetti, Ramya; Castro, Marcia C
2016-10-07
Over twenty million persons with disability in India are increasingly being offered poverty alleviation strategies, including employment programs. This study employs a spatial analytic approach to identify correlates of employment among persons with disability in India, considering sight, speech, hearing, movement, and mental disabilities. Based on 2001 Census data, this study utilizes linear regression and spatial autoregressive models to identify factors associated with the proportion employed among persons with disability at the district level. Models stratified by rural and urban areas were also considered. Spatial autoregressive models revealed that different factors contribute to employment of persons with disability in rural and urban areas. In rural areas, having mental disability decreased the likelihood of employment, while being female and having movement, or sight impairment (compared to other disabilities) increased the likelihood of employment. In urban areas, being female and illiterate decreased the likelihood of employment but having sight, mental and movement impairment (compared to other disabilities) increased the likelihood of employment. Poverty alleviation programs designed for persons with disability in India should account for differences in employment by disability types and should be spatially targeted. Since persons with disability in rural and urban areas have different factors contributing to their employment, it is vital that government and service-planning organizations account for these differences when creating programs aimed at livelihood development.
Inferring Phylogenetic Networks Using PhyloNet.
Wen, Dingqiao; Yu, Yun; Zhu, Jiafan; Nakhleh, Luay
2018-07-01
PhyloNet was released in 2008 as a software package for representing and analyzing phylogenetic networks. At the time of its release, the main functionalities in PhyloNet consisted of measures for comparing network topologies and a single heuristic for reconciling gene trees with a species tree. Since then, PhyloNet has grown significantly. The software package now includes a wide array of methods for inferring phylogenetic networks from data sets of unlinked loci while accounting for both reticulation (e.g., hybridization) and incomplete lineage sorting. In particular, PhyloNet now allows for maximum parsimony, maximum likelihood, and Bayesian inference of phylogenetic networks from gene tree estimates. Furthermore, Bayesian inference directly from sequence data (sequence alignments or biallelic markers) is implemented. Maximum parsimony is based on an extension of the "minimizing deep coalescences" criterion to phylogenetic networks, whereas maximum likelihood and Bayesian inference are based on the multispecies network coalescent. All methods allow for multiple individuals per species. As computing the likelihood of a phylogenetic network is computationally hard, PhyloNet allows for evaluation and inference of networks using a pseudolikelihood measure. PhyloNet summarizes the results of the various analyzes and generates phylogenetic networks in the extended Newick format that is readily viewable by existing visualization software.
Regression estimators for generic health-related quality of life and quality-adjusted life years.
Basu, Anirban; Manca, Andrea
2012-01-01
To develop regression models for outcomes with truncated supports, such as health-related quality of life (HRQoL) data, and account for features typical of such data such as a skewed distribution, spikes at 1 or 0, and heteroskedasticity. Regression estimators based on features of the Beta distribution. First, both a single equation and a 2-part model are presented, along with estimation algorithms based on maximum-likelihood, quasi-likelihood, and Bayesian Markov-chain Monte Carlo methods. A novel Bayesian quasi-likelihood estimator is proposed. Second, a simulation exercise is presented to assess the performance of the proposed estimators against ordinary least squares (OLS) regression for a variety of HRQoL distributions that are encountered in practice. Finally, the performance of the proposed estimators is assessed by using them to quantify the treatment effect on QALYs in the EVALUATE hysterectomy trial. Overall model fit is studied using several goodness-of-fit tests such as Pearson's correlation test, link and reset tests, and a modified Hosmer-Lemeshow test. The simulation results indicate that the proposed methods are more robust in estimating covariate effects than OLS, especially when the effects are large or the HRQoL distribution has a large spike at 1. Quasi-likelihood techniques are more robust than maximum likelihood estimators. When applied to the EVALUATE trial, all but the maximum likelihood estimators produce unbiased estimates of the treatment effect. One and 2-part Beta regression models provide flexible approaches to regress the outcomes with truncated supports, such as HRQoL, on covariates, after accounting for many idiosyncratic features of the outcomes distribution. This work will provide applied researchers with a practical set of tools to model outcomes in cost-effectiveness analysis.
Dong, Yi; Mihalas, Stefan; Russell, Alexander; Etienne-Cummings, Ralph; Niebur, Ernst
2012-01-01
When a neuronal spike train is observed, what can we say about the properties of the neuron that generated it? A natural way to answer this question is to make an assumption about the type of neuron, select an appropriate model for this type, and then to choose the model parameters as those that are most likely to generate the observed spike train. This is the maximum likelihood method. If the neuron obeys simple integrate and fire dynamics, Paninski, Pillow, and Simoncelli (2004) showed that its negative log-likelihood function is convex and that its unique global minimum can thus be found by gradient descent techniques. The global minimum property requires independence of spike time intervals. Lack of history dependence is, however, an important constraint that is not fulfilled in many biological neurons which are known to generate a rich repertoire of spiking behaviors that are incompatible with history independence. Therefore, we expanded the integrate and fire model by including one additional variable, a variable threshold (Mihalas & Niebur, 2009) allowing for history-dependent firing patterns. This neuronal model produces a large number of spiking behaviors while still being linear. Linearity is important as it maintains the distribution of the random variables and still allows for maximum likelihood methods to be used. In this study we show that, although convexity of the negative log-likelihood is not guaranteed for this model, the minimum of the negative log-likelihood function yields a good estimate for the model parameters, in particular if the noise level is treated as a free parameter. Furthermore, we show that a nonlinear function minimization method (r-algorithm with space dilation) frequently reaches the global minimum. PMID:21851282
Accurate Structural Correlations from Maximum Likelihood Superpositions
Theobald, Douglas L; Wuttke, Deborah S
2008-01-01
The cores of globular proteins are densely packed, resulting in complicated networks of structural interactions. These interactions in turn give rise to dynamic structural correlations over a wide range of time scales. Accurate analysis of these complex correlations is crucial for understanding biomolecular mechanisms and for relating structure to function. Here we report a highly accurate technique for inferring the major modes of structural correlation in macromolecules using likelihood-based statistical analysis of sets of structures. This method is generally applicable to any ensemble of related molecules, including families of nuclear magnetic resonance (NMR) models, different crystal forms of a protein, and structural alignments of homologous proteins, as well as molecular dynamics trajectories. Dominant modes of structural correlation are determined using principal components analysis (PCA) of the maximum likelihood estimate of the correlation matrix. The correlations we identify are inherently independent of the statistical uncertainty and dynamic heterogeneity associated with the structural coordinates. We additionally present an easily interpretable method (“PCA plots”) for displaying these positional correlations by color-coding them onto a macromolecular structure. Maximum likelihood PCA of structural superpositions, and the structural PCA plots that illustrate the results, will facilitate the accurate determination of dynamic structural correlations analyzed in diverse fields of structural biology. PMID:18282091
Li, Dongming; Sun, Changming; Yang, Jinhua; Liu, Huan; Peng, Jiaqi; Zhang, Lijuan
2017-04-06
An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods.
Li, Dongming; Sun, Changming; Yang, Jinhua; Liu, Huan; Peng, Jiaqi; Zhang, Lijuan
2017-01-01
An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods. PMID:28383503
Shen, Yi; Dai, Wei; Richards, Virginia M
2015-03-01
A MATLAB toolbox for the efficient estimation of the threshold, slope, and lapse rate of the psychometric function is described. The toolbox enables the efficient implementation of the updated maximum-likelihood (UML) procedure. The toolbox uses an object-oriented architecture for organizing the experimental variables and computational algorithms, which provides experimenters with flexibility in experimental design and data management. Descriptions of the UML procedure and the UML Toolbox are provided, followed by toolbox use examples. Finally, guidelines and recommendations of parameter configurations are given.
A maximum likelihood convolutional decoder model vs experimental data comparison
NASA Technical Reports Server (NTRS)
Chen, R. Y.
1979-01-01
This article describes the comparison of a maximum likelihood convolutional decoder (MCD) prediction model and the actual performance of the MCD at the Madrid Deep Space Station. The MCD prediction model is used to develop a subroutine that has been utilized by the Telemetry Analysis Program (TAP) to compute the MCD bit error rate for a given signal-to-noise ratio. The results indicate that that the TAP can predict quite well compared to the experimental measurements. An optimal modulation index also can be found through TAP.
Salje, Ekhard K H; Planes, Antoni; Vives, Eduard
2017-10-01
Crackling noise can be initiated by competing or coexisting mechanisms. These mechanisms can combine to generate an approximate scale invariant distribution that contains two or more contributions. The overall distribution function can be analyzed, to a good approximation, using maximum-likelihood methods and assuming that it follows a power law although with nonuniversal exponents depending on a varying lower cutoff. We propose that such distributions are rather common and originate from a simple superposition of crackling noise distributions or exponential damping.
Using genetic data to estimate diffusion rates in heterogeneous landscapes.
Roques, L; Walker, E; Franck, P; Soubeyrand, S; Klein, E K
2016-08-01
Having a precise knowledge of the dispersal ability of a population in a heterogeneous environment is of critical importance in agroecology and conservation biology as it can provide management tools to limit the effects of pests or to increase the survival of endangered species. In this paper, we propose a mechanistic-statistical method to estimate space-dependent diffusion parameters of spatially-explicit models based on stochastic differential equations, using genetic data. Dividing the total population into subpopulations corresponding to different habitat patches with known allele frequencies, the expected proportions of individuals from each subpopulation at each position is computed by solving a system of reaction-diffusion equations. Modelling the capture and genotyping of the individuals with a statistical approach, we derive a numerically tractable formula for the likelihood function associated with the diffusion parameters. In a simulated environment made of three types of regions, each associated with a different diffusion coefficient, we successfully estimate the diffusion parameters with a maximum-likelihood approach. Although higher genetic differentiation among subpopulations leads to more accurate estimations, once a certain level of differentiation has been reached, the finite size of the genotyped population becomes the limiting factor for accurate estimation.
Mahara, Gehendra; Wang, Chao; Yang, Kun; Chen, Sipeng; Guo, Jin; Gao, Qi; Wang, Wei; Wang, Quanyi; Guo, Xiuhua
2016-01-01
(1) Background: Evidence regarding scarlet fever and its relationship with meteorological, including air pollution factors, is not very available. This study aimed to examine the relationship between ambient air pollutants and meteorological factors with scarlet fever occurrence in Beijing, China. (2) Methods: A retrospective ecological study was carried out to distinguish the epidemic characteristics of scarlet fever incidence in Beijing districts from 2013 to 2014. Daily incidence and corresponding air pollutant and meteorological data were used to develop the model. Global Moran’s I statistic and Anselin’s local Moran’s I (LISA) were applied to detect the spatial autocorrelation (spatial dependency) and clusters of scarlet fever incidence. The spatial lag model (SLM) and spatial error model (SEM) including ordinary least squares (OLS) models were then applied to probe the association between scarlet fever incidence and meteorological including air pollution factors. (3) Results: Among the 5491 cases, more than half (62%) were male, and more than one-third (37.8%) were female, with the annual average incidence rate 14.64 per 100,000 population. Spatial autocorrelation analysis exhibited the existence of spatial dependence; therefore, we applied spatial regression models. After comparing the values of R-square, log-likelihood and the Akaike information criterion (AIC) among the three models, the OLS model (R2 = 0.0741, log likelihood = −1819.69, AIC = 3665.38), SLM (R2 = 0.0786, log likelihood = −1819.04, AIC = 3665.08) and SEM (R2 = 0.0743, log likelihood = −1819.67, AIC = 3665.36), identified that the spatial lag model (SLM) was best for model fit for the regression model. There was a positive significant association between nitrogen oxide (p = 0.027), rainfall (p = 0.036) and sunshine hour (p = 0.048), while the relative humidity (p = 0.034) had an adverse association with scarlet fever incidence in SLM. (4) Conclusions: Our findings indicated that meteorological, as well as air pollutant factors may increase the incidence of scarlet fever; these findings may help to guide scarlet fever control programs and targeting the intervention. PMID:27827946
Mahara, Gehendra; Wang, Chao; Yang, Kun; Chen, Sipeng; Guo, Jin; Gao, Qi; Wang, Wei; Wang, Quanyi; Guo, Xiuhua
2016-11-04
(1) Background: Evidence regarding scarlet fever and its relationship with meteorological, including air pollution factors, is not very available. This study aimed to examine the relationship between ambient air pollutants and meteorological factors with scarlet fever occurrence in Beijing, China. (2) Methods: A retrospective ecological study was carried out to distinguish the epidemic characteristics of scarlet fever incidence in Beijing districts from 2013 to 2014. Daily incidence and corresponding air pollutant and meteorological data were used to develop the model. Global Moran's I statistic and Anselin's local Moran's I (LISA) were applied to detect the spatial autocorrelation (spatial dependency) and clusters of scarlet fever incidence. The spatial lag model (SLM) and spatial error model (SEM) including ordinary least squares (OLS) models were then applied to probe the association between scarlet fever incidence and meteorological including air pollution factors. (3) Results: Among the 5491 cases, more than half (62%) were male, and more than one-third (37.8%) were female, with the annual average incidence rate 14.64 per 100,000 population. Spatial autocorrelation analysis exhibited the existence of spatial dependence; therefore, we applied spatial regression models. After comparing the values of R-square, log-likelihood and the Akaike information criterion (AIC) among the three models, the OLS model (R² = 0.0741, log likelihood = -1819.69, AIC = 3665.38), SLM (R² = 0.0786, log likelihood = -1819.04, AIC = 3665.08) and SEM (R² = 0.0743, log likelihood = -1819.67, AIC = 3665.36), identified that the spatial lag model (SLM) was best for model fit for the regression model. There was a positive significant association between nitrogen oxide ( p = 0.027), rainfall ( p = 0.036) and sunshine hour ( p = 0.048), while the relative humidity ( p = 0.034) had an adverse association with scarlet fever incidence in SLM. (4) Conclusions: Our findings indicated that meteorological, as well as air pollutant factors may increase the incidence of scarlet fever; these findings may help to guide scarlet fever control programs and targeting the intervention.
Spatial resolution properties of motion-compensated tomographic image reconstruction methods.
Chun, Se Young; Fessler, Jeffrey A
2012-07-01
Many motion-compensated image reconstruction (MCIR) methods have been proposed to correct for subject motion in medical imaging. MCIR methods incorporate motion models to improve image quality by reducing motion artifacts and noise. This paper analyzes the spatial resolution properties of MCIR methods and shows that nonrigid local motion can lead to nonuniform and anisotropic spatial resolution for conventional quadratic regularizers. This undesirable property is akin to the known effects of interactions between heteroscedastic log-likelihoods (e.g., Poisson likelihood) and quadratic regularizers. This effect may lead to quantification errors in small or narrow structures (such as small lesions or rings) of reconstructed images. This paper proposes novel spatial regularization design methods for three different MCIR methods that account for known nonrigid motion. We develop MCIR regularization designs that provide approximately uniform and isotropic spatial resolution and that match a user-specified target spatial resolution. Two-dimensional PET simulations demonstrate the performance and benefits of the proposed spatial regularization design methods.
Likelihood-based modification of experimental crystal structure electron density maps
Terwilliger, Thomas C [Sante Fe, NM
2005-04-16
A maximum-likelihood method for improves an electron density map of an experimental crystal structure. A likelihood of a set of structure factors {F.sub.h } is formed for the experimental crystal structure as (1) the likelihood of having obtained an observed set of structure factors {F.sub.h.sup.OBS } if structure factor set {F.sub.h } was correct, and (2) the likelihood that an electron density map resulting from {F.sub.h } is consistent with selected prior knowledge about the experimental crystal structure. The set of structure factors {F.sub.h } is then adjusted to maximize the likelihood of {F.sub.h } for the experimental crystal structure. An improved electron density map is constructed with the maximized structure factors.
Building Extraction Based on Openstreetmap Tags and Very High Spatial Resolution Image in Urban Area
NASA Astrophysics Data System (ADS)
Kang, L.; Wang, Q.; Yan, H. W.
2018-04-01
How to derive contour of buildings from VHR images is the essential problem for automatic building extraction in urban area. To solve this problem, OSM data is introduced to offer vector contour information of buildings which is hard to get from VHR images. First, we import OSM data into database. The line string data of OSM with tags of building, amenity, office etc. are selected and combined into completed contours; Second, the accuracy of contours of buildings is confirmed by comparing with the real buildings in Google Earth; Third, maximum likelihood classification is conducted with the confirmed building contours, and the result demonstrates that the proposed approach is effective and accurate. The approach offers a new way for automatic interpretation of VHR images.
Wlan-Based Indoor Localization Using Neural Networks
NASA Astrophysics Data System (ADS)
Saleem, Fasiha; Wyne, Shurjeel
2016-07-01
Wireless indoor localization has generated recent research interest due to its numerous applications. This work investigates Wi-Fi based indoor localization using two variants of the fingerprinting approach. Specifically, we study the application of an artificial neural network (ANN) for implementing the fingerprinting approach and compare its localization performance with a probabilistic fingerprinting method that is based on maximum likelihood estimation (MLE) of the user location. We incorporate spatial correlation of fading into our investigations, which is often neglected in simulation studies and leads to erroneous location estimates. The localization performance is quantified in terms of accuracy, precision, robustness, and complexity. Multiple methods for handling the case of missing APs in online stage are investigated. Our results indicate that ANN-based fingerprinting outperforms the probabilistic approach for all performance metrics considered in this work.
Deconvolving the wedge: maximum-likelihood power spectra via spherical-wave visibility modelling
NASA Astrophysics Data System (ADS)
Ghosh, A.; Mertens, F. G.; Koopmans, L. V. E.
2018-03-01
Direct detection of the Epoch of Reionization (EoR) via the red-shifted 21-cm line will have unprecedented implications on the study of structure formation in the infant Universe. To fulfil this promise, current and future 21-cm experiments need to detect this weak EoR signal in the presence of foregrounds that are several orders of magnitude larger. This requires extreme noise control and improved wide-field high dynamic-range imaging techniques. We propose a new imaging method based on a maximum likelihood framework which solves for the interferometric equation directly on the sphere, or equivalently in the uvw-domain. The method uses the one-to-one relation between spherical waves and spherical harmonics (SpH). It consistently handles signals from the entire sky, and does not require a w-term correction. The SpH coefficients represent the sky-brightness distribution and the visibilities in the uvw-domain, and provide a direct estimate of the spatial power spectrum. Using these spectrally smooth SpH coefficients, bright foregrounds can be removed from the signal, including their side-lobe noise, which is one of the limiting factors in high dynamics-range wide-field imaging. Chromatic effects causing the so-called `wedge' are effectively eliminated (i.e. deconvolved) in the cylindrical (k⊥, k∥) power spectrum, compared to a power spectrum computed directly from the images of the foreground visibilities where the wedge is clearly present. We illustrate our method using simulated Low-Frequency Array observations, finding an excellent reconstruction of the input EoR signal with minimal bias.
NASA Astrophysics Data System (ADS)
Klein, Iris M.; Rousseau, Alain N.; Frigon, Anne; Freudiger, Daphné; Gagnon, Patrick
2016-06-01
Probable maximum snow accumulation (PMSA) is one of the key variables used to estimate the spring probable maximum flood (PMF). A robust methodology for evaluating the PMSA is imperative so the ensuing spring PMF is a reasonable estimation. This is of particular importance in times of climate change (CC) since it is known that solid precipitation in Nordic landscapes will in all likelihood change over the next century. In this paper, a PMSA methodology based on simulated data from regional climate models is developed. Moisture maximization represents the core concept of the proposed methodology; precipitable water being the key variable. Results of stationarity tests indicate that CC will affect the monthly maximum precipitable water and, thus, the ensuing ratio to maximize important snowfall events. Therefore, a non-stationary approach is used to describe the monthly maximum precipitable water. Outputs from three simulations produced by the Canadian Regional Climate Model were used to give first estimates of potential PMSA changes for southern Quebec, Canada. A sensitivity analysis of the computed PMSA was performed with respect to the number of time-steps used (so-called snowstorm duration) and the threshold for a snowstorm to be maximized or not. The developed methodology is robust and a powerful tool to estimate the relative change of the PMSA. Absolute results are in the same order of magnitude as those obtained with the traditional method and observed data; but are also found to depend strongly on the climate projection used and show spatial variability.
Curiale, Ariel H; Vegas-Sánchez-Ferrero, Gonzalo; Bosch, Johan G; Aja-Fernández, Santiago
2015-08-01
The strain and strain-rate measures are commonly used for the analysis and assessment of regional myocardial function. In echocardiography (EC), the strain analysis became possible using Tissue Doppler Imaging (TDI). Unfortunately, this modality shows an important limitation: the angle between the myocardial movement and the ultrasound beam should be small to provide reliable measures. This constraint makes it difficult to provide strain measures of the entire myocardium. Alternative non-Doppler techniques such as Speckle Tracking (ST) can provide strain measures without angle constraints. However, the spatial resolution and the noisy appearance of speckle still make the strain estimation a challenging task in EC. Several maximum likelihood approaches have been proposed to statistically characterize the behavior of speckle, which results in a better performance of speckle tracking. However, those models do not consider common transformations to achieve the final B-mode image (e.g. interpolation). This paper proposes a new maximum likelihood approach for speckle tracking which effectively characterizes speckle of the final B-mode image. Its formulation provides a diffeomorphic scheme than can be efficiently optimized with a second-order method. The novelty of the method is threefold: First, the statistical characterization of speckle generalizes conventional speckle models (Rayleigh, Nakagami and Gamma) to a more versatile model for real data. Second, the formulation includes local correlation to increase the efficiency of frame-to-frame speckle tracking. Third, a probabilistic myocardial tissue characterization is used to automatically identify more reliable myocardial motions. The accuracy and agreement assessment was evaluated on a set of 16 synthetic image sequences for three different scenarios: normal, acute ischemia and acute dyssynchrony. The proposed method was compared to six speckle tracking methods. Results revealed that the proposed method is the most accurate method to measure the motion and strain with an average median motion error of 0.42 mm and a median strain error of 2.0 ± 0.9%, 2.1 ± 1.3% and 7.1 ± 4.9% for circumferential, longitudinal and radial strain respectively. It also showed its capability to identify abnormal segments with reduced cardiac function and timing differences for the dyssynchrony cases. These results indicate that the proposed diffeomorphic speckle tracking method provides robust and accurate motion and strain estimation. Copyright © 2015. Published by Elsevier B.V.
Cao, Y; Adachi, J; Yano, T; Hasegawa, M
1994-07-01
Graur et al.'s (1991) hypothesis that the guinea pig-like rodents have an evolutionary origin within mammals that is separate from that of other rodents (the rodent-polyphyly hypothesis) was reexamined by the maximum-likelihood method for protein phylogeny, as well as by the maximum-parsimony and neighbor-joining methods. The overall evidence does not support Graur et al.'s hypothesis, which radically contradicts the traditional view of rodent monophyly. This work demonstrates that we must be careful in choosing a proper method for phylogenetic inference and that an argument based on a small data set (with respect to the length of the sequence and especially the number of species) may be unstable.
Task Performance with List-Mode Data
NASA Astrophysics Data System (ADS)
Caucci, Luca
This dissertation investigates the application of list-mode data to detection, estimation, and image reconstruction problems, with an emphasis on emission tomography in medical imaging. We begin by introducing a theoretical framework for list-mode data and we use it to define two observers that operate on list-mode data. These observers are applied to the problem of detecting a signal (known in shape and location) buried in a random lumpy background. We then consider maximum-likelihood methods for the estimation of numerical parameters from list-mode data, and we characterize the performance of these estimators via the so-called Fisher information matrix. Reconstruction from PET list-mode data is then considered. In a process we called "double maximum-likelihood" reconstruction, we consider a simple PET imaging system and we use maximum-likelihood methods to first estimate a parameter vector for each pair of gamma-ray photons that is detected by the hardware. The collection of these parameter vectors forms a list, which is then fed to another maximum-likelihood algorithm for volumetric reconstruction over a grid of voxels. Efficient parallel implementation of the algorithms discussed above is then presented. In this work, we take advantage of two low-cost, mass-produced computing platforms that have recently appeared on the market, and we provide some details on implementing our algorithms on these devices. We conclude this dissertation work by elaborating on a possible application of list-mode data to X-ray digital mammography. We argue that today's CMOS detectors and computing platforms have become fast enough to make X-ray digital mammography list-mode data acquisition and processing feasible.
NASA Astrophysics Data System (ADS)
Perlovsky, Leonid I.; Webb, Virgil H.; Bradley, Scott R.; Hansen, Christopher A.
1998-07-01
An advanced detection and tracking system is being developed for the U.S. Navy's Relocatable Over-the-Horizon Radar (ROTHR) to provide improved tracking performance against small aircraft typically used in drug-smuggling activities. The development is based on the Maximum Likelihood Adaptive Neural System (MLANS), a model-based neural network that combines advantages of neural network and model-based algorithmic approaches. The objective of the MLANS tracker development effort is to address user requirements for increased detection and tracking capability in clutter and improved track position, heading, and speed accuracy. The MLANS tracker is expected to outperform other approaches to detection and tracking for the following reasons. It incorporates adaptive internal models of target return signals, target tracks and maneuvers, and clutter signals, which leads to concurrent clutter suppression, detection, and tracking (track-before-detect). It is not combinatorial and thus does not require any thresholding or peak picking and can track in low signal-to-noise conditions. It incorporates superresolution spectrum estimation techniques exceeding the performance of conventional maximum likelihood and maximum entropy methods. The unique spectrum estimation method is based on the Einsteinian interpretation of the ROTHR received energy spectrum as a probability density of signal frequency. The MLANS neural architecture and learning mechanism are founded on spectrum models and maximization of the "Einsteinian" likelihood, allowing knowledge of the physical behavior of both targets and clutter to be injected into the tracker algorithms. The paper describes the addressed requirements and expected improvements, theoretical foundations, engineering methodology, and results of the development effort to date.
NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc
1998-01-01
The Viterbi algorithm is indeed a very simple and efficient method of implementing the maximum likelihood decoding. However, if we take advantage of the structural properties in a trellis section, other efficient trellis-based decoding algorithms can be devised. Recently, an efficient trellis-based recursive maximum likelihood decoding (RMLD) algorithm for linear block codes has been proposed. This algorithm is more efficient than the conventional Viterbi algorithm in both computation and hardware requirements. Most importantly, the implementation of this algorithm does not require the construction of the entire code trellis, only some special one-section trellises of relatively small state and branch complexities are needed for constructing path (or branch) metric tables recursively. At the end, there is only one table which contains only the most likely code-word and its metric for a given received sequence r = (r(sub 1), r(sub 2),...,r(sub n)). This algorithm basically uses the divide and conquer strategy. Furthermore, it allows parallel/pipeline processing of received sequences to speed up decoding.
Testing students' e-learning via Facebook through Bayesian structural equation modeling.
Salarzadeh Jenatabadi, Hashem; Moghavvemi, Sedigheh; Wan Mohamed Radzi, Che Wan Jasimah Bt; Babashamsi, Parastoo; Arashi, Mohammad
2017-01-01
Learning is an intentional activity, with several factors affecting students' intention to use new learning technology. Researchers have investigated technology acceptance in different contexts by developing various theories/models and testing them by a number of means. Although most theories/models developed have been examined through regression or structural equation modeling, Bayesian analysis offers more accurate data analysis results. To address this gap, the unified theory of acceptance and technology use in the context of e-learning via Facebook are re-examined in this study using Bayesian analysis. The data (S1 Data) were collected from 170 students enrolled in a business statistics course at University of Malaya, Malaysia, and tested with the maximum likelihood and Bayesian approaches. The difference between the two methods' results indicates that performance expectancy and hedonic motivation are the strongest factors influencing the intention to use e-learning via Facebook. The Bayesian estimation model exhibited better data fit than the maximum likelihood estimator model. The results of the Bayesian and maximum likelihood estimator approaches are compared and the reasons for the result discrepancy are deliberated.
Maximum-likelihood fitting of data dominated by Poisson statistical uncertainties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoneking, M.R.; Den Hartog, D.J.
1996-06-01
The fitting of data by {chi}{sup 2}-minimization is valid only when the uncertainties in the data are normally distributed. When analyzing spectroscopic or particle counting data at very low signal level (e.g., a Thomson scattering diagnostic), the uncertainties are distributed with a Poisson distribution. The authors have developed a maximum-likelihood method for fitting data that correctly treats the Poisson statistical character of the uncertainties. This method maximizes the total probability that the observed data are drawn from the assumed fit function using the Poisson probability function to determine the probability for each data point. The algorithm also returns uncertainty estimatesmore » for the fit parameters. They compare this method with a {chi}{sup 2}-minimization routine applied to both simulated and real data. Differences in the returned fits are greater at low signal level (less than {approximately}20 counts per measurement). the maximum-likelihood method is found to be more accurate and robust, returning a narrower distribution of values for the fit parameters with fewer outliers.« less
Land cover mapping after the tsunami event over Nanggroe Aceh Darussalam (NAD) province, Indonesia
NASA Astrophysics Data System (ADS)
Lim, H. S.; MatJafri, M. Z.; Abdullah, K.; Alias, A. N.; Mohd. Saleh, N.; Wong, C. J.; Surbakti, M. S.
2008-03-01
Remote sensing offers an important means of detecting and analyzing temporal changes occurring in our landscape. This research used remote sensing to quantify land use/land cover changes at the Nanggroe Aceh Darussalam (Nad) province, Indonesia on a regional scale. The objective of this paper is to assess the changed produced from the analysis of Landsat TM data. A Landsat TM image was used to develop land cover classification map for the 27 March 2005. Four supervised classifications techniques (Maximum Likelihood, Minimum Distance-to- Mean, Parallelepiped and Parallelepiped with Maximum Likelihood Classifier Tiebreaker classifier) were performed to the satellite image. Training sites and accuracy assessment were needed for supervised classification techniques. The training sites were established using polygons based on the colour image. High detection accuracy (>80%) and overall Kappa (>0.80) were achieved by the Parallelepiped with Maximum Likelihood Classifier Tiebreaker classifier in this study. This preliminary study has produced a promising result. This indicates that land cover mapping can be carried out using remote sensing classification method of the satellite digital imagery.
Lehmann, A; Scheffler, Ch; Hermanussen, M
2010-02-01
Recent progress in modelling individual growth has been achieved by combining the principal component analysis and the maximum likelihood principle. This combination models growth even in incomplete sets of data and in data obtained at irregular intervals. We re-analysed late 18th century longitudinal growth of German boys from the boarding school Carlsschule in Stuttgart. The boys, aged 6-23 years, were measured at irregular 3-12 monthly intervals during the period 1771-1793. At the age of 18 years, mean height was 1652 mm, but height variation was large. The shortest boy reached 1474 mm, the tallest 1826 mm. Measured height closely paralleled modelled height, with mean difference of 4 mm, SD 7 mm. Seasonal height variation was found. Low growth rates occurred in spring and high growth rates in summer and autumn. The present study demonstrates that combining the principal component analysis and the maximum likelihood principle enables growth modelling in historic height data also. Copyright (c) 2009 Elsevier GmbH. All rights reserved.
Collinear Latent Variables in Multilevel Confirmatory Factor Analysis
van de Schoot, Rens; Hox, Joop
2014-01-01
Because variables may be correlated in the social and behavioral sciences, multicollinearity might be problematic. This study investigates the effect of collinearity manipulated in within and between levels of a two-level confirmatory factor analysis by Monte Carlo simulation. Furthermore, the influence of the size of the intraclass correlation coefficient (ICC) and estimation method; maximum likelihood estimation with robust chi-squares and standard errors and Bayesian estimation, on the convergence rate are investigated. The other variables of interest were rate of inadmissible solutions and the relative parameter and standard error bias on the between level. The results showed that inadmissible solutions were obtained when there was between level collinearity and the estimation method was maximum likelihood. In the within level multicollinearity condition, all of the solutions were admissible but the bias values were higher compared with the between level collinearity condition. Bayesian estimation appeared to be robust in obtaining admissible parameters but the relative bias was higher than for maximum likelihood estimation. Finally, as expected, high ICC produced less biased results compared to medium ICC conditions. PMID:29795827
Testing students’ e-learning via Facebook through Bayesian structural equation modeling
Moghavvemi, Sedigheh; Wan Mohamed Radzi, Che Wan Jasimah Bt; Babashamsi, Parastoo; Arashi, Mohammad
2017-01-01
Learning is an intentional activity, with several factors affecting students’ intention to use new learning technology. Researchers have investigated technology acceptance in different contexts by developing various theories/models and testing them by a number of means. Although most theories/models developed have been examined through regression or structural equation modeling, Bayesian analysis offers more accurate data analysis results. To address this gap, the unified theory of acceptance and technology use in the context of e-learning via Facebook are re-examined in this study using Bayesian analysis. The data (S1 Data) were collected from 170 students enrolled in a business statistics course at University of Malaya, Malaysia, and tested with the maximum likelihood and Bayesian approaches. The difference between the two methods’ results indicates that performance expectancy and hedonic motivation are the strongest factors influencing the intention to use e-learning via Facebook. The Bayesian estimation model exhibited better data fit than the maximum likelihood estimator model. The results of the Bayesian and maximum likelihood estimator approaches are compared and the reasons for the result discrepancy are deliberated. PMID:28886019
Fuzzy multinomial logistic regression analysis: A multi-objective programming approach
NASA Astrophysics Data System (ADS)
Abdalla, Hesham A.; El-Sayed, Amany A.; Hamed, Ramadan
2017-05-01
Parameter estimation for multinomial logistic regression is usually based on maximizing the likelihood function. For large well-balanced datasets, Maximum Likelihood (ML) estimation is a satisfactory approach. Unfortunately, ML can fail completely or at least produce poor results in terms of estimated probabilities and confidence intervals of parameters, specially for small datasets. In this study, a new approach based on fuzzy concepts is proposed to estimate parameters of the multinomial logistic regression. The study assumes that the parameters of multinomial logistic regression are fuzzy. Based on the extension principle stated by Zadeh and Bárdossy's proposition, a multi-objective programming approach is suggested to estimate these fuzzy parameters. A simulation study is used to evaluate the performance of the new approach versus Maximum likelihood (ML) approach. Results show that the new proposed model outperforms ML in cases of small datasets.
