Sample records for maximum linear growth

  1. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length.

    PubMed

    Rossi, Sergio; Deslauriers, Annie; Anfodillo, Tommaso; Morin, Hubert; Saracino, Antonio; Motta, Renzo; Borghetti, Marco

    2006-01-01

    Intra-annual radial growth rates and durations in trees are reported to differ greatly in relation to species, site and environmental conditions. However, very similar dynamics of cambial activity and wood formation are observed in temperate and boreal zones. Here, we compared weekly xylem cell production and variation in stem circumference in the main northern hemisphere conifer species (genera Picea, Pinus, Abies and Larix) from 1996 to 2003. Dynamics of radial growth were modeled with a Gompertz function, defining the upper asymptote (A), x-axis placement (beta) and rate of change (kappa). A strong linear relationship was found between the constants beta and kappa for both types of analysis. The slope of the linear regression, which corresponds to the time at which maximum growth rate occurred, appeared to converge towards the summer solstice. The maximum growth rate occurred around the time of maximum day length, and not during the warmest period of the year as previously suggested. The achievements of photoperiod could act as a growth constraint or a limit after which the rate of tree-ring formation tends to decrease, thus allowing plants to safely complete secondary cell wall lignification before winter.

  2. Algal culture studies related to a closed ecological life support system

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Fernandez, E.; Ollinger, O.; Howell, C.

    1984-01-01

    Studies on the steady-state long-term (4 month) culture of Scenedesmus obliquus algae, maintained in an annular air-lift column operated as a turbidostat, were carried out to evaluate the life-supporting possibilities of this system. Chlorophyll production and cell number as functions of the dry weight were linear at constant illumination. Productivity (measured as the product of dry weight, mg/ml, and the growth rate, ml/hr) vs. dry weight rose linearly until the cell density reached a level at which light became limiting (89 percent absorption of the photosynthetically active radiation). In the initial, linear portion of the curve, the productivity was limited by cell growth at the given light intensity. The maximum dilution rate of the system corresponded to the doubling time of 13.4 hr, about half the maximum rate, with a productivity of 80 percent of the maximum theoretical productivity. The high light utilization efficiencies were contributed by the low (10 percent of full sunlight) incident intensities.

  3. Growth of the eye lens: II. Allometric studies.

    PubMed

    Augusteyn, Robert C

    2014-01-01

    The purpose of this study was to examine the ontogeny and phylogeny of lens growth in a variety of species using allometry. Data on the accumulation of wet and/or dry lens weight as a function of bodyweight were obtained for 40 species and subjected to allometric analysis to examine ontogenic growth and compaction. Allometric analysis was also used to compare the maximum adult lens weights for 147 species with the maximum adult bodyweight and to compare lens volumes calculated from wet and dry weights with eye volumes calculated from axial length. Linear allometric relationships were obtained for the comparison of ontogenic lens and bodyweight accumulation. The body mass exponent (BME) decreased with increasing animal size from around 1.0 in small rodents to 0.4 in large ungulates for both wet and dry weights. Compaction constants for the ontogenic growth ranged from 1.00 in birds and reptiles up to 1.30 in mammals. Allometric comparison of maximum lens wet and dry weights with maximum bodyweights also yielded linear plots with a BME of 0.504 for all warm blooded species except primates which had a BME of 0.25. When lens volumes were compared with eye volumes, all species yielded a scaling constant of 0.75 but the proportionality constants for primates and birds were lower. Ontogenic lens growth is fastest, relative to body growth, in small animals and slowest in large animals. Fiber cell compaction takes place throughout life in most species, but not in birds and reptiles. Maximum adult lens size scales with eye size with the same exponent in all species, but birds and primates have smaller lenses relative to eye size than other species. Optical properties of the lens are generated through the combination of variations in the rate of growth, rate of compaction, shape and size.

  4. Growth of the eye lens: II. Allometric studies

    PubMed Central

    2014-01-01

    Purpose The purpose of this study was to examine the ontogeny and phylogeny of lens growth in a variety of species using allometry. Methods Data on the accumulation of wet and/or dry lens weight as a function of bodyweight were obtained for 40 species and subjected to allometric analysis to examine ontogenic growth and compaction. Allometric analysis was also used to compare the maximum adult lens weights for 147 species with the maximum adult bodyweight and to compare lens volumes calculated from wet and dry weights with eye volumes calculated from axial length. Results Linear allometric relationships were obtained for the comparison of ontogenic lens and bodyweight accumulation. The body mass exponent (BME) decreased with increasing animal size from around 1.0 in small rodents to 0.4 in large ungulates for both wet and dry weights. Compaction constants for the ontogenic growth ranged from 1.00 in birds and reptiles up to 1.30 in mammals. Allometric comparison of maximum lens wet and dry weights with maximum bodyweights also yielded linear plots with a BME of 0.504 for all warm blooded species except primates which had a BME of 0.25. When lens volumes were compared with eye volumes, all species yielded a scaling constant of 0.75 but the proportionality constants for primates and birds were lower. Conclusions Ontogenic lens growth is fastest, relative to body growth, in small animals and slowest in large animals. Fiber cell compaction takes place throughout life in most species, but not in birds and reptiles. Maximum adult lens size scales with eye size with the same exponent in all species, but birds and primates have smaller lenses relative to eye size than other species. Optical properties of the lens are generated through the combination of variations in the rate of growth, rate of compaction, shape and size. PMID:24715759

  5. Estimation of Complex Generalized Linear Mixed Models for Measurement and Growth

    ERIC Educational Resources Information Center

    Jeon, Minjeong

    2012-01-01

    Maximum likelihood (ML) estimation of generalized linear mixed models (GLMMs) is technically challenging because of the intractable likelihoods that involve high dimensional integrations over random effects. The problem is magnified when the random effects have a crossed design and thus the data cannot be reduced to small independent clusters. A…

  6. A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution

    NASA Technical Reports Server (NTRS)

    Balbus, Steven A.; Hawley, John F.

    1991-01-01

    A broad class of astronomical accretion disks is presently shown to be dynamically unstable to axisymmetric disturbances in the presence of a weak magnetic field, an insight with consequently broad applicability to gaseous, differentially-rotating systems. In the first part of this work, a linear analysis is presented of the instability, which is local and extremely powerful; the maximum growth rate, which is of the order of the angular rotation velocity, is independent of the strength of the magnetic field. Fluid motions associated with the instability directly generate both poloidal and toroidal field components. In the second part of this investigation, the scaling relation between the instability's wavenumber and the Alfven velocity is demonstrated, and the independence of the maximum growth rate from magnetic field strength is confirmed.

  7. Gravitational force as a determinant of turtle-shell growth and shape

    NASA Technical Reports Server (NTRS)

    Wunder, C. C.; Dodge, C. H.; Walkup, G. A.; Clark, M. E.; Rice, J. O.; Edwards, M. T.

    1974-01-01

    Chronic low-gravity simulation (pedestal support, suspension by wires or foam, and/or clinostat tumbling) of 11 aquatic red-eared sliders, Pseudemys scripta elegans, and of nine box turtles, Terrapine carolina, resulted in continued but slower linear carapace growth. Decreased shell height was accompanied by drastic plastron infolding. Chronic centrifugation (1.4, 1.8, 2.8, 5, or 8.1 g) of 81 box turtles caused an eventual decrease (12% per g) in linear growth rate. No consistent decrease occurred with aquatic turtles centrifuged at below 6 g. Maximum growth of length and roundness appears near 5 g for aquatic environments and near 1 g in land environments. Present results suggest that some gravity is necessary for normal bone growth.

  8. Maximum initial growth-rate of strong-shock-driven Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Abarzhi, Snezhana I.; Bhowmich, Aklant K.; Dell, Zachary R.; Pandian, Arun; Stanic, Milos; Stellingwerf, Robert F.; Swisher, Nora C.

    2017-10-01

    We focus on classical problem of dependence on the initial conditions of the initial growth-rate of strong shocks driven Richtmyer-Meshkov instability (RMI) by developing a novel empirical model and by employing rigorous theories and Smoothed Particle Hydrodynamics (SPH) simulations to describe the simulations data with statistical confidence in a broad parameter regime. For given values of the shock strength, fluids' density ratio, and wavelength of the initial perturbation of the fluid interface, we find the maximum value of RMI initial growth-rate, the corresponding amplitude scale of the initial perturbation, and the maximum fraction of interfacial energy. This amplitude scale is independent of the shock strength and density ratio, and is characteristic quantity of RMI dynamics. We discover the exponential decay of the ratio of the initial and linear growth-rates of RMI with the initial perturbation amplitude that excellently agrees with available data. National Science Foundation, USA.

  9. Maximum initial growth-rate of strong-shock-driven Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Abarzhi, Snezhana I.; Bhowmich, Aklant K.; Dell, Zachary R.; Pandian, Arun; Stanic, Milos; Stellingwerf, Robert F.; Swisher, Nora C.

    2017-11-01

    We focus on classical problem of dependence on the initial conditions of the initial growth-rate of strong shocks driven Richtmyer-Meshkov instability (RMI) by developing a novel empirical model and by employing rigorous theories and Smoothed Particle Hydrodynamics (SPH) simulations to describe the simulations data with statistical confidence in a broad parameter regime. For given values of the shock strength, fluids' density ratio, and wavelength of the initial perturbation of the fluid interface, we find the maximum value of RMI initial growth-rate, the corresponding amplitude scale of the initial perturbation, and the maximum fraction of interfacial energy. This amplitude scale is independent of the shock strength and density ratio, and is characteristic quantity of RMI dynamics. We discover the exponential decay of the ratio of the initial and linear growth-rates of RMI with the initial perturbation amplitude that excellently agrees with available data. National Science Foundation, USA.

  10. Allometries of maximum growth rate versus body mass at maximum growth indicate that non-avian dinosaurs had growth rates typical of fast growing ectothermic sauropsids.

    PubMed

    Werner, Jan; Griebeler, Eva Maria

    2014-01-01

    We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case's study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either of the two thermoregulation strategies for studied dinosaurs.

  11. Allometries of Maximum Growth Rate versus Body Mass at Maximum Growth Indicate That Non-Avian Dinosaurs Had Growth Rates Typical of Fast Growing Ectothermic Sauropsids

    PubMed Central

    Werner, Jan; Griebeler, Eva Maria

    2014-01-01

    We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case’s study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either of the two thermoregulation strategies for studied dinosaurs. PMID:24586409

  12. Proton velocity ring-driven instabilities and their dependence on the ring speed: Linear theory

    NASA Astrophysics Data System (ADS)

    Min, Kyungguk; Liu, Kaijun; Gary, S. Peter

    2017-08-01

    Linear dispersion theory is used to study the Alfvén-cyclotron, mirror and ion Bernstein instabilities driven by a tenuous (1%) warm proton ring velocity distribution with a ring speed, vr, varying between 2vA and 10vA, where vA is the Alfvén speed. Relatively cool background protons and electrons are assumed. The modeled ring velocity distributions are unstable to both the Alfvén-cyclotron and ion Bernstein instabilities whose maximum growth rates are roughly a linear function of the ring speed. The mirror mode, which has real frequency ωr=0, becomes the fastest growing mode for sufficiently large vr/vA. The mirror and Bernstein instabilities have maximum growth at propagation oblique to the background magnetic field and become more field-aligned with an increasing ring speed. Considering its largest growth rate, the mirror mode, in addition to the Alfvén-cyclotron mode, can cause pitch angle diffusion of the ring protons when the ring speed becomes sufficiently large. Moreover, because the parallel phase speed, v∥ph, becomes sufficiently small relative to vr, the low-frequency Bernstein waves can also aid the pitch angle scattering of the ring protons for large vr. Potential implications of including these two instabilities at oblique propagation on heliospheric pickup ion dynamics are discussed.

  13. A modified ATI technique for nowcasting convective rain volumes over areas. [area-time integrals

    NASA Technical Reports Server (NTRS)

    Makarau, Amos; Johnson, L. Ronald; Doneaud, Andre A.

    1988-01-01

    This paper explores the applicability of the area-time-integral (ATI) technique for the estimation of the growth portion only of a convective storm (while the rain volume is computed using the entire life history of the event) and for nowcasting the total rain volume of a convective system at the stage of its maximum development. For these purposes, the ATIs were computed from the digital radar data (for 1981-1982) from the North Dakota Cloud Modification Project, using the maximum echo area (ATIA) no less than 25 dBz, the maximum reflectivity, and the maximum echo height as the end of the growth portion of the convective event. Linear regression analysis demonstrated that correlations between total rain volume or the maximum rain volume versus ATIA were the strongest. The uncertainties obtained were comparable to the uncertainties which typically occur in rain volume estimates obtained from radar data employing Z-R conversion followed by space and time integration. This demonstrates that the total rain volume of a storm can be nowcasted at its maximum stage of development.

  14. Polishing of anaerobic secondary effluent by Chlorella vulgaris under low light intensity.

    PubMed

    Cheng, Tuoyuan; Wei, Chun-Hai; Leiknes, TorOve

    2017-10-01

    To investigate anaerobic secondary effluent polishing by microalgae (Chlorella vulgaris) under low light intensity (14μmol/m 2 /s), bubbling column reactors were operated in batches of 8 d with initial ammonium nitrogen 10-50mg/L, initial phosphate phosphorus 2-10mg/L and microalgal seed 40mg/L. Maximum microalgal biomass and minimum generation time were 370.9mg/L and 2.5d, respectively. Nitrogen removal (maximum 99.6%) was mainly attributed to microalgal growth rate, while phosphorus removal (maximum 49.8%) was related to microalgal growth rate, cell phosphorus content (maximum 1.5%) and initial nutrients ratio. Dissolved microalgal organics release in terms of chemical oxygen demand (maximum 63.2mg/L) and hexane extractable material (i.e., oil and grease, maximum 8.5mg/L) was firstly reported and mainly affected by nitrogen deficiency and deteriorated effluent quality. Ultrafiltration critical flux (16.6-39.5L/m 2 /h) showed negative linear correlation to microalgal biomass. Anaerobic membrane bioreactor effluent polishing showed similar results with slight inhibition to synthetic effluent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Body growth and life history in wild mountain gorillas (Gorilla beringei beringei) from Volcanoes National Park, Rwanda.

    PubMed

    Galbany, Jordi; Abavandimwe, Didier; Vakiener, Meagan; Eckardt, Winnie; Mudakikwa, Antoine; Ndagijimana, Felix; Stoinski, Tara S; McFarlin, Shannon C

    2017-07-01

    Great apes show considerable diversity in socioecology and life history, but knowledge of their physical growth in natural settings is scarce. We characterized linear body size growth in wild mountain gorillas from Volcanoes National Park, Rwanda, a population distinguished by its extreme folivory and accelerated life histories. In 131 individuals (0.09-35.26 years), we used non-invasive parallel laser photogrammetry to measure body length, back width, arm length and two head dimensions. Nonparametric LOESS regression was used to characterize cross-sectional distance and velocity growth curves for males and females, and consider links with key life history milestones. Sex differences became evident between 8.5 and 10.0 years of age. Thereafter, female growth velocities declined, while males showed increased growth velocities until 10.0-14.5 years across dimensions. Body dimensions varied in growth; females and males reached 98% of maximum body length at 11.7 and 13.1 years, respectively. Females attained 95.3% of maximum body length by mean age at first birth. Neonates were 31% of maternal size, and doubled in size by mean weaning age. Males reached maximum body and arm length and back width before emigration, but experienced continued growth in head dimensions. While comparable data are scarce, our findings provide preliminary support for the prediction that mountain gorillas reach maximum body size at earlier ages compared to more frugivorous western gorillas. Data from other wild populations are needed to better understand comparative great ape development, and investigate links between trajectories of physical, behavioral, and reproductive maturation. © 2017 Wiley Periodicals, Inc.

  16. Linear analysis of ion cyclotron interaction in a multicomponent plasma

    NASA Technical Reports Server (NTRS)

    Gendrin, R.; Ashour-Abdalla, M.; Omura, Y.; Quest, K.

    1984-01-01

    The mechanism by which hot anisotropic protons generate electromagnetic ion cyclotron waves in a plasma containing cold H(+) and He(+) ions is quantitatively studied. Linear growth rates (both temporal and spatial) are computed for different plasma parameters: concentration, temperature,and anisotropy of cold He(+) ions and of hot protons. It is shown that: (1) for parameters typical of the geostationary altitude the maximum growth rates are not drastically changed when a small proportion (about 1 to 20 percent) of cold He(+) ions is present; (2) because of the important cyclotron absorption by thermal He(+) ions in the vicinity of the He(+) gyrofrequency, waves which could resonate with the bulk of the He(+) distribution cannot be generated. Therefore quasi-linear effects, in a homogeneous medium at least, cannot be responsible for the heating of He(+) ions which is often observed in conjunction with ion cyclotron waves. The variation of growth rate versus wave number is also studied for its importance in selecting suitable parameters in numerical simulation experiments.

  17. Mechanical model for filament buckling and growth by phase ordering.

    PubMed

    Rey, Alejandro D; Abukhdeir, Nasser M

    2008-02-05

    A mechanical model of open filament shape and growth driven by phase ordering is formulated. For a given phase-ordering driving force, the model output is the filament shape evolution and the filament end-point kinematics. The linearized model for the slope of the filament is the Cahn-Hilliard model of spinodal decomposition, where the buckling corresponds to concentration fluctuations. Two modes are predicted: (i) sequential growth and buckling and (ii) simultaneous buckling and growth. The relation among the maximum buckling rate, filament tension, and matrix viscosity is given. These results contribute to ongoing work in smectic A filament buckling.

  18. Wavelength selection in injection-driven Hele-Shaw flows: A maximum amplitude criterion

    NASA Astrophysics Data System (ADS)

    Dias, Eduardo; Miranda, Jose

    2013-11-01

    As in most interfacial flow problems, the standard theoretical procedure to establish wavelength selection in the viscous fingering instability is to maximize the linear growth rate. However, there are important discrepancies between previous theoretical predictions and existing experimental data. In this work we perform a linear stability analysis of the radial Hele-Shaw flow system that takes into account the combined action of viscous normal stresses and wetting effects. Most importantly, we introduce an alternative selection criterion for which the selected wavelength is determined by the maximum of the interfacial perturbation amplitude. The effectiveness of such a criterion is substantiated by the significantly improved agreement between theory and experiments. We thank CNPq (Brazilian Sponsor) for financial support.

  19. Linear and nonlinear properties of the ULF waves driven by ring-beam distribution functions

    NASA Technical Reports Server (NTRS)

    Killen, K.; Omidi, N.; Krauss-Varban, D.; Karimabadi, H.

    1995-01-01

    The problem of the exitation of obliquely propagating magnetosonic waves which can steepen up (also known as shocklets) is considered. Shocklets have been observed upstream of the Earth's bow shock and at comets Giacobini-Zinner and Grigg-Skjellerup. Linear theory as well as two-dimensional (2-D) hybrid (fluid electrons, particle ions) simulations are used to determine the properties of waves generated by ring-beam velocity distributions in great detail. The effects of both proton and oxygen ring-beams are considered. The study of instabilities excited by a proton ring-beam is relevant to the region upstream of the Earth's bow shock, whereas the oxygen ring-beam corresponds to cometary ions picked up by the solar wind. Linear theory has shown that for a ring-beam, four instabilities are found, one on the nonresonant mode, one on the Alfven mode, and two along the magnetosonic/whistler branch. The relative growth rate of these instabilities is a sensitive function of parameters. Although one of the magnetosonic instabilities has maximum growth along the magnetic field, the other has maximum growth in oblique directions. We have studied the competition of these instabilities in the nonlinear regime using 2-D simulations. As in the linear limit, the nonlinear results are a function of beam density and distribution function. By performing the simulations as both initial value and driven systems, we have found that the outcome of the simulations can vary, suggesting that the latter type simulations is needed to address the observations. A general conclusion of the simulation results is that field-aligned beams do not result in the formation of shocklets, whereas ring-beam distributions can.

  20. Scalings of Alfvén-cyclotron and ion Bernstein instabilities on temperature anisotropy of a ring-like velocity distribution in the inner magnetosphere

    DOE PAGES

    Min, Kyungguk; Liu, Kaijun; Gary, S. Peter

    2016-03-18

    Here, a ring-like proton velocity distribution with ∂f p(v ⊥)/∂v ⊥>0 and which is sufficiently anisotropic can excite two distinct types of growing modes in the inner magnetosphere: ion Bernstein instabilities with multiple ion cyclotron harmonics and quasi-perpendicular propagation and an Alfvén-cyclotron instability at frequencies below the proton cyclotron frequency and quasi-parallel propagation. Recent particle-in-cell simulations have demonstrated that even if the maximum linear growth rate of the latter instability is smaller than the corresponding growth of the former instability, the saturation levels of the fluctuating magnetic fields can be greater for the Alfvén-cyclotron instability than for the ion Bernsteinmore » instabilities. In this study, linear dispersion theory and two-dimensional particle-in-cell simulations are used to examine scalings of the linear growth rate and saturation level of the two types of growing modes as functions of the temperature anisotropy T ⊥/T || for a general ring-like proton distribution with a fixed ring speed of 2v A, where v A is the Alfvén speed. For the proton distribution parameters chosen, the maximum linear theory growth rate of the Alfvén-cyclotron waves is smaller than that of the fastest-growing Bernstein mode for the wide range of anisotropies (1≤T ⊥/T ||≤7) considered here. Yet the corresponding particle-in-cell simulations yield a higher saturation level of the fluctuating magnetic fields for the Alfvén-cyclotron instability than for the Bernstein modes as long as inline image. Since fast magnetosonic waves with ion Bernstein instability properties observed in the magnetosphere are often not accompanied by electromagnetic ion cyclotron waves, the results of the present study indicate that the ring-like proton distributions responsible for the excitation of these fast magnetosonic waves should not be very anisotropic.« less

  1. Climate-simulated raceway pond culturing: quantifying the maximum achievable annual biomass productivity of Chlorella sorokiniana in the contiguous USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huesemann, M.; Chavis, A.; Edmundson, S.

    Chlorella sorokiniana (DOE 1412) emerged as one of the most promising microalgae strains from the NAABB consortium project, with a remarkable doubling time under optimal conditions of 2.57 hr-1. However, its maximum achievable annual biomass productivity in outdoor ponds in the contiguous United States remained unknown. In order to address this knowledge gap, this alga was cultured in indoor LED-lighted and temperature-controlled raceways in nutrient replete freshwater (BG-11) medium at pH 7 under conditions simulating the daily sunlight intensity and water temperature fluctuations during three seasons in Southern Florida, an optimal outdoor pond culture location for this organism identified bymore » biomass growth modeling. Prior strain characterization indicated that the average maximum specific growth rate (µmax) at 36 ºC declined continuously with pH, with µmax corresponding to 5.92, 5.83, 4.89, and 4.21 day-1 at pH 6, 7, 8, and 9, respectively. In addition, the maximum specific growth rate declined nearly linearly with increasing salinity until no growth was observed above 35 g/L NaCl. In the climate-simulated culturing studies, the volumetric ash-free dry weight-based biomass productivities during the linear growth phase were 57, 69, and 97 mg/L-day for 30-year average light and temperature simulations for January (winter), March (spring), and July (summer), respectively, which corresponds to average areal productivities of 11.6, 14.1, and 19.9 g/m2-day at a constant pond depth of 20.5 cm. The photosynthetic efficiencies (PAR) in the three climate-simulated pond culturing experiments ranged from 4.1 to 5.1%. The annual biomass productivity was estimated as ca. 15 g/m2-day, nearly double the U.S. Department of Energy (DOE) 2015 State of Technology annual cultivation productivity of 8.5 g/m2-day, but this is still significantly below the projected 2022 target of ca. 25 g/m2-day (U.S. DOE, 2016) for economic microalgal biofuel production, indicating the need for additional research in strain biology and system engineering.« less

  2. Transient growth in Taylor-Couette flow of a Bingham fluid.

    PubMed

    Chen, Cheng; Wan, Zhen-Hua; Zhang, Wei-Guo

    2015-04-01

    In this paper we investigate linear transient growth of perturbation energy in Taylor-Couette flow of a Bingham fluid. The effects of yield stress on transient growth and the structure of the optimal perturbation are mainly considered for both the wide-gap case and the narrow-gap case. For this purpose we complement the linear stability of this flow subjected to axisymmetric disturbances, presented by Landry et al. [M. P. Landry, I. A. Frigaard, and D. M. Martinez, J. Fluid Mech. 560, 321 (2006)], with the transient growth characteristics of both axisymmetric and nonaxisymmetric perturbations. We obtain the variations of the relative amplitude of optimal perturbation with yield stress, analyze the roles played by the Coriolis force and the additional stress in the evolution of meridional perturbations for the axisymmetric modes, and give the explanations for the possible change of the optimal azimuthal mode (featured by the maximum optimal energy growth G(opt)) with yield stress. These results might help us in the understanding of the effect of fluid rheology on transient growth mechanism in vortex flows.

  3. Exponential growth and Gaussian—like fluctuations of solutions of stochastic differential equations with maximum functionals

    NASA Astrophysics Data System (ADS)

    Appleby, J. A. D.; Wu, H.

    2008-11-01

    In this paper we consider functional differential equations subjected to either instantaneous state-dependent noise, or to a white noise perturbation. The drift of the equations depend linearly on the current value and on the maximum of the solution. The functional term always provides positive feedback, while the instantaneous term can be mean-reverting or can exhibit positive feedback. We show in the white noise case that if the instantaneous term is mean reverting and dominates the history term, then solutions are recurrent, and upper bounds on the a.s. growth rate of the partial maxima of the solution can be found. When the instantaneous term is weaker, or is of positive feedback type, we determine necessary and sufficient conditions on the diffusion coefficient which ensure the exact exponential growth of solutions. An application of these results to an inefficient financial market populated by reference traders and speculators is given, in which the difference between the current instantaneous returns and maximum of the returns over the last few time units is used to determine trading strategies.

  4. Optimal Growth in Hypersonic Boundary Layers

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan

    2016-01-01

    The linear form of the parabolized linear stability equations is used in a variational approach to extend the previous body of results for the optimal, nonmodal disturbance growth in boundary-layer flows. This paper investigates the optimal growth characteristics in the hypersonic Mach number regime without any high-enthalpy effects. The influence of wall cooling is studied, with particular emphasis on the role of the initial disturbance location and the value of the spanwise wave number that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary-layer equations, mean flow solutions based on the full Navier-Stokes equations are used in select cases to help account for the viscous- inviscid interaction near the leading edge of the plate and for the weak shock wave emanating from that region. Using the full Navier-Stokes mean flow is shown to result in further reduction with Mach number in the magnitude of optimal growth relative to the predictions based on the self-similar approximation to the base flow.

  5. Transient Growth Analysis of Compressible Boundary Layers with Parabolized Stability Equations

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan

    2016-01-01

    The linear form of parabolized linear stability equations (PSE) is used in a variational approach to extend the previous body of results for the optimal, non-modal disturbance growth in boundary layer flows. This methodology includes the non-parallel effects associated with the spatial development of boundary layer flows. As noted in literature, the optimal initial disturbances correspond to steady counter-rotating stream-wise vortices, which subsequently lead to the formation of stream-wise-elongated structures, i.e., streaks, via a lift-up effect. The parameter space for optimal growth is extended to the hypersonic Mach number regime without any high enthalpy effects, and the effect of wall cooling is studied with particular emphasis on the role of the initial disturbance location and the value of the span-wise wavenumber that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary layer equations, mean flow solutions based on the full Navier-Stokes (NS) equations are used in select cases to help account for the viscous-inviscid interaction near the leading edge of the plate and also for the weak shock wave emanating from that region. These differences in the base flow lead to an increasing reduction with Mach number in the magnitude of optimal growth relative to the predictions based on self-similar mean-flow approximation. Finally, the maximum optimal energy gain for the favorable pressure gradient boundary layer near a planar stagnation point is found to be substantially weaker than that in a zero pressure gradient Blasius boundary layer.

  6. Assessing non-linear variation of temperature and precipitation for different growth periods of maize and their impacts on phenology in the Midwest of Jilin Province, China

    NASA Astrophysics Data System (ADS)

    Guo, Enliang; Zhang, Jiquan; Wang, Yongfang; Alu, Si; Wang, Rui; Li, Danjun; Ha, Si

    2018-05-01

    In the past two decades, the regional climate in China has undergone significant change, resulting in crop yield reduction and complete failure. The goal of this study is to detect the variation of temperature and precipitation for different growth periods of maize and assess their impact on phenology. The daily meteorological data in the Midwest of Jilin Province during 1960-2014 were used in the study. The ensemble empirical mode decomposition method was adopted to analyze the non-linear trend and fluctuation in temperature and precipitation, and the sensitivity of the length of the maize growth period to temperature and precipitation was analyzed by the wavelet cross-transformation method. The results show that the trends of temperature and precipitation change are non-linear for different growth periods of maize, and the average temperature in the sowing-jointing stage was different from that in the other growth stages, showing a slight decrease trend, while the variation amplitude of maximum temperature is smaller than that of the minimum temperature. This indicates that the temperature difference between day and night shows a gradually decreasing trend. Precipitation in the growth period also showed a decreasing non-linear trend, while the inter-annual variability with period of quasi-3-year and quasi-6-year dominated the variation of temperature and precipitation. The whole growth period was shortened by 10.7 days, and the sowing date was advanced by approximately 11 days. We also found that there was a significant resonance period among temperature, precipitation, and phenology. Overall, a negative correlation between phenology and temperature is evident, while a positive correlation with precipitation is exhibited. The results illustrate that the climate suitability for maize has reduced over the past decades.

  7. Growth characteristics of aquatic macrophytes cultured in nutrient-enriched water. I. Water hyacinth, water lettuce, and pennywort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, K.R.; DeBusk, W.F.

    Seasonal growth characteristics and biomass yield potential of 3 floating aquatic macrophytes cultured in nutrient nonlimiting conditions were evaluated in central Florida's climatic conditions. Growth cycle (growth curve) of the plants was found to be complete when maximum plant density was reached and no additional increase in growth was recorded. Biomass yield per unit area and time was found to be maximum in the linear phase of the growth curve; plant density in this phase was defined as ''operational plant density,'' a density range in which a biomass production system is operated to obtain the highest possible yields. Biomass yieldsmore » were found to be 106, 72, and 41 t(dry wt) ha/sup -1/yr/sup -1/, respectively, for water hyacinth (Eichhornia crassipes), water lettuce (Pistia stratiotes), and pennywort (Hydrocotyle umbellata). Operational plant density was found to be in the range of 500-2000 g dry wt m/sup -2/ for water hyacinth, 200-700 g dry wt m/sup -2/ for water lettuce, and 250-650 g dry wt/sup -2/ for pennywort. Seasonality was observed in growth rates but not in operational plant density. Specific growth rate (% increase per day) was found to maximum at low plant densities and decreased as the plant density increased. Results show that water hyacinth and water lettuce can be successfully grown for a period of about 10 mo, while pennywort, a cool season plant, can be integrated into water hyacinth/water lettuce biomass production system to obtain high yields in the winter.« less

  8. Growth characteristics of aquatic macrophytes cultured in nutrient-enriched water. I. Water hyacinth, water lettuce, and pennywort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, K.R.; DeBusk, W.F.

    Seasonal growth characteristics and biomass yield potential of 3 floating aquatic macrophytes cultured in nutrient nonlimiting conditions were evaluated in central Florida's climatic conditions. Growth cycle (growth curve) of the plants was found to be complete when maximum plant density was reached and no additional increase in growth was recorded. Biomass yield per unit area and time was found to be maximum in the linear phase of the growth curve; plant density in this phase was defined as operational plant density, a density range in which a biomass production system is operated to obtain the highest possible yields. Biomass yieldsmore » were found to be 106, 72, and 41 t (dry wt) ha/sup -1/ yr/sup -1/, respectively, for water hyacinth (Eichhornia crassipes), water lettuce (Pistia stratiotes), and pennywort (Hydrocotyle umbellata). Operational plant density was found to be in the range of 500-2,000 g dry wt m/sup -2/ for water hyacinth, 200-700 g dry wt m/sup -2/ for water lettuce, and 250-650 g dry wt m/sup -2/ for pennywort. Seasonality was observed in growth rates but not in operational plant density. Specific growth rate (% increase per day) was found to maximum at low plant densities and decreased as the plant density increased. Results show that water hyacinth and water lettuce can be successfully grown for a period of about 10 mo, while pennywort, a cool season plant, can be integrated into water hyacinth/water lettuce biomass production system to obtain high yields in the winter.« less

  9. Asymptotic analysis of noisy fitness maximization, applied to metabolism & growth

    NASA Astrophysics Data System (ADS)

    De Martino, Daniele; Masoero, Davide

    2016-12-01

    We consider a population dynamics model coupling cell growth to a diffusion in the space of metabolic phenotypes as it can be obtained from realistic constraints-based modeling. In the asymptotic regime of slow diffusion, that coincides with the relevant experimental range, the resulting non-linear Fokker-Planck equation is solved for the steady state in the WKB approximation that maps it into the ground state of a quantum particle in an Airy potential plus a centrifugal term. We retrieve scaling laws for growth rate fluctuations and time response with respect to the distance from the maximum growth rate suggesting that suboptimal populations can have a faster response to perturbations.

  10. Yellow mealworm larvae (Tenebrio molitor) inclusion in diets for male broiler chickens: effects on growth performance, gut morphology, and histological findings.

    PubMed

    Biasato, I; Gasco, L; De Marco, M; Renna, M; Rotolo, L; Dabbou, S; Capucchio, M T; Biasibetti, E; Tarantola, M; Sterpone, L; Cavallarin, L; Gai, F; Pozzo, L; Bergagna, S; Dezzutto, D; Zoccarato, I; Schiavone, A

    2018-02-01

    This study evaluated the effects of Tenebrio molitor (TM) larvae meal inclusion in diets for broilers. A total of 160 male broiler chicks (Ross 708) at one-day of age were randomly allotted to four dietary treatments: a control (C) group and three TM groups, in which TM meal was included at 50 (TM5), 100 (TM10), and 150 (TM15) g/kg, respectively. The experimental diets were isonitrogenous and isoenergetic. Each group consisted of five pens as replicates (8 chicks/pen). After the evaluation of growth performance and haematochemical parameters, the animals were slaughtered at 53 days and carcass traits were recorded. Morphometric investigations were performed on duodenum, jejunum, and ileum and histopathological alterations were assessed for liver, spleen, thymus, bursa of Fabricius, kidney, and heart. The live weight (LW) showed a linear (12 and 25 days, P < 0.001 and P < 0.05, maximum with TM15 and TM10) and quadratic (53 days, P < 0.05, maximum with TM5) response to dietary TM meal inclusion. A linear (1 to 12 and 12 to 25 days, P < 0.001, maximum with TM15) and quadratic (12 to 25 days, P = 0.001, maximum with TM15) effect was also observed for the daily feed intake (DFI). The feed conversion ratio (FCR) showed a linear response (25 to 53 and 1 to 53 days, P = 0.001 and P < 0.05, maximum with TM15). Haematological and serum biochemical traits, carcass traits and histopathological findings were not affected by dietary TM meal inclusion (P > 0.05). TM15 birds showed lower villus height (P < 0.05), higher crypt depth (P < 0.05), and lower villus height to crypt depth ratio (P = 0.001) compared with C and TM5. In conclusion, increasing levels of dietary TM meal inclusion in male broiler chickens may improve body weight and feed intake, but negatively affect feed efficiency and intestinal morphology, thus suggesting that low levels may be more suitable. However, no effect on haematochemical parameters, carcass traits, and histological findings were observed in relation to TM meal utilization. © 2017 Poultry Science Association Inc.

  11. Real-time spectro-ellipsometric approach to distinguish between two-dimensional Ge layer growth and Ge dot formation on SiO2 substrates

    NASA Astrophysics Data System (ADS)

    Akazawa, Housei

    2018-04-01

    Morphological evolution of Ge layers on SiO2 substrates grown by photo-excited chemical vapor deposition from GeH4 was monitored in real time by recording (Ψ, Δ) angles of spectroscopic ellipsometry and ex-situ analyzed by atomic force microscopy (AFM). Distinct Ψ-Δ trajectory shapes were demonstrated to discriminate the two-dimensional (2D) and three-dimensional (3D) growth modes. While the trajectory of 2D growth is characterized by a one-turn spiral, that of 3D growth consisted of three sections corresponding to initial wetting of the SiO2 surface, creation of nucleation centers, and dot growth. The critical point where the system turns into 2D or 3D growth can be in situ identified in terms of the directions of the Ψ-Δ trajectories. AFM images revealed characteristic changes in the microstructure, including self-assembling dots and dots merging with one another. While the root-mean-square surface roughness increased linearly against film thickness, the maximum peak-to-valley height deviated once from linear dependence and later returned back to it, which reflected coarsening of dots and embedding of valleys between dots.

  12. Long-wave model for strongly anisotropic growth of a crystal step.

    PubMed

    Khenner, Mikhail

    2013-08-01

    A continuum model for the dynamics of a single step with the strongly anisotropic line energy is formulated and analyzed. The step grows by attachment of adatoms from the lower terrace, onto which atoms adsorb from a vapor phase or from a molecular beam, and the desorption is nonnegligible (the "one-sided" model). Via a multiscale expansion, we derived a long-wave, strongly nonlinear, and strongly anisotropic evolution PDE for the step profile. Written in terms of the step slope, the PDE can be represented in a form similar to a convective Cahn-Hilliard equation. We performed the linear stability analysis and computed the nonlinear dynamics. Linear stability depends on whether the stiffness is minimum or maximum in the direction of the step growth. It also depends nontrivially on the combination of the anisotropy strength parameter and the atomic flux from the terrace to the step. Computations show formation and coarsening of a hill-and-valley structure superimposed onto a long-wavelength profile, which independently coarsens. Coarsening laws for the hill-and-valley structure are computed for two principal orientations of a maximum step stiffness, the increasing anisotropy strength, and the varying atomic flux.

  13. Optimum Suction Distribution for Transition Control

    NASA Technical Reports Server (NTRS)

    Balakumar, P.; Hall, P.

    1996-01-01

    The optimum suction distribution which gives the longest laminar region for a given total suction is computed. The goal here is to provide the designer with a method to find the best suction distribution subject to some overall constraint applied to the suction. We formulate the problem using the Lagrangian multiplier method with constraints. The resulting non-linear system of equations is solved using the Newton-Raphson technique. The computations are performed for a Blasius boundary layer on a flat-plate and crossflow cases. For the Blasius boundary layer, the optimum suction distribution peaks upstream of the maximum growth rate region and remains flat in the middle before it decreases to zero at the end of the transition point. For the stationary and travelling crossflow instability, the optimum suction peaks upstream of the maximum growth rate region and decreases gradually to zero.

  14. Standardized ileal digestible valine:lysine dose response effects in 25- to 45-kg pigs under commercial conditions.

    PubMed

    Gonçalves, Marcio A D; Tokach, Mike D; Dritz, Steve S; Bello, Nora M; Touchette, Kevin J; Goodband, Robert D; DeRouchey, Joel M; Woodworth, Jason C

    2018-03-06

    Two experiments were conducted to estimate the standardized ileal digestible valine:lysine (SID Val:Lys) dose response effects in 25- to 45-kg pigs under commercial conditions. In experiment 1, a total of 1,134 gilts (PIC 337 × 1050), initially 31.2 kg ± 2.0 kg body weight (BW; mean ± SD) were used in a 19-d growth trial with 27 pigs per pen and seven pens per treatment. In experiment 2, a total of 2,100 gilts (PIC 327 × 1050), initially 25.4 ± 1.9 kg BW were used in a 22-d growth trial with 25 pigs per pen and 12 pens per treatment. Treatments were blocked by initial BW in a randomized complete block design. In experiment 1, there were a total of six dietary treatments with SID Val at 59.0, 62.5, 65.9, 69.6, 73.0, and 75.5% of Lys and for experiment 2 there were a total of seven dietary treatments with SID Val at 57.0, 60.6, 63.9, 67.5, 71.1, 74.4, and 78.0% of Lys. Experimental diets were formulated to ensure that Lys was the second limiting amino acid throughout the experiments. Initially, linear mixed models were fitted to data from each experiment. Then, data from the two experiments were combined to estimate dose-responses using a broken-line linear ascending (BLL) model, broken-line quadratic ascending (BLQ) model, or quadratic polynomial (QP). Model fit was compared using Bayesian information criterion (BIC). In experiment 1, ADG increased linearly (P = 0.009) with increasing SID Val:Lys with no apparent significant impact on G:F. In experiment 2, ADG and ADFI increased in a quadratic manner (P < 0.002) with increasing SID Val:Lys whereas G:F increased linearly (P < 0.001). Overall, the best-fitting model for ADG was a QP, whereby the maximum mean ADG was estimated at a 73.0% (95% CI: [69.5, >78.0%]) SID Val:Lys. For G:F, the overall best-fitting model was a QP with maximum estimated mean G:F at 69.0% (95% CI: [64.0, >78.0]) SID Val:Lys ratio. However, 99% of the maximum mean performance for ADG and G:F were achieved at, 68% and 63% SID Val:Lys ratio, respectively. Therefore, the SID Val:Lys requirement ranged from73.0% for maximum ADG to 63.2% SID Val:Lys to achieve 99% of maximum G:F in 25- to 45-kg BW pigs.

  15. Fate of Vibrio parahaemolyticus on shrimp after acidic electrolyzed water treatment.

    PubMed

    Wang, Jing Jing; Sun, Wen Shuo; Jin, Meng Tong; Liu, Hai Quan; Zhang, Weijia; Sun, Xiao Hong; Pan, Ying Jie; Zhao, Yong

    2014-06-02

    The objective of this study was to investigate the fate of Vibrio parahaemolyticus on shrimp after acidic electrolyzed water (AEW) treatment during storage. Shrimp, inoculated with a cocktail of four strains of V. parahaemolyticus, were stored at different temperatures (4-30 °C) after AEW treatment. Experimental data were fitted to modified Gompertz and Log-linear models. The fate of V. parahaemolyticus was determined based on the growth and survival kinetics parameters (lag time, λ; the maximum growth rate, μmax; the maximum growth concentration, D; the inactivation value, K) depending on the respective storage conditions. Moreover, real-time PCR was employed to study the population dynamics of this pathogen during the refrigeration temperature storage (10, 7, 4 °C). The results showed that AEW treatment could markedly (p<0.05) decrease the growth rate (μmax) and extend the lag time (λ) during the post-treatment storage at 30, 25, 20 and 15 °C, while it did not present a capability to lower the maximum growth concentration (D). AEW treatment increased the sensitivity of V. parahaemolyticus to refrigeration temperatures, indicated by a higher (p<0.05) inactivation value (K) of V. parahaemolyticus, especially for 10 °C storage. The results also revealed that AEW treatment could completely suppress the proliferation of V. parahaemolyticus in combination with refrigeration temperature. Based on above analysis, the present study demonstrates the potential of AEW in growth inhibition or death acceleration of V. parahaemolyticus on seafood, hence to greatly reduce the risk of illness caused by this pathogen during post-treatment storage. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Phosphorus-zinc interactive effects on growth by Selenastrum capricornutum (chlorophyta)

    USGS Publications Warehouse

    Kuwabara, J.S.

    1985-01-01

    Culturing experiments in chemically defined growth media were conducted to observe possible Zn and P interactions on Selenastrum capricornutum Printz growth indexes. Elevated Zn concentrations (7.5 ?? 10-8 and 1.5 ?? 10-7 M [Zn2+]) were highly detrimental to algal growth, affecting lag, exponential, and stationary growth phases. P behaved as a yield-limiting nutrient with maximum cell densities increasing linearly with total P. This yield limitation was intensified at elevated Zn concentrations. Although calculated cellular phosphorus concentrations increased markedly with Zn ion activity, elevated Zn concentrations had no apparent effect on rates of phosphorus uptake estimated for Selenastrum during exponential growth. Results indicated that P-Zn interactions were significant in describing Selenastrum cell yield results and are consistent with previous Zn studies on chlorophytes. These P-Zn interactions and the observed inhibitory growth effects of submicromolar Zn concentrations suggest that in nature an apparent P yield-limiting condition may result from elevated Zn concentrations.

  17. Duration of shoot elongation in Scots pine varies within the crown and between years.

    PubMed

    Schiestl-Aalto, Pauliina; Nikinmaa, Eero; Mäkelä, Annikki

    2013-10-01

    Shoot elongation in boreal and temperate trees typically follows a sigmoid pattern where the onset and cessation of growth are related to accumulated effective temperature (thermal time). Previous studies on leader shoots suggest that while the maximum daily growth rate depends on the availability of resources to the shoot, the duration of the growth period may be an adaptation to long-term temperature conditions. However, other results indicate that the growth period may be longer in faster growing lateral shoots with higher availability of resources. This study investigates the interactions between the rate of elongation and the duration of the growth period in units of thermal time in lateral shoots of Scots pine (Pinus sylvestris). Length development of 202 lateral shoots were measured approximately three times per week during seven growing seasons in 2-5 trees per year in a mature stand and in three trees during one growing season in a sapling stand. A dynamic shoot growth model was adapted for the analysis to determine (1) the maximum growth rate and (2) the thermal time reached at growth completion. The relationship between those two parameters and its variation between trees and years was analysed using linear mixed models. The shoots with higher maximum growth rate within a crown continued to grow for a longer period in any one year. Higher July-August temperature of the previous summer implied a higher requirement of thermal time for growth completion. The results provide evidence that the requirement of thermal time for completion of lateral shoot extension in Scots pine may interact with resource availability to the shoot both from year to year and among shoots in a crown each year. If growing season temperatures rise in the future, this will affect not only the rate of shoot growth but its duration also.

  18. Transient growth analysis of the flow past a circular cylinder

    NASA Astrophysics Data System (ADS)

    Abdessemed, N.; Sharma, A. S.; Sherwin, S. J.; Theofilis, V.

    2009-04-01

    We apply direct transient growth analysis in complex geometries to investigate its role in the primary and secondary bifurcation/transition process of the flow past a circular cylinder. The methodology is based on the singular value decomposition of the Navier-Stokes evolution operator linearized about a two-dimensional steady or periodic state which leads to the optimal growth modes. Linearly stable and unstable steady flow at Re=45 and 50 is considered first, where the analysis demonstrates that strong two-dimensional transient growth is observed with energy amplifications of order of 103 at U∞τ/D≈30. Transient growth at Re=50 promotes the linear instability which ultimately saturates into the well known von-Kármán street. Subsequently we consider the transient growth upon the time-periodic base state corresponding to the von-Kármán street at Re=200 and 300. Depending upon the spanwise wavenumber the flow at these Reynolds numbers are linearly unstable due to the so-called mode A and B instabilities. Once again energy amplifications of order of 103 are observed over a time interval of τ /T=2, where T is the time period of the base flow shedding. In all cases the maximum energy of the optimal initial conditions are located within a diameter of the cylinder in contrast to the spatial distribution of the unstable eigenmodes which extend far into the downstream wake. It is therefore reasonable to consider the analysis as presenting an accelerator to the existing modal mechanism. The rapid amplification of the optimal growth modes highlights their importance in the transition process for flow past circular cylinder, particularly when comparing with experimental results where these types of convective instability mechanisms are likely to be activated. The spatial localization, close to the cylinder, of the optimal initial condition may be significant when considering strategies to promote or control shedding.

  19. Modeling pure culture heterotrophic production of polyhydroxybutyrate (PHB).

    PubMed

    Mozumder, Md Salatul Islam; Goormachtigh, Laurens; Garcia-Gonzalez, Linsey; De Wever, Heleen; Volcke, Eveline I P

    2014-03-01

    In this contribution a mechanistic model describing the production of polyhydroxybutyrate (PHB) through pure-culture fermentation was developed, calibrated and validated for two different substrates, namely glucose and waste glycerol. In both cases, non-growth-associated PHB production was triggered by applying nitrogen limitation. The occurrence of some growth-associated PHB production besides non-growth-associated PHB production was demonstrated, although it is inhibited in the presence of nitrogen. Other phenomena observed experimentally and described by the model included biomass growth on PHB and non-linear product inhibition of PHB production. The accumulated impurities from the waste substrate negatively affected the obtained maximum PHB content. Overall, the developed mathematical model provided an accurate prediction of the dynamic behavior of heterotrophic biomass growth and PHB production in a two-phase pure culture system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Climate Response of Tree Radial Growth at Different Timescales in the Qinling Mountains.

    PubMed

    Sun, Changfeng; Liu, Yu

    2016-01-01

    The analysis of the tree radial growth response to climate is crucial for dendroclimatological research. However, the response relationships between tree-ring indices and climatic factors at different timescales are not yet clear. In this study, the tree-ring width of Huashan pine (Pinus armandii) from Huashan in the Qinling Mountains, north-central China, was used to explore the response differences of tree growth to climatic factors at daily, pentad (5 days), dekad (10 days) and monthly timescales. Correlation function and linear regression analysis were applied in this paper. The tree-ring width showed a more sensitive response to daily and pentad climatic factors. With the timescale decreasing, the absolute value of the maximum correlation coefficient between the tree-ring data and precipitation increases as well as temperature (mean, minimum and maximum temperature). Compared to the other three timescales, pentad was more suitable for analysing the response of tree growth to climate. Relative to the monthly climate data, the association between the tree-ring data and the pentad climate data was more remarkable and accurate, and the reconstruction function based on the pentad climate was also more reliable and stable. We found that the major climatic factor limiting Huashan pine growth was the precipitation of pentads 20-35 (from April 6 to June 24) rather than the well-known April-June precipitation. The pentad was also proved to be a better timescale for analysing the climate and tree growth in the western and eastern Qinling Mountains. The formation of the earlywood density of Chinese pine (Pinus tabulaeformis) from Shimenshan in western Qinling was mainly affected by the maximum temperature of pentads 28-32 (from May 16 to June 9). The maximum temperature of pentads 28-33 (from May 16 to June 14) was the major factor affecting the ring width of Chinese pine from Shirenshan in eastern Qinling.

  1. Importance of Resolving the Spectral Support of Beam-plasma Instabilities in Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalaby, Mohamad; Broderick, Avery E.; Chang, Philip

    2017-10-20

    Many astrophysical plasmas are prone to beam-plasma instabilities. For relativistic and dilute beams, the spectral support of the beam-plasma instabilities is narrow, i.e., the linearly unstable modes that grow with rates comparable to the maximum growth rate occupy a narrow range of wavenumbers. This places stringent requirements on the box-sizes when simulating the evolution of the instabilities. We identify the implied lower limits on the box size imposed by the longitudinal beam plasma instability, i.e., typically the most stringent condition required to correctly capture the linear evolution of the instabilities in multidimensional simulations. We find that sizes many orders ofmore » magnitude larger than the resonant wavelength are typically required. Using one-dimensional particle-in-cell simulations, we show that the failure to sufficiently resolve the spectral support of the longitudinal instability yields slower growth and lower levels of saturation, potentially leading to erroneous physical conclusion.« less

  2. Convective amplification of Type 1 irregularities in the equatorial electrojet

    NASA Technical Reports Server (NTRS)

    Lee, K.; Kennel, C. F.

    1972-01-01

    Wave propagation and refraction of Type 1 irregularities in the equatorial electrojet were investigated. Quantitative calculation of wave refraction in a model electrojet showed that the direction of wave refraction must change sign at one altitude. Waves propagating with the electrons rotate their wave vectors upwards in the upper electrojet and downwards in the lower electrojet during the day, and vice versa at night. Furthermore, the altitude region of largest linear growth rate is also the one with the weakest refraction rate. Consequently, computations of the ray-path integrated wave growth shows that this region would dominate the backscatter spectrum from the electrojet if linear theory were valid, and it is further noted that the maximum amplitude wave should have phase velocities exceeding the ion acoustic speed. It was concluded that propagation alone, without inclusion of nonlinear effects, cannot explain backscatter observations of a constant Doppler frequency shift given by the ion acoustic speed.

  3. Interventional oncology research in the United States: slowing growth, limited focus, and a low level of funding.

    PubMed

    Chow, Daniel S; Itagaki, Michael W

    2010-11-01

    To establish the characteristics of published interventional oncology (IO) research, including the volume, growth, geographic distribution, type of research, and funding patterns, and to determine how IO research compares with overall radiology research. This retrospective bibliometric analysis of public data was exempt from Institutional Review Board approval. IO articles published between 1996 and 2008 were identified in the National Library of Medicine MEDLINE database. Country of origin, article methodology, study topic, and source of funding were recorded. Growth was analyzed by using linear and nonlinear regression. Total journal articles numbered 3801, including 847 (22.3%) from the United States, 722 (19.0%) from Japan, and 390 (10.3%) from China. World publications grew with a sigmoid (logistic) pattern (predicted maximum of 586.8 articles per year, P < .001). The United States and China also had logistic and slowing growth (maximums of 111.0 and 48.1 articles per year, respectively; both P < .001). Growth was linear in Japan (growth of 3.0 articles per year, P < .001) and exponential and accelerating in Germany, Italy, South Korea, France, and the United Kingdom. The United States produced 187 (36.9%) review articles but only 52 (13.1%) clinical trials. Japan (75, 18.8%) and China (71, 17.8%) both produced more clinical trials than other countries. U.S. IO articles were less likely than general radiology articles to receive funding from government (12.5% vs 23.7%) and nongovernment (15.0% vs 17.0%) sources. Liver cancer articles constituted 2388 (62.8%) of all IO articles. IO research is slowing in the United States but growing elsewhere. Japan and China are leaders in clinical trial research. U.S. IO research receives less funding than does overall radiology research. IO research focuses primarily on liver cancer. © RSNA, 2010.

  4. Numerical Simulation of Self-gravitational Instability of Isothermal Gaseous Slab Under High External Pressure

    NASA Astrophysics Data System (ADS)

    Miyaji, S.; Umekawa, M.; Matsumoto, R.; Yoshida, T.

    1996-05-01

    Gaseous slab is formed with shock waves from super novae, collision of interstellar clouds, etc. When the mass in the Jeans scale is more than Jeans mass, the slab fragments into many clumps by gravitational instability. But in high external pressure environment, even the slab which is stable against Jeans mode can fragment(Elmegreen and Elmegreen 1978).This phenomenon results from incompressible mode instability(Lubow and Pringle 1993). These works are by linear analysis. We study numerically this isothermal gaseous slab which is formed by high external pressure and whose thickness is much smaller than its scale height. We assume self-gravitational fluid, and use two dimensional flux split method. Our model size is taken about the scale of linear maximum growth rate wave length and its five times length, which is an example of much longer than the maximum growth rate wave length. When the incompressible mode instability takes place, it becomes clumps. Each mass of the clumps is less than the Jeans mass. Then the clumps approach each other by gravitational interaction to form bigger clumps. In the presentation we will show results of numerical simulation and discuss about the interaction of fragments on star formation or initial mass function.

  5. Mathematical modeling of the crack growth in linear elastic isotropic materials by conventional fracture mechanics approaches and by molecular dynamics method: crack propagation direction angle under mixed mode loading

    NASA Astrophysics Data System (ADS)

    Stepanova, Larisa; Bronnikov, Sergej

    2018-03-01

    The crack growth directional angles in the isotropic linear elastic plane with the central crack under mixed-mode loading conditions for the full range of the mixity parameter are found. Two fracture criteria of traditional linear fracture mechanics (maximum tangential stress and minimum strain energy density criteria) are used. Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-scale Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is Embedded Atom Method (EAM) potential. The plane specimens with initial central crack were subjected to Mixed-Mode loadings. The simulation cell contains 400000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide diapason of temperatures (from 0.1 К to 800 К) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics method coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields.

  6. Plasma Effects on Fast Pair Beams. II. Reactive versus Kinetic Instability of Parallel Electrostatic Waves

    NASA Astrophysics Data System (ADS)

    Schlickeiser, R.; Krakau, S.; Supsar, M.

    2013-11-01

    The interaction of TeV gamma-rays from distant blazars with the extragalactic background light produces relativistic electron-positron pair beams by the photon-photon annihilation process. Using the linear instability analysis in the kinetic limit, which properly accounts for the longitudinal and the small but finite perpendicular momentum spread in the pair momentum distribution function, the growth rate of parallel propagating electrostatic oscillations in the intergalactic medium is calculated. Contrary to the claims of Miniati and Elyiv, we find that neither the longitudinal nor the perpendicular spread in the relativistic pair distribution function significantly affect the electrostatic growth rates. The maximum kinetic growth rate for no perpendicular spread is even about an order of magnitude greater than the corresponding reactive maximum growth rate. The reduction factors in the maximum growth rate due to the finite perpendicular spread in the pair distribution function are tiny and always less than 10-4. We confirm earlier conclusions by Broderick et al. and our group that the created pair beam distribution function is quickly unstable in the unmagnetized intergalactic medium. Therefore, there is no need to require the existence of small intergalactic magnetic fields to scatter the produced pairs, so that the explanation (made by several authors) for the Fermi non-detection of the inverse Compton scattered GeV gamma-rays by a finite deflecting intergalactic magnetic field is not necessary. In particular, the various derived lower bounds for the intergalactic magnetic fields are invalid due to the pair beam instability argument.

  7. Linear instability of supersonic plane wakes

    NASA Technical Reports Server (NTRS)

    Papageorgiou, D. T.

    1989-01-01

    In this paper we present a theoretical and numerical study of the growth of linear disturbances in the high-Reynolds-number and laminar compressible wake behind a flat plate which is aligned with a uniform stream. No ad hoc assumptions are made as to the nature of the undisturbed flow (in contrast to previous investigations) but instead the theory is developed rationally by use of proper wake-profiles which satisfy the steady equations of motion. The initial growth of near wake perturbation is governed by the compressible Rayleigh equation which is studied analytically for long- and short-waves. These solutions emphasize the asymptotic structures involved and provide a rational basis for a nonlinear development. The evolution of arbitrary wavelength perturbations is addressed numerically and spatial stability solutions are presented that account for the relative importance of the different physical mechanisms present, such as three-dimensionality, increasing Mach numbers enough (subsonic) Mach numbers, there exists a region of absolute instability very close to the trailing-edge with the majority of the wake being convectively unstable. At higher Mach numbers (but still not large-hypersonic) the absolute instability region seems to disappear and the maximum available growth-rates decrease considerably. Three-dimensional perturbations provide the highest spatial growth-rates.

  8. Optimal energy growth in a stably stratified shear flow

    NASA Astrophysics Data System (ADS)

    Jose, Sharath; Roy, Anubhab; Bale, Rahul; Iyer, Krithika; Govindarajan, Rama

    2018-02-01

    Transient growth of perturbations by a linear non-modal evolution is studied here in a stably stratified bounded Couette flow. The density stratification is linear. Classical inviscid stability theory states that a parallel shear flow is stable to exponentially growing disturbances if the Richardson number (Ri) is greater than 1/4 everywhere in the flow. Experiments and numerical simulations at higher Ri show however that algebraically growing disturbances can lead to transient amplification. The complexity of a stably stratified shear flow stems from its ability to combine this transient amplification with propagating internal gravity waves (IGWs). The optimal perturbations associated with maximum energy amplification are numerically obtained at intermediate Reynolds numbers. It is shown that in this wall-bounded flow, the three-dimensional optimal perturbations are oblique, unlike in unstratified flow. A partitioning of energy into kinetic and potential helps in understanding the exchange of energies and how it modifies the transient growth. We show that the apportionment between potential and kinetic energy depends, in an interesting manner, on the Richardson number, and on time, as the transient growth proceeds from an optimal perturbation. The oft-quoted stabilizing role of stratification is also probed in the non-diffusive limit in the context of disturbance energy amplification.

  9. Consequences of bounds on longitudinal emittance growth for the design of recirculating linear accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, J. S.

    2015-05-03

    Recirculating linear accelerators (RLAs) are a cost-effective method for the acceleration of muons for a muon collider in energy ranges from a couple GeV to a few 10s of GeV. Muon beams generally have longitudinal emittances that are large for the RF frequency that is used, and it is important to limit the growth of that longitudinal emittance. This has particular consequences for the arc design of the RLAs. I estimate the longitudinal emittance growth in an RLA arising from the RF nonlinearity. Given an emittance growth limitation and other design parameters, one can then compute the maximum momentum compactionmore » in the arcs. I describe how to obtain an approximate arc design satisfying these requirements based on the deisgn in [1]. Longitudinal dynamics also determine the energy spread in the beam, and this has consequences on the transverse phase advance in the linac. This in turn has consequences for the arc design due to the need to match beta functions. I combine these considerations to discuss design parameters for the acceleration of muons for a collider in an RLA from 5 to 63 GeV.« less

  10. Phytoextraction of HG by parsley (Petroselinum crispum) and its growth responses.

    PubMed

    Bibi, Asma; Farooq, Umar; Naz, Sadia; Khan, Afsar; Khan, Sara; Sarwar, Rizwana; Mahmood, Qaisar; Alam, Arif; Mirza, Nosheen

    2016-01-01

    The effect of mercury (Hg) on the growth and survival of parsley (Petroselinum crispum) was explored at various treatments. The plants were grown in pots having Hoagland's solution to which various Hg treatments were applied and placed under greenhouse conditions. The treatments were: no metal applied (control) and six doses of Hg as mercuric chloride for 15 days. Linear trend of Hg accumulation was noted in roots, stems, and leaves with increasing Hg treatments. The maximum Hg concentration in root, stem and leaf was 8.92, 8.27, and 7.88 at Hg treatments of 25 mg l(-1), respectively. On the whole, Hg accumulation in different plant parts was in the following order: leaves > stem > roots. Linear trend was also observed for Bioaccumulation Factor (BF) and Translocation Factor (TF) with increasing Hg concentrations in the growth medium. The highest respective BFHg and TFHg values were 9.32 and 2.02 for the Hg treatments of 25 and 50 mg l(-1). In spite of the reduced growth in the presence of Hg, the plant has phytoremediation potential. It is recommended that parsley should not be cultivated in Hg contaminated sites in order to avoid dietary toxicity.

  11. Entanglement dynamics in short- and long-range harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Nezhadhaghighi, M. Ghasemi; Rajabpour, M. A.

    2014-11-01

    We study the time evolution of the entanglement entropy in the short- and long-range-coupled harmonic oscillators that have well-defined continuum limit field theories. We first introduce a method to calculate the entanglement evolution in generic coupled harmonic oscillators after quantum quench. Then we study the entanglement evolution after quantum quench in harmonic systems in which the couplings decay effectively as 1 /rd +α with the distance r . After quenching the mass from a nonzero value to zero we calculate numerically the time evolution of von Neumann and Rényi entropies. We show that for 1 <α <2 we have a linear growth of entanglement and then saturation independent of the initial state. For 0 <α <1 depending on the initial state we can have logarithmic growth or just fluctuation of entanglement. We also calculate the mutual information dynamics of two separated individual harmonic oscillators. Our findings suggest that in our system there is no particular connection between having a linear growth of entanglement after quantum quench and having a maximum group velocity or generalized Lieb-Robinson bound.

  12. Adaptive bi-level programming for optimal gene knockouts for targeted overproduction under phenotypic constraints

    PubMed Central

    2013-01-01

    Background Optimization procedures to identify gene knockouts for targeted biochemical overproduction have been widely in use in modern metabolic engineering. Flux balance analysis (FBA) framework has provided conceptual simplifications for genome-scale dynamic analysis at steady states. Based on FBA, many current optimization methods for targeted bio-productions have been developed under the maximum cell growth assumption. The optimization problem to derive gene knockout strategies recently has been formulated as a bi-level programming problem in OptKnock for maximum targeted bio-productions with maximum growth rates. However, it has been shown that knockout mutants in fact reach the steady states with the minimization of metabolic adjustment (MOMA) from the corresponding wild-type strains instead of having maximal growth rates after genetic or metabolic intervention. In this work, we propose a new bi-level computational framework--MOMAKnock--which can derive robust knockout strategies under the MOMA flux distribution approximation. Methods In this new bi-level optimization framework, we aim to maximize the production of targeted chemicals by identifying candidate knockout genes or reactions under phenotypic constraints approximated by the MOMA assumption. Hence, the targeted chemical production is the primary objective of MOMAKnock while the MOMA assumption is formulated as the inner problem of constraining the knockout metabolic flux to be as close as possible to the steady-state phenotypes of wide-type strains. As this new inner problem becomes a quadratic programming problem, a novel adaptive piecewise linearization algorithm is developed in this paper to obtain the exact optimal solution to this new bi-level integer quadratic programming problem for MOMAKnock. Results Our new MOMAKnock model and the adaptive piecewise linearization solution algorithm are tested with a small E. coli core metabolic network and a large-scale iAF1260 E. coli metabolic network. The derived knockout strategies are compared with those from OptKnock. Our preliminary experimental results show that MOMAKnock can provide improved targeted productions with more robust knockout strategies. PMID:23368729

  13. Adaptive bi-level programming for optimal gene knockouts for targeted overproduction under phenotypic constraints.

    PubMed

    Ren, Shaogang; Zeng, Bo; Qian, Xiaoning

    2013-01-01

    Optimization procedures to identify gene knockouts for targeted biochemical overproduction have been widely in use in modern metabolic engineering. Flux balance analysis (FBA) framework has provided conceptual simplifications for genome-scale dynamic analysis at steady states. Based on FBA, many current optimization methods for targeted bio-productions have been developed under the maximum cell growth assumption. The optimization problem to derive gene knockout strategies recently has been formulated as a bi-level programming problem in OptKnock for maximum targeted bio-productions with maximum growth rates. However, it has been shown that knockout mutants in fact reach the steady states with the minimization of metabolic adjustment (MOMA) from the corresponding wild-type strains instead of having maximal growth rates after genetic or metabolic intervention. In this work, we propose a new bi-level computational framework--MOMAKnock--which can derive robust knockout strategies under the MOMA flux distribution approximation. In this new bi-level optimization framework, we aim to maximize the production of targeted chemicals by identifying candidate knockout genes or reactions under phenotypic constraints approximated by the MOMA assumption. Hence, the targeted chemical production is the primary objective of MOMAKnock while the MOMA assumption is formulated as the inner problem of constraining the knockout metabolic flux to be as close as possible to the steady-state phenotypes of wide-type strains. As this new inner problem becomes a quadratic programming problem, a novel adaptive piecewise linearization algorithm is developed in this paper to obtain the exact optimal solution to this new bi-level integer quadratic programming problem for MOMAKnock. Our new MOMAKnock model and the adaptive piecewise linearization solution algorithm are tested with a small E. coli core metabolic network and a large-scale iAF1260 E. coli metabolic network. The derived knockout strategies are compared with those from OptKnock. Our preliminary experimental results show that MOMAKnock can provide improved targeted productions with more robust knockout strategies.

  14. A new chlorophycean nickel hyperaccumulator.

    PubMed

    Harish; Sundaramoorthy, S; Kumar, Devendra; Vaijapurkar, S G

    2008-06-01

    Bioremediation of nickel by chlorophycean bioremediator, Chlorococcum hemicolum was investigated. The growth rates at various concentrations of Ni2+ were assessed in terms of protein level and 12 mg L(-1) of the Ni2+ is the tolerance limit (46.76% level of growth kinetics). Absorption/adsorption kinetics was estimated after 240 h of Ni2+ treatments. Absorptions were higher than adsorption with maximum accumulation factor (AF) of 1.37. Ni2+ concentration and absorption were linearly related (r=0.98; p>0.01). Other biochemical parameters like total sugar, chlorophyll and carotenoids were also quantified to correlate the state of metabolism and these exhibited reduction due to heavy metal stress.

  15. Ion Motion Induced Emittance Growth of Matched Electron Beams in Plasma Wakefields.

    PubMed

    An, Weiming; Lu, Wei; Huang, Chengkun; Xu, Xinlu; Hogan, Mark J; Joshi, Chan; Mori, Warren B

    2017-06-16

    Plasma-based acceleration is being considered as the basis for building a future linear collider. Nonlinear plasma wakefields have ideal properties for accelerating and focusing electron beams. Preservation of the emittance of nano-Coulomb beams with nanometer scale matched spot sizes in these wakefields remains a critical issue due to ion motion caused by their large space charge forces. We use fully resolved quasistatic particle-in-cell simulations of electron beams in hydrogen and lithium plasmas, including when the accelerated beam has different emittances in the two transverse planes. The projected emittance initially grows and rapidly saturates with a maximum emittance growth of less than 80% in hydrogen and 20% in lithium. The use of overfocused beams is found to dramatically reduce the emittance growth. The underlying physics that leads to the lower than expected emittance growth is elucidated.

  16. Theory of the intermediate stage of crystal growth with applications to insulin crystallization

    NASA Astrophysics Data System (ADS)

    Barlow, D. A.

    2017-07-01

    A theory for the intermediate stage of crystal growth, where two defining equations one for population continuity and another for mass-balance, is used to study the kinetics of the supersaturation decay, the homogeneous nucleation rate, the linear growth rate and the final distribution of crystal sizes for the crystallization of bovine and porcine insulin from solution. The cited experimental reports suggest that the crystal linear growth rate is directly proportional to the square of the insulin concentration in solution for bovine insulin and to the cube of concentration for porcine. In a previous work, it was shown that the above mentioned system could be solved for the case where the growth rate is directly proportional to the normalized supersaturation. Here a more general solution is presented valid for cases where the growth rate is directly proportional to the normalized supersaturation raised to the power of any positive integer. The resulting expressions for the time dependent normalized supersaturation and crystal size distribution are compared with experimental reports for insulin crystallization. An approximation for the maximum crystal size at the end of the intermediate stage is derived. The results suggest that the largest crystal size in the distribution at the end of the intermediate stage is maximized when nucleation is restricted to be only homogeneous. Further, the largest size in the final distribution depends only weakly upon the initial supersaturation.

  17. The Impact of Single Amino Acids on Growth and Volatile Aroma Production by Saccharomyces cerevisiae Strains

    PubMed Central

    Fairbairn, Samantha; McKinnon, Alexander; Musarurwa, Hannibal T.; Ferreira, António C.; Bauer, Florian F.

    2017-01-01

    Nitrogen availability and utilization by Saccharomyces cerevisiae significantly influence fermentation kinetics and the production of volatile compounds important for wine aroma. Amino acids are the most important nitrogen source and have been classified based on how well they support growth. This study evaluated the effect of single amino acids on growth kinetics and major volatile production of two phenotypically different commercial wine yeast strains in synthetic grape must. Four growth parameters, lag phase, maximum growth rate, total biomass formation and time to complete fermentation were evaluated. In contrast with previous findings, in fermentative conditions, phenylalanine and valine supported growth well and asparagine supported it poorly. The four parameters showed good correlations for most amino acid treatments, with some notable exceptions. Single amino acid treatments resulted in the predictable production of aromatic compounds, with a linear correlation between amino acid concentration and the concentration of aromatic compounds that are directly derived from these amino acids. With the increased complexity of nitrogen sources, linear correlations were lost and aroma production became unpredictable. However, even in complex medium minor changes in amino acid concentration continued to directly impact the formation of aromatic compounds, suggesting that the relative concentration of individual amino acids remains a predictor of aromatic outputs, independently of the complexity of metabolic interactions between carbon and nitrogen metabolism and between amino acid degradation and utilization pathways. PMID:29312237

  18. The Impact of Single Amino Acids on Growth and Volatile Aroma Production by Saccharomyces cerevisiae Strains.

    PubMed

    Fairbairn, Samantha; McKinnon, Alexander; Musarurwa, Hannibal T; Ferreira, António C; Bauer, Florian F

    2017-01-01

    Nitrogen availability and utilization by Saccharomyces cerevisiae significantly influence fermentation kinetics and the production of volatile compounds important for wine aroma. Amino acids are the most important nitrogen source and have been classified based on how well they support growth. This study evaluated the effect of single amino acids on growth kinetics and major volatile production of two phenotypically different commercial wine yeast strains in synthetic grape must. Four growth parameters, lag phase, maximum growth rate, total biomass formation and time to complete fermentation were evaluated. In contrast with previous findings, in fermentative conditions, phenylalanine and valine supported growth well and asparagine supported it poorly. The four parameters showed good correlations for most amino acid treatments, with some notable exceptions. Single amino acid treatments resulted in the predictable production of aromatic compounds, with a linear correlation between amino acid concentration and the concentration of aromatic compounds that are directly derived from these amino acids. With the increased complexity of nitrogen sources, linear correlations were lost and aroma production became unpredictable. However, even in complex medium minor changes in amino acid concentration continued to directly impact the formation of aromatic compounds, suggesting that the relative concentration of individual amino acids remains a predictor of aromatic outputs, independently of the complexity of metabolic interactions between carbon and nitrogen metabolism and between amino acid degradation and utilization pathways.

  19. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing.

    PubMed

    Doona, Christopher J; Feeherry, Florence E; Ross, Edward W

    2005-04-15

    Predictive microbial models generally rely on the growth of bacteria in laboratory broth to approximate the microbial growth kinetics expected to take place in actual foods under identical environmental conditions. Sigmoidal functions such as the Gompertz or logistics equation accurately model the typical microbial growth curve from the lag to the stationary phase and provide the mathematical basis for estimating parameters such as the maximum growth rate (MGR). Stationary phase data can begin to show a decline and make it difficult to discern which data to include in the analysis of the growth curve, a factor that influences the calculated values of the growth parameters. In contradistinction, the quasi-chemical kinetics model provides additional capabilities in microbial modelling and fits growth-death kinetics (all four phases of the microbial lifecycle continuously) for a general set of microorganisms in a variety of actual food substrates. The quasi-chemical model is differential equations (ODEs) that derives from a hypothetical four-step chemical mechanism involving an antagonistic metabolite (quorum sensing) and successfully fits the kinetics of pathogens (Staphylococcus aureus, Escherichia coli and Listeria monocytogenes) in various foods (bread, turkey meat, ham and cheese) as functions of different hurdles (a(w), pH, temperature and anti-microbial lactate). The calculated value of the MGR depends on whether growth-death data or only growth data are used in the fitting procedure. The quasi-chemical kinetics model is also exploited for use with the novel food processing technology of high-pressure processing. The high-pressure inactivation kinetics of E. coli are explored in a model food system over the pressure (P) range of 207-345 MPa (30,000-50,000 psi) and the temperature (T) range of 30-50 degrees C. In relatively low combinations of P and T, the inactivation curves are non-linear and exhibit a shoulder prior to a more rapid rate of microbial destruction. In the higher P, T regime, the inactivation plots tend to be linear. In all cases, the quasi-chemical model successfully fit the linear and curvi-linear inactivation plots for E. coli in model food systems. The experimental data and the quasi-chemical mathematical model described herein are candidates for inclusion in ComBase, the developing database that combines data and models from the USDA Pathogen Modeling Program and the UK Food MicroModel.

  20. Instability of a shear layer between multicomponent fluids at supercritical pressure

    NASA Astrophysics Data System (ADS)

    Fu, Qing-fei; Zhang, Yun-xiao; Mo, Chao-jie; Yang, Li-jun

    2018-04-01

    The temporal instability of a thin shear layer lying between streams of two components of fluids has been studied. The effects of density profile of the layer on the instability behavior were mainly considered. The detailed density profile was obtained through Linear Gradient Theory. The eigenvalue problem was calculated, and the temporal instability curves were obtained for the thermodynamic parameters, e.g. pressure and temperature. The results show that, increase of pressure leads to the increase of the maximum growth rate. However, increasing pressure has opposite effects on the disturbances with small and large wave length. The increase of temperature causes the decrease of disturbance growth rate. The instability behavior of the shear layers was determined mainly by the interval between the inflections of the velocity and density profiles, and the maximum density gradient. The total effects, determined by coupling density stratification, and interval between the inflections of the velocity and density profiles, were quite distinct for different ranges of temperature and pressure.

  1. Fluctuations of cell population in a colonic crypt

    NASA Astrophysics Data System (ADS)

    Pei, Qi-ming; Zhan, Xuan; Yang, Li-jian; Bao, Chun; Cao, Wei; Li, An-bang; Rozi, Anvar; Jia, Ya

    2014-03-01

    The number of stem cells in a colonic crypt is often very small, which leads to large intrinsic fluctuations in the cell population. Based on the model of cell population dynamics with linear feedback in a colonic crypt, we present a stochastic dynamics of the cell population [including stem cells (SCs), transit amplifying cells (TACs), and fully differentiated cells (FDCs)]. The Fano factor, covariance, and susceptibility formulas of the cell population around the steady state are derived by using the Langevin theory. In the range of physiologically reasonable parameter values, it is found that the stationary populations of TACs and FDCs exhibit an approximately threshold behavior as a function of the net growth rate of TACs, and the reproductions of TACs and FDCs can be classified into three regimens: controlled, crossover, and uncontrolled. With the increasing of the net growth rate of TACs, there is a maximum of the relative intrinsic fluctuations (i.e., the Fano factors) of TACs and FDCs in the crossover region. For a fixed differentiation rate and the net growth rate of SCs, the covariance of fluctuations between SCs and TACs has a maximum in the crossover region. However, the susceptibilities of both TACs and FDCs to the net growth rate of TACs have a minimum in the crossover region.

  2. THE EQUIVALENCE OF AGE IN ANIMALS

    PubMed Central

    Brody, Samuel; Ragsdale, Arthur C.

    1922-01-01

    1. A method of plotting growth curves is presented which is considered more useful than the usual method in bringing out a number of important phenomena such as the equivalence of age in different animals, difference in the shape and duration of corresponding growth cycles in different animals, and also in determinating the age of maxima without resorting to complicated mathematical computations. 2. It is suggested that after the third cycle is past the conceptional age of the maximum of the third cycle may be taken as the age of reference for estimating the equivalent physiological ages in different animals. Before the age of the third cycle, the maxima of the second and first cycles are most conveniently used as points of reference. 3. It is shown that the product of the conceptional age of the maximum of the third cycle by 13, gives a value which is, with the possible exception of man, very near to the normal duration of life of animals under the most favorable conditions of life. In other words, the equivalent physiological ages in different animals bear an approximately constant linear relation to the duration of their growth periods. 4. Attention is called to certain differences in the shape and duration of the corresponding growth cycles in different animals and of the effect of sex on these cycles. PMID:19871989

  3. The influence of light on copper-limited growth of an oceanic diatom, Thalassiosira oceanica (Coscinodiscophyceae).

    PubMed

    Kim, Jun-Woo; Price, Neil M

    2017-10-01

    Thalassiosira oceanica (CCMP 1005) was grown over a range of copper concentrations at saturating and subsaturating irradiance to test the hypothesis that Cu and light were interacting essential resources. Growth was a hyperbolic function of irradiance in Cu-replete medium (263 fmol Cu' · L -1 ) with maximum rates achieved at 200 μmol photons · m -2  · s -1 . Lowering the Cu concentration at this irradiance to 30.8 fmol Cu' · L -1 decreased cellular Cu quota by 7-fold and reduced growth rate by 50%. Copper-deficient cells had significantly slower (P < 0.0001) rates of maximum, relative photosynthetic electron transport (rETR max ) than Cu-sufficient cells, consistent with the role of Cu in photosynthesis in this diatom. In low-Cu medium (30.8 fmol Cu' · L -1 ), growth rate was best described as a positive, linear function of irradiance and reached the maximum value measured in Cu-replete cells when irradiance increased to 400 μmol photons · m -2  · s -1 . Thus, at high light, low-Cu concentration was no longer limiting to growth: Cu concentration and light interacted strongly to affect growth rate of T. oceanica (P < 0.0001). Relative ETR max and Cu quota of cells grown at low Cu also increased at 400 μmol photons · m -2  · s -1 to levels measured in Cu-replete cells. Steady-state uptake rates of Cu-deficient and sufficient cells were light-dependent, suggesting that faster growth of T. oceanica under high light and low Cu was a result of light-stimulated Cu uptake. © 2017 Phycological Society of America.

  4. Ion Motion Induced Emittance Growth of Matched Electron Beams in Plasma Wakefields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Weiming; Lu, Wei; Huang, Chengkun

    2017-06-14

    Plasma-based acceleration is being considered as the basis for building a future linear collider. Nonlinear plasma wakefields have ideal properties for accelerating and focusing electron beams. Preservation of the emittance of nano-Coulomb beams with nanometer scale matched spot sizes in these wakefields remains a critical issue due to ion motion caused by their large space charge forces. We use fully resolved quasistatic particle-in-cell simulations of electron beams in hydrogen and lithium plasmas, including when the accelerated beam has different emittances in the two transverse planes. The projected emittance initially grows and rapidly saturates with a maximum emittance growth of lessmore » than 80% in hydrogen and 20% in lithium. The use of overfocused beams is found to dramatically reduce the emittance growth. In conclusion, the underlying physics that leads to the lower than expected emittance growth is elucidated.« less

  5. Preferred modes in jets: comparison between different measures of the receptivity

    NASA Astrophysics Data System (ADS)

    Garnaud, Xavier; Lesshafft, Lutz; Schmid, Peter J.; Huerre, Patrick

    2012-11-01

    The response of jets to frequency forcing is usually measured experimentally in terms of the maximum amplitude of velocity fluctuations reached along the axis (Crow & Champagne (1971)). In the present work, the preferred mode of isothermal jets is discussed in terms of the linear flow response to time-harmonic forcing (Trefethen et al. (1993)). The optimal frequency response is computed for different choices of the objective functional: the usual energy (L2) norm and the maximum amplitude over the entire domain (L∞ norm). The relevance and limitations of the different objective functionals are critically analyzed. Although the dominant flow structures are robustly identified in all cases, the measure of the flow response in terms of the maximum amplitude does not suffer from the continually slow axial growth of low frequency perturbations. The financial support of the EADS Foundation is gratefully acknowledged.

