Tiberi, Gianluigi; Fontana, Nunzia; Costagli, Mauro; Stara, Riccardo; Biagi, Laura; Symms, Mark Roger; Monorchio, Agostino; Retico, Alessandra; Cosottini, Mirco; Tosetti, Michela
2015-07-01
Local specific absorption rate (SAR) evaluation in ultra high field (UHF) magnetic resonance (MR) systems is a major concern. In fact, at UHF, radiofrequency (RF) field inhomogeneity generates hot-spots that could cause localized tissue heating. Unfortunately, local SAR measurements are not available in present MR systems; thus, electromagnetic simulations must be performed for RF fields and SAR analysis. In this study, we used three-dimensional full-wave numerical electromagnetic simulations to investigate the dependence of local SAR at 7.0 T with respect to subject size in two different scenarios: surface coil loaded by adult and child calves and quadrature volume coil loaded by adult and child heads. In the surface coil scenario, maximum local SAR decreased with decreasing load size, provided that the RF magnetic fields for the different load sizes were scaled to achieve the same slice average value. On the contrary, in the volume coil scenario, maximum local SAR was up to 15% higher in children than in adults. © 2015 Wiley Periodicals, Inc.
Pascazio, Vito; Schirinzi, Gilda
2002-01-01
In this paper, a technique that is able to reconstruct highly sloped and discontinuous terrain height profiles, starting from multifrequency wrapped phase acquired by interferometric synthetic aperture radar (SAR) systems, is presented. We propose an innovative unwrapping method, based on a maximum likelihood estimation technique, which uses multifrequency independent phase data, obtained by filtering the interferometric SAR raw data pair through nonoverlapping band-pass filters, and approximating the unknown surface by means of local planes. Since the method does not exploit the phase gradient, it assures the uniqueness of the solution, even in the case of highly sloped or piecewise continuous elevation patterns with strong discontinuities.
Neufeld, Esra; Gosselin, Marie-Christine; Murbach, Manuel; Christ, Andreas; Cabot, Eugenia; Kuster, Niels
2011-08-07
Multi-transmit coils are increasingly being employed in high-field magnetic resonance imaging, along with a growing interest in multi-transmit body coils. However, they can lead to an increase in whole-body and local specific absorption rate (SAR) compared to conventional body coils excited in circular polarization for the same total incident input power. In this study, the maximum increase of SAR for three significantly different human anatomies is investigated for a large 3 T (128 MHz) multi-transmit body coil using numerical simulations and a (generalized) eigenvalue-based approach. The results demonstrate that the increase of SAR strongly depends on the anatomy. For the three models and normalization to the sum of the rung currents squared, the whole-body averaged SAR increases by up to a factor of 1.6 compared to conventional excitation and the peak spatial SAR (averaged over any 10 cm(3) of tissue) by up to 13.4. For some locations the local averaged SAR goes up as much as 800 times (130 when looking only at regions where it is above 1% of the peak spatial SAR). The ratio of the peak spatial SAR to the whole-body SAR increases by a factor of up to 47 and can reach values above 800. Due to the potentially much larger power deposition, additional, preferably patient-specific, considerations are necessary to avoid injuries by such systems.
SAR in a child voxel phantom from exposure to wireless computer networks (Wi-Fi).
Findlay, R P; Dimbylow, P J
2010-08-07
Specific energy absorption rate (SAR) values have been calculated in a 10 year old sitting voxel model from exposure to electromagnetic fields at 2.4 and 5 GHz, frequencies commonly used by Wi-Fi devices. Both plane-wave exposure of the model and irradiation from antennas in the near field were investigated for a variety of exposure conditions. In all situations studied, the SAR values calculated were considerably below basic restrictions. For a typical Wi-Fi exposure scenario using an inverted F antenna operating at 100 mW, a duty factor of 0.1 and an antenna-body separation of 34 cm, the maximum peak localized SAR was found to be 3.99 mW kg(-1) in the torso region. At 2.4 GHz, using a power of 100 mW and a duty factor of 1, the highest localized SAR value in the head was calculated as 5.7 mW kg(-1). This represents less than 1% of the SAR previously calculated in the head for a typical mobile phone exposure condition.
NASA Astrophysics Data System (ADS)
Adibzadeh, F.; Verhaart, R. F.; Verduijn, G. M.; Fortunati, V.; Rijnen, Z.; Franckena, M.; van Rhoon, G. C.; Paulides, M. M.
2015-02-01
To provide an adequate level of protection for humans from exposure to radio-frequency (RF) electromagnetic fields (EMF) and to assure that any adverse health effects are avoided. The basic restrictions in terms of the specific energy absorption rate (SAR) were prescribed by IEEE and ICNIRP. An example of a therapeutic application of non-ionizing EMF is hyperthermia (HT), in which intense RF energy is focused at a target region. Deep HT in the head and neck (H&N) region involves inducing energy at 434 MHz for 60 min on target. Still, stray exposure of the brain is considerable, but to date only very limited side-effects were observed. The objective of this study is to investigate the stringency of the current basic restrictions by relating the induced EM dose in the brain of patients treated with deep head and neck (H&N) HT to the scored acute health effects. We performed a simulation study to calculate the induced peak 10 g spatial-averaged SAR (psSAR10g) in the brains of 16 selected H&N patients who received the highest SAR exposure in the brain, i.e. who had the minimum brain-target distance and received high forwarded power during treatment. The results show that the maximum induced SAR in the brain of the patients can exceed the current basic restrictions (IEEE and ICNIRP) on psSAR10g for occupational environments by 14 times. Even considering the high local SAR in the brain, evaluation of acute effects by the common toxicity criteria (CTC) scores revealed no indication of a serious acute neurological effect. In addition, this study provides pioneering quantitative human data on the association between maximum brain SAR level and acute adverse effects when brains are exposed to prolonged RF EMF.
Fiedler, Thomas M; Ladd, Mark E; Bitz, Andreas K
2017-01-01
The purpose of this work was to perform an RF safety evaluation for a bilateral four-channel transmit/receive breast coil and to determine the maximum permissible input power for which RF exposure of the subject stays within recommended limits. The safety evaluation was done based on SAR as well as on temperature simulations. In comparison to SAR, temperature is more directly correlated with tissue damage, which allows a more precise safety assessment. The temperature simulations were performed by applying three different blood perfusion models as well as two different ambient temperatures. The goal was to evaluate whether the SAR and temperature distributions correlate inside the human body and whether SAR or temperature is more conservative with respect to the limits specified by the IEC. A simulation model was constructed including coil housing and MR environment. Lumped elements and feed networks were modeled by a network co-simulation. The model was validated by comparison of S-parameters and B 1 + maps obtained in an anatomical phantom. Three numerical body models were generated based on 3 Tesla MRI images to conform to the coil housing. SAR calculations were performed and the maximal permissible input power was calculated based on IEC guidelines. Temperature simulations were performed based on the Pennes bioheat equation with the power absorption from the RF simulations as heat source. The blood perfusion was modeled as constant to reflect impaired patients as well as with a linear and exponential temperature-dependent increase to reflect two possible models for healthy subjects. Two ambient temperatures were considered to account for cooling effects from the environment. The simulation model was validated with a mean deviation of 3% between measurement and simulation results. The highest 10 g-averaged SAR was found in lung and muscle tissue on the right side of the upper torso. The maximum permissible input power was calculated to be 17 W. The temperature simulations showed that temperature maximums do not correlate well with the position of the SAR maximums in all considered cases. The body models with an exponential blood perfusion increase did not exceed the temperature limit when an RF power according to the SAR limit was applied; in this case, a higher input power level by up to 73% would be allowed. The models with a constant or linear perfusion exceeded the limit for the local temperature when the local SAR limit was adhered to and would require a decrease in the input power level by up to 62%. The maximum permissible input power was determined based on SAR simulations with three newly generated body models and compared with results from temperature simulations. While SAR calculations are state-of-the-art and well defined as they are based on more or less well-known material parameters, temperature simulations depend strongly on additional material, environmental and physiological parameters. The simulations demonstrated that more consideration needs be made by the MR community in defining the parameters for temperature simulations in order to apply temperature limits instead of SAR limits in the context of MR RF safety evaluations. © 2016 American Association of Physicists in Medicine.
Deniz, Cem M; Vaidya, Manushka V; Sodickson, Daniel K; Lattanzi, Riccardo
2016-01-01
We investigated global specific absorption rate (SAR) and radiofrequency (RF) power requirements in parallel transmission as the distance between the transmit coils and the sample was increased. We calculated ultimate intrinsic SAR (UISAR), which depends on object geometry and electrical properties but not on coil design, and we used it as the reference to compare the performance of various transmit arrays. We investigated the case of fixing coil size and increasing the number of coils while moving the array away from the sample, as well as the case of fixing coil number and scaling coil dimensions. We also investigated RF power requirements as a function of lift-off, and tracked local SAR distributions associated with global SAR optima. In all cases, the target excitation profile was achieved and global SAR (as well as associated maximum local SAR) decreased with lift-off, approaching UISAR, which was constant for all lift-offs. We observed a lift-off value that optimizes the balance between global SAR and power losses in coil conductors. We showed that, using parallel transmission, global SAR can decrease at ultra high fields for finite arrays with a sufficient number of transmit elements. For parallel transmission, the distance between coils and object can be optimized to reduce SAR and minimize RF power requirements associated with homogeneous excitation. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaotong; Liu, Jiaen; Van de Moortele, Pierre-Francois
2014-12-15
Electrical Properties Tomography (EPT) technique utilizes measurable radio frequency (RF) coil induced magnetic fields (B1 fields) in a Magnetic Resonance Imaging (MRI) system to quantitatively reconstruct the local electrical properties (EP) of biological tissues. Information derived from the same data set, e.g., complex numbers of B1 distribution towards electric field calculation, can be used to estimate, on a subject-specific basis, local Specific Absorption Rate (SAR). SAR plays a significant role in RF pulse design for high-field MRI applications, where maximum local tissue heating remains one of the most constraining limits. The purpose of the present work is to investigate themore » feasibility of such B1-based local SAR estimation, expanding on previously proposed EPT approaches. To this end, B1 calibration was obtained in a gelatin phantom at 7 T with a multi-channel transmit coil, under a particular multi-channel B1-shim setting (B1-shim I). Using this unique set of B1 calibration, local SAR distribution was subsequently predicted for B1-shim I, as well as for another B1-shim setting (B1-shim II), considering a specific set of parameter for a heating MRI protocol consisting of RF pulses plaid at 1% duty cycle. Local SAR results, which could not be directly measured with MRI, were subsequently converted into temperature change which in turn were validated against temperature changes measured by MRI Thermometry based on the proton chemical shift.« less
Cooper, Justin; Marx, Bernd; Buhl, Johannes; Hombach, Volker
2002-09-01
This paper investigates the minimum distance for a human body in the near field of a cellular telephone base station antenna for which there is compliance with the IEEE or ICNIRP threshold values for radio frequency electromagnetic energy absorption in the human body. First, local maximum specific absorption rates (SARs), measured and averaged over volumes equivalent to 1 and to 10 g tissue within the trunk region of a physical, liquid filled shell phantom facing and irradiated by a typical GSM 900 base station antenna, were compared to corresponding calculated SAR values. The calculation used a homogeneous Visible Human body model in front of a simulated base station antenna of the same type. Both real and simulated base station antennas operated at 935 MHz. Antenna-body distances were between 1 and 65 cm. The agreement between measurements and calculations was excellent. This gave confidence in the subsequent calculated SAR values for the heterogeneous Visible Human model, for which each tissue was assigned the currently accepted values for permittivity and conductivity at 935 MHz. Calculated SAR values within the trunk of the body were found to be about double those for the homogeneous case. When the IEEE standard and the ICNIRP guidelines are both to be complied with, the local SAR averaged over 1 g tissue was found to be the determining parameter. Emitted power values from the antenna that produced the maximum SAR value over 1 g specified in the IEEE standard at the base station are less than those needed to reach the ICNIRP threshold specified for the local SAR averaged over 10 g. For the GSM base station antenna investigated here operating at 935 MHz with 40 W emitted power, the model indicates that the human body should not be closer to the antenna than 18 cm for controlled environment exposure, or about 95 cm for uncontrolled environment exposure. These safe distance limits are for SARs averaged over 1 g tissue. The corresponding safety distance limits under the ICNIRP guidelines for SAR taken over 10 g tissue are 5 cm for occupational exposure and about 75 cm for general-public exposure. Copyright 2002 Wiley-Liss, Inc.
Toivonen, Tommi; Toivo, Tim; Puranen, Lauri; Jokela, Kari
2009-05-01
In this article, the exposure to radio frequency electromagnetic fields was studied in close proximity (distances of 10, 100, 300, and 600 mm) to six base station antennas. The specific absorption rate (SAR) in 800 mm x 500 mm x 200 mm box phantom as well as unperturbed electric field (E) in air was measured. The results were used to determine whether the measurement of local maximum of unperturbed electric field can be used as a compliance check for local exposure. Also, the conservativeness of this assessment method compared to the ICNIRP basic restriction was studied. Moreover, the assessment of whole-body exposure was discussed and the distance ranges presented in which the ICNIRP limit for local exposure could be exceeded before the limit for whole-body SAR. These results show that the electric field measurement alone can be used for easy compliance check for the local exposure at all distances and for all antenna types studied. However, in some cases when the local peak value of E was compared directly to the ICNIRP reference level for unperturbed E, the exposure was overestimated only very slightly (by factor 1.1) compared to the basic restriction for localized SAR in a human, and hence these results can not be generalized to all antenna types. Moreover, it was shown that the limit for localized exposure could be exceeded before the limit for the whole-body average SAR, if the distance to the antenna was less than 240 mm. Copyright 2009 Wiley-Liss, Inc.
Weinberger, Oliver; Winter, Lukas; Dieringer, Matthias A; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf
2016-01-01
The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants.
Winter, Lukas; Dieringer, Matthias A.; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M.; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf
2016-01-01
Introduction The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Methods Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Results Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Conclusion Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants. PMID:27598923
Findlay, R P; Dimbylow, P J
2009-04-21
If an antenna is located close to a person, the electric and magnetic fields produced by the antenna will vary in the region occupied by the human body. To obtain a mean value of the field for comparison with reference levels, the Institute of Electrical and Electronic Engineers (IEEE) and International Commission on Non-Ionizing Radiation Protection (ICNIRP) recommend spatially averaging the squares of the field strength over the height the body. This study attempts to assess the validity and accuracy of spatial averaging when used for half-wave dipoles at frequencies between 65 MHz and 2 GHz and distances of lambda/2, lambda/4 and lambda/8 from the body. The differences between mean electric field values calculated using ten field measurements and that of the true averaged value were approximately 15% in the 600 MHz to 2 GHz range. The results presented suggest that the use of modern survey equipment, which takes hundreds rather than tens of measurements, is advisable to arrive at a sufficiently accurate mean field value. Whole-body averaged and peak localized SAR values, normalized to calculated spatially averaged fields, were calculated for the NORMAN voxel phantom. It was found that the reference levels were conservative for all whole-body SAR values, but not for localized SAR, particularly in the 1-2 GHz region when the dipole was positioned very close to the body. However, if the maximum field is used for normalization of calculated SAR as opposed to the lower spatially averaged value, the reference levels provide a conservative estimate of the localized SAR basic restriction for all frequencies studied.
Local SAR in Parallel Transmission Pulse Design
Lee, Joonsung; Gebhardt, Matthias; Wald, Lawrence L.; Adalsteinsson, Elfar
2011-01-01
The management of local and global power deposition in human subjects (Specific Absorption Rate, SAR) is a fundamental constraint to the application of parallel transmission (pTx) systems. Even though the pTx and single channel have to meet the same SAR requirements, the complex behavior of the spatial distribution of local SAR for transmission arrays poses problems that are not encountered in conventional single-channel systems and places additional requirements on pTx RF pulse design. We propose a pTx pulse design method which builds on recent work to capture the spatial distribution of local SAR in numerical tissue models in a compressed parameterization in order to incorporate local SAR constraints within computation times that accommodate pTx pulse design during an in vivo MRI scan. Additionally, the algorithm yields a Protocol-specific Ultimate Peak in Local SAR (PUPiL SAR), which is shown to bound the achievable peak local SAR for a given excitation profile fidelity. The performance of the approach was demonstrated using a numerical human head model and a 7T eight-channel transmit array. The method reduced peak local 10g SAR by 14–66% for slice-selective pTx excitations and 2D selective pTx excitations compared to a pTx pulse design constrained only by global SAR. The primary tradeoff incurred for reducing peak local SAR was an increase in global SAR, up to 34% for the evaluated examples, which is favorable in cases where local SAR constraints dominate the pulse applications. PMID:22083594
Local SAR in parallel transmission pulse design.
Lee, Joonsung; Gebhardt, Matthias; Wald, Lawrence L; Adalsteinsson, Elfar
2012-06-01
The management of local and global power deposition in human subjects (specific absorption rate, SAR) is a fundamental constraint to the application of parallel transmission (pTx) systems. Even though the pTx and single channel have to meet the same SAR requirements, the complex behavior of the spatial distribution of local SAR for transmission arrays poses problems that are not encountered in conventional single-channel systems and places additional requirements on pTx radio frequency pulse design. We propose a pTx pulse design method which builds on recent work to capture the spatial distribution of local SAR in numerical tissue models in a compressed parameterization in order to incorporate local SAR constraints within computation times that accommodate pTx pulse design during an in vivo magnetic resonance imaging scan. Additionally, the algorithm yields a protocol-specific ultimate peak in local SAR, which is shown to bound the achievable peak local SAR for a given excitation profile fidelity. The performance of the approach was demonstrated using a numerical human head model and a 7 Tesla eight-channel transmit array. The method reduced peak local 10 g SAR by 14-66% for slice-selective pTx excitations and 2D selective pTx excitations compared to a pTx pulse design constrained only by global SAR. The primary tradeoff incurred for reducing peak local SAR was an increase in global SAR, up to 34% for the evaluated examples, which is favorable in cases where local SAR constraints dominate the pulse applications. Copyright © 2011 Wiley Periodicals, Inc.
Yeo, Desmond TB; Wang, Zhangwei; Loew, Wolfgang; Vogel, Mika W; Hancu, Ileana
2011-01-01
Purpose To use EM simulations to study the effects of body type, landmark position, and RF body coil type on peak local SAR in 3T MRI. Materials and Methods Numerically computed peak local SAR for four human body models (HBMs) in three landmark positions (head, heart, pelvic) were compared for a high-pass birdcage and a transverse electromagnetic 3T body coil. Local SAR values were normalized to the IEC whole-body average SAR limit of 2.0 W/kg for normal scan mode. Results Local SAR distributions were highly variable. Consistent with previous reports, the peak local SAR values generally occurred in the neck-shoulder area, near rungs, or between tissues of greatly differing electrical properties. The HBM type significantly influenced the peak local SAR, with stockier HBMs, extending extremities towards rungs, displaying the highest SAR. There was also a trend for higher peak SAR in the head-centric and heart-centric positions. The impact of the coil-types studied was not statistically significant. Conclusion The large variability in peak local SAR indicates the need to include more than one HBM or landmark position when evaluating safety of body coils. It is recommended that a HBM with arms near the rungs be included, to create physically realizable high-SAR scenarios. PMID:21509880
Maximum Likelihood Shift Estimation Using High Resolution Polarimetric SAR Clutter Model
NASA Astrophysics Data System (ADS)
Harant, Olivier; Bombrun, Lionel; Vasile, Gabriel; Ferro-Famil, Laurent; Gay, Michel
2011-03-01
This paper deals with a Maximum Likelihood (ML) shift estimation method in the context of High Resolution (HR) Polarimetric SAR (PolSAR) clutter. Texture modeling is exposed and the generalized ML texture tracking method is extended to the merging of various sensors. Some results on displacement estimation on the Argentiere glacier in the Mont Blanc massif using dual-pol TerraSAR-X (TSX) and quad-pol RADARSAT-2 (RS2) sensors are finally discussed.
NASA Astrophysics Data System (ADS)
Villano, Michelangelo; Papathanassiou, Konstantinos P.
2011-03-01
The estimation of the local differential shift between synthetic aperture radar (SAR) images has proven to be an effective technique for monitoring glacier surface motion. As images acquired over glaciers by short wavelength SAR systems, such as TerraSAR-X, often suffer from a lack of coherence, image features have to be exploited for the shift estimation (feature-tracking).The present paper addresses feature-tracking with special attention to the feasibility requirements and the achievable accuracy of the shift estimation. In particular, the dependence of the performance on image characteristics, such as texture parameters, signal-to-noise ratio (SNR) and resolution, as well as on processing techniques (despeckling, normalised cross-correlation versus maximum likelihood estimation) is analysed by means of Monte-Carlo simulations. TerraSAR-X data acquired over the Helheim glacier, Greenland, and the Aletsch glacier, Switzerland, have been processed to validate the simulation results.Feature-tracking can benefit of the availability of fully-polarimetric data. As some image characteristics, in fact, are polarisation-dependent, the selection of an optimum polarisation leads to improved performance. Furthermore, fully-polarimetric SAR images can be despeckled without degrading the resolution, so that additional (smaller-scale) features can be exploited.
Impact of the Ionosphere on an L-band Space Based Radar
NASA Technical Reports Server (NTRS)
Chapin, Elaine; Chan, Samuel F.; Chapman, Bruce D.; Chen, Curtis W.; Martin, Jan M.; Michel, Thierry R.; Muellerschoen, Ronald J.; Pi, Xiaoqing; Rosen, Paul A.
2006-01-01
We have quantified the impact that the ionosphere would have on a L-band interferometric Synthetic Aperture Radar (SAR) mission using a combination of simulation, modeling, Global Positioning System (GPS) data collected during the last solar maximum, and existing spaceborne SAR data. We conclude that, except for high latitude scintillation related effects, the ionosphere will not significantly impact the performance of an L-band InSAR mission in an appropriate orbit. We evaluated the strength of the ionospheric irregularities using GPS scintillation data collected at Fairbanks, Alaska and modeled the impact of these irregularities on azimuth resolution, azimuth displacement, peak sidelobe ratio (PSLR), and integrated sidelobe ratio (ISLR). Although we predict that less than 5% of auroral zone data would show scintillation related artifacts, certain sites imaged near the equinoxes could be effected up to 25% of the time because the frequency of occurrence of scintillation is a strong function of season and local time of day. Our examination of ionospheric artifacts observed in InSAR data has revealed that the artifacts occur primarily in the polar cap data, not auroral zone data as was previously thought.
Schaber, G.G.
1999-01-01
Synthetic Aperture Radar (SAR) images acquired over part of the Yuma Desert in southwestern Arizona demonstrate the ability of C-band (5.7-cm wavelength), L-band (24.5 cm), and P-band (68 cm) AIRSAR signals to backscatter from increasingly greater depths reaching several meters in blow sand and sandy alluvium. AIRSAR images obtained within the Barry M. Goldwater Bombing and Gunnery Range near Yuma, Arizona, show a total reversal of C- and P-band backscatter contrast (image tone) for three distinct geologic units. This phenomenon results from an increasingly greater depth of radar imaging with increasing radar wavelength. In the case of sandy- and small pebble-alluvium surfaces mantled by up to several meters of blow sand, backscatter increases directly with SAR wavelength as a result of volume scattering from a calcic soil horizon at shallow depth and by volume scattering from the root mounds of healthy desert vegetation that locally stabilize blow sand. AIRSAR images obtained within the military range are also shown to be useful for detecting metallic military ordnance debris that is located either at the surface or covered by tens of centimeters to several meters of blow sand. The degree of detectability of this ordnance increases with SAR wavelength and is clearly maximized on P-band images that are processed in the cross-polarized mode (HV). This effect is attributed to maximum signal penetration at P-band and the enhanced PHV image contrast between the radar-bright ordnance debris and the radar-dark sandy desert. This article focuses on the interpretation of high resolution AIRSAR images but also Compares these airborne SAR images with those acquired from spacecraft sensors such as ERS-SAR and Space Radar Laboratory (SIR-C/X-SAR).Synthetic Aperture Radar (SAR) images acquired over part of the Yuma Desert in southwestern Arizona demonstrate the ability of C-band (5.7-cm wavelength), L-band (24.5 cm), and P-band (68 cm) AIRSAR signals to backscatter from increasingly greater depths reaching several meters in blow sand and sandy alluvium. AIRSAR images obtained within the Barry M. Goldwater Bombing and Gunnery Range near Yuma, Arizona, show a total reversal of C- and P-band backscatter contrast (image tone) for three distinct geologic units. This phenomenon results from an increasingly greater depth of radar imaging with increasing radar wavelength. In the case of sandy- and small pebble-alluvium surfaces mantled by up to several meters of blow sand, backscatter increases directly with SAR wavelength as a result of volume scattering from a calcic soil horizon at shallow depth and by volume scattering from the root mounds of healthy desert vegetation that locally stabilize blow sand. AIRSAR images obtained within the military range are also shown to be useful for detecting metallic military ordnance debris that is located either at the surface or covered by tens of centimeters to several meters of blow sand. The degree of detectability of this ordnance increases with SAR wavelength and is clearly maximized on P-band images that are processed in the cross-polarized mode (HV). This effect is attributed to maximum signal penetration at P-band and the enhanced PHV image contrast between the radar-bright ordnance debris and the radar-dark sandy desert. This article focuses on the interpretation of high resolution AIRSAR images but also compares these airborne SAR images with those acquired from spacecraft sensors such as ERS-SAR and Space Radar Laboratory (SIR-C/X-SAR).
Guérin, Bastien; Setsompop, Kawin; Ye, Huihui; Poser, Benedikt A; Stenger, Andrew V; Wald, Lawrence L
2015-05-01
To design parallel transmit (pTx) simultaneous multislice (SMS) spokes pulses with explicit control for peak power and local and global specific absorption rate (SAR). We design SMS pTx least-squares and magnitude least squares spokes pulses while constraining local SAR using the virtual observation points (VOPs) compression of SAR matrices. We evaluate our approach in simulations of a head (7T) and a body (3T) coil with eight channels arranged in two z-rows. For many of our simulations, control of average power by Tikhonov regularization of the SMS pTx spokes pulse design yielded pulses that violated hardware and SAR safety limits. On the other hand, control of peak power alone yielded pulses that violated local SAR limits. Pulses optimized with control of both local SAR and peak power satisfied all constraints and therefore had the best excitation performance under limited power and SAR constraints. These results extend our previous results for single slice pTx excitations but are more pronounced because of the large power demands and SAR of SMS pulses. Explicit control of local SAR and peak power is required to generate optimal SMS pTx excitations satisfying both the system's hardware limits and regulatory safety limits. © 2014 Wiley Periodicals, Inc.
Retrospective analysis of RF heating measurements of passive medical implants.
Song, Ting; Xu, Zhiheng; Iacono, Maria Ida; Angelone, Leonardo M; Rajan, Sunder
2018-05-09
The test reports for the RF-induced heating of metallic devices of hundreds of medical implants have been provided to the U.S. Food and Drug Administration as a part of premarket submissions. The main purpose of this study is to perform a retrospective analysis of the RF-induced heating data provided in the reports to analyze the trends and correlate them with implant geometric characteristics. The ASTM-based RF heating test reports from 86 premarket U.S. Food and Drug Administration submissions were reviewed by three U.S. Food and Drug Administration reviewers. From each test report, the dimensions and RF-induced heating values for a given whole-body (WB) specific absorption rate (SAR) and local background (LB) SAR were extracted and analyzed. The data from 56 stents were analyzed as a subset to further understand heating trends and length dependence. For a given WB SAR, the LB/WB SAR ratio varied significantly across the test labs, from 2.3 to 11.3. There was an increasing trend on the temperature change per LB SAR with device length. The maximum heating for stents occurred at lengths of approximately 100 mm at 3 T, and beyond 150 mm at 1.5 T. Differences in the LB/WB SAR ratios across testing labs and various MRI scanners could lead to inconsistent WB SAR labeling. Magnetic resonance (MR) conditional labeling based on WB SAR should be derived from a conservative estimate of global LB/WB ratios. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
NASA Technical Reports Server (NTRS)
Rignot, E.; Chellappa, R.
1993-01-01
We present a maximum a posteriori (MAP) classifier for classifying multifrequency, multilook, single polarization SAR intensity data into regions or ensembles of pixels of homogeneous and similar radar backscatter characteristics. A model for the prior joint distribution of the multifrequency SAR intensity data is combined with a Markov random field for representing the interactions between region labels to obtain an expression for the posterior distribution of the region labels given the multifrequency SAR observations. The maximization of the posterior distribution yields Bayes's optimum region labeling or classification of the SAR data or its MAP estimate. The performance of the MAP classifier is evaluated by using computer-simulated multilook SAR intensity data as a function of the parameters in the classification process. Multilook SAR intensity data are shown to yield higher classification accuracies than one-look SAR complex amplitude data. The MAP classifier is extended to the case in which the radar backscatter from the remotely sensed surface varies within the SAR image because of incidence angle effects. The results obtained illustrate the practicality of the method for combining SAR intensity observations acquired at two different frequencies and for improving classification accuracy of SAR data.
NASA Astrophysics Data System (ADS)
Fan, Hongdong; Xu, Qiang; Hu, Zhongbo; Du, Sen
2017-04-01
Yuyang mine is located in the semiarid western region of China where, due to serious land subsidence caused by underground coal exploitation, the local ecological environment has become more fragile. An advanced interferometric synthetic aperture radar (InSAR) technique, temporarily coherent point InSAR, is applied to measure surface movements caused by different mining conditions. Fifteen high-resolution TerraSAR-X images acquired between October 2, 2012, and March 27, 2013, were processed to generate time-series data for ground deformation. The results show that the maximum accumulated values of subsidence and velocity were 86 mm and 162 mm/year, respectively; these measurements were taken above the fully mechanized longwall caving faces. Based on the dynamic land subsidence caused by the exploitation of one working face, the land subsidence range was deduced to have increased 38 m in the mining direction with 11 days' coal extraction. Although some mining faces were ceased in 2009, they could also have contributed to a small residual deformation of overlying strata. Surface subsidence of the backfill mining region was quite small, the maximum only 21 mm, so backfill exploitation is an effective method for reducing the land subsidence while coal is mined.
Local region power spectrum-based unfocused ship detection method in synthetic aperture radar images
NASA Astrophysics Data System (ADS)
Wei, Xiangfei; Wang, Xiaoqing; Chong, Jinsong
2018-01-01
Ships on synthetic aperture radar (SAR) images will be severely defocused and their energy will disperse into numerous resolution cells under long SAR integration time. Therefore, the image intensity of ships is weak and sometimes even overwhelmed by sea clutter on SAR image. Consequently, it is hard to detect the ships from SAR intensity images. A ship detection method based on local region power spectrum of SAR complex image is proposed. Although the energies of the ships are dispersed on SAR intensity images, their spectral energies are rather concentrated or will cause the power spectra of local areas of SAR images to deviate from that of sea surface background. Therefore, the key idea of the proposed method is to detect ships via the power spectra distortion of local areas of SAR images. The local region power spectrum of a moving target on SAR image is analyzed and the way to obtain the detection threshold through the probability density function (pdf) of the power spectrum is illustrated. Numerical P- and L-band airborne SAR ocean data are utilized and the detection results are also illustrated. Results show that the proposed method can well detect the unfocused ships, with a detection rate of 93.6% and a false-alarm rate of 8.6%. Moreover, by comparing with some other algorithms, it indicates that the proposed method performs better under long SAR integration time. Finally, the applicability of the proposed method and the way of parameters selection are also discussed.
Breitenbach, Heiko H.; Wenig, Marion; Wittek, Finni; Jordá, Lucia; Maldonado-Alconada, Ana M.; Sarioglu, Hakan; Colby, Thomas; Knappe, Claudia; Bichlmeier, Marlies; Pabst, Elisabeth; Mackey, David; Parker, Jane E.; Vlot, A. Corina
2014-01-01
Systemic acquired resistance (SAR) is an inducible immune response that depends on ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). Here, we show that Arabidopsis (Arabidopsis thaliana) EDS1 is required for both SAR signal generation in primary infected leaves and SAR signal perception in systemic uninfected tissues. In contrast to SAR signal generation, local resistance remains intact in eds1 mutant plants in response to Pseudomonas syringae delivering the effector protein AvrRpm1. We utilized the SAR-specific phenotype of the eds1 mutant to identify new SAR regulatory proteins in plants conditionally expressing AvrRpm1. Comparative proteomic analysis of apoplast-enriched extracts from AvrRpm1-expressing wild-type and eds1 mutant plants led to the identification of 12 APOPLASTIC, EDS1-DEPENDENT (AED) proteins. The genes encoding AED1, a predicted aspartyl protease, and another AED, LEGUME LECTIN-LIKE PROTEIN1 (LLP1), were induced locally and systemically during SAR signaling and locally by salicylic acid (SA) or its functional analog, benzo 1,2,3-thiadiazole-7-carbothioic acid S-methyl ester. Because conditional overaccumulation of AED1-hemagglutinin inhibited SA-induced resistance and SAR but not local resistance, the data suggest that AED1 is part of a homeostatic feedback mechanism regulating systemic immunity. In llp1 mutant plants, SAR was compromised, whereas the local resistance that is normally associated with EDS1 and SA as well as responses to exogenous SA appeared largely unaffected. Together, these data indicate that LLP1 promotes systemic rather than local immunity, possibly in parallel with SA. Our analysis reveals new positive and negative components of SAR and reinforces the notion that SAR represents a distinct phase of plant immunity beyond local resistance. PMID:24755512
Argenti, Fabrizio; Bianchi, Tiziano; Alparone, Luciano
2006-11-01
In this paper, a new despeckling method based on undecimated wavelet decomposition and maximum a posteriori MIAP) estimation is proposed. Such a method relies on the assumption that the probability density function (pdf) of each wavelet coefficient is generalized Gaussian (GG). The major novelty of the proposed approach is that the parameters of the GG pdf are taken to be space-varying within each wavelet frame. Thus, they may be adjusted to spatial image context, not only to scale and orientation. Since the MAP equation to be solved is a function of the parameters of the assumed pdf model, the variance and shape factor of the GG function are derived from the theoretical moments, which depend on the moments and joint moments of the observed noisy signal and on the statistics of speckle. The solution of the MAP equation yields the MAP estimate of the wavelet coefficients of the noise-free image. The restored SAR image is synthesized from such coefficients. Experimental results, carried out on both synthetic speckled images and true SAR images, demonstrate that MAP filtering can be successfully applied to SAR images represented in the shift-invariant wavelet domain, without resorting to a logarithmic transformation.
Kouloulias, Vassilis; Karanasiou, Irene; Giamalaki, Melina; Matsopoulos, George; Kouvaris, John; Kelekis, Nikolaos; Uzunoglu, Nikolaos
2015-02-01
A hyperthermia system using a folded loop antenna applicator at 27 MHz for soft tissue treatment was investigated both theoretically and experimentally to evaluate its clinical value. The electromagnetic analysis of a 27-MHz folded loop antenna for use in human tissue was based on a customised software tool and led to the design and development of the proposed hyperthermia system. The system was experimentally validated using specific absorption rate (SAR) distribution estimations through temperature distribution measurements of a muscle tissue phantom after electromagnetic exposure. Various scenarios for optimal antenna positioning were also performed. Comparison of the theoretical and experimental analysis results shows satisfactory agreement. The SAR level of 50% reaches 8 cm depth in the tissue phantom. Thus, based on the maximum observed SAR values that were of the order of 100 W/kg, the antenna specified is suitable for deep tumour heating. Theoretical and experimental SAR distribution results as derived from this study are in agreement. The proposed folded loop antenna seems appropriate for use in hyperthermia treatment, achieving proper planning and local treatment of deeply seated affected areas and lesions.
Gong, Feixiang; Wei, Zhiqiang; Cong, Yanping; Chi, Haokun; Yin, Bo; Sun, Mingui
2017-07-20
In this paper, a novel wireless power transfer antenna system was designed for human head implantable devices. The antenna system used the structure of three plates and four coils and operated at low frequencies to transfer power via near field. In order to verify the electromagnetic radiation safety on the human head, the electromagnetic intensity and specific absorption rate (SAR) were studied by finite-difference-time-domain (FDTD) method. A three-layer model of human head including skin, bone and brain tissues was constructed. The transmitting and receiving antenna were set outside and inside the model. The local and average SAR were simulated at the resonance frequency of 18.67 MHz in two situations, in one scenario both transmitting and receiving coil worked, while in the other scenario only the transmitting coil worked. The results showed that the maximum of 10 g SAR average value of human thoracic were 0.142 W/kg and 0.148 W/kg, respectively, both were lower than the international safety standards for human body of the ICNIRP and FCC, which verified the safety of the human body in wireless power transmission based on magnetic coupling resonance.
NASA Astrophysics Data System (ADS)
Martínez-Búrdalo, M.; Martín, A.; Anguiano, M.; Villar, R.
2004-01-01
In this paper, the specific absorption rate (SAR) in scaled human head models is analysed to study possible differences between SAR in the heads of adults and children and for assessment of compliance with the international safety guidelines, while using a mobile phone. The finite-difference time-domain method (FDTD) has been used for calculating SAR values for models of both children and adults, at 900 and 1800 MHz. Maximum 1 g averaged SAR (SAR1 g) and maximum 10 g averaged SAR (SAR10 g) have been calculated in adults and scaled head models for comparison and assessment of compliance with ANSI/IEEE and European guidelines. Results show that peak SAR1 g and peak SAR10 g all trend downwards with decreasing head size but as head size decreases, the percentage of energy absorbed in the brain increases. So, higher SAR in children's brains can be expected depending on whether the thickness of their skulls and surrounding tissues actually depends on age. The SAR in eyes of different sizes, as a critical organ, has also been studied and very similar distributions for the full size and the scaled models have been obtained. Standard limits can only be exceeded in the unpractical situation where the antenna is located at a very short distance in front of the eye.
Murbach, Manuel; Neufeld, Esra; Kainz, Wolfgang; Pruessmann, Klaas P; Kuster, Niels
2014-02-01
Radiofrequency energy deposition in magnetic resonance imaging must be limited to prevent excessive heating of the patient. Correlations of radiofrequency absorption with large-scale anatomical features (e.g., height) are investigated in this article. The specific absorption rate (SAR), as the pivotal parameter for quantifying absorbed radiofrequency, increases with the radial dimension of the patient and therefore with the large-scale anatomical properties. The absorbed energy in six human models has been modeled in different Z-positions (head to knees) within a 1.5T bodycoil. For a fixed B1+ incident field, the whole-body SAR can be up to 2.5 times higher (local SAR up to seven times) in obese adult models compared to children. If the exposure is normalized to 4 W/kg whole-body SAR, the local SAR can well-exceed the limits for local transmit coils and shows intersubject variations of up to a factor of three. The correlations between anatomy and induced local SAR are weak for normalized exposure, but strong for a fixed B1+ field, suggesting that anatomical properties could be used for fast SAR predictions. This study demonstrates that a representative virtual human population is indispensable for the investigation of local SAR levels. Copyright © 2013 Wiley Periodicals, Inc.
Guided SAR image despeckling with probabilistic non local weights
NASA Astrophysics Data System (ADS)
Gokul, Jithin; Nair, Madhu S.; Rajan, Jeny
2017-12-01
SAR images are generally corrupted by granular disturbances called speckle, which makes visual analysis and detail extraction a difficult task. Non Local despeckling techniques with probabilistic similarity has been a recent trend in SAR despeckling. To achieve effective speckle suppression without compromising detail preservation, we propose an improvement for the existing Generalized Guided Filter with Bayesian Non-Local Means (GGF-BNLM) method. The proposed method (Guided SAR Image Despeckling with Probabilistic Non Local Weights) replaces parametric constants based on heuristics in GGF-BNLM method with dynamically derived values based on the image statistics for weight computation. Proposed changes make GGF-BNLM method adaptive and as a result, significant improvement is achieved in terms of performance. Experimental analysis on SAR images shows excellent speckle reduction without compromising feature preservation when compared to GGF-BNLM method. Results are also compared with other state-of-the-art and classic SAR depseckling techniques to demonstrate the effectiveness of the proposed method.
Observations of internal waves in the Gulf of California by SEASAT SAR
NASA Technical Reports Server (NTRS)
Fu, L. L.; Holt, B.
1983-01-01
Internal waves which are among the most commonly observed oceanic phenomena in the SEASAT SAR imagery are discussed. These waves are associated with the vertical displacements of constant water density surfaces in the ocean. Their amplitudes are maximum at depths where the water density changes most rapidly usually at depths from 50 to 100 m, whereas the horizontal currents associated with these waves are maximum at the sea surface where the resulting oscillatory currents modulate the sea surface roughness and produce the signatures detected by SAR.
Observations of internal waves in the Gulf of California by SEASAT SAR
NASA Astrophysics Data System (ADS)
Fu, L. L.; Holt, B.
1983-07-01
Internal waves which are among the most commonly observed oceanic phenomena in the SEASAT SAR imagery are discussed. These waves are associated with the vertical displacements of constant water density surfaces in the ocean. Their amplitudes are maximum at depths where the water density changes most rapidly usually at depths from 50 to 100 m, whereas the horizontal currents associated with these waves are maximum at the sea surface where the resulting oscillatory currents modulate the sea surface roughness and produce the signatures detected by SAR.
Statistical properties of superactive regions during solar cycles 19-23
NASA Astrophysics Data System (ADS)
Chen, A. Q.; Wang, J. X.; Li, J. W.; Feynman, J.; Zhang, J.
2011-10-01
Context. Each solar activity cycle is characterized by a small number of superactive regions (SARs) that produce the most violent of space weather events with the greatest disastrous influence on our living environment. Aims: We aim to re-parameterize the SARs and study the latitudinal and longitudinal distributions of SARs. Methods: We select 45 SARs in solar cycles 21-23, according to the following four parameters: 1) the maximum area of sunspot group, 2) the soft X-ray flare index, 3) the 10.7 cm radio peak flux, and 4) the variation in the total solar irradiance. Another 120 SARs given by previous studies of solar cycles 19-23 are also included. The latitudinal and longitudinal distributions of the 165 SARs in both the Carrington frame and the dynamic reference frame during solar cycles 19-23 are studied statistically. Results: Our results indicate that these 45 SARs produced 44% of all the X class X-ray flares during solar cycles 21-23, and that all the SARs are likely to produce a very fast CME. The latitudinal distributions of SARs display the Maunder butterfly diagrams and SARs occur preferentially in the maximum period of each solar cycle. Northern hemisphere SARs dominated in solar cycles 19 and 20 and southern hemisphere SARs dominated in solar cycles 21 and 22. In solar cycle 23, however, SARs occurred about equally in each hemisphere. There are two active longitudes in both the northern and southern hemispheres, about 160°-200° apart. Applying the improved dynamic reference frame to SARs, we find that SARs rotate faster than the Carrington rate and there is no significant difference between the two hemispheres. The synodic periods are 27.19 days and 27.25 days for the northern and southern hemispheres, respectively. The longitudinal distribution of SARs is significantly non-axisymmetric and about 75% SARs occurred near two active longitudes with half widths of 45°. Appendix A is available in electronic form at http://www.aanda.org
SAR Reduction in 7T C-Spine Imaging Using a “Dark Modes” Transmit Array Strategy
Eryaman, Yigitcan; Guerin, Bastien; Keil, Boris; Mareyam, Azma; Herraiz, Joaquin L.; Kosior, Robert K.; Martin, Adrian; Torrado-Carvajal, Angel; Malpica, Norberto; Hernandez-Tamames, Juan A.; Schiavi, Emanuele; Adalsteinsson, Elfar; Wald, Lawrence L.
2016-01-01
Purpose Local specific absorption rate (SAR) limits many applications of parallel transmit (pTx) in ultra high-field imaging. In this Note, we introduce the use of an array element, which is intentionally inefficient at generating spin excitation (a “dark mode”) to attempt a partial cancellation of the electric field from those elements that do generate excitation. We show that adding dipole elements oriented orthogonal to their conventional orientation to a linear array of conventional loop elements can lower the local SAR hotspot in a C-spine array at 7 T. Methods We model electromagnetic fields in a head/torso model to calculate SAR and excitation B1+ patterns generated by conventional loop arrays and loop arrays with added electric dipole elements. We utilize the dark modes that are generated by the intentional and inefficient orientation of dipole elements in order to reduce peak 10g local SAR while maintaining excitation fidelity. Results For B1+ shimming in the spine, the addition of dipole elements did not significantly alter the B1+ spatial pattern but reduced local SAR by 36%. Conclusion The dipole elements provide a sufficiently complimentary B1+ and electric field pattern to the loop array that can be exploited by the radiofrequency shimming algorithm to reduce local SAR. PMID:24753012
A perspective of synthetic aperture radar for remote sensing
NASA Technical Reports Server (NTRS)
Skolnik, M. I.
1978-01-01
The characteristics and capabilities of synthetic aperture radar are discussed so as to identify those features particularly unique to SAR. The SAR and Optical images were compared. The SAR is an example of radar that provides more information about a target than simply its location. It is the spatial resolution and imaging capability of SAR that has made its application of interest, especially from spaceborne platforms. However, for maximum utility to remote sensing, it was proposed that other information be extracted from SAR data, such as the cross section with frequency and polarization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, G.; Meriwether, J.W.; Tepley, C.A.
Thermospheric winds and temperatures were observed from Fritz Peak, Colorado and Calgary, Alberta during the 23 October 1981 Stable Auroral Red Arc (SAR-arc) and aurora event. Ground-based photometer observations during the SAR-arc event allowed the position, 630.0 nm emission rate, and width of the SAR-arc over Fritz Peak to be monitored throughout the night. Data from the DE-2 satellite overflight near 0400UT allowed the structure of the SAR-arc near Fritz Peak and the aurora in Canada to be determined. The measurements made from Fritz Peak Observatory during the early evening hours showed a thermospheric response to heating within the SAR-arcmore » with meridional winds flowing away from the region of maximum heating at velocities less than 50 m s/sup -1/. Later during the night the meridional winds measured over Fritz Peak shifted equatorward. The neutral gas temperature decreased from about 1700/sup 0/K in the early evening to about 1200/sup 0/K before sunrise. The wind measurements made from Calgary indicated a more complex flow pattern. During the early evening hours the winds were directed poleward, increasing in velocity with latitude from about 50 to 300 m s/sup -1/. Near local midnight the winds reversed to equatorward and also became irregular in the vicinity of the station. The winds in the vicinity of Calgary are under the influence of intense particle precipitation and enhanced ion drag associated with magnetospheric convection that give rise to considerable variability.« less
Hansson, Björn; Thors, Björn; Törnevik, Christer
2011-12-01
In this work, the effect of antenna element loading on the localized specific absorption rate (SAR) has been analyzed for base station antennas. The analysis was conducted in order to determine whether localized SAR measurements of large multi-element base station antennas can be conducted using standardized procedures and commercially available equipment. More specifically, it was investigated if the antenna shifting measurement procedure, specified in the European base station exposure assessment standard EN 50383, will produce accurate localized SAR results for base station antennas larger than the specified measurement phantom. The obtained results show that SAR accuracy is affected by the presence of lossy material within distances of one wavelength from the tested antennas as a consequence of coupling and redistribution of transmitted power among the antenna elements. It was also found that the existing standardized phantom is not optimal for SAR measurements of large base station antennas. A new methodology is instead proposed based on a larger, box-shaped, whole-body phantom. Copyright © 2011 Wiley Periodicals, Inc.
A method for safety testing of radiofrequency/microwave-emitting devices using MRI.
Alon, Leeor; Cho, Gene Y; Yang, Xing; Sodickson, Daniel K; Deniz, Cem M
2015-11-01
Strict regulations are imposed on the amount of radiofrequency (RF) energy that devices can emit to prevent excessive deposition of RF energy into the body. In this study, we investigated the application of MR temperature mapping and 10-g average specific absorption rate (SAR) computation for safety evaluation of RF-emitting devices. Quantification of the RF power deposition was shown for an MRI-compatible dipole antenna and a non-MRI-compatible mobile phone via phantom temperature change measurements. Validation of the MR temperature mapping method was demonstrated by comparison with physical temperature measurements and electromagnetic field simulations. MR temperature measurements alongside physical property measurements were used to reconstruct 10-g average SAR. The maximum temperature change for a dipole antenna and the maximum 10-g average SAR were 1.83°C and 12.4 W/kg, respectively, for simulations and 1.73°C and 11.9 W/kg, respectively, for experiments. The difference between MR and probe thermometry was <0.15°C. The maximum temperature change and the maximum 10-g average SAR for a cell phone radiating at maximum output for 15 min was 1.7°C and 0.54 W/kg, respectively. Information acquired using MR temperature mapping and thermal property measurements can assess RF/microwave safety with high resolution and fidelity. © 2014 Wiley Periodicals, Inc.
A Method for Safety Testing of Radiofrequency/Microwave-Emitting Devices Using MRI
Alon, Leeor; Cho, Gene Y.; Yang, Xing; Sodickson, Daniel K.; Deniz, Cem M.
2015-01-01
Purpose Strict regulations are imposed on the amount of radiofrequency (RF) energy that devices can emit to prevent excessive deposition of RF energy into the body. In this study, we investigated the application of MR temperature mapping and 10-g average specific absorption rate (SAR) computation for safety evaluation of RF-emitting devices. Methods Quantification of the RF power deposition was shown for an MRI-compatible dipole antenna and a non–MRI-compatible mobile phone via phantom temperature change measurements. Validation of the MR temperature mapping method was demonstrated by comparison with physical temperature measurements and electromagnetic field simulations. MR temperature measurements alongside physical property measurements were used to reconstruct 10-g average SAR. Results The maximum temperature change for a dipole antenna and the maximum 10-g average SAR were 1.83° C and 12.4 W/kg, respectively, for simulations and 1.73° C and 11.9 W/kg, respectively, for experiments. The difference between MR and probe thermometry was <0.15° C. The maximum temperature change and the maximum 10-g average SAR for a cell phone radiating at maximum output for 15 min was 1.7° C and 0.54 W/kg, respectively. Conclusion Information acquired using MR temperature mapping and thermal property measurements can assess RF/microwave safety with high resolution and fidelity. PMID:25424724
Parallel transmission RF pulse design with strict temperature constraints.
Deniz, Cem M; Carluccio, Giuseppe; Collins, Christopher
2017-05-01
RF safety in parallel transmission (pTx) is generally ensured by imposing specific absorption rate (SAR) limits during pTx RF pulse design. There is increasing interest in using temperature to ensure safety in MRI. In this work, we present a local temperature correlation matrix formalism and apply it to impose strict constraints on maximum absolute temperature in pTx RF pulse design for head and hip regions. Electromagnetic field simulations were performed on the head and hip of virtual body models. Temperature correlation matrices were calculated for four different exposure durations ranging between 6 and 24 min using simulated fields and body-specific constants. Parallel transmission RF pulses were designed using either SAR or temperature constraints, and compared with each other and unconstrained RF pulse design in terms of excitation fidelity and safety. The use of temperature correlation matrices resulted in better excitation fidelity compared with the use of SAR in parallel transmission RF pulse design (for the 6 min exposure period, 8.8% versus 21.0% for the head and 28.0% versus 32.2% for the hip region). As RF exposure duration increases (from 6 min to 24 min), the benefit of using temperature correlation matrices on RF pulse design diminishes. However, the safety of the subject is always guaranteed (the maximum temperature was equal to 39°C). This trend was observed in both head and hip regions, where the perfusion rates are very different. Copyright © 2017 John Wiley & Sons, Ltd.
Martin, Adrian; Schiavi, Emanuele; Eryaman, Yigitcan; Herraiz, Joaquin L; Gagoski, Borjan; Adalsteinsson, Elfar; Wald, Lawrence L; Guerin, Bastien
2016-06-01
A new framework for the design of parallel transmit (pTx) pulses is presented introducing constraints for local and global specific absorption rate (SAR) in the presence of errors in the radiofrequency (RF) transmit chain. The first step is the design of a pTx RF pulse with explicit constraints for global and local SAR. Then, the worst possible SAR associated with that pulse due to RF transmission errors ("worst-case SAR") is calculated. Finally, this information is used to re-calculate the pulse with lower SAR constraints, iterating this procedure until its worst-case SAR is within safety limits. Analysis of an actual pTx RF transmit chain revealed amplitude errors as high as 8% (20%) and phase errors above 3° (15°) for spokes (spiral) pulses. Simulations show that using the proposed framework, pulses can be designed with controlled "worst-case SAR" in the presence of errors of this magnitude at minor cost of the excitation profile quality. Our worst-case SAR-constrained pTx design strategy yields pulses with local and global SAR within the safety limits even in the presence of RF transmission errors. This strategy is a natural way to incorporate SAR safety factors in the design of pTx pulses. Magn Reson Med 75:2493-2504, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Zhang, Xiaotong; Schmitter, Sebastian; Van de Moortel, Pierre-François; Liu, Jiaen
2014-01-01
Elevated Specific Absorption Rate (SAR) associated with increased main magnetic field strength remains as a major safety concern in ultra-high-field (UHF) Magnetic Resonance Imaging (MRI) applications. The calculation of local SAR requires the knowledge of the electric field induced by radiofrequency (RF) excitation, and the local electrical properties of tissues. Since electric field distribution cannot be directly mapped in conventional MR measurements, SAR estimation is usually performed using numerical model-based electromagnetic simulations which, however, are highly time consuming and cannot account for the specific anatomy and tissue properties of the subject undergoing a scan. In the present study, starting from the measurable RF magnetic fields (B1) in MRI, we conducted a series of mathematical deduction to estimate the local, voxel-wise and subject-specific SAR for each single coil element using a multi-channel transceiver array coil. We first evaluated the feasibility of this approach in numerical simulations including two different human head models. We further conducted experimental study in a physical phantom and in two human subjects at 7T using a multi-channel transceiver head coil. Accuracy of the results is discussed in the context of predicting local SAR in the human brain at UHF MRI using multi-channel RF transmission. PMID:23508259
Evaluation of SAR in a human body model due to wireless power transmission in the 10 MHz band.
Laakso, Ilkka; Tsuchida, Shogo; Hirata, Akimasa; Kamimura, Yoshitsugu
2012-08-07
This study discusses a computational method for calculating the specific absorption rate (SAR) due to a wireless power transmission system in the 10 MHz frequency band. A two-step quasi-static method comprised of the method of moments and the scalar potential finite-difference method are proposed. The applicability of the quasi-static approximation for localized exposure in this frequency band is discussed by comparing the SAR in a lossy dielectric cylinder computed with a full-wave electromagnetic analysis and the quasi-static approximation. From the computational results, the input impedance of the resonant coils was affected by the existence of the cylinder. On the other hand, the magnetic field distribution in free space and considering the cylinder and an impedance matching circuit were in good agreement; the maximum difference in the amplitude of the magnetic field was 4.8%. For a cylinder-coil distance of 10 mm, the difference between the peak 10 g averaged SAR in the cylinder computed with the full-wave electromagnetic method and our quasi-static method was 7.8%. These results suggest that the quasi-static approach is applicable for conducting the dosimetry of wireless power transmission in the 10 MHz band. With our two-step quasi-static method, the SAR in the anatomically based model was computed for different exposure scenarios. From those computations, the allowable input power satisfying the limit of a peak 10 g averaged SAR of 2.0 W kg(-1) was 830 W in the worst case exposure scenario with a coil positioned at a distance of 30 mm from the chest.
Analysis of RF exposure in the head tissues of children and adults
NASA Astrophysics Data System (ADS)
Wiart, J.; Hadjem, A.; Wong, M. F.; Bloch, I.
2008-07-01
This paper analyzes the radio frequencies (RF) exposure in the head tissues of children using a cellular handset or RF sources (a dipole and a generic handset) at 900, 1800, 2100 and 2400 MHz. Based on magnetic resonance imaging, child head models have been developed. The maximum specific absorption rate (SAR) over 10 g in the head has been analyzed in seven child and six adult heterogeneous head models. The influence of the variability in the same age class is carried out using models based on a morphing technique. The SAR over 1 g in specific tissues has also been assessed in the different types of child and adult head models. Comparisons are performed but nevertheless need to be confirmed since they have been derived from data sets of limited size. The simulations that have been performed show that the differences between the maximum SAR over 10 g estimated in the head models of the adults and the ones of the children are small compared to the standard deviations. But they indicate that the maximum SAR in 1 g of peripheral brain tissues of the child models aged between 5 and 8 years is about two times higher than in adult models. This difference is not observed for the child models of children above 8 years old: the maximum SAR in 1 g of peripheral brain tissues is about the same as the one in adult models. Such differences can be explained by the lower thicknesses of pinna, skin and skull of the younger child models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, R. Derek; Gunther, Jacob H.; Moon, Todd K.
In this study, we derive a comprehensive forward model for the data collected by stripmap synthetic aperture radar (SAR) that is linear in the ground reflectivity parameters. It is also shown that if the noise model is additive, then the forward model fits into the linear statistical model framework, and the ground reflectivity parameters can be estimated by statistical methods. We derive the maximum likelihood (ML) estimates for the ground reflectivity parameters in the case of additive white Gaussian noise. Furthermore, we show that obtaining the ML estimates of the ground reflectivity requires two steps. The first step amounts tomore » a cross-correlation of the data with a model of the data acquisition parameters, and it is shown that this step has essentially the same processing as the so-called convolution back-projection algorithm. The second step is a complete system inversion that is capable of mitigating the sidelobes of the spatially variant impulse responses remaining after the correlation processing. We also state the Cramer-Rao lower bound (CRLB) for the ML ground reflectivity estimates.We show that the CRLB is linked to the SAR system parameters, the flight path of the SAR sensor, and the image reconstruction grid.We demonstrate the ML image formation and the CRLB bound for synthetically generated data.« less
West, R. Derek; Gunther, Jacob H.; Moon, Todd K.
2016-12-01
In this study, we derive a comprehensive forward model for the data collected by stripmap synthetic aperture radar (SAR) that is linear in the ground reflectivity parameters. It is also shown that if the noise model is additive, then the forward model fits into the linear statistical model framework, and the ground reflectivity parameters can be estimated by statistical methods. We derive the maximum likelihood (ML) estimates for the ground reflectivity parameters in the case of additive white Gaussian noise. Furthermore, we show that obtaining the ML estimates of the ground reflectivity requires two steps. The first step amounts tomore » a cross-correlation of the data with a model of the data acquisition parameters, and it is shown that this step has essentially the same processing as the so-called convolution back-projection algorithm. The second step is a complete system inversion that is capable of mitigating the sidelobes of the spatially variant impulse responses remaining after the correlation processing. We also state the Cramer-Rao lower bound (CRLB) for the ML ground reflectivity estimates.We show that the CRLB is linked to the SAR system parameters, the flight path of the SAR sensor, and the image reconstruction grid.We demonstrate the ML image formation and the CRLB bound for synthetically generated data.« less
Radio-frequency ring applicator: energy distributions measured in the CDRH phantom.
van Rhoon, G C; Raskmark, P; Hornsleth, S N; van den Berg, P M
1994-11-01
SAR distributions were measured in the CDRH phantom, a 1 cm fat-equivalent shell filled with an abdomen-equivalent liquid (sigma = 0.4-1.0 S m-1; dimensions 22 x 32 x 57 cm) to demonstrate the feasibility of the ring applicator to obtain deep heating. The ring electrodes were fixed in a PVC tube; diameter 48 cm, ring width 20 cm and gap width between both rings 31.6 cm. Radio-frequency energy was fed to the electrodes at eight points. The medium between the electrodes and the phantom was deionised water. The SAR distribution in the liquid tissue volume was obtained by a scanning E-field probe measuring the E-field in all three directions. With equal amplitude and phase applied to all feeding points, a uniform SAR distribution was measured in the central cross-section at 30 MHz. With RF energy supplied to only four adjacent feeding points (others were connected to a 50 omega load), the feasibility to perform amplitude steering was demonstrated; SAR values above 50% of the maximum SAR were measured in one quadrant only. SAR distributions obtained at 70 MHz showed an improved focusing ability; a maximum at the centre exists for an electric conductivity of the abdomen-equivalent tissue of 0.6 and 0.4 S m-1.
Phase correction and error estimation in InSAR time series analysis
NASA Astrophysics Data System (ADS)
Zhang, Y.; Fattahi, H.; Amelung, F.
2017-12-01
During the last decade several InSAR time series approaches have been developed in response to the non-idea acquisition strategy of SAR satellites, such as large spatial and temporal baseline with non-regular acquisitions. The small baseline tubes and regular acquisitions of new SAR satellites such as Sentinel-1 allows us to form fully connected networks of interferograms and simplifies the time series analysis into a weighted least square inversion of an over-determined system. Such robust inversion allows us to focus more on the understanding of different components in InSAR time-series and its uncertainties. We present an open-source python-based package for InSAR time series analysis, called PySAR (https://yunjunz.github.io/PySAR/), with unique functionalities for obtaining unbiased ground displacement time-series, geometrical and atmospheric correction of InSAR data and quantifying the InSAR uncertainty. Our implemented strategy contains several features including: 1) improved spatial coverage using coherence-based network of interferograms, 2) unwrapping error correction using phase closure or bridging, 3) tropospheric delay correction using weather models and empirical approaches, 4) DEM error correction, 5) optimal selection of reference date and automatic outlier detection, 6) InSAR uncertainty due to the residual tropospheric delay, decorrelation and residual DEM error, and 7) variance-covariance matrix of final products for geodetic inversion. We demonstrate the performance using SAR datasets acquired by Cosmo-Skymed and TerraSAR-X, Sentinel-1 and ALOS/ALOS-2, with application on the highly non-linear volcanic deformation in Japan and Ecuador (figure 1). Our result shows precursory deformation before the 2015 eruptions of Cotopaxi volcano, with a maximum uplift of 3.4 cm on the western flank (fig. 1b), with a standard deviation of 0.9 cm (fig. 1a), supporting the finding by Morales-Rivera et al. (2017, GRL); and a post-eruptive subsidence on the same area, with a maximum of -3 +/- 0.9 cm (fig. 1c). Time-series displacement map (fig. 2) shows a highly non-linear deformation behavior, indicating the complicated magma propagation process during this eruption cycle.
NASA Astrophysics Data System (ADS)
Kayastha, Shilva; Kunimoto, Ryo; Horvath, Dragos; Varnek, Alexandre; Bajorath, Jürgen
2017-11-01
The analysis of structure-activity relationships (SARs) becomes rather challenging when large and heterogeneous compound data sets are studied. In such cases, many different compounds and their activities need to be compared, which quickly goes beyond the capacity of subjective assessments. For a comprehensive large-scale exploration of SARs, computational analysis and visualization methods are required. Herein, we introduce a two-layered SAR visualization scheme specifically designed for increasingly large compound data sets. The approach combines a new compound pair-based variant of generative topographic mapping (GTM), a machine learning approach for nonlinear mapping, with chemical space networks (CSNs). The GTM component provides a global view of the activity landscapes of large compound data sets, in which informative local SAR environments are identified, augmented by a numerical SAR scoring scheme. Prioritized local SAR regions are then projected into CSNs that resolve these regions at the level of individual compounds and their relationships. Analysis of CSNs makes it possible to distinguish between regions having different SAR characteristics and select compound subsets that are rich in SAR information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Y
Purpose: Heating of patients or burning of biological tissues around medical implants by RF power during MRI scan is a significant patient safety concern. The purpose of this study is to not only measure SAR values, but also RF-induced temperature elevation due to artificial hip joints during MRI scans. Methods: SAR measurement experiment was performed on three discrete manufacturers at 1.5 and 3T. Three MRI RF sequences (T1w TSE, T2w inversion recovery, and T2w TSE) with imaging parameters were selected. A gelled saline phantom mimicking human body tissue was made (Fig.1). FDTD method was utilized to calculate the SAR distributionmore » using Sim4Life software. Based on the results of the simulation, 4 electrical field (E-field) sensors were located around two artificial hip joints inside the phantom. 56 Fiber Bragg Grating (FBG) temperature sensors (28 sensors on each artificial hip joint) were located on both left and right artificial hip joints to measure temperature change during MRI scan (Fig.1). Both E-field and FBG temperature sensors were calibrated with traceability at Korea Research Institute of Standards and Science (KRISS). Results: Simulation shows that high SAR values occur in the head and tail of the implanted artificial hip joints (Fig.1 lower right). 3T MRI scanner shows that the local averaged-SAR values measured by probe 1, 2, and 3 are 2.30, 2.77, and 1.68 W/kg, compared to MRI scanner-reported whole body SAR value (≤1.5 W/kg) for T1w TSE and T2w-IR (Table 1). The maximum temperature elevation measured by FBG sensors is 1.49°C at 1.5 T, 2.0°C at 3 T, and 2.56°C at 3 T for T1w TSE, respectively (Table 2). Conclusion: It is essential to assess the safety of MRI system for patient with medical implant by measuring not only accurate SAR deposited in the body, but also temperature elevation due to the deposited SAR during clinical MRI.« less
Localized landslide risk assessment with multi pass L band DInSAR analysis
NASA Astrophysics Data System (ADS)
Yun, HyeWon; Rack Kim, Jung; Lin, Shih-Yuan; Choi, YunSoo
2014-05-01
In terms of data availability and error correction, landslide forecasting by Differential Interferometric SAR (DInSAR) analysis is not easy task. Especially, the landslides by the anthropogenic construction activities frequently occurred in the localized cutting side of mountainous area. In such circumstances, it is difficult to attain sufficient enough accuracy because of the external factors inducing the error component in electromagnetic wave propagation. For instance, the local climate characteristics such as orographic effect and the proximity to water source can produce the significant anomalies in the water vapor distribution and consequently result in the error components of InSAR phase angle measurements. Moreover the high altitude parts of target area cause the stratified tropospheric delay error in DInSAR measurement. The other obstacle in DInSAR observation over the potential landside site is the vegetation canopy which causes the decorrelation of InSAR phase. Thus rather than C band sensor such as ENVISAT, ERS and RADARSAT, DInSAR analysis with L band ALOS PLASAR is more recommendable. Together with the introduction of L band DInSAR analysis, the improved DInSAR technique to cope all above obstacles is necessary. Thus we employed two approaches i.e. StaMPS/MTI (Stanford Method for Persistent Scatterers/Multi-Temporal InSAR, Hopper et al., 2007) which was newly developed for extracting the reliable deformation values through time series analysis and two pass DInSAR with the error term compensation based on the external weather information in this study. Since the water vapor observation from spaceborne radiometer is not feasible by the temporal gap in this case, the quantities from weather Research Forecasting (WRF) with 1 km spatial resolution was used to address the atmospheric phase error in two pass DInSAR analysis. Also it was observed that base DEM offset with time dependent perpendicular baselines of InSAR time series produce a significant error even in the advanced time series techniques such as StaMPS/MTI. We tried to compensate with the algorithmic base together with the usage of high resolution LIDAR DEM. The target area of this study is the eastern part of Korean peninsula centered. In there, the landslide originated by the geomorphic factors such as high sloped topography and localized torrential down pour is critical issue. The surface deformations from error corrected two pass DInSAR and StaMPS/MTI are crossly compared and validated with the landslide triggering factors such as vegetation, slope and geological properties. The study will be further extended for the application of future SAR sensors by incorporating the dynamic analysis of topography to implement practical landslide forecasting scheme.
Impact of the ionosphere on an L-band space based radar
NASA Technical Reports Server (NTRS)
Chapin, Elaine; Chan, Samuel F.; Chapman, Bruce D.; Chen, Curtis W.; Martin, Jan M.; Michel, Thierry R.; Muellerschoen, Ronald J.; Pi, Xiaoqing; Rosen, Paul A.
2006-01-01
We have quantified the impact that the ionosphere would have on a L-band interferometric Synthetic Aperture Radar (SAR) mission using a combination of simulation, modeling, Global Positioning System (GPS) data collected during the last solar maximum, and existing spaceborne SAR data.
Spaceborne SAR Imaging Algorithm for Coherence Optimized.
Qiu, Zhiwei; Yue, Jianping; Wang, Xueqin; Yue, Shun
2016-01-01
This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR) by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR) research and application.
Spaceborne SAR Imaging Algorithm for Coherence Optimized
Qiu, Zhiwei; Yue, Jianping; Wang, Xueqin; Yue, Shun
2016-01-01
This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR) by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR) research and application. PMID:26871446
Kuehn, Sven; Kelsh, Michael A; Kuster, Niels; Sheppard, Asher R; Shum, Mona
2013-09-01
The US FCC mandates the testing of all mobile phones to demonstrate compliance with the rule requiring that the peak spatial SAR does not exceed the limit of 1.6 W/kg averaged over any 1 g of tissue. These test data, measured in phantoms with mobile phones operating at maximum antenna input power, permitted us to evaluate the variation in SARs across mobile phone design factors such as shape and antenna design, communication technology, and test date (over a 7-year period). Descriptive statistical summaries calculated for 850 MHz and 1900 MHz phones and ANOVA were used to evaluate the influence of the foregoing factors on SARs. Service technology accounted for the greatest variability in compliance test SARs that ranged from AMPS (highest) to CDMA, iDEN, TDMA, and GSM (lowest). However, the dominant factor for SARs during use is the time-averaged antenna input power, which may be much less than the maximum power used in testing. This factor is largely defined by the communication system; e.g., the GSM phone average output can be higher than CDMA by a factor of 100. Phone shape, antenna type, and orientation of a phone were found to be significant but only on the order of up to a factor of 2 (3 dB). The SAR in the tilt position was significantly smaller than for touch. The side of the head did not affect SAR levels significantly. Among the remaining factors, external antennae produced greater SARs than internal ones, and brick and clamshell phones produced greater SARs than slide phones. Assuming phone design and usage patterns do not change significantly over time, we have developed a normalization procedure and formula that permits reliable prediction of the relative SAR between various communication systems. This approach can be applied to improve exposure assessment in epidemiological research. Copyright © 2013 Wiley Periodicals, Inc.
On the estimation of the worst-case implant-induced RF-heating in multi-channel MRI.
Córcoles, Juan; Zastrow, Earl; Kuster, Niels
2017-06-21
The increasing use of multiple radiofrequency (RF) transmit channels in magnetic resonance imaging (MRI) systems makes it necessary to rigorously assess the risk of RF-induced heating. This risk is especially aggravated with inclusions of medical implants within the body. The worst-case RF-heating scenario is achieved when the local tissue deposition in the at-risk region (generally in the vicinity of the implant electrodes) reaches its maximum value while MRI exposure is compliant with predefined general specific absorption rate (SAR) limits or power requirements. This work first reviews the common approach to estimate the worst-case RF-induced heating in multi-channel MRI environment, based on the maximization of the ratio of two Hermitian forms by solving a generalized eigenvalue problem. It is then shown that the common approach is not rigorous and may lead to an underestimation of the worst-case RF-heating scenario when there is a large number of RF transmit channels and there exist multiple SAR or power constraints to be satisfied. Finally, this work derives a rigorous SAR-based formulation to estimate a preferable worst-case scenario, which is solved by casting a semidefinite programming relaxation of this original non-convex problem, whose solution closely approximates the true worst-case including all SAR constraints. Numerical results for 2, 4, 8, 16, and 32 RF channels in a 3T-MRI volume coil for a patient with a deep-brain stimulator under a head imaging exposure are provided as illustrative examples.
On the estimation of the worst-case implant-induced RF-heating in multi-channel MRI
NASA Astrophysics Data System (ADS)
Córcoles, Juan; Zastrow, Earl; Kuster, Niels
2017-06-01
The increasing use of multiple radiofrequency (RF) transmit channels in magnetic resonance imaging (MRI) systems makes it necessary to rigorously assess the risk of RF-induced heating. This risk is especially aggravated with inclusions of medical implants within the body. The worst-case RF-heating scenario is achieved when the local tissue deposition in the at-risk region (generally in the vicinity of the implant electrodes) reaches its maximum value while MRI exposure is compliant with predefined general specific absorption rate (SAR) limits or power requirements. This work first reviews the common approach to estimate the worst-case RF-induced heating in multi-channel MRI environment, based on the maximization of the ratio of two Hermitian forms by solving a generalized eigenvalue problem. It is then shown that the common approach is not rigorous and may lead to an underestimation of the worst-case RF-heating scenario when there is a large number of RF transmit channels and there exist multiple SAR or power constraints to be satisfied. Finally, this work derives a rigorous SAR-based formulation to estimate a preferable worst-case scenario, which is solved by casting a semidefinite programming relaxation of this original non-convex problem, whose solution closely approximates the true worst-case including all SAR constraints. Numerical results for 2, 4, 8, 16, and 32 RF channels in a 3T-MRI volume coil for a patient with a deep-brain stimulator under a head imaging exposure are provided as illustrative examples.
SAR exposure from UHF RFID reader in adult, child, pregnant woman, and fetus anatomical models.
Fiocchi, Serena; Markakis, Ioannis A; Ravazzani, Paolo; Samaras, Theodoros
2013-09-01
The spread of radio frequency identification (RFID) devices in ubiquitous applications without their simultaneous exposure assessment could give rise to public concerns about their potential adverse health effects. Among the various RFID system categories, the ultra high frequency (UHF) RFID systems have recently started to be widely used in many applications. This study addresses a computational exposure assessment of the electromagnetic radiation generated by a realistic UHF RFID reader, quantifying the exposure levels in different exposure scenarios and subjects (two adults, four children, and two anatomical models of women 7 and 9 months pregnant). The results of the computations are presented in terms of the whole-body and peak spatial specific absorption rate (SAR) averaged over 10 g of tissue to allow comparison with the basic restrictions of the exposure guidelines. The SAR levels in the adults and children were below 0.02 and 0.8 W/kg in whole-body SAR and maximum peak SAR levels, respectively, for all tested positions of the antenna. On the contrary, exposure of pregnant women and fetuses resulted in maximum peak SAR(10 g) values close to the values suggested by the guidelines (2 W/kg) in some of the exposure scenarios with the antenna positioned in front of the abdomen and with a 100% duty cycle and 1 W radiated power. Copyright © 2013 Wiley Periodicals, Inc.
Suspicious Activity Reporting (SAR)
NASA Astrophysics Data System (ADS)
McNamara, Joan T.
In August of 2007, the Los Angeles Police Department pioneered a Suspicious Activity Report (SAR) program that enabled local, state and federal law enforcement agencies to, for the first time, gather and share information about suspicious activities with a possible nexus to terrorism. The SAR program established an information platform at the local level that previously didn’t exist and had the potential to connect many of the country’s police departments, thus shifting local law enforcement’s approach to terrorism from a reactive to a preventative model. It also essentially flipped the age-old paradigm in which information was pushed from the federal to the local level. Now local police departments are valuable players in the information sharing process and are increasingly relied on to provide their federal partners with an accurate picture of what is happening at the local level.