Spatial Distribution of the Coefficient of Variation for the Paleo-Earthquakes in Japan
NASA Astrophysics Data System (ADS)
Nomura, S.; Ogata, Y.
2015-12-01
Renewal processes, point prccesses in which intervals between consecutive events are independently and identically distributed, are frequently used to describe this repeating earthquake mechanism and forecast the next earthquakes. However, one of the difficulties in applying recurrent earthquake models is the scarcity of the historical data. Most studied fault segments have few, or only one observed earthquake that often have poorly constrained historic and/or radiocarbon ages. The maximum likelihood estimate from such a small data set can have a large bias and error, which tends to yield high probability for the next event in a very short time span when the recurrence intervals have similar lengths. On the other hand, recurrence intervals at a fault depend on the long-term slip rate caused by the tectonic motion in average. In addition, recurrence times are also fluctuated by nearby earthquakes or fault activities which encourage or discourage surrounding seismicity. These factors have spatial trends due to the heterogeneity of tectonic motion and seismicity. Thus, this paper introduces a spatial structure on the key parameters of renewal processes for recurrent earthquakes and estimates it by using spatial statistics. Spatial variation of mean and variance parameters of recurrence times are estimated in Bayesian framework and the next earthquakes are forecasted by Bayesian predictive distributions. The proposal model is applied for recurrent earthquake catalog in Japan and its result is compared with the current forecast adopted by the Earthquake Research Committee of Japan.
NASA Astrophysics Data System (ADS)
Othman, Arsalan; Gloaguen, Richard
2015-04-01
Topographic effects and complex vegetation cover hinder lithology classification in mountain regions based not only in field, but also in reflectance remote sensing data. The area of interest "Bardi-Zard" is located in the NE of Iraq. It is part of the Zagros orogenic belt, where seven lithological units outcrop and is known for its chromite deposit. The aim of this study is to compare three machine learning algorithms (MLAs): Maximum Likelihood (ML), Support Vector Machines (SVM), and Random Forest (RF) in the context of a supervised lithology classification task using Advanced Space-borne Thermal Emission and Reflection radiometer (ASTER) satellite, its derived, spatial information (spatial coordinates) and geomorphic data. We emphasize the enhancement in remote sensing lithological mapping accuracy that arises from the integration of geomorphic features and spatial information (spatial coordinates) in classifications. This study identifies that RF is better than ML and SVM algorithms in almost the sixteen combination datasets, which were tested. The overall accuracy of the best dataset combination with the RF map for the all seven classes reach ~80% and the producer and user's accuracies are ~73.91% and 76.09% respectively while the kappa coefficient is ~0.76. TPI is more effective with SVM algorithm than an RF algorithm. This paper demonstrates that adding geomorphic indices such as TPI and spatial information in the dataset increases the lithological classification accuracy.
NASA Astrophysics Data System (ADS)
Love, J. J.; Rigler, E. J.; Pulkkinen, A. A.; Riley, P.
2015-12-01
An examination is made of the hypothesis that the statistics of magnetic-storm-maximum intensities are the realization of a log-normal stochastic process. Weighted least-squares and maximum-likelihood methods are used to fit log-normal functions to -Dst storm-time maxima for years 1957-2012; bootstrap analysis is used to established confidence limits on forecasts. Both methods provide fits that are reasonably consistent with the data; both methods also provide fits that are superior to those that can be made with a power-law function. In general, the maximum-likelihood method provides forecasts having tighter confidence intervals than those provided by weighted least-squares. From extrapolation of maximum-likelihood fits: a magnetic storm with intensity exceeding that of the 1859 Carrington event, -Dst > 850 nT, occurs about 1.13 times per century and a wide 95% confidence interval of [0.42, 2.41] times per century; a 100-yr magnetic storm is identified as having a -Dst > 880 nT (greater than Carrington) but a wide 95% confidence interval of [490, 1187] nT. This work is partially motivated by United States National Science and Technology Council and Committee on Space Research and International Living with a Star priorities and strategic plans for the assessment and mitigation of space-weather hazards.
A Submillimeter Resolution PET Prototype Evaluated With an 18F Inkjet Printed Phantom
NASA Astrophysics Data System (ADS)
Schneider, Florian R.; Hohberg, Melanie; Mann, Alexander B.; Paul, Stephan; Ziegler, Sibylle I.
2015-10-01
This work presents a submillimeter resolution PET (Positron Emission Tomography) scanner prototype based on SiPM/MPPC arrays (Silicon Photomultiplier/Multi Pixel Photon Counter). Onto each active area a 1 ×1 ×20 mm3 LYSO (Lutetium-Yttrium-Oxyorthosilicate) scintillator crystal is coupled one-to-one. Two detector modules facing each other in a distance of 10.0 cm have been set up with in total 64 channels that are digitized by SADCs (Sampling Analog to Digital Converters) with 80 MHz, 10 bit resolution and FPGA (Field Programmable Gate Array) based extraction of energy and time information. Since standard phantoms are not sufficient for testing submillimeter resolution at which positron range is an issue, a 18F inkjet printed phantom has been used to explore the limit in spatial resolution. The phantom could be successfully reconstructed with an iterative MLEM (Maximum Likelihood Expectation Maximization) and an analytically calculated system matrix based on the DRF (Detector Response Function) model. The system yields a coincidence time resolution of 4.8 ns FWHM, an energy resolution of 20%-30% FWHM and a spatial resolution of 0.8 mm.
NASA Astrophysics Data System (ADS)
Bellili, Faouzi; Amor, Souheib Ben; Affes, Sofiène; Ghrayeb, Ali
2017-12-01
This paper addresses the problem of DOA estimation using uniform linear array (ULA) antenna configurations. We propose a new low-cost method of multiple DOA estimation from very short data snapshots. The new estimator is based on the annihilating filter (AF) technique. It is non-data-aided (NDA) and does not impinge therefore on the whole throughput of the system. The noise components are assumed temporally and spatially white across the receiving antenna elements. The transmitted signals are also temporally and spatially white across the transmitting sources. The new method is compared in performance to the Cramér-Rao lower bound (CRLB), the root-MUSIC algorithm, the deterministic maximum likelihood estimator and another Bayesian method developed precisely for the single snapshot case. Simulations show that the new estimator performs well over a wide SNR range. Prominently, the main advantage of the new AF-based method is that it succeeds in accurately estimating the DOAs from short data snapshots and even from a single snapshot outperforming by far the state-of-the-art techniques both in DOA estimation accuracy and computational cost.
Markov-random-field-based super-resolution mapping for identification of urban trees in VHR images
NASA Astrophysics Data System (ADS)
Ardila, Juan P.; Tolpekin, Valentyn A.; Bijker, Wietske; Stein, Alfred
2011-11-01
Identification of tree crowns from remote sensing requires detailed spectral information and submeter spatial resolution imagery. Traditional pixel-based classification techniques do not fully exploit the spatial and spectral characteristics of remote sensing datasets. We propose a contextual and probabilistic method for detection of tree crowns in urban areas using a Markov random field based super resolution mapping (SRM) approach in very high resolution images. Our method defines an objective energy function in terms of the conditional probabilities of panchromatic and multispectral images and it locally optimizes the labeling of tree crown pixels. Energy and model parameter values are estimated from multiple implementations of SRM in tuning areas and the method is applied in QuickBird images to produce a 0.6 m tree crown map in a city of The Netherlands. The SRM output shows an identification rate of 66% and commission and omission errors in small trees and shrub areas. The method outperforms tree crown identification results obtained with maximum likelihood, support vector machines and SRM at nominal resolution (2.4 m) approaches.
NASA Astrophysics Data System (ADS)
Voss, Sebastian; Zimmermann, Beate; Zimmermann, Alexander
2016-09-01
In the last decades, an increasing number of studies analyzed spatial patterns in throughfall by means of variograms. The estimation of the variogram from sample data requires an appropriate sampling scheme: most importantly, a large sample and a layout of sampling locations that often has to serve both variogram estimation and geostatistical prediction. While some recommendations on these aspects exist, they focus on Gaussian data and high ratios of the variogram range to the extent of the study area. However, many hydrological data, and throughfall data in particular, do not follow a Gaussian distribution. In this study, we examined the effect of extent, sample size, sampling design, and calculation method on variogram estimation of throughfall data. For our investigation, we first generated non-Gaussian random fields based on throughfall data with large outliers. Subsequently, we sampled the fields with three extents (plots with edge lengths of 25 m, 50 m, and 100 m), four common sampling designs (two grid-based layouts, transect and random sampling) and five sample sizes (50, 100, 150, 200, 400). We then estimated the variogram parameters by method-of-moments (non-robust and robust estimators) and residual maximum likelihood. Our key findings are threefold. First, the choice of the extent has a substantial influence on the estimation of the variogram. A comparatively small ratio of the extent to the correlation length is beneficial for variogram estimation. Second, a combination of a minimum sample size of 150, a design that ensures the sampling of small distances and variogram estimation by residual maximum likelihood offers a good compromise between accuracy and efficiency. Third, studies relying on method-of-moments based variogram estimation may have to employ at least 200 sampling points for reliable variogram estimates. These suggested sample sizes exceed the number recommended by studies dealing with Gaussian data by up to 100 %. Given that most previous throughfall studies relied on method-of-moments variogram estimation and sample sizes ≪200, currently available data are prone to large uncertainties.
NASA Technical Reports Server (NTRS)
Clark, R. T.; Mccallister, R. D.
1982-01-01
The particular coding option identified as providing the best level of coding gain performance in an LSI-efficient implementation was the optimal constraint length five, rate one-half convolutional code. To determine the specific set of design parameters which optimally matches this decoder to the LSI constraints, a breadboard MCD (maximum-likelihood convolutional decoder) was fabricated and used to generate detailed performance trade-off data. The extensive performance testing data gathered during this design tradeoff study are summarized, and the functional and physical MCD chip characteristics are presented.
Gyro-based Maximum-Likelihood Thruster Fault Detection and Identification
NASA Technical Reports Server (NTRS)
Wilson, Edward; Lages, Chris; Mah, Robert; Clancy, Daniel (Technical Monitor)
2002-01-01
When building smaller, less expensive spacecraft, there is a need for intelligent fault tolerance vs. increased hardware redundancy. If fault tolerance can be achieved using existing navigation sensors, cost and vehicle complexity can be reduced. A maximum likelihood-based approach to thruster fault detection and identification (FDI) for spacecraft is developed here and applied in simulation to the X-38 space vehicle. The system uses only gyro signals to detect and identify hard, abrupt, single and multiple jet on- and off-failures. Faults are detected within one second and identified within one to five accords,
Maximum likelihood estimation for life distributions with competing failure modes
NASA Technical Reports Server (NTRS)
Sidik, S. M.
1979-01-01
Systems which are placed on test at time zero, function for a period and die at some random time were studied. Failure may be due to one of several causes or modes. The parameters of the life distribution may depend upon the levels of various stress variables the item is subject to. Maximum likelihood estimation methods are discussed. Specific methods are reported for the smallest extreme-value distributions of life. Monte-Carlo results indicate the methods to be promising. Under appropriate conditions, the location parameters are nearly unbiased, the scale parameter is slight biased, and the asymptotic covariances are rapidly approached.
Gyre and gimble: a maximum-likelihood replacement for Patterson correlation refinement.
McCoy, Airlie J; Oeffner, Robert D; Millán, Claudia; Sammito, Massimo; Usón, Isabel; Read, Randy J
2018-04-01
Descriptions are given of the maximum-likelihood gyre method implemented in Phaser for optimizing the orientation and relative position of rigid-body fragments of a model after the orientation of the model has been identified, but before the model has been positioned in the unit cell, and also the related gimble method for the refinement of rigid-body fragments of the model after positioning. Gyre refinement helps to lower the root-mean-square atomic displacements between model and target molecular-replacement solutions for the test case of antibody Fab(26-10) and improves structure solution with ARCIMBOLDO_SHREDDER.
Richards, V. M.; Dai, W.
2014-01-01
A MATLAB toolbox for the efficient estimation of the threshold, slope, and lapse rate of the psychometric function is described. The toolbox enables the efficient implementation of the updated maximum-likelihood (UML) procedure. The toolbox uses an object-oriented architecture for organizing the experimental variables and computational algorithms, which provides experimenters with flexibility in experimental design and data management. Descriptions of the UML procedure and the UML Toolbox are provided, followed by toolbox use examples. Finally, guidelines and recommendations of parameter configurations are given. PMID:24671826
Khairuzzaman, Md; Zhang, Chao; Igarashi, Koji; Katoh, Kazuhiro; Kikuchi, Kazuro
2010-03-01
We describe a successful introduction of maximum-likelihood-sequence estimation (MLSE) into digital coherent receivers together with finite-impulse response (FIR) filters in order to equalize both linear and nonlinear fiber impairments. The MLSE equalizer based on the Viterbi algorithm is implemented in the offline digital signal processing (DSP) core. We transmit 20-Gbit/s quadrature phase-shift keying (QPSK) signals through a 200-km-long standard single-mode fiber. The bit-error rate performance shows that the MLSE equalizer outperforms the conventional adaptive FIR filter, especially when nonlinear impairments are predominant.
F-8C adaptive flight control extensions. [for maximum likelihood estimation
NASA Technical Reports Server (NTRS)
Stein, G.; Hartmann, G. L.
1977-01-01
An adaptive concept which combines gain-scheduled control laws with explicit maximum likelihood estimation (MLE) identification to provide the scheduling values is described. The MLE algorithm was improved by incorporating attitude data, estimating gust statistics for setting filter gains, and improving parameter tracking during changing flight conditions. A lateral MLE algorithm was designed to improve true air speed and angle of attack estimates during lateral maneuvers. Relationships between the pitch axis sensors inherent in the MLE design were examined and used for sensor failure detection. Design details and simulation performance are presented for each of the three areas investigated.
NASA Technical Reports Server (NTRS)
Battin, R. H.; Croopnick, S. R.; Edwards, J. A.
1977-01-01
The formulation of a recursive maximum likelihood navigation system employing reference position and velocity vectors as state variables is presented. Convenient forms of the required variational equations of motion are developed together with an explicit form of the associated state transition matrix needed to refer measurement data from the measurement time to the epoch time. Computational advantages accrue from this design in that the usual forward extrapolation of the covariance matrix of estimation errors can be avoided without incurring unacceptable system errors. Simulation data for earth orbiting satellites are provided to substantiate this assertion.
A 3D approximate maximum likelihood localization solver
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-09-23
A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with acoustic transmitters and vocalizing marine mammals to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives and support Marine Renewable Energy. An approximate maximum likelihood solver was developed using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.
Eisenhauer, Philipp; Heckman, James J.; Mosso, Stefano
2015-01-01
We compare the performance of maximum likelihood (ML) and simulated method of moments (SMM) estimation for dynamic discrete choice models. We construct and estimate a simplified dynamic structural model of education that captures some basic features of educational choices in the United States in the 1980s and early 1990s. We use estimates from our model to simulate a synthetic dataset and assess the ability of ML and SMM to recover the model parameters on this sample. We investigate the performance of alternative tuning parameters for SMM. PMID:26494926
NASA Astrophysics Data System (ADS)
Abbasi, R. U.; Abu-Zayyad, T.; Amann, J. F.; Archbold, G.; Atkins, R.; Bellido, J. A.; Belov, K.; Belz, J. W.; Ben-Zvi, S. Y.; Bergman, D. R.; Boyer, J. H.; Burt, G. W.; Cao, Z.; Clay, R. W.; Connolly, B. M.; Dawson, B. R.; Deng, W.; Farrar, G. R.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G. A.; Hüntemeyer, P.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Knapp, B. C.; Loh, E. C.; Maestas, M. M.; Manago, N.; Mannel, E. J.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Sasaki, M.; Schnetzer, S. R.; Seman, M.; Simpson, K. M.; Sinnis, G.; Smith, J. D.; Snow, R.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Zech, A.
2005-04-01
We present the results of a search for cosmic-ray point sources at energies in excess of 4.0×1019 eV in the combined data sets recorded by the Akeno Giant Air Shower Array and High Resolution Fly's Eye stereo experiments. The analysis is based on a maximum likelihood ratio test using the probability density function for each event rather than requiring an a priori choice of a fixed angular bin size. No statistically significant clustering of events consistent with a point source is found.
The Equivalence of Two Methods of Parameter Estimation for the Rasch Model.
ERIC Educational Resources Information Center
Blackwood, Larry G.; Bradley, Edwin L.
1989-01-01
Two methods of estimating parameters in the Rasch model are compared. The equivalence of likelihood estimations from the model of G. J. Mellenbergh and P. Vijn (1981) and from usual unconditional maximum likelihood (UML) estimation is demonstrated. Mellenbergh and Vijn's model is a convenient method of calculating UML estimates. (SLD)
Using the β-binomial distribution to characterize forest health
S.J. Zarnoch; R.L. Anderson; R.M. Sheffield
1995-01-01
The β-binomial distribution is suggested as a model for describing and analyzing the dichotomous data obtained from programs monitoring the health of forests in the United States. Maximum likelihood estimation of the parameters is given as well as asymptotic likelihood ratio tests. The procedure is illustrated with data on dogwood anthracnose infection (caused...
Power and Sample Size Calculations for Logistic Regression Tests for Differential Item Functioning
ERIC Educational Resources Information Center
Li, Zhushan
2014-01-01
Logistic regression is a popular method for detecting uniform and nonuniform differential item functioning (DIF) effects. Theoretical formulas for the power and sample size calculations are derived for likelihood ratio tests and Wald tests based on the asymptotic distribution of the maximum likelihood estimators for the logistic regression model.…
A Note on Three Statistical Tests in the Logistic Regression DIF Procedure
ERIC Educational Resources Information Center
Paek, Insu
2012-01-01
Although logistic regression became one of the well-known methods in detecting differential item functioning (DIF), its three statistical tests, the Wald, likelihood ratio (LR), and score tests, which are readily available under the maximum likelihood, do not seem to be consistently distinguished in DIF literature. This paper provides a clarifying…
Contributions to the Underlying Bivariate Normal Method for Factor Analyzing Ordinal Data
ERIC Educational Resources Information Center
Xi, Nuo; Browne, Michael W.
2014-01-01
A promising "underlying bivariate normal" approach was proposed by Jöreskog and Moustaki for use in the factor analysis of ordinal data. This was a limited information approach that involved the maximization of a composite likelihood function. Its advantage over full-information maximum likelihood was that very much less computation was…
Investigating the Impact of Uncertainty about Item Parameters on Ability Estimation
ERIC Educational Resources Information Center
Zhang, Jinming; Xie, Minge; Song, Xiaolan; Lu, Ting
2011-01-01
Asymptotic expansions of the maximum likelihood estimator (MLE) and weighted likelihood estimator (WLE) of an examinee's ability are derived while item parameter estimators are treated as covariates measured with error. The asymptotic formulae present the amount of bias of the ability estimators due to the uncertainty of item parameter estimators.…
Estimation of Complex Generalized Linear Mixed Models for Measurement and Growth
ERIC Educational Resources Information Center
Jeon, Minjeong
2012-01-01
Maximum likelihood (ML) estimation of generalized linear mixed models (GLMMs) is technically challenging because of the intractable likelihoods that involve high dimensional integrations over random effects. The problem is magnified when the random effects have a crossed design and thus the data cannot be reduced to small independent clusters. A…
A time series intervention analysis (TSIA) of dendrochronological data to infer the tree growth-climate-disturbance relations and forest disturbance history is described. Maximum likelihood is used to estimate the parameters of a structural time series model with components for ...
A Maximum-Likelihood Approach to Force-Field Calibration.
Zaborowski, Bartłomiej; Jagieła, Dawid; Czaplewski, Cezary; Hałabis, Anna; Lewandowska, Agnieszka; Żmudzińska, Wioletta; Ołdziej, Stanisław; Karczyńska, Agnieszka; Omieczynski, Christian; Wirecki, Tomasz; Liwo, Adam
2015-09-28
A new approach to the calibration of the force fields is proposed, in which the force-field parameters are obtained by maximum-likelihood fitting of the calculated conformational ensembles to the experimental ensembles of training system(s). The maximum-likelihood function is composed of logarithms of the Boltzmann probabilities of the experimental conformations, calculated with the current energy function. Because the theoretical distribution is given in the form of the simulated conformations only, the contributions from all of the simulated conformations, with Gaussian weights in the distances from a given experimental conformation, are added to give the contribution to the target function from this conformation. In contrast to earlier methods for force-field calibration, the approach does not suffer from the arbitrariness of dividing the decoy set into native-like and non-native structures; however, if such a division is made instead of using Gaussian weights, application of the maximum-likelihood method results in the well-known energy-gap maximization. The computational procedure consists of cycles of decoy generation and maximum-likelihood-function optimization, which are iterated until convergence is reached. The method was tested with Gaussian distributions and then applied to the physics-based coarse-grained UNRES force field for proteins. The NMR structures of the tryptophan cage, a small α-helical protein, determined at three temperatures (T = 280, 305, and 313 K) by Hałabis et al. ( J. Phys. Chem. B 2012 , 116 , 6898 - 6907 ), were used. Multiplexed replica-exchange molecular dynamics was used to generate the decoys. The iterative procedure exhibited steady convergence. Three variants of optimization were tried: optimization of the energy-term weights alone and use of the experimental ensemble of the folded protein only at T = 280 K (run 1); optimization of the energy-term weights and use of experimental ensembles at all three temperatures (run 2); and optimization of the energy-term weights and the coefficients of the torsional and multibody energy terms and use of experimental ensembles at all three temperatures (run 3). The force fields were subsequently tested with a set of 14 α-helical and two α + β proteins. Optimization run 1 resulted in better agreement with the experimental ensemble at T = 280 K compared with optimization run 2 and in comparable performance on the test set but poorer agreement of the calculated folding temperature with the experimental folding temperature. Optimization run 3 resulted in the best fit of the calculated ensembles to the experimental ones for the tryptophan cage but in much poorer performance on the training set, suggesting that use of a small α-helical protein for extensive force-field calibration resulted in overfitting of the data for this protein at the expense of transferability. The optimized force field resulting from run 2 was found to fold 13 of the 14 tested α-helical proteins and one small α + β protein with the correct topologies; the average structures of 10 of them were predicted with accuracies of about 5 Å C(α) root-mean-square deviation or better. Test simulations with an additional set of 12 α-helical proteins demonstrated that this force field performed better on α-helical proteins than the previous parametrizations of UNRES. The proposed approach is applicable to any problem of maximum-likelihood parameter estimation when the contributions to the maximum-likelihood function cannot be evaluated at the experimental points and the dimension of the configurational space is too high to construct histograms of the experimental distributions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pražnikar, Jure; University of Primorska,; Turk, Dušan, E-mail: dusan.turk@ijs.si
2014-12-01
The maximum-likelihood free-kick target, which calculates model error estimates from the work set and a randomly displaced model, proved superior in the accuracy and consistency of refinement of crystal structures compared with the maximum-likelihood cross-validation target, which calculates error estimates from the test set and the unperturbed model. The refinement of a molecular model is a computational procedure by which the atomic model is fitted to the diffraction data. The commonly used target in the refinement of macromolecular structures is the maximum-likelihood (ML) function, which relies on the assessment of model errors. The current ML functions rely on cross-validation. Theymore » utilize phase-error estimates that are calculated from a small fraction of diffraction data, called the test set, that are not used to fit the model. An approach has been developed that uses the work set to calculate the phase-error estimates in the ML refinement from simulating the model errors via the random displacement of atomic coordinates. It is called ML free-kick refinement as it uses the ML formulation of the target function and is based on the idea of freeing the model from the model bias imposed by the chemical energy restraints used in refinement. This approach for the calculation of error estimates is superior to the cross-validation approach: it reduces the phase error and increases the accuracy of molecular models, is more robust, provides clearer maps and may use a smaller portion of data for the test set for the calculation of R{sub free} or may leave it out completely.« less
Marginal Maximum A Posteriori Item Parameter Estimation for the Generalized Graded Unfolding Model
ERIC Educational Resources Information Center
Roberts, James S.; Thompson, Vanessa M.
2011-01-01
A marginal maximum a posteriori (MMAP) procedure was implemented to estimate item parameters in the generalized graded unfolding model (GGUM). Estimates from the MMAP method were compared with those derived from marginal maximum likelihood (MML) and Markov chain Monte Carlo (MCMC) procedures in a recovery simulation that varied sample size,…
THESEUS: maximum likelihood superpositioning and analysis of macromolecular structures.
Theobald, Douglas L; Wuttke, Deborah S
2006-09-01
THESEUS is a command line program for performing maximum likelihood (ML) superpositions and analysis of macromolecular structures. While conventional superpositioning methods use ordinary least-squares (LS) as the optimization criterion, ML superpositions provide substantially improved accuracy by down-weighting variable structural regions and by correcting for correlations among atoms. ML superpositioning is robust and insensitive to the specific atoms included in the analysis, and thus it does not require subjective pruning of selected variable atomic coordinates. Output includes both likelihood-based and frequentist statistics for accurate evaluation of the adequacy of a superposition and for reliable analysis of structural similarities and differences. THESEUS performs principal components analysis for analyzing the complex correlations found among atoms within a structural ensemble. ANSI C source code and selected binaries for various computing platforms are available under the GNU open source license from http://monkshood.colorado.edu/theseus/ or http://www.theseus3d.org.
Kamneva, Olga K; Rosenberg, Noah A
2017-01-01
Hybridization events generate reticulate species relationships, giving rise to species networks rather than species trees. We report a comparative study of consensus, maximum parsimony, and maximum likelihood methods of species network reconstruction using gene trees simulated assuming a known species history. We evaluate the role of the divergence time between species involved in a hybridization event, the relative contributions of the hybridizing species, and the error in gene tree estimation. When gene tree discordance is mostly due to hybridization and not due to incomplete lineage sorting (ILS), most of the methods can detect even highly skewed hybridization events between highly divergent species. For recent divergences between hybridizing species, when the influence of ILS is sufficiently high, likelihood methods outperform parsimony and consensus methods, which erroneously identify extra hybridizations. The more sophisticated likelihood methods, however, are affected by gene tree errors to a greater extent than are consensus and parsimony. PMID:28469378
Free energy reconstruction from steered dynamics without post-processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athenes, Manuel, E-mail: Manuel.Athenes@cea.f; Condensed Matter and Materials Division, Physics and Life Sciences Directorate, LLNL, Livermore, CA 94551; Marinica, Mihai-Cosmin
2010-09-20
Various methods achieving importance sampling in ensembles of nonequilibrium trajectories enable one to estimate free energy differences and, by maximum-likelihood post-processing, to reconstruct free energy landscapes. Here, based on Bayes theorem, we propose a more direct method in which a posterior likelihood function is used both to construct the steered dynamics and to infer the contribution to equilibrium of all the sampled states. The method is implemented with two steering schedules. First, using non-autonomous steering, we calculate the migration barrier of the vacancy in Fe-{alpha}. Second, using an autonomous scheduling related to metadynamics and equivalent to temperature-accelerated molecular dynamics, wemore » accurately reconstruct the two-dimensional free energy landscape of the 38-atom Lennard-Jones cluster as a function of an orientational bond-order parameter and energy, down to the solid-solid structural transition temperature of the cluster and without maximum-likelihood post-processing.« less
Master teachers' responses to twenty literacy and science/mathematics practices in deaf education.
Easterbrooks, Susan R; Stephenson, Brenda; Mertens, Donna
2006-01-01
Under a grant to improve outcomes for students who are deaf or hard of hearing awarded to the Association of College Educators--Deaf/Hard of Hearing, a team identified content that all teachers of students who are deaf and hard of hearing must understand and be able to teach. Also identified were 20 practices associated with content standards (10 each, literacy and science/mathematics). Thirty-seven master teachers identified by grant agents rated the practices on a Likert-type scale indicating the maximum benefit of each practice and maximum likelihood that they would use the practice, yielding a likelihood-impact analysis. The teachers showed strong agreement on the benefits and likelihood of use of the rated practices. Concerns about implementation of many of the practices related to time constraints and mixed-ability classrooms were themes of the reviews. Actions for teacher preparation programs were recommended.
Somarathna, P D S N; Minasny, Budiman; Malone, Brendan P; Stockmann, Uta; McBratney, Alex B
2018-08-01
Spatial modelling of environmental data commonly only considers spatial variability as the single source of uncertainty. In reality however, the measurement errors should also be accounted for. In recent years, infrared spectroscopy has been shown to offer low cost, yet invaluable information needed for digital soil mapping at meaningful spatial scales for land management. However, spectrally inferred soil carbon data are known to be less accurate compared to laboratory analysed measurements. This study establishes a methodology to filter out the measurement error variability by incorporating the measurement error variance in the spatial covariance structure of the model. The study was carried out in the Lower Hunter Valley, New South Wales, Australia where a combination of laboratory measured, and vis-NIR and MIR inferred topsoil and subsoil soil carbon data are available. We investigated the applicability of residual maximum likelihood (REML) and Markov Chain Monte Carlo (MCMC) simulation methods to generate parameters of the Matérn covariance function directly from the data in the presence of measurement error. The results revealed that the measurement error can be effectively filtered-out through the proposed technique. When the measurement error was filtered from the data, the prediction variance almost halved, which ultimately yielded a greater certainty in spatial predictions of soil carbon. Further, the MCMC technique was successfully used to define the posterior distribution of measurement error. This is an important outcome, as the MCMC technique can be used to estimate the measurement error if it is not explicitly quantified. Although this study dealt with soil carbon data, this method is amenable for filtering the measurement error of any kind of continuous spatial environmental data. Copyright © 2018 Elsevier B.V. All rights reserved.
Multivariate Non-Symmetric Stochastic Models for Spatial Dependence Models
NASA Astrophysics Data System (ADS)
Haslauer, C. P.; Bárdossy, A.
2017-12-01
A copula based multivariate framework allows more flexibility to describe different kind of dependences than what is possible using models relying on the confining assumption of symmetric Gaussian models: different quantiles can be modelled with a different degree of dependence; it will be demonstrated how this can be expected given process understanding. maximum likelihood based multivariate quantitative parameter estimation yields stable and reliable results; not only improved results in cross-validation based measures of uncertainty are obtained but also a more realistic spatial structure of uncertainty compared to second order models of dependence; as much information as is available is included in the parameter estimation: incorporation of censored measurements (e.g., below detection limit, or ones that are above the sensitive range of the measurement device) yield to more realistic spatial models; the proportion of true zeros can be jointly estimated with and distinguished from censored measurements which allow estimates about the age of a contaminant in the system; secondary information (categorical and on the rational scale) has been used to improve the estimation of the primary variable; These copula based multivariate statistical techniques are demonstrated based on hydraulic conductivity observations at the Borden (Canada) site, the MADE site (USA), and a large regional groundwater quality data-set in south-west Germany. Fields of spatially distributed K were simulated with identical marginal simulation, identical second order spatial moments, yet substantially differing solute transport characteristics when numerical tracer tests were performed. A statistical methodology is shown that allows the delineation of a boundary layer separating homogenous parts of a spatial data-set. The effects of this boundary layer (macro structure) and the spatial dependence of K (micro structure) on solute transport behaviour is shown.
Direct Reconstruction of CT-Based Attenuation Correction Images for PET With Cluster-Based Penalties
NASA Astrophysics Data System (ADS)
Kim, Soo Mee; Alessio, Adam M.; De Man, Bruno; Kinahan, Paul E.
2017-03-01
Extremely low-dose (LD) CT acquisitions used for PET attenuation correction have high levels of noise and potential bias artifacts due to photon starvation. This paper explores the use of a priori knowledge for iterative image reconstruction of the CT-based attenuation map. We investigate a maximum a posteriori framework with cluster-based multinomial penalty for direct iterative coordinate decent (dICD) reconstruction of the PET attenuation map. The objective function for direct iterative attenuation map reconstruction used a Poisson log-likelihood data fit term and evaluated two image penalty terms of spatial and mixture distributions. The spatial regularization is based on a quadratic penalty. For the mixture penalty, we assumed that the attenuation map may consist of four material clusters: air + background, lung, soft tissue, and bone. Using simulated noisy sinogram data, dICD reconstruction was performed with different strengths of the spatial and mixture penalties. The combined spatial and mixture penalties reduced the root mean squared error (RMSE) by roughly two times compared with a weighted least square and filtered backprojection reconstruction of CT images. The combined spatial and mixture penalties resulted in only slightly lower RMSE compared with a spatial quadratic penalty alone. For direct PET attenuation map reconstruction from ultra-LD CT acquisitions, the combination of spatial and mixture penalties offers regularization of both variance and bias and is a potential method to reconstruct attenuation maps with negligible patient dose. The presented results, using a best-case histogram suggest that the mixture penalty does not offer a substantive benefit over conventional quadratic regularization and diminishes enthusiasm for exploring future application of the mixture penalty.
Guindon, Stéphane; Dufayard, Jean-François; Lefort, Vincent; Anisimova, Maria; Hordijk, Wim; Gascuel, Olivier
2010-05-01
PhyML is a phylogeny software based on the maximum-likelihood principle. Early PhyML versions used a fast algorithm performing nearest neighbor interchanges to improve a reasonable starting tree topology. Since the original publication (Guindon S., Gascuel O. 2003. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696-704), PhyML has been widely used (>2500 citations in ISI Web of Science) because of its simplicity and a fair compromise between accuracy and speed. In the meantime, research around PhyML has continued, and this article describes the new algorithms and methods implemented in the program. First, we introduce a new algorithm to search the tree space with user-defined intensity using subtree pruning and regrafting topological moves. The parsimony criterion is used here to filter out the least promising topology modifications with respect to the likelihood function. The analysis of a large collection of real nucleotide and amino acid data sets of various sizes demonstrates the good performance of this method. Second, we describe a new test to assess the support of the data for internal branches of a phylogeny. This approach extends the recently proposed approximate likelihood-ratio test and relies on a nonparametric, Shimodaira-Hasegawa-like procedure. A detailed analysis of real alignments sheds light on the links between this new approach and the more classical nonparametric bootstrap method. Overall, our tests show that the last version (3.0) of PhyML is fast, accurate, stable, and ready to use. A Web server and binary files are available from http://www.atgc-montpellier.fr/phyml/.