  6. Magnetotail dynamics under isobaric constraints

    NASA Technical Reports Server (NTRS)

    Birn, Joachim; Schindler, Karl; Janicke, Lutz; Hesse, Michael

    1994-01-01

    Using linear theory and nonlinear MHD simulations, we investigate the resistive and ideal MHD stability of two-dimensional plasma configurations under the isobaric constraint dP/dt = 0, which in ideal MHD is equivalent to conserving the pressure function P = P(A), where A denotes the magnetic flux. This constraint is satisfied for incompressible modes, such as Alfven waves, and for systems undergoing energy losses. The linear stability analysis leads to a Schroedinger equation, which can be investigated by standard quantum mechanics procedures. We present an application to a typical stretched magnetotail configuration. For a one-dimensional sheet equilibrium characteristic properties of tearing instability are rediscovered. However, the maximum growth rate scales with the 1/7 power of the resistivity, which implies much faster growth than for the standard tearing mode (assuming that the resistivity is small). The same basic eigen-mode is found also for weakly two-dimensional equilibria, even in the ideal MHD limit. In this case the growth rate scales with the 1/4 power of the normal magnetic field. The results of the linear stability analysis are confirmed qualitatively by nonlinear dynamic MHD simulations. These results suggest the interesting possibility that substorm onset, or the thinning in the late growth phase, is caused by the release of a thermodynamic constraint without the (immediate) necessity of releasing the ideal MHD constraint. In the nonlinear regime the resistive and ideal developments differ in that the ideal mode does not lead to neutral line formation without the further release of the ideal MHD constraint; instead a thin current sheet forms. The isobaric constraint is critically discussed. Under perhaps more realistic adiabatic conditions the ideal mode appears to be stable but could be driven by external perturbations and thus generate the thin current sheet in the late growth phase, before a nonideal instability sets in.

  7. Non-linear trends and fluctuations in temperature during different growth stages of summer maize in the North China Plain from 1960 to 2014

    NASA Astrophysics Data System (ADS)

    Wang, Cailin; Wu, Jidong; Wang, Xu; He, Xin; Li, Ning

    2017-12-01

    North China Plain has undergone severe warming trends since the 1950s, but whether this trend is the same during different growth phases for crops remains unknown. Thus, we analyzed the non-linear changes in the minimum temperature (T min ), mean temperature (T mean ) and maximum temperature (T max ) using the Ensemble Empirical Mode Decomposition method during each growth stage of summer maize based on daily temperature data from 1960 to 2014. Our results strongly suggest that the trends and fluctuations in temperature change are non-linear. These changes can be categorized into four types of trend change according to the combinations of decreasing and increasing trends, and 8 fluctuation modes dominated by the fluctuations of expansion and shrinkage. The amplitude of the fluctuation is primarily expansion in the sowing-jointing stage and shrinkage in the jointing-maturity stage. Moreover, the temperature changes are inconsistent within each growth stage and are not consistent with the overall warming trend observed over the last 55 years. A transition period occurred in both the 1980s and the 1990s for temperatures during the sowing-tasseling stage. Furthermore, the cooling trend of the T max was significant in the sowing-emergence stage, while this cooling trend was not obvious for both T mean and T min in the jointing-tasseling stage. These results showed that temperature change was significantly different in different stages of the maize growth season. The results can serve as a scientific basis for a better understanding of the actual changes in the regional surface air temperature and agronomic heat resources.

  8. Group Influences on Young Adult Warfighters’ Risk Taking

    DTIC Science & Technology

    2016-12-01

    Statistical Analysis Latent linear growth models were fitted using the maximum likelihood estimation method in Mplus (version 7.0; Muthen & Muthen...condition had a higher net score than those in the alone condition (b = 20.53, SE = 6.29, p < .001). Results of the relevant statistical analyses are...8.56 110.86*** 22.01 158.25*** 29.91 Model fit statistics BIC 4004.50 5302.539 5540.58 Chi-square (df) 41.51*** (16) 38.10** (20) 42.19** (20

  9. Heritability of mandibular cephalometric variables in twins with completed craniofacial growth.

    PubMed

    Šidlauskas, Mantas; Šalomskienė, Loreta; Andriuškevičiūtė, Irena; Šidlauskienė, Monika; Labanauskas, Žygimantas; Vasiliauskas, Arūnas; Kupčinskas, Limas; Juzėnas, Simonas; Šidlauskas, Antanas

    2016-10-01

    To determine genetic and environmental impact on mandibular morphology using lateral cephalometric analysis of twins with completed mandibular growth and deoxyribonucleic acid (DNA) based zygosity determination. The 39 cephalometric variables of 141 same gender adult pair of twins were analysed. Zygosity was determined using 15 specific DNA markers and cervical vertebral maturation method was used to assess completion of the mandibular growth. A genetic analysis was performed using maximum likelihood genetic structural equation modelling (GSEM). The genetic heritability estimates of angular variables describing horizontal mandibular position in relationship to cranial base and maxilla were considerably higher than in those describing vertical position. The mandibular skeletal cephalometric variables also showed high heritability estimates with angular measurements being considerably higher than linear ones. Results of this study indicate that the angular measurements representing mandibular skeletal morphology (mandibular form) have greater genetic determination than the linear measurements (mandibular size). The shape and sagittal position of the mandible is under stronger genetic control, than is its size and vertical relationship to cranial base. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. A cooperation and competition based simple cell receptive field model and study of feed-forward linear and nonlinear contributions to orientation selectivity.

    PubMed

    Bhaumik, Basabi; Mathur, Mona

    2003-01-01

    We present a model for development of orientation selectivity in layer IV simple cells. Receptive field (RF) development in the model, is determined by diffusive cooperation and resource limited competition guided axonal growth and retraction in geniculocortical pathway. The simulated cortical RFs resemble experimental RFs. The receptive field model is incorporated in a three-layer visual pathway model consisting of retina, LGN and cortex. We have studied the effect of activity dependent synaptic scaling on orientation tuning of cortical cells. The mean value of hwhh (half width at half the height of maximum response) in simulated cortical cells is 58 degrees when we consider only the linear excitatory contribution from LGN. We observe a mean improvement of 22.8 degrees in tuning response due to the non-linear spiking mechanisms that include effects of threshold voltage and synaptic scaling factor.

  11. Constraints based analysis of extended cybernetic models.

    PubMed

    Mandli, Aravinda R; Venkatesh, Kareenhalli V; Modak, Jayant M

    2015-11-01

    The cybernetic modeling framework provides an interesting approach to model the regulatory phenomena occurring in microorganisms. In the present work, we adopt a constraints based approach to analyze the nonlinear behavior of the extended equations of the cybernetic model. We first show that the cybernetic model exhibits linear growth behavior under the constraint of no resource allocation for the induction of the key enzyme. We then quantify the maximum achievable specific growth rate of microorganisms on mixtures of substitutable substrates under various kinds of regulation and show its use in gaining an understanding of the regulatory strategies of microorganisms. Finally, we show that Saccharomyces cerevisiae exhibits suboptimal dynamic growth with a long diauxic lag phase when growing on a mixture of glucose and galactose and discuss on its potential to achieve optimal growth with a significantly reduced diauxic lag period. The analysis carried out in the present study illustrates the utility of adopting a constraints based approach to understand the dynamic growth strategies of microorganisms. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Modeling the Growth of Epiphytic Bacteria on Kale Treated by Thermosonication Combined with Slightly Acidic Electrolyzed Water and Stored under Dynamic Temperature Conditions.

    PubMed

    Mansur, Ahmad Rois; Oh, Deog-Hwan

    2016-08-01

    The growth of epiphytic bacteria (aerobic mesophilic bacteria or Pseudomonas spp.) on kale was modeled isothermally and validated under dynamic storage temperatures. Each bacterial count on kale stored at isothermal conditions (4 to 25 °C) was recorded. The results show that maximum growth rate (μmax ) of both epiphytic bacteria increased and lag time (λ) decreased with increasing temperature (P < 0.05). The maximum population density (Nmax ) of Pseudomonas spp. was significantly greater than that of aerobic mesophilic bacteria, particularly in treated samples and/or at 4 and 10 °C (P < 0.05). The relationship between μmax of both epiphytic bacteria and temperature was linear (R(2) > 0.97), whereas lower R(2) > 0.86 and R(2) > 0.87 was observed for the λ and Nmax , respectively. The overall predictions of both epiphytic bacterial growths under nonisothermal conditions with temperature abuse of 15 °C agreed with the observed data, whereas those with temperature abuse of 25 °C were greatly overestimated. The appropriate parameter q0 (physiological state of cells), therefore, was adjusted by a trial and error to fit the model. This study demonstrates that the developed model was able to predict accurately epiphytic bacterial growth on kale stored under nonisothermal conditions particularly those with low temperature abuse of 15 °C. © 2016 Institute of Food Technologists®

  13. Mean state dependence of ENSO diversity resulting from an intermediate coupled model

    NASA Astrophysics Data System (ADS)

    Xie, Ruihuang; Jin, Fei-Fei; Mu, Mu

    2016-04-01

    ENSO diversity is referred to the event-to-event differences in the amplitude, longitudinal location of maximum sea surface temperature (SST) anomalies and evolutional mechanisms, as manifested in both observation data and climate model simulations. Previous studies argued that westerly wind burst (WWB) has strong influence on ENSO diversity. Here, we bring evidences, from a modified intermediate complexity Zebiak-Cane (ZC) coupled model, to illustrate that the ENSO diversity is also determined by the mean states. Stabilities of the linearized ZC model reveal that the mean state with weak (strong) wind stress and deep (shallow) thermocline prefers ENSO variation in the equitorial eastern (central) Pacific with a four-year (two-year) period. Weak wind stress and deep thermocline make the thermocline (TH) feedback the dominant contribution to the growth of ENSO SST anomalies, whereas the opposite mean state favors the zonal advective (ZA) feedback. Different leading dynamical SST-controller makes ENSO display its diversity. In a mean state that resembles the recent climate in the tropical Pacific, the four-year and two-year ENSO variations coexist with similar growth rate. Even without WWB forcing, the nonlinear integration results with adjusted parameters in this special mean state also present at least two types of El Niño, in which the maximum warming rates are contributed by either TH or ZA feedback. The consistency between linear and nonlinear model results indicates that the ENSO diversity is dependent on the mean states.

  14. Direct Numerical Simulation of Transition in a Swept-Wing Boundary Layer

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.; Li, Fei

    2013-01-01

    Direct numerical simulation (DNS) is performed to examine laminar to turbulent transition due to high-frequency secondary instability of stationary crossflow vortices in a subsonic swept-wing boundary layer for a realistic natural-laminar-flow airfoil configuration. The secondary instability is introduced via inflow forcing derived from a two-dimensional, partial-differential-equation based eigenvalue computation; and the mode selected for forcing corresponds to the most amplified secondary instability mode which, in this case, derives a majority of its growth from energy production mechanisms associated with the wall-normal shear of the stationary basic state. Both the growth of the secondary instability wave and the resulting onset of laminar-turbulent transition are captured within the DNS computations. The growth of the secondary instability wave in the DNS solution compares well with linear secondary instability theory when the amplitude is small; the linear growth is followed by a region of reduced growth resulting from nonlinear effects before an explosive onset of laminar breakdown to turbulence. The peak fluctuations are concentrated near the boundary layer edge during the initial stage of transition, but rapidly propagates towards the surface during the process of laminar breakdown. Both time-averaged statistics and flow visualization based on the DNS reveal a sawtooth transition pattern that is analogous to previously documented surface flow visualizations of transition due to stationary crossflow instability. The memory of the stationary crossflow vortex is found to persist through the transition zone and well beyond the location of the maximum skin friction.

  15. A numerical identifiability test for state-space models--application to optimal experimental design.

    PubMed

    Hidalgo, M E; Ayesa, E

    2001-01-01

    This paper describes a mathematical tool for identifiability analysis, easily applicable to high order non-linear systems modelled in state-space and implementable in simulators with a time-discrete approach. This procedure also permits a rigorous analysis of the expected estimation errors (average and maximum) in calibration experiments. The methodology is based on the recursive numerical evaluation of the information matrix during the simulation of a calibration experiment and in the setting-up of a group of information parameters based on geometric interpretations of this matrix. As an example of the utility of the proposed test, the paper presents its application to an optimal experimental design of ASM Model No. 1 calibration, in order to estimate the maximum specific growth rate microH and the concentration of heterotrophic biomass XBH.

  16. Magnesium requirement of some of the principal rumen cellulolytic bacteria.

    PubMed

    Morales, M S; Dehority, B A

    2014-09-01

    Information available on the role of Mg for growth and cellulose degradation by rumen bacteria is both limited and inconsistent. In this study, the Mg requirements for two strains each of the cellulolytic rumen species Fibrobacter succinogenes (A3c and S85), Ruminococcus albus (7 and 8) and Ruminococcus flavefaciens (B34b and C94) were investigated. Maximum growth, rate of growth and lag time were all measured using a complete factorial design, 2(3)×6; factors were: strains (2), within species (3) and Mg concentrations (6). R. flavefaciens was the only species that did not grow when Mg was singly deleted from the media, and both strains exhibited a linear growth response to increasing Mg concentrations (P<0.001). The requirement for R. flavefaciens B34b was estimated as 0.54 mM; whereas the requirement for R. flavefaciens C94 was >0.82 as there was no plateau in growth. Although not an absolute requirement for growth, strains of the two other species of cellulolytic bacteria all responded to increasing Mg concentrations. For F. succinogenes S85, R. albus 7 and R. albus 8, their requirement estimated from maximum growth was 0.56, 0.52 and 0.51, respectively. A requirement for F. succinogenes A3c could not be calculated because there was no solution for contrasts. Whether R. flavefaciens had a Mg requirement for cellulose degradation was determined in NH3-free cellulose media, using a 2×4 factorial design, 2 strains and 4 treatments. Both strains of R. flavefaciens were found to have an absolute Mg requirement for cellulose degradation. Based on reported concentrations of Mg in the rumen, 1.0 to 10.1 mM, it seems unlikely that an in vivo deficiency of this element would occur.

  17. Bernoulli substitution in the Ramsey model: Optimal trajectories under control constraints

    NASA Astrophysics Data System (ADS)

    Krasovskii, A. A.; Lebedev, P. D.; Tarasyev, A. M.

    2017-05-01

    We consider a neoclassical (economic) growth model. A nonlinear Ramsey equation, modeling capital dynamics, in the case of Cobb-Douglas production function is reduced to the linear differential equation via a Bernoulli substitution. This considerably facilitates the search for a solution to the optimal growth problem with logarithmic preferences. The study deals with solving the corresponding infinite horizon optimal control problem. We consider a vector field of the Hamiltonian system in the Pontryagin maximum principle, taking into account control constraints. We prove the existence of two alternative steady states, depending on the constraints. A proposed algorithm for constructing growth trajectories combines methods of open-loop control and closed-loop regulatory control. For some levels of constraints and initial conditions, a closed-form solution is obtained. We also demonstrate the impact of technological change on the economic equilibrium dynamics. Results are supported by computer calculations.

  18. Effect of Precipitation Morphology on the Second Harmonic Generation of Ultrasonic Wave During Tempering in P92 Steel

    NASA Astrophysics Data System (ADS)

    Sahu, Minati Kumari; Swaminathan, J.; Bandyopadhyay, Nil Ratan; Sagar, Sarmistha Palit

    2017-10-01

    This paper reports the generation of second harmonic of ultrasound wave and the variation of its amplitude with the precipitation morphology in P92 steel. P92 steel samples were normalized at 1075 °C and tempered in a range of 715-835 °C at a step of 30 °C to study the effect of nucleation and growth of precipitates on the amplitude of second harmonic of ultrasound wave. It has been observed that the non linear ultrasonic (NLU) parameter which is defined as the ratio of the amplitude of second harmonic to the square of the amplitude of the transmitted signal frequency increases with the nucleation and growth of precipitates. Whereas when the growth of precipitate is restricted and fine secondary precipitates start to nucleate, it decreases. The maximum of NLU parameter corresponds to the optimum tempering temperature for the studied material.

  19. [Canopy interception of sub-alpine dark coniferous communities in western Sichuan, China].

    PubMed

    Lü, Yu-liang; Liu, Shi-rong; Sun, Peng-sen; Liu, Xing-liang; Zhang, Rui-pu

    2007-11-01

    Based on field measurements of throughfall and stemflow in combination with climatic data collected from the meteorological station adjacent to the studied sub-alpine dark coniferous forest in Wolong, Sichuan Province, canopy interception of sub-alpine dark coniferous forests was analyzed and modeled at both stand scale and catchment scale. The results showed that monthly interception rate of Fargesia nitida, Bashania fangiana--Abies faxoniana old-growth ranged from 33% Grass to 72%, with the average of 48%. In growing season, there was a linear or powerful or exponential relationship between rainfall and interception an. a negative exponential relationship between rainfall and interception rate. The mean maximum canopy interception by the vegetation in the catchment of in.44 km was 1.74 ment and the significant differences among the five communities occurred in the following sequence: Moss-Fargesia nitida, Bashan afanglana-A. faxoniana stand > Grass-F. nitida, B. fangiana-A. faxoniana stand > Moss-Rhododendron spp.-A. faxoniana stand > Grass-Rh. spp.-A. faxoniana stand > Rh. spp. shrub. In addition, a close linear relationship existed between leaf area index (LAI) and maximum canopy interception. The simulated value of canopy interception rate, maximum canopy interception rate and addition interception rate of the vegetation in the catchment were 39%, 25% and 14%, respectively. Simulation of the canopy interception model was better at the overall growing season scale, that the mean relative error was 9%-14%.

  20. Cellular Spacing Selection During the Directional Solidification of Binary Alloys. A Numerical Approach

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Sen, S.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The evolution of cellular solid/liquid interfaces from an initially unstable planar front was studied by means of a two-dimensional computer simulation. The developed numerical model makes use of an interface tracking procedure and has the capability to describe the dynamics of the interface morphology based on local changes of the thermodynamic conditions. The fundamental physics of this formulation was validated against experimental microgravity results and the predictions of the analytical linear stability theory. The performed simulations revealed that in certain conditions, based on a competitive growth mechanism, an interface could become unstable to random perturbations of infinitesimal amplitude even at wavelengths smaller than the neutral wavelength, lambda(sub c), predicted by the linear stability theory. Furthermore, two main stages of spacing selection have been identified. In the first stage, at low perturbations amplitude, the selection mechanism is driven by the maximum growth rate of instabilities while in the second stage the selection is influenced by nonlinear phenomena caused by the interactions between the neighboring cells. Comparison of these predictions with other existing theories of pattern formation and experimental results will be discussed.

  1. Kinetics of formation of nanoparticles from first group metal carboxylates

    NASA Astrophysics Data System (ADS)

    Solov'ev, M. E.; Irzhak, T. F.; Irzhak, V. I.

    2015-09-01

    A kinetic model of the formation of metal nanoparticles via reduction of their carboxylates under conditions of clustering is proposed. It is found that the kinetics of the process is characterized by an induction period in carboxylate consumption and by almost linear growth of the average size of nanoparticles with conversion. It is shown that the maximum rate of nanoparticle formation grows along with the rate of ternary associate formation, the induction period becomes longer, and the particle size decreases. At the same time, it is characterized by a narrow size distribution.

  2. Effects of Saharan Mineral Dust Aerosols on the Dynamics of an Idealized African Easterly Jet-African Easterly Wave System over North Africa

    NASA Astrophysics Data System (ADS)

    Grogan, Dustin Francis Phillip

    The central objective of this work is to examine the direct radiative effects of Saharan mineral dust aerosols on the dynamics of African easterly waves (AEWs) and the African easterly jet (AEJ). Achieving this objective is built around two tasks that use the Weather Research and Forecasting (WRF) model coupled to an online dust model (WRF-dust model). The first task (Chapter 2) examines the linear dynamics of AEWs; the second task (Chapter 3) examines the nonlinear evolution of AEWs and their interactions with the AEJ. In Chapter 2, the direct radiative effects of dust on the linear dynamics of AEWs are examined analytically and numerically. The analytical analysis combines the thermodynamic equation with a dust continuity equation to form an expression for the generation of eddy available potential energy (APE) by the dust field. The generation of eddy APE is a function of the transmissivity and spatial gradients of the dust, which are modulated by the Doppler-shifted frequency. The expression predicts that for a fixed dust distribution, the wave response will be largest in regions where the dust gradients are maximized and the Doppler-shifted frequency vanishes. The numerical analysis calculates the linear dynamics of AEWs using zonally averaged basic states for wind, temperature and dust consistent with summertime conditions over North Africa. For the fastest growing AEW, the dust increases the growth rate from ~15% to 90% for aerosol optical depths ranging from tau=1.0 to tau=2.5. A local energetics analysis shows that for tau=1.0, the dust increases the maximum barotropic and baroclinic energy conversions by ~50% and ~100%, respectively. The maxima in the generation of APE and conversions of energy are co-located and occur where the meridional dust gradient is maximized near the critical layer, i.e., where the Doppler-shifted frequency is small, in agreement with the prediction from the analytical analysis. In Chapter 3, the direct radiative effects of dust on the evolution of AEJ-AEW system are examined using the WRF-dust model. The model is initialized with zonal-mean distributions of wind, temperature and dust used in linear study (Chapter 2). The dust modifies the lifecycle of the AEWs in the following way: the domain-averaged eddy kinetic energy (EKE) is enhanced during the linear and nonlinear growth phases, reaching a larger peak amplitude that subsequently decays more rapidly, eventually equilibrating at lower amplitude. The increase in EKE during the growth phases is due to local increases in barotropic energy conversions in the dust plume north of the AEJ. The dust-modified, rapidly decaying phase is primarily associated with enhanced barotropic decay that occurs near the top of the plume north of the AEJ. The timing of peak EKE depends on the initial dust concentration. Throughout the evolution of the AEJ-AEW system, the dust increases the maximum zonal-mean wind speeds. The increase is due to the dust-modified mean meridional circulation during the AEW growth phase and the dust-modified wave fluxes during the AEW decay phase. During AEW growth, the dust-modified maximum wind speeds are also displaced farther southward and upward, which is due to the enhanced wave fluxes decelerating the flow more efficiently north of the AEJ. These changes to the AEJ structure affect the critical surface, which expands vertically and meridionally as the AEW grows to finite amplitude. The dust-modified effects on the evolution of the AEJ-AEW system are discussed in light of tropical cyclogenesis. By better understanding the direct radiative effects of dust on the AEJ-AEW system, we can expect improvements in the modeling, forecasting and understanding of the connection between AEWs and the meteorology over North Africa and the Eastern Atlantic Ocean.

  3. Characteristics of the fourth order resonance in high intensity linear accelerators

    NASA Astrophysics Data System (ADS)

    Jeon, D.; Hwang, Kyung Ryun

    2017-06-01

    For the 4σ = 360° space-charge resonance in high intensity linear accelerators, the emittance growth is surveyed for input Gaussian beams, as a function of the depressed phase advance per cell σ and the initial tune depression (σo - σ). For each data point, the linac lattice is designed such that the fourth order resonance dominates over the envelope instability. The data show that the maximum emittance growth takes place at σ ≈ 87° over a wide range of the tune depression (or beam current), which confirms that the relevant parameter for the emittance growth is σ and that for the bandwidth is σo - σ. An interesting four-fold phase space structure is observed that cannot be explained with the fourth order resonance terms alone. Analysis attributes this effect to a small negative sixth order detuning term as the beam is redistributed by the resonance. Analytical studies show that the tune increases monotonically for the Gaussian beam which prevents the resonance for σ > 90°. Frequency analysis indicates that the four-fold structure observed for input Kapchinskij-Vladmirskij beams when σ < 90°, is not the fourth order resonance but a fourth order envelope instability because the 1/4 = 90°/360° component is missing in the frequency spectrum.

  4. Nonnormality increases variance of gravity waves trapped in a tilted box

    NASA Astrophysics Data System (ADS)

    Harlander, Uwe; Borcia, Ion Dan; Krebs, Andreas

    2017-04-01

    We study the prototype problem of internal gravity waves in a square domain tilted with respect to the gravity vector by an angle theta. Only when theta is zero regular normal modes exist, for all other angles wave attractors and singularities dominate the flow. We show that the linear operator of the governing PDE becomes non-normal for nonzero theta giving rise to non-modal transient growth. This growth depends on the underlying norm: for the variance norm significant growth rates can be found whereas for the energy norm, no growth is possible since there is no source for energy (in contrast to shear fows, for which the mean flow feeds the perturbations). We continue by showing that the nonnormality of the system matrix is increasing with theta and reaches a maximum when theta is 45 degree. Moreover, the growth rate is increasing as can be expected from the increasing nonnormality of the matrix. Our results imply that at least the most simple wave attractors can be seen as those initial flow fields that gain most of the variance during a given time period.

  5. The Year Leading to a Supereruption.

    PubMed

    Gualda, Guilherme A R; Sutton, Stephen R

    2016-01-01

    Supereruptions catastrophically eject 100s-1000s of km3 of magma to the surface in a matter of days to a few months. In this study, we use zoning in quartz crystals from the Bishop Tuff (California) to assess the timescales over which a giant magma body transitions from relatively quiescent, pre-eruptive crystallization to rapid decompression and eruption. Quartz crystals in the Bishop Tuff have distinctive rims (<200 μm thick), which are Ti-rich and bright in cathodoluminescence (CL) images, and which can be used to calculate Ti diffusional relaxation times. We use synchrotron-based x-ray microfluorescence to obtain quantitative Ti maps and profiles along rim-interior contacts in quartz at resolutions of 1-5 μm in each linear dimension. We perform CL imaging on a scanning electron microscope (SEM) using a low-energy (5 kV) incident beam to characterize these contacts in high resolution (<1 μm in linear dimensions). Quartz growth times were determined using a 1D model for Ti diffusion, assuming initial step functions. Minimum quartz growth rates were calculated using these calculated growth times and measured rim thicknesses. Maximum rim growth times span from ~1 min to 35 years, with a median of ~4 days. More than 70% of rim growth times are less than 1 year, showing that quartz rims have mostly grown in the days to months prior to eruption. Minimum growth rates show distinct modes between 10-8 and 10-10 m/s (depending on sample), revealing very fast crystal growth rates (100s of nm to 10s of μm per day). Our data show that quartz rims grew well within a year of eruption, with most of the growth happening in the weeks or days preceding eruption. Growth took place under conditions of high supersaturation, suggesting that rim growth marks the onset of decompression and the transition from pre-eruptive to syn-eruptive conditions.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gualda, Guilherme A. R.; Sutton, Stephen R.

    Supereruptions catastrophically eject 100s-1000s of km 3 of magma to the surface in a matter of days to a few months. In this study, we use zoning in quartz crystals from the Bishop Tuff (California) to assess the timescales over which a giant magma body transitions from relatively quiescent, pre-eruptive crystallization to rapid decompression and eruption. Quartz crystals in the Bishop Tuff have distinctive rims (<200 μm thick), which are Ti-rich and bright in cathodoluminescence (CL) images, and which can be used to calculate Ti diffusional relaxation times. We use synchrotron-based x-ray microfluorescence to obtain quantitative Ti maps and profilesmore » along rim-interior contacts in quartz at resolutions of 1–5 μm in each linear dimension. We perform CL imaging on a scanning electron microscope (SEM) using a low-energy (5 kV) incident beam to characterize these contacts in high resolution (<1 μm in linear dimensions). Quartz growth times were determined using a 1D model for Ti diffusion, assuming initial step functions. Minimum quartz growth rates were calculated using these calculated growth times and measured rim thicknesses. Maximum rim growth times span from ~1 min to 35 years, with a median of ~4 days. More than 70% of rim growth times are less than 1 year, showing that quartz rims have mostly grown in the days to months prior to eruption. Minimum growth rates show distinct modes between 10 -8 and 10 -10 m/s (depending on sample), revealing very fast crystal growth rates (100s of nm to 10s of μm per day). Our data show that quartz rims grew well within a year of eruption, with most of the growth happening in the weeks or days preceding eruption. Growth took place under conditions of high supersaturation, suggesting that rim growth marks the onset of decompression and the transition from pre-eruptive to syn-eruptive conditions.« less

  7. The Year Leading to a Supereruption

    DOE PAGES

    Gualda, Guilherme A. R.; Sutton, Stephen R.

    2016-07-20

    Supereruptions catastrophically eject 100s-1000s of km 3 of magma to the surface in a matter of days to a few months. In this study, we use zoning in quartz crystals from the Bishop Tuff (California) to assess the timescales over which a giant magma body transitions from relatively quiescent, pre-eruptive crystallization to rapid decompression and eruption. Quartz crystals in the Bishop Tuff have distinctive rims (<200 μm thick), which are Ti-rich and bright in cathodoluminescence (CL) images, and which can be used to calculate Ti diffusional relaxation times. We use synchrotron-based x-ray microfluorescence to obtain quantitative Ti maps and profilesmore » along rim-interior contacts in quartz at resolutions of 1–5 μm in each linear dimension. We perform CL imaging on a scanning electron microscope (SEM) using a low-energy (5 kV) incident beam to characterize these contacts in high resolution (<1 μm in linear dimensions). Quartz growth times were determined using a 1D model for Ti diffusion, assuming initial step functions. Minimum quartz growth rates were calculated using these calculated growth times and measured rim thicknesses. Maximum rim growth times span from ~1 min to 35 years, with a median of ~4 days. More than 70% of rim growth times are less than 1 year, showing that quartz rims have mostly grown in the days to months prior to eruption. Minimum growth rates show distinct modes between 10 -8 and 10 -10 m/s (depending on sample), revealing very fast crystal growth rates (100s of nm to 10s of μm per day). Our data show that quartz rims grew well within a year of eruption, with most of the growth happening in the weeks or days preceding eruption. Growth took place under conditions of high supersaturation, suggesting that rim growth marks the onset of decompression and the transition from pre-eruptive to syn-eruptive conditions.« less

  8. Study of ion-gyroscale fluctuations in low-density L-mode plasmas heated by NBI on KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, W.; Ko, S. H.; Leem, J.; Yun, G. S.; Park, H. K.; Wang, W. X.; Budny, R. V.; Kim, K. W.; Luhmann, N. C., Jr.; The KSTAR Team

    2018-04-01

    Broadband density fluctuations with peak frequency ranging from 150 to 400 kHz were measured using a multichannel microwave imaging reflectometer in core region of the low-density L-mode plasmas heated by neutral beam injection on KSTAR. These fluctuations have been studied by comparing the dominant mode scales estimated from the measurement with those predicted from linear gyrokinetic simulation. The measured poloidal wavenumbers are qualitatively comparable to those of the ‘fastest growing modes’ from simulations, whereas they are larger than those of the ‘transport-dominant modes’ by about a factor of three. The agreement on wavenumbers between the measurement and linear simulation (for the fastest growing modes) is probably due to sufficiently weak E × B flow shear compared to the maximum linear growth rate. Meanwhile, the transport-dominant modes seem to be related to the fluctuations in lower frequencies (˜80-150 kHz) observed in some of the measurement.

  9. Prediction of pathogen growth on iceberg lettuce under real temperature history during distribution from farm to table.

    PubMed

    Koseki, Shigenobu; Isobe, Seiichiro

    2005-10-25

    The growth of pathogenic bacteria Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes on iceberg lettuce under constant and fluctuating temperatures was modelled in order to estimate the microbial safety of this vegetable during distribution from the farm to the table. Firstly, we examined pathogen growth on lettuce at constant temperatures, ranging from 5 to 25 degrees C, and then we obtained the growth kinetic parameters (lag time, maximum growth rate (micro(max)), and maximum population density (MPD)) using the Baranyi primary growth model. The parameters were similar to those predicted by the pathogen modelling program (PMP), with the exception of MPD. The MPD of each pathogen on lettuce was 2-4 log(10) CFU/g lower than that predicted by PMP. Furthermore, the MPD of pathogens decreased with decreasing temperature. The relationship between mu(max) and temperature was linear in accordance with Ratkowsky secondary model as was the relationship between the MPD and temperature. Predictions of pathogen growth under fluctuating temperature used the Baranyi primary microbial growth model along with the Ratkowsky secondary model and MPD equation. The fluctuating temperature profile used in this study was the real temperature history measured during distribution from the field at harvesting to the retail store. Overall predictions for each pathogen agreed well with observed viable counts in most cases. The bias and root mean square error (RMSE) of the prediction were small. The prediction in which mu(max) was based on PMP showed a trend of overestimation relative to prediction based on lettuce. However, the prediction concerning E. coli O157:H7 and Salmonella spp. on lettuce greatly overestimated growth in the case of a temperature history starting relatively high, such as 25 degrees C for 5 h. In contrast, the overall prediction of L. monocytogenes under the same circumstances agreed with the observed data.

  10. Growth and development of male "little" mice assessed with Parks' theory of feeding and growth.

    PubMed

    Puche, Rodolfo C; Alloatti, Rosa; Chapo, Gustavo

    2002-01-01

    This work was designed to characterize the appetite kinetics and growth of male C57BL/6J (lit) mice. Those variables were assessed with Parks' function of ad libitum feeding and growth. Heterozygous mice (lit/+) attained their mature weight at 12-15 weeks of age, peak growth rate (3.5 g/week) at 5 weeks and displayed the normal decay of food conversion efficiency as a function of age. The homozygous genotype has a chronic defect in the synthesis and secretion of growth hormone (GH). Homozygous mice could not be assessed with Park's function. From the 4th to the 15th week of age, body weight increased linearly and exhibited constant food conversion efficiency. Food intake of both genotypes was commensurate with their body weights. Lit/lit mice became progressively obese. At 40 weeks of age, body fat of lit/lit mice was fivefold that of lit/+ and their body weight was similar to their heterozygous controls. The chronic deficiency of growth hormone produced a lower bone mass (compared to heterozygous controls). Bone mass of both genotypes attained maturity at 12-15 weeks with a maximum growth rate at 5 weeks. Body weight and bone mass grow harmoniously in lit/+ but not in lit/lit mice.

  11. Thermodynamic properties and solidification kinetics of intermetallic Ni{sub 7}Zr{sub 2} alloy investigated by electrostatic levitation technique and theoretical calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, L. H.; Hu, L.; Yang, S. J.

    2016-01-21

    The thermodynamic properties, including the density, volume expansion coefficient, ratio of specific heat to emissivity of intermetallic Ni{sub 7}Zr{sub 2} alloy, have been measured using the non-contact electrostatic levitation technique. These properties vary linearly with temperature at solid and liquid states, even down to the obtained maximum undercooling of 317 K. The enthalpy, glass transition, diffusion coefficient, shear viscosity, and surface tension were obtained by using molecular dynamics simulations. Ni{sub 7}Zr{sub 2} has a relatively poor glass forming ability, and the glass transition temperature is determined as 1026 K. The inter-diffusivity of Ni{sub 7}Zr{sub 2} alloy fitted by Vogel–Fulcher–Tammann law yields amore » fragility parameter of 8.49, which indicates the fragile nature of this alloy. Due to the competition of increased thermodynamic driving force and decreased atomic diffusion, the dendrite growth velocity of Ni{sub 7}Zr{sub 2} compound exhibits double-exponential relationship to the undercooling. The maximum growth velocity is predicted to be 0.45 m s{sup −1} at the undercooling of 335 K. Theoretical analysis reveals that the dendrite growth is a diffusion-controlled process and the atomic diffusion speed is only 2.0 m s{sup −1}.« less

  12. Relations between the efficiency, power and dissipation for linear irreversible heat engine at maximum trade-off figure of merit

    NASA Astrophysics Data System (ADS)

    Iyyappan, I.; Ponmurugan, M.

    2018-03-01

    A trade of figure of merit (\\dotΩ ) criterion accounts the best compromise between the useful input energy and the lost input energy of the heat devices. When the heat engine is working at maximum \\dotΩ criterion its efficiency increases significantly from the efficiency at maximum power. We derive the general relations between the power, efficiency at maximum \\dotΩ criterion and minimum dissipation for the linear irreversible heat engine. The efficiency at maximum \\dotΩ criterion has the lower bound \

  13. Estimates of dispersive effects in a bent NLC Main Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Syphers and Leo Michelotti

    2000-10-31

    An alternative being considered for the Next Linear Collider (NLC) is not to tunnel in a straight line but to bend the Main Linac into an arc so as to follow a gravitational equipotential. The authors begin here an examination of the effects that this would have on vertical dispersion, with its attendant consequences on synchrotron radiation and emittance growth by looking at two scenarios: a gentle continuous bending of the beam to follow an equipotential surface, and an introduction of sharp bends at a few sites in the linac so as to reduce the maximum sagitta produced.

  14. Entomotoxicity, protease and chitinase activity of Bacillus thuringiensis fermented wastewater sludge with a high solids content.

    PubMed

    Brar, Satinder K; Verma, M; Tyagi, R D; Valéro, J R; Surampalli, R Y

    2009-10-01

    This study investigated the production of biopesticides, protease and chitinase activity by Bacillus thuringiensis grown in raw wastewater sludge at high solids concentration (30 g/L). The rheology of wastewater sludge was modified with addition of Tween-80 (0.2% v/v). This addition resulted in 1.6 and 1.3-fold increase in cell and spore count, respectively. The maximum specific growth rate (micro(max)) augmented from 0.17 to 0.22 h(-1) and entomotoxicity (Tx) increased by 29.7%. Meanwhile, volumetric mass transfer coefficient (k(L)a) showed marked variations during fermentation, and oxygen uptake rate (OUR) increased 2-fold. The proteolytic activity increased while chitinase decreased for Tween amended wastewater sludge, but the entomotoxicity increased. The specific entomotoxicity followed power law when plotted against spore concentration and the relation between Tx and protease activity was linear. The viscosity varied and volume percent of particles increased in Tween-80 amended wastewater sludge and particle size (D(50)) decreased at the end of fermentation. Thus, there was an increase in entomotoxicity at higher suspended solids (30 g/L) as Tween addition improved rheology (viscosity, particle size, surface tension); enhanced maximum growth rate and OUR.

  15. Physiological and biochemical changes during the larval development of a brachyuran crab reared under constant conditions in the laboratory

    NASA Astrophysics Data System (ADS)

    Anger, K.; Harms, J.; Püschel, C.; Seeger, B.

    1989-06-01

    Larvae of the spider crab Hyas araneus were reared in the laboratory at constant conditions (12°C; 32‰S), and their feeding rate ( F), oxygen consumption ( R), nitrogen excretion ( U), and growth were measured in regular intervals of time during development from hatching to metamorphosis. Growth was measured as dry weight ( W), carbon ( C), nitrogen ( N), hydrogen ( H) protein, and lipid. All these physiological and biochemical traits revealed significant changes both from instar to instar and during individual larval moult cycles. Average F was low in the zoea I, reached a maximum in the zoea II, and decreased again in the megalopa. In the zoeal instars, it showed a bell-shaped pattern, with a maximum in the middle (zoea I) or during the first half of the moult cycle (zoea II). Maximum F in the megalopa was observed still earlier, during postmoult. Respiration ( R) increased in the zoeal instars as a linear function of time, whereas it showed a sinusoidal pattern in the megalopa. These findings on variation in F and R during larval development confirm results obtained in previous studies on H. araneus and other decapod species. Excretion ( U) was measured for the first time with a high temporal resolution in crab larvae. It showed in all three larval instars a bell-shaped variation pattern, with a maximum near the middle of the moult cycle, and significantly increasing average values from instar to instar. The atomic O/N ratio followed an inverse pattern, suggesting a maximum utilization of protein as a metabolic substrate during intermoult. Growth data from the present study and from a number of previous studies were compiled, showing consistency of growth patterns, but a considerable degree of variability between larvae from different hatches reared under identical conditions. The data show the following consistent tendencies: during the first part of each larval moult cycle (in postmoult, partly in intermoult), lipids are accumulated at a higher rate than protein, whereas an inverse growth patterns is typical of the later (premoult) stages. These two different growth phases are interpreted as periods dominated by reserve accumulation in the hepatopancreas, and epidermal growth and reconstruction (morphogenesis), respectively. Differences between individual larval instars in average biochemical composition and growth patterns may be related to different strategies: the zoeal instars and the early megalopa are pelagic feeding stages, accumulating energy reserves (principally lipids) necessary for the completion of larval development, whereas the later (premoult) megalopa is a semibenthic settling stage that converts a significant part of this energy to epidermal protein. The megalopa shifts in behaviour and energy partitioning from intense feeding activity and body growth to habitat selection and morphogenesis, preparing itself for metamorphosis, i.e. it shows an increasing degree of lecithotrophy. Data from numerous parallel elemental and biochemical analyses are compiled to show quantitative relationships between W, C, N, H, lipid, and protein. These regressions may be used as empirical conversion equations for estimates of single chemical components in larval Hyas araneus, and, possibly, other decapods.

  16. Dynamic Predictive Model for Growth of Bacillus cereus from Spores in Cooked Beans.

    PubMed

    Juneja, Vijay K; Mishra, Abhinav; Pradhan, Abani K

    2018-02-01

    Kinetic growth data for Bacillus cereus grown from spores were collected in cooked beans under several isothermal conditions (10 to 49°C). Samples were inoculated with approximately 2 log CFU/g heat-shocked (80°C for 10 min) spores and stored at isothermal temperatures. B. cereus populations were determined at appropriate intervals by plating on mannitol-egg yolk-polymyxin agar and incubating at 30°C for 24 h. Data were fitted into Baranyi, Huang, modified Gompertz, and three-phase linear primary growth models. All four models were fitted to the experimental growth data collected at 13 to 46°C. Performances of these models were evaluated based on accuracy and bias factors, the coefficient of determination ( R 2 ), and the root mean square error. Based on these criteria, the Baranyi model best described the growth data, followed by the Huang, modified Gompertz, and three-phase linear models. The maximum growth rates of each primary model were fitted as a function of temperature using the modified Ratkowsky model. The high R 2 values (0.95 to 0.98) indicate that the modified Ratkowsky model can be used to describe the effect of temperature on the growth rates for all four primary models. The acceptable prediction zone (APZ) approach also was used for validation of the model with observed data collected during single and two-step dynamic cooling temperature protocols. When the predictions using the Baranyi model were compared with the observed data using the APZ analysis, all 24 observations for the exponential single rate cooling were within the APZ, which was set between -0.5 and 1 log CFU/g; 26 of 28 predictions for the two-step cooling profiles also were within the APZ limits. The developed dynamic model can be used to predict potential B. cereus growth from spores in beans under various temperature conditions or during extended chilling of cooked beans.

  17. The Stability of Radiatively Cooling Jets. 2: Nonlinear Evolution

    NASA Technical Reports Server (NTRS)

    Stone, James M.; Xu, Jianjun; Hardee, Philip

    1997-01-01

    We use two-dimensional time-dependent hydrodynamical simulations to follow the growth of the Kelvin-Helmholtz (K-H) instability in cooling jets into the nonlinear regime. We focus primarily on asymmetric modes that give rise to transverse displacements of the jet beam. A variety of Mach numbers and two different cooling curves are studied. The growth rates of waves in the linear regime measured from the numerical simulations are in excellent agreement with the predictions of the linear stability analysis presented in the first paper in this series. In the nonlinear regime, the simulations show that asymmetric modes of the K-H instability can affect the structure and evolution of cooling jets in a number of ways. We find that jets in which the growth rate of the sinusoidal surface wave has a maximum at a so-called resonant frequency can be dominated by large-amplitude sinusoidal oscillations near this frequency. Eventually, growth of this wave can disrupt the jet. On the other hand, nonlinear body waves tend to produce low-amplitude wiggles in the shape of the jet but can result in strong shocks in the jet beam. In cooling jets, these shocks can produce dense knots and filaments of cooling gas within the jet. Ripples in the surface of the jet beam caused by both surface and body waves generate oblique shock "spurs" driven into the ambient gas. Our simulations show these shock "spurs" can accelerate ambient gas at large distances from the jet beam to low velocities, which represents a new mechanism by which low-velocity bipolar outflows may be driven by high-velocity jets. Rapid entrainment and acceleration of ambient gas may also occur if the jet is disrupted. For parameters typical of protostellar jets, the frequency at which K-H growth is a maximum (or highest frequency to which the entire jet can respond dynamically) will be associated with perturbations with a period of - 200 yr. Higher frequency (shorter period) perturbations excite waves associated with body modes that produce internal shocks and only small-amplitude wiggles within the jet. The fact that most observed systems show no evidence for large-amplitude sinusoidal oscillation leading to disruption is indicative that the perturbation frequencies are generally large, consistent with the suggestion that pro- tostellar jets arise from the inner regions (r less than 1 AU) of accretion disks.

  18. Characteristics of the fourth order resonance in high intensity linear accelerators

    DOE PAGES

    Jeon, D.; Hwang, Kyung Ryun

    2017-06-19

    For the 4σ = 360° space-charge resonance in high intensity linear accelerators, the emittance growth is surveyed for input Gaussian beams, as a function of the depressed phase advance per cell σ and the initial tune depression (σ o – σ). For each data point, the linac lattice is designed such that the fourth order resonance dominates over the envelope instability. Additionally, the data show that the maximum emittance growth takes place at σ ≈ 87° over a wide range of the tune depression (or beam current), which confirms that the relevant parameter for the emittance growth is σ andmore » that for the bandwidth is σ o – σ. An interesting four-fold phase space structure is observed that cannot be explained with the fourth order resonance terms alone. Analysis attributes this effect to a small negative sixth order detuning term as the beam is redistributed by the resonance. Analytical studies show that the tune increases monotonically for the Gaussian beam which prevents the resonance for σ > 90°. Lastly, frequency analysis indicates that the four-fold structure observed for input Kapchinskij-Vladmirskij beams when σ < 90°, is not the fourth order resonance but a fourth order envelope instability because the 1/4 = 90°/360° component is missing in the frequency spectrum.« less

  19. Characteristics of the fourth order resonance in high intensity linear accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, D.; Hwang, Kyung Ryun

    For the 4σ = 360° space-charge resonance in high intensity linear accelerators, the emittance growth is surveyed for input Gaussian beams, as a function of the depressed phase advance per cell σ and the initial tune depression (σ o – σ). For each data point, the linac lattice is designed such that the fourth order resonance dominates over the envelope instability. Additionally, the data show that the maximum emittance growth takes place at σ ≈ 87° over a wide range of the tune depression (or beam current), which confirms that the relevant parameter for the emittance growth is σ andmore » that for the bandwidth is σ o – σ. An interesting four-fold phase space structure is observed that cannot be explained with the fourth order resonance terms alone. Analysis attributes this effect to a small negative sixth order detuning term as the beam is redistributed by the resonance. Analytical studies show that the tune increases monotonically for the Gaussian beam which prevents the resonance for σ > 90°. Lastly, frequency analysis indicates that the four-fold structure observed for input Kapchinskij-Vladmirskij beams when σ < 90°, is not the fourth order resonance but a fourth order envelope instability because the 1/4 = 90°/360° component is missing in the frequency spectrum.« less

  20. Influence of total soluble salt concentration on growth and elemental concentration of winged bean seedlings, Psophocarpus tetragonolobus (L. ) DC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Csizinszky, A.A.

    Winged bean (Psophocarpus tetragonolobus) (L.) DC) seedlings of the accession TPT-1, were grown in a greenhouse with graded, balanced total soluble salt (TSS) concentrations. After 45 days, plant height increased quadratically, with a maximum (149 cm) at 3000 ppm TSS. Seedlings were shortest at 1000 and 10,000 ppm TSS, 44.0 and 79.0 cm, respectively. Fresh weight of shoots increased quadratically with greatest weight, 29.03 g, at 5000 ppm TSS. Percent dry matter increased linearly with increasing TSS. Concentration of N, K and P increased quadratically with an increase in the TSS concentration in the growth medium. Concentration of Ca decreasedmore » quadratically with increasing TSS. Among the micronutrients, Fe and Mo concentration was quadratic, both elements were highest in the seedlings at 1000 and 10,000 ppm TSS rates. Concentrations of Mn and Zn increased linearly with increasing TSS. Winged bean seedlings at the 1000 to 3000 ppm TSS rates had spindly stems and a sparse, yellow foliage, typical for winged bean seedlings observed in the field during the first 4 to 5 weeks of growth. Seedlings at the 4000 and 5000 ppm TSS rates had sturdy stems and an abundant green foliage. At higher TSS concentrations, 5000 to 10,000 ppm TSS, seedlings had short intermodes and dark green foliage.« less

  1. Linear thermal expansion coefficient determination using in situ curvature and temperature dependent X-ray diffraction measurements applied to metalorganic vapor phase epitaxy-grown AlGaAs

    NASA Astrophysics Data System (ADS)

    Maaßdorf, A.; Zeimer, U.; Grenzer, J.; Weyers, M.

    2013-07-01

    AlxGa1-xAs grown on GaAs is known to be almost perfectly lattice matched with a maximum lattice mismatch of 0.14% at room temperature and even less at temperatures of 700 °C-800 °C. However, as layer structures for edge-emitting diode lasers exhibit an increasing overall thickness of several microns of AlxGa1-xAs, e.g., diode lasers comprising a super-large optical cavity, the accumulated elastic strain energy increases as well. Depending on the growth temperature the formation energy of dislocations can be reached, which is limiting the pseudomorphic growth. In this regard, the thermal expansion coefficient difference between layer and substrate is an important parameter. We utilize in situ curvature measurements during growth of AlxGa1-xAs by metal-organic vapour phase epitaxy to determine the thermal expansion coefficient α. The curvature change with increasing layer thickness, as well as with wafer temperature at constant layer thickness is used to assess α. This is compared to ex situ temperature dependent X-ray diffraction measurements to obtain α. All determined values for α are in good agreement, yielding αAlAs=4.1×10-6 K-1 for a given GaAs linear thermal expansion coefficient of αGaAs=5.73×10-6 K-1.

  2. Recent developments in analysis of crack propagation and fracture of practical materials. [stress analysis in aircraft structures

    NASA Technical Reports Server (NTRS)

    Hardrath, H. F.; Newman, J. C., Jr.; Elber, W.; Poe, C. C., Jr.

    1978-01-01

    The limitations of linear elastic fracture mechanics in aircraft design and in the study of fatigue crack propagation in aircraft structures are discussed. NASA-Langley research to extend the capabilities of fracture mechanics to predict the maximum load that can be carried by a cracked part and to deal with aircraft design problems are reported. Achievements include: (1) improved stress intensity solutions for laboratory specimens; (2) fracture criterion for practical materials; (3) crack propagation predictions that account for mean stress and high maximum stress effects; (4) crack propagation predictions for variable amplitude loading; and (5) the prediction of crack growth and residual stress in built-up structural assemblies. These capabilities are incorporated into a first generation computerized analysis that allows for damage tolerance and tradeoffs with other disciplines to produce efficient designs that meet current airworthiness requirements.

  3. Three-dimensional baroclinic instability of a Hadley cell for small Richardson number

    NASA Technical Reports Server (NTRS)

    Antar, B. N.; Fowlis, W. W.

    1983-01-01

    For the case of a baroclinic flow whose Richardson number, Ri, is of order unity, a three-dimensional linear stability analysis is conducted on the basis of a model for a thin, horizontal, rotating fluid layer which is subjected to horizontal and vertical temperature gradients. The Hadley cell basic state and stability analysis are both based on the Navier-Stokes and energy equations, and perturbations possessing zonal, meridional, and vertical structures are considered. An attempt is made to extend the previous theoretical work on three-dimensional baroclinic instability for small Ri to a more realistic model involving the Prandtl and Ekman numbers, as well as to finite growth rates and a wider range of the zonal wavenumber. In general, it is found that the symmetric modes of maximum growth are not purely symmetric, but have a weak zonal structure.

  4. Effects of a high mean stress on the high cycle fatigue life of PWA 1480 and correlation of data by linear elastic fracture mechanics

    NASA Technical Reports Server (NTRS)

    Majumdar, S.; Kwasny, R.

    1985-01-01

    High-cycle fatigue tests using 5-mm-diameter smooth specimens were performed on the single crystal alloy PWA 1480 (001 axis) at 70F (room temperature) in air and at 100F (538C) in vacuum (10 to the -6 power torr). Tests were conducted at zero mean stress as well as at high tensile mean stress. The results indicate that, although a tensile mean stress, in general, reduces life, the reduction in fatigue strength, for a given mean stress at a life of one million cycles, is much less than what is predicted by the usual linear Goodman plot. Further, the material appears to be significantly more resistant to mean stress effects at 1000F than at 70F. Metallographic examinations of failed specimens indicate that failures in all cases are initiated from micropores of sizes of the order of 30 to 40 microns. Since the macroscopic stress-strain response in all cases was observed to be linear elastic, linear elastic fracture mechanics (LEFM) analyses were carried out to determine the crack growth curves of the material assuming that crack initiation from a micropore (a sub o = 40 microns) occurs very early in life. The results indicate that the calculated crack growth rates at an R (defined as the ratio between minimum stress to maximum stress) value of zero are approximately the same at 70F as at 1000F. However, the calculated crack growth rates at other R ratios, both positive and negative, tend to be higher at 70F than at 1000F. Calculated threshold effects at large R values tend to be independent of temperature in the temperature regime studied. They are relatively constant with increasing R ratio up to a value of about 0.6, beyond which the calculated threshold stress intensity factor range decreases rapidly with increasing R ratios.

  5. On the influence of the local maxima of total pressure on the current sheet stability to the kink-like (flapping) mode

    NASA Astrophysics Data System (ADS)

    Korovinskiy, D. B.; Erkaev, N. V.; Semenov, V. S.; Ivanov, I. B.; Kiehas, S. A.; Ryzhkov, I. I.

    2018-02-01

    The stability of the Fadeev-like current sheet with respect to transversally propagating kink-like perturbations (flapping mode) is considered in terms of two-dimensional linear magnetohydrodynamic numerical simulations. It is found that the current sheet is stable when the total pressure minimum is located in the sheet center and unstable when the maximum value is reached there. It is shown that an unstable spot of any size enforces the whole sheet to be unstable, though the increment of instability decreases with the reduction of the unstable domain. In unstable sheets, the dispersion curve of instability shows a good match with the double-gradient (DG) model prediction. Here, the typical growth rate (short-wavelength limit) is close to the DG estimate averaged over the unstable region. In stable configurations, the typical frequency matches the maximum DG estimate. The dispersion curve of oscillations demonstrates a local maximum at wavelength ˜0.7 sheet half-width, which is a new feature that is absent in simplified analytical solutions.

  6. Co-Optima Targets Maximum Transportation Sector Efficiency, Energy

    Science.gov Websites

    Independence and Industry Growth | News | NREL Co-Optima Targets Maximum Transportation Sector Efficiency, Energy Independence and Industry Growth Co-Optima Targets Maximum Transportation Sector Efficiency, Energy Independence and Industry Growth February 6, 2017 Report cover on Co-Optima Year in Review

  7. Macromolecular shape and interactions in layer-by-layer assemblies within cylindrical nanopores.

    PubMed

    Lazzara, Thomas D; Lau, K H Aaron; Knoll, Wolfgang; Janshoff, Andreas; Steinem, Claudia

    2012-01-01

    Layer-by-layer (LbL) deposition of polyelectrolytes and proteins within the cylindrical nanopores of anodic aluminum oxide (AAO) membranes was studied by optical waveguide spectroscopy (OWS). AAO has aligned cylindrical, nonintersecting pores with a defined pore diameter d(0) and functions as a planar optical waveguide so as to monitor, in situ, the LbL process by OWS. The LbL deposition of globular proteins, i.e., avidin and biotinylated bovine serum albumin was compared with that of linear polyelectrolytes (linear-PEs), both species being of similar molecular weight. LbL deposition within the cylindrical AAO geometry for different pore diameters (d(0) = 25-80 nm) for the various macromolecular species, showed that the multilayer film growth was inhibited at different maximum numbers of LbL steps (n(max)). The value of n(max) was greatest for linear-PEs, while proteins had a lower value. The cylindrical pore geometry imposes a physical limit to LbL growth such that n(max) is strongly dependent on the overall internal structure of the LbL film. For all macromolecular species, deposition was inhibited in native AAO, having pores of d(0) = 25-30 nm. Both, OWS and scanning electron microscopy showed that LbL growth in larger AAO pores (d(0) > 25-30 nm) became inhibited when approaching a pore diameter of d(eff,n_max) = 25-35 nm, a similar size to that of native AAO pores, with d(0) = 25-30 nm. For a reasonable estimation of d(eff,n_max), the actual volume occupied by a macromolecular assembly must be taken into consideration. The results clearly show that electrostatic LbL allowed for compact macromolecular layers, whereas proteins formed loosely packed multilayers.

  8. Unambiguous discrimination between linearly dependent equidistant states with multiple copies

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Hai; Ren, Gang

    2018-07-01

    Linearly independent quantum states can be unambiguously discriminated, but linearly dependent ones cannot. For linearly dependent quantum states, however, if C copies of the single states are available, then they may form linearly independent states, and can be unambiguously discriminated. We consider unambiguous discrimination among N = D + 1 linearly dependent states given that C copies are available and that the single copies span a D-dimensional space with equal inner products. The maximum unambiguous discrimination probability is derived for all C with equal a priori probabilities. For this classification of the linearly dependent equidistant states, our result shows that if C is even then adding a further copy fails to increase the maximum discrimination probability.

  9. The Madden-Julian Oscillation and the Indo-Pacific Warm Pool

    NASA Astrophysics Data System (ADS)

    Raymond, David J.; Fuchs, Željka

    2018-04-01

    A minimal model of the interaction of the Madden-Julian oscillation (MJO) with the Indo-Pacific warm pool is presented. This model is based on the linear superposition of the flow associated with a highly simplified treatment of the MJO plus the flow induced by the warm pool itself. Both of these components parameterize rainfall as proportional to the column water vapor, which in turn is governed by a linearized moisture equation in which WISHE (wind induced surface heat exchange) plays a governing role. The MJO component has maximum growth rate for planetary wavenumber 1 and is equatorially trapped with purely zonal winds. The warm pool component exhibits a complex flow pattern, differing significantly from the classical Gill model as a result of the mean easterly flow. The combination of the two produce a flow that reproduces many aspects of the observed global flow associated with the MJO.

  10. Determining the number of fingers in the lifting Hele-Shaw problem

    NASA Astrophysics Data System (ADS)

    Miranda, Jose; Dias, Eduardo

    2013-11-01

    The lifting Hele-Shaw cell flow is a variation of the celebrated radial viscous fingering problem for which the upper cell plate is lifted uniformly at a specified rate. This procedure causes the formation of intricate interfacial patterns. Most theoretical studies determine the total number of emerging fingers by maximizing the linear growth rate, but this generates discrepancies between theory and experiments. In this work, we tackle the number of fingers selection problem in the lifting Hele-Shaw cell by employing the recently proposed maximum-amplitude criterion. Our linear stability analysis accounts for the action of capillary, viscous normal stresses, and wetting effects, as well as the cell confinement. The comparison of our results with very precise laboratory measurements for the total number of fingers shows a significantly improved agreement between theoretical predictions and experimental data. We thank CNPq (Brazilian Sponsor) for financial support.

  11. SCI Identification (SCIDNT) program user's guide. [maximum likelihood method for linear rotorcraft models

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The computer program Linear SCIDNT which evaluates rotorcraft stability and control coefficients from flight or wind tunnel test data is described. It implements the maximum likelihood method to maximize the likelihood function of the parameters based on measured input/output time histories. Linear SCIDNT may be applied to systems modeled by linear constant-coefficient differential equations. This restriction in scope allows the application of several analytical results which simplify the computation and improve its efficiency over the general nonlinear case.

  12. Cell growth behaviors of Clostridium acetobutylicum in a pervaporation membrane bioreactor for butanol fermentation.

    PubMed

    Yao, Peina; Xiao, Zeyi; Chen, Chunyan; Li, Weijia; Deng, Qing

    2016-01-01

    Acetone-butanol-ethanol fermentation using Clostridium acetobutylicum was studied in the continuous and closed-circulating fermentation (CCCF) system. The experiment lasting for 192 H was carried out by integrating fermentation with in situ pervaporation. In the entire process, the cell growth profile took place in the following two phases: the logarithmic phase during early 28 H and the linear phase from 130 to 150 H. This was a unique characteristic compared with the curve of traditional fermentation, and the fitting equations of two growth phases were obtained by Origin software according to the kinetic model of cell growth. Besides, the kinetic parameters that include the butanol yield, maximum specific growth rate, average specific formation rate, and volumetric productivity of butanol were measured as 0.19 g g(-1) , 0.345 H(-1) , 0.134 H(-1) and 0.23 g L(-1)  H(-1) , respectively. The C. acetobutylicum in the CCCF system showed good adaptability and fermentation performance, and the prolonged fermentation period and high production were also the main advantages of CCCF technology. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  13. Piecewise Linear-Linear Latent Growth Mixture Models with Unknown Knots

    ERIC Educational Resources Information Center

    Kohli, Nidhi; Harring, Jeffrey R.; Hancock, Gregory R.

    2013-01-01

    Latent growth curve models with piecewise functions are flexible and useful analytic models for investigating individual behaviors that exhibit distinct phases of development in observed variables. As an extension of this framework, this study considers a piecewise linear-linear latent growth mixture model (LGMM) for describing segmented change of…

  14. Stand density, tree social status and water stress influence allocation in height and diameter growth of Quercus petraea (Liebl.).

    PubMed

    Trouvé, Raphaël; Bontemps, Jean-Daniel; Seynave, Ingrid; Collet, Catherine; Lebourgeois, François

    2015-10-01

    Even-aged forest stands are competitive communities where competition for light gives advantages to tall individuals, thereby inducing a race for height. These same individuals must however balance this competitive advantage with height-related mechanical and hydraulic risks. These phenomena may induce variations in height-diameter growth relationships, with primary dependences on stand density and tree social status as proxies for competition pressure and access to light, and on availability of local environmental resources, including water. We aimed to investigate the effects of stand density, tree social status and water stress on the individual height-circumference growth allocation (Δh-Δc), in even-aged stands of Quercus petraea Liebl. (sessile oak). Within-stand Δc was used as surrogate for tree social status. We used an original long-term experimental plot network, set up in the species production area in France, and designed to explore stand dynamics on a maximum density gradient. Growth allocation was modelled statistically by relating the shape of the Δh-Δc relationship to stand density, stand age and water deficit. The shape of the Δh-Δc relationship shifted from linear with a moderate slope in open-grown stands to concave saturating with an initial steep slope in closed stands. Maximum height growth was found to follow a typical mono-modal response to stand age. In open-grown stands, increasing summer soil water deficit was found to decrease height growth relative to radial growth, suggesting hydraulic constraints on height growth. A similar pattern was found in closed stands, the magnitude of the effect however lowering from suppressed to dominant trees. We highlight the high phenotypic plasticity of growth in sessile oak trees that further adapt their allocation scheme to their environment. Stand density and tree social status were major drivers of growth allocation variations, while water stress had a detrimental effect on height in the Δh-Δc allocation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. The response of meat ducks from 15 to 35 d of age to gossypol from cottonseed meal

    PubMed Central

    Zeng, Q. F.; Bai, P.; Wang, J. P.; Ding, X. M.; Luo, Y. H.; Bai, S. P.; Xuan, Y.; Su, Z. W.; Lin, S. Q.; Zhao, L. J.; Zhang, K. Y.

    2015-01-01

    The objective of this study was to investigate the responses of meat ducks of 15 to 35 d of age to free gossypol (FG) from cottonseed meal (CSM) and to establish the maximum limits of dietary FG concentration based on growth performance, blood parameters, and tissue residues of gossypol. Nine hundred 15-d-old ducks were randomly allocated to 5 treatments with 10 cages/treatment and 18 ducks/cage on the basis of BW. Five isonitrogenous and isocaloric experimental diets were formulated on a digestible amino acid basis to produce diets in which 0% (without FG), 25% (36 mg FG/kg), 50% (75 mg FG/kg), 75% (111 mg FG/kg), and 100% (153 mg FG/kg) of protein from soybean meal were replaced by that from CSM. Increasing dietary FG content, BW, and ADG decreased (linearly, P < 0.05, except for ADG of days 29 to 35), and F/G linearly increased (P < 0.05). At 35 d, blood hemoglobin, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration linearly decreased (P < 0.05), while serum total protein, albumin, and globulin content linearly decreased (P < 0.05), and the residue of gossypol in liver, kidney, heart, breast, and leg muscle linearly increased (P < 0.001) with increases in dietary FG concentration. Ducks fed 36 mg FG/kg (5.83% CSM of diet) diet had a normal histological structure of liver, and muscle (breast and leg) had no residue of gossypol. The maximum limit of dietary FG concentration was estimated to range from a low of 36 mg/kg to maximize serum globulin concentration to a high of 124 mg/kg to minimize feed intake for 22 to 28d on the basis of a quadratic broken-line model. PMID:25834247

  16. The response of meat ducks from 15 to 35 d of age to gossypol from cottonseed meal.

    PubMed

    Zeng, Q F; Bai, P; Wang, J P; Ding, X M; Luo, Y H; Bai, S P; Xuan, Y; Su, Z W; Lin, S Q; Zhao, L J; Zhang, K Y

    2015-06-01

    The objective of this study was to investigate the responses of meat ducks of 15 to 35 d of age to free gossypol (FG) from cottonseed meal (CSM) and to establish the maximum limits of dietary FG concentration based on growth performance, blood parameters, and tissue residues of gossypol. Nine hundred 15-d-old ducks were randomly allocated to 5 treatments with 10 cages/treatment and 18 ducks/cage on the basis of BW. Five isonitrogenous and isocaloric experimental diets were formulated on a digestible amino acid basis to produce diets in which 0% (without FG), 25% (36 mg FG/kg), 50% (75 mg FG/kg), 75% (111 mg FG/kg), and 100% (153 mg FG/kg) of protein from soybean meal were replaced by that from CSM. Increasing dietary FG content, BW, and ADG decreased (linearly, P<0.05, except for ADG of days 29 to 35), and F/G linearly increased (P<0.05). At 35 d, blood hemoglobin, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration linearly decreased (P<0.05), while serum total protein, albumin, and globulin content linearly decreased (P<0.05), and the residue of gossypol in liver, kidney, heart, breast, and leg muscle linearly increased (P<0.001) with increases in dietary FG concentration. Ducks fed 36 mg FG/kg (5.83% CSM of diet) diet had a normal histological structure of liver, and muscle (breast and leg) had no residue of gossypol. The maximum limit of dietary FG concentration was estimated to range from a low of 36 mg/kg to maximize serum globulin concentration to a high of 124 mg/kg to minimize feed intake for 22 to 28 d on the basis of a quadratic broken-line model. © The Author 2015. Published by Oxford University Press on behalf of Poultry Science Association.

  17. Effect of surface tension on global modes of confined wake flows

    NASA Astrophysics Data System (ADS)

    Tammisola, Outi; Lundell, Fredrik; Söderberg, L. Daniel

    2011-01-01

    Many wake flows are susceptible to self-sustained oscillations, such as the well-known von Kármán vortex street behind a cylinder that makes a rope beat against a flagpole at a distinct frequency on a windy day. One appropriate method to study these global instabilities numerically is to look at the growth rates of the linear temporal global modes. If all growth rates for all modes are negative for a certain flow field then a self-sustained oscillation should not occur. On the other hand, if one growth rate for one mode is slightly positive, the oscillation will approximately obtain the frequency and shape of this global mode. In our study, we first introduce surface tension between two fluids to the wake-flow problem. Then we investigate its effects on the global linear instability of a spatially developing wake with two co-flowing immiscible fluids. The inlet profile consists of two uniform layers, which makes the problem easily parametrizable. The fluids are assumed to have the same density and viscosity, with the result that the interface position becomes dynamically important solely through the action of surface tension. Two wakes with different parameter values and surface tension are studied in detail. The results show that surface tension has a strong influence on the oscillation frequency, growth rate, and shape of the global mode(s). Finally, we make an attempt to confirm and explain the surface-tension effect based on a local stability analysis of the same flow field in the streamwise position of maximum reverse flow.

  18. Fire-mediated disruptive selection can explain the reseeder-resprouter dichotomy in Mediterranean-type vegetation.

    PubMed

    Altwegg, Res; De Klerk, Helen M; Midgley, Guy F

    2015-02-01

    Crown fire is a key selective pressure in Mediterranean-type plant communities. Adaptive responses to fire regimes involve trade-offs between investment for persistence (fire survival and resprouting) and reproduction (fire mortality, fast growth to reproductive maturity, and reseeding) as investments that enhance adult survival lower growth and reproductive rates. Southern hemisphere Mediterranean-type ecosystems are dominated by species with either endogenous regeneration from adult resprouting or fire-triggered seedling recruitment. Specifically, on nutrient-poor soils, these are either resprouting or reseeding life histories, with few intermediate forms, despite the fact that the transition between strategies is evolutionarily labile. How did this strong dichotomy evolve? We address this question by developing a stochastic demographic model to assess determinants of relative fitness of reseeders, resprouters and hypothetical intermediate forms. The model was parameterised using published demographic data from South African protea species and run over various relevant fire regime parameters facets. At intermediate fire return intervals, trade-offs between investment in growth versus fire resilience can cause fitness to peak at either of the extremes of the reseeder-resprouter continuum, especially when assuming realistic non-linear shapes for these trade-offs. Under these circumstances, the fitness landscape exhibits a saddle which could lead to disruptive selection. The fitness gradient between the peaks was shallow, which may explain why this life-history trait is phylogenetically labile. Resprouters had maximum fitness at shorter fire-return intervals than reseeders. The model suggests that a strong dichotomy in fire survival strategy depends on a non-linear trade-off between growth and fire persistence traits.

  19. The Electrostatic Instability for Realistic Pair Distributions in Blazar/EBL Cascades

    NASA Astrophysics Data System (ADS)

    Vafin, S.; Rafighi, I.; Pohl, M.; Niemiec, J.

    2018-04-01

    This work revisits the electrostatic instability for blazar-induced pair beams propagating through the intergalactic medium (IGM) using linear analysis and PIC simulations. We study the impact of the realistic distribution function of pairs resulting from the interaction of high-energy gamma-rays with the extragalactic background light. We present analytical and numerical calculations of the linear growth rate of the instability for the arbitrary orientation of wave vectors. Our results explicitly demonstrate that the finite angular spread of the beam dramatically affects the growth rate of the waves, leading to the fastest growth for wave vectors quasi-parallel to the beam direction and a growth rate at oblique directions that is only a factor of 2–4 smaller compared to the maximum. To study the nonlinear beam relaxation, we performed PIC simulations that take into account a realistic wide-energy distribution of beam particles. The parameters of the simulated beam-plasma system provide an adequate physical picture that can be extrapolated to realistic blazar-induced pairs. In our simulations, the beam looses only 1% of its energy, and we analytically estimate that the beam would lose its total energy over about 100 simulation times. An analytical scaling is then used to extrapolate the parameters of realistic blazar-induced pair beams. We find that they can dissipate their energy slightly faster by the electrostatic instability than through inverse-Compton scattering. The uncertainties arising from, e.g., details of the primary gamma-ray spectrum are too large to make firm statements for individual blazars, and an analysis based on their specific properties is required.

  20. A non-linear theory of the parallel firehose and gyrothermal instabilities in a weakly collisional plasma

    NASA Astrophysics Data System (ADS)

    Rosin, M. S.; Schekochihin, A. A.; Rincon, F.; Cowley, S. C.

    2011-05-01

    Weakly collisional magnetized cosmic plasmas have a dynamical tendency to develop pressure anisotropies with respect to the local direction of the magnetic field. These anisotropies trigger plasma instabilities at scales just above the ion Larmor radius ρi and much below the mean free path λmfp. They have growth rates of a fraction of the ion cyclotron frequency, which is much faster than either the global dynamics or even local turbulence. Despite their microscopic nature, these instabilities dramatically modify the transport properties and, therefore, the macroscopic dynamics of the plasma. The non-linear evolution of these instabilities is expected to drive pressure anisotropies towards marginal stability values, controlled by the plasma beta βi. Here this non-linear evolution is worked out in an ab initio kinetic calculation for the simplest analytically tractable example - the parallel (k⊥= 0) firehose instability in a high-beta plasma. An asymptotic theory is constructed, based on a particular physical ordering and leading to a closed non-linear equation for the firehose turbulence. In the non-linear regime, both the analytical theory and the numerical solution predict secular (∝t) growth of magnetic fluctuations. The fluctuations develop a k-3∥ spectrum, extending from scales somewhat larger than ρi to the maximum scale that grows secularly with time (∝t1/2); the relative pressure anisotropy (p⊥-p∥)/p∥ tends to the marginal value -2/βi. The marginal state is achieved via changes in the magnetic field, not particle scattering. When a parallel ion heat flux is present, the parallel firehose mutates into the new gyrothermal instability (GTI), which continues to exist up to firehose-stable values of pressure anisotropy, which can be positive and are limited by the magnitude of the ion heat flux. The non-linear evolution of the GTI also features secular growth of magnetic fluctuations, but the fluctuation spectrum is eventually dominated by modes around a maximal scale ˜ρilT/λmfp, where lT is the scale of the parallel temperature variation. Implications for momentum and heat transport are speculated about. This study is motivated by our interest in the dynamics of galaxy cluster plasmas (which are used as the main astrophysical example), but its relevance to solar wind and accretion flow plasmas is also briefly discussed.

  1. Habitat quality of a subarctic nursery ground for 0-group plaice ( Pleuronectes platessa L.)

    NASA Astrophysics Data System (ADS)

    Freitas, Vânia; Campos, Joana; Skreslet, Stig; van der Veer, Henk W.

    2010-07-01

    Habitat quality of a subarctic nursery ground in northern Norway for 0-group plaice Pleuronectes platessa was investigated by following settlement, mortality and growth during 2005 and 2006. Newly settled individuals were first observed in the end of May to early June and settlement lasted until mid-July. Densities peaked in early July and were comparable to those reported in temperate nursery grounds. Mortality estimates after settlement differed between 0.062 d -1 in 2005 and 0.025 d -1 in 2006. Potential predators appeared to be rather similar as those reported in other areas: the brown shrimp Crangoncrangon, the shore crab Carcinus maenas and demersal fish species (gadoids). Population mean growth indicated linear growth until August leveling-off afterwards. 0-group plaice reached a lower mean size (5-6 cm) at the end of the growing season than in temperate areas probably due to later settlement timing in combination with lower summer-autumn water temperatures. The comparison of observed growth rates with predictions of maximum growth models indicated a similar pattern as observed in temperate nursery grounds: Growth appeared to be maximal except for the period after summer. Whether or not this was related to changes in food quality throughout the season, to interspecies competition or to emigration remains to be elucidated.

  2. Feedback control of acoustic disturbance transient growth in triggering thermoacoustic instability

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Reyhanoglu, Mahmut

    2014-08-01

    Transient growth of acoustic disturbances could trigger thermoacoustic instability in a combustion system with non-orthogonal eigenmodes, even with stable eigenvalues. In this work, feedback control of transient growth of flow perturbations in a Rijke-type combustion system is considered. For this, a generalized thermoacoustic model with distributed monopole-like actuators is developed. The model is formulated in state-space to gain insights on the interaction between various eigenmodes and the dynamic response of the system to the actuators. Three critical parameters are identified: (1) the mode number, (2) the number of actuators, and (3) the locations of the actuators. It is shown that in general the number of the actuators K is related to the mode number N as K=N2. For simplicity in illustrating the main results of the paper, two different thermoacoustic systems are considered: system (a) with one mode and system (b) that involves two modes. The actuator location effect is studied in system (a) and it is found that the actuator location plays an important role in determining the control effort. In addition, sensitivity analysis of pressure- and velocity-related control parameters is conducted. In system (b), when the actuators are turned off (i.e., open-loop configuration), it is observed that acoustic energy transfers from the high frequency mode to the lower frequency mode. After some time, the energy is transferred back. Moreover, the high frequency oscillation grows into nonlinear limit cycle with the low frequency oscillation amplified. As a linear-quadratic regulator (LQR) is implemented to tune the actuators, both systems become asymptotically stable. However, the LQR controller fails in eliminating the transient growth, which may potentially trigger thermoacoustic instability. In order to achieve strict dissipativity (i.e., unity maximum transient growth), a transient growth controller is systematically designed and tested in both systems. Comparison is then made between the performance of the LQR controller and that of the transient growth controller. It is found in both systems that the transient growth controller achieves both exponential decay of the flow disturbance energy and unity maximum transient growth.

  3. Preliminarily study on the maximum handling size, prey size and species selectivity of growth hormone transgenic and non-transgenic common carp Cyprinus carpio when foraging on gastropods

    NASA Astrophysics Data System (ADS)

    Zhu, Tingbing; Zhang, Lihong; Zhang, Tanglin; Wang, Yaping; Hu, Wei; Olsen, Rolf Eric; Zhu, Zuoyan

    2017-10-01

    The present study preliminarily examined the differences in maximum handling size, prey size and species selectivity of growth hormone transgenic and non-transgenic common carp Cyprinus carpio when foraging on four gastropods species (Bellamya aeruginosa, Radix auricularia, Parafossarulus sinensis and Alocinma longicornis) under laboratory conditions. In the maximum handling size trial, five fish from each age group (1-year-old and 2-year-old) and each genotype (transgenic and non-transgenic) of common carp were individually allowed to feed on B. aeruginosa with wide shell height range. The results showed that maximum handling size increased linearly with fish length, and there was no significant difference in maximum handling size between the two genotypes. In the size selection trial, three pairs of 2-year-old transgenic and non-transgenic carp were individually allowed to feed on three size groups of B. aeruginosa. The results show that the two genotypes of C. carpio favored the small-sized group over the large-sized group. In the species selection trial, three pairs of 2-year-old transgenic and non-transgenic carp were individually allowed to feed on thin-shelled B. aeruginosa and thick-shelled R. auricularia, and five pairs of 2-year-old transgenic and non-transgenic carp were individually allowed to feed on two gastropods species (P. sinensis and A. longicornis) with similar size and shell strength. The results showed that both genotypes preferred thin-shelled Radix auricularia rather than thick-shelled B. aeruginosa, but there were no significant difference in selectivity between the two genotypes when fed on P. sinensis and A. longicornis. The present study indicates that transgenic and non-transgenic C. carpio show similar selectivity of predation on the size- and species-limited gastropods. While this information may be useful for assessing the environmental risk of transgenic carp, it does not necessarily demonstrate that transgenic common carp might have lesser environmental impacts than non-transgenic carp.

  4. Evolution of anisotropy in bcc Fe distorted by interstitial boron

    NASA Astrophysics Data System (ADS)

    Gölden, Dominik; Zhang, Hongbin; Radulov, Iliya; Dirba, Imants; Komissinskiy, Philipp; Hildebrandt, Erwin; Alff, Lambert

    2018-01-01

    The evolution of magnetic anisotropy in bcc Fe as a function of interstitial boron atoms was investigated in thin films grown by molecular beam epitaxy. The thermodynamic nonequilibrium conditions during film growth allowed one to stabilize an interstitial boron content of about 14 at .% accompanied by lattice tetragonalization. The c /a ratio scaled linearly with the boron content up to a maximum value of 1.05 at 300 °C substrate growth temperature, with a room-temperature magnetization of. In contrast to nitrogen interstitials, the magnetic easy axis remained in-plane with an anisotropy of approximately -5.1 ×106erg /cm3 . Density functional theory calculations using the measured lattice parameters confirm this value and show that boron local ordering indeed favors in-plane magnetization. Given the increased temperature stability of boron interstitials as compared to nitrogen interstitials, this study will help to find possible ways to manipulate boron interstitials into a more favorable local order.