Monoterpenes Support Systemic Acquired Resistance within and between Plants
Ghirardo, Andrea; Knappe, Claudia; Koch, Kerstin; Dey, Sanjukta; Parker, Jane E.
2017-01-01
This study investigates the role of volatile organic compounds in systemic acquired resistance (SAR), a salicylic acid (SA)-associated, broad-spectrum immune response in systemic, healthy tissues of locally infected plants. Gas chromatography coupled to mass spectrometry analyses of SAR-related emissions of wild-type and non-SAR-signal-producing mutant plants associated SAR with monoterpene emissions. Headspace exposure of Arabidopsis thaliana to a mixture of the bicyclic monoterpenes α-pinene and β-pinene induced defense, accumulation of reactive oxygen species, and expression of SA- and SAR-related genes, including the SAR regulatory AZELAIC ACID INDUCED1 (AZI1) gene and three of its paralogs. Pinene-induced resistance was dependent on SA biosynthesis and signaling and on AZI1. Arabidopsis geranylgeranyl reductase1 mutants with reduced monoterpene biosynthesis were SAR-defective but mounted normal local resistance and methyl salicylate-induced defense responses, suggesting that monoterpenes act in parallel with SA. The volatile emissions from SAR signal-emitting plants induced defense in neighboring plants, and this was associated with the presence of α-pinene, β-pinene, and camphene in the emissions of the “sender” plants. Our data suggest that monoterpenes, particularly pinenes, promote SAR, acting through ROS and AZI1, and likely function as infochemicals in plant-to-plant signaling, thus allowing defense signal propagation between neighboring plants. PMID:28536145
NASA Astrophysics Data System (ADS)
Kim, J.; Lin, S. Y.; Tsai, Y.; Singh, S.; Singh, T.
2017-12-01
A large ground deformation which may be caused by a significant groundwater depletion of the Northwest India Aquifer has been successfully observed throughout space geodesy techniques (Tsai et al, 2016). Employing advanced time-series ScanSAR InSAR analysis and Gravity Recovery and Climate Experiment (GRACE) satellites data, it revealed 400-km wide huge ground deformation in and around Haryana. It was further notified that the Ambala city located in northern Haryana district shown the most significant ground subsidence with maximum cumulative deformation up to 0.2 meters within 3 years in contrast to the nearby cities such as Patiala and Chandigarh that did not present similar subsidence. In this study, we investigated the details of "Ambala Anomaly" employing advanced time-series InSAR and spatial analyses together with local geology and anthropogenic contexts and tried to identify the factors causing such a highly unique ground deformation pattern. To explore the pattern and trend of Ambala' subsidence, we integrated the time-series deformation results of both ascending L-band PALSAR-1 (Phased Array type L-band Synthetic Aperture Radar) from 2007/1 to 2011/1 and descending C-band ASAR (Advanced Synthetic Aperture Radar) from 2008/9 to 2010/8 to process the 3D decomposition, expecting to reveal the asymmetric movement of the surface. In addition. The spatial analyses incorporating detected ground deformations and local economical/social factors were then applied for the interpretation of "Ambala Anomaly". The detailed interrelationship of driving factors of the "Ambala Anomaly" and the spatial pattern of corresponding ground subsidence will be further demonstrated. After all, we determined the uniqueness of Ambala subsidence possibly be driven by both anthropogenic behaviors including the rapid growth rate of population and constructing of industrial centers as well as the natural geological characteristics and sediment deposition.
NASA Astrophysics Data System (ADS)
Anderson, Vitas
2003-10-01
The aim of this study is to examine the scale and significance of differences in peak specific energy absorption rate (SAR) in the brains of children and adults exposed to radiofrequency emissions from mobile phones. Estimates were obtained by method of multipole analysis of a three layered (scalp/cranium/brain) spherical head exposed to a nearby 0.4lgr dipole at 900 MHz. A literature review of head parameters that influence SAR induction revealed strong indirect evidence based on total body water content that there are no substantive age-related changes in tissue conductivity after the first year of life. However, it was also found that the thickness of the ear, scalp and cranium do decrease on average with decreasing age, though individual variability within any age group is very high. The model analyses revealed that compared to an average adult, the peak brain 10 g averaged SAR in mean 4, 8, 12 and 16 year olds (yo) is increased by a factor of 1.31, 1.23, 1.15 and 1.07, respectively. However, contrary to the expectations of a recent prominent expert review, the UK Stewart Report, the relatively small scale of these increases does not warrant any special precautionary measures for child mobile phone users since: (a) SAR testing protocols as contained in the CENELEC (2001) standard provide an additional safety margin which ensures that allowable localized SAR limits are not exceeded in the brain; (b) the maximum worst case brain temperature rise (~0.13 to 0.14 °C for an average 4 yo) in child users of mobile phones is well within safe levels and normal physiological parameters; and (c) the range of age average increases in children is less than the expected range of variation seen within the adult population.
UAVSAR and TerraSAR-X Based InSAR Detection of Localized Subsidence in the New Orleans Area
NASA Astrophysics Data System (ADS)
Blom, R. G.; An, K.; Jones, C. E.; Latini, D.
2014-12-01
Vulnerability of the US Gulf coast to inundation has received increased attention since hurricanes Katrina and Rita. Compounding effects of sea level rise, wetland loss, and regional and local subsidence makes flood protection a difficult challenge, and particularly for the New Orleans area. Key to flood protection is precise knowledge of elevations and elevation changes. Analysis of historical and continuing geodetic measurements show surprising complexity, including locations subsiding more rapidly than considered during planning of hurricane protection and coastal restoration projects. Combining traditional, precise geodetic data with interferometric synthetic aperture radar (InSAR) observations can provide geographically dense constraints on surface deformation. The Gulf Coast environment is challenging for InSAR techniques, especially with systems not designed for interferometry. We use two InSAR capable systems, the L- band (24 cm wavelength) airborne JPL/NASA UAVSAR, and the DLR/EADS Astrium spaceborne TerraSAR X-band (3 cm wavelength), and compare results. First, we are applying pair-wise InSAR to the longer wavelength UAVSAR data to detect localized elevation changes potentially impacting flood protection infrastructure from 2009 - 2014. We focus on areas on and near flood protection infrastructure to identify changes indicative of subsidence, structural deformation, and/or seepage. The Spaceborne TerraSAR X-band SAR system has relatively frequent observations, and dense persistent scatterers in urban areas, enabling measurement of very small displacements. We compare L-band UAVSAR results with permanent scatterer (PS-InSAR) and Short Baseline Subsets (SBAS) interferometric analyses of a stack composed by 28 TerraSAR X-band images acquired over the same period. Thus we can evaluate results from the different radar frequencies and analyses techniques. Preliminary results indicate subsidence features potentially of a variety of causes, including ground water pumping to post recent construction ground compaction. Our overall goal is to enable incorporation of InSAR into the decision making process via identification and delineation of areas of persistent subsidence, and provide input to improve monitoring and planning in flood risk areas.
SAR11 bacteria linked to ocean anoxia and nitrogen loss
NASA Astrophysics Data System (ADS)
Tsementzi, Despina; Wu, Jieying; Deutsch, Samuel; Nath, Sangeeta; Rodriguez-R, Luis M.; Burns, Andrew S.; Ranjan, Piyush; Sarode, Neha; Malmstrom, Rex R.; Padilla, Cory C.; Stone, Benjamin K.; Bristow, Laura A.; Larsen, Morten; Glass, Jennifer B.; Thamdrup, Bo; Woyke, Tanja; Konstantinidis, Konstantinos T.; Stewart, Frank J.
2016-08-01
Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N2 gas. Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here, genomic analysis of single cells from the world’s largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life without oxygen, including genes for respiratory nitrate reductases (Nar). SAR11 nar genes were experimentally verified to encode proteins catalysing the nitrite-producing first step of denitrification and constituted ~40% of OMZ nar transcripts, with transcription peaking in the anoxic zone of maximum nitrate reduction activity. These results link SAR11 to pathways of ocean nitrogen loss, redefining the ecological niche of Earth’s most abundant organismal group.
SAR11 bacteria linked to ocean anoxia and nitrogen loss.
Tsementzi, Despina; Wu, Jieying; Deutsch, Samuel; Nath, Sangeeta; Rodriguez-R, Luis M; Burns, Andrew S; Ranjan, Piyush; Sarode, Neha; Malmstrom, Rex R; Padilla, Cory C; Stone, Benjamin K; Bristow, Laura A; Larsen, Morten; Glass, Jennifer B; Thamdrup, Bo; Woyke, Tanja; Konstantinidis, Konstantinos T; Stewart, Frank J
2016-08-11
Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N2 gas. Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here, genomic analysis of single cells from the world's largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life without oxygen, including genes for respiratory nitrate reductases (Nar). SAR11 nar genes were experimentally verified to encode proteins catalysing the nitrite-producing first step of denitrification and constituted ~40% of OMZ nar transcripts, with transcription peaking in the anoxic zone of maximum nitrate reduction activity. These results link SAR11 to pathways of ocean nitrogen loss, redefining the ecological niche of Earth's most abundant organismal group.
Improved Topographic Mapping Through Multi-Baseline SAR Interferometry with MAP Estimation
NASA Astrophysics Data System (ADS)
Dong, Yuting; Jiang, Houjun; Zhang, Lu; Liao, Mingsheng; Shi, Xuguo
2015-05-01
There is an inherent contradiction between the sensitivity of height measurement and the accuracy of phase unwrapping for SAR interferometry (InSAR) over rough terrain. This contradiction can be resolved by multi-baseline InSAR analysis, which exploits multiple phase observations with different normal baselines to improve phase unwrapping accuracy, or even avoid phase unwrapping. In this paper we propose a maximum a posteriori (MAP) estimation method assisted by SRTM DEM data for multi-baseline InSAR topographic mapping. Based on our method, a data processing flow is established and applied in processing multi-baseline ALOS/PALSAR dataset. The accuracy of resultant DEMs is evaluated by using a standard Chinese national DEM of scale 1:10,000 as reference. The results show that multi-baseline InSAR can improve DEM accuracy compared with single-baseline case. It is noteworthy that phase unwrapping is avoided and the quality of multi-baseline InSAR DEM can meet the DTED-2 standard.
SAR11 bacteria linked to ocean anoxia and nitrogen loss
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsementzi, Despina; Wu, Jieying; Deutsch, Samuel
Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N 2 gas. Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here in this paper, genomic analysis of single cells from the world's largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life without oxygen, including genes for respiratory nitrate reductasesmore » (Nar). SAR11 nar genes were experimentally verified to encode proteins catalysing the nitrite-producing first step of denitrification and constituted ~40% of OMZ nar transcripts, with transcription peaking in the anoxic zone of maximum nitrate reduction activity. Finally, these results link SAR11 to pathways of ocean nitrogen loss, redefining the ecological niche of Earth's most abundant organismal group.« less
SAR11 bacteria linked to ocean anoxia and nitrogen loss
Tsementzi, Despina; Wu, Jieying; Deutsch, Samuel; ...
2016-08-03
Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N 2 gas. Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here in this paper, genomic analysis of single cells from the world's largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life without oxygen, including genes for respiratory nitrate reductasesmore » (Nar). SAR11 nar genes were experimentally verified to encode proteins catalysing the nitrite-producing first step of denitrification and constituted ~40% of OMZ nar transcripts, with transcription peaking in the anoxic zone of maximum nitrate reduction activity. Finally, these results link SAR11 to pathways of ocean nitrogen loss, redefining the ecological niche of Earth's most abundant organismal group.« less
Bacterial Diversity in the South Adriatic Sea during a Strong, Deep Winter Convection Year
Korlević, M.; Pop Ristova, P.; Garić, R.; Amann, R.
2014-01-01
The South Adriatic Sea is the deepest part of the Adriatic Sea and represents a key area for both the Adriatic Sea and the deep eastern Mediterranean. It has a role in dense water formation for the eastern Mediterranean deep circulation cell, and it represents an entry point for water masses originating from the Ionian Sea. The biodiversity and seasonality of bacterial picoplankton before, during, and after deep winter convection in the oligotrophic South Adriatic waters were assessed by combining comparative 16S rRNA sequence analysis and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). The picoplankton communities reached their maximum abundance in the spring euphotic zone when the maximum value of the chlorophyll a in response to deep winter convection was recorded. The communities were dominated by Bacteria, while Archaea were a minor constituent. A seasonality of bacterial richness and diversity was observed, with minimum values occurring during the winter convection and spring postconvection periods and maximum values occurring under summer stratified conditions. The SAR11 clade was the main constituent of the bacterial communities and reached the maximum abundance in the euphotic zone in spring after the convection episode. Cyanobacteria were the second most abundant group, and their abundance strongly depended on the convection event, when minimal cyanobacterial abundance was observed. In spring and autumn, the euphotic zone was characterized by Bacteroidetes and Gammaproteobacteria. Bacteroidetes clades NS2b, NS4, and NS5 and the gammaproteobacterial SAR86 clade were detected to co-occur with phytoplankton blooms. The SAR324, SAR202, and SAR406 clades were present in the deep layer, exhibiting different seasonal variations in abundance. Overall, our data demonstrate that the abundances of particular bacterial clades and the overall bacterial richness and diversity are greatly impacted by strong winter convection. PMID:25548042
Analysis of Spatiotemporal Characteristics of Pandemic SARS Spread in Mainland China.
Cao, Chunxiang; Chen, Wei; Zheng, Sheng; Zhao, Jian; Wang, Jinfeng; Cao, Wuchun
2016-01-01
Severe acute respiratory syndrome (SARS) is one of the most severe emerging infectious diseases of the 21st century so far. SARS caused a pandemic that spread throughout mainland China for 7 months, infecting 5318 persons in 194 administrative regions. Using detailed mainland China epidemiological data, we study spatiotemporal aspects of this person-to-person contagious disease and simulate its spatiotemporal transmission dynamics via the Bayesian Maximum Entropy (BME) method. The BME reveals that SARS outbreaks show autocorrelation within certain spatial and temporal distances. We use BME to fit a theoretical covariance model that has a sine hole spatial component and exponential temporal component and obtain the weights of geographical and temporal autocorrelation factors. Using the covariance model, SARS dynamics were estimated and simulated under the most probable conditions. Our study suggests that SARS transmission varies in its epidemiological characteristics and SARS outbreak distributions exhibit palpable clusters on both spatial and temporal scales. In addition, the BME modelling demonstrates that SARS transmission features are affected by spatial heterogeneity, so we analyze potential causes. This may benefit epidemiological control of pandemic infectious diseases.
Analysis of Spatiotemporal Characteristics of Pandemic SARS Spread in Mainland China
Cao, Chunxiang; Zheng, Sheng; Zhao, Jian; Wang, Jinfeng; Cao, Wuchun
2016-01-01
Severe acute respiratory syndrome (SARS) is one of the most severe emerging infectious diseases of the 21st century so far. SARS caused a pandemic that spread throughout mainland China for 7 months, infecting 5318 persons in 194 administrative regions. Using detailed mainland China epidemiological data, we study spatiotemporal aspects of this person-to-person contagious disease and simulate its spatiotemporal transmission dynamics via the Bayesian Maximum Entropy (BME) method. The BME reveals that SARS outbreaks show autocorrelation within certain spatial and temporal distances. We use BME to fit a theoretical covariance model that has a sine hole spatial component and exponential temporal component and obtain the weights of geographical and temporal autocorrelation factors. Using the covariance model, SARS dynamics were estimated and simulated under the most probable conditions. Our study suggests that SARS transmission varies in its epidemiological characteristics and SARS outbreak distributions exhibit palpable clusters on both spatial and temporal scales. In addition, the BME modelling demonstrates that SARS transmission features are affected by spatial heterogeneity, so we analyze potential causes. This may benefit epidemiological control of pandemic infectious diseases. PMID:27597972
Monoterpenes Support Systemic Acquired Resistance within and between Plants.
Riedlmeier, Marlies; Ghirardo, Andrea; Wenig, Marion; Knappe, Claudia; Koch, Kerstin; Georgii, Elisabeth; Dey, Sanjukta; Parker, Jane E; Schnitzler, Jörg-Peter; Vlot, A Corina
2017-06-01
This study investigates the role of volatile organic compounds in systemic acquired resistance (SAR), a salicylic acid (SA)-associated, broad-spectrum immune response in systemic, healthy tissues of locally infected plants. Gas chromatography coupled to mass spectrometry analyses of SAR-related emissions of wild-type and non-SAR-signal-producing mutant plants associated SAR with monoterpene emissions. Headspace exposure of Arabidopsis thaliana to a mixture of the bicyclic monoterpenes α-pinene and β-pinene induced defense, accumulation of reactive oxygen species, and expression of SA- and SAR-related genes, including the SAR regulatory AZELAIC ACID INDUCED1 ( AZI1 ) gene and three of its paralogs. Pinene-induced resistance was dependent on SA biosynthesis and signaling and on AZI1 Arabidopsis geranylgeranyl reductase1 mutants with reduced monoterpene biosynthesis were SAR-defective but mounted normal local resistance and methyl salicylate-induced defense responses, suggesting that monoterpenes act in parallel with SA The volatile emissions from SAR signal-emitting plants induced defense in neighboring plants, and this was associated with the presence of α-pinene, β-pinene, and camphene in the emissions of the "sender" plants. Our data suggest that monoterpenes, particularly pinenes, promote SAR, acting through ROS and AZI1 , and likely function as infochemicals in plant-to-plant signaling, thus allowing defense signal propagation between neighboring plants. © 2017 American Society of Plant Biologists. All rights reserved.
Reducing Speckle In One-Look SAR Images
NASA Technical Reports Server (NTRS)
Nathan, K. S.; Curlander, J. C.
1990-01-01
Local-adaptive-filter algorithm incorporated into digital processing of synthetic-aperture-radar (SAR) echo data to reduce speckle in resulting imagery. Involves use of image statistics in vicinity of each picture element, in conjunction with original intensity of element, to estimate brightness more nearly proportional to true radar reflectance of corresponding target. Increases ratio of signal to speckle noise without substantial degradation of resolution common to multilook SAR images. Adapts to local variations of statistics within scene, preserving subtle details. Computationally simple. Lends itself to parallel processing of different segments of image, making possible increased throughput.
Salehpour, Mehdi; Behrad, Alireza
2017-10-01
This study proposes a new algorithm for nonrigid coregistration of synthetic aperture radar (SAR) and optical images. The proposed algorithm employs point features extracted by the binary robust invariant scalable keypoints algorithm and a new method called weighted bidirectional matching for initial correspondence. To refine false matches, we assume that the transformation between SAR and optical images is locally rigid. This property is used to refine false matches by assigning scores to matched pairs and clustering local rigid transformations using a two-layer Kohonen network. Finally, the thin plate spline algorithm and mutual information are used for nonrigid coregistration of SAR and optical images.
Carluccio, Giuseppe; Bruno, Mary; Collins, Christopher M.
2015-01-01
Purpose Present a novel method for rapid prediction of temperature in vivo for a series of pulse sequences with differing levels and distributions of specific energy absorption rate (SAR). Methods After the temperature response to a brief period of heating is characterized, a rapid estimate of temperature during a series of periods at different heating levels is made using a linear heat equation and Impulse-Response (IR) concepts. Here the initial characterization and long-term prediction for a complete spine exam are made with the Pennes’ bioheat equation where, at first, core body temperature is allowed to increase and local perfusion is not. Then corrections through time allowing variation in local perfusion are introduced. Results The fast IR-based method predicted maximum temperature increase within 1% of that with a full finite difference simulation, but required less than 3.5% of the computation time. Even higher accelerations are possible depending on the time step size chosen, with loss in temporal resolution. Correction for temperature-dependent perfusion requires negligible additional time, and can be adjusted to be more or less conservative than the corresponding finite difference simulation. Conclusion With appropriate methods, it is possible to rapidly predict temperature increase throughout the body for actual MR examinations. (200/200 words) PMID:26096947
Carluccio, Giuseppe; Bruno, Mary; Collins, Christopher M
2016-05-01
Present a novel method for rapid prediction of temperature in vivo for a series of pulse sequences with differing levels and distributions of specific energy absorption rate (SAR). After the temperature response to a brief period of heating is characterized, a rapid estimate of temperature during a series of periods at different heating levels is made using a linear heat equation and impulse-response (IR) concepts. Here the initial characterization and long-term prediction for a complete spine exam are made with the Pennes' bioheat equation where, at first, core body temperature is allowed to increase and local perfusion is not. Then corrections through time allowing variation in local perfusion are introduced. The fast IR-based method predicted maximum temperature increase within 1% of that with a full finite difference simulation, but required less than 3.5% of the computation time. Even higher accelerations are possible depending on the time step size chosen, with loss in temporal resolution. Correction for temperature-dependent perfusion requires negligible additional time and can be adjusted to be more or less conservative than the corresponding finite difference simulation. With appropriate methods, it is possible to rapidly predict temperature increase throughout the body for actual MR examinations. © 2015 Wiley Periodicals, Inc.
SAR Simulation with Magneto Chiral Effects for Human Head Radiated from Cellular Phones
NASA Astrophysics Data System (ADS)
Torres-Silva, H.
2008-09-01
A numerical method for a microwave signal emitted by a cellular phone, propagating in a magneto-chiral media, characterized by an extended Born-Fedorov formalism, is presented. It is shown that the use of a cell model, combined with a real model of the human head, derived from the magnetic resonance of images allows a good determination of the near fields induced in the head when the brain chirality and the battery magnetic field are considered together. The results on a 2-Dim human head model show the evolution of the specific absorption rate, (SAR coefficient) and the spatial peak specific absorption rate which are sensitives to the magneto-chiral factor, which is important in the brain layer. For GSM/PCN phones, extremely low frequency real pulsed magnetic fields (in the order of 10 to 60 milligauss) are added to the model through the whole of the user's head. The more important conclusion of our work is that the head absorption is bigger than the results for a classical model without the magneto chiral effect. Hot spots are produced due to the combination of microwave and the magnetic field produced by the phone's operation. The FDTD method was used to compute the SARs inside the MRI based head models consisting of various tissues for 1.8 GHz. As a result, we found that in the head model having more than four kinds of tissue, the localized peak SAR reaches maximum inside the head for over five tissues including skin, bone, blood and brain cells.
A new maximum-likelihood change estimator for two-pass SAR coherent change detection
Wahl, Daniel E.; Yocky, David A.; Jakowatz, Jr., Charles V.; ...
2016-01-11
In previous research, two-pass repeat-geometry synthetic aperture radar (SAR) coherent change detection (CCD) predominantly utilized the sample degree of coherence as a measure of the temporal change occurring between two complex-valued image collects. Previous coherence-based CCD approaches tend to show temporal change when there is none in areas of the image that have a low clutter-to-noise power ratio. Instead of employing the sample coherence magnitude as a change metric, in this paper, we derive a new maximum-likelihood (ML) temporal change estimate—the complex reflectance change detection (CRCD) metric to be used for SAR coherent temporal change detection. The new CRCD estimatormore » is a surprisingly simple expression, easy to implement, and optimal in the ML sense. As a result, this new estimate produces improved results in the coherent pair collects that we have tested.« less
Systemic acquired resistance: turning local infection into global defense.
Fu, Zheng Qing; Dong, Xinnian
2013-01-01
Systemic acquired resistance (SAR) is an induced immune mechanism in plants. Unlike vertebrate adaptive immunity, SAR is broad spectrum, with no specificity to the initial infection. An avirulent pathogen causing local programmed cell death can induce SAR through generation of mobile signals, accumulation of the defense hormone salicylic acid, and secretion of the antimicrobial PR (pathogenesis-related) proteins. Consequently, the rest of the plant is protected from secondary infection for a period of weeks to months. SAR can even be passed on to progeny through epigenetic regulation. The Arabidopsis NPR1 (nonexpresser of PR genes 1) protein is a master regulator of SAR. Recent study has shown that salicylic acid directly binds to the NPR1 adaptor proteins NPR3 and NPR4, regulates their interactions with NPR1, and controls NPR1 protein stability. However, how NPR1 interacts with TGA transcription factors to activate defense gene expression is still not well understood. In addition, redox regulators, the mediator complex, WRKY transcription factors, endoplasmic reticulum-resident proteins, and DNA repair proteins play critical roles in SAR.
NASA Astrophysics Data System (ADS)
Bie, Lidong; Ryder, Isabelle; Nippress, Stuart E. J.; Bürgmann, Roland
2014-02-01
The 2008 Mw 6.3 Damxung earthquake on the Tibetan Plateau is investigated to (i) derive a coseismic slip model in a layered elastic Earth; (ii) reveal the relationship between coseismic slip, afterslip and aftershocks and (iii) place a lower bound on mid/lower crustal viscosity. The fault parameters and coseismic slip model were derived by inversion of Envisat InSAR data. We developed an improved non-linear inversion scheme to find an optimal rupture geometry and slip distribution on a fault in a layered elastic crust. Although the InSAR data for this event cannot distinguish between homogeneous and layered crustal models, the maximum slip of the latter model is smaller and deeper, while the moment release calculated from both models are similar. A ˜1.6 yr post-seismic deformation time-series starting 20 d after the main shock reveals localized deformation at the southern part of the fault. Inversions for afterslip indicate three localized slip patches, and the cumulative afterslip moment after 615 d is at least ˜11 per cent of the coseismic moment. The afterslip patches are distributed at different depths along the fault, showing no obvious systematic depth-dependence. The deeper of the three patches, however, shows a slight tendency to migrate to greater depth over time. No linear correlation is found for the temporal evolution of afterslip and aftershocks. Finally, modelling of viscoelastic relaxation in a Maxwell half-space yields a lower bound of 1 × 1018 Pa s on the viscosity of the mid/lower crust. This is consistent with viscosity estimates in other studies of post-seismic deformation across the Tibetan Plateau.
Ground Subsidence Along Shanghai Metro Line 6 BY PS-InSAR Method
NASA Astrophysics Data System (ADS)
Wu, J.; Liao, M.; Li, N.
2018-04-01
With the rapid development of urban economy, convenient, safe, and efficient urban rail transit has become the preferred method for people to travel. In order to ensure the safety and sustainable development of urban rail transit, the PS-InSAR technology with millimeter deformation measurement accuracy has been widely applied to monitor the deformation of urban rail transit. In this paper, 32 scenes of COSMO-SkyMed descending images and 23 scenes of Envisat ASAR images covering the Shanghai Metro Line 6 acquired from 2008 to 2010 are used to estimate the average deformation rate along line-of-sight (LOS) direction by PS-InSAR method. The experimental results show that there are two main subsidence areas along the Shanghai Metro Line 6, which are located between Wuzhou Avenue Station to Wulian Road Station and West Gaoke Road Station to Gaoqing Road Station. Between Wuzhou Avenue Station and Wulian Road Station, the maximum displacement rate in the vertical direction of COSMO-SkyMed images is -9.92 mm/year, and the maximum displacement rate in the vertical direction of Envisat ASAR images is -8.53 mm/year. From the West Gaoke Road Station to the Gaoqing Road Station, the maximum displacement rate in the vertical direction of COSMO-SkyMed images is -15.53 mm/year, and the maximum displacement rate in the vertical direction of Envisat ASAR images is -17.9 mm/year. The results show that the ground deformation rates obtained by two SAR platforms with different wavelengths, different sensors and different incident angles have good consistence with each other, and also that of spirit leveling.
The Performance Analysis Based on SAR Sample Covariance Matrix
Erten, Esra
2012-01-01
Multi-channel systems appear in several fields of application in science. In the Synthetic Aperture Radar (SAR) context, multi-channel systems may refer to different domains, as multi-polarization, multi-interferometric or multi-temporal data, or even a combination of them. Due to the inherent speckle phenomenon present in SAR images, the statistical description of the data is almost mandatory for its utilization. The complex images acquired over natural media present in general zero-mean circular Gaussian characteristics. In this case, second order statistics as the multi-channel covariance matrix fully describe the data. For practical situations however, the covariance matrix has to be estimated using a limited number of samples, and this sample covariance matrix follow the complex Wishart distribution. In this context, the eigendecomposition of the multi-channel covariance matrix has been shown in different areas of high relevance regarding the physical properties of the imaged scene. Specifically, the maximum eigenvalue of the covariance matrix has been frequently used in different applications as target or change detection, estimation of the dominant scattering mechanism in polarimetric data, moving target indication, etc. In this paper, the statistical behavior of the maximum eigenvalue derived from the eigendecomposition of the sample multi-channel covariance matrix in terms of multi-channel SAR images is simplified for SAR community. Validation is performed against simulated data and examples of estimation and detection problems using the analytical expressions are as well given. PMID:22736976
NASA Astrophysics Data System (ADS)
Nikolov, Hristo; Atanasova, Mila
2017-10-01
One of the key input parameters in obtaining end products from SAR data is the DEM used during their processing. This holds true especially when persistent scatterers InSAR method should be applied for example to study slow moving landslides or subsidence. Since nowadays most of the raw SAR data are of space borne origin for their correct processing to high precision products for relatively small areas with centimeter accuracy a DEM taking into account the particularities of the local topography is needed. Most of the DEMs used by the SAR processing software such as SRTM or ASTER are obtained by the same type of instrument and present some disagreements with height information acquired by leveling measurements or other geodetic means. This was the motivation for initiating this research - to prove the need of creating and using local DEM in SAR data processing at small scale and to check what the magnitude of the discrepancy between final InSAR products is in both cases where SRTM/ASTER and local DEM has been used. In addition investigated were two scenarios for SAR data processing - one with small baseline between image pairs and one having large baseline image pairs - in order to find out in which case local DEM has bigger impact. In course of this study two reference areas were considered - Bankya village near Sofia (SW region of Bulgaria) and Mirovo salt extraction site (NE region of Bulgaria). The reason those areas were selected lies in the high number of landslides registered and monitored by the competent authorities in the mentioned locations. The significance of the results obtained is witnessed by the fact that both sites we used have been included as reference sites for Bulgaria in the PanGeo EU funded project dealing with delivering information regarding ground instability geohazard as areas prone to subsidence of natural and manmade origin. In the said project largest part of the information has been extracted from Envisat SAR data, but now this information could be supplemented by adding such from Sentinel-1 derived by us. During this research two local DEMs have been extracted from the tiles including the areas of investigation, one using SRTM data and one from ASTER, and after this procedure both were compared to the DEM gathered by leveling measurements. Finally conclusions are drawn and a direction for future research steps is provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begoli, Edmon; Boehmann, Brant; DeNap, Frank A
In 2003 a joint effort between the U.S. Department of Homeland Security (DHS) and the U.S. Department of Justice created state and metropolitan intelligence fusion centers. These fusion centers were an effort to share law enforcement, disaster, and terrorism related information and intelligence between state and local jurisdictions and to share terrorism related intelligence between state and local law enforcement agencies and various federal entities. In 2006, DHS commissioned the Oak Ridge National Laboratory to establish and manage a groundbreaking program to assist local, state, and tribal leaders in developing the tools and methods required to anticipate and forestall terroristmore » events and to enhance disaster response. This program, called the Southeast Region Research Initiative (SERRI), combines science and technology with validated operational approaches to address regionally unique requirements and suggest regional solutions with the potential for national application. In 2009, SERRI sponsored the Multistate Sharing Initiative (MSSI) to assist state and metropolitan intelligence fusion centers with sharing information related to a wider variety of state interests than just terrorism. While these fusion centers have been effective at sharing data across organizations within their respective jurisdictions, their organizational structure makes bilateral communication with federal entities convenient and also allows information to be further disbursed to other local entities when appropriate. The MSSI-developed Suspicious Activity Report (SAR) sharing system allows state-to-state sharing of non-terrorism-related law enforcement and disaster information. Currently, the MSSI SAR system is deployed in Alabama, Kentucky, Tennessee, and South Carolina. About 1 year after implementation, cognizant fusion center personnel from each state were contacted to ascertain the status of their MSSI SAR systems. The overwhelming response from these individuals was that the MSSI SAR system was an outstanding success and contributed greatly to the security and resiliency of their states. At least one state commented that SERRI's implementation of the MSSI SAR actually 'jump started' and accelerated deployment and acceptance of the Nationwide Suspicious Activity Reporting Initiative (NSI). While all states were enthusiastic about their systems, South Carolina and Tennessee appeared to be the heaviest users of their respective systems. With NSI taking the load of sharing SARs with other states, Tennessee has redeployed the MSSI SAR system within Tennessee to allow SAR sharing between state and local organizations including Tennessee's three Homeland Security Regions, eleven Homeland Security Districts, and more than 500 police and sheriff offices, as well as with other states. In one success story from South Carolina, the Economy SAR System was used to compile similar SARs from throughout the state which were then forwarded to field liaison officers, emergency management personnel, and law enforcement officers for action.« less
SAR11 bacteria linked to ocean anoxia and nitrogen loss
Tsementzi, Despina; Wu, Jieying; Deutsch, Samuel; Nath, Sangeeta; Rodriguez-R, Luis M; Burns, Andrew S.; Ranjan, Piyush; Sarode, Neha; Malmstrom, Rex R.; Padilla, Cory C.; Stone, Benjamin K.; Bristow, Laura A.; Larsen, Morten; Glass, Jennifer B.; Thamdrup, Bo; Woyke, Tanja; Konstantinidis, Konstantinos T.; Stewart, Frank J.
2016-01-01
Summary Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. DNA sequences from SAR11 are also abundant in oxygen minimum zones (OMZs) where oxygen falls below detection and anaerobic microbes play important roles in converting bioavailable nitrogen to N2 gas. Evidence for anaerobic metabolism in SAR11 has not yet been observed, and the question of how these bacteria contribute to OMZ biogeochemical cycling is unanswered. Here, we identify the metabolic basis for SAR11 activity in anoxic ocean waters. Genomic analysis of single cells from the world’s largest OMZ revealed diverse and previously uncharacterized SAR11 lineages that peak in abundance at anoxic depths, but are largely undetectable in oxygen-rich ocean regions. OMZ SAR11 contain adaptations to low oxygen, including genes for respiratory nitrate reductases (Nar). SAR11 nar genes were experimentally verified to encode proteins catalyzing the nitrite-producing first step of denitrification and constituted ~40% of all OMZ nar transcripts, with transcription peaking in the zone of maximum nitrate reduction rates. These results redefine the ecological niche of Earth’s most abundant organismal group and suggest an important contribution of SAR11 to nitrite production in OMZs, and thus to pathways of ocean nitrogen loss. PMID:27487207
From local to national scale DInSAR analysis for the comprehension of Earth's surface dynamics.
NASA Astrophysics Data System (ADS)
De Luca, Claudio; Casu, Francesco; Manunta, Michele; Zinno, Ivana; lanari, Riccardo
2017-04-01
Earth Observation techniques can be very helpful for the estimation of several sources of ground deformation due to their characteristics of large spatial coverage, high resolution and cost effectiveness. In this scenario, Differential Synthetic Aperture Radar Interferometry (DInSAR) is one of the most effective methodologies for its capability to generate spatially dense deformation maps with centimeter to millimeter accuracy. DInSAR exploits the phase difference (interferogram) between SAR image pairs relevant to acquisitions gathered at different times, but with the same illumination geometry and from sufficiently close flight tracks, whose separation is typically referred to as baseline. Among several, the SBAS algorithm is one of the most used DInSAR approaches and it is aimed at generating displacement time series at a multi-scale level by exploiting a set of small baseline interferograms. SBAS, and generally DInSAR, has taken benefit from the large availability of spaceborne SAR data collected along years by several satellite systems, with particular regard to the European ERS and ENVISAT sensors, which have acquired SAR images worldwide during approximately 20 years. While the application of SBAS to ERS and ENVISAT data at local scale is widely testified, very few examples involving those archives for analysis at huge spatial scale are available in literature. This is mainly due to the required processing power (in terms of CPUs, memory and storage) and the limited availability of automatic processing procedures (unsupervised tools), which are mandatory requirements for obtaining displacement results in a time effective way. Accordingly, in this work we present a methodology for generating the Vertical and Horizontal (East-West) components of Earth's surface deformation at very large (national/continental) spatial scale. In particular, it relies on the availability of a set of SAR data collected over an Area of Interest (AoI), which could be some hundreds of thousands of square kilometers wide, from ascending and descending orbits. The exploited SAR data are processed, on a local basis, through the Parallel SBAS (P-SBAS) approach thus generating the displacement time series and the corresponding mean deformation velocity maps. Subsequently, starting from the so generated DInSAR results, the proposed methodology lays on a proper mosaicking procedure to finally retrieve the mean velocity maps of the Vertical and Horizontal (East-West) deformation components relevant to the overall AoI. This technique permits to account for possible regional trends (tectonics trend) not easily detectable by the local scale DInSAR analyses. We tested the proposed methodology with the ENVISAT ASAR archives that have been acquired, from ascending and descending orbits, over California (US), covering an area of about 100.000 km2. The presented methodology can be easily applied also to other SAR satellite data. Above all, it is particularly suitable to deal with the very large data flow provided by the Sentinel-1 constellation, which collects data with a global coverage policy and an acquisition mode specifically designed for interferometric applications.
Zhang, Xudong; Mou, Zhonglin
2012-09-01
Plant systemic acquired resistance (SAR) is a long-lasting, broad-spectrum immune response that is mounted after primary pathogen infection. Although SAR has been extensively researched, the molecular mechanisms underlying its activation have not been completely understood. We have previously shown that the electron carrier NAD(P) leaks into the plant extracellular compartment upon pathogen attack and that exogenous NAD(P) activates defense gene expression and disease resistance in local treated leaves, suggesting that extracellular NAD(P) [eNAD(P)] might function as a signal molecule activating plant immune responses. To further establish the function of eNAD(P) in plant immunity, we tested the effect of exogenous NAD(P) on resistance gene-mediated hypersensitive response (HR) and SAR. We found that exogenous NAD(P) completely suppresses HR-mediated cell death but does not affect HR-mediated disease resistance. Local application of exogenous NAD(P) is unable to induce SAR in distal tissues, indicating that eNAD(P) is not a sufficient signal for SAR activation. Using transgenic Arabidopsis plants expressing the human NAD(P)-metabolizing ectoenzyme CD38, we demonstrated that altering eNAD(P) concentration or signaling compromises biological induction of SAR. This result suggests that eNAD(P) may play a critical signaling role in activation of SAR.
Geodetic imaging of tectonic deformation with InSAR
NASA Astrophysics Data System (ADS)
Fattahi, Heresh
Precise measurements of ground deformation across the plate boundaries are crucial observations to evaluate the location of strain localization and to understand the pattern of strain accumulation at depth. Such information can be used to evaluate the possible location and magnitude of future earthquakes. Interferometric Synthetic Aperture Radar (InSAR) potentially can deliver small-scale (few mm/yr) ground displacement over long distances (hundreds of kilometers) across the plate boundaries and over continents. However, Given the ground displacement as our signal of interest, the InSAR observations of ground deformation are usually affected by several sources of systematic and random noises. In this dissertation I identify several sources of systematic and random noise, develop new methods to model and mitigate the systematic noise and to evaluate the uncertainty of the ground displacement measured with InSAR. I use the developed approach to characterize the tectonic deformation and evaluate the rate of strain accumulation along the Chaman fault system, the western boundary of the India with Eurasia tectonic plates. I evaluate the bias due to the topographic residuals in the InSAR range-change time-series and develope a new method to estimate the topographic residuals and mitigate the effect from the InSAR range-change time-series (Chapter 2). I develop a new method to evaluate the uncertainty of the InSAR velocity field due to the uncertainty of the satellite orbits (Chapter 3) and a new algorithm to automatically detect and correct the phase unwrapping errors in a dense network of interferograms (Chapter 4). I develop a new approach to evaluate the impact of systematic and stochastic components of the tropospheric delay on the InSAR displacement time-series and its uncertainty (Chapter 5). Using the new InSAR time-series approach developed in the previous chapters, I study the tectonic deformation across the western boundary of the India plate with Eurasia and evaluated the rate of strain accumulation along the Chaman fault system (Chapter 5). I also evaluate the co-seismic and post-seismic displacement of a moderate M5.5 earthquake on the Ghazaband fault (Chapter 6). The developed methods to mitigate the systematic noise from InSAR time-series, significantly improve the accuracy of the InSAR displacement time-series and velocity. The approaches to evaluate the effect of the stochastic components of noise in InSAR displacement time-series enable us to obtain the variance-covariance matrix of the InSAR displacement time-series and to express their uncertainties. The effect of the topographic residuals in the InSAR range-change time-series is proportional to the perpendicular baseline history of the set of SAR acquisitions. The proposed method for topographic residual correction, efficiently corrects the displacement time-series. Evaluation of the uncertainty of velocity due to the orbital errors shows that for modern SAR satellites with precise orbits such as TerraSAR-X and Sentinel-1, the uncertainty of 0.2 mm/yr per 100 km and for older satellites with less accurate orbits such as ERS and Envisat, the uncertainty of 1.5 and 0.5mm/yr per 100 km, respectively are achievable. However, the uncertainty due to the orbital errors depends on the orbital uncertainties, the number and time span of SAR acquisitions. Contribution of the tropospheric delay to the InSAR range-change time-series can be subdivided to systematic (seasonal delay) and stochastic components. The systematic component biases the displacement times-series and velocity field as a function of the acquisition time and the non-seasonal component significantly contributes to the InSAR uncertainty. Both components are spatially correlated and therefore the covariance of noise between pixels should be considered for evaluating the uncertainty due to the random tropospheric delay. The relative velocity uncertainty due to the random tropospheric delay depends on the scatter of the random tropospheric delay, and is inversely proportional to the number of acquisitions, and the total time span covered by the SAR acquisitions. InSAR observations across the Chaman fault system shows that relative motion between India and Eurasia in the western boundary is distributed among different faults. The InSAR velocity field indicates strain localization on the Chaman fault and Ghazaband fault with slip rates of ~8 and ~16 mm/yr, respectively. High rate of strain accumulation on the Ghazaband fault and lack of evidence for rupturing the fault during the 1935 Quetta earthquake indicates that enough strain has been accumulated for large (M>7) earthquake, which threatens Balochistan and the City of Quetta. Chaman fault from latitudes ~29.5 N to ~32.5 N is creeping with a maximum surface creep rate of 8 mm/yr, which indicates that Chaman fault is only partially locked and therefore moderate earthquakes (M<7) similar to what has been recorded in last 100 years are expected.
NASA Astrophysics Data System (ADS)
Montazeri, Sina; Gisinger, Christoph; Eineder, Michael; Zhu, Xiao xiang
2018-05-01
Geodetic stereo Synthetic Aperture Radar (SAR) is capable of absolute three-dimensional localization of natural Persistent Scatterer (PS)s which allows for Ground Control Point (GCP) generation using only SAR data. The prerequisite for the method to achieve high precision results is the correct detection of common scatterers in SAR images acquired from different viewing geometries. In this contribution, we describe three strategies for automatic detection of identical targets in SAR images of urban areas taken from different orbit tracks. Moreover, a complete work-flow for automatic generation of large number of GCPs using SAR data is presented and its applicability is shown by exploiting TerraSAR-X (TS-X) high resolution spotlight images over the city of Oulu, Finland and a test site in Berlin, Germany.
NASA Astrophysics Data System (ADS)
Chatterjee, R. S.; Saha, S. K.; Suresh Kumar; Sharika Mathew; Lakhera, R. C.; Dadhwal, V. K.
In recent years, the problem of ravine erosion with consequent loss of usable land has received much attention worldwide. The Chambal ravine zone in India is well known for being an extremely intricate, deeply incised network of ravines in a 10 km wide zone on the flanks of the Chambal River. It occupies an area of ˜0.5 million hectares at the expense of fertile agricultural land of the Chambal Valley. The broad grouping of the ravines considering their reclamation potential, as carried out by previous workers based on visual interpretation of optical remote sensing data, is mostly descriptive in nature. In the present study, characterization of the ravines as a function of their erosion potential expressed through ravine density, ravine depth, and ravine surface cover was made in quantitative terms exploiting the preferential characteristics of side-looking, long-wavelength, coherent SAR signal and precision measurements associated with the InSAR technique. The outlines of ravines appear remarkably prominent in SAR backscattered amplitude images due to the high sensitivity of the SAR signal to terrain ruggedness. Using local statistics-based meso and macro textural information of SAR backscattered amplitude images in 7×7 pixel windows (the pixel size being 20 m×20 m), the ravine-affected area has been classified into three density classes, namely low, moderate, and high density ravine classes. C-band InSAR digital elevation models (DEMs) of sparsely vegetated ravine areas essentially give the terrain height. From the pixel-by-pixel terrain height, the ravine depth was calculated by differencing the maximum and minimum terrain heights of the pixels in a 100 m distance range. Considering the vertical precision of the ERS InSAR DEMs of ˜5 m and ravine depth classification by previous workers [Sharma, H.S., 1968. Genesis and pattern of ravines of the Lower Chambal Valley, India. Special Issue. 21st International Geographical Union Congress 30(4), 14-24; Seth, S.P., Bhatnagar, R.K., Chauhan, S.S., 1969. Reclamability classification and nature of ravines of Chambal Command Areas. Journal of Soil and Water Conservation in India 17 (3-4), 39-44.], three depth classes, namely shallow (<5 m), moderately deep (5-20 m), and deep (>20 m) ravines, were made. Using the temporal decorrelation property of the close time interval InSAR data pair, namely the ERS SAR tandem pair, four ravine surface cover classes, namely barren land, grass/scrub/crop land, sparse vegetation, and wet land/dense vegetation, could be delineated, which was corroborated by the spectral signatures in the optical range and selective ground truths.
NASA Astrophysics Data System (ADS)
Scott, C. P.; Lohman, R. B.
2015-12-01
InSAR-based studies of the seismic cycle have focused primarily on the interferometric phase observations, which place constraints on the amount of uplift or subsidence of the ground surface. Recently, coseismic InSAR coherence has also been used to rapidly identify urban damage, surface ruptures, cracking, and soil liquefaction. Here we demonstrate that time-variable correlation and amplitude data contain additional information about surficial processes and material properties that may affect ground deformation and seismic hazard. In the use of correlation for hazard response, distinguishing the coseismic signal from other changes in surface properties associated with variations in soil moisture content, vegetation and snow cover, and wind is critical. Building SAR-based catalogues of ground properties will therefore improve the reliability of rapid response and aid in the designing of future SAR missions to better map surface ruptures, off-fault deformation, and coseismic damage. In this project, we characterize the seasonal variations in the soil moisture content in the Northern Chilean Coastal Cordillera and Southern California. The extreme climate of the Atacama Desert characterized by hyperaridity and coastal fog during the non-summer months creates an ideal landscape for exploring surface properties. We produce interferograms using L-band ALOS data (λ = 23.6 cm) that span 46 days to three years and have perpendicular baselines less than 1500 m. We observe a strong seasonal dependence on correlation that extends to the maximum elevation of the fog penetration. Interferograms with only austral summer acquisitions are more correlated than interferograms with one or both acquisitions in the autumn, winter or spring, even when the summer interferograms span multiple years. We propose that the seasonal dependence is due to small changes in the radar path length caused by variable soil moisture content in the very shallow subsurface. We further consider local variations in correlation surrounding aeolian dunes, quebradas or ravines, cities, and salars. We extend our work to include the Owens Valley and Death Valley in California.
Automatic Coregistration for Multiview SAR Images in Urban Areas
NASA Astrophysics Data System (ADS)
Xiang, Y.; Kang, W.; Wang, F.; You, H.
2017-09-01
Due to the high resolution property and the side-looking mechanism of SAR sensors, complex buildings structures make the registration of SAR images in urban areas becomes very hard. In order to solve the problem, an automatic and robust coregistration approach for multiview high resolution SAR images is proposed in the paper, which consists of three main modules. First, both the reference image and the sensed image are segmented into two parts, urban areas and nonurban areas. Urban areas caused by double or multiple scattering in a SAR image have a tendency to show higher local mean and local variance values compared with general homogeneous regions due to the complex structural information. Based on this criterion, building areas are extracted. After obtaining the target regions, L-shape structures are detected using the SAR phase congruency model and Hough transform. The double bounce scatterings formed by wall and ground are shown as strong L- or T-shapes, which are usually taken as the most reliable indicator for building detection. According to the assumption that buildings are rectangular and flat models, planimetric buildings are delineated using the L-shapes, then the reconstructed target areas are obtained. For the orignal areas and the reconstructed target areas, the SAR-SIFT matching algorithm is implemented. Finally, correct corresponding points are extracted by the fast sample consensus (FSC) and the transformation model is also derived. The experimental results on a pair of multiview TerraSAR images with 1-m resolution show that the proposed approach gives a robust and precise registration performance, compared with the orignal SAR-SIFT method.
Numerical evaluation of human exposure to WiMax patch antenna in tablet or laptop.
Siervo, Beatrice; Morelli, Maria Sole; Landini, Luigi; Hartwig, Valentina
2018-04-30
The use of wireless communication devices, such as tablets or laptops, is increasing among children. Only a few studies assess specific energy absorption rate (SAR) due to exposure from wireless-enabled tablets and laptops, in particular with Worldwide Interoperability for Microwave Access (WiMax) technology. This paper reports the estimation of the interaction between an E-shaped patch antenna (3.5 GHz) and human models, by means of finite-difference time-domain (FDTD) method. Specifically, four different human models (young adult male, young adult female, pre-teenager female, male child) in different exposure conditions (antenna at different distances from the human model, in different positions, and orientations) were considered and whole-body, 10 and 1 g local SAR and magnetic field value (Bmax) were evaluated. From our results, in some worst-case scenarios involving male and female children's exposure, the maximum radiofrequency energy absorption (hot spots) is located in more sensitive organs such as eye, genitals, and breast. Bioelectromagnetics. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
SAR compliance assessment of PMR 446 and FRS walkie-talkies.
Vermeeren, Günter; Joseph, Wout; Martens, Luc
2015-10-01
The vast amount of studies on radiofrequency dosimetry deal with exposure due to mobile devices and base station antennas for cellular communication systems. This study investigates compliance of walkie-talkies to exposure guidelines established by the International Commission on Non-Ionizing Radiation Protection and the Federal Communications Committee. The generic walkie-talkie consisted of a helical antenna and a ground plane and was derived by reverse engineering of a commercial walkie-talkie. Measured and simulated values of antenna characteristics and electromagnetic near fields of the generic walkie-talkie were within 2% and 8%, respectively. We also validated normalized electromagnetic near fields of the generic walkie-talkie against a commercial device and observed a very good agreement (deviation <6%). We showed that peak localized specific absorption rate (SAR) induced in the oval flat phantom by the generic walkie-talkie is in agreement with four commercial devices if input power of the generic walkie-talkie is rescaled based on magnetic near field. Finally, we found that SAR of commercial devices is within current SAR limits for general public exposure for a worst-case duty cycle of 100%, that is, about 3 times and 6 times lower than the limit on the 1 g SAR (1.6 W/kg) and 10 g SAR (2 W/kg), respectively. But, an effective radiated power as specified by the Private Mobile Radio at 446 MHz (PMR 446) radio standard can cause localized SAR exceeding SAR limits for 1 g of tissue. © 2015 Wiley Periodicals, Inc.
Frequency Diversity for Improving Synthetic Aperture Radar Imaging
2009-03-01
for broadside spotlight SAR imaging is shown to be δθ = λ 4Yo . (2.34) When θ is small, as is often the case in spotlight SAR imaging, the required...maximum distance ∆y between samples along the y-axis is shown to be ∆y ≤ λRc 4Yo . (2.35) With platform velocity vy along the y-axis, the minimum PRF is
Lee, W M; Gelvich, E A; van der Baan, P; Mazokhin, V N; van Rhoon, G C
2004-09-01
The electrical performance of the CFMA-12 operating at 433 MHz is assessed under laboratory conditions using a RF network analyser. From measurements of the scattering parameters of the CFMA-12 on both a multi-layered muscle- and fat/muscle-equivalent phantom, the optimal water bolus thickness, at which the transfer of the energy to the phantom configuration is maximal, is determined to be approximately 1 cm. The SAR distribution of the CFMA-12 in a multi-layered muscle-equivalent phantom is characterized using Schottky diode sheets and a TVS-600 IR camera. From the SAR measurements using the Schottky diode sheets it is shown that the contribution of the E(x) component to the SAR (SAR(x)) is maximal 7% of the contribution of the E(y)component to the SAR (SAR(y)) at different layers in both phantom configurations. The complete SAR distribution (SAR(tot)) at different depths is measured using the power pulse technique. From these measurements, it can be seen that SAR(y)at a depth of 0 cm in the muscle-equivalent phantom represents up to 80% of SAR(tot). At 1 and 2 cm depth, SAR(y) is up to 95% of SAR(tot). Therefore, in homogeneous muscle-equivalent phantoms, E(y) is the largest E-field component and measurement of SAR(y) distribution is sufficient to characterize SAR-steering performance of the CFMA-12. SAR steering measurements at 1 cm depth in the muscle-equivalent phantom show that the SAR maximum varies by 40% (1 SD) around the average value of 38.8 W kg(-1) (range 10-65 W kg(-1)) between single antenna elements. The effective fieldsize (E(50)) varies by 14% (1 SD) around the average value of 19.1 cm(2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricagno, Stéfano; Coutard, Bruno; Grisel, Sacha
Crystals of Nsp15 from the aetiological agent of SARS have been grown at room temperature. Crystals have cubic symmetry and diffract to a maximum resolution of 2.7 Å. The non-structural protein Nsp15 from the aetiological agent of SARS (severe acute respiratory syndrome) has recently been characterized as a uridine-specific endoribonuclease. This enzyme plays an essential role in viral replication and transcription since a mutation in the related H229E human coronavirus nsp15 gene can abolish viral RNA synthesis. SARS full-length Nsp15 (346 amino acids) has been cloned and expressed in Escherichia coli with an N-terminal hexahistidine tag and has been purifiedmore » to homogeneity. The protein was subsequently crystallized using PEG 8000 or 10 000 as precipitants. Small cubic crystals of the apoenzyme were obtained from 100 nl nanodrops. They belong to space group P4{sub 1}32 or P4{sub 3}32, with unit-cell parameters a = b = c = 166.8 Å. Diffraction data were collected to a maximum resolution of 2.7 Å.« less
NASA Astrophysics Data System (ADS)
Shi, R.; Sun, Z.
2018-04-01
GF-3 synthetic aperture radar (SAR) images are rich in information and have obvious sparse features. However, the speckle appears in the GF-3 SAR images due to the coherent imaging system and it hinders the interpretation of images seriously. Recently, Shearlet is applied to the image processing with its best sparse representation. A new Shearlet-transform-based method is proposed in this paper based on the improved non-local means. Firstly, the logarithmic operation and the non-subsampled Shearlet transformation are applied to the GF-3 SAR image. Secondly, in order to solve the problems that the image details are smoothed overly and the weight distribution is affected by the speckle, a new non-local means is used for the transformed high frequency coefficient. Thirdly, the Shearlet reconstruction is carried out. Finally, the final filtered image is obtained by an exponential operation. Experimental results demonstrate that, compared with other despeckling methods, the proposed method can suppress the speckle effectively in homogeneous regions and has better capability of edge preserving.
Vorticity models of ocean surface diffusion in coastal jets and eddies
NASA Astrophysics Data System (ADS)
Cano, D.; Matulka, A.; Sekula, E.
2010-05-01
We present and discuss the use of multi-fractal techniques used to investigete vorticity and jet dynamical state of these features detected in the sea surface as well as to identify possible local parametrizations of turbulent diffusion in complex non-homogeneous flows. We use a combined vorticity/energy equation to parametrize mixing at the Rossby Deformation Radius, which may be used even in non Kolmogorov types of flows. The vorticity cascade is seen to be different to the energy cascade and may have important cnsecuences in pollutant dispersion prediction, both in emergency accidental releases and on a day to day operational basis. We also identify different SAR signatures of river plumes near the coast, which are usefull to provide calibrations for the different local configurations that allow to predict the behaviour of different tracers and tensioactives in the coastal sea surface area by means of as a geometrical characterization of the vorticity and velocity maps which induce local mixing and dilution jet processes. The satellite-borne SAR seems to be a good system for the identification of dynamic. lt is also a convenient tool to investigate the eddy structures of a certain area where the effect of bathymetry and local currents are important in describing the ocean surface behavior. Maximum eddy size agrees remarkably well with the limit imposed by the local Rossby deformation radius using the usual thermocline induced stratification, Redondo and Platonov (2000). The Rossby deformation radius, defined as Rd = (N/f)h, where N is the Brunt-Vaisalla frequency, f is the local Coriolis parameter (f=2Osin(lat), where O is the rotation of the earth as function of the latitude), The role of buoyancy may be also detected by seasonal changes in h, the thermocline depth, with these considerations Rd is ranged between 6 and 30 Km. Bezerra M.O., Diez M., Medeiros C. Rodriguez A., Bahia E., Sanchez Arcilla A and Redondo J.M. (1998) "Study on the influence of waves on coastal diffusion using image analysis'. Applied Scientific Research, 59,127-142. Carrillo, A.; Sanchez, M.A.; Platonov, A.; Redondo, J.M., (2001). Coastal and Interfacial Mixing. Laboratory Experiments and Satellite Observations. Physics and Chemistry of the Earth, v. B, 26/4. pp. 305-311. Gade, M. and W. Alpers. (1999). Using ERS-2 SAR images for routine observation of marine pollution in European margins. Mediterranean Target Project (MPT)-EUROMARGE-NB Project. Luxemburg, 38, 57. Gade, M., and J. M. Redondo (1999) 'Marine pollution in European coastal waters monitored by the ERS-2 SAR: a comprehensive statistical analysis". IGARSS 99. Hamburg. v. III, 1637-1639., pp. 308-312. Jolly G. W., A. Mangin, F. Cauneau, M. Calatuyud, V. Barale, H. M. Snaith, O.Rud, M. Ishii, M. Gade, J. M. Redondo, A. Platonov (2000). The Clean Seas Project Final Report (ENV4-CT96-0334). Ed. DG XII/D, Brusselas. Martinez Benjamin J.J., L.M. Redondo, J.Jorge & A.Platonov.(1999). Aplication of SAR images in the western Mediterranean Sea. Remote Sensing in 21st Century: Economic and Environmental Applications. Proceedings of the 19th EARSel Symposium on Remote Sensing in the 21st Century. Eds. A.A. Balkema ,Ed. J.L. Casanova. Rotterdam / Brookfiel. pp. 461-465.
NASA Astrophysics Data System (ADS)
Bonano, Manuela; Buonanno, Sabatino; Ojha, Chandrakanta; Berardino, Paolo; Lanari, Riccardo; Zeni, Giovanni; Manunta, Michele
2017-04-01
The advanced DInSAR technique referred to as Small BAseline Subset (SBAS) algorithm has already largely demonstrated its effectiveness to carry out multi-scale and multi-platform surface deformation analyses relevant to both natural and man-made hazards. Thanks to its capability to generate displacement maps and long-term deformation time series at both regional (low resolution analysis) and local (full resolution analysis) spatial scales, it allows to get more insights on the spatial and temporal patterns of localized displacements relevant to single buildings and infrastructures over extended urban areas, with a key role in supporting risk mitigation and preservation activities. The extensive application of the multi-scale SBAS-DInSAR approach in many scientific contexts has gone hand in hand with new SAR satellite mission development, characterized by different frequency bands, spatial resolution, revisit times and ground coverage. This brought to the generation of huge DInSAR data stacks to be efficiently handled, processed and archived, with a strong impact on both the data storage and the computational requirements needed for generating the full resolution SBAS-DInSAR results. Accordingly, innovative and effective solutions for the automatic processing of massive SAR data archives and for the operational management of the derived SBAS-DInSAR products need to be designed and implemented, by exploiting the high efficiency (in terms of portability, scalability and computing performances) of the new ICT methodologies. In this work, we present a novel parallel implementation of the full resolution SBAS-DInSAR processing chain, aimed at investigating localized displacements affecting single buildings and infrastructures relevant to very large urban areas, relying on different granularity level parallelization strategies. The image granularity level is applied in most steps of the SBAS-DInSAR processing chain and exploits the multiprocessor systems with distributed memory. Moreover, in some processing steps very heavy from the computational point of view, the Graphical Processing Units (GPU) are exploited for the processing of blocks working on a pixel-by-pixel basis, requiring strong modifications on some key parts of the sequential full resolution SBAS-DInSAR processing chain. GPU processing is implemented by efficiently exploiting parallel processing architectures (as CUDA) for increasing the computing performances, in terms of optimization of the available GPU memory, as well as reduction of the Input/Output operations on the GPU and of the whole processing time for specific blocks w.r.t. the corresponding sequential implementation, particularly critical in presence of huge DInSAR datasets. Moreover, to efficiently handle the massive amount of DInSAR measurements provided by the new generation SAR constellations (CSK and Sentinel-1), we perform a proper re-design strategy aimed at the robust assimilation of the full resolution SBAS-DInSAR results into the web-based Geonode platform of the Spatial Data Infrastructure, thus allowing the efficient management, analysis and integration of the interferometric results with different data sources.
Deformations Associated With Large Interplate Earthquakes Along the Sumatra-Andaman Subduction Zone
NASA Astrophysics Data System (ADS)
Hashimoto, M.; Fukushima, Y.; Katagi, T.; Hashizume, M.; Satomura, M.; Wu, P.; Kato, T.
2008-12-01
Since the occurrence of the 2004 Sumatra-Andaman earthquake (Mw9.2), the Sumatra-Andaman Subduction zone has attracted geophysicists' attention. We have been carrying on CGPS observation in Thailand and Myanmar to detect postseismic deformation following this gigantic event. Since CGPS on land is not enough to clarify the detailed image of postseismic deformation, we also make InSAR analyses in Andaman and Phuket Islands. On September 12, 2007, another Mw8.4 event occurred SW off Sumatra. We report deformations observed with GPS and SAR including co- and postseismic deformation following this event. We have analyzed CGPS data up to the end of 2007 and detected postseismic displacements all over the Indochina peninsula. Phuket, which suffered from about 26cm coseismic displacement, has shifted by 26cm southwestward till July, 2007. Postseismic transient is clearly recognized and already exceeds coseismic movements at remote sites such as Bangkok and Chiang Mai in Thailand. We processed ALOS/PALSAR data in Andaman and Phuket islands. No remarkable deformation is found in Andaman and Phuket Islands, since the operation period of ALOS/PALSAR is not long enough and the wavelength of postseismic deformation may be much longer than the swath. We try to synthesize the postseismic displacement using a 3-D viscoelastic FEM model. Its results imply that viscoelastic relaxation in mantle with a typical mantle viscosity may play an important role for the observed postseismic transients except during the first six month. An extremely low viscosity is not required beneath the Andaman Sea, though this back arc is now actively opening. Coseismic motion following the 2007 Sumatra event is detected north of Benkgulu on the coast of southern Sumatra with InSAR. The largest LOS displacement of about 35cm is observed 100km NW of Bengkulu. Coseismic westward displacements of 3.5cm from the 2007 Sumatra event are also observed at Singapore, whose epicentral distance is about 700km, with CGPS. The observed fringe can be simulated by a plane fault model gently dipping northeastward with a 10m slip. On the other hand, the maximum of postseismic LOS displacement is shifted about 50km south from the coseismic maximum and significant fringes are more localized than the coseismic ones. The shift and localization of fringe are difficult to understand with an afterslip on deeper extension of coseismic fault plane. There is a slight disturbance in fringes along the Sumatran fault in the coseismic image, although it might be a topographic error. We will continue monitoring crustal deformations in the Sumatra-Andaman subduction zone with GPS and InSAR in order to reveal stress transfer.
NASA Technical Reports Server (NTRS)
Werner, Charles L.; Wegmueller, Urs; Small, David L.; Rosen, Paul A.
1994-01-01
Terrain slopes, which can be measured with Synthetic Aperture Radar (SAR) interferometry either from a height map or from the interferometric phase gradient, were used to calculate the local incidence angle and the correct pixel area. Both are required for correct thematic interpretation of SAR data. The interferometric correlation depends on the pixel area projected on a plane perpendicular to the look vector and requires correction for slope effects. Methods for normalization of the backscatter and interferometric correlation for ERS-1 SAR are presented.
Permanent Scatterer InSAR Analysis and Validation in the Gulf of Corinth.
Elias, Panagiotis; Kontoes, Charalabos; Papoutsis, Ioannis; Kotsis, Ioannis; Marinou, Aggeliki; Paradissis, Dimitris; Sakellariou, Dimitris
2009-01-01
The Permanent Scatterers Interferometric SAR technique (PSInSAR) is a method that accurately estimates the near vertical terrain deformation rates, of the order of ∼1 mm year(-1), overcoming the physical and technical restrictions of classic InSAR. In this paper the method is strengthened by creating a robust processing chain, incorporating PSInSAR analysis together with algorithmic adaptations for Permanent Scatterer Candidates (PSCs) and Permanent Scatterers (PSs) selection. The processing chain, called PerSePHONE, was applied and validated in the geophysically active area of the Gulf of Corinth. The analysis indicated a clear subsidence trend in the north-eastern part of the gulf, with the maximum deformation of ∼2.5 mm year(-1) occurring in the region north of the Gulf of Alkyonides. The validity of the results was assessed against geophysical/geological and geodetic studies conducted in the area, which include continuous seismic profiling data and GPS height measurements. All these observations converge to the same deformation pattern as the one derived by the PSInSAR technique.
Permanent Scatterer InSAR Analysis and Validation in the Gulf of Corinth
Elias, Panagiotis; Kontoes, Charalabos; Papoutsis, Ioannis; Kotsis, Ioannis; Marinou, Aggeliki; Paradissis, Dimitris; Sakellariou, Dimitris
2009-01-01
The Permanent Scatterers Interferometric SAR technique (PSInSAR) is a method that accurately estimates the near vertical terrain deformation rates, of the order of ∼1 mm year-1, overcoming the physical and technical restrictions of classic InSAR. In this paper the method is strengthened by creating a robust processing chain, incorporating PSInSAR analysis together with algorithmic adaptations for Permanent Scatterer Candidates (PSCs) and Permanent Scatterers (PSs) selection. The processing chain, called PerSePHONE, was applied and validated in the geophysically active area of the Gulf of Corinth. The analysis indicated a clear subsidence trend in the north-eastern part of the gulf, with the maximum deformation of ∼2.5 mm year-1 occurring in the region north of the Gulf of Alkyonides. The validity of the results was assessed against geophysical/geological and geodetic studies conducted in the area, which include continuous seismic profiling data and GPS height measurements. All these observations converge to the same deformation pattern as the one derived by the PSInSAR technique. PMID:22389587
Ship Detection from Ocean SAR Image Based on Local Contrast Variance Weighted Information Entropy
Huang, Yulin; Pei, Jifang; Zhang, Qian; Gu, Qin; Yang, Jianyu
2018-01-01
Ship detection from synthetic aperture radar (SAR) images is one of the crucial issues in maritime surveillance. However, due to the varying ocean waves and the strong echo of the sea surface, it is very difficult to detect ships from heterogeneous and strong clutter backgrounds. In this paper, an innovative ship detection method is proposed to effectively distinguish the vessels from complex backgrounds from a SAR image. First, the input SAR image is pre-screened by the maximally-stable extremal region (MSER) method, which can obtain the ship candidate regions with low computational complexity. Then, the proposed local contrast variance weighted information entropy (LCVWIE) is adopted to evaluate the complexity of those candidate regions and the dissimilarity between the candidate regions with their neighborhoods. Finally, the LCVWIE values of the candidate regions are compared with an adaptive threshold to obtain the final detection result. Experimental results based on measured ocean SAR images have shown that the proposed method can obtain stable detection performance both in strong clutter and heterogeneous backgrounds. Meanwhile, it has a low computational complexity compared with some existing detection methods. PMID:29652863
NASA Astrophysics Data System (ADS)
Martínez-Búrdalo, M.; Sanchis, A.; Martín, A.; Villar, R.
2010-02-01
Electronic article surveillance (EAS) devices are widely used in most stores as anti-theft systems. In this work, the compliance with international guidelines in the human exposure to these devices is analysed by using the finite-difference time-domain (FDTD) method. Two sets of high resolution numerical phantoms of different size (REMCOM/Hershey and Virtual Family), simulating adult and child bodies, are exposed to a 10 MHz pass-by panel-type EAS consisting of two overlapping current-carrying coils. Two different relative positions between the EAS and the body (frontal and lateral exposures), which imply the exposure of different parts of the body at different distances, have been considered. In all cases, induced current densities in tissues of the central nervous system and specific absorption rates (SARs) are calculated to be compared with the limits from the guidelines. Results show that induced current densities are lower in the case of adult models as compared with those of children in both lateral and frontal exposures. Maximum SAR values calculated in lateral exposure are significantly lower than those calculated in frontal exposure, where the EAS-body distance is shorter. Nevertheless, in all studied cases, with an EAS driving current of 4 A rms, maximum induced current and SAR values are below basic restrictions.
Martínez-Búrdalo, M; Sanchis, A; Martín, A; Villar, R
2010-02-21
Electronic article surveillance (EAS) devices are widely used in most stores as anti-theft systems. In this work, the compliance with international guidelines in the human exposure to these devices is analysed by using the finite-difference time-domain (FDTD) method. Two sets of high resolution numerical phantoms of different size (REMCOM/Hershey and Virtual Family), simulating adult and child bodies, are exposed to a 10 MHz pass-by panel-type EAS consisting of two overlapping current-carrying coils. Two different relative positions between the EAS and the body (frontal and lateral exposures), which imply the exposure of different parts of the body at different distances, have been considered. In all cases, induced current densities in tissues of the central nervous system and specific absorption rates (SARs) are calculated to be compared with the limits from the guidelines. Results show that induced current densities are lower in the case of adult models as compared with those of children in both lateral and frontal exposures. Maximum SAR values calculated in lateral exposure are significantly lower than those calculated in frontal exposure, where the EAS-body distance is shorter. Nevertheless, in all studied cases, with an EAS driving current of 4 A rms, maximum induced current and SAR values are below basic restrictions.
NASA Technical Reports Server (NTRS)
Lin, Qian; Allebach, Jan P.
1990-01-01
An adaptive vector linear minimum mean-squared error (LMMSE) filter for multichannel images with multiplicative noise is presented. It is shown theoretically that the mean-squared error in the filter output is reduced by making use of the correlation between image bands. The vector and conventional scalar LMMSE filters are applied to a three-band SIR-B SAR, and their performance is compared. Based on a mutliplicative noise model, the per-pel maximum likelihood classifier was derived. The authors extend this to the design of sequential and robust classifiers. These classifiers are also applied to the three-band SIR-B SAR image.
NASA Technical Reports Server (NTRS)
Jeffries, Martin; Morris, Kim; Liston, Glen
1996-01-01
Images taken by the ERS-1 synthetic aperture radar (SAR) were used to identify and to differentiate between the lakes that freeze completely to the bottom and those that do not, on the North Slope, in northwestern Alaska. The ice thickness at the time each lake froze completely is determined with numerical ice growth model that gives a maximum simulated thickness of 2.2 m. A method combining the ERS-1 SAR images and numerical ice growth model was used to determine the ice growth and the water availability in these regions.
Beyond SARS: ethnic community organization's role in public health -- a Toronto experience.
Weizhen Dong
2008-12-01
The SARS outbreak in Toronto was a public health crisis. It was particularly frightening to the Chinese-Canadians, because of the origin of the deadly disease. The Chinese-Canadian community organizations launched various activities to help the Chinese-Canadians as well as other Asian-Canadian communities to fight against SARS and its social side-effects. From launching the SARS Supporting Line, distributing health promotional material, disseminating SARS related information, paying tribute to frontline health workers, and promoting local business, to fundraising for SARS related research; they played an active role in easing the public's anxiety, especially for the Chinese-Canadians in the great Toronto area. The culturally diverse population brought problems as well as solutions. Ethnic groups have expertise in almost all areas, including people with leadership skills. The Toronto Chinese community's experience in combating SARS is a good example. The Chinese-Canadian community organizations' activities during the SARS outbreak demonstrate that ethnic minority organizations can play an important role in public health, especially in a public health crisis, and beyond.
SAR image segmentation using skeleton-based fuzzy clustering
NASA Astrophysics Data System (ADS)
Cao, Yun Yi; Chen, Yan Qiu
2003-06-01
SAR image segmentation can be converted to a clustering problem in which pixels or small patches are grouped together based on local feature information. In this paper, we present a novel framework for segmentation. The segmentation goal is achieved by unsupervised clustering upon characteristic descriptors extracted from local patches. The mixture model of characteristic descriptor, which combines intensity and texture feature, is investigated. The unsupervised algorithm is derived from the recently proposed Skeleton-Based Data Labeling method. Skeletons are constructed as prototypes of clusters to represent arbitrary latent structures in image data. Segmentation using Skeleton-Based Fuzzy Clustering is able to detect the types of surfaces appeared in SAR images automatically without any user input.
Using InSAR to Observe Sinkhole Activity in Central Florida
NASA Astrophysics Data System (ADS)
Oliver-Cabrera, T.; Wdowinski, S.; Kruse, S.; Kiflu, H. G.
2017-12-01
Sinkhole collapse in Florida is a major geologic hazard, threatening human life and causing substantial damage to property. Detecting sinkhole deformation before a collapse is an important but difficult task; most techniques used to monitor sinkholes are spatially constrained to relatively small areas (tens to hundred meters). To overcome this limitation, we use Interferometric Synthetic Aperture Radar (InSAR), which is a very useful technique for detecting localized deformation while covering vast areas. InSAR results show localized deformation at several houses and commercial buildings in different locations along the study sites. We use a subsurface imaging technique, ground penetrating radar, to verify sinkhole existence beneath the observed deforming areas.
Soltani, Nima; Aliroteh, Miaad S; Salam, M Tariqus; Perez Velazquez, Jose Luis; Genov, Roman
2016-08-01
This paper presents a general methodology of inductive power delivery in wireless chronic rodent electrophysiology applications. The focus is on such systems design considerations under the following key constraints: maximum power delivery under the allowable specific absorption rate (SAR), low cost and spatial scalability. The methodology includes inductive coil design considerations within a low-frequency ferrite-core-free power transfer link which includes a scalable coil-array power transmitter floor and a single-coil implanted or worn power receiver. A specific design example is presented that includes the concept of low-SAR cellular single-transmitter-coil powering through dynamic tracking of a magnet-less receiver spatial location. The transmitter coil instantaneous supply current is monitored using a small number of low-cost electronic components. A drop in its value indicates the proximity of the receiver due to the reflected impedance of the latter. Only the transmitter coil nearest to the receiver is activated. Operating at the low frequency of 1.5 MHz, the inductive powering floor delivers a maximum of 15.9 W below the IEEE C95 SAR limit, which is over three times greater than that in other recently reported designs. The power transfer efficiency of 39% and 13% at the nominal and maximum distances of 8 cm and 11 cm, respectively, is maintained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, G.; Meriwether, J.W.; Tepley, C.A.