Patterns of vegetation in the Owens Valley, California
NASA Technical Reports Server (NTRS)
Ustin, S. L.; Rock, B. N.; Woodward, R. A.
1986-01-01
Spectral characteristics of semi-arid shrub communities were examined using Airborne Imaging Spectrometer (AIS) data collected in the tree mode on 23 May 1985. Mesic sites with relatively high vegetation density and distinct zonation patterns exhibited greater spectral signature variations than sites with more xeric shrub communities. Spectral signature patterns were not directly related to vegetation density or physiognomy, although spatial maps derived from an 8-channel maximum likelihood classification were supported by photo-interpreted surface features. In AIS data, the principal detected effect of shrub vegetation on the alluvial fans is to lower reflectance across the spectrum. These results are similar to those reported during a period of minimal physiological activity in autumn, indicating that shadows cast by vegetation canopies are an important element of soil-vegetation interaction under conditions of relatively low canopy cover.
Maximum-likelihood estimation of parameterized wavefronts from multifocal data
Sakamoto, Julia A.; Barrett, Harrison H.
2012-01-01
A method for determining the pupil phase distribution of an optical system is demonstrated. Coefficients in a wavefront expansion were estimated using likelihood methods, where the data consisted of multiple irradiance patterns near focus. Proof-of-principle results were obtained in both simulation and experiment. Large-aberration wavefronts were handled in the numerical study. Experimentally, we discuss the handling of nuisance parameters. Fisher information matrices, Cramér-Rao bounds, and likelihood surfaces are examined. ML estimates were obtained by simulated annealing to deal with numerous local extrema in the likelihood function. Rapid processing techniques were employed to reduce the computational time. PMID:22772282
Multi-atlas segmentation for abdominal organs with Gaussian mixture models
NASA Astrophysics Data System (ADS)
Burke, Ryan P.; Xu, Zhoubing; Lee, Christopher P.; Baucom, Rebeccah B.; Poulose, Benjamin K.; Abramson, Richard G.; Landman, Bennett A.
2015-03-01
Abdominal organ segmentation with clinically acquired computed tomography (CT) is drawing increasing interest in the medical imaging community. Gaussian mixture models (GMM) have been extensively used through medical segmentation, most notably in the brain for cerebrospinal fluid / gray matter / white matter differentiation. Because abdominal CT exhibit strong localized intensity characteristics, GMM have recently been incorporated in multi-stage abdominal segmentation algorithms. In the context of variable abdominal anatomy and rich algorithms, it is difficult to assess the marginal contribution of GMM. Herein, we characterize the efficacy of an a posteriori framework that integrates GMM of organ-wise intensity likelihood with spatial priors from multiple target-specific registered labels. In our study, we first manually labeled 100 CT images. Then, we assigned 40 images to use as training data for constructing target-specific spatial priors and intensity likelihoods. The remaining 60 images were evaluated as test targets for segmenting 12 abdominal organs. The overlap between the true and the automatic segmentations was measured by Dice similarity coefficient (DSC). A median improvement of 145% was achieved by integrating the GMM intensity likelihood against the specific spatial prior. The proposed framework opens the opportunities for abdominal organ segmentation by efficiently using both the spatial and appearance information from the atlases, and creates a benchmark for large-scale automatic abdominal segmentation.
Johnson, Rebecca N; Agapow, Paul-Michael; Crozier, Ross H
2003-11-01
The ant subfamily Formicinae is a large assemblage (2458 species (J. Nat. Hist. 29 (1995) 1037), including species that weave leaf nests together with larval silk and in which the metapleural gland-the ancestrally defining ant character-has been secondarily lost. We used sequences from two mitochondrial genes (cytochrome b and cytochrome oxidase 2) from 18 formicine and 4 outgroup taxa to derive a robust phylogeny, employing a search for tree islands using 10000 randomly constructed trees as starting points and deriving a maximum likelihood consensus tree from the ML tree and those not significantly different from it. Non-parametric bootstrapping showed that the ML consensus tree fit the data significantly better than three scenarios based on morphology, with that of Bolton (Identification Guide to the Ant Genera of the World, Harvard University Press, Cambridge, MA) being the best among these alternative trees. Trait mapping showed that weaving had arisen at least four times and possibly been lost once. A maximum likelihood analysis showed that loss of the metapleural gland is significantly associated with the weaver life-pattern. The graph of the frequencies with which trees were discovered versus their likelihood indicates that trees with high likelihoods have much larger basins of attraction than those with lower likelihoods. While this result indicates that single searches are more likely to find high- than low-likelihood tree islands, it also indicates that searching only for the single best tree may lose important information.
Patel, Swati; Weckstein, Jason D; Patané, José S L; Bates, John M; Aleixo, Alexandre
2011-01-01
We use the small-bodied toucan genus Pteroglossus to test hypotheses about diversification in the lowland Neotropics. We sequenced three mitochondrial genes and one nuclear intron from all Pteroglossus species and used these data to reconstruct phylogenetic trees based on maximum parsimony, maximum likelihood, and Bayesian analyses. These phylogenetic trees were used to make inferences regarding both the pattern and timing of diversification for the group. We used the uplift of the Talamanca highlands of Costa Rica and western Panama as a geologic calibration for estimating divergence times on the Pteroglossus tree and compared these results with a standard molecular clock calibration. Then, we used likelihood methods to model the rate of diversification. Based on our analyses, the onset of the Pteroglossus radiation predates the Pleistocene, which has been predicted to have played a pivotal role in diversification in the Amazon rainforest biota. We found a constant rate of diversification in Pteroglossus evolutionary history, and thus no support that events during the Pleistocene caused an increase in diversification. We compare our data to other avian phylogenies to better understand major biogeographic events in the Neotropics. These comparisons support recurring forest connections between the Amazonian and Atlantic forests, and the splitting of cis/trans Andean species after the final uplift of the Andes. At the subspecies level, there is evidence for reciprocal monophyly and groups are often separated by major rivers, demonstrating the important role of rivers in causing or maintaining divergence. Because some of the results presented here conflict with current taxonomy of Pteroglossus, new taxonomic arrangements are suggested. Copyright © 2010 Elsevier Inc. All rights reserved.
Estimating abundance and density of Amur tigers along the Sino-Russian border.
Xiao, Wenhong; Feng, Limin; Mou, Pu; Miquelle, Dale G; Hebblewhite, Mark; Goldberg, Joshua F; Robinson, Hugh S; Zhao, Xiaodan; Zhou, Bo; Wang, Tianming; Ge, Jianping
2016-07-01
As an apex predator the Amur tiger (Panthera tigris altaica) could play a pivotal role in maintaining the integrity of forest ecosystems in Northeast Asia. Due to habitat loss and harvest over the past century, tigers rapidly declined in China and are now restricted to the Russian Far East and bordering habitat in nearby China. To facilitate restoration of the tiger in its historical range, reliable estimates of population size are essential to assess effectiveness of conservation interventions. Here we used camera trap data collected in Hunchun National Nature Reserve from April to June 2013 and 2014 to estimate tiger density and abundance using both maximum likelihood and Bayesian spatially explicit capture-recapture (SECR) methods. A minimum of 8 individuals were detected in both sample periods and the documentation of marking behavior and reproduction suggests the presence of a resident population. Using Bayesian SECR modeling within the 11 400 km(2) state space, density estimates were 0.33 and 0.40 individuals/100 km(2) in 2013 and 2014, respectively, corresponding to an estimated abundance of 38 and 45 animals for this transboundary Sino-Russian population. In a maximum likelihood framework, we estimated densities of 0.30 and 0.24 individuals/100 km(2) corresponding to abundances of 34 and 27, in 2013 and 2014, respectively. These density estimates are comparable to other published estimates for resident Amur tiger populations in the Russian Far East. This study reveals promising signs of tiger recovery in Northeast China, and demonstrates the importance of connectivity between the Russian and Chinese populations for recovering tigers in Northeast China. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
DSN telemetry system performance using a maximum likelihood convolutional decoder
NASA Technical Reports Server (NTRS)
Benjauthrit, B.; Kemp, R. P.
1977-01-01
Results are described of telemetry system performance testing using DSN equipment and a Maximum Likelihood Convolutional Decoder (MCD) for code rates 1/2 and 1/3, constraint length 7 and special test software. The test results confirm the superiority of the rate 1/3 over that of the rate 1/2. The overall system performance losses determined at the output of the Symbol Synchronizer Assembly are less than 0.5 db for both code rates. Comparison of the performance is also made with existing mathematical models. Error statistics of the decoded data are examined. The MCD operational threshold is found to be about 1.96 db.
Pascazio, Vito; Schirinzi, Gilda
2002-01-01
In this paper, a technique that is able to reconstruct highly sloped and discontinuous terrain height profiles, starting from multifrequency wrapped phase acquired by interferometric synthetic aperture radar (SAR) systems, is presented. We propose an innovative unwrapping method, based on a maximum likelihood estimation technique, which uses multifrequency independent phase data, obtained by filtering the interferometric SAR raw data pair through nonoverlapping band-pass filters, and approximating the unknown surface by means of local planes. Since the method does not exploit the phase gradient, it assures the uniqueness of the solution, even in the case of highly sloped or piecewise continuous elevation patterns with strong discontinuities.
Soft decoding a self-dual (48, 24; 12) code
NASA Technical Reports Server (NTRS)
Solomon, G.
1993-01-01
A self-dual (48,24;12) code comes from restricting a binary cyclic (63,18;36) code to a 6 x 7 matrix, adding an eighth all-zero column, and then adjoining six dimensions to this extended 6 x 8 matrix. These six dimensions are generated by linear combinations of row permutations of a 6 x 8 matrix of weight 12, whose sums of rows and columns add to one. A soft decoding using these properties and approximating maximum likelihood is presented here. This is preliminary to a possible soft decoding of the box (72,36;15) code that promises a 7.7-dB theoretical coding under maximum likelihood.
Effects of time-shifted data on flight determined stability and control derivatives
NASA Technical Reports Server (NTRS)
Steers, S. T.; Iliff, K. W.
1975-01-01
Flight data were shifted in time by various increments to assess the effects of time shifts on estimates of stability and control derivatives produced by a maximum likelihood estimation method. Derivatives could be extracted from flight data with the maximum likelihood estimation method even if there was a considerable time shift in the data. Time shifts degraded the estimates of the derivatives, but the degradation was in a consistent rather than a random pattern. Time shifts in the control variables caused the most degradation, and the lateral-directional rotary derivatives were affected the most by time shifts in any variable.
Minimum distance classification in remote sensing
NASA Technical Reports Server (NTRS)
Wacker, A. G.; Landgrebe, D. A.
1972-01-01
The utilization of minimum distance classification methods in remote sensing problems, such as crop species identification, is considered. Literature concerning both minimum distance classification problems and distance measures is reviewed. Experimental results are presented for several examples. The objective of these examples is to: (a) compare the sample classification accuracy of a minimum distance classifier, with the vector classification accuracy of a maximum likelihood classifier, and (b) compare the accuracy of a parametric minimum distance classifier with that of a nonparametric one. Results show the minimum distance classifier performance is 5% to 10% better than that of the maximum likelihood classifier. The nonparametric classifier is only slightly better than the parametric version.
Maximum likelihood conjoint measurement of lightness and chroma.
Rogers, Marie; Knoblauch, Kenneth; Franklin, Anna
2016-03-01
Color varies along dimensions of lightness, hue, and chroma. We used maximum likelihood conjoint measurement to investigate how lightness and chroma influence color judgments. Observers judged lightness and chroma of stimuli that varied in both dimensions in a paired-comparison task. We modeled how changes in one dimension influenced judgment of the other. An additive model best fit the data in all conditions except for judgment of red chroma where there was a small but significant interaction. Lightness negatively contributed to perception of chroma for red, blue, and green hues but not for yellow. The method permits quantification of lightness and chroma contributions to color appearance.
Spatial hydrological drought characteristics in Karkheh River basin, southwest Iran using copulas
NASA Astrophysics Data System (ADS)
Dodangeh, Esmaeel; Shahedi, Kaka; Shiau, Jenq-Tzong; MirAkbari, Maryam
2017-08-01
Investigation on drought characteristics such as severity, duration, and frequency is crucial for water resources planning and management in a river basin. While the methodology for multivariate drought frequency analysis is well established by applying the copulas, the estimation on the associated parameters by various parameter estimation methods and the effects on the obtained results have not yet been investigated. This research aims at conducting a comparative analysis between the maximum likelihood parametric and non-parametric method of the Kendall τ estimation method for copulas parameter estimation. The methods were employed to study joint severity-duration probability and recurrence intervals in Karkheh River basin (southwest Iran) which is facing severe water-deficit problems. Daily streamflow data at three hydrological gauging stations (Tang Sazbon, Huleilan and Polchehr) near the Karkheh dam were used to draw flow duration curves (FDC) of these three stations. The Q_{75} index extracted from the FDC were set as threshold level to abstract drought characteristics such as drought duration and severity on the basis of the run theory. Drought duration and severity were separately modeled using the univariate probabilistic distributions and gamma-GEV, LN2-exponential, and LN2-gamma were selected as the best paired drought severity-duration inputs for copulas according to the Akaike Information Criteria (AIC), Kolmogorov-Smirnov and chi-square tests. Archimedean Clayton, Frank, and extreme value Gumbel copulas were employed to construct joint cumulative distribution functions (JCDF) of droughts for each station. Frank copula at Tang Sazbon and Gumbel at Huleilan and Polchehr stations were identified as the best copulas based on the performance evaluation criteria including AIC, BIC, log-likelihood and root mean square error (RMSE) values. Based on the RMSE values, nonparametric Kendall-τ is preferred to the parametric maximum likelihood estimation method. The results showed greater drought return periods by the parametric ML method in comparison to the nonparametric Kendall τ estimation method. The results also showed that stations located in tributaries (Huleilan and Polchehr) have close return periods, while the station along the main river (Tang Sazbon) has the smaller return periods for the drought events with identical drought duration and severity.
Mendoza, Maria C.B.; Burns, Trudy L.; Jones, Michael P.
2009-01-01
Objectives Case-deletion diagnostic methods are tools that allow identification of influential observations that may affect parameter estimates and model fitting conclusions. The goal of this paper was to develop two case-deletion diagnostics, the exact case deletion (ECD) and the empirical influence function (EIF), for detecting outliers that can affect results of sib-pair maximum likelihood quantitative trait locus (QTL) linkage analysis. Methods Subroutines to compute the ECD and EIF were incorporated into the maximum likelihood QTL variance estimation components of the linkage analysis program MAPMAKER/SIBS. Performance of the diagnostics was compared in simulation studies that evaluated the proportion of outliers correctly identified (sensitivity), and the proportion of non-outliers correctly identified (specificity). Results Simulations involving nuclear family data sets with one outlier showed EIF sensitivities approximated ECD sensitivities well for outlier-affected parameters. Sensitivities were high, indicating the outlier was identified a high proportion of the time. Simulations also showed the enormous computational time advantage of the EIF. Diagnostics applied to body mass index in nuclear families detected observations influential on the lod score and model parameter estimates. Conclusions The EIF is a practical diagnostic tool that has the advantages of high sensitivity and quick computation. PMID:19172086
Williams, M S; Ebel, E D; Cao, Y
2013-01-01
The fitting of statistical distributions to microbial sampling data is a common application in quantitative microbiology and risk assessment applications. An underlying assumption of most fitting techniques is that data are collected with simple random sampling, which is often times not the case. This study develops a weighted maximum likelihood estimation framework that is appropriate for microbiological samples that are collected with unequal probabilities of selection. A weighted maximum likelihood estimation framework is proposed for microbiological samples that are collected with unequal probabilities of selection. Two examples, based on the collection of food samples during processing, are provided to demonstrate the method and highlight the magnitude of biases in the maximum likelihood estimator when data are inappropriately treated as a simple random sample. Failure to properly weight samples to account for how data are collected can introduce substantial biases into inferences drawn from the data. The proposed methodology will reduce or eliminate an important source of bias in inferences drawn from the analysis of microbial data. This will also make comparisons between studies and the combination of results from different studies more reliable, which is important for risk assessment applications. © 2012 No claim to US Government works.
Stamatakis, Alexandros
2006-11-01
RAxML-VI-HPC (randomized axelerated maximum likelihood for high performance computing) is a sequential and parallel program for inference of large phylogenies with maximum likelihood (ML). Low-level technical optimizations, a modification of the search algorithm, and the use of the GTR+CAT approximation as replacement for GTR+Gamma yield a program that is between 2.7 and 52 times faster than the previous version of RAxML. A large-scale performance comparison with GARLI, PHYML, IQPNNI and MrBayes on real data containing 1000 up to 6722 taxa shows that RAxML requires at least 5.6 times less main memory and yields better trees in similar times than the best competing program (GARLI) on datasets up to 2500 taxa. On datasets > or =4000 taxa it also runs 2-3 times faster than GARLI. RAxML has been parallelized with MPI to conduct parallel multiple bootstraps and inferences on distinct starting trees. The program has been used to compute ML trees on two of the largest alignments to date containing 25,057 (1463 bp) and 2182 (51,089 bp) taxa, respectively. icwww.epfl.ch/~stamatak
Normal Theory Two-Stage ML Estimator When Data Are Missing at the Item Level
Savalei, Victoria; Rhemtulla, Mijke
2017-01-01
In many modeling contexts, the variables in the model are linear composites of the raw items measured for each participant; for instance, regression and path analysis models rely on scale scores, and structural equation models often use parcels as indicators of latent constructs. Currently, no analytic estimation method exists to appropriately handle missing data at the item level. Item-level multiple imputation (MI), however, can handle such missing data straightforwardly. In this article, we develop an analytic approach for dealing with item-level missing data—that is, one that obtains a unique set of parameter estimates directly from the incomplete data set and does not require imputations. The proposed approach is a variant of the two-stage maximum likelihood (TSML) methodology, and it is the analytic equivalent of item-level MI. We compare the new TSML approach to three existing alternatives for handling item-level missing data: scale-level full information maximum likelihood, available-case maximum likelihood, and item-level MI. We find that the TSML approach is the best analytic approach, and its performance is similar to item-level MI. We recommend its implementation in popular software and its further study. PMID:29276371
NASA Technical Reports Server (NTRS)
Zhuang, Xin
1990-01-01
LANDSAT Thematic Mapper (TM) data for March 23, 1987 with accompanying ground truth data for the study area in Miami County, IN were used to determine crop residue type and class. Principle components and spectral ratioing transformations were applied to the LANDSAT TM data. One graphic information system (GIS) layer of land ownership was added to each original image as the eighth band of data in an attempt to improve classification. Maximum likelihood, minimum distance, and neural networks were used to classify the original, transformed, and GIS-enhanced remotely sensed data. Crop residues could be separated from one another and from bare soil and other biomass. Two types of crop residue and four classes were identified from each LANDSAT TM image. The maximum likelihood classifier performed the best classification for each original image without need of any transformation. The neural network classifier was able to improve the classification by incorporating a GIS-layer of land ownership as an eighth band of data. The maximum likelihood classifier was unable to consider this eighth band of data and thus, its results could not be improved by its consideration.
Normal Theory Two-Stage ML Estimator When Data Are Missing at the Item Level.
Savalei, Victoria; Rhemtulla, Mijke
2017-08-01
In many modeling contexts, the variables in the model are linear composites of the raw items measured for each participant; for instance, regression and path analysis models rely on scale scores, and structural equation models often use parcels as indicators of latent constructs. Currently, no analytic estimation method exists to appropriately handle missing data at the item level. Item-level multiple imputation (MI), however, can handle such missing data straightforwardly. In this article, we develop an analytic approach for dealing with item-level missing data-that is, one that obtains a unique set of parameter estimates directly from the incomplete data set and does not require imputations. The proposed approach is a variant of the two-stage maximum likelihood (TSML) methodology, and it is the analytic equivalent of item-level MI. We compare the new TSML approach to three existing alternatives for handling item-level missing data: scale-level full information maximum likelihood, available-case maximum likelihood, and item-level MI. We find that the TSML approach is the best analytic approach, and its performance is similar to item-level MI. We recommend its implementation in popular software and its further study.
Maximum-Entropy Inference with a Programmable Annealer
Chancellor, Nicholas; Szoke, Szilard; Vinci, Walter; Aeppli, Gabriel; Warburton, Paul A.
2016-01-01
Optimisation problems typically involve finding the ground state (i.e. the minimum energy configuration) of a cost function with respect to many variables. If the variables are corrupted by noise then this maximises the likelihood that the solution is correct. The maximum entropy solution on the other hand takes the form of a Boltzmann distribution over the ground and excited states of the cost function to correct for noise. Here we use a programmable annealer for the information decoding problem which we simulate as a random Ising model in a field. We show experimentally that finite temperature maximum entropy decoding can give slightly better bit-error-rates than the maximum likelihood approach, confirming that useful information can be extracted from the excited states of the annealer. Furthermore we introduce a bit-by-bit analytical method which is agnostic to the specific application and use it to show that the annealer samples from a highly Boltzmann-like distribution. Machines of this kind are therefore candidates for use in a variety of machine learning applications which exploit maximum entropy inference, including language processing and image recognition. PMID:26936311
NASA Astrophysics Data System (ADS)
Lee, Min Sun; Kim, Kyeong Yun; Ko, Guen Bae; Lee, Jae Sung
2017-05-01
In this study, we developed a proof-of-concept prototype PET system using a pair of depth-of-interaction (DOI) PET detectors based on the proposed DOI-encoding method and digital silicon photomultiplier (dSiPM). Our novel cost-effective DOI measurement method is based on a triangular-shaped reflector that requires only a single-layer pixelated crystal and single-ended signal readout. The DOI detector consisted of an 18 × 18 array of unpolished LYSO crystal (1.47 × 1.47 × 15 mm3) wrapped with triangular-shaped reflectors. The DOI information was encoded by depth-dependent light distribution tailored by the reflector geometry and DOI correction was performed using four-step depth calibration data and maximum-likelihood (ML) estimation. The detector pair and the object were placed on two motorized rotation stages to demonstrate 12-block ring PET geometry with 11.15 cm diameter. Spatial resolution was measured and phantom and animal imaging studies were performed to investigate imaging performance. All images were reconstructed with and without the DOI correction to examine the impact of our DOI measurement. The pair of dSiPM-based DOI PET detectors showed good physical performances respectively: 2.82 and 3.09 peak-to-valley ratios, 14.30% and 18.95% energy resolution, and 4.28 and 4.24 mm DOI resolution averaged over all crystals and all depths. A sub-millimeter spatial resolution was achieved at the center of the field of view (FOV). After applying ML-based DOI correction, maximum 36.92% improvement was achieved in the radial spatial resolution and a uniform resolution was observed within 5 cm of transverse PET FOV. We successfully acquired phantom and animal images with improved spatial resolution and contrast by using the DOI measurement. The proposed DOI-encoding method was successfully demonstrated in the system level and exhibited good performance, showing its feasibility for animal PET applications with high spatial resolution and sensitivity.
Mellor, Kate C; Meyer, Anne; Elkholly, Doaa A; Fournié, Guillaume; Long, Pham T; Inui, Ken; Padungtod, Pawin; Gilbert, Marius; Newman, Scott H; Vergne, Timothée; Pfeiffer, Dirk U; Stevens, Kim B
2018-01-01
Highly pathogenic avian influenza (HPAI) H5N1 virus has been circulating in Vietnam since 2003, whilst outbreaks of HPAI H5N6 virus are more recent, having only been reported since 2014. Although the spatial distribution of H5N1 outbreaks and risk factors for virus occurrence has been extensively studied, there have been no comparative studies for H5N6. Data collected through active surveillance of Vietnamese live bird markets (LBMs) between 2011 and 2015 were used to explore and compare the spatiotemporal distributions of H5N1- and H5N6-positive LBMs. Conditional autoregressive models were developed to quantify spatiotemporal associations between agroecological factors and the two HPAI strains using the same set of predictor variables. Unlike H5N1, which exhibited a strong north-south divide, with repeated occurrence in the extreme south of a cluster of high-risk provinces, H5N6 was homogeneously distributed throughout Vietnam. Similarly, different agroecological factors were associated with each strain. Sample collection in the months of January and February and higher average maximum temperature were associated with higher likelihood of H5N1-positive market-day status. The likelihood of market days being positive for H5N6 increased with decreased river density, and with successive Rounds of data collection. This study highlights marked differences in spatial patterns and risk factors for H5N1 and H5N6 in Vietnam, suggesting the need for tailored surveillance and control approaches.
Mellor, Kate C.; Meyer, Anne; Elkholly, Doaa A.; Fournié, Guillaume; Long, Pham T.; Inui, Ken; Padungtod, Pawin; Gilbert, Marius; Newman, Scott H.; Vergne, Timothée; Pfeiffer, Dirk U.; Stevens, Kim B.
2018-01-01
Highly pathogenic avian influenza (HPAI) H5N1 virus has been circulating in Vietnam since 2003, whilst outbreaks of HPAI H5N6 virus are more recent, having only been reported since 2014. Although the spatial distribution of H5N1 outbreaks and risk factors for virus occurrence has been extensively studied, there have been no comparative studies for H5N6. Data collected through active surveillance of Vietnamese live bird markets (LBMs) between 2011 and 2015 were used to explore and compare the spatiotemporal distributions of H5N1- and H5N6-positive LBMs. Conditional autoregressive models were developed to quantify spatiotemporal associations between agroecological factors and the two HPAI strains using the same set of predictor variables. Unlike H5N1, which exhibited a strong north–south divide, with repeated occurrence in the extreme south of a cluster of high-risk provinces, H5N6 was homogeneously distributed throughout Vietnam. Similarly, different agroecological factors were associated with each strain. Sample collection in the months of January and February and higher average maximum temperature were associated with higher likelihood of H5N1-positive market-day status. The likelihood of market days being positive for H5N6 increased with decreased river density, and with successive Rounds of data collection. This study highlights marked differences in spatial patterns and risk factors for H5N1 and H5N6 in Vietnam, suggesting the need for tailored surveillance and control approaches. PMID:29675418
Phylogenetically marking the limits of the genus Fusarium for post-Article 59 usage
USDA-ARS?s Scientific Manuscript database
Fusarium (Hypocreales, Nectriaceae) is one of the most important and systematically challenging groups of mycotoxigenic, plant pathogenic, and human pathogenic fungi. We conducted maximum likelihood (ML), maximum parsimony (MP) and Bayesian (B) analyses on partial nucleotide sequences of genes encod...
Hühn, M
1995-05-01
Some approaches to molecular marker-assisted linkage detection for a dominant disease-resistance trait based on a segregating F2 population are discussed. Analysis of two-point linkage is carried out by the traditional measure of maximum lod score. It depends on (1) the maximum-likelihood estimate of the recombination fraction between the marker and the disease-resistance gene locus, (2) the observed absolute frequencies, and (3) the unknown number of tested individuals. If one replaces the absolute frequencies by expressions depending on the unknown sample size and the maximum-likelihood estimate of recombination value, the conventional rule for significant linkage (maximum lod score exceeds a given linkage threshold) can be resolved for the sample size. For each sub-population used for linkage analysis [susceptible (= recessive) individuals, resistant (= dominant) individuals, complete F2] this approach gives a lower bound for the necessary number of individuals required for the detection of significant two-point linkage by the lod-score method.
Program for Weibull Analysis of Fatigue Data
NASA Technical Reports Server (NTRS)
Krantz, Timothy L.
2005-01-01
A Fortran computer program has been written for performing statistical analyses of fatigue-test data that are assumed to be adequately represented by a two-parameter Weibull distribution. This program calculates the following: (1) Maximum-likelihood estimates of the Weibull distribution; (2) Data for contour plots of relative likelihood for two parameters; (3) Data for contour plots of joint confidence regions; (4) Data for the profile likelihood of the Weibull-distribution parameters; (5) Data for the profile likelihood of any percentile of the distribution; and (6) Likelihood-based confidence intervals for parameters and/or percentiles of the distribution. The program can account for tests that are suspended without failure (the statistical term for such suspension of tests is "censoring"). The analytical approach followed in this program for the software is valid for type-I censoring, which is the removal of unfailed units at pre-specified times. Confidence regions and intervals are calculated by use of the likelihood-ratio method.
Poisson point process modeling for polyphonic music transcription.
Peeling, Paul; Li, Chung-fai; Godsill, Simon
2007-04-01
Peaks detected in the frequency domain spectrum of a musical chord are modeled as realizations of a nonhomogeneous Poisson point process. When several notes are superimposed to make a chord, the processes for individual notes combine to give another Poisson process, whose likelihood is easily computable. This avoids a data association step linking individual harmonics explicitly with detected peaks in the spectrum. The likelihood function is ideal for Bayesian inference about the unknown note frequencies in a chord. Here, maximum likelihood estimation of fundamental frequencies shows very promising performance on real polyphonic piano music recordings.
Prioritizing conservation investments for mammal species globally
Wilson, Kerrie A.; Evans, Megan C.; Di Marco, Moreno; Green, David C.; Boitani, Luigi; Possingham, Hugh P.; Chiozza, Federica; Rondinini, Carlo
2011-01-01
We need to set priorities for conservation because we cannot do everything, everywhere, at the same time. We determined priority areas for investment in threat abatement actions, in both a cost-effective and spatially and temporally explicit way, for the threatened mammals of the world. Our analysis presents the first fine-resolution prioritization analysis for mammals at a global scale that accounts for the risk of habitat loss, the actions required to abate this risk, the costs of these actions and the likelihood of investment success. We evaluated the likelihood of success of investments using information on the past frequency and duration of legislative effectiveness at a country scale. The establishment of new protected areas was the action receiving the greatest investment, while restoration was never chosen. The resolution of the analysis and the incorporation of likelihood of success made little difference to this result, but affected the spatial location of these investments. PMID:21844046
Uncertainty in spatially explicit animal dispersal models
Mooij, Wolf M.; DeAngelis, Donald L.
2003-01-01
Uncertainty in estimates of survival of dispersing animals is a vexing difficulty in conservation biology. The current notion is that this uncertainty decreases the usefulness of spatially explicit population models in particular. We examined this problem by comparing dispersal models of three levels of complexity: (1) an event-based binomial model that considers only the occurrence of mortality or arrival, (2) a temporally explicit exponential model that employs mortality and arrival rates, and (3) a spatially explicit grid-walk model that simulates the movement of animals through an artificial landscape. Each model was fitted to the same set of field data. A first objective of the paper is to illustrate how the maximum-likelihood method can be used in all three cases to estimate the means and confidence limits for the relevant model parameters, given a particular set of data on dispersal survival. Using this framework we show that the structure of the uncertainty for all three models is strikingly similar. In fact, the results of our unified approach imply that spatially explicit dispersal models, which take advantage of information on landscape details, suffer less from uncertainly than do simpler models. Moreover, we show that the proposed strategy of model development safeguards one from error propagation in these more complex models. Finally, our approach shows that all models related to animal dispersal, ranging from simple to complex, can be related in a hierarchical fashion, so that the various approaches to modeling such dispersal can be viewed from a unified perspective.
Richards, Michael D; Goltz, Herbert C; Wong, Agnes M F
2018-01-01
Classically understood as a deficit in spatial vision, amblyopia is increasingly recognized to also impair audiovisual multisensory processing. Studies to date, however, have not determined whether the audiovisual abnormalities reflect a failure of multisensory integration, or an optimal strategy in the face of unisensory impairment. We use the ventriloquism effect and the maximum-likelihood estimation (MLE) model of optimal integration to investigate integration of audiovisual spatial information in amblyopia. Participants with unilateral amblyopia (n = 14; mean age 28.8 years; 7 anisometropic, 3 strabismic, 4 mixed mechanism) and visually normal controls (n = 16, mean age 29.2 years) localized brief unimodal auditory, unimodal visual, and bimodal (audiovisual) stimuli during binocular viewing using a location discrimination task. A subset of bimodal trials involved the ventriloquism effect, an illusion in which auditory and visual stimuli originating from different locations are perceived as originating from a single location. Localization precision and bias were determined by psychometric curve fitting, and the observed parameters were compared with predictions from the MLE model. Spatial localization precision was significantly reduced in the amblyopia group compared with the control group for unimodal visual, unimodal auditory, and bimodal stimuli. Analyses of localization precision and bias for bimodal stimuli showed no significant deviations from the MLE model in either the amblyopia group or the control group. Despite pervasive deficits in localization precision for visual, auditory, and audiovisual stimuli, audiovisual integration remains intact and optimal in unilateral amblyopia.
Comparative analysis of Worldview-2 and Landsat 8 for coastal saltmarsh mapping accuracy assessment
NASA Astrophysics Data System (ADS)
Rasel, Sikdar M. M.; Chang, Hsing-Chung; Diti, Israt Jahan; Ralph, Tim; Saintilan, Neil
2016-05-01
Coastal saltmarsh and their constituent components and processes are of an interest scientifically due to their ecological function and services. However, heterogeneity and seasonal dynamic of the coastal wetland system makes it challenging to map saltmarshes with remotely sensed data. This study selected four important saltmarsh species Pragmitis australis, Sporobolus virginicus, Ficiona nodosa and Schoeloplectus sp. as well as a Mangrove and Pine tree species, Avecinia and Casuarina sp respectively. High Spatial Resolution Worldview-2 data and Coarse Spatial resolution Landsat 8 imagery were selected in this study. Among the selected vegetation types some patches ware fragmented and close to the spatial resolution of Worldview-2 data while and some patch were larger than the 30 meter resolution of Landsat 8 data. This study aims to test the effectiveness of different classifier for the imagery with various spatial and spectral resolutions. Three different classification algorithm, Maximum Likelihood Classifier (MLC), Support Vector Machine (SVM) and Artificial Neural Network (ANN) were tested and compared with their mapping accuracy of the results derived from both satellite imagery. For Worldview-2 data SVM was giving the higher overall accuracy (92.12%, kappa =0.90) followed by ANN (90.82%, Kappa 0.89) and MLC (90.55%, kappa = 0.88). For Landsat 8 data, MLC (82.04%) showed the highest classification accuracy comparing to SVM (77.31%) and ANN (75.23%). The producer accuracy of the classification results were also presented in the paper.