  5. The effect of changes in sea surface temperature on linear growth of Porites coral in Ambon Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corvianawatie, Corry, E-mail: corvianawatie@students.itb.ac.id; Putri, Mutiara R., E-mail: mutiara.putri@fitb.itb.ac.id; Cahyarini, Sri Y., E-mail: yuda@geotek.lipi.go.id

    Coral is one of the most important organisms in the coral reef ecosystem. There are several factors affecting coral growth, one of them is changes in sea surface temperature (SST). The purpose of this research is to understand the influence of SST variability on the annual linear growth of Porites coral taken from Ambon Bay. The annual coral linear growth was calculated and compared to the annual SST from the Extended Reconstructed Sea Surface Temperature version 3b (ERSST v3b) model. Coral growth was calculated by using Coral X-radiograph Density System (CoralXDS) software. Coral sample X-radiographs were used as input data.more » Chronology was developed by calculating the coral’s annual growth bands. A pair of high and low density banding patterns observed in the coral’s X-radiograph represent one year of coral growth. The results of this study shows that Porites coral extents from 2001-2009 and had an average growth rate of 1.46 cm/year. Statistical analysis shows that the annual coral linear growth declined by 0.015 cm/year while the annual SST declined by 0.013°C/year. SST and the annual linear growth of Porites coral in the Ambon Bay is insignificantly correlated with r=0.304 (n=9, p>0.05). This indicates that annual SST variability does not significantly influence the linear growth of Porites coral from Ambon Bay. It is suggested that sedimentation load, salinity, pH or other environmental factors may affect annual linear coral growth.« less

  6. Two is better than one: joint statistics of density and velocity in concentric spheres as a cosmological probe

    NASA Astrophysics Data System (ADS)

    Uhlemann, C.; Codis, S.; Hahn, O.; Pichon, C.; Bernardeau, F.

    2017-08-01

    The analytical formalism to obtain the probability distribution functions (PDFs) of spherically averaged cosmic densities and velocity divergences in the mildly non-linear regime is presented. A large-deviation principle is applied to those cosmic fields assuming their most likely dynamics in spheres is set by the spherical collapse model. We validate our analytical results using state-of-the-art dark matter simulations with a phase-space resolved velocity field finding a 2 per cent level agreement for a wide range of velocity divergences and densities in the mildly non-linear regime (˜10 Mpc h-1 at redshift zero), usually inaccessible to perturbation theory. From the joint PDF of densities and velocity divergences measured in two concentric spheres, we extract with the same accuracy velocity profiles and conditional velocity PDF subject to a given over/underdensity that are of interest to understand the non-linear evolution of velocity flows. Both PDFs are used to build a simple but accurate maximum likelihood estimator for the redshift evolution of the variance of both the density and velocity divergence fields, which have smaller relative errors than their sample variances when non-linearities appear. Given the dependence of the velocity divergence on the growth rate, there is a significant gain in using the full knowledge of both PDFs to derive constraints on the equation of state-of-dark energy. Thanks to the insensitivity of the velocity divergence to bias, its PDF can be used to obtain unbiased constraints on the growth of structures (σ8, f) or it can be combined with the galaxy density PDF to extract bias parameters.

  7. Fast linear feature detection using multiple directional non-maximum suppression.

    PubMed

    Sun, C; Vallotton, P

    2009-05-01

    The capacity to detect linear features is central to image analysis, computer vision and pattern recognition and has practical applications in areas such as neurite outgrowth detection, retinal vessel extraction, skin hair removal, plant root analysis and road detection. Linear feature detection often represents the starting point for image segmentation and image interpretation. In this paper, we present a new algorithm for linear feature detection using multiple directional non-maximum suppression with symmetry checking and gap linking. Given its low computational complexity, the algorithm is very fast. We show in several examples that it performs very well in terms of both sensitivity and continuity of detected linear features.

  8. Evaluation of force-velocity and power-velocity relationship of arm muscles.

    PubMed

    Sreckovic, Sreten; Cuk, Ivan; Djuric, Sasa; Nedeljkovic, Aleksandar; Mirkov, Dragan; Jaric, Slobodan

    2015-08-01

    A number of recent studies have revealed an approximately linear force-velocity (F-V) and, consequently, a parabolic power-velocity (P-V) relationship of multi-joint tasks. However, the measurement characteristics of their parameters have been neglected, particularly those regarding arm muscles, which could be a problem for using the linear F-V model in both research and routine testing. Therefore, the aims of the present study were to evaluate the strength, shape, reliability, and concurrent validity of the F-V relationship of arm muscles. Twelve healthy participants performed maximum bench press throws against loads ranging from 20 to 70 % of their maximum strength, and linear regression model was applied on the obtained range of F and V data. One-repetition maximum bench press and medicine ball throw tests were also conducted. The observed individual F-V relationships were exceptionally strong (r = 0.96-0.99; all P < 0.05) and fairly linear, although it remains unresolved whether a polynomial fit could provide even stronger relationships. The reliability of parameters obtained from the linear F-V regressions proved to be mainly high (ICC > 0.80), while their concurrent validity regarding directly measured F, P, and V ranged from high (for maximum F) to medium-to-low (for maximum P and V). The findings add to the evidence that the linear F-V and, consequently, parabolic P-V models could be used to study the mechanical properties of muscular systems, as well as to design a relatively simple, reliable, and ecologically valid routine test of the muscle ability of force, power, and velocity production.

  9. Linear growth of children on a ketogenic diet: does the protein-to-energy ratio matter?

    PubMed

    Nation, Judy; Humphrey, Maureen; MacKay, Mark; Boneh, Avihu

    2014-11-01

    Ketogenic diet is a structured effective treatment for children with intractable epilepsy. Several reports have indicated poor linear growth in children on the diet but the mechanism of poor growth has not been elucidated. We aimed to explore whether the protein to energy ratio plays a role in linear growth of children on ketogenic diet. Data regarding growth and nutrition were, retrospectively, collected from the clinical histories of 35 children who were treated with ketogenic diet for at least 6 months between 2002 and 2010. Patients were stratified into groups according to periods of satisfactory or poor linear growth. Poor linear growth was associated with protein or caloric intake of <80% recommended daily intake, and with a protein-to-energy ratio consistently ≤1.4 g protein/100 kcal even when protein and caloric intakes were adequate. We recommend a protein-to-energy ratio of 1.5 g protein/100 kcal be prescribed to prevent growth retardation. © The Author(s) 2013.

  10. Predicting outgrowth and inactivation of Clostridium perfringens in meat products during low temperature long time heat treatment.

    PubMed

    Duan, Zhi; Hansen, Terese Holst; Hansen, Tina Beck; Dalgaard, Paw; Knøchel, Susanne

    2016-08-02

    With low temperature long time (LTLT) cooking it can take hours for meat to reach a final core temperature above 53°C and germination followed by growth of Clostridium perfringens is a concern. Available and new growth data in meats including 154 lag times (tlag), 224 maximum specific growth rates (μmax) and 25 maximum population densities (Nmax) were used to developed a model to predict growth of C. perfringens during the coming-up time of LTLT cooking. New data were generate in 26 challenge tests with chicken (pH6.8) and pork (pH5.6) at two different slowly increasing temperature (SIT) profiles (10°C to 53°C) followed by 53°C in up to 30h in total. Three inoculum types were studied including vegetative cells, non-heated spores and heat activated (75°C, 20min) spores of C. perfringens strain 790-94. Concentrations of vegetative cells in chicken increased 2 to 3logCFU/g during the SIT profiles. Similar results were found for non-heated and heated spores in chicken, whereas in pork C. perfringens 790-94 increased less than 1logCFU/g. At 53°C C. perfringens 790-94 was log-linearly inactivated. Observed and predicted concentrations of C. perfringens, at the time when 53°C (log(N53)) was reached, were used to evaluate the new growth model and three available predictive models previously published for C. perfringens growth during cooling rather than during SIT profiles. Model performance was evaluated by using mean deviation (MD), mean absolute deviation (MAD) and the acceptable simulation zone (ASZ) approach with a zone of ±0.5logCFU/g. The new model showed best performance with MD=0.27logCFU/g, MAD=0.66logCFU/g and ASZ=67%. The two growth models that performed best, were used together with a log-linear inactivation model and D53-values from the present study to simulate the behaviour of C. perfringens under the fast and slow SIT profiles investigated in the present study. Observed and predicted concentrations were compared using a new fail-safe acceptable zone (FSAZ) method. FSAZ was defined as the predicted concentration of C. perfringens plus 0.5logCFU/g. If at least 85% of the observed log-counts were below the FSAZ, the model was considered fail-safe. The two models showed similar performance but none of them performed satisfactorily for all conditions. It is recommended to use the models without a lag phase until more precise lag time models become available. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Assembly and loss of the polar flagellum in plant-associated methylobacteria

    NASA Astrophysics Data System (ADS)

    Doerges, L.; Kutschera, U.

    2014-04-01

    On the leaf surfaces of numerous plant species, inclusive of sunflower ( Helianthus annuus L.), pink-pigmented, methanol-consuming, phytohormone-secreting prokaryotes of the genus Methylobacterium have been detected. However, neither the roles, nor the exact mode of colonization of these epiphytic microbes have been explored in detail. Using germ-free sunflower seeds, we document that, during the first days of seedling development, methylobacteria exert no promotive effect on organ growth. Since the microbes are evenly distributed over the outer surface of the above-ground phytosphere, we analyzed the behavior of populations taken from two bacterial strains that were cultivated as solid, biofilm-like clones on agar plates in different aqueous environments ( Methylobacterium mesophilicum and M. marchantiae, respectively). After transfer into liquid medium, the rod-shaped, immobile methylobacteria assembled a flagellum and developed into planktonic microbes that were motile. During the linear phase of microbial growth in liquid cultures, the percentage of swimming, flagellated bacteria reached a maximum, and thereafter declined. In stationary populations, living, immotile bacteria, and isolated flagella were observed. Hence, methylobacteria that live in a biofilm, transferred into aqueous environments, assemble a flagellum that is lost when cell density has reached a maximum. This swimming motility, which appeared during ontogenetic development within growing microbial populations, may be a means to colonize the moist outer surfaces of leaves.

  12. Assembly and loss of the polar flagellum in plant-associated methylobacteria.

    PubMed

    Doerges, L; Kutschera, U

    2014-04-01

    On the leaf surfaces of numerous plant species, inclusive of sunflower (Helianthus annuus L.), pink-pigmented, methanol-consuming, phytohormone-secreting prokaryotes of the genus Methylobacterium have been detected. However, neither the roles, nor the exact mode of colonization of these epiphytic microbes have been explored in detail. Using germ-free sunflower seeds, we document that, during the first days of seedling development, methylobacteria exert no promotive effect on organ growth. Since the microbes are evenly distributed over the outer surface of the above-ground phytosphere, we analyzed the behavior of populations taken from two bacterial strains that were cultivated as solid, biofilm-like clones on agar plates in different aqueous environments (Methylobacterium mesophilicum and M. marchantiae, respectively). After transfer into liquid medium, the rod-shaped, immobile methylobacteria assembled a flagellum and developed into planktonic microbes that were motile. During the linear phase of microbial growth in liquid cultures, the percentage of swimming, flagellated bacteria reached a maximum, and thereafter declined. In stationary populations, living, immotile bacteria, and isolated flagella were observed. Hence, methylobacteria that live in a biofilm, transferred into aqueous environments, assemble a flagellum that is lost when cell density has reached a maximum. This swimming motility, which appeared during ontogenetic development within growing microbial populations, may be a means to colonize the moist outer surfaces of leaves.

  13. Linear growth trajectories in Zimbabwean infants12

    PubMed Central

    Gough, Ethan K; Moodie, Erica EM; Prendergast, Andrew J; Ntozini, Robert; Moulton, Lawrence H; Humphrey, Jean H; Manges, Amee R

    2016-01-01

    Background: Undernutrition in early life underlies 45% of child deaths globally. Stunting malnutrition (suboptimal linear growth) also has long-term negative effects on childhood development. Linear growth deficits accrue in the first 1000 d of life. Understanding the patterns and timing of linear growth faltering or recovery during this period is critical to inform interventions to improve infant nutritional status. Objective: We aimed to identify the pattern and determinants of linear growth trajectories from birth through 24 mo of age in a cohort of Zimbabwean infants. Design: We performed a secondary analysis of longitudinal data from a subset of 3338 HIV-unexposed infants in the Zimbabwe Vitamin A for Mothers and Babies trial. We used k-means clustering for longitudinal data to identify linear growth trajectories and multinomial logistic regression to identify covariates that were associated with each trajectory group. Results: For the entire population, the mean length-for-age z score declined from −0.6 to −1.4 between birth and 24 mo of age. Within the population, 4 growth patterns were identified that were each characterized by worsening linear growth restriction but varied in the timing and severity of growth declines. In our multivariable model, 1-U increments in maternal height and education and infant birth weight and length were associated with greater relative odds of membership in the least–growth restricted groups (A and B) and reduced odds of membership in the more–growth restricted groups (C and D). Male infant sex was associated with reduced odds of membership in groups A and B but with increased odds of membership in groups C and D. Conclusion: In this population, all children were experiencing growth restriction but differences in magnitude were influenced by maternal height and education and infant sex, birth weight, and birth length, which suggest that key determinants of linear growth may already be established by the time of birth. This trial was registered at clinicaltrials.gov as NCT00198718. PMID:27806980

  14. Morphology and dynamics of tumor cell colonies propagating in epidermal growth factor supplemented media

    NASA Astrophysics Data System (ADS)

    Muzzio, N. E.; Carballido, M.; Pasquale, M. A.; González, P. H.; Azzaroni, O.; Arvia, A. J.

    2018-07-01

    The epidermal growth factor (EGF) plays a key role in physiological and pathological processes. This work reports on the influence of EGF concentration (c EGF) on the modulation of individual cell phenotype and cell colony kinetics with the aim of perturbing the colony front roughness fluctuations. For this purpose, HeLa cell colonies that remain confluent along the whole expansion process with initial quasi-radial geometry and different initial cell populations, as well as colonies with initial quasi-linear geometry and large cell population, are employed. Cell size and morphology as well as its adhesive characteristics depend on c EGF. Quasi-radial colonies (QRC) expansion kinetics in EGF-containing medium exhibits a complex behavior. Namely, at the first stages of growth, the average QRC radius evolution can be described by a t 1/2 diffusion term coupled with exponential growth kinetics up to a critical time, and afterwards a growth regime approaching constant velocity. The extension of each regime depends on c EGF and colony history. In the presence of EGF, the initial expansion of quasi-linear colonies (QLCs) also exhibits morphological changes at both the cell and the colony levels. In these cases, the cell density at the colony border region becomes smaller than in the absence of EGF and consequently, the extension of the effective rim where cell duplication and motility contribute to the colony expansion increases. QLC front displacement velocity increases with c EGF up to a maximum value in the 2–10 ng ml‑1 range. Individual cell velocity is increased by EGF, and an enhancement in both the persistence and the ballistic characteristics of cell trajectories can be distinguished. For an intermediate c EGF, collective cell displacements contribute to the roughening of the colony contours. This global dynamics becomes compatible with the standard Kardar–Parisi–Zhang growth model, although a faster colony roughness saturation in EGF-containing medium than in the control medium is observed.

  15. Enhancing thermo-induced recombinant protein production in Escherichia coli by temperature oscillations and post-induction nutrient feeding strategies.

    PubMed

    Caspeta, Luis; Lara, Alvaro R; Pérez, Néstor O; Flores, Noemí; Bolívar, Francisco; Ramírez, Octavio T

    2013-08-10

    Traditional strategies for production of thermo-induced recombinant protein in Escherichia coli consist of a two-phase culture, with an initial growth stage at low temperature (commonly 30°C) followed by a production stage where temperature is increased stepwise (commonly up to 42°C). A disadvantage of such strategies is that growth is inhibited upon temperature increase, limiting the duration of the production stage and consequently limiting recombinant protein production. In this work, a novel oscillatory thermo-induction strategy, consisting on temperature fluctuations between 37 and 42°C or 30 and 42°C, was tested for improving recombinant protein production. In addition, the induction schemes were combined with one of three different nutrient feeding strategies: two exponential and one linear. Recombinant human preproinsulin (HPPI), produced under control of the λP(L)-cI857 system in the E. coli BL21 strain, was used as the model protein. Compared to the conventional induction scheme at constant temperature (42°C), longer productive times were attained under oscillatory induction, which resulted in a 1.3- to 1.7-fold increase in maximum HPPI concentration. Temperature oscillations led to a 2.3- to 4.0-fold increase in biomass accumulation and a decrease of 48-62% in the concentration of organic acids, compared to conventional induction. Under constant induction, growth ceased upon temperature increase and the maximum concentration of HPPI was 3.9 g/L, regardless of the post-induction feeding strategy used. In comparison, the combination of temperature oscillations and a high nutrient-feeding rate allowed sustained growth after induction and reaching up to 5.8 g/L of HPPI. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Stocking and structure for maximum growth in sugar maple selection stands.

    Treesearch

    Thomas R. Crow; Carl H. Tubbs; Rodney D. Jacobs; Robert R. Oberg

    1981-01-01

    The impacts of stocking, structure, and cutting cycle on basal area, cubic foot volume, board foot volume, and diameter growth are considered. Recommendations are provided for maximum growth in uneven-aged sugar maple stands.

  17. Zinc affects differently growth, photosynthesis, antioxidant enzyme activities and phytochelatin synthase expression of four marine diatoms.

    PubMed

    Nguyen-Deroche, Thi Le Nhung; Caruso, Aurore; Le, Thi Trung; Bui, Trang Viet; Schoefs, Benoît; Tremblin, Gérard; Morant-Manceau, Annick

    2012-01-01

    Zinc-supplementation (20 μM) effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase), and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa). Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses.

  18. Zinc Affects Differently Growth, Photosynthesis, Antioxidant Enzyme Activities and Phytochelatin Synthase Expression of Four Marine Diatoms

    PubMed Central

    Nguyen-Deroche, Thi Le Nhung; Caruso, Aurore; Le, Thi Trung; Bui, Trang Viet; Schoefs, Benoît; Tremblin, Gérard; Morant-Manceau, Annick

    2012-01-01

    Zinc-supplementation (20 μM) effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase), and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa). Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses. PMID:22645501

  19. A modeling approach to link food availability, growth, emergence, and reproduction for the midge Chironomus riparius.

    PubMed

    Péry, Alexandre R R; Mons, Raphaël; Flammarion, Patrick; Lagadic, Laurent; Garric, Jeanne

    2002-11-01

    We present models to link feeding with growth, emergence, and reproduction of the midge Chironomus riparius. These models are based on assumptions about the biology of this species and distinguish between males and females. The assumptions are the isomorphism of the chironomidae, the fact that much more energy is used for growth than for maintenance, and the existence of a maximum length for male and female larvae that does not depend on food availability. We supported our assumptions by experimental data and estimated the parameters of the model. We then successfully predicted the length pattern of 2-d-old larvae exposed in an artificial sediment to different feeding levels with different starting densities and also linked emergence time and growth pattern. We found our model to be consistent with data from another study and another species (Chironomus plumosus). As for reproduction, the mean number of eggs per mass was described as a linear function of feeding quantity. Our models could be used in sediment risk assessment to choose feeding level, to build effects models, or to predict the effects of toxicants at the population level.

  20. Phase-field model with plastic flow for grain growth in nanocrystalline material

    NASA Astrophysics Data System (ADS)

    Steinbach, Ingo; Song, Xiaoyan; Hartmaier, Alexander

    2010-01-01

    A phase-field model is presented which considers the accumulation of structural defects in grain boundaries by an isotropic eigenstrain associated with the grain boundaries. It is demonstrated that the elastic energy caused by dilatation of the grain boundary with respect to the bulk crystal contributes largely to the grain boundary energy. The sign of this contribution can be both positive and negative dependent on the local stress state in the grain boundary. Self-diffusion of atoms is taken into account to relax the stress caused by the dilatation of the grain boundary. Application of the model to discontinuous grain growth in pure nanocrystalline cobalt material is presented. Linear grain growth is found in the nanocrystalline state, which is explained by the interpretation of grain boundary motion as a diffusive process defining an upper limit of the grain boundary velocity independent of the grain boundary curvature but dependent on temperature. The transition to regular grain growth at a critical temperature, as observed experimentally, is explained by the drop of theoretical grain boundary velocity due to its mean curvature during coarsening of the nanograin structure below the maximum velocity.

  1. Computation of nonlinear least squares estimator and maximum likelihood using principles in matrix calculus

    NASA Astrophysics Data System (ADS)

    Mahaboob, B.; Venkateswarlu, B.; Sankar, J. Ravi; Balasiddamuni, P.

    2017-11-01

    This paper uses matrix calculus techniques to obtain Nonlinear Least Squares Estimator (NLSE), Maximum Likelihood Estimator (MLE) and Linear Pseudo model for nonlinear regression model. David Pollard and Peter Radchenko [1] explained analytic techniques to compute the NLSE. However the present research paper introduces an innovative method to compute the NLSE using principles in multivariate calculus. This study is concerned with very new optimization techniques used to compute MLE and NLSE. Anh [2] derived NLSE and MLE of a heteroscedatistic regression model. Lemcoff [3] discussed a procedure to get linear pseudo model for nonlinear regression model. In this research article a new technique is developed to get the linear pseudo model for nonlinear regression model using multivariate calculus. The linear pseudo model of Edmond Malinvaud [4] has been explained in a very different way in this paper. David Pollard et.al used empirical process techniques to study the asymptotic of the LSE (Least-squares estimation) for the fitting of nonlinear regression function in 2006. In Jae Myung [13] provided a go conceptual for Maximum likelihood estimation in his work “Tutorial on maximum likelihood estimation

  2. Corrected Implicit Monte Carlo

    DOE PAGES

    Cleveland, Mathew Allen; Wollaber, Allan Benton

    2018-01-02

    Here in this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle formore » frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. Finally, we present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.« less

  3. Corrected implicit Monte Carlo

    NASA Astrophysics Data System (ADS)

    Cleveland, M. A.; Wollaber, A. B.

    2018-04-01

    In this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle for frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. We present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleveland, Mathew Allen; Wollaber, Allan Benton

    Here in this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle formore » frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. Finally, we present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.« less

  5. Growth mechanisms of perturbations in boundary layers over a compliant wall

    NASA Astrophysics Data System (ADS)

    Malik, M.; Skote, Martin; Bouffanais, Roland

    2018-01-01

    The temporal modal and nonmodal growth of three-dimensional perturbations in the boundary layer flow over an infinite compliant flat wall is considered. Using a wall-normal velocity and wall-normal vorticity formalism, the dynamic boundary condition at the compliant wall admits a linear dependence on the eigenvalue parameter, as compared to a quadratic one in the canonical formulation of the problem. As a consequence, the continuous spectrum is accurately obtained. This enables us to effectively filter the pseudospectra, which is a prerequisite to the transient growth analysis. An energy-budget analysis for the least-decaying hydroelastic (static divergence, traveling wave flutter, and near-stationary transitional) and Tollmien-Schlichting modes in the parameter space reveals the primary routes of energy flow. Moreover, the maximum transient growth rate increases more slowly with the Reynolds number than for the solid wall case. The slowdown is due to a complex dependence of the wall-boundary condition with the Reynolds number, which translates into a transition of the fluid-solid interaction from a two-way to a one-way coupling. Unlike the solid-wall case, viscosity plays a pivotal role in the transient growth. The initial and optimal perturbations are compared with the boundary layer flow over a solid wall; differences and similarities are discussed.

  6. Response of ammonium removal to growth and transpiration of Juncus effusus during the treatment of artificial sewage in laboratory-scale wetlands.

    PubMed

    Wiessner, A; Kappelmeyer, U; Kaestner, M; Schultze-Nobre, L; Kuschk, P

    2013-09-01

    The correlation between nitrogen removal and the role of the plants in the rhizosphere of constructed wetlands are the subject of continuous discussion, but knowledge is still insufficient. Since the influence of plant growth and physiological activity on ammonium removal has not been well characterized in constructed wetlands so far, this aspect is investigated in more detail in model wetlands under defined laboratory conditions using Juncus effusus for treating an artificial sewage. Growth and physiological activity, such as plant transpiration, have been found to correlate with both the efficiency of ammonium removal within the rhizosphere of J. effusus and the methane formation. The uptake of ammonium by growing plant stocks is within in a range of 45.5%, but under conditions of plant growth stagnation, a further nearly complete removal of the ammonium load points to the likely existence of additional nitrogen removal processes. In this way, a linear correlation between the ammonium concentration inside the rhizosphere and the transpiration of the plant stocks implies that an influence of plant physiological activity on the efficiency of N-removal exists. Furthermore, a linear correlation between methane concentration and plant transpiration has been estimated. The findings indicate a fast response of redox processes to plant activities. Accordingly, not only the influence of plant transpiration activity on the plant-internal convective gas transport, the radial oxygen loss by the plant roots and the efficiency of nitrification within the rhizosphere, but also the nitrogen gas released by phytovolatilization are discussed. The results achieved by using an unplanted control system are different in principle and characterized by a low efficiency of ammonium removal and a high methane enrichment of up to a maximum of 72.7% saturation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Impedimetric method for measuring ultra-low E. coli concentrations in human urine.

    PubMed

    Settu, Kalpana; Chen, Ching-Jung; Liu, Jen-Tsai; Chen, Chien-Lung; Tsai, Jang-Zern

    2015-04-15

    In this study, we developed an interdigitated gold microelectrode-based impedance sensor to detect Escherichia coli (E. coli) in human urine samples for urinary tract infection (UTI) diagnosis. E. coli growth in human urine samples was successfully monitored during a 12-h culture, and the results showed that the maximum relative changes could be measured at 10Hz. An equivalent electrical circuit model was used for evaluating the variations in impedance characteristics of bacterial growth. The equivalent circuit analysis indicated that the change in impedance values at low frequencies was caused by double layer capacitance due to bacterial attachment and formation of biofilm on electrode surface in urine. A linear relationship between the impedance change and initial E. coli concentration was obtained with the coefficient of determination R(2)>0.90 at various growth times of 1, 3, 5, 7, 9 and 12h in urine. Thus our sensor is capable of detecting a wide range of E. coli concentration, 7×10(0) to 7×10(8) cells/ml, in urine samples with high sensitivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Optical waveguide and room temperature high-quality nanolasers from tin-catalyzed CdSSe nanostructures

    NASA Astrophysics Data System (ADS)

    Guo, Pengfei; Shen, Xia; Zhang, Baolong; Sun, Haibin; Zou, Zhijun; Yang, Wenchao; Gong, Ke; Luo, Yongsong

    2018-05-01

    A simple two-step CVD method is developed to realize the growth of high-quality tin-catalyzed CdSSe alloy nanowires. Microstructural characterizations demonstrate that these wires are high-quality crystalline nanostructures. Local photoluminescence investigation of these nanostructures shows a typical band edge emission at 656 nm with a full-width at half-maximum of 22.3 nm. Optical waveguide measurement along an individual nanowire indicates that the output signal of the guided light has a rapid linear decrease accompanied with maximum red-shift about 109 meV after the transmission of 102 μm. This obvious red-shift is caused by the intensive band-tail absorption during the optical transmission process. Moreover, optically pumped nanolasers are successfully realized at room temperature based on these unique wires, further demonstrating the achievement of stimulated emission from spontaneous emission, promoted by the pump power intensity. This work may find a simple route to the manufacture of superior nanowires for applications in waveguide and integrated photonic devices.

  9. Optical waveguide and room temperature high-quality nanolasers from tin-catalyzed CdSSe nanostructures.

    PubMed

    Guo, Pengfei; Shen, Xia; Zhang, Baolong; Sun, Haibin; Zou, Zhijun; Yang, Wenchao; Gong, Ke; Luo, Yongsong

    2018-05-04

    A simple two-step CVD method is developed to realize the growth of high-quality tin-catalyzed CdSSe alloy nanowires. Microstructural characterizations demonstrate that these wires are high-quality crystalline nanostructures. Local photoluminescence investigation of these nanostructures shows a typical band edge emission at 656 nm with a full-width at half-maximum of 22.3 nm. Optical waveguide measurement along an individual nanowire indicates that the output signal of the guided light has a rapid linear decrease accompanied with maximum red-shift about 109 meV after the transmission of 102 μm. This obvious red-shift is caused by the intensive band-tail absorption during the optical transmission process. Moreover, optically pumped nanolasers are successfully realized at room temperature based on these unique wires, further demonstrating the achievement of stimulated emission from spontaneous emission, promoted by the pump power intensity. This work may find a simple route to the manufacture of superior nanowires for applications in waveguide and integrated photonic devices.

  10. Probabilistic analysis for fatigue strength degradation of materials

    NASA Technical Reports Server (NTRS)

    Royce, Lola

    1989-01-01

    This report presents the results of the first year of a research program conducted for NASA-LeRC by the University of Texas at San Antonio. The research included development of methodology that provides a probabilistic treatment of lifetime prediction of structural components of aerospace propulsion systems subjected to fatigue. Material strength degradation models, based on primitive variables, include both a fatigue strength reduction model and a fatigue crack growth model. Linear elastic fracture mechanics is utilized in the latter model. Probabilistic analysis is based on simulation, and both maximum entropy and maximum penalized likelihood methods are used for the generation of probability density functions. The resulting constitutive relationships are included in several computer programs, RANDOM2, RANDOM3, and RANDOM4. These programs determine the random lifetime of an engine component, in mechanical load cycles, to reach a critical fatigue strength or crack size. The material considered was a cast nickel base superalloy, one typical of those used in the Space Shuttle Main Engine.

  11. Validation of mathematical models for Salmonella growth in raw ground beef under dynamic temperature conditions representing loss of refrigeration.

    PubMed

    McConnell, Jennifer A; Schaffner, Donald W

    2014-07-01

    Temperature is a primary factor in controlling the growth of microorganisms in food. The current U. S. Food and Drug Administration Model Food Code guidelines state that food can be kept out of temperature control for up to 4 h without qualifiers, or up to 6 h, if the food product starts at an initial 41 °F (5 °C) temperature and does not exceed 70 °F (21 °C) at 6 h. This project validates existing ComBase computer models for Salmonella growth under changing temperature conditions modeling scenarios using raw ground beef as a model system. A cocktail of Salmonella serovars isolated from different meat products ( Salmonella Copenhagen, Salmonella Montevideo, Salmonella Typhimurium, Salmonella Saintpaul, and Salmonella Heidelberg) was made rifampin resistant and used for all experiments. Inoculated samples were held in a programmable water bath at 4.4 °C (40 °F) and subjected to linear temperature changes to different final temperatures over various lengths of time and then returned to 4.4 °C (40 °F). Maximum temperatures reached were 15.6, 26.7, or 37.8 °C (60, 80, or 100 °F), and the temperature increases took place over 4, 6, and 8 h, with varying cooling times. Our experiments show that when maximum temperatures were lower (15.6 or 26.7 °C), there was generally good agreement between the ComBase models and experiments: when temperature increases of 15.6 or 26.7 °C occurred over 8 h, experimental data were within 0.13 log CFU of the model predictions. When maximum temperatures were 37 °C, predictive models were fail-safe. Overall bias of the models was 1.11. and accuracy was 2.11. Our experiments show the U.S. Food and Drug Administration Model Food Code guidelines for holding food out of temperature control are quite conservative. Our research also shows that the ComBase models for Salmonella growth are accurate or fail-safe for dynamic temperature conditions as might be observed due to power loss from natural disasters or during transport out of temperature control.

  12. Transient response of multidegree-of-freedom linear systems to forcing functions with inequality constraints

    NASA Technical Reports Server (NTRS)

    Michalopoulos, C. D.

    1974-01-01

    Optimal control theory is applied to analyze the transient response of discrete linear systems to forcing functions with unknown time dependence but having known bounds. Particular attention is given to forcing functions which include: (1) maximum displacement of any given mass element, (2) maximum relative displacement of any two adjacent masses, and (3) maximum acceleration of a given mass. Linear mechanical systems with an arbitrary number of degrees of freedom and only one forcing function acting are considered. In the general case, the desired forcing function is found to be a function that switches from the upper-to-lower bound and vice-versa at certain moments of time. A general procedure for finding such switching times is set forth.

  13. Understating Polarization in the Interstellar Medium Through the Theory of Radiative Torque Alignment

    NASA Astrophysics Data System (ADS)

    Caputo, Miranda; Andersson, B.-G.; Kulas, Kristin Rose

    2018-06-01

    Although it is known that the dust grains in the ISM align with magnetic fields, the alignment physics of these particles is still somewhat unclear. Utilizing direct observational data and Radiative Alignment Torque (RAT) theory, further constraints can be put onto this alignment. Due to the physics of this alignment, there is a linear relationship between the extinction of the light seen through a dust cloud (AV) and the wavelength of maximum polarization. A previous study, focusing on the Taurus cloud, found that there is a second, steeper relationship seen beyond an extinction of about four magnitudes, likely due to grain growth, in addition to the original linear relationship. We present early results from observations of low-to-medium extinction lines of sight in the starless cloud L183 (aka L134N), aimed at testing the Taurus results. We are currently extending the survey of stars behind L183 to higher extinctions to better probe the origins of the bifurcation seen in the Taurus results.

  14. Life history attributes of fishes along the latitudinal gradient of the Missouri River

    USGS Publications Warehouse

    Braaten, P.J.; Guy, C.S.

    2002-01-01

    Populations of two short-lived species (emerald shiner Notropis atherinoides and sicklefin chub Macrhybopsis meeki) and three long-lived species (freshwater drum Aplodinotus grunniens, river carpsucker Carpiodes carpio, and sauger Stizostedion canadense) were studied in the Missouri River to examine spatial variations in life history characteristics across a latitudinal and thermal gradient (38??47???N to 48??03???N). The life history characteristics included longevity (maximum age), the rate at which asymptotic length was approached (K from the von Bertalanffy growth equation), the mean back-calculated length at age, and growth rates during the first year of life (mm/degree-day and mm/d). The mean water temperature and number of days in the growing season averaged 1.3 times greater in the southern than in the northern latitudes, while degree-days averaged twice as great. The longevity of all species except freshwater drum increased significantly from south to north, but the relationships between maximum age and latitude were curvilinear for short-lived species and linear for long-lived species. The von Bertalanffy growth coefficient for river carpsuckers and saugers increased from north to south, as indicated by significant negative relationships between K and latitude. Mean back-calculated length at age was negatively related to latitude for freshwater drums (???age 4) and saugers (ages 1-5) but positively related to latitude for river carpsuckers (???age 6). One of the growth rates examined (mm/degree-day) increased significantly from low to high latitudes for emerald shiners, sicklefin chubs, freshwater drums, and river carpsuckers during the first growing season. The other growth rate (mm/d) increased significantly from low to high latitudes for emerald shiners but was inversely related to latitude for saugers. These results suggest that the thermal regime related to latitude influences the life history characteristics of fishes in the Missouri River.

  15. Ion temperature gradient driven transport in tokamaks with square shaping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joiner, N.; Dorland, W.

    2010-06-15

    Advanced tokamak schemes which may offer significant improvement to plasma confinement on the usual large aspect ratio Dee-shaped flux surface configuration are of great interest to the fusion community. One possibility is to introduce square shaping to the flux surfaces. The gyrokinetic code GS2[Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1996)] is used to study linear stability and the resulting nonlinear thermal transport of the ion temperature gradient driven (ITG) mode in tokamak equilibria with square shaping. The maximum linear growth rate of ITG modes is increased by negative squareness (diamond shaping) and reduced by positive values (square shaping).more » The dependence of thermal transport produced by saturated ITG instabilities on squareness is not as clear. The overall trend follows that of the linear instability, heat and particle fluxes increase with negative squareness and decrease with positive squareness. This is contradictory to recent experimental results [Holcomb et al., Phys. Plasmas 16, 056116 (2009)] which show a reduction in transport with negative squareness. This may be reconciled as a reduction in transport (consistent with the experiment) is observed at small negative values of the squareness parameter.« less

  16. Gyrokinetic GDC turbulence simulations: confirming a new instability regime in LAPD plasmas

    NASA Astrophysics Data System (ADS)

    Pueschel, M. J.; Rossi, G.; Told, D.; Terry, P. W.; Jenko, F.; Carter, T. A.

    2016-10-01

    Recent high-beta experiments at the LArge Plasma Device have found significant parallel magnetic fluctuations in the region of large pressure gradients. Linear gyrokinetic simulations show the dominant instability at these radii to be the gradient-driven drift coupling (GDC) mode, a non-textbook mode driven by pressure gradients and destabilized by the coupling of ExB and grad-B∥ drifts. Unlike in previous studies, the large parallel extent of the device allows for finite-kz versions of this instability in addition to kz = 0 . The locations of maximum linear growth match very well with experimentally observed peaks of B∥ fluctuations. Local nonlinear simulations reproduce many features of the observations fairly well, with the exception of Bperp fluctuations, for which experimental profiles suggest a source unrelated to pressure gradients. In toto, the results presented here show that turbulence and transport in these experiments are driven by the GDC instability, that important characteristics of the linear instability carry over to nonlinear simulations, and - in the context of validation - that the gyrokinetic framework performs surprisingly well far outside its typical area of application, increasing confidence in its predictive abilities. Supported by U.S. DOE.

  17. Fecal Markers of Intestinal Inflammation and Permeability Associated with the Subsequent Acquisition of Linear Growth Deficits in Infants

    PubMed Central

    Kosek, Margaret; Haque, Rashidul; Lima, Aldo; Babji, Sudhir; Shrestha, Sanjaya; Qureshi, Shahida; Amidou, Samie; Mduma, Estomih; Lee, Gwenyth; Yori, Pablo Peñataro; Guerrant, Richard L.; Bhutta, Zulfiqar; Mason, Carl; Kang, Gagandeep; Kabir, Mamun; Amour, Caroline; Bessong, Pascal; Turab, Ali; Seidman, Jessica; Olortegui, Maribel Paredes; Quetz, Josiane; Lang, Dennis; Gratz, Jean; Miller, Mark; Gottlieb, Michael

    2013-01-01

    Enteric infections are associated with linear growth failure in children. To quantify the association between intestinal inflammation and linear growth failure three commercially available enzyme-linked immunosorbent assays (neopterin [NEO], alpha-anti-trypsin [AAT], and myeloperoxidase [MPO]) were performed in a structured sampling of asymptomatic stool from children under longitudinal surveillance for diarrheal illness in eight countries. Samples from 537 children contributed 1,169 AAT, 916 MPO, and 954 NEO test results that were significantly associated with linear growth. When combined to form a disease activity score, children with the highest score grew 1.08 cm less than children with the lowest score over the 6-month period following the tests after controlling for the incidence of diarrheal disease. This set of affordable non-invasive tests delineates those at risk of linear growth failure and may be used for the improved assessments of interventions to optimize growth during a critical period of early childhood. PMID:23185075

  18. Estimation for general birth-death processes

    PubMed Central

    Crawford, Forrest W.; Minin, Vladimir N.; Suchard, Marc A.

    2013-01-01

    Birth-death processes (BDPs) are continuous-time Markov chains that track the number of “particles” in a system over time. While widely used in population biology, genetics and ecology, statistical inference of the instantaneous particle birth and death rates remains largely limited to restrictive linear BDPs in which per-particle birth and death rates are constant. Researchers often observe the number of particles at discrete times, necessitating data augmentation procedures such as expectation-maximization (EM) to find maximum likelihood estimates. For BDPs on finite state-spaces, there are powerful matrix methods for computing the conditional expectations needed for the E-step of the EM algorithm. For BDPs on infinite state-spaces, closed-form solutions for the E-step are available for some linear models, but most previous work has resorted to time-consuming simulation. Remarkably, we show that the E-step conditional expectations can be expressed as convolutions of computable transition probabilities for any general BDP with arbitrary rates. This important observation, along with a convenient continued fraction representation of the Laplace transforms of the transition probabilities, allows for novel and efficient computation of the conditional expectations for all BDPs, eliminating the need for truncation of the state-space or costly simulation. We use this insight to derive EM algorithms that yield maximum likelihood estimation for general BDPs characterized by various rate models, including generalized linear models. We show that our Laplace convolution technique outperforms competing methods when they are available and demonstrate a technique to accelerate EM algorithm convergence. We validate our approach using synthetic data and then apply our methods to cancer cell growth and estimation of mutation parameters in microsatellite evolution. PMID:25328261

  19. Estimation for general birth-death processes.

    PubMed

    Crawford, Forrest W; Minin, Vladimir N; Suchard, Marc A

    2014-04-01

    Birth-death processes (BDPs) are continuous-time Markov chains that track the number of "particles" in a system over time. While widely used in population biology, genetics and ecology, statistical inference of the instantaneous particle birth and death rates remains largely limited to restrictive linear BDPs in which per-particle birth and death rates are constant. Researchers often observe the number of particles at discrete times, necessitating data augmentation procedures such as expectation-maximization (EM) to find maximum likelihood estimates. For BDPs on finite state-spaces, there are powerful matrix methods for computing the conditional expectations needed for the E-step of the EM algorithm. For BDPs on infinite state-spaces, closed-form solutions for the E-step are available for some linear models, but most previous work has resorted to time-consuming simulation. Remarkably, we show that the E-step conditional expectations can be expressed as convolutions of computable transition probabilities for any general BDP with arbitrary rates. This important observation, along with a convenient continued fraction representation of the Laplace transforms of the transition probabilities, allows for novel and efficient computation of the conditional expectations for all BDPs, eliminating the need for truncation of the state-space or costly simulation. We use this insight to derive EM algorithms that yield maximum likelihood estimation for general BDPs characterized by various rate models, including generalized linear models. We show that our Laplace convolution technique outperforms competing methods when they are available and demonstrate a technique to accelerate EM algorithm convergence. We validate our approach using synthetic data and then apply our methods to cancer cell growth and estimation of mutation parameters in microsatellite evolution.

  20. Increased linear bone growth by GH in the absence of SOCS2 is independent of IGF-1.

    PubMed

    Dobie, Ross; Ahmed, Syed F; Staines, Katherine A; Pass, Chloe; Jasim, Seema; MacRae, Vicky E; Farquharson, Colin

    2015-11-01

    Growth hormone (GH) signaling is essential for postnatal linear bone growth, but the relative importance of GHs actions on the liver and/or growth plate cartilage remains unclear. The importance of liver derived insulin like-growth factor-1 (IGF-1) for endochondral growth has recently been challenged. Here, we investigate linear growth in Suppressor of Cytokine Signaling-2 (SOCS2) knockout mice, which have enhanced growth despite normal systemic GH/IGF-1 levels. Wild-type embryonic ex vivo metatarsals failed to exhibit increased linear growth in response to GH, but displayed increased Socs2 transcript levels (P < 0.01). In the absence of SOCS2, GH treatment enhanced metatarsal linear growth over a 12 day period. Despite this increase, IGF-1 transcript and protein levels were not increased in response to GH. In accordance with these data, IGF-1 levels were unchanged in GH-challenged postnatal Socs2(-/-) conditioned medium despite metatarsals showing enhanced linear growth. Growth-plate Igf1 mRNA levels were not elevated in juvenile Socs2(-/-) mice. GH did however elevate IGF-binding protein 3 levels in conditioned medium from GH challenged metatarsals and this was more apparent in Socs2(-/-) metatarsals. GH did not enhance the growth of Socs2(-/-) metatarsals when the IGF receptor was inhibited, suggesting that IGF receptor mediated mechanisms are required. IGF-2 may be responsible as IGF-2 promoted metatarsal growth and Igf2 expression was elevated in Socs2(-/-) (but not WT) metatarsals in response to GH. These studies emphasise the critical importance of SOCS2 in regulating GHs ability to promote bone growth. Also, GH appears to act directly on the metatarsals of Socs2(-/-) mice, promoting growth via a mechanism that is independent of IGF-1. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  1. Transition scenario and transition control of the flow over a semi-infinite square leading-edge plate

    NASA Astrophysics Data System (ADS)

    Huang, Yadong; Zhou, Benmou; Tang, Zhaolie; Zhang, Fei

    2017-07-01

    In recent investigations of the flow over a square leading-edge flat plate, elliptic instability and transient growth of perturbations are proposed to explain the turbulent transition mechanism of the separating and reattaching flow reported in early experimental visualizations. An original transition scenario as well as a transition control method is presented by a detailed numerical study in this paper. The transient growth of perturbations in the separation bubble induces the primary instability that causes the 2D unsteady flow consisting of Kelvin-Helmholtz (KH) vortices. The pairing instability of the KH vortices induces the subharmonic secondary instability, and then resonance transition occurs. The streamwise Lorentz force as the control input is applied in the recirculation region where the separation bubble generates. The maximum energy amplification magnitude of perturbations takes a linear attenuation with the interaction number; thus, the primary instability is reduced under control. The interaction number represents the strength of the streamwise Lorentz force relative to the inertial force of the fluid. The reduced primary instability is not strong enough to induce the secondary instability, so the flow is globally stable under control. Three-dimensional direct numerical simulation confirms the results of the linear stability analysis. Although the growth rate of the convectively unstable secondary instability is limited by the flow field scale, the feedback loop of the energy transfer promotes the resonance transition. However, as the separation bubble scale is reduced and the feedback loop is broken by the streamwise Lorentz force, the three-dimensional transition is suppressed and a skin-friction drag reduction is achieved.

  2. Bird population trends are linearly affected by climate change along species thermal ranges.

    PubMed

    Jiguet, Frédéric; Devictor, Vincent; Ottvall, Richard; Van Turnhout, Chris; Van der Jeugd, Henk; Lindström, Ake

    2010-12-07

    Beyond the effects of temperature increase on local population trends and on species distribution shifts, how populations of a given species are affected by climate change along a species range is still unclear. We tested whether and how species responses to climate change are related to the populations locations within the species thermal range. We compared the average 20 year growth rates of 62 terrestrial breeding birds in three European countries along the latitudinal gradient of the species ranges. After controlling for factors already reported to affect bird population trends (habitat specialization, migration distance and body mass), we found that populations breeding close to the species thermal maximum have lower growth rates than those in other parts of the thermal range, while those breeding close to the species thermal minimum have higher growth rates. These results were maintained even after having controlled for the effect of latitude per se. Therefore, the results cannot solely be explained by latitudinal clines linked to the geographical structure in local spring warming. Indeed, we found that populations are not just responding to changes in temperature at the hottest and coolest parts of the species range, but that they show a linear graded response across their European thermal range. We thus provide insights into how populations respond to climate changes. We suggest that projections of future species distributions, and also management options and conservation assessments, cannot be based on the assumption of a uniform response to climate change across a species range or at range edges only.

  3. A Study of the Response of the Human Cadaver Head to Impact

    PubMed Central

    Hardy, Warren N.; Mason, Matthew J.; Foster, Craig D.; Shah, Chirag S.; Kopacz, James M.; Yang, King H.; King, Albert I.; Bishop, Jennifer; Bey, Michael; Anderst, William; Tashman, Scott

    2008-01-01

    High-speed biplane x-ray and neutral density targets were used to examine brain displacement and deformation during impact. Relative motion, maximum principal strain, maximum shear strain, and intracranial pressure were measured in thirty-five impacts using eight human cadaver head and neck specimens. The effect of a helmet was evaluated. During impact, local brain tissue tends to keep its position and shape with respect to the inertial frame, resulting in relative motion between the brain and skull and deformation of the brain. The local brain motions tend to follow looping patterns. Similar patterns are observed for impact in different planes, with some degree of posterior-anterior and right-left symmetry. Peak coup pressure and pressure rate increase with increasing linear acceleration, but coup pressure pulse duration decreases. Peak average maximum principal strain and maximum shear are on the order of 0.09 for CFC 60 Hz data for these tests. Peak average maximum principal strain and maximum shear increase with increasing linear acceleration, coup pressure, and coup pressure rate. Linear and angular acceleration of the head are reduced with use of a helmet, but strain increases. These results can be used for the validation of finite element models of the human head. PMID:18278591

  4. Maximum Rate of Growth of Enstrophy in Solutions of the Fractional Burgers Equation

    NASA Astrophysics Data System (ADS)

    Yun, Dongfang; Protas, Bartosz

    2018-02-01

    This investigation is a part of a research program aiming to characterize the extreme behavior possible in hydrodynamic models by analyzing the maximum growth of certain fundamental quantities. We consider here the rate of growth of the classical and fractional enstrophy in the fractional Burgers equation in the subcritical and supercritical regimes. Since solutions to this equation exhibit, respectively, globally well-posed behavior and finite-time blowup in these two regimes, this makes it a useful model to study the maximum instantaneous growth of enstrophy possible in these two distinct situations. First, we obtain estimates on the rates of growth and then show that these estimates are sharp up to numerical prefactors. This is done by numerically solving suitably defined constrained maximization problems and then demonstrating that for different values of the fractional dissipation exponent the obtained maximizers saturate the upper bounds in the estimates as the enstrophy increases. We conclude that the power-law dependence of the enstrophy rate of growth on the fractional dissipation exponent has the same global form in the subcritical, critical and parts of the supercritical regime. This indicates that the maximum enstrophy rate of growth changes smoothly as global well-posedness is lost when the fractional dissipation exponent attains supercritical values. In addition, nontrivial behavior is revealed for the maximum rate of growth of the fractional enstrophy obtained for small values of the fractional dissipation exponents. We also characterize the structure of the maximizers in different cases.

  5. Influence of magnetic flutter on tearing growth in linear and nonlinear theory

    NASA Astrophysics Data System (ADS)

    Kreifels, L.; Hornsby, W. A.; Weikl, A.; Peeters, A. G.

    2018-06-01

    Recent simulations of tearing modes in turbulent regimes show an unexpected enhancement in the growth rate. In this paper the effect is investigated analytically. The enhancement is linked to the influence of turbulent magnetic flutter, which is modelled by diffusion terms in magnetohydrodynamics (MHD) momentum balance and Ohm’s law. Expressions for the linear growth rate as well as the island width in nonlinear theory for small amplitudes are derived. The results indicate an enhanced linear growth rate and a larger linear layer width compared with resistive MHD. Also the island width in the nonlinear regime grows faster in the diffusive model. These observations correspond well to simulations in which the effect of turbulence on the magnetic island width and tearing mode growth is analyzed.

  6. Estimation of the growth curve and heritability of the growth rate for giant panda (Ailuropoda melanoleuca) cubs.

    PubMed

    Che, T D; Wang, C D; Jin, L; Wei, M; Wu, K; Zhang, Y H; Zhang, H M; Li, D S

    2015-03-27

    Giant panda cubs have a low survival rate during the newborn and early growth stages. However, the growth and developmental parameters of giant panda cubs during the early lactation stage (from birth to 6 months) are not well known. We examined the growth and development of giant panda cubs by the Chapman growth curve model and estimated the heritability of the maximum growth rate at the early lactation stage. We found that 83 giant panda cubs reached their maximum growth rate at approximately 75-120 days after birth. The body weight of cubs at 75 days was 4285.99 g. Furthermore, we estimated that the heritability of the maximum growth rate was moderate (h(2) = 0.38). Our study describes the growth and development of giant panda cubs at the early lactation stage and provides valuable growth benchmarks. We anticipate that our results will be a starting point for more detailed research on increasing the survival rate of giant panda cubs. Feeding programs for giant panda cubs need further improvement.

  7. Whistler waves with electron temperature anisotropy and non-Maxwellian distribution functions

    NASA Astrophysics Data System (ADS)

    Malik, M. Usman; Masood, W.; Qureshi, M. N. S.; Mirza, Arshad M.

    2018-05-01

    The previous works on whistler waves with electron temperature anisotropy narrated the dependence on plasma parameters, however, they did not explore the reasons behind the observed differences. A comparative analysis of the whistler waves with different electron distributions has not been made to date. This paper attempts to address both these issues in detail by making a detailed comparison of the dispersion relations and growth rates of whistler waves with electron temperature anisotropy for Maxwellian, Cairns, kappa and generalized (r, q) distributions by varying the key plasma parameters for the problem under consideration. It has been found that the growth rate of whistler instability is maximum for flat-topped distribution whereas it is minimum for the Maxwellian distribution. This work not only summarizes and complements the previous work done on the whistler waves with electron temperature anisotropy but also provides a general framework to understand the linear propagation of whistler waves with electron temperature anisotropy that is applicable in all regions of space plasmas where the satellite missions have indicated their presence.

  8. 3D multiscale crack propagation using the XFEM applied to a gas turbine blade

    NASA Astrophysics Data System (ADS)

    Holl, Matthias; Rogge, Timo; Loehnert, Stefan; Wriggers, Peter; Rolfes, Raimund

    2014-01-01

    This work presents a new multiscale technique to investigate advancing cracks in three dimensional space. This fully adaptive multiscale technique is designed to take into account cracks of different length scales efficiently, by enabling fine scale domains locally in regions of interest, i.e. where stress concentrations and high stress gradients occur. Due to crack propagation, these regions change during the simulation process. Cracks are modeled using the extended finite element method, such that an accurate and powerful numerical tool is achieved. Restricting ourselves to linear elastic fracture mechanics, the -integral yields an accurate solution of the stress intensity factors, and with the criterion of maximum hoop stress, a precise direction of growth. If necessary, the on the finest scale computed crack surface is finally transferred to the corresponding scale. In a final step, the model is applied to a quadrature point of a gas turbine blade, to compute crack growth on the microscale of a real structure.

  9. Effects of the standardized ileal digestible valine : lysine ratio on performance, milk composition and plasma indices of lactating sows.

    PubMed

    Xu, Yetong; Zeng, Zhikai; Xu, Xiao; Tian, Qiyu; Ma, Xiaokang; Long, Shenfei; Piao, Meijing; Cheng, Zhibin; Piao, Xiangshu

    2017-08-01

    To determine the effects of standardized ileal digestible (SID) valine : lysine ratio on the performance, milk composition and plasma indices of lactating sows, 32 Large White × Landrace sows (219.78 ± 7.15 kg body weight; parity 1.82 ± 0.62) were allotted to one of four dietary treatments with eight sows per treatment based on parity, back fat thickness and body weight. The sows were fed corn-soybean meal-based diets containing 63, 83, 103 or 123% SID valine : lysine from day 107 of gestation until day 28 of lactation. The average daily feed intake of sows and daily weight gain of piglets increased linearly (P < 0.05) while back fat loss decreased linearly (P < 0.05) as the SID valine : lysine ratio increased. All of the analyzed amino acids in sow colostrum and valine concentrations of sow and piglet plasma increased linearly (P < 0.05) with the increasing SID valine : lysine ratio. In conclusion, 88 and 113% dietary SID valine : lysine ratios were optimal to achieve minimum back fat loss and maximum piglet growth rate using a linear-break point model which exceeds the requirement of 85% that is estimated by the National Research Council (2012). © 2016 Japanese Society of Animal Science.

  10. Resistive wall modes in the EXTRAP T2R reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Brunsell, P. R.; Malmberg, J.-A.; Yadikin, D.; Cecconello, M.

    2003-10-01

    Resistive wall modes (RWM) in the reversed field pinch are studied and a detailed comparison of experimental growth rates and linear magnetohydrodynamic (MHD) theory is made. RWM growth rates are experimentally measured in the thin shell device EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Controlled Fusion 43, 1 (2001)]. Linear MHD calculations of RWM growth rates are based on experimental equilibria. Experimental and linear MHD RWM growth rate dependency on the equilibrium profiles is investigated experimentally by varying the pinch parameter Θ=Bθ(a)/ in the range Θ=1.5-1.8. Quantitative agreement between experimental and linear MHD growth rates is seen. The dominating RWMs are the internal on-axis modes (having the same helicity as the central equilibrium field). At high Θ, external nonresonant modes are also observed. For internal modes experimental growth rates decrease with Θ while for external modes, growth rates increase with Θ. The effect of RWMs on the reversed-field pinch plasma performance is discussed.

  11. Intrauterine growth and intelligence within sibling pairs: findings from the Mater-University study of pregnancy and its outcomes.

    PubMed

    Lawlor, Debbie A; Bor, William; O'Callaghan, Michael J; Williams, Gail M; Najman, Jake M

    2005-04-01

    To examine the association between intrauterine growth and intelligence. Population based birth cohort study of sibling pairs born within a maximum of three years of each other. Mater-University women and children's hospital, Brisbane, Australia. 235 (470 children) sibling pairs. Among one randomly selected sibling from each pair verbal comprehension at age 5, general intelligence at age 14, and reading ability at age 14 increased linearly with increasing gestational age and sex standardised birth weight z scores. With adjustment for maternal age, race, and smoking during pregnancy, birth order, family income, and parental education the associations with verbal comprehension at age 5 and general intelligence at age 14 remained, whereas the association with reading ability at age 14 was attenuated to the null. Within sibling pairs, differences in intrauterine growth were positively associated with differences in verbal comprehension at age 5 (test score difference per one unit difference in birth weight z score = 1.52 (0.11 to 3.26)) and general intelligence at age 14 (1.09 (0.01 to 2.18)), but not with reading ability at age 14. Socioeconomic position or other fixed maternal characteristics do not seem to explain the positive association between intrauterine growth and childhood intelligence.

  12. Stabilization of flow past a rounded cylinder

    NASA Astrophysics Data System (ADS)

    Samtaney, Ravi; Zhang, Wei

    2016-11-01

    We perform global linear stability analysis on low-Re flow past a rounded cylinder. The cylinder corners are rounded with a radius R, normalized as R+ = R / D where D is the cylinder diameter, and its effect on the flow stability characteristics is investigated. We compute the critical Reynolds number (Recr) for the onset of first instability, and quantify the perturbation growth rate for the super-critical flows. It is found that the flow can be stabilized by partially rounding the cylinder. Compared with the square and circular cylinders, the partially rounded cylinder has a higher Recr , attaining a maximum at around R+ = 0 . 30 , and the perturbation growth rate of the super-critical flows is reduced for Re <= 100 . We perform sensitivity analysis to explore the source of the stabilization. The growth rate sensitivity to base flow modification has two different spatial structures: the growth rate is sensitive to the wake backflow in a large region for square-like cylinders (R+ -> 0 . 00), while only the near-wake backflow is crucial for circular-like cylinders (R+ -> 0 . 50). The stability analysis results are also verified with those of the direct simulations and very good agreement is achieved. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1394-01. The supercomputer Shaheen at KAUST was utilized for the simulations.

  13. Non-linear Growth Models in Mplus and SAS

    PubMed Central

    Grimm, Kevin J.; Ram, Nilam

    2013-01-01

    Non-linear growth curves or growth curves that follow a specified non-linear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this paper we describe how a variety of sigmoid curves can be fit using the Mplus structural modeling program and the non-linear mixed-effects modeling procedure NLMIXED in SAS. Using longitudinal achievement data collected as part of a study examining the effects of preschool instruction on academic gain we illustrate the procedures for fitting growth models of logistic, Gompertz, and Richards functions. Brief notes regarding the practical benefits, limitations, and choices faced in the fitting and estimation of such models are included. PMID:23882134

  14. Efficiency of autonomous soft nanomachines at maximum power.

    PubMed

    Seifert, Udo

    2011-01-14

    We consider nanosized artificial or biological machines working in steady state enforced by imposing nonequilibrium concentrations of solutes or by applying external forces, torques, or electric fields. For unicyclic and strongly coupled multicyclic machines, efficiency at maximum power is not bounded by the linear response value 1/2. For strong driving, it can even approach the thermodynamic limit 1. Quite generally, such machines fall into three different classes characterized, respectively, as "strong and efficient," "strong and inefficient," and "balanced." For weakly coupled multicyclic machines, efficiency at maximum power has lost any universality even in the linear response regime.

  15. The maximum growth rate of life on Earth

    NASA Astrophysics Data System (ADS)

    Corkrey, Ross; McMeekin, Tom A.; Bowman, John P.; Olley, June; Ratkowsky, David

    2018-01-01

    Life on Earth spans a range of temperatures and exhibits biological growth rates that are temperature dependent. While the observation that growth rates are temperature dependent is well known, we have recently shown that the statistical distribution of specific growth rates for life on Earth is a function of temperature (Corkrey et al., 2016). The maximum rates of growth of all life have a distinct limit, even when grown under optimal conditions, and which vary predictably with temperature. We term this distribution of growth rates the biokinetic spectrum for temperature (BKST). The BKST possibly arises from a trade-off between catalytic activity and stability of enzymes involved in a rate-limiting Master Reaction System (MRS) within the cell. We develop a method to extrapolate quantile curves for the BKST to obtain the posterior probability of the maximum rate of growth of any form of life on Earth. The maximum rate curve conforms to the observed data except below 0°C and above 100°C where the predicted value may be positively biased. The deviation below 0°C may arise from the bulk properties of water, while the degradation of biomolecules may be important above 100°C. The BKST has potential application in astrobiology by providing an estimate of the maximum possible growth rate attainable by terrestrial life and perhaps life elsewhere. We suggest that the area under the maximum growth rate curve and the peak rate may be useful characteristics in considerations of habitability. The BKST can serve as a diagnostic for unusual life, such as second biogenesis or non-terrestrial life. Since the MRS must have been heavily conserved the BKST may contain evolutionary relics. The BKST can serve as a signature summarizing the nature of life in environments beyond Earth, or to characterize species arising from a second biogenesis on Earth.

  16. Transport and Dynamics in Toroidal Fusion Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnack, Dalton D

    2006-05-16

    This document reports the successful completion of the OFES Theory Milestone for FY2005, namely, Perform parametric studies to better understand the edge physics regimes of laboratory experiments. Simulate at increased resolution (up to 20 toroidal modes), with density evolution, late into the nonlinear phase and compare results from different types of edge modes. Simulate a single case including a study of heat deposition on nearby material walls. The linear stability properties and nonlinear evolution of Edge Localized Modes (ELMs) in tokamak plasmas are investigated through numerical computation. Data from the DIII-D device at General Atomics (http://fusion.gat.com/diii-d/) is used for themore » magnetohydrodynamic (MHD) equilibria, but edge parameters are varied to reveal important physical effects. The equilibrium with very low magnetic shear produces an unstable spectrum that is somewhat insensitive to dissipation coefficient values. Here, linear growth rates from the non-ideal NIMROD code (http://nimrodteam.org) agree reasonably well with ideal, i.e. non-dissipative, results from the GATO global linear stability code at low toroidal mode number (n) and with ideal results from the ELITE edge linear stability code at moderate to high toroidal mode number. Linear studies with a more realistic sequence of MHD equilibria (based on DIII-D discharge 86166) produce more significant discrepancies between the ideal and non-ideal calculations. The maximum growth rate for the ideal computations occurs at toroidal mode index n=10, whereas growth rates in the non-ideal computations continue to increase with n unless strong anisotropic thermal conduction is included. Recent modeling advances allow drift effects associated with the Hall electric field and gyroviscosity to be considered. A stabilizing effect can be observed in the preliminary results, but while the distortion in mode structure is readily apparent at n=40, the growth rate is only 13% less than the non-ideal MHD result. Computations performed with a non-local kinetic closure for parallel electron thermal conduction that is valid over all collisionality regimes identify thermal diffusivity ratios of {chi}{sub ||}/{chi}{sub {perpendicular}} ~ 10{sup 7} - 10{sup 8} as appropriate when using collisional heat flux modeling for these modes. Adding significant parallel viscosity proves to have little effect. Nonlinear ELM computations solve the resistive MHD model with toroidal resolution 0{<=}n{<=}21, including anisotropic thermal conduction, temperature-dependent resistivity, and number density evolution. The computations are based on a realistic equilibrium with high pedestal temperature from the linear study. When the simulated ELM grows to appreciable amplitude, ribbon-like thermal structures extend from the separatrix to the wall as the spectrum broadens about a peak at n=13. Analysis of the results finds the heat flux on the wall to be very nonuniform with greatest intensity occurring in spots on the top and bottom of the chamber. Net thermal energy loss occurs on a time-scale of 100 {micro}s, and the instantaneous loss rate exceeds 1 GW.« less

  17. Effects of pH and temperature on growth and glycerol production kinetics of two indigenous wine strains of Saccharomyces cerevisiae from Turkey

    PubMed Central

    Yalcin, Seda Karasu; Yesim Ozbas, Z.

    2008-01-01

    The study was performed in a batch system in order to determine the effects of pH and temperature on growth and glycerol production kinetics of two indigenous wine yeast strains Saccharomyces cerevisiae Kalecik 1 and Narince 3. The highest values of dry mass and specific growth rate were obtained at pH 4.00 for both of the strains. Maximum specific glycerol production rates were obtained at pH 5.92 and 6.27 for the strains Kalecik 1 and Narince 3, respectively. Kalecik 1 strain produced maximum 8.8 gL−1 of glycerol at pH 6.46. Maximum glycerol concentration obtained by the strain Narince 3 was 9.1 gL−1 at pH 6.48. Both yeasts reached maximum specific growth rate at 30°C. Optimum temperature range for glycerol production was determined as 25-30°C for the strain Kalecik 1. The strain Narince 3 reached maximum specific glycerol production rate at 30°C. Maximum glycerol concentrations at 30°C were obtained as 8.5 and 7.6 gL−1 for Kalecik 1 and Narince 3, respectively. PMID:24031225

  18. Filament cooling and condensation in a sheared magnetic field

    NASA Technical Reports Server (NTRS)

    Van Hoven, Gerard

    1990-01-01

    Thermal instability driven by optically thin radiation in the corona is believed to initiate the formation of solar filaments. The fact that filaments are observed generally to separate regions of opposite, line-of-sight, magnetic polarity in the differentially rotating photosphere suggests that filament formation requires the presence of a highly sheared magnetic field. The coupled energetics and dynamics of the most important condensation modes, those due to perpendicular thermal conduction at short wavelengths are discussed. Linear structure in the sheared field and their growth rates is described, and 2D, nonlinear, MHD simulations of the evolution of these modes in a force-free field are conducted. The simulations achieve the fine thermal structures, minimum temperatures and maximum densities characteristic of observed solar filaments.

  19. Linear spline multilevel models for summarising childhood growth trajectories: A guide to their application using examples from five birth cohorts.

    PubMed

    Howe, Laura D; Tilling, Kate; Matijasevich, Alicia; Petherick, Emily S; Santos, Ana Cristina; Fairley, Lesley; Wright, John; Santos, Iná S; Barros, Aluísio Jd; Martin, Richard M; Kramer, Michael S; Bogdanovich, Natalia; Matush, Lidia; Barros, Henrique; Lawlor, Debbie A

    2016-10-01

    Childhood growth is of interest in medical research concerned with determinants and consequences of variation from healthy growth and development. Linear spline multilevel modelling is a useful approach for deriving individual summary measures of growth, which overcomes several data issues (co-linearity of repeat measures, the requirement for all individuals to be measured at the same ages and bias due to missing data). Here, we outline the application of this methodology to model individual trajectories of length/height and weight, drawing on examples from five cohorts from different generations and different geographical regions with varying levels of economic development. We describe the unique features of the data within each cohort that have implications for the application of linear spline multilevel models, for example, differences in the density and inter-individual variation in measurement occasions, and multiple sources of measurement with varying measurement error. After providing example Stata syntax and a suggested workflow for the implementation of linear spline multilevel models, we conclude with a discussion of the advantages and disadvantages of the linear spline approach compared with other growth modelling methods such as fractional polynomials, more complex spline functions and other non-linear models. © The Author(s) 2013.

  20. Linear spline multilevel models for summarising childhood growth trajectories: A guide to their application using examples from five birth cohorts

    PubMed Central

    Tilling, Kate; Matijasevich, Alicia; Petherick, Emily S; Santos, Ana Cristina; Fairley, Lesley; Wright, John; Santos, Iná S.; Barros, Aluísio JD; Martin, Richard M; Kramer, Michael S; Bogdanovich, Natalia; Matush, Lidia; Barros, Henrique; Lawlor, Debbie A

    2013-01-01

    Childhood growth is of interest in medical research concerned with determinants and consequences of variation from healthy growth and development. Linear spline multilevel modelling is a useful approach for deriving individual summary measures of growth, which overcomes several data issues (co-linearity of repeat measures, the requirement for all individuals to be measured at the same ages and bias due to missing data). Here, we outline the application of this methodology to model individual trajectories of length/height and weight, drawing on examples from five cohorts from different generations and different geographical regions with varying levels of economic development. We describe the unique features of the data within each cohort that have implications for the application of linear spline multilevel models, for example, differences in the density and inter-individual variation in measurement occasions, and multiple sources of measurement with varying measurement error. After providing example Stata syntax and a suggested workflow for the implementation of linear spline multilevel models, we conclude with a discussion of the advantages and disadvantages of the linear spline approach compared with other growth modelling methods such as fractional polynomials, more complex spline functions and other non-linear models. PMID:24108269

  1. Acoustic receptivity and transition modeling of Tollmien-Schlichting disturbances induced by distributed surface roughness

    NASA Astrophysics Data System (ADS)

    Raposo, Henrique; Mughal, Shahid; Ashworth, Richard

    2018-04-01

    Acoustic receptivity to Tollmien-Schlichting waves in the presence of surface roughness is investigated for a flat plate boundary layer using the time-harmonic incompressible linearized Navier-Stokes equations. It is shown to be an accurate and efficient means of predicting receptivity amplitudes and, therefore, to be more suitable for parametric investigations than other approaches with direct-numerical-simulation-like accuracy. Comparison with the literature provides strong evidence of the correctness of the approach, including the ability to quantify non-parallel flow effects. These effects are found to be small for the efficiency function over a wide range of frequencies and local Reynolds numbers. In the presence of a two-dimensional wavy-wall, non-parallel flow effects are quite significant, producing both wavenumber detuning and an increase in maximum amplitude. However, a smaller influence is observed when considering an oblique Tollmien-Schlichting wave. This is explained by considering the non-parallel effects on receptivity and on linear growth which may, under certain conditions, cancel each other out. Ultimately, we undertake a Monte Carlo type uncertainty quantification analysis with two-dimensional distributed random roughness. Its power spectral density (PSD) is assumed to follow a power law with an associated uncertainty following a probabilistic Gaussian distribution. The effects of the acoustic frequency over the mean amplitude of the generated two-dimensional Tollmien-Schlichting waves are studied. A strong dependence on the mean PSD shape is observed and discussed according to the basic resonance mechanisms leading to receptivity. The growth of Tollmien-Schlichting waves is predicted with non-linear parabolized stability equations computations to assess the effects of stochasticity in transition location.

  2. Self-organized nano-structuring of CoO islands on Fe(001)

    NASA Astrophysics Data System (ADS)

    Brambilla, A.; Picone, A.; Giannotti, D.; Riva, M.; Bussetti, G.; Berti, G.; Calloni, A.; Finazzi, M.; Ciccacci, F.; Duò, L.

    2016-01-01

    The realization of nanometer-scale structures through bottom-up strategies can be accomplished by exploiting a buried network of dislocations. We show that, by following appropriate growth steps in ultra-high vacuum molecular beam epitaxy, it is possible to grow nano-structured films of CoO coupled to Fe(001) substrates, with tunable sizes (both the lateral size and the maximum height scale linearly with coverage). The growth mode is discussed in terms of the evolution of surface morphology and chemical interactions as a function of the CoO thickness. Scanning tunneling microscopy measurements reveal that square mounds of CoO with lateral dimensions of less than 25 nm and heights below 10 atomic layers are obtained by growing few-nanometers-thick CoO films on a pre-oxidized Fe(001) surface covered by an ultra-thin Co buffer layer. In the early stages of growth, a network of misfit dislocations develops, which works as a template for the CoO nano-structuring. From a chemical point of view, at variance with typical CoO/Fe interfaces, neither Fe segregation at the surface nor Fe oxidation at the buried interface are observed, as seen by Auger electron spectroscopy and X-ray Photoemission Spectroscopy, respectively.

  3. Biodegradation during contaminant transport in porous media: 1. mathematical analysis of controlling factors

    NASA Astrophysics Data System (ADS)

    Brusseau, Mark L.; Xie, Lily H.; Li, Li

    1999-04-01

    Interest in coupled biodegradation and transport of organic contaminants has expanded greatly in the past several years. In a system in which biodegradation is coupled with solute transport, the magnitude and rate of biodegradation is influenced not only by properties of the microbial population and the substrate, but also by hydrodynamic properties (e.g., residence time, dispersivity). By nondimensionalizing the coupled-process equations for transport and nonlinear biodegradation, we show that transport behavior is controlled by three characteristic parameters: the effective maximum specific growth rate, the relative half-saturation constant, and the relative substrate-utilization coefficient. The impact on biodegradation and transport of these parameters, which constitute various combinations of factors reflecting the influences of biotic and hydraulic properties of the system, are examined numerically. A type-curve diagram based on the three characteristic parameters is constructed to illustrate the conditions under which steady and non-steady transport is observed, and the conditions for which the linear, first-order approximation is valid for representing biodegradation. The influence of constraints to microbial growth and substrate utilization on contaminant transport is also briefly discussed. Additionally, the impact of biodegradation, with and without biomass growth, on spatial solute distribution and moments is examined.

  4. Effects of Combinations of Substrates on Maximum Growth Rates of Several Rumen Bacteria

    PubMed Central

    Russell, James B.; Delfino, Frank J.; Baldwin, R. L.

    1979-01-01

    Five rumen bacteria, Selenomonas ruminantium, Bacteroides ruminicola, Megasphaera elsdenii, Butyrivibrio fibrisolvens, and Streptococcus bovis were grown in media containing nonlimiting concentrations of glucose, sucrose, maltose, cellobiose, xylose and/or lactate. Each bacterium was grown with every substrate that it could ferment in every possible two-way combination. Only once did a combination of substrates result in a higher maximum growth rate than that observed with either substrate alone. Such stimulations of growth rate would be expected if specific factors unique to individual substrates (transport proteins and/or enzymes) were limiting. Since such synergisms were rare, it was concluded that more general factors limit maximum growth rates in these five bacteria. PMID:16345360

  5. Associations of Infant Feeding and Timing of Weight Gain and Linear Growth during Early Life with Childhood Blood Pressure: Findings from a Prospective Population Based Cohort Study

    PubMed Central

    Vrijkotte, Tanja G. M.; van Eijsden, Manon; Gemke, Reinoud J. B. J.

    2016-01-01

    Objective Small birth size and rapid postnatal growth have been associated with higher future blood pressure. The timing of these effects, the relative importance of weight gain and linear growth and the role of infant feeding need to be clarified. Methods We assessed how blood pressure relates to birth weight, infant and childhood growth and infant feeding (duration of exclusive breastfeeding and timing of introduction of complementary feeding) in 2227 children aged 5 years from a prospective cohort study (Amsterdam Born Children and their Development). Postnatal growth was represented by statistically independent measures of relative weight gain (weight gain independent of height) and linear growth in four age periods during infancy (0–1 month; 1–3 months; 3–6 months; 6–12 months) and from 12 months to 5 years. Results Lower birth weight was associated with higher childhood diastolic blood pressure (-0.38 mm Hg.SD-1; P = 0.007). Faster relative weight gain and linear growth after 1 month were positively associated with systolic and diastolic blood pressure. Associations of linear growth with systolic blood pressure ranged from 0.47 to 1.49 mm Hg.SD-1; P<0.01 for all. Coefficients were similar for different periods of infancy and also for relative weight gain and linear growth. Compared to breastfeeding <1 month, breastfeeding >1 month was associated with lower blood pressure (e.g. >6 months -1.56 mm Hg systolic blood pressure; P<0.001). Compared to >6 months, introduction of complementary feeding <6 months was associated with higher blood pressure (e.g. 4–6 months 0.91 mm Hg systolic blood pressure; P = 0.004). Conclusions After the age of one month faster growth in either weight or height is associated with higher childhood blood pressure. It is unknown whether faster weight gain and linear growth carry the same risk for adult hypertension and cardiovascular morbidity. Longer breastfeeding and delayed introduction of complementary feeding may be associated with lower adult blood pressure. PMID:27832113

  6. Associations of Infant Feeding and Timing of Weight Gain and Linear Growth during Early Life with Childhood Blood Pressure: Findings from a Prospective Population Based Cohort Study.

    PubMed

    de Beer, Marieke; Vrijkotte, Tanja G M; Fall, Caroline H D; van Eijsden, Manon; Osmond, Clive; Gemke, Reinoud J B J

    2016-01-01

    Small birth size and rapid postnatal growth have been associated with higher future blood pressure. The timing of these effects, the relative importance of weight gain and linear growth and the role of infant feeding need to be clarified. We assessed how blood pressure relates to birth weight, infant and childhood growth and infant feeding (duration of exclusive breastfeeding and timing of introduction of complementary feeding) in 2227 children aged 5 years from a prospective cohort study (Amsterdam Born Children and their Development). Postnatal growth was represented by statistically independent measures of relative weight gain (weight gain independent of height) and linear growth in four age periods during infancy (0-1 month; 1-3 months; 3-6 months; 6-12 months) and from 12 months to 5 years. Lower birth weight was associated with higher childhood diastolic blood pressure (-0.38 mm Hg.SD-1; P = 0.007). Faster relative weight gain and linear growth after 1 month were positively associated with systolic and diastolic blood pressure. Associations of linear growth with systolic blood pressure ranged from 0.47 to 1.49 mm Hg.SD-1; P<0.01 for all. Coefficients were similar for different periods of infancy and also for relative weight gain and linear growth. Compared to breastfeeding <1 month, breastfeeding >1 month was associated with lower blood pressure (e.g. >6 months -1.56 mm Hg systolic blood pressure; P<0.001). Compared to >6 months, introduction of complementary feeding <6 months was associated with higher blood pressure (e.g. 4-6 months 0.91 mm Hg systolic blood pressure; P = 0.004). After the age of one month faster growth in either weight or height is associated with higher childhood blood pressure. It is unknown whether faster weight gain and linear growth carry the same risk for adult hypertension and cardiovascular morbidity. Longer breastfeeding and delayed introduction of complementary feeding may be associated with lower adult blood pressure.

  7. Accretion of Fat-Free Mass Rather Than Fat Mass in Infancy Is Positively Associated with Linear Growth in Childhood.

    PubMed

    Admassu, Bitiya; Ritz, Christian; Wells, Jonathan C K; Girma, Tsinuel; Andersen, Gregers S; Belachew, Tefera; Owino, Victor; Michaelsen, Kim F; Abera, Mubarek; Wibaek, Rasmus; Friis, Henrik; Kæstel, Pernille

    2018-04-01

    We have previously shown that fat-free mass (FFM) at birth is associated with height at 2 y of age in Ethiopian children. However, to our knowledge, the relation between changes in body composition during early infancy and later linear growth has not been studied. This study examined the associations of early infancy fat mass (FM) and FFM accretion with linear growth from 1 to 5 y of age in Ethiopian children. In the infant Anthropometry and Body Composition (iABC) study, a prospective cohort study was carried out in children in Jimma, Ethiopia, followed from birth to 5 y of age. FM and FFM were measured ≤6 times from birth to 6 mo by using air-displacement plethysmography. Linear mixed-effects models were used to identify associations between standardized FM and FFM accretion rates during early infancy and linear growth from 1 to 5 y of age. Standardized accretion rates were obtained by dividing FM and FFM accretion by their respective SD. FFM accretion from 0 to 6 mo of age was positively associated with length at 1 y (β = 0.64; 95% CI: 0.19, 1.09; P = 0.005) and linear growth from 1 to 5 y (β = 0.63; 95% CI: 0.19, 1.07; P = 0.005). The strongest association with FFM accretion was observed at 1 y. The association with linear growth from 1 to 5 y was mainly engendered by the 1-y association. FM accretion from 0 to 4 mo was positively associated with linear growth from 1 to 5 y (β = 0.45; 95% CI: 0.02, 0.88; P = 0.038) in the fully adjusted model. In Ethiopian children, FFM accretion was associated with linear growth at 1 y and no clear additional longitudinal effect from 1 to 5 y was observed. FM accretion showed a weak association from 1 to 5 y. This trial was registered at www.controlled-trials.com as ISRCTN46718296.

  8. Linear study of the nonmodal growth of drift waves in dusty plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manz, P.; Greiner, F.

    2010-06-15

    The main effect of dust on drift wave turbulence is the enhancement of the nonadiabaticity. Previous work found that nonmodal behavior is important in the nonadiabatic regime of the drift wave system. Here, the modal and nonmodal properties of the linear Hasegawa-Wakatani system of dusty plasmas are investigated. The non-normality of the linear evolution operator can lead to enhanced transient growth rates compared to the modal growth rates.