Thermospheric winds and temperatures were observed from Fritz Peak, Colorado and Calgary, Alberta during the 23 October 1981 Stable Auroral Red Arc (SAR-arc) and aurora event. Ground-based photometer observations during the SAR-arc event allowed the position, 630.0 nm emission rate, and width of the SAR-arc over Fritz Peak to be monitored throughout the night. Data from the DE-2 satellite overflight near 0400UT allowed the structure of the SAR-arc near Fritz Peak and the aurora in Canada to be determined. The measurements made from Fritz Peak Observatory during the early evening hours showed a thermospheric response to heating within the SAR-arcmore » with meridional winds flowing away from the region of maximum heating at velocities less than 50 m s/sup -1/. Later during the night the meridional winds measured over Fritz Peak shifted equatorward. The neutral gas temperature decreased from about 1700/sup 0/K in the early evening to about 1200/sup 0/K) before sunrise.« less
Autofocus algorithm for curvilinear SAR imaging
NASA Astrophysics Data System (ADS)
Bleszynski, E.; Bleszynski, M.; Jaroszewicz, T.
2012-05-01
We describe an approach to autofocusing for large apertures on curved SAR trajectories. It is a phase-gradient type method in which phase corrections compensating trajectory perturbations are estimated not directly from the image itself, but rather on the basis of partial" SAR data { functions of the slow and fast times { recon- structed (by an appropriate forward-projection procedure) from windowed scene patches, of sizes comparable to distances between distinct targets or localized features of the scene. The resulting partial data" can be shown to contain the same information on the phase perturbations as that in the original data, provided the frequencies of the perturbations do not exceed a quantity proportional to the patch size. The algorithm uses as input a sequence of conventional scene images based on moderate-size subapertures constituting the full aperture for which the phase corrections are to be determined. The subaperture images are formed with pixel sizes comparable to the range resolution which, for the optimal subaperture size, should be also approximately equal the cross-range resolution. The method does not restrict the size or shape of the synthetic aperture and can be incorporated in the data collection process in persistent sensing scenarios. The algorithm has been tested on the publicly available set of GOTCHA data, intentionally corrupted by random-walk-type trajectory uctuations (a possible model of errors caused by imprecise inertial navigation system readings) of maximum frequencies compatible with the selected patch size. It was able to eciently remove image corruption for apertures of sizes up to 360 degrees.
NASA Astrophysics Data System (ADS)
Wang, P.; Xing, C.
2018-04-01
In the image plane of GB-SAR, identification of deformation distribution is usually carried out by artificial interpretation. This method requires analysts to have adequate experience of radar imaging and target recognition, otherwise it can easily cause false recognition of deformation target or region. Therefore, it is very meaningful to connect two-dimensional (2D) plane coordinate system with the common three-dimensional (3D) terrain coordinate system. To improve the global accuracy and reliability of the transformation from 2D coordinates of GB-SAR images to local 3D coordinates, and overcome the limitation of traditional similarity transformation parameter estimation method, 3D laser scanning data is used to assist the transformation of GB-SAR image coordinates. A straight line fitting method for calculating horizontal angle was proposed in this paper. After projection into a consistent imaging plane, we can calculate horizontal rotation angle by using the linear characteristics of the structure in radar image and the 3D coordinate system. Aided by external elevation information by 3D laser scanning technology, we completed the matching of point clouds and pixels on the projection plane according to the geometric projection principle of GB-SAR imaging realizing the transformation calculation of GB-SAR image coordinates to local 3D coordinates. Finally, the effectiveness of the method is verified by the GB-SAR deformation monitoring experiment on the high slope of Geheyan dam.
Speckle noise reduction in SAR images ship detection
NASA Astrophysics Data System (ADS)
Yuan, Ji; Wu, Bin; Yuan, Yuan; Huang, Qingqing; Chen, Jingbo; Ren, Lin
2012-09-01
At present, there are two types of method to detect ships in SAR images. One is a direct detection type, detecting ships directly. The other is an indirect detection type. That is, it firstly detects ship wakes, and then seeks ships around wakes. The two types all effect by speckle noise. In order to improve the accuracy of ship detection and get accurate ship and ship wakes parameters, such as ship length, ship width, ship area, the angle of ship wakes and ship outline from SAR images, it is extremely necessary to remove speckle noise in SAR images before data used in various SAR images ship detection. The use of speckle noise reduction filter depends on the specification for a particular application. Some common filters are widely used in speckle noise reduction, such as the mean filter, the median filter, the lee filter, the enhanced lee filter, the Kuan filter, the frost filter, the enhanced frost filter and gamma filter, but these filters represent some disadvantages in SAR image ship detection because of the various types of ship. Therefore, a mathematical function known as the wavelet transform and multi-resolution analysis were used to localize an SAR ocean image into different frequency components or useful subbands, and effectively reduce the speckle in the subbands according to the local statistics within the bands. Finally, the analysis of the statistical results are presented, which demonstrates the advantages and disadvantages of using wavelet shrinkage techniques over standard speckle filters.
Chen, Chuan; Zhang, Xu; Shang, Fei; Sun, Haipeng; Sun, Baolin; Xue, Ting
2015-08-01
Staphylococcus aureus is an important Gram-positive pathogen responsible for numerous diseases ranging from localized skin infections to life-threatening systemic infections. The virulence of S. aureus is essentially determined by a wide spectrum of factors, including cell wall-associated proteins and secreted toxins that are precisely controlled in response to environmental changes. GGDEF domain protein from Staphylococcus (GdpS) is the only conserved staphylococcal GGDEF domain protein that is involved not in c-di-GMP synthesis but in the virulence regulation of S. aureus NCTC8325. Our previous study showed that the inactivation of gdpS generates an extensive change of virulence factors together with, in particular, a major Spa (protein A) surface protein. As reported, sarS is a direct positive regulator of spa. The decreased transcript levels of sarS in the gdpS mutant compared with the parental NCTC8325 strain suggest that gdpS affects spa through interaction with sarS. In this study, site mutation and complementary experiments showed that the translation product of gdpS was not involved in the regulation of transcript levels of sarS. We found that gdpS functioned through direct RNA-RNA base pairing with the 5' untranslated region (5'UTR) of sarS mRNA and that a putative 18-nucleotide region played a significant role in the regulatory process. Furthermore, the mRNA half-life analysis of sarS in the gdpS mutant showed that gdpS positively regulates the mRNA levels of sarS by contributing to the stabilization of sarS mRNA, suggesting that gdpS mRNA may regulate spa expression in an RNA-dependent pathway. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Hall, Dorothy K.; Fagre, Daniel B.; Klasner, Fritz; Linebaugh, Gregg; Liston, Glen E.
1994-01-01
Lakes that freeze each winter are good indicators of regional climate change if key parameters, such as freeze-up and breakup date and maximum ice thickness, are measured over a decade-scale time frame. Synthetic aperture radar (SAR) satellite data have proven to be especially useful for measurement of climatologically significant parameters characteristic of frozen lakes. In this paper, five lakes in Glacier National Park, Montana, have been studied both in the field and using Earth Remote-Sensing Satellite (ERS) 1 SAR data during the 1992-1993 winter. The lakes are characterized by clear ice, sometimes with tubular or rounded bubbles, and often with a layer of snow ice on top of the clear ice. They are also often snow covered. Freeze-up is detected quite easily using ERS 1 SAR data as soon as a thin layer of ice forms. The effect of snow ice on the backscatter is thought to be significant but is, as yet, undetermined. On the five lakes studied, relative backscatter was found to increase with ice thickness until a maximum was reached in February. Breakup, an often ill-defined occurrence, is difficult to detect because surface water causes the SAR signal to be absorbed, thus masking the ice below. Comparison of the bubble structure of thaw lakes in northern Alaska with lakes in northern Montana has shown that the ice structure is quite different, and this difference may contribute to differential SAR signature evolution in the lakes of the two areas.
Benzoylsalicylic acid derivatives as defense activators in tobacco and Arabidopsis.
Kamatham, Samuel; Pallu, Reddanna; Pasupulati, Anil Kumar; Singh, Surya Satyanarayana; Gudipalli, Padmaja
2017-11-01
Systemic acquired resistance (SAR) is a long lasting inducible whole plant immunity often induced by either pathogens or chemical elicitors. Salicylic acid (SA) is a known SAR signal against a broad spectrum of pathogens in plants. In a recent study, we have reported that benzoylsalicylic acid (BzSA) is a SAR inducer in tobacco and Arabidopsis plants. Here, we have synthesized BzSA derivatives using SA and benzoyl chlorides of various moieties as substrates. The chemical structures of BzSA derivatives were elucidated using Infrared spectroscopy (IR), Nuclear magnetic spectroscopy (NMR) and High-resolution mass spectrometer (HRMS) analysis. The bioefficacy of BzSA derivatives in inducing defense response against tobacco mosaic virus (TMV) was investigated in tobacco and SA abolished transgenic NahG Arabidopsis plants. Interestingly, pre-treatment of local leaves of tobacco with BzSA derivatives enhanced the expression of SAR genes such as NPR1 [Non-expressor of pathogenesis-related (PR) genes 1], PR and other defense marker genes (HSR203, SIPK, WIPK) in systemic leaves. Pre-treatment of BzSA derivatives reduced the spread of TMV infection to uninfected areas by restricting lesion number and diameter both in local and systemic leaves of tobacco in a dose-dependent manner. Furthermore, pre-treatment of BzSA derivatives in local leaves of SA deficient Arabidopsis NahG plants induced SAR through AtPR1 and AtPR5 gene expression and reduced leaf necrosis and curling symptoms in systemic leaves as compared to BzSA. These results suggest that BzSA derivatives are potent SAR inducers against TMV in tobacco and Arabidopsis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Microscale temperature and SAR measurements in cell monolayer models exposed to millimeter waves.
Zhadobov, Maxim; Alekseev, Stanislav I; Sauleau, Ronan; Le Page, Yann; Le Dréan, Yves; Fesenko, Evgeny E
2017-01-01
Due to shallow penetration of millimeter waves (MMW) and convection in liquid medium surrounding cells, the problem of accurate assessment of local MMW heating in in vitro experiments remains unsolved. Conventional dosimetric MMW techniques, such as infrared imaging or fiber optic (FO) sensors, face several inherent limits. Here we propose a methodology for accurate local temperature measurement and subsequent specific absorption rate (SAR) retrieval using microscale thermocouples (TC). SAR was retrieved by fitting the measured initial temperature rise to the numerical solution of an equivalent thermal model. It was found that the accuracy of temperature measurement depends on thermosensor size, that is, the smaller TC, the more accurate the temperature measurement. SAR determined using TC with lead diameters of 25 and 75 μm demonstrated 98.5% and 80.4% match with computed SAR, respectively. However, both TC provided the same temperature rises in long run (> 10 min). FO probe failed to measure adequately local heating both for short and long exposures due to the relatively large size of the probe sensor (400 μm) and time constant (0.6 s). Calculated SAR in the cell monolayer was almost two times lower than that in the surrounding liquid. It was shown that the impact of the cell monolayer on heating due to its small thickness (5 to 10 μm) can be considered as negligible. Moreover, we demonstrated the possibility of accurate measurement of MMW-induced thermal pulses (up to 10 °C) using 25 μm TC. Bioelectromagnetics. 38:11-21, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
McIntosh, Robert L; Iskra, Steve; McKenzie, Raymond J; Chambers, John; Metzenthen, Bill; Anderson, Vitas
2008-01-01
A cochlear implant system is a device used to enable hearing in people with severe hearing loss and consists of an internal implant and external speech processor. This study considers the effect of scattered radiofrequency fields when these persons are subject to mobile phone type exposure. A worst-case scenario is considered where the antenna is operating at nominal full power, the speech processor is situated behind the ear using a metallic hook, and the antenna is adjacent to the hook and the internal ball electrode. The resultant energy deposition and thermal changes were determined through numerical modelling. With a 900 MHz half-wave dipole antenna producing continuous-wave (CW) 250 mW power, the maximum 10 g averaged SAR was 1.31 W/kg which occurred in the vicinity of the hook and the ball electrode. The maximum temperature increase was 0.33 degrees C in skin adjacent to the hook. For the 1800 MHz antenna, operating at 125 mW, the maximum 10 g averaged SAR was 0.93 W/kg in the pinna whilst the maximum temperature change was 0.16 degrees C. The analysis predicts that the wearer complies with the radiofrequency safety limits specified by the International Commission on Non-Ionizing Radiation Protection (ICNIRP), the Institute of Electrical and Electronics Engineers (IEEE), and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) for 900 and 1800 MHz mobile phone type exposure and thus raises no cause for concern. The resultant temperature increase is well below the maximum rise of 1 degrees C recommended by ICNIRP. Effects in the cochlea were insignificant. (c) 2007 Wiley-Liss, Inc.
Fast iterative censoring CFAR algorithm for ship detection from SAR images
NASA Astrophysics Data System (ADS)
Gu, Dandan; Yue, Hui; Zhang, Yuan; Gao, Pengcheng
2017-11-01
Ship detection is one of the essential techniques for ship recognition from synthetic aperture radar (SAR) images. This paper presents a fast iterative detection procedure to eliminate the influence of target returns on the estimation of local sea clutter distributions for constant false alarm rate (CFAR) detectors. A fast block detector is first employed to extract potential target sub-images; and then, an iterative censoring CFAR algorithm is used to detect ship candidates from each target blocks adaptively and efficiently, where parallel detection is available, and statistical parameters of G0 distribution fitting local sea clutter well can be quickly estimated based on an integral image operator. Experimental results of TerraSAR-X images demonstrate the effectiveness of the proposed technique.
Natural Environment Characterization Using Hybrid Tomographic Aproaches
NASA Astrophysics Data System (ADS)
Huang, Yue; Ferro-Famil, Laurent; Reigber, Andreas
2011-03-01
SAR tomography (SARTOM) is the extension of conventional two-dimensional SAR imaging principle to three dimensions [1]. A real 3D imaging of a scene is achieved by the formation of an additional synthetic aperture in elevation and the coherent combination of images acquired from several parallel flight tracks. This imaging technique allows a direct localization of multiple scattering contributions in a same resolution cell, leading to a refined analysis of volume structures, like forests or dense urban areas. In order to improve the vertical resolution with respect to classical Fourier-based methods, High-Resolution (HR) approaches are used in this paper to perform SAR tomography. Both nonparametric spectral estimators, like Beamforming and Capon and parametric ones, like MUSIC, Maximum Likelihood, are applied to real data sets and compared in terms of scatterer location accuracy and resolution. It is known that nonparametric approaches are in general more robust to focusing artefacts, whereas parametric approaches are characterized by a better vertical resolution. It has been shown [2], [3] that the performance of these spectral analysis approaches is conditioned by the nature of the scattering response of the observed objects. In the scenario of hybrid environments where objects with a deterministic response are embedded in a speckle affected environment, the parameter estimation for this type of scatterers becomes a problem of mixed-spectrum estimation. The impenetrable medium like the ground or object, possesses an isolated localized phase center in the vertical direction, leading to a discrete (line) spectrum. This type of scatterers can be considered as 'h-localized', named 'Isolated Scatterers' (IS). Whereas natural environments consist of a large number of elementary scatterers successively distributed in the vertical direction. This type of scatterers can be described as 'h-distributed' scatterers and characterized by a continuous spectrum. Therefore, the usual spectral estimators may reach some limitations due to their lack of adaptation to both the statistical features of the backscattered information and the type of spectrum of the considered media. In order to overcome this problem, a tomographic focusing approach based on hybrid spectral estimators is introduced and extended to the polarimetric case. It contains two parallel procedures: one is to detect and localize isolated scatterers and the other one is to characterize the natural environment by estimating the heights of the ground and the tree top. These two decoupled procedures permit to more precisely characterize the scenario of hybrid environments.
NASA Astrophysics Data System (ADS)
Milillo, Pietro; Tapete, Deodato; Cigna, Francesca; Perissin, Daniele; Salzer, Jacqueline; Lundgren, Paul; Fielding, Eric; Burgmann, Roland; Biondi, Filippo; Milillo, Giovanni; Serio, Carmine
2016-10-01
Structural health monitoring (SHM) of engineered structures consists of an automated or semi-automated survey system that seeks to assess the structural condition of an anthropogenic structure. The aim of an SHM system is to provide insights into possible induced damage or any inherent signals of deformation affecting the structure in terms of detection, localization, assessment, and prediction. During the last decade there has been a growing interest in using several remote sensing techniques, such as synthetic aperture radar (SAR), for SHM. Constellations of SAR satellites with short repeat time acquisitions permit detailed surveys temporal resolution and millimetric sensitivity to deformation that are at the scales relevant to monitoring large structures. The all-weather multi-temporal characteristics of SAR make its products suitable for SHM systems, especially in areas where in situ measurements are not feasible or not cost effective. To illustrate this capability, we present results from COSMO-SkyMed (CSK) and TerraSAR-X SAR observations applied to the remote sensing of engineered structures. We show how by using multiple-geometry SAR-based products which exploit both phase and amplitude of the SAR signal we can address the main objectives of an SHM system including detection and localization. We highlight that, when external data such as rain or temperature records are available or simple elastic models can be assumed, the SAR-based SHM capability can also provide an interpretation in terms of assessment and prediction. We highlight examples of the potential for such imaging capabilities to enable advances in SHM from space, focusing on dams and cultural heritage areas.
Wittek, Finni; Hoffmann, Thomas; Kanawati, Basem; Bichlmeier, Marlies; Knappe, Claudia; Wenig, Marion; Schmitt-Kopplin, Philippe; Parker, Jane E; Schwab, Wilfried; Vlot, A Corina
2014-11-01
Systemic acquired resistance (SAR) is a form of inducible disease resistance that depends on salicylic acid and its upstream regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). Although local Arabidopsis thaliana defence responses activated by the Pseudomonas syringae effector protein AvrRpm1 are intact in eds1 mutant plants, SAR signal generation is abolished. Here, the SAR-specific phenotype of the eds1 mutant is utilized to identify metabolites that contribute to SAR. To this end, SAR bioassay-assisted fractionation of extracts from the wild type compared with eds1 mutant plants that conditionally express AvrRpm1 was performed. Using high-performance liquid chromatography followed by mass spectrometry, systemic immunity was associated with the accumulation of 60 metabolites, including the putative SAR signal azelaic acid (AzA) and its precursors 9-hydroperoxy octadecadienoic acid (9-HPOD) and 9-oxo nonanoic acid (ONA). Exogenous ONA induced SAR in systemic untreated leaves when applied at a 4-fold lower concentration than AzA. The data suggest that in planta oxidation of ONA to AzA might be partially responsible for this response and provide further evidence that AzA mobilizes Arabidopsis immunity in a concentration-dependent manner. The AzA fragmentation product pimelic acid did not induce SAR. The results link the C9 lipid peroxidation products ONA and AzA with systemic rather than local resistance and suggest that EDS1 directly or indirectly promotes the accumulation of ONA, AzA, or one or more of their common precursors possibly by activating one or more pathways that either result in the release of these compounds from galactolipids or promote lipid peroxidation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Wittek, Finni; Hoffmann, Thomas; Kanawati, Basem; Bichlmeier, Marlies; Knappe, Claudia; Wenig, Marion; Schmitt-Kopplin, Philippe; Parker, Jane E.; Schwab, Wilfried; Vlot, A. Corina
2014-01-01
Systemic acquired resistance (SAR) is a form of inducible disease resistance that depends on salicylic acid and its upstream regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). Although local Arabidopsis thaliana defence responses activated by the Pseudomonas syringae effector protein AvrRpm1 are intact in eds1 mutant plants, SAR signal generation is abolished. Here, the SAR-specific phenotype of the eds1 mutant is utilized to identify metabolites that contribute to SAR. To this end, SAR bioassay-assisted fractionation of extracts from the wild type compared with eds1 mutant plants that conditionally express AvrRpm1 was performed. Using high-performance liquid chromatography followed by mass spectrometry, systemic immunity was associated with the accumulation of 60 metabolites, including the putative SAR signal azelaic acid (AzA) and its precursors 9-hydroperoxy octadecadienoic acid (9-HPOD) and 9-oxo nonanoic acid (ONA). Exogenous ONA induced SAR in systemic untreated leaves when applied at a 4-fold lower concentration than AzA. The data suggest that in planta oxidation of ONA to AzA might be partially responsible for this response and provide further evidence that AzA mobilizes Arabidopsis immunity in a concentration-dependent manner. The AzA fragmentation product pimelic acid did not induce SAR. The results link the C9 lipid peroxidation products ONA and AzA with systemic rather than local resistance and suggest that EDS1 directly or indirectly promotes the accumulation of ONA, AzA, or one or more of their common precursors possibly by activating one or more pathways that either result in the release of these compounds from galactolipids or promote lipid peroxidation. PMID:25114016
NASA Astrophysics Data System (ADS)
Cavalié, O.; Chlieh, M.; Villegas Lanza, J. C.
2016-12-01
Subduction zone are particularly prone to generating large earthquakes due to its wide lateral extension. In order to understand where, and possibly when, large earthquakes will occur, interseismic deformation observation is a key information because it allows to map asperities that accumulate stress on the plate interface. South American subduction is one of the longest worldwide, running all along the west coast of the continent. Combined with the relatively fast convergence rate between the Nazca plate and the South American continent, Chile and Peru experience regularly M>7.5 earthquakes. In this study, we focused on the Peruvian subduction margin and more precisely on the Central segment containing Lima where the seismic risk is the highest in the country due the large population that lives in the Peruvian capital. On the Central segment (10°S and 15°S), we used over 50 GPS interseismic measurements from campaign and continuous sites, as well as InSAR data to map coupling along the subduction interface. GPS data come from the Peruvian GPS network and InSAR data are from the Envisat satellite. We selected two tracks covering the central segment (including Lima) and with enough SAR image acquisitions between 2003 and 2010 to get a robust deformation estimation. GPS and InSAR data show a consistent tectonic signal with a maximum of surface displacement by the coast: the maximum horizontal velocities from GPS is about 20 mm and InSAR finds 12-13 mm in the LOS component. In addition, InSAR reveals lateral variations along the coast: the maximum motion is measured around Lima (11°S) and fades on either side. By inverting the geodetic data, we were able to map the coupling along the segment. It results in a main asperity where interseismic stress is loading. However, compared the previous published models based on GPS only, the coupling in the central segment seems more heterogeneous. Finally, we compared the deficit of seismic moment accumulating in the interseismic period with the long-term seismicity. Based on the instrumental and historical seismicity, and the present seismic coupling, a M>8.8 earthquake is expected before the end of the century. However, the actual magnitude relies on how much aseismic slip, that has not been measured during the geodesy period (i.e since 2003) occurred.
NASA Astrophysics Data System (ADS)
Cavalié, O.; Chlieh, M.; Villegas Lanza, J. C.
2017-12-01
Subduction zone are particularly prone to generating large earthquakes due to its wide lateral extension. In order to understand where, and possibly when, large earthquakes will occur, interseismic deformation observation is a key information because it allows to map asperities that accumulate stress on the plate interface. South American subduction is one of the longest worldwide, running all along the west coast of the continent. Combined with the relatively fast convergence rate between the Nazca plate and the South American continent, Chile and Peru experience regularly M>7.5 earthquakes. In this study, we focused on the Peruvian subduction margin and more precisely on the Central segment containing Lima where the seismic risk is the highest in the country due the large population that lives in the Peruvian capital. On the Central segment (10°S and 15°S), we used over 50 GPS interseismic measurements from campaign and continuous sites, as well as InSAR data to map coupling along the subduction interface. GPS data come from the Peruvian GPS network and InSAR data are from the Envisat satellite. We selected two tracks covering the central segment (including Lima) and with enough SAR image acquisitions between 2003 and 2010 to get a robust deformation estimation. GPS and InSAR data show a consistent tectonic signal with a maximum of surface displacement by the coast: the maximum horizontal velocities from GPS is about 20 mm and InSAR finds 12-13 mm in the LOS component. In addition, InSAR reveals lateral variations along the coast: the maximum motion is measured around Lima (11°S) and fades on either side. By inverting the geodetic data, we were able to map the coupling along the segment. It results in a main asperity where interseismic stress is loading. However, compared the previous published models based on GPS only, the coupling in the central segment seems more heterogeneous. Finally, we compared the deficit of seismic moment accumulating in the interseismic period with the long-term seismicity. Based on the instrumental and historical seismicity, and the present seismic coupling, a M>8.8 earthquake is expected before the end of the century. However, the actual magnitude relies on how much aseismic slip, that has not been measured during the geodesy period (i.e since 2003) occurred.
The 2010 slow slip event and secular motion at Kilauea, Hawai`i inferred from TerraSAR-X InSAR data
Chen, Jingyi; Zebker, Howard A.; Segall, Paul; Miklius, Asta
2014-01-01
We present here an Small BAseline Subset (SBAS) algorithm to extract both transient and secular ground deformations on the order of millimeters in the presence of tropospheric noise on the order of centimeters, when the transient is of short duration and known time, and the background deformation is smooth in time. We applied this algorithm to study the 2010 slow slip event as well as the secular motion of Kīlauea's south flank using 49 TerraSAR-X images. We also estimate the tropospheric delay variation relative to a given reference pixel using an InSAR SBAS approach. We compare the InSAR SBAS solution for both ground deformation and tropospheric delays with existing GPS measurements and confirm that the ground deformation signal andtropospheric noise in InSAR data are successfully separated. We observe that the coastal region on the south side of the Hilina Pali moves at a higher background rate than the region north side of the Pali. We also conclude that the 2010 SSE displacement is mainly horizontal and the maximum magnitude of the 2010 SSE vertical component is less than 5 mm.
NASA Astrophysics Data System (ADS)
Alzeyadi, Ahmed; Yu, Tzuyang
2018-03-01
Nondestructive evaluation (NDE) is an indispensable approach for the sustainability of critical civil infrastructure systems such as bridges and buildings. Recently, microwave/radar sensors are widely used for assessing the condition of concrete structures. Among existing imaging techniques in microwave/radar sensors, synthetic aperture radar (SAR) imaging enables researchers to conduct surface and subsurface inspection of concrete structures in the range-cross-range representation of SAR images. The objective of this paper is to investigate the range effect of concrete specimens in SAR images at various ranges (15 cm, 50 cm, 75 cm, 100 cm, and 200 cm). One concrete panel specimen (water-to-cement ratio = 0.45) of 30-cm-by-30-cm-by-5-cm was manufactured and scanned by a 10 GHz SAR imaging radar sensor inside an anechoic chamber. Scatterers in SAR images representing two corners of the concrete panel were used to estimate the width of the panel. It was found that the range-dependent pattern of corner scatters can be used to predict the width of concrete panels. Also, the maximum SAR amplitude decreases when the range increases. An empirical model was also proposed for width estimation of concrete panels.
Metaproteome of the viral concentrates from the deep chlorophyll maximum of the South China Sea
NASA Astrophysics Data System (ADS)
Xie, Zhang-Xian; Chen, Feng; Zhang, Shu-Feng; Wang, Ming-Hua; Zhang, Hao; Kong, Ling-Fen; Dai, Min-Han; Hong, Hua-Sheng; Lin, Lin; Wang, Da-Zhi
2016-04-01
Viral concentrates (VCs) have been commonly used for studying viral diversity, viral metagenomics and virus-host interactions in the natural ecosystem. However, the protein characteristics of VCs have not been explored. Here, we applied shotgun proteomics to characterize the proteins of VCs collected from the oligotrophic deep chlorophyll maximum of the South China Sea. We found that 34% of the identified proteins were assigned to the viruses, mainly being those of SAR11 related bacteria, cyanobacteria and picophytoeukaryotes. The remaining 66% were non-viral proteins mostly originating from diverse bacteria, such as SAR324, SAR11 and the Alteromonadales, and were functionally dominated by transport, translation, sulfur metabolism and one-carbon metabolism. Among the non-viral proteins, 28% were extracellular proteins and 10% were identified exclusively in the VCs, suggesting that non-viral entities might exist in the VCs. This study demonstrated that metaproteomics provides a valuable avenue to explore not only the diversity and structure of a viral community but also the novel ecological functions affiliated with microbes in the natural environment.
SARS Surveillance during Emergency Public Health Response, United States, March–July 2003
Brooks, John T.; Van Beneden, Chris; Parashar, Umesh D.; Griffin, Patricia M.; Anderson, Larry J.; Bellini, William J.; Benson, Robert F.; Erdman, Dean D.; Klimov, Alexander; Ksiazek, Thomas G.; Peret, Teresa C.T.; Talkington, Deborah F.; Thacker, W. Lanier; Tondella, Maria L.; Sampson, Jacquelyn S.; Hightower, Allen W.; Nordenberg, Dale F.; Plikaytis, Brian D.; Khan, Ali S.; Rosenstein, Nancy E.; Treadwell, Tracee A.; Whitney, Cynthia G.; Fiore, Anthony E.; Durant, Tonji M.; Perz, Joseph F.; Wasley, Annemarie; Feikin, Daniel; Herndon, Joy L.; Bower, William A.; Kilbourn, Barbara W.; Levy, Deborah A.; Coronado, Victor G.; Buffington, Joanna; Dykewicz, Clare A.; Khabbaz, Rima F.; Chamberland, Mary E.
2004-01-01
In response to the emergence of severe acute respiratory syndrome (SARS), the United States established national surveillance using a sensitive case definition incorporating clinical, epidemiologic, and laboratory criteria. Of 1,460 unexplained respiratory illnesses reported by state and local health departments to the Centers for Disease Control and Prevention from March 17 to July 30, 2003, a total of 398 (27%) met clinical and epidemiologic SARS case criteria. Of these, 72 (18%) were probable cases with radiographic evidence of pneumonia. Eight (2%) were laboratory-confirmed SARS-coronavirus (SARS-CoV) infections, 206 (52%) were SARS-CoV negative, and 184 (46%) had undetermined SARS-CoV status because of missing convalescent-phase serum specimens. Thirty-one percent (124/398) of case-patients were hospitalized; none died. Travel was the most common epidemiologic link (329/398, 83%), and mainland China was the affected area most commonly visited. One case of possible household transmission was reported, and no laboratory-confirmed infections occurred among healthcare workers. Successes and limitations of this emergency surveillance can guide preparations for future outbreaks of SARS or respiratory diseases of unknown etiology. PMID:15030681
Bakker, J F; Paulides, M M; Neufeld, E; Christ, A; Kuster, N; van Rhoon, G C
2011-08-07
To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels. Restrictions on induced whole-body-averaged specific absorption rate (SAR(wb)) are provided to keep the whole-body temperature increase (T(body, incr)) under 1 °C during 30 min. Additional restrictions on the peak 10 g spatial-averaged SAR (SAR(10g)) are provided to prevent excessive localized tissue heating. The objective of this study is to assess the localized peak temperature increase (T(incr, max)) in children upon exposure at the reference levels. Finite-difference time-domain modeling was used to calculate T(incr, max) in six children and two adults exposed to orthogonal plane-wave configurations. We performed a sensitivity study and Monte Carlo analysis to assess the uncertainty of the results. Considering the uncertainties in the model parameters, we found that a peak temperature increase as high as 1 °C can occur for worst-case scenarios at the ICNIRP reference levels. Since the guidelines are deduced from temperature increase, we used T(incr, max) as being a better metric to prevent excessive localized tissue heating instead of localized peak SAR. However, we note that the exposure time should also be considered in future guidelines. Hence, we advise defining limits on T(incr, max) for specified durations of exposure.
Design of Miniaturized Double-Negative Material for Specific Absorption Rate Reduction in Human Head
Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2014-01-01
In this study, a double-negative triangular metamaterial (TMM) structure, which exhibits a resounding electric response at microwave frequency, was developed by etching two concentric triangular rings of conducting materials. A finite-difference time-domain method in conjunction with the lossy-Drude model was used in this study. Simulations were performed using the CST Microwave Studio. The specific absorption rate (SAR) reduction technique is discussed, and the effects of the position of attachment, the distance, and the size of the metamaterials on the SAR reduction are explored. The performance of the double-negative TMMs in cellular phones was also measured in the cheek and the tilted positions using the COMOSAR system. The TMMs achieved a 52.28% reduction for the 10 g SAR. These results provide a guideline to determine the triangular design of metamaterials with the maximum SAR reducing effect for a mobile phone. PMID:25350398
Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2014-01-01
In this study, a double-negative triangular metamaterial (TMM) structure, which exhibits a resounding electric response at microwave frequency, was developed by etching two concentric triangular rings of conducting materials. A finite-difference time-domain method in conjunction with the lossy-Drude model was used in this study. Simulations were performed using the CST Microwave Studio. The specific absorption rate (SAR) reduction technique is discussed, and the effects of the position of attachment, the distance, and the size of the metamaterials on the SAR reduction are explored. The performance of the double-negative TMMs in cellular phones was also measured in the cheek and the tilted positions using the COMOSAR system. The TMMs achieved a 52.28% reduction for the 10 g SAR. These results provide a guideline to determine the triangular design of metamaterials with the maximum SAR reducing effect for a mobile phone.
InSAR Measurements of Non-Tectonic Deformation Patterns in the Western Transverse Ranges, CA
NASA Astrophysics Data System (ADS)
Phillips, J. R., III; Marshall, S. T.; Funning, G.
2014-12-01
We present results from analysis of twenty-two scenes from the Envisat satellite dated between February 2005 and September 2010 along track 213 frames 2907 and 2925 in the Western Transverse Ranges, CA. Persistent Scatterer InSAR (PSI) analysis of interferograms was performed using the StaMPS software package resulting in approximately 2 million PSI points with their associated line-of-sight velocities and time series. These data outline several zones of anthropogenic motion likely due to groundwater usage and oil extraction. We identify two instances of highly localized subsidence due to oil extraction: one of up to 6 mm/yr across a 3x5 km wide oval-shaped zone along the Ventura Ave anticline and another of up to 12 mm/yr across a 3x15 km region near Maricopa. Both of these features are observed in regions of known oil extraction, and the subsidence zones parallel the local fold axes, suggesting that these observed features are real and not merely a product of noise. We also observe several features potentially related to groundwater extraction. The groundwater-related signals tend to be less localized than the oil extraction signals and typically are centered around urban or agricultural areas. The PSI data show a broad zone of subsidence in the greater Oxnard region (10 mm/yr maximum), and more localized zones of subsidence centered in the cities of Carpenteria (4 mm/yr), Ojai (4 mm/yr), and Santa Clarita (5 mm/yr). Several additional regions of potentially anthropogenic motion are also present in the PSI data to which the root cause is unclear. For example, we observe localized uplift of 5 mm/yr centered in the Stevenson Ranch housing development, 8 mm/yr of subsidence centered about 5 km NW of Moorpark near a large agricultural nursery, and a potentially tectonic broad pattern of 4 mm/yr of uplift in the mountains of Los Padres National Forest near Frasier Mountain.
NASA Astrophysics Data System (ADS)
Chen, Jingyi; Knight, Rosemary; Zebker, Howard A.; Schreüder, Willem A.
2016-05-01
Interferometric Synthetic Aperture Radar (InSAR), a remote sensing technique for measuring centimeter-level surface deformation, is used to estimate hydraulic head in the confined aquifer of the San Luis Valley (SLV), Colorado. Reconstructing head measurements from InSAR in agricultural regions can be difficult, as InSAR phase data are often decorrelated due to vegetation growth. Analysis of 17 L-band ALOS PALSAR scenes, acquired between January 2007 and March 2011, demonstrates that comprehensive InSAR deformation measurements can be recovered over the vegetated groundwater basin with an improved processing strategy. Local skeletal storage coefficients and time delays between the head change and deformation are estimated through a joint InSAR-well data analysis. InSAR subsidence estimates are transformed to head changes with finer temporal and spatial resolution than is possible using existing well records alone. Both InSAR and well data suggest that little long-term water-storage loss occurred in the SLV over the study period and that inelastic compaction was negligible. The seasonal head variations derived from InSAR are consistent with the existing well data at most locations where confined aquifer pumping activity dominates. Our results demonstrate the advantages of InSAR measurements for basin-wide characterization of aquifer storage properties and groundwater levels over agricultural regions.
Low cost realization of space-borne synthectic aperture radar - MicroSAR
NASA Astrophysics Data System (ADS)
Carter, D.; Hall, C.
Spaceborne Earth Observation data has been used for decades in the areas of meteorology and optical imaging. The systems and satellites have, in the main, been owned and operated by a few government institutions and agencies. More recently industrial organizations in North America have joined the list. Few of these, however, include Synthetic Aperture Radar (SAR)., although the additional utility in terms of all weather, 24 hour measurement capability over the Earth's surface is well recognized. Three major factors explain this:1) Relationships between the SAR measurements of radar backscatter and images to the specific information needs have not been seen as sufficiently well understood or robust2) Availability of suitable sources, at the relevant performance and data quality have been inadequate to provide service assurance that is necessary to sustain commercial businesses3) Costs associated with building, launching and operating spaceborne SAR have not been low enough as to achieve an acceptable return of investment. A significant amount of research and development has been undertaken throughout the World to establish reliable and robust algorithms for information extraction from SAR data. Much of this work has been carried out utilizing airborne systems over localized and carefully controlled regions. In addition, an increasing number of pilot services have been offered by geo-information providers. This has allowed customer confidence to grow. With the status of spaceborne SAR being effectively in the development phase, commercial funding has been scarce, and there has been need to rely on government and institutional budgets. Today the increasing maturity of the technology of SAR and its applications is beginning to attract the commercial sector. This is the funding necessary to realize sufficient assets to be able to provide a robust supply of SAR data to the geo-information providers and subsequently a reliable service to customers. Reducing the costs associated with implementing spaceborne SAR systems is an aspect of work that has been addressed over the past decade by the main S RA system expert companies. As the experimental systems have been realized and understood, so there has been a move to transfer these systems from the research and scientific domains into operational and commercial implementations. The end of the cold war, combined with the ever increasingly competitive telecommunications market, have assisted in driving down the launch costs, a significant cost element in any space system budget. To take maximum benefit from this it is still necessary to be able to make light weight satellites, in the region of 450 Kgs or less. Typically SAR satellites have been in the neighbourhood of 1.5 to 2.5 Tonnes. In order to achieve the low cost systems, not only the satellite mass needs to be tackled but also several other factors:- Design complexity- Production costs- Performance- Calibration and verification A novel approach has been established to address all of these factors. Developments are already in progress to prove the approach and that the low costs are achievable. This is called MicroSAR. This paper starts with an overview of the market status. A description of the MicroSAR system, its developments, calibration philosophy, trade-offs carried out, its performance envelope and an outline of the steps taken to achieve a low cost Synthetic Aperture Radar system are then presented.
NASA Astrophysics Data System (ADS)
Dutta, R.; Harrington, J.; Wang, T.; Feng, G.; Vasyura-Bathke, H.; Jonsson, S.
2017-12-01
Interferometric Synthetic Aperture Radar (InSAR) measurements allow us to study various mechanical and rheological properties around faults. For example, strain localizations along faults induced by nearby earthquakes observed by InSAR have been explained by the elastic response of compliant fault zones (CFZ) where the elastic moduli is reduced with respect to that of the surrounding rock. We observed similar strain localizations (up to 1-3 cm displacements in the line-of-sight direction of InSAR) along several conjugate faults near the rupture of the 2013 Mw7.7 Baluchistan (Pakistan) earthquake in the accretionary prism of the Makran subduction zone. These conjugate compliant faults, which have strikes of N30°E and N45°W, are located 15-30 km from the mainshock fault rupture in a N-S compressional stress regime. The long-term geologic slip direction of these faults is left-lateral for the N30°E striking faults and right-lateral for the N45°W striking faults. The 2013 Baluchistan earthquake caused WSW-ENE extensional coseismic stress changes across the conjugate fault system and the observed strain localizations shows opposite sense of motion to that of the geologic long-term slip. We use 3D Finite Element modeling (FEM) to study the effects extensional coseismic stresses have on the conjugate CFZs that is otherwise loaded in a compressional regional stress. We use coseismic static displacements due to the earthquake along the FEM domain boundaries to simulate the extensional coseismic stress change acting across the fault system. Around 0.5-2 km wide CFZs with reduction in shear modulus by a factor of 3 to 4 can explain the observed InSAR strain localizations and the opposite sense of motion. The InSAR measurements were also used to constrain the ranges of the length, width and rigidity variations of the CFZs. The FEM solution shows that the N45°W striking faults localize mostly extensional strain and a small amount of left-lateral shear (opposite sense to the geologic motion), whereas the N30°E striking faults localize mostly right-lateral shear (opposite sense) and a small amount of extensional strain. Similar results were found for CFZs near the 1992 Landers and the 1999 Hector Mine earthquakes in California, although here the strain localizations occur on a more complex conjugate sets of faults.
NASA Astrophysics Data System (ADS)
Graniczny, Marek; Przylucka, Maria; Kowalski, Zbigniew
2016-08-01
Subsidence hazard and risk within the USCB are usually connected with the deep coal mining. In such cases, the surface becomes pitted with numerous collapse cavities or basins which depth may even reach tens of meters. The subsidence is particularly dangerous because of causing severe damage to gas and water pipelines, electric cables, and to sewage disposal systems. The PGI has performed various analysis of InSAR data in this area, including all three SAR bands (X, C and L) processed by DInSAR, PSInSAR and SqueeSAR techniques. These analyses of both conventional and advanced DInSAR approaches have proven to be effective to detect the extent and the magnitude of mining subsidence impact on urban areas. In this study an analysis of two series of subsequent differential interferograms obtained in the DInSAR technique are presented. SAR scenes are covering two periods and were acquired by two different satellites: ALOS-P ALSAR data from 22/02/2007- 27/05/2008 and TerraSAR-X data from 05/07/2011-21/06/2012. The analysis included determination of the direction and development of subsidence movement in relation to the mining front and statistic comparison between range and value of maximum subsidence detected for each mining area. Detailed studies were performed for Bobrek-Centrum mining area. They included comparison of mining fronts and location of the extracted coal seams with the observed subsidence on ALOS-P ALSAR InSAR interferograms. The data can help in estimation not only the range of the subsidence events, but also its value, direction of changes and character of the motion.
NASA Astrophysics Data System (ADS)
Mirzaee, S.; Motagh, M.; Akbari, B.; Wetzel, H. U.; Roessner, S.
2017-05-01
Masouleh is one of the ancient cities located in a high mountainous area in Gilan province of northern Iran. The region is threatened by a hazardous landslide, which was last activated in 1998, causing 32 dead and 45 injured. Significant temporal decorrelation caused by dense vegetation coverage within the landslide area makes the use of Synthetic Aperture Radar Interferometry (InSAR) for monitoring landslide movement very challenging. In this paper, we investigate the capability of three InSAR time-series techniques for evaluating creep motion on Masouleh landslide. The techniques are Persistent Scatterer Interferometry (PSI), Small BAseline Subset (SBAS) and SqueeSAR. The analysis is done using a dataset of 33 TerraSAR-X images in SpotLight (SL) mode covering a period of 15 months between June 2015 and September 2016. Results show the distinguished capability of SqueeSAR method in comparison to 2 other techniques for assessing landslide movement. The final number of scatterers in the landslide body detected by PSI and SBAS are about 70 and 120 respectively while this increases to about 345 in SqueeSAR. The coherence of interferograms improved by about 37% for SqueeSAR as compared to SBAS. The same rate of displacement was observed in those regions where all the methods were able to detect scatterers. Maximum rates of displacement detected by SqueeSAR technique in the northern edge, older and younger part of the landslide body are about -39, -65 and -22 mm/y, respectively.
Van de Kamer, J B; Lagendijk, J J W
2002-05-21
SAR distributions in a healthy female adult head as a result of a radiating vertical dipole antenna (frequency 915 MHz) representing a hand-held mobile phone have been computed for three different resolutions: 2 mm, 1 mm and 0.4 mm. The extremely high resolution of 0.4 mm was obtained with our quasistatic zooming technique, which is briefly described in this paper. For an effectively transmitted power of 0.25 W, the maximum averaged SAR values in both cubic- and arbitrary-shaped volumes are, respectively, about 1.72 and 2.55 W kg(-1) for 1 g and 0.98 and 1.73 W kg(-1) for 10 g of tissue. These numbers do not vary much (<8%) for the different resolutions, indicating that SAR computations at a resolution of 2 mm are sufficiently accurate to describe the large-scale distribution. However, considering the detailed SAR pattern in the head, large differences may occur if high-resolution computations are performed rather than low-resolution ones. These deviations are caused by both increased modelling accuracy and improved anatomical description in higher resolution simulations. For example, the SAR profile across a boundary between tissues with high dielectric contrast is much more accurately described at higher resolutions. Furthermore, low-resolution dielectric geometries may suffer from loss of anatomical detail, which greatly affects small-scale SAR distributions. Thus. for strongly inhomogeneous regions high-resolution SAR modelling is an absolute necessity.
Mobile phone types and SAR characteristics of the human brain.
Lee, Ae-Kyoung; Hong, Seon-Eui; Kwon, Jong-Hwa; Choi, Hyung-Do; Cardis, Elisabeth
2017-04-07
Mobile phones differ in terms of their operating frequency, outer shape, and form and location of the antennae, all of which affect the spatial distributions of their electromagnetic field and the level of electromagnetic absorption in the human head or brain. For this paper, the specific absorption rate (SAR) was calculated for four anatomical head models at different ages using 11 numerical phone models of different shapes and antenna configurations. The 11 models represent phone types accounting for around 86% of the approximately 1400 commercial phone models released into the Korean market since 2002. Seven of the phone models selected have an internal dual-band antenna, and the remaining four possess an external antenna. Each model was intended to generate an average absorption level equivalent to that of the same type of commercial phone model operating at the maximum available output power. The 1 g peak spatial SAR and ipsilateral and contralateral brain-averaged SARs were reported for all 11 phone models. The effects of the phone type, phone position, operating frequency, and age of head models on the brain SAR were comprehensively determined.
Mobile phone types and SAR characteristics of the human brain
NASA Astrophysics Data System (ADS)
Lee, Ae-Kyoung; Hong, Seon-Eui; Kwon, Jong-Hwa; Choi, Hyung-Do; Cardis, Elisabeth
2017-04-01
Mobile phones differ in terms of their operating frequency, outer shape, and form and location of the antennae, all of which affect the spatial distributions of their electromagnetic field and the level of electromagnetic absorption in the human head or brain. For this paper, the specific absorption rate (SAR) was calculated for four anatomical head models at different ages using 11 numerical phone models of different shapes and antenna configurations. The 11 models represent phone types accounting for around 86% of the approximately 1400 commercial phone models released into the Korean market since 2002. Seven of the phone models selected have an internal dual-band antenna, and the remaining four possess an external antenna. Each model was intended to generate an average absorption level equivalent to that of the same type of commercial phone model operating at the maximum available output power. The 1 g peak spatial SAR and ipsilateral and contralateral brain-averaged SARs were reported for all 11 phone models. The effects of the phone type, phone position, operating frequency, and age of head models on the brain SAR were comprehensively determined.
Impulse Response Shaping for Ultra Wide Band SAR in a Circular Flight Path
NASA Technical Reports Server (NTRS)
Jin, Michael Y.
1996-01-01
An ultra wide band SAR (synthetic aperture radar) has potential applications on imaging underground objects. Flying this SAR in a circular flight path is an efficient way to acquire high resolution images from a localized area. This paper characterizes the impulse response of sucha system. The results indicate that to achieve an image with a more uniformed resolution over the entire imaged area, proper weighting coeficients should be applied to both the principle aperture and the complimentary aperture.
Ibrahim, Ahmed; Kiani, Mehdi
2016-12-01
Power transmission efficiency (PTE) has been the key parameter for wireless power transmission (WPT) to biomedical implants with millimeter (mm) dimensions. It has been suggested that for mm-sized implants increasing the power carrier frequency (f p ) of the WPT link to hundreds of MHz improves PTE. However, increasing f p significantly reduces the maximum allowable power that can be transmitted under the specific absorption rate (SAR) constraints. This paper presents a new figure-of-merit (FoM) and a design methodology for optimal WPT to mm-sized implants via inductive coupling by striking a balance between PTE and maximum delivered power under SAR constraints (P L,SAR ). First, the optimal mm-sized receiver (Rx) coil geometry is identified for a wide range of f p to maximize the Rx coil quality factor (Q). Secondly, the optimal transmitter (Tx) coil geometry and f p are found to maximize the proposed FoM under a low-loss Rx matched-load condition. Finally, proper Tx coil and tissue spacing is identified based on FoM at the optimal f p . We demonstrate that f p in order of tens of MHz still offer higher P L,SAR and FoM, which is key in applications that demand high power such as optogenetics. An inductive link to power a 1 mm 3 implant was designed based on our FoM and verified through full-wave electromagnetic field simulations and measurements using de-embedding method. In our measurements, an Rx coil with 1 mm diameter, located 10 mm inside the tissue, achieved PTE and P L,SAR of 1.4% and 2.2 mW at f p of 20 MHz, respectively.
NASA Astrophysics Data System (ADS)
Sato, H. P.
2017-12-01
Maoxien area in Sichuan Province, China has many landslide. For example, landslide (rock avalanche) occurred on the slope in Xinmocun Village in Maoxeien on 24 June 2017. I produced and interpreetd InSAR image using ALOS/PALSAR data observed on 19 Jul 2007-3 Sep 2007 and on 27 Jan 2011-14 Mar 2011, and ALOS-2/PALSAR-2 data observed on 26 Jul 2015-13 Dec 2015 and on 13 Dec 2015-11 Dec 2016. These images give good coherence and it was easy to identify local landslide surface deformation. As a result, e.g., two slopes were estimated to have local landslide surface deformation; one is at 103.936587 deg E and 32.04462 deg N, another is at 103.674754 deg E and 31.852838 N. However, the slope in Xinmocun Village was not identified as landslide precursory deformation. In the poster I will present more InSAR image observed after 11 Dec 2016 and discuss the possibility of local landslide surface deformaton using InSAR image. ALOS/PALSAR and ALOS-2/PALSAR-2 data were provided by JAXA through Landslide Working Group in JAXA and through Special Research 2015-B-02 of Earthquake Research Institute/Tokyo University. This study was supported by KAKENHI (17H02973).
Properties of knotted ring polymers. I. Equilibrium dimensions.
Mansfield, Marc L; Douglas, Jack F
2010-07-28
We report calculations on three classes of knotted ring polymers: (1) simple-cubic lattice self-avoiding rings (SARs), (2) "true" theta-state rings, i.e., SARs generated on the simple-cubic lattice with an attractive nearest-neighbor contact potential (theta-SARs), and (3) ideal, Gaussian rings. Extrapolations to large polymerization index N imply knot localization in all three classes of chains. Extrapolations of our data are also consistent with conjectures found in the literature which state that (1) R(g)-->AN(nu) asymptotically for ensembles of random knots restricted to any particular knot state, including the unknot; (2) A is universal across knot types for any given class of flexible chains; and (3) nu is equal to the standard self-avoiding walk (SAW) exponent (congruent with 0.588) for all three classes of chains (SARs, theta-SARs, and ideal rings). However, current computer technology is inadequate to directly sample the asymptotic domain, so that we remain in a crossover scaling regime for all accessible values of N. We also observe that R(g) approximately p(-0.27), where p is the "rope length" of the maximally inflated knot. This scaling relation holds in the crossover regime, but we argue that it is unlikely to extend into the asymptotic scaling regime where knots become localized.
Emanuel, Ezekiel J
2003-10-07
Given the low mortality and morbidity of the severe acute respiratory syndrome (SARS) compared with other public health scourges, is the attention devoted to it misdirected? The SARS experience has provided at least 4 enduring lessons. First, by providing a test of the capacity of each part of the public health system, from national to local and hospital responses, it has better prepared the world for the anticipated and much-feared next real pandemic. Second, SARS has reemphasized that from housing, sexual practices, and slaughtering techniques to health care capacity, the situation in other, especially developing, countries affects us. Global cooperation is necessary not only for justice but to ensure our own health. Third, despite trends toward commercialization, easier lives, and self-centered individualism, the response of health care professionals to SARS reaffirmed dedication to caring for the sick even at great personal risks as the core ethical principle of medicine. Finally, SARS also emphasized the importance of the duty of health care administrators and senior physicians to rapidly institute procedures to maximize the safety of frontline physicians and nurses. These lessons will be valuable far beyond the SARS episode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kok, H. Petra, E-mail: H.P.Kok@amc.uva.nl; Ciampa, Silvia; Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Rome
Purpose: Hyperthermia is the clinical application of heat, in which tumor temperatures are raised to 40°C to 45°C. This proven radiation and chemosensitizer significantly improves clinical outcome for several tumor sites. Earlier studies of the use of pre-treatment planning for hyperthermia showed good qualitative but disappointing quantitative reliability. The purpose of this study was to investigate whether hyperthermia treatment planning (HTP) can be used more reliably for online adaptive treatment planning during locoregional hyperthermia treatments. Methods and Materials: This study included 78 treatment sessions for 15 patients with non-muscle-invasive bladder cancer. At the start of treatments, temperature rise measurements weremore » performed with 3 different antenna settings optimized for each patient, from which the absorbed power (specific absorption rate [SAR]) was derived. HTP was performed based on a computed tomography (CT) scan in treatment position with the bladder catheter in situ. The SAR along the thermocouple tracks was extracted from the simulated SAR distributions. Correlations between measured and simulated (average) SAR values were determined. To evaluate phase steering, correlations between the changes in simulated and measured SAR values averaged over the thermocouple probe were determined for all 3 combinations of antenna settings. Results: For 42% of the individual treatment sessions, the correlation coefficient between measured and simulated SAR profiles was higher than 0.5, whereas 58% showed a weak correlation (R of <0.5). The overall correlation coefficient between measured and simulated average SAR was weak (R=0.31; P<.001). The measured and simulated changes in average SAR after adapting antenna settings correlated much better (R=0.70; P<.001). The ratio between the measured and simulated quotients of maximum and average SARs was 1.03 ± 0.26 (mean ± SD), indicating that HTP can also correctly predict the relative amplitude of SAR peaks. Conclusions: HTP can correctly predict SAR changes after adapting antenna settings during hyperthermia treatments. This allows online adaptive treatment planning, assisting the operator in determining antenna settings resulting in increased tumor temperatures.« less
The economic impact of SARS in Beijing, China.
Beutels, Philippe; Jia, Na; Zhou, Qing-Yi; Smith, Richard; Cao, Wu-Chun; de Vlas, Sake J
2009-11-01
To document the impact of the severe acute respiratory syndrome (SARS) outbreak in Beijing on indicators of social and economic activity. Associations between time series of daily and monthly SARS cases and deaths and volume of public train, airplane and cargo transport, tourism, household consumption patterns and gross domestic product growth in Beijing were investigated using the cross-correlation function. Significant correlation coefficients were found for all indicators except wholesale accounts and expenditures on necessities, with the most significant correlations occurring with a delay of 1 day to 1 month. Especially leisure activities, local and international transport and tourism were affected by SARS particularly in May 2003. Much of this consumption was merely postponed; but irrecoverable losses to the tourist sector alone were estimated at about US$ 1.4 bn, or 300 times the cost of treatment for SARS cases in Beijing.
SAR System for UAV Operation with Motion Error Compensation beyond the Resolution Cell
González-Partida, José-Tomás; Almorox-González, Pablo; Burgos-García, Mateo; Dorta-Naranjo, Blas-Pablo
2008-01-01
This paper presents an experimental Synthetic Aperture Radar (SAR) system that is under development in the Universidad Politécnica de Madrid. The system uses Linear Frequency Modulated Continuous Wave (LFM-CW) radar with a two antenna configuration for transmission and reception. The radar operates in the millimeter-wave band with a maximum transmitted bandwidth of 2 GHz. The proposed system is being developed for Unmanned Aerial Vehicle (UAV) operation. Motion errors in UAV operation can be critical. Therefore, this paper proposes a method for focusing SAR images with movement errors larger than the resolution cell. Typically, this problem is solved using two processing steps: first, coarse motion compensation based on the information provided by an Inertial Measuring Unit (IMU); and second, fine motion compensation for the residual errors within the resolution cell based on the received raw data. The proposed technique tries to focus the image without using data of an IMU. The method is based on a combination of the well known Phase Gradient Autofocus (PGA) for SAR imagery and typical algorithms for translational motion compensation on Inverse SAR (ISAR). This paper shows the first real experiments for obtaining high resolution SAR images using a car as a mobile platform for our radar. PMID:27879884
SAR System for UAV Operation with Motion Error Compensation beyond the Resolution Cell.
González-Partida, José-Tomás; Almorox-González, Pablo; Burgos-Garcia, Mateo; Dorta-Naranjo, Blas-Pablo
2008-05-23
This paper presents an experimental Synthetic Aperture Radar (SAR) system that is under development in the Universidad Politécnica de Madrid. The system uses Linear Frequency Modulated Continuous Wave (LFM-CW) radar with a two antenna configuration for transmission and reception. The radar operates in the millimeter-wave band with a maximum transmitted bandwidth of 2 GHz. The proposed system is being developed for Unmanned Aerial Vehicle (UAV) operation. Motion errors in UAV operation can be critical. Therefore, this paper proposes a method for focusing SAR images with movement errors larger than the resolution cell. Typically, this problem is solved using two processing steps: first, coarse motion compensation based on the information provided by an Inertial Measuring Unit (IMU); and second, fine motion compensation for the residual errors within the resolution cell based on the received raw data. The proposed technique tries to focus the image without using data of an IMU. The method is based on a combination of the well known Phase Gradient Autofocus (PGA) for SAR imagery and typical algorithms for translational motion compensation on Inverse SAR (ISAR). This paper shows the first real experiments for obtaining high resolution SAR images using a car as a mobile platform for our radar.
Spotlight SAR interferometry for terrain elevation mapping and interferometric change detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichel, P.H.; Ghiglia, D.C.; Jakowatz, C.V. Jr.
1996-02-01
In this report, we employ an approach quite different from any previous work; we show that a new methodology leads to a simpler and clearer understanding of the fundamental principles of SAR interferometry. This methodology also allows implementation of an important collection mode that has not been demonstrated to date. Specifically, we introduce the following six new concepts for the processing of interferometric SAR (INSAR) data: (1) processing using spotlight mode SAR imaging (allowing ultra-high resolution), as opposed to conventional strip-mapping techniques; (2) derivation of the collection geometry constraints required to avoid decorrelation effects in two-pass INSAR; (3) derivation ofmore » maximum likelihood estimators for phase difference and the change parameter employed in interferometric change detection (ICD); (4) processing for the two-pass case wherein the platform ground tracks make a large crossing angle; (5) a robust least-squares method for two-dimensional phase unwrapping formulated as a solution to Poisson`s equation, instead of using traditional path-following techniques; and (6) the existence of a simple linear scale factor that relates phase differences between two SAR images to terrain height. We show both theoretical analysis, as well as numerous examples that employ real SAR collections to demonstrate the innovations listed above.« less
Modified Polar-Format Software for Processing SAR Data
NASA Technical Reports Server (NTRS)
Chen, Curtis
2003-01-01
HMPF is a computer program that implements a modified polar-format algorithm for processing data from spaceborne synthetic-aperture radar (SAR) systems. Unlike prior polar-format processing algorithms, this algorithm is based on the assumption that the radar signal wavefronts are spherical rather than planar. The algorithm provides for resampling of SAR pulse data from slant range to radial distance from the center of a reference sphere that is nominally the local Earth surface. Then, invoking the projection-slice theorem, the resampled pulse data are Fourier-transformed over radial distance, arranged in the wavenumber domain according to the acquisition geometry, resampled to a Cartesian grid, and inverse-Fourier-transformed. The result of this process is the focused SAR image. HMPF, and perhaps other programs that implement variants of the algorithm, may give better accuracy than do prior algorithms for processing strip-map SAR data from high altitudes and may give better phase preservation relative to prior polar-format algorithms for processing spotlight-mode SAR data.
School Public Relations and the SARS Epidemic in Toronto: An Interview with Brian Woodland.
ERIC Educational Resources Information Center
Partlow, Michelle Chaplin
2003-01-01
In an interview, a school district director of communication shares his experiences about the Severe Acute Respiratory Syndrome (SARS) outbreak in Ontario and offers timely advice for practitioners, including a proactive communications team and coordination of information with state and local health, police, and fire departments. (MLF)
3-component time-dependent crustal deformation in Southern California from Sentinel-1 and GPS
NASA Astrophysics Data System (ADS)
Tymofyeyeva, E.; Fialko, Y. A.
2017-12-01
We combine data from the Sentinel-1 InSAR mission collected between 2014-2017 with continuous GPS measurements to calculate the three components of the interseismic surface velocity field in Southern California at the resolution of InSAR data ( 100 m). We use overlapping InSAR tracks with two different look geometries (descending tracks 71, 173, and 144, and ascending tracks 64 and 166) to obtain the 3 orthogonal components of surface motion. Because of the under-determined nature of the problem, we use the local azimuth of the horizontal velocity vector as an additional constraint. The spatially variable azimuths of the horizontal velocity are obtained by interpolating data from the continuous GPS network. We estimate both secular velocities and displacement time series. The latter are obtained by combining InSAR time series from different lines of sight with time-dependent azimuths computed using continuous GPS time series at every InSAR epoch. We use the CANDIS method [Tymofyeyeva and Fialko, 2015], a technique based on iterative common point stacking, to correct the InSAR data for tropospheric and ionospheric artifacts when calculating secular velocities and time series, and to isolate low-amplitude deformation signals in our study region. The obtained horizontal (East and North) components of secular velocity exhibit long-wavelength patterns consistent with strain accumulation on major faults of the Pacific-North America plate boundary. The vertical component of velocity reveals a number of localized uplift and subsidence anomalies, most likely related to hydrologic effects and anthropogenic activity. In particular, in the Los Angeles basin we observe localized uplift of about 10-15mm/yr near Anaheim, Long Beach, and Redondo Beach, as well as areas of rapid subsidence near Irvine and Santa Monica, which are likely caused by the injection of water in the oil fields, and the pumping and recharge cycles of the aquifers in the basin.
NASA Astrophysics Data System (ADS)
Sun, Jianbao; Shen, Zheng-Kang; Bürgmann, Roland; Wang, Min; Chen, Lichun; Xu, Xiwei
2013-08-01
develop a three-step maximum a posteriori probability method for coseismic rupture inversion, which aims at maximizing the a posterior probability density function (PDF) of elastic deformation solutions of earthquake rupture. The method originates from the fully Bayesian inversion and mixed linear-nonlinear Bayesian inversion methods and shares the same posterior PDF with them, while overcoming difficulties with convergence when large numbers of low-quality data are used and greatly improving the convergence rate using optimization procedures. A highly efficient global optimization algorithm, adaptive simulated annealing, is used to search for the maximum of a posterior PDF ("mode" in statistics) in the first step. The second step inversion approaches the "true" solution further using the Monte Carlo inversion technique with positivity constraints, with all parameters obtained from the first step as the initial solution. Then slip artifacts are eliminated from slip models in the third step using the same procedure of the second step, with fixed fault geometry parameters. We first design a fault model with 45° dip angle and oblique slip, and produce corresponding synthetic interferometric synthetic aperture radar (InSAR) data sets to validate the reliability and efficiency of the new method. We then apply this method to InSAR data inversion for the coseismic slip distribution of the 14 April 2010 Mw 6.9 Yushu, China earthquake. Our preferred slip model is composed of three segments with most of the slip occurring within 15 km depth and the maximum slip reaches 1.38 m at the surface. The seismic moment released is estimated to be 2.32e+19 Nm, consistent with the seismic estimate of 2.50e+19 Nm.
NASA Astrophysics Data System (ADS)
Sun, J.; Shen, Z.; Burgmann, R.; Liang, F.
2012-12-01
We develop a three-step Maximum-A-Posterior probability (MAP) method for coseismic rupture inversion, which aims at maximizing the a posterior probability density function (PDF) of elastic solutions of earthquake rupture. The method originates from the Fully Bayesian Inversion (FBI) and the Mixed linear-nonlinear Bayesian inversion (MBI) methods , shares the same a posterior PDF with them and keeps most of their merits, while overcoming its convergence difficulty when large numbers of low quality data are used and improving the convergence rate greatly using optimization procedures. A highly efficient global optimization algorithm, Adaptive Simulated Annealing (ASA), is used to search for the maximum posterior probability in the first step. The non-slip parameters are determined by the global optimization method, and the slip parameters are inverted for using the least squares method without positivity constraint initially, and then damped to physically reasonable range. This step MAP inversion brings the inversion close to 'true' solution quickly and jumps over local maximum regions in high-dimensional parameter space. The second step inversion approaches the 'true' solution further with positivity constraints subsequently applied on slip parameters using the Monte Carlo Inversion (MCI) technique, with all parameters obtained from step one as the initial solution. Then the slip artifacts are eliminated from slip models in the third step MAP inversion with fault geometry parameters fixed. We first used a designed model with 45 degree dipping angle and oblique slip, and corresponding synthetic InSAR data sets to validate the efficiency and accuracy of method. We then applied the method on four recent large earthquakes in Asia, namely the 2010 Yushu, China earthquake, the 2011 Burma earthquake, the 2011 New Zealand earthquake and the 2008 Qinghai, China earthquake, and compared our results with those results from other groups. Our results show the effectiveness of the method in earthquake studies and a number of advantages of it over other methods. The details will be reported on the meeting.
ISRO's dual frequency airborne SAR pre-cursor to NISAR
NASA Astrophysics Data System (ADS)
Ramanujam, V. Manavala; Suneela, T. J. V. D.; Bhan, Rakesh
2016-05-01
The Indian Space Research Organisation (ISRO) and the National Aeronautics and Space Administration (NASA) have jointly embarked on NASA-ISRO Synthetic Aperture Radar (NISAR) operating in L-band and S-band, which will map Earth's surface every 12 days. As a pre-cursor to the NISAR mission, ISRO is planning an airborne SAR (L&S band) which will deliver NISAR analogue data products to the science community. ISRO will develop all the hardware with the aim of adhering to system design aspects of NISAR to the maximum extent possible. It is a fully polarimetric stripmap SAR and can be operated in single, dual, compact, quasi-quad and full polarimetry modes. It has wide incidence angle coverage from 24°-77° with swath coverage from 5.5km to 15 km. Apart from simultaneous imaging operations, this system can also operate in standalone L/S SAR modes. This system is planned to operate from an aircraft platform with nominal altitude of 8000meters. Antenna for this SAR will be rigidly mounted to the aircraft, whereas, motion compensation will be implemented in the software processor to generate data products. Data products for this airborne SAR will be generated in slant & ground range azimuth dimension and geocoded in HDF5/Geotiff formats. This airborne SAR will help to prepare the Indian scientific community for optimum utilization of NISAR data. In-order to collect useful science data, airborne campaigns are planned from end of 2016 onwards.
Observation of wave refraction at an ice edge by synthetic aperture radar
NASA Technical Reports Server (NTRS)
Liu, Antony K.; Vachon, Paris W.; Peng, Chih Y.
1991-01-01
In this note the refraction of waves at the ice edge is studied by using aircraft synthesis aperture radar (SAR). Penetration of a dominant swell from open ocean into the ice cover was observed by SAR during the Labrador Ice Margin Experiment (LIMEX), conducted on the marginal ice zone (MIZ) off the east coast of Newfoundland, Canada, in March 1987. At an ice edge with a large curvature, the dominant swell component disappeared locally in the SAR imagery. Six subscenes of waves in the MIZ from the SAR image have been processed, revealing total reflection, refraction, and energy reduction of the ocean waves by the ice cover. The observed variations of wave spectra from SAR near the ice edge are consistent with the model prediction of wave refraction at the ice edge due to the change of wave dispersion relation in ice developed by Liu and Mollo-Christensen (1988).
NASA Astrophysics Data System (ADS)
Kobayashi, Tomokazu
2017-01-01
By applying conventional cross-track InSAR and multiple-aperture InSAR (MAI) techniques with ALOS-2 SAR data to foreshocks of the 2016 Kumamoto earthquake, ground displacement fields in range (line-of-sight) and azimuth components have been successfully mapped. The most concentrated crustal deformation with ground displacement exceeding 15 cm is located on the western side of the Hinagu fault zone. A locally distributed displacement which appears along the strike of the Futagawa fault can be identified in and around Mashiki town, suggesting that a different local fault slip also contributed toward foreshocks. Inverting InSAR, MAI, and GNSS data, distributed slip models are obtained that show almost pure right-lateral fault motion on a plane dipping west by 80° for the Hinagu fault and almost pure normal fault motion on a plane dipping south by 70° for the local fault beneath Mashiki town. The slip on the Hinagu fault reaches around the junction of the Hinagu and Futagawa faults. The slip in the north significantly extends down to around 10 km depth, while in the south the slip is concentrated near the ground surface, perhaps corresponding to the M j 6.5 and the M j 6.4 events, respectively. The focal mechanism of the distributed slip model for the Hinagu fault alone shows pure right-lateral motion, which is inconsistent with the seismically estimated mechanism that includes a significant non-double couple component. On the other hand, when taking the contribution of normal fault motion into account, the focal mechanism appears similar to that of the seismic analysis. This result may suggest that local fault motion occurred just beneath Mashiki town, simultaneously with the M j 6.5 event, thereby increasing the degree of damage to the town.[Figure not available: see fulltext.
Local residue coupling strategies by neural network for InSAR phase unwrapping
NASA Astrophysics Data System (ADS)
Refice, Alberto; Satalino, Giuseppe; Chiaradia, Maria T.
1997-12-01
Phase unwrapping is one of the toughest problems in interferometric SAR processing. The main difficulties arise from the presence of point-like error sources, called residues, which occur mainly in close couples due to phase noise. We present an assessment of a local approach to the resolution of these problems by means of a neural network. Using a multi-layer perceptron, trained with the back- propagation scheme on a series of simulated phase images, fashion the best pairing strategies for close residue couples. Results show that god efficiencies and accuracies can have been obtained, provided a sufficient number of training examples are supplied. Results show that good efficiencies and accuracies can be obtained, provided a sufficient number of training examples are supplied. The technique is tested also on real SAR ERS-1/2 tandem interferometric images of the Matera test site, showing a good reduction of the residue density. The better results obtained by use of the neural network as far as local criteria are adopted appear justified given the probabilistic nature of the noise process on SAR interferometric phase fields and allows to outline a specifically tailored implementation of the neural network approach as a very fast pre-processing step intended to decrease the residue density and give sufficiently clean images to be processed further by more conventional techniques.
NASA Astrophysics Data System (ADS)
Rudy, Ashley C. A.; Lamoureux, Scott F.; Treitz, Paul; Short, Naomi; Brisco, Brian
2018-02-01
Arctic landscapes undergo seasonal and long-term changes as the active layer thaws and freezes, which can result in localized or irregular subsidence leading to the formation of thermokarst terrain. Differential Interferometric Synthetic Aperture Radar (DInSAR) is a technique capable of measuring ground surface displacements resulting from thawing permafrost at centimetre precision and is quickly gaining acceptance as a means of measuring ground displacement in permafrost regions. Using RADARSAT-2 stacked DInSAR data from 2013 and 2015 we determined the magnitude and patterns of land surface change in a continuous permafrost environment. At our study site situated in the Canadian High Arctic, DInSAR seasonal ground displacement patterns were consistent with field observations of permafrost degradation. As expected, many DInSAR values are close to the detection threshold (i.e., 1 cm) and therefore do not indicate significant change; however, DInSAR seasonal ground displacement patterns aligned well with climatological and soil conditions and offer geomorphological insight into subsurface processes in permafrost environments. While our dataset is limited to two years of data representing a three-year time period, the displacements derived from DInSAR provide insight into permafrost change in a High Arctic environment and demonstrate that DInSAR is an applicable tool for understanding environmental change in remote permafrost regions.
NASA Astrophysics Data System (ADS)
Sterzai, P.; Mancini, F.; Corazzato, C.; D Agata, C.; Diolaiuti, G.
2003-04-01
Aiming at reconstructing superficial velocity and volumetric variations of alpine glaciers, SAR interferometry (InSAR) technique is, for the first time in Italy, applied jointly with the glaciological classic field methods. This methodology with its quantitative results provides, together with other space geodesy techniques like GPS, some fundamental elements for the estimation of the climate forcing and the evaluation of the future glacier trend. InSAR is usually applied to antarctic glaciers and to other wide extralpine glaciers, detectable by the SAR orbits; in the Italian Alps, the limited surface area of the glaciers and the deformation of radar images due to strong relief effect, reduce the applicability of this tecnique. The chosen glacier is suitable for this kind of study both for its large size and for the many field data collected and available for the interferometric results validation. Forni Glacier is the largest valley glacier in the Italian Alps and represents a good example of long term monitoring of a valley glacier in the Central Alps. It is a north facing valley glacier formed by 3 ice streams, located in Italian Lombardy Alps (46 23 50 N, 10 35 00 E). In 2002 its area was approximately 13 km2, extending from 2500 to 3684 m a.s.l., with a maximum width of approximately 7500 m and a maximum length of about 5000 m. Available data include mass-balance measurements on the glacier tongue (from the hydrological year 1992-1993 up to now), frontal variations data from 1925 up to now, topographical profiling by means of GPS techniques and profiles of the glacier bed by geoelectrical surveys (VES) (Guglielmin et alii, 1995) and by seismic surveys (Merlanti et alii, 2001). In order to apply radar interferometry on this glacier eight ERS SAR RAW images have been purchased, in addition to the Digital Elevation Model from IGM (Geographic Military Institute), and repeat pass interferometry used. Combining the different passes, differential interferograms are computed and velocity map obtained. The validation of interferometric data was possible comparing them with the field glaciological data obtained by GPS velocity surveys in the years 1992-1993 (Vittuari and Smiraglia, unpublished) and 1996-1997, which resulted of about 20m/y. The InSAR results give further contributions in the estimation of the velocity field of Forni Glacier for a deeper understanding of the different flow lines of the glacier. Problems related to relief effect, loss of coherence, geometry of satellite imagery and geocoding, are also discussed.