Common mode error in Antarctic GPS coordinate time series on its effect on bedrock-uplift estimates
NASA Astrophysics Data System (ADS)
Liu, Bin; King, Matt; Dai, Wujiao
2018-05-01
Spatially-correlated common mode error always exists in regional, or-larger, GPS networks. We applied independent component analysis (ICA) to GPS vertical coordinate time series in Antarctica from 2010 to 2014 and made a comparison with the principal component analysis (PCA). Using PCA/ICA, the time series can be decomposed into a set of temporal components and their spatial responses. We assume the components with common spatial responses are common mode error (CME). An average reduction of ˜40% about the RMS values was achieved in both PCA and ICA filtering. However, the common mode components obtained from the two approaches have different spatial and temporal features. ICA time series present interesting correlations with modeled atmospheric and non-tidal ocean loading displacements. A white noise (WN) plus power law noise (PL) model was adopted in the GPS velocity estimation using maximum likelihood estimation (MLE) analysis, with ˜55% reduction of the velocity uncertainties after filtering using ICA. Meanwhile, spatiotemporal filtering reduces the amplitude of PL and periodic terms in the GPS time series. Finally, we compare the GPS uplift velocities, after correction for elastic effects, with recent models of glacial isostatic adjustment (GIA). The agreements of the GPS observed velocities and four GIA models are generally improved after the spatiotemporal filtering, with a mean reduction of ˜0.9 mm/yr of the WRMS values, possibly allowing for more confident separation of various GIA model predictions.
Schwartzkopf, Wade C; Bovik, Alan C; Evans, Brian L
2005-12-01
Traditional chromosome imaging has been limited to grayscale images, but recently a 5-fluorophore combinatorial labeling technique (M-FISH) was developed wherein each class of chromosomes binds with a different combination of fluorophores. This results in a multispectral image, where each class of chromosomes has distinct spectral components. In this paper, we develop new methods for automatic chromosome identification by exploiting the multispectral information in M-FISH chromosome images and by jointly performing chromosome segmentation and classification. We (1) develop a maximum-likelihood hypothesis test that uses multispectral information, together with conventional criteria, to select the best segmentation possibility; (2) use this likelihood function to combine chromosome segmentation and classification into a robust chromosome identification system; and (3) show that the proposed likelihood function can also be used as a reliable indicator of errors in segmentation, errors in classification, and chromosome anomalies, which can be indicators of radiation damage, cancer, and a wide variety of inherited diseases. We show that the proposed multispectral joint segmentation-classification method outperforms past grayscale segmentation methods when decomposing touching chromosomes. We also show that it outperforms past M-FISH classification techniques that do not use segmentation information.
Exploiting Non-sequence Data in Dynamic Model Learning
2013-10-01
For our experiments here and in Section 3.5, we implement the proposed algorithms in MATLAB and use the maximum directed spanning tree solver...embarrassingly parallelizable, whereas PM’s maximum directed spanning tree procedure is harder to parallelize. In this experiment, our MATLAB ...some estimation problems, this approach is able to give unique and consistent estimates while the maximum- likelihood method gets entangled in
Probabilistic tsunami hazard assessment at Seaside, Oregon, for near-and far-field seismic sources
Gonzalez, F.I.; Geist, E.L.; Jaffe, B.; Kanoglu, U.; Mofjeld, H.; Synolakis, C.E.; Titov, V.V.; Areas, D.; Bellomo, D.; Carlton, D.; Horning, T.; Johnson, J.; Newman, J.; Parsons, T.; Peters, R.; Peterson, C.; Priest, G.; Venturato, A.; Weber, J.; Wong, F.; Yalciner, A.
2009-01-01
The first probabilistic tsunami flooding maps have been developed. The methodology, called probabilistic tsunami hazard assessment (PTHA), integrates tsunami inundation modeling with methods of probabilistic seismic hazard assessment (PSHA). Application of the methodology to Seaside, Oregon, has yielded estimates of the spatial distribution of 100- and 500-year maximum tsunami amplitudes, i.e., amplitudes with 1% and 0.2% annual probability of exceedance. The 100-year tsunami is generated most frequently by far-field sources in the Alaska-Aleutian Subduction Zone and is characterized by maximum amplitudes that do not exceed 4 m, with an inland extent of less than 500 m. In contrast, the 500-year tsunami is dominated by local sources in the Cascadia Subduction Zone and is characterized by maximum amplitudes in excess of 10 m and an inland extent of more than 1 km. The primary sources of uncertainty in these results include those associated with interevent time estimates, modeling of background sea level, and accounting for temporal changes in bathymetry and topography. Nonetheless, PTHA represents an important contribution to tsunami hazard assessment techniques; viewed in the broader context of risk analysis, PTHA provides a method for quantifying estimates of the likelihood and severity of the tsunami hazard, which can then be combined with vulnerability and exposure to yield estimates of tsunami risk. Copyright 2009 by the American Geophysical Union.
Maximum likelihood positioning algorithm for high-resolution PET scanners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gross-Weege, Nicolas, E-mail: nicolas.gross-weege@pmi.rwth-aachen.de, E-mail: schulz@pmi.rwth-aachen.de; Schug, David; Hallen, Patrick
2016-06-15
Purpose: In high-resolution positron emission tomography (PET), lightsharing elements are incorporated into typical detector stacks to read out scintillator arrays in which one scintillator element (crystal) is smaller than the size of the readout channel. In order to identify the hit crystal by means of the measured light distribution, a positioning algorithm is required. One commonly applied positioning algorithm uses the center of gravity (COG) of the measured light distribution. The COG algorithm is limited in spatial resolution by noise and intercrystal Compton scatter. The purpose of this work is to develop a positioning algorithm which overcomes this limitation. Methods:more » The authors present a maximum likelihood (ML) algorithm which compares a set of expected light distributions given by probability density functions (PDFs) with the measured light distribution. Instead of modeling the PDFs by using an analytical model, the PDFs of the proposed ML algorithm are generated assuming a single-gamma-interaction model from measured data. The algorithm was evaluated with a hot-rod phantom measurement acquired with the preclinical HYPERION II {sup D} PET scanner. In order to assess the performance with respect to sensitivity, energy resolution, and image quality, the ML algorithm was compared to a COG algorithm which calculates the COG from a restricted set of channels. The authors studied the energy resolution of the ML and the COG algorithm regarding incomplete light distributions (missing channel information caused by detector dead time). Furthermore, the authors investigated the effects of using a filter based on the likelihood values on sensitivity, energy resolution, and image quality. Results: A sensitivity gain of up to 19% was demonstrated in comparison to the COG algorithm for the selected operation parameters. Energy resolution and image quality were on a similar level for both algorithms. Additionally, the authors demonstrated that the performance of the ML algorithm is less prone to missing channel information. A likelihood filter visually improved the image quality, i.e., the peak-to-valley increased up to a factor of 3 for 2-mm-diameter phantom rods by rejecting 87% of the coincidences. A relative improvement of the energy resolution of up to 12.8% was also measured rejecting 91% of the coincidences. Conclusions: The developed ML algorithm increases the sensitivity by correctly handling missing channel information without influencing energy resolution or image quality. Furthermore, the authors showed that energy resolution and image quality can be improved substantially by rejecting events that do not comply well with the single-gamma-interaction model, such as Compton-scattered events.« less
NASA Technical Reports Server (NTRS)
Parrish, R. V.; Steinmetz, G. G.
1972-01-01
A method of parameter extraction for stability and control derivatives of aircraft from flight test data, implementing maximum likelihood estimation, has been developed and successfully applied to actual lateral flight test data from a modern sophisticated jet fighter. This application demonstrates the important role played by the analyst in combining engineering judgment and estimator statistics to yield meaningful results. During the analysis, the problems of uniqueness of the extracted set of parameters and of longitudinal coupling effects were encountered and resolved. The results for all flight runs are presented in tabular form and as time history comparisons between the estimated states and the actual flight test data.
Effect of sampling rate and record length on the determination of stability and control derivatives
NASA Technical Reports Server (NTRS)
Brenner, M. J.; Iliff, K. W.; Whitman, R. K.
1978-01-01
Flight data from five aircraft were used to assess the effects of sampling rate and record length reductions on estimates of stability and control derivatives produced by a maximum likelihood estimation method. Derivatives could be extracted from flight data with the maximum likelihood estimation method even if there were considerable reductions in sampling rate and/or record length. Small amplitude pulse maneuvers showed greater degradation of the derivative maneuvers than large amplitude pulse maneuvers when these reductions were made. Reducing the sampling rate was found to be more desirable than reducing the record length as a method of lessening the total computation time required without greatly degrading the quantity of the estimates.
Nonparametric probability density estimation by optimization theoretic techniques
NASA Technical Reports Server (NTRS)
Scott, D. W.
1976-01-01
Two nonparametric probability density estimators are considered. The first is the kernel estimator. The problem of choosing the kernel scaling factor based solely on a random sample is addressed. An interactive mode is discussed and an algorithm proposed to choose the scaling factor automatically. The second nonparametric probability estimate uses penalty function techniques with the maximum likelihood criterion. A discrete maximum penalized likelihood estimator is proposed and is shown to be consistent in the mean square error. A numerical implementation technique for the discrete solution is discussed and examples displayed. An extensive simulation study compares the integrated mean square error of the discrete and kernel estimators. The robustness of the discrete estimator is demonstrated graphically.
Characterization, parameter estimation, and aircraft response statistics of atmospheric turbulence
NASA Technical Reports Server (NTRS)
Mark, W. D.
1981-01-01
A nonGaussian three component model of atmospheric turbulence is postulated that accounts for readily observable features of turbulence velocity records, their autocorrelation functions, and their spectra. Methods for computing probability density functions and mean exceedance rates of a generic aircraft response variable are developed using nonGaussian turbulence characterizations readily extracted from velocity recordings. A maximum likelihood method is developed for optimal estimation of the integral scale and intensity of records possessing von Karman transverse of longitudinal spectra. Formulas for the variances of such parameter estimates are developed. The maximum likelihood and least-square approaches are combined to yield a method for estimating the autocorrelation function parameters of a two component model for turbulence.
Deterministic quantum annealing expectation-maximization algorithm
NASA Astrophysics Data System (ADS)
Miyahara, Hideyuki; Tsumura, Koji; Sughiyama, Yuki
2017-11-01
Maximum likelihood estimation (MLE) is one of the most important methods in machine learning, and the expectation-maximization (EM) algorithm is often used to obtain maximum likelihood estimates. However, EM heavily depends on initial configurations and fails to find the global optimum. On the other hand, in the field of physics, quantum annealing (QA) was proposed as a novel optimization approach. Motivated by QA, we propose a quantum annealing extension of EM, which we call the deterministic quantum annealing expectation-maximization (DQAEM) algorithm. We also discuss its advantage in terms of the path integral formulation. Furthermore, by employing numerical simulations, we illustrate how DQAEM works in MLE and show that DQAEM moderate the problem of local optima in EM.
NASA Astrophysics Data System (ADS)
Li, Yan; Wu, Mingwei; Du, Xinwei; Xu, Zhuoran; Gurusamy, Mohan; Yu, Changyuan; Kam, Pooi-Yuen
2018-02-01
A novel soft-decision-aided maximum likelihood (SDA-ML) carrier phase estimation method and its simplified version, the decision-aided and soft-decision-aided maximum likelihood (DA-SDA-ML) methods are tested in a nonlinear phase noise-dominant channel. The numerical performance results show that both the SDA-ML and DA-SDA-ML methods outperform the conventional DA-ML in systems with constant-amplitude modulation formats. In addition, modified algorithms based on constellation partitioning are proposed. With partitioning, the modified SDA-ML and DA-SDA-ML are shown to be useful for compensating the nonlinear phase noise in multi-level modulation systems.
User's manual for MMLE3, a general FORTRAN program for maximum likelihood parameter estimation
NASA Technical Reports Server (NTRS)
Maine, R. E.; Iliff, K. W.
1980-01-01
A user's manual for the FORTRAN IV computer program MMLE3 is described. It is a maximum likelihood parameter estimation program capable of handling general bilinear dynamic equations of arbitrary order with measurement noise and/or state noise (process noise). The theory and use of the program is described. The basic MMLE3 program is quite general and, therefore, applicable to a wide variety of problems. The basic program can interact with a set of user written problem specific routines to simplify the use of the program on specific systems. A set of user routines for the aircraft stability and control derivative estimation problem is provided with the program.
Approximate maximum likelihood decoding of block codes
NASA Technical Reports Server (NTRS)
Greenberger, H. J.
1979-01-01
Approximate maximum likelihood decoding algorithms, based upon selecting a small set of candidate code words with the aid of the estimated probability of error of each received symbol, can give performance close to optimum with a reasonable amount of computation. By combining the best features of various algorithms and taking care to perform each step as efficiently as possible, a decoding scheme was developed which can decode codes which have better performance than those presently in use and yet not require an unreasonable amount of computation. The discussion of the details and tradeoffs of presently known efficient optimum and near optimum decoding algorithms leads, naturally, to the one which embodies the best features of all of them.
A Search for Neutrino Emission from Fast Radio Bursts with Six Years of IceCube Data
NASA Astrophysics Data System (ADS)
Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Samarai, I. Al; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Böser, S.; Botner, O.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.; Brenzke, M.; Bretz, H.-P.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Busse, R. S.; Carver, T.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Collin, G. H.; Conrad, J. M.; Coppin, P.; Correa, P.; Cowen, D. F.; Cross, R.; Dave, P.; Day, M.; de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Dvorak, E.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.; Friedman, E.; Fritz, A.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoinka, T.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; Hünnefeld, M.; Hussain, R.; In, S.; Iovine, N.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalaczynski, P.; Kang, W.; Kappes, A.; Kappesser, D.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Leonard, K.; Lesiak-Bzdak, M.; Leuermann, M.; Liu, Q. R.; Lozano Mariscal, C. J.; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O’Murchadha, A.; O’Sullivan, E.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Plum, M.; Price, P. B.; Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rauch, L.; Rawlins, K.; Rea, I. C.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Safa, I.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Sclafani, S.; Seckel, D.; Seunarine, S.; Soedingrekso, J.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stein, R.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strotjohann, N. L.; Stuttard, T.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tönnis, C.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijk, D.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; IceCube Collaboration
2018-04-01
We present a search for coincidence between IceCube TeV neutrinos and fast radio bursts (FRBs). During the search period from 2010 May 31 to 2016 May 12, a total of 29 FRBs with 13 unique locations have been detected in the whole sky. An unbinned maximum likelihood method was used to search for spatial and temporal coincidence between neutrinos and FRBs in expanding time windows, in both the northern and southern hemispheres. No significant correlation was found in six years of IceCube data. Therefore, we set upper limits on neutrino fluence emitted by FRBs as a function of time window duration. We set the most stringent limit obtained to date on neutrino fluence from FRBs with an E ‑2 energy spectrum assumed, which is 0.0021 GeV cm‑2 per burst for emission timescales up to ∼102 s from the northern hemisphere stacking search.
Reassignment of scattered emission photons in multifocal multiphoton microscopy.
Cha, Jae Won; Singh, Vijay Raj; Kim, Ki Hean; Subramanian, Jaichandar; Peng, Qiwen; Yu, Hanry; Nedivi, Elly; So, Peter T C
2014-06-05
Multifocal multiphoton microscopy (MMM) achieves fast imaging by simultaneously scanning multiple foci across different regions of specimen. The use of imaging detectors in MMM, such as CCD or CMOS, results in degradation of image signal-to-noise-ratio (SNR) due to the scattering of emitted photons. SNR can be partly recovered using multianode photomultiplier tubes (MAPMT). In this design, however, emission photons scattered to neighbor anodes are encoded by the foci scan location resulting in ghost images. The crosstalk between different anodes is currently measured a priori, which is cumbersome as it depends specimen properties. Here, we present the photon reassignment method for MMM, established based on the maximum likelihood (ML) estimation, for quantification of crosstalk between the anodes of MAPMT without a priori measurement. The method provides the reassignment of the photons generated by the ghost images to the original spatial location thus increases the SNR of the final reconstructed image.
Lucero, D E; Carlson, T C; Delisle, J; Poindexter, S; Jones, T F; Moncayo, A C
2016-05-01
West Nile virus (WNV) and Flanders virus (FLAV) can cocirculate in Culex mosquitoes in parts of North America. A large dataset of mosquito pools tested for WNV and FLAV was queried to understand the spatiotemporal relationship between these two viruses in Shelby County, TN. We found strong evidence of global clustering (i.e., spatial autocorrelation) and overlapping of local clustering (i.e., Hot Spots based on Getis Ord Gi*) of maximum likelihood estimates (MLE) of infection rates (IR) during 2008-2013. Temporally, FLAV emerges and peaks on average 10.2 wk prior to WNV based on IR. Higher levels of WNV IR were detected within 3,000 m of FLAV-positive pool buffers than outside these buffers. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A resolution measure for three-dimensional microscopy
Chao, Jerry; Ram, Sripad; Abraham, Anish V.; Ward, E. Sally; Ober, Raimund J.
2009-01-01
A three-dimensional (3D) resolution measure for the conventional optical microscope is introduced which overcomes the drawbacks of the classical 3D (axial) resolution limit. Formulated within the context of a parameter estimation problem and based on the Cramer-Rao lower bound, this 3D resolution measure indicates the accuracy with which a given distance between two objects in 3D space can be determined from the acquired image. It predicts that, given enough photons from the objects of interest, arbitrarily small distances of separation can be estimated with prespecified accuracy. Using simulated images of point source pairs, we show that the maximum likelihood estimator is capable of attaining the accuracy predicted by the resolution measure. We also demonstrate how different factors, such as extraneous noise sources and the spatial orientation of the imaged object pair, can affect the accuracy with which a given distance of separation can be determined. PMID:20161040
User oriented ERTS-1 images. [vegetation identification in Canada through image enhancement
NASA Technical Reports Server (NTRS)
Shlien, S.; Goodenough, D.
1974-01-01
Photographic reproduction of ERTS-1 images are capable of displaying only a portion of the total information available from the multispectral scanner. Methods are being developed to generate ERTS-1 images oriented towards special users such as agriculturists, foresters, and hydrologists by applying image enhancement techniques and interactive statistical classification schemes. Spatial boundaries and linear features can be emphasized and delineated using simple filters. Linear and nonlinear transformations can be applied to the spectral data to emphasize certain ground information. An automatic classification scheme was developed to identify particular ground cover classes such as fallow, grain, rape seed or various vegetation covers. The scheme applies the maximum likelihood decision rule to the spectral information and classifies the ERTS-1 image on a pixel by pixel basis. Preliminary results indicate that the classifier has limited success in distinguishing crops, but is well adapted for identifying different types of vegetation.
Respiratory motion correction in emission tomography image reconstruction.
Reyes, Mauricio; Malandain, Grégoire; Koulibaly, Pierre Malick; González Ballester, Miguel A; Darcourt, Jacques
2005-01-01
In Emission Tomography imaging, respiratory motion causes artifacts in lungs and cardiac reconstructed images, which lead to misinterpretations and imprecise diagnosis. Solutions like respiratory gating, correlated dynamic PET techniques, list-mode data based techniques and others have been tested with improvements over the spatial activity distribution in lungs lesions, but with the disadvantages of requiring additional instrumentation or discarding part of the projection data used for reconstruction. The objective of this study is to incorporate respiratory motion correction directly into the image reconstruction process, without any additional acquisition protocol consideration. To this end, we propose an extension to the Maximum Likelihood Expectation Maximization (MLEM) algorithm that includes a respiratory motion model, which takes into account the displacements and volume deformations produced by the respiratory motion during the data acquisition process. We present results from synthetic simulations incorporating real respiratory motion as well as from phantom and patient data.
NASA Astrophysics Data System (ADS)
Wei, Dong; Weinstein, Susan; Hsieh, Meng-Kang; Pantalone, Lauren; Kontos, Despina
2018-03-01
The relative amount of fibroglandular tissue (FGT) in the breast has been shown to be a risk factor for breast cancer. However, automatic segmentation of FGT in breast MRI is challenging due mainly to its wide variation in anatomy (e.g., amount, location and pattern, etc.), and various imaging artifacts especially the prevalent bias-field artifact. Motivated by a previous work demonstrating improved FGT segmentation with 2-D a priori likelihood atlas, we propose a machine learning-based framework using 3-D FGT context. The framework uses features specifically defined with respect to the breast anatomy to capture spatially varying likelihood of FGT, and allows (a) intuitive standardization across breasts of different sizes and shapes, and (b) easy incorporation of additional information helpful to the segmentation (e.g., texture). Extended from the concept of 2-D atlas, our framework not only captures spatial likelihood of FGT in 3-D context, but also broadens its applicability to both sagittal and axial breast MRI rather than being limited to the plane in which the 2-D atlas is constructed. Experimental results showed improved segmentation accuracy over the 2-D atlas method, and demonstrated further improvement by incorporating well-established texture descriptors.
SPATIAL AND TEMPORAL DIMENSIONS OF NEIGHBORHOOD EFFECTS ON HIGH SCHOOL GRADUATION.
Crowder, Kyle; South, Scott J
2011-01-30
Research into the effects of neighborhood characteristics on children's behavior has burgeoned in recent years, but these studies have generally adopted a limited conceptualization of the spatial and temporal dimensions of neighborhood effects. We use longitudinal data from the Panel Study of Income Dynamics and techniques of spatial data analysis to examine how both the socioeconomic characteristics of extralocal neighborhoods-neighborhoods surrounding the immediate neighborhood of residence-and the duration of exposure to disadvantaged neighborhoods throughout the childhood life course influence the likelihood of graduating from high school. Among blacks and whites, socioeconomic advantage in the immediate neighborhood increases the likelihood of completing high school, but among whites higher levels of socioeconomic advantage in extralocal neighborhoods decrease high school graduation rates. Extralocal neighborhood advantage suppresses the influence of advantage in the immediate neighborhood so that controlling for extralocal conditions provides stronger support for the neighborhood effects hypothesis than has previously been observed. Exposure to advantaged neighborhoods over the childhood life course exerts a stronger effect than point-in-time measures on high school graduation, and racial differences in exposure to advantaged neighbors over the childhood life course help to suppress a net black advantage in the likelihood of completing high school.
SPATIAL AND TEMPORAL DIMENSIONS OF NEIGHBORHOOD EFFECTS ON HIGH SCHOOL GRADUATION
Crowder, Kyle; South, Scott J.
2010-01-01
Research into the effects of neighborhood characteristics on children’s behavior has burgeoned in recent years, but these studies have generally adopted a limited conceptualization of the spatial and temporal dimensions of neighborhood effects. We use longitudinal data from the Panel Study of Income Dynamics and techniques of spatial data analysis to examine how both the socioeconomic characteristics of extralocal neighborhoods—neighborhoods surrounding the immediate neighborhood of residence—and the duration of exposure to disadvantaged neighborhoods throughout the childhood life course influence the likelihood of graduating from high school. Among blacks and whites, socioeconomic advantage in the immediate neighborhood increases the likelihood of completing high school, but among whites higher levels of socioeconomic advantage in extralocal neighborhoods decrease high school graduation rates. Extralocal neighborhood advantage suppresses the influence of advantage in the immediate neighborhood so that controlling for extralocal conditions provides stronger support for the neighborhood effects hypothesis than has previously been observed. Exposure to advantaged neighborhoods over the childhood life course exerts a stronger effect than point-in-time measures on high school graduation, and racial differences in exposure to advantaged neighbors over the childhood life course help to suppress a net black advantage in the likelihood of completing high school. PMID:21180398
NASA Technical Reports Server (NTRS)
Ganga, Ken; Page, Lyman; Cheng, Edward; Meyer, Stephan
1994-01-01
In many cosmological models, the large angular scale anisotropy in the cosmic microwave background is parameterized by a spectral index, n, and a quadrupolar amplitude, Q. For a Harrison-Peebles-Zel'dovich spectrum, n = 1. Using data from the Far Infrared Survey (FIRS) and a new statistical measure, a contour plot of the likelihood for cosmological models for which -1 less than n less than 3 and 0 equal to or less than Q equal to or less than 50 micro K is obtained. Depending upon the details of the analysis, the maximum likelihood occurs at n between 0.8 and 1.4 and Q between 18 and 21 micro K. Regardless of Q, the likelihood is always less than half its maximum for n less than -0.4 and for n greater than 2.2, as it is for Q less than 8 micro K and Q greater than 44 micro K.
Big city, small world: density, contact rates, and transmission of dengue across Pakistan.
Kraemer, M U G; Perkins, T A; Cummings, D A T; Zakar, R; Hay, S I; Smith, D L; Reiner, R C
2015-10-06
Macroscopic descriptions of populations commonly assume that encounters between individuals are well mixed; i.e. each individual has an equal chance of coming into contact with any other individual. Relaxing this assumption can be challenging though, due to the difficulty of acquiring detailed knowledge about the non-random nature of encounters. Here, we fitted a mathematical model of dengue virus transmission to spatial time-series data from Pakistan and compared maximum-likelihood estimates of 'mixing parameters' when disaggregating data across an urban-rural gradient. We show that dynamics across this gradient are subject not only to differing transmission intensities but also to differing strengths of nonlinearity due to differences in mixing. Accounting for differences in mobility by incorporating two fine-scale, density-dependent covariate layers eliminates differences in mixing but results in a doubling of the estimated transmission potential of the large urban district of Lahore. We furthermore show that neglecting spatial variation in mixing can lead to substantial underestimates of the level of effort needed to control a pathogen with vaccines or other interventions. We complement this analysis with estimates of the relationships between dengue transmission intensity and other putative environmental drivers thereof. © 2015 The Authors.
NASA Astrophysics Data System (ADS)
Borgohain, Jayanta Madhab; Borah, Kajaljyoti; Biswas, Rajib; Bora, Dipok K.
2018-04-01
Spatial variation of seismic b-value is estimated in the Indo-Myanmar subduction zone of northeast (NE) India using the homogeneous part of earthquake catalogue (1996-2015), recorded by International Seismological Center (ISC), consisting of 895 events of magnitude MW ≥ 3.9. The study region is divided into 1° × 1° square grids and b-values are estimated at each grid by maximum likelihood method. In this study, the b-value varies from 0.75 to 1.54 in the region. Significant variation of low b-value in the respective location may indicate high stress accumulation in that region. Spatial variation reveals intermediate b-value anomalies around the epicenter of the Mw = 6.7 Manipur earthquake which occurred on 3rd January at 23:05 UTC (4 January 2016 at 04:35 IST). The variations of b-values are also estimated with respect to depth. The low b-value associated with the depth range ∼15-55 km, which may imply crustal homogeneity and high stress accumulation in the crust. Since, NE India lies in the seismic zone V of the country; this study can be helpful to understand seismotectonics in the region.
NASA Astrophysics Data System (ADS)
Saran, Sameer; Sterk, Geert; Kumar, Suresh
2007-10-01
Land use/cover is an important watershed surface characteristic that affects surface runoff and erosion. Many of the available hydrological models divide the watershed into Hydrological Response Units (HRU), which are spatial units with expected similar hydrological behaviours. The division into HRU's requires good-quality spatial data on land use/cover. This paper presents different approaches to attain an optimal land use/cover map based on remote sensing imagery for a Himalayan watershed in northern India. First digital classifications using maximum likelihood classifier (MLC) and a decision tree classifier were applied. The results obtained from the decision tree were better and even improved after post classification sorting. But the obtained land use/cover map was not sufficient for the delineation of HRUs, since the agricultural land use/cover class did not discriminate between the two major crops in the area i.e. paddy and maize. Therefore we adopted a visual classification approach using optical data alone and also fused with ENVISAT ASAR data. This second step with detailed classification system resulted into better classification accuracy within the 'agricultural land' class which will be further combined with topography and soil type to derive HRU's for physically-based hydrological modelling.
Accuracy of maximum likelihood estimates of a two-state model in single-molecule FRET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopich, Irina V.
2015-01-21
Photon sequences from single-molecule Förster resonance energy transfer (FRET) experiments can be analyzed using a maximum likelihood method. Parameters of the underlying kinetic model (FRET efficiencies of the states and transition rates between conformational states) are obtained by maximizing the appropriate likelihood function. In addition, the errors (uncertainties) of the extracted parameters can be obtained from the curvature of the likelihood function at the maximum. We study the standard deviations of the parameters of a two-state model obtained from photon sequences with recorded colors and arrival times. The standard deviations can be obtained analytically in a special case when themore » FRET efficiencies of the states are 0 and 1 and in the limiting cases of fast and slow conformational dynamics. These results are compared with the results of numerical simulations. The accuracy and, therefore, the ability to predict model parameters depend on how fast the transition rates are compared to the photon count rate. In the limit of slow transitions, the key parameters that determine the accuracy are the number of transitions between the states and the number of independent photon sequences. In the fast transition limit, the accuracy is determined by the small fraction of photons that are correlated with their neighbors. The relative standard deviation of the relaxation rate has a “chevron” shape as a function of the transition rate in the log-log scale. The location of the minimum of this function dramatically depends on how well the FRET efficiencies of the states are separated.« less
Accuracy of maximum likelihood estimates of a two-state model in single-molecule FRET
Gopich, Irina V.
2015-01-01
Photon sequences from single-molecule Förster resonance energy transfer (FRET) experiments can be analyzed using a maximum likelihood method. Parameters of the underlying kinetic model (FRET efficiencies of the states and transition rates between conformational states) are obtained by maximizing the appropriate likelihood function. In addition, the errors (uncertainties) of the extracted parameters can be obtained from the curvature of the likelihood function at the maximum. We study the standard deviations of the parameters of a two-state model obtained from photon sequences with recorded colors and arrival times. The standard deviations can be obtained analytically in a special case when the FRET efficiencies of the states are 0 and 1 and in the limiting cases of fast and slow conformational dynamics. These results are compared with the results of numerical simulations. The accuracy and, therefore, the ability to predict model parameters depend on how fast the transition rates are compared to the photon count rate. In the limit of slow transitions, the key parameters that determine the accuracy are the number of transitions between the states and the number of independent photon sequences. In the fast transition limit, the accuracy is determined by the small fraction of photons that are correlated with their neighbors. The relative standard deviation of the relaxation rate has a “chevron” shape as a function of the transition rate in the log-log scale. The location of the minimum of this function dramatically depends on how well the FRET efficiencies of the states are separated. PMID:25612692
ERIC Educational Resources Information Center
Andersen, Erling B.
A computer program for solving the conditional likelihood equations arising in the Rasch model for questionnaires is described. The estimation method and the computational problems involved are described in a previous research report by Andersen, but a summary of those results are given in two sections of this paper. A working example is also…
Mediterranean Land Use and Land Cover Classification Assessment Using High Spatial Resolution Data
NASA Astrophysics Data System (ADS)
Elhag, Mohamed; Boteva, Silvena
2016-10-01
Landscape fragmentation is noticeably practiced in Mediterranean regions and imposes substantial complications in several satellite image classification methods. To some extent, high spatial resolution data were able to overcome such complications. For better classification performances in Land Use Land Cover (LULC) mapping, the current research adopts different classification methods comparison for LULC mapping using Sentinel-2 satellite as a source of high spatial resolution. Both of pixel-based and an object-based classification algorithms were assessed; the pixel-based approach employs Maximum Likelihood (ML), Artificial Neural Network (ANN) algorithms, Support Vector Machine (SVM), and, the object-based classification uses the Nearest Neighbour (NN) classifier. Stratified Masking Process (SMP) that integrates a ranking process within the classes based on spectral fluctuation of the sum of the training and testing sites was implemented. An analysis of the overall and individual accuracy of the classification results of all four methods reveals that the SVM classifier was the most efficient overall by distinguishing most of the classes with the highest accuracy. NN succeeded to deal with artificial surface classes in general while agriculture area classes, and forest and semi-natural area classes were segregated successfully with SVM. Furthermore, a comparative analysis indicates that the conventional classification method yielded better accuracy results than the SMP method overall with both classifiers used, ML and SVM.
Land use/cover classification in the Brazilian Amazon using satellite images.
Lu, Dengsheng; Batistella, Mateus; Li, Guiying; Moran, Emilio; Hetrick, Scott; Freitas, Corina da Costa; Dutra, Luciano Vieira; Sant'anna, Sidnei João Siqueira
2012-09-01
Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation-based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi-resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical-based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data.
Land use/cover classification in the Brazilian Amazon using satellite images
Lu, Dengsheng; Batistella, Mateus; Li, Guiying; Moran, Emilio; Hetrick, Scott; Freitas, Corina da Costa; Dutra, Luciano Vieira; Sant’Anna, Sidnei João Siqueira
2013-01-01
Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation-based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi-resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical-based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data. PMID:24353353
NASA Technical Reports Server (NTRS)
Pierson, W. J.
1982-01-01
The scatterometer on the National Oceanic Satellite System (NOSS) is studied by means of Monte Carlo techniques so as to determine the effect of two additional antennas for alias (or ambiguity) removal by means of an objective criteria technique and a normalized maximum likelihood estimator. Cells nominally 10 km by 10 km, 10 km by 50 km, and 50 km by 50 km are simulated for winds of 4, 8, 12 and 24 m/s and incidence angles of 29, 39, 47, and 53.5 deg for 15 deg changes in direction. The normalized maximum likelihood estimate (MLE) is correct a large part of the time, but the objective criterion technique is recommended as a reserve, and more quickly computed, procedure. Both methods for alias removal depend on the differences in the present model function at upwind and downwind. For 10 km by 10 km cells, it is found that the MLE method introduces a correlation between wind speed errors and aspect angle (wind direction) errors that can be as high as 0.8 or 0.9 and that the wind direction errors are unacceptably large, compared to those obtained for the SASS for similar assumptions.