  9. A Vernacular for Linear Latent Growth Models

    ERIC Educational Resources Information Center

    Hancock, Gregory R.; Choi, Jaehwa

    2006-01-01

    In its most basic form, latent growth modeling (latent curve analysis) allows an assessment of individuals' change in a measured variable X over time. For simple linear models, as with other growth models, parameter estimates associated with the a construct (amount of X at a chosen temporal reference point) and b construct (growth in X per unit…

  10. Crack Growth Prediction Methodology for Multi-Site Damage: Layered Analysis and Growth During Plasticity

    NASA Technical Reports Server (NTRS)

    James, Mark Anthony

    1999-01-01

    A finite element program has been developed to perform quasi-static, elastic-plastic crack growth simulations. The model provides a general framework for mixed-mode I/II elastic-plastic fracture analysis using small strain assumptions and plane stress, plane strain, and axisymmetric finite elements. Cracks are modeled explicitly in the mesh. As the cracks propagate, automatic remeshing algorithms delete the mesh local to the crack tip, extend the crack, and build a new mesh around the new tip. State variable mapping algorithms transfer stresses and displacements from the old mesh to the new mesh. The von Mises material model is implemented in the context of a non-linear Newton solution scheme. The fracture criterion is the critical crack tip opening displacement, and crack direction is predicted by the maximum tensile stress criterion at the crack tip. The implementation can accommodate multiple curving and interacting cracks. An additional fracture algorithm based on nodal release can be used to simulate fracture along a horizontal plane of symmetry. A core of plane strain elements can be used with the nodal release algorithm to simulate the triaxial state of stress near the crack tip. Verification and validation studies compare analysis results with experimental data and published three-dimensional analysis results. Fracture predictions using nodal release for compact tension, middle-crack tension, and multi-site damage test specimens produced accurate results for residual strength and link-up loads. Curving crack predictions using remeshing/mapping were compared with experimental data for an Arcan mixed-mode specimen. Loading angles from 0 degrees to 90 degrees were analyzed. The maximum tensile stress criterion was able to predict the crack direction and path for all loading angles in which the material failed in tension. Residual strength was also accurately predicted for these cases.

  11. Effect of progesterone from induced corpus luteum on the characteristics of a dominant follicle in dromedary camels (Camelus dromedarius).

    PubMed

    Manjunatha, B M; David, C G; Pratap, N; Al-Bulushi, Samir; Hago, B E

    2012-06-01

    The present study was carried out to elucidate the effect of progesterone (P4) from the induced corpus luteum (CL) on the characteristics of the dominant follicle (DF) in dromedary camels (Camelus dromedarius). Ovarian follicular and induced CL dynamics were monitored by transrectal ultrasonography in eight camels during the peak breeding season. The characteristics of the DF were monitored daily from the day of emergence into a wave, until it appeared to lose its dominance and the DF of a subsequent wave grew to a diameter of 13-17 mm. At this stage ovulation was induced by hCG and the DF was monitored every 8 h for 48 h. After ovulation, CL dynamics and follicular development (emergence of a new wave, growth and mature phase of the selected DF) were monitored daily. Blood samples were collected during each ultrasound examination to study the P4 profile in these animals. The CL developed to a maximum size (22.55 ± 3.24 mm) with a peak concentration of P4 (4.60 ± 2.57 ng/ml) 7 days after ovulation. The size of the CL was positively correlated with the P4 concentration (r = 0.612) during the different stages of the CL dynamics. The presence of CL did not affect the linear growth rate, duration of growth and mature phases of the DF. The development of the DF to its maximum size during its mature phase and inter-wave interval were not affected by the P4 secreted by the induced CL. In conclusion, there is no evidence from this study to suggest that P4 from induced CL altered the characteristics of a DF in dromedary camels. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. The biological pump: Profiles of plankton production and consumption in the upper ocean

    NASA Astrophysics Data System (ADS)

    Longhurst, Alan R.; Glen Harrison, W.

    The ‘biological pump’ mediates flux of carbon to the interior of the ocean by interctions between the components of the vertically-structured pelagic ecosystem of the photic zone. Chlorophyll profiles are not a simple indicator of autotrophic biomass or production, because of non-linearities in the physiology of cells and preferential vertical distribution of taxa. Profiles of numbers or biomass of heterotrophs do not correspond with profiles of consumption, because of depth-selection (taxa, seasons) for reasons unconnected with feeding. Depths of highest plant biomass, chlorophyll and growth rate coincide when these depths are shallow, but become progressively separated in profiles where they are deeper - so that highest growth rate lies progressively shallower than the chloropyll maximum. It is still uncertain how plant biomass is distributed in deep profiles. Depths of greatest heterotroph biomass (mesozooplankton) are usually close to depths of fastest plant growth rate, and thus lie shallower than the chlorophyll maximum in profiles where this itself is deep. This correlation is functional, and relates to the role of heterotrophs in excreting metabolic wastes (especially ammonia), which may fuel a significant component of integrated algal production, especially in the oligotrophic ocean. Some, but not all faecal material from mesozooplankton of the photic zone appears in vertical flux below the pycnocine, depending on the size of the source organisms, and the degree of vertical mixing above the pycnocline. Diel, but probably not seasonal, vertical migration is significant in the vertical flux of dissolved nitrogen. Regional generalisations of the vertical relations of the main components of the ‘biological pump’ now appear within reach, and an approach is suggested.

  13. Dinosaur Metabolism and the Allometry of Maximum Growth Rate

    PubMed Central

    Myhrvold, Nathan P.

    2016-01-01

    The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth rates of extant groups are found to have a great deal of overlap, including between groups with endothermic and ectothermic metabolism. Dinosaur growth rates show similar overlap, matching the rates found for mammals, reptiles and fish. The allometric scaling of growth rate with mass is found to have curvature (on a log-log scale) for many groups, contradicting the prevailing view that growth rate allometry follows a simple power law. Reanalysis shows that no correlation between growth rate and basal metabolic rate (BMR) has been demonstrated. These findings drive a conclusion that growth rate allometry studies to date cannot be used to determine dinosaur metabolism as has been previously argued. PMID:27828977

  14. Dinosaur Metabolism and the Allometry of Maximum Growth Rate.

    PubMed

    Myhrvold, Nathan P

    2016-01-01

    The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth rates of extant groups are found to have a great deal of overlap, including between groups with endothermic and ectothermic metabolism. Dinosaur growth rates show similar overlap, matching the rates found for mammals, reptiles and fish. The allometric scaling of growth rate with mass is found to have curvature (on a log-log scale) for many groups, contradicting the prevailing view that growth rate allometry follows a simple power law. Reanalysis shows that no correlation between growth rate and basal metabolic rate (BMR) has been demonstrated. These findings drive a conclusion that growth rate allometry studies to date cannot be used to determine dinosaur metabolism as has been previously argued.

  15. Growth and Deposition of Inorganic Nutrient Elements in Developing Leaves of Zea mays L. 1

    PubMed Central

    Meiri, Avraham; Silk, Wendy Kuhn; Läuchli, André

    1992-01-01

    Spatial distributions of growth and of the concentration of some inorganic nutrient elements were analyzed in developing leaves of maize (Zea mays L.). Growth was analyzed by pinprick experiments with numerical analysis to characterize fields of velocity and relative elemental elongation rate. Inductively coupled plasma and atomic emission spectroscopy were used to measure nutrients extracted from segments of leaf tissue collected by position. Leaves 7 and 8, both elongating 3 millimeters per hour had maximum relative elemental growth rates of 0.06 to 0.08 millimeters per hour with maximum rates 20 to 50 millimeters from the node and cessation of growth by 90 millimeters from the node. Spatial distribution of dry weight density revealed that the rate of biomass deposition was maximum in the most rapidly expanding region and continued beyond the elongation zone. The nutrient elements K, Cl, Ca, Mg, and P showed different distribution patterns of ion density (on a dry weight basis). K and Cl had minimal density in the leaf tips; K density was maximum in the growing region, whereas Cl density was maximum at the region of growth cessation. Ca, Mg, and P had relatively high densities at the base of the elongation zone near the node and also in the tip regions. Near the node, P and Mg densities were higher in the young, growing leaves, whereas Ca density near the node was higher in older leaves that had completed elongation. Deposition rates of all nutrients were greatest in the region of maximum elongation rate. PMID:16669027

  16. Island growth as a growth mode in atomic layer deposition: A phenomenological model

    NASA Astrophysics Data System (ADS)

    Puurunen, Riikka L.; Vandervorst, Wilfried

    2004-12-01

    Atomic layer deposition (ALD) has recently gained world-wide attention because of its suitability for the fabrication of conformal material layers with thickness in the nanometer range. Although the principles of ALD were realized about 40 years ago, the description of many physicochemical processes that occur during ALD growth is still under development. A constant amount of material deposited in an ALD reaction cycle, that is, growth-per-cycle (GPC), has been a paradigm in ALD through decades. The GPC may vary, however, especially in the beginning of the ALD growth. In this work, a division of ALD processes to four classes is proposed, on the basis of how the GPC varies with the number of ALD reaction cycles: linear growth, substrate-enhanced growth, and substrate-inhibited growth of type 1 and type 2. Island growth is identified as a likely origin for type 2 substrate-inhibited growth, where the GPC increases and goes through a maximum before it settles to a constant value characteristic of a steady growth. A simple phenomenological model is developed to describe island growth in ALD. The model assumes that the substrate is unreactive with the ALD reactants, except for reactive defects. ALD growth is assumed to proceed symmetrically from the defects, resulting islands of a conical shape. Random deposition is the growth mode on the islands. The model allows the simulation of GPC curves, surface fraction curves, and surface roughness, with physically significant parameters. When the model is applied to the zirconium tetrachloride/water and the trimethylaluminum/water ALD processes on hydrogen-terminated silicon, the calculated GPC curves and surface fractions agree with the experiments. The island growth model can be used to assess the occurrence of island growth, the size of islands formed, and point of formation of a continuous ALD-grown film. The benefits and limitations of the model and the general characteristics of type 2 substrate-inhibited ALD are discussed.

  17. Design and experiments of a linear piezoelectric motor driven by a single mode.

    PubMed

    Liu, Zhen; Yao, Zhiyuan; Li, Xiang; Fu, Qianwei

    2016-11-01

    In this contribution, we propose a novel linear piezoelectric motor with a compact stator that is driven by a single mode. The linear piezoelectric motor can realize bidirectional motion by changing the vibration modes of the stator. Finite element analysis is performed to determine the required vibration mode of the stator and obtain the optimal stator structure and dimensions. Furthermore, the trajectories of the driving foot are analyzed with and without consideration of the mechanical contact with the slider. It is shown that the trajectory of the driving foot is an oblique line when disregarding the contact, and the trajectory becomes an oblique ellipse while taking into account the contact. Finally, a prototype of the motor is fabricated based on the results of finite element analysis. The optimization results show that the motor reaches its maximum thrust force of 4.0 kg, maximum thrust-weight ratio of 33.3, maximum unloaded velocity of 385 mm/s under the excitation of Mode-B, and maximum unloaded velocity of 315 mm/s under the excitation of Mode-L.

  18. Exposure to preeclampsia in utero affects growth from birth to late childhood dependent on child’s sex and severity of exposure: Follow-up of a nested case-control study

    PubMed Central

    Øymar, Knut; Eide, Geir Egil; Forman, Michele R.; Júlíusson, Pétur Benedikt

    2017-01-01

    Background and objective An adverse intrauterine environment may affect offspring growth and development. Our aim was to explore whether preeclampsia (PE) exposure in utero influences growth from birth to 13 years. Methods In a nested case-control study, 229 children were exposed to PE (mild/moderate: n = 164, severe: n = 54) and 385 were unexposed. Length/height and weight were abstracted from records at birth, 3 and 6 months, 1 and 4 years, and measured along with waist circumference and skinfolds at follow-up at 11/12 (girls/boys) and 13 years (both sexes). Associations between PE and z-scores for growth were analyzed by multiple linear and fractional polynomial regression with adjustment for potential confounders. Results In boys, exposure to mild/moderate PE was positively associated with linear growth after 0.5 years, but severe PE was negatively associated with linear growth in all ages. In girls, both exposure to mild/moderate and severe PE were negatively associated with linear growth. Exposure to PE was negatively associated with weight and body mass index (BMI) during infancy, but positively associated with weight and BMI thereafter, except that boys exposed to severe PE consistently had a lower weight and BMI compared to the unexposed. Exposure to severe PE only was positively associated with waist-to-height ratio at 11/12 (girls/boys) and 13 years (both sexes). Conclusions From birth to adolescence, linear growth, weight and BMI trajectories differed between the sexes by severity of exposure to PE. In general, PE exposure was negatively associated with linear growth, while in girls; positive associations with weight and BMI were observed. This underlines fetal life as a particularly sensitive period affecting subsequent growth and this may have implications for targeted approaches for healthy growth and development. PMID:28486480

  19. Cow's milk and linear growth in industrialized and developing countries.

    PubMed

    Hoppe, Camilla; Mølgaard, Christian; Michaelsen, Kim F

    2006-01-01

    The strongest evidence that cow's milk stimulates linear growth comes from observational and intervention studies in developing countries that show considerable effects. Additionally, many observational studies from well-nourished populations also show an association between milk intake and growth. These results suggest that milk has a growth-stimulating effect even in situations where the nutrient intake is adequate. This effect is supported by studies that show milk intake stimulates circulating insulin-like growth factor (IGF)-I, which suggests that at least part of the growth-stimulating effects of milk occur through the stimulation of IGFs. Given that the biological purpose of milk is to support the newborn during a period of high growth velocity, such an effect seems plausible. Adding cow's milk to the diet of stunted children is likely to improve linear growth and thereby reduce morbidity. In well-nourished children, the long-term consequences of an increased consumption of cow's milk, which may lead to higher levels of IGF-I in circulation or an increase in the velocity of linear growth, are likely to be both positive and negative. Based on emerging data that suggest both growth and diet during early life program the IGF axis, the association between milk intake and later health is likely to be complex.

  20. Cow milk consumption, insulin-like growth factor-I, and human biology: a life history approach.

    PubMed

    Wiley, Andrea S

    2012-01-01

    To assess the life history consequences of cow milk consumption at different stages in early life (prenatal to adolescence), especially with regard to linear growth and age at menarche and the role of insulin-like growth factor I (IGF-I) in mediating a relationship among milk, growth and development, and long-term biological outcomes. United States National Health and Nutrition Examination Survey (NHANES) data from 1999 to 2004 and review of existing literature. The literature tends to support milk's role in enhancing growth early in life (prior to age 5 years), but there is less support for this relationship during middle childhood. Milk has been associated with early menarche and with acceleration of linear growth in adolescence. NHANES data show a positive relationship between milk intake and linear growth in early childhood and adolescence, but not middle childhood, a period of relatively slow growth. IGF-I is a candidate bioactive molecule linking milk consumption to more rapid growth and development, although the mechanism by which it may exert such effects is unknown. Routine milk consumption is an evolutionarily novel dietary behavior that has the potential to alter human life history parameters, especially vis-à-vis linear growth, which in turn may have negative long-term biological consequences. Copyright © 2011 Wiley Periodicals, Inc.

  1. Time course of epiphyseal growth plate fusion in rat tibiae

    NASA Technical Reports Server (NTRS)

    Martin, E. A.; Ritman, E. L.; Turner, R. T.

    2003-01-01

    Although the rat is the most common animal model used in studying osteoporosis, it is often used inappropriately. Osteoporosis is a disease that most commonly occurs in humans long after growth plate fusion with the associated cessation of longitudinal bone growth, but there has been a question as to when or to what extent the rat growth plate fuses. To investigate this question, we used microcomputed X-ray tomography, at voxel resolutions ranging from (5.7 micro m)(3) to (11 micro m)(3), to image the proximal epiphyseal growth plates of both male (n = 19) and female (n = 15) rat tibiae, ranging in age from 2 to 25 months. The three-dimensional images were used to evaluate fusion of the epiphyseal growth plate by quantitating the amount of cancellous bone that has bridged across the growth plate. The results suggest that the time course of fusion of the epiphyseal growth plate follows a sigmoidal pattern, with 10% of the maximum number of bridges having formed by 3.9 months in the male tibiae and 5.8 months in the female tibiae, 50% of the maximum number of bridges having formed by 5.6 months in the male tibiae and 5.9 months in the female tibiae, and 90% of the total maximum of bridges have formed by 7.4 months for the males and 6.5 months for the females. The total volume of bridges per tibia at the age at which the maximum number of bridges per tibia has first formed is 0.99 mm(3)/tibia for the males and 0.40 mm(3)/tibia for the females. After the maximum number of bridges (-290 for females, -360 for males) have formed the total volume of bridges per tibia continues to increase for an additional 7.0 months in the males and 17.0 months for the females until they reach maximum values (-1.5 mm(3)/tibia for the males and -2.2 mm(3)/tibia for the females).

  2. Psychological stress impairs short-term muscular recovery from resistance exercise.

    PubMed

    Stults-Kolehmainen, Matthew A; Bartholomew, John B

    2012-11-01

    The primary aim of this study was to determine whether chronic mental stress moderates recovery of muscular function, perceived energy, fatigue, and soreness in the first hour after a bout of strenuous resistance exercise. Thirty-one undergraduate resistance training students (age = 20.26 ± 1.34 yr) completed the Perceived Stress Scale and Undergraduate Stress Questionnaire (USQ; a measure of life event stress) and completed fitness testing. After 5 to 14 d of recovery, they performed an acute heavy-resistance exercise protocol (10-repetition maximum (RM) leg press test plus six sets: 80%-100% of 10 RM). Maximal isometric force (MIF) was assessed before exercise, after exercise, and at 20, 40, and 60 min postexercise. Participants also reported their levels of perceived energy, fatigue, and soreness. Recovery data were analyzed with hierarchical linear modeling growth curve analysis. Life event stress significantly moderated linear (P = 0.013) and squared (P = 0.05) recovery of MIF. This relationship held even when the model was adjusted for fitness, workload, and training experience. Likewise, perceived stress moderated linear recovery of MIF (P = 0.023). Neither USQ nor Perceived Stress Scale significantly moderated changes in energy, fatigue, or soreness. Life event stress and perceived stress both moderated the recovery of muscular function, but not psychological responses, in the first hour after strenuous resistance exercise.

  3. High profile students’ growth of mathematical understanding in solving linier programing problems

    NASA Astrophysics Data System (ADS)

    Utomo; Kusmayadi, TA; Pramudya, I.

    2018-04-01

    Linear program has an important role in human’s life. This linear program is learned in senior high school and college levels. This material is applied in economy, transportation, military and others. Therefore, mastering linear program is useful for provision of life. This research describes a growth of mathematical understanding in solving linear programming problems based on the growth of understanding by the Piere-Kieren model. Thus, this research used qualitative approach. The subjects were students of grade XI in Salatiga city. The subjects of this study were two students who had high profiles. The researcher generally chose the subjects based on the growth of understanding from a test result in the classroom; the mark from the prerequisite material was ≥ 75. Both of the subjects were interviewed by the researcher to know the students’ growth of mathematical understanding in solving linear programming problems. The finding of this research showed that the subjects often folding back to the primitive knowing level to go forward to the next level. It happened because the subjects’ primitive understanding was not comprehensive.

  4. Slip accumulation and lateral propagation of active normal faults in Afar

    NASA Astrophysics Data System (ADS)

    Manighetti, I.; King, G. C. P.; Gaudemer, Y.; Scholz, C. H.; Doubre, C.

    2001-01-01

    We investigate fault growth in Afar, where normal fault systems are known to be currently growing fast and most are propagating to the northwest. Using digital elevation models, we have examined the cumulative slip distribution along 255 faults with lengths ranging from 0.3 to 60 km. Faults exhibiting the elliptical or "bell-shaped" slip profiles predicted by simple linear elastic fracture mechanics or elastic-plastic theories are rare. Most slip profiles are roughly linear for more than half of their length, with overall slopes always <0.035. For the dominant population of NW striking faults and fault systems longer than 2 km, the slip profiles are asymmetric, with slip being maximum near the eastern ends of the profiles where it drops abruptly to zero, whereas slip decreases roughly linearly and tapers in the direction of overall Aden rift propagation. At a more detailed level, most faults appear to be composed of distinct, shorter subfaults or segments, whose slip profiles, while different from one to the next, combine to produce the roughly linear overall slip decrease along the entire fault. On a larger scale, faults cluster into kinematically coupled systems, along which the slip on any scale individual fault or fault system complements that of its neighbors, so that the total slip of the whole system is roughly linearly related to its length, with an average slope again <0.035. We discuss the origin of these quasilinear, asymmetric profiles in terms of "initiation points" where slip starts, and "barriers" where fault propagation is arrested. In the absence of a barrier, slip apparently extends with a roughly linear profile, tapered in the direction of fault propagation.

  5. An extended heterogeneous car-following model accounting for anticipation driving behavior and mixed maximum speeds

    NASA Astrophysics Data System (ADS)

    Sun, Fengxin; Wang, Jufeng; Cheng, Rongjun; Ge, Hongxia

    2018-02-01

    The optimal driving speeds of the different vehicles may be different for the same headway. In the optimal velocity function of the optimal velocity (OV) model, the maximum speed vmax is an important parameter determining the optimal driving speed. A vehicle with higher maximum speed is more willing to drive faster than that with lower maximum speed in similar situation. By incorporating the anticipation driving behavior of relative velocity and mixed maximum speeds of different percentages into optimal velocity function, an extended heterogeneous car-following model is presented in this paper. The analytical linear stable condition for this extended heterogeneous traffic model is obtained by using linear stability theory. Numerical simulations are carried out to explore the complex phenomenon resulted from the cooperation between anticipation driving behavior and heterogeneous maximum speeds in the optimal velocity function. The analytical and numerical results all demonstrate that strengthening driver's anticipation effect can improve the stability of heterogeneous traffic flow, and increasing the lowest value in the mixed maximum speeds will result in more instability, but increasing the value or proportion of the part already having higher maximum speed will cause different stabilities at high or low traffic densities.

  6. Growth yields and fermentation balance of Bacteroides fragilis cultured in glucose-enriched medium.

    PubMed

    Frantz, J C; McCallum, R E

    1979-03-01

    Bacteroides fragilis is an obligate anaerobic bacterium classified with the gram-negative, non-sporeforming bacilli and is the Bacteroides species most frequently isolated from human infections. In the present study, experiments were designed to investigate growth characteristics of B. fragilis in a complex medium. In a minimal defined medium, which was employed for comparison purposes, B. fragilis grew with a generation time of 2 h. Growth of the organism in glucose-enriched medium used in the present study was superior. Maximum generation time was 60 min. Total and viable cells (colony-forming units) were 8.9 x 10(9) and 2.1 x 10(9), respectively, at maximum measurable growth. The molar growth yield (Ym) was 51.5. Growth yields were found to reach a maximum 2 to 3 h before maximum growth and to vary with respect to the phase of growth. Estimates of the fermentation products indicated that glucose was the sole energy substrate. Major products included acetic acid, propionic acid, lactic acid, and succinic acid. Other products included ethyl alcohol, pyruvic acid, and fumaric acid. No attempt was made to recover CO2 or formic acid. The OR balances from two experiments were 0.013 and -0.093 and the respective carbon recoveries were 6.268 and 6.241. The results of the present study show that B. fragilis is capable of rapid rates of growth in vitro by using glucose as the sole energy source.

  7. On the Inefficiency of Equilibria in Linear Bottleneck Congestion Games

    NASA Astrophysics Data System (ADS)

    de Keijzer, Bart; Schäfer, Guido; Telelis, Orestis A.

    We study the inefficiency of equilibrium outcomes in bottleneck congestion games. These games model situations in which strategic players compete for a limited number of facilities. Each player allocates his weight to a (feasible) subset of the facilities with the goal to minimize the maximum (weight-dependent) latency that he experiences on any of these facilities. We derive upper and (asymptotically) matching lower bounds on the (strong) price of anarchy of linear bottleneck congestion games for a natural load balancing social cost objective (i.e., minimize the maximum latency of a facility). We restrict our studies to linear latency functions. Linear bottleneck congestion games still constitute a rich class of games and generalize, for example, load balancing games with identical or uniformly related machines with or without restricted assignments.

  8. Exploring the contributions of vegetation and dune size to early dune development using unmanned aerial vehicle (UAV) imaging

    NASA Astrophysics Data System (ADS)

    van Puijenbroek, Marinka E. B.; Nolet, Corjan; de Groot, Alma V.; Suomalainen, Juha M.; Riksen, Michel J. P. M.; Berendse, Frank; Limpens, Juul

    2017-12-01

    Dune development along highly dynamic land-sea boundaries is the result of interaction between vegetation and dune size with sedimentation and erosion processes. Disentangling the contribution of vegetation characteristics from that of dune size would improve predictions of nebkha dune development under a changing climate, but has proven difficult due to the scarcity of spatially continuous monitoring data. This study explored the contributions of vegetation and dune size to dune development for locations differing in shelter from the sea. We monitored a natural nebkha dune field of 8 ha, along the coast of the island Texel, the Netherlands, for 1 year using an unmanned aerial vehicle (UAV) with camera. After constructing a digital surface model and orthomosaic we derived for each dune (1) vegetation characteristics (species composition, vegetation density, and maximum vegetation height), (2) dune size (dune volume, area, and maximum height), (3) degree of shelter (proximity to other nebkha dunes and the sheltering by the foredune). Changes in dune volume over summer and winter were related to vegetation, dune size and degree of shelter. We found that a positive change in dune volume (dune growth) was linearly related to initial dune volume over summer but not over winter. Big dunes accumulated more sand than small dunes due to their larger surface area. Exposed dunes increased more in volume (0.81 % per dune per week) than sheltered dunes (0.2 % per dune per week) over summer, while the opposite occurred over winter. Vegetation characteristics did not significantly affect dune growth in summer, but did significantly affect dune growth in winter. Over winter, dunes dominated by Ammophila arenaria, a grass species with high vegetation density throughout the year, increased more in volume than dunes dominated by Elytrigia juncea, a grass species with lower vegetation density (0.43 vs. 0.42 (m3 m-3) week-1). The effect of species was irrespective of dune size or distance to the sea. Our results show that dune growth in summer is mainly determined by dune size, whereas in winter dune growth was determined by vegetation type. In our study area the growth of exposed dunes was likely restricted by storm erosion, whereas growth of sheltered dunes was restricted by sand supply. Our results can be used to improve models predicting coastal dune development.

  9. Two-point method uncertainty during control and measurement of cylindrical element diameters

    NASA Astrophysics Data System (ADS)

    Glukhov, V. I.; Shalay, V. V.; Radev, H.

    2018-04-01

    The topic of the article is devoted to the urgent problem of the reliability of technical products geometric specifications measurements. The purpose of the article is to improve the quality of parts linear sizes control by the two-point measurement method. The article task is to investigate methodical extended uncertainties in measuring cylindrical element linear sizes. The investigation method is a geometric modeling of the element surfaces shape and location deviations in a rectangular coordinate system. The studies were carried out for elements of various service use, taking into account their informativeness, corresponding to the kinematic pairs classes in theoretical mechanics and the number of constrained degrees of freedom in the datum element function. Cylindrical elements with informativity of 4, 2, 1 and θ (zero) were investigated. The uncertainties estimation of in two-point measurements was made by comparing the results of of linear dimensions measurements with the functional diameters maximum and minimum of the element material. Methodical uncertainty is formed when cylindrical elements with maximum informativeness have shape deviations of the cut and the curvature types. Methodical uncertainty is formed by measuring the element average size for all types of shape deviations. The two-point measurement method cannot take into account the location deviations of a dimensional element, so its use for elements with informativeness less than the maximum creates unacceptable methodical uncertainties in measurements of the maximum, minimum and medium linear dimensions. Similar methodical uncertainties also exist in the arbitration control of the linear dimensions of the cylindrical elements by limiting two-point gauges.

  10. Growth of preschool children at high risk for asthma 2 years after discontinuation of fluticasone.

    PubMed

    Guilbert, Theresa W; Mauger, David T; Allen, David B; Zeiger, Robert S; Lemanske, Robert F; Szefler, Stanley J; Strunk, Robert C; Bacharier, Leonard B; Covar, Ronina; Sorkness, Christine A; Taussig, Lynn M; Martinez, Fernando D

    2011-11-01

    The effect on linear growth of daily long-term inhaled corticosteroid therapy in preschool-aged children with recurrent wheezing is controversial. We sought to determine the effect of daily inhaled corticosteroid given for 2 years on linear growth in preschool children with recurrent wheezing. Children aged 2 and 3 years with recurrent wheezing and positive modified Asthma Predictive Index scores were randomized to a 2-year treatment period of chlorofluorocarbon-delivered fluticasone propionate (176 μg/d) or masked placebo delivered through a valved chamber with a mask and then followed for 2 years off study medication. Height growth determined by means of stadiometry was compared between treatment groups. In the study cohort as a whole, the fluticasone group did not have significantly less linear growth than the placebo group (change in height from baseline difference, -0.2 cm; 95% CI, -1.1 to 0.6) 2 years after discontinuation of study treatment. In post hoc analyses children 2 years old who weighed less than 15 kg at enrollment and were treated with fluticasone had less linear growth compared with those treated with placebo (change in height from baseline difference, -1.6 cm; 95% CI, -2.8 to -0.4; P = .009). Linear growth was not significantly different in high-risk preschool-aged children with recurrent wheezing treated with 176 μg/d chlorofluorocarbon-delivered fluticasone compared with placebo 2 years after fluticasone is discontinued. However, post hoc subgroup analyses revealed that children who are younger in age and of lesser weight relative to the entire study cohort had significantly less linear growth, possibly because of a higher relative fluticasone exposure. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  11. Emergency medicine journal impact factor and change compared to other medical and surgical specialties.

    PubMed

    Reynolds, Joshua C; Menegazzi, James J; Yealy, Donald M

    2012-11-01

    A journal impact factor represents the mean number of citations per article published. Designed as one tool to measure the relative importance of a journal, impact factors are often incorporated into academic evaluation of investigators. The authors sought to determine how impact factors of emergency medicine (EM) journals compare to journals from other medical and surgical specialties and if any change has taken place over time. The 2010 impact factors and 5-year impact factors for each journal indexed by the Thomson Reuters ISI Web of Knowledge Journal Citation Reports (JCR) were collected, and EM, medical, and surgical specialties were evaluated. The maximum, median, and interquartile range (IQR) of the current impact factor and 5-year impact factor in each journal category were determined, and specialties were ranked according to the summary statistics. The "top three" impact factor journals for each specialty were analyzed, and growth trends from 2001 through 2010 were examined with random effects linear regression. Data from 2,287 journals in 31 specialties were examined. There were 23 EM journals with a current maximum impact factor of 4.177, median of 1.269, and IQR of 0.400 to 2.176. Of 23 EM journals, 57% had a 5-year impact factor available, with a maximum of 4.531, median of 1.325, and IQR of 0.741 to 2.435. The top three EM journals had a mean standard deviation (±SD) impact factor of 3.801 (±0.621) and median of 4.142 and a mean (±SD) 5-year impact factor of 3.788 (±1.091) and median of 4.297, with a growth trend of 0.211 (95% confidence interval [CI] = 0.177 to 0.245; p < 0.001). By any criterion analyzed, EM journals ranked no higher than 24th among 31 specialties. Emergency medicine journals rank low in impact factor summary statistics and growth trends among 31 medical and surgical specialties. © 2012 by the Society for Academic Emergency Medicine.

  12. Pressure fluctuations and time scales in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Septham, Kamthon; Morrison, Jonathan; Diwan, Sourabh

    2015-11-01

    Pressure fluctuations in turbulent channel flow subjected to globally stabilising linear feedback control are investigated at Reτ = 400 . The passivity-based control is adopted and explained by the conservative characteristics of the nonlinear terms contributing to the Reynolds-Orr equation (Sharma et al. Phys. Fluids 2011). The linear control operates via vU' ; the maximum forcing is located at y+ ~ 20 , corresponding to the location of the maximum in the mean-square pressure gradient. The responses of the rapid (linear) and slow (nonlinear) pressure fluctuations to the linear control are investigated using the Green's function representations. It demonstrates that the linear control operates via the linear source terms of the Poisson equation for pressure fluctuations. Landahl's timescales of the minimal flow unit (MFU) in turbulent channel flow are examined at y+ = 20 . It shows that the timescales of MFU agree well with the theoretical values proposed by Landahl (1993). Therefore, the effectiveness of the linear control to attenuate wall turbulence is explained by Landahl's theory for timescales, in that the control proceeds via the shear interaction timescale which is significantly shorter than both the nonlinear and viscous timescales.

  13. Visco-instability of shear viscoelastic collisional dusty plasma systems

    NASA Astrophysics Data System (ADS)

    Mahdavi-Gharavi, M.; Hajisharifi, K.; Mehidan, H.

    2018-04-01

    In this paper, the stability of Newtonian and non-Newtonian viscoelastic collisional shear-velocity dusty plasmas is studied, using the framework of a generalized hydrodynamic (GH) model. Motivated by Banerjee et al.'s work (Banerjee et al., New J. Phys., vol. 12 (12), 2010, p. 123031), employing linear perturbation theory as well as the local approximation method in the inhomogeneous direction, the dispersion relations of the Fourier modes are obtained for Newtonian and non-Newtonian dusty plasma systems in the presence of a dust-neutral friction term. The analysis of the obtained dispersion relation in the non-Newtonian case shows that the inhomogeneous viscosity force depending on the velocity shear profile can be the genesis of a free energy source which leads the shear system to be unstable. Study of the dust-neutral friction effect on the instability of the considered systems using numerical analysis of the dispersion relation in the Newtonian case demonstrates that the maximum growth rate decreases considerably by increasing the collision frequency in the hydrodynamic regime, while this reduction can be neglected in the kinetic regime. Results show a more significant stabilization role of the dust-neutral friction term in the non-Newtonian cases, through decreasing the maximum growth rate at any fixed wavenumber and construction of the instable wavenumber region. The results of the present investigation will greatly contribute to study of the time evolution of viscoelastic laboratory environments with externally applied shear; where in these experiments the dust-neutral friction process can play a considerable role.

  14. Mercury and growth of tree swallows at Acadia National Park, and at Orono, Maine, USA

    USGS Publications Warehouse

    Longcore, Jerry R.; Dineli, Reza; Haines, Terry A.

    2007-01-01

    In 1997 and 1998 we weighed nestling tree swallows (Tachycineta bicolor) and measured selected body components at two colonies: Acadia National Park on Mt. Desert Island, and at Orono, ME. We used differences in mean growth variables among individual nestlings to evaluate differences between colonies, years, and amount of total mercury (THg) in carcasses and methyl mercury (MeHg) in feathers. We marked nestlings on the day hatched and measured body components every day in 1997 and every other day in 1998 until nestlings fledged. We calculated linear growth rates and asymptotic means as appropriate. In 1998, linear growth rate of weight was higher at Acadia than at Orono, but not different in 1997. We detected no mean differences in asymptotic mean weight of nestlings between colonies or years. In 1997, mean linear growth rates of the wing (chord), tail, tarsus, and mandible were higher at Acadia than at Orono. The amount of MeHg in feathers was associated with a lower linear growth rate of weight during early age (2?10 days), but asymptotic mean weight during days 11?16 was not different. No effect on linear growth of tail feathers or wing was associated with the amount of MeHg in feathers or THg in carcasses. Fledgling tree swallows that survive to migrate, however, will leave Maine with substantial concentrations of Hg in their tissues.

  15. Design and optimization of a modal- independent linear ultrasonic motor.

    PubMed

    Zhou, Shengli; Yao, Zhiyuan

    2014-03-01

    To simplify the design of the linear ultrasonic motor (LUSM) and improve its output performance, a method of modal decoupling for LUSMs is proposed in this paper. The specific embodiment of this method is decoupling of the traditional LUSM stator's complex vibration into two simple vibrations, with each vibration implemented by one vibrator. Because the two vibrators are designed independently, their frequencies can be tuned independently and frequency consistency is easy to achieve. Thus, the method can simplify the design of the LUSM. Based on this method, a prototype modal- independent LUSM is designed and fabricated. The motor reaches its maximum thrust force of 47 N, maximum unloaded speed of 0.43 m/s, and maximum power of 7.85 W at applied voltage of 200 Vpp. The motor's structure is then optimized by controlling the difference between the two vibrators' resonance frequencies to reach larger output speed, thrust, and power. The optimized results show that when the frequency difference is 73 Hz, the output force, speed, and power reach their maximum values. At the input voltage of 200 Vpp, the motor reaches its maximum thrust force of 64.2 N, maximum unloaded speed of 0.76 m/s, maximum power of 17.4 W, maximum thrust-weight ratio of 23.7, and maximum efficiency of 39.6%.

  16. Growth and Maximum Size of Tiger Sharks (Galeocerdo cuvier) in Hawaii

    PubMed Central

    Meyer, Carl G.; O'Malley, Joseph M.; Papastamatiou, Yannis P.; Dale, Jonathan J.; Hutchinson, Melanie R.; Anderson, James M.; Royer, Mark A.; Holland, Kim N.

    2014-01-01

    Tiger sharks (Galecerdo cuvier) are apex predators characterized by their broad diet, large size and rapid growth. Tiger shark maximum size is typically between 380 & 450 cm Total Length (TL), with a few individuals reaching 550 cm TL, but the maximum size of tiger sharks in Hawaii waters remains uncertain. A previous study suggested tiger sharks grow rather slowly in Hawaii compared to other regions, but this may have been an artifact of the method used to estimate growth (unvalidated vertebral ring counts) compounded by small sample size and narrow size range. Since 1993, the University of Hawaii has conducted a research program aimed at elucidating tiger shark biology, and to date 420 tiger sharks have been tagged and 50 recaptured. All recaptures were from Hawaii except a single shark recaptured off Isla Jacques Cousteau (24°13′17″N 109°52′14″W), in the southern Gulf of California (minimum distance between tag and recapture sites  =  approximately 5,000 km), after 366 days at liberty (DAL). We used these empirical mark-recapture data to estimate growth rates and maximum size for tiger sharks in Hawaii. We found that tiger sharks in Hawaii grow twice as fast as previously thought, on average reaching 340 cm TL by age 5, and attaining a maximum size of 403 cm TL. Our model indicates the fastest growing individuals attain 400 cm TL by age 5, and the largest reach a maximum size of 444 cm TL. The largest shark captured during our study was 464 cm TL but individuals >450 cm TL were extremely rare (0.005% of sharks captured). We conclude that tiger shark growth rates and maximum sizes in Hawaii are generally consistent with those in other regions, and hypothesize that a broad diet may help them to achieve this rapid growth by maximizing prey consumption rates. PMID:24416287

  17. Growth and maximum size of tiger sharks (Galeocerdo cuvier) in Hawaii.

    PubMed

    Meyer, Carl G; O'Malley, Joseph M; Papastamatiou, Yannis P; Dale, Jonathan J; Hutchinson, Melanie R; Anderson, James M; Royer, Mark A; Holland, Kim N

    2014-01-01

    Tiger sharks (Galecerdo cuvier) are apex predators characterized by their broad diet, large size and rapid growth. Tiger shark maximum size is typically between 380 & 450 cm Total Length (TL), with a few individuals reaching 550 cm TL, but the maximum size of tiger sharks in Hawaii waters remains uncertain. A previous study suggested tiger sharks grow rather slowly in Hawaii compared to other regions, but this may have been an artifact of the method used to estimate growth (unvalidated vertebral ring counts) compounded by small sample size and narrow size range. Since 1993, the University of Hawaii has conducted a research program aimed at elucidating tiger shark biology, and to date 420 tiger sharks have been tagged and 50 recaptured. All recaptures were from Hawaii except a single shark recaptured off Isla Jacques Cousteau (24°13'17″N 109°52'14″W), in the southern Gulf of California (minimum distance between tag and recapture sites  =  approximately 5,000 km), after 366 days at liberty (DAL). We used these empirical mark-recapture data to estimate growth rates and maximum size for tiger sharks in Hawaii. We found that tiger sharks in Hawaii grow twice as fast as previously thought, on average reaching 340 cm TL by age 5, and attaining a maximum size of 403 cm TL. Our model indicates the fastest growing individuals attain 400 cm TL by age 5, and the largest reach a maximum size of 444 cm TL. The largest shark captured during our study was 464 cm TL but individuals >450 cm TL were extremely rare (0.005% of sharks captured). We conclude that tiger shark growth rates and maximum sizes in Hawaii are generally consistent with those in other regions, and hypothesize that a broad diet may help them to achieve this rapid growth by maximizing prey consumption rates.

  18. A Novel Method for Characterizing Fatigue Delamination Growth Under Mode I Using the Double Cantilever Beam Specimen

    NASA Technical Reports Server (NTRS)

    Carvalho, Nelson; Murri, G.

    2014-01-01

    A novel method is proposed to obtain Mode I delamination growth rate from a Double Cantilever Beam (DCB) specimen. In the proposed method, Unidirectional (UD) DCB specimens are tested in fatigue at different initial maximum energy release rates levels. The growth rate data obtained in the first increments of crack growth at each maximum energy release rate level are used to generate a Paris Law equation, which characterizes delamination growth rate without fiber-bridging, and can also be used to determine a delamination onset curve. The remaining delamination growth rate data from each test are used to determine a modified Paris law, which characterizes the delamination growth rate in a DCB specimen, explicitly accounting for fiber-bridging. The proposed expression captures well the scatter in experimental data obtained using the DCB specimens, suggesting its adequacy. The Paris Law characterizing delamination growth rate without fiber-bridging predicts higher delamination growth rates for the same maximum energy release rate applied, leading to a conservative estimate for delamination growth. This is particularly relevant, since in generic ply interfaces, fiber-bridging is less predominant than in UD DCB specimens. Failing to account for fiber-bridging in UD DCB specimens may underestimate the delamination growth rate, yielding non-conservative predictions.

  19. On the stimulated Raman sidescattering in inhomogeneous plasmas: revisit of linear theory and three-dimensional particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Xiao, C. Z.; Zhuo, H. B.; Yin, Y.; Liu, Z. J.; Zheng, C. Y.; Zhao, Y.; He, X. T.

    2018-02-01

    Stimulated Raman sidescattering (SRSS) in inhomogeneous plasma is comprehensively revisited on both theoretical and numerical aspects due to the increasing concern of its detriments to inertial confinement fusion. Firstly, two linear mechanisms of finite beam width and collisional effects that could suppress SRSS are investigated theoretically. Thresholds for the eigenmode and wave packet in a finite-width beam are derived as a supplement to the theory proposed by Mostrom and Kaufman (1979 Phys. Rev. Lett. 42 644). Collisional absorption of SRSS is efficient at high-density plasma and high-Z material, otherwise, it allows emission of sidescattering. Secondly, we have performed the first three-dimensional particle-in-cell simulations in the context of SRSS to investigate its linear and nonlinear effects. Simulation results are qualitatively agreed with the linear theory. SRSS with the maximum growth gain is excited at various densities, grows to an amplitude that is comparable with the pump laser, and evolutes to lower densities with a large angle of emergence. Competitions between SRSS and other parametric instabilities such as stimulated Raman backscattering, two-plasmon decay, and stimulated Brillouin scattering are discussed. These interaction processes are determined by gains, occurrence sites, scattering geometries of each instability, and will affect subsequent evolutions. Nonlinear effects of self-focusing and azimuthal magnetic field generation are observed to be accompanied with SRSS. In addition, it is found that SRSS is insensitive to ion motion, collision (low-Z material), and electron temperature.

  20. Linearly polarized emission from an embedded quantum dot using nanowire morphology control.

    PubMed

    Foster, Andrew P; Bradley, John P; Gardner, Kirsty; Krysa, Andrey B; Royall, Ben; Skolnick, Maurice S; Wilson, Luke R

    2015-03-11

    GaAs nanowires with elongated cross sections are formed using a catalyst-free growth technique. This is achieved by patterning elongated nanoscale openings within a silicon dioxide growth mask on a (111)B GaAs substrate. It is observed that MOVPE-grown vertical nanowires with cross section elongated in the [21̅1̅] and [1̅12] directions remain faithful to the geometry of the openings. An InGaAs quantum dot with weak radial confinement is realized within each nanowire by briefly introducing indium into the reactor during nanowire growth. Photoluminescence emission from an embedded nanowire quantum dot is strongly linearly polarized (typically >90%) with the polarization direction coincident with the axis of elongation. Linearly polarized PL emission is a result of embedding the quantum dot in an anisotropic nanowire structure that supports a single strongly confined, linearly polarized optical mode. This research provides a route to the bottom-up growth of linearly polarized single photon sources of interest for quantum information applications.

  1. Additional common bean in the diet of Malawian children does not affect linear growth, but reduces intestinal permeability

    USDA-ARS?s Scientific Manuscript database

    Chronic malnutrition, as manifested by linear growth faltering, is pervasive among rural African children. Improvements in complementary feeding may decrease the burden of environmental enteric dysfunction (EED) and thus improve growth in children during the critical first 1000 d of development. We...

  2. Habitat use in irrigation channels by the golden venus chub (Hemigrammocypris rasborella) at different growth stages.

    PubMed

    Onikura, Norio; Nakajima, Jun; Kouno, Hiromi; Sugimoto, Yoshiko; Kaneto, Jun

    2009-06-01

    Ecological information on the golden venus chub (Hemigrammocypris rasborella Fowler, 1910) was collected during field surveys and used to analyze habitat use by this species at each growth stage. Surveys were conducted every month for approximately 2 years In an irrigation ditch near the Ushizu River, Kyushu Island, Japan. Based on the characteristic nuptial coloration of males, it was estimated that H. rasborella spawns between spring and summer. Size measurements of 2697 individuals indicated two size classes. The population of age class 1 decreased rapidly after the spawning period. On the basis of growth patterns, the life cycle of H. rasborella was classified into three stages: the growth stage (GS) of age class 0 fish from August to November, the no-growth stage (NGS) of age class 0 fish from December to March, and the growing and spawning stage (GSS) of age class 0 and 1 fish from April to August. Habitat use by GS, NGS, and GSS fish was analyzed with a stepwise multiple linear regression. The average number of fish was negatively correlated with the presence of a concrete revetment in the GS; positively and negatively correlated with minimum water depth and submerged plants, respectively, in the NGS; and positively correlated with maximum water temperature in the GSS. These results suggest that maintenance of the water level in the fallow season and not using concrete revetments are essential for the conservation of this species under the present conditions in Japanese rice fields.

  3. Are trait-growth models transferable? Predicting multi-species growth trajectories between ecosystems using plant functional traits

    PubMed Central

    Vesk, Peter A.

    2017-01-01

    Plant functional traits are increasingly used to generalize across species, however few examples exist of predictions from trait-based models being evaluated in new species or new places. Can we use functional traits to predict growth of unknown species in different areas? We used three independently collected datasets, each containing data on heights of individuals from non-resprouting species over a chronosquence of time-since-fire sites from three ecosystems in south-eastern Australia. We examined the influence of specific leaf area, woody density, seed size and leaf nitrogen content on three aspects of plant growth; maximum relative growth rate, age at maximum growth and asymptotic height. We tested our capacity to perform out-of-sample prediction of growth trajectories between ecosystems using species functional traits. We found strong trait-growth relationships in one of the datasets; whereby species with low SLA achieved the greatest asymptotic heights, species with high leaf-nitrogen content achieved relatively fast growth rates, and species with low seed mass reached their time of maximum growth early. However these same growth-trait relationships did not hold across the two other datasets, making accurate prediction from one dataset to another unachievable. We believe there is evidence to suggest that growth trajectories themselves may be fundamentally different between ecosystems and that trait-height-growth relationships may change over environmental gradients. PMID:28486535

  4. Optimal perturbations of a finite-width mixing layer near the trailing edge

    NASA Astrophysics Data System (ADS)

    Gumbart, James C.; Rabchuk, James

    2002-03-01

    The trailing edge of a surface separating two fluid flows can act as an efficient receptor for acoustic or other disturbances. The incident wave energy is converted by a linear mechanism into incipient flow instabilities which lead further downstream to the transition to turbulence. Understanding this process is essential for analyzing feedback loops and other resonances which can cause unwanted structural vibrations in the surface material or directed acoustic emissions from the mixing region. Previously, the modes of instability in a finite-width mixing layer near the trailing edge were studied as a function of frequency by assuming that vorticity was continually being introduced into the flow at the trailing edge by the forcing field. It was found that the initial amplitude of the growing instability mode was a sharply decreasing function of forcing frequency, and that the initial amplitude was a minimum for the frequency at which the rate of instability growth was a maximum^1. This result has led to a study of the adjoint equation for the perturbation stream function, whose eigensolutions are known to be associated with the optimal perturbation field for the frequency of forcing leading to the greatest instability growth downstream. We have obtained these solutions for a piecewise linear velocity profile near the trailing edge using group-theoretic techniques and have shown that they are indeed optimal. We have also analyzed the nature of the physical forcing field that might produce these optimal perturbations. ^1 Rabchuk, J.A., July 2000, Physics of Fluids.

  5. Interactions between light and growing season temperatures on, growth and development and gas exchange of Semillon (Vitis vinifera L.) vines grown in an irrigated vineyard.

    PubMed

    Greer, Dennis H; Weedon, Mark M

    2012-05-01

    High-light intensities and temperatures of the warm climate regions of Australia and elsewhere have a major effect on the growth and development of grapevines (Vitis vinifera L.). The objective of this research was to assess interactions between the light and seasonal temperatures by shading some vines and comparing these with vines exposed to high-light intensities. Canopy temperatures were monitored using infrared radiometers and budbreak, phenology, growth, yield, berry ripening and gas exchange determined over three growing seasons. Results showed canopies were generally about 4 °C cooler than air and shading extended this cooling. Irradiance, irrespective of seasonal temperatures, had no effect on time of budbreak, shoot phenology, stem growth, yield and bunch fresh weights while bunch and leaf dry weights were reduced in low-light. Bunch ripening was initially delayed by low-light but thereafter the ripening process was highly temperature-dependent. Rates increased linearly with increasing temperature in both low and high-light and were optimal at about 35 °C. Maximum photosynthetic capacity was impaired by low irradiance, in accordance with shade leaf attributes, and attributable to stomatal closure. No effects of the low photosynthetic capacity apparently carried-over to sugar accumulation, consistent with the strong sink capacity of bunches. Crown Copyright © 2012. Published by Elsevier Masson SAS. All rights reserved.

  6. Evidence of seasonal variation in longitudinal growth of height in a sample of boys from Stuttgart Carlsschule, 1771-1793, using combined principal component analysis and maximum likelihood principle.

    PubMed

    Lehmann, A; Scheffler, Ch; Hermanussen, M

    2010-02-01

    Recent progress in modelling individual growth has been achieved by combining the principal component analysis and the maximum likelihood principle. This combination models growth even in incomplete sets of data and in data obtained at irregular intervals. We re-analysed late 18th century longitudinal growth of German boys from the boarding school Carlsschule in Stuttgart. The boys, aged 6-23 years, were measured at irregular 3-12 monthly intervals during the period 1771-1793. At the age of 18 years, mean height was 1652 mm, but height variation was large. The shortest boy reached 1474 mm, the tallest 1826 mm. Measured height closely paralleled modelled height, with mean difference of 4 mm, SD 7 mm. Seasonal height variation was found. Low growth rates occurred in spring and high growth rates in summer and autumn. The present study demonstrates that combining the principal component analysis and the maximum likelihood principle enables growth modelling in historic height data also. Copyright (c) 2009 Elsevier GmbH. All rights reserved.

  7. Using GAMM to examine inter-individual heterogeneity in thermal performance curves for Natrix natrix indicates bet hedging strategy by mothers.

    PubMed

    Vickers, Mathew J; Aubret, Fabien; Coulon, Aurélie

    2017-01-01

    The thermal performance curve (TPC) illustrates the dependence on body- and therefore environmental- temperature of many fitness-related aspects of ectotherm ecology and biology including foraging, growth, predator avoidance, and reproduction. The typical thermal performance curve model is linear in its parameters despite the well-known, strong, non-linearity of the response of performance to temperature. In addition, it is usual to consider a single model based on few individuals as descriptive of a species-level response to temperature. To overcome these issues, we used generalized additive mixed modeling (GAMM) to estimate thermal performance curves for 73 individual hatchling Natrix natrix grass snakes from seven clutches, taking advantage of the structure of GAMM to demonstrate that almost 16% of the deviance in thermal performance curves is attributed to inter-individual variation, while only 1.3% is attributable to variation amongst clutches. GAMM allows precise estimation of curve characteristics, which we used to test hypotheses on tradeoffs thought to constrain the thermal performance curve: hotter is better, the specialist-generalist trade off, and resource allocation/acquisition. We observed a negative relationship between maximum performance and performance breadth, indicating a specialist-generalist tradeoff, and a positive relationship between thermal optimum and maximum performance, suggesting "hotter is better". There was a significant difference among matrilines in the relationship between Area Under the Curve and maximum performance - relationship that is an indicator of evenness in acquisition or allocation of resources. As we used unfed hatchlings, the observed matriline effect indicates divergent breeding strategies among mothers, with some mothers provisioning eggs unequally resulting in some offspring being better than others, while other mothers provisioned the eggs more evenly, resulting in even performance throughout the clutch. This observation is reminiscent of bet-hedging strategies, and implies the possibility for intra-clutch variability in the TPCs to buffer N. natrix against unpredictable environmental variability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Prediction of atmospheric degradation data for POPs by gene expression programming.

    PubMed

    Luan, F; Si, H Z; Liu, H T; Wen, Y Y; Zhang, X Y

    2008-01-01

    Quantitative structure-activity relationship models for the prediction of the mean and the maximum atmospheric degradation half-life values of persistent organic pollutants were developed based on the linear heuristic method (HM) and non-linear gene expression programming (GEP). Molecular descriptors, calculated from the structures alone, were used to represent the characteristics of the compounds. HM was used both to pre-select the whole descriptor sets and to build the linear model. GEP yielded satisfactory prediction results: the square of the correlation coefficient r(2) was 0.80 and 0.81 for the mean and maximum half-life values of the test set, and the root mean square errors were 0.448 and 0.426, respectively. The results of this work indicate that the GEP is a very promising tool for non-linear approximations.

  9. Effect of recombinant insulin-like growth factor-1 treatment on short-term linear growth in a child with Majewski osteodysplastic primordial dwarfism type II and hepatic insufficiency.

    PubMed

    Faienza, Maria Felicia; Acquafredda, Angelo; D'Aniello, Mariangela; Soldano, Lucia; Marzano, Flaviana; Ventura, Annamaria; Cavallo, Luciano

    2013-01-01

    We report the case of a boy affected by severe intrauterine and postnatal growth retardation, microcephaly, facial dysmorphisms and postnecrotic cirrhosis, diagnosed at birth as having Seckel syndrome, and subsequently confirmed as Majewski osteodysplastic primordial dwarfism type II (MOPD II) on the basis of clinical and radiological features of skeletal dysplasia. At our observation (6 years 7 months) he presented height -10.3 standard deviation score (SDS), weight -22.1 SDS, head circumference -8 SDS, delayed bone age of 4 years with respect to chronological age. In consideration of the low levels of insulin-like growth factor-1 (IGF-1) as well as of hepatic insufficiency, we started the treatment with recombinant human IGF-1 (rhIGF-1) at the dose of 0.04 mg/kg in 2 doses/day, with an increase of 0.04 mg/kg after 1 week until the maximum dose of 0.12 mg/kg. We observed an early response to rhIGF-1 treatment, with a shift of height velocity from 1.8 cm/year (-4.6 SDS) at 4 cm/year (-1.9 SDS), and an increase in bone age of 1.5 years during the first 6 months. rhIGF-1 treatment does not seem to be able to replace the physiological action of IGF-1 in patients with MOPD II and hepatic insufficiency, however, it seems to preserve the typical growth pattern of MOPD II patients, avoiding a further widening of the growth deficiency in these subjects.

  10. Dynamics of homogeneous shear turbulence: A key role of the nonlinear transverse cascade in the bypass concept.

    PubMed

    Mamatsashvili, G; Khujadze, G; Chagelishvili, G; Dong, S; Jiménez, J; Foysi, H

    2016-08-01

    To understand the mechanism of the self-sustenance of subcritical turbulence in spectrally stable (constant) shear flows, we performed direct numerical simulations of homogeneous shear turbulence for different aspect ratios of the flow domain with subsequent analysis of the dynamical processes in spectral or Fourier space. There are no exponentially growing modes in such flows and the turbulence is energetically supported only by the linear growth of Fourier harmonics of perturbations due to the shear flow non-normality. This non-normality-induced growth, also known as nonmodal growth, is anisotropic in spectral space, which, in turn, leads to anisotropy of nonlinear processes in this space. As a result, a transverse (angular) redistribution of harmonics in Fourier space is the main nonlinear process in these flows, rather than direct or inverse cascades. We refer to this type of nonlinear redistribution as the nonlinear transverse cascade. It is demonstrated that the turbulence is sustained by a subtle interplay between the linear nonmodal growth and the nonlinear transverse cascade. This course of events reliably exemplifies a well-known bypass scenario of subcritical turbulence in spectrally stable shear flows. These two basic processes mainly operate at large length scales, comparable to the domain size. Therefore, this central, small wave number area of Fourier space is crucial in the self-sustenance; we defined its size and labeled it as the vital area of turbulence. Outside the vital area, the nonmodal growth and the transverse cascade are of secondary importance: Fourier harmonics are transferred to dissipative scales by the nonlinear direct cascade. Although the cascades and the self-sustaining process of turbulence are qualitatively the same at different aspect ratios, the number of harmonics actively participating in this process (i.e., the harmonics whose energies grow more than 10% of the maximum spectral energy at least once during evolution) varies, but always remains quite large (equal to 36, 86, and 209) in the considered here three aspect ratios. This implies that the self-sustenance of subcritical turbulence cannot be described by low-order models.

  11. Dynamics of homogeneous shear turbulence: A key role of the nonlinear transverse cascade in the bypass concept

    NASA Astrophysics Data System (ADS)

    Mamatsashvili, G.; Khujadze, G.; Chagelishvili, G.; Dong, S.; Jiménez, J.; Foysi, H.

    2016-08-01

    To understand the mechanism of the self-sustenance of subcritical turbulence in spectrally stable (constant) shear flows, we performed direct numerical simulations of homogeneous shear turbulence for different aspect ratios of the flow domain with subsequent analysis of the dynamical processes in spectral or Fourier space. There are no exponentially growing modes in such flows and the turbulence is energetically supported only by the linear growth of Fourier harmonics of perturbations due to the shear flow non-normality. This non-normality-induced growth, also known as nonmodal growth, is anisotropic in spectral space, which, in turn, leads to anisotropy of nonlinear processes in this space. As a result, a transverse (angular) redistribution of harmonics in Fourier space is the main nonlinear process in these flows, rather than direct or inverse cascades. We refer to this type of nonlinear redistribution as the nonlinear transverse cascade. It is demonstrated that the turbulence is sustained by a subtle interplay between the linear nonmodal growth and the nonlinear transverse cascade. This course of events reliably exemplifies a well-known bypass scenario of subcritical turbulence in spectrally stable shear flows. These two basic processes mainly operate at large length scales, comparable to the domain size. Therefore, this central, small wave number area of Fourier space is crucial in the self-sustenance; we defined its size and labeled it as the vital area of turbulence. Outside the vital area, the nonmodal growth and the transverse cascade are of secondary importance: Fourier harmonics are transferred to dissipative scales by the nonlinear direct cascade. Although the cascades and the self-sustaining process of turbulence are qualitatively the same at different aspect ratios, the number of harmonics actively participating in this process (i.e., the harmonics whose energies grow more than 10% of the maximum spectral energy at least once during evolution) varies, but always remains quite large (equal to 36, 86, and 209) in the considered here three aspect ratios. This implies that the self-sustenance of subcritical turbulence cannot be described by low-order models.

  12. In search of average growth: describing within-year oral reading fluency growth across Grades 1-8.

    PubMed

    Nese, Joseph F T; Biancarosa, Gina; Cummings, Kelli; Kennedy, Patrick; Alonzo, Julie; Tindal, Gerald

    2013-10-01

    Measures of oral reading fluency (ORF) are perhaps the most often used assessment to monitor student progress as part of a response to intervention (RTI) model. Rates of growth in research and aim lines in practice are used to characterize student growth; in either case, growth is generally defined as linear, increasing at a constant rate. Recent research suggests ORF growth follows a nonlinear trajectory, but limitations related to the datasets used in such studies, composed of only three testing occasions, curtails their ability to examine the true functional form of ORF growth. The purpose of this study was to model within-year ORF growth using up to eight testing occasions for 1448 students in Grades 1 to 8 to assess (a) the average growth trajectory for within-year ORF growth, (b) whether students vary significantly in within-year ORF growth, and (c) the extent to which findings are consistent across grades. Results demonstrated that for Grades 1 to 7, a quadratic growth model fit better than either linear or cubic growth models, and for Grade 8, there was no substantial, stable growth. Findings suggest that the expectation for linear growth currently used in practice may be unrealistic. Copyright © 2013 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  13. Stature and body weight growth during adolescence based on longitudinal data of Japanese children born during World War II.

    PubMed

    Ashizawa, K; Takahashi, C; Yanagisawa, S

    1978-09-01

    Longitudinal survey data of stature and body weight from age 7 to 17 were obtained for 100 boys and 100 girls during World War II. The growth rates and the average annual increments were compared with those of children born after the war. Growth attained at age 7 as a percentage of that at age 17 is larger in children of the control group, presumably as a result of an improved environment affecting the growth increment. The age at maximum velocity is six months to one year earlier for the current group of children. Although the maximum velocities for both items and sexes are nearly the same in the groups compared, the total increments are larger in the current group of children. Age, distance, and maximum velocity at adolescent growth spurt were obtained for each child. The mean values were compared according to growth patterns and growth attained at age 7. The "increasing type" growth group has the highest velocity at the greatest distance and the oldest age for stature. Children who were taller or heavier at age 7 have velocity peaks with greater distances.

  14. Sensitivity analysis of linear CROW gyroscopes and comparison to a single-resonator gyroscope

    NASA Astrophysics Data System (ADS)

    Zamani-Aghaie, Kiarash; Digonnet, Michel J. F.

    2013-03-01

    This study presents numerical simulations of the maximum sensitivity to absolute rotation of a number of coupled resonator optical waveguide (CROW) gyroscopes consisting of a linear array of coupled ring resonators. It examines in particular the impact on the maximum sensitivity of the number of rings, of the relative spatial orientation of the rings (folded and unfolded), of various sequences of coupling ratios between the rings and various sequences of ring dimensions, and of the number of input/output waveguides (one or two) used to inject and collect the light. In all configurations the sensitivity is maximized by proper selection of the coupling ratio(s) and phase bias, and compared to the maximum sensitivity of a resonant waveguide optical gyroscope (RWOG) utilizing a single ring-resonator waveguide with the same radius and loss as each ring in the CROW. Simulations show that although some configurations are more sensitive than others, in spite of numerous claims to the contrary made in the literature, in all configurations the maximum sensitivity is independent of the number of rings, and does not exceed the maximum sensitivity of an RWOG. There are no sensitivity benefits to utilizing any of these linear CROWs for absolute rotation sensing. For equal total footprint, an RWOG is √N times more sensitive, and it is easier to fabricate and stabilize.

  15. Assessing women's lacrosse head impacts using finite element modelling.

    PubMed

    Clark, J Michio; Hoshizaki, T Blaine; Gilchrist, Michael D

    2018-04-01

    Recently studies have assessed the ability of helmets to reduce peak linear and rotational acceleration for women's lacrosse head impacts. However, such measures have had low correlation with injury. Maximum principal strain interprets loading curves which provide better injury prediction than peak linear and rotational acceleration, especially in compliant situations which create low magnitude accelerations but long impact durations. The purpose of this study was to assess head and helmet impacts in women's lacrosse using finite element modelling. Linear and rotational acceleration loading curves from women's lacrosse impacts to a helmeted and an unhelmeted Hybrid III headform were input into the University College Dublin Brain Trauma Model. The finite element model was used to calculate maximum principal strain in the cerebrum. The results demonstrated for unhelmeted impacts, falls and ball impacts produce higher maximum principal strain values than stick and shoulder collisions. The strain values for falls and ball impacts were found to be within the range of concussion and traumatic brain injury. The results also showed that men's lacrosse helmets reduced maximum principal strain for follow-through slashing, falls and ball impacts. These findings are novel and demonstrate that for high risk events, maximum principal strain can be reduced by implementing the use of helmets if the rules of the sport do not effectively manage such situations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Human Capital--Economic Growth Nexus in the Former Soviet Bloc

    ERIC Educational Resources Information Center

    Osipian, Ararat L.

    2007-01-01

    This study analyses the role and impact of higher education on per capita economic growth in the Former Soviet Bloc. It attempts to estimate the significance of educational levels for initiating substantial economic growth that now takes place in these two countries. This study estimates a system of linear and log-linear equations that account for…

  17. A model for chorus associated electrostatic bursts

    NASA Technical Reports Server (NTRS)

    Grabbe, C. L.

    1984-01-01

    The linear theory of the generation of electrostatic bursts of noise by electrons trapped in chorus wave packets is developed for a finite temperature electron beam and a Maxwellian elecron and ion background. The growth rates determined qualitatively in good agreement with those obtained by previous authors from a more idealized model. Two connected instability mechanisms seem to be occurring: a beam plasma (electron-ion two-stream) instability commonly associated with intensification of the chorus power levels, and a transitional or borderline resistive medium instability commonly associated with chorus hooks. The physical reasons for the two mechanisms is discussed. In the second case electron beams are difficult to identify in the particle data. An expression is obtained for the maximum growth rate in terms of the ratios of the beam and electron thermal velocities to the beam velocity, and of the beam density to plasma density. It is anticipated that this may allow the observed peak in the electrostatic noise spectrum to be used as a diagnostic for the beam characteristics. Previously announced in STAR as N84-12832

  18. Kinetic stability analysis on electromagnetic filamentary structure

    NASA Astrophysics Data System (ADS)

    Lee, Wonjae; Krasheninnikov, Sergei

    2014-10-01

    A coherent radial transport of filamentary structures in SOL region is important for its characteristics that can increase unwanted high fluxes to plasma facing components. In the course of propagation in radial direction, the coherency of the filaments is significantly limited by electrostatic resistive drift instability (Angus et al., 2012). Considering higher plasma pressure, which would have more large impact in heat fluxes, electromagnetic effects will reduce the growth rate of the drift wave instability and increase the instabilities from electron inertial effects. According to a linear stability analysis on equations with fluid approximation, the maximum growth rate of the instability from the electron inertia is higher than that of drift-Alfvén wave instability in high beta filaments such as ELMs. However, the analysis on the high beta filaments requires kinetic approach, since the decreased collisionality will make the fluid approximation broken. Therefore, the kinetic analysis will be presented for the electromagnetic effects on the dynamics of filamentary structures. This work was supported by the USDOE Grants DE-FG02-04ER54739 and DE-SC0010413 at UCSD and also by the Kwanjeong Educational Foundation.

  19. Turbulence and mixing from optimal perturbations to a stratified shear layer

    NASA Astrophysics Data System (ADS)

    Kaminski, Alexis; Caulfield, C. P.; Taylor, John

    2014-11-01

    The stability and mixing of stratified shear layers is a canonical problem in fluid dynamics with relevance to flows in the ocean and atmosphere. The Miles-Howard theorem states that a necessary condition for normal-mode instability in parallel, inviscid, steady stratified shear flows is that the gradient Richardson number, Rig is less than 1/4 somewhere in the flow. However, substantial transient growth of non-normal modes may be possible at finite times even when Rig > 1 / 4 everywhere in the flow. We have calculated the ``optimal perturbations'' associated with maximum perturbation energy gain for a stably-stratified shear layer. These optimal perturbations are then used to initialize direct numerical simulations. For small but finite perturbation amplitudes, the optimal perturbations grow at the predicted linear rate initially, but then experience sufficient transient growth to become nonlinear and susceptible to secondary instabilities, which then break down into turbulence. Remarkably, this occurs even in flows for which Rig > 1 / 4 everywhere. We will describe the nonlinear evolution of the optimal perturbations and characterize the resulting turbulence and mixing.

  20. Kinetic study of Escherichia coli BPPTCC-EgRK2 to produce recombinant cellulase for ethanol production from oil palm empty fruit bunch

    NASA Astrophysics Data System (ADS)

    Limoes, S.; Rahman, S. F.; Setyahadi, S.; Gozan, M.

    2018-03-01

    Oil Palm Empty Fruit Bunch (OPEFB) is an abundant biomass resource in Indonesia, which contains 46,77% (w/w) of cellulose. The high cellulose content of OPEFB can be used as a substrate for bacteria cultivation to produce cellulase. By using OPEFB as an alternative substrate, the production cost of cellulase in industrial scale can be suppressed. However, currently there are no available research that simulate a cellulase production plant design. Prior to simulating the cellulase plant design, kinetic studies of bacteria used in cultivation are needed to create an accurate simulation. In this research, kinetic studies of E. coli BPPTCC-EgRK2 growth were examined with the Monod approach to get the Monod constant (Ks) and maximum specific growth rate (μmax). This study found that E. coli BPPTCC-EgRK2 have μmax and Ks of 1.581 and 0.0709 respectively. BPPTCC-EgRK2 produced intracellular cellulase, thus gave linear correlation between cell concentration and cellulase production.

  1. Effect of educational preparation on the accuracy of linear growth measurement in pediatric primary care practices: results of a multicenter nursing study.

    PubMed

    Hench, Karen D; Shults, Justine; Benyi, Terri; Clow, Cheryl; Delaune, Joanne; Gilluly, Kathy; Johnson, Lydia; Johnson, Maryann; Rossiter, Katherine; McKnight-Menci, Heather; Shorkey, Doris; Waite, Fran; Weber, Colleen; Lipman, Terri H

    2005-04-01

    Consistently monitoring a child's linear growth is one of the least invasive, most sensitive tools to identify normal physiologic functioning and a healthy lifestyle. However, studies, mostly from the United Kingdom, indicate that children are frequently measured incorrectly. Inaccurate linear measurements may result in some children having undetected growth disorders whereas others with normal growth being referred for costly, unwarranted specialty evaluations. This study presents the secondary analysis of a primary study that used a randomized control study design to demonstrate that a didactic educational intervention resulted in significantly more children being measured accurately within eight pediatric practices. The secondary analysis explored the influence of the measurer's educational level on the outcome of accurate linear measurement. Results indicated that RNs were twice as likely as non-RNs to measure children accurately.

  2. Linear and weakly nonlinear aspects of free shear layer instability, roll-up, subharmonic interaction and wall influence

    NASA Technical Reports Server (NTRS)

    Cain, A. B.; Thompson, M. W.

    1986-01-01

    The growth of the momentum thickness and the modal disturbance energies are examined to study the nature and onset of nonlinearity in a temporally growing free shear layer. A shooting technique is used to find solutions to the linearized eigenvalue problem, and pseudospectral weakly nonlinear simulations of this flow are obtained for comparison. The roll-up of a fundamental disturbance follows linear theory predictions even with a 20 percent disturbance amplitude. A weak nonlinear interaction of the disturbance creates a finite-amplitude mean shear stress which dominates the growth of the layer momentum thickness, and the disturbance growth rate changes until the fundamental disturbance dominates. The fundamental then becomes an energy source for the harmonic, resulting in an increase in the growth rate of the subharmonic over the linear prediction even when the fundamental has no energy to give. Also considered are phase relations and the wall influence.

  3. Growth kinetics of Staphylococcus aureus on Brie and Camembert cheeses.

    PubMed

    Lee, Heeyoung; Kim, Kyungmi; Lee, Soomin; Han, Minkyung; Yoon, Yohan

    2014-05-01

    In this study, we developed mathematical models to describe the growth kinetics of Staphylococcus aureus on natural cheeses. A five-strain mixture of Staph. aureus was inoculated onto 15 g of Brie and Camembert cheeses at 4 log CFU/g. The samples were then stored at 4, 10, 15, 25, and 30 °C for 2-60 d, with a different storage time being used for each temperature. Total bacterial and Staph. aureus cells were enumerated on tryptic soy agar and mannitol salt agar, respectively. The Baranyi model was fitted to the growth data of Staph. aureus to calculate kinetic parameters such as the maximum growth rate in log CFU units (r max; log CFU/g/h) and the lag phase duration (λ; h). The effects of temperature on the square root of r max and on the natural logarithm of λ were modelled in the second stage (secondary model). Independent experimental data (observed data) were compared with prediction and the respective root mean square error compared with the RMSE of the fit on the original data, as a measure of model performance. The total growth of bacteria was observed at 10, 15, 25, and 30 °C on both cheeses. The r max values increased with storage temperature (P<0·05), but a significant effect of storage temperature on λ values was only observed between 4 and 15 °C (P<0·05). The square root model and linear equation were found to be appropriate for description of the effect of storage temperature on growth kinetics (R 2=0·894-0·983). Our results indicate that the models developed in this study should be useful for describing the growth kinetics of Staph. aureus on Brie and Camembert cheeses.

  4. Limits to the Positive Effect of Ocean Acidification on Macroalgal Primary Production, Interactions with Light and Temperature

    NASA Astrophysics Data System (ADS)

    Kubler, J.; Dudgeon, S. R.; Nisumaa, A. M.

    2016-02-01

    About one third of macroalgal species lack any carbon concentrating mechanism (CCM), which prevents carbon limitation under air equilibrium in other seaweed species. It is predicted that those species lacking CCM's will benefit from ongoing ocean acidification in terms of primary productivity and growth. The absolute sizes and pattern of those benefits are not known. Here, we compare the results of a model based on composite data from the literature, with a growth experiment using Plocamium cartilagineum, a broadly distributed rhodophyte species lacking a carbon concentrating mechanism and hypothesized to be carbon limited under current conditions. We grew P. cartilagineum, at 15 and 20°C in seawater aerated with a total of 53 different pCO2s (from 344 to 1053µatm), in 8 multiweek trials over 12 months. We measured growth and photosynthetic rates. A linear mixed model analysis was used to partition the effect sizes of drivers of variation in the experiment. The growth rates and maximum photosynthetic rates responded nonlinearly to OA, increasing with elevated pCO2 from recent atmospheric level to up 450µatm and decreasing at higher pCO2. Light harvesting efficiency was unaffected by pCO2 and inversely related to temperature. We were able to compare the results of the growth experiment directly to the model based on the additive effects of temperature and pCO2 on photosynthetic rates, finding concordance of the pattern of response. The size of the effect of pCO2 on growth rate in the experiment was greater than the effect predicted by the model for net primary productivity. These results predict that the benefit of OA for macroalgal growth may disappear as ocean acidification continues through this century.

  5. Validity of linear encoder measurement of sit-to-stand performance power in older people.

    PubMed

    Lindemann, U; Farahmand, P; Klenk, J; Blatzonis, K; Becker, C

    2015-09-01

    To investigate construct validity of linear encoder measurement of sit-to-stand performance power in older people by showing associations with relevant functional performance and physiological parameters. Cross-sectional study. Movement laboratory of a geriatric rehabilitation clinic. Eighty-eight community-dwelling, cognitively unimpaired older women (mean age 78 years). Sit-to-stand performance power and leg power were assessed using a linear encoder and the Nottingham Power Rig, respectively. Gait speed was measured on an instrumented walkway. Maximum quadriceps and hand grip strength were assessed using dynamometers. Mid-thigh muscle cross-sectional area of both legs was measured using magnetic resonance imaging. Associations of sit-to-stand performance power with power assessed by the Nottingham Power Rig, maximum gait speed and muscle cross-sectional area were r=0.646, r=0.536 and r=0.514, respectively. A linear regression model explained 50% of the variance in sit-to-stand performance power including muscle cross-sectional area (p=0.001), maximum gait speed (p=0.002), and power assessed by the Nottingham Power Rig (p=0.006). Construct validity of linear encoder measurement of sit-to-stand power was shown at functional level and morphological level for older women. This measure could be used in routine clinical practice as well as in large-scale studies. DRKS00003622. Copyright © 2015 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  6. Effects of load on ground reaction force and lower limb kinematics during concentric squats.

    PubMed

    Kellis, Eleftherios; Arambatzi, Fotini; Papadopoulos, Christos

    2005-10-01

    The purpose of this study was to examine the effects of external load on vertical ground reaction force, and linear and angular kinematics, during squats. Eight males aged 22.1 +/- 0.8 years performed maximal concentric squats using loads ranging from 7 to 70% of one-repetition maximum on a force plate while linear barbell velocity and the angular kinematics of the hip, knee and ankle were recorded. Maximum, average and angle-specific values were recorded. The ground reaction force ranged from 1.67 +/- 0.20 to 3.21 +/- 0.29 times body weight and increased significantly as external load increased (P < 0.05). Bar linear velocity ranged from 0.54 +/- 0.11 to 2.50 +/- 0.50 m x s(-1) and decreased significantly with increasing external load (P < 0.05). Hip, knee and ankle angles at maximum ground reaction force were affected by external load (P < 0.05). The force-barbell velocity curves were fitted using linear models with coefficients (r2) ranging from 0.59 to 0.96. The results suggest that maximal force exertion during squat exercises is not achieved at the same position of the lower body as external load is increased. In contrast, joint velocity coordination does not change as load is increased. The force-velocity relationship was linear and independent from the set of data used for its determination.

  7. Feathering instability of spiral arms. II. Parameter study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Wing-Kit, E-mail: wklee@asiaa.sinica.edu.tw; Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 115, Taiwan

    2014-09-10

    We report the results of a parameter study of the feathering stability in the galactic spiral arms. A two-dimensional, razor-thin magnetized self-gravitating gas disk with an imposed two-armed stellar spiral structure is considered. Using the formulation developed previously by Lee and Shu, a linear stability analysis of the spiral shock is performed in a localized Cartesian geometry. Results of the parameter study of the base state with a spiral shock are also presented. The single-mode feathering instability that leads to growing perturbations may explain the feathering phenomenon found in nearby spiral galaxies. The self-gravity of the gas, characterized by itsmore » average surface density, is an important parameter that (1) shifts the spiral shock farther downstream and (2) increases the growth rate and decreases the characteristic spacing of the feathering structure due to the instability. On the other hand, while the magnetic field suppresses the velocity fluctuation associated with the feathers, it does not strongly affect their growth rate. Using a set of typical parameters of the grand-design spiral galaxy M51 at 2 kpc from the center, the spacing of the feathers with the maximum growth rate is found to be 530 pc, which agrees with the previous observational studies.« less

  8. Analysing the natural population growth of a large marine mammal after a depletive harvest.

    PubMed

    Romero, M A; Grandi, M F; Koen-Alonso, M; Svendsen, G; Ocampo Reinaldo, M; García, N A; Dans, S L; González, R; Crespo, E A

    2017-07-13

    An understanding of the underlying processes and comprehensive history of population growth after a harvest-driven depletion is necessary when assessing the long-term effectiveness of management and conservation strategies. The South American sea lion (SASL), Otaria flavescens, is the most conspicuous marine mammal along the South American coasts, where it has been heavily exploited. As a consequence of this exploitation, many of its populations were decimated during the early 20th century but currently show a clear recovery. The aim of this study was to assess SASL population recovery by applying a Bayesian state-space modelling framework. We were particularly interested in understanding how the population responds at low densities, how human-induced mortality interplays with natural mechanisms, and how density-dependence may regulate population growth. The observed population trajectory of SASL shows a non-linear relationship with density, recovering with a maximum increase rate of 0.055. However, 50 years after hunting cessation, the population still represents only 40% of its pre-exploitation abundance. Considering that the SASL population in this region represents approximately 72% of the species abundance within the Atlantic Ocean, the present analysis provides insights into the potential mechanisms regulating the dynamics of SASL populations across the global distributional range of the species.

  9. Linear Mechanisms and Pressure Fluctuations in Wall Turbulence

    NASA Astrophysics Data System (ADS)

    Septham, Kamthon; Morrison, Jonathan

    2014-11-01

    Full-domain, linear feedback control of turbulent channel flow at Reτ <= 400 via vU' at low wavenumbers is an effective method to attenuate turbulent channel flow such that it is relaminarised. The passivity-based control approach is adopted and explained by the conservative characteristics of the nonlinear terms contributing to the Reynolds-Orr equation (Sharma et al .Phys .Fluids 2011). The linear forcing acts on the wall-normal velocity field and thus the pressure field via the linear (rapid) source term of the Poisson equation for pressure fluctuations, 2U'∂v/∂x . The minimum required spanwise wavelength resolution without losing control is constant at λz+ = 125, based on the wall friction velocity at t = 0 . The result shows that the maximum forcing is located at y+ ~ 20 , corresponding to the location of the maximum in the mean-square pressure gradient. The effectiveness of linear control is qualitatively explained by Landahl's theory for timescales, in that the control proceeds via the shear interaction timescale which is much shorter than both the nonlinear and viscous timescales. The response of the rapid (linear) and slow (nonlinear) pressure fluctuations to the linear control is examined and discussed.

  10. Effects of Stochastic Traffic Flow Model on Expected System Performance

    DTIC Science & Technology

    2012-12-01

    NSWC-PCD has made considerable improvements to their pedestrian flow modeling . In addition to the linear paths, the 2011 version now includes...using stochastic paths. 2.2 Linear Paths vs. Stochastic Paths 2.2.1 Linear Paths and Direct Maximum Pd Calculation Modeling pedestrian traffic flow...as a stochastic process begins with the linear path model . Let the detec- tion area be R x C voxels. This creates C 2 total linear paths, path(Cs

  11. Response of discrete linear systems to forcing functions with inequality constraints.

    NASA Technical Reports Server (NTRS)

    Michalopoulos, C. D.; Riley, T. A.