Hybrid space-airborne bistatic SAR geometric resolutions
NASA Astrophysics Data System (ADS)
Moccia, Antonio; Renga, Alfredo
2009-09-01
Performance analysis of Bistatic Synthetic Aperture Radar (SAR) characterized by arbitrary geometric configurations is usually complex and time-consuming since system impulse response has to be evaluated by bistatic SAR processing. This approach does not allow derivation of general equations regulating the behaviour of image resolutions with varying the observation geometry. It is well known that for an arbitrary configuration of bistatic SAR there are not perpendicular range and azimuth directions, but the capability to produce an image is not prevented as it depends only on the possibility to generate image pixels from time delay and Doppler measurements. However, even if separately range and Doppler resolutions are good, bistatic SAR geometries can exist in which imaging capabilities are very poor when range and Doppler directions become locally parallel. The present paper aims to derive analytical tools for calculating the geometric resolutions of arbitrary configuration of bistatic SAR. The method has been applied to a hybrid bistatic Synthetic Aperture Radar formed by a spaceborne illuminator and a receiving-only airborne forward-looking Synthetic Aperture Radar (F-SAR). It can take advantage of the spaceborne illuminator to dodge the limitations of monostatic FSAR. Basic modeling and best illumination conditions have been detailed in the paper.
Návarová, Hana; Bernsdorff, Friederike; Döring, Anne-Christin; Zeier, Jürgen
2012-12-01
Metabolic signals orchestrate plant defenses against microbial pathogen invasion. Here, we report the identification of the non-protein amino acid pipecolic acid (Pip), a common Lys catabolite in plants and animals, as a critical regulator of inducible plant immunity. Following pathogen recognition, Pip accumulates in inoculated Arabidopsis thaliana leaves, in leaves distal from the site of inoculation, and, most specifically, in petiole exudates from inoculated leaves. Defects of mutants in AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) in systemic acquired resistance (SAR) and in basal, specific, and β-aminobutyric acid-induced resistance to bacterial infection are associated with a lack of Pip production. Exogenous Pip complements these resistance defects and increases pathogen resistance of wild-type plants. We conclude that Pip accumulation is critical for SAR and local resistance to bacterial pathogens. Our data indicate that biologically induced SAR conditions plants to more effectively synthesize the phytoalexin camalexin, Pip, and salicylic acid and primes plants for early defense gene expression. Biological priming is absent in the pipecolate-deficient ald1 mutants. Exogenous pipecolate induces SAR-related defense priming and partly restores priming responses in ald1. We conclude that Pip orchestrates defense amplification, positive regulation of salicylic acid biosynthesis, and priming to guarantee effective local resistance induction and the establishment of SAR.
Návarová, Hana; Bernsdorff, Friederike; Döring, Anne-Christin; Zeier, Jürgen
2012-01-01
Metabolic signals orchestrate plant defenses against microbial pathogen invasion. Here, we report the identification of the non-protein amino acid pipecolic acid (Pip), a common Lys catabolite in plants and animals, as a critical regulator of inducible plant immunity. Following pathogen recognition, Pip accumulates in inoculated Arabidopsis thaliana leaves, in leaves distal from the site of inoculation, and, most specifically, in petiole exudates from inoculated leaves. Defects of mutants in AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) in systemic acquired resistance (SAR) and in basal, specific, and β-aminobutyric acid–induced resistance to bacterial infection are associated with a lack of Pip production. Exogenous Pip complements these resistance defects and increases pathogen resistance of wild-type plants. We conclude that Pip accumulation is critical for SAR and local resistance to bacterial pathogens. Our data indicate that biologically induced SAR conditions plants to more effectively synthesize the phytoalexin camalexin, Pip, and salicylic acid and primes plants for early defense gene expression. Biological priming is absent in the pipecolate-deficient ald1 mutants. Exogenous pipecolate induces SAR-related defense priming and partly restores priming responses in ald1. We conclude that Pip orchestrates defense amplification, positive regulation of salicylic acid biosynthesis, and priming to guarantee effective local resistance induction and the establishment of SAR. PMID:23221596
Characterization and Evaluation of a Commercial WLAN System for Human Provocation Studies.
Zentai, Norbert; Fiocchi, Serena; Parazzini, Marta; Trunk, Attila; Juhász, Péter; Ravazzani, Paolo; Hernádi, István; Thuróczy, György
2015-01-01
This work evaluates the complex exposure characteristics of Wireless Local Area Network (WLAN) technology and describes the design of a WLAN exposure system built using commercially available modular parts for the study of possible biological health effects due to WLAN exposure in a controlled environment. The system consisted of an access point and a client unit (CU) with router board cards types R52 and R52n with 18 dBm and 25 dBm peak power, respectively. Free space radiofrequency field (RF) measurements were performed with a field meter at a distance of 40 cm from the CU in order to evaluate the RF exposure at several signal configurations of the exposure system. Finally, the specific absorption rate (SAR) generated by the CU was estimated computationally in the head of two human models. Results suggest that exposure to RF fields of WLAN systems strongly depends on the sets of the router configuration: the stability of the exposure was more constant and reliable when both antennas were active and vertically positioned, with best signal quality obtained with the R52n router board at channel 9, in UDP mode. The maximum levels of peak SAR were far away from the limits of international guidelines with peak levels found over the skin.
Characterization and Evaluation of a Commercial WLAN System for Human Provocation Studies
Parazzini, Marta; Trunk, Attila; Juhász, Péter; Hernádi, István; Thuróczy, György
2015-01-01
This work evaluates the complex exposure characteristics of Wireless Local Area Network (WLAN) technology and describes the design of a WLAN exposure system built using commercially available modular parts for the study of possible biological health effects due to WLAN exposure in a controlled environment. The system consisted of an access point and a client unit (CU) with router board cards types R52 and R52n with 18 dBm and 25 dBm peak power, respectively. Free space radiofrequency field (RF) measurements were performed with a field meter at a distance of 40 cm from the CU in order to evaluate the RF exposure at several signal configurations of the exposure system. Finally, the specific absorption rate (SAR) generated by the CU was estimated computationally in the head of two human models. Results suggest that exposure to RF fields of WLAN systems strongly depends on the sets of the router configuration: the stability of the exposure was more constant and reliable when both antennas were active and vertically positioned, with best signal quality obtained with the R52n router board at channel 9, in UDP mode. The maximum levels of peak SAR were far away from the limits of international guidelines with peak levels found over the skin. PMID:26180791
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thai,V.; Renesto, P.; Fowler, C.
Although multiple viruses utilize host cell cyclophilins, including severe acute respiratory syndrome (SARS) and human immunodeficiency virus type-1(HIV-1), their role in infection is poorly understood. To help elucidate these roles, we have characterized the first virally encoded cyclophilin (mimicyp) derived from the largest virus discovered to date (the Mimivirus) that is also a causative agent of pneumonia in humans. Mimicyp adopts a typical cyclophilin-fold, yet it also forms trimers unlike any previously characterized homologue. Strikingly, immunofluorescence assays reveal that mimicyp localizes to the surface of the mature virion, as recently proposed for several viruses that recruit host cell cyclophilins suchmore » as SARS and HIV-1. Additionally mimicyp lacks peptidyl-prolyl isomerase activity in contrast to human cyclophilins. Thus, this study suggests that cyclophilins, whether recruited from host cells (ie HIV-1 and SARS) or virally encoded (ie Mimivirus), are localized on viral surfaces for at least a subset of viruses.« less
NASA Astrophysics Data System (ADS)
Garcia-Pineda, O. G.; MacDonald, I. R.; Shedd, W.; Zimmer, B.
2009-12-01
Analysis of natural hydrocarbon seeps is important to improve our understanding of methane flux from deeper sediments to the water column. In order to quantify natural hydrocarbon seep formations in the Northern Gulf of Mexico, a set of 686 Synthetic Aperture Radar (SAR) images was analyzed using the Texture Classifying Neural Network Algorithm (TCNNA), which processes SAR data to delineate oil slicks. This analysis resulted in a characterization of 396 natural seep sites distributed in the northern GOM. Within these sites, a maximum of 1248 individual vents where identified. Oil reaching the sea-surface is deflected from its source during transit through the water column. This presentation describes a method for estimating locations of active oil vents based on repeated slick detection in SAR. One of the most active seep formations was detected in MMS lease block GC600. A total of 82 SAR scenes (collected by RADARSAT-1 from 1995 to 2007) was processed covering this region. Using TCNNA the area covered by each slick was computed and Oil Slicks Origins (OSO) were selected as single points within detected oil slicks. At this site, oil slick signatures had lengths up to 74 km and up to 27 km^2 of area. Using SAR and TCNNA, four active vents were identified in this seep formation. The geostatistical mean centroid among all detections indicated a location along a ridge-line at ~1200m. Sea truth observations with an ROV, confirmed that the estimated location of vents had a maximum offset of ~30 m from their actual locations on the seafloor. At the largest vent, a 3-m high, 12-m long mound of oil-saturated gas hydrate was observed. The outcrop contained thousands of ice worms and numerous semi-rigid chimneys from where oily bubbles were escaping in a continuous stream. Three additional vents were found along the ridge; these had lower apparent flow, but were also plugged with gas hydrate mounds. These results support use of SAR data for precise delineation of active seep formation and shallow gas hydrate deposits.
NASA Astrophysics Data System (ADS)
Yu, Lei; Yang, Tianliang; Zhao, Qing; Pepe, Antonio; Dong, Hongbin; Sun, Zhibin
2017-09-01
Shanghai Pudong International airport is one of the three major international airports in China. The airport is located at the Yangtze estuary which is a sensitive belt of sea and land interaction region. The majority of the buildings and facilities in the airport are built on ocean-reclaimed lands and silt tidal flat. Residual ground settlement could probably occur after the completion of the airport construction. The current status of the ground settlement of the airport and whether it is within a safe range are necessary to be investigated. In order to continuously monitor the ground settlement of the airport, two Synthetic Aperture Radar (SAR) time series, acquired by X-band TerraSAR-X (TSX) and TanDEM-X (TDX) sensors from December 2009 to December 2010 and from April 2013 to July 2015, were used for analyzing with SBAS technique. We firstly obtained ground deformation measurement of each SAR subset. Both of the measurements show that obvious ground subsidence phenomenon occurred at the airport, especially in the second runway, the second terminal, the sixth cargo plane and the eighth apron. The maximum vertical ground deformation rates of both SAR subset measurements were greater than -30 mm/year, while the cumulative ground deformations reached up to -30 mm and -35 mm respectively. After generation of SBAS-retrieved ground deformation for each SAR subset, we performed a joint analysis to combine time series of each common coherent point by applying a geotechnical model. The results show that three centralized areas of ground deformation existed in the airport, mainly distributed in the sixth cargo plane, the fifth apron and the fourth apron, The maximum vertical cumulative ground subsidence was more than -70 mm. In addition, by analyzing the combined time series of four selected points, we found that the ground deformation rates of the points located at the second runway, the third runway, and the second terminal, were progressively smaller as time goes by. It indicates that the stabilities of the foundation around these points were gradually enhanced.
NASA Astrophysics Data System (ADS)
Wake, Kanako; Varsier, Nadège; Watanabe, Soichi; Taki, Masao; Wiart, Joe; Mann, Simon; Deltour, Isabelle; Cardis, Elisabeth
2009-10-01
A worldwide epidemiological study called 'INTERPHONE' has been conducted to estimate the hypothetical relationship between brain tumors and mobile phone use. In this study, we proposed a method to estimate 3D distribution of the specific absorption rate (SAR) in the human head due to mobile phone use to provide the exposure gradient for epidemiological studies. 3D SAR distributions due to exposure to an electromagnetic field from mobile phones are estimated from mobile phone compliance testing data for actual devices. The data for compliance testing are measured only on the surface in the region near the device and in a small 3D region around the maximum on the surface in a homogeneous phantom with a specific shape. The method includes an interpolation/extrapolation and a head shape conversion. With the interpolation/extrapolation, SAR distributions in the whole head are estimated from the limited measured data. 3D SAR distributions in the numerical head models, where the tumor location is identified in the epidemiological studies, are obtained from measured SAR data with the head shape conversion by projection. Validation of the proposed method was performed experimentally and numerically. It was confirmed that the proposed method provided good estimation of 3D SAR distribution in the head, especially in the brain, which is the tissue of major interest in epidemiological studies. We conclude that it is possible to estimate 3D SAR distributions in a realistic head model from the data obtained by compliance testing measurements to provide a measure for the exposure gradient in specific locations of the brain for the purpose of exposure assessment in epidemiological studies. The proposed method has been used in several studies in the INTERPHONE.
Stingl, Ulrich; Tripp, Harry James; Giovannoni, Stephen J
2007-08-01
The introduction of high-throughput dilution-to-extinction culturing (HTC) of marine bacterioplankton using sterilized natural sea water as media yielded isolates of many abundant but previously uncultured marine bacterial clades. In early experiments, bacteria from the SAR11 cluster (class Alphaproteobacteria), which are presumed to be the most abundant prokaryotes on earth, were cultured. Although many additional attempts were made, no further strains of the SAR11 clade were obtained. Here, we describe improvements to the HTC technique, which led to the isolation of 17 new SAR11 strains from the Oregon coast and the Sargasso Sea, accounting for 28% and 31% of all isolates in these experiments. Phylogenetic analysis of the internal transcribed spacer (ITS) region showed that the isolates from the Oregon coast represent three different subclusters of SAR11, while isolates from the Sargasso Sea were more uniform and represented a single ITS cluster. A PCR assay proved the presence of proteorhodopsin (PR) in nearly all SAR11 isolates. Analysis of PR amino-acid sequences indicated that isolates from the Oregon coast were tuned to either green or blue light, while PRs from strains obtained from the Sargasso Sea were exclusively tuned to maximum absorbance in the blue. Interestingly, phylogenies based on PR and ITS did not correlate, suggesting lateral gene transfer. In addition to the new SAR11 strains, many novel strains belonging to clusters of previously uncultured or undescribed species of different bacterial phyla, including the first strain of the highly abundant alphaproteobacterial SAR116 clade, were isolated using the modified methods.
Wake, Kanako; Varsier, Nadège; Watanabe, Soichi; Taki, Masao; Wiart, Joe; Mann, Simon; Deltour, Isabelle; Cardis, Elisabeth
2009-10-07
A worldwide epidemiological study called 'INTERPHONE' has been conducted to estimate the hypothetical relationship between brain tumors and mobile phone use. In this study, we proposed a method to estimate 3D distribution of the specific absorption rate (SAR) in the human head due to mobile phone use to provide the exposure gradient for epidemiological studies. 3D SAR distributions due to exposure to an electromagnetic field from mobile phones are estimated from mobile phone compliance testing data for actual devices. The data for compliance testing are measured only on the surface in the region near the device and in a small 3D region around the maximum on the surface in a homogeneous phantom with a specific shape. The method includes an interpolation/extrapolation and a head shape conversion. With the interpolation/extrapolation, SAR distributions in the whole head are estimated from the limited measured data. 3D SAR distributions in the numerical head models, where the tumor location is identified in the epidemiological studies, are obtained from measured SAR data with the head shape conversion by projection. Validation of the proposed method was performed experimentally and numerically. It was confirmed that the proposed method provided good estimation of 3D SAR distribution in the head, especially in the brain, which is the tissue of major interest in epidemiological studies. We conclude that it is possible to estimate 3D SAR distributions in a realistic head model from the data obtained by compliance testing measurements to provide a measure for the exposure gradient in specific locations of the brain for the purpose of exposure assessment in epidemiological studies. The proposed method has been used in several studies in the INTERPHONE.
NASA Astrophysics Data System (ADS)
Zhang, Hongsheng; Xu, Ru
2018-02-01
Integrating synthetic aperture radar (SAR) and optical data to improve urban land cover classification has been identified as a promising approach. However, which integration level is the most suitable remains unclear but important to many researchers and engineers. This study aimed to compare different integration levels for providing a scientific reference for a wide range of studies using optical and SAR data. SAR data from TerraSAR-X and ENVISAT ASAR in both WSM and IMP modes were used to be combined with optical data at pixel level, feature level and decision levels using four typical machine learning methods. The experimental results indicated that: 1) feature level that used both the original images and extracted features achieved a significant improvement of up to 10% compared to that using optical data alone; 2) different levels of fusion required different suitable methods depending on the data distribution and data resolution. For instance, support vector machine was the most stable at both the feature and decision levels, while random forest was suitable at the pixel level but not suitable at the decision level. 3) By examining the distribution of SAR features, some features (e.g., homogeneity) exhibited a close-to-normal distribution, explaining the improvement from the maximum likelihood method at the feature and decision levels. This indicated the benefits of using texture features from SAR data when being combined with optical data for land cover classification. Additionally, the research also shown that combining optical and SAR data does not guarantee improvement compared with using single data source for urban land cover classification, depending on the selection of appropriate fusion levels and fusion methods.
Silicification of holocene soils in northern Monitor Valley, Nevada
NASA Astrophysics Data System (ADS)
Chadwick, O. A.; Hendricks, D. M.; Nettleton, W. D.
1989-02-01
Chemical, physical, and microscopic data for three soils in the northern Monitor Valley are analyzed. The soils ranked in order of increasing age are: Mule, Rotinom, and Nayped. The procedures and techniques used to obtain and study that data are described. It is observed that: (1) redistribution of carbonate is detectable in all soils; (2) clay illuviation is insignificant in the Mule soil, weak but identifiable in the Rotinom soil, and significant in the Nayped soil; and (3) the maximum sodium adsorption ratio (SAR) and electrical conductivity (EC) for the Mule soil is between 64-89 cm, for the Rotinom soil the values are below 100 cm, and for Nayped the maximum SAR values range from 51-117 cm and maximum EC values are between 117-152 cm. The relationship between volcanic glass weathering and the amount of silica cementation in the soils is studied. It is noted that silicification of Monitor Valley holocene soils is due to there being enough moisture to release silica from volcanic glass, but not enough to leach the weathering products from the profile.
Silicification of holocene soils in northern Monitor Valley, Nevada
NASA Technical Reports Server (NTRS)
Chadwick, O. A.; Hendricks, D. M.; Nettleton, W. D.
1989-01-01
Chemical, physical, and microscopic data for three soils in the northern Monitor Valley are analyzed. The soils ranked in order of increasing age are: Mule, Rotinom, and Nayped. The procedures and techniques used to obtain and study that data are described. It is observed that: (1) redistribution of carbonate is detectable in all soils; (2) clay illuviation is insignificant in the Mule soil, weak but identifiable in the Rotinom soil, and significant in the Nayped soil; and (3) the maximum sodium adsorption ratio (SAR) and electrical conductivity (EC) for the Mule soil is between 64-89 cm, for the Rotinom soil the values are below 100 cm, and for Nayped the maximum SAR values range from 51-117 cm and maximum EC values are between 117-152 cm. The relationship between volcanic glass weathering and the amount of silica cementation in the soils is studied. It is noted that silicification of Monitor Valley holocene soils is due to there being enough moisture to release silica from volcanic glass, but not enough to leach the weathering products from the profile.
Land subsidence in the San Joaquin Valley, California, USA, 2007-2014
NASA Astrophysics Data System (ADS)
Sneed, M.; Brandt, J. T.
2015-11-01
Rapid land subsidence was recently measured using multiple methods in two areas of the San Joaquin Valley (SJV): between Merced and Fresno (El Nido), and between Fresno and Bakersfield (Pixley). Recent land-use changes and diminished surface-water availability have led to increased groundwater pumping, groundwater-level declines, and land subsidence. Differential land subsidence has reduced the flow capacity of water-conveyance systems in these areas, exacerbating flood hazards and affecting the delivery of irrigation water. Vertical land-surface changes during 2007-2014 were determined by using Interferometric Synthetic Aperture Radar (InSAR), Continuous Global Positioning System (CGPS), and extensometer data. Results of the InSAR analysis indicate that about 7600 km2 subsided 50-540 mm during 2008-2010; CGPS and extensometer data indicate that these rates continued or accelerated through December 2014. The maximum InSAR-measured rate of 270 mm yr-1 occurred in the El Nido area, and is among the largest rates ever measured in the SJV. In the Pixley area, the maximum InSAR-measured rate during 2008-2010 was 90 mm yr-1. Groundwater was an important part of the water supply in both areas, and pumping increased when land use changed or when surface water was less available. This increased pumping caused groundwater-level declines to near or below historical lows during the drought periods 2007-2009 and 2012-present. Long-term groundwater-level and land-subsidence monitoring in the SJV is critical for understanding the interconnection of land use, groundwater levels, and subsidence, and evaluating management strategies that help mitigate subsidence hazards to infrastructure while optimizing water supplies.
NASA Astrophysics Data System (ADS)
Cauchie, Léna; Di Traglia, Federico; Casagli, Nicola; Saccorotti, Gilberto
2014-05-01
Stromboli is an open-conduit volcano, which does not experience pressurization of the magma storage and/or plumbing system able to produce ground deformations at the scale of the volcanic edifice. For any such system, localized inflations/deflations are rather expected in response to conduit processes, such as magma convection and uprising. Indeed, detectable ground deformations at Stromboli volcano have only been observed in association with dyke intrusion at shallow depth, prior to the opening of new eruptive fractures. In this work, we present the integration of seismic and Ground-Based Interferometric Synthetic Aperture Radar (GBInSAR) system displacement data recorded at Stromboli volcano aimed at a better understanding of the geophysical signals associated with magma dynamics in an open volcanic system. A cross-analysis between the tiny GBInSAR deformations and ground displacements in the seismological frequency band (0.02-10 Hz) is performed for the period spanning 6 June 2011 - 27 August 2011, which was characterized by an activity of higher intensity than usually observed. The period under study includes seven major explosions and two lava overflows from the NE vents (1-2 August and 18 August 2011). The time series of GBInSAR displacement at the summit vents area is positively correlated with both volcanic tremor amplitude and the number and amplitude of very-long-period (VLP) signals that are associated with the Strombolian explosions. While the correlation between GBInSAR and tremor time series takes its maximum at zero lag time, the variation in frequency and energy of VLP events anticipate by a few days the inflation of the vents area and the increase of volcanic tremor. We thus suggest a general mechanism to explain the observed trend in the geophysical signals. In our model, the arrival of fresh, gas-rich magma from below enhance slug formations, promoting convection and gas transfer throughout the conduit system. At the shallowest portion of the conduit, increase of volatile content causes density decrease/expansion of the magmatic column and augmented degassing activity, which respectively induce inflation of the conduit and increased tremor amplitudes. The temporal delay between increase of VLP and tremor amplitudes/conduit inflation can be interpreted in terms of the different time scales characterizing bulk gas transfer versus slug formation and ascent.
An 11-bit 200 MS/s subrange SAR ADC with low-cost integrated reference buffer
NASA Astrophysics Data System (ADS)
He, Xiuju; Gu, Xian; Li, Weitao; Jiang, Hanjun; Li, Fule; Wang, Zhihua
2017-10-01
This paper presents an 11-bit 200 MS/s subrange SAR ADC with an integrated reference buffer in 65 nm CMOS. The proposed ADC employs a 3.5-bit flash ADC for coarse conversion, and a compact timing scheme at the flash/SAR boundary to speed up the conversion. The flash decision is used to control charge compensating for the reference voltage to reduce its input-dependent fluctuation. Measurement results show that the fabricated ADC has achieved significant improvement by applying the reference charge compensation. In addition, the ADC achieves a maximum signal-to-noise-and-distortion ratio of 59.3 dB at 200 MS/s. It consumes 3.91 mW from a 1.2 V supply, including the reference buffer. Project supported by the Zhongxing Telecommunication Equipment Corporation and Beijing Microelectronics Technology Institute.
Aseismic fold growth in southwestern Taiwan detected by InSAR and GNSS
NASA Astrophysics Data System (ADS)
Tsukahara, Kotaro; Takada, Youichiro
2018-03-01
We report very rapid and aseismic fold growth detected by L-band InSAR images and GNSS data in southwestern Taiwan where is characterized by high convergence rate and low seismicity. Six independent interferograms acquired from ascending orbit during 2007-2011 commonly indicate large line-of-sight (LOS) shortening. For descending orbit, one interferogram spanning 21 months also indicates the LOS shortening at the same location. After removing long-wavelength noise and height-dependent phase component from these interferograms using GNSS velocity field and DEM, we obtained the quasi-vertical and the quasi-east velocity fields. We found very rapid uplift (quasi-vertical movement) in the fold and thrust belt to the east of the Tainan city. The uplifted area stretches about 25 km in the N-S direction and about 5 km in the E-W direction. At the southern part of the uplifted area, the uplift rate obtained by InSAR is consistent with that measured by the leveling survey, which takes 18 mm/year at a maximum. On the other hand, at the northern part, the maximum uplift rate detected by InSAR reaches up to 37 mm/year, more than twice as large as the rate along the levelling route. Judging from very low seismicity in this region, the severe crustal deformation we detected with InSAR is aseismic. At the eastern flank of the uplifted area, we found a sharp discontinuity in the uplift rate from the ALOS/PALSAR interferometry, and a sharp discontinuity in the amount of uplift in response to the 2016 Meinong earthquake (M6.4) from ALOS-2/PALSAR2 interferometry, which implies the existence of a shallow active fault. The stable slip of this active fault would be due to the high pore fluid pressure reported in this region. The aseismic uplift before the Meinong earthquake would be mainly due to the mud diapirs at the depth, which is perturbed by the aseismic movement of the shallow active fault.
Numerical compliance testing of human exposure to electromagnetic radiation from smart-watches.
Hong, Seon-Eui; Lee, Ae-Kyoung; Kwon, Jong-Hwa; Pack, Jeong-Ki
2016-10-07
In this study, we investigated the electromagnetic dosimetry for smart-watches. At present, the standard for compliance testing of body-mounted and handheld devices specifies the use of a flat phantom to provide conservative estimates of the peak spatial-averaged specific absorption rate (SAR). This means that the estimated SAR using a flat phantom should be higher than the SAR in the exposure part of an anatomical human-body model. To verify this, we numerically calculated the SAR for a flat phantom and compared it with the numerical calculation of the SAR for four anatomical human-body models of different ages. The numerical analysis was performed using the finite difference time domain method (FDTD). The smart-watch models were used in the three antennas: the shorted planar inverted-F antenna (PIFA), loop antenna, and monopole antenna. Numerical smart-watch models were implemented for cellular commutation and wireless local-area network operation at 835, 1850, and 2450 MHz. The peak spatial-averaged SARs of the smart-watch models are calculated for the flat phantom and anatomical human-body model for the wrist-worn and next to mouth positions. The results show that the flat phantom does not provide a consistent conservative SAR estimate. We concluded that the difference in the SAR results between an anatomical human-body model and a flat phantom can be attributed to the different phantom shapes and tissue structures.
Numerical compliance testing of human exposure to electromagnetic radiation from smart-watches
NASA Astrophysics Data System (ADS)
Hong, Seon-Eui; Lee, Ae-Kyoung; Kwon, Jong-Hwa; Pack, Jeong-Ki
2016-10-01
In this study, we investigated the electromagnetic dosimetry for smart-watches. At present, the standard for compliance testing of body-mounted and handheld devices specifies the use of a flat phantom to provide conservative estimates of the peak spatial-averaged specific absorption rate (SAR). This means that the estimated SAR using a flat phantom should be higher than the SAR in the exposure part of an anatomical human-body model. To verify this, we numerically calculated the SAR for a flat phantom and compared it with the numerical calculation of the SAR for four anatomical human-body models of different ages. The numerical analysis was performed using the finite difference time domain method (FDTD). The smart-watch models were used in the three antennas: the shorted planar inverted-F antenna (PIFA), loop antenna, and monopole antenna. Numerical smart-watch models were implemented for cellular commutation and wireless local-area network operation at 835, 1850, and 2450 MHz. The peak spatial-averaged SARs of the smart-watch models are calculated for the flat phantom and anatomical human-body model for the wrist-worn and next to mouth positions. The results show that the flat phantom does not provide a consistent conservative SAR estimate. We concluded that the difference in the SAR results between an anatomical human-body model and a flat phantom can be attributed to the different phantom shapes and tissue structures.
Yamaguchi, Hironori; Tsurita, Giichirou; Ueno, Shoogo; Watanabe, Soichi; Wake, Kanako; Taki, Masao; Nagawa, Hirokazu
2003-05-01
This study sought to clarify the effects of exposure to electromagnetic waves (EMW) used in cellular phones on learning and memory processes. Sprague-Dawley rats were exposed for either 1 h daily for 4 days or for 4 weeks to a pulsed 1439 MHz time division multiple access (TDMA) field in a carousel type exposure system. At the brain, average specific absorption rate (SAR) was 7.5 W/kg, and the whole body average SAR was 1.7 W/kg. Other subjects were exposed at the brain average SAR of 25 W/kg and the whole body average SAR of 5.7 W/kg for 45 min daily for 4 days. Learning and memory were evaluated by reversal learning in a food rewarded T-maze, in which rats learned the location of food (right or left) by using environmental cues. The animals exposed to EMW with the brain average SAR of 25 W/kg for 4 days showed statistically significant decreases in the transition in number of correct choices in the reversal task, compared to sham exposed or cage control animals. However, rats exposed to the brain average SAR of 7.5 W/kg for either 4 days or for 4 weeks showed no T-maze performance impairments. Intraperitoneal temperatures, as measured by a fiber optic thermometer, increased in the rats exposed to the brain average SAR of 25 W/kg but remained the same for the brain average SAR of 7.5 W/kg. The SAR of a standard cellular phone is restricted to a maximum of 2 W/kg averaged over 10 g tissue. These results suggest that the exposure to a TDMA field at levels about four times stronger than emitted by cellular phones does not affect the learning and memory processes when there are no thermal effects. Copyright 2003 Wiley-Liss, Inc.
InSAR Constraints on the Deformation of Debris-Covered Glaciers in the Khumbu Region of Nepal
NASA Astrophysics Data System (ADS)
Schmidt, D. A.; Hallet, B.; Barker, A. D.; Shean, D. E.; Conway, H.
2016-12-01
We present InSAR results for the Khumbu region of Nepal that document the downslope displacement and subsidence of the glacier's terminus. Meltwater from glaciers in the Himalaya is an important water resource to the region during the dry season. Climate change is negatively impacting this frozen reservoir by increasing the melt rates, causing the glaciers to thin and recede. Documenting the response of these glaciers is critical to forecasting the future impacts of climate change on this system. To constrain the thinning rates of glaciers in the Khumbu region, we exploit SAR data from the ALOS-1 satellite, which exhibits good coherence on the debris-covered glaciers. We also explore the use of SAR data from more recent satellite missions (i.e TerraSAR-X, Sentinel, ALOS-2). The ALOS-1 interferograms reveal the slow, down-slope movement of the debris-covered terminus ( mm/yr), as well as anomalous subsidence along the northwestern edge of Khumbu glacier, which may indicate local thinning. Deformation rates are generally consistent with campaign GPS observations, which also help to differentiate vertical from horizontal deformation. Elsewhere within the SAR scene, active movement is detected on the glacier-moraine dam of Imja Tsho, which has implications for the stability of the terminal moraine and for assessing the risk of a glacial lake outburst flood. Elsewhere, localized subsidence signals may indicate the melting of entrained ice in debris-covered landforms. The significant vertical relief in the Himalaya region poses a challenge for doing differential radar interferometry, as artifacts in the digital elevation model (DEM) can propagate into the differential interferograms. We explore the impacts of using different DEMs in our analysis, in an attempt to separate the topographic artifacts from the real deformation signals.
Pioz, Maryline; Guis, Hélène; Calavas, Didier; Durand, Benoît; Abrial, David; Ducrot, Christian
2011-04-20
Understanding the spatial dynamics of an infectious disease is critical when attempting to predict where and how fast the disease will spread. We illustrate an approach using a trend-surface analysis (TSA) model combined with a spatial error simultaneous autoregressive model (SAR(err) model) to estimate the speed of diffusion of bluetongue (BT), an infectious disease of ruminants caused by bluetongue virus (BTV) and transmitted by Culicoides. In a first step to gain further insight into the spatial transmission characteristics of BTV serotype 8, we used 2007-2008 clinical case reports in France and TSA modelling to identify the major directions and speed of disease diffusion. We accounted for spatial autocorrelation by combining TSA with a SAR(err) model, which led to a trend SAR(err) model. Overall, BT spread from north-eastern to south-western France. The average trend SAR(err)-estimated velocity across the country was 5.6 km/day. However, velocities differed between areas and time periods, varying between 2.1 and 9.3 km/day. For more than 83% of the contaminated municipalities, the trend SAR(err)-estimated velocity was less than 7 km/day. Our study was a first step in describing the diffusion process for BT in France. To our knowledge, it is the first to show that BT spread in France was primarily local and consistent with the active flight of Culicoides and local movements of farm animals. Models such as the trend SAR(err) models are powerful tools to provide information on direction and speed of disease diffusion when the only data available are date and location of cases.
Insect sting allergy in adults: key messages for clinicians.
Nittner-Marszalska, Marita; Cichocka-Jarosz, Ewa
2015-01-01
During their lifetime, 94.5% of people are stung by wasps, honeybees, hornets, or bumblebees (order Hymenoptera). After a sting, most people show typical local symptoms, 5% to 15% develop local allergic reactions, and 3% to 8.9%--systemic allergic reactions (SARs), which may be potentially life-threatening in about 10% of them. In mild forms of Hymenoptera-venom allergy (HVA), the leading symptoms are urticaria and edema (grades I and II, respectively, according to the Mueller classification). Severe SARs are classified as grade III (respiratory symptoms) and IV (cardiovascular symptoms). Rare manifestations of HVA are Kounis syndrome and takotsubo cardiomyopathy. All patients after an SAR require standard (skin test, IgE, tryptase) or comprehensive (component diagnosis, basophil activation test) allergy testing. All patients with severe systemic symptoms (hypertension, disturbances in consciousness) should be tested for mastocytosis. Additionally, a relationship was found between the severity of HVA symptoms and intake of angiotensin-converting enzyme inhibitors (ACEIs). There is a similar concern, although less well-documented, about the use of β-blockers. Patients with HVA who have experienced a SAR are potential candidates for venom immunotherapy (VIT), which is effective in 80% to 100% of individuals treated for 3 to 5 years. An increased risk of a VIT failure has been reported in patients with systemic mastocytosis and those treated with ACEIs. In certain groups (beekeepers, patients who develop a SAR to stings during a VIT with a standard dose, as well as those with a SAR to maintenance doses of VIT), a twice higher maintenance dose is recommended. Indications, contraindications, treatment protocols, and vaccine doses are regulated by the international guidelines of allergy societies.
Yang, Lei; Hao, Dongmei; Wu, Shuicai; Zhong, Rugang; Zeng, Yanjun
2013-06-01
Rats are often used in the electromagnetic field (EMF) exposure experiments. In the study for the effect of 900 MHz EMF exposure on learning and memory in SD rats, the specific absorption rate (SAR) and the temperature rise in the rat head are numerically evaluated. The digital anatomical model of a SD rat is reconstructed with the MRI images. Numerical method as finite difference time domain has been applied to assess the SAR and the temperature rise during the exposure. Measurements and simulations are conducted to characterize the net radiated power of the dipole to provide a precise dosimetric result. The whole-body average SAR and the localized SAR averaging over 1, 0.5 and 0.05 g mass for different organs/tissues are given. It reveals that during the given exposure experiment setup, no significant temperature rise occurs. The reconstructed anatomical rat model could be used in the EMF simulation and the dosimetric result provides useful information for the biological effect studies.
Martínez-Búrdalo, M; Martín, A; Anguiano, M; Villar, R
2005-09-07
In this work, the procedures for safety assessment in the close proximity of cellular communications base-station antennas at three different frequencies (900, 1800 and 2170 MHz) are analysed. For each operating frequency, we have obtained and compared the distances to the antenna from the exposure places where electromagnetic fields are below reference levels and the distances where the specific absorption rate (SAR) values in an exposed person are below the basic restrictions, according to the European safety guidelines. A high-resolution human body model has been located, in front of each base-station antenna as a worst case, at different distances, to compute whole body averaged SAR and maximum 10 g averaged SAR inside the exposed body. The finite-difference time-domain method has been used for both electromagnetic fields and SAR calculations. This paper shows that, for antenna-body distances in the near zone of the antenna, the fact that averaged field values be below the reference levels could, at certain frequencies, not guarantee guidelines compliance based on basic restrictions.
Retrieval of the thickness of undeformed sea ice from C-band compact polarimetric SAR images
NASA Astrophysics Data System (ADS)
Zhang, X.; Dierking, W.; Zhang, J.; Meng, J. M.; Lang, H. T.
2015-10-01
In this paper we introduce a parameter for the retrieval of the thickness of undeformed first-year sea ice that is specifically adapted to compact polarimetric SAR images. The parameter is denoted as "CP-Ratio". In model simulations we investigated the sensitivity of CP-Ratio to the dielectric constant, thickness, surface roughness, and incidence angle. From the results of the simulations we deduced optimal conditions for the thickness retrieval. On the basis of C-band CTLR SAR data, which were generated from Radarsat-2 quad-polarization images acquired jointly with helicopter-borne sea ice thickness measurements in the region of the Sea of Labrador, we tested empirical equations for thickness retrieval. An exponential fit between CP-Ratio and ice thickness provides the most reliable results. Based on a validation using other compact polarimetric SAR images from the same region we found a root mean square (rms) error of 8 cm and a maximum correlation coefficient of 0.92 for the retrieval procedure when applying it on level ice of 0.9 m mean thickness.
Airborne microwave radar measurements of surface velocity in a tidally-driven inlet
NASA Astrophysics Data System (ADS)
Farquharson, G.; Thomson, J. M.
2012-12-01
A miniaturized dual-beam along-track interferometric (ATI) synthetic aperture radar (SAR), capable of measuring two components of surface velocity at high resolution, was operated during the 2012 Rivers and Inlets Experiment (RIVET) at the New River Inlet in North Carolina. The inlet is predominantly tidally-driven, with little upstream river discharge. Surface velocities in the inlet and nearshore region were measured during ebb and flood tides during a variety of wind and offshore wave conditions. The radar-derived surface velocities range from around ±2~m~s1 during times of maximum flow. We compare these radar-derived surface velocities with surface velocities measured with drifters. The accuracy of the radar-derived velocities is investigated, especially in areas of large velocity gradients where along-track interferometric SAR can show significant differences with surface velocity. The goal of this research is to characterize errors in along-track interferometric SAR velocity so that ATI SAR measurements can be coupled with data assimilative modeling with the goal of developing the capability to adequately constrain nearshore models using remote sensing measurements.
Mossel, Eric C.; Huang, Cheng; Narayanan, Krishna; Makino, Shinji; Tesh, Robert B.; Peters, C. J.
2005-01-01
Of 30 cell lines and primary cells examined, productive severe acute respiratory syndrome coronavirus (Urbani strain) (SARS-CoV) infection after low-multiplicity inoculation was detected in only six: three African green monkey kidney epithelial cell lines (Vero, Vero E6, and MA104), a human colon epithelial line (CaCo-2), a porcine kidney epithelial line [PK(15)], and mink lung epithelial cells (Mv 1 Lu). SARS-CoV produced a lytic infection in Vero, Vero E6, and MA104 cells, but there was no visible cytopathic effect in Caco-2, Mv 1 Lu, or PK(15) cells. Multistep growth kinetics were identical in Vero E6 and MA104 cells, with maximum titer reached 24 h postinoculation (hpi). Virus titer was maximal 96 hpi in CaCo-2 cells, and virus was continually produced from infected CaCo-2 cells for at least 6 weeks after infection. CaCo-2 was the only human cell type of 13 tested that supported efficient SARS-CoV replication. Expression of the SARS-CoV receptor, angiotensin-converting enzyme 2 (ACE2), resulted in SARS-CoV replication in all refractory cell lines examined. Titers achieved were variable and dependent upon the method of ACE2 expression. PMID:15731278
The Effect of Sub-Aperture in DRIA Framework Applied on Multi-Aspect PolSAR Data
NASA Astrophysics Data System (ADS)
Xue, Feiteng; Yin, Qiang; Lin, Yun; Hong, Wen
2016-08-01
Multi-aspect SAR is a new remote sensing technology, achieves consecutive data in large look angle as platform moves. Multi- aspect observation brings higher resolution and SNR to SAR picture. Multi-aspect PolSAR data can increase the accuracy of target identify and classification because it contains the 3-D polarimetric scattering properties.DRIA(detecting-removing-incoherent-adding)framework is a multi-aspect PolSAR data processing method. In this method, the anisotropic and isotropic scattering is separated by maximum- likelihood ratio test. The anisotropic scattering is removed to gain a removal series. The isotropic scattering is incoherent added to gain a high resolution picture. The removal series describes the anisotropic scattering property and is used in features extraction and classification.This article focuses on the effect brought by difference of sub-aperture numbers in anisotropic scattering detection and removal. The more sub-apertures are, the less look angle is. Artificial target has anisotropic scattering because of Bragg resonances. The increase of sub-aperture number brings more accurate observation in azimuth though the quality of each single image may loss. The accuracy of classification in agricultural fields is affected by the anisotropic scattering brought by Bragg resonances. The size of the sub-aperture has a significant effect in the removal result of Bragg resonances.
Jo, Min-Jeong; Jung, Hyung-Sup; Yun, Sang-Ho
2017-07-14
We reconstructed the three-dimensional (3D) surface displacement field of the 24 August 2014 M6.0 South Napa earthquake using SAR data from the Italian Space Agency's COSMO-SkyMed and the European Space Agency's Sentinel-1A satellites. Along-track and cross-track displacements produced with conventional SAR interferometry (InSAR) and multiple-aperture SAR interferometry (MAI) techniques were integrated to retrieve the east, north, and up components of surface deformation. The resulting 3D displacement maps clearly delineated the right-lateral shear motion of the fault rupture with a maximum surface displacement of approximately 45 cm along the fault's strike, showing the east and north components of the trace particularly clearly. These maps also suggested a better-constrained model for the South Napa earthquake. We determined a strike of approximately 338° and dip of 85° by applying the Okada dislocation model considering a single patch with a homogeneous slip motion. Using the distributed slip model obtained by a linear solution, we estimated that a peak slip of approximately 1.7 m occurred around 4 km depth from the surface. 3D modelling using the retrieved 3D maps helps clarify the fault's nature and thus characterize its behaviour.
Ship Detection in SAR Image Based on the Alpha-stable Distribution
Wang, Changcheng; Liao, Mingsheng; Li, Xiaofeng
2008-01-01
This paper describes an improved Constant False Alarm Rate (CFAR) ship detection algorithm in spaceborne synthetic aperture radar (SAR) image based on Alpha-stable distribution model. Typically, the CFAR algorithm uses the Gaussian distribution model to describe statistical characteristics of a SAR image background clutter. However, the Gaussian distribution is only valid for multilook SAR images when several radar looks are averaged. As sea clutter in SAR images shows spiky or heavy-tailed characteristics, the Gaussian distribution often fails to describe background sea clutter. In this study, we replace the Gaussian distribution with the Alpha-stable distribution, which is widely used in impulsive or spiky signal processing, to describe the background sea clutter in SAR images. In our proposed algorithm, an initial step for detecting possible ship targets is employed. Then, similar to the typical two-parameter CFAR algorithm, a local process is applied to the pixel identified as possible target. A RADARSAT-1 image is used to validate this Alpha-stable distribution based algorithm. Meanwhile, known ship location data during the time of RADARSAT-1 SAR image acquisition is used to validate ship detection results. Validation results show improvements of the new CFAR algorithm based on the Alpha-stable distribution over the CFAR algorithm based on the Gaussian distribution. PMID:27873794
Scattering property based contextual PolSAR speckle filter
NASA Astrophysics Data System (ADS)
Mullissa, Adugna G.; Tolpekin, Valentyn; Stein, Alfred
2017-12-01
Reliability of the scattering model based polarimetric SAR (PolSAR) speckle filter depends upon the accurate decomposition and classification of the scattering mechanisms. This paper presents an improved scattering property based contextual speckle filter based upon an iterative classification of the scattering mechanisms. It applies a Cloude-Pottier eigenvalue-eigenvector decomposition and a fuzzy H/α classification to determine the scattering mechanisms on a pre-estimate of the coherency matrix. The H/α classification identifies pixels with homogeneous scattering properties. A coarse pixel selection rule groups pixels that are either single bounce, double bounce or volume scatterers. A fine pixel selection rule is applied to pixels within each canonical scattering mechanism. We filter the PolSAR data and depending on the type of image scene (urban or rural) use either the coarse or fine pixel selection rule. Iterative refinement of the Wishart H/α classification reduces the speckle in the PolSAR data. Effectiveness of this new filter is demonstrated by using both simulated and real PolSAR data. It is compared with the refined Lee filter, the scattering model based filter and the non-local means filter. The study concludes that the proposed filter compares favorably with other polarimetric speckle filters in preserving polarimetric information, point scatterers and subtle features in PolSAR data.
Golestanirad, Laleh; Keil, Boris; Angelone, Leonardo M.; Bonmassar, Giorgio; Mareyam, Azma; Wald, Lawrence L.
2016-01-01
Purpose MRI of patients with deep brain stimulation (DBS) implants is strictly limited due to safety concerns, including high levels of local specific absorption rate (SAR) of radiofrequency (RF) fields near the implant and related RF-induced heating. This study demonstrates the feasibility of using a rotating linearly polarized birdcage transmitter and a 32-channel close-fit receive array to significantly reduce local SAR in MRI of DBS patients. Methods Electromagnetic simulations and phantom experiments were performed with generic DBS lead geometries and implantation paths. The technique was based on mechanically rotating a linear birdcage transmitter to align its zero electric-field region with the implant while using a close-fit receive array to significantly increase signal to noise ratio of the images. Results It was found that the zero electric-field region of the transmitter is thick enough at 1.5 Tesla to encompass DBS lead trajectories with wire segments that were up to 30 degrees out of plane, as well as leads with looped segments. Moreover, SAR reduction was not sensitive to tissue properties, and insertion of a close-fit 32-channel receive array did not degrade the SAR reduction performance. Conclusion The ensemble of rotating linear birdcage and 32-channel close-fit receive array introduces a promising technology for future improvement of imaging in patients with DBS implants. PMID:27059266
Global Boreal Forest Mapping with JERS-1: North America
NASA Technical Reports Server (NTRS)
Williams, Cynthia L.; McDonald, Kyle; Chapman, Bruce
2000-01-01
Collaborative effort is underway to map boreal forests worldwide using L-band, single polarization Synthetic Aperture Radar (SAR) imagery from the Japanese Earth Resources (JERS-1) satellite. Final products of the North American Boreal Forest Mapping Project will include two continental scale radar mosaics and supplementary multitemporal mosaics for Alaska, central Canada, and eastern Canada. For selected sites, we are also producing local scale (100 km x 100 km) and regional scale maps (1000 km x 1000 km). As with the nearly completed Amazon component of the Global Rain Forest Mapping project, SAR imagery, radar image mosaics and SAR-derived texture image products will be available to the scientific community on the World Wide Web. Image acquisition for this project has been completed and processing and image interpretation is underway at the Alaska SAR Facility.
A computerized scheme of SARS detection in early stage based on chest image of digital radiograph
NASA Astrophysics Data System (ADS)
Zheng, Zhong; Lan, Rihui; Lv, Guozheng
2004-05-01
A computerized scheme for early severe acute respiratory syndrome(SARS) lesion detection in digital chest radiographs is presented in this paper. The total scheme consists of two main parts: the first part is to determine suspect lesions by the theory of locally orderless images(LOI) and their spatial features; the second part is to select real lesions among these suspect ones by their frequent features. The method we used in the second part is firstly developed by Katsuragawa et al with necessary modification. Preliminary results indicate that these features are good criterions to tell early SARS lesions apart from other normal lung structures.
The Singaporean response to the SARS outbreak: knowledge sufficiency versus public trust.
Deurenberg-Yap, M; Foo, L L; Low, Y Y; Chan, S P; Vijaya, K; Lee, M
2005-12-01
During the outbreak of severe acute respiratory syndrome (SARS) in Singapore from 1 March to 11 May 2003, various national prevention and control measures were undertaken to control and eliminate the transmission of the infection. During the initial period of the epidemic, public communication was effected through press releases and media coverage of the epidemic. About a month into the epidemic, a public education campaign was mounted to educate Singaporeans on SARS and adoption of appropriate behaviours to prevent the spread of the disease. A survey was conducted in late April 2003 to assess Singaporeans' knowledge about SARS and infection control measures, and their concerns and anxiety in relation to the outbreak. The survey also sought to assess their confidence in the ability of various institutions to deal with SARS and their opinion on the seemingly tough measures enforced. The study involved 853 adults selected from a telephone-sampling frame. Stratified sampling was used to ensure adequate representation from major ethnic groups and age groups. The study showed that the overall knowledge about SARS and control measures undertaken was low (mean per cent score of 24.5 +/- 8.9%). While 82% of respondents expressed confidence in measures undertaken by Tan Tock Seng Hospital (the hospital designated to manage SARS), only 36% had confidence in nursing homes. However, >80% of the public agreed that the preventive and control measures instituted were appropriate. Despite the low knowledge score, the overall mean satisfaction score of the government's response to SARS was 4.47 (out of possible highest score of 5.00), with >93% of adult Singaporeans indicating that they were satisfied or very satisfied with the government's response to SARS. Generally, Singaporeans had a high level of public trust (satisfaction with government, confidence in institutions, deeming government measures appropriate), scoring 11.4 out of possible maximum of 14. The disparity between low knowledge on the one hand and high confidence and trust in the actions of the government on the other suggests that Singaporeans do not require high knowledge sufficiency to be confident in measures undertaken by the government to control the SARS crisis.
Panel Discussions on Total Solar Irradiance Variations and the Maunder Minimum
NASA Technical Reports Server (NTRS)
Pap, J. M.; White, O. R.
1993-01-01
For more than a decade, total solar irradiance has been monitored from several satellites, namely and Nimbus-7, Solar Maximum Mission (SMM), the NASA ERBS, NOAA9 and NOAA10,EURECA, and the Upper Atmospheric Research Satellite (SARS).
Rapid subsidence over oil fields measured by SAR
NASA Technical Reports Server (NTRS)
Fielding, E. J.; Blom, R. G.; Goldstein, R. M.
1998-01-01
The Lost Hills and Belridge oil felds are in the San Joaquin Valley, California. The major oil reservoir is high porosity and low permeability diatomite. Extraction of large volumes from shallow depths causes reduction in pore pressure and subsequent compaction, forming a surface subsidence bowl. We measure this subsidence from space using interferometric analysis of SAR (Synthetic Aperture Radar) data collected by the European Space Agency Remote Sensing Satellites (ERS-1 and ERS-2). Maximum subsidence rates are as high as 40 mm in 35 days or > 400 mm/yr, measured from interferograms with time separations ranging from one day to 26 months. The 8- and 26-month interferograms contain areas where the subsidence gradient exceeds the measurement possible with ERS SAR, but shows increased detail in areas of less rapid subsidence. Synoptic mapping of subsidence distribution from satellite data powerfully complements ground-based techniques, permits measurements where access is difficult, and aids identification of underlying causes.
On the Implementation of a Land Cover Classification System for SAR Images Using Khoros
NASA Technical Reports Server (NTRS)
Medina Revera, Edwin J.; Espinosa, Ramon Vasquez
1997-01-01
The Synthetic Aperture Radar (SAR) sensor is widely used to record data about the ground under all atmospheric conditions. The SAR acquired images have very good resolution which necessitates the development of a classification system that process the SAR images to extract useful information for different applications. In this work, a complete system for the land cover classification was designed and programmed using the Khoros, a data flow visual language environment, taking full advantages of the polymorphic data services that it provides. Image analysis was applied to SAR images to improve and automate the processes of recognition and classification of the different regions like mountains and lakes. Both unsupervised and supervised classification utilities were used. The unsupervised classification routines included the use of several Classification/Clustering algorithms like the K-means, ISO2, Weighted Minimum Distance, and the Localized Receptive Field (LRF) training/classifier. Different texture analysis approaches such as Invariant Moments, Fractal Dimension and Second Order statistics were implemented for supervised classification of the images. The results and conclusions for SAR image classification using the various unsupervised and supervised procedures are presented based on their accuracy and performance.
Resilience of SAR11 bacteria to rapid acidification in the high-latitude open ocean.
Hartmann, Manuela; Hill, Polly G; Tynan, Eithne; Achterberg, Eric P; Leakey, Raymond J G; Zubkov, Mikhail V
2016-02-01
Ubiquitous SAR11 Alphaproteobacteria numerically dominate marine planktonic communities. Because they are excruciatingly difficult to cultivate, there is comparatively little known about their physiology and metabolic responses to long- and short-term environmental changes. As surface oceans take up anthropogenic, atmospheric CO2, the consequential process of ocean acidification could affect the global biogeochemical significance of SAR11. Shipping accidents or inadvertent release of chemicals from industrial plants can have strong short-term local effects on oceanic SAR11. This study investigated the effect of 2.5-fold acidification of seawater on the metabolism of SAR11 and other heterotrophic bacterioplankton along a natural temperature gradient crossing the North Atlantic Ocean, Norwegian and Greenland Seas. Uptake rates of the amino acid leucine by SAR11 cells as well as other bacterioplankton remained similar to controls despite an instant ∼50% increase in leucine bioavailability upon acidification. This high physiological resilience to acidification even without acclimation, suggests that open ocean dominant bacterioplankton are able to cope even with sudden and therefore more likely with long-term acidification effects. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
TerraSAR-X InSAR multipass analysis on Venice, Italy)
NASA Astrophysics Data System (ADS)
Nitti, D. O.; Nutricato, R.; Bovenga, F.; Refice, A.; Chiaradia, M. T.; Guerriero, L.
2009-09-01
The TerraSAR-X (copyright) mission, launched in 2007, carries a new X-band Synthetic Aperture Radar (SAR) sensor optimally suited for SAR interferometry (InSAR), thus allowing very promising application of InSAR techniques for the risk assessment on areas with hydrogeological instability and especially for multi-temporal analysis, such as Persistent Scatterer Interferometry (PSI) techniques, originally developed at Politecnico di Milano. The SPINUA (Stable Point INterferometry over Unurbanised Areas) technique is a PSI processing methodology which has originally been developed with the aim of detection and monitoring of coherent PS targets in non or scarcely-urbanized areas. The main goal of the present work is to describe successful applications of the SPINUA PSI technique in processing X-band data. Venice has been selected as test site since it is in favorable settings for PSI investigations (urban area containing many potential coherent targets such as buildings) and in view of the availability of a long temporal series of TerraSAR-X stripmap acquisitions (27 scenes in all). The Venice Lagoon is affected by land sinking phenomena, whose origins are both natural and man-induced. The subsidence of Venice has been intensively studied for decades by determining land displacements through traditional monitoring techniques (leveling and GPS) and, recently, by processing stacks of ERS/ENVISAT SAR data. The present work is focused on an independent assessment of application of PSI techniques to TerraSAR-X stripmap data for monitoring the stability of the Venice area. Thanks to its orbital repeat cycle of only 11 days, less than a third of ERS/ENVISAT C-band missions, the maximum displacement rate that can be unambiguously detected along the Line-of-Sight (LOS) with TerraSAR-X SAR data through PSI techniques is expected to be about twice the corresponding value of ESA C-band missions, being directly proportional to the sensor wavelength and inversely proportional to the revisit time. When monitoring displacement phenomena which are known to be within the C-band rate limits, the increased repeat cycle of TerraSAR-X offers the opportunity to decimate the stack of TerraSAR-X data, e.g. by doubling the temporal baseline between subsequent acquisitions. This strategy can be adopted for reducing both economic and computational processing costs. In the present work, the displacement rate maps obtained through SPINUA with and without decimation of the number of Single Look Complex (SLC) acquisitions are compared. In particular, it is shown that with high spatial resolution SAR data, reliable displacement maps could be estimated through PSI techniques with a number of SLCs much lower than in C-band.
NASA Astrophysics Data System (ADS)
Solaro, Giuseppe; Bonano, Manuela; Manzo, Mariarosaria
2016-04-01
The North Anatolian Fault (NAF) is one of the most active faults worldwide, extending approximately 1,200 km from Eastern Turkey to the Northern Aegean Sea. During the 20th century series of damaging earthquakes occurred along the NAF, generally propagated westward towards Istanbul; the last one occurred in 1999 at Izmit, a city 80 km away from Istanbul. Within this scenario, the FP7 MARsite project (New Directions in Seismic Hazard assessment through Focused Earth Observation in Marmara Supersite), supported by EU, intends to collect, share and integrate multidisciplinary data (seismologic, geochemical, surveying, satellite, etc.) in order to carry out assessment, mitigation and management of seismic risk in the region of the Sea of Marmara. In the framework of the MARsite project, we performed the analysis and monitoring of the surface deformation affecting the Istanbul mega city by exploiting the large archives of X-band satellite SAR data, made available through the Supersites Initiatives, and by processing them via the advanced multi-temporal and multi-scale InSAR technique, known as the Small BAseline Subset (SBAS) approach. In particular, we applied the SBAS technique to a dataset of 101 SAR images acquired by the TerraSAR-X constellation of the German Space Agency (DLR) over descending orbits and spanning the November 2010 - August 2014 time interval. From,these images, we generated 312 differential interferograms with a maximum spatial separation (perpendicular baseline) between the acquisition orbits of about 500 m., that were used to generate, via the SBAS approach, mean deformation velocity map and corresponding ground time series of the investigated area. The performed InSAR analysis reveals a generalized stability over the Istanbul area, except for some localized displacements, related to subsidence and slope instability phenomena. In particular, we identified: (i) a displacement pattern related to the Istanbul airport, showing a mostly linear deformation trend with a velocity of about 1 cm/yr, although a slowdown effect is observed starting from early 2014, and (ii) a subsidence phenomenon in correspondence to Miniaturk park with a mean velocity value of about 1.5 cm/yr. Moreover, by benefiting from the recent launch of the C-band Sentinel-1A (S1A) satellite (April 2014), developed within the European Commission Copernicus Programme, we performed a more recent InSAR analysis of the Istanbul mega city and its surroundings by exploiting datasets collected during the October 2014 - December 2015 time interval. In such a way, we are able to investigate possible changes in the spatial and temporal deformation rates of the detected displacements over time with the aim to improve the comprehension of the deformation processes already occurred and/or occurring in this area. The obtained results, generated within the MARsite project, are expected to be available to scientific community through the Geohazards Exploitation Platform (GEP), an ESA platform aimed at supporting the exploitation of satellite EO data for geohazards, to be fully compliant with some of the major issues of the Supersites Initiative, as well as to foster the InSAR data sharing within a wider scientific community.
Detailing radio frequency heating induced by coronary stents: a 7.0 Tesla magnetic resonance study.
Santoro, Davide; Winter, Lukas; Müller, Alexander; Vogt, Julia; Renz, Wolfgang; Ozerdem, Celal; Grässl, Andreas; Tkachenko, Valeriy; Schulz-Menger, Jeanette; Niendorf, Thoralf
2012-01-01
The sensitivity gain of ultrahigh field Magnetic Resonance (UHF-MR) holds the promise to enhance spatial and temporal resolution. Such improvements could be beneficial for cardiovascular MR. However, intracoronary stents used for treatment of coronary artery disease are currently considered to be contra-indications for UHF-MR. The antenna effect induced by a stent together with RF wavelength shortening could increase local radiofrequency (RF) power deposition at 7.0 T and bears the potential to induce local heating, which might cause tissue damage. Realizing these constraints, this work examines RF heating effects of stents using electro-magnetic field (EMF) simulations and phantoms with properties that mimic myocardium. For this purpose, RF power deposition that exceeds the clinical limits was induced by a dedicated birdcage coil. Fiber optic probes and MR thermometry were applied for temperature monitoring using agarose phantoms containing copper tubes or coronary stents. The results demonstrate an agreement between RF heating induced temperature changes derived from EMF simulations versus MR thermometry. The birdcage coil tailored for RF heating was capable of irradiating power exceeding the specific-absorption rate (SAR) limits defined by the IEC guidelines by a factor of three. This setup afforded RF induced temperature changes up to +27 K in a reference phantom. The maximum extra temperature increase, induced by a copper tube or a coronary stent was less than 3 K. The coronary stents examined showed an RF heating behavior similar to a copper tube. Our results suggest that, if IEC guidelines for local/global SAR are followed, the extra RF heating induced in myocardial tissue by stents may not be significant versus the baseline heating induced by the energy deposited by a tailored cardiac transmit RF coil at 7.0 T, and may be smaller if not insignificant than the extra RF heating observed under the circumstances used in this study.
Detailing Radio Frequency Heating Induced by Coronary Stents: A 7.0 Tesla Magnetic Resonance Study
Santoro, Davide; Winter, Lukas; Müller, Alexander; Vogt, Julia; Renz, Wolfgang; Özerdem, Celal; Grässl, Andreas; Tkachenko, Valeriy; Schulz-Menger, Jeanette; Niendorf, Thoralf
2012-01-01
The sensitivity gain of ultrahigh field Magnetic Resonance (UHF-MR) holds the promise to enhance spatial and temporal resolution. Such improvements could be beneficial for cardiovascular MR. However, intracoronary stents used for treatment of coronary artery disease are currently considered to be contra-indications for UHF-MR. The antenna effect induced by a stent together with RF wavelength shortening could increase local radiofrequency (RF) power deposition at 7.0 T and bears the potential to induce local heating, which might cause tissue damage. Realizing these constraints, this work examines RF heating effects of stents using electro-magnetic field (EMF) simulations and phantoms with properties that mimic myocardium. For this purpose, RF power deposition that exceeds the clinical limits was induced by a dedicated birdcage coil. Fiber optic probes and MR thermometry were applied for temperature monitoring using agarose phantoms containing copper tubes or coronary stents. The results demonstrate an agreement between RF heating induced temperature changes derived from EMF simulations versus MR thermometry. The birdcage coil tailored for RF heating was capable of irradiating power exceeding the specific-absorption rate (SAR) limits defined by the IEC guidelines by a factor of three. This setup afforded RF induced temperature changes up to +27 K in a reference phantom. The maximum extra temperature increase, induced by a copper tube or a coronary stent was less than 3 K. The coronary stents examined showed an RF heating behavior similar to a copper tube. Our results suggest that, if IEC guidelines for local/global SAR are followed, the extra RF heating induced in myocardial tissue by stents may not be significant versus the baseline heating induced by the energy deposited by a tailored cardiac transmit RF coil at 7.0 T, and may be smaller if not insignificant than the extra RF heating observed under the circumstances used in this study. PMID:23185498
Speckle noise reduction of 1-look SAR imagery
NASA Technical Reports Server (NTRS)
Nathan, Krishna S.; Curlander, John C.
1987-01-01
Speckle noise is inherent to synthetic aperture radar (SAR) imagery. Since the degradation of the image due to this noise results in uncertainties in the interpretation of the scene and in a loss of apparent resolution, it is desirable to filter the image to reduce this noise. In this paper, an adaptive algorithm based on the calculation of the local statistics around a pixel is applied to 1-look SAR imagery. The filter adapts to the nonstationarity of the image statistics since the size of the blocks is very small compared to that of the image. The performance of the filter is measured in terms of the equivalent number of looks (ENL) of the filtered image and the resulting resolution degradation. The results are compared to those obtained from different techniques applied to similar data. The local adaptive filter (LAF) significantly increases the ENL of the final image. The associated loss of resolution is also lower than that for other commonly used speckle reduction techniques.
NASA Astrophysics Data System (ADS)
Mohammadimanesh, F.; Salehi, B.; Mahdianpari, M.; Homayouni, S.
2016-06-01
Polarimetric Synthetic Aperture Radar (PolSAR) imagery is a complex multi-dimensional dataset, which is an important source of information for various natural resources and environmental classification and monitoring applications. PolSAR imagery produces valuable information by observing scattering mechanisms from different natural and man-made objects. Land cover mapping using PolSAR data classification is one of the most important applications of SAR remote sensing earth observations, which have gained increasing attention in the recent years. However, one of the most challenging aspects of classification is selecting features with maximum discrimination capability. To address this challenge, a statistical approach based on the Fisher Linear Discriminant Analysis (FLDA) and the incorporation of physical interpretation of PolSAR data into classification is proposed in this paper. After pre-processing of PolSAR data, including the speckle reduction, the H/α classification is used in order to classify the basic scattering mechanisms. Then, a new method for feature weighting, based on the fusion of FLDA and physical interpretation, is implemented. This method proves to increase the classification accuracy as well as increasing between-class discrimination in the final Wishart classification. The proposed method was applied to a full polarimetric C-band RADARSAT-2 data set from Avalon area, Newfoundland and Labrador, Canada. This imagery has been acquired in June 2015, and covers various types of wetlands including bogs, fens, marshes and shallow water. The results were compared with the standard Wishart classification, and an improvement of about 20% was achieved in the overall accuracy. This method provides an opportunity for operational wetland classification in northern latitude with high accuracy using only SAR polarimetric data.
Gosselin, Marie-Christine; Kühn, Sven; Crespo-Valero, Pedro; Cherubini, Emilio; Zefferer, Marcel; Christ, Andreas; Kuster, Niels
2011-09-01
The maximum spatial peak exposure of each commercial mobile phone determined in compliance with the relevant safety and product standards is publicly available. However, this information is not sufficient for epidemiological studies aiming to correlate the use of mobile phones with specific cancers or to behavioral alterations, as the dominant location of the exposure may be anywhere in the head between the chin to above the ear, depending on the phone design. The objective of this study was to develop a methodology to determine tissue-specific exposure by expanding the post-processing of the measured surface or volume scans using standardized compliance testing equipment, that is, specific absorption rate (SAR) scanners. The transformation matrix was developed using the results from generic dipoles to evaluate the relation between the SAR in many brain regions of the Virtual Family anatomical phantoms and in virtual brain regions mapped onto the homogeneous SAM head. A set of transformation factors was derived to correlate the SAR induced in the SAM head to the SAR in the anatomical heads. The evaluation included the uncertainty associated with each factor, arising from the anatomical differences between the phantoms (typically less than 6 dB (4×)). The applicability of these factors was validated by performing simulations of four head models exposed to four realistic mobile phone models. The new methodology enables the reliable determination of the maximum and averaged exposure of specific tissues and functional brain regions to mobile phones when combined with mobile phone power control data, and therefore greatly strengthens epidemiological evaluations and improves information for the consumer. Copyright © 2011 Wiley-Liss, Inc.
Land subsidence in the San Joaquin Valley, California, USA, 2007-14
Sneed, Michelle; Brandt, Justin
2015-01-01
Rapid land subsidence was recently measured using multiple methods in two areas of the San Joaquin Valley (SJV): between Merced and Fresno (El Nido), and between Fresno and Bakersfield (Pixley). Recent land-use changes and diminished surface-water availability have led to increased groundwater pumping, groundwater-level declines, and land subsidence. Differential land subsidence has reduced the flow capacity of water-conveyance systems in these areas, exacerbating flood hazards and affecting the delivery of irrigation water. Vertical land-surface changes during 2007–2014 were determined by using Interferometric Synthetic Aperture Radar (InSAR), Continuous Global Positioning System (CGPS), and extensometer data. Results of the InSAR analysis indicate that about 7600 km2 subsided 50–540 mm during 2008–2010; CGPS and extensometer data indicate that these rates continued or accelerated through December 2014. The maximum InSAR-measured rate of 270 mm yr−1 occurred in the El Nido area, and is among the largest rates ever measured in the SJV. In the Pixley area, the maximum InSAR-measured rate during 2008–2010 was 90 mm yr−1. Groundwater was an important part of the water supply in both areas, and pumping increased when land use changed or when surface water was less available. This increased pumping caused groundwater-level declines to near or below historical lows during the drought periods 2007–2009 and 2012–present. Long-term groundwater-level and land-subsidence monitoring in the SJV is critical for understanding the interconnection of land use, groundwater levels, and subsidence, and evaluating management strategies that help mitigate subsidence hazards to infrastructure while optimizing water supplies.
NASA Astrophysics Data System (ADS)
Ruan, Z.; Yan, S.; Liu, G.; Guo, H.; LV, M.
2016-12-01
Glacier dynamic parameters, such as velocity fields and motion patterns, play a crucial role in the estimation of ice mass balance variations and in the monitoring of glacier-related hazards. Characterized by being independent of cloud cover and solar illumination, synthetic aperture radar (SAR) at long wavelength has provided an invaluable way to measure mountain glacier motion. Compared with optical imagery and in-situ surveys, it has been successfully exploited to detect glacier motion in many previous studies, usually with pixel-tracking (PT), differential interferometric SAR (D-InSAR) and multi-aperture interferometry (MAI) methods. However, the reliability of the extracted glacier velocities heavily depends on complex terrain topography and diverse glacial motion types. D-InSAR and MAI techniques are prone to fail in the case of mountain glaciers because of the steep terrain and their narrow sizes. PT method is considered to be the alternative way, although it is subject to a low accuracy.We propose an integrated strategy based on comprehensive utilization of the phase information (D-InSAR and MAI) and intensity information (PT) of SAR images, which is used to yield an accurate and detailed ice motion pattern for the typical glaciers in the West Kunlun Mountains, China, by fully exploiting the SAR imagery. In order to avoid the error introduced by the motion decomposition operation, the derived ice motion is presented in the SAR imaging dimension composed of the along-track and slant-range directions. The Shuttle Radar Topographic Mission (SRTM) digital elevation model (DEM) at 3 arc-sec resolution is employed to remove and compensate for the topography-related signal in the D-InSAR, MAI, and PT methods. Compared with the traditional SAR-based methods, the proposed approach can determine the ice motion over a widely varying range of ice velocities with a relatively high accuracy. Its capability is proved by the detailed ice displacement pattern with the average accuracy of 0.2 m covering the entire glacier surface, which shows a maximum ice movement of 4.9 m over 46 days. Therefore, the integrated approach could present us with a novel way to comprehensively and accurately understand glacier dynamics by overcoming the incoherence phenomenon, and has great potential for glaciology study.
The InSAR Scientific Computing Environment (ISCE): A Python Framework for Earth Science
NASA Astrophysics Data System (ADS)
Rosen, P. A.; Gurrola, E. M.; Agram, P. S.; Sacco, G. F.; Lavalle, M.
2015-12-01
The InSAR Scientific Computing Environment (ISCE, funded by NASA ESTO) provides a modern computing framework for geodetic image processing of InSAR data from a diverse array of radar satellites and aircraft. ISCE is both a modular, flexible, and extensible framework for building software components and applications as well as a toolbox of applications for processing raw or focused InSAR and Polarimetric InSAR data. The ISCE framework contains object-oriented Python components layered to construct Python InSAR components that manage legacy Fortran/C InSAR programs. Components are independently configurable in a layered manner to provide maximum control. Polymorphism is used to define a workflow in terms of abstract facilities for each processing step that are realized by specific components at run-time. This enables a single workflow to work on either raw or focused data from all sensors. ISCE can serve as the core of a production center to process Level-0 radar data to Level-3 products, but is amenable to interactive processing approaches that allow scientists to experiment with data to explore new ways of doing science with InSAR data. The NASA-ISRO SAR (NISAR) Mission will deliver data of unprecedented quantity and quality, making possible global-scale studies in climate research, natural hazards, and Earth's ecosystems. ISCE is planned as the foundational element in processing NISAR data, enabling a new class of analyses that take greater advantage of the long time and large spatial scales of these new data. NISAR will be but one mission in a constellation of radar satellites in the future delivering such data. ISCE currently supports all publicly available strip map mode space-borne SAR data since ERS and is expected to include support for upcoming missions. ISCE has been incorporated into two prototype cloud-based systems that have demonstrated its elasticity in addressing larger data processing problems in a "production" context and its ability to be controlled by individual science users on the cloud for large data problems. ISCE has been downloaded by over 200 users by a license for WinSAR members through the Unavco.org website. Others may apply directly to JPL for a license at download.jpl.nasa.gov.
Glaciological studies in the central Andes using AIRSAR/TOPSAR
NASA Technical Reports Server (NTRS)
Forster, Richard R.; Klein, Andrew G.; Blodgett, Troy A.; Isacks, Bryan L.
1993-01-01
The interaction of climate and topography in mountainous regions is dramatically expressed in the spatial distribution of glaciers and snowcover. Monitoring existing alpine glaciers and snow extent provides insight into the present mountain climate system and how it is changing, while mapping the positions of former glaciers as recorded in landforms such as cirques and moraines provide a record of the large past climate change associated with the last glacial maximum. The Andes are an ideal mountain range in which to study the response of snow and ice to past and present climate change. Their expansive latitudinal extent offers the opportunity to study glaciers in diverse climate settings from the tropical glaciers of Peru and Bolivia to the ice caps and tide-water glaciers of sub-polar Patagonia. SAR has advantages over traditional passive remote sensing instruments for monitoring present snow and ice and differentiating moraine relative ages. The cloud penetrating ability of SAR is indispensable for perennially cloud covered mountains. Snow and ice facies can be distinguished from SAR's response to surface roughness, liquid water content and grain size distribution. The combination of SAR with a coregestered high-resolution DEM (TOPSAR) provides a promising tool for measuring glacier change in three dimensions, thus allowing ice volume change to be measured directly. The change in moraine surface roughness over time enables SAR to differentiate older from younger moraines. Polarimetric SAR data have been used to distinguish snow and ice facies and relatively date moraines. However, both algorithms are still experimental and require ground truth verification. We plan to extend the SAR classification of snow and ice facies and moraine age beyond the ground truth sites to throughout the Cordillera Real to provide a regional view of past and present snow and ice. The high resolution DEM will enhance the SAR moraine dating technique by discriminating relative ages based on moraine slope degradation.
What story does geographic separation of insular bats tell? A case study on Sardinian rhinolophids.