Variational Bayesian Parameter Estimation Techniques for the General Linear Model
Starke, Ludger; Ostwald, Dirk
2017-01-01
Variational Bayes (VB), variational maximum likelihood (VML), restricted maximum likelihood (ReML), and maximum likelihood (ML) are cornerstone parametric statistical estimation techniques in the analysis of functional neuroimaging data. However, the theoretical underpinnings of these model parameter estimation techniques are rarely covered in introductory statistical texts. Because of the widespread practical use of VB, VML, ReML, and ML in the neuroimaging community, we reasoned that a theoretical treatment of their relationships and their application in a basic modeling scenario may be helpful for both neuroimaging novices and practitioners alike. In this technical study, we thus revisit the conceptual and formal underpinnings of VB, VML, ReML, and ML and provide a detailed account of their mathematical relationships and implementational details. We further apply VB, VML, ReML, and ML to the general linear model (GLM) with non-spherical error covariance as commonly encountered in the first-level analysis of fMRI data. To this end, we explicitly derive the corresponding free energy objective functions and ensuing iterative algorithms. Finally, in the applied part of our study, we evaluate the parameter and model recovery properties of VB, VML, ReML, and ML, first in an exemplary setting and then in the analysis of experimental fMRI data acquired from a single participant under visual stimulation. PMID:28966572
Al-Atiyat, R M; Aljumaah, R S
2014-08-27
This study aimed to estimate evolutionary distances and to reconstruct phylogeny trees between different Awassi sheep populations. Thirty-two sheep individuals from three different geographical areas of Jordan and the Kingdom of Saudi Arabia (KSA) were randomly sampled. DNA was extracted from the tissue samples and sequenced using the T7 promoter universal primer. Different phylogenetic trees were reconstructed from 0.64-kb DNA sequences using the MEGA software with the best general time reverse distance model. Three methods of distance estimation were then used. The maximum composite likelihood test was considered for reconstructing maximum likelihood, neighbor-joining and UPGMA trees. The maximum likelihood tree indicated three major clusters separated by cytosine (C) and thymine (T). The greatest distance was shown between the South sheep and North sheep. On the other hand, the KSA sheep as an outgroup showed shorter evolutionary distance to the North sheep population than to the others. The neighbor-joining and UPGMA trees showed quite reliable clusters of evolutionary differentiation of Jordan sheep populations from the Saudi population. The overall results support geographical information and ecological types of the sheep populations studied. Summing up, the resulting phylogeny trees may contribute to the limited information about the genetic relatedness and phylogeny of Awassi sheep in nearby Arab countries.
NASA Astrophysics Data System (ADS)
Aminah, Agustin Siti; Pawitan, Gandhi; Tantular, Bertho
2017-03-01
So far, most of the data published by Statistics Indonesia (BPS) as data providers for national statistics are still limited to the district level. Less sufficient sample size for smaller area levels to make the measurement of poverty indicators with direct estimation produced high standard error. Therefore, the analysis based on it is unreliable. To solve this problem, the estimation method which can provide a better accuracy by combining survey data and other auxiliary data is required. One method often used for the estimation is the Small Area Estimation (SAE). There are many methods used in SAE, one of them is Empirical Best Linear Unbiased Prediction (EBLUP). EBLUP method of maximum likelihood (ML) procedures does not consider the loss of degrees of freedom due to estimating β with β ^. This drawback motivates the use of the restricted maximum likelihood (REML) procedure. This paper proposed EBLUP with REML procedure for estimating poverty indicators by modeling the average of household expenditures per capita and implemented bootstrap procedure to calculate MSE (Mean Square Error) to compare the accuracy EBLUP method with the direct estimation method. Results show that EBLUP method reduced MSE in small area estimation.
Dang, Cuong Cao; Lefort, Vincent; Le, Vinh Sy; Le, Quang Si; Gascuel, Olivier
2011-10-01
Amino acid replacement rate matrices are an essential basis of protein studies (e.g. in phylogenetics and alignment). A number of general purpose matrices have been proposed (e.g. JTT, WAG, LG) since the seminal work of Margaret Dayhoff and co-workers. However, it has been shown that matrices specific to certain protein groups (e.g. mitochondrial) or life domains (e.g. viruses) differ significantly from general average matrices, and thus perform better when applied to the data to which they are dedicated. This Web server implements the maximum-likelihood estimation procedure that was used to estimate LG, and provides a number of tools and facilities. Users upload a set of multiple protein alignments from their domain of interest and receive the resulting matrix by email, along with statistics and comparisons with other matrices. A non-parametric bootstrap is performed optionally to assess the variability of replacement rate estimates. Maximum-likelihood trees, inferred using the estimated rate matrix, are also computed optionally for each input alignment. Finely tuned procedures and up-to-date ML software (PhyML 3.0, XRATE) are combined to perform all these heavy calculations on our clusters. http://www.atgc-montpellier.fr/ReplacementMatrix/ olivier.gascuel@lirmm.fr Supplementary data are available at http://www.atgc-montpellier.fr/ReplacementMatrix/
Superfast maximum-likelihood reconstruction for quantum tomography
NASA Astrophysics Data System (ADS)
Shang, Jiangwei; Zhang, Zhengyun; Ng, Hui Khoon
2017-06-01
Conventional methods for computing maximum-likelihood estimators (MLE) often converge slowly in practical situations, leading to a search for simplifying methods that rely on additional assumptions for their validity. In this work, we provide a fast and reliable algorithm for maximum-likelihood reconstruction that avoids this slow convergence. Our method utilizes the state-of-the-art convex optimization scheme, an accelerated projected-gradient method, that allows one to accommodate the quantum nature of the problem in a different way than in the standard methods. We demonstrate the power of our approach by comparing its performance with other algorithms for n -qubit state tomography. In particular, an eight-qubit situation that purportedly took weeks of computation time in 2005 can now be completed in under a minute for a single set of data, with far higher accuracy than previously possible. This refutes the common claim that MLE reconstruction is slow and reduces the need for alternative methods that often come with difficult-to-verify assumptions. In fact, recent methods assuming Gaussian statistics or relying on compressed sensing ideas are demonstrably inapplicable for the situation under consideration here. Our algorithm can be applied to general optimization problems over the quantum state space; the philosophy of projected gradients can further be utilized for optimization contexts with general constraints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmittroth, F.
1978-01-01
Applications of a new data-adjustment code are given. The method is based on a maximum-likelihood extension of generalized least-squares methods that allow complete covariance descriptions for the input data and the final adjusted data evaluations. The maximum-likelihood approach is used with a generalized log-normal distribution that provides a way to treat problems with large uncertainties and that circumvents the problem of negative values that can occur for physically positive quantities. The computer code, FERRET, is written to enable the user to apply it to a large variety of problems by modifying only the input subroutine. The following applications are discussed:more » A 75-group a priori damage function is adjusted by as much as a factor of two by use of 14 integral measurements in different reactor spectra. Reactor spectra and dosimeter cross sections are simultaneously adjusted on the basis of both integral measurements and experimental proton-recoil spectra. The simultaneous use of measured reaction rates, measured worths, microscopic measurements, and theoretical models are used to evaluate dosimeter and fission-product cross sections. Applications in the data reduction of neutron cross section measurements and in the evaluation of reactor after-heat are also considered. 6 figures.« less
Holmes, T J; Liu, Y H
1989-11-15
A maximum likelihood based iterative algorithm adapted from nuclear medicine imaging for noncoherent optical imaging was presented in a previous publication with some initial computer-simulation testing. This algorithm is identical in form to that previously derived in a different way by W. H. Richardson "Bayesian-Based Iterative Method of Image Restoration," J. Opt. Soc. Am. 62, 55-59 (1972) and L. B. Lucy "An Iterative Technique for the Rectification of Observed Distributions," Astron. J. 79, 745-765 (1974). Foreseen applications include superresolution and 3-D fluorescence microscopy. This paper presents further simulation testing of this algorithm and a preliminary experiment with a defocused camera. The simulations show quantified resolution improvement as a function of iteration number, and they show qualitatively the trend in limitations on restored resolution when noise is present in the data. Also shown are results of a simulation in restoring missing-cone information for 3-D imaging. Conclusions are in support of the feasibility of using these methods with real systems, while computational cost and timing estimates indicate that it should be realistic to implement these methods. Itis suggested in the Appendix that future extensions to the maximum likelihood based derivation of this algorithm will address some of the limitations that are experienced with the nonextended form of the algorithm presented here.
On the quirks of maximum parsimony and likelihood on phylogenetic networks.
Bryant, Christopher; Fischer, Mareike; Linz, Simone; Semple, Charles
2017-03-21
Maximum parsimony is one of the most frequently-discussed tree reconstruction methods in phylogenetic estimation. However, in recent years it has become more and more apparent that phylogenetic trees are often not sufficient to describe evolution accurately. For instance, processes like hybridization or lateral gene transfer that are commonplace in many groups of organisms and result in mosaic patterns of relationships cannot be represented by a single phylogenetic tree. This is why phylogenetic networks, which can display such events, are becoming of more and more interest in phylogenetic research. It is therefore necessary to extend concepts like maximum parsimony from phylogenetic trees to networks. Several suggestions for possible extensions can be found in recent literature, for instance the softwired and the hardwired parsimony concepts. In this paper, we analyze the so-called big parsimony problem under these two concepts, i.e. we investigate maximum parsimonious networks and analyze their properties. In particular, we show that finding a softwired maximum parsimony network is possible in polynomial time. We also show that the set of maximum parsimony networks for the hardwired definition always contains at least one phylogenetic tree. Lastly, we investigate some parallels of parsimony to different likelihood concepts on phylogenetic networks. Copyright © 2017 Elsevier Ltd. All rights reserved.
SMURC: High-Dimension Small-Sample Multivariate Regression With Covariance Estimation.
Bayar, Belhassen; Bouaynaya, Nidhal; Shterenberg, Roman
2017-03-01
We consider a high-dimension low sample-size multivariate regression problem that accounts for correlation of the response variables. The system is underdetermined as there are more parameters than samples. We show that the maximum likelihood approach with covariance estimation is senseless because the likelihood diverges. We subsequently propose a normalization of the likelihood function that guarantees convergence. We call this method small-sample multivariate regression with covariance (SMURC) estimation. We derive an optimization problem and its convex approximation to compute SMURC. Simulation results show that the proposed algorithm outperforms the regularized likelihood estimator with known covariance matrix and the sparse conditional Gaussian graphical model. We also apply SMURC to the inference of the wing-muscle gene network of the Drosophila melanogaster (fruit fly).
Estimation of brood and nest survival: Comparative methods in the presence of heterogeneity
Manly, Bryan F.J.; Schmutz, Joel A.
2001-01-01
The Mayfield method has been widely used for estimating survival of nests and young animals, especially when data are collected at irregular observation intervals. However, this method assumes survival is constant throughout the study period, which often ignores biologically relevant variation and may lead to biased survival estimates. We examined the bias and accuracy of 1 modification to the Mayfield method that allows for temporal variation in survival, and we developed and similarly tested 2 additional methods. One of these 2 new methods is simply an iterative extension of Klett and Johnson's method, which we refer to as the Iterative Mayfield method and bears similarity to Kaplan-Meier methods. The other method uses maximum likelihood techniques for estimation and is best applied to survival of animals in groups or families, rather than as independent individuals. We also examined how robust these estimators are to heterogeneity in the data, which can arise from such sources as dependent survival probabilities among siblings, inherent differences among families, and adoption. Testing of estimator performance with respect to bias, accuracy, and heterogeneity was done using simulations that mimicked a study of survival of emperor goose (Chen canagica) goslings. Assuming constant survival for inappropriately long periods of time or use of Klett and Johnson's methods resulted in large bias or poor accuracy (often >5% bias or root mean square error) compared to our Iterative Mayfield or maximum likelihood methods. Overall, estimator performance was slightly better with our Iterative Mayfield than our maximum likelihood method, but the maximum likelihood method provides a more rigorous framework for testing covariates and explicity models a heterogeneity factor. We demonstrated use of all estimators with data from emperor goose goslings. We advocate that future studies use the new methods outlined here rather than the traditional Mayfield method or its previous modifications.
Peyre, Hugo; Leplège, Alain; Coste, Joël
2011-03-01
Missing items are common in quality of life (QoL) questionnaires and present a challenge for research in this field. It remains unclear which of the various methods proposed to deal with missing data performs best in this context. We compared personal mean score, full information maximum likelihood, multiple imputation, and hot deck techniques using various realistic simulation scenarios of item missingness in QoL questionnaires constructed within the framework of classical test theory. Samples of 300 and 1,000 subjects were randomly drawn from the 2003 INSEE Decennial Health Survey (of 23,018 subjects representative of the French population and having completed the SF-36) and various patterns of missing data were generated according to three different item non-response rates (3, 6, and 9%) and three types of missing data (Little and Rubin's "missing completely at random," "missing at random," and "missing not at random"). The missing data methods were evaluated in terms of accuracy and precision for the analysis of one descriptive and one association parameter for three different scales of the SF-36. For all item non-response rates and types of missing data, multiple imputation and full information maximum likelihood appeared superior to the personal mean score and especially to hot deck in terms of accuracy and precision; however, the use of personal mean score was associated with insignificant bias (relative bias <2%) in all studied situations. Whereas multiple imputation and full information maximum likelihood are confirmed as reference methods, the personal mean score appears nonetheless appropriate for dealing with items missing from completed SF-36 questionnaires in most situations of routine use. These results can reasonably be extended to other questionnaires constructed according to classical test theory.
Royle, J. Andrew; Sutherland, Christopher S.; Fuller, Angela K.; Sun, Catherine C.
2015-01-01
We develop a likelihood analysis framework for fitting spatial capture-recapture (SCR) models to data collected on class structured or stratified populations. Our interest is motivated by the necessity of accommodating the problem of missing observations of individual class membership. This is particularly problematic in SCR data arising from DNA analysis of scat, hair or other material, which frequently yields individual identity but fails to identify the sex. Moreover, this can represent a large fraction of the data and, given the typically small sample sizes of many capture-recapture studies based on DNA information, utilization of the data with missing sex information is necessary. We develop the class structured likelihood for the case of missing covariate values, and then we address the scaling of the likelihood so that models with and without class structured parameters can be formally compared regardless of missing values. We apply our class structured model to black bear data collected in New York in which sex could be determined for only 62 of 169 uniquely identified individuals. The models containing sex-specificity of both the intercept of the SCR encounter probability model and the distance coefficient, and including a behavioral response are strongly favored by log-likelihood. Estimated population sex ratio is strongly influenced by sex structure in model parameters illustrating the importance of rigorous modeling of sex differences in capture-recapture models.
NASA Astrophysics Data System (ADS)
Thelen, Brian T.; Xique, Ismael J.; Burns, Joseph W.; Goley, G. Steven; Nolan, Adam R.; Benson, Jonathan W.
2017-04-01
With all of the new remote sensing modalities available, and with ever increasing capabilities and frequency of collection, there is a desire to fundamentally understand/quantify the information content in the collected image data relative to various exploitation goals, such as detection/classification. A fundamental approach for this is the framework of Bayesian decision theory, but a daunting challenge is to have significantly flexible and accurate multivariate models for the features and/or pixels that capture a wide assortment of distributions and dependen- cies. In addition, data can come in the form of both continuous and discrete representations, where the latter is often generated based on considerations of robustness to imaging conditions and occlusions/degradations. In this paper we propose a novel suite of "latent" models fundamentally based on multivariate Gaussian copula models that can be used for quantized data from SAR imagery. For this Latent Gaussian Copula (LGC) model, we derive an approximate, maximum-likelihood estimation algorithm and demonstrate very reasonable estimation performance even for the larger images with many pixels. However applying these LGC models to large dimen- sions/images within a Bayesian decision/classification theory is infeasible due to the computational/numerical issues in evaluating the true full likelihood, and we propose an alternative class of novel pseudo-likelihoood detection statistics that are computationally feasible. We show in a few simple examples that these statistics have the potential to provide very good and robust detection/classification performance. All of this framework is demonstrated on a simulated SLICY data set, and the results show the importance of modeling the dependencies, and of utilizing the pseudo-likelihood methods.
Tests for detecting overdispersion in models with measurement error in covariates.
Yang, Yingsi; Wong, Man Yu
2015-11-30
Measurement error in covariates can affect the accuracy in count data modeling and analysis. In overdispersion identification, the true mean-variance relationship can be obscured under the influence of measurement error in covariates. In this paper, we propose three tests for detecting overdispersion when covariates are measured with error: a modified score test and two score tests based on the proposed approximate likelihood and quasi-likelihood, respectively. The proposed approximate likelihood is derived under the classical measurement error model, and the resulting approximate maximum likelihood estimator is shown to have superior efficiency. Simulation results also show that the score test based on approximate likelihood outperforms the test based on quasi-likelihood and other alternatives in terms of empirical power. By analyzing a real dataset containing the health-related quality-of-life measurements of a particular group of patients, we demonstrate the importance of the proposed methods by showing that the analyses with and without measurement error correction yield significantly different results. Copyright © 2015 John Wiley & Sons, Ltd.
Comparison of image deconvolution algorithms on simulated and laboratory infrared images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Proctor, D.
1994-11-15
We compare Maximum Likelihood, Maximum Entropy, Accelerated Lucy-Richardson, Weighted Goodness of Fit, and Pixon reconstructions of simple scenes as a function of signal-to-noise ratio for simulated images with randomly generated noise. Reconstruction results of infrared images taken with the TAISIR (Temperature and Imaging System InfraRed) are also discussed.
USDA-ARS?s Scientific Manuscript database
The phylogeny of Amaryllidaceae tribe Hippeastreae was inferred using chloroplast (3’ycf1, ndhF, trnL-F) and nuclear (ITS rDNA) sequence data under maximum parsimony and maximum likelihood frameworks. Network analyses were applied to resolve conflicting signals among data sets and putative scenarios...
USDA-ARS?s Scientific Manuscript database
Fusarium (Hypocreales, Nectriaceae) is one of the most economically important and systematically challenging groups of mycotoxigenic phytopathogens and emergent human pathogens. We conducted maximum likelihood (ML), maximum parsimony (MP) and Bayesian (B) analyses on partial RNA polymerase largest (...
Deformation Measurement In The Hayward Fault Zone Using Partially Correlated Persistent Scatterers
NASA Astrophysics Data System (ADS)
Lien, J.; Zebker, H. A.
2013-12-01
Interferometric synthetic aperture radar (InSAR) is an effective tool for measuring temporal changes in the Earth's surface. By combining SAR phase data collected at varying times and orbit geometries, with InSAR we can produce high accuracy, wide coverage images of crustal deformation fields. Changes in the radar imaging geometry, scatterer positions, or scattering behavior between radar passes causes the measured radar return to differ, leading to a decorrelation phase term that obscures the deformation signal and prevents the use of large baseline data. Here we present a new physically-based method of modeling decorrelation from the subset of pixels with the highest intrinsic signal-to-noise ratio, the so-called persistent scatters (PS). This more complete formulation, which includes both phase and amplitude scintillations, better describes the scattering behavior of partially correlated PS pixels and leads to a more reliable selection algorithm. The new method identifies PS pixels using maximum likelihood signal-to-clutter ratio (SCR) estimation based on the joint interferometric stack phase-amplitude distribution. Our PS selection method is unique in that it considers both phase and amplitude; accounts for correlation between all possible pairs of interferometric observations; and models the effect of spatial and temporal baselines on the stack. We use the resulting maximum likelihood SCR estimate as a criterion for PS selection. We implement the partially correlated persistent scatterer technique to analyze a stack of C-band European Remote Sensing (ERS-1/2) interferometric radar data imaging the Hayward Fault Zone from 1995 to 2000. We show that our technique achieves a better trade-off between PS pixel selection accuracy and network density compared to other PS identification methods, particularly in areas of natural terrain. We then present deformation measurements obtained by the selected PS network. Our results demonstrate that the partially correlated persistent scatterer technique can attain accurate deformation measurements even in areas that suffer decorrelation due to natural terrain. The accuracy of phase unwrapping and subsequent deformation estimation on the spatially sparse PS network depends on both pixel selection accuracy and the density of the network. We find that many additional pixels can be added to the PS list if we are able to correctly identify and add those in which the scattering mechanism exhibits partial, rather than complete, correlation across all radar scenes.
Multiple-hit parameter estimation in monolithic detectors.
Hunter, William C J; Barrett, Harrison H; Lewellen, Tom K; Miyaoka, Robert S
2013-02-01
We examine a maximum-a-posteriori method for estimating the primary interaction position of gamma rays with multiple interaction sites (hits) in a monolithic detector. In assessing the performance of a multiple-hit estimator over that of a conventional one-hit estimator, we consider a few different detector and readout configurations of a 50-mm-wide square cerium-doped lutetium oxyorthosilicate block. For this study, we use simulated data from SCOUT, a Monte-Carlo tool for photon tracking and modeling scintillation- camera output. With this tool, we determine estimate bias and variance for a multiple-hit estimator and compare these with similar metrics for a one-hit maximum-likelihood estimator, which assumes full energy deposition in one hit. We also examine the effect of event filtering on these metrics; for this purpose, we use a likelihood threshold to reject signals that are not likely to have been produced under the assumed likelihood model. Depending on detector design, we observe a 1%-12% improvement of intrinsic resolution for a 1-or-2-hit estimator as compared with a 1-hit estimator. We also observe improved differentiation of photopeak events using a 1-or-2-hit estimator as compared with the 1-hit estimator; more than 6% of photopeak events that were rejected by likelihood filtering for the 1-hit estimator were accurately identified as photopeak events and positioned without loss of resolution by a 1-or-2-hit estimator; for PET, this equates to at least a 12% improvement in coincidence-detection efficiency with likelihood filtering applied.
NASA Technical Reports Server (NTRS)
Iliff, K. W.; Maine, R. E.
1976-01-01
A maximum likelihood estimation method was applied to flight data and procedures to facilitate the routine analysis of a large amount of flight data were described. Techniques that can be used to obtain stability and control derivatives from aircraft maneuvers that are less than ideal for this purpose are described. The techniques involve detecting and correcting the effects of dependent or nearly dependent variables, structural vibration, data drift, inadequate instrumentation, and difficulties with the data acquisition system and the mathematical model. The use of uncertainty levels and multiple maneuver analysis also proved to be useful in improving the quality of the estimated coefficients. The procedures used for editing the data and for overall analysis are also discussed.
Chen, Shuhang; Liu, Huafeng; Shi, Pengcheng; Chen, Yunmei
2015-01-21
Accurate and robust reconstruction of the radioactivity concentration is of great importance in positron emission tomography (PET) imaging. Given the Poisson nature of photo-counting measurements, we present a reconstruction framework that integrates sparsity penalty on a dictionary into a maximum likelihood estimator. Patch-sparsity on a dictionary provides the regularization for our effort, and iterative procedures are used to solve the maximum likelihood function formulated on Poisson statistics. Specifically, in our formulation, a dictionary could be trained on CT images, to provide intrinsic anatomical structures for the reconstructed images, or adaptively learned from the noisy measurements of PET. Accuracy of the strategy with very promising application results from Monte-Carlo simulations, and real data are demonstrated.
A maximum likelihood analysis of the CoGeNT public dataset
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelso, Chris, E-mail: ckelso@unf.edu
The CoGeNT detector, located in the Soudan Underground Laboratory in Northern Minnesota, consists of a 475 grams (fiducial mass of 330 grams) target mass of p-type point contact germanium detector that measures the ionization charge created by nuclear recoils. This detector has searched for recoils created by dark matter since December of 2009. We analyze the public dataset from the CoGeNT experiment to search for evidence of dark matter interactions with the detector. We perform an unbinned maximum likelihood fit to the data and compare the significance of different WIMP hypotheses relative to each other and the null hypothesis ofmore » no WIMP interactions. This work presents the current status of the analysis.« less
NASA Astrophysics Data System (ADS)
Kojima, Yohei; Takeda, Kazuaki; Adachi, Fumiyuki
Frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can provide better downlink bit error rate (BER) performance of direct sequence code division multiple access (DS-CDMA) than the conventional rake combining in a frequency-selective fading channel. FDE requires accurate channel estimation. In this paper, we propose a new 2-step maximum likelihood channel estimation (MLCE) for DS-CDMA with FDE in a very slow frequency-selective fading environment. The 1st step uses the conventional pilot-assisted MMSE-CE and the 2nd step carries out the MLCE using decision feedback from the 1st step. The BER performance improvement achieved by 2-step MLCE over pilot assisted MMSE-CE is confirmed by computer simulation.
BOREAS TE-18 Landsat TM Maximum Likelihood Classification Image of the NSA
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Knapp, David
2000-01-01
The BOREAS TE-18 team focused its efforts on using remotely sensed data to characterize the successional and disturbance dynamics of the boreal forest for use in carbon modeling. The objective of this classification is to provide the BOREAS investigators with a data product that characterizes the land cover of the NSA. A Landsat-5 TM image from 20-Aug-1988 was used to derive this classification. A standard supervised maximum likelihood classification approach was used to produce this classification. The data are provided in a binary image format file. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).
NASA Technical Reports Server (NTRS)
Grove, R. D.; Mayhew, S. C.
1973-01-01
A computer program (Langley program C1123) has been developed for estimating aircraft stability and control parameters from flight test data. These parameters are estimated by the maximum likelihood estimation procedure implemented on a real-time digital simulation system, which uses the Control Data 6600 computer. This system allows the investigator to interact with the program in order to obtain satisfactory results. Part of this system, the control and display capabilities, is described for this program. This report also describes the computer program by presenting the program variables, subroutines, flow charts, listings, and operational features. Program usage is demonstrated with a test case using pseudo or simulated flight data.
NEMA NU-4 performance evaluation of PETbox4, a high sensitivity dedicated PET preclinical tomograph
NASA Astrophysics Data System (ADS)
Gu, Z.; Taschereau, R.; Vu, N. T.; Wang, H.; Prout, D. L.; Silverman, R. W.; Bai, B.; Stout, D. B.; Phelps, M. E.; Chatziioannou, A. F.
2013-06-01
PETbox4 is a new, fully tomographic bench top PET scanner dedicated to high sensitivity and high resolution imaging of mice. This manuscript characterizes the performance of the prototype system using the National Electrical Manufacturers Association NU 4-2008 standards, including studies of sensitivity, spatial resolution, energy resolution, scatter fraction, count-rate performance and image quality. The PETbox4 performance is also compared with the performance of PETbox, a previous generation limited angle tomography system. PETbox4 consists of four opposing flat-panel type detectors arranged in a box-like geometry. Each panel is made by a 24 × 50 pixelated array of 1.82 × 1.82 × 7 mm bismuth germanate scintillation crystals with a crystal pitch of 1.90 mm. Each of these scintillation arrays is coupled to two Hamamatsu H8500 photomultiplier tubes via a glass light guide. Volumetric images for a 45 × 45 × 95 mm field of view (FOV) are reconstructed with a maximum likelihood expectation maximization algorithm incorporating a system model based on a parameterized detector response. With an energy window of 150-650 keV, the peak absolute sensitivity is approximately 18% at the center of FOV. The measured crystal energy resolution ranges from 13.5% to 48.3% full width at half maximum (FWHM), with a mean of 18.0%. The intrinsic detector spatial resolution is 1.5 mm FWHM in both transverse and axial directions. The reconstructed image spatial resolution for different locations in the FOV ranges from 1.32 to 1.93 mm, with an average of 1.46 mm. The peak noise equivalent count rate for the mouse-sized phantom is 35 kcps for a total activity of 1.5 MBq (40 µCi) and the scatter fraction is 28%. The standard deviation in the uniform region of the image quality phantom is 5.7%. The recovery coefficients range from 0.10 to 0.93. In comparison to the first generation two panel PETbox system, PETbox4 achieves substantial improvements on sensitivity and spatial resolution. The overall performance demonstrates that the PETbox4 scanner is suitable for producing high quality images for molecular imaging based biomedical research.
Sanders, Scott R; Erickson, Lance D; Call, Vaughn R A; McKnight, Matthew L; Hedges, Dawson W
2015-01-01
(1) To assess the prevalence of rural primary care physician (PCP) bypass, a behavior in which residents travel farther than necessary to obtain health care, (2) To examine the role of community and non-health-care-related characteristics on bypass behavior, and (3) To analyze spatial bypass patterns to determine which rural communities are most affected by bypass. Data came from the Montana Health Matters survey, which gathered self-reported information from Montana residents on their health care utilization, satisfaction with health care services, and community and demographic characteristics. Logistic regression and spatial analysis were used to examine the probability and spatial patterns of bypass. Overall, 39% of respondents bypass local health care. Similar to previous studies, dissatisfaction with local health care was found to increase the likelihood of bypass. Dissatisfaction with local shopping also increases the likelihood of bypass, while the number of friends in a community, and commonality with community reduce the likelihood of bypass. Other significant factors associated with bypass include age, income, health, and living in a highly rural community or one with high commuting flows. Our results suggest that outshopping theory, in which patients bundle services and shopping for added convenience, extends to primary health care selection. This implies that rural health care selection is multifaceted, and that in addition to perceived satisfaction with local health care, the quality of local shopping and levels of community attachment also influence bypass behavior. © 2014 National Rural Health Association.
NASA Astrophysics Data System (ADS)
Minkwitz, David; van den Boogaart, Karl Gerald; Gerzen, Tatjana; Hoque, Mainul; Hernández-Pajares, Manuel
2016-11-01
The estimation of the ionospheric electron density by kriging is based on the optimization of a parametric measurement covariance model. First, the extension of kriging with slant total electron content (STEC) measurements based on a spatial covariance to kriging with a spatial-temporal covariance model, assimilating STEC data of a sliding window, is presented. Secondly, a novel tomography approach by gradient-enhanced kriging (GEK) is developed. Beyond the ingestion of STEC measurements, GEK assimilates ionosonde characteristics, providing peak electron density measurements as well as gradient information. Both approaches deploy the 3-D electron density model NeQuick as a priori information and estimate the covariance parameter vector within a maximum likelihood estimation for the dedicated tomography time stamp. The methods are validated in the European region for two periods covering quiet and active ionospheric conditions. The kriging with spatial and spatial-temporal covariance model is analysed regarding its capability to reproduce STEC, differential STEC and foF2. Therefore, the estimates are compared to the NeQuick model results, the 2-D TEC maps of the International GNSS Service and the DLR's Ionospheric Monitoring and Prediction Center, and in the case of foF2 to two independent ionosonde stations. Moreover, simulated STEC and ionosonde measurements are used to investigate the electron density profiles estimated by the GEK in comparison to a kriging with STEC only. The results indicate a crucial improvement in the initial guess by the developed methods and point out the potential compensation for a bias in the peak height hmF2 by means of GEK.
Dahabreh, Issa J; Trikalinos, Thomas A; Lau, Joseph; Schmid, Christopher H
2017-03-01
To compare statistical methods for meta-analysis of sensitivity and specificity of medical tests (e.g., diagnostic or screening tests). We constructed a database of PubMed-indexed meta-analyses of test performance from which 2 × 2 tables for each included study could be extracted. We reanalyzed the data using univariate and bivariate random effects models fit with inverse variance and maximum likelihood methods. Analyses were performed using both normal and binomial likelihoods to describe within-study variability. The bivariate model using the binomial likelihood was also fit using a fully Bayesian approach. We use two worked examples-thoracic computerized tomography to detect aortic injury and rapid prescreening of Papanicolaou smears to detect cytological abnormalities-to highlight that different meta-analysis approaches can produce different results. We also present results from reanalysis of 308 meta-analyses of sensitivity and specificity. Models using the normal approximation produced sensitivity and specificity estimates closer to 50% and smaller standard errors compared to models using the binomial likelihood; absolute differences of 5% or greater were observed in 12% and 5% of meta-analyses for sensitivity and specificity, respectively. Results from univariate and bivariate random effects models were similar, regardless of estimation method. Maximum likelihood and Bayesian methods produced almost identical summary estimates under the bivariate model; however, Bayesian analyses indicated greater uncertainty around those estimates. Bivariate models produced imprecise estimates of the between-study correlation of sensitivity and specificity. Differences between methods were larger with increasing proportion of studies that were small or required a continuity correction. The binomial likelihood should be used to model within-study variability. Univariate and bivariate models give similar estimates of the marginal distributions for sensitivity and specificity. Bayesian methods fully quantify uncertainty and their ability to incorporate external evidence may be useful for imprecisely estimated parameters. Copyright © 2017 Elsevier Inc. All rights reserved.
Cusimano, Natalie; Sousa, Aretuza; Renner, Susanne S.
2012-01-01
Background and Aims For 84 years, botanists have relied on calculating the highest common factor for series of haploid chromosome numbers to arrive at a so-called basic number, x. This was done without consistent (reproducible) reference to species relationships and frequencies of different numbers in a clade. Likelihood models that treat polyploidy, chromosome fusion and fission as events with particular probabilities now allow reconstruction of ancestral chromosome numbers in an explicit framework. We have used a modelling approach to reconstruct chromosome number change in the large monocot family Araceae and to test earlier hypotheses about basic numbers in the family. Methods Using a maximum likelihood approach and chromosome counts for 26 % of the 3300 species of Araceae and representative numbers for each of the other 13 families of Alismatales, polyploidization events and single chromosome changes were inferred on a genus-level phylogenetic tree for 113 of the 117 genera of Araceae. Key Results The previously inferred basic numbers x = 14 and x = 7 are rejected. Instead, maximum likelihood optimization revealed an ancestral haploid chromosome number of n = 16, Bayesian inference of n = 18. Chromosome fusion (loss) is the predominant inferred event, whereas polyploidization events occurred less frequently and mainly towards the tips of the tree. Conclusions The bias towards low basic numbers (x) introduced by the algebraic approach to inferring chromosome number changes, prevalent among botanists, may have contributed to an unrealistic picture of ancestral chromosome numbers in many plant clades. The availability of robust quantitative methods for reconstructing ancestral chromosome numbers on molecular phylogenetic trees (with or without branch length information), with confidence statistics, makes the calculation of x an obsolete approach, at least when applied to large clades. PMID:22210850
Insecticide resistance, control failure likelihood and the First Law of Geography.