    1972-01-01

    An analysis is made of the maximum response of discrete, linear mechanical systems to arbitrary forcing functions which lie within specified bounds. Primary attention is focused on the complete determination of the forcing function which will engender maximum displacement to any particular mass element of a multi-degree-of-freedom system. In general, the desired forcing function is found to be a bang-bang type function, i.e., a function which switches from the maximum to the minimum bound and vice-versa at certain instants of time. Examples of two-degree-of-freedom systems, with and without damping, are presented in detail. Conclusions are drawn concerning the effect of damping on the switching times and the general procedure for finding these times is discussed.

  12. Patterns of Growth after Kidney Transplantation among Children with ESRD

    PubMed Central

    Franke, Doris; Thomas, Lena; Steffens, Rena; Pavičić, Leo; Gellermann, Jutta; Froede, Kerstin; Querfeld, Uwe; Haffner, Dieter

    2015-01-01

    Background and objectives Poor linear growth is a frequent complication of CKD. This study evaluated the effect of kidney transplantation on age-related growth of linear body segments in pediatric renal transplant recipients who were enrolled from May 1998 until August 2013 in the CKD Growth and Development observational cohort study. Design, setting, participants, & measurements Linear growth (height, sitting height, arm and leg lengths) was prospectively investigated during 1639 annual visits in a cohort of 389 pediatric renal transplant recipients ages 2–18 years with a median follow-up of 3.4 years (interquartile range, 1.9–5.9 years). Linear mixed-effects models were used to assess age-related changes and predictors of linear body segments. Results During early childhood, patients showed lower mean SD scores (SDS) for height (−1.7) and a markedly elevated sitting height index (ratio of sitting height to total body height) compared with healthy children (1.6 SDS), indicating disproportionate stunting (each P<0.001). After early childhood a sustained increase in standardized leg length and a constant decrease in standardized sitting height were noted (each P<0.001), resulting in significant catch-up growth and almost complete normalization of sitting height index by adult age (0.4 SDS; P<0.01 versus age 2–4 years). Time after transplantation, congenital renal disease, bone maturation, steroid exposure, degree of metabolic acidosis and anemia, intrauterine growth restriction, and parental height were significant predictors of linear body dimensions and body proportions (each P<0.05). Conclusions Children with ESRD present with disproportionate stunting. In pediatric renal transplant recipients, a sustained increase in standardized leg length and total body height is observed from preschool until adult age, resulting in restoration of body proportions in most patients. Reduction of steroid exposure and optimal metabolic control before and after transplantation are promising measures to further improve growth outcome. PMID:25352379

  13. Patterns of growth after kidney transplantation among children with ESRD.

    PubMed

    Franke, Doris; Thomas, Lena; Steffens, Rena; Pavičić, Leo; Gellermann, Jutta; Froede, Kerstin; Querfeld, Uwe; Haffner, Dieter; Živičnjak, Miroslav

    2015-01-07

    Poor linear growth is a frequent complication of CKD. This study evaluated the effect of kidney transplantation on age-related growth of linear body segments in pediatric renal transplant recipients who were enrolled from May 1998 until August 2013 in the CKD Growth and Development observational cohort study. Linear growth (height, sitting height, arm and leg lengths) was prospectively investigated during 1639 annual visits in a cohort of 389 pediatric renal transplant recipients ages 2-18 years with a median follow-up of 3.4 years (interquartile range, 1.9-5.9 years). Linear mixed-effects models were used to assess age-related changes and predictors of linear body segments. During early childhood, patients showed lower mean SD scores (SDS) for height (-1.7) and a markedly elevated sitting height index (ratio of sitting height to total body height) compared with healthy children (1.6 SDS), indicating disproportionate stunting (each P<0.001). After early childhood a sustained increase in standardized leg length and a constant decrease in standardized sitting height were noted (each P<0.001), resulting in significant catch-up growth and almost complete normalization of sitting height index by adult age (0.4 SDS; P<0.01 versus age 2-4 years). Time after transplantation, congenital renal disease, bone maturation, steroid exposure, degree of metabolic acidosis and anemia, intrauterine growth restriction, and parental height were significant predictors of linear body dimensions and body proportions (each P<0.05). Children with ESRD present with disproportionate stunting. In pediatric renal transplant recipients, a sustained increase in standardized leg length and total body height is observed from preschool until adult age, resulting in restoration of body proportions in most patients. Reduction of steroid exposure and optimal metabolic control before and after transplantation are promising measures to further improve growth outcome. Copyright © 2015 by the American Society of Nephrology.

  14. Thirty-five-year growth of ponderosa pine saplings in response to thinning and understory removal.

    Treesearch

    P.H. Cochran; James W. Barrett

    1999-01-01

    Diameter increments for individual trees increased curvilinearly and stand basal area increments decreased curvilinearly as spacing increased from 6.6 to 26.4 feet. Average height growth of all trees increased linearly, and stand cubic volume growth decreased linearly as spacing increased. Large differences in tree sizes developed over the 35 years of study with...

  15. Sensitivity of Texas strains of Ceratocystis fagacearum to triazole fungicides

    Treesearch

    A. Dan Wilson; L.B. Forse

    1997-01-01

    Ten geographically diverse Texas strains of the oak wilt fungus Ceratocystis fagacearum were tested in vitro for their sensitivity to five triazole fungicides based on accumulated linear growth, linear growth rates, and dry weight accumulation in response to fungicide concentrations of 0.1 to 600 parts per billion (ppb). None of the triazoles inhibited growth at 0.1...

  16. Forest litter crickets prefer higher substrate moisture for oviposition: Evidence from field and lab experiments

    PubMed Central

    Sperber, Carlos Frankl; Albeny-Simões, Daniel; Breaux, Jennifer Ann; Fianco, Marcos; Szinwelski, Neucir

    2017-01-01

    For insects, choosing a favorable oviposition site is a type of parental care, as far as it increases the fitness of its offspring. Niche theory predicts that crickets should show a bell-shaped oviposition response to substrate moisture. However, lab experiments with mole crickets showed a linear oviposition response to substrate moisture. Studies with the house cricket Acheta domesticus also showed a linear juvenile body growth response to water availability, thus adult ovipositing females should respond positively to substrate moisture. We used a field experiment to evaluate the relationship between oviposition preference and substrate moisture in forest litter-dwelling cricket species. We also evaluated oviposition responses to substrate moisture level in Ubiquepuella telytokous, the most abundant litter cricket species in our study area, using a laboratory study. We offered cotton substrate for oviposition which varied in substrate moisture level from zero (i.e., dry) to maximum water absorption capacity. We used two complementary metrics to evaluate oviposition preference: (i) presence or absence of eggs in each sampling unit as binary response variable, and (ii) number of eggs oviposited per sampling unit as count response variable. To test for non-linear responses, we adjusted generalized additive models (GAMM) with mixed effects. We found that both cricket oviposition probability and effort (i.e., number of eggs laid) increased linearly with substrate moisture in the field experiment, and for U. telytokous in the lab experiment. We discarded any non-linear responses. Our results demonstrate the importance of substrate moisture as an ecological niche dimension for litter crickets. This work bolsters knowledge of litter cricket life history association with moisture, and suggests that litter crickets may be particularly threatened by changes in climate that favor habitat drying. PMID:28977023

  17. Forest litter crickets prefer higher substrate moisture for oviposition: Evidence from field and lab experiments.

    PubMed

    de Farias-Martins, Fernando; Sperber, Carlos Frankl; Albeny-Simões, Daniel; Breaux, Jennifer Ann; Fianco, Marcos; Szinwelski, Neucir

    2017-01-01

    For insects, choosing a favorable oviposition site is a type of parental care, as far as it increases the fitness of its offspring. Niche theory predicts that crickets should show a bell-shaped oviposition response to substrate moisture. However, lab experiments with mole crickets showed a linear oviposition response to substrate moisture. Studies with the house cricket Acheta domesticus also showed a linear juvenile body growth response to water availability, thus adult ovipositing females should respond positively to substrate moisture. We used a field experiment to evaluate the relationship between oviposition preference and substrate moisture in forest litter-dwelling cricket species. We also evaluated oviposition responses to substrate moisture level in Ubiquepuella telytokous, the most abundant litter cricket species in our study area, using a laboratory study. We offered cotton substrate for oviposition which varied in substrate moisture level from zero (i.e., dry) to maximum water absorption capacity. We used two complementary metrics to evaluate oviposition preference: (i) presence or absence of eggs in each sampling unit as binary response variable, and (ii) number of eggs oviposited per sampling unit as count response variable. To test for non-linear responses, we adjusted generalized additive models (GAMM) with mixed effects. We found that both cricket oviposition probability and effort (i.e., number of eggs laid) increased linearly with substrate moisture in the field experiment, and for U. telytokous in the lab experiment. We discarded any non-linear responses. Our results demonstrate the importance of substrate moisture as an ecological niche dimension for litter crickets. This work bolsters knowledge of litter cricket life history association with moisture, and suggests that litter crickets may be particularly threatened by changes in climate that favor habitat drying.

  18. Crops Models for Varying Environmental Conditions

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Cavazzoni, James; Keas, Paul

    2001-01-01

    New variable environment Modified Energy Cascade (MEC) crop models were developed for all the Advanced Life Support (ALS) candidate crops and implemented in SIMULINK. The MEC models are based on the Volk, Bugbee, and Wheeler Energy Cascade (EC) model and are derived from more recent Top-Level Energy Cascade (TLEC) models. The MEC models simulate crop plant responses to day-to-day changes in photosynthetic photon flux, photoperiod, carbon dioxide level, temperature, and relative humidity. The original EC model allows changes in light energy but uses a less accurate linear approximation. The simulation outputs of the new MEC models for constant nominal environmental conditions are very similar to those of earlier EC models that use parameters produced by the TLEC models. There are a few differences. The new MEC models allow setting the time for seed emergence, have realistic exponential canopy growth, and have corrected harvest dates for potato and tomato. The new MEC models indicate that the maximum edible biomass per meter squared per day is produced at the maximum allowed carbon dioxide level, the nominal temperatures, and the maximum light input. Reducing the carbon dioxide level from the maximum to the minimum allowed in the model reduces crop production significantly. Increasing temperature decreases production more than it decreases the time to harvest, so productivity in edible biomass per meter squared per day is greater at nominal than maximum temperatures, The productivity in edible biomass per meter squared per day is greatest at the maximum light energy input allowed in the model, but the edible biomass produced per light energy input unit is lower than at nominal light levels. Reducing light levels increases light and power use efficiency. The MEC models suggest we can adjust the light energy day-to- day to accommodate power shortages or Lise excess power while monitoring and controlling edible biomass production.

  19. Growth, productivity, and relative extinction risk of a data-sparse devil ray

    PubMed Central

    Pardo, Sebastián A.; Kindsvater, Holly K.; Cuevas-Zimbrón, Elizabeth; Sosa-Nishizaki, Oscar; Pérez-Jiménez, Juan Carlos; Dulvy, Nicholas K.

    2016-01-01

    Devil rays (Mobula spp.) face intensifying fishing pressure to meet the ongoing international demand for gill plates. The paucity of information on growth, mortality, and fishing effort for devil rays make quantifying population growth rates and extinction risk challenging. Furthermore, unlike manta rays (Manta spp.), devil rays have not been listed on CITES. Here, we use a published size-at-age dataset for the Spinetail Devil Ray (Mobula japanica), to estimate somatic growth rates, age at maturity, maximum age, and natural and fishing mortality. We then estimate a plausible distribution of the maximum intrinsic population growth rate (rmax) and compare it to 95 other chondrichthyans. We find evidence that larger devil ray species have low somatic growth rate, low annual reproductive output, and low maximum population growth rates, suggesting they have low productivity. Fishing rates of a small-scale artisanal Mexican fishery were comparable to our estimate of rmax, and therefore probably unsustainable. Devil ray rmax is very similar to that of manta rays, indicating devil rays can potentially be driven to local extinction at low levels of fishing mortality and that a similar degree of protection for both groups is warranted. PMID:27658342

  20. Non-linear stochastic growth rates and redshift space distortions

    DOE PAGES

    Jennings, Elise; Jennings, David

    2015-04-09

    The linear growth rate is commonly defined through a simple deterministic relation between the velocity divergence and the matter overdensity in the linear regime. We introduce a formalism that extends this to a non-linear, stochastic relation between θ = ∇ ∙ v(x,t)/aH and δ. This provides a new phenomenological approach that examines the conditional mean , together with the fluctuations of θ around this mean. We also measure these stochastic components using N-body simulations and find they are non-negative and increase with decreasing scale from ~10 per cent at k < 0.2 h Mpc -1 to 25 per cent atmore » k ~ 0.45 h Mpc -1 at z = 0. Both the stochastic relation and non-linearity are more pronounced for haloes, M ≤ 5 × 10 12 M ⊙ h -1, compared to the dark matter at z = 0 and 1. Non-linear growth effects manifest themselves as a rotation of the mean away from the linear theory prediction -f LTδ, where f LT is the linear growth rate. This rotation increases with wavenumber, k, and we show that it can be well-described by second-order Lagrangian perturbation theory (2LPT) fork < 0.1 h Mpc -1. Furthermore, the stochasticity in the θ – δ relation is not so simply described by 2LPT, and we discuss its impact on measurements of f LT from two-point statistics in redshift space. Furthermore, given that the relationship between δ and θ is stochastic and non-linear, this will have implications for the interpretation and precision of f LT extracted using models which assume a linear, deterministic expression.« less

  1. Composite Linear Models | Division of Cancer Prevention

    Cancer.gov

    By Stuart G. Baker The composite linear models software is a matrix approach to compute maximum likelihood estimates and asymptotic standard errors for models for incomplete multinomial data. It implements the method described in Baker SG. Composite linear models for incomplete multinomial data. Statistics in Medicine 1994;13:609-622. The software includes a library of thirty

  2. Biodegradation kinetics of 1,4-benzoquinone in batch and continuous systems.

    PubMed

    Kumar, Pardeep; Nemati, Mehdi; Hill, Gordon A

    2011-11-01

    Combining chemical and biological treatments is a potentially economic approach to remove high concentration of recalcitrant compounds from wastewaters. In the present study, the biodegradation of 1,4-benzoquinone, an intermediate compound formed during phenol oxidation by chlorine dioxide, was investigated using Pseudomonas putida (ATCC 17484) in batch and continuous bioreactors. Batch experiments were conducted to determine the effects of 1,4-benzoquinone concentration and temperature on the microbial activity and biodegradation kinetics. Using the generated data, the maximum specific growth rate and biodegradation rate were determined as 0.94 h(-1) and 6.71 mg of 1,4-benzoquinone l(-1) h(-1). Biodegradation in a continuous bioreactor indicated a linear relationship between substrate loading and biodegradation rates prior to wash out of the cells, with a maximum biodegradation rate of 246 mg l(-1) h(-1) observed at a loading rate of 275 mg l(-1) h(-1) (residence time: 1.82 h). Biokinetic parameters were also determined using the steady state substrate and biomass concentrations at various dilution rates and compared to those obtained in batch cultures.

  3. Towards bridging the gap between climate change projections and maize producers in South Africa

    NASA Astrophysics Data System (ADS)

    Landman, Willem A.; Engelbrecht, Francois; Hewitson, Bruce; Malherbe, Johan; van der Merwe, Jacobus

    2018-05-01

    Multi-decadal regional projections of future climate change are introduced into a linear statistical model in order to produce an ensemble of austral mid-summer maximum temperature simulations for southern Africa. The statistical model uses atmospheric thickness fields from a high-resolution (0.5° × 0.5°) reanalysis-forced simulation as predictors in order to develop a linear recalibration model which represents the relationship between atmospheric thickness fields and gridded maximum temperatures across the region. The regional climate model, the conformal-cubic atmospheric model (CCAM), projects maximum temperatures increases over southern Africa to be in the order of 4 °C under low mitigation towards the end of the century or even higher. The statistical recalibration model is able to replicate these increasing temperatures, and the atmospheric thickness-maximum temperature relationship is shown to be stable under future climate conditions. Since dry land crop yields are not explicitly simulated by climate models but are sensitive to maximum temperature extremes, the effect of projected maximum temperature change on dry land crops of the Witbank maize production district of South Africa, assuming other factors remain unchanged, is then assessed by employing a statistical approach similar to the one used for maximum temperature projections.

  4. Changes in Clavicle Length and Maturation in Americans: 1840-1980.

    PubMed

    Langley, Natalie R; Cridlin, Sandra

    2016-01-01

    Secular changes refer to short-term biological changes ostensibly due to environmental factors. Two well-documented secular trends in many populations are earlier age of menarche and increasing stature. This study synthesizes data on maximum clavicle length and fusion of the medial epiphysis in 1840-1980 American birth cohorts to provide a comprehensive assessment of developmental and morphological change in the clavicle. Clavicles from the Hamann-Todd Human Osteological Collection (n = 354), McKern and Stewart Korean War males (n = 341), Forensic Anthropology Data Bank (n = 1,239), and the McCormick Clavicle Collection (n = 1,137) were used in the analysis. Transition analysis was used to evaluate fusion of the medial epiphysis (scored as unfused, fusing, or fused). Several statistical treatments were used to assess fluctuations in maximum clavicle length. First, Durbin-Watson tests were used to evaluate autocorrelation, and a local regression (LOESS) was used to identify visual shifts in the regression slope. Next, piecewise regression was used to fit linear regression models before and after the estimated breakpoints. Multiple starting parameters were tested in the range determined to contain the breakpoint, and the model with the smallest mean squared error was chosen as the best fit. The parameters from the best-fit models were then used to derive the piecewise models, which were compared with the initial simple linear regression models to determine which model provided the best fit for the secular change data. The epiphyseal union data indicate a decline in the age at onset of fusion since the early twentieth century. Fusion commences approximately four years earlier in mid- to late twentieth-century birth cohorts than in late nineteenth- and early twentieth-century birth cohorts. However, fusion is completed at roughly the same age across cohorts. The most significant decline in age at onset of epiphyseal union appears to have occurred since the mid-twentieth century. LOESS plots show a breakpoint in the clavicle length data around the mid-twentieth century in both sexes, and piecewise regression models indicate a significant decrease in clavicle length in the American population after 1940. The piecewise model provides a slightly better fit than the simple linear model. Since the model standard error is not substantially different from the piecewise model, an argument could be made to select the less complex linear model. However, we chose the piecewise model to detect changes in clavicle length that are overfitted with a linear model. The decrease in maximum clavicle length is in line with a documented narrowing of the American skeletal form, as shown by analyses of cranial and facial breadth and bi-iliac breadth of the pelvis. Environmental influences on skeletal form include increases in body mass index, health improvements, improved socioeconomic status, and elimination of infectious diseases. Secular changes in bony dimensions and skeletal maturation stipulate that medical and forensic standards used to deduce information about growth, health, and biological traits must be derived from modern populations.

  5. Design and analysis of an unconventional permanent magnet linear machine for energy harvesting

    NASA Astrophysics Data System (ADS)

    Zeng, Peng

    This Ph.D. dissertation proposes an unconventional high power density linear electromagnetic kinetic energy harvester, and a high-performance two-stage interface power electronics to maintain maximum power abstraction from the energy source and charge the Li-ion battery load with constant current. The proposed machine architecture is composed of a double-sided flat type silicon steel stator with winding slots, a permanent magnet mover, coil windings, a linear motion guide and an adjustable spring bearing. The unconventional design of the machine is that NdFeB magnet bars in the mover are placed with magnetic fields in horizontal direction instead of vertical direction and the same magnetic poles are facing each other. The derived magnetic equivalent circuit model proves the average air-gap flux density of the novel topology is as high as 0.73 T with 17.7% improvement over that of the conventional topology at the given geometric dimensions of the proof-of-concept machine. Subsequently, the improved output voltage and power are achieved. The dynamic model of the linear generator is also developed, and the analytical equations of output maximum power are derived for the case of driving vibration with amplitude that is equal, smaller and larger than the relative displacement between the mover and the stator of the machine respectively. Furthermore, the finite element analysis (FEA) model has been simulated to prove the derived analytical results and the improved power generation capability. Also, an optimization framework is explored to extend to the multi-Degree-of-Freedom (n-DOF) vibration based linear energy harvesting devices. Moreover, a boost-buck cascaded switch mode converter with current controller is designed to extract the maximum power from the harvester and charge the Li-ion battery with trickle current. Meanwhile, a maximum power point tracking (MPPT) algorithm is proposed and optimized for low frequency driving vibrations. Finally, a proof-of-concept unconventional permanent magnet (PM) linear generator is prototyped and tested to verify the simulation results of the FEA model. For the coil windings of 33, 66 and 165 turns, the output power of the machine is tested to have the output power of 65.6 mW, 189.1 mW, and 497.7 mW respectively with the maximum power density of 2.486 mW/cm3.

  6. Optimal Number and Allocation of Data Collection Points for Linear Spline Growth Curve Modeling: A Search for Efficient Designs

    ERIC Educational Resources Information Center

    Wu, Wei; Jia, Fan; Kinai, Richard; Little, Todd D.

    2017-01-01

    Spline growth modelling is a popular tool to model change processes with distinct phases and change points in longitudinal studies. Focusing on linear spline growth models with two phases and a fixed change point (the transition point from one phase to the other), we detail how to find optimal data collection designs that maximize the efficiency…

  7. Filamentation instability in a quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.

    2007-08-15

    The growth rate of the filamentation instability triggered when a diluted cold electron beam passes through a cold plasma is evaluated using the quantum hydrodynamic equations. Compared with a cold fluid model, quantum effects reduce both the unstable wave vector domain and the maximum growth rate. Stabilization of large wave vector modes is always achieved, but significant reduction of the maximum growth rate depends on a dimensionless parameter that is provided. Although calculations are extended to the relativistic regime, they are mostly relevant to the nonrelativistic one.

  8. In Vivo potassium-39 NMR spectra by the burg maximum-entropy method

    NASA Astrophysics Data System (ADS)

    Uchiyama, Takanori; Minamitani, Haruyuki

    The Burg maximum-entropy method was applied to estimate 39K NMR spectra of mung bean root tips. The maximum-entropy spectra have as good a linearity between peak areas and potassium concentrations as those obtained by fast Fourier transform and give a better estimation of intracellular potassium concentrations. Therefore potassium uptake and loss processes of mung bean root tips are shown to be more clearly traced by the maximum-entropy method.

  9. Managing Leaf Area for Maximum Volume Production in a Loblolly Pine Plantation

    Treesearch

    Shufang Yu; Quang V. Cao; Jim L. Chambers; Zhenmin Tang; James D. Haywood

    1999-01-01

    To manage loblolly pine (Pinus taeda L.) stands for maximum volume growth, the relationships between volume growth and leaf area at the tree and stand level under different cultural practices (thinning and fertilization) were examined. Forty-eight trees were harvested in 1995, six years after treatment, for individual tree measurements, and 336...

  10. Linear Growth and Fat and Lean Tissue Gain during Childhood: Associations with Cardiometabolic and Cognitive Outcomes in Adolescent Indian Children.

    PubMed

    Krishnaveni, Ghattu V; Veena, Sargoor R; Srinivasan, Krishnamachari; Osmond, Clive; Fall, Caroline H D

    2015-01-01

    We aimed to determine how linear growth and fat and lean tissue gain during discrete age periods from birth to adolescence are related to adolescent cardiometabolic risk factors and cognitive ability. Adolescents born to mothers with normal glucose tolerance during pregnancy from an Indian birth cohort (N = 486, age 13.5 years) had detailed anthropometry and measurements of body fat (fat%), fasting plasma glucose, insulin and lipid concentrations, blood pressure and cognitive function. Insulin resistance (HOMA-IR) was calculated. These outcomes were examined in relation to birth measurements and statistically independent measures (conditional SD scores) representing linear growth, and fat and lean tissue gain during birth-1, 1-2, 2-5, 5-9.5 and 9.5-13.5 years in 414 of the children with measurements at all these ages. Birth length and linear growth at all ages were positively associated with current height. Fat gain, particularly during 5-9.5 years was positively associated with fat% at 13.5 years (0.44 SD per SD [99.9% confidence interval: 0.29,0.58]). Greater fat gain during mid-late childhood was associated with higher systolic blood pressure (5-9.5 years: 0.23 SD per SD [0.07,0.40]) and HOMA-IR (5-9.5 years: 0.24 [0.08,0.40], 9.5-13.5 years: 0.22 [0.06,0.38]). Greater infant growth (up to age 2 years) in linear, fat or lean components was unrelated to cardiometabolic risk factors or cognitive function. This study suggests that factors that increase linear, fat and lean growth in infancy have no adverse cardiometabolic effects in this population. Factors that increase fat gain in mid-late childhood may increase cardiometabolic risk, without any benefit to cognitive abilities.

  11. Dynamics of unstable sound waves in a non-equilibrium medium at the nonlinear stage

    NASA Astrophysics Data System (ADS)

    Khrapov, Sergey; Khoperskov, Alexander

    2018-03-01

    A new dispersion equation is obtained for a non-equilibrium medium with an exponential relaxation model of a vibrationally excited gas. We have researched the dependencies of the pump source and the heat removal on the medium thermodynamic parameters. The boundaries of sound waves stability regions in a non-equilibrium gas have been determined. The nonlinear stage of sound waves instability development in a vibrationally excited gas has been investigated within CSPH-TVD and MUSCL numerical schemes using parallel technologies OpenMP-CUDA. We have obtained a good agreement of numerical simulation results with the linear perturbations dynamics at the initial stage of the sound waves growth caused by instability. At the nonlinear stage, the sound waves amplitude reaches the maximum value that leads to the formation of shock waves system.

  12. Why care about linear hair growth rates (LHGR)? a study using in vivo imaging and computer assisted image analysis after manual processing (CAIAMP) in unaffected male controls and men with male pattern hair loss (MPHL).

    PubMed

    Van Neste, Dominique

    2014-01-01

    The words "hair growth" frequently encompass many aspects other than just growth. Report on a validation method for precise non-invasive measurement of thickness together with linear hair growth rates of individual hair fibres. To verify the possible correlation between thickness and linear growth rate of scalp hair in male pattern hair loss as compared with healthy male controls. To document the process of validation of hair growth measurement from in vivo image capturing and manual processing, followed by computer assisted image analysis. We analysed 179 paired images obtained with the contrast-enhanced-phototrichogram method with exogen collection (CE-PTG-EC) in 13 healthy male controls and in 87 men with male pattern hair loss (MPHL). There was a global positive correlation between thickness and growth rate (ANOVA; p<0.0001) and a statistically significantly (ANOVA; p<0.0005) slower growth rate in MPHL as compared with equally thick hairs from controls. Finally, the growth rate recorded in the more severe patterns was significantly (ANOVA; P ≤ 0.001) reduced compared with equally thick hair from less severely affected MPHL or controls subjects. Reduced growth rate, together with thinning and shortening of the anagen phase duration in MPHL might contribute together to the global impression of decreased hair volume on the top of the head. Amongst other structural and functional parameters characterizing hair follicle regression, linear hair growth rate warrants further investigation, as it may be relevant in terms of self-perception of hair coverage, quantitative diagnosis and prognostic factor of the therapeutic response.

  13. Insulin-like growth factor-I and insulin-like growth factor binding protein-3 cotreatment versus insulin-like growth factor-I alone in two brothers with growth hormone insensitivity syndrome: effects on insulin sensitivity, body composition and linear growth.

    PubMed

    Ekström, Klas; Carlsson-Skwirut, Christine; Ritzén, E Martin; Bang, Peter

    2011-01-01

    Growth hormone insensitivity syndrome (GHIS) is caused by a defective growth hormone receptor (GHR) and is associated with insulin-like growth factor-I (IGF-I) deficiency, severely short stature and, from adolescence, fasting hyperglycemia and obesity. We studied the effects of treatment with IGF-I in either a 1:1 molar complex with IGFBP-3 (IGF-I/BP-3-Tx) or with IGF-I alone (IGF-I-Tx) on metabolism and linear growth. Two brothers, compound heterozygous for a GHR gene defect, were studied. After 8 months without treatment, we examined the short- and long-term effects of IGF-I/BP-3-Tx and, subsequently, IGF-I-Tx on 12-hour overnight levels of IGF-I, GH, insulin, IGFBP-1, insulin sensitivity by hyperinsulinemic euglycemic clamp, body composition by dual-energy X-ray absorptiometry and linear growth. Mean overnight levels of insulin decreased and IGFBP-1, a measure of hepatic insulin sensitivity, increased on both regimens, but was more pronounced on IGF-I-Tx. Insulin sensitivity by clamp showed no consistent changes. Lean body mass increased and abdominal fat mass decreased in both subjects on IGF-I-Tx. However, the changes were inconsistent during IGF-I/BP-3-Tx. Height velocity was low without treatment, increased slightly on IGF-I/BP-3-Tx and doubled on IGF-I-Tx. Both modalities of IGF-I improved determinants of hepatic insulin sensitivity, body composition and linear growth rate; however, IGF-I alone seemed to be more efficient. Copyright © 2011 S. Karger AG, Basel.

  14. Use of rotation to suppress thermosolutal convection in directionally solidified binary alloys

    NASA Technical Reports Server (NTRS)

    Pearlstein, Arne J.

    1994-01-01

    Effects of rotation on onset of convection during plane-front directional solidification of Pb-Sn and the pseudobinary system mercury cadmium telluride (Hg(1-x)Cd(x)Te), and on dendritic solidification of Pb-Sn have been studied by means of linear stability analysis. Incorporating Coriolis and centrifugal accelerations into the momentum equation of Coriell et al., we find that under realistic processing conditions, a large degree of stabilization can be achieved using modest rotation rates for both Pb-Sn and mercury cadmium telluride. At a growth velocity of 5 micron/sec and nominal liquid-side temperature gradient of 200 K/cm in Pb-Sn, rotation at 500 rpm results in a hundredfold increase in the critical Sn concentration. Large increases in the maximum allowable growth velocity at fixed melt composition are also attainable with modest rotation rates. The effect is amplified under conditions of reduced gravitational acceleration. For Hg(1-x)Cd(x)Te, we have also studied the nonrotating case. The key differences are due to the existence of a composition range for Hg(1-x)Cd(x)Te in which the melt density has a local maximum as a function of temperature. When the melt solidifies by cooling from below, the liquid density may initially increase with distance above the interface, before ultimately decreasing as the melt temperature increases above the value at which the local density maximum occurs. In contrast to the Pb-Sn case where density depends monotonically on temperature and composition, for Hg(1-x)Cd(x)Te there exists a critical value of the growth velocity above which plane-front solidification is unstable for all bulk CdTe mole fractions. Again, rotation leads to significant inhibition of onset. We identify the predicted stabilization with the Taylor-Proudman mechanism by which rotation inhibits thermal convection in a single-component fluid heated from below. In a binary liquid undergoing solidification, rotation inhibits the onset of buoyancy-driven convection, and has no effect on the short-wavelength morphological instability. At large growth velocities, the plane-front interface between liquid and solid becomes unstable with respect to a morphological instability and solidification occurs dendritically, with a mushy zone of dendrites and interdendritic fluid separating the solid from the melt. For the Pb-Sn system, rotation substantially suppresses the onset of convection in the mushy zone and in the overlying liquid, holding open the promise that rotation can suppress freckling and other macrosegregation defects.

  15. Do the maximum sizes, ages and patterns of growth of three reef-dwelling labrid species at two latitudes differ in a manner conforming to the metabolic theory of ecology?

    PubMed

    Lek, E; Fairclough, D V; Hall, N G; Hesp, S A; Potter, I C

    2012-11-01

    The size and age data and patterns of growth of three abundant, reef-dwelling and protogynous labrid species (Coris auricularis, Notolabrus parilus and Ophthalmolepis lineolata) in waters off Perth at c. 32° S and in the warmer waters of the Jurien Bay Marine Park (JBMP) at c. 30° S on the lower west coast of Australia are compared. Using data for the top 10% of values and a randomization procedure, the maximum total length (L(T) ) and mass of each species and the maximum age of the first two species were estimated to be significantly greater off Perth than in the JBMP (all P < 0.001) and the maximum ages of O. lineolata in the two localities did not differ significantly (P > 0.05). These latitudinal trends, thus, typically conform to those frequently exhibited by fish species and the predictions of the metabolic theory of ecology (MTE). While, in terms of mass, the instantaneous growth rates of each species were similar at both latitudes during early life, they were greater at the higher latitude throughout the remainder and thus much of life, which is broadly consistent with the MTE. When expressed in terms of L(T), however, instantaneous growth rates did not exhibit consistent latitudinal trends across all three species. The above trends with mass, together with those for reproductive variables, demonstrate that a greater amount of energy is directed into somatic growth and gonadal development by each of these species at the higher latitude. The consistency of the direction of the latitudinal trends for maximum body size and age and pattern of growth across all three species implies that each species is responding in a similar manner to differences between the environmental characteristics, such as temperature, at those two latitudes. The individual maximum L(T), mass and age and pattern of growth of O. lineolata at a higher and thus cooler latitude on the eastern Australian coast are consistent with the latitudinal trends exhibited by those characteristics for this species in the two western Australian localities. The implications of using mass rather than length as the indicator variable when comparing the maximum sizes of the three species and the trends exhibited by the instantaneous growth rates of those species at different latitudes are explored. Although growth curves fitted to both the L(T) and masses at age for the males of each species lay above those for their females, this would not have influenced the conclusions drawn from common curves for both sexes. © 2012 Murdoch University. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  16. Impact of intrauterine growth retardation and body proportionality on fetal and neonatal outcome.

    PubMed

    Kramer, M S; Olivier, M; McLean, F H; Willis, D M; Usher, R H

    1990-11-01

    Previous prognostic studies of infants with intrauterine growth retardation (IUGR) have not adequately considered the heterogeneity of IUGR in terms of cause, severity, and body proportionality and have been prone to misclassification of IUGR because of errors in estimation of gestational age. Based on a cohort of 8719 infants with early-ultrasound-validated gestational ages and indexes of body proportionality standardized for birth weight, the consequences of severity and cause-specific IUGR and proportionality for fetal and neonatal morbidity and mortality were assessed. With progressive severity of IUGR, there were significant (all P less than .001) linear trends for increasing risks of stillbirth, fetal distress (abnormal electronic fetal heart tracings)O during parturition, neonatal hypoglycemia (minimum plasma glucose less than 40 mg/dL), hypocalcemia (minimum Ca less than 7 mg/dL), polycythemia (maximum capillary hemoglobin greater than or equal to 21 g/dL), severe depression at birth (manual ventilation greater than 3 minutes), 1-minute and 5-minute Apgar scores less than or equal to 6, 1-minute Apgar score less than or equal to 3, and in-hospital death. These trends persisted for the more common outcomes even after restriction to term (37 to 42 weeks) births. There was no convincing evidence that outcome among infants with a given degree of growth retardation varied as a function of cause of that growth retardation. Among infants with IUGR, increased length-for-weight had significant crude associations with hypoglycemia and polycythemia, but these associations disappeared after adjustment for severity of growth retardation and gestational age.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. The impact of long-term water stress on relative growth rate and morphology of needles and shoots of Metasequoia glyptostroboides seedlings: research toward identifying mechanistic models.

    PubMed

    Zhang, Yanxiang; Equiza, Maria Alejandra; Zheng, Quanshui; Tyree, Melvin T

    2011-09-01

    Leaf morphology in the upper canopy of trees tends to be different from that lower down. The effect of long-term water stress on leaf growth and morphology was studied in seedlings of Metasequoia glyptostroboides to understand how tree height might affect leaf morphology in larger trees. Tree height increases water stress on growing leaves through increased hydraulic resistance to water flow and increased gravitational potential, hence we assume that water stress imposed by soil dehydration will have an effect equivalent to stress induced by height. Seedlings were subjected to well-watered and two constant levels of long-term water stress treatments. Drought treatment significantly reduced final needle count, area and mass per area (leaf mass area, LMA) and increased needle density. Needles from water-stressed plants had lower maximum volumetric elastic modulus (ε(max)), osmotic potential at full turgor (Ψ¹⁰⁰(π)) (and at zero turgor (Ψ⁰(π)) (than those from well-watered plants. Palisade and spongy mesophyll cell size and upper epidermal cell size decreased significantly in drought treatments. Needle relative growth rate, needle length and cell sizes were linear functions of the daily average water potential at the time of leaf growth (r² 0.88-0.999). We conclude that water stress alone does mimic the direction and magnitude of changes in leaf morphology observed in tall trees. The results are discussed in terms of various models for leaf growth rate. Copyright © Physiologia Plantarum 2011.

  18. A field study on the dynamic uptake and transfer of heavy metals in Chinese cabbage and radish in weak alkaline soils.

    PubMed

    Ai, Shiwei; Guo, Rui; Liu, Bailin; Ren, Liang; Naeem, Sajid; Zhang, Wenya; Zhang, Yingmei

    2016-10-01

    Vegetables and crops can take up heavy metals when grown on polluted lands. The concentrations and dynamic uptake of heavy metals vary at different growth points for different vegetables. In order to assess the safe consumption of vegetables in weak alkaline farmlands, Chinese cabbage and radish were planted on the farmlands of Baiyin (polluted site) and Liujiaxia (relatively unpolluted site). Firstly, the growth processes of two vegetables were recorded. The growth curves of the two vegetables observed a slow growth at the beginning, an exponential growth period, and a plateau towards the end. Maximum concentrations of copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) were presented at the slow growth period and showed a downtrend except the radish shoot. The concentrations of heavy metals (Cu, Zn, and Cd) in vegetables of Baiyin were higher than those of Liujiaxia. In the meanwhile, the uptake contents continued to increase during the growth or halted at maximum at a certain stage. The maximum uptake rates were found on the maturity except for the shoot of radish which took place at the exponential growth stages of root. The sigmoid model could simulate the dynamic processes of growth and heavy metals uptake of Chinese cabbage and radish. Conclusively, heavy metals have higher bioaccumulation tendency for roots in Chinese cabbage and for shoots in radish.

  19. Optical nonlinearity of CdSe-PMMA hybrid nanocomposite investigated via Z-scan technique and semi-empirical relations

    NASA Astrophysics Data System (ADS)

    Kaur, Ramneek; Tripathi, S. K.

    2016-04-01

    CdSe-PMMA nanocomposite has been synthesized by ex-situ technique. The effect of different Ag doping concentrations on its structural and optical properties has been studied. X-ray diffraction reveals the hexagonal wurtzite structure of the polymer nanocomposites with preferential growth of the nanocrystals along (1 0 0) direction. Transmission electron micrograph shows the spherical CdSe nanoparticles embedded in polymer matrix. The nonlinear refractive index of the nanocomposites has been calculated using Tichy & Ticha semi-empirical relations and Z-scan technique. Z-scan results disclose the two photon absorption process in the hybrid nanocomposites with self focussing behaviour. With Ag doping, the nonlinearity is found to be increased up to 0.2% Ag doping concentration due to the confined effect of Surface Plasmon, Quantum confinement and thermal lensing. Above 0.2% Ag concentration, its value decreases due to the declined linear refractive index of the nanocomposites. Maximum two photon figure of merit is 76 for 0.2% Ag doped CdSe-PMMA hybrid nanocomposite. The present results accentuate the possibility of tuning the optical non-linearity of CdSe-PMMA hybrid nanocomposite by adjusting the doping concentration.

  20. Thermally driven film climbing a vertical cylinder

    NASA Astrophysics Data System (ADS)

    Smolka, Linda

    2017-11-01

    The dynamics of a Marangoni driven film climbing the outside of a vertical cylinder is examined in numerical simulations of a thin film model. The model has three parameters: the scaled cylinder radius R̂, upstream film height h∞ and downstream precursor film thickness b , and reduces to the model for Marangoni driven film climbing a vertical plate when R̂ -> ∞ . The advancing front displays dynamics similar to that along a vertical plate where, depending on h∞ , the film forms a Lax shock, an undercompressive double shock or a rarefaction-undercompressive shock. A linear stability analysis of the Lax shock reveals the number of fingers that form along the contact line increases linearly with cylinder circumference while no fingers form below R̂ 1.15 with b = 0.1 . The substrate curvature controls the Lax shock height, bounds on h∞ that define the three solutions and the maximum growth rate of perturbations when R̂ = O (1) , whereas the shape of solutions and the stability of the Lax shock converge to the behavior on a vertical plate when R̂ >= O (10) . The azimuthal curvatures of the base state and perturbation, arising from the annular geometry of the film, promote instability of the advancing contact line.

  1. How large can the electron to proton mass ratio be in particle-in-cell simulations of unstable systems?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.; Dieckmann, M. E.

    2010-03-15

    Particle-in-cell simulations are widely used as a tool to investigate instabilities that develop between a collisionless plasma and beams of charged particles. However, even on contemporary supercomputers, it is not always possible to resolve the ion dynamics in more than one spatial dimension with such simulations. The ion mass is thus reduced below 1836 electron masses, which can affect the plasma dynamics during the initial exponential growth phase of the instability and during the subsequent nonlinear saturation. The goal of this article is to assess how far the electron to ion mass ratio can be increased, without changing qualitatively themore » physics. It is first demonstrated that there can be no exact similarity law, which balances a change in the mass ratio with that of another plasma parameter, leaving the physics unchanged. Restricting then the analysis to the linear phase, a criterion allowing to define a maximum ratio is explicated in terms of the hierarchy of the linear unstable modes. The criterion is applied to the case of a relativistic electron beam crossing an unmagnetized electron-ion plasma.« less

  2. Kinetic Behavior of Escherichia coli on Various Cheeses under Constant and Dynamic Temperature.

    PubMed

    Kim, K; Lee, H; Gwak, E; Yoon, Y

    2014-07-01

    In this study, we developed kinetic models to predict the growth of pathogenic Escherichia coli on cheeses during storage at constant and changing temperatures. A five-strain mixture of pathogenic E. coli was inoculated onto natural cheeses (Brie and Camembert) and processed cheeses (sliced Mozzarella and sliced Cheddar) at 3 to 4 log CFU/g. The inoculated cheeses were stored at 4, 10, 15, 25, and 30°C for 1 to 320 h, with a different storage time being used for each temperature. Total bacteria and E. coli cells were enumerated on tryptic soy agar and MacConkey sorbitol agar, respectively. E. coli growth data were fitted to the Baranyi model to calculate the maximum specific growth rate (μ max; log CFU/g/h), lag phase duration (LPD; h), lower asymptote (log CFU/g), and upper asymptote (log CFU/g). The kinetic parameters were then analyzed as a function of storage temperature, using the square root model, polynomial equation, and linear equation. A dynamic model was also developed for varying temperature. The model performance was evaluated against observed data, and the root mean square error (RMSE) was calculated. At 4°C, E. coli cell growth was not observed on any cheese. However, E. coli growth was observed at 10°C to 30°C with a μ max of 0.01 to 1.03 log CFU/g/h, depending on the cheese. The μ max values increased as temperature increased, while LPD values decreased, and μ max and LPD values were different among the four types of cheese. The developed models showed adequate performance (RMSE = 0.176-0.337), indicating that these models should be useful for describing the growth kinetics of E. coli on various cheeses.

  3. Physical Quality Indicators and Mechanical Behavior of Agricultural Soils of Argentina.

    PubMed

    Imhoff, Silvia; da Silva, Alvaro Pires; Ghiberto, Pablo J; Tormena, Cássio A; Pilatti, Miguel A; Libardi, Paulo L

    2016-01-01

    Mollisols of Santa Fe have different tilth and load support capacity. Despite the importance of these attributes to achieve a sustainable crop production, few information is available. The objectives of this study are i) to assess soil physical indicators related to plant growth and to soil mechanical behavior; and ii) to establish relationships to estimate the impact of soil loading on the soil quality to plant growth. The study was carried out on Argiudolls and Hapludolls of Santa Fe. Soil samples were collected to determine texture, organic matter content, bulk density, water retention curve, soil resistance to penetration, least limiting water range, critical bulk density for plant growth, compression index, pre-consolidation pressure and soil compressibility. Water retention curve and soil resistance to penetration were linearly and significantly related to clay and organic matter (R2 = 0.91 and R2 = 0.84). The pedotransfer functions of water retention curve and soil resistance to penetration allowed the estimation of the least limiting water range and critical bulk density for plant growth. A significant nonlinear relationship was found between critical bulk density for plant growth and clay content (R2 = 0.98). Compression index was significantly related to bulk density, water content, organic matter and clay plus silt content (R2 = 0.77). Pre-consolidation pressure was significantly related to organic matter, clay and water content (R2 = 0.77). Soil compressibility was significantly related to initial soil bulk density, clay and water content. A nonlinear and significantly pedotransfer function (R2 = 0.88) was developed to predict the maximum acceptable pressure to be applied during tillage operations by introducing critical bulk density for plant growth in the compression model. The developed pedotransfer function provides a useful tool to link the mechanical behavior and tilth of the soils studied.

  4. Physical Quality Indicators and Mechanical Behavior of Agricultural Soils of Argentina

    PubMed Central

    Pires da Silva, Alvaro; Ghiberto, Pablo J.; Tormena, Cássio A.; Pilatti, Miguel A.; Libardi, Paulo L.

    2016-01-01

    Mollisols of Santa Fe have different tilth and load support capacity. Despite the importance of these attributes to achieve a sustainable crop production, few information is available. The objectives of this study are i) to assess soil physical indicators related to plant growth and to soil mechanical behavior; and ii) to establish relationships to estimate the impact of soil loading on the soil quality to plant growth. The study was carried out on Argiudolls and Hapludolls of Santa Fe. Soil samples were collected to determine texture, organic matter content, bulk density, water retention curve, soil resistance to penetration, least limiting water range, critical bulk density for plant growth, compression index, pre-consolidation pressure and soil compressibility. Water retention curve and soil resistance to penetration were linearly and significantly related to clay and organic matter (R2 = 0.91 and R2 = 0.84). The pedotransfer functions of water retention curve and soil resistance to penetration allowed the estimation of the least limiting water range and critical bulk density for plant growth. A significant nonlinear relationship was found between critical bulk density for plant growth and clay content (R2 = 0.98). Compression index was significantly related to bulk density, water content, organic matter and clay plus silt content (R2 = 0.77). Pre-consolidation pressure was significantly related to organic matter, clay and water content (R2 = 0.77). Soil compressibility was significantly related to initial soil bulk density, clay and water content. A nonlinear and significantly pedotransfer function (R2 = 0.88) was developed to predict the maximum acceptable pressure to be applied during tillage operations by introducing critical bulk density for plant growth in the compression model. The developed pedotransfer function provides a useful tool to link the mechanical behavior and tilth of the soils studied. PMID:27099925

  5. Hopper Growth of Salt Crystals.

    PubMed

    Desarnaud, Julie; Derluyn, Hannelore; Carmeliet, Jan; Bonn, Daniel; Shahidzadeh, Noushine

    2018-06-07

    The growth of hopper crystals is observed for many substances, but the mechanism of their formation remains ill understood. Here we investigate their growth by performing evaporation experiments on small volumes of salt solutions. We show that sodium chloride crystals that grow very fast from a highly supersaturated solution form a peculiar form of hopper crystal consisting of a series of connected miniature versions of the original cubic crystal. The transition between cubic and such hopper growth happens at a well-defined supersaturation where the growth rate of the cubic crystal reaches a maximum (∼6.5 ± 1.8 μm/s). Above this threshold, the growth rate varies as the third power of supersaturation, showing that a new mechanism, controlled by the maximum speed of surface integration of new molecules, induces the hopper growth of cubic crystals in cascade.

  6. Potential Fifty Percent Reduction in Saturation Diving Decompression Time Using a Combination of Intermittent Recompression and Exercise

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael I.; Abercromby, Andrew; Conklin, Johnny

    2007-01-01

    Conventional saturation decompression protocols use linear decompression rates that become progressively slower at shallower depths, consistent with free gas phase control vs. dissolved gas elimination kinetics. If decompression is limited by control of free gas phase, linear decompression is an inefficient strategy. The NASA prebreathe reduction program demonstrated that exercise during O2 prebreathe resulted in a 50% reduction (2 h vs. 4 h) in the saturation decompression time from 14.7 to 4.3 psi and a significant reduction in decompression sickness (DCS: 0 vs. 23.7%). Combining exercise with intermittent recompression, which controls gas phase growth and eliminates supersaturation before exercising, may enable more efficient saturation decompression schedules. A tissue bubble dynamics model (TBDM) was used in conjunction with a NASA exercise prebreathe model (NEPM) that relates tissue inert gas exchange rate constants to exercise (ml O2/kg-min), to develop a schedule for decompression from helium saturation at 400 fsw. The models provide significant prediction (p < 0.001) and goodness of fit with 430 cases of DCS in 6437 laboratory dives for TBDM (p = 0.77) and with 22 cases of DCS in 159 altitude exposures for NEPM (p = 0.70). The models have also been used operationally in over 25,000 dives (TBDM) and 40 spacewalks (NEPM). The standard U.S. Navy (USN) linear saturation decompression schedule from saturation at 400 fsw required 114.5 h with a maximum Bubble Growth Index (BGI(sub max)) of 17.5. Decompression using intermittent recompression combined with two 10 min exercise periods (75% VO2 (sub peak)) per day required 54.25 h (BGI(sub max): 14.7). Combined intermittent recompression and exercise resulted in a theoretical 53% (2.5 day) reduction in decompression time and theoretically lower DCS risk compared to the standard USN decompression schedule. These results warrant future decompression trials to evaluate the efficacy of this approach.

  7. High growth rate homoepitaxial diamond film deposition at high temperatures by microwave plasma-assisted chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Vohra, Yogesh K. (Inventor); McCauley, Thomas S. (Inventor)

    1997-01-01

    The deposition of high quality diamond films at high linear growth rates and substrate temperatures for microwave-plasma chemical vapor deposition is disclosed. The linear growth rate achieved for this process is generally greater than 50 .mu.m/hr for high quality films, as compared to rates of less than 5 .mu.m/hr generally reported for MPCVD processes.

  8. Correlation studies on nitrogen for sunflower crop across the agroclimatic variability.

    PubMed

    Nasim, Wajid; Belhouchette, Hatem; Tariq, Muhammad; Fahad, Shah; Hammad, Hafiz Mohkum; Mubeen, Muhammad; Munis, Muhammad Farooq Hussain; Chaudhary, Hassan Javed; Khan, Imran; Mahmood, Faisal; Abbas, Tauqeer; Rasul, Fahd; Nadeem, Muhammad; Bajwa, Ali Ahsan; Ullah, Najeeb; Alghabari, Fahad; Saud, Shah; Mubarak, Hussani; Ahmad, Rafiq

    2016-02-01

    Nitrogen (N) fertilizer is an important yield limiting factor for sunflower production. The correlation between yield components and growth parameters of three sunflower hybrids (Hysun-33, Hysun-38, Pioneer-64A93) were studied with five N rates (0, 60, 120, 180, 240 kg ha(-1)) at three different experimental sites during the two consecutive growing seasons 2008 and 2009. The results revealed that total dry matter (TDM) production and grain yield were positively and linearly associated with leaf area index (LAI), leaf area duration (LAD), and crop growth rate (CGR) at all three sites of the experiments. The significant association of yield with growth components indicated that the humid climate was most suitable for sunflower production. Furthermore, the association of these components can be successfully used to predict the grain yield under diverse climatic conditions. The application of N at increased rate of 180 kg ha(-1) resulted in maximum yield as compared to standard rate (120 kg ha(-1)) at all the experimental sites. In this way, N application rate was significantly correlated with growth and development of sunflower under a variety of climatic conditions. Keeping in view such relationship, the N dose can be optimized for sunflower crop in a particular region to maximize the productivity. Multilocation trails help to predict the input rates precisely while taking climatic variations into account also. In the long run, results of this study provides basis for sustainable sunflower production under changing climate.

  9. A piezoelectric ultrasonic linear micromotor using a slotted stator.

    PubMed

    Yun, Cheol-Ho; Watson, Brett; Friend, James; Yeo, Leslie

    2010-08-01

    A novel ultrasonic micro linear motor that uses 1st longitudinal and 2nd bending modes, derived from a bartype stator with a rectangular slot cut through the stator length, has been proposed and designed for end-effect devices of microrobotics and bio-medical applications. The slot structure plays an important role in the motor design, and can be used not only to tune the resonance frequency of the two vibration modes but also to reduce the undesirable longitudinal coupling displacement caused by bending vibration at the end of the stator. By using finite element analysis, the optimal slot dimension to improve the driving tip motion was determined, resulting in the improvement of the motor performance. The trial linear motor, with a weight of 1.6 g, gave a maximum driving velocity of 1.12 m/s and a maximum driving force of 3.4 N. A maximum mechanical output power of 1.1 W was obtained at force of 1.63 N and velocity of 0.68 m/s. The output mechanical power per unit weight was 688 W/kg.

  10. Growth and yield of Giant Sequoia

    Treesearch

    David J. Dulitz

    1986-01-01

    Very little information exists concerning growth and yield of giant sequoia (Sequoiadendron giganteum [Lindl.] Buchholz). For old-growth trees, diameter growth is the single factor adding increment since maximum height has been obtained. Diameter growth averages 0.04 inches per year in normal old-growth trees but will fluctuate with changes in the...

  11. Modeling environmental influences on child growth in the MAL-ED cohort study: opportunities and challenges.

    PubMed

    Richard, Stephanie A; McCormick, Benjamin J J; Miller, Mark A; Caulfield, Laura E; Checkley, William

    2014-11-01

    Although genetics, maternal undernutrition and low birth weight status certainly play a role in child growth, dietary insufficiency and infectious diseases are key risk factors for linear growth faltering during early childhood. A primary goal of the Etiology, Risk Factors and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development (MAL-ED) study is to identify specific risk factors associated with growth faltering during the first 2 years of life; however, growth in early childhood is challenging to characterize because growth may be inherently nonlinear with age. In this manuscript, we describe some methods for analyzing longitudinal growth to evaluate both short- and long-term associations between risk factors and growth trajectories over the first 2 years of life across 8 resource-limited settings using harmonized protocols. We expect there will be enough variability within and between sites in the prevalence of risk factors and burden of linear growth faltering to allow us to distinguish some of the key pathways to linear growth faltering in the MAL-ED study. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  12. Using population models to evaluate management alternatives for Gulf Striped Bass

    USGS Publications Warehouse

    Aspinwall, Alexander P.; Irwin, Elise R.; Lloyd, M. Clint

    2017-01-01

    Interstate management of Gulf Striped Bass Morone saxatilis has involved a thirty-year cooperative effort involving Federal and State agencies in Georgia, Florida and Alabama (Apalachicola-Chattahoochee-Flint Gulf Striped Bass Technical Committee). The Committee has recently focused on developing an adaptive framework for conserving and restoring Gulf Striped Bass in the Apalachicola, Chattahoochee, and Flint River (ACF) system. To evaluate the consequences and tradeoffs among management activities, population models were used to inform management decisions. Stochastic matrix models were constructed with varying recruitment and stocking rates to simulate effects of management alternatives on Gulf Striped Bass population objectives. An age-classified matrix model that incorporated stock fecundity estimates and survival estimates was used to project population growth rate. In addition, combinations of management alternatives (stocking rates, Hydrilla control, harvest regulations) were evaluated with respect to how they influenced Gulf Striped Bass population growth. Annual survival and mortality rates were estimated from catch-curve analysis, while fecundity was estimated and predicted using a linear least squares regression analysis of fish length versus egg number from hatchery brood fish data. Stocking rates and stocked-fish survival rates were estimated from census data. Results indicated that management alternatives could be an effective approach to increasing the Gulf Striped Bass population. Population abundance was greatest under maximum stocking effort, maximum Hydrilla control and a moratorium. Conversely, population abundance was lowest under no stocking, no Hydrilla control and the current harvest regulation. Stocking rates proved to be an effective management strategy; however, low survival estimates of stocked fish (1%) limited the potential for population growth. Hydrilla control increased the survival rate of stocked fish and provided higher estimates of population abundances than maximizing the stocking rate. A change in the current harvest regulation (50% harvest regulation) was not an effective alternative to increasing the Gulf Striped Bass population size. Applying a moratorium to the Gulf Striped Bass fishery increased survival rates from 50% to 74% and resulted in the largest population growth of the individual management alternatives. These results could be used by the Committee to inform management decisions for other populations of Striped Bass in the Gulf Region.

  13. A study of fiber volume fraction effects in notched unidirectional SCS-6/Ti-15V-3Cr-3Al-3Sn composite. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Covey, Steven J.

    1993-01-01

    Notched unidirectional SCS-6/Ti-15-3 composite of three different fiber volume fractions (vf = 0.15, 0.37, and 0.41) was investigated for various room temperature microstructural and material properties including: fatigue crack initiation, fatigue crack growth, and fracture toughness. While the matrix hardness is similar for all fiber volume fractions, the fiber/matrix interfacial shear strength and matrix residual stress increases with fiber volume fraction. The composite fatigue crack initiation stress is shown to be matrix controlled and occurs when the net maximum matrix stress approaches the endurance limit stress of the matrix. A model is presented which includes residual stresses and presents the composite initiation stress as a function of fiber volume fraction. This model predicts a maximum composite initiation stress at vf approximately 0.15 which agrees with the experimental data. The applied composite stress levels were increased as necessary for continued crack growth. The applied Delta(K) values at crack arrest increase with fiber volume fraction by an amount better approximated using an energy based formulation rather than when scaled linear with modulus. After crack arrest, the crack growth rate exponents for vf37 and vf41 were much lower and toughness much higher, when compared to the unreinforced matrix, because of the bridged region which parades with the propagating fatigue crack. However, the vf15 material exhibited a higher crack growth rate exponent and lower toughness than the unreinforced matrix because once the bridged fibers nearest the crack mouth broke, the stress redistribution broke all bridged fibers, leaving an unbridged crack. Degraded, unbridged behavior is modeled using the residual stress state in the matrix ahead of the crack tip. Plastic zone sizes were directly measured using a metallographic technique and allow prediction of an effective matrix stress intensity which agrees with the fiber pressure model if residual stresses are considered. The sophisticated macro/micro finite element models of the 0.15 and 0.37 fiber volume fractions presented show good agreement with experimental data and the fiber pressure model when an estimated effective fiber/matrix debond length is used.

  14. Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees.

    PubMed

    Vlam, Mart; Baker, Patrick J; Bunyavejchewin, Sarayudh; Zuidema, Pieter A

    2014-04-01

    Climate change effects on growth rates of tropical trees may lead to alterations in carbon cycling of carbon-rich tropical forests. However, climate sensitivity of broad-leaved lowland tropical trees is poorly understood. Dendrochronology (tree-ring analysis) provides a powerful tool to study the relationship between tropical tree growth and annual climate variability. We aimed to establish climate-growth relationships for five annual-ring forming tree species, using ring-width data from 459 canopy and understory trees from a seasonal tropical forest in western Thailand. Based on 183/459 trees, chronologies with total lengths between 29 and 62 years were produced for four out of five species. Bootstrapped correlation analysis revealed that climate-growth responses were similar among these four species. Growth was significantly negatively correlated with current-year maximum and minimum temperatures, and positively correlated with dry-season precipitation levels. Negative correlations between growth and temperature may be attributed to a positive relationship between temperature and autotrophic respiration rates. The positive relationship between growth and dry-season precipitation levels likely reflects the strong water demand during leaf flush. Mixed-effect models yielded results that were consistent across species: a negative effect of current wet-season maximum temperatures on growth, but also additive positive effects of, for example, prior dry-season maximum temperatures. Our analyses showed that annual growth variability in tropical trees is determined by a combination of both temperature and precipitation variability. With rising temperature, the predominantly negative relationship between temperature and growth may imply decreasing growth rates of tropical trees as a result of global warming.

  15. Gender-related differences in the apparent timing of skeletal density bands in the reef-building coral Siderastrea siderea

    NASA Astrophysics Data System (ADS)

    Carricart-Ganivet, J. P.; Vásquez-Bedoya, L. F.; Cabanillas-Terán, N.; Blanchon, P.

    2013-09-01

    Density banding in skeletons of reef-building corals is a valuable source of proxy environmental data. However, skeletal growth strategy has a significant impact on the apparent timing of density-band formation. Some corals employ a strategy where the tissue occupies previously formed skeleton during as the new band forms, which leads to differences between the actual and apparent band timing. To investigate this effect, we collected cores from female and male colonies of Siderastrea siderea and report tissue thicknesses and density-related growth parameters over a 17-yr interval. Correlating these results with monthly sea surface temperature (SST) shows that maximum skeletal density in the female coincides with low winter SSTs, whereas in the male, it coincides with high summer SSTs. Furthermore, maximum skeletal densities in the female coincide with peak Sr/Ca values, whereas in the male, they coincide with low Sr/Ca values. Both results indicate a 6-month difference in the apparent timing of density-band formation between genders. Examination of skeletal extension rates also show that the male has thicker tissue and extends faster, whereas the female has thinner tissue and a denser skeleton—but both calcify at the same rate. The correlation between extension and calcification, combined with the fact that density banding arises from thickening of the skeleton throughout the depth reached by the tissue layer, implies that S. siderea has the same growth strategy as massive Porites, investing its calcification resources into linear extension. In addition, differences in tissue thicknesses suggest that females offset the greater energy requirements of gamete production by generating less tissue, resulting in differences in the apparent timing of density-band formation. Such gender-related offsets may be common in other corals and require that environmental reconstructions be made from sexed colonies and that, in fossil corals where sex cannot be determined, reconstructions must be duplicated in different colonies.

  16. Effect of preventive zinc supplementation on linear growth in children under 5 years of age in developing countries: a meta-analysis of studies for input to the lives saved tool

    PubMed Central

    2011-01-01

    Introduction Zinc plays an important role in cellular growth, cellular differentiation and metabolism. The results of previous meta-analyses evaluating effect of zinc supplementation on linear growth are inconsistent. We have updated and evaluated the available evidence according to Grading of Recommendations, Assessment, Development and Evaluation (GRADE) criteria and tried to explain the difference in results of the previous reviews. Methods A literature search was done on PubMed, Cochrane Library, IZiNCG database and WHO regional data bases using different terms for zinc and linear growth (height). Data were abstracted in a standardized form. Data were analyzed in two ways i.e. weighted mean difference (effect size) and pooled mean difference for absolute increment in length in centimeters. Random effect models were used for these pooled estimates. We have given our recommendations for effectiveness of zinc supplementation in the form of absolute increment in length (cm) in zinc supplemented group compared to control for input to Live Saves Tool (LiST). Results There were thirty six studies assessing the effect of zinc supplementation on linear growth in children < 5 years from developing countries. In eleven of these studies, zinc was given in combination with other micronutrients (iron, vitamin A, etc). The final effect size after pooling all the data sets (zinc ± iron etc) showed a significant positive effect of zinc supplementation on linear growth [Effect size: 0.13 (95% CI 0.04, 0.21), random model] in the developing countries. A subgroup analysis by excluding those data sets where zinc was supplemented in combination with iron showed a more pronounced effect of zinc supplementation on linear growth [Weighed mean difference 0.19 (95 % CI 0.08, 0.30), random model]. A subgroup analysis from studies that reported actual increase in length (cm) showed that a dose of 10 mg zinc/day for duration of 24 weeks led to a net a gain of 0.37 (±0.25) cm in zinc supplemented group compared to placebo. This estimate is recommended for inclusion in Lives Saved Tool (LiST) model. Conclusions Zinc supplementation has a significant positive effect on linear growth, especially when administered alone, and should be included in national strategies to reduce stunting in children < 5 years of age in developing countries. PMID:21501440

  17. Association between intake of dietary protein and 3-year-change in body growth among normal and overweight 6-year-old boys and girls (CoSCIS).

    PubMed

    van Vught, Anneke J A H; Heitmann, Berit L; Nieuwenhuizen, Arie G; Veldhorst, Margriet A B; Andersen, Lars Bo; Hasselstrom, Henriette; Brummer, Robert-Jan M; Westerterp-Plantenga, Margriet S

    2010-05-01

    Growth hormone (GH) affects linear growth and body composition, by increasing the secretion of insulin-like growth factor-I (IGF-I), muscle protein synthesis and lipolysis. The intake of protein (PROT) as well as the specific amino acids arginine (ARG) and lysine (LYS) stimulates GH/IGF-I secretion. The present paper aimed to investigate associations between PROT intake as well as intake of the specific amino acids ARG and LYS, and subsequent 3-year-change in linear growth and body composition among 6-year-old children. Children's data were collected from Copenhagen (Denmark), during 2001-2002, and again 3 years later. Boys and girls were separated into normal weight and overweight, based on BMI quintiles. Fat-free mass index (FFMI) and fat mass index (FMI) were calculated. Associations between change (Delta) in height, FMI and FFMI, respectively, and habitual PROT intake as well as ARG and LYS were analysed by multiple linear regressions, adjusted for baseline height, FMI or FFMI and energy intake, age, physical activity and socio-economic status. Eighteen schools in two suburban communities in the Copenhagen (Denmark) area participated in the study. In all, 223 children's data were collected for the present study. High ARG intake was associated with linear growth (beta = 1.09 (se 0.54), P = 0.05) among girls. Furthermore, in girls, DeltaFMI had a stronger inverse association with high ARG intake, if it was combined with high LYS intake, instead of low LYS intake (P = 0.03). No associations were found in boys.ConclusionIn prepubertal girls, linear growth may be influenced by habitual ARG intake and body fat gain may be relatively prevented over time by the intake of the amino acids ARG and LYS.

  18. Associations of Linear Growth and Relative Weight Gain in Early Life with Human Capital at 30 Years of Age.

    PubMed

    Horta, Bernardo Lessa; Victora, Cesar G; de Mola, Christian Loret; Quevedo, Luciana; Pinheiro, Ricardo Tavares; Gigante, Denise P; Motta, Janaina Vieira Dos Santos; Barros, Fernando C

    2017-03-01

    To assess the associations of birthweight, nutritional status and growth in childhood with IQ, years of schooling, and monthly income at 30 years of age. In 1982, the 5 maternity hospitals in Pelotas, Brazil, were visited daily and 5914 live births were identified. At 30 years of age, 3701 subjects were interviewed. IQ, years of schooling, and income were measured. On average, their IQ was 98 points, they had 11.4 years of schooling, and the mean income was 1593 reais. After controlling for several confounders, birthweight and attained weight and length/height for age at 2 and 4 years of age were associated positively with IQ, years of years of schooling, and income, except for the association between length at 2 years of age and income. Conditional growth analyses were used to disentangle linear growth from relative weight gain. Conditional length at 2 years of age ≥1 SD score above the expected value, compared with ≥1 SD below the expected, was associated with an increase in IQ (4.28 points; 95% CI, 2.66-5.90), years of schooling (1.58 years; 95% CI, 1.08-2.08), and monthly income (303 Brazilian reais; 95% CI, 44-563). Relative weight gain, above what would be expected from linear growth, was not associated with the outcomes. In a middle-income setting, promotion of linear growth in the first 1000 days of life is likely to increase adult IQ, years of schooling, and income. Weight gain in excess of what is expected from linear growth does not seem to improve human capital. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Optimal control of algae growth by controlling CO 2 and nutrition flow using Pontryagin Maximum Principle

    NASA Astrophysics Data System (ADS)

    Mardlijah; Jamil, Ahmad; Hanafi, Lukman; Sanjaya, Suharmadi

    2017-09-01

    There are so many benefit of algae. One of them is using for renewable energy and sustainable in the future. The greater growth of algae will increasing biodiesel production and the increase of algae growth is influenced by glucose, nutrients and photosynthesis process. In this paper, the optimal control problem of the growth of algae is discussed. The objective function is to maximize the concentration of dry algae while the control is the flow of carbon dioxide and the nutrition. The solution is obtained by applying the Pontryagin Maximum Principle. and the result show that the concentration of algae increased more than 15 %.

  20. Effects of diffusion on total biomass in heterogeneous continuous and discrete-patch systems

    USGS Publications Warehouse

    DeAngelis, Donald L.; Ming Ni, Wei; Zhang, Bo

    2016-01-01

    Theoretical models of populations on a system of two connected patches previously have shown that when the two patches differ in maximum growth rate and carrying capacity, and in the limit of high diffusion, conditions exist for which the total population size at equilibrium exceeds that of the ideal free distribution, which predicts that the total population would equal the total carrying capacity of the two patches. However, this result has only been shown for the Pearl-Verhulst growth function on two patches and for a single-parameter growth function in continuous space. Here, we provide a general criterion for total population size to exceed total carrying capacity for three commonly used population growth rates for both heterogeneous continuous and multi-patch heterogeneous landscapes with high population diffusion. We show that a sufficient condition for this situation is that there is a convex positive relationship between the maximum growth rate and the parameter that, by itself or together with the maximum growth rate, determines the carrying capacity, as both vary across a spatial region. This relationship occurs in some biological populations, though not in others, so the result has ecological implications.

  1. Pharmacokinetics and pharmacodynamics of a human monoclonal anti‐FGF23 antibody (KRN23) in the first multiple ascending‐dose trial treating adults with X‐linked hypophosphatemia

    PubMed Central

    Imel, Erik A.; Ruppe, Mary D.; Weber, Thomas J.; Klausner, Mark A.; Ito, Takahiro; Vergeire, Maria; Humphrey, Jeffrey; Glorieux, Francis H.; Portale, Anthony A.; Insogna, Karl; Carpenter, Thomas O.; Peacock, Munro

    2015-01-01

    Abstract In X‐linked hypophosphatemia (XLH), serum fibroblast growth factor 23 (FGF23) is increased and results in reduced renal maximum threshold for phosphate reabsorption (TmP), reduced serum inorganic phosphorus (Pi), and inappropriately low normal serum 1,25 dihydroxyvitamin D (1,25[OH]2D) concentration, with subsequent development of rickets or osteomalacia. KRN23 is a recombinant human IgG1 monoclonal antibody that binds to FGF23 and blocks its activity. Up to 4 doses of KRN23 were administered subcutaneously every 28 days to 28 adults with XLH. Mean ± standard deviation KRN23 doses administered were 0.05, 0.10 ± 0.01, 0.28 ± 0.06, and 0.48 ± 0.16 mg/kg. The mean time to reach maximum serum KRN23 levels was 7.0 to 8.5 days. The mean KRN23 half‐life was 16.4 days. The mean area under the concentration–time curve (AUCn) for each dosing interval increased proportionally with increases in KRN23 dose. The mean intersubject variability in AUCn ranged from 30% to 37%. The area under the effect concentration–time curve (AUECn) for change from baseline in TmP per glomerular filtration rate, serum Pi, 1,25(OH)2D, and bone markers for each dosing interval increased linearly with increases in KRN23 AUCn. Linear correlation between serum KRN23 concentrations and increase in serum Pi support KRN23 dose adjustments based on predose serum Pi concentration. © 2015 The Authors. The Journal of Clinical Pharmacology Published by Wiley Periodicals, Inc. on behalf of American College of Clinical Pharmacology PMID:26073451

  2. Phase I safety, pharmacokinetic, and pharmacodynamic study of the thrombospondin-1-mimetic angiogenesis inhibitor ABT-510 in patients with advanced cancer.

    PubMed

    Hoekstra, Ronald; de Vos, Filip Y F L; Eskens, Ferry A L M; Gietema, Jourik A; van der Gaast, Ate; Groen, Harry J M; Knight, Raymond A; Carr, Robert A; Humerickhouse, Rod A; Verweij, Jaap; de Vries, Elisabeth G E

    2005-08-01

    ABT-510 is an angiogenesis inhibitor derived from thrombospondin-1, a naturally occurring inhibitor of angiogenesis. We investigated ABT-510, which was administered subcutaneously in patients with advanced solid malignancies, to assess safety, pharmacokinetics, and serum markers of angiogenesis. ABT-510 was administered subcutaneously as a continuous infusion (100 mg/24 h) and bolus injections (100, 200, and 260 mg once daily; 50 and 100 mg twice daily) in 28-day cycles. Thirty-nine patients received a total of 144 treatment cycles. Administration by continuous infusion was hampered by the onset of painful skin infiltrates at the injection site. In the bolus injection regimens, the most common toxicities observed were mild injection-site reactions and fatigue. Maximum-tolerated dose was not defined, but 260 mg was defined as the maximum clinically practical dose. ABT-510 pharmacokinetics were linear across the dosage ranges tested, and the potential therapeutic threshold (plasma concentrations > 100 ng/mL > 3 h/d) was achieved with all dose regimens. Median serum basic fibroblast growth factor (bFGF) levels decreased from 14.1 pg/mL (range, 0.5 to 77.7 pg/mL) at baseline to 3.2 pg/mL (range, 0.2 to 29.4 pg/mL) after 56 days of treatment (P = .003). No correlations with time on study or ABT-510 dose or exposure were observed for individual changes in bFGF. Stable disease lasting for six cycles or more was seen in six patients. ABT-510 demonstrated a favorable toxicity profile and linear and time-independent pharmacokinetics with biologically relevant plasma concentrations. The significant number of patients with prolonged stable disease and the convenient method of dosing merit further studies with this angiogenesis inhibitor.

  3. Non-normal perturbation growth in idealised island and headland wakes

    NASA Astrophysics Data System (ADS)

    Aiken, C. M.; Moore, A. M.; Middleton, J. H.

    2003-12-01

    Generalised linear stability theory is used to calculate the linear perturbations that furnish most rapid growth in energy in a model of a steady recirculating island wake. This optimal peturbation is found to be antisymmetric and to evolve into a von Kármán vortex street. Eigenanalysis of the linearised system reveals that the eigenmodes corresponding to vortex sheet formation are damped, so the growth of the perturbation is understood through the non-normality of the linearised system. Qualitatively similar perturbation growth is shown to occur in a non-linear model of stochastically-forced subcritical flow, resulting in transition to an unsteady wake. Free-stream variability with amplitude 8% of the mean inflow speed sustains vortex street structures in the non-linear model with perturbation velocities the order of the inflow speed, suggesting that environmental stochastic forcing may similarly be capable of exciting growing disturbances in real island wakes. To support this, qualitatively similar perturbation growth is demonstrated in the straining wake of a realistic island obstacle. It is shown that for the case of an idealised headland, where the vortex street eigenmodes are lacking, vortex sheets are produced through a similar non-normal process.

  4. On the growth of solutions of a class of higher order linear differential equations with coefficients having the same order

    NASA Astrophysics Data System (ADS)

    Tu, Jin; Yi, Cai-Feng

    2008-04-01

    In this paper, the authors investigate the growth of solutions of a class of higher order linear differential equationsf(k)+Ak-1f(k-1)+...+A0f=0 when most coefficients in the above equations have the same order with each other, and obtain some results which improve previous results due to K.H. Kwon [K.H. Kwon, Nonexistence of finite order solutions of certain second order linear differential equations, Kodai Math. J. 19 (1996) 378-387] and ZE-X. Chen [Z.-X. Chen, The growth of solutions of the differential equation f''+e-zf'+Q(z)f=0, Sci. China Ser. A 31 (2001) 775-784 (in Chinese); ZE-X. Chen, On the hyper order of solutions of higher order differential equations, Chinese Ann. Math. Ser. B 24 (2003) 501-508 (in Chinese); Z.-X. Chen, On the growth of solutions of a class of higher order differential equations, Acta Math. Sci. Ser. B 24 (2004) 52-60 (in Chinese); Z.-X. Chen, C.-C. Yang, Quantitative estimations on the zeros and growth of entire solutions of linear differential equations, Complex Var. 42 (2000) 119-133].

  5. Modelling subject-specific childhood growth using linear mixed-effect models with cubic regression splines.

    PubMed

    Grajeda, Laura M; Ivanescu, Andrada; Saito, Mayuko; Crainiceanu, Ciprian; Jaganath, Devan; Gilman, Robert H; Crabtree, Jean E; Kelleher, Dermott; Cabrera, Lilia; Cama, Vitaliano; Checkley, William

    2016-01-01

    Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration. We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life. Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p < 0.001) when using a linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p < 0.001) and slopes (p < 0.001) of the individual growth trajectories. We also identified important serial correlation within the structure of the data (ρ = 0.66; 95 % CI 0.64 to 0.68; p < 0.001), which we modeled with a first order continuous autoregressive error term as evidenced by the variogram of the residuals and by a lack of association among residuals. The final model provides a parametric linear regression equation for both estimation and prediction of population- and individual-level growth in height. We show that cubic regression splines are superior to linear regression splines for the case of a small number of knots in both estimation and prediction with the full linear mixed effect model (AIC 19,352 vs. 19,598, respectively). While the regression parameters are more complex to interpret in the former, we argue that inference for any problem depends more on the estimated curve or differences in curves rather than the coefficients. Moreover, use of cubic regression splines provides biological meaningful growth velocity and acceleration curves despite increased complexity in coefficient interpretation. Through this stepwise approach, we provide a set of tools to model longitudinal childhood data for non-statisticians using linear mixed-effect models.

  6. Maximum plant height and the biophysical factors that limit it.

    PubMed

    Niklas, Karl J

    2007-03-01

    Basic engineering theory and empirically determined allometric relationships for the biomass partitioning patterns of extant tree-sized plants show that the mechanical requirements for vertical growth do not impose intrinsic limits on the maximum heights that can be reached by species with woody, self-supporting stems. This implies that maximum tree height is constrained by other factors, among which hydraulic constraints are plausible. A review of the available information on scaling relationships observed for large tree-sized plants, nevertheless, indicates that mechanical and hydraulic requirements impose dual restraints on plant height and thus, may play equally (but differentially) important roles during the growth of arborescent, large-sized species. It may be the case that adaptations to mechanical and hydraulic phenomena have optimized growth, survival and reproductive success rather than longevity and mature size.

  7. Two Aspects of the Simplex Model: Goodness of Fit to Linear Growth Curve Structures and the Analysis of Mean Trends.

    ERIC Educational Resources Information Center

    Mandys, Frantisek; Dolan, Conor V.; Molenaar, Peter C. M.

    1994-01-01

    Studied the conditions under which the quasi-Markov simplex model fits a linear growth curve covariance structure and determined when the model is rejected. Presents a quasi-Markov simplex model with structured means and gives an example. (SLD)

  8. Plasma endotoxin core antibody concentration and linear growth are unrelated in rural Malawian children aged 2-5 years

    USDA-ARS?s Scientific Manuscript database

    Environmental enteropathy is subclinical inflammation of the upper gastrointestinal tract associated with reduced linear growth in developing countries. Usually investigators have used biopsy or a dual sugar absorption test to assess environmental enteropathy. Such tests are time and resource intens...

  9. Is blue intensity ready to replace maximum latewood density as a strong temperature proxy? A tree-ring case study on Scots pine from northern Sweden

    NASA Astrophysics Data System (ADS)

    Björklund, J. A.; Gunnarson, B. E.; Seftigen, K.; Esper, J.; Linderholm, H. W.

    2013-09-01

    At high latitudes, where low temperatures mainly limit tree-growth, measurements of wood density (e.g. Maximum Latewood Density, MXD) using the X-Ray methodology provide a temperature proxy that is superior to that of TRW. Density measurements are however costly and time consuming and have lead to experimentation with optical flatbed scanners to produce Maximum Blue Intensity (BImax). BImax is an excellent proxy for density on annual scale but very limited in skill on centennial scale. Discolouration between samples is limiting BImax where specific brightnesses can have different densities. To overcome this, the new un-exploited parameter Δ blue intensity (ΔBI) was constructed by using the brightness in the earlywood (BIEW) as background, (BImax - BIEW = ΔBI). This parameter was tested on X-Ray material (MXD - earlywood density = ΔMXD) and showed great potential both as a quality control and as a booster of climate signals. Unfortunately since the relationship between grey scale and density is not linear, and between-sample brightness can differ tremendously for similar densities, ΔBI cannot fully match ΔMXD in skill as climate proxy on centennial scale. For ΔBI to stand alone, the range of brightness/density offset must be reduced. Further studies are needed to evaluate this possibility, and solutions might include heavier sample treatment (reflux with chemicals) or image-data treatment (digitally manipulating base-line levels of brightness).

  10. An integrated structural and geochemical study of fracture aperture growth in the Campito Formation of eastern California

    NASA Astrophysics Data System (ADS)

    Doungkaew, N.; Eichhubl, P.