Russo, Danilo; Di Febbraro, Mirko; Rebelo, Hugo; Mucedda, Mauro; Cistrone, Luca; Agnelli, Paolo; De Pasquale, Pier Paolo; Martinoli, Adriano; Scaravelli, Dino; Spilinga, Cristiano; Bosso, Luciano
2014-01-01
Competition may lead to changes in a species' environmental niche in areas of sympatry and shifts in the niche of weaker competitors to occupy areas where stronger ones are rarer. Although mainland Mediterranean (Rhinolophus euryale) and Mehely's (R. mehelyi) horseshoe bats mitigate competition by habitat partitioning, this may not be true on resource-limited systems such as islands. We hypothesize that Sardinian R. euryale (SAR) have a distinct ecological niche suited to persist in the south of Sardinia where R. mehelyi is rarer. Assuming that SAR originated from other Italian populations (PES)--mostly allopatric with R. mehelyi--once on Sardinia the former may have undergone niche displacement driven by R. mehelyi. Alternatively, its niche could have been inherited from a Maghrebian source population. We: a) generated Maxent Species Distribution Models (SDM) for Sardinian populations; b) calibrated a model with PES occurrences and projected it to Sardinia to see whether PES niche would increase R. euryale's sympatry with R. mehelyi; and c) tested for niche similarity between R. mehelyi and PES, PES and SAR, and R. mehelyi and SAR. Finally we predicted R. euryale's range in Northern Africa both in the present and during the Last Glacial Maximum (LGM) by calibrating SDMs respectively with SAR and PES occurrences and projecting them to the Maghreb. R. mehelyi and PES showed niche similarity potentially leading to competition. According to PES' niche, R. euryale would show a larger sympatry with R. mehelyi on Sardinia than according to SAR niche. Such niches have null similarity. The current and LGM Maghrebian ranges of R. euryale were predicted to be wide according to SAR's niche, negligible according to PES' niche. SAR's niche allows R. euryale to persist where R. mehelyi is rarer and competition probably mild. Possible explanations may be competition-driven niche displacement or Maghrebian origin.
NASA Astrophysics Data System (ADS)
Reza Barati, Mohammad; Selomulya, Cordelia; Suzuki, Kiyonori
2014-05-01
Magnetic nanoparticles with narrow size distributions have successfully been synthesized by an ultrasonic assisted co-precipitation method. The effects of particle size on magnetic properties, heat generation by AC fields, and the cell cytotoxicity were investigated for MgFe2O4 nanoparticles with mean diameters varying from 7 ± 0.5 nm to 29 ± 1 nm. The critical size for superparamagnetic to ferrimagnetic transition (DS→F) of MgFe2O4 was determined to be about 13 ± 0.5 nm at 300 K. The specific absorption rate (SAR) of MgFe2O4 nanoparticles was strongly size dependent; it showed a maximum value of 19 W/g when the particle size was 10 ± 0.5 nm at which the Néel and Brownian relaxations are the major cause of heating. The SAR value was suppressed dramatically by 46% with increasing particle size from 10 ± 0.5 nm to 13 ± 0.5 nm, where Néel relaxation slows down and SAR results primarily from Brownian relaxation loss. A further reduction in SAR value was evident when the size was increased from 13 ± 0.5 nm to 16 ± 1 nm, where the superparamagnetic to ferromagnetic transition occurs. However, SAR showed a tendency to increase with particle size again above 16 ± 1 nm where hysteresis loss becomes the dominant mechanism of heat generation. The particle size dependence of SAR in the superparamagnetic region was well described by considering the effective relaxation time estimated based on a log-normal size distribution. The clear size dependence of SAR is attributable to the high degree of monodispersity of particles synthesized here. The high SAR value of water-based MgFe2O4 magnetic suspension combined with low cell cytotoxicity suggests a great potential of MgFe2O4 nanoparticles for magnetic hyperthermia therapy applications.
Regional and local land subsidence at the Venice coastland by TerraSAR-X PSI
NASA Astrophysics Data System (ADS)
Tosi, L.; Strozzi, T.; Da Lio, C.; Teatini, P.
2015-11-01
Land subsidence occurred at the Venice coastland over the 2008-2011 period has been investigated by Persistent Scatterer Interferometry (PSI) using a stack of 90 TerraSAR-X stripmap images with a 3 m resolution and a 11-day revisiting time. The regular X-band SAR acquisitions over more than three years coupled with the very-high image resolution has significantly improved the monitoring of ground displacements at regional and local scales, e.g., the entire lagoon, especially the historical palaces, the MoSE large structures under construction at the lagoon inlets to disconnect the lagoon from the Adriatic Sea during high tides, and single small structures scattered within the lagoon environments. Our results show that subsidence is characterized by a certain variability at the regional scale with superimposed important local displacements. The movements range from a gentle uplift to subsidence rates of up to 35 mm yr-1. For instance, settlements of 30-35 mm yr-1 have been detected at the three lagoon inlets in correspondence of the MoSE works, and local sinking bowls up to 10 mm yr-1 connected with the construction of new large buildings or restoration works have been measured in the Venice and Chioggia historical centers. Focusing on the city of Venice, the mean subsidence of 1.1 ± 1.0 mm yr-1 confirms the general stability of the historical center.
NASA Astrophysics Data System (ADS)
Zhao, Chaoying; Qu, Feifei; Zhang, Qin; Zhu, Wu
2012-10-01
The accuracy of DEM generated with interferometric synthetic aperture radar (InSAR) technique mostly depends on phase unwrapping errors, atmospheric effects, baseline errors and phase noise. The first term is more serious if the high-resolution TerraSAR-X data over urban regions and mountainous regions are applied. In addition, the deformation effect cannot be neglected if the study regions are suffering from surface deformation within the SAR acquisition dates. In this paper, several measures have been taken to generate high resolution DEM over urban regions and mountainous regions with TerraSAR data. The SAR interferometric pairs are divided into two subsets: (a) DEM subsets and (b) deformation subsets. These two interferometric sets serve to generate DEM and deformation, respectively. The external DEM is applied to assist the phase unwrapping with "remove-restore" procedure. The deformation phase is re-scaled and subtracted from each DEM observations. Lastly, the stochastic errors including atmospheric effects and phase noise are suppressed by averaging heights from several interferograms with weights. Six TerraSAR-X data are applied to generate a 6-m-resolution DEM over Xi'an, China using these procedures. Both discrete GPS heights and local high resolution and high precision DEM data are applied to calibrate the DEM generated with our algorithm, and around 4.1 m precision is achieved.
Thors, B; Hansson, B; Törnevik, C
2009-07-07
In this paper, a procedure is proposed for generating simple and practical compliance boundaries for mobile communication base station antennas. The procedure is based on a set of formulae for estimating the specific absorption rate (SAR) in certain directions around a class of common base station antennas. The formulae, given for both whole-body and localized SAR, require as input the frequency, the transmitted power and knowledge of antenna-related parameters such as dimensions, directivity and half-power beamwidths. With knowledge of the SAR in three key directions it is demonstrated how simple and practical compliance boundaries can be generated outside of which the exposure levels do not exceed certain limit values. The conservativeness of the proposed procedure is discussed based on results from numerical radio frequency (RF) exposure simulations with human body phantoms from the recently developed Virtual Family.
Sea Surface Wakes Observed by Spaceborne SAR in the Offshore Wind Farms
NASA Astrophysics Data System (ADS)
Li, Xiaoming; Lehner, Susanne; Jacobsen, Sven
2014-11-01
In the paper, we present some X-band spaceborne synthetic aperture radar (SAR) TerraSAR-X (TS-X) images acquired at the offshore wind farms in the North Sea and the East China Sea. The high spatial resolution SAR images show different sea surface wake patterns downstream of the offshore wind turbines. The analysis suggests that there are major two types of wakes among the observed cases. The wind turbine wakes generated by movement of wind around wind turbines are the most often observed cases. In contrast, due to the strong local tidal currents in the near shore wind farm sites, the tidal current wakes induced by tidal current impinging on the wind turbine piles are also observed in the high spatial resolution TS-X images. The discrimination of the two types of wakes observed in the offshore wind farms is also described in the paper.
SARS and New York's Chinatown: the politics of risk and blame during an epidemic of fear.
Eichelberger, Laura
2007-09-01
This paper examines the production of risk and blame discourses during the 2003 SARS epidemic and responses to those messages in New York City's Chinatown, a community stigmatized during the SARS epidemic despite having no SARS cases. The study consisted of 6 weeks participant observation and 37 semi-structured, open-ended interviews with community members. Stigmatizing discourses from the late 19th century resurfaced to blame Chinese culture and people for disease, and were recontextualized to fit contemporary local and global political-economic concerns. Many informants discursively distanced themselves from risk but simultaneously reaffirmed the association of Chinese culture with disease by redirecting such discourses onto recent Chinese immigrants. Legitimizing cultural blame obfuscates the structural and biological causes of epidemics and naturalizes health disparities in marginalized populations. This research demonstrates that myriad historical, political, and economic factors shape responses and risk perceptions during an unfamiliar epidemic, even in places without infection.
Glacier velocity Changes at Novaya Zemlya revealed by ALOS1 and ALOS2
NASA Astrophysics Data System (ADS)
Konuma, Y.; Furuya, M.
2016-12-01
Matsuo and Heki (2013) revealed substantial ice-mass loss at Novaya Zemlya by Gravity Recovery And Climate Experiment (GRACE). In addition, the elevation thinning (Moholdt et al., 2012) and glacier retreat (Carr et al., 2014) has been reported. Melkonian et al. (2016) showed velocities map at coastal area of Novaya Zemlya by using Worldview, Landsat, ASTER and TerraSAR-X images. However, the entire distributions of ice speed and the temporal evolution remain unclear. In this study, we measured the glacier velocities using L-band SAR sensor onboard ALOS1 and ALOS2. We analyzed the data using pixel-offset tracking technique. We could observe the entire glaciated region in 2007-2008 winter and 2008-2009 winter. In particular, we could examine the velocities at middle of the glaciated region from 2006 to 2015 due to the availability of high-temporal resolution SAR data. As a result, we found the most glaciers in Novaya Zemlya have been accelerating since 1990s (Strozzi et al., 2008). Specially, Shokalskogo glacier has dramatically accelerated from the maximum of 300 ma-1 in 1998 to maximum of 600 ma-1 in 2015. Additionally, it turns out that there are marked differences in the glacier's velocities between the Barents Sea side and the Kara Sea side. The averaged maximum speed of the glaciers in Barents Sea side were approximately two times faster than that in Kara Sea side. We speculate the causes as the difference of topography under the calving front and sea-ice concentration. While each side has many calving glaciers, the fjord distribution in the Barents Sea side is much broader than in the Kara Sea side. Moreover, sea-ice concentration in the Barents Sea is lower than the Kara Sea, which might affect the glaciers' speed distribution.
Matthews, Krystal; Schäfer, Alexandra; Pham, Alissa; Frieman, Matthew
2014-12-07
The outcome of a viral infection is regulated by complex interactions of viral and host factors. SARS coronavirus (SARS-CoV) engages and regulates several innate immune response pathways during infection. We have previously shown that the SARS-CoV Papain-like Protease (PLpro) inhibits type I interferon (IFN) by inhibiting IRF3 phosphorylation thereby blocking downstream Interferon induction. This finding prompted us to identify other potential mechanisms of inhibition of PLpro on IFN induction. We have used plasmids expressing PLpro and IRF3 including an IRF3 mutant that is constitutively active, called IRF3(5D). In these experiments we utilize transfections, chromatin immunoprecipitation, Electro-mobility Shift Assays (EMSA) and protein localization to identify where IRF3 and IRF3(5D) are inhibited by PLpro. Here we show that PLpro also inhibits IRF3 activation at a step after phosphorylation and that this inhibition is dependent on the de-ubiquitination (DUB) activity of PLpro. We found that PLpro is able to block the type I IFN induction of a constitutively active IRF3, but does not inhibit IRF3 dimerization, nuclear localization or DNA binding. However, inhibition of PLpro's DUB activity by mutagenesis blocked the IRF3 inhibition activity of PLpro, suggesting a role for IRF3 ubiquitination in induction of a type I IFN innate immune response. These results demonstrate an additional mechanism that PLpro is able to inhibit IRF3 signaling. These data suggest novel innate immune antagonism activities of PLpro that may contribute to SARS-CoV pathogenesis.
Zhao, Chaoying; Lu, Zhong; Zhang, Qin; de la Fuente, Juan
2012-01-01
Multi-temporal ALOS/PALSAR images are used to automatically investigate landslide activity over an area of ~ 200 km by ~ 350 km in northern California and southern Oregon. Interferometric synthetic aperture radar (InSAR) deformation images, InSAR coherence maps, SAR backscattering intensity images, and a DEM gradient map are combined to detect active landslides by setting individual thresholds. More than 50 active landslides covering a total of about 40 km2 area are detected. Then the short baseline subsets (SBAS) InSAR method is applied to retrieve time-series deformation patterns of individual detected landslides. Down-slope landslide motions observed from adjacent satellite tracks with slightly different radar look angles are used to verify InSAR results and measurement accuracy. Comparison of the landslide motion with the precipitation record suggests that the landslide deformation correlates with the rainfall rate, with a lag time of around 1–2 months between the precipitation peak and the maximum landslide displacement. The results will provide new insights into landslide mechanisms in the Pacific Northwest, and facilitate development of early warning systems for landslides under abnormal rainfall conditions. Additionally, this method will allow identification of active landslides in broad areas of the Pacific Northwest in an efficient and systematic manner, including remote and heavily vegetated areas difficult to inventory by traditional methods.
Davis, Christopher C.; Beard, Brian B.; Tillman, Ahlia; Rzasa, John; Merideth, Eric; Balzano, Quirino
2018-01-01
This paper reports the results of an international intercomparison of the specific absorption rates (SARs) measured in a flat-bottomed container (flat phantom), filled with human head tissue simulant fluid, placed in the near-field of custom-built dipole antennas operating at 900 and 1800 MHz, respectively. These tests of the reliability of experimental SAR measurements have been conducted as part of a verification of the ways in which wireless phones are tested and certified for compliance with safety standards. The measurements are made using small electric-field probes scanned in the simulant fluid in the phantom to record the spatial SAR distribution. The intercomparison involved a standard flat phantom, antennas, power meters, and RF components being circulated among 15 different governmental and industrial laboratories. At the conclusion of each laboratory’s measurements, the following results were communicated to the coordinators: Spatial SAR scans at 900 and 1800 MHz and 1 and 10 g maximum spatial SAR averages for cubic volumes at 900 and 1800 MHz. The overall results, given as meanstandard deviation, are the following: at 900 MHz, 1 g average 7.850.76; 10 g average 5.160.45; at 1800 MHz, 1 g average 18.44 ± 1.65; 10 g average 10.14 ± 0.85, all measured in units of watt per kilogram, per watt of radiated power. PMID:29520117
Morris, R. M.; Rappé, M. S.; Urbach, E.; Connon, S. A.; Giovannoni, S. J.
2004-01-01
Since their initial discovery in samples from the north Atlantic Ocean, 16S rRNA genes related to the environmental gene clone cluster known as SAR202 have been recovered from pelagic freshwater, marine sediment, soil, and deep subsurface terrestrial environments. Together, these clones form a major, monophyletic subgroup of the phylum Chloroflexi. While members of this diverse group are consistently identified in the marine environment, there are currently no cultured representatives, and very little is known about their distribution or abundance in the world's oceans. In this study, published and newly identified SAR202-related 16S rRNA gene sequences were used to further resolve the phylogeny of this cluster and to design taxon-specific oligonucleotide probes for fluorescence in situ hybridization. Direct cell counts from the Bermuda Atlantic time series study site in the north Atlantic Ocean, the Hawaii ocean time series site in the central Pacific Ocean, and along the Newport hydroline in eastern Pacific coastal waters showed that SAR202 cluster cells were most abundant below the deep chlorophyll maximum and that they persisted to 3,600 m in the Atlantic Ocean and to 4,000 m in the Pacific Ocean, the deepest samples used in this study. On average, members of the SAR202 group accounted for 10.2% (±5.7%) of all DNA-containing bacterioplankton between 500 and 4,000 m. PMID:15128540
Relevant Scatterers Characterization in SAR Images
NASA Astrophysics Data System (ADS)
Chaabouni, Houda; Datcu, Mihai
2006-11-01
Recognizing scenes in a single look meter resolution Synthetic Aperture Radar (SAR) images, requires the capability to identify relevant signal signatures in condition of variable image acquisition geometry, arbitrary objects poses and configurations. Among the methods to detect relevant scatterers in SAR images, we can mention the internal coherence. The SAR spectrum splitted in azimuth generates a series of images which preserve high coherence only for particular object scattering. The detection of relevant scatterers can be done by correlation study or Independent Component Analysis (ICA) methods. The present article deals with the state of the art for SAR internal correlation analysis and proposes further extensions using elements of inference based on information theory applied to complex valued signals. The set of azimuth looks images is analyzed using mutual information measures and an equivalent channel capacity is derived. The localization of the "target" requires analysis in a small image window, thus resulting in imprecise estimation of the second order statistics of the signal. For a better precision, a Hausdorff measure is introduced. The method is applied to detect and characterize relevant objects in urban areas.
Liu, Po-Pu; von Dahl, Caroline C.; Klessig, Daniel F.
2011-01-01
Systemic acquired resistance (SAR) is a state of heightened defense to a broad spectrum of pathogens that is activated throughout a plant following local infection. Development of SAR requires the translocation of one or more mobile signals from the site of infection through the vascular system to distal (systemic) tissues. The first such signal identified was methyl salicylate (MeSA) in tobacco (Nicotiana tabacum). Subsequent studies demonstrated that MeSA also serves as a SAR signal in Arabidopsis (Arabidopsis thaliana) and potato (Solanum tuberosum). By contrast, another study suggested that MeSA is not required for SAR in Arabidopsis and raised questions regarding its signaling role in tobacco. Differences in experimental design, including the developmental age of the plants, the light intensity, and/or the strain of bacterial pathogen, were proposed to explain these conflicting results. Here, we demonstrate that the length of light exposure that plants receive after the primary infection determines the extent to which MeSA is required for SAR signaling. When the primary infection occurred late in the day and as a result infected plants received very little light exposure before entering the night/dark period, MeSA and its metabolizing enzymes were essential for SAR development. In contrast, when infection was done in the morning followed by 3.5 h or more of exposure to light, SAR developed in the absence of MeSA. However, MeSA was generally required for optimal SAR development. In addition to resolving the conflicting results concerning MeSA and SAR, this study underscores the importance of environmental factors on the plant’s response to infection. PMID:22021417
Lu, Jia-hai; Zhang, Ding-mei; Wang, Guo-ling; Guo, Zhong-min; Zhang, Chuan-hai; Tan, Bing-yan; Ouyang, Li-ping; Lin, Li; Liu, Yi-min; Chen, Wei-qing; Ling, Wen-hua; Yu, Xin-bing; Zhong, Nan-shan
2005-05-05
The rapid transmission and high mortality rate made severe acute respiratory syndrome (SARS) a global threat for which no efficacious therapy is available now. Without sufficient knowledge about the SARS coronavirus (SARS-CoV), it is impossible to define the candidate for the anti-SARS targets. The putative non-structural protein 2 (nsp2) (3CL(pro), following the nomenclature by Gao et al, also known as nsp5 in Snidjer et al) of SARS-CoV plays an important role in viral transcription and replication, and is an attractive target for anti-SARS drug development, so we carried on this study to have an insight into putative polymerase nsp2 of SARS-CoV Guangdong (GD) strain. The SARS-CoV strain was isolated from a SARS patient in Guangdong, China, and cultured in Vero E6 cells. The nsp2 gene was amplified by reverse transcription-polymerase chain reaction (RT-PCR) and cloned into eukaryotic expression vector pCI-neo (pCI-neo/nsp2). Then the recombinant eukaryotic expression vector pCI-neo/nsp2 was transfected into COS-7 cells using lipofectin reagent to express the nsp2 protein. The expressive protein of SARS-CoV nsp2 was analyzed by 7% sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE). The nucleotide sequence and protein sequence of GD nsp2 were compared with that of other SARS-CoV strains by nucleotide-nucleotide basic local alignment search tool (BLASTN) and protein-protein basic local alignment search tool (BLASTP) to investigate its variance trend during the transmission. The secondary structure of GD strain and that of other strains were predicted by Garnier-Osguthorpe-Robson (GOR) Secondary Structure Prediction. Three-dimensional-PSSM Protein Fold Recognition (Threading) Server was employed to construct the three-dimensional model of the nsp2 protein. The putative polymerase nsp2 gene of GD strain was amplified by RT-PCR. The eukaryotic expression vector (pCI-neo/nsp2) was constructed and expressed the protein in COS-7 cells successfully. The result of sequencing and sequence comparison with other SARS-CoV strains showed that nsp2 gene was relatively conservative during the transmission and total five base sites mutated in about 100 strains investigated, three of which in the early and middle phases caused synonymous mutation, and another two base sites variation in the late phase resulted in the amino acid substitutions and secondary structure changes. The three-dimensional structure of the nsp2 protein was successfully constructed. The results suggest that polymerase nsp2 is relatively stable during the phase of epidemic. The amino acid and secondary structure change may be important for viral infection. The fact that majority of single nucleotide variations (SNVs) are predicted to cause synonymous, as well as the result of low mutation rate of nsp2 gene in the epidemic variations, indicates that the nsp2 is conservative and could be a target for anti-SARS drugs. The three-dimensional structure result indicates that the nsp2 protein of GD strain is high homologous with 3CL(pro) of SARS-CoV urbani strain, 3CL(pro) of transmissible gastroenteritis virus and 3CL(pro) of human coronavirus 229E strain, which further suggests that nsp2 protein of GD strain possesses the activity of 3CL(pro).
SAR image change detection using watershed and spectral clustering
NASA Astrophysics Data System (ADS)
Niu, Ruican; Jiao, L. C.; Wang, Guiting; Feng, Jie
2011-12-01
A new method of change detection in SAR images based on spectral clustering is presented in this paper. Spectral clustering is employed to extract change information from a pair images acquired on the same geographical area at different time. Watershed transform is applied to initially segment the big image into non-overlapped local regions, leading to reduce the complexity. Experiments results and system analysis confirm the effectiveness of the proposed algorithm.
Rabi cropped area forecasting of parts of Banaskatha District,Gujarat using MRS RISAT-1 SAR data
NASA Astrophysics Data System (ADS)
Parekh, R. A.; Mehta, R. L.; Vyas, A.
2016-10-01
Radar sensors can be used for large-scale vegetation mapping and monitoring using backscatter coefficients in different polarisations and wavelength bands. Due to cloud and haze interference, optical images are not always available at all phonological stages important for crop discrimination. Moreover, in cloud prone areas, exclusively SAR approach would provide operational solution. This paper presents the results of classifying the cropped and non cropped areas using multi-temporal SAR images. Dual polarised C- band RISAT MRS (Medium Resolution ScanSAR mode) data were acquired on 9thDec. 2012, 28thJan. 2013 and 22nd Feb. 2013 at 18m spatial resolution. Intensity images of two polarisations (HH, HV) were extracted and converted into backscattering coefficient images. Cross polarisation ratio (CPR) images and Radar fractional vegetation density index (RFDI) were created from the temporal data and integrated with the multi-temporal images. Signatures of cropped and un-cropped areas were used for maximum likelihood supervised classification. Separability in cropped and umcropped classes using different polarisation combinations and classification accuracy analysis was carried out. FCC (False Color Composite) prepared using best three SAR polarisations in the data set was compared with LISS-III (Linear Imaging Self-Scanning System-III) image. The acreage under rabi crops was estimated. The methodology developed was for rabi cropped area, due to availability of SAR data of rabi season. Though, the approach is more relevant for acreage estimation of kharif crops when frequent cloud cover condition prevails during monsoon season and optical sensors fail to deliver good quality images.
Micromagnetic evaluation of the dissipated heat in cylindrical magnetic nanowires
NASA Astrophysics Data System (ADS)
Fernandez-Roldan, Jose Angel; Serantes, David; del Real, Rafael P.; Vazquez, Manuel; Chubykalo-Fesenko, Oksana
2018-05-01
Magnetic nanowires (NWs) are promising candidates for heat generation under AC-field application due to their large shape anisotropy. They may be used for catalysis, hyperthermia, or water purification treatments. In the present work, we theoretically evaluate the heat dissipated by a single magnetic nanowire, originated from the domain wall (DW) dynamics under the action of an AC-field. We compare the Permalloy NWs (which demagnetize via the transverse wall propagation) with the Co fcc NWs whose reversal mode is via a vortex domain wall. The average hysteresis loop areas—which are proportional to the Specific Absorption Rate (SAR)—as a function of the field frequency have a pronounced maximum in the range 200 MHz-1 GHz. This maximum frequency is smaller in Permalloy than that in Co and depends on the nanowire length. A simple model related to the nucleation and propagation time and DW velocity (higher for the vortex than for the transverse domain wall) is proposed to explain the non-monotonic SAR dependence on the frequency.
NASA Astrophysics Data System (ADS)
Zhang, Xi; Dierking, Wolfgang; Zhang, Jie; Meng, Junmin; Lang, Haitao
2016-07-01
In this paper we introduce a parameter for the retrieval of the thickness of undeformed first-year sea ice that is specifically adapted to compact polarimetric (CP) synthetic aperture radar (SAR) images. The parameter is denoted as the "CP ratio". In model simulations we investigated the sensitivity of the CP ratio to the dielectric constant, ice thickness, ice surface roughness, and radar incidence angle. From the results of the simulations we deduced optimal sea ice conditions and radar incidence angles for the ice thickness retrieval. C-band SAR data acquired over the Labrador Sea in circular transmit and linear receive (CTLR) mode were generated from RADARSAT-2 quad-polarization images. In comparison with results from helicopter-borne measurements, we tested different empirical equations for the retrieval of ice thickness. An exponential fit between the CP ratio and ice thickness provides the most reliable results. Based on a validation using other compact polarimetric SAR images from the same region, we found a root mean square (rms) error of 8 cm and a maximum correlation coefficient of 0.94 for the retrieval procedure when applying it to level ice between 0.1 and 0.8 m thick.
NASA Astrophysics Data System (ADS)
Xuegang Xin, Sherman; Gu, Shiyong; Carluccio, Giuseppe; Collins, Christopher M.
2015-01-01
Due to the strong dependence of tissue electrical properties on temperature, it is important to consider the potential effects of intense tissue heating on the RF electromagnetic fields during MRI, as can occur in MR-guided focused ultrasound surgery. In principle, changes of the RF electromagnetic fields could affect both efficacy of RF pulses, and the MRI-induced RF heating (SAR) pattern. In this study, the equilibrium temperature distribution in a whole-body model with 2 mm resolution before and during intense tissue heating up to 60 °C at the target region was calculated. Temperature-dependent electric properties of tissues were assigned to the model to establish a temperature-dependent electromagnetic whole-body model in a 3T MRI system. The results showed maximum changes in conductivity, permittivity, ≤ft|\\mathbf{B}1+\\right|, and SAR of about 25%, 6%, 2%, and 20%, respectively. Though the B1 field and SAR distributions are both temperature-dependent, the potential harm to patients due to higher SARs is expected to be minimal and the effects on the B1 field distribution should have minimal effect on images from basic MRI sequences.
Assessment of specific energy absorption rate (SAR) in the head from a TETRA handset.
Dimbylow, Peter; Khalid, Mohammed; Mann, Simon
2003-12-07
Finite-difference time-domain (FDTD) calculations of the specific energy absorption rate (SAR) from a representative TETRA handset have been performed in an anatomically realistic model of the head. TETRA (Terrestrial Trunked Radio) is a modern digital private mobile radio system designed to meet the requirements of professional users, such as the police and fire brigade. The current frequency allocations in the UK are 380-385 MHz and 390-395 MHz for the public sector network. A comprehensive set of calculations of SAR in the head was performed for positions of the handset in front of the face and at both sides of the head. The representative TETRA handset considered. operating at 1 W in normal use, will show compliance with both the ICNIRP occupational and public exposure restrictions. The handset with a monopole antenna operating at 3 W in normal use will show compliance with both the ICNIRP occupational and public exposure restrictions. The handset with a helical antenna operating at 3 W in normal use will show compliance with the ICNIRP occupational exposure restriction but will be over the public exposure restriction by up to approximately 50% if kept in the position of maximum SAR for 6 min continuously.
Wong, W; Lee, A; Tsang, K; Wong, S
2004-01-01
Context: Severe acute respiratory syndrome (SARS) is a newly emerging infectious disease and how the frontline community doctors respond to it is not known. Objectives: To explore the impact of SARS on general practitioners (GPs) in Hong Kong. Design: A cross sectional survey. Setting: Community based primary care clinics. Participants: 183 family medicine tutors affiliated with a local university. Postal survey sent to all tutors with a 74.8% response rate. Main outcome measures: Change of clinical behaviour and practices during the epidemic; anxiety level of primary care doctors. Results: All agreed SARS had changed their clinical practices. Significant anxiety was found in family doctors. Three quarters of respondents recalled requesting more investigations while a quarter believed they had over-prescribed antibiotics. GPs who were exposed to SARS or who had worked in high infection districts were less likely to quarantine themselves (10.8% versus 33.3%; p<0.01; 6.5% versus 27.5%; p<0.01 respectively). Exposure to SARS, the infection rates in their working district, and anxiety levels had significant impact on the level of protection or prescribing behaviour. Conclusion: The clinical practice of GPs changed significantly as a result of SARS. Yet, those did not quarantine themselves suggesting other factors may have some part to play. As failure to apply isolation precautions to suspected cases of SARS was one major reason for its spread, a contingency plan from the government to support family doctors is of utmost importance. Interface between private and public sectors are needed in Hong Kong to prepare for any future epidemics. PMID:14966227
Wong, W C W; Lee, A; Tsang, K K; Wong, S Y S
2004-03-01
Severe acute respiratory syndrome (SARS) is a newly emerging infectious disease and how the frontline community doctors respond to it is not known. To explore the impact of SARS on general practitioners (GPs) in Hong Kong. A cross sectional survey. Community based primary care clinics. 183 family medicine tutors affiliated with a local university. Postal survey sent to all tutors with a 74.8% response rate. Change of clinical behaviour and practices during the epidemic; anxiety level of primary care doctors. All agreed SARS had changed their clinical practices. Significant anxiety was found in family doctors. Three quarters of respondents recalled requesting more investigations while a quarter believed they had over-prescribed antibiotics. GPs who were exposed to SARS or who had worked in high infection districts were less likely to quarantine themselves (10.8% versus 33.3%; p<0.01; 6.5% versus 27.5%; p<0.01 respectively). Exposure to SARS, the infection rates in their working district, and anxiety levels had significant impact on the level of protection or prescribing behaviour. The clinical practice of GPs changed significantly as a result of SARS. Yet, those did not quarantine themselves suggesting other factors may have some part to play. As failure to apply isolation precautions to suspected cases of SARS was one major reason for its spread, a contingency plan from the government to support family doctors is of utmost importance. Interface between private and public sectors are needed in Hong Kong to prepare for any future epidemics.
NASA Astrophysics Data System (ADS)
Neely, W.; Borsa, A. A.; Silverii, F.
2017-12-01
Recent droughts have increased reliance on groundwater for agricultural production in California's Central Valley. Using Interferometric Synthetic Aperture Radar (InSAR), we observe upwards of 25 cm/yr of subsidence from November 2014 to February 2017 due to intense pumping. However, these observations are contaminated by atmospheric noise and orbital errors. We present a novel method for correcting long wavelength errors in InSAR deformation estimates using time series from continuous Global Positioning System (cGPS) stations within the SAR footprint, which we apply to C-band data from the Sentinel mission. We test our method using 49 SAR acquisitions from the Sentinel 1 satellites and 107 cGPS times series from the Geodesy Advancing Geoscience and EarthScope (GAGE) network in southern Central Valley. We correct each interferogram separately, implementing an intermittent Small Baseline Subset (ISBAS) technique to produce a time series of line-of-sight surface motion from 276 InSAR pairs. To estimate the vertical component of this motion, we remove horizontal tectonic displacements predicted by the Southern California Earthquake Center's (SCEC) Community Geodetic Model. We validate our method by comparing the corrected InSAR results with independent cGPS data and find a marked improvement in agreement between the two data sets, particularly in the deformation rates. Using this technique, we characterize the time evolution of surface vertical deformation in the southern Central Valley related to human exploitation of local groundwater resources. This methodology is applicable to data from other SAR satellites, including ALOS-2 and the upcoming US-India NISAR mission.
L-band InSAR Penetration Depth Experiment, North Slope Alaska
NASA Astrophysics Data System (ADS)
Muskett, Reginald
2017-04-01
Since the first spacecraft-based synthetic aperture radar (SAR) mission NASA's SEASAT in 1978 radars have been flown in Low Earth Orbit (LEO) by other national space agencies including the Canadian Space Agency, European Space Agency, India Space Research Organization and the Japanese Aerospace Exploration Agency. Improvements in electronics, miniaturization and production have allowed for the deployment of SAR systems on aircraft for usage in agriculture, hazards assessment, land-use management and planning, meteorology, oceanography and surveillance. LEO SAR systems still provide a range of needful and timely information on large and small-scale weather conditions like those found across the Arctic where ground-base weather radars currently provide limited coverage. For investigators of solid-earth deformation attention must be given to the atmosphere on Interferometric SAR (InSAR) by aircraft and spacecraft multi-pass operations. Because radar has the capability to penetrate earth materials at frequencies from the P- to X-band attention must be given to the frequency dependent penetration depth and volume scattering. This is the focus of our new research project: to test the penetration depth of L-band SAR/InSAR by aircraft and spacecraft systems at a test site in Arctic Alaska using multi-frequency analysis and progressive burial of radar mesh-reflectors at measured depths below tundra while monitoring environmental conditions. Knowledge of the L-band penetration depth on lowland Arctic tundra is necessary to constrain analysis of carbon mass balance and hazardous conditions arising form permafrost degradation and thaw, surface heave and subsidence and thermokarst formation at local and regional scales.
NASA Astrophysics Data System (ADS)
Laurin, Gaia Vaglio; Balling, Johannes; Corona, Piermaria; Mattioli, Walter; Papale, Dario; Puletti, Nicola; Rizzo, Maria; Truckenbrodt, John; Urban, Marcel
2018-01-01
The objective of this research is to test Sentinel-1 SAR multitemporal data, supported by multispectral and SAR data at other wavelengths, for fine-scale mapping of above-ground biomass (AGB) at the provincial level in a Mediterranean forested landscape. The regression results indicate good accuracy of prediction (R2=0.7) using integrated sensors when an upper bound of 400 Mg ha-1 is used in modeling. Multitemporal SAR information was relevant, allowing the selection of optimal Sentinel-1 data, as broadleaf forests showed a different response in backscatter throughout the year. Similar accuracy in predictions was obtained when using SAR multifrequency data or joint SAR and optical data. Predictions based on SAR data were more conservative, and in line with those from an independent sample from the National Forest Inventory, than those based on joint data types. The potential of S1 data in predicting AGB can possibly be improved if models are developed per specific groups (deciduous or evergreen species) or forest types and using a larger range of ground data. Overall, this research shows the usefulness of Sentinel-1 data to map biomass at very high resolution for local study and at considerable carbon density.
NASA Astrophysics Data System (ADS)
Xue, D.; Yu, X.; Jia, S.; Chen, F.; Li, X.
2018-04-01
In this paper, sequence ALOS PALSAR data and airborne SAR data of L-band from June 5, 2008 to September 8, 2015 are used. Based on the research of SAR data preprocessing and core algorithms, such as geocode, registration, filtering, unwrapping and baseline estimation, the improved Goldstein filtering algorithm and the branch-cut path tracking algorithm are used to unwrap the phase. The DEM and surface deformation information of the experimental area were extracted. Combining SAR-specific geometry and differential interferometry, on the basis of composite analysis of multi-source images, a method of detecting landslide disaster combining coherence of SAR image is developed, which makes up for the deficiency of single SAR and optical remote sensing acquisition ability. Especially in bad weather and abnormal climate areas, the speed of disaster emergency and the accuracy of extraction are improved. It is found that the deformation in this area is greatly affected by faults, and there is a tendency of uplift in the southeast plain and western mountainous area, while in the southwest part of the mountain area there is a tendency to sink. This research result provides a basis for decision-making for local disaster prevention and control.
Investigation of Lithospheric Structure in Mongolia: Insights from Insar Observations and Modelling
NASA Astrophysics Data System (ADS)
Jing, Z.; Bihong, F.; Pilong, S.; Qiang, G.
2017-09-01
The western Mongolia is a seismically active intracontinental region, with ongoing tectonic deformation and widespread seismicity related to the far-field effects of India-Eurasia collision. During the 20th century, four earthquakes with the magnitude larger than 8 occurred in the western Mongolia and its surrounding regions, providing a unique opportunity to study the geodynamics of intracontinental tectonic deformations. The 1957 magnitude 8.3 Gobi-Altai earthquake is one of the largest seismic events. The deformation pattern of rupture zone associated with this earthquake is complex, involving left-lateral strike-slip and reverse dip-slip faulting on several distinct geological structures in a 264 × 40 km wide zone. To understand the relationship between the observed postseismic surface deformation and the rheological structure of the upper lithosphere, Interferometric Synthetic Aperture Radar (InSAR) data are used to study the 1957 earthquake. Then we developed a postseismic model in a spherical, radially layered elastic-viscoelastic Earth based on InSAR results, and further analysed the dominant contribution to the surface deformation. This work is important for understanding not only the regional tectonics, but also the structure and dynamics of the lithosphere. SAR data were acquired from the ERS1/2 and Envisat from 1996 to 2010. Using the Repeat Orbit Interferometry Package (ROI_PAC), 124 postseismic interferograms are produced on four adjacent tracks. By stacking these interferograms, the maximum InSAR line-of-sight deformation rate along the Gobi-Altai fault zone is obtained. The main results are as follows: (1) The maximum InSAR line-of-sight deformation velocity along this large fault zone is about 6 mm/yr; (2) The modelled surface deformation suggests that the viscoelastic relaxation is the most reasonable mechanism to explain the observed surface motion; (3) The optimal model cover the Gobi-Altai seismogenic thickness is 10 km; (4) The lower bound of Maxwell viscosity of lower crust and upper mantle is approximately 9 × 1019 Pa s, and the Maxwell relaxation time corresponding to this viscosity is 95.13 years.
Radar Based Navigation in Unknown Terrain
2012-12-31
localization and mapping ( SLAM ) approach. The radar processing algorithms detect strong, persistent, and stationary reflectors embedded in the...Global System for Mobile Communications . . . . . . . . . 2 LIDAR Light Detection and Ranging . . . . . . . . . . . . . . . . 2 SAR Synthetic Aperture...22 SLAM Simultaneous Localization and Mapping . . . . . . . . . . 25 FDM Frequency Division Multiplexing
Land subsidence in the Yangtze River Delta, China revealed from multi-frequency SAR Interferometry
NASA Astrophysics Data System (ADS)
Li, Zhenhong; Motagh, Mahdi; Yu, Jun; Gong, Xulong; Wu, Jianqiang; Zhu, Yefei; Chen, Huogen; Zhang, Dengming; Xu, Yulin
2014-05-01
Land subsidence is a major worldwide hazard, and its principal causes are subsurface fluid withdrawal, drainage of organic soils, sinkholes, underground mining, hydrocompaction, thawing permafrost, and natural consolidation. Land subsidence causes many problems including: damage to public facilities such as bridges, roads, railroads, electric power lines, underground pipes; damage to private and public buildings; and in some cases of low-lying land, can increase the risk of coastal flooding from storm surges and rising sea-levels. In China, approximately 48600 km2 of land, an area roughly 30 times of the size of the Greater London, has subsided (nearly 50 cities across 16 provinces), and the annual direct economic loss is estimated to be more than RMB 100 million (~12 million). It is believed that the Suzhou-Wuxi-Changzhou region within the Yangtze River Delta is the most severely affected area for subsidence hazards in China. With its global coverage and all-weather imaging capability, Interferometric SAR (InSAR) is revolutionizing our ability to image the Earth's surface and the evolution of its shape over time. In this paper, an advanced InSAR time series technique, InSAR TS + AEM, has been employed to analysed ERS (C-band), Envisat (C-band) and TerraSAR-X (X-band) data collected over the Suzhou-Wuxi-Changzhou region during the period from 1992 to 2013. Validation with precise levelling and GPS data suggest: (1) the accuracy of the InSAR-derived mean velocity measurements is 1-3 mm/yr; (2) InSAR-derived displacements agreed with precise levelling with root mean square errors around 5 mm. It is evident that InSAR TS + AEM can be used to image the evolution of deformation patterns in the Suzhou-Wuxi-Changzhou region over time: the maximum mean velocity decreased from ~12 cm/yr during the period of 1992-1993 to ~2 cm/yr in 2003-2013. This is believed to be a result of the prohibition of groundwater use carried out by Jiangsu provincial government. The combination of multi-frequency SAR datasets allows a long record (~20 years) of historic deformation to be measured over a large region. Ultimately this should help inform land managers in assessing land subsidence and planning appropriate remedial measures.
Systemic acquired resistance in moss: further evidence for conserved defense mechanisms in plants.
Winter, Peter S; Bowman, Collin E; Villani, Philip J; Dolan, Thomas E; Hauck, Nathanael R
2014-01-01
Vascular plants possess multiple mechanisms for defending themselves against pathogens. One well-characterized defense mechanism is systemic acquired resistance (SAR). In SAR, a plant detects the presence of a pathogen and transmits a signal throughout the plant, inducing changes in the expression of various pathogenesis-related (PR) genes. Once SAR is established, the plant is capable of mounting rapid responses to subsequent pathogen attacks. SAR has been characterized in numerous angiosperm and gymnosperm species; however, despite several pieces of evidence suggesting SAR may also exist in non-vascular plants6-8, its presence in non-vascular plants has not been conclusively demonstrated, in part due to the lack of an appropriate culture system. Here, we describe and use a novel culture system to demonstrate that the moss species Amblystegium serpens does initiate a SAR-like reaction upon inoculation with Pythium irregulare, a common soil-borne oomycete. Infection of A. serpens gametophores by P. irregulare is characterized by localized cytoplasmic shrinkage within 34 h and chlorosis and necrosis within 7 d of inoculation. Within 24 h of a primary inoculation (induction), moss gametophores grown in culture became highly resistant to infection following subsequent inoculation (challenge) by the same pathogen. This increased resistance was a response to the pathogen itself and not to physical wounding. Treatment with β-1,3 glucan, a structural component of oomycete cell walls, was equally effective at triggering SAR. Our results demonstrate, for the first time, that this important defense mechanism exists in a non-vascular plant, and, together with previous studies, suggest that SAR arose prior to the divergence of vascular and non-vascular plants. In addition, this novel moss - pathogen culture system will be valuable for future characterization of the mechanism of SAR in moss, which is necessary for a better understanding of the evolutionary history of SAR in plants.
Isaacs, Marisa; Carella, Philip; Faubert, Jennifer; Champigny, Marc J.; Rose, Jocelyn K. C.; Cameron, Robin K.
2016-01-01
AtDIR1 (Defective in Induced Resistance1) is an acidic lipid transfer protein essential for systemic acquired resistance (SAR) in Arabidopsis thaliana. Upon SAR induction, DIR1 moves from locally infected to distant uninfected leaves to activate defense priming; however, a molecular function for DIR1 has not been elucidated. Bioinformatic analysis and in silico homology modeling identified putative AtDIR1 orthologs in crop species, revealing conserved protein motifs within and outside of DIR1’s central hydrophobic cavity. In vitro assays to compare the capacity of recombinant AtDIR1 and targeted AtDIR1-variant proteins to bind the lipophilic probe TNS (6,P-toluidinylnaphthalene-2-sulfonate) provided evidence that conserved leucine 43 and aspartic acid 39 contribute to the size of the DIR1 hydrophobic cavity and possibly hydrophobic ligand binding. An Arabidopsis–cucumber SAR model was developed to investigate the conservation of DIR1 function in cucumber (Cucumis sativus), and we demonstrated that phloem exudates from SAR-induced cucumber rescued the SAR defect in the Arabidopsis dir1-1 mutant. Additionally, an AtDIR1 antibody detected a protein of the same size as AtDIR1 in SAR-induced cucumber phloem exudates, providing evidence that DIR1 function during SAR is conserved in Arabidopsis and cucumber. In vitro TNS displacement assays demonstrated that recombinant AtDIR1 did not bind the SAR signals azelaic acid (AzA), glycerol-3-phosphate or pipecolic acid. However, recombinant CsDIR1 and CsDIR2 interacted weakly with AzA and pipecolic acid. Bioinformatic and functional analyses using the Arabidopsis–cucumber SAR model provide evidence that DIR1 orthologs exist in tobacco, tomato, cucumber, and soybean, and that DIR1-mediated SAR signaling is conserved in Arabidopsis and cucumber. PMID:27200039
Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection
Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun
2016-01-01
Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated by OKTAL-SE. PMID:27447635
Isaacs, Marisa; Carella, Philip; Faubert, Jennifer; Rose, Jocelyn K C; Cameron, Robin K
2016-01-01
AtDIR1 (Defective in Induced Resistance1) is an acidic lipid transfer protein essential for systemic acquired resistance (SAR) in Arabidopsis thaliana. Upon SAR induction, DIR1 moves from locally infected to distant uninfected leaves to activate defense priming; however, a molecular function for DIR1 has not been elucidated. Bioinformatic analysis and in silico homology modeling identified putative AtDIR1 orthologs in crop species, revealing conserved protein motifs within and outside of DIR1's central hydrophobic cavity. In vitro assays to compare the capacity of recombinant AtDIR1 and targeted AtDIR1-variant proteins to bind the lipophilic probe TNS (6,P-toluidinylnaphthalene-2-sulfonate) provided evidence that conserved leucine 43 and aspartic acid 39 contribute to the size of the DIR1 hydrophobic cavity and possibly hydrophobic ligand binding. An Arabidopsis-cucumber SAR model was developed to investigate the conservation of DIR1 function in cucumber (Cucumis sativus), and we demonstrated that phloem exudates from SAR-induced cucumber rescued the SAR defect in the Arabidopsis dir1-1 mutant. Additionally, an AtDIR1 antibody detected a protein of the same size as AtDIR1 in SAR-induced cucumber phloem exudates, providing evidence that DIR1 function during SAR is conserved in Arabidopsis and cucumber. In vitro TNS displacement assays demonstrated that recombinant AtDIR1 did not bind the SAR signals azelaic acid (AzA), glycerol-3-phosphate or pipecolic acid. However, recombinant CsDIR1 and CsDIR2 interacted weakly with AzA and pipecolic acid. Bioinformatic and functional analyses using the Arabidopsis-cucumber SAR model provide evidence that DIR1 orthologs exist in tobacco, tomato, cucumber, and soybean, and that DIR1-mediated SAR signaling is conserved in Arabidopsis and cucumber.
Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection.
Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun
2016-07-19
Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated by OKTAL-SE.
A data compression technique for synthetic aperture radar images
NASA Technical Reports Server (NTRS)
Frost, V. S.; Minden, G. J.
1986-01-01
A data compression technique is developed for synthetic aperture radar (SAR) imagery. The technique is based on an SAR image model and is designed to preserve the local statistics in the image by an adaptive variable rate modification of block truncation coding (BTC). A data rate of approximately 1.6 bit/pixel is achieved with the technique while maintaining the image quality and cultural (pointlike) targets. The algorithm requires no large data storage and is computationally simple.
NASA Astrophysics Data System (ADS)
Fujiwara, Osamu; Miyamoto, Kayoko; Wang, Jianqing
Biological hazards due to radio-frequency (RF) waves result mainly from the temperature rise in tissue. It should be, therefore, clarified to what extent the RF waves of portable telephones increase the temperature-rise in human brain that includes the central part governing the body-temperature regulation function. In this paper, we calculated both the specific absorption rate (SAR) and the resultant temperature-rise for 900 MHz and 2 GHz portable telephones using the finite-difference time-domain (FDTD) method for three typical use positions, i.e., the vertical position, cheek position and tilt position. As a result, we found that there was an increase for median and 1% value of the cumulative distribution of temperature-rise in children’s brains for any use positions of the portable telephones compared to that in the adult’s brain, and also that the increasing trend in children’s brains for temperature-rise is identical to the temperature-rise trend in children’s hypothalamus. In addition, we found that the ten-gram averaged peak SAR among the adult and children heads had the same trend as that of the 0.1% value of the relatively cumulative distribution of temperature-rise, which shows that the ten-gram averaged peak SAR reflects only the localized temperature-rise in the brain surface.
Methodology for locale-scale monitoring for the PROTHEGO project: the Choirokoitia case study
NASA Astrophysics Data System (ADS)
Themistocleous, Kyriacos; Agapiou, Athos; Cuca, Branka; Danezis, Chris; Cigna, Francesca; Margottini, Claudio; Spizzichino, Daniele
2016-10-01
PROTHEGO (PROTection of European Cultural HEritage from GeO-hazards) is a collaborative research project funded in the framework of the Joint Programming Initiative on Cultural Heritage and Global Change (JPICH) - Heritage Plus in 2015-2018 (www.prothego.eu). PROTHEGO aims to make an innovative contribution towards the analysis of geohazards in areas of cultural heritage, and uses novel space technology based on radar interferometry (InSAR) to retrieve information on ground stability and motion in the 400+ UNESCO's World Heritage List monuments and sites of Europe. InSAR can be used to measure micro-movements to identify geo-hazards. In order to verify the InSAR image data, field and close range measurements are necessary. This paper presents the methodology for local-scale monitoring of the Choirokoitia study site in Cyprus, inscribed in the UNESCO World Heritage List, and part of the demonstration sites of PROTHEGO. Various field and remote sensing methods will be exploited for the local-scale monitoring, static GNSS, total station, leveling, laser scanning and UAV and compared with the Persistent Scatterer Interferometry results. The in-situ measurements will be taken systematically in order to document any changes and geo-hazards that affect standing archaeological remains. In addition, ground truth from in-situ visits will provide feedback related to the classification results of urban expansion and land use change maps. Available archival and current optical satellite images will be used to calibrate and identify the level of risk at the Cyprus case study site. The ground based geotechnical monitoring will be compared and validated with InSAR data to evaluate cultural heritage sites deformation trend and to understand its behaviour over the last two decades.
NASA Astrophysics Data System (ADS)
Frodella, William; Pazzi, Veronica; Morelli, Stefano; Salvatici, Teresa; Fanti, Riccardo
2017-04-01
Between October 31st and November 2nd 2010 the whole Veneto region (north-eastern Italy) was hit by heavy and persistent rainfall, which diffusely triggered floods and slope failures. In this framework on November 4th 2010 a detrital mass, approximately 225.000 m3 in volume, detached from the lowermost sector of the Mt. Rotolon landslide cover (located in the Vicentine Pre-Alps, upper Agno River Valley), channelizing within the Rotolon Creek riverbed and evolving into a highly mobile debris flow. The latter phenomena, characterized by a 3 km travel distance, damaged many hydraulic works, putting at high risk bridges and local roads located along the creek banks, together with the population of both the town of Recoaro Terme and the villages of Maltaure, Turcati and Parlati. Starting from the beginning of the emergency phase, the Civil Protection system was activated, involving the National Civil Protection Department, Veneto Region and local administrations personnel and technicians, as well as research centers. On December 8th 2010 a local scale monitoring system, based on a ground based interferometric radar (GB-InSAR), was implemented in order to evaluate the slope deformation pattern evolution in correspondence of the debris flow detachment sector, with the final aim of assessing the landslide residual risk and manage the emergency phase. Accurate geomorphological field surveys were also carried out, in order to study the landslide morphological features as to improve the radar data interpretation. The radar system acquired in continuous GB-InSAR data, such as displacement maps and time series of 10 selected monitoring points, which were uploaded via LAN network on a dedicated Web-based interface, shared with the technical stakeholders and decision makers involved in the emergency management and allowing for a near real time data routine visualization. This paper describes the outcomes of a 2 years GB-InSAR monitoring campaign (December 2010-November 2012), reporting the various applications of GB-InSAR data for monitoring, mapping and emergency management activities, in order to provide a rapid and easy communication of the results to the involved technicians and civil protection personnel, for a better understanding of the landslide phenomena and decision making process in a critical landslide scenario.
NASA Astrophysics Data System (ADS)
Lahiri, B. B.; Ranoo, Surojit; Zaibudeen, A. W.; Philip, John
2017-11-01
Magnetic fluid hyperthermia (MFH) is a promising cancer treatment modality where alternating magnetic field is used for heating cancerous cells loaded with magnetic nanofluids. Of late, it is realized that magnetic nano-carriers in the size range ∼100-200 nm (e.g. magnetic nanocomposites, magnetic liposomes and magnetic nanoemulsions) are ideal candidates for multimodal MFH coupled with drug delivery or photodynamic therapy due to enhanced permeation and retention (EPR) in the leaky vasculature of cancerous tissues. Here, we study the radiofrequency alternating magnetic field induced heating in magnetically polarizable oil-in-water nanoemulsions of hydrodynamic diameter ∼200 nm, containing single domain superparamagnetic nanoparticles of average diameter ∼10 nm in the oil phase. We probe the effects of size polydispersity of the droplets and medium viscosity on the field induced heating efficiency. The contribution of Neel and Brown relaxation of the magnetic nanoparticles on specific absorption rate (SAR) of the magnetic nanoemulsions, was found to increase linearly with the square of the applied field, with a maximum value of 164.4 ± 4.3 W/gFe. In magnetic nanoemulsions, the heating is induced by the Neel-Brown relaxation of the MNP over a length scale of 10 nm, and the whole scale Brownian relaxation of the emulsion droplets has over a length scale of 200 nm. The magnetic nanoemulsion sample with lower polydispersity (σ = 0.2) exhibited a significantly higher SAR value (3.3 times higher) as compared to the sample with larger polydispersity (σ = 0.4). The SAR values of the samples with 4.6 and 1.7 wt.% of MNP loading with σ values 0.4 a 0.3, respectively were comparable, suggesting a higher heating efficiency in nanofluid containing particles of lower size polydispersity even at lower particle loading. The emulsion droplets, immobilized in an agar matrix (4 wt.%), gave a maximum SAR value of 41.7 ± 2.4 W/gFe as compared to 111.8 ± 3.4 W/gFe in the case of droplets dispersed in water, which indicate a ∼40-50% drop in SAR due to abrogation of whole scale Brownian relaxation of the emulsion droplets. This suggests the need for improving the heating efficiency during actual therapy in tissues. The residual SAR of the immobilized sample correlates well with the SAR of the magnetic nanofluid, albeit under a lower external field amplitude due to demagnetization effect of the clusters of MNP loaded inside the droplets. The observed heating efficiency of larger sized magnetic nanoemulsion offer new possibilities for multimodal therapy due to availability of large volume for loading anti-cancer drug or photodynamic agents.
SAR detected river mixing and coastal wave/current difusion
NASA Astrophysics Data System (ADS)
Diez, Margarita; Martinez-Benjamin, Juan Jose; Sekula, Emil
2014-05-01
The Synthetic Aperture Radar SAR is an active radar which emits its energy in the centimetre frequencies. Due to the large orbital velocity of the satellite (7.5km s-1) approximately, the path of the antenna itself may be converted as a virtual antenna of a much larger size. The SAR instrument may also be installed on a plane, or on a helicopter. The SAR backscattering depends on the roughness of the small scale surface of the ocean. When the surface is rougher (mostly due to capillary waves in the surface) the intensity of the receiving signal is stronger due to Bragg resonant dispersion [1,2] and a white zone is observed in the image when the surface is very rough. Rivers and tensioactive slicks and spills are well detected as dark areas in the ocean surface. An image selection of SAR images in order to identify coastal river plumes or oil spills of more than 1000 ERS-1/2 and RADARSAT Synthetic Aperture Radar SAR images for the test site in the NW Mediterranean seawere clasified and stored by [2,3,7] during the "Clean Seas" International project and the "Marine pollution and surface dynamics in the NW Mediterranean Sea" European Spatial Agency ESA project AO-ID C1P.2240. A geometry of gray scale ranges and boundaries of spatial dynamic surface features may contain new helpful information about the turbulent structure at different distances from the coast. Already we used multi-fractal analysis techniques to investigate man-made oil spills [3-5] We apply these techniques to the analysis of ocean surface multi-fractal features (eddies, mushroom-like currents, etc.) to understand the scale to scale transport and coastal effects. (Redondo et al. 1998)(Diez et al. 2008) [4,7]. The effect of bathymetry and local currents are important in describing the ocean surface behavior. In the NW Mediterranean the maximum eddy size agrees remarkably well with the limit imposed by the local Rossby deformation radius using the usual thermocline induced stratification, the distribution of eddies and oil spills also mark the topology of the mixing [5-9]. A series of experimental measurements of the Lagrangian characteristics of the surface currents near Barcelona and Vilanova were performed during several years for different wind and wave conditions. The seasonal influence on the water recirculation and the influence of local conditions is apparent when the formation of a local thermocline also forces strong Langmuir circulations. Understanding the dispersion of very large freshwater discharge from the Rhone and the Ebro into the Mediterranean Sea and its impact on the biology and biogeochemistry of western Mediterranean. Because of the lack of tides and prevalence of strong wind forcing by the Mistral and Tramontana winds, the discharge of the rivers forms a classical example of a wind powered ROFI. The Fractal analysis indicates a river induced anisotropy anomalous surface mixing [6,7] Emil Sekula acknowledges the grants (SGR99-00145). ESP2005-07551, RYC-2003-005700). Authors also acknowledge the (ENV4-CT96-0334) European Union Project and the ESA (AO-ID C1P.2240) [1] Carrillo, A.; Sanchez, M.A.; Platonov, A.; Redondo, J.M., (2001). Coastal and Interfacial Mixing. Laboratory Experiments and Satellite Observations. Physics and Chemistry of the Earth, B, 26/4.305-311. [2] Sekula E., Redondo J. M. (2008) The structure of turbulent jets, vortices and boundary layer: Laboratory and field observations, Il Nuovo Cimento, Vol. 31, N. 5-6, 2008, DOI 10.1393/ncc/i2009-10358-y, 893-907. [3] B. Shirasago, V. Palà Comellas, J. J. Martínez Benjamín, D. Sánchez, A. Martínez, J. Font, R. Arbiol, J. Vázquez, V. Moreno (1996) Revista de teledetección: Revista de la Asociación Española de Teledetección, ISSN 1133-0953, Nº. 6. [4] J. M. Redondo, M. A. Sanchez, J. J. Martinez-Benjamin, and G. S. Jolly (1998)Spectral study of the ocean surface with SAR Proc. SPIE 3496, 217. [5] J. J. Martinez-Benjamin, C. Medeiros, O. Chic, M. O. Bezerra, and J. M. Redondo(1998) Incidence of SAR images on the study of NE-Brazilian coast and shelf waters Proc. SPIE 3496, 212. [6] Mahjoub O., Redondo J.M. y R. Alami (1998) Turbulent Structure Functions in Geophysical Flows, Rapp Comm. int Mer Medit. 35}, 126. [7] Diez M., Bezerra M.O., Mosso C., Castilla R. and Redondo J.M. (2008) Experimental measurements and diffusion in harbor and coastal areas. Il Nuovo Cimento C 31, 5-6, 843-859. [8] Redondo J.M. and Platonov A. (2009) Self-similar distribution of oil spills in European coastal waters. Environ. Res. Lett. 4, 14008.
Ground settlement monitoring based on temporarily coherent points between two SAR acquisitions
Zhang, L.; Ding, X.; Lu, Z.
2011-01-01
An InSAR analysis approach for identifying and extracting the temporarily coherent points (TCP) that exist between two SAR acquisitions and for determining motions of the TCP is presented for applications such as ground settlement monitoring. TCP are identified based on the spatial characteristics of the range and azimuth offsets of coherent radar scatterers. A method for coregistering TCP based on the offsets of TCP is given to reduce the coregistration errors at TCP. An improved phase unwrapping method based on the minimum cost flow (MCF) algorithm and local Delaunay triangulation is also proposed for sparse TCP data. The proposed algorithms are validated using a test site in Hong Kong. The test results show that the algorithms work satisfactorily for various ground features.
NASA Astrophysics Data System (ADS)
Mori, Saverio; Marzano, Frank S.; Montopoli, Mario; Pulvirenti, Luca; Pierdicca, Nazzareno
2017-04-01
Spaceborne synthetic aperture radars (SARs) operating at L-band and above are nowadays a well-established tool for Earth remote sensing; among the numerous civil applications we can indicate flood areas detection and monitoring, earthquakes analysis, digital elevation model production, land use monitoring and classification. Appealing characteristics of this kind of instruments is the high spatial resolution ensured in almost all-weather conditions and with a reasonable duty cycle and coverage. This result has achieved by the by the most recent generation of SAR missions, which moreover allow polarimetric observation of the target. Nevertheless, atmospheric clouds, in particular the precipitating ones, can significantly affect the signal backscattered from the ground surface (e.g. Ferrazzoli and Schiavon, 1997), on both amplitude and phase, with effects increasing with the operating frequency. In this respect, proofs are given by several recent works (e.g. Marzano et al., 2010, Baldini et al., 2014) using X-Band SAR data by COSMO-SkyMed (CSK) and TerraSAR-X (TSX) missions. On the other hand, this sensitivity open interesting perspectives towards the SAR observation, and eventually quantification, of precipitations. In this respect, a proposal approach for X-SARs precipitation maps production and cloud masking arise from our work. Cloud masking allows detection of precipitation compromised areas. Respect precipitation maps, satellite X-SARs offer the unique possibility to ingest within flood forecasting model precipitation data at the catchment scale. This aspect is particularly innovative, even if work has been done the late years, and some aspects need to still address. Our developed processing framework allows, within the cloud masking stage, distinguishing flooded areas, precipitating clouds together with permanent water bodies, all appearing dark in the SAR image. The procedure is mainly based on image segmentation techniques and fuzzy logic (e.g. Pulvirenti et al. 2014 and Mori et al. 2012); ancillary data, such as local incident angle and land cover, are used. This stage is necessary to tune the precipitation map stage and to avoid severe misinterpretations on the precipitation map routines. The second stage consist of estimating the local cloud attenuation. Finally the precipitation map is estimated, using the the retrieval algorithm developed by Marzano et al. (2011), applied only to pixels where rain is known to be present. Within the FP7 project EartH2Observe we have applied this methodology to 14 study cases, acquired within TSX and CSK missions over Italy and United States. This choice allows analysing both hurricane-like intense events and continental mid-latitude precipitations, with the possibility to verify and validate the proposed methodology through the available weather radar networks. Moreover it allows in same extent analysing the contribution of orography and quality of ancillary data (i.e. landcover). In this work we will discuss the results obtained until now in terms of improved rain cell localization and precipitation quantification.
NASA Astrophysics Data System (ADS)
Schmitt, Andreas; Sieg, Tobias; Wurm, Michael; Taubenböck, Hannes
2018-02-01
Following recent advances in distinguishing settlements vs. non-settlement areas from latest SAR data, the question arises whether a further automatic intra-urban delineation and characterization of different structural types is possible. This paper studies the appearance of the structural type ;slums; in high resolution SAR images. Geocoded Kennaugh elements are used as backscatter information and Schmittlet indices as descriptor of local texture. Three cities with a significant share of slums (Cape Town, Manila, Mumbai) are chosen as test sites. These are imaged by TerraSAR-X in the dual-co-polarized high resolution spotlight mode in any available aspect angle. Representative distributions are estimated and fused by a robust approach. Our observations identify a high similarity of slums throughout all three test sites. The derived similarity maps are validated with reference data sets from visual interpretation and ground truth. The final validation strategy is based on completeness and correctness versus other classes in relation to the similarity. High accuracies (up to 87%) in identifying morphologic slums are reached for Cape Town. For Manila (up to 60%) and Mumbai (up to 54%), the distinction is more difficult due to their complex structural configuration. Concluding, high resolution SAR data can be suitable to automatically trace potential locations of slums. Polarimetric information and the incidence angle seem to have a negligible impact on the results whereas the intensity patterns and the passing direction of the satellite are playing a key role. Hence, the combination of intensity images (brightness) acquired from ascending and descending orbits together with Schmittlet indices (spatial pattern) promises best results. The transfer from the automatically recognized physical similarity to the semantic interpretation remains challenging.
40 CFR 720.38 - Exemptions for test marketing.
Code of Federal Regulations, 2011 CFR
2011-07-01
... or, in the absence of such data, a discussion of toxicity based on structure-activity relationships (SAR) and relevant data on chemical analogues. (2) The maximum quantity of the chemical substance which.... (c) In accordance with section 5(h)(6) of the Act, after EPA receives an application for exemption...
Solving the Swath Segment Selection Problem
NASA Technical Reports Server (NTRS)
Knight, Russell; Smith, Benjamin
2006-01-01
Several artificial-intelligence search techniques have been tested as means of solving the swath segment selection problem (SSSP) -- a real-world problem that is not only of interest in its own right, but is also useful as a test bed for search techniques in general. In simplest terms, the SSSP is the problem of scheduling the observation times of an airborne or spaceborne synthetic-aperture radar (SAR) system to effect the maximum coverage of a specified area (denoted the target), given a schedule of downlinks (opportunities for radio transmission of SAR scan data to a ground station), given the limit on the quantity of SAR scan data that can be stored in an onboard memory between downlink opportunities, and given the limit on the achievable downlink data rate. The SSSP is NP complete (short for "nondeterministic polynomial time complete" -- characteristic of a class of intractable problems that can be solved only by use of computers capable of making guesses and then checking the guesses in polynomial time).
SAR image filtering based on the heavy-tailed Rayleigh model.
Achim, Alin; Kuruoğlu, Ercan E; Zerubia, Josiane
2006-09-01
Synthetic aperture radar (SAR) images are inherently affected by a signal dependent noise known as speckle, which is due to the radar wave coherence. In this paper, we propose a novel adaptive despeckling filter and derive a maximum a posteriori (MAP) estimator for the radar cross section (RCS). We first employ a logarithmic transformation to change the multiplicative speckle into additive noise. We model the RCS using the recently introduced heavy-tailed Rayleigh density function, which was derived based on the assumption that the real and imaginary parts of the received complex signal are best described using the alpha-stable family of distribution. We estimate model parameters from noisy observations by means of second-kind statistics theory, which relies on the Mellin transform. Finally, we compare the proposed algorithm with several classical speckle filters applied on actual SAR images. Experimental results show that the homomorphic MAP filter based on the heavy-tailed Rayleigh prior for the RCS is among the best for speckle removal.
Mine drainage water from the Sar Cheshmeh porphyry copper mine, Kerman, IR Iran.
Shahabpour, J; Doorandish, M
2008-06-01
This paper presents the results of a study on stream and mine waters in the area of one of the world largest porphyry copper deposit located in the southeastern Iran, the Sar Cheshmeh porphyry copper mine. Trace metals are present as adsorption on Fe and Mn oxide and hydroxide particles, as sulfate, simple metal ions, and scarcely as adsorption on clay particles and hydrous aluminium oxides. Mean pH decreases and the mean concentration of trace elements, EC and SO4(2-) increases from the maximum discharge period (MXDP) during snow melt run off (May), through the moderate discharge period (MDDP; March and July) to the minimum discharge period (MNDP; September). Water samples have sulfatic character essentially, however, from the MNDP through the MDDP towards the MXDP they show a bicarbonate tendency. This study indicates that the surface waters draining the Sar Cheshmeh open pit have a higher pH and lower concentration of trace metals compared with some other porphyry copper deposits.
Oh, Sukhoon; Ryu, Yeun-Chul; Carluccio, Giuseppe; Sica, Christopher T.; Collins, Christopher M.
2013-01-01
Purpose Compare numerically-simulated and experimentally-measured temperature increase due to Specific energy Absorption Rate (SAR) from radiofrequency fields. Methods Temperature increase induced in both a phantom and in the human forearm when driving an adjacent circular surface coil was mapped using the proton resonance frequency shift technique of Magnetic Resonance (MR) thermography. The phantom and forearm were also modeled from MR image data, and both SAR and temperature change as induced by the same coil were simulated numerically. Results The simulated and measured temperature increase distributions were generally in good agreement for the phantom. The relative distributions for the human forearm were very similar, with the simulations giving maximum temperature increase about 25% higher than measured. Conclusion Although a number of parameters and uncertainties are involved, it should be possible to use numerical simulations to produce reasonably accurate and conservative estimates of temperature distribution to ensure safety in MR imaging. PMID:23804188
Shallow magma system of Kilauea volcano investigated using L-band synthetic aperture radar data
NASA Astrophysics Data System (ADS)
Fukushima, Y.; Sinnett, D. K.; Segall, P.
2009-12-01
L-band synthetic aperture radar (SAR) images on Kilauea volcano have been archived by Japanese JERS-1 (1992-1998) and ALOS (2006-) satellites. L-band interferometric SAR (InSAR) can measure displacements in a broader region compared to C-band, thanks to higher phase coherence on vegetated areas. We made InSAR analyses on Kilauea using the following L-band data sets: J1) two JERS-1 images, acquired on 20 Oct. 1992 and 1 Mar. 1993 from a descending orbit (RSP path 589) with off-nadir angle of 34.3 degrees, J2) three JERS-1 images, acquired between 8 Oct. 1993 and 3 Jul. 1997 from a descending orbit (RSP path 590) with off-nadir angle of 34.3 degrees, A1) 13 ALOS images, acquired between 24 Jun. 2006 and 14 Feb. 2009 from an ascending orbit with off-nadir angle 9.9 degrees, and A2) 11 ALOS images, acquired between 21 May 2006 and 26 Feb. 2009 from a descending orbit with off-nadir angle 9.9 degrees. One-second SRTM digital elevation data were used to remove the topographic phase. The interferogram of the data set J1 contains signals of 1) a maximum of about 30 cm of range decrease resulting from a dike intrusion in the Makaopuhi crater area, 2) about 10 cm of maximum range increase in the Pu`u `O`o crater area, and 3) a few cm of range increase along the East Rift Zone (ERZ) between the summit and Pu`u `O`o craters. An interferogram (8 Oct. 1993 - 3 Jul. 1997) of the data set J2 indicates 1) range increase (maximum 7 cm/yr) in both the summit and Pu`u `O`o areas, 2) range increase (maximum 5 cm/yr) along the ERZ between the summit and Makaopuhi crater, and 3) range decrease (maximum 6cm/yr) on the southern flank near the coast that is consistent with a seaward movement of the southern flank. A small baseline subset InSAR time-series analysis was performed using all the images of the data sets A1 and A2, assuming that the data acquisitions had been made in pure vertical direction. The analysis period includes the 2007 Father's day dike intrusion. A preliminary result indicates the followings. Pre-eruption period (9 months): 12 cm/yr of uplift in an area of a few km SW of the summit caldera and 3 cm/yr of subsidence along the ERZ between the summit and Napau craters. Co-eruption period (7 months): 15 cm of subsidence in the summit crater and a few tens of cm of uplift associated with the diking. Post-eruption period (17 months): more than 2 cm/yr of subsidence in the summit area and at least 1 cm/yr of subsidence in the Pu`u `O`o area, where the spatial extensions of the two subsiding areas are comparable. While the obtained subsidence signals can be attributed to lava compactions and to artifacts due to errors in the digital elevation model, our results may indicate a developed shallow magma reservoir under the Pu`u `O`o crater, and also smaller shallow reservoirs distributed along the ERZ between the summit and Pu`u `O`o.
Arunachalam, K.; Maccarini, P. F.; Craciunescu, O. I.; Schlorff, J. L.; Stauffer, P. R.
2010-01-01
Purpose To study temperature and thermal dose distributions of ThermoBrachytherapy Surface Applicators (TBSA) developed for concurrent or sequential high dose rate (HDR) brachytherapy and microwave hyperthermia treatment of chest wall recurrence and other superficial disease. Methods A steady state thermodynamics model coupled with the fluid dynamics of water bolus and electromagnetic radiation of hyperthermia applicator is used to characterize the temperature distributions achievable with TBSA applicators in an elliptical phantom model of the human torso. Power deposited by 915 MHz conformal microwave array (CMA) applicators is used to assess the specific absorption rate (SAR) distributions of rectangular (500 cm2) and L-shaped (875 cm2) TBSA. The SAR distribution in tissue and fluid flow distribution inside the Dual-Input Dual-Output (DIDO) water bolus are coupled to solve the steady state temperature and thermal dose distributions of rectangular TBSA (R-TBSA) for superficial tumor targets extending 10–15 mm beneath the skin surface. Thermal simulations are carried out for a range of bolus inlet temperature (Tb=38–43°C), water flow rate (Qb=2–4 L/min) and tumor blood perfusion (ωb=2–5 kg/m3/s) to characterize their influence on thermal dosimetry. Results Steady state SAR patterns of R- and L-TBSA demonstrate the ability to produce conformal and localized power deposition inside tumor target sparing surrounding normal tissues and nearby critical organs. Acceptably low variation in tissue surface cooling and surface temperature homogeneity was observed for the new DIDO bolus at 2 L/min water flow rate. Temperature depth profiles and thermal dose volume histograms indicate bolus inlet temperature (Tb) to be the most influential factor on thermal dosimetry. A 42 °C water bolus was observed to be the optimal choice for superficial tumors extending 10–15 mm from the surface even under significant blood perfusion. Lower bolus temperature may be chosen to reduce thermal enhancement ratio (TER) in the most sensitive skin where maximum radiation dose is delivered and to extend thermal enhancement of radiation dose deeper. Conclusion This computational study indicates that well-localized elevation of tumor target temperature to 40–44 °C can be accomplished by large surface-conforming TBSA applicators using appropriate selection of coupling bolus temperature. PMID:20224154
Landslide Phenomena in Sevan National Park-Armenia
NASA Astrophysics Data System (ADS)
Lazarov, Dimitrov; Minchev, Dimitar; Aleksanyan, Gurgen; Ilieva, Maya
2010-12-01
Based on data from master and slave complex images obtained on 30 August 2008 and 4 October 2008 by satellite ENVISAT with ASAR sensor,all processing chain is performed to evaluate landslides phenomena in Sevan National park - Republic of Armenia. For this purpose Identification Deformation Inspection and Observation Tool developed by Berlin University of Technology is applied. This software package uses a freely available DEM of the Shuttle Radar Topography Mission (SRTM) and performs a fully automatic generation of differential SAR interferograms from ENVISAT single look complex SAR data. All interferometric processing steps are implemented with maximum quality and precision. The results illustrate almost calm Earth surface in the area of Sevan Lake.