Guedes, Raul Narciso C
2017-03-01
Insecticide resistance is a broadly recognized ecological backlash resulting from insecticide use and is widely reported among arthropod pest species with well-recognized underlying mechanisms and consequences. Nonetheless, insecticide resistance is the subject of evolving conceptual views that introduces a different concept useful if recognized in its own right - the risk or likelihood of control failure. Here we suggest an experimental approach to assess the likelihood of control failure of an insecticide allowing for consistent decision-making regarding management of insecticide resistance. We also challenge the current emphasis on limited spatial sampling of arthropod populations for resistance diagnosis in favor of comprehensive spatial sampling. This necessarily requires larger population sampling - aiming to use spatial analysis in area-wide surveys - to recognize focal points of insecticide resistance and/or control failure that will better direct management efforts. The continuous geographical scale of such surveys will depend on the arthropod pest species, the pattern of insecticide use and many other potential factors. Regardless, distance dependence among sampling sites should still hold, following the maxim that the closer two things are, the more they resemble each other, which is the basis of Tobler's First Law of Geography. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
An Investigation of the Standard Errors of Expected A Posteriori Ability Estimates.
ERIC Educational Resources Information Center
De Ayala, R. J.; And Others
Expected a posteriori has a number of advantages over maximum likelihood estimation or maximum a posteriori (MAP) estimation methods. These include ability estimates (thetas) for all response patterns, less regression towards the mean than MAP ability estimates, and a lower average squared error. R. D. Bock and R. J. Mislevy (1982) state that the…
Likelihood testing of seismicity-based rate forecasts of induced earthquakes in Oklahoma and Kansas
Moschetti, Morgan P.; Hoover, Susan M.; Mueller, Charles
2016-01-01
Likelihood testing of induced earthquakes in Oklahoma and Kansas has identified the parameters that optimize the forecasting ability of smoothed seismicity models and quantified the recent temporal stability of the spatial seismicity patterns. Use of the most recent 1-year period of earthquake data and use of 10–20-km smoothing distances produced the greatest likelihood. The likelihood that the locations of January–June 2015 earthquakes were consistent with optimized forecasts decayed with increasing elapsed time between the catalogs used for model development and testing. Likelihood tests with two additional sets of earthquakes from 2014 exhibit a strong sensitivity of the rate of decay to the smoothing distance. Marked reductions in likelihood are caused by the nonstationarity of the induced earthquake locations. Our results indicate a multiple-fold benefit from smoothed seismicity models in developing short-term earthquake rate forecasts for induced earthquakes in Oklahoma and Kansas, relative to the use of seismic source zones.
2010-01-01
Background Irregularly shaped spatial clusters are difficult to delineate. A cluster found by an algorithm often spreads through large portions of the map, impacting its geographical meaning. Penalized likelihood methods for Kulldorff's spatial scan statistics have been used to control the excessive freedom of the shape of clusters. Penalty functions based on cluster geometry and non-connectivity have been proposed recently. Another approach involves the use of a multi-objective algorithm to maximize two objectives: the spatial scan statistics and the geometric penalty function. Results & Discussion We present a novel scan statistic algorithm employing a function based on the graph topology to penalize the presence of under-populated disconnection nodes in candidate clusters, the disconnection nodes cohesion function. A disconnection node is defined as a region within a cluster, such that its removal disconnects the cluster. By applying this function, the most geographically meaningful clusters are sifted through the immense set of possible irregularly shaped candidate cluster solutions. To evaluate the statistical significance of solutions for multi-objective scans, a statistical approach based on the concept of attainment function is used. In this paper we compared different penalized likelihoods employing the geometric and non-connectivity regularity functions and the novel disconnection nodes cohesion function. We also build multi-objective scans using those three functions and compare them with the previous penalized likelihood scans. An application is presented using comprehensive state-wide data for Chagas' disease in puerperal women in Minas Gerais state, Brazil. Conclusions We show that, compared to the other single-objective algorithms, multi-objective scans present better performance, regarding power, sensitivity and positive predicted value. The multi-objective non-connectivity scan is faster and better suited for the detection of moderately irregularly shaped clusters. The multi-objective cohesion scan is most effective for the detection of highly irregularly shaped clusters. PMID:21034451
Maximum likelihood decoding of Reed Solomon Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudan, M.
We present a randomized algorithm which takes as input n distinct points ((x{sub i}, y{sub i})){sup n}{sub i=1} from F x F (where F is a field) and integer parameters t and d and returns a list of all univariate polynomials f over F in the variable x of degree at most d which agree with the given set of points in at least t places (i.e., y{sub i} = f (x{sub i}) for at least t values of i), provided t = {Omega}({radical}nd). The running time is bounded by a polynomial in n. This immediately provides a maximum likelihoodmore » decoding algorithm for Reed Solomon Codes, which works in a setting with a larger number of errors than any previously known algorithm. To the best of our knowledge, this is the first efficient (i.e., polynomial time bounded) algorithm which provides some maximum likelihood decoding for any efficient (i.e., constant or even polynomial rate) code.« less
Quantitative PET Imaging in Drug Development: Estimation of Target Occupancy.
Naganawa, Mika; Gallezot, Jean-Dominique; Rossano, Samantha; Carson, Richard E
2017-12-11
Positron emission tomography, an imaging tool using radiolabeled tracers in humans and preclinical species, has been widely used in recent years in drug development, particularly in the central nervous system. One important goal of PET in drug development is assessing the occupancy of various molecular targets (e.g., receptors, transporters, enzymes) by exogenous drugs. The current linear mathematical approaches used to determine occupancy using PET imaging experiments are presented. These algorithms use results from multiple regions with different target content in two scans, a baseline (pre-drug) scan and a post-drug scan. New mathematical estimation approaches to determine target occupancy, using maximum likelihood, are presented. A major challenge in these methods is the proper definition of the covariance matrix of the regional binding measures, accounting for different variance of the individual regional measures and their nonzero covariance, factors that have been ignored by conventional methods. The novel methods are compared to standard methods using simulation and real human occupancy data. The simulation data showed the expected reduction in variance and bias using the proper maximum likelihood methods, when the assumptions of the estimation method matched those in simulation. Between-method differences for data from human occupancy studies were less obvious, in part due to small dataset sizes. These maximum likelihood methods form the basis for development of improved PET covariance models, in order to minimize bias and variance in PET occupancy studies.
Chaudhuri, Shomesh E; Merfeld, Daniel M
2013-03-01
Psychophysics generally relies on estimating a subject's ability to perform a specific task as a function of an observed stimulus. For threshold studies, the fitted functions are called psychometric functions. While fitting psychometric functions to data acquired using adaptive sampling procedures (e.g., "staircase" procedures), investigators have encountered a bias in the spread ("slope" or "threshold") parameter that has been attributed to the serial dependency of the adaptive data. Using simulations, we confirm this bias for cumulative Gaussian parametric maximum likelihood fits on data collected via adaptive sampling procedures, and then present a bias-reduced maximum likelihood fit that substantially reduces the bias without reducing the precision of the spread parameter estimate and without reducing the accuracy or precision of the other fit parameters. As a separate topic, we explain how to implement this bias reduction technique using generalized linear model fits as well as other numeric maximum likelihood techniques such as the Nelder-Mead simplex. We then provide a comparison of the iterative bootstrap and observed information matrix techniques for estimating parameter fit variance from adaptive sampling procedure data sets. The iterative bootstrap technique is shown to be slightly more accurate; however, the observed information technique executes in a small fraction (0.005 %) of the time required by the iterative bootstrap technique, which is an advantage when a real-time estimate of parameter fit variance is required.
Load estimator (LOADEST): a FORTRAN program for estimating constituent loads in streams and rivers
Runkel, Robert L.; Crawford, Charles G.; Cohn, Timothy A.
2004-01-01
LOAD ESTimator (LOADEST) is a FORTRAN program for estimating constituent loads in streams and rivers. Given a time series of streamflow, additional data variables, and constituent concentration, LOADEST assists the user in developing a regression model for the estimation of constituent load (calibration). Explanatory variables within the regression model include various functions of streamflow, decimal time, and additional user-specified data variables. The formulated regression model then is used to estimate loads over a user-specified time interval (estimation). Mean load estimates, standard errors, and 95 percent confidence intervals are developed on a monthly and(or) seasonal basis. The calibration and estimation procedures within LOADEST are based on three statistical estimation methods. The first two methods, Adjusted Maximum Likelihood Estimation (AMLE) and Maximum Likelihood Estimation (MLE), are appropriate when the calibration model errors (residuals) are normally distributed. Of the two, AMLE is the method of choice when the calibration data set (time series of streamflow, additional data variables, and concentration) contains censored data. The third method, Least Absolute Deviation (LAD), is an alternative to maximum likelihood estimation when the residuals are not normally distributed. LOADEST output includes diagnostic tests and warnings to assist the user in determining the appropriate estimation method and in interpreting the estimated loads. This report describes the development and application of LOADEST. Sections of the report describe estimation theory, input/output specifications, sample applications, and installation instructions.
MultiPhyl: a high-throughput phylogenomics webserver using distributed computing
Keane, Thomas M.; Naughton, Thomas J.; McInerney, James O.
2007-01-01
With the number of fully sequenced genomes increasing steadily, there is greater interest in performing large-scale phylogenomic analyses from large numbers of individual gene families. Maximum likelihood (ML) has been shown repeatedly to be one of the most accurate methods for phylogenetic construction. Recently, there have been a number of algorithmic improvements in maximum-likelihood-based tree search methods. However, it can still take a long time to analyse the evolutionary history of many gene families using a single computer. Distributed computing refers to a method of combining the computing power of multiple computers in order to perform some larger overall calculation. In this article, we present the first high-throughput implementation of a distributed phylogenetics platform, MultiPhyl, capable of using the idle computational resources of many heterogeneous non-dedicated machines to form a phylogenetics supercomputer. MultiPhyl allows a user to upload hundreds or thousands of amino acid or nucleotide alignments simultaneously and perform computationally intensive tasks such as model selection, tree searching and bootstrapping of each of the alignments using many desktop machines. The program implements a set of 88 amino acid models and 56 nucleotide maximum likelihood models and a variety of statistical methods for choosing between alternative models. A MultiPhyl webserver is available for public use at: http://www.cs.nuim.ie/distributed/multiphyl.php. PMID:17553837
Evaluating spatially explicit burn probabilities for strategic fire management planning
C. Miller; M.-A. Parisien; A. A. Ager; M. A. Finney
2008-01-01
Spatially explicit information on the probability of burning is necessary for virtually all strategic fire and fuels management planning activities, including conducting wildland fire risk assessments, optimizing fuel treatments, and prevention planning. Predictive models providing a reliable estimate of the annual likelihood of fire at each point on the landscape have...
This work addresses a potentially serious problem in analysis or synthesis of spatially explicit data on ground water quality from wells, known to geographers as the modifiable areal unit problem (MAUP). It results from the fact that in regional aggregation of spatial data, inves...
Multiple-Hit Parameter Estimation in Monolithic Detectors
Barrett, Harrison H.; Lewellen, Tom K.; Miyaoka, Robert S.
2014-01-01
We examine a maximum-a-posteriori method for estimating the primary interaction position of gamma rays with multiple interaction sites (hits) in a monolithic detector. In assessing the performance of a multiple-hit estimator over that of a conventional one-hit estimator, we consider a few different detector and readout configurations of a 50-mm-wide square cerium-doped lutetium oxyorthosilicate block. For this study, we use simulated data from SCOUT, a Monte-Carlo tool for photon tracking and modeling scintillation- camera output. With this tool, we determine estimate bias and variance for a multiple-hit estimator and compare these with similar metrics for a one-hit maximum-likelihood estimator, which assumes full energy deposition in one hit. We also examine the effect of event filtering on these metrics; for this purpose, we use a likelihood threshold to reject signals that are not likely to have been produced under the assumed likelihood model. Depending on detector design, we observe a 1%–12% improvement of intrinsic resolution for a 1-or-2-hit estimator as compared with a 1-hit estimator. We also observe improved differentiation of photopeak events using a 1-or-2-hit estimator as compared with the 1-hit estimator; more than 6% of photopeak events that were rejected by likelihood filtering for the 1-hit estimator were accurately identified as photopeak events and positioned without loss of resolution by a 1-or-2-hit estimator; for PET, this equates to at least a 12% improvement in coincidence-detection efficiency with likelihood filtering applied. PMID:23193231
Proportion estimation using prior cluster purities
NASA Technical Reports Server (NTRS)
Terrell, G. R. (Principal Investigator)
1980-01-01
The prior distribution of CLASSY component purities is studied, and this information incorporated into maximum likelihood crop proportion estimators. The method is tested on Transition Year spring small grain segments.
Bates, S E; Sansom, M S; Ball, F G; Ramsey, R L; Usherwood, P N
1990-01-01
Gigaohm recordings have been made from glutamate receptor channels in excised, outside-out patches of collagenase-treated locust muscle membrane. The channels in the excised patches exhibit the kinetic state switching first seen in megaohm recordings from intact muscle fibers. Analysis of channel dwell time distributions reveals that the gating mechanism contains at least four open states and at least four closed states. Dwell time autocorrelation function analysis shows that there are at least three gateways linking the open states of the channel with the closed states. A maximum likelihood procedure has been used to fit six different gating models to the single channel data. Of these models, a cooperative model yields the best fit, and accurately predicts most features of the observed channel gating kinetics. PMID:1696510
Approximated mutual information training for speech recognition using myoelectric signals.
Guo, Hua J; Chan, A D C
2006-01-01
A new training algorithm called the approximated maximum mutual information (AMMI) is proposed to improve the accuracy of myoelectric speech recognition using hidden Markov models (HMMs). Previous studies have demonstrated that automatic speech recognition can be performed using myoelectric signals from articulatory muscles of the face. Classification of facial myoelectric signals can be performed using HMMs that are trained using the maximum likelihood (ML) algorithm; however, this algorithm maximizes the likelihood of the observations in the training sequence, which is not directly associated with optimal classification accuracy. The AMMI training algorithm attempts to maximize the mutual information, thereby training the HMMs to optimize their parameters for discrimination. Our results show that AMMI training consistently reduces the error rates compared to these by the ML training, increasing the accuracy by approximately 3% on average.
Fast and accurate estimation of the covariance between pairwise maximum likelihood distances.
Gil, Manuel
2014-01-01
Pairwise evolutionary distances are a model-based summary statistic for a set of molecular sequences. They represent the leaf-to-leaf path lengths of the underlying phylogenetic tree. Estimates of pairwise distances with overlapping paths covary because of shared mutation events. It is desirable to take these covariance structure into account to increase precision in any process that compares or combines distances. This paper introduces a fast estimator for the covariance of two pairwise maximum likelihood distances, estimated under general Markov models. The estimator is based on a conjecture (going back to Nei & Jin, 1989) which links the covariance to path lengths. It is proven here under a simple symmetric substitution model. A simulation shows that the estimator outperforms previously published ones in terms of the mean squared error.
Fast and accurate estimation of the covariance between pairwise maximum likelihood distances
2014-01-01
Pairwise evolutionary distances are a model-based summary statistic for a set of molecular sequences. They represent the leaf-to-leaf path lengths of the underlying phylogenetic tree. Estimates of pairwise distances with overlapping paths covary because of shared mutation events. It is desirable to take these covariance structure into account to increase precision in any process that compares or combines distances. This paper introduces a fast estimator for the covariance of two pairwise maximum likelihood distances, estimated under general Markov models. The estimator is based on a conjecture (going back to Nei & Jin, 1989) which links the covariance to path lengths. It is proven here under a simple symmetric substitution model. A simulation shows that the estimator outperforms previously published ones in terms of the mean squared error. PMID:25279263
Systems identification using a modified Newton-Raphson method: A FORTRAN program
NASA Technical Reports Server (NTRS)
Taylor, L. W., Jr.; Iliff, K. W.
1972-01-01
A FORTRAN program is offered which computes a maximum likelihood estimate of the parameters of any linear, constant coefficient, state space model. For the case considered, the maximum likelihood estimate can be identical to that which minimizes simultaneously the weighted mean square difference between the computed and measured response of a system and the weighted square of the difference between the estimated and a priori parameter values. A modified Newton-Raphson or quasilinearization method is used to perform the minimization which typically requires several iterations. A starting technique is used which insures convergence for any initial values of the unknown parameters. The program and its operation are described in sufficient detail to enable the user to apply the program to his particular problem with a minimum of difficulty.
Jackson, Dan; White, Ian R; Riley, Richard D
2013-01-01
Multivariate meta-analysis is becoming more commonly used. Methods for fitting the multivariate random effects model include maximum likelihood, restricted maximum likelihood, Bayesian estimation and multivariate generalisations of the standard univariate method of moments. Here, we provide a new multivariate method of moments for estimating the between-study covariance matrix with the properties that (1) it allows for either complete or incomplete outcomes and (2) it allows for covariates through meta-regression. Further, for complete data, it is invariant to linear transformations. Our method reduces to the usual univariate method of moments, proposed by DerSimonian and Laird, in a single dimension. We illustrate our method and compare it with some of the alternatives using a simulation study and a real example. PMID:23401213
Development of advanced techniques for rotorcraft state estimation and parameter identification
NASA Technical Reports Server (NTRS)
Hall, W. E., Jr.; Bohn, J. G.; Vincent, J. H.
1980-01-01
An integrated methodology for rotorcraft system identification consists of rotorcraft mathematical modeling, three distinct data processing steps, and a technique for designing inputs to improve the identifiability of the data. These elements are as follows: (1) a Kalman filter smoother algorithm which estimates states and sensor errors from error corrupted data. Gust time histories and statistics may also be estimated; (2) a model structure estimation algorithm for isolating a model which adequately explains the data; (3) a maximum likelihood algorithm for estimating the parameters and estimates for the variance of these estimates; and (4) an input design algorithm, based on a maximum likelihood approach, which provides inputs to improve the accuracy of parameter estimates. Each step is discussed with examples to both flight and simulated data cases.
NASA Technical Reports Server (NTRS)
Batterson, James G.; Omara, Thomas M.
1989-01-01
The results of applying a modified stepwise regression algorithm and a maximum likelihood algorithm to flight data from a twin-engine commuter-class icing research aircraft are presented. The results are in the form of body-axis stability and control derivatives related to the short-period, longitudinal motion of the aircraft. Data were analyzed for the baseline (uniced) and for the airplane with an artificial glaze ice shape attached to the leading edge of the horizontal tail. The results are discussed as to the accuracy of the derivative estimates and the difference between the derivative values found for the baseline and the iced airplane. Additional comparisons were made between the maximum likelihood results and the modified stepwise regression results with causes for any discrepancies postulated.
Estimation After a Group Sequential Trial.
Milanzi, Elasma; Molenberghs, Geert; Alonso, Ariel; Kenward, Michael G; Tsiatis, Anastasios A; Davidian, Marie; Verbeke, Geert
2015-10-01
Group sequential trials are one important instance of studies for which the sample size is not fixed a priori but rather takes one of a finite set of pre-specified values, dependent on the observed data. Much work has been devoted to the inferential consequences of this design feature. Molenberghs et al (2012) and Milanzi et al (2012) reviewed and extended the existing literature, focusing on a collection of seemingly disparate, but related, settings, namely completely random sample sizes, group sequential studies with deterministic and random stopping rules, incomplete data, and random cluster sizes. They showed that the ordinary sample average is a viable option for estimation following a group sequential trial, for a wide class of stopping rules and for random outcomes with a distribution in the exponential family. Their results are somewhat surprising in the sense that the sample average is not optimal, and further, there does not exist an optimal, or even, unbiased linear estimator. However, the sample average is asymptotically unbiased, both conditionally upon the observed sample size as well as marginalized over it. By exploiting ignorability they showed that the sample average is the conventional maximum likelihood estimator. They also showed that a conditional maximum likelihood estimator is finite sample unbiased, but is less efficient than the sample average and has the larger mean squared error. Asymptotically, the sample average and the conditional maximum likelihood estimator are equivalent. This previous work is restricted, however, to the situation in which the the random sample size can take only two values, N = n or N = 2 n . In this paper, we consider the more practically useful setting of sample sizes in a the finite set { n 1 , n 2 , …, n L }. It is shown that the sample average is then a justifiable estimator , in the sense that it follows from joint likelihood estimation, and it is consistent and asymptotically unbiased. We also show why simulations can give the false impression of bias in the sample average when considered conditional upon the sample size. The consequence is that no corrections need to be made to estimators following sequential trials. When small-sample bias is of concern, the conditional likelihood estimator provides a relatively straightforward modification to the sample average. Finally, it is shown that classical likelihood-based standard errors and confidence intervals can be applied, obviating the need for technical corrections.
NASA Astrophysics Data System (ADS)
Emanuele Rizzo, Roberto; Healy, David; De Siena, Luca
2016-04-01
The success of any predictive model is largely dependent on the accuracy with which its parameters are known. When characterising fracture networks in fractured rock, one of the main issues is accurately scaling the parameters governing the distribution of fracture attributes. Optimal characterisation and analysis of fracture attributes (lengths, apertures, orientations and densities) is fundamental to the estimation of permeability and fluid flow, which are of primary importance in a number of contexts including: hydrocarbon production from fractured reservoirs; geothermal energy extraction; and deeper Earth systems, such as earthquakes and ocean floor hydrothermal venting. Our work links outcrop fracture data to modelled fracture networks in order to numerically predict bulk permeability. We collected outcrop data from a highly fractured upper Miocene biosiliceous mudstone formation, cropping out along the coastline north of Santa Cruz (California, USA). Using outcrop fracture networks as analogues for subsurface fracture systems has several advantages, because key fracture attributes such as spatial arrangements and lengths can be effectively measured only on outcrops [1]. However, a limitation when dealing with outcrop data is the relative sparseness of natural data due to the intrinsic finite size of the outcrops. We make use of a statistical approach for the overall workflow, starting from data collection with the Circular Windows Method [2]. Then we analyse the data statistically using Maximum Likelihood Estimators, which provide greater accuracy compared to the more commonly used Least Squares linear regression when investigating distribution of fracture attributes. Finally, we estimate the bulk permeability of the fractured rock mass using Oda's tensorial approach [3]. The higher quality of this statistical analysis is fundamental: better statistics of the fracture attributes means more accurate permeability estimation, since the fracture attributes feed directly into the permeability calculations. The application of Maximum Likelihood Estimators can have important consequences, especially when we aim to predict the tendency of fracture attributes towards smaller and larger scales than those observed, in order to build consistent, useable models from outcrop observations. The procedures presented here aim to understand whether the average permeability of a fracture network can be predicted, reducing its uncertainties; and if outcrop measurements of fracture attributes can be used directly to generate statistically identical fracture network models, which can then be easily up-scaled into larger areas or volumes. Gale et al. "Natural Fracture in shale: A review and new observations", AAPG Bulletin 98.11 (2014). Mauldon et al. "Circular scanlines and circular windows: new tools for characterizing the geometry of fracture traces", Journal of Structural Geology, 23 (2001). Oda "Permeability tensor for discontinuous rock masses", Geotechnique 35.4 (1985).
NASA Astrophysics Data System (ADS)
Malatesta, Luca; Attorre, Fabio; Altobelli, Alfredo; Adeeb, Ahmed; De Sanctis, Michele; Taleb, Nadim M.; Scholte, Paul T.; Vitale, Marcello
2013-01-01
Socotra Island (Yemen), a global biodiversity hotspot, is characterized by high geomorphological and biological diversity. In this study, we present a high-resolution vegetation map of the island based on combining vegetation analysis and classification with remote sensing. Two different image classification approaches were tested to assess the most accurate one in mapping the vegetation mosaic of Socotra. Spectral signatures of the vegetation classes were obtained through a Gaussian mixture distribution model, and a sequential maximum a posteriori (SMAP) classification was applied to account for the heterogeneity and the complex spatial pattern of the arid vegetation. This approach was compared to the traditional maximum likelihood (ML) classification. Satellite data were represented by a RapidEye image with 5 m pixel resolution and five spectral bands. Classified vegetation relevés were used to obtain the training and evaluation sets for the main plant communities. Postclassification sorting was performed to adjust the classification through various rule-based operations. Twenty-eight classes were mapped, and SMAP, with an accuracy of 87%, proved to be more effective than ML (accuracy: 66%). The resulting map will represent an important instrument for the elaboration of conservation strategies and the sustainable use of natural resources in the island.
Hodge, Jennifer R; Read, Charmaine I; van Herwerden, Lynne; Bellwood, David R
2012-02-01
We examined how peripherally isolated endemic species may have contributed to the biodiversity of the Indo-Australian Archipelago biodiversity hotspot by reconstructing the evolutionary history of the wrasse genus Anampses. We identified three alternate models of diversification: the vicariance-based 'successive division' model, and the dispersal-based 'successive colonisation' and 'peripheral budding' models. The genus was well suited for this study given its relatively high proportion (42%) of endemic species, its reasonably low diversity (12 species), which permitted complete taxon sampling, and its widespread tropical Indo-Pacific distribution. Monophyly of the genus was strongly supported by three phylogenetic analyses: maximum parsimony, maximum likelihood, and Bayesian inference based on mitochondrial CO1 and 12S rRNA and nuclear S7 sequences. Estimates of species divergence times from fossil-calibrated Bayesian inference suggest that Anampses arose in the mid-Eocene and subsequently diversified throughout the Miocene. Evolutionary relationships within the genus, combined with limited spatial and temporal concordance among endemics, offer support for all three alternate models of diversification. Our findings emphasise the importance of peripherally isolated locations in creating and maintaining endemic species and their contribution to the biodiversity of the Indo-Australian Archipelago. Copyright © 2011 Elsevier Inc. All rights reserved.
A long-term earthquake rate model for the central and eastern United States from smoothed seismicity
Moschetti, Morgan P.
2015-01-01
I present a long-term earthquake rate model for the central and eastern United States from adaptive smoothed seismicity. By employing pseudoprospective likelihood testing (L-test), I examined the effects of fixed and adaptive smoothing methods and the effects of catalog duration and composition on the ability of the models to forecast the spatial distribution of recent earthquakes. To stabilize the adaptive smoothing method for regions of low seismicity, I introduced minor modifications to the way that the adaptive smoothing distances are calculated. Across all smoothed seismicity models, the use of adaptive smoothing and the use of earthquakes from the recent part of the catalog optimizes the likelihood for tests with M≥2.7 and M≥4.0 earthquake catalogs. The smoothed seismicity models optimized by likelihood testing with M≥2.7 catalogs also produce the highest likelihood values for M≥4.0 likelihood testing, thus substantiating the hypothesis that the locations of moderate-size earthquakes can be forecast by the locations of smaller earthquakes. The likelihood test does not, however, maximize the fraction of earthquakes that are better forecast than a seismicity rate model with uniform rates in all cells. In this regard, fixed smoothing models perform better than adaptive smoothing models. The preferred model of this study is the adaptive smoothed seismicity model, based on its ability to maximize the joint likelihood of predicting the locations of recent small-to-moderate-size earthquakes across eastern North America. The preferred rate model delineates 12 regions where the annual rate of M≥5 earthquakes exceeds 2×10−3. Although these seismic regions have been previously recognized, the preferred forecasts are more spatially concentrated than the rates from fixed smoothed seismicity models, with rate increases of up to a factor of 10 near clusters of high seismic activity.
Hsu, David F C; Freese, David L; Reynolds, Paul D; Innes, Derek R; Levin, Craig S
2018-04-01
We are developing a 1-mm 3 resolution, high-sensitivity positron emission tomography (PET) system for loco-regional cancer imaging. The completed system will comprise two cm detector panels and contain 4 608 position sensitive avalanche photodiodes (PSAPDs) coupled to arrays of mm 3 LYSO crystal elements for a total of 294 912 crystal elements. For the first time, this paper summarizes the design and reports the performance of a significant portion of the final clinical PET system, comprising 1 536 PSAPDs, 98 304 crystal elements, and an active field-of-view (FOV) of cm. The sub-system performance parameters, such as energy, time, and spatial resolutions are predictive of the performance of the final system due to the modular design. Analysis of the multiplexed crystal flood histograms shows 84% of the crystal elements have>99% crystal identification accuracy. The 511 keV photopeak energy resolution was 11.34±0.06% full-width half maximum (FWHM), and coincidence timing resolution was 13.92 ± 0.01 ns FWHM at 511 keV. The spatial resolution was measured using maximum likelihood expectation maximization reconstruction of a grid of point sources suspended in warm background. The averaged resolution over the central 6 cm of the FOV is 1.01 ± 0.13 mm in the X-direction, 1.84 ± 0.20 mm in the Y-direction, and 0.84 ± 0.11 mm in the Z-direction. Quantitative analysis of acquired micro-Derenzo phantom images shows better than 1.2 mm resolution at the center of the FOV, with subsequent resolution degradation in the y-direction toward the edge of the FOV caused by limited angle tomography effects.
Registration Methods for IVUS: Transversal and Longitudinal Transducer Motion Compensation.
Talou, Gonzalo D Maso; Blanco, Pablo J; Larrabide, Ignacio; Bezerra, Cristiano Guedes; Lemos, Pedro A; Feijoo, Raul A
2017-04-01
Intravascular ultrasound (IVUS) is a fundamental imaging technique for atherosclerotic plaque assessment, interventionist guidance, and, ultimately, as a tissue characterization tool. The studies acquired by this technique present the spatial description of the vessel during the cardiac cycle. However, the study frames are not properly sorted. As gating methods deal with the cardiac phase classification of the frames, the gated studies lack motion compensation between vessel and catheter. In this study, we develop registration strategies to arrange the vessel data into its rightful spatial sequence. Registration is performed by compensating longitudinal and transversal relative motion between vessel and catheter. Transversal motion is identified through maximum likelihood estimator optimization, while longitudinal motion is estimated by a neighborhood similarity estimator among the study frames. A strongly coupled implementation is proposed to compensate for both motion components at once. Loosely coupled implementations (DLT and DTL) decouple the registration process, resulting in more computationally efficient algorithms in detriment of the size of the set of candidate solutions. The DTL outperforms DLT and coupled implementations in terms of accuracy by a factor of 1.9 and 1.4, respectively. Sensitivity analysis shows that perivascular tissue must be considered to obtain the best registration outcome. Evidences suggest that the method is able to measure axial strain along the vessel wall. The proposed registration sorts the IVUS frames for spatial location, which is crucial for a correct interpretation of the vessel wall kinematics along the cardiac phases.
1990-11-01
1 = Q- 1 - 1 QlaaQ- 1.1 + a’Q-1a This is a simple case of a general formula called Woodbury’s formula by some authors; see, for example, Phadke and...1 2. The First-Order Moving Average Model ..... .................. 3. Some Approaches to the Iterative...the approximate likelihood function in some time series models. Useful suggestions have been the Cholesky decomposition of the covariance matrix and
Nasirudin, Radin A.; Mei, Kai; Panchev, Petar; Fehringer, Andreas; Pfeiffer, Franz; Rummeny, Ernst J.; Fiebich, Martin; Noël, Peter B.
2015-01-01
Purpose The exciting prospect of Spectral CT (SCT) using photon-counting detectors (PCD) will lead to new techniques in computed tomography (CT) that take advantage of the additional spectral information provided. We introduce a method to reduce metal artifact in X-ray tomography by incorporating knowledge obtained from SCT into a statistical iterative reconstruction scheme. We call our method Spectral-driven Iterative Reconstruction (SPIR). Method The proposed algorithm consists of two main components: material decomposition and penalized maximum likelihood iterative reconstruction. In this study, the spectral data acquisitions with an energy-resolving PCD were simulated using a Monte-Carlo simulator based on EGSnrc C++ class library. A jaw phantom with a dental implant made of gold was used as an object in this study. A total of three dental implant shapes were simulated separately to test the influence of prior knowledge on the overall performance of the algorithm. The generated projection data was first decomposed into three basis functions: photoelectric absorption, Compton scattering and attenuation of gold. A pseudo-monochromatic sinogram was calculated and used as input in the reconstruction, while the spatial information of the gold implant was used as a prior. The results from the algorithm were assessed and benchmarked with state-of-the-art reconstruction methods. Results Decomposition results illustrate that gold implant of any shape can be distinguished from other components of the phantom. Additionally, the result from the penalized maximum likelihood iterative reconstruction shows that artifacts are significantly reduced in SPIR reconstructed slices in comparison to other known techniques, while at the same time details around the implant are preserved. Quantitatively, the SPIR algorithm best reflects the true attenuation value in comparison to other algorithms. Conclusion It is demonstrated that the combination of the additional information from Spectral CT and statistical reconstruction can significantly improve image quality, especially streaking artifacts caused by the presence of materials with high atomic numbers. PMID:25955019
Revealing transient strain in geodetic data with Gaussian process regression
NASA Astrophysics Data System (ADS)
Hines, T. T.; Hetland, E. A.
2018-03-01
Transient strain derived from global navigation satellite system (GNSS) data can be used to detect and understand geophysical processes such as slow slip events and post-seismic deformation. Here we propose using Gaussian process regression (GPR) as a tool for estimating transient strain from GNSS data. GPR is a non-parametric, Bayesian method for interpolating scattered data. In our approach, we assume a stochastic prior model for transient displacements. The prior describes how much we expect transient displacements to covary spatially and temporally. A posterior estimate of transient strain is obtained by differentiating the posterior transient displacements, which are formed by conditioning the prior with the GNSS data. As a demonstration, we use GPR to detect transient strain resulting from slow slip events in the Pacific Northwest. Maximum likelihood methods are used to constrain a prior model for transient displacements in this region. The temporal covariance of our prior model is described by a compact Wendland covariance function, which significantly reduces the computational burden that can be associated with GPR. Our results reveal the spatial and temporal evolution of strain from slow slip events. We verify that the transient strain estimated with GPR is in fact geophysical signal by comparing it to the seismic tremor that is associated with Pacific Northwest slow slip events.