    2015-12-01

    Processes of fracture formation control flow of fluid in the subsurface and the mechanical properties of the brittle crust. Understanding of fundamental fracture growth mechanisms is essential for understanding fracture formation and cementation in chemically reactive systems with implications for seismic and aseismic fault and fracture processes, migration of hydrocarbons, long-term CO2 storage, and geothermal energy production. A recent study on crack-seal veins in deeply buried sandstone of east Texas provided evidence for non-linear fracture growth, which is indicated by non-elliptical kinematic fracture aperture profiles. We hypothesize that similar non-linear fracture growth also occurs in other geologic settings, including under higher temperature where solution-precipitation reactions are kinetically favored. To test this hypothesis, we investigate processes of fracture growth in quartzitic sandstone of the Campito Formation, eastern California, by combining field structural observations, thin section petrography, and fluid inclusion microthermometry. Fracture aperture profile measurements of cemented opening-mode fractures show both elliptical and non-elliptical kinematic aperture profiles. In general, fractures that contain fibrous crack-seal cement have elliptical aperture profiles. Fractures filled with blocky cement have linear aperture profiles. Elliptical fracture aperture profiles are consistent with linear-elastic or plastic fracture mechanics. Linear aperture profiles may reflect aperture growth controlled by solution-precipitation creep, with the aperture distribution controlled by solution-precipitation kinetics. We hypothesize that synkinematic crack-seal cement preserves the elliptical aperture profiles of elastic fracture opening increments. Blocky cement, on the other hand, may form postkinematically relative to fracture opening, with fracture opening accommodated by continuous solution-precipitation creep.

  11. Identifying ontogenetic, environmental and individual components of forest tree growth

    PubMed Central

    Chaubert-Pereira, Florence; Caraglio, Yves; Lavergne, Christian; Guédon, Yann

    2009-01-01

    Background and Aims This study aimed to identify and characterize the ontogenetic, environmental and individual components of forest tree growth. In the proposed approach, the tree growth data typically correspond to the retrospective measurement of annual shoot characteristics (e.g. length) along the trunk. Methods Dedicated statistical models (semi-Markov switching linear mixed models) were applied to data sets of Corsican pine and sessile oak. In the semi-Markov switching linear mixed models estimated from these data sets, the underlying semi-Markov chain represents both the succession of growth phases and their lengths, while the linear mixed models represent both the influence of climatic factors and the inter-individual heterogeneity within each growth phase. Key Results On the basis of these integrative statistical models, it is shown that growth phases are not only defined by average growth level but also by growth fluctuation amplitudes in response to climatic factors and inter-individual heterogeneity and that the individual tree status within the population may change between phases. Species plasticity affected the response to climatic factors while tree origin, sampling strategy and silvicultural interventions impacted inter-individual heterogeneity. Conclusions The transposition of the proposed integrative statistical modelling approach to cambial growth in relation to climatic factors and the study of the relationship between apical growth and cambial growth constitute the next steps in this research. PMID:19684021

  12. Step-Growth Polymerization.

    ERIC Educational Resources Information Center

    Stille, J. K.

    1981-01-01

    Following a comparison of chain-growth and step-growth polymerization, focuses on the latter process by describing requirements for high molecular weight, step-growth polymerization kinetics, synthesis and molecular weight distribution of some linear step-growth polymers, and three-dimensional network step-growth polymers. (JN)

  13. Fundamental mechanisms of growth failure in inflammatory bowel disease.

    PubMed

    Ballinger, Anne

    2002-01-01

    Growth failure is common in children with inflammatory bowel disease (IBD) and has been attributed chiefly to undernutrition. Liquid enteral feeding can reverse the calorie deficit and increase growth velocity. The inflammatory process per se may also directly inhibit linear growth. After institution of enteral nutrition, significant changes in serum growth factors and inflammatory indices have been observed before any changes in nutritional parameters [Bannerjee et al., Gastroenterology 2000;118:A526]. In rats with trinitrobenzenesulphonic acid (TNBS)-induced colitis, about 60% of the final growth impairment can be attributed to undernutrition, inflammation accounting for the remaining growth deficit. Young patients with Crohn's disease and growth failure have normal stimulated and spontaneous growth hormone (GH) secretion and reduced plasma concentrations of insulin-like growth factor-1 (IGF-I), suggesting a degree of GH resistance. Rats with TNBS colitis also have normal plasma GH and reduced IGF-I concentrations, mediated by a combination of undernutrition and active inflammation. Immunoneutralization of interleukin-6 (IL-6) increases hepatic IGF-I mRNA expression, plasma concentrations of IGF-I and linear growth. In contrast, administration of anti-tumour necrosis factor-alpha antibodies (TNF-ab) had no effect on IGF-I in this model. TNFab did, however, increase linear growth, suggesting inhibitory effects of TNF-alpha on the growth axis by mechanisms other than reduction in IGF-I. Preliminary data suggests that TNF-alpha inhibits maturation of growth plate chondrocytes. We have identified IL-6 receptors on growth plate chondrocytes but to date have not identified the effect, if any, of IL-6 directly at the growth plate. Copyright 2002 S. Karger AG, Basel

  14. Practical Application of Linear Growth Measurements in Clinical Research in Low- and Middle-Income Countries

    PubMed Central

    Wit, Jan M.; Himes, John H.; van Buuren, Stef; Denno, Donna M.; Suchdev, Parminder S.

    2017-01-01

    Background/Aims Childhood stunting is a prevalent problem in low- and middle-income countries and is associated with long-term adverse neurodevelopment and health outcomes. In this review, we define indicators of growth, discuss key challenges in their analysis and application, and offer suggestions for indicator selection in clinical research contexts. Methods Critical review of the literature. Results Linear growth is commonly expressed as length-for-age or height-for-age z-score (HAZ) in comparison to normative growth standards. Conditional HAZ corrects for regression to the mean where growth changes relate to previous status. In longitudinal studies, growth can be expressed as ΔHAZ at 2 time points. Multilevel modeling is preferable when more measurements per individual child are available over time. Height velocity z-score reference standards are available for children under the age of 2 years. Adjusting for covariates or confounders (e.g., birth weight, gestational age, sex, parental height, maternal education, socioeconomic status) is recommended in growth analyses. Conclusion The most suitable indicator(s) for linear growth can be selected based on the number of available measurements per child and the child's age. By following a step-by-step algorithm, growth analyses can be precisely and accurately performed to allow for improved comparability within and between studies. PMID:28196362

  15. Secular evolution of eccentricity in protoplanetary discs with gap-opening planets

    NASA Astrophysics Data System (ADS)

    Teyssandier, Jean; Ogilvie, Gordon I.

    2017-06-01

    We explore the evolution of the eccentricity of an accretion disc perturbed by an embedded planet whose mass is sufficient to open a large gap in the disc. Various methods for representing the orbit-averaged motion of an eccentric disc are discussed. We characterize the linear instability that leads to the growth of eccentricity by means of hydrodynamical simulations. We numerically recover the known result that eccentricity growth in the disc is possible when the planet-to-star mass ratio exceeds 3 × 10-3. For mass ratios larger than this threshold, the precession rates and growth rates derived from simulations, as well as the shape of the eccentric mode, compare well with the predictions of a linear theory of eccentric discs. We study mechanisms by which the eccentricity growth eventually saturates into a non-linear regime.

  16. A necessary condition for dispersal driven growth of populations with discrete patch dynamics.

    PubMed

    Guiver, Chris; Packman, David; Townley, Stuart

    2017-07-07

    We revisit the question of when can dispersal-induced coupling between discrete sink populations cause overall population growth? Such a phenomenon is called dispersal driven growth and provides a simple explanation of how dispersal can allow populations to persist across discrete, spatially heterogeneous, environments even when individual patches are adverse or unfavourable. For two classes of mathematical models, one linear and one non-linear, we provide necessary conditions for dispersal driven growth in terms of the non-existence of a common linear Lyapunov function, which we describe. Our approach draws heavily upon the underlying positive dynamical systems structure. Our results apply to both discrete- and continuous-time models. The theory is illustrated with examples and both biological and mathematical conclusions are drawn. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Relative maxima of diameter and basal area

    Treesearch

    Thomas B. Lynch; Difei Zhang

    2012-01-01

    It has often been observed that maximum dbh growth occurs at an earlier age than maximum individual tree basal area growth. This can be deduced from the geometry of the tree stem, by observing that a dbh increment at a given radius will be associated with a larger basal area increment than an equal dbh increment occurring at a shorter radius from the stem center. Thus...

  18. Maximum stand density for ponderosa pine and red and white fir in northern California

    Treesearch

    William.W. Oliver; Fabian C.C. Uzoh

    1997-01-01

    Why are forest managers interested in quantifying maximum stand density? Nearly all conceivable management objectives dictate a stand density less than a biological maximum. Certainly, the notion that thinning dense stands increases growth on the remaining trees and reduces mortality is well-established in the literature. The interest in quantifying maximum stand...

  19. Growth and laccase production kinetics of Trametes versicolor in a stirred tank reactor.

    PubMed

    Thiruchelvam, A T; Ramsay, Juliana A

    2007-03-01

    White rot fungi are a promising option to treat recalcitrant organic molecules, such as lignin, polycyclic aromatic hydrocarbons, and textile dyes, because of the lignin-modifying enzymes (LMEs) they secrete. Because knowledge of the kinetic parameters is important to better design and operate bioreactors to cultivate these fungi for degradation and/or to produce LME(s), these parameters were determined using Trametes versicolor ATCC 20869 (ATCC, American Type Culture Collection) in a magnetic stir bar reactor. A complete set of kinetic data has not been previously published for this culture. Higher than previously reported growth rates with high laccase production of up to 1,385 U l(-1) occurred during growth without [Formula: see text] or glucose limitation. The maximum specific growth rate averaged 0.94 +/- 0.23 day(-1), whereas the maximum specific substrate consumption rates for glucose and ammonium were 3.37 +/- 1.16 and 0.15 +/- 0.04 day(-1), respectively. The maximum specific oxygen consumption rate was 1.63 +/- 0.36 day(-1).

  20. Growth rate of the linear Richtmyer-Meshkov instability when a shock is reflected

    NASA Astrophysics Data System (ADS)

    Wouchuk, J. G.

    2001-05-01

    An analytic model is presented to calculate the growth rate of the linear Richtmyer-Meshkov instability in the shock-reflected case. The model allows us to calculate the asymptotic contact surface perturbation velocity for any value of the incident shock intensity, arbitrary fluids compressibilities, and for any density ratio at the interface. The growth rate comes out as the solution of a system of two coupled functional equations and is expressed formally as an infinite series. The distinguishing feature of the procedure shown here is the high speed of convergence of the intermediate calculations. There is excellent agreement with previous linear simulations and experiments done in shock tubes.

  1. [Influence of different levels of irrigation and nitrogen application on the root growth and yield of spring wheat under permanent raised bed.

    PubMed

    Chen, Juan; Ma, Zhong Ming; Lyu, Xiao Dong; Liu, Ting Ting

    2016-05-01

    To establish an optimum combination of water and nitrogen for spring under permanent raised bed (PRB) tillage, a field investigation was carried out to assess effects of irrigation and N application on root growth, yield, irrigation water productivity and N efficiency. The experiment followed a completely randomized split-plot design, taking furrow irrigation 1200 m 3 ·hm -2 (W 1 ), 2400 m 3 ·hm -2 (W 2 ), 3600 m 3 ·hm -2 (W 3 ) as main plot treatments, and N rates (0, 90, 180, 270 kg·hm -2 ) the sub-plot treatments. Our results showed that the root mass density (RWD) was significantly affected by irrigation and N application, the RWD of spring wheat reached a maximum at the filling stage, followed by a slow decline until maturity, while the effect of N on RWD depended on soil water conditions. The application of N 2 produced the maximum RWD under W 2 irrigation, the application of N 1 produced the maximum RWD under W 1 irrigation, and the application of N 3 produced the maximum RWD under W 3 irrigation. The order of irrigation regime effect on RWD of spring wheat was W 2 >W 3 >W 1 . The order of irrigation regime and N rate effect on RWD of spring wheat was irrigation>N>irrigation and N interaction. W 2 N 2 treatment produced the highest RWD value. The root-to-shoot ratio (R/S) descended with the rising of irrigation water and nitrogen amount, and the combined treatment (W 1 N 0 ) produced the maximum R/S. The root system was mainly distributed in the 0-40 cm soil layer, in which the RWD accounted for 85% of the total RWD in 0-80 cm soil depth. There was a significantly positive relationship between RWD in the 0-40 cm and the yield of spring wheat, RWD in the 40-60 cm had higher linear dependence on the yield of spring wheat. W 2 increased the proportion of RWD in the deep soil layer (40-60 cm). The irrigation and N rate had a significant impact on biomass and grain yield of spring wheat, the biomass increased as the N rate and water amount increased, W 2 N 2 treatment produced the highest grain yield, irrigation water productivity descended with increasing the irrigation amount, and the nitrogen agronomic efficiency descended with increasing N rate. It was concluded that the irrigation level W 2 (2400 m 3 ·hm -2 ) and nitrogen level N 2 (180 kg·hm -2 ) could be recommended as the best combination of water and N, which promoted the root growth, improved grain yield, water and nitrogen use efficiencies of spring wheat production under PRB tillage in the experimental area.

  2. Postnatal Brain Growth Assessed by Sequential Cranial Ultrasonography in Infants Born <30 Weeks' Gestational Age.

    PubMed

    Cuzzilla, R; Spittle, A J; Lee, K J; Rogerson, S; Cowan, F M; Doyle, L W; Cheong, J L Y

    2018-06-01

    Brain growth in the early postnatal period following preterm birth has not been well described. This study of infants born at <30 weeks' gestational age and without major brain injury aimed to accomplish the following: 1) assess the reproducibility of linear measures made from cranial ultrasonography, 2) evaluate brain growth using sequential cranial ultrasonography linear measures from birth to term-equivalent age, and 3) explore perinatal predictors of postnatal brain growth. Participants comprised 144 infants born at <30 weeks' gestational age at a single center between January 2011 and December 2013. Infants with major brain injury seen on cranial ultrasonography or congenital or chromosomal abnormalities were excluded. Brain tissue and fluid spaces were measured from cranial ultrasonography performed as part of routine clinical care. Brain growth was assessed in 3 time intervals: <7, 7-27, and >27 days' postnatal age. Data were analyzed using intraclass correlation coefficients and mixed-effects regression. A total of 429 scans were assessed for 144 infants. Several linear measures showed excellent reproducibility. All measures of brain tissue increased with postnatal age, except for the biparietal diameter, which decreased within the first postnatal week and increased thereafter. Gestational age of ≥28 weeks at birth was associated with slower growth of the biparietal diameter and ventricular width compared with gestational age of <28 weeks. Postnatal corticosteroid administration was associated with slower growth of the corpus callosum length, transcerebellar diameter, and vermis height. Sepsis and necrotizing enterocolitis were associated with slower growth of the transcerebellar diameter. Postnatal brain growth in infants born at <30 weeks' gestational age can be evaluated using sequential linear measures made from routine cranial ultrasonography and is associated with perinatal predictors of long-term development. © 2018 by American Journal of Neuroradiology.

  3. Otolith development in larval and juvenile Schizothorax davidi: ontogeny and growth increment characteristics

    NASA Astrophysics Data System (ADS)

    Yan, Taiming; Hu, Jiaxiang; Cai, Yueping; Xiong, Sen; Yang, Shiyong; Wang, Xiongyan; He, Zhi

    2017-09-01

    Laboratory-reared Schizothorax davidi larvae and juveniles were examined to assess the formation and characteristics of David's schizothoracin otoliths. Otolith development was observed and their formation period was verified by monitoring larvae and juveniles of known age. The results revealed that lapilli and sagittae developed before hatching, and the first otolith increment was identified at 2 days post hatching in both. The shape of lapilli was relatively stable during development compared with that of sagittae; however, growth of four sagittae and lapilli areas was consistent, but the posterior area grew faster than the anterior area and the ventral surface grew faster than the dorsal surface. Similarly, the sum length of the radius of the anterior and posterior areas on sagittae and lapilli were linearly and binomially related to total fish length, respectively. Moreover, daily deposition rates were validated by monitoring knownage larvae and juveniles. The increase in lapilli width was 1.88±0.080 0 μm at the ninth increment, which reached a maximum and the decreased gradually toward the otolith edge, whereas that of sagittae increased more slowly. These results illustrate the developmental biology of S. davidi, which will aid in population conservation and fish stock management.

  4. Heritable non-lethal damage to cultured human cells irradiated with heavy ions.

    PubMed

    Walker, James T; Todd, Paul; Walker, Olivia A

    2002-12-01

    During interplanetary flights the nuclei of all of a crew member's cells could be traversed by at least one high-LET (Linear Energy Transfer) cosmic-ray particle. In mammalian cells irradiated in vitro about 1 in 10,000 of the surviving cells traversed by heavy particles is transformed to malignancy or mutated. What, if anything, happens to the remaining >99% of surviving cells? A retrospective analysis of archived data and samples from heavy-ion irradiation experiments with cultured human cells in vitro indicated that heavy ions caused a dose- and LET-dependent reduction in growth rates of progeny of irradiated cells, based on colony-size distributions. The maximum action cross section for this effect is between 100 and 300 microm2, at least as large as the cell nuclear area and up to 3 times the cross section for cell killing. Thus, heritable slow growth is the most prevalent effect of high-LET radiations on cultured animal cells, which may have implications for crew health during deep space travel. The views expressed in this article are those of the author(s) and do not necessarily reflect the views or policies of the USEPA.

  5. Maximum Likelihood Estimation of Nonlinear Structural Equation Models with Ignorable Missing Data

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Song, Xin-Yuan; Lee, John C. K.

    2003-01-01

    The existing maximum likelihood theory and its computer software in structural equation modeling are established on the basis of linear relationships among latent variables with fully observed data. However, in social and behavioral sciences, nonlinear relationships among the latent variables are important for establishing more meaningful models…

  6. Small size transformer provides high power regulation with low ripple and maximum control

    NASA Technical Reports Server (NTRS)

    Manoli, R.; Ulrich, B. R.

    1971-01-01

    Single, variable, transformer/choke device does work of several. Technique reduces drawer assembly physical size and design and manufacturing cost. Device provides power, voltage current and impedance regulation while maintaining maximum control of linearity and ensuring extremely low ripple. Nulling is controlled to very fine degree.

  7. Abnormal gut integrity is associated with reduced linear growth in rural Malawian children

    USDA-ARS?s Scientific Manuscript database

    The aim of the present study was to investigate the relation of environmental enteropathy, as measured by the dual sugar absorption test, to linear growth faltering in 2- to 5-year-old Malawian children. Dietary quality, food insecurity, anthropometry, and site-specific sugar testing were measured i...

  8. The effects of oxcarbazepine and valproate therapies on growth in children with epilepsy.

    PubMed

    Cansu, Ali; Yesilkaya, Ediz; Serdaroglu, Ayse; Camurdan, Orhun; Hirfanoglu, Tugba Luleci; Karaoglu, Abdulbaki; Bideci, Aysun; Cinaz, Peyami

    2012-01-01

    This study aimed to evaluate the effects of monotherapy with valproate or oxcarbazepine on the linear growth of children with idiopathic epilepsy. Antiepileptic treatment with valproate or oxcarbazepine was initiated in 76 patients. These were evaluated at baseline and at 6 and 18 months after commencement of therapy to determine height standard deviations (height z-scores). Serum ghrelin, insulin-like growth factor-1, and insulin-like growth factor-binding protein-3 levels were measured. In prepubertal patients receiving oxcarbazepine, height z-scores were elevated after 6 and 18 months of therapy (p = 0.008 and p = 0.001, respectively); in pubertal patients, a significant increase was noted at the 18th month of therapy (p = 0.004). In prepubertal patients receiving oxcarbazepine, serum standardized insulin-like growth factor-1 and insulin-like growth factor-binding protein-3 levels were significantly higher at the 18th month of therapy compared with baseline (p = 0.005 and p = 0.004, respectively). In puber-tal patients receiving valproate, serum ghrelin levels were significantly decreased at the 18th month of therapy compared with baseline (p = 0.006). Exposure to oxcarbazepine stimulated linear growth in epileptic patients through mechanisms involving the release of insulin-like growth factor-1 and insulin-like growth factor-binding protein-3. In contrast, expo-sure to valproate did not affect linear growth, but did lead to a decrease in serum ghrelin levels.

  9. Effects of socioeconomic position and social mobility on linear growth from early childhood until adolescence.

    PubMed

    Muraro, Ana Paula; Souza, Rita Adriana Gomes de; Rodrigues, Paulo Rogério Melo; Ferreira, Márcia Gonçalves; Sichieri, Rosely

    2017-01-01

    To assess the effect of socioeconomic position (SEP) in childhood and social mobility on linear growth through adolescence in a population-based cohort. Children born in Cuiabá-MT, central-western Brazil, were evaluated during 1994 - 1999. They were first assessed during 1999 - 2000 (0 - 5 years) and again during 2009 - 2011 (10 - 17 years), and their height-for-age was evaluated during these two periods.Awealth index was used to classify the SEP of each child's family as low, medium, or high. Social mobility was categorized as upward mobility or no upward mobility. Linear mixed models were used. We evaluated 1,716 children (71.4% of baseline) after 10 years, and 60.6% of the families showed upward mobility, with a higher percentage among the lowest economic classes. A higher height-for-age was also observed among those from families with a high SEP both in childhood (low SEP= -0.35 z-score; high SEP= 0.15 z-score, p < 0.01) and adolescence (low SEP= -0.01 z-score; high SEP= 0.45 z-score, p < 0.01), whereas upward mobility did not affect their linear growth. Expressive social mobility was observed, but SEP in childhood and social mobility did not greatly influence linear growth through childhood in this central-western Brazilian cohort.

  10. Nonlinear verification of a linear critical gradient model for energetic particle transport by Alfven eigenmodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bass, Eric M.; Waltz, R. E.

    Here, a “stiff transport” critical gradient model of energetic particle (EP) transport by EPdriven Alfven eigenmodes (AEs) is verified against local nonlinear gyrokinetic simulations of a well-studied beam-heated DIII-D discharge 146102. A greatly simplifying linear “recipe” for the limiting EP-density gradient (critical gradient) is considered here. In this recipe, the critical gradient occurs when the AE linear growth rate, driven mainly by the EP gradient, exceeds the ion temperature gradient (ITG) or trapped electron mode (TEM) growth rate, driven by the thermal plasma gradient, at the same toroidal mode number (n) as the AE peak growth, well below the ITG/TEMmore » peak n. This linear recipe for the critical gradient is validated against the critical gradient determined from far more expensive local nonlinear simulations in the gyrokinetic code GYRO, as identified by the point of transport runaway when all driving gradients are held fixed. The reduced linear model is extended to include the stabilization from equilibrium E×B velocity shear. The nonlinear verification unambiguously endorses one of two alternative recipes proposed in Ref. 1: the EP-driven AE growth rate should be determined with rather than without added thermal plasma drive.« less

  11. Nonlinear verification of a linear critical gradient model for energetic particle transport by Alfven eigenmodes

    DOE PAGES

    Bass, Eric M.; Waltz, R. E.

    2017-12-08

    Here, a “stiff transport” critical gradient model of energetic particle (EP) transport by EPdriven Alfven eigenmodes (AEs) is verified against local nonlinear gyrokinetic simulations of a well-studied beam-heated DIII-D discharge 146102. A greatly simplifying linear “recipe” for the limiting EP-density gradient (critical gradient) is considered here. In this recipe, the critical gradient occurs when the AE linear growth rate, driven mainly by the EP gradient, exceeds the ion temperature gradient (ITG) or trapped electron mode (TEM) growth rate, driven by the thermal plasma gradient, at the same toroidal mode number (n) as the AE peak growth, well below the ITG/TEMmore » peak n. This linear recipe for the critical gradient is validated against the critical gradient determined from far more expensive local nonlinear simulations in the gyrokinetic code GYRO, as identified by the point of transport runaway when all driving gradients are held fixed. The reduced linear model is extended to include the stabilization from equilibrium E×B velocity shear. The nonlinear verification unambiguously endorses one of two alternative recipes proposed in Ref. 1: the EP-driven AE growth rate should be determined with rather than without added thermal plasma drive.« less

  12. Newborn length predicts early infant linear growth retardation and disproportionately high weight gain in a low-income population.

    PubMed

    Berngard, Samuel Clark; Berngard, Jennifer Bishop; Krebs, Nancy F; Garcés, Ana; Miller, Leland V; Westcott, Jamie; Wright, Linda L; Kindem, Mark; Hambidge, K Michael

    2013-12-01

    Stunting is prevalent by the age of 6 months in the indigenous population of the Western Highlands of Guatemala. The objective of this study was to determine the time course and predictors of linear growth failure and weight-for-age in early infancy. One hundred and forty eight term newborns had measurements of length and weight in their homes, repeated at 3 and 6 months. Maternal measurements were also obtained. Mean ± SD length-for-age Z-score (LAZ) declined from newborn -1.0 ± 1.01 to -2.20 ± 1.05 and -2.26 ± 1.01 at 3 and 6 months respectively. Stunting rates for newborn, 3 and 6 months were 47%, 53% and 56% respectively. A multiple regression model (R(2) = 0.64) demonstrated that the major predictor of LAZ at 3 months was newborn LAZ with the other predictors being newborn weight-for-age Z-score (WAZ), gender and maternal education∗maternal age interaction. Because WAZ remained essentially constant and LAZ declined during the same period, weight-for-length Z-score (WLZ) increased from -0.44 to +1.28 from birth to 3 months. The more severe the linear growth failure, the greater WAZ was in proportion to the LAZ. The primary conclusion is that impaired fetal linear growth is the major predictor of early infant linear growth failure indicating that prevention needs to start with maternal interventions. © 2013.

  13. Equilibrium E × B Flows in Nonlinear Gyrofluid Flux-Tube Simulations

    NASA Astrophysics Data System (ADS)

    Beer, M. A.; Hammett, G. W.

    2000-10-01

    Comparisons of theory with experiment often indicate levels of sheared E × B flow large enough to significantly suppress turbulence, especially when local transport barriers are formed. We extend our previous simulations by including equilibrium scale sheared E × B flow directly, by introducing a coordinate transformation which shears the simulation domain with the equilibrium E × B flow, while preserving smooth statistical periodicity across the radial domain. This method was used linearly in our previous comparisons with JET [Beer, Budny, Challis, et al., EPS (1999)] and is now applied to nonlinear simulations. This method makes use of some tricks suggested for this problem by Dimits [Int. Conf. on Numerical Simulation of Plasmas (1994)] based on special properties of discrete Fourier transforms. A similar coordinate transformation was previously used successfully by Waltz, et al. [Phys. Plasmas 5, 1784 (1998)], and we confirm their finding that the turbulence is suppressed when the shearing rate, ω_E, is comparable to the maximum linear growth rate in the absence of sheared flow, γ_lin. This is often significantly different than the threshold for linear suppression. With this extension, our simulations are able to address transport barriers from a more rigorous footing. Of particular interest will be the investigation of the expansion or propagation of barriers, where E × B shear suppression is by definition at the marginal point. In addition, our formulation uses general magnetic geometry, so we can rigorously investigate various geometrical effects (e.g. hats, Δ', κ) on the threshold for suppression.

  14. Screening of Bacillus coagulans strains in lignin supplemented minimal medium with high throughput turbidity measurements.

    PubMed

    Glaser, Robert; Venus, Joachim

    2014-12-01

    The aim of this study was to extend the options for screening and characterization of microorganism through kinetic growth parameters. In order to obtain data, automated turbidimetric measurements were accomplished to observe the response of strains of Bacillus coagulans . For the characterization, it was decided to examine the influence of varying concentrations of lignin with respect to bacterial growth. Different mathematical models are used for comparison: logistic, Gompertz, Baranyi and Richards and Stannard. The growth response was characterized by parameters like maximum growth rate, maximum population, and the lag time. In this short analysis we present a mathematical approach towards a comparison of different microorganisms. Furthermore, it can be demonstrated that lignin in low concentrations can have a positive influence on the growth of B. coagulans .

  15. Cyproterone acetate in treatment of precocious puberty.

    PubMed Central

    Kauli, R; Pertzelan, A; Prager-Lewin, R; Grünebaum, M; Laron, Z

    1976-01-01

    Twenty-nine children (23 girls, 6 boys) with precocious puberty were treated with cyproterone acetate for various periods of time ranging from 6 months to 3 years 4 months. They received an oral dose ranging from 70-150 mg/m2 per day, or an intramuscular depot injection once a fortnight or once a month at a dose ranging from 107-230 mg/m2. Both forms of therapy were found to suppress the signs of sexual maturation, but the oral form proved to be superior. Only the younger patients with a bone age under 11 years showed a beneficial effect upon linear growth and bone maturation. No side effects were noted, but additional advantageous effects upon behaviour and sociability were. It is concluded that at present cyproterone acetate by mouth is the drug of choice in the treatment of precocious puberty. The treatment should be initiated as early as possible to attain maximum benefit. PMID:952553

  16. Calcium phosphate coatings modified with zinc- or copper- incorporation on Ti-40Nb alloy

    NASA Astrophysics Data System (ADS)

    Komarova, E. G.; Sedelnikova, M. B.; Sharkeev, Yu P.; Kazakbaeva, A. A.; Glukhov, I. A.; Khimich, M. A.

    2017-05-01

    The influence of the microarc oxidation parameters and electrolyte composition on the structure, properties and composition of CaP coatings modified with Zn- or Cu- incorporation on the Ti-40mas.%Nb (Ti-40Nb) alloy was investigated. The linear growth of thickness, roughness, and size of structural elements with process voltage increasing has been revealed. It was shown that the CaP coatings have the low contact angles with liquids and, consequently, high free surface energy. This indicates a high hydrophilicity of the coatings. X-ray diffraction analysis showed that the coatings have X-ray amorphous structure. The increase of the process voltage leads to the formation of such crystalline phases as CaHPO4 and β-Ca2P2O7 in the coatings. The maximum Ca/P atomic ratio was equal to 0.4, and Zn or Cu contents was equal to 0.3 or 0.2 at.%, respectively.

  17. Numerical Study of Hydrothermal Wave Suppression in Thermocapillary Flow Using a Predictive Control Method

    NASA Astrophysics Data System (ADS)

    Muldoon, F. H.

    2018-04-01

    Hydrothermal waves in flows driven by thermocapillary and buoyancy effects are suppressed by applying a predictive control method. Hydrothermal waves arise in the manufacturing of crystals, including the "open boat" crystal growth process, and lead to undesirable impurities in crystals. The open boat process is modeled using the two-dimensional unsteady incompressible Navier-Stokes equations under the Boussinesq approximation and the linear approximation of the surface thermocapillary force. The flow is controlled by a spatially and temporally varying heat flux density through the free surface. The heat flux density is determined by a conjugate gradient optimization algorithm. The gradient of the objective function with respect to the heat flux density is found by solving adjoint equations derived from the Navier-Stokes ones in the Boussinesq approximation. Special attention is given to heat flux density distributions over small free-surface areas and to the maximum admissible heat flux density.

  18. Energy dynamics in a simulation of LAPD turbulence

    NASA Astrophysics Data System (ADS)

    Friedman, Brett

    2012-10-01

    It is often assumed that linear instabilities maintain turbulence in plasmas and some fluids, but this is not always the case. It is well known that many fluids display subcritical turbulence at a Reynolds number well below the threashold of linear instability. Certain plasma models such as drift waves in a sheared slab also exhibit subcritical turbulence [1]. In other instances such as drift-ballooning turbulence in tokamak edge plasmas, linear instabilities exist in a system, but they become subdominant to more robust nonlinear mechanisms that sustain a turbulent state [2, 3]. In our simulation of LAPD turbulence, which was previously analyzed in [4], we diagnose the results using an energy dynamics analysis [5]. This allows us to track energy input into turbulent fluctuations and energy dissipation out of them. We also track conservative energy transfer between different energy types (e.g. from potential to kinetic energy) and between different Fourier waves of the system. The result is that a nonlinear instability drives and maintains the turbulence in the steady state saturated phase of the simulation. While a linear restistive drift wave instability resides in the system, the nonlinear drift wave instability dominates when the fluctuation amplitude becomes large enough. The nonlinear instability is identified by its energy growth rate spectrum, which varies significantly from the linear growth rate spectrum. The main differences are the presence of positive growth rates when k|| = 0 and negative growth rates for nonzero k||, which is opposite that of the linear growth rate spectrum.[4pt] [1] B. D. Scott, Phys. Rev. Lett., 65, 3289 (1990).[0pt] [2] A. Zeiler et al, Phys. Plasmas, 3, 2951 (1996).[0pt] [3] B. D. Scott, Phys. Plasmas, 12, 062314 (2005).[0pt] [4] P. Popovich et al, Phys. Plasmas, 17, 122312 (2010).[0pt] [5] [physics.plasm-ph].

  19. Mechanism of Growth Enhancement of Plants Induced by Active Species in Plasmas

    NASA Astrophysics Data System (ADS)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya

    2015-09-01

    Plant growth enhances when seeds are irradiated by plasma. However the mechanism of the growth enhancement by plasma has not been clarified. In this study, growth enhancement of plants using various active species and variation of plant cells are investigated. RF plasma is generated under conditions where pressure is 60 Pa and input electrical power is 60 W. Irradiation period varies from 0 (control) to 75 min. Air plasma shows maximum growth of plants with irradiation period of 60 min on the other hand, oxygen plasma shows the maximum growth with irradiation period of 15 min. From change of gaseous species and pressure dependence, growth enhancing factor is expected to be active oxygen species produced in plasma. According to gene expression analysis of Arabidopsis, there are two speculated mechanism of plant growth enhancement. The first is acceleration of cell cycle by gene expressions of photosynthesis and glycolytic pathway, and the second is increase of cell size via plant hormone production.

  20. Shock spectra applications to a class of multiple degree-of-freedom structures system

    NASA Technical Reports Server (NTRS)

    Hwang, Shoi Y.

    1988-01-01

    The demand on safety performance of launching structure and equipment system from impulsive excitations necessitates a study which predicts the maximum response of the system as well as the maximum stresses in the system. A method to extract higher modes and frequencies for a class of multiple degree-of-freedom (MDOF) Structure system is proposed. And, along with the shock spectra derived from a linear oscillator model, a procedure to obtain upper bound solutions for maximum displacement and maximum stresses in the MDOF system is presented.

  1. Time and Memory Efficient Online Piecewise Linear Approximation of Sensor Signals.

    PubMed

    Grützmacher, Florian; Beichler, Benjamin; Hein, Albert; Kirste, Thomas; Haubelt, Christian

    2018-05-23

    Piecewise linear approximation of sensor signals is a well-known technique in the fields of Data Mining and Activity Recognition. In this context, several algorithms have been developed, some of them with the purpose to be performed on resource constrained microcontroller architectures of wireless sensor nodes. While microcontrollers are usually constrained in computational power and memory resources, all state-of-the-art piecewise linear approximation techniques either need to buffer sensor data or have an execution time depending on the segment’s length. In the paper at hand, we propose a novel piecewise linear approximation algorithm, with a constant computational complexity as well as a constant memory complexity. Our proposed algorithm’s worst-case execution time is one to three orders of magnitude smaller and its average execution time is three to seventy times smaller compared to the state-of-the-art Piecewise Linear Approximation (PLA) algorithms in our experiments. In our evaluations, we show that our algorithm is time and memory efficient without sacrificing the approximation quality compared to other state-of-the-art piecewise linear approximation techniques, while providing a maximum error guarantee per segment, a small parameter space of only one parameter, and a maximum latency of one sample period plus its worst-case execution time.

  2. Influence of Environmental Variables on Gambierdiscus spp. (Dinophyceae) Growth and Distribution

    PubMed Central

    Xu, Yixiao; Richlen, Mindy L.; Liefer, Justin D.; Robertson, Alison; Kulis, David; Smith, Tyler B.; Parsons, Michael L.; Anderson, Donald M.

    2016-01-01

    Benthic dinoflagellates in the genus Gambierdiscus produce the ciguatoxin precursors responsible for the occurrence of ciguatera toxicity. The prevalence of ciguatera toxins in fish has been linked to the presence and distribution of toxin-producing species in coral reef ecosystems, which is largely determined by the presence of suitable benthic habitat and environmental conditions favorable for growth. Here using single factor experiments, we examined the effects of salinity, irradiance, and temperature on growth of 17 strains of Gambierdiscus representing eight species/phylotypes (G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, G. pacificus, G. silvae, Gambierdiscus sp. type 4–5), most of which were established from either Marakei Island, Republic of Kiribati, or St. Thomas, United States Virgin Island (USVI). Comparable to prior studies, growth rates fell within the range of 0–0.48 divisions day-1. In the salinity and temperature studies, Gambierdiscus responded in a near Gaussian, non-linear manner typical for such studies, with optimal and suboptimal growth occurring in the range of salinities of 25 and 45 and 21.0 and 32.5°C. In the irradiance experiment, no mortality was observed; however, growth rates at 55μmol photons · m-2 · s-1 were lower than those at 110–400μmol photons · m-2 · s-1. At the extremes of the environmental conditions tested, growth rates were highly variable, evidenced by large coefficients of variability. However, significant differences in intraspecific growth rates were typically found only at optimal or near-optimal growth conditions. Polynomial regression analyses showed that maximum growth occurred at salinity and temperature levels of 30.1–38.5 and 23.8–29.2°C, respectively. Gambierdiscus growth patterns varied among species, and within individual species: G. belizeanus, G. caribaeus, G. carpenteri, and G. pacificus generally exhibited a wider range of tolerance to environmental conditions, which may explain their broad geographic distribution. In contrast, G. silvae and Gambierdiscus sp. types 4–5 all displayed a comparatively narrow range of tolerance to temperature, salinity, and irradiance. PMID:27074134

  3. The effects of buoyancy on shear-induced melt bands in a compacting porous medium

    NASA Astrophysics Data System (ADS)

    Butler, S. L.

    2009-03-01

    It has recently been shown [Holtzman, B., Groebner, N., Zimmerman, M., Ginsberg, S., Kohlstedt, D., 2003. Stress-driven melt segregation in partially molten rocks. Geochem. Geophys. Geosyst. 4, Art. No. 8607; Holtzman, B.K., Kohlstedt, D.L., 2007. Stress-driven melt segregation and strain partitioning in partially molten rocks: effects of stress and strain. J. Petrol. 48, 2379-2406] that when partially molten rock is subjected to simple shear, bands of high and low porosity are formed at a particular angle to the direction of instantaneous maximum extension. These have been modeled numerically and it has been speculated that high porosity bands may form an interconnected network with a bulk, effective permeability that is enhanced in a direction parallel to the bands. As a result, the bands may act to focus mantle melt towards the axis of mid-ocean ridges [Katz, R.F., Spiegelman, M., Holtzman, B., 2006. The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676-679]. In this contribution, we examine the combined effects of buoyancy and matrix shear on a deforming porous layer. The linear theory of Spiegelman [Spiegelman, M., 1993. Flow in deformable porous media. Part 1. Simple analysis. J. Fluid Mech. 247, 17-38; Spiegelman, M., 2003. Linear analysis of melt band formation by simple shear. Geochem. Geophys. Geosyst. 4, doi:10.1029/2002GC000499, Article 8615] and Katz et al. [Katz, R.F., Spiegelman, M., Holtzman, B., 2006. The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676-679] is generalized to include both the effects of buoyancy and matrix shear on a deformable porous layer with strain-rate dependent rheology. The predictions of linear theory are compared with the early time evolution of our 2D numerical model and they are found to be in excellent agreement. For conditions similar to the upper mantle, buoyancy forces can be similar to or much greater than matrix shear-induced forces. The results of the numerical model indicate that bands form when buoyancy forces are large and that these can significantly alter the direction of the flow of liquid away from vertical. The bands form at angles similar to the angle of maximum instantaneous growth rate. Consequently, for strongly strain-rate dependent rheology, there may be two sets of bands formed that are symmetric about the direction of maximum compressive stress in the background mantle flow. This second set of bands would reduce the efficiency with which melt bands would focus melts towards the ridge axis.

  4. F-region enhancements induced by solar flares

    NASA Technical Reports Server (NTRS)

    Donnelly, R. F.; Davies, K.; Grubb, R. N.; Fritz, R. B.

    1976-01-01

    ATS-6 total electron content (NT) observations during solar flares exhibit four types of response: (1) a sudden increase in NT (SITEC) for about 2 min with several maxima in growth rate, then a maximum or a distinct slowing in growth, followed by a slow smooth increase to a flat peak, and finally a slow decay in NT; (2) a SITEC that occurs during ionospheric storms, where NT decays abruptly after the first maximum; (3) slow enhancements devoid of distinct impulsive structure in growth rate; and (4) no distinct response in NT, even for relatively large soft X-ray flares. Flare-induced increases in NT are dominated by low-loss F2 ionization produced by 90-911-A emission. The impulsive flare component is relatively intense in the 90-911-A range, but is short lived and weak for flares near the edge of the visible solar disk and for certain slow flares. The impulsive flare component produces the rapid rise, the sharp maxima in growth rate, and the first maximum in SITECs. The slow flare components are strong in the 1-90-A range but relatively weak in the 90-911-A range and accumulatively contribute to the second maximum in type 1 and 3 events, except during storms when F2 loss rates are abnormally high in type 2 events.

  5. Control of Growth Rate by Initial Substrate Concentration at Values Below Maximum Rate

    PubMed Central

    Gaudy, Anthony F.; Obayashi, Alan; Gaudy, Elizabeth T.

    1971-01-01

    The hyperbolic relationship between specific growth rate, μ, and substrate concentration, proposed by Monod and used since as the basis for the theory of steady-state growth in continuous-flow systems, was tested experimentally in batch cultures. Use of a Flavobacterium sp. exhibiting a high saturation constant for growth in glucose minimal medium allowed direct measurement of growth rate and substrate concentration throughout the growth cycle in medium containing a rate-limiting initial concentration of glucose. Specific growth rates were also measured for a wide range of initial glucose concentrations. A plot of specific growth rate versus initial substrate concentration was found to fit the hyperbolic equation. However, the instantaneous relationship between specific growth rate and substrate concentration during growth, which is stated by the equation, was not observed. Well defined exponential growth phases were developed at initial substrate concentrations below that required for support of the maximum exponential growth rate and a constant doubling time was maintained until 50% of the substrate had been used. It is suggested that the external substrate concentration initially present “sets” the specific growth rate by establishing a steady-state internal concentration of substrate, possibly through control of the number of permeation sites. PMID:5137579

  6. Three estimates of the association between linear growth failure and cognitive ability.

    PubMed

    Cheung, Y B; Lam, K F

    2009-09-01

    To compare three estimators of association between growth stunting as measured by height-for-age Z-score and cognitive ability in children, and to examine the extent statistical adjustment for covariates is useful for removing confounding due to socio-economic status. Three estimators, namely random-effects, within- and between-cluster estimators, for panel data were used to estimate the association in a survey of 1105 pairs of siblings who were assessed for anthropometry and cognition. Furthermore, a 'combined' model was formulated to simultaneously provide the within- and between-cluster estimates. Random-effects and between-cluster estimators showed strong association between linear growth and cognitive ability, even after adjustment for a range of socio-economic variables. In contrast, the within-cluster estimator showed a much more modest association: For every increase of one Z-score in linear growth, cognitive ability increased by about 0.08 standard deviation (P < 0.001). The combined model verified that the between-cluster estimate was significantly larger than the within-cluster estimate (P = 0.004). Residual confounding by socio-economic situations may explain a substantial proportion of the observed association between linear growth and cognition in studies that attempt to control the confounding by means of multivariable regression analysis. The within-cluster estimator provides more convincing and modest results about the strength of association.

  7. Linear Stability of Binary Alloy Solidification for Unsteady Growth Rates

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.

    2010-01-01

    An extension of the Mullins and Sekerka (MS) linear stability analysis to the unsteady growth rate case is considered for dilute binary alloys. In particular, the stability of the planar interface during the initial solidification transient is studied in detail numerically. The rapid solidification case, when the system is traversing through the unstable region defined by the MS criterion, has also been treated. It has been observed that the onset of instability is quite accurately defined by the "quasi-stationary MS criterion", when the growth rate and other process parameters are taken as constants at a particular time of the growth process. A singular behavior of the governing equations for the perturbed quantities at the constitutional supercooling demarcation line has been observed. However, when the solidification process, during its transient, crosses this demarcation line, a planar interface is stable according to the linear analysis performed.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L. F., E-mail: wang-lifeng@iapcm.ac.cn; Ye, W. H.; Liu, Jie

    In this research, a weakly nonlinear (WN) model has been developed considering the growth of a small perturbation on a cylindrical interface between two incompressible fluids which is subject to arbitrary radial motion. We derive evolution equations for the perturbation amplitude up to third order, which can depict the linear growth of the fundamental mode, the generation of the second and third harmonics, and the third-order (second-order) feedback to the fundamental mode (zero-order). WN solutions are obtained for a special uniformly convergent case. WN analyses are performed to address the dependence of interface profiles, amplitudes of inward-going and outward-going parts,more » and saturation amplitudes of linear growth of the fundamental mode on the Atwood number, the mode number (m), and the initial perturbation. The difference of WN evolution in cylindrical geometry from that in planar geometry is discussed in some detail. It is shown that interface profiles are determined mainly by the inward and outward motions rather than bubbles and spikes. The amplitudes of inward-going and outward-going parts are strongly dependent on the Atwood number and the initial perturbation. For low-mode perturbations, the linear growth of fundamental mode cannot be saturated by the third-order feedback. For fixed Atwood numbers and initial perturbations, the linear growth of fundamental mode can be saturated with increasing m. The saturation amplitude of linear growth of the fundamental mode is typically 0.2λ–0.6λ for m < 100, with λ being the perturbation wavelength. Thus, it should be included in applications where Bell-Plesset [G. I. Bell, Los Alamos Scientific Laboratory Report No. LA-1321, 1951; M. S. Plesset, J. Appl. Phys. 25, 96 (1954)] converging geometry effects play a pivotal role, such as inertial confinement fusion implosions.« less

  9. Characterization of interspecific hybrid dikaryons of the oyster mushrooms, Pleurotus florida PAU-5 and P. sajor-caju PAU-3 (higher Basidiomycetes) from India.

    PubMed

    Jaswal, Ravinder Kumar; Sodhi, Harpreet Singh; Sharma, Shivani

    2014-01-01

    Five Pleurotus hybrid dikaryons, developed through cross-breeding of P. florida PAU-5 (PF-5) and P. sajor-caju PAU-3 (PSC-3) were characterized with respect to textural properties, color, and enzymatic and genetic variability. Texture profile revealed significant differences in springiness, resilience, cohesiveness, and chewiness between all hybrids compared to the parents. Among the hybrid cultures, maximum whiteness was reported in hybrid 37, whereas hybrid 8 had minimum whiteness. Three hybrids (16, 37, 42) showed an increased linear growth rate in relation to PF-5, whereas no hybrid showed a higher growth rate than PSC-3. Maximum endoglucanase and xylanase activity was observed in hybrid 46, whereas minimum activity occurred in hybrid 42. Laccase and protease activity was higher in hybrid 37 and 46, respectively. Four hybrids (16, 37, 42, 46) showed increased peroxidase activity in relation to PF-5, whereas hybrid 46 showed activity higher than the parent PSC-3. Comparison of isozyme patterns confirmed the hybrid nature of hybrid 16. The large variation in the intensity of bands could be a result of recombination. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of extracellular enzymes revealed 60.3- and 43-KDa bands in all the hybrids. An additional 25-KDa band was reported in hybrids 37, 42, and 46 and the parent PF-5, indicating their close relatedness. Parental strains showed higher divergence in small-subunit ribosomal DNA region compared with the internal transcribed spacer region, indicating their significance in varietal discrimination. Hybrid 46 had a small-subunit ribosomal DNA region more similar to that of PSC-3 compared with PF-5, whereas the internal transcribed spacer region of hybrids 42 and 46 revealed close resemblance to that of PF-5 and PSC-3, respectively.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brent, R.L.

    Many professionals are unfamiliar with radiation biology or the quantitative nature of the risks. Frequently, microwave, ultrasound, and ionizing radiation risks are confused. Although it is impossible to prove no risk for any environmental hazard, it appears that exposure to microwave radiation below the maximal permissible levels present no measurable risk to the embryo. Ultrasound exposure from diagnostic ultrasonographic imaging equipment also is quite innocuous. It is true that continued surveillance and research into potential risks of these low-level exposures should continue, but at present ultrasound not only improves obstetric care but also reduces the necessity of diagnostic x-ray procedures.more » In the field of ionizing radiation, we have as good a comprehension of the biologic effects and the quantitative maximum risks as of any other environmental hazard. Although the animal and human data support the conclusion that no increases in the incidence of gross congenital malformations, intrauterine growth retardation, or abortion will occur with exposures less than 5 rad, that does not mean that there are definitely no risks to the embryo exposed to lower doses of radiation. Whether there exists a linear or exponential dose-response relationship or a threshold exposure for genetic, carcinogenic, cell-depleting, and life-shortening effects has not been determined. In establishing maximum permissible levels for the embryo at low exposures, refer to Tables 4, 5, 6, 8, and 9. It is obvious that the risks of 1-rad or 5-rad acute exposure are far below the spontaneous risks of the developing embryo because 15 per cent of human embryos abort, 2.7 to 3.0 per cent of human embryos have major malformations, 4 per cent have intrauterine growth retardation, and 8 to 10 per cent have early- or late-onset genetic disease. 98 references.« less

  11. Ethanol Production and Maximum Cell Growth Are Highly Correlated with Membrane Lipid Composition during Fermentation as Determined by Lipidomic Analysis of 22 Saccharomyces cerevisiae Strains

    PubMed Central

    Henderson, Clark M.; Lozada-Contreras, Michelle; Jiranek, Vladimir; Longo, Marjorie L.

    2013-01-01

    Optimizing ethanol yield during fermentation is important for efficient production of fuel alcohol, as well as wine and other alcoholic beverages. However, increasing ethanol concentrations during fermentation can create problems that result in arrested or sluggish sugar-to-ethanol conversion. The fundamental cellular basis for these problem fermentations, however, is not well understood. Small-scale fermentations were performed in a synthetic grape must using 22 industrial Saccharomyces cerevisiae strains (primarily wine strains) with various degrees of ethanol tolerance to assess the correlation between lipid composition and fermentation kinetic parameters. Lipids were extracted at several fermentation time points representing different growth phases of the yeast to quantitatively analyze phospholipids and ergosterol utilizing atmospheric pressure ionization-mass spectrometry methods. Lipid profiling of individual fermentations indicated that yeast lipid class profiles do not shift dramatically in composition over the course of fermentation. Multivariate statistical analysis of the data was performed using partial least-squares linear regression modeling to correlate lipid composition data with fermentation kinetic data. The results indicate a strong correlation (R2 = 0.91) between the overall lipid composition and the final ethanol concentration (wt/wt), an indicator of strain ethanol tolerance. One potential component of ethanol tolerance, the maximum yeast cell concentration, was also found to be a strong function of lipid composition (R2 = 0.97). Specifically, strains unable to complete fermentation were associated with high phosphatidylinositol levels early in fermentation. Yeast strains that achieved the highest cell densities and ethanol concentrations were positively correlated with phosphatidylcholine species similar to those known to decrease the perturbing effects of ethanol in model membrane systems. PMID:23064336

  12. Ethanol production and maximum cell growth are highly correlated with membrane lipid composition during fermentation as determined by lipidomic analysis of 22 Saccharomyces cerevisiae strains.

    PubMed

    Henderson, Clark M; Lozada-Contreras, Michelle; Jiranek, Vladimir; Longo, Marjorie L; Block, David E

    2013-01-01

    Optimizing ethanol yield during fermentation is important for efficient production of fuel alcohol, as well as wine and other alcoholic beverages. However, increasing ethanol concentrations during fermentation can create problems that result in arrested or sluggish sugar-to-ethanol conversion. The fundamental cellular basis for these problem fermentations, however, is not well understood. Small-scale fermentations were performed in a synthetic grape must using 22 industrial Saccharomyces cerevisiae strains (primarily wine strains) with various degrees of ethanol tolerance to assess the correlation between lipid composition and fermentation kinetic parameters. Lipids were extracted at several fermentation time points representing different growth phases of the yeast to quantitatively analyze phospholipids and ergosterol utilizing atmospheric pressure ionization-mass spectrometry methods. Lipid profiling of individual fermentations indicated that yeast lipid class profiles do not shift dramatically in composition over the course of fermentation. Multivariate statistical analysis of the data was performed using partial least-squares linear regression modeling to correlate lipid composition data with fermentation kinetic data. The results indicate a strong correlation (R(2) = 0.91) between the overall lipid composition and the final ethanol concentration (wt/wt), an indicator of strain ethanol tolerance. One potential component of ethanol tolerance, the maximum yeast cell concentration, was also found to be a strong function of lipid composition (R(2) = 0.97). Specifically, strains unable to complete fermentation were associated with high phosphatidylinositol levels early in fermentation. Yeast strains that achieved the highest cell densities and ethanol concentrations were positively correlated with phosphatidylcholine species similar to those known to decrease the perturbing effects of ethanol in model membrane systems.

  13. Ultralow-quiescent-current and wide-load-range low-dropout linear regulator with self-biasing technique for micropower battery management

    NASA Astrophysics Data System (ADS)

    Ozaki, Toshihiro; Hirose, Tetsuya; Asano, Hiroki; Kuroki, Nobutaka; Numa, Masahiro

    2017-04-01

    In this paper, we present a 151 nA quiescent and 6.8 mA maximum-output-current low-dropout (LDO) linear regulator for micropower battery management. The LDO regulator employs self-biasing and multiple-stacked cascode techniques to achieve efficient, accurate, and high-voltage-input-tolerant operation. Measurement results demonstrated that the proposed LDO regulator operates with an ultralow quiescent current of 151 nA. The maximum output currents with a 4.16 V output were 1.0 and 6.8 mA when the input voltages were 4.25 and 5.0 V, respectively.

  14. A rod type linear ultrasonic motor utilizing longitudinal traveling waves: proof of concept

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Wielert, Tim; Twiefel, Jens; Jin, Jiamei; Wallaschek, Jörg

    2017-08-01

    This paper proposes a non-resonant linear ultrasonic motor utilizing longitudinal traveling waves. The longitudinal traveling waves in the rod type stator are generated by inducing longitudinal vibrations at one end of the waveguide and eliminating reflections at the opposite end by a passive damper. Considering the Poisson’s effect, the stator surface points move on elliptic trajectories and the slider is driven forward by friction. In contrast to many other flexural traveling wave linear ultrasonic motors, the driving direction of the proposed motor is identical to the wave propagation direction. The feasibility of the motor concept is demonstrated theoretically and experimentally. First, the design and operation principle of the motor are presented in detail. Then, the stator is modeled utilizing the transfer matrix method and verified by experimental studies. In addition, experimental parameter studies are carried out to identify the motor characteristics. Finally, the performance of the proposed motor is investigated. Overall, the results indicate very dynamic drive characteristics. The motor prototype achieves a maximum mean velocity of 115 mm s-1 and a maximum load of 0.25 N. Thereby, the start-up and shutdown times from the maximum speed are lower than 5 ms.

  15. MEMS earthworm: a thermally actuated peristaltic linear micromotor

    NASA Astrophysics Data System (ADS)

    Arthur, Craig; Ellerington, Neil; Hubbard, Ted; Kujath, Marek

    2011-03-01

    This paper examines the design, fabrication and testing of a bio-mimetic MEMS (micro-electro mechanical systems) earthworm motor with external actuators. The motor consists of a passive mobile shuttle with two flexible diamond-shaped segments; each segment is independently squeezed by a pair of stationary chevron-shaped thermal actuators. Applying a specific sequence of squeezes to the earthworm segments, the shuttle can be driven backward or forward. Unlike existing inchworm drives that use clamping and thrusting actuators, the earthworm actuators apply only clamping forces to the shuttle, and lateral thrust is produced by the shuttle's compliant geometry. The earthworm assembly is fabricated using the PolyMUMPs process with planar dimensions of 400 µm width by 800 µm length. The stationary actuators operate within the range of 4-9 V and provide a maximum shuttle range of motion of 350 µm (approximately half its size), a maximum shuttle speed of 17 mm s-1 at 10 kHz, and a maximum dc shuttle force of 80 µN. The shuttle speed was found to vary linearly with both input voltage and input frequency. The shuttle force was found to vary linearly with the actuator voltage.

  16. Reproduction and early-life accommodations of landlocked alewives to a southern range extension

    USGS Publications Warehouse

    Nigro, A.A.; Ney, John J.

    1982-01-01

    Reproduction and first-year growth and food habits of landlocked alewives Alosa pseudoharengus in Claytor Lake, Virginia were examined and compared to descriptions for populations in the species' established New England-Great Lakes range. Alewives in mesothermal (2–27 C) Claytor Lake are shorter-lived (3 years) but grow faster, mature earlier (age 1), and have higher relative and absolute fecundities than have been reported for populations in colder northern waters. The 1979 spawning period extended from early May to early August, beginning at least 1 month earlier and lasting 4–9 weeks longer than in northern lakes. Changes in ovary condition during the spawning period suggest that alewives may be fractional spawners. Evidence of spawning was found in littoral areas throughout the lower 15 km of the reservoir. Growth in length of age-0 Claytor Lake alewives was linear through September and terminated in late autumn. Total first-year growth was reduced in 1979 (maximum of 130 mm total length, TL) from previous years (average of 160 mm TL), although it was substantially greater than recorded in the Great Lakes and the northeastern United States. The longer growing season, rather than accelerated in-season growth, appears to account for larger size achieved in Claytor Lake. High annual growth limits predation by Claytor Lake game fish on early spawned age-0 alewives by late summer. As elsewhere, larval and juvenile alewives (6–70 mm TL) fed primarily on copepods and cladocerans. Age-0 alewives longer than 35 mm TL demonstrated positive size-selection for cyclopoid copepods comparable to that shown by adults. Our findings suggest that self-sustaining alewife populations can be established in many inland waters but raise concerns regarding their forage value and community impacts.

  17. Clostridium tyrobutyricum strains show wide variation in growth at different NaCl, pH, and temperature conditions.

    PubMed

    Ruusunen, Marjo; Surakka, Anu; Korkeala, Hannu; Lindström, Miia

    2012-10-01

    Outgrowth from Clostridium tyrobutyricum spores in milk can lead to butyric acid fermentation in cheeses, causing spoilage and economical loss to the dairy industry. The aim of this study was to investigate the growth of 10 C. tyrobutyricum strains at different NaCl, pH, and temperature conditions. Up to 7.5-fold differences among the maximum growth rates of different strains in the presence of 2.0% NaCl were observed. Five of 10 strains were able to grow in the presence of 3.0% NaCl, while a NaCl concentration of 3.5% was completely inhibitory to all strains. Seven of 10 strains were able to grow at pH 5.0, and up to 4- and 12.5-fold differences were observed among the maximum growth rates of different strains at pH 5.5 and 7.5, respectively. The maximum growth temperatures varied from 40.2 to 43.3°C. The temperature of 10°C inhibited the growth of all strains, while 8 of 10 strains grew at 12 and 15°C. Despite showing no growth, all strains were able to survive at 10°C. In conclusion, wide variation was observed among different C. tyrobutyricum strains in their ability to grow at different stressful conditions. Understanding the physiological diversity among the strains is important when designing food control measures and predictive models for the growth of spoilage organisms in cheese.

  18. A Variational Approach to the Denoising of Images Based on Different Variants of the TV-Regularization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bildhauer, Michael, E-mail: bibi@math.uni-sb.de; Fuchs, Martin, E-mail: fuchs@math.uni-sb.de

    2012-12-15

    We discuss several variants of the TV-regularization model used in image recovery. The proposed alternatives are either of nearly linear growth or even of linear growth, but with some weak ellipticity properties. The main feature of the paper is the investigation of the analytic properties of the corresponding solutions.

  19. Growth trajectories and intellectual abilities in young adulthood: The Helsinki Birth Cohort study.

    PubMed

    Räikkönen, Katri; Forsén, Tom; Henriksson, Markus; Kajantie, Eero; Heinonen, Kati; Pesonen, Anu-Katriina; Leskinen, Jukka T; Laaksonen, Ilmo; Osmond, Clive; Barker, David J P; Eriksson, Johan G

    2009-08-15

    Slow childhood growth is associated with poorer intellectual ability. The critical periods of growth remain uncertain. Among 2,786 Finnish male military conscripts (1952-1972) born in 1934-1944, the authors tested how specific growth periods from birth to age 20 years predicted verbal, visuospatial, and arithmetic abilities at age 20. Small head circumference at birth predicted poorer verbal, visuospatial, and arithmetic abilities. The latter 2 measures were also associated with lower weight and body mass index (weight (kg)/height (m)(2)) at birth (for a 1-standard-deviation (SD) decrease in test score per SD decrease in body size > or = 0.05, P's < 0.04). Slow linear growth and weight gain between birth and age 6 months, between ages 6 months and 2 years, or both predicted poorer performance on all 3 tests (for a 1-SD decrease in test score per SD decrease in growth > or = 0.05, P's < 0.03). Reduced linear growth between ages 2 and 7 years predicted worse verbal ability, and between age 11 years and conscription it predicted worse performance on all 3 tests. Prenatal brain growth and linear growth up to 2 years after birth form a first critical period for intellectual development. There is a second critical period, specific for verbal development, between ages 2 and 7 years and a third critical period for all 3 tested outcomes during adolescence.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asplund, Curtis T., E-mail: ca2621@columbia.edu; Berenstein, David, E-mail: dberens@physics.ucsb.edu

    We consider oscillators evolving subject to a periodic driving force that dynamically entangles them, and argue that this gives the linearized evolution around periodic orbits in a general chaotic Hamiltonian dynamical system. We show that the entanglement entropy, after tracing over half of the oscillators, generically asymptotes to linear growth at a rate given by the sum of the positive Lyapunov exponents of the system. These exponents give a classical entropy growth rate, in the sense of Kolmogorov, Sinai and Pesin. We also calculate the dependence of this entropy on linear mixtures of the oscillator Hilbert-space factors, to investigate themore » dependence of the entanglement entropy on the choice of coarse graining. We find that for almost all choices the asymptotic growth rate is the same.« less

  1. Non-Linear Relationship between Economic Growth and CO2 Emissions in China: An Empirical Study Based on Panel Smooth Transition Regression Models

    PubMed Central

    Wang, Zheng-Xin; Hao, Peng; Yao, Pei-Yi

    2017-01-01

    The non-linear relationship between provincial economic growth and carbon emissions is investigated by using panel smooth transition regression (PSTR) models. The research indicates that, on the condition of separately taking Gross Domestic Product per capita (GDPpc), energy structure (Es), and urbanisation level (Ul) as transition variables, three models all reject the null hypothesis of a linear relationship, i.e., a non-linear relationship exists. The results show that the three models all contain only one transition function but different numbers of location parameters. The model taking GDPpc as the transition variable has two location parameters, while the other two models separately considering Es and Ul as the transition variables both contain one location parameter. The three models applied in the study all favourably describe the non-linear relationship between economic growth and CO2 emissions in China. It also can be seen that the conversion rate of the influence of Ul on per capita CO2 emissions is significantly higher than those of GDPpc and Es on per capita CO2 emissions. PMID:29236083

  2. Non-Linear Relationship between Economic Growth and CO₂ Emissions in China: An Empirical Study Based on Panel Smooth Transition Regression Models.

    PubMed

    Wang, Zheng-Xin; Hao, Peng; Yao, Pei-Yi

    2017-12-13

    The non-linear relationship between provincial economic growth and carbon emissions is investigated by using panel smooth transition regression (PSTR) models. The research indicates that, on the condition of separately taking Gross Domestic Product per capita (GDPpc), energy structure (Es), and urbanisation level (Ul) as transition variables, three models all reject the null hypothesis of a linear relationship, i.e., a non-linear relationship exists. The results show that the three models all contain only one transition function but different numbers of location parameters. The model taking GDPpc as the transition variable has two location parameters, while the other two models separately considering Es and Ul as the transition variables both contain one location parameter. The three models applied in the study all favourably describe the non-linear relationship between economic growth and CO₂ emissions in China. It also can be seen that the conversion rate of the influence of Ul on per capita CO₂ emissions is significantly higher than those of GDPpc and Es on per capita CO₂ emissions.

  3. Leaf photoacclimatory responses of the tropical seagrass Thalassia testudinum under mesocosm conditions: a mechanistic scaling-up study.

    PubMed

    Cayabyab, Napo M; Enríquez, Susana

    2007-01-01

    Here, the leaf photoacclimatory plasticity and efficiency of the tropical seagrass Thalassia testudinum were examined. Mesocosms were used to compare the variability induced by three light conditions, two leaf sections and the variability observed at the collection site. The study revealed an efficient photosynthetic light use at low irradiances, but limited photoacclimatory plasticity to increase maximum photosynthetic rates (P(max)) and saturation (E(k)) and compensation (E(c)) irradiances under high light irradiance. A strong, positive and linear association between the percentage of daylight hours above saturation and the relative maximum photochemical efficiency (F(V)/F(M)) reduction observed between basal and apical leaf sections was also found. The results indicate that T. testudinum leaves have a shade-adapted physiology. However, the large amount of heterotrophic biomass that this seagrass maintains may considerably increase plant respiratory demands and their minimum quantum requirements for growth (MQR). Although the MQR still needs to be quantified, it is hypothesized that the ecological success of this climax species in the oligotrophic and highly illuminated waters of the Caribbean may rely on the ability of the canopy to regulate the optimal leaf light environment and the morphological plasticity of the whole plant to enhance total leaf area and to reduce carbon respiratory losses.

  4. Determinants of linear growth in Malaysian children with cerebral palsy.

    PubMed

    Zainah, S H; Ong, L C; Sofiah, A; Poh, B K; Hussain, I H

    2001-08-01

    To compare the linear growth and nutritional parameters of a group of Malaysian children with cerebral palsy (CP) against a group of controls, and to determine the nutritional, medical and sociodemographic factors associated with poor growth in children with CP. The linear growth of 101 children with CP and of their healthy controls matched for age, sex and ethnicity was measured using upper-arm length (UAL). Nutritional parameters of weight, triceps skin-fold thickness and mid-arm circumference were also measured. Total caloric intake was assessed using a 24-h recall of a 3-day food intake and calculated as a percentage of the Recommended Daily Allowance. Multiple regression analysis was used to determine nutritional, medical and sociodemographic factors associated with poor growth (using z-scores of UAL) in children with CP. Compared with the controls, children with CP had significantly lower mean UAL measurements (difference between means -1.1, 95% confidence interval -1.65 to - 0.59), weight (difference between means -6.0, 95% CI -7.66 to -4.34), mid-arm circumference (difference between means -1.3, 95% CI -2.06 to -0.56) and triceps skin-fold thickness (difference between means -2.5, 95% CI -3.5 to -1.43). Factors associated with low z-scores of UAL were a lower percentage of median weight (P < 0.001), tube feeding (P < 0.001) and increasing age (P < 0.001). A large proportion of Malaysian children with CP have poor nutritional status and linear growth. Nutritional assessment and management at an early age might help this group of children achieve adequate growth.

  5. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND...) The use of linearizing circuits is permitted. (c) The minimum water rejection ratio (maximum CO 2...) The minimum CO 2 rejection ratio (maximum CO 2 interference) as measured by § 86.322 for CO analyzers...

  6. Linear bubble plume model for hypolimnetic oxygenation: Full-scale validation and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Singleton, V. L.; Gantzer, P.; Little, J. C.

    2007-02-01

    An existing linear bubble plume model was improved, and data collected from a full-scale diffuser installed in Spring Hollow Reservoir, Virginia, were used to validate the model. The depth of maximum plume rise was simulated well for two of the three diffuser tests. Temperature predictions deviated from measured profiles near the maximum plume rise height, but predicted dissolved oxygen profiles compared very well with observations. A sensitivity analysis was performed. The gas flow rate had the greatest effect on predicted plume rise height and induced water flow rate, both of which were directly proportional to gas flow rate. Oxygen transfer within the hypolimnion was independent of all parameters except initial bubble radius and was inversely proportional for radii greater than approximately 1 mm. The results of this work suggest that plume dynamics and oxygen transfer can successfully be predicted for linear bubble plumes using the discrete-bubble approach.

  7. Diffusion, Viscosity and Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Myerson, Allan S.

    1996-01-01

    The diffusivity of TriGlycine Sulfate (TGS), Potassium Dihydrogen Phosphate (KDP), Ammonium Dihydrogen Phosphate (ADF) and other compounds of interest to microgravity crystal growth, in supersaturated solutions as a function of solution concentration, 'age' and 'history was studied experimentally. The factors that affect the growth of crystals from water solutions in microgravity have been examined. Three non-linear optical materials have been studied, potassium dihydrogen phosphate (KDP), ammonium dihydrogen phosphate (ADP) and triglycine sulfate (TGC). The diffusion coefficient and viscosity of supersaturated water solutions were measured. Also theoretical model of diffusivity and viscosity in a metastable state, model of crystal growth from solution including non-linear time dependent diffusivity and viscosity effect and computer simulation of the crystal growth process which allows simulation of the microgravity crystal growth were developed.

  8. Influence of zinc on growth and bone maturation in children with end stage renal disease (ESRD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagan, D.; Fleischmann, L.; Schemmel, R.A.

    1986-03-05

    Children with ESRD, age 5-19 years, were supplemented with zinc acetate (2 mg/kg BW, maximum 40 mg/da/child) to determine if zinc supplements (ZS) would improve growth and bone maturation. Twelve children completed the study. Three of the 12 did not receive ZS. Seven of the 9 ZS children were followed for 1 year pre- and 1 yr during-ZS. Two subjects were followed for shorter periods of time. Heights, weights, and hand wrist radiographs were taken at the beginning of the study, just pre-ZS, and at the end of the study. Blood was analyzed for serum alkaline phosphatase and albumin monthly.more » Alkaline phosphatase was elevated in 7 of 12 subjects pre-ZS and in 5 of 9 subjects post-ZS. Albumin levels were below normal in 7 subjects pre-ZS and 4 subjects post-ZS. Mean plasma Zn and Cu levels, 97+/-17 and 164+/-42 mcg/dl, pre-ZS, and 102+/-30 and 173+/-46 mcg/dl post-ZS, respectively, were similar. Growth velocity in males (4.1+/-2.2 cm/yr, 3.0+/-2.3 cm/yr) and females (3.9+/-0.7, 3.3+/-2.1 cm/yr) pre- and post-ZS, respectively, were similar. Bone maturation per chronological age improved after ZS in 4 of 6 subjects, 1 matured at the same rate, and one at a slower rate. It appears that ZS of children with ESRD increased the rate of bone maturation but not linear growth.« less

  9. Quantitative analysis of the growth of Salmonella stanley during alfalfa sprouting and evaluation of Enterobacter aerogenes as its surrogate.

    PubMed

    Liu, Bin; Schaffner, Donald W

    2007-02-01

    Raw seed sprouts have been implicated in several food poisoning outbreaks in the last 10 years. Few studies have included investigations of factors influencing the effectiveness of testing spent irrigation water, and in no studies to date has a nonpathogenic surrogate been identified as suitable for large-scale irrigation water testing trials. Alfalfa seeds were inoculated with Salmonella Stanley or its presumptive surrogate (nalidixic acid-resistant Enterobacter aerogenes) at three concentrations (-3, -30, and -300 CFU/g) and were then transferred into either flasks or a bench top-scale sprouting chamber. Microbial concentrations were determined in seeds, sprouts, and irrigation water at various times during a 4-day sprouting process. Data were fit to logistic regression models, and growth rates and maximum concentrations were compared using the generalized linear model procedure of SAS. No significant differences in growth rates were observed among samples taken from flasks or the chamber. Microbial concentrations in irrigation water were not significantly different from concentrations in sprout samples obtaihed at the same time. E. aerogenes concentrations were similar to those of Salmonella Stanley at corresponding time points for all three inoculum concentrations. Growth rates were also constant regardless of inoculum concentration or strain, except that lower inoculum concentrations resulted in lower final concentrations proportional to their initial concentrations. This research demonstrated that a nonpathogenic easy-to-isolate surrogate (nalidixic acid-resistant E. aerogenes) provides results similar to those obtained with Salmonella Stanley, supporting the use of this surrogate in future large-scale experiments.

  10. Low temperature growth of diamond films on optical fibers using Linear Antenna CVD system

    NASA Astrophysics Data System (ADS)

    Ficek, M.; Drijkoningen, S.; Karczewski, J.; Bogdanowicz, R.; Haenen, K.

    2016-01-01

    It is not trivial to achieve a good quality diamond-coated fibre interface due to a large difference in the properties and composition of the diamond films (or use coating even) and the optical fibre material, i.e. fused silica. One of the biggest problems is the high temperature during the deposition which influences the optical fibre or optical fibre sensor structure (e.g. long-period gratings (LPG)). The greatest advantage of a linear antenna microwave plasma enhanced chemical vapor deposition system (LA MW CVD) is the fact that it allows to grow the diamond layers at low temperature (below 300°C) [1]. High quality nanocrystalline diamond (NCD) thin films with thicknesses ranging from 70 nm to 150 nm, were deposited on silicon, glass and optical fibre substrates [2]. Substrates pretreatment by dip-coating and spin coating process with a dispersion consisting of detonation nanodiamond (DND) in dimethyl sulfoxide (DMSO) with polyvinyl alcohol (PVA) has been applied. During the deposition process the continuous mode of operation of the LA MW CVD system was used, which produces a continuous wave at a maximum power of 1.9 kW (in each antenna). Diamond films on optical fibres were obtained at temperatures below 350°C, providing a clear improvement of results compared to our earlier work [3]. The samples were characterized by scanning electron microscopy (SEM) imaging to investigate the morphology of the nanocrystalline diamond films. The film growth rate, film thickness, and optical properties in the VIS-NIR range, i.e. refractive index and extinction coefficient will be discussed based on measurements on reference quartz plates by using spectroscopic ellipsometry (SE).

  11. Long-term follow-up of patients with surgical intractable acromegaly after linear accelerator radiosurgery.

    PubMed

    Yan, Jiun-Lin; Chang, Chen-Nen; Chuang, Chi-Cheng; Hsu, Peng-Wei; Lin, Jen-Der; Wei, Kuo-Chen; Lee, Shi-Tseng; Tseng, Jen-Kan; Pai, Ping-Ching; Chen, Yao-Liang

    2013-07-01

    Radiotherapy is a crucial treatment for acromegalic patients with growth hormone (GH)-secreting pituitary tumors. However, its effect takes time. We retrospectively reviewed the long-term outcome of linear accelerator stereotactic radiosurgery (LINAC SRS) for patients with acromegaly from the perspective of biochemical remission and associated factors. Twenty-two patients presenting with residual or recurrent (GH)-secreting functional pituitary tumor between 1994 and 2004 who received LINAC SRS were enrolled and followed up for at least 3 years. Residual or recurrent tumor was defined as persistent elevated GH or insulin-like growth factor-1 (IGF-1) level and image-confirmed tumor after previous surgical treatment. Biochemical remission was defined as fasting GH less than 2.5 ng/mL with normal sex-and-age adjusted IGF-1. The mean follow-up period was 94.7 months (range 36-161 months). Overall mean biochemical remission time was 53 months (median 30 months). Biochemical control was achieved in 15 patients (68.2%) over the follow up period. One patient experienced recurrence after SRS and underwent another operation. Initial GH at diagnosis and pre-SRS GH correlated with biochemical control (p = 0.005 and p < 0.0001, respectively). Further evaluation demonstrated that biochemical control stabilized after 7.5 years. Overall post-SRS hormone deficit persisted in five patients (22.7%). In comparison to other radiosurgery modalities, LINAC radiosurgery also provides a satisfactory outcome. SRS has maximum effect over the first 2 years and stabilizes after 7.5 years. Moreover, SRS elicits long-term biochemical effects and requires longer follow-up for better biochemical remission. Copyright © 2012. Published by Elsevier B.V.

  12. Force-displacement differences in the lower extremities of young healthy adults between drop jumps and drop landings.

    PubMed

    Hackney, James M; Clay, Rachel L; James, Meredith

    2016-10-01

    We measured ground reaction force and lower extremity shortening in ten healthy, young adults in order to compare five trials of drop jumps to drop landings. Our dependent variable was the percentage of displacement (shortening) between the markers on the ASIS and second metatarsal heads on each LE, relative to the maximum shortening (100% displacement) for that trial at the point of greatest ground reaction force. We defined this as "percent displacement at maximum force" (%dFmax). The sample mean %dFmax was 0.73%±0.14% for the drop jumps, and 0.47%±0.09% for the drop landings. The mean within-subject difference score was 0.26%±0.20%. Two-tailed paired t test comparing %dFmax between the drop jump and drop landing yielded P=0.002. For all participants in this study, the %dFmax was greater in drop jumps than in drop landings. This indicates that in drop jumps, the point of maximum force and of maximum shortening was nearly simultaneous, compared to drop landings, where the point of maximum shortening followed that of maximum force by a greater proportion. This difference in force to displacement behavior is explained by linear spring behavior in drop jumps, and linear damping behavior in drop landings. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Change in Photosystem II Photochemistry During Algal Growth Phases of Chlorella vulgaris and Scenedesmus obliquus.

    PubMed

    Oukarroum, Abdallah

    2016-06-01

    Sensitivity of photosynthetic processes towards environmental stress is used as a bioanalytical tool to evaluate the responses of aquatic plants to a changing environment. In this paper, change of biomass density, chlorophyll a fluorescence and photosynthetic parameters during growth phases of two microalgae Chlorella vulgaris and Scenedesmus obliquus were studied. The photosynthetic growth behaviour changed significantly with cell age and algae species. During the exponential phase of growth, the photosynthesis capacity reached its maximum and decreased in ageing algal culture during stationary phase. In conclusion, the chlorophyll a fluorescence OJIP method and the derived fluorescence parameters would be an accurate method for obtaining information on maximum photosynthetic capacities and monitoring algal cell growth. This will contribute to more understanding, for example, of toxic actions of pollutants in microalgae test.

  14. Analysis of high-speed growth of silicon sheet in inclined-meniscus configuration

    NASA Technical Reports Server (NTRS)

    Thomas, P. D.; Brown, R. A.

    1985-01-01

    The study of high speed growth of silicon sheet in inclined-meniscus configurations is discussed. It was concluded that the maximum growth rates in vertical and inclined growth are set by thermal-capillary limits. Also, the melt/crystal interface was determined to be flat. And, vertical growth is qualitatively modelled by one dimensional heat transfer.

  15. Ninety-two years of tree growth and death in a second-growth redwood forest

    Treesearch

    Benjamin G. Iberle; Stephen C. Sillett; Robert Van Pelt; Mark Andre

    2017-01-01

    Mature second-growth redwood (Sequoia sempervirens (D. Don) Endl.) forests are an important and uncommon resource in the redwood region. Development of second-growth redwood forests beyond rotation age is not well understood. Continuous long-term data are especially lacking, considering that the maximum possible age of second-growth stands is now...

  16. Porosity localizing instability in a compacting porous layer in a pure shear flow and the evolution of porosity band wavelength

    NASA Astrophysics Data System (ADS)

    Butler, S. L.

    2010-09-01

    A porosity localizing instability occurs in compacting porous media that are subjected to shear if the viscosity of the solid matrix decreases with porosity ( Stevenson, 1989). This instability may have significant consequences for melt transport in regions of partial melt in the mantle and may significantly modify the effective viscosity of the asthenosphere ( Kohlstedt and Holtzman, 2009). Most analyses of this instability have been carried out assuming an imposed simple shear flow (e.g., Spiegelman, 2003; Katz et al., 2006; Butler, 2009). Pure shear can be realized in laboratory experiments and studying the instability in a pure shear flow allows us to test the generality of some of the results derived for simple shear and the flow pattern for pure shear more easily separates the effects of deformation from rotation. Pure shear flows may approximate flows near the tops of mantle plumes near earth's surface and in magma chambers. In this study, we present linear theory and nonlinear numerical model results for a porosity and strain-rate weakening compacting porous layer subjected to pure shear and we investigate the effects of buoyancy-induced oscillations. The linear theory and numerical model will be shown to be in excellent agreement. We will show that melt bands grow at the same angles to the direction of maximum compression as in simple shear and that buoyancy-induced oscillations do not significantly inhibit the porosity localizing instability. In a pure shear flow, bands parallel to the direction of maximum compression increase exponentially in wavelength with time. However, buoyancy-induced oscillations are shown to inhibit this increase in wavelength. In a simple shear flow, bands increase in wavelength when they are in the orientation for growth of the porosity localizing instability. Because the amplitude spectrum is always dominated by bands in this orientation, band wavelengths increase with time throughout simple shear simulations until the wavelength becomes similar to one compaction length. Once the wavelength becomes similar to one compaction length, the growth of the amplitude of the band slows and shorter wavelength bands that are increasing in amplitude at a greater rate take over. This may provide a mechanism to explain the experimental observation that band spacing is controlled by the compaction length ( Kohlstedt and Holtzman, 2009).