NASA Astrophysics Data System (ADS)
Costantini, Mario; Francioni, Elena; Trillo, Francesco; Minati, Federico; Margottini, Claudio; Spizzichino, Daniele; Trigila, Alessandro; Iadanza, Carla
2017-04-01
Archaeological sites and cultural heritage are considered as critical assets for the society, representing not only the history of region or a culture, but also contributing to create a common identity of people living in a certain region. In this view, it is becoming more and more urgent to preserve them from climate changes effect and in general from their degradation. These structures are usually just as precious as fragile: remote sensing technology can be useful to monitor these treasures. In this work, we will focus on ground deformation measurements obtained by satellite SAR interferometry and on the methodology adopted and implemented in order to use the results operatively for conservation policies in a Italian archaeological site. The analysis is based on the processing of COSMO-SkyMed Himage data by the e-GEOS proprietary Persistent Scatterer Pair (PSP) SAR interferometry technology. The PSP technique is a proven SAR interferometry technology characterized by the fact of exploiting in the processing only the relative properties between close points (pairs) in order to overcome atmospheric artefacts (which are one of the main problems of SAR interferometry). Validations analyses [Costantini et al. 2015] settled that this technique applied to COSMO-SkyMed Himage data is able to retrieve very dense (except of course on vegetated or cultivated areas) millimetric deformation measurements with sub-metric localization. Considering the limitations of all the interferometric techniques, in particular the fact that the measurement are along the line of sight (LOS) and the geometric distortions, in order to obtain the maximum information from interferometric analysis, both ascending and descending geometry have been used. The ascending analysis allows selecting measurements points over the top and, approximately, South-West part of the structures, while the descending one over the top and the South-East part of the structures. The interferometric techniques needs to use a stack of SAR images to separate the deformation phase contributions from other spurious components (atmospheric, orbital, etc.). Historical/reference analyses of the period 2011-2014 have been performed to obtain such deformations and to have a start point for the next updates. In fact, starting from the reference analyses the deformation monitoring has then continued with monthly updates of the PSP analysis with new COSMO-SkyMed acquisitions both in ascending and descending geometry. In addition to this traditional monitoring service, the satellite interferometry analysis has been realized over specific time frame that have been selected on the bases of some important events (damages to structures, collapses, works etc.) and the analysis have been correlated with additional site information as weather conditions, critical meteorological events, historical information of the site, etc. The objective is to find a nominal behaviour of the site in response to critical events and/or related to natural degradation of infrastructures in order to prevent damages and guide maintenance activities. The first results of this cross correlated analysis showed that some deformation phenomena are identifiable by SAR satellite interferometric analysis and it has also been possible to validate them on field through a direct survey.
Bill, Kate Lynn J.; Garnett, Jeannine; Meaux, Isabelle; Ma, XiaoYen; Creighton, Chad J.; Bolshakov, Svetlana; Barriere, Cedric; Debussche, Laurent; Lazar, Alexander J.; Prudner, Bethany C.; Casadei, Lucia; Braggio, Danielle; Lopez, Gonzalo; Zewdu, Abbie; Bid, Hemant; Lev, Dina; Pollock, Raphael E.
2016-01-01
Purpose Dedifferentiated liposarcoma (DDLPS) is an aggressive malignancy that can recur locally or disseminate even after multidisciplinary care. Genetically amplified and expressed MDM2, often referred to as a “hallmark” of DDLPS, mostly sustains a wild-type p53 genotype, substantiating the p53-MDM2 axis as a potential therapeutic target for DDLPS. Here we report on the preclinical effects of SAR405838, a novel and highly selective MDM2 small-molecule inhibitor, in both in vitro and in vivo DDLPS models. Experimental Design The therapeutic effectiveness of SAR405838 was compared to the known MDM2 antagonists Nutlin-3a and MI-219. The effects of MDM2 inhibition were assessed in both in vitro and in vivo. In vitro and in vivo microarray analyses were performed to assess differentially expressed genes induced by SAR405838, as well as the pathways that these modulated genes enriched. Results SAR405838 effectively stabilized p53 and activated the p53 pathway, resulting in abrogated cellular proliferation, cell cycle arrest, and apoptosis. Similar results were observed with Nutlin-3a and MI-219; however, significantly higher concentrations were required. In vitro effectiveness of SAR405838 activity was recapitulated in DDLPS xenograft models where significant decreases in tumorigenicity were observed. Microarray analyses revealed genes enriching the p53 signaling pathway as well as genomic stability and DNA damage following SAR405838 treatment. Conclusion SAR405838 is currently in early phase clinical trials for a number of malignancies, including sarcoma, and our in vitro and in vivo results support its use as a potential therapeutic strategy for the treatment of DDLPS. PMID:26475335
Bill, Kate Lynn J; Garnett, Jeannine; Meaux, Isabelle; Ma, XiaoYen; Creighton, Chad J; Bolshakov, Svetlana; Barriere, Cedric; Debussche, Laurent; Lazar, Alexander J; Prudner, Bethany C; Casadei, Lucia; Braggio, Danielle; Lopez, Gonzalo; Zewdu, Abbie; Bid, Hemant; Lev, Dina; Pollock, Raphael E
2016-03-01
Dedifferentiated liposarcoma (DDLPS) is an aggressive malignancy that can recur locally or disseminate even after multidisciplinary care. Genetically amplified and expressed MDM2, often referred to as a "hallmark" of DDLPS, mostly sustains a wild-type p53 genotype, substantiating the MDM2:p53 axis as a potential therapeutic target for DDLPS. Here, we report on the preclinical effects of SAR405838, a novel and highly selective MDM2 small-molecule inhibitor, in both in vitro and in vivo DDLPS models. The therapeutic effectiveness of SAR405838 was compared with the known MDM2 antagonists Nutlin-3a and MI-219. The effects of MDM2 inhibition were assessed in both in vitro and in vivo. In vitro and in vivo microarray analyses were performed to assess differentially expressed genes induced by SAR405838, as well as the pathways that these modulated genes enriched. SAR405838 effectively stabilized p53 and activated the p53 pathway, resulting in abrogated cellular proliferation, cell-cycle arrest, and apoptosis. Similar results were observed with Nutlin-3a and MI-219; however, significantly higher concentrations were required. In vitro effectiveness of SAR405838 activity was recapitulated in DDLPS xenograft models where significant decreases in tumorigenicity were observed. Microarray analyses revealed genes enriching the p53 signaling pathway as well as genomic stability and DNA damage following SAR405838 treatment. SAR405838 is currently in early-phase clinical trials for a number of malignancies, including sarcoma, and our in vitro and in vivo results support its use as a potential therapeutic strategy for the treatment of DDLPS. ©2015 American Association for Cancer Research.
L-band InSAR Penetration Depth Experiment, North Slope Alaska
NASA Astrophysics Data System (ADS)
Muskett, R. R.
2017-12-01
Since the first spacecraft-based synthetic aperture radar (SAR) mission NASA's SEASAT in 1978 radars have been flown in Low Earth Orbit (LEO) by other national space agencies including the Canadian Space Agency, European Space Agency, India Space Research Organization and the Japanese Aerospace Exploration Agency. Improvements in electronics, miniaturization and production have allowed for the deployment of SAR systems on aircraft for usage in agriculture, hazards assessment, land-use management and planning, meteorology, oceanography and surveillance. LEO SAR systems still provide a range of needful and timely information on large and small-scale weather conditions like those found across the Arctic where ground-base weather radars currently provide limited coverage. For investigators of solid-earth deformation attention must be given to the atmosphere on Interferometric SAR (InSAR) by aircraft and spacecraft multi-pass operations. Because radar has the capability to penetrate earth materials at frequencies from the P- to X-band attention must be given to the frequency dependent penetration depth and volume scattering. This is the focus of our new research project: to test the penetration depth of L-band SAR/InSAR by aircraft and spacecraft systems at a test site in Arctic Alaska using multi-frequency analysis and progressive burial of radar mesh-reflectors at measured depths below tundra while monitoring environmental conditions. Knowledge of the L-band penetration depth on lowland Arctic tundra is necessary to constrain analysis of carbon mass balance and hazardous conditions arising form permafrost degradation and thaw, surface heave and subsidence and thermokarst formation at local and regional scales. Ref.: Geoscience and Environment Protection, vol. 5, no. 3, p. 14-30, 2017. DOI: 10.4236/gep.2017.53002.
NASA Astrophysics Data System (ADS)
Nico, Giovanni; Mateus, Pedro; Catalão, João.
2010-05-01
The knowledge of water vapor spatial distribution in the Earth's atmosphere at a given time is an important information for numerical forecasting. In fact this is the most varying atmospheric constituent both in space and in time. The water vapor is basically concentrated in the troposphere, the atmosphere layer where the most important phenomena related to weather occur. This layer is destabilized by radiative heating and vertical wind shear near the surfce. The accuracy of quantitative precipitation forecasting over a given region strongly depends on the knowledge of the temporal and spatial variations in the water vapor spatial distribution. Currently, measurements based on ground-based and upper-air sounding networks furnish water vapor distribution only at a coarse scales. This could not be enough to capture variations of the local concentrations of water vapor. Spaceborne radiometer observations can observe atmospheric layers above 3 km due to absorption by water vapor and in any case maps of vater vapour density are too coarse. Availability of GPS measurements of on a routine basis is improving numerical forecasting. However, the density of meuserements which can be obtained by a GPS network is too low to capture spatial variations of local concentrations of water vapor. Synthetic Aperture Radar (SAR) interferometry provides maps of temporal variations of the vertically integrated water vapor density with a horizontal resolution as fine as 10-20 m depending on the radar wavelength and over a swath typically 100 km wide. In the past, the availability of the tandem ERS-1/2 interferometric SAR data allowed to get maps of the vertically-integrated with a temporal baseline of 1 day. In those maps it was possible to recognize signature of a precipitating cumulonimbus cloud, the effects of a cold front and the phenomenon of horizontal convective rolls. Current interferometric spaceborne missions use SAR sensors working at different frequency bands: L (ALOS-PALSAR), C (ENVISAT-ASAR, RADARSAT) and X (TerraSAR, Cosmo-Sky-Med) and with a repetition cycle ranging from 11 (TerraSAR-X) to 35 days (ENVISAT-ASAR). From each SAR sensor, it can be obtained a map of the temporal changes of the IPW occurred between the two subsequent acquisitions by interferometrically processing the SAR data. The accuracy of these maps depends on the radar wavelength and on spatial filtering. A procedure to properly merge all these maps could give information about the temporal evolution of the IPW spatial distribution with a sampling period shorter than the revisiting times of each of the SAR sensors. The main difficulty of this operation is related to the fact that the integration of temporal changes of IPW is not direct when maps are obtained by different SAR sensors. The aim of this work is to describe a methodologiy to merge IPW maps obtained by the different SAR sensor based on the availbality of GPS time series measuring the IPW over the same area. The Lisbon region, Portugal, was chosen as a study area. This region is monitored by a network of 12 GPS permanent stations covering an area of about squared kilometers. A set of SAR interferograms were processed using data acquired by ENVISAT-ASAR and TerraSAR-X mission over the Lisbon region during the period from 2009 to 2010. A time series with GPS measurement of IPW was processed to cover the time interval between the first and last SAR acquisition. This time series is then used to integrate all maps of temporal changes of IPW obtained by the different interferometric SAR couples. This results in a time series giving with the information about the spatial distribution of the IPW.
NASA Astrophysics Data System (ADS)
Pinel, V.; Hooper, A.; De la Cruz-Reyna, S.; Reyes-Davila, G.; Doin, M. P.; Bascou, P.
2011-02-01
Despite the ability of synthetic aperture radar (SAR) interferometry to measure ground motion with high-resolution, application of this remote sensing technique to monitor andesitic stratovolcanoes remains limited. Specific acquisition conditions characterizing andesitic stratovolcanoes, mainly vegetated areas with large elevation ranges, induce low signal coherence as well as strong tropospheric artefacts that result in small signal-to-noise ratio. We propose here a way to mitigate these difficulties and improve the SAR measurements. We derive ground motions for two of the most active Mexican stratovolcanoes: Popocatepetl and Colima Volcano, from the time series of SAR data acquired from December 2002 to August 2006. The SAR data are processed using a method that combines both persistent scatterers and small baseline approaches. Stratified tropospheric delays are estimated for each interferogram using inputs from the global atmospheric model NARR, up to a maximum of 10 rad/km. These delays are validated using spectrometer data, as well as the correlation between the wrapped phase and the elevation. The tropospheric effect is removed from the wrapped phase in order to improve the unwrapping process. On Popocatepetl, we observe no significant deformation. The Colima summit area exhibits a constant subsidence rate of more than 1 cm/year centered on the summit but enhanced (reaching more than 2 cm/year) around the 1998 lava flow. We model this subsidence considering both a deflating magma source at depth and the effect of the eruptive deposits load.
InSAR measurements for the 2014 Mw 6.0 Jinggu, Yunnan Earthquake
NASA Astrophysics Data System (ADS)
Chen, Jiajun; Feng, Wanpeng; Sergey, Samsonov; Mahdi, Motagh; Li, Zhenhong; Clarke, Peter
2016-04-01
An earthquake occurred in the southwest of Yunnan, China on 7 October 2014 at 21:49 local time, measured as Mw 6.0 by the United States Geological Survey and Mw 6.1 by the European Alert System. Strong earthquakes are common in this region because of the continental collision between the India and Eurasia plates with a relative convergence rate of 40-50 mm/yr. A detailed study of this earthquake will therefore allow better understanding of regional fault properties. For the first time, Radarsat-2 (RS2) data was employed to investigate co-seismic surface movements of this event. Two ascending RS2 images acquired on 2 October 2014 and 19 November 2014 were used to generate an interferogram, revealing line-of-sight (LOS) displacements with a maximum value of 0.13 m (towards the satellite) in the NW sector. We use PSOKINV to determine fault geometric parameters and slip distribution. First, fault parameters are determined using improved particle swarm optimization. Second, slip distribution over the fault plane is retrieved using an iterative strategy for estimating optimal dip angle and smoothing factors [Feng et al., 2013]. The comparison between the modelled LOS changes and the measured ones shows a good fit, with residuals smaller than 0.02 m. The best-fitting model suggests that the rupture occurred on a left-lateral strike-slip fault with a strike of 323°. The total released moment is equivalent to Mw 6.1 and the main slip zone is confined between depths of 2-8 km. A maximum slip of 1.1 m appears at a depth of 4.3 km, with a rupture length of about 10km. Reference: Feng, W., Z. Li, J. R. Elliott, Y. Fukushima, T. Hoey, A. Singleton, R. Cook, and Z. Xu (2013), The 2011 MW 6.8 Burma earthquake: fault constraints provided by multiple SAR techniques, Geophysical Journal International, doi:10.1093/gji/ggt254.
Monitoring Volcano Deformation in the Northernmost Andes with ALOS InSAR Time-Series
NASA Astrophysics Data System (ADS)
Morales Rivera, A. M.; Amelung, F.
2014-12-01
Satellite-based Interferometric Synthetic Aperture Radar (InSAR) is well known to be used as a volcano monitoring tool, providing the opportunity to conduct local and regional surveys to detect and measure volcanic deformation. The signals detected by InSAR on volcanoes can be related to various phenomena, such as volume changes in magmatic reservoirs, compaction of recent deposits, changes in hydrothermal activity, and flank instability. The InSAR time-series method has well documented examples of these phenomena, including precursory inflation of magma reservoirs months prior to volcanic eruptions, proving its potential for early warning systems. We use the ALOS-1 satellite from the Japanese Aerospace Exploration Agency (JAXA), which acquired a global L-band data set of nearly 20 acquisitions during 2007-2011, to make an InSAR time-series analysis using the Small Baseline method (SBAS). Our analysis covers all of the volcanoes in Colombia, Ecuador, and Peru that are cataloged by the Global Volcanism Program. We present results showing time-dependent ground deformation on an near the volcanoes, and present kinematic models to constrain the characteristics of the magmatic sources for the cases in which the deformation is likely related to changes in magma reservoir pressurization.
Integration of SAR and AIS for ship detection and identification
NASA Astrophysics Data System (ADS)
Yang, Chan-Su; Kim, Tae-Ho
2012-06-01
This abstract describes the preliminary design concept for an integration system of SAR and AIS data. SAR sensors are used to acquire image data over large coverage area either through the space borne or airborne platforms in UTC. AIS reports should also obtained on the same date as of the SAR acquisition for the purpose to perform integration test. Once both data reports are obtained, one need to match the timings of AIS data acquisition over the SAR image acquisition time with consideration of local time & boundary to extract the closest time signal from AIS report in order to know the AIS based ship positions, but still one cannot be able to distinguish which ships have the AIS transponder after projection of AIS based position onto the SAR image acquisition boundary. As far as integration is concerned, the ship dead-reckoning concept is most important forecasted position which provides the AIS based ship position at the time of SAR image acquisition and also provides the hints for azimuth shift which occurred in SAR image for the case of moving ships which moves in the direction perpendicular to the direction of flight path. Unknown ship's DR estimation is to be carried out based on the initial positions, speed and course over ground, which has already been shorted out from AIS reports, during the step of time matching. This DR based ship's position will be the candidate element for searching the SAR based ship targets for the purpose of identification & matching within the certain boundary around DR. The searching method is performed by means of estimation of minimum distance from ship's DR to SAR based ship position, and once it determines, so the candidate element will look for matching like ship size match of DR based ship's dimension wrt SAR based ship's edge, there may be some error during the matching with SAR based ship edges with actual ship's hull design as per the longitudinal and transverse axis size information obtained from the AIS reports due to blurring effect in SAR based ship signatures, once the conditions are satisfied, candidate element will move & shift over the SAR based ship signature target with the minimum displacement and it is known to be the azimuth shift compensation and this overall methodology are known to be integration of AIS report data over the SAR image acquisition boundary with assessment of time matching. The expected result may provide the good accuracy of the SAR and AIS contact position along with dimension and classification of ships over SAR image. There may be possibilities of matching speed and course from candidate element with SAR based ship signature, but still the challenges are presents in front of us that to estimation of speed and course by means of SAR data, if it may be possible so the expected final result may be more accurate as due to extra matching effects and the results may be used for the near real time performance for ship identification with help of integrated system design based on SAR and AIS data reports.
Computational dosimetry for grounded and ungrounded human models due to contact current
NASA Astrophysics Data System (ADS)
Chan, Kwok Hung; Hattori, Junya; Laakso, Ilkka; Hirata, Akimasa; Taki, Masao
2013-08-01
This study presents the computational dosimetry of contact currents for grounded and ungrounded human models. The uncertainty of the quasi-static (QS) approximation of the in situ electric field induced in a grounded/ungrounded human body due to the contact current is first estimated. Different scenarios of cylindrical and anatomical human body models are considered, and the results are compared with the full-wave analysis. In the QS analysis, the induced field in the grounded cylindrical model is calculated by the QS finite-difference time-domain (QS-FDTD) method, and compared with the analytical solution. Because no analytical solution is available for the grounded/ungrounded anatomical human body model, the results of the QS-FDTD method are then compared with those of the conventional FDTD method. The upper frequency limit for the QS approximation in the contact current dosimetry is found to be 3 MHz, with a relative local error of less than 10%. The error increases above this frequency, which can be attributed to the neglect of the displacement current. The QS or conventional FDTD method is used for the dosimetry of induced electric field and/or specific absorption rate (SAR) for a contact current injected into the index finger of a human body model in the frequency range from 10 Hz to 100 MHz. The in situ electric fields or SAR are compared with the basic restrictions in the international guidelines/standards. The maximum electric field or the 99th percentile value of the electric fields appear not only in the fat and muscle tissues of the finger, but also around the wrist, forearm, and the upper arm. Some discrepancies are observed between the basic restrictions for the electric field and SAR and the reference levels for the contact current, especially in the extremities. These discrepancies are shown by an equation that relates the current density, tissue conductivity, and induced electric field in the finger with a cross-sectional area of 1 cm2.
NASA Astrophysics Data System (ADS)
Small, Michael; Tse, C. K.
2005-06-01
We propose a new four state model for disease transmission and illustrate the model with data from the 2003 SARS epidemic in Hong Kong. The critical feature of this model is that the community is modelled as a small-world network of interconnected nodes. Each node is linked to a fixed number of immediate neighbors and a random number of geographically remote nodes. Transmission can only propagate between linked nodes. This model exhibits two features typical of SARS transmission: geographically localized outbreaks and “super-spreaders”. Neither of these features are evident in standard susceptible-infected-removed models of disease transmission. Our analysis indicates that “super-spreaders” may occur even if the infectiousness of all infected individuals is constant. Moreover, we find that nosocomial transmission in Hong Kong directly contributed to the severity of the outbreak and that by limiting individual exposure time to 3-5 days the extent of the SARS epidemic would have been minimal.
Generalized ISAR--part II: interferometric techniques for three-dimensional location of scatterers.
Given, James A; Schmidt, William R
2005-11-01
This paper is the second part of a study dedicated to optimizing diagnostic inverse synthetic aperture radar (ISAR) studies of large naval vessels. The method developed here provides accurate determination of the position of important radio-frequency scatterers by combining accurate knowledge of ship position and orientation with specialized signal processing. The method allows for the simultaneous presence of substantial Doppler returns from both change of roll angle and change of aspect angle by introducing generalized ISAR ates. The first paper provides two modes of interpreting ISAR plots, one valid when roll Doppler is dominant, the other valid when the aspect angle Doppler is dominant. Here, we provide, for each type of ISAR plot technique, a corresponding interferometric ISAR (InSAR) technique. The former, aspect-angle dominated InSAR, is a generalization of standard InSAR; the latter, roll-angle dominated InSAR, seems to be new to this work. Both methods are shown to be efficient at identifying localized scatterers under simulation conditions.
Megathrust earthquakes in Japan and Chile triggered multiple volcanoes to subside
NASA Astrophysics Data System (ADS)
Takada, Y.; Pritchard, M. E.; Fukushima, Y.; Jay, J.; Aron, F. A.; Henderson, S.; Lara, L. E.
2012-12-01
With spaceborne interferometric synthetic aperture radar (InSAR) analysis, we found that two recent megathrust earthquakes, the 2011 Mw 9.0 Tohoku earthquake in Japan (March 11, 2011) and the 2010 Mw 8.8 Maule earthquake in Chile (February 27, 2010), have triggered unprecedented subsidence of multiple volcanoes. There are strong similarities in the characteristics of the surface deformation in Chile and Japan; (1) the maximum amount of subsidence is about 15 cm, (2) the shape of subsidence areas exhibit elliptic shape elongated in the North-South direction -- perpendicular to the principal axis of the extensional stress change, and (3) most of the subsidence was aseismic. These similarities imply that volcanic subsidence from megathrust earthquakes is a ubiquitous phenomenon. In both areas, we found that hydro-thermal reservoirs (including water, gas, and possibly magma) would play key roles in the subsidence. Further continuous monitoring is necessary to determine if the surface subsidence leads to additional volcanic unrest. For the 2011 Tohoku Earthquake, we used SAR data acquired before and after the mainshock by ALOS (PALSAR). By removing long wave-length phase trend from InSAR images, we obtained the localized subsidence signals at five active volcanoes: Mt. Akitakoma, Mt. Kurikoma region, Mt. Zao, Mt. Azuma, and Mt. Nasu. All of them belong to the volcanic front of Northeast Japan and so they are among the closest volcanoes to the earthquake. The maximum amount of subsidence reaches 15 cm at Mt. Azuma. GPS data from two volcanoes also indicate surface subsidence consistent with the satellite radar observations. Furthermore, the GPS data show that the subsidence occurred immediately after the earthquake. According to numerical modelling, the observed subsidence can be explained by the co-seismic response of fluid-filled ellipsoid with horizontal dimensions of 10-40 × 5-15 km beneath each volcano. For the 2010 Maule Earthquake, we extracted the localized volcanic subsidence in the same manner as Japan by removing the earthquake deformation signature. Most interferograms were created from ALOS data, but several were from ENVISAT and ERS-2. We find subsidence at five volcanic areas: Caldera del Atuel, Tinguiririca, Calabozos caldera, Cerro Azul, and Nevados de Chillán. All of these regions belong to the Andean Southern Volcanic Zone, and are located within the 400 km long rupture area of the Maule earthquake. In three of the five subsiding regions, there are known geothermal reservoirs. The orientation of N-S elongated subsidence areas can be explained by underlying hydrothermal and/or magmatic system and increase in the number of small cracks around those systems due to the coseismic stress disturbance. Existence of such damage zone would make water and/or gas emissions efficient, and enhanced the N-S elongated surface subsidence. Increases in stream flow at the date of Maule earthquake were observed, although the fluid contribution from the volcanic areas is not the only or necessarily the primary source.
NASA Astrophysics Data System (ADS)
Cong, Xiaoying; Balss, Ulrich; Eineder, Michael
2015-04-01
The atmospheric delay due to vertical stratification, the so-called stratified atmospheric delay, has a great impact on both interferometric and absolute range measurements. In our current researches [1][2][3], centimeter-range accuracy has been proven based on Corner Reflector (CR) based measurements by applying atmospheric delay correction using the Zenith Path Delay (ZPD) corrections derived from nearby Global Positioning System (GPS) stations. For a global usage, an effective method has been introduced to estimate the stratified delay based on global 4-dimensional Numerical Weather Prediction (NWP) products: the direct integration method [4][5]. Two products, ERA-Interim and operational data, provided by European Centre for Medium-Range Weather Forecast (ECMWF) are used to integrate the stratified delay. In order to access the integration accuracy, a validation approach is investigated based on ZPD derived from six permanent GPS stations located in different meteorological conditions. Range accuracy at centimeter level is demonstrated using both ECMWF products. Further experiments have been carried out in order to determine the best interpolation method by analyzing the temporal and spatial correlation of atmospheric delay using both ECMWF and GPS ZPD. Finally, the integrated atmospheric delays in slant direction (Slant Path Delay, SPD) have been applied instead of the GPS ZPD for CR experiments at three different test sites with more than 200 TerraSAR-X High Resolution SpotLight (HRSL) images. The delay accuracy is around 1-3 cm depending on the location of test site due to the local water vapor variation and the acquisition time/date. [1] Eineder M., Minet C., Steigenberger P., et al. Imaging geodesy - Toward centimeter-level ranging accuracy with TerraSAR-X. Geoscience and Remote Sensing, IEEE Transactions on, 2011, 49(2): 661-671. [2] Balss U., Gisinger C., Cong X. Y., et al. Precise Measurements on the Absolute Localization Accuracy of TerraSAR-X on the Base of Far-Distributed Test Sites; EUSAR 2014; 10th European Conference on Synthetic Aperture Radar; Proceedings of. VDE, 2014: 1-4. [3] Eineder M., Balss U., Gisinger C., et al. TerraSAR-X pixel localization accuracy: Approaching the centimeter level, Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International. IEEE, 2014: 2669-2670. [4] Cong X., Balss U., Eineder M., et al. Imaging Geodesy -- Centimeter-Level Ranging Accuracy With TerraSAR-X: An Update. Geoscience and Remote Sensing Letters, IEEE, 2012, 9(5): 948-952. [5] Cong X. SAR Interferometry for Volcano Monitoring: 3D-PSI Analysis and Mitigation of Atmospheric Refractivity. München, Technische Universität München, Dissertation, 2014.
NASA Astrophysics Data System (ADS)
Liu, Yuanyuan; Zhao, Chaoying; Zhang, Qin; Yang, Chengsheng
2018-02-01
Qingxu-Jiaocheng, China has been suffering severe land subsidence along with the development of ground fissure, which are controlled by local fault and triggered by groundwater withdrawal. With multi-sensor SAR images, we study the spatiotemporal evolution of ground deformation over Qingxu-Jiaocheng with an IPTA InSAR technique and assess the role of groundwater withdrawal to the observed deformation. Discrete GPS measurements are applied to verify the InSAR results. The RMSE of the differences between InSAR and GPS, i.e. ALOS and GPS and Envisat and GPS, are 5.7 mm and 6.3 mm in the LOS direction, respectively. The east-west and vertical components of the observed deformation from 2007 to 2010 are decomposed by using descending-track Envisat and ascending-track ALOS interferograms, indicating that the east-west component cannot be neglected when the deformation is large or the ground fissure is active. Four phases of land subsidence in the study region are successfully retrieved, and its spatiotemporal evolution is quantitatively analyzed. Lastly, a flat lying sill model with distributed contractions is implemented to model the InSAR deformation over Qingxu-Jiaocheng, which manifests that the ground deformation is mainly caused by groundwater withdrawal. This research provides new insights into the land subsidence monitoring and its mechanism inversion over Qingxu-Jiaocheng region.
NASA Astrophysics Data System (ADS)
Lavalle, M.; Ahmed, R.
2014-12-01
Mapping forest structure and aboveground biomass globally is a major challenge that the remote sensing community has been facing for decades. Radar backscatter is sensitive to biomass only up to a certain amount (about 150 tons/ha at L-band and 300 tons/ha at P-band), whereas lidar remote sensing is strongly limited by poor spatial coverage. In recent years radar interferometry, including its extension to polarimetric radar interferometry (PolInSAR), has emerged as a new technique to overcome the limitations of radar backscatter. The idea of PolInSAR is to use jointly interferometric and polarimetric radar techniques to separate different scattering mechanisms and retrieve the vertical structure of forests. The advantage is to map ecosystem structure continuously over large areas and independently of cloud coverage. Experiments have shown that forest height - an important proxy for biomass - can be estimated using PolInSAR with accuracy between 15% and 20% at plot level. At AGU we will review the state-of-art of repeat-pass PolInSAR for biomass mapping, including its potential and limitations, and discuss how merging lidar data with PolInSAR data can be beneficial not only for product cross-validation but also for achieving better estimation of ecosystem properties over large areas. In particular, lidar data are expected to aid the inversion of PolInSAR models by providing (1) better identification of ground under the canopy, (2) approximate information of canopy structure in limited areas, and (3) maximum tree height useful for mapping PolInSAR temporal decorrelation. We will show our tree height and biomass maps using PolInSAR L-band JPL/UAVSAR data collected in tropical and temperate forests, and P-band ONERA/TROPISAR data acquired in French Guiana. LVIS lidar data will be used, as well as SRTM data, field measurements and inventory data to support our study. The use of two different radar frequencies and repeat-pass JPL UAVSAR data will offer also the opportunity to compare our results with the new airborne P-band ECOSAR and L-band DBSAR instruments developed at the NASA Goddard Space Flight Center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keser, Saniye; Duzgun, Sebnem; Department of Geodetic and Geographic Information Technologies, Middle East Technical University, 06800 Ankara
Highlights: Black-Right-Pointing-Pointer Spatial autocorrelation exists in municipal solid waste generation rates for different provinces in Turkey. Black-Right-Pointing-Pointer Traditional non-spatial regression models may not provide sufficient information for better solid waste management. Black-Right-Pointing-Pointer Unemployment rate is a global variable that significantly impacts the waste generation rates in Turkey. Black-Right-Pointing-Pointer Significances of global parameters may diminish at local scale for some provinces. Black-Right-Pointing-Pointer GWR model can be used to create clusters of cities for solid waste management. - Abstract: In studies focusing on the factors that impact solid waste generation habits and rates, the potential spatial dependency in solid waste generation datamore » is not considered in relating the waste generation rates to its determinants. In this study, spatial dependency is taken into account in determination of the significant socio-economic and climatic factors that may be of importance for the municipal solid waste (MSW) generation rates in different provinces of Turkey. Simultaneous spatial autoregression (SAR) and geographically weighted regression (GWR) models are used for the spatial data analyses. Similar to ordinary least squares regression (OLSR), regression coefficients are global in SAR model. In other words, the effect of a given independent variable on a dependent variable is valid for the whole country. Unlike OLSR or SAR, GWR reveals the local impact of a given factor (or independent variable) on the waste generation rates of different provinces. Results show that provinces within closer neighborhoods have similar MSW generation rates. On the other hand, this spatial autocorrelation is not very high for the exploratory variables considered in the study. OLSR and SAR models have similar regression coefficients. GWR is useful to indicate the local determinants of MSW generation rates. GWR model can be utilized to plan waste management activities at local scale including waste minimization, collection, treatment, and disposal. At global scale, the MSW generation rates in Turkey are significantly related to unemployment rate and asphalt-paved roads ratio. Yet, significances of these variables may diminish at local scale for some provinces. At local scale, different factors may be important in affecting MSW generation rates.« less
Unsupervised DInSAR processing chain for multi-scale displacement analysis
NASA Astrophysics Data System (ADS)
Casu, Francesco; Manunta, Michele
2016-04-01
Earth Observation techniques can be very helpful for the estimation of several sources of ground deformation due to their characteristics of large spatial coverage, high resolution and cost effectiveness. In this scenario, Differential Synthetic Aperture Radar Interferometry (DInSAR) is one of the most effective methodologies for its capability to generate spatially dense deformation maps at both global and local spatial scale, with centimeter to millimeter accuracy. DInSAR exploits the phase difference (interferogram) between SAR image pairs relevant to acquisitions gathered at different times, but with the same illumination geometry and from sufficiently close flight tracks, whose separation is typically referred to as baseline. Among several, the SBAS algorithm is one of the most used DInSAR approaches and it is aimed at generating displacement time series at a multi-scale level by exploiting a set of small baseline interferograms. SBAS, and generally DInSAR, has taken benefit from the large availability of spaceborne SAR data collected along years by several satellite systems, with particular regard to the European ERS and ENVISAT sensors, which have acquired SAR images worldwide during approximately 20 years. Moreover, since 2014 the new generation of Copernicus Sentinel satellites has started to acquire data with a short revisit time (12 days) and a global coverage policy, thus flooding the scientific EO community with an unprecedent amount of data. To efficiently manage such amount of data, proper processing facilities (as those coming from the emerging Cloud Computing technologies) have to be used, as well as novel algorithms aimed at their efficient exploitation have to be developed. In this work we present a set of results achieved by exploiting a recently proposed implementation of the SBAS algorithm, namely Parallel-SBAS (P-SBAS), which allows us to effectively process, in an unsupervised way and in a limited time frame, a huge number of SAR images, thus leading to the generation of Interferometric products for both global and local scale displacement analysis. Among several examples, we will show a wide displacement SBAS processing, carried out over the southern California, during which the whole ascending ENVISAT data set of more than 740 images has been fully processed on a Cloud Computing environment in less than 9 hours, leading to the generation of a displacement map of about 150,000 square kilometres. The P-SBAS characteristics allowed also us to integrate the algorithm within the ESA Geohazard Exploitation Platform (GEP), which is based on the use of GRID and Cloud Computing facilities, thus making freely available to the EO community a web tool for massive and systematic interferometric displacement time series generation. This work has been partially supported by: the Italian MIUR under the RITMARE project; the CNR-DPC agreement and the ESA GEP project.
Li, Zhiwei; Zhao, Rong; Hu, Jun; Wen, Lianxing; Feng, Guangcai; Zhang, Zeyu; Wang, Qijie
2015-01-01
This paper presents a novel method to estimate active layer thickness (ALT) over permafrost based on InSAR (Interferometric Synthetic Aperture Radar) observation and the heat transfer model of soils. The time lags between the periodic feature of InSAR-observed surface deformation over permafrost and the meteorologically recorded temperatures are assumed to be the time intervals that the temperature maximum to diffuse from the ground surface downward to the bottom of the active layer. By exploiting the time lags and the one-dimensional heat transfer model of soils, we estimate the ALTs. Using the frozen soil region in southern Qinghai-Tibet Plateau (QTP) as examples, we provided a conceptual demonstration of the estimation of the InSAR pixel-wise ALTs. In the case study, the ALTs are ranging from 1.02 to 3.14 m and with an average of 1.95 m. The results are compatible with those sparse ALT observations/estimations by traditional methods, while with extraordinary high spatial resolution at pixel level (~40 meter). The presented method is simple, and can potentially be used for deriving high-resolution ALTs in other remote areas similar to QTP, where only sparse observations are available now. PMID:26480892
Li, Zhiwei; Zhao, Rong; Hu, Jun; Wen, Lianxing; Feng, Guangcai; Zhang, Zeyu; Wang, Qijie
2015-10-20
This paper presents a novel method to estimate active layer thickness (ALT) over permafrost based on InSAR (Interferometric Synthetic Aperture Radar) observation and the heat transfer model of soils. The time lags between the periodic feature of InSAR-observed surface deformation over permafrost and the meteorologically recorded temperatures are assumed to be the time intervals that the temperature maximum to diffuse from the ground surface downward to the bottom of the active layer. By exploiting the time lags and the one-dimensional heat transfer model of soils, we estimate the ALTs. Using the frozen soil region in southern Qinghai-Tibet Plateau (QTP) as examples, we provided a conceptual demonstration of the estimation of the InSAR pixel-wise ALTs. In the case study, the ALTs are ranging from 1.02 to 3.14 m and with an average of 1.95 m. The results are compatible with those sparse ALT observations/estimations by traditional methods, while with extraordinary high spatial resolution at pixel level (~40 meter). The presented method is simple, and can potentially be used for deriving high-resolution ALTs in other remote areas similar to QTP, where only sparse observations are available now.
Cohen, Ouri; Tal, Assaf; Gonen, Oded
2014-10-01
To reduce the specific-absorption-rate (SAR) and chemical shift displacement (CSD) of three-dimensional (3D) Hadamard spectroscopic imaging (HSI) and maintain its point spread function (PSF) benefits. A 3D hybrid of 2D longitudinal, 1D transverse HSI (L-HSI, T-HSI) sequence is introduced and demonstrated in a phantom and the human brain at 3 Tesla (T). Instead of superimposing each of the selective Hadamard radiofrequency (RF) pulses with its N single-slice components, they are cascaded in time, allowing N-fold stronger gradients, reducing the CSD. A spatially refocusing 180° RF pulse following the T-HSI encoding block provides variable, arbitrary echo time (TE) to eliminate undesirable short T2 species' signals, e.g., lipids. The sequence yields 10-15% better signal-to-noise ratio (SNR) and 8-16% less signal bleed than 3D chemical shift imaging of equal repetition time, spatial resolution and grid size. The 13 ± 6, 22 ± 7, 24 ± 8, and 31 ± 14 in vivo SNRs for myo-inositol, choline, creatine, and N-acetylaspartate were obtained in 21 min from 1 cm(3) voxels at TE ≈ 20 ms. Maximum CSD was 0.3 mm/ppm in each direction. The new hybrid HSI sequence offers a better localized PSF at reduced CSD and SAR at 3T. The short and variable TE permits acquisition of short T2 and J-coupled metabolites with higher SNR. Copyright © 2013 Wiley Periodicals, Inc.
Calibration of a Land Subsidence Model Using InSAR Data via the Ensemble Kalman Filter.
Li, Liangping; Zhang, Meijing; Katzenstein, Kurt
2017-11-01
The application of interferometric synthetic aperture radar (InSAR) has been increasingly used to improve capabilities to model land subsidence in hydrogeologic studies. A number of investigations over the last decade show how spatially detailed time-lapse images of ground displacements could be utilized to advance our understanding for better predictions. In this work, we use simulated land subsidences as observed measurements, mimicking InSAR data to inversely infer inelastic specific storage in a stochastic framework. The inelastic specific storage is assumed as a random variable and modeled using a geostatistical method such that the detailed variations in space could be represented and also that the uncertainties of both characterization of specific storage and prediction of land subsidence can be assessed. The ensemble Kalman filter (EnKF), a real-time data assimilation algorithm, is used to inversely calibrate a land subsidence model by matching simulated subsidences with InSAR data. The performance of the EnKF is demonstrated in a synthetic example in which simulated surface deformations using a reference field are assumed as InSAR data for inverse modeling. The results indicate: (1) the EnKF can be used successfully to calibrate a land subsidence model with InSAR data; the estimation of inelastic specific storage is improved, and uncertainty of prediction is reduced, when all the data are accounted for; and (2) if the same ensemble is used to estimate Kalman gain, the analysis errors could cause filter divergence; thus, it is essential to include localization in the EnKF for InSAR data assimilation. © 2017, National Ground Water Association.
Shi, Chong-Shan; Qi, Hai-Yan; Boularan, Cedric; Huang, Ning-Na; Abu-Asab, Mones; Shelhamer, James H; Kehrl, John H
2014-09-15
Coronaviruses (CoV) have recently emerged as potentially serious pathogens that can cause significant human morbidity and death. The severe acute respiratory syndrome (SARS)-CoV was identified as the etiologic agent of the 2002-2003 international SARS outbreak. Yet, how SARS evades innate immune responses to cause human disease remains poorly understood. In this study, we show that a protein encoded by SARS-CoV designated as open reading frame-9b (ORF-9b) localizes to mitochondria and causes mitochondrial elongation by triggering ubiquitination and proteasomal degradation of dynamin-like protein 1, a host protein involved in mitochondrial fission. Also, acting on mitochondria, ORF-9b targets the mitochondrial-associated adaptor molecule MAVS signalosome by usurping PCBP2 and the HECT domain E3 ligase AIP4 to trigger the degradation of MAVS, TRAF3, and TRAF 6. This severely limits host cell IFN responses. Reducing either PCBP2 or AIP4 expression substantially reversed the ORF-9b-mediated reduction of MAVS and the suppression of antiviral transcriptional responses. Finally, transient ORF-9b expression led to a strong induction of autophagy in cells. The induction of autophagy depended upon ATG5, a critical autophagy regulator, but the inhibition of MAVS signaling did not. These results indicate that SARS-CoV ORF-9b manipulates host cell mitochondria and mitochondrial function to help evade host innate immunity. This study has uncovered an important clue to the pathogenesis of SARS-CoV infection and illustrates the havoc that a small ORF can cause in cells.
NASA Astrophysics Data System (ADS)
Mateus, Pedro; Miranda, Pedro M. A.; Nico, Giovanni; Catalão, João.; Pinto, Paulo; Tomé, Ricardo
2018-04-01
Very high resolution precipitable water vapor maps obtained by the Sentinel-1 A synthetic aperture radar (SAR), using the SAR interferometry (InSAR) technique, are here shown to have a positive impact on the performance of severe weather forecasts. A case study of deep convection which affected the city of Adra, Spain, on 6-7 September 2015, is successfully forecasted by the Weather Research and Forecasting model initialized with InSAR data assimilated by the three-dimensional variational technique, with improved space and time distributions of precipitation, as observed by the local weather radar and rain gauge. This case study is exceptional because it consisted of two severe events 12 hr apart, with a timing that allows for the assimilation of both the ascending and descending satellite images, each for the initialization of each event. The same methodology applied to the network of Global Navigation Satellite System observations in Iberia, at the same times, failed to reproduce observed precipitation, although it also improved, in a more modest way, the forecast skill. The impact of precipitable water vapor data is shown to result from a direct increment of convective available potential energy, associated with important adjustments in the low-level wind field, favoring its release in deep convection. It is suggested that InSAR images, complemented by dense Global Navigation Satellite System data, may provide a new source of water vapor data for weather forecasting, since their sampling frequency could reach the subdaily scale by merging different SAR platforms, or when future geosynchronous radar missions become operational.
Aircraft Detection in High-Resolution SAR Images Based on a Gradient Textural Saliency Map.
Tan, Yihua; Li, Qingyun; Li, Yansheng; Tian, Jinwen
2015-09-11
This paper proposes a new automatic and adaptive aircraft target detection algorithm in high-resolution synthetic aperture radar (SAR) images of airport. The proposed method is based on gradient textural saliency map under the contextual cues of apron area. Firstly, the candidate regions with the possible existence of airport are detected from the apron area. Secondly, directional local gradient distribution detector is used to obtain a gradient textural saliency map in the favor of the candidate regions. In addition, the final targets will be detected by segmenting the saliency map using CFAR-type algorithm. The real high-resolution airborne SAR image data is used to verify the proposed algorithm. The results demonstrate that this algorithm can detect aircraft targets quickly and accurately, and decrease the false alarm rate.
NASA Astrophysics Data System (ADS)
Motagh, M.; Lubitz, C.
2014-12-01
Geothermal energy is of increasing importance as alternative, environmentally friendly technology for heat management. Direct interaction with the subsurface requires careful implementation, in particular in geological complex regions. The historical city Staufen im Breisgau, SW Germany, has attracted national attention as a case of implementation failure with severe consequences, causing debates on the applicability and security of this sustainable technique. Located at the eastern transition zone of the Upper Rhine Graben and the Schwarzwald massif, the geothermal potential is high at Staufen due to strong temperature gradients. In September 2007, seven boreholes for geothermal probes were drilled up to a depth of 140 m to provide a new heat management for the city hall. Within five years an uplift phenomenon has been observed in Staufen reaching more than 40 cm in places and 269 buildings were damaged. Hydro-chemical driven anhydrite-gypsum transformation in the subsurface was identified as the cause leading to volume increase that is observable as surface uplift. This process is associated with the geothermal drilling activities that have crossed several groundwater levels. In this work, we summarize and present the findings of spaceborne Synthetic Aperture Radar Interferometry (InSAR) analysis of the uplift in Staufen over the last five years from July 2008 through July 2013. By applying the Small Baseline Subset (SBAS) method, we find a localized elliptical-shaped deformation field in NE-SW orientation. Area of maximum uplift is located 50 m NNE of the drilling zone. At this location, we observe a cumulative uplift of approx. 13.7 cm ± 0.34 cm (mean value within an area of 30 m by 30 m) from July 2008 to July 2009, which reduced to cumulative uplift of 3 cm ± 0.25 cm from July 2012 to July 2013. The deceleration can be related to applied countermeasures as borehole sealing and groundwater pumping. The observed ground surface response was compared to regularly performed leveling measurements and shows indications of significant symmetric horizontal motions, which were further investigated by a combined analysis of SAR imagery from ascending and descending orbits. Moreover, InSAR observations were inverted using geophysical models to derive first order characteristics of deformation source at depth.
1D-Var multilayer assimilation of X-band SAR data into a detailed snowpack model
NASA Astrophysics Data System (ADS)
Phan, X. V.; Ferro-Famil, L.; Gay, M.; Durand, Y.; Dumont, M.; Morin, S.; Allain, S.; D'Urso, G.; Girard, A.
2014-10-01
The structure and physical properties of a snowpack and their temporal evolution may be simulated using meteorological data and a snow metamorphism model. Such an approach may meet limitations related to potential divergences and accumulated errors, to a limited spatial resolution, to wind or topography-induced local modulations of the physical properties of a snow cover, etc. Exogenous data are then required in order to constrain the simulator and improve its performance over time. Synthetic-aperture radars (SARs) and, in particular, recent sensors provide reflectivity maps of snow-covered environments with high temporal and spatial resolutions. The radiometric properties of a snowpack measured at sufficiently high carrier frequencies are known to be tightly related to some of its main physical parameters, like its depth, snow grain size and density. SAR acquisitions may then be used, together with an electromagnetic backscattering model (EBM) able to simulate the reflectivity of a snowpack from a set of physical descriptors, in order to constrain a physical snowpack model. In this study, we introduce a variational data assimilation scheme coupling TerraSAR-X radiometric data into the snowpack evolution model Crocus. The physical properties of a snowpack, such as snow density and optical diameter of each layer, are simulated by Crocus, fed by the local reanalysis of meteorological data (SAFRAN) at a French Alpine location. These snowpack properties are used as inputs of an EBM based on dense media radiative transfer (DMRT) theory, which simulates the total backscattering coefficient of a dry snow medium at X and higher frequency bands. After evaluating the sensitivity of the EBM to snowpack parameters, a 1D-Var data assimilation scheme is implemented in order to minimize the discrepancies between EBM simulations and observations obtained from TerraSAR-X acquisitions by modifying the physical parameters of the Crocus-simulated snowpack. The algorithm then re-initializes Crocus with the modified snowpack physical parameters, allowing it to continue the simulation of snowpack evolution, with adjustments based on remote sensing information. This method is evaluated using multi-temporal TerraSAR-X images acquired over the specific site of the Argentière glacier (Mont-Blanc massif, French Alps) to constrain the evolution of Crocus. Results indicate that X-band SAR data can be taken into account to modify the evolution of snowpack simulated by Crocus.
Dispersive Phase in the L-band InSAR Image Associated with Heavy Rain Episodes
NASA Astrophysics Data System (ADS)
Furuya, M.; Kinoshita, Y.
2017-12-01
Interferometric synthetic aperture radar (InSAR) is a powerful geodetic technique that allows us to detect ground displacements with unprecedented spatial resolution, and has been used to detect displacements due to earthquakes, volcanic eruptions, and glacier motion. In the meantime, due to the microwave propagation through ionosphere and troposphere, we often encounter non-negligible phase anomaly in InSAR data. Correcting for the ionsphere and troposphere is therefore a long-standing issue for high-precision geodetic measurements. However, if ground displacements are negligible, InSAR image can tell us the details of the atmosphere.Kinoshita and Furuya (2017, SOLA) detected phase anomaly in ALOS/PALSAR InSAR data associated with heavy rain over Niigata area, Japan, and performed numerical weathr model simulation to reproduce the anomaly; ALOS/PALSAR is a satellite-based L-band SAR sensor launched by JAXA in 2006 and terminated in 2011. The phase anomaly could be largely reproduced, using the output data from the weather model. However, we should note that numerical weather model outputs can only account for the non-dispersive effect in the phase anomaly. In case of severe weather event, we may expect dispersive effect that could be caused by the presence of free-electrons.In Global Navigation Satellite System (GNSS) positioning, dual frequency measurements allow us to separate the ionospheric dispersive component from tropospheric non-dispersive components. In contrast, SAR imaging is based on a single carrier frequency, and thus no operational ionospheric corrections have been performed in InSAR data analyses. Recently, Gomba et al (2016) detailed the processing strategy of split spectrum method (SSM) for InSAR, which splits the finite bandwidth of the range spectrum and virtually allows for dual-frequency measurements.We apply the L-band InSAR SSM to the heavy rain episodes, in which more than 50 mm/hour precipitations were reported. We report the presence of phase anomaly in both dispersive and non-dispersive components. While the original phase anomaly turns out to be mostly due to the non-dispersive effect, we could recognize local anomalies in the dispersive component as well. We will discuss its geophysical implications, and may show several case studies.
NASA Astrophysics Data System (ADS)
Welch, Mark D.; Schmidt, David A.
2017-09-01
Over the past two decades, GPS and leveling surveys have recorded cycles of inflation and deflation associated with dome building eruptions at Mount St. Helens. Due to spatial and temporal limitations of the data, it remains unknown whether any deformation occurred prior to the most recent eruption of 2004, information which could help anticipate future eruptions. Interferometric Synthetic Aperture Radar (InSAR), which boasts fine spatial resolution over large areas, has the potential to resolve pre-eruptive deformation that may have occurred, but eluded detection by campaign GPS surveys because it was localized to the edifice or crater. Traditional InSAR methods are challenging to apply in the Cascades volcanic arc because of a combination of environmental factors, and past attempts to observe deformation at Mount St. Helens were unable to make reliable observations in the crater or on much of the edifice. In this study, Persistent Scatterer InSAR, known to mitigate issues of decorrelation caused by environmental factors, is applied to four SAR data sets in an attempt to resolve localized sources of deformation on the volcano between 1995 and 2010. Many interferograms are strongly influenced by phase delay from atmospheric water vapor and require correction, evidenced by a correlation between phase and topography. To assess the bias imposed by the atmosphere, we perform sensitivity tests on a suite of atmospheric correction techniques, including several that rely on the correlation of phase delay to elevation, and explore approaches that directly estimate phase delay using the ERA-Interim and NARR climate reanalysis data sets. We find that different correction methods produce velocities on the edifice of Mount St. Helens that differ by up to 1 cm/yr due to variability in how atmospheric artifacts are treated in individual interferograms. Additionally, simple phase-based techniques run the risk of minimizing any surface deformation signals that may themselves be correlated with elevation. The atmospherically corrected PS InSAR results for data sets overlapping in time are inconsistent with one another, and do not provide conclusive evidence for any pre-eruptive deformation at a broad scale or localized to the crater or edifice leading up to the 2004 eruption. However, we cannot rule out the possibility of deformation less than 1 cm/yr, or discern whether deformation rates increased in the months preceding the eruption. The results do significantly improve the spatial density of observations and our ability to resolve or rule out models for a potential deformation source for the pre-eruptive period.
NASA Astrophysics Data System (ADS)
Sato, Hiroshi P.; Une, Hiroshi
2016-03-01
Previous studies reported that the 2015 Gorkha earthquake (Mw 7.8), which occurred in Nepal, triggered landslides in mountainous areas. In Kathmandu, earthquake-induced land subsidence was identified by interpreting local phase changes in interferograms produced from Advanced Land Observing Satellite-2/Phased Array type L-band Synthetic Aperture Radar-2 data. However, the associated ground deformation was not discussed in detail. We studied line-of-sight (LoS) changes from InSAR images in the SE area of Tribhuvan International Airport, Kathmandu. To obtain the change in LoS caused only by local, short-wavelength surface deformation, we subtracted the change in LoS attributed to coseismic deformation from the original change in LoS. The resulting change in LoS showed that the river terrace was driven to the bottom of the river valley. We also studied the changes in LoS in both ascending and descending InSAR images of the area along the Bishnumati River and performed 2.5D analysis. Removing the effect of coseismic deformation revealed east-west and up-down components of local surface deformation, indicating that the river terrace deformed eastward and subsided on the western riverbank of the river. On the east riverbank, the river terrace deformed westward and subsided. However, in the southern part of the river basin, the river terrace deformed westward and was uplifted. The deformation data and field survey results indicate that local surface deformation in these two areas was not caused by land subsidence but by a landslide (specifically, lateral spread).
Evaluation of epidural and peripheral nerve catheter heating during magnetic resonance imaging.
Owens, Sean; Erturk, M Arcan; Ouanes, Jean-Pierre P; Murphy, Jamie D; Wu, Christopher L; Bottomley, Paul A
2014-01-01
Many epidural and peripheral nerve catheters contain conducting wire that could heat during magnetic resonance imaging (MRI), requiring removal for scanning. We tested 2 each of 6 brands of regional analgesia catheters (from Arrow International [Reading, Pennsylvania], B. Braun Medical Inc [Bethlehem, Pennsylvania], and Smiths Medical/Portex [Keene, New Hampshire]) for exposure to clinical 1.5- and 3-T MRI. Catheters testing as nonmagnetic were placed in an epidural configuration in a standard human torso-sized phantom, and an MRI pulse sequence applied at the maximum scanner-allowed radiofrequency specific absorption rate (SAR) for 15 minutes. Temperature and SAR exposure were sampled during MRI using multiple fiberoptic temperature sensors. Two catheters (the Arrow StimuCath Peripheral Nerve and B. Braun Medical Perifix FX Epidural) were found to be magnetic and not tested further. At 3 T, exposure of the remaining 3 epidural and 1 peripheral nerve catheter to the scanner's maximum RF exposure elicited anomalous heating of 4°C to 7°C in 2 Arrow Epidural (MultiPort and Flex-Tip Plus) catheters at the entry points. Temperature increases for the other catheters at 3 T, and all catheters at 1.5 T were 1.4°C or less. When normalized to the body-average US Food and Drug Administration guideline SAR of 4 W/kg, maximum projected temperature increases were 0.1°C to 2.5°C at 1.5 T and 0.7°C to 2.7°C at 3 T, except for the Arrow MultiPort Flex-Tip Plus catheter at 3 T whose increase was 14°C. Most but not all catheters can be left in place during 1.5-T MRI scans. Heating of less than 3°C during MRI for most catheters is not expected to be injurious. While heating was lower at 1.5 T versus 3 T, performance differences between products underscore the need for safety testing before performing MRI.
Evaluation of Epidural and Peripheral Nerve Catheter Heating During Magnetic Resonance Imaging
Owens, Sean; Erturk, M. Arcan; Ouanes, Jean-Pierre P.; Murphy, Jamie D.; Wu, Christopher L.; Bottomley, Paul A.
2014-01-01
Background Many epidural and peripheral nerve catheters contain conducting wire that could heat during magnetic resonance imaging (MRI), requiring removal for scanning. Methods We tested 2 each of 6 brands of regional analgesia catheters (from Arrow International, B. Braun Medical, and Smiths Medical/Portex) for exposure to clinical 1.5 and 3 Tesla (T) MRI. Catheters testing as non-magnetic were placed in an epidural configuration in a standard human torso-sized phantom, and an MRI pulse sequence applied at the maximum scanner-allowed radio frequency (RF) specific absorption rate (SAR) for 15 minutes Temperature and SAR exposure were sampled during MRI using multiple fiber-optic temperature sensors. Results Two catheters (the Arrow StimuCath Peripheral Nerve, and Braun Medical Perifix FX Epidural) were found to be magnetic and not tested further. At 3T, exposure of the remaining 3 epidural and 1 peripheral nerve catheter to the scanner’s maximum RF exposure, elicited anomalous heating of 4 to 7°C in 2 Arrow Epidural (MultiPort and Flex-Tip Plus) catheters at the entry points. Temperature increases for the other catheters at 3T and all catheters at 1.5T were ≤1.4°C. When normalized to the body-average FDA guideline SAR of 4W/kg, maximum projected temperature increases were 0.1 to 2.5°C at 1.5T and 0.7 to 2.7°C at 3T, except for the Arrow MultiPort Flex-Tip Plus catheter at 3T whose increase was 14°C. Conclusions Most but not all catheters can be left in place during 1.5T MRI scans. Heating of <3°C during MRI for most catheters is not expected to be injurious. While heating was lower at 1.5T vs 3T, performance differences between products underscore the need for safety testing before performing MRI. PMID:25275576
Inundation Mapping for Heterogeneous Land Covers with Synthetic Aperture Radar and Auxiliary Data
NASA Astrophysics Data System (ADS)
Aristizabal, F.; Judge, J.
2017-12-01
Synthetic Aperture Radar (SAR) has been widely used to detect surface water inundation and provides an advantage over multi-spectral instruments due to cloud penetration and higher spatial resolutions. However, detecting inundation for densely vegetated and urban areas with SAR remains a challenge due to corner reflection and diffuse scattering. Additionally, flat urban surfaces such as roads exhibit similar backscatter coefficients as urban surface water. Differences between inundated and non-inundated backscatter over vegetated land covers of static spatial domains have been demonstrated in previous studies. However, these backscatter differences are sensitive to changes in water depth, soil moisture, SAR sensor parameters, terrain, and vegetation properties. These factors tend to make accurate inundation mapping of heterogeneous regions across varying spatial and temporal extents difficult with exclusive use of SAR. This study investigates the utility of auxiliary data specifically high-resolution (10m) terrain information in conjunction with SAR (10m) for detecting inundated areas. Digital elevation models provide an absolute elevation which could enhance inundation mapping given a limited study extent with similar topography. To counter this limitation, a hydrologically relevant terrain index is proposed known as the Height Above Nearest Drainage (HAND) which normalizes topography to the local relative elevation of the nearest point along the relevant drainage line. HAND has been used for assisting remote sensing inundation mapping in the pre-processing stage as a terrain correction tool and as a post-processing mask that eliminates areas of low inundation risk. While the latter technique is useful for reduction of commission errors, it does not employ HAND for reducing omission errors that can occur from dense vegetation, spectral noise, and urban features. Sentinel-1 dual-pol SAR as well as auxiliary HAND will be used as predictors by various supervised and unsupervised classification algorithms. The October 2016 record flood caused by Hurricane Matthew along the Neuse River in North Carolina will be used as a study area. For validation, locally inundated areas will be derived from observed river stages and high water marks furnished by the U.S. Geological Survey.
Geodetic Observations Using GNSS, Tiltmeter, and DInSAR, at Tokachi-dake Volcano, Japan
NASA Astrophysics Data System (ADS)
Miyagi, Y.
2017-12-01
Tokachi-dake volcano is located in central Hokkaido, Japan. Middle sized eruptions occurred in 1926, 1962, and 1988-1989, and several small phreatic eruptions also occurred in the meanwhile. After the latest eruption in 1988-1989, many volcanic tremor and active seismicity were revealed. Active fumarolic activities from Taisho crater and 62-2 crater have been observed. In recent years, Tokachi-dake volcano has been observed by using several geodetic techniques, including DInSAR, GNSS, tiltmeter, and gravimeter, to detect regional and local signals associated with volcanic activities. Continuous GNSS stations in summit area operated by Geological Survey of Hokkaido and Hokkaido University [Okazaki et al., 2015] and DInSAR observations using ALOS-2 and TerraSAR-X data have revealed long-term small deformation after 2006 and transient large deformation in May, 2015. We found that these are quite local deformation, because regional GNSS and tiltmeter network did not detect any obvious signals in same period. The remarkable deformation detected by GNSS and DInSAR in the summit area between May and July, 2015, indicates that horizontal displacements are larger than vertical displacements, and westward displacement are much larger than eastward displacement. First, we try to model the deformation pattern using a simple spherical source model [Mogi, 1958] and a dike source model [Okada, 1985]. However, they cannot explain observed deformation because they do not take into consideration a topographic effect in the deformation area. Kawguchi & Miyagi [2016] tried to model the deformation using a boundary element method considering the topographic effect. Consequently, a deformation source which is vertically prolate spheroid beneath the summit shows a better fit between observed and simulated deformation. Annual campaign gravity observations have carried out by several Japanese university and institutes since 2010 [Takahashi et al., 2016]. These reveal that gravity value detected in summit area has decreased more than 0.15mgal up to 2017, which is larger than the gravity value expected from vertical displacements [Okazaki et al., 2017]. In this study, we introduce recent deformation observed by DInSAR, and try to understand the relationship between the deformation and gravity change.
NASA Astrophysics Data System (ADS)
Gonzalez, Pablo J.
2017-04-01
Automatic interferometric processing of satellite radar data has emerged as a solution to the increasing amount of acquired SAR data. Automatic SAR and InSAR processing ranges from focusing raw echoes to the computation of displacement time series using large stacks of co-registered radar images. However, this type of interferometric processing approach demands the pre-described or adaptive selection of multiple processing parameters. One of the interferometric processing steps that much strongly influences the final results (displacement maps) is the interferometric phase filtering. There are a large number of phase filtering methods, however the "so-called" Goldstein filtering method is the most popular [Goldstein and Werner, 1998; Baran et al., 2003]. The Goldstein filter needs basically two parameters, the size of the window filter and a parameter to indicate the filter smoothing intensity. The modified Goldstein method removes the need to select the smoothing parameter based on the local interferometric coherence level, but still requires to specify the dimension of the filtering window. An optimal filtered phase quality usually requires careful selection of those parameters. Therefore, there is an strong need to develop automatic filtering methods to adapt for automatic processing, while maximizing filtered phase quality. Here, in this paper, I present a recursive adaptive phase filtering algorithm for accurate estimation of differential interferometric ground deformation and local coherence measurements. The proposed filter is based upon the modified Goldstein filter [Baran et al., 2003]. This filtering method improves the quality of the interferograms by performing a recursive iteration using variable (cascade) kernel sizes, and improving the coherence estimation by locally defringing the interferometric phase. The method has been tested using simulations and real cases relevant to the characteristics of the Sentinel-1 mission. Here, I present real examples from C-band interferograms showing strong and weak deformation gradients, with moderate baselines ( 100-200 m) and variable temporal baselines of 70 and 190 days over variable vegetated volcanoes (Mt. Etna, Hawaii and Nyragongo-Nyamulagira). The differential phase of those examples show intense localized volcano deformation and also vast areas of small differential phase variation. The proposed method outperforms the classical Goldstein and modified Goldstein filters by preserving subtle phase variations where the deformation fringe rate is high, and effectively suppressing phase noise in smoothly phase variation regions. Finally, this method also has the additional advantage of not requiring input parameters, except for the maximum filtering kernel size. References: Baran, I., Stewart, M.P., Kampes, B.M., Perski, Z., Lilly, P., (2003) A modification to the Goldstein radar interferogram filter. IEEE Transactions on Geoscience and Remote Sensing, vol. 41, No. 9., doi:10.1109/TGRS.2003.817212 Goldstein, R.M., Werner, C.L. (1998) Radar interferogram filtering for geophysical applications, Geophysical Research Letters, vol. 25, No. 21, 4035-4038, doi:10.1029/1998GL900033
Effects of TEL Confusers on Operator Target Acquisition Performance with SAR Imagery
1998-12-01
processing known as the theory of signal detection (TSD) (Gescheider, 1985; Green & Swets, 1966; Macmillan & Creelman , 1991; Wilson, 1992). A TSD...localizations (Hacker & Ratcliff, 1979; Macmillan & Creelman , 1991). The index of bias in a target localization task provides a measure of the operator’s...of correct localizations substituted for hits (Macmillan & Creelman , 1991). Receiver Operating Characteristic Curves. In addition to the calculation
Yamazaki, Masaru; Ideta, Takahiro; Kudo, Sadahiro; Nakazawa, Masami
2016-06-01
In magnetic resonance imaging (MRI), when radiofrequency (RF) is irradiated to a subject with metallic implant, it can generate heat by RF irradiation. Recently 3 T MRI scanner has spread widely and imaging for any regions of whole body has been conducted. However specific absorption rate (SAR) of 3 T MRI becomes approximately four times as much as the 1.5 T, which can significantly affect the heat generation of metallic implants. So, we evaluated RF heating of artificial hip joints in different shapes and materials in 1.5 T and 3 T MRI. Three types of artificial hip joints made of stainless alloy, titanium alloy and cobalt chrome alloy were embedded in the human body-equivalent phantom respectively and their temperature change were measured for twenty minutes by 1.5 T and 3 T MRI. The maximum temperature rise was observed at the bottom head in all of three types of artificial hip joints, the rise being 12°C for stainless alloy, 11.9°C for titanium alloy and 6.1°C for cobalt chrome alloy in 1.5 T. The temperature rise depended on SAR and the increase of SAR had a good linear relationship with the temperature rise. It was found from the result that the RF heating of metallic implants can take place in various kinds of material and the increase of SAR has a good linear relationship with the temperature rise. This experience shows that reduction of SAR can decrease temperature of metallic implants.
NASA Astrophysics Data System (ADS)
Crippa, B.; Calcagni, L.; Rossi, G.; Sternai, P.
2009-04-01
Advanced Differential SAR interferometry (A-DInSAR) is a technique monitoring large-coverage surface deformations using a stack of interferograms generated from several complex SLC SAR images, acquired over the same target area at different times. In this work are described the results of a procedure to calculate terrain motion velocity on highly correlated pixels (E. Biescas, M. Crosetto, M. Agudo, O. Monserrat e B. Crippa: Two Radar Interferometric Approaches to Monitor Slow and Fast Land Deformation, 2007) in two area Gemona - Friuli, Northern Italy, Pollino - Calabria, Southern Italy, and, furthermore, are presented some consideration, based on successful examples of the present analysis. The choice of these pixels whose displacement velocity is calculated depends on the dispersion index value (DA) or using coherence values along the stack interferograms. A-DInSAR technique allows to obtain highly reliable velocity values of the vertical displacement. These values concern the movement of minimum surfaces of about 80m2 at the maximum resolution and the minimum velocity that can be recognized is of the order of mm/y. Because of the high versatility of the technology, because of the large dimensions of the area that can be analyzed (of about 10000Km2) and because of the high precision and reliability of the results obtained, we think it is possible to exploit radar interferometry to obtain some important information about the structural context of the studied area, otherwise very difficult to recognize. Therefore we propose radar interferometry as a valid investigation tool whose results must be considered as an important integration of the data collected in fieldworks.
Müller, Marcel A; Raj, V Stalin; Muth, Doreen; Meyer, Benjamin; Kallies, Stephan; Smits, Saskia L; Wollny, Robert; Bestebroer, Theo M; Specht, Sabine; Suliman, Tasnim; Zimmermann, Katrin; Binger, Tabea; Eckerle, Isabella; Tschapka, Marco; Zaki, Ali M; Osterhaus, Albert D M E; Fouchier, Ron A M; Haagmans, Bart L; Drosten, Christian
2012-12-11
A new human coronavirus (hCoV-EMC) has emerged very recently in the Middle East. The clinical presentation resembled that of the severe acute respiratory syndrome (SARS) as encountered during the epidemic in 2002/2003. In both cases, acute renal failure was observed in humans. HCoV-EMC is a member of the same virus genus as SARS-CoV but constitutes a sister species. Here we investigated whether it might utilize angiotensin-converting enzyme 2 (ACE2), the SARS-CoV receptor. Knowledge of the receptor is highly critical because the restriction of the SARS receptor to deep compartments of the human respiratory tract limited the spread of SARS. In baby hamster kidney (BHK) cells, lentiviral transduction of human ACE2 (hACE2) conferred permissiveness and replication for SARS-CoV but not for hCoV-EMC. Monkey and human kidney cells (LLC-MK2, Vero, and 769-P) and swine kidney cells were permissive for both viruses, but only SARS-CoV infection could be blocked by anti-hACE2 antibody and could be neutralized by preincubation of virus with soluble ACE2. Our data show that ACE2 is neither necessary nor sufficient for hCoV-EMC replication. Moreover, hCoV-EMC, but not SARS-CoV, replicated in cell lines from Rousettus, Rhinolophus, Pipistrellus, Myotis, and Carollia bats, representing four major chiropteran families from both suborders. As human CoV normally cannot replicate in bat cells from different families, this suggests that hCoV-EMC might use a receptor molecule that is conserved in bats, pigs, and humans, implicating a low barrier against cross-host transmission. IMPORTANCE A new human coronavirus (hCoV) emerged recently in the Middle East. The disease resembled SARS (severe acute respiratory syndrome), causing a fatal epidemic in 2002/2003. Coronaviruses have a reservoir in bats and because this novel virus is related to SARS-CoV, we investigated whether it might replicate in bat cells and use the same receptor (angiotensin-converting enzyme 2 [ACE2]). This knowledge is highly critical, because the SARS-CoV receptor influenced pathology, and its localization in the deep respiratory tract is thought to have restricted the transmissibility of SARS. Our data show that hCoV-EMC does not need the SARS-CoV receptor to infect human cells. Moreover, the virus is capable of infecting human, pig, and bat cells. This is remarkable, as human CoVs normally cannot replicate in bat cells as a consequence of host adaptation. Our results implicate that the new virus might use a receptor that is conserved between bats, pigs and humans suggesting a low barrier against cross-host transmission.
Image synthesis for SAR system, calibration and processor design
NASA Technical Reports Server (NTRS)
Holtzman, J. C.; Abbott, J. L.; Kaupp, V. H.; Frost, V. S.
1978-01-01
The Point Scattering Method of simulating radar imagery rigorously models all aspects of the imaging radar phenomena. Its computational algorithms operate on a symbolic representation of the terrain test site to calculate such parameters as range, angle of incidence, resolution cell size, etc. Empirical backscatter data and elevation data are utilized to model the terrain. Additionally, the important geometrical/propagation effects such as shadow, foreshortening, layover, and local angle of incidence are rigorously treated. Applications of radar image simulation to a proposed calibrated SAR system are highlighted: soil moisture detection and vegetation discrimination.
Multiscale-Driven approach to detecting change in Synthetic Aperture Radar (SAR) imagery
NASA Astrophysics Data System (ADS)
Gens, R.; Hogenson, K.; Ajadi, O. A.; Meyer, F. J.; Myers, A.; Logan, T. A.; Arnoult, K., Jr.
2017-12-01
Detecting changes between Synthetic Aperture Radar (SAR) images can be a useful but challenging exercise. SAR with its all-weather capabilities can be an important resource in identifying and estimating the expanse of events such as flooding, river ice breakup, earthquake damage, oil spills, and forest growth, as it can overcome shortcomings of optical methods related to cloud cover. However, detecting change in SAR imagery can be impeded by many factors including speckle, complex scattering responses, low temporal sampling, and difficulty delineating boundaries. In this presentation we use a change detection method based on a multiscale-driven approach. By using information at different resolution levels, we attempt to obtain more accurate change detection maps in both heterogeneous and homogeneous regions. Integrated within the processing flow are processes that 1) improve classification performance by combining Expectation-Maximization algorithms with mathematical morphology, 2) achieve high accuracy in preserving boundaries using measurement level fusion techniques, and 3) combine modern non-local filtering and 2D-discrete stationary wavelet transform to provide robustness against noise. This multiscale-driven approach to change detection has recently been incorporated into the Alaska Satellite Facility (ASF) Hybrid Pluggable Processing Pipeline (HyP3) using radiometrically terrain corrected SAR images. Examples primarily from natural hazards are presented to illustrate the capabilities and limitations of the change detection method.
Wang, Ching-Ying; Lu, Chien-Yi; Li, Shih-Wen; Lai, Chien-Chen; Hua, Chun-Hung; Huang, Su-Hua; Lin, Ying-Ju; Hour, Mann-Jen; Lin, Cheng-Wen
2017-05-02
SARS coronavirus (CoV) papain-like protease (PLpro) reportedly induced the production of TGF-β1 through p38 MAPK/STAT3-meidated Egr-1-dependent activation (Sci. Rep. 6, 25754). This study investigated the correlation of PLpro-induced TGF-β1 with the expression of Type I collagen in human lung epithelial cells and mouse pulmonary tissues. Specific inhibitors for TGF-βRI, p38 MAPK, MEK, and STAT3 proved that SARS-CoV PLpro induced TGF-β1-dependent up-regulation of Type I collagen in vitro and in vivo. Subcellular localization analysis of SMAD3 and SMAD7 indicated that non-SMAD pathways in TGF-β1 signaling involved in the production of Type I collagen in transfected cells with pSARS-PLpro. Comprehensive analysis of ubiquitin-conjugated proteins using immunoprecipitation and nanoLC-MS/MS indicated that SARS-CoV PLpro caused the change in the ubiquitination profile of Rho GTPase family proteins, in which linked with the increase of Rho-like GTPase family proteins. Moreover, selective inhibitors TGF-βRI and STAT6 (AS1517499) ascertained that STAT6 activation was required for PLpro-induced TGF-β1-dependent up-regulation of Type I collagen in human lung epithelial cells. The results showed that SARS-CoV PLpro stimulated TGF-β1-dependent expression of Type I collagen via activating STAT6 pathway. Copyright © 2017 Elsevier B.V. All rights reserved.
Wainwright, P R
2003-10-07
Of the biological effects of human exposure to radiofrequency and microwave radiation, the best-established are those due to elevation of tissue temperature. To prevent harmful levels of heating, restrictions have been proposed on the specific absorption rate (SAR). However, the relationship between SAR and temperature rise is not an invariant, since not only the heat capacity but also the efficiency of heat dissipation varies between different tissues and exposure scenarios. For small enough SAR, the relationship is linear and may be characterized by a 'heating factor' deltaT/SAR. Under whole-body irradiation the SAR may be particularly high in the ankles due to the concentration of current flowing through a relatively small cross-sectional area. In a previous paper, the author has presented calculations of the SAR distribution in a human leg in the high frequency (HF) band. In this paper, the heating factor for this situation is derived using a finite element approximation of the Pennes bioheat equation. The sensitivity of the results to different blood perfusion rates is investigated, and a simple local thermoregulatory model is applied. Both time-dependent and steady-state solutions are considered. Results confirm the appropriateness of the ICNIRP reference level of 100 mA on current through the leg, but suggest that at higher currents significant thermoregulatory adjustments to muscle blood flow will occur.