New spatial upscaling methods for multi-point measurements: From normal to p-normal
NASA Astrophysics Data System (ADS)
Liu, Feng; Li, Xin
2017-12-01
Careful attention must be given to determining whether the geophysical variables of interest are normally distributed, since the assumption of a normal distribution may not accurately reflect the probability distribution of some variables. As a generalization of the normal distribution, the p-normal distribution and its corresponding maximum likelihood estimation (the least power estimation, LPE) were introduced in upscaling methods for multi-point measurements. Six methods, including three normal-based methods, i.e., arithmetic average, least square estimation, block kriging, and three p-normal-based methods, i.e., LPE, geostatistics LPE and inverse distance weighted LPE are compared in two types of experiments: a synthetic experiment to evaluate the performance of the upscaling methods in terms of accuracy, stability and robustness, and a real-world experiment to produce real-world upscaling estimates using soil moisture data obtained from multi-scale observations. The results show that the p-normal-based methods produced lower mean absolute errors and outperformed the other techniques due to their universality and robustness. We conclude that introducing appropriate statistical parameters into an upscaling strategy can substantially improve the estimation, especially if the raw measurements are disorganized; however, further investigation is required to determine which parameter is the most effective among variance, spatial correlation information and parameter p.
Caeiro, Sandra; Goovaerts, Pierre; Painho, Marco; Costa, M Helena
2003-09-15
The Sado Estuary is a coastal zone located in the south of Portugal where conflicts between conservation and development exist because of its location near industrialized urban zones and its designation as a natural reserve. The aim of this paper is to evaluate a set of multivariate geostatistical approaches to delineate spatially contiguous regions of sediment structure for Sado Estuary. These areas will be the supporting infrastructure of an environmental management system for this estuary. The boundaries of each homogeneous area were derived from three sediment characterization attributes through three different approaches: (1) cluster analysis of dissimilarity matrix function of geographical separation followed by indicator kriging of the cluster data, (2) discriminant analysis of kriged values of the three sediment attributes, and (3) a combination of methods 1 and 2. Final maximum likelihood classification was integrated into a geographical information system. All methods generated fairly spatially contiguous management areas that reproduce well the environment of the estuary. Map comparison techniques based on kappa statistics showed thatthe resultant three maps are similar, supporting the choice of any of the methods as appropriate for management of the Sado Estuary. However, the results of method 1 seem to be in better agreement with estuary behavior, assessment of contamination sources, and previous work conducted at this site.
Applications of non-standard maximum likelihood techniques in energy and resource economics
NASA Astrophysics Data System (ADS)
Moeltner, Klaus
Two important types of non-standard maximum likelihood techniques, Simulated Maximum Likelihood (SML) and Pseudo-Maximum Likelihood (PML), have only recently found consideration in the applied economic literature. The objective of this thesis is to demonstrate how these methods can be successfully employed in the analysis of energy and resource models. Chapter I focuses on SML. It constitutes the first application of this technique in the field of energy economics. The framework is as follows: Surveys on the cost of power outages to commercial and industrial customers usually capture multiple observations on the dependent variable for a given firm. The resulting pooled data set is censored and exhibits cross-sectional heterogeneity. We propose a model that addresses these issues by allowing regression coefficients to vary randomly across respondents and by using the Geweke-Hajivassiliou-Keane simulator and Halton sequences to estimate high-order cumulative distribution terms. This adjustment requires the use of SML in the estimation process. Our framework allows for a more comprehensive analysis of outage costs than existing models, which rely on the assumptions of parameter constancy and cross-sectional homogeneity. Our results strongly reject both of these restrictions. The central topic of the second Chapter is the use of PML, a robust estimation technique, in count data analysis of visitor demand for a system of recreation sites. PML has been popular with researchers in this context, since it guards against many types of mis-specification errors. We demonstrate, however, that estimation results will generally be biased even if derived through PML if the recreation model is based on aggregate, or zonal data. To countervail this problem, we propose a zonal model of recreation that captures some of the underlying heterogeneity of individual visitors by incorporating distributional information on per-capita income into the aggregate demand function. This adjustment eliminates the unrealistic constraint of constant income across zonal residents, and thus reduces the risk of aggregation bias in estimated macro-parameters. The corrected aggregate specification reinstates the applicability of PML. It also increases model efficiency, and allows-for the generation of welfare estimates for population subgroups.
Assessing performance and validating finite element simulations using probabilistic knowledge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolin, Ronald M.; Rodriguez, E. A.
Two probabilistic approaches for assessing performance are presented. The first approach assesses probability of failure by simultaneously modeling all likely events. The probability each event causes failure along with the event's likelihood of occurrence contribute to the overall probability of failure. The second assessment method is based on stochastic sampling using an influence diagram. Latin-hypercube sampling is used to stochastically assess events. The overall probability of failure is taken as the maximum probability of failure of all the events. The Likelihood of Occurrence simulation suggests failure does not occur while the Stochastic Sampling approach predicts failure. The Likelihood of Occurrencemore » results are used to validate finite element predictions.« less
Multiscale thermal refugia and stream habitat associations of chinook salmon in northwestern Oregon
Torgersen, Christian E.; Price, David M.; Li, Hiram W.; McIntosh, B.A.
1999-01-01
We quantified distribution and behavior of adult spring chinook salmon (Oncorhynchus tshawytscha) related to patterns of stream temperature and physical habitat at channel-unit, reach-, and section-level spatial scales in a wilderness stream and a disturbed stream in the John Day River basin in northeastern Oregon. We investigated the effectiveness of thermal remote sensing for analyzing spatial patterns of stream temperature and assessed habitat selection by spring chinook salmon, evaluating whether thermal refugia might be responsible for the persistence of these stocks in rivers where water temperatures frequently exceed their upper tolerance levels (25A?C) during spawning migration. By presenting stream temperature and the ecology of chinook salmon in a historical context, we could evaluate how changes in riverine habitat and thermal spatial structure, which can be caused by land-use practices, may influence distributional patterns of chinook salmon. Thermal remote sensing provided spatially continuous maps of stream temperature for reaches used by chinook salmon in the upper subbasins of the Middle Fork and North Fork John Day River. Electivity analysis and logistic regression were used to test for associations between the longitudinal distribution of salmon and cool-water areas and stream habitat characteristics. Chinook salmon were distributed nonuniformly in reaches throughout each stream. Salmon distribution and cool water temperature patterns were most strongly related at reach-level spatial scales in the warm stream, the Middle Fork (maximum likelihood ratio: P 0.30). Pools were preferred by adult chinook salmon in both subbasins (Bonferroni confidence interval: P a?? 0.05); however, riffles were used proportionately more frequently in the North Fork than in the Middle Fork. Our observations of thermal refugia and their use by chinook salmon at multiple spatial scales reveal that, although heterogeneity in the longitudinal stream temperature profile may be viewed as an ecological warning sign, thermal patchiness in streams also should be recognized for its biological potential to provide habitat for species existing at the margin of their environmental tolerances.
Reconstructing the spatial pattern of historical forest land in China in the past 300 years
NASA Astrophysics Data System (ADS)
Yang, Xuhong; Jin, Xiaobin; Xiang, Xiaomin; Fan, Yeting; Shan, Wei; Zhou, Yinkang
2018-06-01
The reconstruction of the historical forest spatial distribution is of a great significance to understanding land surface cover in historical periods as well as its climate and ecological effects. Based on the maximum scope of historical forest land before human intervention, the characteristics of human behaviors in farmland reclamation and deforestation for heating and timber, we create a spatial evolution model to reconstruct the spatial pattern of historical forest land. The model integrates the land suitability for reclamation, the difficulty of deforestation, the attractiveness of timber trading markets and the abundance of forest resources to calibrate the potential scope of historical forest land with the rationale that the higher the probability of deforestation for reclamation and wood, the greater the likelihood that the forest land will be deforested. Compared to the satellite-based forest land distribution in 2000, about 78.5% of our reconstructed historical forest grids are of the absolute error between 25% and -25% while as many as 95.85% of those grids are of the absolute error between 50% and -50%, which indirectly validates the feasibility of our reconstructed model. Then, we simulate the spatial distribution of forest land in China in 1661, 1724, 1820, 1887, 1933 and 1952 with the grid resolution of 1 km × 1 km. Our result shows that (1) the reconstructed historical forest land in China in the past 300 years concentrates in DaXingAnLing, XiaoXingAnLing, ChangBaiShan, HengDuanShan, DaBaShan, WuYiShan, DaBieShan, XueFengShang and etc.; (2) in terms of the spatial evolution, historical forest land shrank gradually in LiaoHe plains, SongHuaJiang-NenJiang plains and SanJiang plains of eastnorth of China, Sichuan basins and YunNan-GuiZhou Plateaus; and (3) these observations are consistent to the proceeding of agriculture reclamation in China in past 300 years towards Northeast China and Southwest China.
NASA Astrophysics Data System (ADS)
Archer, Reginald S.
This research focuses on measuring and monitoring long term recovery progress from the impacts of Hurricane Katrina on New Orleans, LA. Remote sensing has frequently been used for emergency response and damage assessment after natural disasters. However, techniques for analysis of long term disaster recovery using remote sensing have not been widely explored. With increased availability and lower costs, remote sensing offers an objective perspective, systematic and repeatable analysis, and provides a substitute to multiple site visits. In addition, remote sensing allows access to large geographical areas and areas where ground access may be disrupted, restricted or denied. This dissertation addressed the primary difficulties involved in the development of change detection methods capable of detecting changes experienced by disaster recovery indicators. Maximum likelihood classification and post-classification change detection were applied to multi-temporal high resolution aerial images to quantitatively measure the progress of recovery. Images were classified to automatically identify disaster recovery indicators and exploit the indicators that are visible within each image. The spectral analysis demonstrated that employing maximum likelihood classification to high resolution true color aerial images performed adequately and provided a good indication of spectral pattern recognition, despite the limited spectral information. Applying the change detection to the classified images was effective for determining the temporal trajectory of indicators categorized as blue tarps, FEMA trailers, houses, vegetation, bare earth and pavement. The results of the post classification change detection revealed a dominant change trajectory from bluetarp to house, as damaged houses became permanently repaired. Specifically, the level of activity of blue tarps, housing, vegetation, FEMA trailers (temporary housing) pavement and bare earth were derived from aerial image processing to measure and monitor the progress of recovery. Trajectories of recovery for each individual indicator were examined to provide a better understanding of activity during reconstruction. A collection of spatial metrics was explored in order to identify spatial patterns and characterize classes in terms of patches of pixels. One of the key findings of the spatial analysis is that patch shapes were more complex in the presence of debris and damaged or destroyed buildings. The combination of spectral, temporal, and spatial analysis provided a satisfactory, though limited, solution to the question of whether remote sensing alone, can be used to quantitatively assess and monitor the progress of long term recovery following a major disaster. The research described in this dissertation provided a detailed illustration of the level of activity experienced by different recovery indicators during the long term recovery process. It also addressed the primary difficulties involved in the development of change detection methods capable of detecting changes experienced by disaster recovery indicators identified from classified high resolution true color aerial imagery. The results produced in this research demonstrate that the observed trajectories for actual indicators of recovery indicate different levels of recovery activity even within the same community. The level of activity of the long term reconstruction phase observed in the Kates model is not consistent with the level of activity of key recovery indicators in the Lower 9th Ward during the same period. Used in the proper context, these methods and results provide decision making information for determining resources. KEYWORDS: Change detection, classification, Katrina, New Orleans, remote sensing, disaster recovery, spatial metrics
Spatial bottom-up controls on fire likelihood vary across western North America
Sean A. Parks; Marc-Andre Parisien; Carol Miller
2012-01-01
The unique nature of landscapes has challenged our ability to make generalizations about the effects of bottom-up controls on fire regimes. For four geographically distinct fire-prone landscapes in western North America, we used a consistent simulation approach to quantify the influence of three key bottom-up factors, ignitions, fuels, and topography, on spatial...
Interim Scientific Report: AFOSR-81-0122.
1983-05-05
Maximum likelihood. 2 Periton Lane, Mine-head, TA24 8AQ , England .... ...• .r- . ’ ’ "fl’ ’ ’ " .. ...... ’ ’"’ ’ - ’: , t i .a....,: Attachment 5
del Jesus, Manuel; Foti, Romano; Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio
2012-01-01
The spatial organization of functional vegetation types in river basins is a major determinant of their runoff production, biodiversity, and ecosystem services. The optimization of different objective functions has been suggested to control the adaptive behavior of plants and ecosystems, often without a compelling justification. Maximum entropy production (MEP), rooted in thermodynamics principles, provides a tool to justify the choice of the objective function controlling vegetation organization. The application of MEP at the ecosystem scale results in maximum productivity (i.e., maximum canopy photosynthesis) as the thermodynamic limit toward which the organization of vegetation appears to evolve. Maximum productivity, which incorporates complex hydrologic feedbacks, allows us to reproduce the spatial macroscopic organization of functional types of vegetation in a thoroughly monitored river basin, without the need for a reductionist description of the underlying microscopic dynamics. The methodology incorporates the stochastic characteristics of precipitation and the associated soil moisture on a spatially disaggregated framework. Our results suggest that the spatial organization of functional vegetation types in river basins naturally evolves toward configurations corresponding to dynamically accessible local maxima of the maximum productivity of the ecosystem. PMID:23213227
Sensitivity of the Cherenkov Telescope Array to the Detection of Intergalactic Magnetic Fields
NASA Astrophysics Data System (ADS)
Meyer, Manuel; Conrad, Jan; Dickinson, Hugh
2016-08-01
Very high energy (VHE; energy E ≳ 100 GeV) γ-rays originating from extragalactic sources undergo pair production with low-energy photons of background radiation fields. These pairs can inverse-Compton-scatter background photons, initiating an electromagnetic cascade. The spatial and temporal structure of this secondary γ-ray signal is altered as the {e}+{e}- pairs are deflected in an intergalactic magnetic field (IGMF). We investigate how VHE observations with the future Cherenkov Telescope Array, with its high angular resolution and broad energy range, can potentially probe the IGMF. We identify promising sources and simulate γ-ray spectra over a wide range of values of the IGMF strength and coherence length using the publicly available ELMAG Monte Carlo code. Combining simulated observations in a joint likelihood approach, we find that current limits on the IGMF can be significantly improved. The projected sensitivity depends strongly on the time a source has been γ-ray active and on the emitted maximum γ-ray energy.
An empirical study of scanner system parameters
NASA Technical Reports Server (NTRS)
Landgrebe, D.; Biehl, L.; Simmons, W.
1976-01-01
The selection of the current combination of parametric values (instantaneous field of view, number and location of spectral bands, signal-to-noise ratio, etc.) of a multispectral scanner is a complex problem due to the strong interrelationship these parameters have with one another. The study was done with the proposed scanner known as Thematic Mapper in mind. Since an adequate theoretical procedure for this problem has apparently not yet been devised, an empirical simulation approach was used with candidate parameter values selected by the heuristic means. The results obtained using a conventional maximum likelihood pixel classifier suggest that although the classification accuracy declines slightly as the IFOV is decreased this is more than made up by an improved mensuration accuracy. Further, the use of a classifier involving both spatial and spectral features shows a very substantial tendency to resist degradation as the signal-to-noise ratio is decreased. And finally, further evidence is provided of the importance of having at least one spectral band in each of the major available portions of the optical spectrum.
Interferometric superlocalization of two incoherent optical point sources.
Nair, Ranjith; Tsang, Mankei
2016-02-22
A novel interferometric method - SLIVER (Super Localization by Image inVERsion interferometry) - is proposed for estimating the separation of two incoherent point sources with a mean squared error that does not deteriorate as the sources are brought closer. The essential component of the interferometer is an image inversion device that inverts the field in the transverse plane about the optical axis, assumed to pass through the centroid of the sources. The performance of the device is analyzed using the Cramér-Rao bound applied to the statistics of spatially-unresolved photon counting using photon number-resolving and on-off detectors. The analysis is supported by Monte-Carlo simulations of the maximum likelihood estimator for the source separation, demonstrating the superlocalization effect for separations well below that set by the Rayleigh criterion. Simulations indicating the robustness of SLIVER to mismatch between the optical axis and the centroid are also presented. The results are valid for any imaging system with a circularly symmetric point-spread function.
NASA Astrophysics Data System (ADS)
Lopez-Baeza, E.; Monsoriu Torres, A.; Font, J.; Alonso, O.
2009-04-01
The ESA SMOS (Soil Moisture and Ocean Salinity) Mission is planned to be launched in July 2009. The satellite will measure soil moisture over the continents and surface salinity of the oceans at resolutions that are sufficient for climatological-type studies. This paper describes the procedure to be used at the Spanish SMOS Level 3 and 4 Data Processing Centre (CP34) to generate Soil Moisture and other Land Surface Product maps from SMOS Level 2 data. This procedure can be used to map Soil Moisture, Vegetation Water Content and Soil Dielectric Constant data into different pre-defined spatial grids with fixed temporal frequency. The L3 standard Land Surface Products to be generated at CP34 are: Soil Moisture products: maximum spatial resolution with no spatial averaging, temporal averaging of 3 days, daily generation maximum spatial resolution with no spatial averaging, temporal averaging of 10 days, generation frequency of once every 10 days. b': maximum spatial resolution with no spatial averaging, temporal averaging of monthly decades (1st to 10th of the month, 11th to 20th of the month, 21st to last day of the month), generation frequency of once every decade monthly average, temporal averaging from L3 decade averages, monthly generation Seasonal average, temporal averaging from L3 monthly averages, seasonally generation yearly average, temporal averaging from L3 monthly averages, yearly generation Vegetation Water Content products: maximum spatial resolution with no spatial averaging, temporal averaging of 10 days, generation frequency of once every 10 days. a': maximum spatial resolution with no spatial averaging, temporal averaging of monthly decades (1st to 10th of the month, 11th to 20th of the month, 21st to last day of the month) using simple averaging method over the L2 products in ISEA grid, generation frequency of once every decade monthly average, temporal averaging from L3 decade averages, monthly generation seasonal average, temporal averaging from L3 monthly averages, seasonally generation yearly average, temporal averaging from L3 monthly averages, yearly generation Dielectric Constant products: (the dielectric constant products are delivered together with soil moisture products, with the same averaging periods and generation frequency): maximum spatial resolution with no spatial averaging, temporal averaging of 3 days, daily generation maximum spatial resolution with no spatial averaging, temporal averaging of 10 days, generation frequency of once every 10 days. b': maximum spatial resolution with no spatial averaging, temporal averaging of monthly decades (1st to 10th of the month, 11th to 20th of the month, 21st to last day of the month), generation frequency of once every decade monthly average, temporal averaging from L3 decade averages, monthly generation seasonal average, temporal averaging from L3 monthly averages, seasonally generation yearly average, temporal averaging from L3 monthly averages, yearly generation.
optBINS: Optimal Binning for histograms
NASA Astrophysics Data System (ADS)
Knuth, Kevin H.
2018-03-01
optBINS (optimal binning) determines the optimal number of bins in a uniform bin-width histogram by deriving the posterior probability for the number of bins in a piecewise-constant density model after assigning a multinomial likelihood and a non-informative prior. The maximum of the posterior probability occurs at a point where the prior probability and the the joint likelihood are balanced. The interplay between these opposing factors effectively implements Occam's razor by selecting the most simple model that best describes the data.
Integrated Efforts for Analysis of Geophysical Measurements and Models.
1997-09-26
12b. DISTRIBUTION CODE 13. ABSTRACT ( Maximum 200 words) This contract supported investigations of integrated applications of physics, ephemerides...REGIONS AND GPS DATA VALIDATIONS 20 2.5 PL-SCINDA: VISUALIZATION AND ANALYSIS TECHNIQUES 22 2.5.1 View Controls 23 2.5.2 Map Selection...and IR data, about cloudy pixels. Clustering and maximum likelihood classification algorithms categorize up to four cloud layers into stratiform or
Emura, Takeshi; Konno, Yoshihiko; Michimae, Hirofumi
2015-07-01
Doubly truncated data consist of samples whose observed values fall between the right- and left- truncation limits. With such samples, the distribution function of interest is estimated using the nonparametric maximum likelihood estimator (NPMLE) that is obtained through a self-consistency algorithm. Owing to the complicated asymptotic distribution of the NPMLE, the bootstrap method has been suggested for statistical inference. This paper proposes a closed-form estimator for the asymptotic covariance function of the NPMLE, which is computationally attractive alternative to bootstrapping. Furthermore, we develop various statistical inference procedures, such as confidence interval, goodness-of-fit tests, and confidence bands to demonstrate the usefulness of the proposed covariance estimator. Simulations are performed to compare the proposed method with both the bootstrap and jackknife methods. The methods are illustrated using the childhood cancer dataset.
NASA Technical Reports Server (NTRS)
1979-01-01
A nonlinear, maximum likelihood, parameter identification computer program (NLSCIDNT) is described which evaluates rotorcraft stability and control coefficients from flight test data. The optimal estimates of the parameters (stability and control coefficients) are determined (identified) by minimizing the negative log likelihood cost function. The minimization technique is the Levenberg-Marquardt method, which behaves like the steepest descent method when it is far from the minimum and behaves like the modified Newton-Raphson method when it is nearer the minimum. Twenty-one states and 40 measurement variables are modeled, and any subset may be selected. States which are not integrated may be fixed at an input value, or time history data may be substituted for the state in the equations of motion. Any aerodynamic coefficient may be expressed as a nonlinear polynomial function of selected 'expansion variables'.
Maximum likelihood: Extracting unbiased information from complex networks
NASA Astrophysics Data System (ADS)
Garlaschelli, Diego; Loffredo, Maria I.
2008-07-01
The choice of free parameters in network models is subjective, since it depends on what topological properties are being monitored. However, we show that the maximum likelihood (ML) principle indicates a unique, statistically rigorous parameter choice, associated with a well-defined topological feature. We then find that, if the ML condition is incompatible with the built-in parameter choice, network models turn out to be intrinsically ill defined or biased. To overcome this problem, we construct a class of safely unbiased models. We also propose an extension of these results that leads to the fascinating possibility to extract, only from topological data, the “hidden variables” underlying network organization, making them “no longer hidden.” We test our method on World Trade Web data, where we recover the empirical gross domestic product using only topological information.
Galili, Tal; Meilijson, Isaac
2016-01-02
The Rao-Blackwell theorem offers a procedure for converting a crude unbiased estimator of a parameter θ into a "better" one, in fact unique and optimal if the improvement is based on a minimal sufficient statistic that is complete. In contrast, behind every minimal sufficient statistic that is not complete, there is an improvable Rao-Blackwell improvement. This is illustrated via a simple example based on the uniform distribution, in which a rather natural Rao-Blackwell improvement is uniformly improvable. Furthermore, in this example the maximum likelihood estimator is inefficient, and an unbiased generalized Bayes estimator performs exceptionally well. Counterexamples of this sort can be useful didactic tools for explaining the true nature of a methodology and possible consequences when some of the assumptions are violated. [Received December 2014. Revised September 2015.].
On the error probability of general tree and trellis codes with applications to sequential decoding
NASA Technical Reports Server (NTRS)
Johannesson, R.
1973-01-01
An upper bound on the average error probability for maximum-likelihood decoding of the ensemble of random binary tree codes is derived and shown to be independent of the length of the tree. An upper bound on the average error probability for maximum-likelihood decoding of the ensemble of random L-branch binary trellis codes of rate R = 1/n is derived which separates the effects of the tail length T and the memory length M of the code. It is shown that the bound is independent of the length L of the information sequence. This implication is investigated by computer simulations of sequential decoding utilizing the stack algorithm. These simulations confirm the implication and further suggest an empirical formula for the true undetected decoding error probability with sequential decoding.
Parallel implementation of D-Phylo algorithm for maximum likelihood clusters.
Malik, Shamita; Sharma, Dolly; Khatri, Sunil Kumar
2017-03-01
This study explains a newly developed parallel algorithm for phylogenetic analysis of DNA sequences. The newly designed D-Phylo is a more advanced algorithm for phylogenetic analysis using maximum likelihood approach. The D-Phylo while misusing the seeking capacity of k -means keeps away from its real constraint of getting stuck at privately conserved motifs. The authors have tested the behaviour of D-Phylo on Amazon Linux Amazon Machine Image(Hardware Virtual Machine)i2.4xlarge, six central processing unit, 122 GiB memory, 8 × 800 Solid-state drive Elastic Block Store volume, high network performance up to 15 processors for several real-life datasets. Distributing the clusters evenly on all the processors provides us the capacity to accomplish a near direct speed if there should arise an occurrence of huge number of processors.
Image classification at low light levels
NASA Astrophysics Data System (ADS)
Wernick, Miles N.; Morris, G. Michael
1986-12-01
An imaging photon-counting detector is used to achieve automatic sorting of two image classes. The classification decision is formed on the basis of the cross correlation between a photon-limited input image and a reference function stored in computer memory. Expressions for the statistical parameters of the low-light-level correlation signal are given and are verified experimentally. To obtain a correlation-based system for two-class sorting, it is necessary to construct a reference function that produces useful information for class discrimination. An expression for such a reference function is derived using maximum-likelihood decision theory. Theoretically predicted results are used to compare on the basis of performance the maximum-likelihood reference function with Fukunaga-Koontz basis vectors and average filters. For each method, good class discrimination is found to result in milliseconds from a sparse sampling of the input image.
Pointwise nonparametric maximum likelihood estimator of stochastically ordered survivor functions
Park, Yongseok; Taylor, Jeremy M. G.; Kalbfleisch, John D.
2012-01-01
In this paper, we consider estimation of survivor functions from groups of observations with right-censored data when the groups are subject to a stochastic ordering constraint. Many methods and algorithms have been proposed to estimate distribution functions under such restrictions, but none have completely satisfactory properties when the observations are censored. We propose a pointwise constrained nonparametric maximum likelihood estimator, which is defined at each time t by the estimates of the survivor functions subject to constraints applied at time t only. We also propose an efficient method to obtain the estimator. The estimator of each constrained survivor function is shown to be nonincreasing in t, and its consistency and asymptotic distribution are established. A simulation study suggests better small and large sample properties than for alternative estimators. An example using prostate cancer data illustrates the method. PMID:23843661
NASA Astrophysics Data System (ADS)
Ariffin, Syaiba Balqish; Midi, Habshah
2014-06-01
This article is concerned with the performance of logistic ridge regression estimation technique in the presence of multicollinearity and high leverage points. In logistic regression, multicollinearity exists among predictors and in the information matrix. The maximum likelihood estimator suffers a huge setback in the presence of multicollinearity which cause regression estimates to have unduly large standard errors. To remedy this problem, a logistic ridge regression estimator is put forward. It is evident that the logistic ridge regression estimator outperforms the maximum likelihood approach for handling multicollinearity. The effect of high leverage points are then investigated on the performance of the logistic ridge regression estimator through real data set and simulation study. The findings signify that logistic ridge regression estimator fails to provide better parameter estimates in the presence of both high leverage points and multicollinearity.
NASA Technical Reports Server (NTRS)
Vilnrotter, V. A.; Rodemich, E. R.
1990-01-01
A real-time digital signal combining system for use with Ka-band feed arrays is proposed. The combining system attempts to compensate for signal-to-noise ratio (SNR) loss resulting from antenna deformations induced by gravitational and atmospheric effects. The combining weights are obtained directly from the observed samples by using a sliding-window implementation of a vector maximum-likelihood parameter estimator. It is shown that with averaging times of about 0.1 second, combining loss for a seven-element array can be limited to about 0.1 dB in a realistic operational environment. This result suggests that the real-time combining system proposed here is capable of recovering virtually all of the signal power captured by the feed array, even in the presence of severe wind gusts and similar disturbances.
Fast automated analysis of strong gravitational lenses with convolutional neural networks.
Hezaveh, Yashar D; Levasseur, Laurence Perreault; Marshall, Philip J
2017-08-30
Quantifying image distortions caused by strong gravitational lensing-the formation of multiple images of distant sources due to the deflection of their light by the gravity of intervening structures-and estimating the corresponding matter distribution of these structures (the 'gravitational lens') has primarily been performed using maximum likelihood modelling of observations. This procedure is typically time- and resource-consuming, requiring sophisticated lensing codes, several data preparation steps, and finding the maximum likelihood model parameters in a computationally expensive process with downhill optimizers. Accurate analysis of a single gravitational lens can take up to a few weeks and requires expert knowledge of the physical processes and methods involved. Tens of thousands of new lenses are expected to be discovered with the upcoming generation of ground and space surveys. Here we report the use of deep convolutional neural networks to estimate lensing parameters in an extremely fast and automated way, circumventing the difficulties that are faced by maximum likelihood methods. We also show that the removal of lens light can be made fast and automated using independent component analysis of multi-filter imaging data. Our networks can recover the parameters of the 'singular isothermal ellipsoid' density profile, which is commonly used to model strong lensing systems, with an accuracy comparable to the uncertainties of sophisticated models but about ten million times faster: 100 systems in approximately one second on a single graphics processing unit. These networks can provide a way for non-experts to obtain estimates of lensing parameters for large samples of data.
NASA Astrophysics Data System (ADS)
Hasan, Husna; Radi, Noor Fadhilah Ahmad; Kassim, Suraiya
2012-05-01
Extreme share return in Malaysia is studied. The monthly, quarterly, half yearly and yearly maximum returns are fitted to the Generalized Extreme Value (GEV) distribution. The Augmented Dickey Fuller (ADF) and Phillips Perron (PP) tests are performed to test for stationarity, while Mann-Kendall (MK) test is for the presence of monotonic trend. Maximum Likelihood Estimation (MLE) is used to estimate the parameter while L-moments estimate (LMOM) is used to initialize the MLE optimization routine for the stationary model. Likelihood ratio test is performed to determine the best model. Sherman's goodness of fit test is used to assess the quality of convergence of the GEV distribution by these monthly, quarterly, half yearly and yearly maximum. Returns levels are then estimated for prediction and planning purposes. The results show all maximum returns for all selection periods are stationary. The Mann-Kendall test indicates the existence of trend. Thus, we ought to model for non-stationary model too. Model 2, where the location parameter is increasing with time is the best for all selection intervals. Sherman's goodness of fit test shows that monthly, quarterly, half yearly and yearly maximum converge to the GEV distribution. From the results, it seems reasonable to conclude that yearly maximum is better for the convergence to the GEV distribution especially if longer records are available. Return level estimates, which is the return level (in this study return amount) that is expected to be exceeded, an average, once every t time periods starts to appear in the confidence interval of T = 50 for quarterly, half yearly and yearly maximum.
Investigating the Spatial Dimension of Food Access.
Yenerall, Jackie; You, Wen; Hill, Jennie
2017-08-02
The purpose of this article is to investigate the sensitivity of food access models to a dataset's spatial distribution and the empirical definition of food access, which contributes to understanding the mixed findings of previous studies. Data was collected in the Dan River Region in the United States using a telephone survey for individual-level variables ( n = 784) and a store audit for the location of food retailers and grocery store quality. Spatial scanning statistics assessed the spatial distribution of obesity and detected a cluster of grocery stores overlapping with a cluster of obesity centered on a grocery store suggesting that living closer to a grocery store increased the likelihood of obesity. Logistic regression further examined this relationship while controlling for demographic and other food environment variables. Similar to the cluster analysis results, increased distance to a grocery store significantly decreased the likelihood of obesity in the urban subsample (average marginal effects, AME = -0.09, p -value = 0.02). However, controlling for grocery store quality nullified these results (AME = -0.12, p -value = 0.354). Our findings suggest that measuring grocery store accessibility as the distance to the nearest grocery store captures variability in the spatial distribution of the health outcome of interest that may not reflect a causal relationship between the food environment and health.
Investigating the Spatial Dimension of Food Access
Yenerall, Jackie; You, Wen
2017-01-01
The purpose of this article is to investigate the sensitivity of food access models to a dataset’s spatial distribution and the empirical definition of food access, which contributes to understanding the mixed findings of previous studies. Data was collected in the Dan River Region in the United States using a telephone survey for individual-level variables (n = 784) and a store audit for the location of food retailers and grocery store quality. Spatial scanning statistics assessed the spatial distribution of obesity and detected a cluster of grocery stores overlapping with a cluster of obesity centered on a grocery store suggesting that living closer to a grocery store increased the likelihood of obesity. Logistic regression further examined this relationship while controlling for demographic and other food environment variables. Similar to the cluster analysis results, increased distance to a grocery store significantly decreased the likelihood of obesity in the urban subsample (average marginal effects, AME = −0.09, p-value = 0.02). However, controlling for grocery store quality nullified these results (AME = −0.12, p-value = 0.354). Our findings suggest that measuring grocery store accessibility as the distance to the nearest grocery store captures variability in the spatial distribution of the health outcome of interest that may not reflect a causal relationship between the food environment and health. PMID:28767093
Profile-likelihood Confidence Intervals in Item Response Theory Models.
Chalmers, R Philip; Pek, Jolynn; Liu, Yang
2017-01-01
Confidence intervals (CIs) are fundamental inferential devices which quantify the sampling variability of parameter estimates. In item response theory, CIs have been primarily obtained from large-sample Wald-type approaches based on standard error estimates, derived from the observed or expected information matrix, after parameters have been estimated via maximum likelihood. An alternative approach to constructing CIs is to quantify sampling variability directly from the likelihood function with a technique known as profile-likelihood confidence intervals (PL CIs). In this article, we introduce PL CIs for item response theory models, compare PL CIs to classical large-sample Wald-type CIs, and demonstrate important distinctions among these CIs. CIs are then constructed for parameters directly estimated in the specified model and for transformed parameters which are often obtained post-estimation. Monte Carlo simulation results suggest that PL CIs perform consistently better than Wald-type CIs for both non-transformed and transformed parameters.