  17. Non-perturbative aspects of particle acceleration in non-linear electrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton, David A.; Flood, Stephen P.; Wen, Haibao

    2015-04-15

    We undertake an investigation of particle acceleration in the context of non-linear electrodynamics. We deduce the maximum energy that an electron can gain in a non-linear density wave in a magnetised plasma, and we show that an electron can “surf” a sufficiently intense Born-Infeld electromagnetic plane wave and be strongly accelerated by the wave. The first result is valid for a large class of physically reasonable modifications of the linear Maxwell equations, whilst the second result exploits the special mathematical structure of Born-Infeld theory.

  18. Microsegregation during directional solidification

    NASA Technical Reports Server (NTRS)

    Coriell, S. R.; Mcfadden, G. B.

    1984-01-01

    During the directional solidification of alloys, solute inhomogeneities transverse to the growth direction arise due to morphological instabilities (leading to cellular or dendritic growth) and/or due to convection in the melt. In the absence of convection, the conditions for the onset of morphological instability are given by the linear stability analysis of Mullins and Sekerka. For ordinary solidification rates, the predictions of linear stability analysis are similar to the constitutional supercooling criterion. However, at very rapid solidification rates, linear stability analysis predicts a vast increase in stabilization in comparison to constitutional supercooling.

  19. Using an integral projection model to assess the effect of temperature on the growth of gilthead seabream Sparus aurata.

    PubMed

    Heather, F J; Childs, D Z; Darnaude, A M; Blanchard, J L

    2018-01-01

    Accurate information on the growth rates of fish is crucial for fisheries stock assessment and management. Empirical life history parameters (von Bertalanffy growth) are widely fitted to cross-sectional size-at-age data sampled from fish populations. This method often assumes that environmental factors affecting growth remain constant over time. The current study utilized longitudinal life history information contained in otoliths from 412 juveniles and adults of gilthead seabream, Sparus aurata, a commercially important species fished and farmed throughout the Mediterranean. Historical annual growth rates over 11 consecutive years (2002-2012) in the Gulf of Lions (NW Mediterranean) were reconstructed to investigate the effect of temperature variations on the annual growth of this fish. S. aurata growth was modelled linearly as the relationship between otolith size at year t against otolith size at the previous year t-1. The effect of temperature on growth was modelled with linear mixed effects models and a simplified linear model to be implemented in a cohort Integral Projection Model (cIPM). The cIPM was used to project S. aurata growth, year to year, under different temperature scenarios. Our results determined current increasing summer temperatures to have a negative effect on S. aurata annual growth in the Gulf of Lions. They suggest that global warming already has and will further have a significant impact on S. aurata size-at-age, with important implications for age-structured stock assessments and reference points used in fisheries.

  20. Involvement of Linear Plasmids in Aerobic Biodegradation of Vinyl Chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BRIGMON, ROBINL.

    2004-06-14

    Pseudomonas putida strain AJ and Ochrobactrum strain TD were isolated from hazardous waste sites based on their ability to use vinyl chloride (VC) as a sole source of carbon and energy under aerobic conditions. Strains AJ and TD also use ethene and ethylene oxide as growth substrates. Strain AJ contained a linear megaplasmid (approximately 260 kb) when grown on VC or ethene, but no circular plasmids. While growing on ethylene oxide, the size of the linear plasmid in strain AJ decreased to approximately 100 kb, although its ability to use VC as a substrate was retained. The linear plasmids inmore » strain AJ were cured and its ability to consume VC, ethene, and ethylene oxide was lost following growth on a rich substrate (Luria-Bertani broth) through at least three transfers. Strain TD contained three linear plasmids, ranging in size from approximately 100 kb to 320 kb, when growing on VC or ethene. As with strain AJ, the linear plasmids in strain TD were cured following growth on Luria -Bertani broth and its ability to consume VC and ethene was lost. Further analysis of these linear plasmids may help reveal the pathway for VC biodegradation in strains AJ and TD and explain why this process occurs at many but not all sites where groundwater is contaminated with chloroethenes. Metabolism of VC and ethene by strains AJ and TD is initiated by an alkene monooxygenase. Their yields during growth on VC (0.15-0.20 mg total suspended solids per mg VC) are similar to the yields reported for other isolates i.e., Mycobacterium sp., Nocardioides sp., and Pseudomonas sp.« less

  1. Dual exponential polynomials and linear differential equations

    NASA Astrophysics Data System (ADS)

    Wen, Zhi-Tao; Gundersen, Gary G.; Heittokangas, Janne

    2018-01-01

    We study linear differential equations with exponential polynomial coefficients, where exactly one coefficient is of order greater than all the others. The main result shows that a nontrivial exponential polynomial solution of such an equation has a certain dual relationship with the maximum order coefficient. Several examples illustrate our results and exhibit possibilities that can occur.

  2. 40 CFR Appendix II to Part 1042 - Steady-State Duty Cycles

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the maximum test power. 3 Advance from one mode to the next within a 20-second transition phase. During the transition phase, command a linear progression from the torque setting of the current mode to... transition phase, command a linear progression from the torque setting of the current mode to the torque...

  3. On the Relation between the Linear Factor Model and the Latent Profile Model

    ERIC Educational Resources Information Center

    Halpin, Peter F.; Dolan, Conor V.; Grasman, Raoul P. P. P.; De Boeck, Paul

    2011-01-01

    The relationship between linear factor models and latent profile models is addressed within the context of maximum likelihood estimation based on the joint distribution of the manifest variables. Although the two models are well known to imply equivalent covariance decompositions, in general they do not yield equivalent estimates of the…

  4. Effective Surfactants Blend Concentration Determination for O/W Emulsion Stabilization by Two Nonionic Surfactants by Simple Linear Regression.

    PubMed

    Hassan, A K

    2015-01-01

    In this work, O/W emulsion sets were prepared by using different concentrations of two nonionic surfactants. The two surfactants, tween 80(HLB=15.0) and span 80(HLB=4.3) were used in a fixed proportions equal to 0.55:0.45 respectively. HLB value of the surfactants blends were fixed at 10.185. The surfactants blend concentration is starting from 3% up to 19%. For each O/W emulsion set the conductivity was measured at room temperature (25±2°), 40, 50, 60, 70 and 80°. Applying the simple linear regression least squares method statistical analysis to the temperature-conductivity obtained data determines the effective surfactants blend concentration required for preparing the most stable O/W emulsion. These results were confirmed by applying the physical stability centrifugation testing and the phase inversion temperature range measurements. The results indicated that, the relation which represents the most stable O/W emulsion has the strongest direct linear relationship between temperature and conductivity. This relationship is linear up to 80°. This work proves that, the most stable O/W emulsion is determined via the determination of the maximum R² value by applying of the simple linear regression least squares method to the temperature-conductivity obtained data up to 80°, in addition to, the true maximum slope is represented by the equation which has the maximum R² value. Because the conditions would be changed in a more complex formulation, the method of the determination of the effective surfactants blend concentration was verified by applying it for more complex formulations of 2% O/W miconazole nitrate cream and the results indicate its reproducibility.

  5. Locomotion of inchworm-inspired robot made of smart soft composite (SSC).

    PubMed

    Wang, Wei; Lee, Jang-Yeob; Rodrigue, Hugo; Song, Sung-Hyuk; Chu, Won-Shik; Ahn, Sung-Hoon

    2014-10-07

    A soft-bodied robot made of smart soft composite with inchworm-inspired locomotion capable of both two-way linear and turning movement has been proposed, developed, and tested. The robot was divided into three functional parts based on the different functions of the inchworm: the body, the back foot, and the front foot. Shape memory alloy wires were embedded longitudinally in a soft polymer to imitate the longitudinal muscle fibers that control the abdominal contractions of the inchworm during locomotion. Each foot of the robot has three segments with different friction coefficients to implement the anchor and sliding movement. Then, utilizing actuation patterns between the body and feet based on the looping gait, the robot achieves a biomimetic inchworm gait. Experiments were conducted to evaluate the robot's locomotive performance for both linear locomotion and turning movement. Results show that the proposed robot's stride length was nearly one third of its body length, with a maximum linear speed of 3.6 mm s(-1), a linear locomotion efficiency of 96.4%, a maximum turning capability of 4.3 degrees per stride, and a turning locomotion efficiency of 39.7%.

  6. Non-linear dynamics of stable carbon and hydrogen isotope signatures based on a biological kinetic model of aerobic enzymatic methane oxidation.

    PubMed

    Vavilin, Vasily A; Rytov, Sergey V; Shim, Natalia; Vogt, Carsten

    2016-06-01

    The non-linear dynamics of stable carbon and hydrogen isotope signatures during methane oxidation by the methanotrophic bacteria Methylosinus sporium strain 5 (NCIMB 11126) and Methylocaldum gracile strain 14 L (NCIMB 11912) under copper-rich (8.9 µM Cu(2+)), copper-limited (0.3 µM Cu(2+)) or copper-regular (1.1 µM Cu(2+)) conditions has been described mathematically. The model was calibrated by experimental data of methane quantities and carbon and hydrogen isotope signatures of methane measured previously in laboratory microcosms reported by Feisthauer et al. [ 1 ] M. gracile initially oxidizes methane by a particulate methane monooxygenase and assimilates formaldehyde via the ribulose monophosphate pathway, whereas M. sporium expresses a soluble methane monooxygenase under copper-limited conditions and uses the serine pathway for carbon assimilation. The model shows that during methane solubilization dominant carbon and hydrogen isotope fractionation occurs. An increase of biomass due to growth of methanotrophs causes an increase of particulate or soluble monooxygenase that, in turn, decreases soluble methane concentration intensifying methane solubilization. The specific maximum rate of methane oxidation υm was proved to be equal to 4.0 and 1.3 mM mM(-1) h(-1) for M. sporium under copper-rich and copper-limited conditions, respectively, and 0.5 mM mM(-1) h(-1) for M. gracile. The model shows that methane oxidation cannot be described by traditional first-order kinetics. The kinetic isotope fractionation ceases when methane concentrations decrease close to the threshold value. Applicability of the non-linear model was confirmed by dynamics of carbon isotope signature for carbon dioxide that was depleted and later enriched in (13)C. Contrasting to the common Rayleigh linear graph, the dynamic curves allow identifying inappropriate isotope data due to inaccurate substrate concentration analyses. The non-linear model pretty adequately described experimental data presented in the two-dimensional plot of hydrogen versus carbon stable isotope signatures.

  7. The role of model dynamics in ensemble Kalman filter performance for chaotic systems

    USGS Publications Warehouse

    Ng, G.-H.C.; McLaughlin, D.; Entekhabi, D.; Ahanin, A.

    2011-01-01

    The ensemble Kalman filter (EnKF) is susceptible to losing track of observations, or 'diverging', when applied to large chaotic systems such as atmospheric and ocean models. Past studies have demonstrated the adverse impact of sampling error during the filter's update step. We examine how system dynamics affect EnKF performance, and whether the absence of certain dynamic features in the ensemble may lead to divergence. The EnKF is applied to a simple chaotic model, and ensembles are checked against singular vectors of the tangent linear model, corresponding to short-term growth and Lyapunov vectors, corresponding to long-term growth. Results show that the ensemble strongly aligns itself with the subspace spanned by unstable Lyapunov vectors. Furthermore, the filter avoids divergence only if the full linearized long-term unstable subspace is spanned. However, short-term dynamics also become important as non-linearity in the system increases. Non-linear movement prevents errors in the long-term stable subspace from decaying indefinitely. If these errors then undergo linear intermittent growth, a small ensemble may fail to properly represent all important modes, causing filter divergence. A combination of long and short-term growth dynamics are thus critical to EnKF performance. These findings can help in developing practical robust filters based on model dynamics. ?? 2011 The Authors Tellus A ?? 2011 John Wiley & Sons A/S.

  8. TiO2 dye sensitized solar cell (DSSC): linear relationship of maximum power point and anthocyanin concentration

    NASA Astrophysics Data System (ADS)

    Ahmadian, Radin

    2010-09-01

    This study investigated the relationship of anthocyanin concentration from different organic fruit species and output voltage and current in a TiO2 dye-sensitized solar cell (DSSC) and hypothesized that fruits with greater anthocyanin concentration produce higher maximum power point (MPP) which would lead to higher current and voltage. Anthocyanin dye solution was made with crushing of a group of fresh fruits with different anthocyanin content in 2 mL of de-ionized water and filtration. Using these test fruit dyes, multiple DSSCs were assembled such that light enters through the TiO2 side of the cell. The full current-voltage (I-V) co-variations were measured using a 500 Ω potentiometer as a variable load. Point-by point current and voltage data pairs were measured at various incremental resistance values. The maximum power point (MPP) generated by the solar cell was defined as a dependent variable and the anthocyanin concentration in the fruit used in the DSSC as the independent variable. A regression model was used to investigate the linear relationship between study variables. Regression analysis showed a significant linear relationship between MPP and anthocyanin concentration with a p-value of 0.007. Fruits like blueberry and black raspberry with the highest anthocyanin content generated higher MPP. In a DSSC, a linear model may predict MPP based on the anthocyanin concentration. This model is the first step to find organic anthocyanin sources in the nature with the highest dye concentration to generate energy.

  9. Levitation effect: Distinguishing anomalous from linear regime of guests sorbed in zeolites through the decay of intermediate scattering function and wavevector dependence of self-diffusivity.

    PubMed

    Ghorai, Pradip Kr; Yashonath, S

    2005-03-10

    Previous work investigating the dependence of self-diffusivity, D, on the size of the guest diffusing within the porous solid such as zeolite has reported the existence of an anomalous maximum in the diffusion coefficient (J. Phys. Chem. 1994, 98, 6368). Two distinct regimes of dependence of D on sigma(gg), diameter of the guest were reported. D proportional to 1/sigma(gg)2, often referred to as linear regime (LR), is found when sigma(gg) is smaller than sigma(v), the diameter of the void. A maximum in D has been observed when sigma(gg) is comparable to sigma(v) and this regime is referred to as anomalous regime (AR). Here we report the intermediate scattering function for a particle from LR and AR in zeolite faujasite. A particle from LR exhibits a biexponential decay while a particle from AR exhibits a single-exponential decay at small k. Variation with k of the full width at half-maximum of the self-part of the dynamic structure factor is nonmonotonic for a particle in the linear regime. In contrast, this variation is monotonic for a particle in the anomalous regime. These results can be understood in terms of the existence of energetic barrier at the bottleneck, the 12-ring window, in the path of diffusion. They provide additional signatures for the linear regime and anomalous regimes and therefore for levitation effect (LE).

  10. Four-Stokes-parameter radiofrequency polarimetry of a flare from AD Leonis

    NASA Technical Reports Server (NTRS)

    Spangler, S. R.; Rankin, J. M.; Shawhan, S. D.

    1974-01-01

    Observations of the four Stokes parameters of a 430-MHz flare from the UV Ceti-type star AD Leo are presented. The maximum amplitude of the event was 0.52 flux units, and the durations at one-half and one-tenth maximum were 12 and 40 sec, respectively. The degree of circular polarization at maximum intensity was approximately 56% and was later observed to be as high as 92%. Linear polarization was also observed at a level of about 21% at flare maximum which allowed an upper limit of 440 radians/sq m to be placed on the rotation measure.

  11. Life History theory hypotheses on child growth: Potential implications for short and long-term child growth, development and health.

    PubMed

    Said-Mohamed, Rihlat; Pettifor, John M; Norris, Shane A

    2018-01-01

    Life history theory integrates ecological, physiological, and molecular layers within an evolutionary framework to understand organisms' strategies to optimize survival and reproduction. Two life history hypotheses and their implications for child growth, development, and health (illustrated in the South African context) are reviewed here. One hypothesis suggests that there is an energy trade-off between linear growth and brain growth. Undernutrition in infancy and childhood may trigger adaptive physiological mechanisms prioritizing the brain at the expense of body growth. Another hypothesis is that the period from conception to infancy is a critical window of developmental plasticity of linear growth, the duration of which may vary between and within populations. The transition from infancy to childhood may mark the end of a critical window of opportunity for improving child growth. Both hypotheses emphasize the developmental plasticity of linear growth and the potential determinants of growth variability (including the role of parent-offspring conflict in maternal resources allocation). Implications of these hypotheses in populations with high burdens of undernutrition and infections are discussed. In South Africa, HIV/AIDS during pregnancy (associated with adverse birth outcomes, short duration of breastfeeding, and social consequences) may lead to a shortened window of developmental plasticity of growth. Furthermore, undernutrition and infectious diseases in children living in South Africa, a country undergoing a rapid nutrition transition, may have adverse consequences on individuals' cognitive abilities and risks of cardio-metabolic diseases. Studies are needed to identify physiological mechanisms underlying energy allocation between biological functions and their potential impacts on health. © 2017 Wiley Periodicals, Inc.

  12. Growth response of Douglas-fir seedlings to nitrogen fertilization: importance of Rubisco activation state and respiration rates.

    PubMed

    Manter, Daniel K; Kavanagh, Kathleen L; Rose, Cathy L

    2005-08-01

    High foliar nitrogen concentration ([N]) is associated with high rates of photosynthesis and thus high tree productivity; however, at excessive [N], tree productivity is reduced. Reports of excessive [N] in the Douglas-fir forests of the Oregon Coast Range prompted this investigation of growth and needle physiological responses to increasing foliar N concentrations in 1-year-old Douglas-fir seedlings. After 1 year of N fertilization, total seedling biomass increased with each successive increase in N fertilizer concentration, except in the highest N fertilization treatment. Of the many physiological responses that were analyzed, only photosynthetic capacity (i.e., Vcmax), respiration rates and leaf specific conductance (KL) differed significantly between N treatments. Photosynthetic capacity showed a curvilinear relationship with foliar [N], reaching an apparent maximum rate when needle N concentrations exceeded about 12 mg g(-1). In vitro measurements of ribulose-1,5-bisphosphate carboxylase (Rubisco) activity suggested that photosynthetic capacity was best related to activated, not total, Rubisco content. Rubisco activation state declined as foliar [N] increased, and based on its significant correlation (r2= 0.63) with foliar Mn:Mg ratios, it may be related to Mn inactivation of Rubisco. Respiration rates increased linearly as foliar N concentration increased (r2= 0.84). The value of K(L) also increased as foliar [N] increased, reaching a maximum when foliar [N] exceeded about 10 mg g(-1). Changes in K(L) were unrelated to changes in leaf area or sapwood area because leaf area to sapwood area ratios remained constant. Cumulative effects of the observed physiological responses to N fertilization were analyzed by modeling annual net CO2 assimilation (Anet) based on treatment specific values of Vcmax, dark respiration (Rdark) and KL. Estimates of Anet were highly correlated with measured total seedling biomass (r2= 0.992), suggesting that long-term, cumulative effects of maximum Rubisco carboxylation, Rdark and KL responses to N fertilization may limit seedling production when foliar N exceeds about 13 mg g(-1) or is reduced to less than about 11 mg g(-1).

  13. Leaf Dynamics of Panicum maximum under Future Climatic Changes

    PubMed Central

    Britto de Assis Prado, Carlos Henrique; Haik Guedes de Camargo-Bortolin, Lívia; Castro, Érique; Martinez, Carlos Alberto

    2016-01-01

    Panicum maximum Jacq. ‘Mombaça’ (C4) was grown in field conditions with sufficient water and nutrients to examine the effects of warming and elevated CO2 concentrations during the winter. Plants were exposed to either the ambient temperature and regular atmospheric CO2 (Control); elevated CO2 (600 ppm, eC); canopy warming (+2°C above regular canopy temperature, eT); or elevated CO2 and canopy warming (eC+eT). The temperatures and CO2 in the field were controlled by temperature free-air controlled enhancement (T-FACE) and mini free-air CO2 enrichment (miniFACE) facilities. The most green, expanding, and expanded leaves and the highest leaf appearance rate (LAR, leaves day-1) and leaf elongation rate (LER, cm day-1) were observed under eT. Leaf area and leaf biomass were higher in the eT and eC+eT treatments. The higher LER and LAR without significant differences in the number of senescent leaves could explain why tillers had higher foliage area and leaf biomass in the eT treatment. The eC treatment had the lowest LER and the fewest expanded and green leaves, similar to Control. The inhibitory effect of eC on foliage development in winter was indicated by the fewer green, expanded, and expanding leaves under eC+eT than eT. The stimulatory and inhibitory effects of the eT and eC treatments, respectively, on foliage raised and lowered, respectively, the foliar nitrogen concentration. The inhibition of foliage by eC was confirmed by the eC treatment having the lowest leaf/stem biomass ratio and by the change in leaf biomass-area relationships from linear or exponential growth to rectangular hyperbolic growth under eC. Besides, eC+eT had a synergist effect, speeding up leaf maturation. Therefore, with sufficient water and nutrients in winter, the inhibitory effect of elevated CO2 on foliage could be partially offset by elevated temperatures and relatively high P. maximum foliage production could be achieved under future climatic change. PMID:26894932

  14. Application of Low cost Spirulina growth medium using Deep sea water

    NASA Astrophysics Data System (ADS)

    Lim, Dae-hack; Kim, Bong-ju; Lee, Sung-jae; Choi, Nag-chul; Park, Cheon-young

    2017-04-01

    Deep-sea water has a relatively constant temperature, abundant nutrients such as calcium, magnesium, nitrates, and phosphates, etc., and stable water quality, even though there might be some variations of their compositions according to collection places. Thus, deep-sea water would be a good substrate for algal growth and biomass production since it contains various nutrients, including a fluorescent red pigment, and β-carotene, etc. The aim of this study was to investigate the economics of a culture condition through comparative analysis to Spirulina platensis growth characteristic under various medium conditions for cost-effective production of Spirulina sp.. Growth experiments were performed with S. platensis under various culture medium conditions (deep sea water + SP medium). Growth tests for culture medium demonstrated that the deep sea water to SP medium ratio of 50:50(W/W) was effective in S. platensis with the maximum biomass (1.35g/L) and minimum medium making cost per production mass (133.28 KRW/g). Parameter estimation of bio-kinetics (maximum growth rate and yield) for low cost medium results showed that the maximum growth rate and yield of N, P, K were obtained under deep sea water to SP medium ratio of 50:50(W/W) of 0.057 1/day and 0.151, 0.076, 0.123, respectively. Acknowledgment : "This research was a part of the project titled 'Development of microalgae culture technique for cosmetic materials based on ocean deep sea water(20160297)', funded by the Ministry of Oceans and Fisheries, Korea."

  15. UV photolysis for enhanced phenol biodegradation in the presence of 2,4,6-trichlorophenol (TCP).

    PubMed

    Song, Jiaxiu; Wang, Wenbing; Li, Rongjie; Zhu, Jun; Zhang, Yongming; Liu, Rui; Rittmann, Bruce E

    2016-02-01

    A bacterial strain isolated from activated sludge and identified as Bacillus amyloliquefaciens could biodegrade phenol, but 2,4,6-trichlorophenol (TCP) inhibited phenol biodegradation and biomass growth. UV photolysis converted TCP into dichlorocatechol, monochlorophenol, and dichlorophenol, and this relieved inhibition by TCP. Phenol-removal and biomass-growth rates were significantly accelerated after UV photolysis: the monod maximum specific growth rate (μ(max)) increased by 9% after TCP photolysis, and the half-maximum-rate concentration (K(S)) decreased by 36%. Thus, the major benefit of UV photolysis in this case was to transform TCP into a set of much-less-inhibitory products.

  16. Right-Sizing Statistical Models for Longitudinal Data

    PubMed Central

    Wood, Phillip K.; Steinley, Douglas; Jackson, Kristina M.

    2015-01-01

    Arguments are proposed that researchers using longitudinal data should consider more and less complex statistical model alternatives to their initially chosen techniques in an effort to “right-size” the model to the data at hand. Such model comparisons may alert researchers who use poorly fitting overly parsimonious models to more complex better fitting alternatives, and, alternatively, may identify more parsimonious alternatives to overly complex (and perhaps empirically under-identified and/or less powerful) statistical models. A general framework is proposed for considering (often nested) relationships between a variety of psychometric and growth curve models. A three-step approach is proposed in which models are evaluated based on the number and patterning of variance components prior to selection of better-fitting growth models that explain both mean and variation/covariation patterns. The orthogonal, free-curve slope-intercept (FCSI) growth model is considered as a general model which includes, as special cases, many models including the Factor Mean model (FM, McArdle & Epstein, 1987), McDonald's (1967) linearly constrained factor model, Hierarchical Linear Models (HLM), Repeated Measures MANOVA, and the Linear Slope Intercept (LinearSI) Growth Model. The FCSI model, in turn, is nested within the Tuckerized factor model. The approach is illustrated by comparing alternative models in a longitudinal study of children's vocabulary and by comparison of several candidate parametric growth and chronometric models in a Monte Carlo study. PMID:26237507

  17. Right-sizing statistical models for longitudinal data.

    PubMed

    Wood, Phillip K; Steinley, Douglas; Jackson, Kristina M

    2015-12-01

    Arguments are proposed that researchers using longitudinal data should consider more and less complex statistical model alternatives to their initially chosen techniques in an effort to "right-size" the model to the data at hand. Such model comparisons may alert researchers who use poorly fitting, overly parsimonious models to more complex, better-fitting alternatives and, alternatively, may identify more parsimonious alternatives to overly complex (and perhaps empirically underidentified and/or less powerful) statistical models. A general framework is proposed for considering (often nested) relationships between a variety of psychometric and growth curve models. A 3-step approach is proposed in which models are evaluated based on the number and patterning of variance components prior to selection of better-fitting growth models that explain both mean and variation-covariation patterns. The orthogonal free curve slope intercept (FCSI) growth model is considered a general model that includes, as special cases, many models, including the factor mean (FM) model (McArdle & Epstein, 1987), McDonald's (1967) linearly constrained factor model, hierarchical linear models (HLMs), repeated-measures multivariate analysis of variance (MANOVA), and the linear slope intercept (linearSI) growth model. The FCSI model, in turn, is nested within the Tuckerized factor model. The approach is illustrated by comparing alternative models in a longitudinal study of children's vocabulary and by comparing several candidate parametric growth and chronometric models in a Monte Carlo study. (c) 2015 APA, all rights reserved).

  18. Changes of Linearity in MF2 Index with R12 and Solar Activity Maximum

    NASA Astrophysics Data System (ADS)

    Villanueva, L.

    2013-05-01

    Critical frequency of F2 layer is related to the solar activity, and the sunspot number has been the standard index for ionospheric prediction programs. This layer, being considered the most important in HF radio communications due to its highest electron density, determines the maximum frequency coming back from ground base transmitter signals, and shows irregular variation in time and space. Nowadays the spatial variation, better understood due to the availability of TEC measurements, let Space Weather Centers have observations almost in real time. However, it is still the most difficult layer to predict in time. Short time variations are improved in IRI model, but long term predictions are only related to the well-known CCIR and URSI coefficients and Solar activity R12 predictions, (or ionospheric indexes in regional models). The concept of the "saturation" of the ionosphere is based on data observations around 3 solar cycles before 1970, (NBS, 1968). There is a linear relationship among MUF (0Km) and R12, for smooth Sunspot numbers R12 less than 100, but constant for higher R12, so, no rise of MUF is expected for R12 higher than 100. This recommendation has been used in most of the known Ionospheric prediction programs for HF Radio communication. In this work, observations of smoothed ionospheric index MF2 related to R12 are presented to find common features of the linear relationship, which is found to persist in different ranges of R12 depending on the specific maximum level of each solar cycle. In the analysis of individual solar cycles, the lapse of linearity is less than 100 for a low solar cycle and higher than 100 for a high solar cycle. To improve ionospheric predictions we can establish levels for solar cycle maximum sunspot numbers R12 around low 100, medium 150 and high 200 and specify the ranges of linearity of MUF(0Km) related to R12 which is not only 100 as assumed for all the solar cycles. For lower levels of solar cycle, discussions of present observations are presented.

  19. Effect of CO2 Concentration on Growth and Biochemical Composition of Newly Isolated Indigenous Microalga Scenedesmus bajacalifornicus BBKLP-07.

    PubMed

    Patil, Lakkanagouda; Kaliwal, Basappa

    2017-05-01

    Photosynthetic mitigation of CO 2 through microalgae is gaining great importance due to its higher photosynthetic ability compared to plants, and the biomass can be commercially exploited for various applications. CO 2 fixation capability of the newly isolated freshwater microalgae Scenedesmus bajacalifornicus BBKLP-07 was investigated using a 1-l photobioreactor. The cultivation was carried at varying concentration of CO 2 ranging from 5 to 25%, and the temperature and light intensities were kept constant. A maximum CO 2 fixation rate was observed at 15% CO 2 concentration. Characteristic growth parameters such as biomass productivity, specific growth rate, and maximum biomass yield, and biochemical parameters such as carbohydrate, protein, lipid, chlorophyll, and carotenoid were determined and discussed. It was observed that the effect of CO 2 concentration on growth and biochemical composition was quite significant. The maximum biomass productivity was 0.061 ± 0.0007 g/l/day, and the rate of CO 2 fixation was 0.12 ± 0.002 g/l/day at 15% CO 2 concentration. The carbohydrate and lipid content were maximum at 25% CO 2 with 26.19 and 25.81% dry cell weight whereas protein, chlorophyll, and carotenoid contents were 32.89% dry cell weight, 25.07 μg/ml and 6.15 μg/ml respectively at 15% CO 2 concentration.

  20. Revisiting the Estimation of Dinosaur Growth Rates

    PubMed Central

    Myhrvold, Nathan P.

    2013-01-01

    Previous growth-rate studies covering 14 dinosaur taxa, as represented by 31 data sets, are critically examined and reanalyzed by using improved statistical techniques. The examination reveals that some previously reported results cannot be replicated by using the methods originally reported; results from new methods are in many cases different, in both the quantitative rates and the qualitative nature of the growth, from results in the prior literature. Asymptotic growth curves, which have been hypothesized to be ubiquitous, are shown to provide best fits for only four of the 14 taxa. Possible reasons for non-asymptotic growth patterns are discussed; they include systematic errors in the age-estimation process and, more likely, a bias toward younger ages among the specimens analyzed. Analysis of the data sets finds that only three taxa include specimens that could be considered skeletally mature (i.e., having attained 90% of maximum body size predicted by asymptotic curve fits), and eleven taxa are quite immature, with the largest specimen having attained less than 62% of predicted asymptotic size. The three taxa that include skeletally mature specimens are included in the four taxa that are best fit by asymptotic curves. The totality of results presented here suggests that previous estimates of both maximum dinosaur growth rates and maximum dinosaur sizes have little statistical support. Suggestions for future research are presented. PMID:24358133

  1. Explosive Volcanic Eruptions from Linear Vents on Earth, Venus and Mars: Comparisons with Circular Vent Eruptions

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Baloga, Stephen M.; Wimert, Jesse

    2010-01-01

    Conditions required to support buoyant convective plumes are investigated for explosive volcanic eruptions from circular and linear vents on Earth, Venus, and Mars. Vent geometry (linear versus circular) plays a significant role in the ability of an explosive eruption to sustain a buoyant plume. On Earth, linear and circular vent eruptions are both capable of driving buoyant plumes to equivalent maximum rise heights, however, linear vent plumes are more sensitive to vent size. For analogous mass eruption rates, linear vent plumes surpass circular vent plumes in entrainment efficiency approximately when L(sub o) > 3r(sub o) owing to the larger entrainment area relative to the control volume. Relative to circular vents, linear vents on Venus favor column collapse and the formation of pyroclastic flows because the range of conditions required to establish and sustain buoyancy is narrow. When buoyancy can be sustained, however, maximum plume heights exceed those from circular vents. For current atmospheric conditions on Mars, linear vent eruptions are capable of injecting volcanic material slightly higher than analogous circular vent eruptions. However, both geometries are more likely to produce pyroclastic fountains, as opposed to convective plumes, owing to the low density atmosphere. Due to the atmospheric density profile and water content on Earth, explosive eruptions enjoy favorable conditions for producing sustained buoyant columns, while pyroclastic flows would be relatively more prevalent on Venus and Mars. These results have implications for the injection and dispersal of particulates into the planetary atmosphere and the ability to interpret the geologic record of planetary volcanism.

  2. Inhaled corticosteroids in children with persistent asthma: effects on growth.

    PubMed

    Zhang, Linjie; Prietsch, Sílvio O M; Ducharme, Francine M

    2014-07-17

    Treatment guidelines for asthma recommend inhaled corticosteroids (ICS) as first-line therapy for children with persistent asthma. Although ICS treatment is generally considered safe in children, the potential systemic adverse effects related to regular use of these drugs have been and continue to be a matter of concern, especially the effects on linear growth. To assess the impact of ICS on the linear growth of children with persistent asthma and to explore potential effect modifiers such as characteristics of available treatments (molecule, dose, length of exposure, inhalation device) and of treated children (age, disease severity, compliance with treatment). We searched the Cochrane Airways Group Specialised Register of trials (CAGR), which is derived from systematic searches of bibliographic databases including CENTRAL, MEDLINE, EMBASE, CINAHL, AMED and PsycINFO; we handsearched respiratory journals and meeting abstracts. We also conducted a search of ClinicalTrials.gov and manufacturers' clinical trial databases to look for potential relevant unpublished studies. The literature search was conducted in January 2014. Parallel-group randomised controlled trials comparing daily use of ICS, delivered by any type of inhalation device for at least three months, versus placebo or non-steroidal drugs in children up to 18 years of age with persistent asthma. Two review authors independently performed study selection, data extraction and assessment of risk of bias in included studies. We conducted meta-analyses using the Cochrane statistical package RevMan 5.2 and Stata version 11.0. We used the random-effects model for meta-analyses. We used mean differences (MDs) and 95% CIs as the metrics for treatment effects. A negative value for MD indicates that ICS have suppressive effects on linear growth compared with controls. We performed a priori planned subgroup analyses to explore potential effect modifiers, such as ICS molecule, daily dose, inhalation device and age of the treated child. We included 25 trials involving 8471 (5128 ICS-treated and 3343 control) children with mild to moderate persistent asthma. Six molecules (beclomethasone dipropionate, budesonide, ciclesonide, flunisolide, fluticasone propionate and mometasone furoate) [corrected] given at low or medium daily doses were used during a period of three months to four to six years. Most trials were blinded and over half of the trials had drop out rates of over 20%.Compared with placebo or non-steroidal drugs, ICS produced a statistically significant reduction in linear growth velocity (14 trials with 5717 participants, MD -0.48 cm/y, 95% CI -0.65 to -0.30, moderate quality evidence) and in the change from baseline in height (15 trials with 3275 participants; MD -0.61 cm/y, 95% CI -0.83 to -0.38, moderate quality evidence) during a one-year treatment period.Subgroup analysis showed a statistically significant group difference between six molecules in the mean reduction of linear growth velocity during one-year treatment (Chi² = 26.1, degrees of freedom (df) = 5, P value < 0.0001). The group difference persisted even when analysis was restricted to the trials using doses equivalent to 200 μg/d hydrofluoroalkane (HFA)-beclomethasone. Subgroup analyses did not show a statistically significant impact of daily dose (low vs medium), inhalation device or participant age on the magnitude of ICS-induced suppression of linear growth velocity during a one-year treatment period. However, head-to-head comparisons are needed to assess the effects of different drug molecules, dose, inhalation device or patient age. No statistically significant difference in linear growth velocity was found between participants treated with ICS and controls during the second year of treatment (five trials with 3174 participants; MD -0.19 cm/y, 95% CI -0.48 to 0.11, P value 0.22). Of two trials that reported linear growth velocity in the third year of treatment, one trial involving 667 participants showed similar growth velocity between the budesonide and placebo groups (5.34 cm/y vs 5.34 cm/y), and another trial involving 1974 participants showed lower growth velocity in the budesonide group compared with the placebo group (MD -0.33 cm/y, 95% CI -0.52 to -0.14, P value 0.0005). Among four trials reporting data on linear growth after treatment cessation, three did not describe statistically significant catch-up growth in the ICS group two to four months after treatment cessation. One trial showed accelerated linear growth velocity in the fluticasone group at 12 months after treatment cessation, but there remained a statistically significant difference of 0.7 cm in height between the fluticasone and placebo groups at the end of the three-year trial.One trial with follow-up into adulthood showed that participants of prepubertal age treated with budesonide 400 μg/d for a mean duration of 4.3 years had a mean reduction of 1.20 cm (95% CI -1.90 to -0.50) in adult height compared with those treated with placebo. Regular use of ICS at low or medium daily doses is associated with a mean reduction of 0.48 cm/y in linear growth velocity and a 0.61-cm change from baseline in height during a one-year treatment period in children with mild to moderate persistent asthma. The effect size of ICS on linear growth velocity appears to be associated more strongly with the ICS molecule than with the device or dose (low to medium dose range). ICS-induced growth suppression seems to be maximal during the first year of therapy and less pronounced in subsequent years of treatment. However, additional studies are needed to better characterise the molecule dependency of growth suppression, particularly with newer molecules (mometasone, ciclesonide), to specify the respective role of molecule, daily dose, inhalation device and patient age on the effect size of ICS, and to define the growth suppression effect of ICS treatment over a period of several years in children with persistent asthma.

  3. Constrained Maximum Likelihood Estimation for Two-Level Mean and Covariance Structure Models

    ERIC Educational Resources Information Center

    Bentler, Peter M.; Liang, Jiajuan; Tang, Man-Lai; Yuan, Ke-Hai

    2011-01-01

    Maximum likelihood is commonly used for the estimation of model parameters in the analysis of two-level structural equation models. Constraints on model parameters could be encountered in some situations such as equal factor loadings for different factors. Linear constraints are the most common ones and they are relatively easy to handle in…

  4. Modeling maximum daily temperature using a varying coefficient regression model

    Treesearch

    Han Li; Xinwei Deng; Dong-Yum Kim; Eric P. Smith

    2014-01-01

    Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature...

  5. On the Quasimonotonicity of a Square Linear Operator with Respect to a Nonnegative Cone

    DTIC Science & Technology

    1998-06-01

    follows from the result from Perron (1907) and Frobenius (1912) on the theory of nonnegative matrices, which states that a nonnegative matrix has a...Dissertation 4. TITLE AND SUBTITLE ON THE QUASIMONOTONICITY OF A SQUARE LINEAR OPERATOR WITH RESPECT TO A NONNEGATIVE CONE 6. AUTHOR(S) Beaver, Philip...ABSTRACT (maximum 200 words) The question of when a square, linear operator is quasimonotone nondecreasing with respect to a nonnegative cone was posed for

  6. A linearly-polarized Nd:YVO4/KTP microchip green laser.

    PubMed

    Jung, C; Yu, B-A; Kim, I-S; Lee, Y L; Yu, N E; Ko, D-K

    2009-10-26

    We described the principle and the fabrication of a Nd:YVO(4)/KTP microchip for the linearly-polarized green laser and verified its availability by manufacturing and characterizing the green laser using the microchip. Under the driving condition having the modulation frequency of 60 Hz and the duty ratio of 25%, the laser showed the stable linear polarization, the maximum average power of 37 mW, yielding the high electrical-to-optical efficiency of 10.9%.

  7. Predicting Tree Mortality From Diameter Growth: A Comparison of Maximum Likelihood and Bayesian Approaches

    Treesearch

    Peter H. Wychoff; James S. Clark

    2000-01-01

    Ecologists and foresters have long noted a link between tree growth rate and mortality, and recent work suggests that i&erspecific differences in low growth tolerauce is a key force shaping forest structure. Little information is available, however, on the growth-mortality relationship for most species. We present three methods for estimating growth-mortality...

  8. Arsenic-resistant and plant growth-promoting Firmicutes and γ-Proteobacteria species from industrially polluted irrigation water and corresponding cropland.

    PubMed

    Qamar, N; Rehman, Y; Hasnain, S

    2017-09-01

    The aim of the study was to explore irrigation water polluted with industrial waste and corresponding cropland to screen bacteria for As detoxification and plant growth promotion. Plant growth-promoting (PGP) As-resistant cropland bacteria were isolated from contaminated irrigation water and corresponding agricultural soil. Phylogenetic analysis revealed that the isolates belonged to two distinct bacterial lineages; Firmicutes and γ-Proteobacteria. Maximum As(V) resistance was exhibited by Klebsiella pneumoniae T22 and Klebsiella oxytoca N53 (550 mmol l -1 ), whereas maximum resistance against As(III) was exhibited by K. oxytoca N53 (200 mmol l -1 ). Maximum As(V) reduction was shown by K. pneumoniae T22 (6·7 mmol l -1 ), whereas maximum As(III) oxidation was exhibited by Bacillus subtilis T23 (4·8 mmol l -1 ). As resistance genes arsB and ACR3 were detected in many of the isolates through polymerase chain reaction. Many of these isolates exhibited PGP traits such as hydrogen cyanide and auxin production as well as phosphate solubilization. The bacterial strains were able to enhance Triticum aestivum growth both in the absence and presence of As, and statistically significant increase in shoot and root lengths was observed especially in case of Acinetobacter lwoffii T24 and Citrobacter freundii N52-treated plants. Cropland bacteria have the ability to support plant growth. Bacteria of croplands irrigated with industrially polluted water develop resistance against toxicants. These bacteria are helpful for the plant growth in such contaminated lands. The bacteria capable of both As detoxification and plant growth promotion, such as A. lwoffii T24 and C. freundii N52, are ideal for remediation and reclamation of polluted lands for agriculture purposes. © 2017 The Society for Applied Microbiology.

  9. The Impact of Nutritional Interventions beyond the First 2 Years of Life on Linear Growth: A Systematic Review and Meta-Analysis.

    PubMed

    Roberts, Joseph L; Stein, Aryeh D

    2017-03-01

    A large body of evidence suggests that the first 1000 d from conception is a critical window in which interventions to address malnutrition will be most effective, but little is known about the impact on linear growth of nutritional interventions in children ≥2 y of age. The aim of this analysis was to evaluate the effectiveness of several nutrition-based interventions, specifically iron, zinc, calcium, iodine, vitamin A, multiple (≥2) micronutrients, protein, and food, at improving growth in children ≥2 y of age. A systematic search of MEDLINE and EMBASE retrieved 7794 articles. A total of 69 studies met prespecified inclusion criteria. Baseline height-for-age z score, age, nutrient dose, and study duration were examined as potential sources of heterogeneity. Zinc (mean effect size: 0.15; 95% CI: 0.06, 0.24), vitamin A (0.05; 95% CI: 0.01, 0.09), multiple micronutrients (0.26; 95% CI: 0.13, 0.39), and protein (0.68; 95% CI: 0.30, 1.05) had significant positive effects on linear growth, with baseline height-for-age z score as a significant inverse predictor of the effect size. Iron, calcium, iodine, and food-based interventions had no significant effect on growth. Age at baseline, study duration, and dose were not related to effect size for any nutrient examined. These findings suggest that zinc, vitamin A, multiple micronutrients, and protein interventions delivered after 24 mo of age can have a positive effect on linear growth, especially in populations that have experienced growth failure. © 2017 American Society for Nutrition.

  10. The linear sizes tolerances and fits system modernization

    NASA Astrophysics Data System (ADS)

    Glukhov, V. I.; Grinevich, V. A.; Shalay, V. V.

    2018-04-01

    The study is carried out on the urgent topic for technical products quality providing in the tolerancing process of the component parts. The aim of the paper is to develop alternatives for improving the system linear sizes tolerances and dimensional fits in the international standard ISO 286-1. The tasks of the work are, firstly, to classify as linear sizes the elements additionally linear coordinating sizes that determine the detail elements location and, secondly, to justify the basic deviation of the tolerance interval for the element's linear size. The geometrical modeling method of real details elements, the analytical and experimental methods are used in the research. It is shown that the linear coordinates are the dimensional basis of the elements linear sizes. To standardize the accuracy of linear coordinating sizes in all accuracy classes, it is sufficient to select in the standardized tolerance system only one tolerance interval with symmetrical deviations: Js for internal dimensional elements (holes) and js for external elements (shafts). The main deviation of this coordinating tolerance is the average zero deviation, which coincides with the nominal value of the coordinating size. Other intervals of the tolerance system are remained for normalizing the accuracy of the elements linear sizes with a fundamental change in the basic deviation of all tolerance intervals is the maximum deviation corresponding to the limit of the element material: EI is the lower tolerance for the of the internal elements (holes) sizes and es is the upper tolerance deviation for the outer elements (shafts) sizes. It is the sizes of the material maximum that are involved in the of the dimensional elements mating of the shafts and holes and determine the fits type.

  11. 2D motility tracking of Pseudomonas putida KT2440 in growth phases using video microscopy

    PubMed Central

    Davis, Michael L.; Mounteer, Leslie C.; Stevens, Lindsey K.; Miller, Charles D.; Zhou, Anhong

    2011-01-01

    Pseudomonas putida KT2440 is a gram negative motile soil bacterium important in bioremediation and biotechnology. Thus, it is important to understand its motility characteristics as individuals and in populations. Population characteristics were determined using a modified Gompertz model. Video microscopy and imaging software were utilized to analyze two dimensional (2D) bacteria movement tracks to quantify individual bacteria behavior. It was determined that inoculum density increased the lag time as seeding densities decreased, and that the maximum specific growth rate decreased as seeding densities increased. Average bacterial velocity remained relatively similar throughout exponential growth phase (~20.9 µm/sec), while maximum velocities peak early in exponential growth phase at a velocity of 51.2 µm/sec. Pseudomonas putida KT2440 also favor smaller turn angles indicating they often continue in the same direction after a change in flagella rotation throughout the exponential growth phase. PMID:21334971

  12. Agricultural fertilizers as economical alternative for cultivation of Haematococcus pluvialis.

    PubMed

    Dalay, Meltem Conk; Imamoglu, Esra; Demirel, Zeliha

    2007-03-01

    A Haematococcus pluvialis strain isolated from the ruins of Ephesus in Turkey was investigated as regards its adaptation to laboratory conditions and maximum growth rate. In the first stage of the experiment, the growth of H. pluvialis was compared in common culture media. Furthermore, in an effort to minimize the culture costs, the second stage of the experiment compared the growth rate in the culture medium selected in the first stage with that in commercial plant fertilizers. The results demonstrated that the maximum cell concentration of 0.90 g/l, corresponding to a growth rate of 0.150 d(-1), was found with an N-P-K 20:20:20 fertilizer under a light intensity of 75 micromol photons m(-2) s(-1) on the 12th day of cultivation.

  13. Quasi-linear heating and acceleration in bi-Maxwellian plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellinger, Petr; Passot, Thierry; Sulem, Pierre-Louis

    2013-12-15

    Quasi-linear acceleration and heating rates are derived for drifting bi-Maxwellian distribution functions in a general nonrelativistic case for arbitrary wave vectors, propagation angles, and growth/damping rates. The heating rates in a proton-electron plasma due to ion-cyclotron/kinetic Alfvén and mirror waves for a wide range of wavelengths, directions of propagation, and growth or damping rates are explicitly computed.

  14. Interplay effect on a 6-MV flattening-filter-free linear accelerator with high dose rate and fast multi-leaf collimator motion treating breast and lung phantoms.

    PubMed

    Netherton, Tucker; Li, Yuting; Nitsch, Paige; Shaitelman, Simona; Balter, Peter; Gao, Song; Klopp, Ann; Muruganandham, Manickam; Court, Laurence

    2018-06-01

    Using a new linear accelerator with high dose rate (800 MU/min), fast MLC motions (5.0 cm/s), fast gantry rotation (15 s/rotation), and 1 cm wide MLCs, we aimed to quantify the effects of complexity, arc number, and fractionation on interplay for breast and lung treatments under target motion. To study lung interplay, eight VMAT plans (1-6 arcs) and four-nine-field sliding-window IMRT plans varying in complexity were created. For the breast plans, four-four-field sliding-window IMRT plans were created. Using the Halcyon 1.0 linear accelerator, each plan was delivered five times each under sinusoidal breathing motion to a phantom with 20 implanted MOSFET detectors; MOSFET dose (cGy), delivery time, and MU/cGy values were recorded. Maximum and mean dose deviations were calculated from MOSFET data. The number of MOSFETs with at least 19 of 20 detectors agreeing with their expected dose within 5% per fraction was calculated across 10 6 iterations to model dose deviation as function of fraction number for all plan variants. To put interplay plans into clinical context, additional IMRT and VMAT plans were created and delivered for the sites of head and neck, prostate, whole brain, breast, pelvis, and lung. Average modulation and interplay effect were compared to those from conventional linear accelerators, as reported from previous studies. The mean beam modulation for plans created for the Halcyon 1.0 linear accelerator was 2.9 MU/cGy (two- to four-field IMRT breast plans), 6.2 MU/cGy (at least five-field IMRT), and 3.6 MU/cGy (four-arc VMAT). To achieve treatment plan objectives, Halcyon 1.0 VMAT plans require more arcs and modulation than VMAT on conventional linear accelerators. Maximum and mean dose deviations increased with increasing plan complexity under tumor motion for breast and lung treatments. Concerning VMAT plans under motion, maximum, and mean dose deviations were higher for one arc than for two arcs regardless of plan complexity. For plan variants with maximum dose deviations greater than 3.7%, dose deviation as a function of fraction number was protracted. For treatments on the Halcyon 1.0 linear accelerator, the convergence of dose deviation with fraction number happened more slowly than reported for conventional linear accelerators. However, if plan complexity is reduced for IMRT and if tumor motion is less than ~10-mm, interplay is greatly reduced. To minimize dose deviations across multiple fractions for dynamic targets, we recommend limiting treatment plan complexity and avoiding one-arc VMAT on the Halcyon 1.0 linear accelerator when interplay is a concern. © 2018 American Association of Physicists in Medicine.

  15. Meat and milk intakes and toddler growth: a comparison feeding intervention of animal-source foods in rural Kenya.

    PubMed

    Long, Jennifer K; Murphy, Suzanne P; Weiss, Robert E; Nyerere, Susan; Bwibo, Nimrod O; Neumann, Charlotte G

    2012-06-01

    To examine the effects of animal-source foods on toddler growth. A 5-month comparison feeding intervention study with one of three millet-based porridges randomized to eighteen feeding stations serving 303 children aged 11-40 months. Feeding stations served plain millet porridge (Plain group), porridge with milk (Milk group) or porridge with beef (Meat group). Anthropometry, morbidity and food intake were measured at baseline and regular intervals. Longitudinal mixed models were used to analyse growth. Embu, Kenya. Two hundred and seventy-four children were included in final analyses. Linear growth was significantly greater for the Milk group than the Meat group (P = 0·0025). Slope of growth of mid-arm muscle area of the Plain group was significantly greater than in the Meat group (P = 0·0046), while the Milk group's mid-upper arm circumference growth rate was significantly greater than the Meat group's (P = 0·0418). The Milk and Plain groups' measures did not differ. Milk and meat porridges did not have a significantly greater effect on growth than plain porridge in this undernourished population. Linear growth was influenced by more than energy intakes, as the Plain group's total body weight-adjusted energy intakes were significantly greater than the Meat group's, although linear growth did not differ. Energy intakes may be more important for growth in arm muscle. The diverse age distribution in the study makes interpretation difficult. A longer study period, larger sample size and more focused age group would improve clarity of the results.

  16. Milk and growth in children: effects of whey and casein.

    PubMed

    Mølgaard, Christian; Larnkjær, Anni; Arnberg, Karina; Michaelsen, Kim F

    2011-01-01

    Consumption of cow's milk is recommended in many countries. Observational and intervention studies show that cow's milk most likely has a positive influence on growth in children. The strongest evidence comes from observational studies and intervention studies in low-income countries, but there are also observational studies from high-income countries showing positive associations between milk intake and growth. Milk seems thus to have a specific stimulating effect on linear growth, not only in developing countries with high rates of malnutrition, but also in industrialized countries. However, it is not known which components in milk stimulate growth. Possible components are proteins, minerals, vitamins or combinations of these. Cow's milk proteins have a high protein quality, and whey has a slightly higher quality than casein, according to some indices based on amino acid composition. Studies, mainly from sport medicine, have suggested that whey protein also has the potential to increase muscle mass. Whether whey improves body composition to a larger extent than other milk proteins is not clear. The mechanism behind a possible growth-stimulating effect of milk and milk components is likely to be through a stimulation of insulin-like growth factor-I synthesis and maybe insulin secretion. In conclusion, there is strong evidence that milk stimulates linear growth. The mechanism is not yet clear, and more intervention studies are needed to understand which components in milk are responsible for the growth stimulation. The effects of milk on linear growth and adult height may have both positive and negative long-term implications. Copyright © 2011 S. Karger AG, Basel.

  17. Correlations, soliton modes, and non-Hermitian linear mode transmutation in the one-dimensional noisy Burgers equation.

    PubMed

    Fogedby, Hans C

    2003-08-01

    Using the previously developed canonical phase space approach applied to the noisy Burgers equation in one dimension, we discuss in detail the growth morphology in terms of nonlinear soliton modes and superimposed linear modes. We moreover analyze the non-Hermitian character of the linear mode spectrum and the associated dynamical pinning, and mode transmutation from diffusive to propagating behavior induced by the solitons. We discuss the anomalous diffusion of growth modes, switching and pathways, correlations in the multisoliton sector, and in detail the correlations and scaling properties in the two-soliton sector.

  18. An Extension of the Partial Credit Model with an Application to the Measurement of Change.

    ERIC Educational Resources Information Center

    Fischer, Gerhard H.; Ponocny, Ivo

    1994-01-01

    An extension to the partial credit model, the linear partial credit model, is considered under the assumption of a certain linear decomposition of the item x category parameters into basic parameters. A conditional maximum likelihood algorithm for estimating basic parameters is presented and illustrated with simulation and an empirical study. (SLD)

  19. Distributing value gain from three growth factors for yellow-poplar

    Treesearch

    Roger E. McCay

    1969-01-01

    A method of apportioning the maximum dollar value gain from tree growth into the amounts contributed by diameter growth, merchantable height increase, and quality improvement is described. The results of this method are presented for various sizes and qualities of yellow-poplar trees.

  20. Growth of Dunaliella tertiolecta and associated bacteria in photobioreactors.

    PubMed

    Lakaniemi, Aino-Maija; Intihar, Veera M; Tuovinen, Olli H; Puhakka, Jaakko A

    2012-09-01

    The aim of this study was to test three flat-plate photobioreactor configurations for cultivation of marine green alga Dunaliella tertiolecta under non-axenic growth conditions and to characterize and quantify the associated bacteria. The photobioreactor cultivations were conducted using tap water-based media. Static mixers intended to enhance mixing and light utilization did not generally increase algal growth at the low light intensities used. The maximum biomass concentration (measured as volatile suspended solids) and maximum specific growth rate achieved in the flat plate with no mixer were 2.9 g l⁻¹ and 1.3 day⁻¹, respectively. Based on quantitative polymerase chain reaction, bacterial growth followed the growth of D. tertiolecta. Based on 16S rDNA amplification and denaturing gradient gel electrophoresis profiling, heterotrophic bacteria in the D. tertiolecta cultures mainly originated from the non-axenic algal inocula, and tap water heterotrophs were not enriched in high chloride media (3 % salinity). Bacterial communities were relatively stable and reproducible in all flat-plate cultivations and were dominated by Gammaproteobacteria, Flavobacteria, and Alphaproteobacteria.

  1. Fecal Markers of Environmental Enteropathy and Subsequent Growth in Bangladeshi Children.

    PubMed

    Arndt, Michael B; Richardson, Barbra A; Ahmed, Tahmeed; Mahfuz, Mustafa; Haque, Rashidul; John-Stewart, Grace C; Denno, Donna M; Petri, William A; Kosek, Margaret; Walson, Judd L

    2016-09-07

    Environmental enteropathy (EE), a subclinical intestinal disorder characterized by mucosal inflammation, reduced barrier integrity, and malabsorption, appears to be associated with increased risk of stunting in children in low- and middle-income countries. Fecal biomarkers indicative of EE (neopterin [NEO], myeloperoxidase [MPO], and alpha-1-antitrypsin [AAT]) have been negatively associated with 6-month linear growth. Associations between fecal markers (NEO, MPO, and AAT) and short-term linear growth were examined in a birth cohort of 246 children in Bangladesh. Marker concentrations were categorized in stool samples based on their distribution (< first quartile, interquartile range, > third quartile), and a 10-point composite EE score was calculated. Piecewise linear mixed-effects models were used to examine the association between markers measured quarterly (in months 3-21, 3-9, and 12-21) and 3-month change in length-for-age z-score (ΔLAZ). Children with high MPO levels at quarterly time points lost significantly more LAZ per 3-month period during the second year of life than those with low MPO (ΔLAZ = -0.100; 95% confidence interval = -0.167 to -0.032). AAT and NEO were not associated with growth; however, composite EE score was negatively associated with subsequent 3-month growth. In this cohort of children from an urban setting in Bangladesh, elevated MPO levels, but not NEO or AAT levels, were associated with decreases in short-term linear growth during the second year of life, supporting previous data suggesting the relevance of MPO as a marker of EE. © The American Society of Tropical Medicine and Hygiene.

  2. Face-by-face growth of sucrose crystals from aqueous solutions in the presence of raffinose—II: Growth morphology and segregation

    NASA Astrophysics Data System (ADS)

    Sgualdino, G.; Aquilano, D.; Pastero, L.; Vaccari, G.

    2007-10-01

    Raffinose segregation into sucrose crystals is experimentally determined along with the modifications of the quantitative sucrose growth morphology, which are in turn related to the different growth conditions. ( Craff, σ) morphodromes nicely represent the conflict between the supersaturation and the raffinose concentration in the solution on the growth morphology, while the overall segregation rate is nearly proportional to the linear overall crystal growth rate. Chernov and Burton-Prim-Slichter models, checked to fit our keff and ln(keff-1-1) coefficients as a function of the supersaturation and of the mean linear overall growth rate, do not allow to know whether the segregation occurs either by a process dominated by surface integration, or by additive transfer dominated by volume diffusion within the boundary layer. The distribution of segregated raffinose strictly depends on the { h k l} growth sectors and doped crystals contain deformed lattice zones, as it comes out from X-ray powder diagrams.

  3. Compound equation developed for postnatal growth of birds and mammals

    NASA Technical Reports Server (NTRS)

    Laird, A. K.

    1968-01-01

    Compound growth equation was developed in which the rate of this linear growth process is regarded as proportional to the mass already attained at any instant by an underlying Gompertz process. This compound growth model was fitted to the growth data of a variety of birds and mammals of both sexes.

  4. Growth trajectories of mathematics achievement: Longitudinal tracking of student academic progress.

    PubMed

    Mok, Magdalena M C; McInerney, Dennis M; Zhu, Jinxin; Or, Anthony

    2015-06-01

    A number of methods to investigate growth have been reported in the literature, including hierarchical linear modelling (HLM), latent growth modelling (LGM), and multidimensional scaling applied to longitudinal profile analysis (LPAMS). This study aimed at modelling the mathematics growth of students over a span of 6 years from Grade 3 to Grade 9. The sample comprised secondary longitudinal data collected in three waves from n = 866 Hong Kong students when they were in Grade 3, Grade 6, and Grade 9. Mathematics achievement was measured thrice on a vertical scale linked with anchor items. Linear and nonlinear latent growth models were used to assess students' growth. Gender differences were also examined. A nonlinear latent growth curve with a decelerated rate had a good fit to the data. Initial achievement and growth rate were negatively correlated. No gender difference was found. Mathematics growth from Grade 6 to Grade 9 was slower than that from Grade 3 to Grade 6. Students with lower initial achievement improved at a faster rate than those who started at a higher level. Gender did not affect growth rate. © 2014 The British Psychological Society.

  5. Observations on the crystallization of spodumene from aqueous solutions in a hydrothermal diamond-anvil cell

    USGS Publications Warehouse

    Li, Jianking; Chou, I-Ming; Yuan, Shunda; Burruss, Robert A.

    2013-01-01

    Crystallization experiments were conducted in a new type of hydrothermal diamond-anvil cell (HDAC; type V) using LiAlSi2O6 (S) gel and H2O (W) as starting materials. A total of 21 experiments were performed at temperatures up to 950°C and pressures up to 788 MPa. In the samples with relatively low W/S ratios, many small crystals formed in the melt phase during cooling. In those with high W/S ratios, only a few crystals with smooth surfaces crystallized from the aqueous fluid in the presence of melt droplets, which were gradually consumed during crystal growth, indicating rapid transfer of material from the melt to the crystals through the aqueous fluid. The nucleation of crystals started at 710 (±70)°C and 520 (±80) MPa, and crystal growth ended at 570 (±40)°C and 320 (±90) MPa, with the cooling P-T path within the stability field of spodumene + quartz in the S-W system. The observed linear crystal growth rates in the aqueous phase, calculated by dividing the maximum length of a single crystal by the duration of the entire growth step, were 4.7 × 10−6 and 5.7 × 10−6 cm s−1 for the cooling rates of 0.5 and 1°C min−1, respectively. However, a rapid crystal growth rate of 3.6 × 10−5 cm s−1 in the aqueous fluid was observed when the components were supplied by nearby melt droplets. Our results show that when crystals nucleate in the aqueous fluid instead of the melt phase, there are fewer nuclei formed, and they grow much faster due to the low viscosity of the aqueous fluid, which accelerates diffusion of components for the growth of crystals. Therefore, the large crystals in granitic pegmatite can crystallize directly from aqueous fluids rather than hydrosilicate melt.

  6. A double B1-mode 4-layer laminated piezoelectric linear motor.

    PubMed

    Li, Xiaotian; Chen, Zhijiang; Dong, Shuxiang

    2012-12-01

    We report a miniature piezoelectric ultrasonic linear motor that is made of four Pb(Zr,Ti)O(3) (PZT) piezoelectric ceramic layers for low-voltage work. The 4-layer piezoelectric laminate works in two orthogonal first-bending modes for producing elliptical oscillations, which are then used to drive a contacting slider into continuous linear motion. Experimental results show that the miniature linear motor (size: 4 × 4 × 12 mm, weight: 1.7 g) can generate a large driving force of 0.48 N and a linear motion speed of up to 160 mm/s, using a 40 V(pp)/mm voltage drive at its resonance frequency of 64.5 kHz. The maximum efficiency of the linear motor is 30%.

  7. Non-linear effects of drought under shade: reconciling physiological and ecological models in plant communities.

    PubMed

    Holmgren, Milena; Gómez-Aparicio, Lorena; Quero, José Luis; Valladares, Fernando

    2012-06-01

    The combined effects of shade and drought on plant performance and the implications for species interactions are highly debated in plant ecology. Empirical evidence for positive and negative effects of shade on the performance of plants under dry conditions supports two contrasting theoretical models about the role of shade under dry conditions: the trade-off and the facilitation hypotheses. We performed a meta-analysis of field and greenhouse studies evaluating the effects of drought at two or more irradiance levels on nine response variables describing plant physiological condition, growth, and survival. We explored differences in plant response across plant functional types, ecosystem types and methodological approaches. The data were best fit using quadratic models indicating a humped-back shape response to drought along an irradiance gradient for survival, whole plant biomass, maximum photosynthetic capacity, stomatal conductance and maximal photochemical efficiency. Drought effects were ameliorated at intermediate irradiance, becoming more severe at higher or lower light levels. This general pattern was maintained when controlling for potential variations in the strength of the drought treatment among light levels. Our quantitative meta-analysis indicates that dense shade ameliorates drought especially among drought-intolerant and shade-tolerant species. Wet tropical species showed larger negative effects of drought with increasing irradiance than semiarid and cold temperate species. Non-linear responses to irradiance were stronger under field conditions than under controlled greenhouse conditions. Non-linear responses to drought along the irradiance gradient reconciliate opposing views in plant ecology, indicating that facilitation is more likely within certain range of environmental conditions, fading under deep shade, especially for drought-tolerant species.

  8. Plasma endotoxin core antibody concentration and linear growth are unrelated in rural Malawian children aged 2-5 years.

    PubMed

    Benzoni, Nicole; Korpe, Poonum; Thakwalakwa, Chrissie; Maleta, Ken; Stephenson, Kevin; Manary, Micah; Manary, Mark

    2015-06-24

    Environmental enteropathy is subclinical inflammation of the upper gastrointestinal tract associated with reduced linear growth in developing countries. Usually investigators have used biopsy or a dual sugar absorption test to assess environmental enteropathy. Such tests are time and resource intensive, restricting their utility as screening methods. Serum endotoxin core antibody (EndoCab) concentration is a potential indicator of intestinal inflammation and integrity, and thus may be useful to predict environmental enteropathy. We analyzed the association of serum EndoCab levels versus linear growth and lactulose-mannitol assay results in 2-5 year old rural Malawian children. This was an observational study of 388 rural, asymptomatic Malawian children who had anthropometric measurements taken at least every 3 months since birth. In June and July 2011, dual sugar permeability tests were performed and serum samples were drawn for EndoCab assays. Pearson correlation, Student's t test and multivariable linear regression were used to compare ln EndoCab concentrations with height-for-age z scores (HAZ) at time of sampling and 3 months later. Identical analysis was also performed for ln EndoCab versus measurements from dual sugar permeability testing performed in conjunction with serum sampling. In a subgroup of children with anthropometric data in the months prior to serum sampling, Pearson correlation was used to estimate the relationship between ln EndoCab and recent linear growth. Ln EndoCab concentrations were not correlated with HAZ at time of measurement (B = -0.078, P = 0.14) nor change in HAZ over the subsequent 3 months HAZ (B = -0.018, P = 0.27). EndoCab concentration was not associated with %lactulose excretion (B < 0.001, P = 0.98) nor the lactulose:mannitol ratio (B = 0.021, P = 0.62). Subgroup analysis also did not reveal any significant association between EndoCab and recent growth. EndoCab titers were not correlated with measurements of growth or intestinal permeability in rural pre-school aged Malawian children.

  9. Comparison of statistical models to estimate parasite growth rate in the induced blood stage malaria model.

    PubMed

    Wockner, Leesa F; Hoffmann, Isabell; O'Rourke, Peter; McCarthy, James S; Marquart, Louise

    2017-08-25

    The efficacy of vaccines aimed at inhibiting the growth of malaria parasites in the blood can be assessed by comparing the growth rate of parasitaemia in the blood of subjects treated with a test vaccine compared to controls. In studies using induced blood stage malaria (IBSM), a type of controlled human malaria infection, parasite growth rate has been measured using models with the intercept on the y-axis fixed to the inoculum size. A set of statistical models was evaluated to determine an optimal methodology to estimate parasite growth rate in IBSM studies. Parasite growth rates were estimated using data from 40 subjects published in three IBSM studies. Data was fitted using 12 statistical models: log-linear, sine-wave with the period either fixed to 48 h or not fixed; these models were fitted with the intercept either fixed to the inoculum size or not fixed. All models were fitted by individual, and overall by study using a mixed effects model with a random effect for the individual. Log-linear models and sine-wave models, with the period fixed or not fixed, resulted in similar parasite growth rate estimates (within 0.05 log 10 parasites per mL/day). Average parasite growth rate estimates for models fitted by individual with the intercept fixed to the inoculum size were substantially lower by an average of 0.17 log 10 parasites per mL/day (range 0.06-0.24) compared with non-fixed intercept models. Variability of parasite growth rate estimates across the three studies analysed was substantially higher (3.5 times) for fixed-intercept models compared with non-fixed intercept models. The same tendency was observed in models fitted overall by study. Modelling data by individual or overall by study had minimal effect on parasite growth estimates. The analyses presented in this report confirm that fixing the intercept to the inoculum size influences parasite growth estimates. The most appropriate statistical model to estimate the growth rate of blood-stage parasites in IBSM studies appears to be a log-linear model fitted by individual and with the intercept estimated in the log-linear regression. Future studies should use this model to estimate parasite growth rates.

  10. Regularization of Grad’s 13 -Moment-Equations in Kinetic Gas Theory

    DTIC Science & Technology

    2011-01-01

    variant of the moment method has been proposed by Eu (1980) and is used, e.g., in Myong (2001). Recently, a maximum- entropy 10-moment system has been used...small amplitude linear waves, the R13 system is linearly stable in time for all modes and wave lengths. The instability of the Burnett system indicates...Boltzmann equation. Related to the problem of global hyperbolicity is the questions of the existence of an entropy law for the R13 system . In the linear

  11. Forcing Regression through a Given Point Using Any Familiar Computational Routine.

    DTIC Science & Technology

    1983-03-01

    a linear model , Y =a + OX + e ( Model I) then adopt the principle of least squares; and use sample data to estimate the unknown parameters, a and 8...has an expected value of zero indicates that the "average" response is considered linear . If c varies widely, Model I, though conceptually correct, may...relationship is linear from the maximum observed x to x - a, then Model II should be used. To pro- ceed with the customary evaluation of Model I would be

  12. Universal Linear Fit Identification: A Method Independent of Data, Outliers and Noise Distribution Model and Free of Missing or Removed Data Imputation.

    PubMed

    Adikaram, K K L B; Hussein, M A; Effenberger, M; Becker, T

    2015-01-01

    Data processing requires a robust linear fit identification method. In this paper, we introduce a non-parametric robust linear fit identification method for time series. The method uses an indicator 2/n to identify linear fit, where n is number of terms in a series. The ratio Rmax of amax - amin and Sn - amin*n and that of Rmin of amax - amin and amax*n - Sn are always equal to 2/n, where amax is the maximum element, amin is the minimum element and Sn is the sum of all elements. If any series expected to follow y = c consists of data that do not agree with y = c form, Rmax > 2/n and Rmin > 2/n imply that the maximum and minimum elements, respectively, do not agree with linear fit. We define threshold values for outliers and noise detection as 2/n * (1 + k1) and 2/n * (1 + k2), respectively, where k1 > k2 and 0 ≤ k1 ≤ n/2 - 1. Given this relation and transformation technique, which transforms data into the form y = c, we show that removing all data that do not agree with linear fit is possible. Furthermore, the method is independent of the number of data points, missing data, removed data points and nature of distribution (Gaussian or non-Gaussian) of outliers, noise and clean data. These are major advantages over the existing linear fit methods. Since having a perfect linear relation between two variables in the real world is impossible, we used artificial data sets with extreme conditions to verify the method. The method detects the correct linear fit when the percentage of data agreeing with linear fit is less than 50%, and the deviation of data that do not agree with linear fit is very small, of the order of ±10-4%. The method results in incorrect detections only when numerical accuracy is insufficient in the calculation process.

  13. Markov and semi-Markov switching linear mixed models used to identify forest tree growth components.

    PubMed

    Chaubert-Pereira, Florence; Guédon, Yann; Lavergne, Christian; Trottier, Catherine

    2010-09-01

    Tree growth is assumed to be mainly the result of three components: (i) an endogenous component assumed to be structured as a succession of roughly stationary phases separated by marked change points that are asynchronous among individuals, (ii) a time-varying environmental component assumed to take the form of synchronous fluctuations among individuals, and (iii) an individual component corresponding mainly to the local environment of each tree. To identify and characterize these three components, we propose to use semi-Markov switching linear mixed models, i.e., models that combine linear mixed models in a semi-Markovian manner. The underlying semi-Markov chain represents the succession of growth phases and their lengths (endogenous component) whereas the linear mixed models attached to each state of the underlying semi-Markov chain represent-in the corresponding growth phase-both the influence of time-varying climatic covariates (environmental component) as fixed effects, and interindividual heterogeneity (individual component) as random effects. In this article, we address the estimation of Markov and semi-Markov switching linear mixed models in a general framework. We propose a Monte Carlo expectation-maximization like algorithm whose iterations decompose into three steps: (i) sampling of state sequences given random effects, (ii) prediction of random effects given state sequences, and (iii) maximization. The proposed statistical modeling approach is illustrated by the analysis of successive annual shoots along Corsican pine trunks influenced by climatic covariates. © 2009, The International Biometric Society.

  14. Longitudinal mathematics development of students with learning disabilities and students without disabilities: a comparison of linear, quadratic, and piecewise linear mixed effects models.

    PubMed

    Kohli, Nidhi; Sullivan, Amanda L; Sadeh, Shanna; Zopluoglu, Cengiz

    2015-04-01

    Effective instructional planning and intervening rely heavily on accurate understanding of students' growth, but relatively few researchers have examined mathematics achievement trajectories, particularly for students with special needs. We applied linear, quadratic, and piecewise linear mixed-effects models to identify the best-fitting model for mathematics development over elementary and middle school and to ascertain differences in growth trajectories of children with learning disabilities relative to their typically developing peers. The analytic sample of 2150 students was drawn from the Early Childhood Longitudinal Study - Kindergarten Cohort, a nationally representative sample of United States children who entered kindergarten in 1998. We first modeled students' mathematics growth via multiple mixed-effects models to determine the best fitting model of 9-year growth and then compared the trajectories of students with and without learning disabilities. Results indicate that the piecewise linear mixed-effects model captured best the functional form of students' mathematics trajectories. In addition, there were substantial achievement gaps between students with learning disabilities and students with no disabilities, and their trajectories differed such that students without disabilities progressed at a higher rate than their peers who had learning disabilities. The results underscore the need for further research to understand how to appropriately model students' mathematics trajectories and the need for attention to mathematics achievement gaps in policy. Copyright © 2015 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  15. Climate change at upper treeline: How do trees on the edge react to increasing temperatures?

    NASA Astrophysics Data System (ADS)

    Jochner, Matthias; Bugmann, Harald; Nötzli, Magdalena; Bigler, Christof

    2017-04-01

    Treeline ecotones are thought to be particularly sensitive to climate warming, and an alteration of their growth conditions may have important implications for the ecosystem services they supply in mountain regions. We use a novel approach to quantify effects of a changing climate on tree growth, using case studies in the European Alps. We compiled tree-ring data from almost 600 trees of four species at treeline in three climate regions of Switzerland. Temperature loggers installed along transects provided data for a precise interpolation of temperatures experienced by the sampled trees. To assess the influence of temperature on annual growth, we used linear mixed-effects models, allowing us to quantify effect sizes and to account for between-tree growth variability. After removing biological growth trends, we isolated temporal trends of ring-width indices. Furthermore, we fitted non-linear regression models to radial growth rates of individual years with temperature and tree age as predicting covariates for a fine-scale investigation of the temperature dependency of tree growth. For all species, climate-growth linear mixed-effects models indicated strong positive responses of ring-width indices to temperature in early summer and previous year's autumn, featuring considerable between-tree variability. All species showed positive ring-width index trends at treeline but different interactions with elevation: Larix decidua exhibited a declining ring-width index trend with decreasing elevation, whereas Picea abies, Pinus cembra and Pinus mugo showed increasing and/or stable trends. Not only reflected our findings the effects of ameliorated growth conditions, they might have also revealed suspected negative and positive feedbacks of climate change on growth, and increased the knowledge about the functional form and parameterization of the temperature dependency of tree growth.

  16. Stunting Persists despite Optimal Feeding: Are Toilets Part of the Solution?

    PubMed

    Prendergast, Andrew J; Humphrey, Jean H

    2015-01-01

    Children in developing countries have an average length-for-age that is already below the World Health Organization standard at birth and show a further decline in linear growth over the first 24 months of life; however, complementary feeding interventions have only a modest impact on growth. Children living in conditions of poor sanitation and hygiene are frequently exposed to pathogenic microbes through feco-oral transmission. Acute diarrhea represents only the tip of the 'enteric disease iceberg', with a substantial underlying burden of chronic, subclinical enteropathy. Environmental enteric dysfunction (EED) is characterized by disturbance in small intestinal structure and impaired gut barrier function, enabling microbial translocation and chronic systemic inflammation, which may impair growth. Gut damage appears to arise early in infancy and markers of intestinal inflammation, intestinal permeability and systemic immune activation are inversely associated with linear growth. Reducing feco-oral microbial transmission by improving water, sanitation and hygiene (WASH) may theoretically prevent or ameliorate EED and improve linear growth; ongoing trials are exploring this hypothesis. Given the complex interplay of factors leading to stunting, multisectoral interventions are likely required. Improving WASH in addition to infant feeding may be one approach to improve the growth and developmental potential of infants in developing countries. © 2015 Nestec Ltd., Vevey/S. Karger AG, Basel.

  17. Predicting the Maximum Dynamic Strength in Bench Press: The High Precision of the Bar Velocity Approach.

    PubMed

    Loturco, Irineu; Kobal, Ronaldo; Moraes, José E; Kitamura, Katia; Cal Abad, César C; Pereira, Lucas A; Nakamura, Fábio Y

    2017-04-01

    Loturco, I, Kobal, R, Moraes, JE, Kitamura, K, Cal Abad, CC, Pereira, LA, and Nakamura, FY. Predicting the maximum dynamic strength in bench press: the high precision of the bar velocity approach. J Strength Cond Res 31(4): 1127-1131, 2017-The aim of this study was to determine the force-velocity relationship and test the possibility of determining the 1 repetition maximum (1RM) in "free weight" and Smith machine bench presses. Thirty-six male top-level athletes from 3 different sports were submitted to a standardized 1RM bench press assessment (free weight or Smith machine, in randomized order), following standard procedures encompassing lifts performed at 40-100% of 1RM. The mean propulsive velocity (MPV) was measured in all attempts. A linear regression was performed to establish the relationships between bar velocities and 1RM percentages. The actual and predicted 1RM for each exercise were compared using a paired t-test. Although the Smith machine 1RM was higher (10% difference) than the free weight 1RM, in both cases the actual and predicted values did not differ. In addition, the linear relationship between MPV and percentage of 1RM (coefficient of determination ≥95%) allow determination of training intensity based on the bar velocity. The linear relationships between the MPVs and the relative percentages of 1RM throughout the entire range of loads enable coaches to use the MPV to accurately monitor their athletes on a daily basis and accurately determine their actual 1RM without the need to perform standard maximum dynamic strength assessments.

  18. Dynamic Response and Residual Helmet Liner Crush Using Cadaver Heads and Standard Headforms.

    PubMed

    Bonin, S J; Luck, J F; Bass, C R; Gardiner, J C; Onar-Thomas, A; Asfour, S S; Siegmund, G P

    2017-03-01

    Biomechanical headforms are used for helmet certification testing and reconstructing helmeted head impacts; however, their biofidelity and direct applicability to human head and helmet responses remain unclear. Dynamic responses of cadaver heads and three headforms and residual foam liner deformations were compared during motorcycle helmet impacts. Instrumented, helmeted heads/headforms were dropped onto the forehead region against an instrumented flat anvil at 75, 150, and 195 J. Helmets were CT scanned to quantify maximum liner crush depth and crush volume. General linear models were used to quantify the effect of head type and impact energy on linear acceleration, head injury criterion (HIC), force, maximum liner crush depth, and liner crush volume and regression models were used to quantify the relationship between acceleration and both maximum crush depth and crush volume. The cadaver heads generated larger peak accelerations than all three headforms, larger HICs than the International Organization for Standardization (ISO), larger forces than the Hybrid III and ISO, larger maximum crush depth than the ISO, and larger crush volumes than the DOT. These significant differences between the cadaver heads and headforms need to be accounted for when attempting to estimate an impact exposure using a helmet's residual crush depth or volume.

  19. Optimization and Analysis of a U-Shaped Linear Piezoelectric Ultrasonic Motor Using Longitudinal Transducers

    PubMed Central

    Yu, Hongpeng; Quan, Qiquan; Tian, Xinqi; Li, He

    2018-01-01

    A novel U-shaped piezoelectric ultrasonic motor that mainly focused on miniaturization and high power density was proposed, fabricated, and tested in this work. The longitudinal vibrations of the transducers were excited to form the elliptical movements on the driving feet. Finite element method (FEM) was used for design and analysis. The resonance frequencies of the selected vibration modes were tuned to be very close to each other with modal analysis and the movement trajectories of the driving feet were gained with transient simulation. The vibration modes and the mechanical output abilities were tested to evaluate the proposed motor further by a prototype. The maximum output speed was tested to be 416 mm/s, the maximum thrust force was 21 N, and the maximum output power was 5.453 W under frequency of 29.52 kHz and voltage of 100 Vrms. The maximum output power density of the prototype reached 7.59 W/kg, which was even greater than a previous similar motor under the exciting voltage of 200 Vrms. The proposed motor showed great potential for linear driving of large thrust force and high power density. PMID:29518963

  20. The correlation function for density perturbations in an expanding universe. I - Linear theory

    NASA Technical Reports Server (NTRS)

    Mcclelland, J.; Silk, J.