NASA Astrophysics Data System (ADS)
Ishaq, Atif; Pasternak, René; Wessollek, Christine
2017-10-01
TerraSAR-X images have been tested for agricultural fields of corn and wheat. The main purpose was to evaluate the impact of daily temperatures in crop development to optimize climate induced factors on the plant growth anomalies. The results are completed by utilizing Geographic Information Science, e.g. tools of ArcMap 10.3.1 and databases of ground truth and meteorological information. Synthetic Aperture Radar (SAR) images from German Aerospace Center (DLR) are acquired and the field survey datasets are sampled, each per month for three years (2010-2012) but only for the crop seasons (April-October). Correlation between SAR images and farmland anomalies is investigated in accordance with daily heat accumulations and a comparison of the three years' SAR backscatter signatures is explained for corn and wheat. Finding the influence of daily temperatures on crops and hence on the TerraSAR-X backscatter is developed by Growing Degree Days (GDD) which appears to be the most suitable parameter for this purpose. Observation of GDD permits that the coolest year was 2010, either rest of the years were warmer and GDD accumulated in 2011 was higher as compared to that of 2012 in the first half of the year, however 2012 had rather more heat accumulation in the second half of the year. SAR backscatter from farmland depicts the crop development stages which depend upon the time when satellite captures data during the crop season. It varies with different development stages of crop plants. Backscatter of each development stage changes as the roughness and the moisture content (dielectric property) of the plants changes and local temperature directly impacts crop growth and hence the development stages.
Li, Shih-Wein; Wang, Ching-Ying; Jou, Yu-Jen; Yang, Tsuey-Ching; Huang, Su-Hua; Wan, Lei; Lin, Ying-Ju; Lin, Cheng-Wen
2016-01-01
SARS coronavirus (SARS-CoV) papain-like protease (PLpro) has been identified in TGF-β1 up-regulation in human promonocytes (Proteomics 2012, 12: 3193-205). This study investigates the mechanisms of SARS-CoV PLpro-induced TGF-β1 promoter activation in human lung epithelial cells and mouse models. SARS-CoV PLpro dose- and time-dependently up-regulates TGF-β1 and vimentin in A549 cells. Dual luciferase reporter assays with TGF-β1 promoter plasmids indicated that TGF-β1 promoter region between −175 to −60, the Egr-1 binding site, was responsible for TGF-β1 promoter activation induced by SARS-CoV PLpro. Subcellular localization analysis of transcription factors showed PLpro triggering nuclear translocation of Egr-1, but not NF-κB and Sp-1. Meanwhile, Egr-1 silencing by siRNA significantly reduced PLpro-induced up-regulation of TGF-β1, TSP-1 and pro-fibrotic genes. Furthermore, the inhibitors for ROS (YCG063), p38 MAPK (SB203580), and STAT3 (Stattic) revealed ROS/p38 MAPK/STAT3 pathway involving in Egr-1 dependent activation of TGF-β1 promoter induced by PLpro. In a mouse model with a direct pulmonary injection, PLpro stimulated macrophage infiltration into lung, up-regulating Egr-1, TSP-1, TGF-β1 and vimentin expression in lung tissues. The results revealed that SARS-CoV PLpro significantly triggered Egr-1 dependent activation of TGF-β1 promoter via ROS/p38 MAPK/STAT3 pathway, correlating with up-regulation of pro-fibrotic responses in vitro and in vivo. PMID:27173006
Li, Shih-Wein; Wang, Ching-Ying; Jou, Yu-Jen; Yang, Tsuey-Ching; Huang, Su-Hua; Wan, Lei; Lin, Ying-Ju; Lin, Cheng-Wen
2016-05-13
SARS coronavirus (SARS-CoV) papain-like protease (PLpro) has been identified in TGF-β1 up-regulation in human promonocytes (Proteomics 2012, 12: 3193-205). This study investigates the mechanisms of SARS-CoV PLpro-induced TGF-β1 promoter activation in human lung epithelial cells and mouse models. SARS-CoV PLpro dose- and time-dependently up-regulates TGF-β1 and vimentin in A549 cells. Dual luciferase reporter assays with TGF-β1 promoter plasmids indicated that TGF-β1 promoter region between -175 to -60, the Egr-1 binding site, was responsible for TGF-β1 promoter activation induced by SARS-CoV PLpro. Subcellular localization analysis of transcription factors showed PLpro triggering nuclear translocation of Egr-1, but not NF-κB and Sp-1. Meanwhile, Egr-1 silencing by siRNA significantly reduced PLpro-induced up-regulation of TGF-β1, TSP-1 and pro-fibrotic genes. Furthermore, the inhibitors for ROS (YCG063), p38 MAPK (SB203580), and STAT3 (Stattic) revealed ROS/p38 MAPK/STAT3 pathway involving in Egr-1 dependent activation of TGF-β1 promoter induced by PLpro. In a mouse model with a direct pulmonary injection, PLpro stimulated macrophage infiltration into lung, up-regulating Egr-1, TSP-1, TGF-β1 and vimentin expression in lung tissues. The results revealed that SARS-CoV PLpro significantly triggered Egr-1 dependent activation of TGF-β1 promoter via ROS/p38 MAPK/STAT3 pathway, correlating with up-regulation of pro-fibrotic responses in vitro and in vivo.
Improving near-range forecasts of severe precipitation with GNSS and InSAR high-resolution data
NASA Astrophysics Data System (ADS)
Miranda, P. M.; Mateus, P.; Nico, G.; Catalão, J.; Pinto, P.; Tomé, R.; Benevides, P.
2017-12-01
Precipitable water vapor (PWV) maps obtained by GNSS observations are now routinely incorporated into meteorological reanalysis by the main forecast centers such as ECMWF and NCEP. Such data, however, represent a small subset of the available microwave information, which now includes many regional networks of GNSS stations capable to produce frequent updates of the PWV distribution (at least at hourly time scales), and in some cases very high resolution PWV-anomaly fields that may be produced by SAR interferometry (Mateus et al 2013). Such very high resolution fields can be assimilated into state of the art forecast models such as WRF improving it's performance (Mateus et al 2016). In the present study, the assimilation of InSAR data from Sentinel 1A is used to analyse the evolution of two severe precipitation events, which occurred 12 hours apart in the city of Adra in 6-7 September 2015, southern Spain, timed after the two successive passages of the Sentinel. Such events, which produced a flash flood with casualties and large structural damage, were not forecasted by the operational models, but are very accurately reproduced once InSAR data is assimilated, as shown by local observations including weather radar. The physical processes involved in the development of the storm are discussed in some detail, by comparing different simulations: a control run, an experiment with GNSS assimilation, and the experiment with InSAR assimilation. While InSAR images are at this time only available every 6 days, the fact that an improvement of the water vapor distribution by data assimilation can have such a dramatic impact in severe weather forecasts suggests there is significant room for improvement in near term forecasting, by a better incorporation of both higher resolution GNSS data and more frequent SAR images.
NASA Astrophysics Data System (ADS)
Owen, S. E.; Fielding, E. J.; Yun, S. H.; Yue, H.; Polet, J.; Riel, B. V.; Liang, C.; Huang, M. H.; Webb, F.; Simons, M.; Moore, A. W.; Agram, P. S.; Barnhart, W. D.; Hua, H.; Liu, Z.; Milillo, P.; Sacco, G. F.; Rosen, P. A.; Manipon, G.
2015-12-01
On April 25, 2015, the M7.8 Gorkha earthquake struck Nepal and the city of Kathmandu. The quake caused a significant humanitarian crisis and killed more than 8,000 due to widespread building damage and triggered landslides throughout the region. This was the strongest earthquake to occur in the region since the 1934 Nepal-Bihar magnitude 8.0 quake caused more than 10,000 fatalities. In the days following the earthquake, the JPL/Caltech ARIA project produced coseismic GPS and SAR displacements, fault slip models, and damage assessments from SAR coherence change that were helpful in both understanding the event and in the response efforts. The ARIA project produced InSAR observations from two new SAR missions - JAXA's ALOS-2 and ESA's Sentinel 1a. The GPS coseismic displacements showed ~1.8 meters of southward motion and ~1.3 meters of uplift in Kathmandu. InSAR images of the displacement field and fault models show that the rupture extended 135 km southeast of the epicenter. The SAR imagery also confirmed that the fault slip did not extend to the surface, though localized offsets formed due to liquefaction. The GPS and SAR analysis has continued to image the large M7.3 aftershock and postseismic deformation. The damage assessments from coherence change were used by several organizations guiding the response effort, including the NGA, the World Bank, and OFDA/USAID. We will present imaging, modeling, and damage assessment results from the recent April 25, 2015 M7.8 earthquake in Nepal, and its largest aftershock, a M7.3 event on May 12, 2015. We also discuss how these data were used for understanding the event, guiding the response, and for educational outreach.
NASA Astrophysics Data System (ADS)
Lu, Q.; Amelung, F.; Wdowinski, S.
2017-12-01
The Greenland ice sheet is rapidly shrinking with the fastest retreat and thinning occurring at the ice sheet margin and near the outlet glaciers. The changes of the ice mass cause an elastic response of the bedrock. Theoretically, ice mass loss during the summer melting season is associated with bedrock uplift, whereas increasing ice mass during the winter months is associated with bedrock subsidence. Here we examine the annual changes of the vertical displacements measured at 37 GPS stations and compare the results with Greenland drainage basins' gravity from GRACE. We use both Fourier Series (FS) analysis and Cubic Smoothing Spline (CSS) method to estimate the phases and amplitudes of seasonal variations. Both methods show significant differences seasonal behaviors in southern and northern Greenland. The average amplitude of bedrock displacements (3.29±0.02mm) in south Greenland is about 2 times larger than the north (1.65±0.02mm). The phase of bedrock maximum uplift (November) is considerably consistent with the time of minimum ice mass load in south Greenland (October). However, the phase of bedrock maximum uplift in north Greenland (February) is 4 months later than the minimum ice mass load in north Greenland basins (October). In addition, we present ground deformation near several famous glaciers in Greenland such as Petermann glacier and Jakobshavn glacier. We process InSAR data from TerraSAR-X and Sentinel satellite, based on small baseline interferograms. We observed rapid deglaciation-induced uplift and seasonal variations on naked bedrock near the glacier ice margin.
Aircraft Detection in High-Resolution SAR Images Based on a Gradient Textural Saliency Map
Tan, Yihua; Li, Qingyun; Li, Yansheng; Tian, Jinwen
2015-01-01
This paper proposes a new automatic and adaptive aircraft target detection algorithm in high-resolution synthetic aperture radar (SAR) images of airport. The proposed method is based on gradient textural saliency map under the contextual cues of apron area. Firstly, the candidate regions with the possible existence of airport are detected from the apron area. Secondly, directional local gradient distribution detector is used to obtain a gradient textural saliency map in the favor of the candidate regions. In addition, the final targets will be detected by segmenting the saliency map using CFAR-type algorithm. The real high-resolution airborne SAR image data is used to verify the proposed algorithm. The results demonstrate that this algorithm can detect aircraft targets quickly and accurately, and decrease the false alarm rate. PMID:26378543
Tie Points Extraction for SAR Images Based on Differential Constraints
NASA Astrophysics Data System (ADS)
Xiong, X.; Jin, G.; Xu, Q.; Zhang, H.
2018-04-01
Automatically extracting tie points (TPs) on large-size synthetic aperture radar (SAR) images is still challenging because the efficiency and correct ratio of the image matching need to be improved. This paper proposes an automatic TPs extraction method based on differential constraints for large-size SAR images obtained from approximately parallel tracks, between which the relative geometric distortions are small in azimuth direction and large in range direction. Image pyramids are built firstly, and then corresponding layers of pyramids are matched from the top to the bottom. In the process, the similarity is measured by the normalized cross correlation (NCC) algorithm, which is calculated from a rectangular window with the long side parallel to the azimuth direction. False matches are removed by the differential constrained random sample consensus (DC-RANSAC) algorithm, which appends strong constraints in azimuth direction and weak constraints in range direction. Matching points in the lower pyramid images are predicted with the local bilinear transformation model in range direction. Experiments performed on ENVISAT ASAR and Chinese airborne SAR images validated the efficiency, correct ratio and accuracy of the proposed method.
Deglaciation-induced uplift of the Petermann glacier ice margin observed with InSAR
NASA Astrophysics Data System (ADS)
Lu, Q.; Amelung, F.; Wdowinski, S.
2016-12-01
The Greenland ice sheet is rapidly shrinking with the fastest retreat and thinning occurring at the ice sheet margin and near the outlet glaciers. The changes of the ice mass cause an elastic response of the bedrock. Ice mass loss during the summer months is associated with uplift, whereas ice mass increase during the winter months is associated with subsidence.The German TerraSAR-X and TanDEM-X satellites have systematically observed selected sites along the Greenland Petermann ice sheet margin since summer 2012. Here we present ground deformation observations obtained using an InSAR time-series approach based on small baseline interferograms. We observed rapid deglaciation-induced uplift on naked bedrock near the Petermann glacier ice margin Deformation observed by InSAR is consistent with GPS vertical observations. The time series displacement data reveal not only net uplift but also the seasonal variations. There is no strong relative between displacement changes and SMB ice mass change. The seasonal variations in local area may caused by both nearby SMB changes and ice dynamic changes.
Renga, Alfredo; Moccia, Antonio
2009-01-01
During the last decade a methodology for the reconstruction of surface relief by Synthetic Aperture Radar (SAR) measurements – SAR interferometry – has become a standard. Different techniques developed before, such as stereo-radargrammetry, have been experienced from space only in very limiting geometries and time series, and, hence, branded as less accurate. However, novel formation flying configurations achievable by modern spacecraft allow fulfillment of SAR missions able to produce pairs of monostatic-bistatic images gathered simultaneously, with programmed looking angles. Hence it is possible to achieve large antenna separations, adequate for exploiting to the utmost the stereoscopic effect, and to make negligible time decorrelation, a strong liming factor for repeat-pass stereo-radargrammetric techniques. This paper reports on design of a monostatic-bistatic mission, in terms of orbit and pointing geometry, and taking into account present generation SAR and technology for accurate relative navigation. Performances of different methods for monostatic-bistatic stereo-radargrammetry are then evaluated, showing the possibility to determine the local surface relief with a metric accuracy over a wide range of Earth latitudes. PMID:22389594
Burnt area mapping from ERS-SAR time series using the principal components transformation
NASA Astrophysics Data System (ADS)
Gimeno, Meritxell; San-Miguel Ayanz, Jesus; Barbosa, Paulo M.; Schmuck, Guido
2003-03-01
Each year thousands of hectares of forest burnt across Southern Europe. To date, remote sensing assessments of this phenomenon have focused on the use of optical satellite imagery. However, the presence of clouds and smoke prevents the acquisition of this type of data in some areas. It is possible to overcome this problem by using synthetic aperture radar (SAR) data. Principal component analysis (PCA) was performed to quantify differences between pre- and post- fire images and to investigate the separability over a European Remote Sensing (ERS) SAR time series. Moreover, the transformation was carried out to determine the best conditions to acquire optimal SAR imagery according to meteorological parameters and the procedures to enhance burnt area discrimination for the identification of fire damage assessment. A comparative neural network classification was performed in order to map and to assess the burnts using a complete ERS time series or just an image before and an image after the fire according to the PCA. The results suggest that ERS is suitable to highlight areas of localized changes associated with forest fire damage in Mediterranean landcover.
Three-dimensional brain MRI for DBS patients within ultra-low radiofrequency power limits.
Sarkar, Subhendra N; Papavassiliou, Efstathios; Hackney, David B; Alsop, David C; Shih, Ludy C; Madhuranthakam, Ananth J; Busse, Reed F; La Ruche, Susan; Bhadelia, Rafeeque A
2014-04-01
For patients with deep brain stimulators (DBS), local absorbed radiofrequency (RF) power is unknown and is much higher than what the system estimates. We developed a comprehensive, high-quality brain magnetic resonance imaging (MRI) protocol for DBS patients utilizing three-dimensional (3D) magnetic resonance sequences at very low RF power. Six patients with DBS were imaged (10 sessions) using a transmit/receive head coil at 1.5 Tesla with modified 3D sequences within ultra-low specific absorption rate (SAR) limits (0.1 W/kg) using T2 , fast fluid-attenuated inversion recovery (FLAIR) and T1 -weighted image contrast. Tissue signal and tissue contrast from the low-SAR images were subjectively and objectively compared with routine clinical images of six age-matched controls. Low-SAR images of DBS patients demonstrated tissue contrast comparable to high-SAR images and were of diagnostic quality except for slightly reduced signal. Although preliminary, we demonstrated diagnostic quality brain MRI with optimized, volumetric sequences in DBS patients within very conservative RF safety guidelines offering a greater safety margin. © 2014 International Parkinson and Movement Disorder Society.
SAR target recognition and posture estimation using spatial pyramid pooling within CNN
NASA Astrophysics Data System (ADS)
Peng, Lijiang; Liu, Xiaohua; Liu, Ming; Dong, Liquan; Hui, Mei; Zhao, Yuejin
2018-01-01
Many convolution neural networks(CNN) architectures have been proposed to strengthen the performance on synthetic aperture radar automatic target recognition (SAR-ATR) and obtained state-of-art results on targets classification on MSTAR database, but few methods concern about the estimation of depression angle and azimuth angle of targets. To get better effect on learning representation of hierarchies of features on both 10-class target classification task and target posture estimation tasks, we propose a new CNN architecture with spatial pyramid pooling(SPP) which can build high hierarchy of features map by dividing the convolved feature maps from finer to coarser levels to aggregate local features of SAR images. Experimental results on MSTAR database show that the proposed architecture can get high recognition accuracy as 99.57% on 10-class target classification task as the most current state-of-art methods, and also get excellent performance on target posture estimation tasks which pays attention to depression angle variety and azimuth angle variety. What's more, the results inspire us the application of deep learning on SAR target posture description.
On The Spatial Homogeneity Of The Wave Spectra In Deep Water Employing ERS-2 SAR Precision Image
NASA Astrophysics Data System (ADS)
Violante-Carvalho, Nelson; Robinson, Ian; Gommenginger, Christine; Carvalho, Luiz Mariano; Goldstein, Brunno
2010-04-01
Using wave spectra extracted from image mode ERS-2 SAR, the spatial homogeneity of the wave field in deep water is investigated against directional buoy measurements. From the 100 x 100 km image, several small images of 6.4 x 6.4 km are selected and the wave spectra are computed. The locally disturbed wind velocity pat- tern, caused by the sheltering effect of large mountains near the coast, translates into the selected SAR image as regions of higher and lower wind speed. Assuming that a swell component is uniform over the whole image, SAR wave spectra retrieved from the sheltered and non-sheltered areas are intercompared. Any difference between them could be related to a possible interaction between wind sea and swell, since the wind sea part of the spectrum would be slightly different due to the different wind speeds. The results show that there is no significative variation, and apparently there is no clear difference in the swell spectra despite the different wind sea components.
NASA Astrophysics Data System (ADS)
Paine, J. G.; Collins, E.; Yang, D.; Andrews, J. R.; Averett, A.; Caudle, T.; Saylam, K.
2014-12-01
We are using airborne lidar and satellite-based radar interferometry (InSAR) to quantify short-term (months to years) and longer-term (decades) subsidence in the area surrounding two large (100- to 200-m diameter) sinkholes that formed above Permian bedded salt in 1980 and 2002 in the Wink area, west Texas. Radar interferograms constructed from synthetic aperture radar data acquired between 2008 and 2011 with the ALOS PALSAR L-band satellite-borne instrument reveal local areas that are subsiding at rates that reach a few cm per month. Subsiding areas identified on radar interferograms enable labor-intensive ground investigations (such as microgravity surveys) to focus on areas where subsidence is occurring and shallow-source mass deficits might exist that could be sites of future subsidence or collapse. Longer-term elevation changes are being quantified by comparing digital elevation models (DEMs) constructed from high-resolution airborne lidar data acquired over a 32-km2 area in 2013 with older, lower-resolution DEMs constructed from data acquired during the NASA- and NGA-sponsored Shuttle Radar Topographic Mission in February 2000 and from USGS aerial photogrammetry-derived topographic data from the 1960s. Total subsidence reaches more than 10 m over 45 years in some areas. Maximum rates of subsidence measured on annual (from InSAR) and decadal (from lidar) time scales are about 0.25 m/yr. In addition to showing the extent and magnitude of subsidence at the 1980 and 2002 sinkholes, comparison of the 2013 lidar-derived DEM with the 1960s photogrammetry-derived DEM revealed other locations that have undergone significant (more than 1 m) elevation change since the 1960s, but show no evidence of recent (2008 to 2011) ground motion from satellite radar interferograms. Regional coverage obtained by radar interferometry and local coverage obtained with airborne lidar show that areas of measurable subsidence are all within a few km of the 1980 and 2002 sinkholes.
Integrating Physical and Topographic Information Into a Fuzzy Scheme to Map Flooded Area by SAR.
Pierdicca, Nazzareno; Chini, Marco; Pulvirenti, Luca; Macina, Flavia
2008-07-10
A flood mapping procedure based on a fuzzy sets theory has been developed. The method is based on the integration of Synthetic Aperture Radar (SAR) measurements with additional data on the inundated area, such as a land cover map and a digital elevation model (DEM). The information on land cover has allowed us to account for both specular reflection, typical of open water, and double bounce backscattering, typical of forested and urban areas. DEM has been exploited to include simple hydraulic considerations on the dependence of inundation probability on surface characteristics. Contextual information has been taken into account too. The proposed algorithm has been tested on a flood occurred in Italy on November 1994. A pair of ERS-1 images, collected before and after (three days later) the flood, has been used. The results have been compared with the data provided by a ground survey carried out when the flood reached its maximum extension. Despite the temporal mismatch between the survey and the post-inundation SAR image, the comparison has yielded encouraging results, with the 87% of the pixels correctly classified as inundated.
Temporal Coherence as an Estimate of Decorrelation Time of SAR Interferometric Measurements
NASA Astrophysics Data System (ADS)
Foumelis, Michael
2014-05-01
Following a plethora of validations and demonstrations Interferometric SAR (InSAR) has been established as a mature space geodetic technique for providing valuable insights for various phenomena related to geohazards. One of the main advantages of space borne SAR systems with respect to GNSS is the continuous spatial coverage. However, the impact of temporal decorrelation especially in repeat-pass interferometry has been observed during the historical development of InSAR applications. Interferometric coherence is considered as the expression of temporal decorrelation. It is understood that interferometric coherence decreases with time between SAR acquisitions because of changes in surface reflectivity, reducing the accuracy and spatial coverage of SAR phase measurements. This is an intrinsic characteristic of the design of SAR systems that has a significant contribution at longer time scales. Since the majority of geohazards rely on long term observation scenarios, the effect of temporal decorrelation is evident as coherence becomes dominated by temporal changes. Although in the past there was not sufficient amount of SAR data to extract robust statistical metrics, in the present study it is demonstrated that tailored analysis of interferometric coherence by exploiting the large archive of SAR data available by the European Space Agency (ESA), enables the accurate quantification of temporal decorrelation. A methodology to translate the observed rate of coherence loss into decorrelation times over a volcanic landscape is the subject treated in this study. Specifically, a sensitivity analysis based on a large data stack of interferometric pairs in order to quantitatively estimate at a pixel level the time beyond which each interferometric phase becomes practically unusable is presented. The estimation and mapping of the spatial distribution of the temporal decorrelation times in an area without a necessary a priori knowledge of its surface characteristics is a fundamental parameter for the design and establishment of local GNSS networks as well as the definition of optimal monitoring strategy for various geohazards. The dependence of decorrelation on various land cover/use types is also analyzed. The performed analysis is viewed in the framework of future SAR systems, while underlining the necessity for exploitation of archive data. Though the dependence of decorrelation on various land cover/use types is already documented the provision of additional information regarding the expected time of decorrelation is of practical use especially when EO data are utilized in operational activities. Finally, the impact of the revisit time and increased performance of upcoming SAR missions is discussed.
Estimation of Surface Deformation due to Pasni Earthquake Using SAR Interferometry
NASA Astrophysics Data System (ADS)
Ali, M.; Shahzad, M. I.; Nazeer, M.; Kazmi, J. H.
2018-04-01
Earthquake cause ground deformation in sedimented surface areas like Pasni and that is a hazard. Such earthquake induced ground displacements can seriously damage building structures. On 7 February 2017, an earthquake with 6.3 magnitudes strike near to Pasni. We have successfully distinguished widely spread ground displacements for the Pasni earthquake by using InSAR-based analysis with Sentinel-1 satellite C-band data. The maps of surface displacement field resulting from the earthquake are generated. Sentinel-1 Wide Swath data acquired from 9 December 2016 to 28 February 2017 was used to generate displacement map. The interferogram revealed the area of deformation. The comparison map of interferometric vertical displacement in different time period was treated as an evidence of deformation caused by earthquake. Profile graphs of interferogram were created to estimate the vertical displacement range and trend. Pasni lies in strong earthquake magnitude effected area. The major surface deformation areas are divided into different zones based on significance of deformation. The average displacement in Pasni is estimated about 250 mm. Maximum pasni area is uplifted by earthquake and maximum uplifting occurs was about 1200 mm. Some of areas was subsidized like the areas near to shoreline and maximum subsidence was estimated about 1500 mm. Pasni is facing many problems due to increasing sea water intrusion under prevailing climatic change where land deformation due to a strong earthquake can augment its vulnerability.
Large-scale time-series InSAR analysis of the Sacramento-San Joaquin delta subsidence using UAVSAR
NASA Astrophysics Data System (ADS)
Bekaert, D. P.; Jones, C. E.; An, K.; Huang, M. H.
2016-12-01
The Sacramento-San Joaquin delta (Delta) contains more than 1700 km of levees that protect various reclaimed lands from flooding. Most of the delta is experiencing subsidence at rates that can exceed 5 cm/yr locally, and which can affect the structural integrity of the levees. In-situ and airborne LIDAR monitoring of this extensive levee network is expensive, making Interferometric Synthetic Aperture Radar (InSAR) an attractive, cost-effective alternative that can provide uniform and consistent monitoring. InSAR has proven to be a powerful technique to study surface displacements at high accuracy (few mm/year), over large regions (up to 250 km wide swaths), and at a high spatial resolution (up to a meter). However widespread usage of InSAR, particularly within the application community, is challenged by several technical issues, the most significant of which are decorrelation noise introduced by a change of scattering properties (e.g., moisture and vegetation), and noise due to variation in atmospheric properties between different SAR acquisitions (i.e., tropospheric delay). These effects are particularly limiting in the rural/agricultural setting of the Delta. We demonstrate the usage of InSAR for spatially comprehensive subsidence monitoring both at the scale of the levees and at a scale that captures the intra-island variability. The study uses data collected over a period of six years (2009-2015) with NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) instrument, which is the prototype airborne instrument for the NISAR mission. We mitigate atmospheric noise by estimating a correction from state-of-the-art weather models, and reduce decorrelation noise by utilizing L-band SAR and using advanced time-series InSAR processing methods. Our analysis includes nine UAVSAR flight lines that cover altogether an area of approximately 8500 km2, including the Delta and the surrounding areas.
Biller, Armin; Choli, Morwan; Blaimer, Martin; Breuer, Felix A; Jakob, Peter M; Bartsch, Andreas J
2014-01-01
To compare a novel combined acquisition technique (CAT) of turbo-spin-echo (TSE) and echo-planar-imaging (EPI) with conventional TSE. CAT reduces the electromagnetic energy load transmitted for spin excitation. This radiofrequency (RF) burden is limited by the specific absorption rate (SAR) for patient safety. SAR limits restrict high-field MRI applications, in particular. The study was approved by the local Medical Ethics Committee. Written informed consent was obtained from all participants. T2- and PD-weighted brain images of n = 40 Multiple Sclerosis (MS) patients were acquired by CAT and TSE at 3 Tesla. Lesions were recorded by two blinded, board-certificated neuroradiologists. Diagnostic equivalence of CAT and TSE to detect MS lesions was evaluated along with their SAR, sound pressure level (SPL) and sensations of acoustic noise, heating, vibration and peripheral nerve stimulation. Every MS lesion revealed on TSE was detected by CAT according to both raters (Cohen's kappa of within-rater/across-CAT/TSE lesion detection κCAT = 1.00, at an inter-rater lesion detection agreement of κLES = 0.82). CAT reduced the SAR burden significantly compared to TSE (p<0.001). Mean SAR differences between TSE and CAT were 29.0 (± 5.7) % for the T2-contrast and 32.7 (± 21.9) % for the PD-contrast (expressed as percentages of the effective SAR limit of 3.2 W/kg for head examinations). Average SPL of CAT was no louder than during TSE. Sensations of CAT- vs. TSE-induced heating, noise and scanning vibrations did not differ. T2-/PD-CAT is diagnostically equivalent to TSE for MS lesion detection yet substantially reduces the RF exposure. Such SAR reduction facilitates high-field MRI applications at 3 Tesla or above and corresponding protocol standardizations but CAT can also be used to scan faster, at higher resolution or with more slices. According to our data, CAT is no more uncomfortable than TSE scanning.
Wide-area mapping of snow water equivalent by Sentinel-1&2 data
NASA Astrophysics Data System (ADS)
Conde, Vasco; Nico, Giovanni; Catalao, Joao; Kontu, Anna; Gritsevich, Maria
2017-04-01
The mapping of snow physical properties over large mountain areas of remote areas is an important topic in both climatological studies and hydrological models where the effects of snow melting are modeled and used to forecast extreme flood events. Usually, these models are run using in-situ measurements of snow which are expensive and statistically not representative of the spatial distribution of snow properties due to slope orientation of terrain, local terrain morphology and height as well as vegetation cover. In this work we investigate the use of data acquired by Sentinel-1 and 2 missions using a C-band SAR and multispectral sensor, respectively. The Sentinel-1 SAR data are processed to estimate the Snow Water Equivalent (SWE) using both the radar amplitude and the output of the SAR interferometry processing. Both approaches need in-situ data to process SAR data and calibrate SWE estimates. The use of SAR amplitude to estimate the SWE is well established and the basic idea is that the radar signal backscattered by snow is related to the SWE so, after modeling the relationship between these two quantities at the site of in-situ measurements this relationship can be used to map the SWE at all site where the SAR amplitude information is available. The physical principle used by SAR interferometry is that of phase delay due to propagation in a non-dispersive medium. This implies that the snow is supposed to be dry in order to allow the propagation of the SAR signal. Sentinel-2 images have been used to get land-use maps and identify areas covered by vegetation. Finland has been chosen as a study region with in-situ measurements acquired thanks to the availability of rich database of in-situ measurements of SWE. Sentinel data used in this work have been acquired starting from November 2015. Publication supported by FCT- project UID/GEO/50019/2013 - Instituto Dom Luiz.
Wu, Xiaoping; Zhang, Xiaotong; Tian, Jinfeng; Schmitter, Sebastian; Hanna, Brian; Strupp, John; Pfeuffer, Josef; Hamm, Michael; Wang, Dingxin; Nistler, Juergen; He, Bin; Vaughan, J. Thomas; Ugurbil, Kamil; Van de Moortele, Pierre-Francois
2015-01-01
The performance of multichannel transmit coil layouts and parallel transmission (pTx) radiofrequency (RF) pulse design was evaluated with respect to transmit B1 (B1+) homogeneity and Specific Absorption Rate (SAR) at 3 Tesla for a whole body coil. Five specific coils were modeled and compared: a 32-rung birdcage body coil (driven either in a fixed quadrature mode or a two-channel transmit mode), two single-ring stripline arrays (with either 8 or 16 elements), and two multi-ring stripline arrays (with 2 or 3 identical rings, stacked in the z-axis and each comprising eight azimuthally distributed elements). Three anatomical targets were considered, each defined by a 3D volume representative of a meaningful region of interest (ROI) in routine clinical applications. For a given anatomical target, global or local SAR controlled pTx pulses were designed to homogenize RF excitation within the ROI. At the B1+ homogeneity achieved by the quadrature driven birdcage design, pTx pulses with multichannel transmit coils achieved up to ~8 fold reduction in local and global SAR. When used for imaging head and cervical spine or imaging thoracic spine, the double-ring array outperformed all coils including the single-ring arrays. While the advantage of the double-ring array became much less pronounced for pelvic imaging with a substantially larger ROI, the pTx approach still provided significant gains over the quadrature birdcage coil. For all design scenarios, using the 3-ring array did not necessarily improve the RF performance. Our results suggest that pTx pulses with multichannel transmit coils can reduce local and global SAR substantially for body coils while attaining improved B1+ homogeneity, particularly for a “z-stacked” double-ring design with coil elements arranged on two transaxial rings. PMID:26332290
NASA Astrophysics Data System (ADS)
Oliver-Cabrera, T.; Wdowinski, S.; Kruse, S.
2016-12-01
Central Florida's thick carbonate deposits and hydrological conditions make the area prone to sinkhole development. Sinkhole collapse is a major geologic hazard, threatening human life and causing substantial damage to property. Detecting sinkhole deformation before a collapse is a difficult task, due to small and typically unnoticeable surface changes. Most techniques used to map sinkholes, such as ground penetrating radar, require ground contact and are practical for localized (typically 2D, tens to hundreds of meters) surveys but not for broad study areas. In this study we use Persistent Scatterer (PS) time series analysis of Interferometric Synthetic Aperture Radar (InSAR), which is a very useful technique for detecting localized deformation while covering vast areas. We acquired SAR images over four locations in central Florida in order to detect possible pre-collapse or slow subsidence surface movements. The data used in this study were acquired by TerraSAR-X and COSMO-SkyMed satellites with pixel resolutions ranging between 25cm and 2m. To date, we have obtained four datasets, each of 25-30 acquisitions, covering a period of roughly one year over a total of roughly 2200 km2. We also installed two corner reflectors over a subsiding sinkhole located in an open vegetated area, to provide strong scattering and improve coherence over that particular location. We generate PS time series for each of the four datasets. Preliminary results show localized deformation at several houses and commercial buildings in several locations. Deforming areas vary in size from approximately 10mx20m of a single house to 60mx60m for a commercial building. On site ground penetrating radar surveys will be performed in these areas to verify their relationship to possible sinkhole activities. Our results also confirm that the corner reflectors improved PS detection over low coherence areas.
NASA Astrophysics Data System (ADS)
Semple, A.; Pritchard, M. E.; Taylor, H.
2014-12-01
The western US and Mexico are deforming at several spatial scales that can be measured by ground and satellite observations like GPS and Interferometric Synthetic Aperture Radar (InSAR). Many GPS stations have been installed throughout this area to monitor ground deformation caused by large scale tectonic processes; however, several studies have noted that the data recorded at a GPS station can be contaminated by local, non-tectonic ground deformation. In this study, we use InSAR to examine deformation from various sources in the western US and Mexico. We chose this method due to the spatially large study area and the availability and temporal coverage of SAR imagery. We use SAR images acquired by the satellites Envisat, ERS-1 and ERS-2 over a time period from 1992-2010 to create several time series. Data from the ALOS satellite between 2006-2011 are also used in some areas. We use these time series analysis along with previously published results to observe and catalogue various sources of surface deformation in the western US and Mexico - from groundwater pumping, geothermal activity, mining, hydrocarbon production, and other sources. We then use these results to identify GPS stations that have potentially been contaminated by non-tectonic deformation signals. We document more than 150 distinct regions of non-tectonic and likely anthropogenic deformation. We have located 82 GPS stations within 20km of the center of at least one of the non-tectonic deformation signals we have identified. It is likely that the data from these 82 GPS stations have been contaminated by local anthropogenic deformation. Some examples of previously unpublished non-tectonic deformation we have seen in this study include but are not limited to, subsidence due to groundwater extraction in Jesus Garcia, Mexico, both uplift and subsidence due to natural gas extraction at Jonah Field in Sublette County, WY, and uplift due to a water recharge project in Tonopah, AZ.
Exposure limits: the underestimation of absorbed cell phone radiation, especially in children.
Gandhi, Om P; Morgan, L Lloyd; de Salles, Alvaro Augusto; Han, Yueh-Ying; Herberman, Ronald B; Davis, Devra Lee
2012-03-01
The existing cell phone certification process uses a plastic model of the head called the Specific Anthropomorphic Mannequin (SAM), representing the top 10% of U.S. military recruits in 1989 and greatly underestimating the Specific Absorption Rate (SAR) for typical mobile phone users, especially children. A superior computer simulation certification process has been approved by the Federal Communications Commission (FCC) but is not employed to certify cell phones. In the United States, the FCC determines maximum allowed exposures. Many countries, especially European Union members, use the "guidelines" of International Commission on Non-Ionizing Radiation Protection (ICNIRP), a non governmental agency. Radiofrequency (RF) exposure to a head smaller than SAM will absorb a relatively higher SAR. Also, SAM uses a fluid having the average electrical properties of the head that cannot indicate differential absorption of specific brain tissue, nor absorption in children or smaller adults. The SAR for a 10-year old is up to 153% higher than the SAR for the SAM model. When electrical properties are considered, a child's head's absorption can be over two times greater, and absorption of the skull's bone marrow can be ten times greater than adults. Therefore, a new certification process is needed that incorporates different modes of use, head sizes, and tissue properties. Anatomically based models should be employed in revising safety standards for these ubiquitous modern devices and standards should be set by accountable, independent groups.
NASA Astrophysics Data System (ADS)
Rahman, M. M.; Bakker, M.; Freitas, S. C. Borges; van Halem, D.; van Breukelen, B. M.; Ahmed, K. M.; Badruzzaman, A. B. M.
2015-02-01
The principle of subsurface arsenic (As) removal (SAR) is to extract anoxic groundwater, aerate it and re-inject it. Oxygen in the injected water reacts with iron in the resident groundwater to form hydrous ferric oxide (HFO). Dissolved As sorbs onto the HFO, which allows for the extraction of groundwater with lower As concentrations. SAR was applied at a rural location in Bangladesh (As in groundwater = 200 μg/L) to study the effect of different operational parameters on SAR performance, including repeated injection and extraction of an equal volume, lower pumping rate, and intermittent pumping. Larger injection volume, lower pumping rate, and intermittent pumping all had positive effects on As removal indicating that As adsorption is kinetically limited. Repeated injection-extraction of an equal volume improved As removal efficiency by providing more HFO for sorption. After injection of 1,000 L, a maximum of 3,000 L of `safe' water, as defined by the Bangladesh national standard for As (<50 μg/L), was extracted, of which 2,000 L can be used as drinking water and the remainder is used for re-injection. Under this setup, the estimated cost for 1,000 L of As-safe drinking water is US2.00, which means that SAR is a viable mitigation option for rural areas.
NASA Astrophysics Data System (ADS)
Bekaert, D. P.; Hamlington, B.; Buzzanga, B. A.; Jones, C. E.
2017-12-01
The rate of relative sea level rise results from a combination of land subsidence and rising seas associated with global warming on long timescales and exacerbated by shifts in ocean dynamics on shorter timescales. An understanding of the current-day magnitude of each component is needed to create accurate projections of future relative sea level rise upon which to base planning efforts. Current day land-based subsidence rates derived from GPS often lack the spatial resolution to capture the local spatial variability needed when assessing the impact of relative sea-level rise. Interferometric Synthetic Aperture Radar (InSAR) is an attractive technique that has the potential to provide a measurement every 20-30m when good signal coherence is maintained. In practice, coastal regions are challenging for InSAR due to variable vegetation cover and soil moisture, which can be in part mitigated by applying advanced time-series InSAR techniques. After applying time-series InSAR, derived rates need to be combined with GPS to tie relative subsidence rates into a geodetic reference frame. Given the need to make projections of relative sea-level rise it is particularly important to propagate all uncertainties during the different processing stages. Here we provide results from ALOS and Sentinel-1 over Hampton Roads area in the Chesapeake Bay region, which is experiencing one of the highest rates of relative sea level rise on the Atlantic coast of the United States. Although the current derived subsidence rates have large uncertainties, it is expected that this will improve with the decadal observations from Sentinel-1.
Estimating Velocities of Glaciers Using Sentinel-1 SAR Imagery
NASA Astrophysics Data System (ADS)
Gens, R.; Arnoult, K., Jr.; Friedl, P.; Vijay, S.; Braun, M.; Meyer, F. J.; Gracheva, V.; Hogenson, K.
2017-12-01
In an international collaborative effort, software has been developed to estimate the velocities of glaciers by using Sentinel-1 Synthetic Aperture Radar (SAR) imagery. The technique, initially designed by the University of Erlangen-Nuremberg (FAU), has been previously used to quantify spatial and temporal variabilities in the velocities of surging glaciers in the Pakistan Karakoram. The software estimates surface velocities by first co-registering image pairs to sub-pixel precision and then by estimating local offsets based on cross-correlation. The Alaska Satellite Facility (ASF) at the University of Alaska Fairbanks (UAF) has modified the software to make it more robust and also capable of migration into the Amazon Cloud. Additionally, ASF has implemented a prototype that offers the glacier tracking processing flow as a subscription service as part of its Hybrid Pluggable Processing Pipeline (HyP3). Since the software is co-located with ASF's cloud-based Sentinel-1 archive, processing of large data volumes is now more efficient and cost effective. Velocity maps are estimated for Single Look Complex (SLC) SAR image pairs and a digital elevation model (DEM) of the local topography. A time series of these velocity maps then allows the long-term monitoring of these glaciers. Due to the all-weather capabilities and the dense coverage of Sentinel-1 data, the results are complementary to optically generated ones. Together with the products from the Global Land Ice Velocity Extraction project (GoLIVE) derived from Landsat 8 data, glacier speeds can be monitored more comprehensively. Examples from Sentinel-1 SAR-derived results are presented along with optical results for the same glaciers.
Space-Based Detection of Sinkhole Activity in Central Florida
NASA Astrophysics Data System (ADS)
Oliver-Cabrera, T.; Kruse, S.; Wdowinski, S.
2015-12-01
Central Florida's thick carbonate deposits and hydrological conditions have made the area prone to sinkhole development. Sinkhole collapse is a major geologic hazard in central Florida threatening human life and causing substantial damage to property. According to the Florida Senate report in 2010, between 2006-2010 total insurance claims due to sinkhole activity were around $200 million per year. Detecting sinkhole deformation before a collapse is a very difficult task, due to small or sometimes unnoticeable surface changes. Most techniques used to monitor sinkholes provide very localized information and cannot be implemented to study broad areas. This is the case of central Florida, where the active zone spans over hundreds of square-kilometers. In this study we use Interferometric Synthetic Aperture Radar (InSAR) observations acquired over several locations in central Florida to detect possible pre-collapse deformation. The study areas were selected because they have shown suspicious sinkhole behavior. One of the sites collapsed on March 2013 destroying a property and killing a man. To generate the InSAR results we use six datasets acquired by the TerraSAR-X and Cosmo-SkyMed satellites with various acquisition modes reflecting pixel resolutions between 25cm and 2m. Preliminary InSAR results show good coherence over constructed areas and low coherence in vegetated zones, justifying our analysis that focuses on the man-made structures. After full datasets will be acquired, a Persistent Scatterer Interferometry (PSI) time series analysis will be performed for detecting localized deformation at spatial scale of 1-5 meters. The project results will be verified using Ground Penetrating Radar.
NASA Astrophysics Data System (ADS)
Surducan, Aneta; Dabala, Dana; Neamtu, Camelia; Surducan, Vasile; Surducan, Emanoil
2013-11-01
The interaction of the microwave radiation emitted by mobile phones with the user's body is analyzed from the International Commission on Non-Ionizing Radiation Protection (ICNIRP) recommendations perspective as a correlation between the specific absorption ratio (SAR) of the mobile phone and the call duration. The relative position of the cell phone to the user's body, the dielectric properties of the exposed body parts, the SAR value and the call duration are considered in the local body temperature rise due to the microwave heating effect. The recommended local temperature rise limit in the human body is evaluated according to standards. The aim of this study is to disseminate information to young people, especially high school students, about the microwave thermal effects on the human body, to make them aware of the environmental electromagnetic pollution and to offer them a simple method of biological self protection.
Shitara, Kohei; Kim, Tae Min; Yokota, Tomoya; Goto, Masahiro; Satoh, Taroh; Ahn, Jin-Hee; Kim, Hyo Song; Assadourian, Sylvie; Gomez, Corinne; Harnois, Marzia; Hamauchi, Satoshi; Kudo, Toshihiro; Doi, Toshihido; Bang, Yung-Jue
2017-10-03
SAR125844 is a potent and selective inhibitor of the c-Met kinase receptor. This was an open-label, phase I, multicenter, dose-escalation, and dose-expansion trial of SAR125844 in Asian patients with solid tumors, a subgroup of whom had gastric cancer and MET amplification (NCT01657214). SAR125844 was administered by intravenous infusion (260-570 mg/m 2 ) on days 1, 8, 15, and 22 of each 28-day cycle. Objectives were to determine the maximum tolerated dose (MTD) and to evaluate SAR125844 safety and pharmacokinetic profile. Antitumor activity was also assessed. Of 38 patients enrolled (median age 64.0 years), 22 had gastric cancer, including 14 with MET amplification. In the dose-escalation cohort ( N = 19; unselected population, including three patients with MET -amplification [two with gastric cancer and one with lung cancer]), the MTD was not reached, and the recommended dose was established at 570 mg/m 2 . Most frequent treatment-emergent adverse events (AEs) were nausea (36.8%), vomiting (34.2%), decreased appetite (28.9%), and fatigue or asthenia, constipation, and abdominal pains (each 21.1%); none appeared to be dose-dependent. Grade ≥ 3 AEs were observed in 39.5% of patients and considered drug-related in 7.9%. SAR125844 exposure increased slightly more than expected by dose proportionality; dose had no significant effect on clearance. No objective responses were observed in the dose-escalation cohort, with seven patients (three gastric cancer, two colorectal cancer, one breast cancer, and one with cancer of unknown primary origin) having stable disease. Modest antitumor activity was observed at 570 mg/m 2 in the dose-expansion cohort, comprising patients with MET -amplified tumors ( N = 19). Two gastric cancer patients had partial responses, seven patients had stable disease (six gastric cancer and one kidney cancer), and 10 patients had progressive disease. Single-agent SAR125844 administered up to 570 mg/m 2 has acceptable tolerability and modest antitumor activity in patients with MET -amplified gastric cancer.
Regmi, Prajna; Grosse, Guido; Jones, Miriam C.; Jones, Benjamin M.; Walter Anthony, Katey
2012-01-01
Drained thermokarst lake basins accumulate significant amounts of soil organic carbon in the form of peat, which is of interest to understanding carbon cycling and climate change feedbacks associated with thermokarst in the Arctic. Remote sensing is a tool useful for understanding temporal and spatial dynamics of drained basins. In this study, we tested the application of high-resolution X-band Synthetic Aperture Radar (SAR) data of the German TerraSAR-X satellite from the 2009 growing season (July–September) for characterizing drained thermokarst lake basins of various age in the ice-rich permafrost region of the northern Seward Peninsula, Alaska. To enhance interpretation of patterns identified in X-band SAR for these basins, we also analyzed the Normalized Difference Vegetation Index (NDVI) calculated from a Landsat-5 Thematic Mapper image acquired on July 2009 and compared both X-band SAR and NDVI data with observations of basin age. We found significant logarithmic relationships between (a) TerraSAR-X backscatter and basin age from 0 to 10,000 years, (b) Landat-5 TM NDVI and basin age from 0 to 10,000 years, and (c) TerraSAR-X backscatter and basin age from 50 to 10,000 years. NDVI was a better indicator of basin age over a period of 0–10,000 years. However, TerraSAR-X data performed much better for discriminating radiocarbon-dated basins (50–10,000 years old). No clear relationships were found for either backscatter or NDVI and basin age from 0 to 50 years. We attribute the decreasing trend of backscatter and NDVI with increasing basin age to post-drainage changes in the basin surface. Such changes include succession in vegetation, soils, hydrology, and renewed permafrost aggradation, ground ice accumulation and localized frost heave. Results of this study show the potential application of X-band SAR data in combination with NDVI data to map long-term succession dynamics of drained thermokarst lake basins.
Geocoding of AIRSAR/TOPSAR SAR Data
NASA Technical Reports Server (NTRS)
Holecz, Francesco; Lou, Yun-Ling; vanZyl, Jakob
1996-01-01
It has been demonstrated and recognized that radar interferometry is a promising method for the determination of digital elevation information and terrain slope from Synthetic Aperture Radar (SAR) data. An important application of Interferometric SAR (InSAR) data in areas with topographic variations is that the derived elevation and slope can be directly used for the absolute radiometric calibration of the amplitude SAR data as well as for scattering mechanisms analysis. On the other hand polarimetric SAR data has long been recognized as permitting a more complete inference of natural surfaces than a single channel radar system. In fact, imaging polarimetry provides the measurement of the amplitude and relative phase of all transmit and receive polarizations. On board the NASA DC-8 aircraft, NASA/JPL operates the multifrequency (P, L and C bands) multipolarimetric radar AIRSAR. The TOPSAR, a special mode of the AIRSAR system, is able to collect single-pass interferometric C- and/or L-band VV polarized data. A possible configuration of the AIRSAR/TOPSAR system is to acquire single-pass interferometric data at C-band VV polarization and polarimetric radar data at the two other lower frequencies. The advantage of this system configuration is to get digital topography information at the same time the radar data is collected. The digital elevation information can therefore be used to correctly calibrate the SAR data. This step is directly included in the new AIRSAR Integrated Processor. This processor uses a modification of the full motion compensation algorithm described by Madsen et al. (1993). However, the Digital Elevation Model (DEM) with the additional products such as local incidence angle map, and the SAR data are in a geometry which is not convenient, since especially DEMs must be referred to a specific cartographic reference system. Furthermore, geocoding of SAR data is important for multisensor and/or multitemporal purposes. In this paper, a procedure to geocode the new AIRSAR/TOPSAR data is presented. As an example an AIRSAR/TOPSAR image acquired in 1994 is geocoded and evaluated in terms of geometric accuracy.
NASA Astrophysics Data System (ADS)
Kobayashi, Tomokazu
2017-04-01
Phreatic eruptions may be related to transient pressure changes in subsurface regions of hydrothermal systems attributing a heating of shallow aquifers from magma. It means that crustal deformation presumably proceeds with the pressure increase under the ground, which can be a kind of precursor if it would be detected. One of the most difficult points is that as the eruption size becomes smaller, the precursor signal should be more local, suggesting that it is rather hard to identify the anomaly using conventional ground-based observation tools. To mitigate disaster on phreatic eruptions, an effective proactive monitoring method is desired. One of the tools to overcome the drawbacks is SAR observation. I here report several observation results in which locally distributed crustal deformation has been detected in geothermal areas where phreatic eruptions has occurred recently or historically. One of the most important studies is the case of Mt. Hakone where the crustal deformation has been successfully detected two months before small phreatic eruptions. Mt. Hakone holds an active geothermal area, called Owaku-dani, with active fumaroles although no eruption has been known since 12-13 centuries. However, the anomalous activity such as an increase of seismicity started in the end of April, 2015. With this anomalous activity, SAR (ALOS-2) observations have been conducted, and small but significant crustal deformation has been detected in a local area with a diameter of 200 m with a displacement of 5 cm. The amount of deformation has increased with time although the spatial size has not changed, and resultantly the amount reached up to 60 cm. Finally, in the end of June, eruptions occurred just at the local crustal deformation area. It should be noted that the eruption started from the InSAR-detected inflational area. This is an excellent case that we were able to identify the location of small phreatic eruption in advance by detecting anomalous ground inflation. It is also noted that the detection of the precursory signal has contributed to the administrative decision making such as setting up no-go area. In this presentation, in addition to this case, I will show some local ground inflational signals observed in geothermal areas where eruptions have not occurred as yet. Acknowledgements: ALOS-2 data were provided under a cooperative contract with JAXA (Japan Aerospace Exploration Agency). The ownership of ALOS-2 data belongs to JAXA. This study was supported by JSPS KAKENHI Grant Numbers JP16K17797 and JP25350494.
InSAR-detected Local Ground Inflation Prior to Small Phreatic Eruption
NASA Astrophysics Data System (ADS)
Kobayashi, T.; Morishita, Y.
2017-12-01
Phreatic eruptions may be related to transient pressure changes in subsurface regions of hydrothermal systems. It means that crustal deformation presumably proceeds with the pressure increase under the ground, which can be a kind of precursor. In this context, Mt. Hakone volcano is a good study target. This is because the crustal deformation has been successfully detected two months before small phreatic eruptions at an active geothermal area, called Owaku-dani. The anomalous activity such as an increase of seismicity started in the end of April, 2015. With this anomalous activity, SAR (ALOS-2) observations was conducted, and small but significant crustal deformation was detected in a local area with a diameter of 200 m with a displacement of 5 cm. The amount of deformation has increased with time although the spatial size has not changed, and resultantly the amount reached up to 60 cm. Finally, in the end of June, eruptions occurred just at the local crustal deformation area. It should be noted that the eruption started from the InSAR-detected inflational area. This is an excellent case that we were able to identify the location of small phreatic eruption in advance by detecting anomalous ground inflation. Further, we investigated whether or not the inflational deformation preceded the anomalous activity observed since the end of April. Applying InSAR time series analysis incorporating the phase linking method to C-band SAR data of RADARSAT-2 (RS2) and Sentinel-1A (S1), we successfully detected small but significant inflational ground deformation that has already proceeded since the end of 2014 at the latest. The amount of deformation reaches up to 3 cm during 4 months. The most striking point is that the spatial distribution is quite similar to the deformation detected by ALOS-2. It strongly suggests that the pressure increase in subsurface have already started before the anomalous activities such as seismic swarm and widely-distributed deformation have been identified. Acknowledgements: ALOS-2 and RS2 data were provided from JAXA under a cooperative research contract between GSI and JAXA, and in addition, for RS2 under a contract between JAXA and CSA. The ownership of ALOS-2 and RS2 data belong to JAXA and MDA, respectively. This study was supported by JSPS KAKENHI Grant Numbers JP16K1779.
Angevin, Eric; Spitaleri, Gianluca; Rodon, Jordi; Dotti, Katia; Isambert, Nicolas; Salvagni, Stefania; Moreno, Victor; Assadourian, Sylvie; Gomez, Corinne; Harnois, Marzia; Hollebecque, Antoine; Azaro, Analia; Hervieu, Alice; Rihawi, Karim; De Marinis, Filippo
2017-12-01
Dysregulated MET signalling is implicated in oncogenesis. The safety and preliminary efficacy of a highly selective MET kinase inhibitor (SAR125844) was investigated in patients with advanced solid tumours and MET dysregulation. This was a phase I dose-escalation (3 + 3 design [50-740 mg/m 2 ]) and dose-expansion study. In the dose escalation, patients had high total MET (t-MET) expression by immunohistochemistry (IHC) or MET amplification by fluorescence in situ hybridisation. In the dose expansion, patients had MET amplification (including a subset of patients with non-small cell lung cancer [NSCLC]) or phosphorylated-MET (p-MET) expression (IHC). Objectives were determination of maximum tolerated dose (MTD) of once-weekly intravenous SAR125844 based on dose-limiting toxicities; safety and pharmacokinetic profile; preliminary efficacy of SAR125844 MTD in the expansion cohort. In total, 72 patients were enrolled: dose escalation, N = 33; dose expansion, N = 39; 570 mg/m 2 was established as the MTD. Most frequent treatment-emergent adverse events (AEs) were asthenia/fatigue (58.3%), nausea (31.9%), and abdominal pain, constipation, and dyspnea (27.8% for each); 58.3% of patients reported grade 3 AEs (19.4% were treatment related). Of the 29 evaluable patients with MET amplification treated at 570 mg/m 2 , five achieved a partial response, including four of 22 with NSCLC; 17 patients had stable disease. No response was observed in patients with high p-MET solid tumours. There was no correlation between tumour response and t-MET status or MET gene copy number. The MTD of once-weekly SAR125844 was 570 mg/m 2 ; SAR125844 was well tolerated, with significant antitumour activity in patients with MET-amplified NSCLC. NCT01391533. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
What Story Does Geographic Separation of Insular Bats Tell? A Case Study on Sardinian Rhinolophids
Russo, Danilo; Di Febbraro, Mirko; Rebelo, Hugo; Mucedda, Mauro; Cistrone, Luca; Agnelli, Paolo; De Pasquale, Pier Paolo; Martinoli, Adriano; Scaravelli, Dino; Spilinga, Cristiano; Bosso, Luciano
2014-01-01
Competition may lead to changes in a species’ environmental niche in areas of sympatry and shifts in the niche of weaker competitors to occupy areas where stronger ones are rarer. Although mainland Mediterranean (Rhinolophus euryale) and Mehely’s (R. mehelyi) horseshoe bats mitigate competition by habitat partitioning, this may not be true on resource-limited systems such as islands. We hypothesize that Sardinian R. euryale (SAR) have a distinct ecological niche suited to persist in the south of Sardinia where R. mehelyi is rarer. Assuming that SAR originated from other Italian populations (PES) – mostly allopatric with R. mehelyi – once on Sardinia the former may have undergone niche displacement driven by R. mehelyi. Alternatively, its niche could have been inherited from a Maghrebian source population. We: a) generated Maxent Species Distribution Models (SDM) for Sardinian populations; b) calibrated a model with PES occurrences and projected it to Sardinia to see whether PES niche would increase R. euryale’s sympatry with R. mehelyi; and c) tested for niche similarity between R. mehelyi and PES, PES and SAR, and R. mehelyi and SAR. Finally we predicted R. euryale’s range in Northern Africa both in the present and during the Last Glacial Maximum (LGM) by calibrating SDMs respectively with SAR and PES occurrences and projecting them to the Maghreb. R. mehelyi and PES showed niche similarity potentially leading to competition. According to PES’ niche, R. euryale would show a larger sympatry with R. mehelyi on Sardinia than according to SAR niche. Such niches have null similarity. The current and LGM Maghrebian ranges of R. euryale were predicted to be wide according to SAR’s niche, negligible according to PES’ niche. SAR’s niche allows R. euryale to persist where R. mehelyi is rarer and competition probably mild. Possible explanations may be competition-driven niche displacement or Maghrebian origin. PMID:25340737
NASA Astrophysics Data System (ADS)
Liorni, I.; Parazzini, M.; Varsier, N.; Hadjem, A.; Ravazzani, P.; Wiart, J.
2016-04-01
So far, the assessment of the exposure of children, in the ages 0-2 years old, to relatively new radio-frequency (RF) technologies, such as tablets and femtocells, remains an open issue. This study aims to analyse the exposure of a one year-old child to these two sources, tablets and femtocells, operating in uplink (tablet) and downlink (femtocell) modes, respectively. In detail, a realistic model of an infant has been used to model separately the exposures due to (i) a 3G tablet emitting at the frequency of 1940 MHz (uplink mode) placed close to the body and (ii) a 3G femtocell emitting at 2100 MHz (downlink mode) placed at a distance of at least 1 m from the infant body. For both RF sources, the input power was set to 250 mW. The variability of the exposure due to the variation of the position of the RF sources with respect to the infant body has been studied by stochastic dosimetry, based on polynomial chaos to build surrogate models of both whole-body and tissue specific absorption rate (SAR), which makes it easy and quick to investigate the exposure in a full range of possible positions of the sources. The major outcomes of the study are: (1) the maximum values of the whole-body SAR (WB SAR) have been found to be 9.5 mW kg-1 in uplink mode and 65 μW kg-1 in downlink mode, i.e. within the limits of the ICNIRP 1998 Guidelines; (2) in both uplink and downlink mode the highest SAR values were approximately found in the same tissues, i.e. in the skin, eye and penis for the whole-tissue SAR and in the bone, skin and muscle for the peak SAR; (3) the change in the position of both the 3G tablet and the 3G femtocell significantly influences the infant exposure.
Liorni, I; Parazzini, M; Varsier, N; Hadjem, A; Ravazzani, P; Wiart, J
2016-04-21
So far, the assessment of the exposure of children, in the ages 0-2 years old, to relatively new radio-frequency (RF) technologies, such as tablets and femtocells, remains an open issue. This study aims to analyse the exposure of a one year-old child to these two sources, tablets and femtocells, operating in uplink (tablet) and downlink (femtocell) modes, respectively. In detail, a realistic model of an infant has been used to model separately the exposures due to (i) a 3G tablet emitting at the frequency of 1940 MHz (uplink mode) placed close to the body and (ii) a 3G femtocell emitting at 2100 MHz (downlink mode) placed at a distance of at least 1 m from the infant body. For both RF sources, the input power was set to 250 mW. The variability of the exposure due to the variation of the position of the RF sources with respect to the infant body has been studied by stochastic dosimetry, based on polynomial chaos to build surrogate models of both whole-body and tissue specific absorption rate (SAR), which makes it easy and quick to investigate the exposure in a full range of possible positions of the sources. The major outcomes of the study are: (1) the maximum values of the whole-body SAR (WB SAR) have been found to be 9.5 mW kg(-1) in uplink mode and 65 μW kg(-1) in downlink mode, i.e. within the limits of the ICNIRP 1998 Guidelines; (2) in both uplink and downlink mode the highest SAR values were approximately found in the same tissues, i.e. in the skin, eye and penis for the whole-tissue SAR and in the bone, skin and muscle for the peak SAR; (3) the change in the position of both the 3G tablet and the 3G femtocell significantly influences the infant exposure.
NASA Astrophysics Data System (ADS)
Jones, Cathleen; Blom, Ronald; Latini, Daniele
2014-05-01
The vulnerability of the United States Gulf of Mexico coast to inundation has received increasing attention in the years since hurricanes Katrina and Rita. Flood protection is a challenge throughout the area, but the population density and cumulative effect of historic subsidence makes it particularly difficult in the New Orleans area. Analysis of historical and continuing geodetic measurements identifies a surprising degree of complexity in subsidence (Dokka 2011), including regions that are subsiding at rates faster than those considered during planning for hurricane protection and for coastal restoration projects. Improved measurements are possible through combining traditional single point, precise geodetic data with interferometric synthetic aperture radar (InSAR) observations for to obtain geographically dense constraints on surface deformation. The Gulf Coast environment is very challenging for InSAR techniques, especially with systems not designed for interferometry. We are applying pair-wise InSAR to longer wavelength (L-band, 24 cm) synthetic aperture radar data acquired with the airborne UAVSAR instrument (http://uavsar.jpl.nasa.gov/) to detect localized change impacting flood protection infrastructure in the New Orleans area during the period from 2009 - 2013. Because aircraft motion creates large-scale image artifacts across the scene, we focus on localized areas on and near flood protection infrastructure to identify anomalous change relative to the surrounding area indicative of subsidence, structural deformation, and/or seepage (Jones et al., 2011) to identify areas where problems exist. C-band and particularly X-band radar returns decorrelate over short time periods in rural or less urbanized areas and are more sensitive to atmospheric affects, necessitating more elaborate analysis techniques or, at least, a strict limit on the temporal baseline. The new generation of spaceborne X-band SAR acquisitions ensure relatively high frequency of acquisition, a dramatic increase of persistent scatter density in urban areas, and improved measurement of very small displacements (Crosetto et al., 2010). We compare the L-band UAVSAR results with permanent scatterer (PS-InSAR) and Short Baseline Subsets (SBAS) interferometric analyses of a stack composed by 28 TerraSAR X-band images acquired over the same period, to determine the influence of different radar frequencies and analyses techniques. Our applications goal is to demonstrate a technique to inform targeted ground surveys, identify areas of persistent subsidence, and improve overall monitoring and planning in flood risk areas. Dokka, 2011, The role of deep processes in late 20th century subsidence of New Orleans and coastal areas of southern Louisiana and Mississippi: J. Geophys. Res., 116, B06403, doi:10.1029/2010JB008008. Jones, C. E., G. Bawden, S. Deverel, J. Dudas, S. Hensley, Study of movement and seepage along levees using DINSAR and the airborne UAVSAR instrument, Proc. SPIE 8536, SAR Image Analysis, Modeling, and Techniques XII, 85360E (November 21, 2012); doi:10.1117/12.976885. Crosetto, M., Monserrat, O., Iglesias, R., & Crippa, B. (2010). Persistent Scatterer Interferometry: Potential, limits and initial C-and X-band comparison. Photogrammetric engineering and remote sensing, 76(9), 1061-1069. Acknowledgments: This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
NASA Astrophysics Data System (ADS)
Ban, Yifang
Acquisition of timely information is a critical requirement for successful management of an agricultural monitoring system. Crop identification and crop-area estimation can be done fairly successfully using satellite sensors operating in the visible and near-infrared (VIR) regions of the spectrum. However, data collection can be unreliable due to problems of cloud cover at critical stages of the growing season. The all-weather capability of synthetic aperture radar (SAR) imagery acquired from satellites provides data over large areas whenever crop information is required. At the same time, SAR is sensitive to surface roughness and should be able to provide surface information such as tillage-system characteristics. With the launch of ERS-1, the first long-duration SAR system became available. The analysis of airborne multipolarization SAR data, multitemporal ERS-1 SAR data, and their combinations with VIR data, is necessary for the development of image-analysis methodologies that can be applied to RADARSAT data for extracting agricultural crop information. The overall objective of this research is to evaluate multipolarization airborne SAR data, multitemporal ERS-1 SAR data, and combinations of ERS-1 SAR and satellite VIR data for crop classification using non-conventional algorithms. The study area is situated in Norwich Township, an agricultural area in Oxford County, southern Ontario, Canada. It has been selected as one of the few representative agricultural 'supersites' across Canada at which the relationships between radar data and agriculture are being studied. The major field crops are corn, soybeans, winter wheat, oats, barley, alfalfa, hay, and pasture. Using airborne C-HH and C-HV SAR data, it was found that approaches using contextual information, texture information and per-field classification for improving agricultural crop classification proved to be effective, especially the per-field classification method. Results show that three of the four best per-field classification accuracies (\\ K=0.91) are achieved using combinations of C-HH and C-VV SAR data. This confirms the strong potential of multipolarization data for crop classification. The synergistic effects of multitemporal ERS-1 SAR and Landsat TM data are evaluated for crop classification using an artificial neural network (ANN) approach. The results show that the per-field approach using a feed-forward ANN significantly improves the overall classification accuracy of both single-date and multitemporal SAR data. Using the combination of TM3,4,5 and Aug. 5 SAR data, the best per-field ANN classification of 96.8% was achieved. It represents an 8.5% improvement over a single TM3,4,5 classification alone. Using multitemporal ERS-1 SAR data acquired during the 1992 and 1993 growing seasons, the radar backscatter characteristics of crops and their underlying soils are analyzed. The SAR temporal backscatter profiles were generated for each crop type and the earliest times of the year for differentiation of individual crop types were determined. Orbital (incidence-angle) effects were also observed on all crops. The average difference between the two orbits was about 3 dB. Thus attention should be given to the local incidence-angle effects when using ERS-1 SAR data, especially when comparing fields from different scenes or different areas within the same scene. Finally, early- and mid-season multitemporal SAR data for crop classification using sequential-masking techniques are evaluated, based on the temporal backscatter profiles. It was found that all crops studied could be identified by July 21.
NASA Astrophysics Data System (ADS)
Manconi, Andrea; Glueer, Franziska; Loew, Simon
2017-04-01
The Great Aletsch Region (GAR, Swiss Alps) has undergone to several cycles of glacial advancement and retreat, which have deeply affected the evolution of the surrounding landscape. Currently, this region is one of the places where the effects of climate change can be strikingly observed, as the Aletsch glacier is experiencing a remarkable retreat with rates in the order of 50 meters every year. In particular, a deep-seated slope instability located in the area called "Moosfluh" has shown during the past 20 years evidences of a slow but progressive increase of surface displacement. The moving mass associated to the Moosfluh rockslide affects an area of about 2 km2 and entails a volume estimated in the order of 150-200 Mm3. In the late summer 2016, an unusual acceleration of the Moosfluh rockslide was observed. Compared to previous years, when ground deformations were in the order of few centimeters, in the period September-October 2016 maximum velocities have reached locally 1 m/day. Such a critical evolution resulted in an increased number of local rock failures and caused the generation of several deep tensile cracks, hindering the access to hiking paths visited by tourists. Moreover, surface deformations have also affected the Moosfluh cable car station, located near the crest of the unstable slope. In this critical framework, the information available on ground was not enough to disentangle the spatial extent of the most active region. To investigate that, we have processed a number of Sentinel-1 SAR images acquired over the GAR. We paired images with maximum temporal baseline spanning 12 and 24 days, in order to preserve the highest possible interferometric coherence over the target area. Secondly, by stacking surface displacements obtained from the differential interferograms, we have increased the signal-to-noise ratio to produce velocity maps of the Moosfluh landslide over the period of interest. This approach has allowed us to constrain the lateral borders of the most active area, and to define a strategy for the installation of additional in-situ monitoring targets. Thus, we have improved our capability to monitor in near-real-time the evolution of surface displacement, as well as to provide a better interpretation of the ongoing critical phase and to define evolutionary scenarios. Space borne DInSAR for the analysis of unstable slopes is experiencing a new Era. In former times, the combination of poor temporal sampling and rapid evolution of surface displacements has hindered this technique from performing analysis on landslides during critical acceleration phases. Indeed, the time spanning between the acquisition of a robust SAR dataset and the availability of reliable results were in the order months or, in some cases, even years. Nowadays, by leveraging the unprecedented spatial and temporal coverage provided by the ESA Sentinel-1 A and B, the time spanning from data acquisition to the generation of ground displacements has been reduced to weeks or, in some cases, days. Thus, we can now obtain information current stage of the slope instability and also to catch the rapid evolution towards a potential catastrophic failure.
InSAR.no: First results from the Norwegian national deformation mapping service
NASA Astrophysics Data System (ADS)
Dehls, John F.; Larsen, Yngvar; Marinkovic, Petar; Moldestad, Dag Anders
2017-04-01
For more than a decade, InSAR has been used in Norway to study landslides and subsidence. Initial studies concentrated on understanding and validating the technique in various settings. During the last seven years, however, we have moved towards using InSAR in operational settings, primarily using data from Radarsat-2 and TerraSAR-X. In May 2016, we launched a national InSAR-based deformation mapping service, based upon the Sentinel-1 satellites. Its mandate is to provide the public in Norway with nationwide deformation products. The service will provide periodically updated deformation data, with varying resolution for urban and non-urban areas. The products will be made available to various local, regional and national authorities via appropriate web GIS protocols. The data will also be made available to the public via a web map interface with simple tools to query and visualize the information. Scaling up from regional operations, based upon data every 24 days, to a national operation, with data every 6 days, is challenging. In addition to the the challenges of scaling up (processing system, algorithms, products, data management, dissemination), Norway has the additional challenges of long winter seasons and rough topography. In this contribution, we will present our approach by summarizing the basic product requirements from the end user perspective. We will also describe ongoing research and development activities needed to meet the identified requirements. We will conclude by demonstrating an initial version of large-scale deformation maps that are to be provided by InSAR.no.
Voeten, Helene A C M; de Zwart, Onno; Veldhuijzen, Irene K; Yuen, Cicely; Jiang, Xinyi; Elam, Gillian; Abraham, Thomas; Brug, Johannes
2009-01-01
Ethnic minorities in Europe such as the Chinese may need a special strategy with regard to risk communication about emerging infectious diseases. To engage them in precautionary actions, it is important to know their information sources, knowledge, and health beliefs. This study's purpose is to study the use of information sources, knowledge, and health beliefs related to SARS and avian flu of Chinese people in the UK and The Netherlands, and to make comparisons with the general population in these countries. Results of a self-administered questionnaire among 300 British/Dutch Chinese were compared to data obtained from a computer-assisted phone survey among the general population (n = 800). British/Dutch Chinese got most information about emerging diseases from family and friends, followed by Chinese media and British/Dutch TV. They had less confidence than general groups in their doctor, government agencies, and consumer/patient interest groups. Their knowledge of SARS was high. They had a lower perceived threat than general populations with regard to SARS and avian flu due to a lower perceived severity. They had higher self-efficacy beliefs regarding SARS and avian flu. In case of new outbreaks of SARS/avian flu in China, local authorities in the UK and The Netherlands can best reach Chinese people through informal networks and British/Dutch TV, while trying to improve confidence in information from the government. In communications, the severity of the disease rather than the susceptibility appears to need most attention.
Huang, I-Chueh; Bailey, Charles C.; Weyer, Jessica L.; Radoshitzky, Sheli R.; Becker, Michelle M.; Chiang, Jessica J.; Brass, Abraham L.; Ahmed, Asim A.; Chi, Xiaoli; Dong, Lian; Longobardi, Lindsay E.; Boltz, Dutch; Kuhn, Jens H.; Elledge, Stephen J.; Bavari, Sina; Denison, Mark R.; Choe, Hyeryun; Farzan, Michael
2011-01-01
Interferon-inducible transmembrane proteins 1, 2, and 3 (IFITM1, 2, and 3) are recently identified viral restriction factors that inhibit infection mediated by the influenza A virus (IAV) hemagglutinin (HA) protein. Here we show that IFITM proteins restricted infection mediated by the entry glycoproteins (GP1,2) of Marburg and Ebola filoviruses (MARV, EBOV). Consistent with these observations, interferon-β specifically restricted filovirus and IAV entry processes. IFITM proteins also inhibited replication of infectious MARV and EBOV. We observed distinct patterns of IFITM-mediated restriction: compared with IAV, the entry processes of MARV and EBOV were less restricted by IFITM3, but more restricted by IFITM1. Moreover, murine Ifitm5 and 6 did not restrict IAV, but efficiently inhibited filovirus entry. We further demonstrate that replication of infectious SARS coronavirus (SARS-CoV) and entry mediated by the SARS-CoV spike (S) protein are restricted by IFITM proteins. The profile of IFITM-mediated restriction of SARS-CoV was more similar to that of filoviruses than to IAV. Trypsin treatment of receptor-associated SARS-CoV pseudovirions, which bypasses their dependence on lysosomal cathepsin L, also bypassed IFITM-mediated restriction. However, IFITM proteins did not reduce cellular cathepsin activity or limit access of virions to acidic intracellular compartments. Our data indicate that IFITM-mediated restriction is localized to a late stage in the endocytic pathway. They further show that IFITM proteins differentially restrict the entry of a broad range of enveloped viruses, and modulate cellular tropism independently of viral receptor expression. PMID:21253575
Transnational quarantine rhetorics: public mobilization in SARS and in H1N1 flu.