Ning, Jing; Chen, Yong; Piao, Jin
2017-07-01
Publication bias occurs when the published research results are systematically unrepresentative of the population of studies that have been conducted, and is a potential threat to meaningful meta-analysis. The Copas selection model provides a flexible framework for correcting estimates and offers considerable insight into the publication bias. However, maximizing the observed likelihood under the Copas selection model is challenging because the observed data contain very little information on the latent variable. In this article, we study a Copas-like selection model and propose an expectation-maximization (EM) algorithm for estimation based on the full likelihood. Empirical simulation studies show that the EM algorithm and its associated inferential procedure performs well and avoids the non-convergence problem when maximizing the observed likelihood. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Zhou, Xiaofan; Shen, Xing-Xing; Hittinger, Chris Todd
2018-01-01
Abstract The sizes of the data matrices assembled to resolve branches of the tree of life have increased dramatically, motivating the development of programs for fast, yet accurate, inference. For example, several different fast programs have been developed in the very popular maximum likelihood framework, including RAxML/ExaML, PhyML, IQ-TREE, and FastTree. Although these programs are widely used, a systematic evaluation and comparison of their performance using empirical genome-scale data matrices has so far been lacking. To address this question, we evaluated these four programs on 19 empirical phylogenomic data sets with hundreds to thousands of genes and up to 200 taxa with respect to likelihood maximization, tree topology, and computational speed. For single-gene tree inference, we found that the more exhaustive and slower strategies (ten searches per alignment) outperformed faster strategies (one tree search per alignment) using RAxML, PhyML, or IQ-TREE. Interestingly, single-gene trees inferred by the three programs yielded comparable coalescent-based species tree estimations. For concatenation-based species tree inference, IQ-TREE consistently achieved the best-observed likelihoods for all data sets, and RAxML/ExaML was a close second. In contrast, PhyML often failed to complete concatenation-based analyses, whereas FastTree was the fastest but generated lower likelihood values and more dissimilar tree topologies in both types of analyses. Finally, data matrix properties, such as the number of taxa and the strength of phylogenetic signal, sometimes substantially influenced the programs’ relative performance. Our results provide real-world gene and species tree phylogenetic inference benchmarks to inform the design and execution of large-scale phylogenomic data analyses. PMID:29177474
Ye, Xin; Garikapati, Venu M.; You, Daehyun; ...
2017-11-08
Most multinomial choice models (e.g., the multinomial logit model) adopted in practice assume an extreme-value Gumbel distribution for the random components (error terms) of utility functions. This distributional assumption offers a closed-form likelihood expression when the utility maximization principle is applied to model choice behaviors. As a result, model coefficients can be easily estimated using the standard maximum likelihood estimation method. However, maximum likelihood estimators are consistent and efficient only if distributional assumptions on the random error terms are valid. It is therefore critical to test the validity of underlying distributional assumptions on the error terms that form the basismore » of parameter estimation and policy evaluation. In this paper, a practical yet statistically rigorous method is proposed to test the validity of the distributional assumption on the random components of utility functions in both the multinomial logit (MNL) model and multiple discrete-continuous extreme value (MDCEV) model. Based on a semi-nonparametric approach, a closed-form likelihood function that nests the MNL or MDCEV model being tested is derived. The proposed method allows traditional likelihood ratio tests to be used to test violations of the standard Gumbel distribution assumption. Simulation experiments are conducted to demonstrate that the proposed test yields acceptable Type-I and Type-II error probabilities at commonly available sample sizes. The test is then applied to three real-world discrete and discrete-continuous choice models. For all three models, the proposed test rejects the validity of the standard Gumbel distribution in most utility functions, calling for the development of robust choice models that overcome adverse effects of violations of distributional assumptions on the error terms in random utility functions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Xin; Garikapati, Venu M.; You, Daehyun
Most multinomial choice models (e.g., the multinomial logit model) adopted in practice assume an extreme-value Gumbel distribution for the random components (error terms) of utility functions. This distributional assumption offers a closed-form likelihood expression when the utility maximization principle is applied to model choice behaviors. As a result, model coefficients can be easily estimated using the standard maximum likelihood estimation method. However, maximum likelihood estimators are consistent and efficient only if distributional assumptions on the random error terms are valid. It is therefore critical to test the validity of underlying distributional assumptions on the error terms that form the basismore » of parameter estimation and policy evaluation. In this paper, a practical yet statistically rigorous method is proposed to test the validity of the distributional assumption on the random components of utility functions in both the multinomial logit (MNL) model and multiple discrete-continuous extreme value (MDCEV) model. Based on a semi-nonparametric approach, a closed-form likelihood function that nests the MNL or MDCEV model being tested is derived. The proposed method allows traditional likelihood ratio tests to be used to test violations of the standard Gumbel distribution assumption. Simulation experiments are conducted to demonstrate that the proposed test yields acceptable Type-I and Type-II error probabilities at commonly available sample sizes. The test is then applied to three real-world discrete and discrete-continuous choice models. For all three models, the proposed test rejects the validity of the standard Gumbel distribution in most utility functions, calling for the development of robust choice models that overcome adverse effects of violations of distributional assumptions on the error terms in random utility functions.« less
NASA Astrophysics Data System (ADS)
Schratz, Patrick; Herrmann, Tobias; Brenning, Alexander
2017-04-01
Computational and statistical prediction methods such as the support vector machine have gained popularity in remote-sensing applications in recent years and are often compared to more traditional approaches like maximum-likelihood classification. However, the accuracy assessment of such predictive models in a spatial context needs to account for the presence of spatial autocorrelation in geospatial data by using spatial cross-validation and bootstrap strategies instead of their now more widely used non-spatial equivalent. The R package sperrorest by A. Brenning [IEEE International Geoscience and Remote Sensing Symposium, 1, 374 (2012)] provides a generic interface for performing (spatial) cross-validation of any statistical or machine-learning technique available in R. Since spatial statistical models as well as flexible machine-learning algorithms can be computationally expensive, parallel computing strategies are required to perform cross-validation efficiently. The most recent major release of sperrorest therefore comes with two new features (aside from improved documentation): The first one is the parallelized version of sperrorest(), parsperrorest(). This function features two parallel modes to greatly speed up cross-validation runs. Both parallel modes are platform independent and provide progress information. par.mode = 1 relies on the pbapply package and calls interactively (depending on the platform) parallel::mclapply() or parallel::parApply() in the background. While forking is used on Unix-Systems, Windows systems use a cluster approach for parallel execution. par.mode = 2 uses the foreach package to perform parallelization. This method uses a different way of cluster parallelization than the parallel package does. In summary, the robustness of parsperrorest() is increased with the implementation of two independent parallel modes. A new way of partitioning the data in sperrorest is provided by partition.factor.cv(). This function gives the user the possibility to perform cross-validation at the level of some grouping structure. As an example, in remote sensing of agricultural land uses, pixels from the same field contain nearly identical information and will thus be jointly placed in either the test set or the training set. Other spatial sampling resampling strategies are already available and can be extended by the user.
Meyer, Karin; Kirkpatrick, Mark
2005-01-01
Principal component analysis is a widely used 'dimension reduction' technique, albeit generally at a phenotypic level. It is shown that we can estimate genetic principal components directly through a simple reparameterisation of the usual linear, mixed model. This is applicable to any analysis fitting multiple, correlated genetic effects, whether effects for individual traits or sets of random regression coefficients to model trajectories. Depending on the magnitude of genetic correlation, a subset of the principal component generally suffices to capture the bulk of genetic variation. Corresponding estimates of genetic covariance matrices are more parsimonious, have reduced rank and are smoothed, with the number of parameters required to model the dispersion structure reduced from k(k + 1)/2 to m(2k - m + 1)/2 for k effects and m principal components. Estimation of these parameters, the largest eigenvalues and pertaining eigenvectors of the genetic covariance matrix, via restricted maximum likelihood using derivatives of the likelihood, is described. It is shown that reduced rank estimation can reduce computational requirements of multivariate analyses substantially. An application to the analysis of eight traits recorded via live ultrasound scanning of beef cattle is given. PMID:15588566
Neandertal admixture in Eurasia confirmed by maximum-likelihood analysis of three genomes.
Lohse, Konrad; Frantz, Laurent A F
2014-04-01
Although there has been much interest in estimating histories of divergence and admixture from genomic data, it has proved difficult to distinguish recent admixture from long-term structure in the ancestral population. Thus, recent genome-wide analyses based on summary statistics have sparked controversy about the possibility of interbreeding between Neandertals and modern humans in Eurasia. Here we derive the probability of full mutational configurations in nonrecombining sequence blocks under both admixture and ancestral structure scenarios. Dividing the genome into short blocks gives an efficient way to compute maximum-likelihood estimates of parameters. We apply this likelihood scheme to triplets of human and Neandertal genomes and compare the relative support for a model of admixture from Neandertals into Eurasian populations after their expansion out of Africa against a history of persistent structure in their common ancestral population in Africa. Our analysis allows us to conclusively reject a model of ancestral structure in Africa and instead reveals strong support for Neandertal admixture in Eurasia at a higher rate (3.4-7.3%) than suggested previously. Using analysis and simulations we show that our inference is more powerful than previous summary statistics and robust to realistic levels of recombination.
Neandertal Admixture in Eurasia Confirmed by Maximum-Likelihood Analysis of Three Genomes
Lohse, Konrad; Frantz, Laurent A. F.
2014-01-01
Although there has been much interest in estimating histories of divergence and admixture from genomic data, it has proved difficult to distinguish recent admixture from long-term structure in the ancestral population. Thus, recent genome-wide analyses based on summary statistics have sparked controversy about the possibility of interbreeding between Neandertals and modern humans in Eurasia. Here we derive the probability of full mutational configurations in nonrecombining sequence blocks under both admixture and ancestral structure scenarios. Dividing the genome into short blocks gives an efficient way to compute maximum-likelihood estimates of parameters. We apply this likelihood scheme to triplets of human and Neandertal genomes and compare the relative support for a model of admixture from Neandertals into Eurasian populations after their expansion out of Africa against a history of persistent structure in their common ancestral population in Africa. Our analysis allows us to conclusively reject a model of ancestral structure in Africa and instead reveals strong support for Neandertal admixture in Eurasia at a higher rate (3.4−7.3%) than suggested previously. Using analysis and simulations we show that our inference is more powerful than previous summary statistics and robust to realistic levels of recombination. PMID:24532731
Kimura, Akatsuki; Celani, Antonio; Nagao, Hiromichi; Stasevich, Timothy; Nakamura, Kazuyuki
2015-01-01
Construction of quantitative models is a primary goal of quantitative biology, which aims to understand cellular and organismal phenomena in a quantitative manner. In this article, we introduce optimization procedures to search for parameters in a quantitative model that can reproduce experimental data. The aim of optimization is to minimize the sum of squared errors (SSE) in a prediction or to maximize likelihood. A (local) maximum of likelihood or (local) minimum of the SSE can efficiently be identified using gradient approaches. Addition of a stochastic process enables us to identify the global maximum/minimum without becoming trapped in local maxima/minima. Sampling approaches take advantage of increasing computational power to test numerous sets of parameters in order to determine the optimum set. By combining Bayesian inference with gradient or sampling approaches, we can estimate both the optimum parameters and the form of the likelihood function related to the parameters. Finally, we introduce four examples of research that utilize parameter optimization to obtain biological insights from quantified data: transcriptional regulation, bacterial chemotaxis, morphogenesis, and cell cycle regulation. With practical knowledge of parameter optimization, cell and developmental biologists can develop realistic models that reproduce their observations and thus, obtain mechanistic insights into phenomena of interest.
Phylogenetic evidence for cladogenetic polyploidization in land plants.
Zhan, Shing H; Drori, Michal; Goldberg, Emma E; Otto, Sarah P; Mayrose, Itay
2016-07-01
Polyploidization is a common and recurring phenomenon in plants and is often thought to be a mechanism of "instant speciation". Whether polyploidization is associated with the formation of new species (cladogenesis) or simply occurs over time within a lineage (anagenesis), however, has never been assessed systematically. We tested this hypothesis using phylogenetic and karyotypic information from 235 plant genera (mostly angiosperms). We first constructed a large database of combined sequence and chromosome number data sets using an automated procedure. We then applied likelihood models (ClaSSE) that estimate the degree of synchronization between polyploidization and speciation events in maximum likelihood and Bayesian frameworks. Our maximum likelihood analysis indicated that 35 genera supported a model that includes cladogenetic transitions over a model with only anagenetic transitions, whereas three genera supported a model that incorporates anagenetic transitions over one with only cladogenetic transitions. Furthermore, the Bayesian analysis supported a preponderance of cladogenetic change in four genera but did not support a preponderance of anagenetic change in any genus. Overall, these phylogenetic analyses provide the first broad confirmation that polyploidization is temporally associated with speciation events, suggesting that it is indeed a major speciation mechanism in plants, at least in some genera. © 2016 Botanical Society of America.
GNSS Spoofing Detection and Mitigation Based on Maximum Likelihood Estimation
Li, Hong; Lu, Mingquan
2017-01-01
Spoofing attacks are threatening the global navigation satellite system (GNSS). The maximum likelihood estimation (MLE)-based positioning technique is a direct positioning method originally developed for multipath rejection and weak signal processing. We find this method also has a potential ability for GNSS anti-spoofing since a spoofing attack that misleads the positioning and timing result will cause distortion to the MLE cost function. Based on the method, an estimation-cancellation approach is presented to detect spoofing attacks and recover the navigation solution. A statistic is derived for spoofing detection with the principle of the generalized likelihood ratio test (GLRT). Then, the MLE cost function is decomposed to further validate whether the navigation solution obtained by MLE-based positioning is formed by consistent signals. Both formulae and simulations are provided to evaluate the anti-spoofing performance. Experiments with recordings in real GNSS spoofing scenarios are also performed to validate the practicability of the approach. Results show that the method works even when the code phase differences between the spoofing and authentic signals are much less than one code chip, which can improve the availability of GNSS service greatly under spoofing attacks. PMID:28665318
GNSS Spoofing Detection and Mitigation Based on Maximum Likelihood Estimation.
Wang, Fei; Li, Hong; Lu, Mingquan
2017-06-30
Spoofing attacks are threatening the global navigation satellite system (GNSS). The maximum likelihood estimation (MLE)-based positioning technique is a direct positioning method originally developed for multipath rejection and weak signal processing. We find this method also has a potential ability for GNSS anti-spoofing since a spoofing attack that misleads the positioning and timing result will cause distortion to the MLE cost function. Based on the method, an estimation-cancellation approach is presented to detect spoofing attacks and recover the navigation solution. A statistic is derived for spoofing detection with the principle of the generalized likelihood ratio test (GLRT). Then, the MLE cost function is decomposed to further validate whether the navigation solution obtained by MLE-based positioning is formed by consistent signals. Both formulae and simulations are provided to evaluate the anti-spoofing performance. Experiments with recordings in real GNSS spoofing scenarios are also performed to validate the practicability of the approach. Results show that the method works even when the code phase differences between the spoofing and authentic signals are much less than one code chip, which can improve the availability of GNSS service greatly under spoofing attacks.
NASA Technical Reports Server (NTRS)
Scholz, D.; Fuhs, N.; Hixson, M.; Akiyama, T. (Principal Investigator)
1979-01-01
The author has identified the following significant results. Data sets for corn, soybeans, winter wheat, and spring wheat were used to evaluate the following schemes for crop identification: (1) per point Gaussian maximum classifier; (2) per point sum of normal densities classifiers; (3) per point linear classifier; (4) per point Gaussian maximum likelihood decision tree classifiers; and (5) texture sensitive per field Gaussian maximum likelihood classifier. Test site location and classifier both had significant effects on classification accuracy of small grains; classifiers did not differ significantly in overall accuracy, with the majority of the difference among classifiers being attributed to training method rather than to the classification algorithm applied. The complexity of use and computer costs for the classifiers varied significantly. A linear classification rule which assigns each pixel to the class whose mean is closest in Euclidean distance was the easiest for the analyst and cost the least per classification.
Statistical field estimators for multiscale simulations.
Eapen, Jacob; Li, Ju; Yip, Sidney
2005-11-01
We present a systematic approach for generating smooth and accurate fields from particle simulation data using the notions of statistical inference. As an extension to a parametric representation based on the maximum likelihood technique previously developed for velocity and temperature fields, a nonparametric estimator based on the principle of maximum entropy is proposed for particle density and stress fields. Both estimators are applied to represent molecular dynamics data on shear-driven flow in an enclosure which exhibits a high degree of nonlinear characteristics. We show that the present density estimator is a significant improvement over ad hoc bin averaging and is also free of systematic boundary artifacts that appear in the method of smoothing kernel estimates. Similarly, the velocity fields generated by the maximum likelihood estimator do not show any edge effects that can be erroneously interpreted as slip at the wall. For low Reynolds numbers, the velocity fields and streamlines generated by the present estimator are benchmarked against Newtonian continuum calculations. For shear velocities that are a significant fraction of the thermal speed, we observe a form of shear localization that is induced by the confining boundary.
Maximum-likelihood estimation of recent shared ancestry (ERSA).
Huff, Chad D; Witherspoon, David J; Simonson, Tatum S; Xing, Jinchuan; Watkins, W Scott; Zhang, Yuhua; Tuohy, Therese M; Neklason, Deborah W; Burt, Randall W; Guthery, Stephen L; Woodward, Scott R; Jorde, Lynn B
2011-05-01
Accurate estimation of recent shared ancestry is important for genetics, evolution, medicine, conservation biology, and forensics. Established methods estimate kinship accurately for first-degree through third-degree relatives. We demonstrate that chromosomal segments shared by two individuals due to identity by descent (IBD) provide much additional information about shared ancestry. We developed a maximum-likelihood method for the estimation of recent shared ancestry (ERSA) from the number and lengths of IBD segments derived from high-density SNP or whole-genome sequence data. We used ERSA to estimate relationships from SNP genotypes in 169 individuals from three large, well-defined human pedigrees. ERSA is accurate to within one degree of relationship for 97% of first-degree through fifth-degree relatives and 80% of sixth-degree and seventh-degree relatives. We demonstrate that ERSA's statistical power approaches the maximum theoretical limit imposed by the fact that distant relatives frequently share no DNA through a common ancestor. ERSA greatly expands the range of relationships that can be estimated from genetic data and is implemented in a freely available software package.
NASA Astrophysics Data System (ADS)
Li, X.; Sang, Y. F.
2017-12-01
Mountain torrents, urban floods and other disasters caused by extreme precipitation bring great losses to the ecological environment, social and economic development, people's lives and property security. So there is of great significance to floods prevention and control by the study of its spatial distribution. Based on the annual maximum rainfall data of 60min, 6h and 24h, the paper generate long sequences following Pearson-III distribution, and then use the information entropy index to study the spatial distribution and difference of different duration. The results show that the information entropy value of annual maximum rainfall in the south region is greater than that in the north region, indicating more obvious stochastic characteristics of annual maximum rainfall in the latter. However, the spatial distribution of stochastic characteristics is different in different duration. For example, stochastic characteristics of 60min annual maximum rainfall in the Eastern Tibet is smaller than surrounding, but 6h and 24h annual maximum rainfall is larger than surrounding area. In the Haihe River Basin and the Huaihe River Basin, the stochastic characteristics of the 60min annual maximum rainfall was not significantly different from that in the surrounding area, and stochastic characteristics of 6h and 24h was smaller than that in the surrounding area. We conclude that the spatial distribution of information entropy values of annual maximum rainfall in different duration can reflect the spatial distribution of its stochastic characteristics, thus the results can be an importantly scientific basis for the flood prevention and control, agriculture, economic-social developments and urban flood control and waterlogging.
Estimation of submarine mass failure probability from a sequence of deposits with age dates
Geist, Eric L.; Chaytor, Jason D.; Parsons, Thomas E.; ten Brink, Uri S.
2013-01-01
The empirical probability of submarine mass failure is quantified from a sequence of dated mass-transport deposits. Several different techniques are described to estimate the parameters for a suite of candidate probability models. The techniques, previously developed for analyzing paleoseismic data, include maximum likelihood and Type II (Bayesian) maximum likelihood methods derived from renewal process theory and Monte Carlo methods. The estimated mean return time from these methods, unlike estimates from a simple arithmetic mean of the center age dates and standard likelihood methods, includes the effects of age-dating uncertainty and of open time intervals before the first and after the last event. The likelihood techniques are evaluated using Akaike’s Information Criterion (AIC) and Akaike’s Bayesian Information Criterion (ABIC) to select the optimal model. The techniques are applied to mass transport deposits recorded in two Integrated Ocean Drilling Program (IODP) drill sites located in the Ursa Basin, northern Gulf of Mexico. Dates of the deposits were constrained by regional bio- and magnetostratigraphy from a previous study. Results of the analysis indicate that submarine mass failures in this location occur primarily according to a Poisson process in which failures are independent and return times follow an exponential distribution. However, some of the model results suggest that submarine mass failures may occur quasiperiodically at one of the sites (U1324). The suite of techniques described in this study provides quantitative probability estimates of submarine mass failure occurrence, for any number of deposits and age uncertainty distributions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
The purpose of the computer program is to generate system matrices that model data acquisition process in dynamic single photon emission computed tomography (SPECT). The application is for the reconstruction of dynamic data from projection measurements that provide the time evolution of activity uptake and wash out in an organ of interest. The measurement of the time activity in the blood and organ tissue provide time-activity curves (TACs) that are used to estimate kinetic parameters. The program provides a correct model of the in vivo spatial and temporal distribution of radioactive in organs. The model accounts for the attenuation ofmore » the internal emitting radioactivity, it accounts for the vary point response of the collimators, and correctly models the time variation of the activity in the organs. One important application where the software is being used in a measuring the arterial input function (AIF) in a dynamic SPECT study where the data are acquired from a slow camera rotation. Measurement of the arterial input function (AIF) is essential to deriving quantitative estimates of regional myocardial blood flow using kinetic models. A study was performed to evaluate whether a slowly rotating SPECT system could provide accurate AIF's for myocardial perfusion imaging (MPI). Methods: Dynamic cardiac SPECT was first performed in human subjects at rest using a Phillips Precedence SPECT/CT scanner. Dynamic measurements of Tc-99m-tetrofosmin in the myocardium were obtained using an infusion time of 2 minutes. Blood input, myocardium tissue and liver TACs were estimated using spatiotemporal splines. These were fit to a one-compartment perfusion model to obtain wash-in rate parameters K1. Results: The spatiotemporal 4D ML-EM reconstructions gave more accurate reconstructions that did standard frame-by-frame 3D ML-EM reconstructions. From additional computer simulations and phantom studies, it was determined that a 1 minute infusion with a SPECT system rotation speed providing 180 degrees of projection data every 54s can produce measurements of blood pool and myocardial TACs. This has important application in the circulation of coronary flow reserve using rest/stress dynamic cardiac SPECT. They system matrices are used in maximum likelihood and maximum a posterior formulations in estimation theory where through iterative algorithms (conjugate gradient, expectation maximization, or maximum a posteriori probability algorithms) the solution is determined that maximizes a likelihood or a posteriori probability function.« less
ERIC Educational Resources Information Center
Sen, Sedat
2018-01-01
Recent research has shown that over-extraction of latent classes can be observed in the Bayesian estimation of the mixed Rasch model when the distribution of ability is non-normal. This study examined the effect of non-normal ability distributions on the number of latent classes in the mixed Rasch model when estimated with maximum likelihood…
Infrared image segmentation method based on spatial coherence histogram and maximum entropy
NASA Astrophysics Data System (ADS)
Liu, Songtao; Shen, Tongsheng; Dai, Yao
2014-11-01
In order to segment the target well and suppress background noises effectively, an infrared image segmentation method based on spatial coherence histogram and maximum entropy is proposed. First, spatial coherence histogram is presented by weighting the importance of the different position of these pixels with the same gray-level, which is obtained by computing their local density. Then, after enhancing the image by spatial coherence histogram, 1D maximum entropy method is used to segment the image. The novel method can not only get better segmentation results, but also have a faster computation time than traditional 2D histogram-based segmentation methods.
NASA Astrophysics Data System (ADS)
Weerathunga, Thilina Shihan
2017-08-01
Gravitational waves are a fundamental prediction of Einstein's General Theory of Relativity. The first experimental proof of their existence was provided by the Nobel Prize winning discovery by Taylor and Hulse of orbital decay in a binary pulsar system. The first detection of gravitational waves incident on earth from an astrophysical source was announced in 2016 by the LIGO Scientific Collaboration, launching the new era of gravitational wave (GW) astronomy. The signal detected was from the merger of two black holes, which is an example of sources called Compact Binary Coalescences (CBCs). Data analysis strategies used in the search for CBC signals are derivatives of the Maximum-Likelihood (ML) method. The ML method applied to data from a network of geographically distributed GW detectors--called fully coherent network analysis--is currently the best approach for estimating source location and GW polarization waveforms. However, in the case of CBCs, especially for lower mass systems (O(1M solar masses)) such as double neutron star binaries, fully coherent network analysis is computationally expensive. The ML method requires locating the global maximum of the likelihood function over a nine dimensional parameter space, where the computation of the likelihood at each point requires correlations involving O(104) to O(106) samples between the data and the corresponding candidate signal waveform template. Approximations, such as semi-coherent coincidence searches, are currently used to circumvent the computational barrier but incur a concomitant loss in sensitivity. We explored the effectiveness of Particle Swarm Optimization (PSO), a well-known algorithm in the field of swarm intelligence, in addressing the fully coherent network analysis problem. As an example, we used a four-detector network consisting of the two LIGO detectors at Hanford and Livingston, Virgo and Kagra, all having initial LIGO noise power spectral densities, and show that PSO can locate the global maximum with less than 240,000 likelihood evaluations for a component mass range of 1.0 to 10.0 solar masses at a realistic coherent network signal to noise ratio of 9.0. Our results show that PSO can successfully deliver a fully-coherent all-sky search with < (1/10 ) the number of likelihood evaluations needed for a grid-based search. Used as a follow-up step, the savings in the number of likelihood evaluations may also reduce latency in obtaining ML estimates of source parameters in semi-coherent searches.
Likelihood-based confidence intervals for estimating floods with given return periods
NASA Astrophysics Data System (ADS)
Martins, Eduardo Sávio P. R.; Clarke, Robin T.
1993-06-01
This paper discusses aspects of the calculation of likelihood-based confidence intervals for T-year floods, with particular reference to (1) the two-parameter gamma distribution; (2) the Gumbel distribution; (3) the two-parameter log-normal distribution, and other distributions related to the normal by Box-Cox transformations. Calculation of the confidence limits is straightforward using the Nelder-Mead algorithm with a constraint incorporated, although care is necessary to ensure convergence either of the Nelder-Mead algorithm, or of the Newton-Raphson calculation of maximum-likelihood estimates. Methods are illustrated using records from 18 gauging stations in the basin of the River Itajai-Acu, State of Santa Catarina, southern Brazil. A small and restricted simulation compared likelihood-based confidence limits with those given by use of the central limit theorem; for the same confidence probability, the confidence limits of the simulation were wider than those of the central limit theorem, which failed more frequently to contain the true quantile being estimated. The paper discusses possible applications of likelihood-based confidence intervals in other areas of hydrological analysis.
Adaptive Quadrature for Item Response Models. Research Report. ETS RR-06-29
ERIC Educational Resources Information Center
Haberman, Shelby J.
2006-01-01
Adaptive quadrature is applied to marginal maximum likelihood estimation for item response models with normal ability distributions. Even in one dimension, significant gains in speed and accuracy of computation may be achieved.
The Relation between Factor Score Estimates, Image Scores, and Principal Component Scores
ERIC Educational Resources Information Center
Velicer, Wayne F.
1976-01-01
Investigates the relation between factor score estimates, principal component scores, and image scores. The three methods compared are maximum likelihood factor analysis, principal component analysis, and a variant of rescaled image analysis. (RC)
NASA Astrophysics Data System (ADS)
Neuer, Marcus J.
2013-11-01
A technique for the spectral identification of strontium-90 is shown, utilising a Maximum-Likelihood deconvolution. Different deconvolution approaches are discussed and summarised. Based on the intensity distribution of the beta emission and Geant4 simulations, a combined response matrix is derived, tailored to the β- detection process in sodium iodide detectors. It includes scattering effects and attenuation by applying a base material decomposition extracted from Geant4 simulations with a CAD model for a realistic detector system. Inversion results of measurements show the agreement between deconvolution and reconstruction. A detailed investigation with additional masking sources like 40K, 226Ra and 131I shows that a contamination of strontium can be found in the presence of these nuisance sources. Identification algorithms for strontium are presented based on the derived technique. For the implementation of blind identification, an exemplary masking ratio is calculated.
MIXOR: a computer program for mixed-effects ordinal regression analysis.
Hedeker, D; Gibbons, R D
1996-03-01
MIXOR provides maximum marginal likelihood estimates for mixed-effects ordinal probit, logistic, and complementary log-log regression models. These models can be used for analysis of dichotomous and ordinal outcomes from either a clustered or longitudinal design. For clustered data, the mixed-effects model assumes that data within clusters are dependent. The degree of dependency is jointly estimated with the usual model parameters, thus adjusting for dependence resulting from clustering of the data. Similarly, for longitudinal data, the mixed-effects approach can allow for individual-varying intercepts and slopes across time, and can estimate the degree to which these time-related effects vary in the population of individuals. MIXOR uses marginal maximum likelihood estimation, utilizing a Fisher-scoring solution. For the scoring solution, the Cholesky factor of the random-effects variance-covariance matrix is estimated, along with the effects of model covariates. Examples illustrating usage and features of MIXOR are provided.
Modifying high-order aeroelastic math model of a jet transport using maximum likelihood estimation
NASA Technical Reports Server (NTRS)
Anissipour, Amir A.; Benson, Russell A.
1989-01-01
The design of control laws to damp flexible structural modes requires accurate math models. Unlike the design of control laws for rigid body motion (e.g., where robust control is used to compensate for modeling inaccuracies), structural mode damping usually employs narrow band notch filters. In order to obtain the required accuracy in the math model, maximum likelihood estimation technique is employed to improve the accuracy of the math model using flight data. Presented here are all phases of this methodology: (1) pre-flight analysis (i.e., optimal input signal design for flight test, sensor location determination, model reduction technique, etc.), (2) data collection and preprocessing, and (3) post-flight analysis (i.e., estimation technique and model verification). In addition, a discussion is presented of the software tools used and the need for future study in this field.
Falk, Carl F; Cai, Li
2016-06-01
We present a semi-parametric approach to estimating item response functions (IRF) useful when the true IRF does not strictly follow commonly used functions. Our approach replaces the linear predictor of the generalized partial credit model with a monotonic polynomial. The model includes the regular generalized partial credit model at the lowest order polynomial. Our approach extends Liang's (A semi-parametric approach to estimate IRFs, Unpublished doctoral dissertation, 2007) method for dichotomous item responses to the case of polytomous data. Furthermore, item parameter estimation is implemented with maximum marginal likelihood using the Bock-Aitkin EM algorithm, thereby facilitating multiple group analyses useful in operational settings. Our approach is demonstrated on both educational and psychological data. We present simulation results comparing our approach to more standard IRF estimation approaches and other non-parametric and semi-parametric alternatives.
Maximum likelihood estimation for semiparametric transformation models with interval-censored data
Mao, Lu; Lin, D. Y.
2016-01-01
Abstract Interval censoring arises frequently in clinical, epidemiological, financial and sociological studies, where the event or failure of interest is known only to occur within an interval induced by periodic monitoring. We formulate the effects of potentially time-dependent covariates on the interval-censored failure time through a broad class of semiparametric transformation models that encompasses proportional hazards and proportional odds models. We consider nonparametric maximum likelihood estimation for this class of models with an arbitrary number of monitoring times for each subject. We devise an EM-type algorithm that converges stably, even in the presence of time-dependent covariates, and show that the estimators for the regression parameters are consistent, asymptotically normal, and asymptotically efficient with an easily estimated covariance matrix. Finally, we demonstrate the performance of our procedures through simulation studies and application to an HIV/AIDS study conducted in Thailand. PMID:27279656
Best practices for missing data management in counseling psychology.
Schlomer, Gabriel L; Bauman, Sheri; Card, Noel A
2010-01-01
This article urges counseling psychology researchers to recognize and report how missing data are handled, because consumers of research cannot accurately interpret findings without knowing the amount and pattern of missing data or the strategies that were used to handle those data. Patterns of missing data are reviewed, and some of the common strategies for dealing with them are described. The authors provide an illustration in which data were simulated and evaluate 3 methods of handling missing data: mean substitution, multiple imputation, and full information maximum likelihood. Results suggest that mean substitution is a poor method for handling missing data, whereas both multiple imputation and full information maximum likelihood are recommended alternatives to this approach. The authors suggest that researchers fully consider and report the amount and pattern of missing data and the strategy for handling those data in counseling psychology research and that editors advise researchers of this expectation.
Li, Xinya; Deng, Z. Daniel; USA, Richland Washington; ...
2014-11-27
Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developedmore » using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.« less
Numerical Experimentation with Maximum Likelihood Identification in Static Distributed Systems
NASA Technical Reports Server (NTRS)
Scheid, R. E., Jr.; Rodriguez, G.
1985-01-01
Many important issues in the control of large space structures are intimately related to the fundamental problem of parameter identification. One might also ask how well this identification process can be carried out in the presence of noisy data since no sensor system is perfect. With these considerations in mind the algorithms herein are designed to treat both the case of uncertainties in the modeling and uncertainties in the data. The analytical aspects of maximum likelihood identification are considered in some detail in another paper. The questions relevant to the implementation of these schemes are dealt with, particularly as they apply to models of large space structures. The emphasis is on the influence of the infinite dimensional character of the problem on finite dimensional implementations of the algorithms. Those areas of current and future analysis are highlighted which indicate the interplay between error analysis and possible truncations of the state and parameter spaces.
NASA Astrophysics Data System (ADS)
Li, Xinya; Deng, Z. Daniel; Sun, Yannan; Martinez, Jayson J.; Fu, Tao; McMichael, Geoffrey A.; Carlson, Thomas J.
2014-11-01
Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developed using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.
NASA Astrophysics Data System (ADS)
He, Yi; Liwo, Adam; Scheraga, Harold A.
2015-12-01
Coarse-grained models are useful tools to investigate the structural and thermodynamic properties of biomolecules. They are obtained by merging several atoms into one interaction site. Such simplified models try to capture as much as possible information of the original biomolecular system in all-atom representation but the resulting parameters of these coarse-grained force fields still need further optimization. In this paper, a force field optimization method, which is based on maximum-likelihood fitting of the simulated to the experimental conformational ensembles and least-squares fitting of the simulated to the experimental heat-capacity curves, is applied to optimize the Nucleic Acid united-RESidue 2-point (NARES-2P) model for coarse-grained simulations of nucleic acids recently developed in our laboratory. The optimized NARES-2P force field reproduces the structural and thermodynamic data of small DNA molecules much better than the original force field.