    1977-01-01

    The evolution of the two-point correlation function for adiabatic density perturbations in the early universe is studied. Analytical solutions are obtained for the evolution of linearized spherically symmetric adiabatic density perturbations and the two-point correlation function for these perturbations in the radiation-dominated portion of the early universe. The results are then extended to the regime after decoupling. It is found that: (1) adiabatic spherically symmetric perturbations comparable in scale with the maximum Jeans length would survive the radiation-dominated regime; (2) irregular fluctuations are smoothed out up to the scale of the maximum Jeans length in the radiation era, but regular fluctuations might survive on smaller scales; (3) in general, the only surviving structures for irregularly shaped adiabatic density perturbations of arbitrary but finite scale in the radiation regime are the size of or larger than the maximum Jeans length in that regime; (4) infinite plane waves with a wavelength smaller than the maximum Jeans length but larger than the critical dissipative damping scale could survive the radiation regime; and (5) black holes would also survive the radiation regime and might accrete sufficient mass after decoupling to nucleate the formation of galaxies.

  1. Optimization and Analysis of a U-Shaped Linear Piezoelectric Ultrasonic Motor Using Longitudinal Transducers.

    PubMed

    Yu, Hongpeng; Quan, Qiquan; Tian, Xinqi; Li, He

    2018-03-07

    A novel U-shaped piezoelectric ultrasonic motor that mainly focused on miniaturization and high power density was proposed, fabricated, and tested in this work. The longitudinal vibrations of the transducers were excited to form the elliptical movements on the driving feet. Finite element method (FEM) was used for design and analysis. The resonance frequencies of the selected vibration modes were tuned to be very close to each other with modal analysis and the movement trajectories of the driving feet were gained with transient simulation. The vibration modes and the mechanical output abilities were tested to evaluate the proposed motor further by a prototype. The maximum output speed was tested to be 416 mm/s, the maximum thrust force was 21 N, and the maximum output power was 5.453 W under frequency of 29.52 kHz and voltage of 100 V rms . The maximum output power density of the prototype reached 7.59 W/kg, which was even greater than a previous similar motor under the exciting voltage of 200 V rms . The proposed motor showed great potential for linear driving of large thrust force and high power density.

  2. Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono

    PubMed Central

    Zhang, Peng; Shen, Hai-long; Salahuddin

    2017-01-01

    Nitrogen and phosphorous are critical determinants of plant growth and productivity, and both plant growth and root morphology are important parameters for evaluating the effects of supplied nutrients. Previous work has shown that the growth of Acer mono seedlings is retarded under nursery conditions; we applied different levels of N (0, 5, 10, and 15 g plant-1) and P (0, 4, 6 and 8 g plant-1) fertilizer to investigate the effects of fertilization on the growth and root morphology of four-year-old seedlings in the field. Our results indicated that both N and P application significantly affected plant height, root collar diameter, chlorophyll content, and root morphology. Among the nutrient levels, 10 g N and 8 g P were found to yield maximum growth, and the maximum values of plant height, root collar diameter, chlorophyll content, and root morphology were obtained when 10 g N and 8 g P were used together. Therefore, the present study demonstrates that optimum levels of N and P can be used to improve seedling health and growth during the nursery period. PMID:28234921

  3. Cell adhesion and guidance by micropost-array chemical sensors

    NASA Astrophysics Data System (ADS)

    Pantano, Paul; Quah, Soo-Kim; Danowski, Kristine L.

    2002-06-01

    An array of ~50,000 individual polymeric micropost sensors was patterned across a glass coverslip by a photoimprint lithographic technique. Individual micropost sensors were ~3-micrometers tall and ~8-micrometers wide. The O2-sensitive micropost array sensors (MPASs) comprised a ruthenium complex encapsulated in a gas permeable photopolymerizable siloxane. The pH-sensitive MPASs comprised a fluorescein conjugate encapsulated in a photocrosslinkable poly(vinyl alcohol)-based polymer. PO2 and pH were quantitated by acquiring MPAS luminescence images with an epifluorescence microscope/charge coupled device imaging system. O2-sensitive MPASs displayed linear Stern-Volmer quenching behavior with a maximum Io/I of ~8.6. pH-sensitive MPASs displayed sigmoidal calibration curves with a pKa of ~5.8. The adhesion of undifferentiated rat pheochromocytoma (PC12) cells across these two polymeric surface types was investigated. The greatest PC12 cell proliferation and adhesion occurred across the poly(vinyl alcohol)-based micropost arrays relative to planar poly(vinyl alcohol)-based surfaces and both patterned and planar siloxane surfaces. An additional advantage of the patterned MPAS layers relative to planar sensing layers was the ability to direct the growth of biological cells. Preliminary data is presented whereby nerve growth factor-differentiated PC12 cells grew neurite-like processes that extended along paths defined by the micropost architecture.

  4. Predicting the geographical distribution of two invasive termite species from occurrence data.

    PubMed

    Tonini, Francesco; Divino, Fabio; Lasinio, Giovanna Jona; Hochmair, Hartwig H; Scheffrahn, Rudolf H

    2014-10-01

    Predicting the potential habitat of species under both current and future climate change scenarios is crucial for monitoring invasive species and understanding a species' response to different environmental conditions. Frequently, the only data available on a species is the location of its occurrence (presence-only data). Using occurrence records only, two models were used to predict the geographical distribution of two destructive invasive termite species, Coptotermes gestroi (Wasmann) and Coptotermes formosanus Shiraki. The first model uses a Bayesian linear logistic regression approach adjusted for presence-only data while the second one is the widely used maximum entropy approach (Maxent). Results show that the predicted distributions of both C. gestroi and C. formosanus are strongly linked to urban development. The impact of future scenarios such as climate warming and population growth on the biotic distribution of both termite species was also assessed. Future climate warming seems to affect their projected probability of presence to a lesser extent than population growth. The Bayesian logistic approach outperformed Maxent consistently in all models according to evaluation criteria such as model sensitivity and ecological realism. The importance of further studies for an explicit treatment of residual spatial autocorrelation and a more comprehensive comparison between both statistical approaches is suggested.

  5. Recrystallization and grain growth behavior of rolled tungsten under VDE-like short pulse high heat flux loads

    NASA Astrophysics Data System (ADS)

    Yuan, Y.; Greuner, H.; Böswirth, B.; Krieger, K.; Luo, G.-N.; Xu, H. Y.; Fu, B. Q.; Li, M.; Liu, W.

    2013-02-01

    Short pulse heat loads expected for vertical displacement events (VDEs) in ITER were applied in the high heat flux (HHF) test facility GLADIS at IPP-Garching onto samples of rolled W. Pulsed neutral beams with the central heat flux of 23 MW/m2 were applied for 0.5, 1.0 and 1.5 s, respectively. Rapid recrystallization of the adiabatically loaded 3 mm thick samples was observed when the pulse duration was up to 1.0 s. Grains grew markedly following recrystallization with increasing pulse length. The recrystallization temperature and temperature dependence of the recrystallized grain size were also investigated. The results showed that the recrystallization temperature of the W grade was around 2480 °C under the applied heat loading condition, which was nearly 1150 °C higher than the conventional recrystallization temperature, and the grains were much finer. A linear relationship between the logarithm of average grain size (ln d) and the inverse of maximum surface temperature (1/Tmax) was found and accordingly the activation energy for grain growth in temperature evolution up to Tmax in 1.5 s of the short pulse HHF load was deduced to be 4.1 eV. This provided an effective clue to predict the structure evolution under short pulse HHF loads.

  6. Bioremediation of surface water co-contaminated with zinc (II) and linear alkylbenzene sulfonates by Spirulina platensis

    NASA Astrophysics Data System (ADS)

    Meng, Huijuan; Xia, Yunfeng; Chen, Hong

    Potential remediation of surface water contaminated with linear alkylbenzene sulfonates (LAS) and zinc (Zn (II)) by sorption on Spirulina platensis was studied using batch techniques. Results show that LAS can be biodegraded by Spirulina platensis, and its biodegradation rate after 5 days was 87%, 80%, and 70.5% when its initial concentration was 0.5, 1, and 2 mg/L, respectively. The maximum Zn (II) uptake capacity of Spirulina platensis was found to be 30.96 mg/g. LAS may enhance the maximum Zn (II) uptake capacity of Spirulina platensis, which can be attributed to an increase in bioavailability due to the presence of LAS. The biodegradation rates of LAS by Spirulina platensis increased with Zn (II) and reached the maximum when Zn (II) was 4 mg/L. The joint toxicity test showed that the combined effect of LAS and Zn (II) was Synergistic. LAS can enhance the biosorption of Zn (II), and reciprocally, Zn (II) can enhance LAS biodegradation.

  7. Four Stokes parameter radio frequency polarimetry of a flare from AD Leonis

    NASA Technical Reports Server (NTRS)

    Spangler, S. R.; Rankin, J. M.; Shawhan, S. D.

    1974-01-01

    Observations of the four Stokes parameters of a 430 MHz flare from the UV Ceti-type star AD Leonis are presented. The maximum amplitude of the event was 0.52 flux units and the durations at one-half and one-tenth maximum were 12 and 40 seconds, respectively. The degree of circular polarization at maximum intensity was approximately 56 percent and was later observed to be as high as 92 percent. Linear polarization was also observed at a level of about 21 percent at flare maximum which allowed an upper limit of 440 radians - sq m to be placed on the rotation measure.

  8. Non-axisymmetric annular curtain stability

    NASA Astrophysics Data System (ADS)

    Ahmed, Zahir U.; Khayat, Roger E.; Maissa, Philippe; Mathis, Christian

    2013-08-01

    A stability analysis of non-axisymmetric annular curtain is carried out for an axially moving viscous jet subject in surrounding viscous gas media. The effect of inertia, surface tension, gas-to-liquid density ratio, inner-to-outer radius ratio, and gas-to-liquid viscosity ratio on the stability of the jet is studied. In general, the axisymmetric disturbance is found to be the dominant mode. However, for small wavenumber, the non-axisymmetric mode is the most unstable mode and the one likely observed in reality. Inertia and the viscosity ratio for non-axisymmetric disturbances show a similar stability influence as observed for axisymmetric disturbances. The maximum growth rate in non-axisymmetric flow, interestingly, appears at very small wavenumber for all inertia levels. The dominant wavenumber increases (decreases) with inertia for non-axisymmetric (axisymmetric) flow. Gas-to-liquid density ratio, curvature effect, and surface tension, however, exhibit an opposite influence on growth rate compared to axisymmetric disturbances. Surface tension tends to stabilize the flow with reductions of the unstable wavenumber range and the maximum growth rate as well as the dominant wavenumber. The dominant wavenumber remains independent of viscosity ratio indicating the viscosity ratio increases the breakup length of the sheet with very little influence on the size of the drops. The range of unstable wavenumbers is affected only by curvature in axisymmetric flow, whereas all the stability parameters control the range of unstable wavenumbers in non-axisymmetric flow. Inertia and gas density increase the unstable wavenumber range, whereas the radius ratio, surface tension, and the viscosity ratio decrease the unstable wavenumber range. Neutral curves are plotted to separate the stable and unstable domains. Critical radius ratio decreases linearly and nonlinearly with the wavenumber for axisymmetric and non-axisymmetric disturbances, respectively. At smaller Weber numbers, a wider unstable domain is predicted for non-axisymmetric modes. For both axisymmetric and non-axisymmetric modes, the disturbance frequency is found to be the same and equal to the negative of axial wavenumber. Finally, comparison between theory and existing experiment leads to good qualitative agreement. A more accurate comparison is not possible given the difference in flow conditions.

  9. Parabolic replicator dynamics and the principle of minimum Tsallis information gain

    PubMed Central

    2013-01-01

    Background Non-linear, parabolic (sub-exponential) and hyperbolic (super-exponential) models of prebiological evolution of molecular replicators have been proposed and extensively studied. The parabolic models appear to be the most realistic approximations of real-life replicator systems due primarily to product inhibition. Unlike the more traditional exponential models, the distribution of individual frequencies in an evolving parabolic population is not described by the Maximum Entropy (MaxEnt) Principle in its traditional form, whereby the distribution with the maximum Shannon entropy is chosen among all the distributions that are possible under the given constraints. We sought to identify a more general form of the MaxEnt principle that would be applicable to parabolic growth. Results We consider a model of a population that reproduces according to the parabolic growth law and show that the frequencies of individuals in the population minimize the Tsallis relative entropy (non-additive information gain) at each time moment. Next, we consider a model of a parabolically growing population that maintains a constant total size and provide an “implicit” solution for this system. We show that in this case, the frequencies of the individuals in the population also minimize the Tsallis information gain at each moment of the ‘internal time” of the population. Conclusions The results of this analysis show that the general MaxEnt principle is the underlying law for the evolution of a broad class of replicator systems including not only exponential but also parabolic and hyperbolic systems. The choice of the appropriate entropy (information) function depends on the growth dynamics of a particular class of systems. The Tsallis entropy is non-additive for independent subsystems, i.e. the information on the subsystems is insufficient to describe the system as a whole. In the context of prebiotic evolution, this “non-reductionist” nature of parabolic replicator systems might reflect the importance of group selection and competition between ensembles of cooperating replicators. Reviewers This article was reviewed by Viswanadham Sridhara (nominated by Claus Wilke), Puushottam Dixit (nominated by Sergei Maslov), and Nick Grishin. For the complete reviews, see the Reviewers’ Reports section. PMID:23937956

  10. Wing morphology and flight development in the short-nosed fruit bat Cynopterus sphinx.

    PubMed

    Elangovan, Vadamalai; Yuvana Satya Priya, Elangovan; Raghuram, Hanumanth; Marimuthu, Ganapathy

    2007-01-01

    Postnatal changes in wing morphology, flight development and aerodynamics were studied in captive free-flying short-nosed fruit bats, Cynopterus sphinx. Pups were reluctant to move until 25 days of age and started fluttering at the mean age of 40 days. The wingspan and wing area increased linearly until 45 days of age by which time the young bats exhibited clumsy flight with gentle turns. At birth, C. sphinx had less-developed handwings compared to armwings; however, the handwing developed faster than the armwing during the postnatal period. Young bats achieved sustained flight at 55 days of age. Wing loading decreased linearly until 35 days of age and thereafter increased to a maximum of 12.82 Nm(-2) at 125 days of age. The logistic equation fitted the postnatal changes in wingspan and wing area better than the Gompertz and von Bertalanffy equations. The predicted minimum power speed (V(mp)) and maximum range speed (V(mr)) decreased until the onset of flight and thereafter the V(mp) and V(mr) increased linearly and approached 96.2% and 96.4%, respectively, of the speed of postpartum females at the age of 125 days. The requirement of minimum flight power (P(mp)) and maximum range power (P(mr)) increased until 85 days of age and thereafter stabilised. The minimum theoretical radius of banked turn (r(min)) decreased until 35 days of age and thereafter increased linearly and attained 86.5% of the r(min) of postpartum females at the age of 125 days.

  11. Comparing growth rates of Arctic Cod Boreogadus saida across the Chukchi and Beaufort Seas

    NASA Astrophysics Data System (ADS)

    Frothingham, A. M.; Norcross, B.

    2016-02-01

    Dramatic changes to the Arctic have highlighted the need for a greater understanding of the present ecosystem. Arctic Cod, Boreogadus saida, commonly dominate fish assemblages in the Arctic region and inhabit two geographically unique seas in the U.S. Due to the importance of Arctic Cod in the Arctic food web, establishing current benchmark information such as growth rates, will provide a better understanding as to how the species will adapt to the effects of climate change. To investigate differences in Arctic Cod life history across nearly 1500 km of vital habitat, growth rates were examined using a von Bertalanffy growth equation. Arctic Cod were collected from 2009 to 2014 from the Chukchi and Beaufort seas. Arctic Cod collected from the Chukchi Sea had an overall smaller maximum achievable length (210 mm) compared to the Beaufort Sea (253 mm) despite a larger sample size in the Chukchi Sea (n=1569) than the Beaufort Sea (n=1140). Growth rates indicated faster growth in the Chukchi Sea (K =0.33) than in the Beaufort Sea (K= 0.29). Arctic Cod collected from the Chukchi Sea had similar achievable maximum lengths throughout, but those collected from the southern Chukchi Sea grew at faster rates (K=0.45).Arctic Cod in the eastern Beaufort Sea region had a higher overall maximum achievable length (243 mm) than in the western Beaufort Sea region (186 mm). Knowledge about contemporary growth rates of Arctic Cod in the Chukchi and Beaufort Seas can be used in future comparisons to evaluate potential effects of increasing climate change and anthropogenic influences.

  12. Effects of Hydrostatic Pressure on Growth and Luminescence of a Moderately-Piezophilic Luminous Bacteria Photobacterium phosphoreum ANT-2200

    PubMed Central

    Martini, Séverine; Al Ali, Badr; Garel, Marc; Nerini, David; Grossi, Vincent; Pacton, Muriel; Casalot, Laurence; Cuny, Philippe; Tamburini, Christian

    2013-01-01

    Bacterial bioluminescence is commonly found in the deep sea and depends on environmental conditions. Photobacterium phosphoreum ANT-2200 has been isolated from the NW Mediterranean Sea at 2200-m depth (in situ temperature of 13°C) close to the ANTARES neutrino telescope. The effects of hydrostatic pressure on its growth and luminescence have been investigated under controlled laboratory conditions, using a specifically developed high-pressure bioluminescence system. The growth rate and the maximum population density of the strain were determined at different temperatures (from 4 to 37°C) and pressures (from 0.1 to 40 MPa), using the logistic model to define these two growth parameters. Indeed, using the growth rate only, no optimal temperature and pressure could be determined. However, when both growth rate and maximum population density were jointly taken into account, a cross coefficient was calculated. By this way, the optimum growth conditions for P. phosphoreum ANT-2200 were found to be 30°C and, 10 MPa defining this strain as mesophile and moderately piezophile. Moreover, the ratio of unsaturated vs. saturated cellular fatty acids was found higher at 22 MPa, in agreement with previously described piezophile strains. P. phosphoreum ANT-2200 also appeared to respond to high pressure by forming cell aggregates. Its maximum population density was 1.2 times higher, with a similar growth rate, than at 0.1 MPa. Strain ANT-2200 grown at 22 MPa produced 3 times more bioluminescence. The proposed approach, mimicking, as close as possible, the in situ conditions, could help studying deep-sea bacterial bioluminescence and validating hypotheses concerning its role into the carbon cycle in the deep ocean. PMID:23818946

  13. Optimization of Culture Medium for the Growth of Candida sp. and Blastobotrys sp. as Starter Culture in Fermentation of Cocoa Beans (Theobroma cacao) Using Response Surface Methodology (RSM).

    PubMed

    Mahazar, N H; Zakuan, Z; Norhayati, H; MeorHussin, A S; Rukayadi, Y

    2017-01-01

    Inoculation of starter culture in cocoa bean fermentation produces consistent, predictable and high quality of fermented cocoa beans. It is important to produce healthy inoculum in cocoa bean fermentation for better fermented products. Inoculum could minimize the length of the lag phase in fermentation. The purpose of this study was to optimize the component of culture medium for the maximum cultivation of Candida sp. and Blastobotrys sp. Molasses and yeast extract were chosen as medium composition and Response Surface Methodology (RSM) was then employed to optimize the molasses and yeast extract. Maximum growth of Candida sp. (7.63 log CFU mL-1) and Blastobotrys sp. (8.30 log CFU mL-1) were obtained from the fermentation. Optimum culture media for the growth of Candida sp., consist of 10% (w/v) molasses and 2% (w/v) yeast extract, while for Blastobotrys sp., were 1.94% (w/v) molasses and 2% (w/v) yeast extract. This study shows that culture medium consists of molasses and yeast extract were able to produce maximum growth of Candida sp. and Blastobotrys sp., as a starter culture for cocoa bean fermentation.

  14. Dynamic imperfections and optimized feedback design in the Compact Linear Collider main linac

    NASA Astrophysics Data System (ADS)

    Eliasson, Peder

    2008-05-01

    The Compact Linear Collider (CLIC) main linac is sensitive to dynamic imperfections such as element jitter, injected beam jitter, and ground motion. These effects cause emittance growth that, in case of ground motion, has to be counteracted by a trajectory feedback system. The feedback system itself will, due to jitter effects and imperfect beam position monitors (BPMs), indirectly cause emittance growth. Fast and accurate simulations of both the direct and indirect effects are desirable, but due to the many elements of the CLIC main linac, simulations may become very time consuming. In this paper, an efficient way of simulating linear (or nearly linear) dynamic effects is described. The method is also shown to facilitate the analytic determination of emittance growth caused by the different dynamic imperfections while using a trajectory feedback system. Emittance growth expressions are derived for quadrupole, accelerating structure, and beam jitter, for ground motion, and for noise in the feedback BPMs. Finally, it is shown how the method can be used to design a feedback system that is optimized for the optics of the machine and the ground motion spectrum of the particular site. This feedback system gives an emittance growth rate that is approximately 10 times lower than that of traditional trajectory feedbacks. The robustness of the optimized feedback system is studied for a number of additional imperfections, e.g., dipole corrector imperfections and faulty knowledge about the machine optics, with promising results.

  15. Associations of linear growth and relative weight gain during early life with adult health and human capital in countries of low and middle income: findings from five birth cohort studies.

    PubMed

    Adair, Linda S; Fall, Caroline H D; Osmond, Clive; Stein, Aryeh D; Martorell, Reynaldo; Ramirez-Zea, Manuel; Sachdev, Harshpal Singh; Dahly, Darren L; Bas, Isabelita; Norris, Shane A; Micklesfield, Lisa; Hallal, Pedro; Victora, Cesar G

    2013-08-10

    Fast weight gain and linear growth in children in low-income and middle-income countries are associated with enhanced survival and improved cognitive development, but might increase risk of obesity and related adult cardiometabolic diseases. We investigated how linear growth and relative weight gain during infancy and childhood are related to health and human capital outcomes in young adults. We used data from five prospective birth cohort studies from Brazil, Guatemala, India, the Philippines, and South Africa. We investigated body-mass index, systolic and diastolic blood pressure, plasma glucose concentration, height, years of attained schooling, and related categorical indicators of adverse outcomes in young adults. With linear and logistic regression models, we assessed how these outcomes relate to birthweight and to statistically independent measures representing linear growth and weight gain independent of linear growth (relative weight gain) in three age periods: 0-2 years, 2 years to mid-childhood, and mid-childhood to adulthood. We obtained data for 8362 participants who had at least one adult outcome of interest. A higher birthweight was consistently associated with an adult body-mass index of greater than 25 kg/m(2) (odds ratio 1·28, 95% CI 1·21-1·35) and a reduced likelihood of short adult stature (0·49, 0·44-0·54) and of not completing secondary school (0·82, 0·78-0·87). Faster linear growth was strongly associated with a reduced risk of short adult stature (age 2 years: 0·23, 0·20-0·52; mid-childhood: 0·39, 0·36-0·43) and of not completing secondary school (age 2 years: 0·74, 0·67-0·78; mid-childhood: 0·87, 0·83-0·92), but did raise the likelihood of overweight (age 2 years: 1·24, 1·17-1·31; mid-childhood: 1·12, 1·06-1·18) and elevated blood pressure (age 2 years: 1·12, 1·06-1·19; mid-childhood: 1·07, 1·01-1·13). Faster relative weight gain was associated with an increased risk of adult overweight (age 2 years: 1·51, 1·43-1·60; mid-childhood: 1·76, 1·69-1·91) and elevated blood pressure (age 2 years: 1·07, 1·01-1·13; mid-childhood: 1·22, 1·15-1·30). Linear growth and relative weight gain were not associated with dysglycaemia, but a higher birthweight was associated with decreased risk of the disorder (0·89, 0·81-0·98). Interventions in countries of low and middle income to increase birthweight and linear growth during the first 2 years of life are likely to result in substantial gains in height and schooling and give some protection from adult chronic disease risk factors, with few adverse trade-offs. Wellcome Trust and Bill & Melinda Gates Foundation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Growth hormone positive effects on craniofacial complex in Turner syndrome.

    PubMed

    Juloski, Jovana; Dumančić, Jelena; Šćepan, Ivana; Lauc, Tomislav; Milašin, Jelena; Kaić, Zvonimir; Dumić, Miroslav; Babić, Marko

    2016-11-01

    Turner syndrome occurs in phenotypic females with complete or partial absence of X chromosome. The leading symptom is short stature, while numerous but mild stigmata manifest in the craniofacial region. These patients are commonly treated with growth hormone to improve their final height. The aim of this study was to assess the influence of long-term growth hormone therapy on craniofacial morphology in Turner syndrome patients. In this cross-sectional study cephalometric analysis was performed on 13 lateral cephalograms of patients with 45,X karyotype and the average age of 17.3 years, who have received growth hormone for at least two years. The control group consisted of 13 Turner syndrome patients naive to growth hormone treatment, matched to study group by age and karyotype. Sixteen linear and angular measurements were obtained from standard lateral cephalograms. Standard deviation scores were calculated in order to evaluate influence of growth hormone therapy on craniofacial components. In Turner syndrome patients treated with growth hormone most of linear measurements were significantly larger compared to untreated patients. Growth hormone therapy mainly influenced posterior face height, mandibular ramus height, total mandibular length, anterior face height and maxillary length. While the increase in linear measurements was evident, angular measurements and facial height ratio did not show statistically significant difference. Acromegalic features were not found. Long-term growth hormone therapy has positive influence on craniofacial development in Turner syndrome patients, with the greatest impact on posterior facial height and mandibular ramus. However, it could not compensate X chromosome deficiency and normalize craniofacial features. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effects of isobutyrate supplementation in pre- and post-weaned dairy calves diet on growth performance, rumen development, blood metabolites and hormone secretion.

    PubMed

    Wang, C; Liu, Q; Zhang, Y L; Pei, C X; Zhang, S L; Guo, G; Huo, W J; Yang, W Z; Wang, H

    2017-05-01

    Isobutyrate supplements could improve rumen development by increasing ruminal fermentation products, especially butyrate, and then promote the growth performance of calves. The objective of this study was to evaluate the effects of isobutyrate supplementation on growth performance, rumen development, blood metabolites and hormone secretion in pre- and post-weaned dairy calves. In total, 56 Chinese Holstein male calves with 30 days of age and 72.9±1.43 kg of BW, blocked by days of age and BW, were assigned to four groups in a randomized block design. The treatments were as follows: control, low-isobutyrate, moderate-isobutyrate and high-isobutyrate with 0, 0.03, 0.06 and 0.09 g isobutyrate/kg BW per calf per day, respectively. Supplemental isobutyrate was hand-mixed into milk of pre-weaned calves and the concentrate portion of post-weaned calves. The study consisted of 10 days of an adaptation period and a 50-day sampling period. Calves were weaned at 60 days of age. Seven calves were chosen from each treatment at random and slaughtered at 45 and 90 days of age. BW, dry matter (DM) intake and stomach weight were measured, samples of ruminal tissues and blood were determined. For pre- and post-weaned calves, DM intake and average daily gain increased linearly (P<0.05), but feed conversion ratio decreased linearly (P<0.05) with increasing isobutyrate supplementation. Total stomach weight and the ratio of rumen weight to total stomach weight tended to increase (P=0.073) for pre-weaned calves and increased linearly (P=0.021) for post-weaned calves, whereas the ratio of abomasum weight to total stomach weight was not affected for pre-weaned calves and decreased linearly (P<0.05) for post-weaned calves with increasing isobutyrate supplementation. Both length and width of rumen papillae tended to increase linearly for pre-weaned calves, but increased linearly (P<0.05) for post-weaned calves with increasing isobutyrate supplementation. The relative expression of messenger RNA for growth hormone (GH) receptor and 3-hydroxy-3-methylglutaryl-CoA synthase 1 in rumen mucosa increased linearly (P<0.05) for pre- and post-weaned calves with increasing isobutyrate supplementation. Blood concentrations of glucose, acetoacetate, β-hydroxybutyrate, GH and IGF-1 increased linearly (P<0.05) for pre- and post-weaned calves, whereas blood concentration of insulin decreased linearly with increasing isobutyrate supplementation. The present results indicated that isobutyrate promoted growth of calves by improving rumen development and its ketogenesis in a dose-dependent manner.

  18. High-resolution time series of Pseudomonas aeruginosa gene expression and rhamnolipid secretion through growth curve synchronization.

    PubMed

    van Ditmarsch, Dave; Xavier, João B

    2011-06-17

    Online spectrophotometric measurements allow monitoring dynamic biological processes with high-time resolution. Contrastingly, numerous other methods require laborious treatment of samples and can only be carried out offline. Integrating both types of measurement would allow analyzing biological processes more comprehensively. A typical example of this problem is acquiring quantitative data on rhamnolipid secretion by the opportunistic pathogen Pseudomonas aeruginosa. P. aeruginosa cell growth can be measured by optical density (OD600) and gene expression can be measured using reporter fusions with a fluorescent protein, allowing high time resolution monitoring. However, measuring the secreted rhamnolipid biosurfactants requires laborious sample processing, which makes this an offline measurement. Here, we propose a method to integrate growth curve data with endpoint measurements of secreted metabolites that is inspired by a model of exponential cell growth. If serial diluting an inoculum gives reproducible time series shifted in time, then time series of endpoint measurements can be reconstructed using calculated time shifts between dilutions. We illustrate the method using measured rhamnolipid secretion by P. aeruginosa as endpoint measurements and we integrate these measurements with high-resolution growth curves measured by OD600 and expression of rhamnolipid synthesis genes monitored using a reporter fusion. Two-fold serial dilution allowed integrating rhamnolipid measurements at a ~0.4 h-1 frequency with high-time resolved data measured at a 6 h-1 frequency. We show how this simple method can be used in combination with mutants lacking specific genes in the rhamnolipid synthesis or quorum sensing regulation to acquire rich dynamic data on P. aeruginosa virulence regulation. Additionally, the linear relation between the ratio of inocula and the time-shift between curves produces high-precision measurements of maximum specific growth rates, which were determined with a precision of ~5.4%. Growth curve synchronization allows integration of rich time-resolved data with endpoint measurements to produce time-resolved quantitative measurements. Such data can be valuable to unveil the dynamic regulation of virulence in P. aeruginosa. More generally, growth curve synchronization can be applied to many biological systems thus helping to overcome a key obstacle in dynamic regulation: the scarceness of quantitative time-resolved data.

  19. An assessment of early mandibular growth.

    PubMed

    Hutchinson, E F; L'Abbé, E N; Oettlé, A C

    2012-04-10

    Quantification of skeletal data has been shown to be an effective and reliable method of demonstrating variation in human growth as well as for monitoring and interpreting growth. In South Africa as well as internationally, few researchers have assessed mandibular growth in late fetal period and early childhood and therefore standards for growth and age determination in these groups are limited. The purpose of this study was to evaluate growth in the mandible from the period of 31 gestational weeks to 36 months postnatal. A total of 74 mandibles were used. Dried mandibles were sourced from the Raymond A. Dart Collection (University of Witwatersrand), and cadaveric remains were obtained from the Universities of Pretoria and the Witwatersrand. The sample was divided into four groups; 31-40 gestational weeks (group 1), 0-11 months (group 2), 12-24 months (group 3), and 25-36 months (group 4). Twenty-one osteological landmarks were digitized using a MicroScribe G2. Ten standard measurements were created and included: the maximum length of mandible, mandibular body length and width, mandibular notch width and depth, mental foramen to inferior border of mandible, mandibular basilar widths bigonial and biantegonial, bigonial width of mental foramen and mental angle. Data were analyzed using PAST statistical software and Morphologika2 v2.5. Statistically significant differences were noted in the linear measurements for all group comparisons except between groups 3 and 4. The mandible morphologically changed from a round, smooth contour anteriorly to adopt a more sharp and narrow adult shape. A progressive increase in the depth and definition of the mandibular arch was also noted. In conclusion, the mandible initially grows to accommodate the developing tongue (up to 11 months), progressive dental eruption and mastication from 12 to 36 months. Mastication is associated with muscle mass development; this would necessitate an increase in the dimensions of the mandibular notch and associated muscle attachment sites. These findings might be valuable in the estimation of age in unidentified individuals and to monitor prenatal growth of the mandible for the early diagnosis of conditions associated with stunted mandibular growth. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Quasi- and pseudo-maximum likelihood estimators for discretely observed continuous-time Markov branching processes

    PubMed Central

    Chen, Rui; Hyrien, Ollivier

    2011-01-01

    This article deals with quasi- and pseudo-likelihood estimation in a class of continuous-time multi-type Markov branching processes observed at discrete points in time. “Conventional” and conditional estimation are discussed for both approaches. We compare their properties and identify situations where they lead to asymptotically equivalent estimators. Both approaches possess robustness properties, and coincide with maximum likelihood estimation in some cases. Quasi-likelihood functions involving only linear combinations of the data may be unable to estimate all model parameters. Remedial measures exist, including the resort either to non-linear functions of the data or to conditioning the moments on appropriate sigma-algebras. The method of pseudo-likelihood may also resolve this issue. We investigate the properties of these approaches in three examples: the pure birth process, the linear birth-and-death process, and a two-type process that generalizes the previous two examples. Simulations studies are conducted to evaluate performance in finite samples. PMID:21552356

  1. On the minimum quantum requirement of photosynthesis.

    PubMed

    Zeinalov, Yuzeir

    2009-01-01

    An analysis of the shape of photosynthetic light curves is presented and the existence of the initial non-linear part is shown as a consequence of the operation of the non-cooperative (Kok's) mechanism of oxygen evolution or the effect of dark respiration. The effect of nonlinearity on the quantum efficiency (yield) and quantum requirement is reconsidered. The essential conclusions are: 1) The non-linearity of the light curves cannot be compensated using suspensions of algae or chloroplasts with high (>1.0) optical density or absorbance. 2) The values of the maxima of the quantum efficiency curves or the values of the minima of the quantum requirement curves cannot be used for estimation of the exact value of the maximum quantum efficiency and the minimum quantum requirement. The estimation of the maximum quantum efficiency or the minimum quantum requirement should be performed only after extrapolation of the linear part at higher light intensities of the quantum requirement curves to "0" light intensity.

  2. Modeling of the thermal physical process and study on the reliability of linear energy density for selective laser melting

    NASA Astrophysics Data System (ADS)

    Xiang, Zhaowei; Yin, Ming; Dong, Guanhua; Mei, Xiaoqin; Yin, Guofu

    2018-06-01

    A finite element model considering volume shrinkage with powder-to-dense process of powder layer in selective laser melting (SLM) is established. Comparison between models that consider and do not consider volume shrinkage or powder-to-dense process is carried out. Further, parametric analysis of laser power and scan speed is conducted and the reliability of linear energy density as a design parameter is investigated. The results show that the established model is an effective method and has better accuracy allowing for the temperature distribution, and the length and depth of molten pool. The maximum temperature is more sensitive to laser power than scan speed. The maximum heating rate and cooling rate increase with increasing scan speed at constant laser power and increase with increasing laser power at constant scan speed as well. The simulation results and experimental result reveal that linear energy density is not always reliable using as a design parameter in the SLM.

  3. Simple, Efficient Estimators of Treatment Effects in Randomized Trials Using Generalized Linear Models to Leverage Baseline Variables

    PubMed Central

    Rosenblum, Michael; van der Laan, Mark J.

    2010-01-01

    Models, such as logistic regression and Poisson regression models, are often used to estimate treatment effects in randomized trials. These models leverage information in variables collected before randomization, in order to obtain more precise estimates of treatment effects. However, there is the danger that model misspecification will lead to bias. We show that certain easy to compute, model-based estimators are asymptotically unbiased even when the working model used is arbitrarily misspecified. Furthermore, these estimators are locally efficient. As a special case of our main result, we consider a simple Poisson working model containing only main terms; in this case, we prove the maximum likelihood estimate of the coefficient corresponding to the treatment variable is an asymptotically unbiased estimator of the marginal log rate ratio, even when the working model is arbitrarily misspecified. This is the log-linear analog of ANCOVA for linear models. Our results demonstrate one application of targeted maximum likelihood estimation. PMID:20628636

  4. Screening of bioagents against root rot of mung bean caused by Rhizoctonia solani.

    PubMed

    Singh, Surender; Chand, Hari

    2006-01-01

    A laboratory and green house experiment was carried out on the comparative antagonistic performance of four different bioagents (Aspergillus sp. Gliocladium virens, Trichoderma harzianum and T. viride) isolated from soil against Rhizoctonia solani. Under laboratory conditions, T. harzianum exhibited maximum (75.55%) mycelial growth inhibition of R. solani. This was followed by T. viride, which showed 65.93% mycelial growth inhibition of the pathogen. Gliocladium virens was also found to be effective antagonists, which exhibited 57.77% mycelial growth inhibition. While Aspergillus sp exhibited minimum growth inhibition (45.74%) in comparison to other bioagents. Under green house conditions, T. harzianum gave maximum protection of the disease (72.72%) followed by T. viride, which exhibited 54.54% disease control. However, G. virens and Aspergillus sp were found least effective in controlling root rot of mungbean.

  5. Earth fissures and localized differential subsidence

    USGS Publications Warehouse

    Holzer, Thomas L.; Pampeyan, Earl H.

    1981-01-01

    Long linear tension cracks associated with declining groundwater levels at four sites in subsiding areas in south-central Arizona, Fremont Valley, California, and Las Vegas Valley, Nevada, occur near points of maximum convex-upward curvature in subsidence profiles oriented perpendicular to the cracks. Profiles are based on repeated precise vertical control surveys of lines of closely spaced bench marks. Association of these fissures with zones of localized differential subsidence indicates that linear earth fissures are caused by horizontal tensile strains probably resulting from localized differential compaction. Horizontal tensile strains across the fissures at the point of maximum convex-upward curvature, ranging from approximately 100 to 700 microstrains (0.01 to 0.07% per year), were indicated based on measurements with a tape or electronic distance meter.

  6. 7 CFR 51.573 - Damage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the maximum allowed for any one defect, shall be considered as damage: (a) Growth cracks when more than 2 branches are affected by growth cracks which are over one-half inch in length, or when more than 6 branches have growth cracks; (b) Horizontal cracks when more than 3 branches have horizontal...

  7. 7 CFR 51.573 - Damage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the maximum allowed for any one defect, shall be considered as damage: (a) Growth cracks when more than 2 branches are affected by growth cracks which are over one-half inch in length, or when more than 6 branches have growth cracks; (b) Horizontal cracks when more than 3 branches have horizontal...

  8. Modeling the impact of the indigenous microbial population on the maximum population density of Salmonella on alfalfa.

    PubMed

    Rijgersberg, Hajo; Franz, Eelco; Nierop Groot, Masja; Tromp, Seth-Oscar

    2013-07-01

    Within a microbial risk assessment framework, modeling the maximum population density (MPD) of a pathogenic microorganism is important but often not considered. This paper describes a model predicting the MPD of Salmonella on alfalfa as a function of the initial contamination level, the total count of the indigenous microbial population, the maximum pathogen growth rate and the maximum population density of the indigenous microbial population. The model is parameterized by experimental data describing growth of Salmonella on sprouting alfalfa seeds at inoculum size, native microbial load and Pseudomonas fluorescens 2-79. The obtained model fits well to the experimental data, with standard errors less than ten percent of the fitted average values. The results show that the MPD of Salmonella is not only dictated by performance characteristics of Salmonella but depends on the characteristics of the indigenous microbial population like total number of cells and its growth rate. The model can improve the predictions of microbiological growth in quantitative microbial risk assessments. Using this model, the effects of preventive measures to reduce pathogenic load and a concurrent effect on the background population can be better evaluated. If competing microorganisms are more sensitive to a particular decontamination method, a pathogenic microorganism may grow faster and reach a higher level. More knowledge regarding the effect of the indigenous microbial population (size, diversity, composition) of food products on pathogen dynamics is needed in order to make adequate predictions of pathogen dynamics on various food products.

  9. Modeling hardwood crown radii using circular data analysis

    Treesearch

    Paul F. Doruska; Hal O. Liechty; Douglas J. Marshall

    2003-01-01

    Cylindrical data are bivariate data composed of a linear and an angular component. One can use uniform, first-order (one maximum and one minimum) or second-order (two maxima and two minima) models to relate the linear component to the angular component. Crown radii can be treated as cylindrical data when the azimuths at which the radii are measured are also recorded....

  10. Using nonlinear quantile regression to estimate the self-thinning boundary curve

    Treesearch

    Quang V. Cao; Thomas J. Dean

    2015-01-01

    The relationship between tree size (quadratic mean diameter) and tree density (number of trees per unit area) has been a topic of research and discussion for many decades. Starting with Reineke in 1933, the maximum size-density relationship, on a log-log scale, has been assumed to be linear. Several techniques, including linear quantile regression, have been employed...

  11. Physiology and biochemistry of a lignin degrading bacterium Erwinia sp. Cu 3614

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajan, J.S.

    1992-01-01

    Previous researchers have reported the isolation of a diphenylether cleaving organism, Erwinia sp., using an enrichment medium containing lignin. A copper and dinitrophenol resistant mutant of this organism, Erwinia sp. Cu3614, has also been reported. To assess the effect of copper on the growth and biochemistry of this organism, continuous cultivation was used employing an apparently optimized medium containing ethanol as carbon source. Upon increasing the concentration of copper sulfate in the medium from 5 [mu]g/ml to 10 [mu]g/ml increases in maximum specific growth rate and growth yield were seen. Also decrease in the values for doubling time and themore » coefficient for maintenance energy were seen. At higher levels of copper sulfate a [open quotes]non competitive[close quotes] inhibition of growth was seen as indicated by the values calculated for substrate affinity constant, and inhibition constant. To assess this organism's ligninolytic ability, an assay for residual lignin was developed. The assay measured a reaction between diazotized sulfanilic acid and lignin in alkaline solution by spectrophotometric monitoring of the resulting adduct. Use of this technique indicated that Erwinia sp. Cu3614 could degrade up to 80% of lignin in batch cultures. Further evidence about the ligninolytic ability of this organism was provided by examination of electron micrographs of lignocellulosic substrates incubated with cell suspensions. An assay for monitoring diphenylether cleaving abilities was also developed using resazurin, a redox dye. In vivo assays with cells obtained from continuous culture studies indicated a linear relationship between the rates of reaction with resazurin and the amount of copper associated with cells. In vitro assays, employing cell free extracts and resazurin, were used to obtain a fraction enriched in diphenylether cleaving activity by a heat treatment procedure.« less

  12. Is cow's milk harmful to a child's health?

    PubMed

    Agostoni, Carlo; Turck, Dominique

    2011-12-01

    Discussions and debates have recently emerged on the potential positive and negative effects of cow's milk in the paediatric community, also under the pressure of public opinion. The negative effects of cow's-milk consumption seem to be limited to iron status up to 9 to 12 months; then no negative effects are observed, provided that cow's milk, up to a maximum daily intake of 500 mL, is adequately complemented with iron-enriched foods. Lactose intolerance can be easily managed and up to 250 mL/day of milk can be consumed. Allergy to cow's-milk proteins is usually transient. Atopic children may independently be at risk for poor growth, and the contribution of dairy nutrients to their diet should be considered. The connection of cow's milk to autistic spectrum disorders is lacking, and even a cause-effect relation with type 1 diabetes mellitus has not been established because many factors may concur. Although it is true that cow's milk stimulates insulin-like growth factor-1 and may affect linear growth, association with chronic degenerative, noncommunicable diseases has not been established. Finally, fat-reduced milk, if needed, should be considered after 24 to 36 months. Cow's milk represents a major source of high nutritional quality protein as well as of calcium. Moreover, it has growth-promoting effects independent of specific compounds. Its protein and fat composition, together with the micronutrient content, is suggestive of a functional food, whose positive effects are emphasised by regular consumption, particularly under conditions of diets poor in some limiting nutrients, although in industrialised countries cow's milk's optimal daily intake should be around 500 mL, adequately complemented with other relevant nutrients.

  13. Change in the plasmid copy number in acetic acid bacteria in response to growth phase and acetic acid concentration.

    PubMed

    Akasaka, Naoki; Astuti, Wiwik; Ishii, Yuri; Hidese, Ryota; Sakoda, Hisao; Fujiwara, Shinsuke

    2015-06-01

    Plasmids pGE1 (2.5 kb), pGE2 (7.2 kb), and pGE3 (5.5 kb) were isolated from Gluconacetobacter europaeus KGMA0119, and sequence analyses revealed they harbored 3, 8, and 4 genes, respectively. Plasmid copy numbers (PCNs) were determined by real-time quantitative PCR at different stages of bacterial growth. When KGMA0119 was cultured in medium containing 0.4% ethanol and 0.5% acetic acid, PCN of pGE1 increased from 7 copies/genome in the logarithmic phase to a maximum of 12 copies/genome at the beginning of the stationary phase, before decreasing to 4 copies/genome in the late stationary phase. PCNs for pGE2 and pGE3 were maintained at 1-3 copies/genome during all phases of growth. Under a higher concentration of ethanol (3.2%) the PCN for pGE1 was slightly lower in all the growth stages, and those of pGE2 and pGE3 were unchanged. In the presence of 1.0% acetic acid, PCNs were higher for pGE1 (10 copies/genome) and pGE3 (6 copies/genome) during the logarithmic phase. Numbers for pGE2 did not change, indicating that pGE1 and pGE3 increase their PCNs in response to acetic acid. Plasmids pBE2 and pBE3 were constructed by ligating linearized pGE2 and pGE3 into pBR322. Both plasmids were replicable in Escherichia coli, Acetobacter pasteurianus and G. europaeus, highlighting their suitability as vectors for acetic acid bacteria. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Effect of elicitation on growth, respiration, and nutrient uptake of root and cell suspension cultures of Hyoscyamus muticus.

    PubMed

    Carvalho, Edgard B; Curtis, Wayne R

    2002-01-01

    The elicitation of Hyoscyamus muticus root and cell suspension cultures by fungal elicitor from Rhizoctonia solani causes dramatic changes in respiration, nutrient yields, and growth. Cells and mature root tissues have similar specific oxygen uptake rates (SOUR) before and after the onset of the elicitation process. Cell suspension SOUR were 11 and 18 micromol O2/g FW x h for non-elicited control and elicited cultures, respectively. Mature root SOUR were 11 and 24 micromol O2/g FW x h for control and elicited tissue, respectively. Tissue growth is significantly reduced upon the addition of elicitor to these cultures. Inorganic yield remains fairly constant, whereas yield on sugar is reduced from 0.532 to 0.352 g dry biomass per g sugar for roots and 0.614 to 0.440 g dry biomass per g sugar for cells. This reduction in yield results from increased energy requirements for the defense response. Growth reduction is reflected in a reduction in root meristem (tip) SOUR, which decreased from 189 to 70 micromol O2/g FW x h upon elicitation. Therefore, despite the increase in total respiration, the maximum local oxygen fluxes are reduced as a result of the reduction in metabolic activity at the meristem. This distribution of oxygen uptake throughout the mature tissue could reduce mass transfer requirements during elicited production. However, this was not found to be the case for sesquiterpene elicitation, where production of lubimin and solavetivone were found to increase linearly up to oxygen partial pressures of 40% O2 in air. SOUR is shown to similarly increase in both bubble column and tubular reactors despite severe mass transfer limitations, suggesting the possibility of metabolically induced increases in tissue convective transport during elicitation.

  15. Sensitive zone parameters and curvature radius evaluation for polymer optical fiber curvature sensors

    NASA Astrophysics Data System (ADS)

    Leal-Junior, Arnaldo G.; Frizera, Anselmo; José Pontes, Maria

    2018-03-01

    Polymer optical fibers (POFs) are suitable for applications such as curvature sensors, strain, temperature, liquid level, among others. However, for enhancing sensitivity, many polymer optical fiber curvature sensors based on intensity variation require a lateral section. Lateral section length, depth, and surface roughness have great influence on the sensor sensitivity, hysteresis, and linearity. Moreover, the sensor curvature radius increase the stress on the fiber, which leads on variation of the sensor behavior. This paper presents the analysis relating the curvature radius and lateral section length, depth and surface roughness with the sensor sensitivity, hysteresis and linearity for a POF curvature sensor. Results show a strong correlation between the decision parameters behavior and the performance for sensor applications based on intensity variation. Furthermore, there is a trade-off among the sensitive zone length, depth, surface roughness, and curvature radius with the sensor desired performance parameters, which are minimum hysteresis, maximum sensitivity, and maximum linearity. The optimization of these parameters is applied to obtain a sensor with sensitivity of 20.9 mV/°, linearity of 0.9992 and hysteresis below 1%, which represent a better performance of the sensor when compared with the sensor without the optimization.

  16. Muscle Force-Velocity Relationships Observed in Four Different Functional Tests.

    PubMed

    Zivkovic, Milena Z; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan

    2017-02-01

    The aims of the present study were to investigate the shape and strength of the force-velocity relationships observed in different functional movement tests and explore the parameters depicting force, velocity and power producing capacities of the tested muscles. Twelve subjects were tested on maximum performance in vertical jumps, cycling, bench press throws, and bench pulls performed against different loads. Thereafter, both the averaged and maximum force and velocity variables recorded from individual trials were used for force-velocity relationship modeling. The observed individual force-velocity relationships were exceptionally strong (median correlation coefficients ranged from r = 0.930 to r = 0.995) and approximately linear independently of the test and variable type. Most of the relationship parameters observed from the averaged and maximum force and velocity variable types were strongly related in all tests (r = 0.789-0.991), except for those in vertical jumps (r = 0.485-0.930). However, the generalizability of the force-velocity relationship parameters depicting maximum force, velocity and power of the tested muscles across different tests was inconsistent and on average moderate. We concluded that the linear force-velocity relationship model based on either maximum or averaged force-velocity data could provide the outcomes depicting force, velocity and power generating capacity of the tested muscles, although such outcomes can only be partially generalized across different muscles.

  17. Force-Velocity Relationship of Upper Body Muscles: Traditional Versus Ballistic Bench Press.

    PubMed

    García-Ramos, Amador; Jaric, Slobodan; Padial, Paulino; Feriche, Belén

    2016-04-01

    This study aimed to (1) evaluate the linearity of the force-velocity relationship, as well as the reliability of maximum force (F0), maximum velocity (V0), slope (a), and maximum power (P0); (2) compare these parameters between the traditional and ballistic bench press (BP); and (3) determine the correlation of F0 with the directly measured BP 1-repetition maximum (1RM). Thirty-two men randomly performed 2 sessions of traditional BP and 2 sessions of ballistic BP during 2 consecutive weeks. Both the maximum and mean values of force and velocity were recorded when loaded by 20-70% of 1RM. All force-velocity relationships were strongly linear (r > .99). While F0 and P0 were highly reliable (ICC: 0.91-0.96, CV: 3.8-5.1%), lower reliability was observed for V0 and a (ICC: 0.49-0.81, CV: 6.6-11.8%). Trivial differences between exercises were found for F0 (ES: < 0.2), however the a was higher for the traditional BP (ES: 0.68-0.94), and V0 (ES: 1.04-1.48) and P0 (ES: 0.65-0.72) for the ballistic BP. The F0 strongly correlated with BP 1RM (r: 0.915-0.938). The force-velocity relationship is useful to assess the upper body maximal capabilities to generate force, velocity, and power.

  18. Muscle Force-Velocity Relationships Observed in Four Different Functional Tests

    PubMed Central

    Zivkovic, Milena Z.; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan

    2017-01-01

    Abstract The aims of the present study were to investigate the shape and strength of the force-velocity relationships observed in different functional movement tests and explore the parameters depicting force, velocity and power producing capacities of the tested muscles. Twelve subjects were tested on maximum performance in vertical jumps, cycling, bench press throws, and bench pulls performed against different loads. Thereafter, both the averaged and maximum force and velocity variables recorded from individual trials were used for force–velocity relationship modeling. The observed individual force-velocity relationships were exceptionally strong (median correlation coefficients ranged from r = 0.930 to r = 0.995) and approximately linear independently of the test and variable type. Most of the relationship parameters observed from the averaged and maximum force and velocity variable types were strongly related in all tests (r = 0.789-0.991), except for those in vertical jumps (r = 0.485-0.930). However, the generalizability of the force-velocity relationship parameters depicting maximum force, velocity and power of the tested muscles across different tests was inconsistent and on average moderate. We concluded that the linear force-velocity relationship model based on either maximum or averaged force-velocity data could provide the outcomes depicting force, velocity and power generating capacity of the tested muscles, although such outcomes can only be partially generalized across different muscles. PMID:28469742

  19. Semi-crystalline morphologies of linear and cyclic poly(ɛ-caprolactones) in the diffusion-limited film thickness regime

    NASA Astrophysics Data System (ADS)

    Kelly, Giovanni; Bergeson, Amelia; Haque, Farihah; Grayson, Scott; Albert, Julie

    Thin and ultrathin films of semi-crystalline polymers have been studied for decades due to their far-reaching applications including opto-electronic materials and biological studies of drug delivery and cell adhesion. This body of work has focused on every aspect of crystallization, from the fundamental thermodynamics and kinetics of crystal growth to methods for affecting crystalline morphologies via blending with other polymers. Due to significant synthetic challenges, one area where progress has lagged behind is the study of non-linear architectures, especially ring polymers. However, pioneering work by polymer chemists around the world has closed that gap, and we are beginning to observe important differences between ring and linear polymers in bulk materials. As a complement to those advances, this work aims to compare the morphologies of linear and cyclic poly(ɛ-caprolactones) (PCL) observed in heavily-confined ultrathin films where crystal growth is diffusion-limited. Understanding how confinement effects alter morphology will provide invaluable insight into differences in crystal growth as a function of molecular architecture.

  20. Creep crack growth by grain boundary cavitation under monotonic and cyclic loading

    NASA Astrophysics Data System (ADS)

    Wen, Jian-Feng; Srivastava, Ankit; Benzerga, Amine; Tu, Shan-Tung; Needleman, Alan

    2017-11-01

    Plane strain finite deformation finite element calculations of mode I crack growth under small scale creep conditions are carried out. Attention is confined to isothermal conditions and two time histories of the applied stress intensity factor: (i) a monononic increase to a plateau value subsequently held fixed; and (ii) a cyclic time variation. The crack growth calculations are based on a micromechanics constitutive relation that couples creep deformation and damage due to grain boundary cavitation. Grain boundary cavitation, with cavity growth due to both creep and diffusion, is taken as the sole failure mechanism contributing to crack growth. The influence on the crack growth rate of loading history parameters, such as the magnitude of the applied stress intensity factor, the ratio of the applied minimum to maximum stress intensity factors, the loading rate, the hold time and the cyclic loading frequency, are explored. The crack growth rate under cyclic loading conditions is found to be greater than under monotonic creep loading with the plateau applied stress intensity factor equal to its maximum value under cyclic loading conditions. Several features of the crack growth behavior observed in creep-fatigue tests naturally emerge, for example, a Paris law type relation is obtained for cyclic loading.

  1. Kidney transplantation fails to provide adequate growth in children with chronic kidney disease born small for gestational age.

    PubMed

    Franke, Doris; Steffens, Rena; Thomas, Lena; Pavičić, Leo; Ahlenstiel, Thurid; Pape, Lars; Gellermann, Jutta; Müller, Dominik; Querfeld, Uwe; Haffner, Dieter; Živičnjak, Miroslav

    2017-03-01

    Children with chronic kidney disease are frequently born small for gestational age (SGA) and prone to disproportionately short stature. It is unclear how SGA affects growth after kidney transplantation (KTx). Linear growth (height, sitting height, and leg length) was prospectively investigated in a cohort of 322 pediatric KTx recipients, with a mean follow-up of 4.9 years. Sitting height index (ratio of sitting height to total body height) was used to assess body proportions. Predictors of growth outcome in KTx patients with (n = 94) and without (n = 228) an SGA history were evaluated by the use of linear mixed-effects models. Mean z-scores for all linear body dimensions were lower in SGA compared with non-SGA patients (p < 0.001). SGA patients presented with higher target height deficit and degree of body disproportion (p < 0.001). The latter was mainly due to reduced leg growth during childhood. Pubertal trunk growth was diminished in SGA patients, and the pubertal growth spurt of legs was delayed in both groups, resulting in further impairment of adult height, which was more frequently reduced in SGA than in non-SGA patients (50 % vs 18 %, p < 0.001). Use of growth hormone treatment in the pre-transplant period, preemptive KTx, transplant function, and control of metabolic acidosis were the only potentially modifiable correlates of post-transplant growth in SGA groups. By contrast, living related KTx, steroid exposure, and degree of anemia proved to be correlates in non-SGA only. In children born SGA, growth outcome after KTx is significantly more impaired and affected by different clinical parameters compared with non-SGA patients.

  2. Development and application of Geobacillus stearothermophilus growth model for predicting spoilage of evaporated milk.

    PubMed

    Kakagianni, Myrsini; Gougouli, Maria; Koutsoumanis, Konstantinos P

    2016-08-01

    The presence of Geobacillus stearothermophilus spores in evaporated milk constitutes an important quality problem for the milk industry. This study was undertaken to provide an approach in modelling the effect of temperature on G. stearothermophilus ATCC 7953 growth and in predicting spoilage of evaporated milk. The growth of G. stearothermophilus was monitored in tryptone soy broth at isothermal conditions (35-67 °C). The data derived were used to model the effect of temperature on G. stearothermophilus growth with a cardinal type model. The cardinal values of the model for the maximum specific growth rate were Tmin = 33.76 °C, Tmax = 68.14 °C, Topt = 61.82 °C and μopt = 2.068/h. The growth of G. stearothermophilus was assessed in evaporated milk at Topt in order to adjust the model to milk. The efficiency of the model in predicting G. stearothermophilus growth at non-isothermal conditions was evaluated by comparing predictions with observed growth under dynamic conditions and the results showed a good performance of the model. The model was further used to predict the time-to-spoilage (tts) of evaporated milk. The spoilage of this product caused by acid coagulation when the pH approached a level around 5.2, eight generations after G. stearothermophilus reached the maximum population density (Nmax). Based on the above, the tts was predicted from the growth model as the sum of the time required for the microorganism to multiply from the initial to the maximum level ( [Formula: see text] ), plus the time required after the [Formula: see text] to complete eight generations. The observed tts was very close to the predicted one indicating that the model is able to describe satisfactorily the growth of G. stearothermophilus and to provide realistic predictions for evaporated milk spoilage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Phase space evolution in linear instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pantellini, F.G.E.; Burgess, D.; Schwartz, S.J.

    1994-12-01

    A simple and powerful way to investigate the linear evolution of particle distribution functions in kinetic instabilities in a homogeneous collisionless plasma is presented. The method can be applied to any kind of instability, provided the characteristics (growth rate, frequency, wave vector, and polarization) of the mode are known and can also be used to estimate the amplitude of the waves at the end of the linear phase of growth. Two didactic examples are used to illustrate the versatility of the technique: the Alfven Ion Cyclotron (AIC) instability, which is electromagnetic, and the Electron Ion Cyclotron (EIC) instability, which ismore » electrostatic.« less

  4. Effect of food microstructure on growth dynamics of Listeria monocytogenes in fish-based model systems.

    PubMed

    Verheyen, Davy; Bolívar, Araceli; Pérez-Rodríguez, Fernando; Baka, Maria; Skåra, Torstein; Van Impe, Jan F

    2018-06-01

    Traditionally, predictive growth models for food pathogens are developed based on experiments in broth media, resulting in models which do not incorporate the influence of food microstructure. The use of model systems with various microstructures is a promising concept to get more insight into the influence of food microstructure on microbial dynamics. By means of minimal variation of compositional and physicochemical factors, these model systems can be used to study the isolated effect of certain microstructural aspects on microbial growth, survival and inactivation. In this study, the isolated effect on microbial growth dynamics of Listeria monocytogenes of two food microstructural aspects and one aspect influenced by food microstructure were investigated, i.e., the nature of the food matrix, the presence of fat droplets, and microorganism growth morphology, respectively. To this extent, fish-based model systems with various microstructures were used, i.e., a liquid, a second more viscous liquid system containing xanthan gum, an emulsion, an aqueous gel, and a gelled emulsion. Growth experiments were conducted at 4 and 10 °C, both using homogeneous and surface inoculation (only for the gelled systems). Results regarding the influence of the growth morphology indicated that the lag phase of planktonic cells in the liquid system was similar to the lag phase of submerged colonies in the xanthan system. The lag phase of submerged colonies in each gelled system was considerably longer than the lag phase of surface colonies on these respective systems. The maximum specific growth rate of planktonic cells in the liquid system was significantly lower than for submerged colonies in the xanthan system at 10 °C, while no significant differences were observed at 4 °C. The maximum cell density was higher for submerged colonies than for surface colonies. The nature of the food matrix only exerted an influence on the maximum specific growth rate, which was significantly higher in the viscous systems than in the gelled systems. The presence of a small amount of fat droplets improved the growth of L. monocytogenes at 4 °C, resulting in a shorter lag phase and a higher maximum specific growth rate. The obtained results could be useful in the determination of a set of suitable microstructural parameters for future predictive models that incorporate the influence of food microstructure on microbial dynamics. Copyright © 2018. Published by Elsevier B.V.

  5. Development of population pharmacokinetics model of icotinib with non-linear absorption characters in healthy Chinese volunteers to assess the CYP2C19 polymorphism and food-intake effect.

    PubMed

    Hu, Pei; Chen, Jia; Liu, Dongyang; Zheng, Xin; Zhao, Qian; Jiang, Ji

    2015-07-01

    Icotinib is a potent and selective inhibitor of epidermal growth factor receptors (EGFR) approved to treat non-small cell lung cancer (NSCLC). However, its high variability may impede its application. The objectives of this analysis were to assess plasma pharmacokinetics and identify covariates that may explain variability in icotinib absorption and/or disposition following single dose of icotinib in healthy volunteers. Data from two clinical studies (n = 22) were analyzed. One study was designed as three-period and Latin-squared (six sequence) trial to evaluate dose proportionality, and the other one was designed as two-way crossover trial to evaluate food effect on pharmacokinetics (PK) characters. Icotinib concentrations in plasma were analyzed using non-linear mixed-effects model (NONMEM) method. The model was used to assess influence of food, demographic characteristics, measurements of blood biochemistry, and CYP2C19 genotype on PK characters of icotinib in humans. The final model was diagnosed by goodness-of-fit plots and evaluated by visual predictive check (VPC) and bootstrap methods. A two-compartment model with saturated absorption character was developed to capture icotinib pharmacokinetics. Typical value of clearance, distribution clearance, central volume of distribution, maximum absorption rate were 29.5 L/h, 24.9 L/h, 18.5 L, 122.2 L and 204,245 μg/h, respectively. When icotinib was administrated with food, bioavailability was estimated to be increased by 48%. Inter-occasion variability was identified to affect on maximum absorption rate constant in food-effect study. CL was identified to be significantly influenced by age, albumin concentration (ALB), and CYP2C19 genotype. No obvious bias was found by VPC and bootstrap methods. The developed model can capture icotinib pharmacokinetics well in healthy volunteers. Food intake can increase icotinib exposure. Three covariates, age, albumin concentration, and CYP2C19 genotype, were identified to significantly affect icotinib PK profiles in healthy subjects.

  6. Cushing disease in a toddler: not all obese children are just fat.

    PubMed

    Moriarty, Megan; Hoe, Francis

    2009-08-01

    Cushing disease is exceedingly rare in children, especially in those under the age of 2 years. This case report describes an 18-month-old female child who presented with morbid obesity, decreased linear growth, and reversal of developmental milestones. Her diagnosis was delayed; however, she was successfully treated by surgical excision of the microadenoma. This was followed by resolution of signs and symptoms of Cushing syndrome. Although the patient's hypertension resolved, linear growth improved and development began to progress, she is still developmentally delayed and now has hypopituitarism. Review of this case, as well as a handful of other cases of infantile Cushing disease in the literature, suggests that features such as hypertension and slowed linear growth, which are rare in nutritional causes of obesity in infants, can help identify this rare, but life-threatening, illness among an increasing number of overweight infants.

  7. Analysis of separation test for automatic brake adjuster based on linear radon transformation

    NASA Astrophysics Data System (ADS)

    Luo, Zai; Jiang, Wensong; Guo, Bin; Fan, Weijun; Lu, Yi

    2015-01-01

    The linear Radon transformation is applied to extract inflection points for online test system under the noise conditions. The linear Radon transformation has a strong ability of anti-noise and anti-interference by fitting the online test curve in several parts, which makes it easy to handle consecutive inflection points. We applied the linear Radon transformation to the separation test system to solve the separating clearance of automatic brake adjuster. The experimental results show that the feature point extraction error of the gradient maximum optimal method is approximately equal to ±0.100, while the feature point extraction error of linear Radon transformation method can reach to ±0.010, which has a lower error than the former one. In addition, the linear Radon transformation is robust.

  8. Confirmation of monod model for biofiltration of styrene vapors from waste flue gas.

    PubMed

    Dehghanzadeh, Reza; Roshani, Babak; Asadi, Mahzar; Fahiminia, Mohammad; Aslhashemi, Ahmad

    2012-01-01

    The objective of this research was to investigate the kinetic behavior of the biofil¬tration process for the removal of styrene. A three stage compost based biofilter was inoculated with thickened activated sludge. The reaction order rate constants were obtained from continuous experiments and used as the specific growth rate for the Monod equation. The measured concentration profiles show a linear dependence on the bed height in the biofilter at higher loadings, such as 75 and 45 g m-3 h-1. This is the condition of reaction limitation for a reaction with zero-order kinetics. From the experimental data, maximum elimination capac¬ity (ECmax) was estimated to be 44, 40 and 26 g m-3 h-1 at empty bed retention times (EBRTs) of 120, 60 and 30 s, respectively. However, at lower loadings, the measured concentration profile of the biofilter is one of exponential increase, which is the condition of both reaction and diffusion limitations for a reaction with zero-order kinetics. Maximum elimination capacities found from the experimental results were the same as Monod model predictions. Both the experimental re¬sults and the model predictions showed the influence of EBRT on the removal rate of styrene, particularly for the highest loading rate. In terms of the practical applications of the proposed models have the advantage of being simpler than Monod kinetics and Monod kinetics requires a numerical solution.

  9. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment.

    PubMed

    Upadhyay, S K; Singh, D P

    2015-01-01

    Salt-tolerant plant growth-promoting rhizobacteria (ST-PGPR) significantly influence the growth and yield of wheat crops in saline soil. Wheat growth improved in pots with inoculation of all nine ST-PGPR (ECe = 4.3 dS·m(-1) ; greenhouse experiment), while maximum growth and dry biomass was observed in isolate SU18 Arthrobacter sp.; simultaneously, all ST-PGPR improved soil health in treated pot soil over controls. In the field experiment, maximum wheat root dry weight and shoot biomass was observed after inoculation with SU44 B. aquimaris, and SU8 B. aquimaris, respectively, after 60 and 90 days. Isolate SU8 B. aquimaris, induced significantly higher proline and total soluble sugar accumulation in wheat, while isolate SU44 B. aquimaris, resulted in higher accumulation of reducing sugars after 60 days. Percentage nitrogen (N), potassium (K) and phosphorus (P) in leaves of wheat increased significantly after inoculation with ST-PGPR, as compared to un-inoculated plants. Isolate SU47 B. subtilis showed maximum reduction of sodium (Na) content in wheat leaves of about 23% at both 60 and 90 days after sowing, and produced the best yield of around 17.8% more than the control. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. A meta-analysis of cambium phenology and growth: linear and non-linear patterns in conifers of the northern hemisphere.

    PubMed

    Rossi, Sergio; Anfodillo, Tommaso; Cufar, Katarina; Cuny, Henri E; Deslauriers, Annie; Fonti, Patrick; Frank, David; Gricar, Jozica; Gruber, Andreas; King, Gregory M; Krause, Cornelia; Morin, Hubert; Oberhuber, Walter; Prislan, Peter; Rathgeber, Cyrille B K

    2013-12-01

    Ongoing global warming has been implicated in shifting phenological patterns such as the timing and duration of the growing season across a wide variety of ecosystems. Linear models are routinely used to extrapolate these observed shifts in phenology into the future and to estimate changes in associated ecosystem properties such as net primary productivity. Yet, in nature, linear relationships may be special cases. Biological processes frequently follow more complex, non-linear patterns according to limiting factors that generate shifts and discontinuities, or contain thresholds beyond which responses change abruptly. This study investigates to what extent cambium phenology is associated with xylem growth and differentiation across conifer species of the northern hemisphere. Xylem cell production is compared with the periods of cambial activity and cell differentiation assessed on a weekly time scale on histological sections of cambium and wood tissue collected from the stems of nine species in Canada and Europe over 1-9 years per site from 1998 to 2011. The dynamics of xylogenesis were surprisingly homogeneous among conifer species, although dispersions from the average were obviously observed. Within the range analysed, the relationships between the phenological timings were linear, with several slopes showing values close to or not statistically different from 1. The relationships between the phenological timings and cell production were distinctly non-linear, and involved an exponential pattern. The trees adjust their phenological timings according to linear patterns. Thus, shifts of one phenological phase are associated with synchronous and comparable shifts of the successive phases. However, small increases in the duration of xylogenesis could correspond to a substantial increase in cell production. The findings suggest that the length of the growing season and the resulting amount of growth could respond differently to changes in environmental conditions.

  11. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staebler, G. M.; Candy, J.; Howard, N. T.

    2016-06-15

    The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the thresholdmore » for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. The zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ion-scale gyrokinetic simulations.« less

  12. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence

    DOE PAGES

    Staebler, Gary M.; Candy, John; Howard, Nathan T.; ...

    2016-06-29

    The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the thresholdmore » for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. Finally, the zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ionscale gyrokinetic simulations.« less

  13. Differentiating Tumor Progression from Pseudoprogression in Patients with Glioblastomas Using Diffusion Tensor Imaging and Dynamic Susceptibility Contrast MRI.

    PubMed

    Wang, S; Martinez-Lage, M; Sakai, Y; Chawla, S; Kim, S G; Alonso-Basanta, M; Lustig, R A; Brem, S; Mohan, S; Wolf, R L; Desai, A; Poptani, H

    2016-01-01

    Early assessment of treatment response is critical in patients with glioblastomas. A combination of DTI and DSC perfusion imaging parameters was evaluated to distinguish glioblastomas with true progression from mixed response and pseudoprogression. Forty-one patients with glioblastomas exhibiting enhancing lesions within 6 months after completion of chemoradiation therapy were retrospectively studied. All patients underwent surgery after MR imaging and were histologically classified as having true progression (>75% tumor), mixed response (25%-75% tumor), or pseudoprogression (<25% tumor). Mean diffusivity, fractional anisotropy, linear anisotropy coefficient, planar anisotropy coefficient, spheric anisotropy coefficient, and maximum relative cerebral blood volume values were measured from the enhancing tissue. A multivariate logistic regression analysis was used to determine the best model for classification of true progression from mixed response or pseudoprogression. Significantly elevated maximum relative cerebral blood volume, fractional anisotropy, linear anisotropy coefficient, and planar anisotropy coefficient and decreased spheric anisotropy coefficient were observed in true progression compared with pseudoprogression (P < .05). There were also significant differences in maximum relative cerebral blood volume, fractional anisotropy, planar anisotropy coefficient, and spheric anisotropy coefficient measurements between mixed response and true progression groups. The best model to distinguish true progression from non-true progression (pseudoprogression and mixed) consisted of fractional anisotropy, linear anisotropy coefficient, and maximum relative cerebral blood volume, resulting in an area under the curve of 0.905. This model also differentiated true progression from mixed response with an area under the curve of 0.901. A combination of fractional anisotropy and maximum relative cerebral blood volume differentiated pseudoprogression from nonpseudoprogression (true progression and mixed) with an area under the curve of 0.807. DTI and DSC perfusion imaging can improve accuracy in assessing treatment response and may aid in individualized treatment of patients with glioblastomas. © 2016 by American Journal of Neuroradiology.

  14. Food insecurity and linear growth of adolescents in Jimma Zone, Southwest Ethiopia.

    PubMed

    Belachew, Tefera; Lindstrom, David; Hadley, Craig; Gebremariam, Abebe; Kasahun, Wondwosen; Kolsteren, Patrick

    2013-05-02

    Although many studies showed that adolescent food insecurity is a pervasive phenomenon in Southwest Ethiopia, its effect on the linear growth of adolescents has not been documented so far. This study therefore aimed to longitudinally examine the association between food insecurity and linear growth among adolescents. Data for this study were obtained from a longitudinal survey of adolescents conducted in Jimma Zone, which followed an initial sample of 2084 randomly selected adolescents aged 13-17 years. We used linear mixed effects model for 1431 adolescents who were interviewed in three survey rounds one year apart to compare the effect of food insecurity on linear growth of adolescents. Overall, 15.9% of the girls and 12.2% of the boys (P=0.018) were food insecure both at baseline and on the year 1 survey, while 5.5% of the girls and 4.4% of the boys (P=0.331) were food insecure in all the three rounds of the survey. In general, a significantly higher proportion of girls (40%) experienced food insecurity at least in one of the survey rounds compared with boys (36.6%) (P=0.045).The trend of food insecurity showed a very sharp increase over the follow period from the baseline 20.5% to 48.4% on the year 1 survey, which again came down to 27.1% during the year 2 survey.In the linear mixed effects model, after adjusting for other covariates, the mean height of food insecure girls was shorter by 0.87 cm (P<0.001) compared with food secure girls at baseline. However, during the follow up period on average, the heights of food insecure girls increased by 0.38 cm more per year compared with food secure girls (P<0.066). However, the mean height of food insecure boys was not significantly different from food secure boys both at baseline and over the follow up period. Over the follow-up period, adolescents who live in rural and semi-urban areas grew significantly more per year than those who live in the urban areas both for girls (P<0.01) and for boys (P<0.01). Food insecurity is negatively associated with the linear growth of adolescents, especially on girls. High rate of childhood stunting in Ethiopia compounded with lower height of food insecure adolescents compared with their food secure peers calls for the development of direct nutrition interventions targeting adolescents to promote catch-up growth and break the intergenerational cycle of malnutrition.

  15. Modeling non-linear growth responses to temperature and hydrology in wetland trees

    NASA Astrophysics Data System (ADS)

    Keim, R.; Allen, S. T.

    2016-12-01

    Growth responses of wetland trees to flooding and climate variations are difficult to model because they depend on multiple, apparently interacting factors, but are a critical link in hydrological control of wetland carbon budgets. To more generally understand tree growth to hydrological forcing, we modeled non-linear responses of tree ring growth to flooding and climate at sub-annual time steps, using Vaganov-Shashkin response functions. We calibrated the model to six baldcypress tree-ring chronologies from two hydrologically distinct sites in southern Louisiana, and tested several hypotheses of plasticity in wetlands tree responses to interacting environmental variables. The model outperformed traditional multiple linear regression. More importantly, optimized response parameters were generally similar among sites with varying hydrological conditions, suggesting generality to the functions. Model forms that included interacting responses to multiple forcing factors were more effective than were single response functions, indicating the principle of a single limiting factor is not correct in wetlands and both climatic and hydrological variables must be considered in predicting responses to hydrological or climate change.

  16. Effects of supplementation with green tea by-products on growth performance, meat quality, blood metabolites and immune cell proliferation in goats.

    PubMed

    Ahmed, S T; Lee, J-W; Mun, H-S; Yang, C-J

    2015-12-01

    Forty-eight castrated male goats were used to determine the effects of feeding green tea by-products (GTB) on growth performance, meat quality, blood metabolites and immune cell proliferation. Experimental treatments consisted of basal diets supplemented with four levels of GTB (0%, 0.5%, 1.0% or 2.0%). Four replicate pens were assigned to each treatment with three goats per replicate. Increasing dietary GTB tended to linearly increase the overall average weight gain and feed intake (p = 0.09). Water holding capacity, pH and sensory attributes of meat were not affected by GTB supplementation, while cooking loss was reduced both linearly and quadratically (p < 0.01). The redness (linear; p = 0.02, quadratic; p < 0.01) and yellowness (quadratic; p < 0.01) values of goat meat were improved by GTB supplementation. Increasing dietary GTB quadratically increased protein and decreased crude fat (p < 0.05), while linearly decreased cholesterol (p = 0.03) content of goat meat. The proportions of monounsaturated fatty acid, polyunsaturated fatty acid (PUFA) and n-6 PUFA increased linearly (p < 0.01) and n-3 PUFA increased quadratically (p < 0.05) as GTB increased in diets. Increasing dietary GTB linearly increased the PUFA/SFA (saturated fatty acid) and tended to linearly and quadratically increase (p ≤ 0.10) the n-6/n-3 ratio. The thiobarbituric acid-reactive substances values of meat were lower in the 2.0% GTB-supplemented group in all storage periods (p < 0.05). Dietary GTB linearly decreased plasma glucose and cholesterol (p < 0.01) and quadratically decreased urea nitrogen concentrations (p = 0.001). The growth of spleen cells incubated in concanavalin A and lipopolysaccharides medium increased significantly (p < 0.05) in response to GTB supplementation. Our results suggest that GTB may positively affect the growth performance, meat quality, blood metabolites and immune cell proliferation when supplemented as a feed additive in goat diet. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  17. Xanthan gum production using jackfruit-seed-powder-based medium: optimization and characterization.

    PubMed

    Felicia Katherine, R; Muthukumaran, C; Sharmila, G; Manoj Kumar, N; Tamilarasan, K; Jaiganesh, R

    2017-08-01

    Xanthan gum (XG) production by Xanthomonas campestris NCIM 2961 using jackfruit seed powder (JSP) as a novel substrate was reported. Central composite design (CCD) of response surface method (RSM) was used to evaluate the linear and interaction effects of five medium variables (JSP, peptone, citric acid, K 2 HPO 4 and KH 2 PO 4 ) for XG production. Maximum XG production (51.62 g/L) was observed at the optimum level of JSP (4 g/L), peptone (0.93 g/L), citric acid (0.26 g/L), K 2 HPO 4 (1.29 g/L) and KH 2 PO 4 (0.5 g/L). K 2 HPO 4 and KH 2 PO 4 were found as significant medium components, which served as buffering agents as well as nutrients for X. campestris growth. The obtained biopolymer was characterized as XG by XRD and FTIR analysis. Results of this study revealed that JSP was found to be a suitable low cost substrate for XG production.

  18. Anomalous Behavior of Electronic Heat Capacity of Strongly Correlated Iron Monosilicide

    NASA Astrophysics Data System (ADS)

    Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.

    2018-04-01

    The paper deals with the electronic heat capacity of iron monosilicide FeSi subjected to semiconductor-metal thermal transition during which the formation of its spintronic properties is observed. The proposed model which considers pd-hybridization of strongly correlated d-electrons with non-correlated p-electrons, demonstrates a connection of their contribution to heat capacity in the insulator phase with paramagnon effects and fluctuations of occupation numbers for p- and d-states. In a slitless state, the temperature curve of heat capacity is characterized by a maximum appeared due to normalization of the electron density of states using fluctuating exchange fields. At higher temperatures, a linear growth in heat capacity occurs due to paramagnon effects. The correlation between the model parameters and the first-principles calculation provides the electron contribution to heat capacity, which is obtained from the experimental results on phonon heat capacity. Anharmonicity of phonons is connected merely with the thermal expansion of the crystal lattice.

  19. Automatic method for evaluating the activity of sourdough strains based on gas pressure measurements.

    PubMed

    Wick, M; Vanhoutte, J J; Adhemard, A; Turini, G; Lebeault, J M

    2001-04-01

    A new method is proposed for the evaluation of the activity of sourdough strains, based on gas pressure measurements in closed air-tight reactors. Gas pressure and pH were monitored on-line during the cultivation of commercial yeasts and heterofermentative lactic acid bacteria on a semi-synthetic medium with glucose as the major carbon source. Relative gas pressure evolution was compared both to glucose consumption and to acidification and growth. It became obvious that gas pressure evolution is related to glucose consumption kinetics. For each strain, a correlation was made between maximum gas pressure variation and amount of glucose consumed. The mass balance of CO2 in both liquid and gas phase demonstrated that around 90% of CO2 was recovered. Concerning biomass production, a linear relationship was found between log colony-forming units/ml and log pressure for both yeasts and bacteria during the exponential phase; and for yeasts, relative gas pressure evolution also followed optical density variation.

  20. Space Construction System Analysis. Special Emphasis Studies

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Generic concepts were analyzed to determine: (1) the maximum size of a deployable solar array which might be packaged into a single orbit payload bay; (2) the optimal overall shape of a large erectable structure for large satellite projects; (3) the optimization of electronic communication with emphasis on the number of antennas and their diameters; and (4) the number of beams, traffic growth, and projections and frequencies were found feasible to package a deployable solar array which could generate over 250 kilowatts of electrical power. Also, it was found that the linear-shaped erectable structure is better for ease of construction and installation of systems, and compares favorably on several other counts. The study of electronic communication technology indicated that proliferation of individual satellites will crowd the spectrum by the early 1990's, so that there will be a strong tendency toward a small number of communications platforms over the continental U.S.A. with many antennas and multiple spot beams.

Top