Ding, Huiling
2014-06-01
This essay examines how Chinese governments, local communities, and overseas Chinese in North America responded to the perceived health risks of Severe Acute Respiratory Syndrome (SARS) and H1N1 flu through the use of public and participatory rhetoric about risk and quarantines. Focusing on modes of security and quarantine practices, I examine how globalization and the social crises surrounding SARS and H1N1 flu operated to regulate differently certain bodies and areas. I identify three types of quarantines (mandatory, voluntary, and coerced) and conduct a transnational comparative analysis to investigate the relationships among quarantines, rhetoric, and public communication. I argue that health authorities must openly acknowledge the legitimacy of public input and actively seek public support regarding health crises. Only by collaborating with concerned communities and citizens and by providing careful guidance for public participation can health institutions ensure the efficacy of quarantine orders during emerging epidemics.
On the appropriate feature for general SAR image registration
NASA Astrophysics Data System (ADS)
Li, Dong; Zhang, Yunhua
2012-09-01
An investigation to the appropriate feature for SAR image registration is conducted. The commonly-used features such as tie points, Harris corner, the scale invariant feature transform (SIFT), and the speeded up robust feature (SURF) are comprehensively evaluated in terms of several criteria such as the geometrical invariance of feature, the extraction speed, the localization accuracy, the geometrical invariance of descriptor, the matching speed, the robustness to decorrelation, and the flexibility to image speckling. It is shown that SURF outperforms others. It is particularly indicated that SURF has good flexibility to image speckling because the Fast-Hessian detector of SURF has a potential relation with the refined Lee filter. It is recommended to perform SURF on the oversampled image with unaltered sampling step so as to improve the subpixel registration accuracy and speckle immunity. Thus SURF is more appropriate and competent for general SAR image registration.
Detection and tracking of a low energy swell system off the U.S. East Coast with the Seasat SAR
NASA Technical Reports Server (NTRS)
Beal, R. C.
1980-01-01
It is noted that on the morning of September 28, 1978, at 1520 GMT, Seasat approached the East Coast of the U.S. with the 100 km swath of its synthetic aperture radar (SAR) running approximately parallel to the coast but displayed eastward by about 20 km. This pass is analyzed and the following conclusions are drawn: (1) the SAR can successfully detect low-energy swell systems with wave heights under 1 m (actually 0.65 + or - 0.25 m); (2) the refraction of low-energy but well-organized swells deriving from changes in the local depth of the ocean is clearly detectable in both wavelength and direction; and (3) the complexity of the ocean spectrum (whether composed of more than one system or spread in direction and wave number) appears to have little bearing on the threshold detection limits.
Vergin, Kevin L; Beszteri, Bánk; Monier, Adam; Cameron Thrash, J; Temperton, Ben; Treusch, Alexander H; Kilpert, Fabian; Worden, Alexandra Z; Giovannoni, Stephen J
2013-01-01
Advances in next-generation sequencing technologies are providing longer nucleotide sequence reads that contain more information about phylogenetic relationships. We sought to use this information to understand the evolution and ecology of bacterioplankton at our long-term study site in the Western Sargasso Sea. A bioinformatics pipeline called PhyloAssigner was developed to align pyrosequencing reads to a reference multiple sequence alignment of 16S ribosomal RNA (rRNA) genes and assign them phylogenetic positions in a reference tree using a maximum likelihood algorithm. Here, we used this pipeline to investigate the ecologically important SAR11 clade of Alphaproteobacteria. A combined set of 2.7 million pyrosequencing reads from the 16S rRNA V1–V2 regions, representing 9 years at the Bermuda Atlantic Time-series Study (BATS) site, was quality checked and parsed into a comprehensive bacterial tree, yielding 929 036 Alphaproteobacteria reads. Phylogenetic structure within the SAR11 clade was linked to seasonally recurring spatiotemporal patterns. This analysis resolved four new SAR11 ecotypes in addition to five others that had been described previously at BATS. The data support a conclusion reached previously that the SAR11 clade diversified by subdivision of niche space in the ocean water column, but the new data reveal a more complex pattern in which deep branches of the clade diversified repeatedly across depth strata and seasonal regimes. The new data also revealed the presence of an unrecognized clade of Alphaproteobacteria, here named SMA-1 (Sargasso Mesopelagic Alphaproteobacteria, group 1), in the upper mesopelagic zone. The high-resolution phylogenetic analyses performed herein highlight significant, previously unknown, patterns of evolutionary diversification, within perhaps the most widely distributed heterotrophic marine bacterial clade, and strongly links to ecosystem regimes. PMID:23466704
Vergin, Kevin L; Beszteri, Bánk; Monier, Adam; Thrash, J Cameron; Temperton, Ben; Treusch, Alexander H; Kilpert, Fabian; Worden, Alexandra Z; Giovannoni, Stephen J
2013-07-01
Advances in next-generation sequencing technologies are providing longer nucleotide sequence reads that contain more information about phylogenetic relationships. We sought to use this information to understand the evolution and ecology of bacterioplankton at our long-term study site in the Western Sargasso Sea. A bioinformatics pipeline called PhyloAssigner was developed to align pyrosequencing reads to a reference multiple sequence alignment of 16S ribosomal RNA (rRNA) genes and assign them phylogenetic positions in a reference tree using a maximum likelihood algorithm. Here, we used this pipeline to investigate the ecologically important SAR11 clade of Alphaproteobacteria. A combined set of 2.7 million pyrosequencing reads from the 16S rRNA V1-V2 regions, representing 9 years at the Bermuda Atlantic Time-series Study (BATS) site, was quality checked and parsed into a comprehensive bacterial tree, yielding 929 036 Alphaproteobacteria reads. Phylogenetic structure within the SAR11 clade was linked to seasonally recurring spatiotemporal patterns. This analysis resolved four new SAR11 ecotypes in addition to five others that had been described previously at BATS. The data support a conclusion reached previously that the SAR11 clade diversified by subdivision of niche space in the ocean water column, but the new data reveal a more complex pattern in which deep branches of the clade diversified repeatedly across depth strata and seasonal regimes. The new data also revealed the presence of an unrecognized clade of Alphaproteobacteria, here named SMA-1 (Sargasso Mesopelagic Alphaproteobacteria, group 1), in the upper mesopelagic zone. The high-resolution phylogenetic analyses performed herein highlight significant, previously unknown, patterns of evolutionary diversification, within perhaps the most widely distributed heterotrophic marine bacterial clade, and strongly links to ecosystem regimes.
SARS E protein in phospholipid bilayers: an anomalous X-ray reflectivity study
NASA Astrophysics Data System (ADS)
Khattari, Z.; Brotons, G.; Arbely, E.; Arkin, I. T.; Metzger, T. H.; Salditt, T.
2005-02-01
We report on an anomalous X-ray reflectivity study to locate a labelled residue of a membrane protein with respect to the lipid bilayer. From such experiments, important constraints on the protein or peptide conformation can be derived. Specifically, our aim is to localize an iodine-labelled phenylalanine in the SARS E protein, incorporated in DMPC phospholipid bilayers, which are deposited in the form of thick multilamellar stacks on silicon surfaces. Here, we discuss the experimental aspects and the difficulties associated with the Fourier synthesis analysis that gives the electron density profile of the membranes.
NASA Astrophysics Data System (ADS)
Sedláček, Jan; Bábek, Ondřej; Kielar, Ondřej
2016-02-01
We present a comprehensive study concerning sedimentary processes in fluvial sediment traps within the Morava River catchment area (Czech Republic) involving three dammed reservoirs, four meanders and oxbow lakes, and several natural floodplain sites. The objective of the study was to determine sediment accumulation rates (SAR), estimate erosion rates, calculating these using a combination of the 137Cs method and historical data. Another purpose of this study was to provide insight into changing erosion and accumulation rates over the last century. Extensive water course modifications were carried out in the Morava River catchment area during the twentieth century, which likely affected sedimentation rates along the river course. Other multiproxy stratigraphic methods (X-ray densitometry, magnetic susceptibility, and visible-light reflectance spectrometry) were applied to obtain additional information about sediment infill. Sediment stratigraphy revealed distinct distal-to-proximal patterns, especially in reservoirs. Granulometrically, silts and sandy silts prevailed in sediments. Oxbow lakes and meanders contained larger amounts of clay and organic matter, which is the main difference between them and reservoirs. Pronounced 137Cs peaks were recorded in all studied cores (maximum 377 Bq·kg- 1), thus indicating Chernobyl fallout from 1986 or older events. Calculated sediment accumulation rates were lowest in distal parts of reservoirs (0.13-0.58 cm/y) and floodplains (0.45-0.88 cm/y), moderately high rates were found in proximal parts of reservoirs and oxbow lakes (2.27-4.4 cm/y), and the highest rates in some oxbow lakes located near the river (6-8 cm/y). The frequency of the inundation still can be high in some natural areas as in the Litovelské Pomoraví protected area, whereas the decreasing frequency of the inundation in other modified parts can contribute to a lower sedimentation rate. The local effects such as difference between SARs in oxbow lakes and reservoirs, different grain size distribution in both systems, and high variability in thickness of their proximal and distal parts play a crucial role in the analysis of regional accumulation rates. Local effects are much stronger than regional effects, such as rainfall and land use. Combined with the low resolution of time scales (usually only three datums are available: reservoir construction datum, 137Cs fallout event, and top of sediment), these effects may obscure the general trends of regionally increasing or decreasing net SARs, making the analysis of erosion rates from the sedimentary record an extremely difficult task.
Extracting hurricane eye morphology from spaceborne SAR images using morphological analysis
NASA Astrophysics Data System (ADS)
Lee, Isabella K.; Shamsoddini, Ali; Li, Xiaofeng; Trinder, John C.; Li, Zeyu
2016-07-01
Hurricanes are among the most destructive global natural disasters. Thus recognizing and extracting their morphology is important for understanding their dynamics. Conventional optical sensors, due to cloud cover associated with hurricanes, cannot reveal the intense air-sea interaction occurring at the sea surface. In contrast, the unique capabilities of spaceborne synthetic aperture radar (SAR) data for cloud penetration, and its backscattering signal characteristics enable the extraction of the sea surface roughness. Therefore, SAR images enable the measurement of the size and shape of hurricane eyes, which reveal their evolution and strength. In this study, using six SAR hurricane images, we have developed a mathematical morphology method for automatically extracting the hurricane eyes from C-band SAR data. Skeleton pruning based on discrete skeleton evolution (DSE) was used to ensure global and local preservation of the hurricane eye shape. This distance weighted algorithm applied in a hierarchical structure for extraction of the edges of the hurricane eyes, can effectively avoid segmentation errors by reducing redundant skeletons attributed to speckle noise along the edges of the hurricane eye. As a consequence, the skeleton pruning has been accomplished without deficiencies in the key hurricane eye skeletons. A morphology-based analyses of the subsequent reconstructions of the hurricane eyes shows a high degree of agreement with the hurricane eye areas derived from reference data based on NOAA manual work.
Extracting built-up areas from TerraSAR-X data using object-oriented classification method
NASA Astrophysics Data System (ADS)
Wang, SuYun; Sun, Z. C.
2017-02-01
Based on single-polarized TerraSAR-X, the approach generates homogeneous segments on an arbitrary number of scale levels by applying a region-growing algorithm which takes the intensity of backscatter and shape-related properties into account. The object-oriented procedure consists of three main steps: firstly, the analysis of the local speckle behavior in the SAR intensity data, leading to the generation of a texture image; secondly, a segmentation based on the intensity image; thirdly, the classification of each segment using the derived texture file and intensity information in order to identify and extract build-up areas. In our research, the distribution of BAs in Dongying City is derived from single-polarized TSX SM image (acquired on 17th June 2013) with average ground resolution of 3m using our proposed approach. By cross-validating the random selected validation points with geo-referenced field sites, Quick Bird high-resolution imagery, confusion matrices with statistical indicators are calculated and used for assessing the classification results. The results demonstrate that an overall accuracy 92.89 and a kappa coefficient of 0.85 could be achieved. We have shown that connect texture information with the analysis of the local speckle divergence, combining texture and intensity of construction extraction is feasible, efficient and rapid.
NASA Astrophysics Data System (ADS)
Fukahata, Y.; Fukushima, Y.
2009-05-01
On 14 June 2008, the Iwate-Miyagi Nairiku earthquake struck northeast Japan, where active seismicity has been observed under east-west compressional stress fields. The magnitude and hypocenter depth of the earthquake are reported as Mj 7.2 and 8 km, respectively. The earthquake is considered to have occurred on a west-dipping reverse fault with a roughly north-south strike. The earthquake caused significant surface displacements, which were detected by PALSAR, a Synthetic Aperture Radar (SAR) onboard the Japanese ALOS satellite. Several pairs of PALSAR images from six different paths are available to measure the coseismic displacements. Interferometric SAR (InSAR) is useful to obtain crustal displacements in the region where coseismic displacement is not so large (less than 1 m), whereas range and azimuth offsets provide displacement measurements up to a few meters on the whole processed area. We inverted the obtained displacement data to estimate slip distribution on the fault. Since the precise location and direction of the fault are not well known, the inverse problem is nonlinear. Following the method of Fukahata and Wright (2008), we resolved the weak non-linearity based on Akaike's Bayesian Information Criterion. We first estimated slip distribution by assuming a pure dip slip. The optimal fault geometry was estimated at dip 26 and strike 203 degrees. The maximum slip is more than 8 m and most slips concentrate at shallow depths (less than 4 km). The azimuth offset data suggest non-negligible right lateral slip components, so we next estimated slip distribution without fixing the rake angle. Again, a large slip area with the maximum slip of about 8 m in the shallow depth was obtained. Such slip models contradict with our existing common sense; our results indicate that the released strain is more than 10 to the power of -3. Range and azimuth offsets computed from SAR images obtained from both ascending and descending orbits appear to be more consistent with a conjugate fault slip, which contributes to lower the stress drop possibly to a level typical to this kind of earthquakes.
NASA Astrophysics Data System (ADS)
Bagnardi, M.; González, P. J.; Hooper, A. J.; Richter, N.; Walter, T. R.
2016-12-01
Precise, quantitative analyses of topographic changes associated with the emplacement of volcanic products provide the means to infer key parameters for the assessment of hazards associated with volcanic processes. Different techniques can be applied to generate high-resolution digital elevation models (DEMs), using both ground-based and air/space-borne sensors. In this study, we first evaluate the use of very high resolution (VHR) tri-stereo optical imagery from the Pleiades-1 satellite constellation for volcanological applications. With this scope, we generate a 1 m resolution DEM of Fogo Volcano, Cape Verde, and use this DEM to quantify topographic changes associated with the 2014-2015 eruption. We observe that, when compared with the classic stereo approach, the use of tri-stereo imagery highly enhances the ability of photogrammetric techniques to estimate heights through increasing the point cloud density and by reducing the number of pixels with no measurements. From the Pleiades-1 post-eruption topography we subtract heights from a pre-eruptive DEM, obtained using spaceborne synthetic aperture radar (SAR) data from the TanDEM-X mission, and estimate the volume of the 2014-2015 lava flow ( 46 million m3) and the mean output rate throughout the eruption (5-7 m3/s). We subsequently use complementary datasets from a variety of sensors (Terrestrial Laser Scanning, UAV optical imagery, Structure from Motion from hand-held DSLR cameras) to fill gaps in Pleiades-1 data coverage and to generate a merged, high-resolution DEM of the volcano. To weight the contribution of each dataset, we carry out a comparative analysis of the accuracy of the different DEMs and identify advantages and disadvantages associated with the use of each technique. Finally, using SAR data acquired by the Sentinel-1a satellite, we apply SAR interferometry (InSAR) and measure the lava flow subsidence due to cooling and contraction in the months after its emplacement and compare this to the measured lava flow thickness. Maximum subsidence is recorded in those areas where lava flow thickness is also maximum, and where the substrate onto which the lava flow was emplaced is highly compactable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surducan, Aneta; Dabala, Dana; Neamtu, Camelia, E-mail: emanoil.surducan@itim-cj.ro
The interaction of the microwave radiation emitted by mobile phones with the user's body is analyzed from the International Commission on Non-Ionizing Radiation Protection (ICNIRP) recommendations perspective as a correlation between the specific absorption ratio (SAR) of the mobile phone and the call duration. The relative position of the cell phone to the user's body, the dielectric properties of the exposed body parts, the SAR value and the call duration are considered in the local body temperature rise due to the microwave heating effect. The recommended local temperature rise limit in the human body is evaluated according to standards. Themore » aim of this study is to disseminate information to young people, especially high school students, about the microwave thermal effects on the human body, to make them aware of the environmental electromagnetic pollution and to offer them a simple method of biological self protection.« less
Perceptual compression of magnitude-detected synthetic aperture radar imagery
NASA Technical Reports Server (NTRS)
Gorman, John D.; Werness, Susan A.
1994-01-01
A perceptually-based approach for compressing synthetic aperture radar (SAR) imagery is presented. Key components of the approach are a multiresolution wavelet transform, a bit allocation mask based on an empirical human visual system (HVS) model, and hybrid scalar/vector quantization. Specifically, wavelet shrinkage techniques are used to segregate wavelet transform coefficients into three components: local means, edges, and texture. Each of these three components is then quantized separately according to a perceptually-based bit allocation scheme. Wavelet coefficients associated with local means and edges are quantized using high-rate scalar quantization while texture information is quantized using low-rate vector quantization. The impact of the perceptually-based multiresolution compression algorithm on visual image quality, impulse response, and texture properties is assessed for fine-resolution magnitude-detected SAR imagery; excellent image quality is found at bit rates at or above 1 bpp along with graceful performance degradation at rates below 1 bpp.
NASA Astrophysics Data System (ADS)
Zhao, Dezheng; Qu, Chunyan; Shan, Xinjian; Gong, Wenyu; Zhang, Yingfeng; Zhang, Guohong
2018-02-01
On 8 August 2017, a Ms7.0 earthquake stroke the city of Jiuzhaigou, Sichuan, China. The Jiuzhaigou earthquake occurred on a buried fault in the vicinity of three well-known active faults and this event offers a unique opportunity to study tectonic structures in the epicentral region and stress transferring. Here we present coseismic displacement field maps for this earthquake using descending and ascending Sentinel-1A Interferometric Synthetic Aperture Radar (InSAR) data. Deformation covered an area of approximately 50 × 50 km, with a maximum line-of-sight (LOS) displacement of 22 cm in ascending and 14 cm in descending observations on the west side of the source fault. Based on InSAR and Global Positioning System (GPS) measurements, both separately and jointly, we constructed a one-segment model to invert the coseismic slip distribution and dip angle of this event. Our final fault slip model suggests that slip was concentrated at an upper depth of 15 km; there was a maximum slip of 1.3 m and the rupture was dominated by a left-lateral strike-slip motion. The inverted geodetic moment was approximately 6.75 × 1018 Nm, corresponding to a moment magnitude of Mw6.5, consistent with seismological results. The calculated static Coulomb stress changes indicate that most aftershocks occurred in stress increasing zones caused by the mainshock rupture; the Jiuzhaigou earthquake has brought the western part of the Tazang fault 0.1-0.4 MPa closer to failure, indicating an increasing seismic hazard in this region. The Coulomb stress changes caused by the 2008 Mw7.8 Wenchuan earthquake suggest that stress loading from this event acted as a trigger for the Jiuzhaigou earthquake.
NASA Astrophysics Data System (ADS)
Schiek, C. G.; Hurtado, J. M.; Velasco, A. A.; Buckley, S. M.; Escobar, D.
2008-12-01
From the early 1900's to the present day, San Miguel volcano has experienced many small eruptions and several periods of heightened seismic activity, making it one of the most active volcanoes in the El Salvadoran volcanic chain. Prior to 1969, the volcano experienced many explosive eruptions with Volcano Explosivity Indices (VEI) of 2. Since then, eruptions have decreased in intensity to an average VEI of 1. Eruptions mostly consist of phreatic explosions and central vent eruptions. Due to the explosive nature of this volcano, it is important to study the origins of the volcanism and its relationship to surface deformation and earthquake activity. We analyze these interactions by integrating interferometric synthetic aperture radar (InSAR) results with earthquake source location data from a ten-month (March 2007-January 2008) seismic deployment. The InSAR results show a maximum of 7 cm of volcanic inflation from March 2007 to mid-October 2007. During this time, seismic activity increased to a Real-time Seismic-Amplitude Measurement (RSAM) value of >400. Normal RSAM values for this volcano are <50. A period of quiescence began in mid-October 2007, and a maximum of 6 cm of deflation was observed in the interferometry results from 19 October 2007 to 19 January 2008. A clustering of at least 25 earthquakes that occurred between March 2007 and January 2008 suggests a fault zone through the center of the San Miguel volcanic cone. This fault zone is most likely where dyke propagation is occurring. Source mechanisms will be determined for the earthquakes associated with this fault zone, and they will be compared to the InSAR deformation field to determine if the mid-October seismic activity and observed surface deformation are compatible.
Gao, Yue-Ming; Zhang, Heng-Fei; Lin, Shi; Jiang, Rui-Xin; Chen, Zhi-Ying; Lučev Vasić, Željka; Vai, Mang-I; Du, Min; Cifrek, Mario; Pun, Sio-Hang
2018-06-05
Intra-body communication (IBC) is one of the highlights in studies of body area networks. The existing IBC studies mainly focus on human channel characteristics of the physical layer, transceiver design for the application, and the protocol design for the networks. However, there are few safety analysis studies of the IBC electrical signals, especially for the galvanic-coupled type. Besides, the human channel model used in most of the studies is just a multi-layer homocentric cylinder model, which cannot accurately approximate the real human tissue layer. In this paper, the empirical arm models were established based on the geometrical information of six subjects. The thickness of each tissue layer and the anisotropy of muscle were also taken into account. Considering the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines, the restrictions taken as the evaluation criteria were the electric field intensity lower than 1.35 × 10 4 f V/m and the specific absorption rate (SAR) lower than 4 W/kg. The physiological electrode LT-1 was adopted in experiments whose size was 4 × 4 cm and the distance between each center of adjoining electrodes was 6 cm. The electric field intensity and localized SAR were all computed by the finite element method (FEM). The electric field intensity was set as average value of all tissues, while SAR was averaged over 10 g contiguous tissue. The computed data were compared with the 2010 ICNIRP guidelines restrictions in order to address the exposure restrictions of galvanic-coupled IBC electrical signals injected into the body with different amplitudes and frequencies. The input alternating signal was 1 mA current or 1 V voltage with the frequency range from 10 kHz to 1 MHz. When the subject was stimulated by a 1 mA alternating current, the average electric field intensity of all subjects exceeded restrictions when the frequency was lower than 20 kHz. The maximum difference among six subjects was 1.06 V/m at 10 kHz, and the minimum difference was 0.025 V/m at 400 kHz. While the excitation signal was a 1 V alternating voltage, the electric field intensity fell within the exposure restrictions gradually as the frequency increased beyond 50 kHz. The maximum difference among the six subjects was 2.55 V/m at 20 kHz, and the minimum difference was 0.54 V/m at 1 MHz. In addition, differences between the maximum and the minimum values at each frequency also decreased gradually with the frequency increased in both situations of alternating current and voltage. When SAR was introduced as the criteria, none of the subjects exceeded the restrictions with current injected. However, subjects 2, 4, and 6 did not satisfy the restrictions with voltage applied when the signal amplitude was ≥ 3, 6, and 10 V, respectively. The SAR differences for subjects with different frequencies were 0.062-1.3 W/kg of current input, and 0.648-6.096 W/kg of voltage input. Based on the empirical arm models established in this paper, we came to conclusion that the frequency of 100-300 kHz which belong to LF (30-300 kHz) according to the ICNIRP guidelines can be considered as the frequency restrictions of the galvanic-coupled IBC signal. This provided more choices for both intensities of current and voltage signals as well. On the other hand, it also makes great convenience for the design of transceiver hardware and artificial intelligence application. With the frequency restrictions settled, the intensity restrictions that the current signal of 1-10 mA and the voltage signal of 1-2 V were accessible. Particularly, in practical application we recommended the use of the current signals for its broad application and lower impact on the human tissue. In addition, it is noteworthy that the coupling structure design of the electrode interface should attract attention.
Ocean Classification of Dynamical Structures Detected by SAR and Spectral Methods
NASA Astrophysics Data System (ADS)
Redondo, J. M.; Martinez-Benjamin, J. J.; Tellez, J. D.; Jorge, J.; Diez, M.; Sekula, E.
2016-08-01
We discuss a taxonomy of different dynamical features in the ocean surface and provide some eddy and front statistics, as well as describing some events detected by several satellites and even with additional cruise observations and measurements, in the North-west Mediterranean Sea area between 1996 and 2012. The structure of the flows are presented using self-similar traces that may be used to parametrize mixing at both limits of the Rossby Deformation Radius scale, RL. Results show the ability to identify different SAR signatures and at the same time provide calibrations for the different local configurations of vortices, spirals, Langmuir cells, oil spills and tensioactive slicks that eventually allow the study of the self-similar structure of the turbulence. Depending on the surface wind and wave level, and also on the fetch. the bathimetry, the spiral parameters and the resolution of vortical features change. Previous descriptions did not include the new wind and buoyancy features. SAR images also show the turbulence structure of the coastal area and the Regions of Fresh Water Influence (ROFI). It is noteworthy tt such complex coastal field-dependent behavior is strongly influenced by stratification and rotation of the turbulence spectrum is observed only in the range smaller than the local Rossby deformation radius, RL. The measures of diffusivity from buoy or tracer experiments are used to calibrate the behavior of different tracers and pollutants, both natural and man-made in the NW Mediterranean Sea. Thanks to different polarization and intensity levels in ASAR satellite imagery, these can be used to distinguish between natural and man-made sea surface features due to their distinct self-similar and fractal as a function of spill and slick parameters, environmental conditions and history of both oil releases and weather conditions. Eddy diffusivity map derived from SAR measurements of the ocean surface, performing a feature spatial correlation of the available images of the region are presented. Both the multi fractal discrimination of the local features and the diffusivity measurements are important to evaluate the state of the environment. The distribution of meso-scale vortices of size, the Rossby deformation scale and other dominant features can be used to distinguish features in the ocean surface. Multi-fractal analysis is then very usefull. The SAR images exhibited a large variation of natural features produced by winds, internal waves, the bathymetric distribution, by convection, rain, etc as all of these produce variations in the sea surface roughness so that the topological changes may be studied and classified. In a similar way bathimetry may be studied with the methodology described here using the coastline and the thalwegs as generators of local vertical vorticity.
a Hybrid Method in Vegetation Height Estimation Using Polinsar Images of Campaign Biosar
NASA Astrophysics Data System (ADS)
Dehnavi, S.; Maghsoudi, Y.
2015-12-01
Recently, there have been plenty of researches on the retrieval of forest height by PolInSAR data. This paper aims at the evaluation of a hybrid method in vegetation height estimation based on L-band multi-polarized air-borne SAR images. The SAR data used in this paper were collected by the airborne E-SAR system. The objective of this research is firstly to describe each interferometry cross correlation as a sum of contributions corresponding to single bounce, double bounce and volume scattering processes. Then, an ESPIRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) algorithm is implemented, to determine the interferometric phase of each local scatterer (ground and canopy). Secondly, the canopy height is estimated by phase differencing method, according to the RVOG (Random Volume Over Ground) concept. The applied model-based decomposition method is unrivaled, as it is not limited to specific type of vegetation, unlike the previous decomposition techniques. In fact, the usage of generalized probability density function based on the nth power of a cosine-squared function, which is characterized by two parameters, makes this method useful for different vegetation types. Experimental results show the efficiency of the approach for vegetation height estimation in the test site.
NASA Astrophysics Data System (ADS)
New, A. L.; Magalhaes, J. M.; da Silva, J. C. B.
2013-09-01
Energetic Internal Solitary Waves (ISWs) were recently discovered radiating from the central region of the Mascarene Plateau in the south-western Indian Ocean (da Silva et al., 2011). SAR imagery revealed the two-dimensional structure of the waves which propagated for several hundred kilometres in deep water both to the east and west of a sill, located near 12.5°S, 61°E between the Saya de Malha and Nazareth banks. These waves were presumed to originate from the disintegration of a large lee wave formed on the western side of the sill at the time of maximum barotropic flow to the west. In the present paper we focus instead on ISWs propagating in the shallow water above the Saya da Malha (SM) bank (to the north of the sill), rather than on those propagating in deep water (here denominated as type-I or -II waves if propagating to the west or east respectively). Analysis of an extended SAR image dataset reveals strong sea surface signatures of complex patterns of ISWs propagating over the SM bank arising from different sources. We identify three distinct types of waves, and propose suitable generation mechanisms for them using synergy from different remotely sensed datasets, together with analyses of linear phase speeds (resulting from local stratification and bathymetry). In particular, we find a family of ISWs (termed here A-type waves) which results from the disintegration of a lee wave which forms on the western slopes of SM. We also identify two further wave trains (B- and C-type waves) which we suggest result from refraction of the deep water type-I and -II waves onto the SM bank. Therefore, both B- and C-type waves can be considered to result from the same generation source as the type-I and -II waves. Finally, we consider the implications of the ISWs for mixing and biological production over the SM bank, and provide direct evidence, from ocean colour satellite images, of enhanced surface chlorophyll over a shallow topographic feature on the bank, which is consistent with the breaking of the ISWs.
Thors, Björn; Thielens, Arno; Fridén, Jonas; Colombi, Davide; Törnevik, Christer; Vermeeren, Günter; Martens, Luc; Joseph, Wout
2014-05-01
In this paper, different methods for practical numerical radio frequency exposure compliance assessments of radio base station products were investigated. Both multi-band base station antennas and antennas designed for multiple input multiple output (MIMO) transmission schemes were considered. For the multi-band case, various standardized assessment methods were evaluated in terms of resulting compliance distance with respect to the reference levels and basic restrictions of the International Commission on Non-Ionizing Radiation Protection. Both single frequency and multiple frequency (cumulative) compliance distances were determined using numerical simulations for a mobile communication base station antenna transmitting in four frequency bands between 800 and 2600 MHz. The assessments were conducted in terms of root-mean-squared electromagnetic fields, whole-body averaged specific absorption rate (SAR) and peak 10 g averaged SAR. In general, assessments based on peak field strengths were found to be less computationally intensive, but lead to larger compliance distances than spatial averaging of electromagnetic fields used in combination with localized SAR assessments. For adult exposure, the results indicated that even shorter compliance distances were obtained by using assessments based on localized and whole-body SAR. Numerical simulations, using base station products employing MIMO transmission schemes, were performed as well and were in agreement with reference measurements. The applicability of various field combination methods for correlated exposure was investigated, and best estimate methods were proposed. Our results showed that field combining methods generally considered as conservative could be used to efficiently assess compliance boundary dimensions of single- and dual-polarized multicolumn base station antennas with only minor increases in compliance distances. © 2014 Wiley Periodicals, Inc.
Mahajan, Mukesh; Chatterjee, Deepak; Bhuvaneswari, Kannaian; Pillay, Shubhadra; Bhattacharjya, Surajit
2018-02-01
The lethal Coronaviruses (CoVs), Severe Acute Respiratory Syndrome-associated Coronavirus (SARS-CoV) and most recently Middle East Respiratory Syndrome Coronavirus, (MERS-CoV) are serious human health hazard. A successful viral infection requires fusion between virus and host cells carried out by the surface spike glycoprotein or S protein of CoV. Current models propose that the S2 subunit of S protein assembled into a hexameric helical bundle exposing hydrophobic fusogenic peptides or fusion peptides (FPs) for membrane insertion. The N-terminus of S2 subunit of SARS-CoV reported to be active in cell fusion whereby FPs have been identified. Atomic-resolution structure of FPs derived either in model membranes or in membrane mimic environment would glean insights toward viral cell fusion mechanism. Here, we have solved 3D structure, dynamics and micelle localization of a 64-residue long fusion peptide or LFP in DPC detergent micelles by NMR methods. Micelle bound structure of LFP is elucidated by the presence of discretely folded helical and intervening loops. The C-terminus region, residues F42-Y62, displays a long hydrophobic helix, whereas the N-terminus is defined by a short amphipathic helix, residues R4-Q12. The intervening residues of LFP assume stretches of loops and helical turns. The N-terminal helix is sustained by close aromatic and aliphatic sidechain packing interactions at the non-polar face. 15 N{ 1 H}NOE studies indicated dynamical motion, at ps-ns timescale, of the helices of LFP in DPC micelles. PRE NMR showed that insertion of several regions of LFP into DPC micelle core. Together, the current study provides insights toward fusion mechanism of SARS-CoV. Copyright © 2017 Elsevier B.V. All rights reserved.
Generalized interpretation scheme for arbitrary HR InSAR image pairs
NASA Astrophysics Data System (ADS)
Boldt, Markus; Thiele, Antje; Schulz, Karsten
2013-10-01
Land cover classification of remote sensing imagery is an important topic of research. For example, different applications require precise and fast information about the land cover of the imaged scenery (e.g., disaster management and change detection). Focusing on high resolution (HR) spaceborne remote sensing imagery, the user has the choice between passive and active sensor systems. Passive systems, such as multispectral sensors, have the disadvantage of being dependent from weather influences (fog, dust, clouds, etc.) and time of day, since they work in the visible part of the electromagnetic spectrum. Here, active systems like Synthetic Aperture Radar (SAR) provide improved capabilities. As an interactive method analyzing HR InSAR image pairs, the CovAmCohTM method was introduced in former studies. CovAmCoh represents the joint analysis of locality (coefficient of variation - Cov), backscatter (amplitude - Am) and temporal stability (coherence - Coh). It delivers information on physical backscatter characteristics of imaged scene objects or structures and provides the opportunity to detect different classes of land cover (e.g., urban, rural, infrastructure and activity areas). As example, railway tracks are easily distinguishable from other infrastructure due to their characteristic bluish coloring caused by the gravel between the sleepers. In consequence, imaged objects or structures have a characteristic appearance in CovAmCoh images which allows the development of classification rules. In this paper, a generalized interpretation scheme for arbitrary InSAR image pairs using the CovAmCoh method is proposed. This scheme bases on analyzing the information content of typical CovAmCoh imagery using the semisupervised k-means clustering. It is shown that eight classes model the main local information content of CovAmCoh images sufficiently and can be used as basis for a classification scheme.
NASA Astrophysics Data System (ADS)
Zhang, L.; Ding, X.; Lu, Z.; Wen, Y.; Hu, J.
2016-12-01
High-resolution measurements of interseismic displacement are critical for understanding the earthquake cycle and for assessing earthquake hazard. Compared with sparsely located GNSS sites, it is well-known that by jointly analyzing a set of data over the same area acquired on different dates, multi-temporal InSAR (MTInSAR) is capable of remotely imaging interseismic deformation at an unprecedented level of spatial resolution. However conventional MTInSAR cannot hold a considerate promise for the precise retrieval of interseismic deformation in tectonically active zones where complicated atmospheric delay, orbital errors, and localized seasonal ground fluctuations commonly exist. Of interest in this study is to develop reliable solutions to correct or suppress these unwanted signals thereby to improve the accuracy of mapped interseismic displacement. Our technical innovations lie in the following aspects. According to different spatial-temporal characteristics, a joint model that takes both orbit errors and interseismic displacement as parameters is designed to isolate long wavelength motion from orbit error even in the case these two types of signals exhibit similar spatial patterns. To suppress the localized impacts (e.g., a portion of atmospheric artifacts and small-scale anthropogenic deformation), spatial correlation is employed as a constraint during the parameter estimation. The proposed solutions are evaluated by synthetic tests and applied to map the interseismic displacement over Eastern Turkey that spans the Arabia-Eurasia plate boundary zone from a large set of radar images acquired by Envisat/ASAR and Sentinel-1. The derived interseismic displacement validated by GPS data is further used to invert the slip rate and locking depth for the North and East Anatolian Faults. A cross-comparison with published results is also conducted.
GB-InSAR monitoring of slope deformations in a mountainous area affected by debris flow events
NASA Astrophysics Data System (ADS)
Frodella, William; Salvatici, Teresa; Pazzi, Veronica; Morelli, Stefano; Fanti, Riccardo
2017-10-01
Diffuse and severe slope instabilities affected the whole Veneto region (north-eastern Italy) between 31 October and 2 November 2010, following a period of heavy and persistent rainfall. In this context, on 4 November 2010 a large detrital mass detached from the cover of the Mt. Rotolon deep-seated gravitational slope deformation (DSGSD), located in the upper Agno River valley, channelizing within the Rotolon Creek riverbed and evolving into a highly mobile debris flow. The latter phenomena damaged many hydraulic works, also threatening bridges, local roads, and the residents of the Maltaure, Turcati, and Parlati villages located along the creek banks and the town of Recoaro Terme. From the beginning of the emergency phase, the civil protection system was activated, involving the National Civil Protection Department, Veneto Region, and local administrations' personnel and technicians, as well as scientific institutions. On 8 December 2010 a local-scale monitoring system, based on a ground-based interferometric synthetic aperture radar (GB-InSAR), was implemented in order to evaluate the slope deformation pattern evolution in correspondence of the debris flow detachment sector, with the final aim of assessing the landslide residual risk and managing the emergency phase. This paper describes the results of a 2-year GB-InSAR monitoring campaign (December 2010-December 2012) and its application for monitoring, mapping, and emergency management activities in order to provide a rapid and easy communication of the results to the involved technicians and civil protection personnel, for a better understanding of the landslide phenomena and the decision-making process in a critical landslide scenario.
The in-depth safety assessment (ISA) pilot projects in Ukraine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kot, C. A.
1998-02-10
Ukraine operates pressurized water reactors of the Soviet-designed type, VVER. All Ukrainian plants are currently operating with annually renewable permits until they update their safety analysis reports (SARs). After approval of the SARS by the Ukrainian Nuclear Regulatory Authority, the plants will be granted longer-term operating licenses. In September 1995, the Nuclear Regulatory Authority and the Government Nuclear Power Coordinating Committee of Ukraine issued a new contents requirement for the safety analysis reports of VVERs in Ukraine. It contains requirements in three major areas: design basis accident (DBA) analysis, probabilistic risk assessment (PRA), and beyond design-basis accident (BDBA) analysis. Themore » DBA requirements are an expanded version of the older SAR requirements. The last two requirements, on PRA and BDBA, are new. The US Department of Energy (USDOE), through the International Nuclear Safety Program (INSP), has initiated an assistance and technology transfer program to Ukraine to assist their nuclear power stations in developing a Western-type technical basis for the new SARS. USDOE sponsored In-Depth Safety Assessments (ISAs) have been initiated at three pilot nuclear reactor units in Ukraine, South Ukraine Unit 1, Zaporizhzhya Unit 5, and Rivne Unit 1. USDOE/INSP have structured the ISA program in such a way as to provide maximum assistance and technology transfer to Ukraine while encouraging and supporting the Ukrainian plants to take the responsibility and initiative and to perform the required assessments.« less
NASA Astrophysics Data System (ADS)
Tomas, R.; Herrera, G.; Cooksley, G.; Mulas, J.
2011-04-01
SummaryThe aim of this paper is to analyze the subsidence affecting the Vega Media of the Segura River Basin, using a Persistent Scatterers Interferometry technique (PSI) named Stable Point Network (SPN). This technique is capable of estimating mean deformation velocity maps of the ground surface and displacement time series from Synthetic Aperture Radar (SAR) images. A dataset acquired between January 2004 and December 2008 from ERS-2 and ENVISAT sensors has been processed measuring maximum subsidence and uplift rates of -25.6 and 7.54 mm/year respectively for the whole area. These data have been validated against ground subsidence measurements and compared with subsidence triggering and conditioning factors by means of a Geographical Information System (GIS). The spatial analysis shows a good relationship between subsidence and piezometric level evolution, pumping wells location, river distance, geology, the Arab wall, previously proposed subsidence predictive model and soil thickness. As a consequence, the paper shows the usefulness and the potential of combining Differential SAR Interferometry (DInSAR) and spatial analysis techniques in order to improve the knowledge of this kind of phenomenon.
Koyama, Shin; Narita, Eijiro; Suzuki, Yoshihisa; Taki, Masao; Shinohara, Naoki; Miyakoshi, Junji
2015-01-01
The potential public health risks of radiofrequency (RF) fields have been discussed at length, especially with the use of mobile phones spreading extensively throughout the world. In order to investigate the properties of RF fields, we examined the effect of 2.45-GHz RF fields at the specific absorption rate (SAR) of 2 and 10 W/kg for 4 and 24 h on neutrophil chemotaxis and phagocytosis in differentiated human HL-60 cells. Neutrophil chemotaxis was not affected by RF-field exposure, and subsequent phagocytosis was not affected either compared with that under sham exposure conditions. These studies demonstrated an initial immune response in the human body exposed to 2.45-GHz RF fields at the SAR of 2 W/kg, which is the maximum value recommended by the International Commission for Non-Ionizing Radiation Protection (ICNIRP) guidelines. The results of our experiments for RF-field exposure at an SAR under 10 W/kg showed very little or no effects on either chemotaxis or phagocytosis in neutrophil-like human HL-60 cells. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Bayesian explorations of fault slip evolution over the earthquake cycle
NASA Astrophysics Data System (ADS)
Duputel, Z.; Jolivet, R.; Benoit, A.; Gombert, B.
2017-12-01
The ever-increasing amount of geophysical data continuously opens new perspectives on fundamental aspects of the seismogenic behavior of active faults. In this context, the recent fleet of SAR satellites including Sentinel-1 and COSMO-SkyMED permits the use of InSAR for time-dependent slip modeling with unprecedented resolution in time and space. However, existing time-dependent slip models rely on spatial smoothing regularization schemes, which can produce unrealistically smooth slip distributions. In addition, these models usually do not include uncertainty estimates thereby reducing the utility of such estimates. Here, we develop an entirely new approach to derive probabilistic time-dependent slip models. This Markov-Chain Monte Carlo method involves a series of transitional steps to predict and update posterior Probability Density Functions (PDFs) of slip as a function of time. We assess the viability of our approach using various slow-slip event scenarios. Using a dense set of SAR images, we also use this method to quantify the spatial distribution and temporal evolution of slip along a creeping segment of the North Anatolian Fault. This allows us to track a shallow aseismic slip transient lasting for about a month with a maximum slip of about 2 cm.
NASA Astrophysics Data System (ADS)
Ji, Lingyun; Wang, Qingliang; Xu, Jing; Ji, Cunwei
2017-03-01
On July 11, 1995, an Mw 6.8 earthquake struck eastern Myanmar near the Chinese border; hereafter referred to as the 1995 Myanmar-China earthquake. Coseismic surface displacements associated with this event are identified from JERS-1 (Japanese Earth Resources Satellite-1) SAR (Synthetic Aperture Radar) images. The largest relative displacement reached 60 cm in the line-of-sight direction. We speculate that a previously unrecognized dextral strike-slip subvertical fault striking NW-SE was responsible for this event. The coseismic slip distribution on the fault planes is inverted based on the InSAR-derived deformation. The results indicate that the fault slip was confined to two lobes. The maximum slip reached approximately 2.5 m at a depth of 5 km in the northwestern part of the focal region. The inverted geodetic moment was approximately Mw = 6.69, which is consistent with seismological results. The 1995 Myanmar-China earthquake is one of the largest recorded earthquakes that has occurred around the "bookshelf faulting" system between the Sagaing fault in Myanmar and the Red River fault in southwestern China.
Deformation of the Aniakchak Caldera, Alaska, mapped by InSAR
Kwoun, Oh-Ig; Lu, Z.
2004-01-01
The deformation of Aniakchak volcano is investigated using 19 ERS-1 / 2 interferometric synthetic aperture radar (InSAR) data from 1992 through 2002. InSAR images from the different time intervals reveal that the10-km-wide caldera has been subsiding during the time of investigation. The pattern of subsidence does not following the pyroclastic flows from the last eruption of the caldera in 1931. The maximum subsidence is near the center of the caldera, with a rate of up to 13 mm/yr. Deformation outside the caldera is insignificant. Least squares inversion of the multi-temporal deformation maps indicates that the subsidence rate has been relatively constant. Field observations have identified numerous fumaroles inside the caldera. In 1973, temperatures of 80??C were measured at a depth of 15 cm in loose volcanic rubble adjacent to the small cinder cone (about 1.5 km northeast of the vent of the 1931 eruption), whereas springs near a caldera lake had a temperature of 25??C in July 1993. Therefore, we suggest the observed subsidence at Aniakchak caldera is most likely caused by the reduction of pore fluid pressure of a hydrothermal system located a few kilometers beneath the caldera.
Integrating Physical and Topographic Information Into a Fuzzy Scheme to Map Flooded Area by SAR
Pierdicca, Nazzareno; Chini, Marco; Pulvirenti, Luca; Macina, Flavia
2008-01-01
A flood mapping procedure based on a fuzzy sets theory has been developed. The method is based on the integration of Synthetic Aperture Radar (SAR) measurements with additional data on the inundated area, such as a land cover map and a digital elevation model (DEM). The information on land cover has allowed us to account for both specular reflection, typical of open water, and double bounce backscattering, typical of forested and urban areas. DEM has been exploited to include simple hydraulic considerations on the dependence of inundation probability on surface characteristics. Contextual information has been taken into account too. The proposed algorithm has been tested on a flood occurred in Italy on November 1994. A pair of ERS-1 images, collected before and after (three days later) the flood, has been used. The results have been compared with the data provided by a ground survey carried out when the flood reached its maximum extension. Despite the temporal mismatch between the survey and the post-inundation SAR image, the comparison has yielded encouraging results, with the 87% of the pixels correctly classified as inundated. PMID:27879928
Nealy, Jennifer; Benz, Harley M.; Hayes, Gavin; Berman, Eric; Barnhart, William
2017-01-01
The 2008 Wells, NV earthquake represents the largest domestic event in the conterminous U.S. outside of California since the October 1983 Borah Peak earthquake in southern Idaho. We present an improved catalog, magnitude complete to 1.6, of the foreshock-aftershock sequence, supplementing the current U.S. Geological Survey (USGS) Preliminary Determination of Epicenters (PDE) catalog with 1,928 well-located events. In order to create this catalog, both subspace and kurtosis detectors are used to obtain an initial set of earthquakes and associated locations. The latter are then calibrated through the implementation of the hypocentroidal decomposition method and relocated using the BayesLoc relocation technique. We additionally perform a finite fault slip analysis of the mainshock using InSAR observations. By combining the relocated sequence with the finite fault analysis, we show that the aftershocks occur primarily updip and along the southwestern edge of the zone of maximum slip. The aftershock locations illuminate areas of post-mainshock strain increase; aftershock depths, ranging from 5 to 16 km, are consistent with InSAR imaging, which shows that the Wells earthquake was a buried source with no observable near-surface offset.
From Regional Hazard Assessment to Nuclear-Test-Ban Treaty Support - InSAR Ground Motion Services
NASA Astrophysics Data System (ADS)
Lege, T.; Kalia, A.; Gruenberg, I.; Frei, M.
2016-12-01
There are numerous scientific applications of InSAR methods in tectonics, earthquake analysis and other geologic and geophysical fields. Ground motion on local and regional scale measured and monitored via the application of the InSAR techniques provide scientists and engineers with plenty of new insights and further understanding of subsurface processes. However, the operational use of InSAR is not yet very widespread. To foster the operational utilization of the Copernicus Sentinel Satellites in the day-to-day business of federal, state and municipal work and planning BGR (Federal Institute for Geosciences and Natural Resources) initiated workshops with potential user groups. Through extensive reconcilement of interests and demands with scientific, technical, economic and governmental stakeholders (e.g. Ministries, Mining Authorities, Geological Surveys, Geodetic Surveys and Environmental Agencies on federal and state level, SMEs, German Aerospace Center) BGR developed the concept of the InSAR based German National Ground Motion Service. One important backbone for the nationwide ground motion service is the so-called Persistent Scatterer Interferometry Wide Area Product (WAP) approach developed with grants of European research funds. The presentation shows the implementation of the ground motion service and examples for product developments for operational supervision of mining, water resources management and spatial planning. Furthermore the contributions of Copernicus Sentinel 1 radar data in the context of CTBT are discussed. The DInSAR processing of Sentinel 1 IW (Interferometric Wide Swath) SAR acquisitions from January 1st and 13th Jan. 2016 allow for the first time a near real time ground motion measurement of the North Korean nuclear test site. The measured ground displacements show a strong spatio-temporal correlation to the calculated epicenter measured by teleseismic stations. We are convinced this way another space technique will soon contribute even further to secure better societal information needs.
Signals of Systemic Immunity in Plants: Progress and Open Questions
Ádám, Attila L.; Nagy, Zoltán Á.; Kátay, György; Mergenthaler, Emese; Viczián, Orsolya
2018-01-01
Systemic acquired resistance (SAR) is a defence mechanism that induces protection against a wide range of pathogens in distant, pathogen-free parts of plants after a primary inoculation. Multiple mobile compounds were identified as putative SAR signals or important factors for influencing movement of SAR signalling elements in Arabidopsis and tobacco. These include compounds with very different chemical structures like lipid transfer protein DIR1 (DEFECTIVE IN INDUCED RESISTANCE1), methyl salicylate (MeSA), dehydroabietinal (DA), azelaic acid (AzA), glycerol-3-phosphate dependent factor (G3P) and the lysine catabolite pipecolic acid (Pip). Genetic studies with different SAR-deficient mutants and silenced lines support the idea that some of these compounds (MeSA, DIR1 and G3P) are activated only when SAR is induced in darkness. In addition, although AzA doubled in phloem exudate of tobacco mosaic virus (TMV) infected tobacco leaves, external AzA treatment could not induce resistance neither to viral nor bacterial pathogens, independent of light conditions. Besides light intensity and timing of light exposition after primary inoculation, spectral distribution of light could also influence the SAR induction capacity. Recent data indicated that TMV and CMV (cucumber mosaic virus) infection in tobacco, like bacteria in Arabidopsis, caused massive accumulation of Pip. Treatment of tobacco leaves with Pip in the light, caused a drastic and significant local and systemic decrease in lesion size of TMV infection. Moreover, two very recent papers, added in proof, demonstrated the role of FMO1 (FLAVIN-DEPENDENT-MONOOXYGENASE1) in conversion of Pip to N-hydroxypipecolic acid (NHP). NHP systemically accumulates after microbial attack and acts as a potent inducer of plant immunity to bacterial and oomycete pathogens in Arabidopsis. These results argue for the pivotal role of Pip and NHP as an important signal compound of SAR response in different plants against different pathogens. PMID:29642641
Simulation Analysis of Wireless Power Transmission System for Biomedical Applications
NASA Astrophysics Data System (ADS)
Yang, Zhao; Wei, Zhiqiang; Chi, Haokun; Yin, Bo; Cong, Yanping
2018-03-01
In recent years, more and more implantable medical devices have been used in the medical field. Some of these devices, such as brain pacemakers, require long-term power support. The WPT(wireless power transmission) technology which is more convenient and economical than replacing the battery by surgery, has become the first choice of many patients. In this paper, we design a WPT system that can be used in implantable medical devices, simulate the transmission efficiency of the system in the air and in the head model, and simulate the SAR value when the system working in the head model. The results show that when implantation depth of the secondary coil is 3 mm, the efficiency of the system can reach 45%, and the maximum average SAR value is 2.19 W / kg, slightly higher than the standard of IEEE.
Remote sensing of frozen lakes on the North Slope of Alaska
French, N.; Savage, S.; Shuchman, R.; Edson, R.; Payne, J.; Josberger, E.
2004-01-01
We used synthetic aperture radar (SAR) images from the ERS-2 remote sensing satellite to map the freeze condition of lakes on Alaska's North Slope, the geographic region to the north of the Brooks Range. An mage from March 1997, to coincide with the period of maximum freeze depth, was used for the frozen lake mapping. Emphasis was placed on distinguishing between lakes frozen to the lakebed and lakes with some portion unfrozen to the bed (a binary classification). The result of the analysis is a map identifying lakes as frozen to the lakebed and lakes not frozen to the lakebed. This analysis of one SAR image has shown the feasibility of a simple technique for mapping frozen lake condition for supporting decision making and understanding impacts of climate change on the North Slope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahl, Daniel E.; Yocky, David A.; Jakowatz, Jr., Charles V.
In previous research, two-pass repeat-geometry synthetic aperture radar (SAR) coherent change detection (CCD) predominantly utilized the sample degree of coherence as a measure of the temporal change occurring between two complex-valued image collects. Previous coherence-based CCD approaches tend to show temporal change when there is none in areas of the image that have a low clutter-to-noise power ratio. Instead of employing the sample coherence magnitude as a change metric, in this paper, we derive a new maximum-likelihood (ML) temporal change estimate—the complex reflectance change detection (CRCD) metric to be used for SAR coherent temporal change detection. The new CRCD estimatormore » is a surprisingly simple expression, easy to implement, and optimal in the ML sense. As a result, this new estimate produces improved results in the coherent pair collects that we have tested.« less
Biller, Armin; Choli, Morwan; Blaimer, Martin; Breuer, Felix A.; Jakob, Peter M.; Bartsch, Andreas J.
2014-01-01
Purpose To compare a novel combined acquisition technique (CAT) of turbo-spin-echo (TSE) and echo-planar-imaging (EPI) with conventional TSE. CAT reduces the electromagnetic energy load transmitted for spin excitation. This radiofrequency (RF) burden is limited by the specific absorption rate (SAR) for patient safety. SAR limits restrict high-field MRI applications, in particular. Material and Methods The study was approved by the local Medical Ethics Committee. Written informed consent was obtained from all participants. T2- and PD-weighted brain images of n = 40 Multiple Sclerosis (MS) patients were acquired by CAT and TSE at 3 Tesla. Lesions were recorded by two blinded, board-certificated neuroradiologists. Diagnostic equivalence of CAT and TSE to detect MS lesions was evaluated along with their SAR, sound pressure level (SPL) and sensations of acoustic noise, heating, vibration and peripheral nerve stimulation. Results Every MS lesion revealed on TSE was detected by CAT according to both raters (Cohen’s kappa of within-rater/across-CAT/TSE lesion detection κCAT = 1.00, at an inter-rater lesion detection agreement of κLES = 0.82). CAT reduced the SAR burden significantly compared to TSE (p<0.001). Mean SAR differences between TSE and CAT were 29.0 (±5.7) % for the T2-contrast and 32.7 (±21.9) % for the PD-contrast (expressed as percentages of the effective SAR limit of 3.2 W/kg for head examinations). Average SPL of CAT was no louder than during TSE. Sensations of CAT- vs. TSE-induced heating, noise and scanning vibrations did not differ. Conclusion T2−/PD-CAT is diagnostically equivalent to TSE for MS lesion detection yet substantially reduces the RF exposure. Such SAR reduction facilitates high-field MRI applications at 3 Tesla or above and corresponding protocol standardizations but CAT can also be used to scan faster, at higher resolution or with more slices. According to our data, CAT is no more uncomfortable than TSE scanning. PMID:24608106
Advanced Corrections for InSAR Using GPS and Numerical Weather Models
NASA Astrophysics Data System (ADS)
Cossu, F.; Foster, J. H.; Amelung, F.; Varugu, B. K.; Businger, S.; Cherubini, T.
2017-12-01
We present results from an investigation into the application of numerical weather models for generating tropospheric correction fields for Interferometric Synthetic Aperture Radar (InSAR). We apply the technique to data acquired from a UAVSAR campaign as well as from the CosmoSkyMed satellites. The complex spatial and temporal changes in the atmospheric propagation delay of the radar signal remain the single biggest factor limiting InSAR's potential for hazard monitoring and mitigation. A new generation of InSAR systems is being built and launched, and optimizing the science and hazard applications of these systems requires advanced methodologies to mitigate tropospheric noise. We use the Weather Research and Forecasting (WRF) model to generate a 900 m spatial resolution atmospheric models covering the Big Island of Hawaii and an even higher, 300 m resolution grid over the Mauna Loa and Kilauea volcanoes. By comparing a range of approaches, from the simplest, using reanalyses based on typically available meteorological observations, through to the "kitchen-sink" approach of assimilating all relevant data sets into our custom analyses, we examine the impact of the additional data sets on the atmospheric models and their effectiveness in correcting InSAR data. We focus particularly on the assimilation of information from the more than 60 GPS sites in the island. We ingest zenith tropospheric delay estimates from these sites directly into the WRF analyses, and also perform double-difference tomography using the phase residuals from the GPS processing to robustly incorporate heterogeneous information from the GPS data into the atmospheric models. We assess our performance through comparisons of our atmospheric models with external observations not ingested into the model, and through the effectiveness of the derived phase screens in reducing InSAR variance. Comparison of the InSAR data, our atmospheric analyses, and assessments of the active local and mesoscale meteorological processes allows us to assess under what conditions the technique works most effectively. This work will produce best-practice recommendations for the use of weather models for InSAR correction, and inform efforts to design a global strategy for the NISAR mission, for both low-latency and definitive atmospheric correction products.
Realization of Configurable One-Dimensional Reflectarray
2017-08-31
Maximum 200 words) A fundamental challenge remains in dynamically controlling the steering of long wavelength radiation (λ > 8 μm) using metal... dynamic , nanoribbons 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF PAGES 20 19a. NAME OF RESPONSIBLE PERSON...challenge remains in dynamically controlling the steering of long wavelength radiation (λ > 8 μm) using metal nanostructures or metamaterials (with critical
On the use of RADARSAT-1 for monitoring malaria risk in Kenya
NASA Astrophysics Data System (ADS)
Ross, S. G.; Thomson, M. C.; Pultz, T.; Mbogo, C. M.; Regens, J. L.; Swalm, C.; Githure, J.; Yan, G.; Gu, W.; Beier, J. C.
2002-01-01
The incidence and spread of vector-borne infectious diseases are increasing concerns in many parts of the world. Earth obervation techniques provide a recognised means for monitoring and mapping disease risk as well as correlating environmental indicators with various disease vectors. Because the areas most impacted by vector-borne disease are remote and not easily monitored using traditional, labor intensive survey techniques, high spatial and temporal coverage provided by spaceborne sensors allows for the investigation of large areas in a timely manner. However, since the majority of infectious diseases occur in tropical areas, one of the main barriers to earth observation techniques is persistent cloud-cover. Synthetic Aperture Radar (SAR) technology offers a solution to this problem by providing all-weather, day and night imaging capability. Based on SAR's sensitivity to target moisture conditions, sensors such as RADARSAT-1 can be readily used to map wetland and swampy areas that are conducive to functioning as aquatic larval habitats. Irrigation patterns, deforestation practises and the effects of local flooding can be monitored using SAR imagery, and related to potential disease vector abundance and proximity to populated areas. This paper discusses the contribution of C-band radar remote sensing technology to monitoring and mapping malaria. Preliminary results using RADARSAT-1 for identifying areas of high mosquito (Anopheles gambiae s.l.) abundance along the Kenya coast will be discussed. The authors consider the potential of RADARSAT-1 data based on SAR sensor characteristics and the preliminary results obtained. Further potential of spaceborne SAR data for monitoring vector-borne disease is discussed with respect to future advanced SAR sensors such as RADARSAT-2.
NASA Astrophysics Data System (ADS)
Jurecka, Miroslawa; Niedzielski, Tomasz
2017-04-01
The objective of the approach presented in this paper is to demonstrate a potential of using the combination of two GIS-based models - mobility model and ring model - for delineating a region above which an Unmanned Aerial Vehicle (UAV) should fly to support the Search and Rescue (SAR) activities. The procedure is based on two concepts, both describing a possible distance/path that lost person could travel from the initial planning point (being either the point last seen, or point last known). The first approach (the ring model) takes into account the crow's flight distance traveled by a lost person and its probability distribution. The second concept (the mobility model) is based on the estimated travel speed and the associated features of the geographical environment of the search area. In contrast to the ring model covering global (hence more general) SAR perspective, the mobility model represents regional viewpoint by taking into consideration local impedance. Both models working together can serve well as a starting point for the UAV flight planning to strengthen the SAR procedures. We present the method of combining the two above-mentioned models in order to delineate UAVs flight region and increase the Probability of Success for future SAR missions. The procedure is a part of a larger Search and Rescue (SAR) system which is being developed at the University of Wrocław, Poland (research project no. IP2014 032773 financed by the Ministry of Science and Higher Education of Poland). The mobility and ring models have been applied to the Polish territory, and they act in concert to provide the UAV operator with the optimal search region. This is attained in real time so that the UAV-based SAR mission can be initiated quickly.
NASA Astrophysics Data System (ADS)
Schlögel, Romy; Darvishi, Mehdi; Cuozzo, Giovanni; Kofler, Christian; Rutzinger, Martin; Zieher, Thomas; Toschi, Isabella; Remondino, Fabio
2017-04-01
Sentinel-1 mission allows us to have Synthetic Aperture Radar (SAR) acquisitions over large areas every 6 days with spatial resolution of 20 m. This new open-source generation of satellites has enhanced the capabilities for continuously studying earth surface changes. Over the past two decades, several studies have demonstrated the potential of Differential Synthetic Aperture Radar Interferometry (DInSAR) for detecting and quantifying land surface deformation. DInSAR limitations and challenges are linked to the SAR properties and the field conditions (especially in Alpine environments) leading to spatial and temporal decorrelation of the SAR signal. High temporal decorrelation can be caused by changes in vegetation (particularly in non-urban areas), atmospheric conditions or high ground surface velocity. In this study, kinematics of the complex and vegetated Corvara landslide, situated in Val Badia (South Tirol, Italy), are monitored by a network of 3 permanent and 13 monthly Differential Global Positioning System (DGPS) stations. The slope displacement rates are found to be highly unsteady and reach several meters a year. This analysis focuses on evaluating the limitations of Sentinel-1 imagery processed with Small Baseline Subset (SBAS) technique in comparison to ground-based measurements for assessing the landslide kinematic linked to meteorological conditions. Selecting some particular acquisitions, coherence thresholds and unwrapping processes gives various results in terms of reliability and accuracy supporting the understanding of the landslide velocity field. The evolution of the coherence and phase signals are studied according to the changing field conditions and the monitored ground-based displacements. DInSAR deformation maps and residual topographic heights are finally compared with difference of high resolution Digital Elevation Models at local scale. This research is conducted within the project LEMONADE (http://lemonade.mountainresearch.at) funded by the Euregio Science Fund.
Søndergaard, Helle Bach; Brodin, Birger; Nielsen, Carsten Uhd
2008-06-01
The purpose of this work was to investigate the apical uptake and transepithelial transport of Gly-Sar along with the expression of the di-/tripeptide transporters hPEPT1 and hPEPT2 in human Calu-3 bronchial epithelial cells. The apical Gly-Sar uptake rate in Calu-3 cells followed Michaelis-Menten kinetics with a Km value of 1.3 +/- 0.3 mM and a Vmax value of 0.60 +/- 0.06 nmol cm(-2) min(-1). Transepithelial apical to basolateral transport of 50 microM [3H]-labelled Gly-Sar across the Calu-3 cell monolayer was pH-dependent. The Gly-Sar flux was significantly reduced in the presence of delta-aminolevulinic acid (2.5 mM), cephalexin (25 mM), and captopril (25 mM; p < 0.05, n = 3). Reverse transcriptase polymerase chain reaction (RT-PCR) revealed the presence of both hPEPT1 and hPEPT2 mRNA in the Calu-3 cells. These findings were confirmed in healthy human bronchial cDNA. Restriction-endonuclease analysis identified hPEPT2 in Calu-3 cells to be the hPEPT2*1 haplotype. Western blotting demonstrated expression of the hPEPT1 protein (approximately 80 kDa), and the immunolabel was mainly localized in the apical membrane as judged by immunolocalization studies using confocal laser scanning microscopy (CLSM). This work presents for the first time hPEPT1 and hPEPT2*1 expression in human Calu-3 cells. Surprisingly, the results indicate that Gly-Sar uptake and transport in Calu-3 cells are hPEPT1-mediated rather than hPEPT2-mediated.
Tachykinin control of ferret airways: mucus secretion, bronchoconstriction and receptor mapping.
Meini, S; Mak, J C; Rohde, J A; Rogers, D F
1993-02-01
The effects of synthetic tachykinin receptor agonists on mucus secretion by ferret trachea was determined in vitro in Ussing chambers using 35SO4 as a mucus marker and the synthetic peptides [Sar9,Met(O2)11]substance P (SarSP), [beta Ala8]neurokinin A-(4-10) and [MePhe7] neurokinin B which are selective for NK1, NK2 and NK3 tachykinin-receptors respectively. The bronchomotor effects of the same agonists were also studied in vitro and tachykinin receptors were localized by autoradiographic mapping. SarSP was the only synthetic agonist able to elicit a concentration-dependent increase in mucus secretion and was much more potent than SP. The EC50 for SarSP was 1.7 x 10(-6) M. Moreover, the maximal increase in release of 35SO4 produced by SarSP 10(-5) M was 95% of the increase produced by methacholine 10(-4) M indicating that this concentration of SarSP induced a near maximal secretory response. There was no significant difference in the secretory action of SP administered from the luminal or the submucosal side of the tissue. Only the NK2 agonist was able to produce a concentration-dependent contractility of bronchial ring preparations and its effect was relatively weak (EC50 6.4 x 10(-6) M). Capsaicin (10(-5) M) produced only a slight increase in tracheal mucus secretion (28 +/- 5%; n = 6) and was completely ineffective in inducing bronchoconstriction. Binding sites for [125I]-Bolton Hunter SP were more evident than sites for [125I]-NKA on submucosal glands and epithelium. In contrast, only binding sites to NKA could be observed over the smooth muscle.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Astrophysics Data System (ADS)
Sauber, J. M.; Hofton, M. A.; Bruhn, R. L.; Forster, R. R.; Burgess, E. W.; Cotton, M. M.
2010-12-01
In 2007 the National Research Council Earth Science Decadal Survey, Earth Science Applications from Space, recommended an integrated L-band InSAR and multibeam Lidar mission called DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) and it is scheduled for launch in 2017. The NASA InSAR and Lidar mission is optimized for studying geohazards and global environmental change. The complex plate boundary in southern coastal Alaska provides an excellent setting for testing DESDynI capabilities to recover fundamental parameters of glacio-seismotectonic processes. Also, aircraft and satellites acquisitions of Lidar and L-band SAR have been made in this region in the last decade that can be used for DESDynI performance simulations. Since the Lidar observations would penetrate most vegetation, the accurate bald Earth elevation profiles will give new elevation information beyond the standard 30-m digital elevation models (DEM) and the Lidar-derived elevations will provide an accurate georeferenced surface for local and regional scale studies. In an earlier study we demonstrated how the Lidar observations could be used in combination with SAR to generate an improved InSAR derived DEM in the Barrow, Alaska region [Atwood et al., 2007]; here we discuss how Lidar could be fused with L-band SAR in more rugged, vegetated terrane. Based on simulations of multi-beam Lidar instrument performance over uplifted marine terraces, active faults and folds, uplift associated with the 1899 Yakataga seismic event (M=8), and elevation change on the glaciers in southern, coastal Alaska, we report on the significance of the DESDynI Lidar contiguous 25 m footprint elevation profiles for EarthScope related studies in Alaska. We are using the morphology and dynamics of glaciers derived from L-band SAR ice velocities to infer the large scale sub-ice structures that form the structural framework of the Seward-Bagley Basins. Using primarily winter acquisitions of L-band SAR data from ALOS/PALSAR (Mode: Fine beam, HH) we have been able to estimate ice velocities from offset-tracking in the Upper and Lower Seward Basin even though the acquisitions are 46 days apart. We anticipate with the shorter repeat time for DESDynI-SAR acquisitions that we will be able to estimate seasonal ice velocities over a larger range of regions within both the ablation and accumulation zones.
The use of multifrequency and polarimetric SIR-C/X-SAR data in geologic studies of Bir Safsaf, Egypt
Schaber, G.G.; McCauley, J.F.; Breed, C.S.
1997-01-01
Bir Safsaf, within the hyperarid 'core' of the Sahara in the Western Desert of Egypt, was recognized following the SIR-A and SIR-B missions in the 1980s as one of the key localities in northeast Africa, where penetration of dry sand by radar signals delineates previously unknown, sand-buried paleodrainage valleys ('radar-rivers') of middle Tertiary to Quaternary age. The Bir Safsaf area was targeted as a focal point for further research in sand penetration and geologic mapping using the multifrequency and polarimetric SIR-C/X-SAR sensors. Analysis of the SIR-C/X-SAR data from Bir Safsaf provides important new information on the roles of multiple SAR frequency and polarimetry in portraying specific types of geologic units, materials, and structures mostly hidden from view on the ground and on Landsat TM images by a relatively thin, but extensive blanket of blow sand. Basement rock units (granitoids and gneisses) and the fractures associated with them at Bir Safsaf are shown here for the first time to be clearly delineated using C- and L-band SAR images. The detectability of most geologic features is dependent primarily on radar frequency, as shown for wind erosion patterns in bedrock at X-band (3 cm wavelength), and for geologic units and sand and clay-filled fractures in weathered crystal-line basement rocks at C-band (6 cm) and L-band (24 cm). By contrast, Quaternary paleodrainage channels are detectable at all three radar frequencies owing, among other things, to an usually thin cover of blow sand. The SIR-C/X-SAR data investigated to date enable us to make specific recommendations about the utility of certain radar sensor configurations for geologic and paleoenvironmental reconnaissance in desert regions.Analysis of the shuttle imaging radar-C/X-synthetic aperture radar (SIR-C/X-SAR) data from Bir Safsaf provides important new information on the roles of multiple SAR frequency and polarimetry in portraying specific types of geologic units, materials, and structures mostly hidden from view on the ground and on Landsat images by a relatively thin, but extensive blanket of blow sand. Basement rock units and associated fractures at the Bir Safsaf are clearly delineated using C- and L-band SAR images. The detectability of most geologic features depend primarily on radar frequency. The SIR-C/X-SAR data also provide recommendations about the utility of certain radar configurations for geologic and paleoenvironmental reconnaissance in deserts.
InSAR observations of low slip rates on the major faults of western Tibet.
Wright, Tim J; Parsons, Barry; England, Philip C; Fielding, Eric J
2004-07-09
Two contrasting views of the active deformation of Asia dominate the debate about how continents deform: (i) The deformation is primarily localized on major faults separating crustal blocks or (ii) deformation is distributed throughout the continental lithosphere. In the first model, western Tibet is being extruded eastward between the major faults bounding the region. Surface displacement measurements across the western Tibetan plateau using satellite radar interferometry (InSAR) indicate that slip rates on the Karakoram and Altyn Tagh faults are lower than would be expected for the extrusion model and suggest a significant amount of internal deformation in Tibet.
Assessing Groundwater Depletion and Dynamics Using GRACE and InSAR: Potential and Limitations.
Castellazzi, Pascal; Martel, Richard; Galloway, Devin L; Longuevergne, Laurent; Rivera, Alfonso
2016-11-01
In the last decade, remote sensing of the temporal variation of ground level and gravity has improved our understanding of groundwater dynamics and storage. Mass changes are measured by GRACE (Gravity Recovery and Climate Experiment) satellites, whereas ground deformation is measured by processing synthetic aperture radar satellites data using the InSAR (Interferometry of Synthetic Aperture Radar) techniques. Both methods are complementary and offer different sensitivities to aquifer system processes. GRACE is sensitive to mass changes over large spatial scales (more than 100,000 km 2 ). As such, it fails in providing groundwater storage change estimates at local or regional scales relevant to most aquifer systems, and at which most groundwater management schemes are applied. However, InSAR measures ground displacement due to aquifer response to fluid-pressure changes. InSAR applications to groundwater depletion assessments are limited to aquifer systems susceptible to measurable deformation. Furthermore, the inversion of InSAR-derived displacement maps into volume of depleted groundwater storage (both reversible and largely irreversible) is confounded by vertical and horizontal variability of sediment compressibility. During the last decade, both techniques have shown increasing interest in the scientific community to complement available in situ observations where they are insufficient. In this review, we present the theoretical and conceptual bases of each method, and present idealized scenarios to highlight the potential benefits and challenges of combining these techniques to remotely assess groundwater storage changes and other aspects of the dynamics of aquifer systems. © 2016, National Ground Water Association.
Simulation Studies of the Effect of Forest Spatial Structure on InSAR Signature
NASA Technical Reports Server (NTRS)
Sun, Guoqing; Liu, Dawei; Ranson, K. Jon; Koetz, Benjamin
2007-01-01
The height of scattering phase retrieved from InSAR data is considered being correlated with the tree height and the spatial structure of the forest stand. Though some researchers have used simple backscattering models to estimate tree height from the height of scattering center, the effect of forest spatial structure on InSAR data is not well understood yet. A three-dimensional coherent radar backscattering model for forest canopies based on realistic three-dimensional scene was used to investigate the effect in this paper. The realistic spatial structure of forest canopies was established either by field measurements (stem map) or through use of forest growth model. Field measurements or a forest growth model parameterized using local environmental parameters provides information of forest species composition and tree sizes in certain growth phases. A fractal tree model (L-system) was used to simulate individual 3- D tree structure of different ages or heights. Trees were positioned in a stand in certain patterns resulting in a 3-D medium of discrete scatterers. The radar coherent backscatter model took the 3-D forest scene as input and simulates the coherent radar backscattering signature. Interferometric SAR images of 3D scenes were simulated and heights of scattering phase centers were estimated from the simulated InSAR data. The effects of tree height, crown cover, crown depth, and the spatial distribution patterns of trees on the scattering phase center were analyzed. The results will be presented in the paper.
Assessing groundwater depletion and dynamics using GRACE and InSAR: Potential and limitations
Castellazzi, Pascal; Martel, Richard; Galloway, Devin L.; Longuevergne, Laurent; Rivera, Alfonso
2016-01-01
In the last decade, remote sensing of the temporal variation of ground level and gravity has improved our understanding of groundwater dynamics and storage. Mass changes are measured by GRACE (Gravity Recovery and Climate Experiment) satellites, whereas ground deformation is measured by processing synthetic aperture radar satellites data using the InSAR (Interferometry of Synthetic Aperture Radar) techniques. Both methods are complementary and offer different sensitivities to aquifer system processes. GRACE is sensitive to mass changes over large spatial scales (more than 100,000 km2). As such, it fails in providing groundwater storage change estimates at local or regional scales relevant to most aquifer systems, and at which most groundwater management schemes are applied. However, InSAR measures ground displacement due to aquifer response to fluid-pressure changes. InSAR applications to groundwater depletion assessments are limited to aquifer systems susceptible to measurable deformation. Furthermore, the inversion of InSAR-derived displacement maps into volume of depleted groundwater storage (both reversible and largely irreversible) is confounded by vertical and horizontal variability of sediment compressibility. During the last decade, both techniques have shown increasing interest in the scientific community to complement available in situ observations where they are insufficient. In this review, we present the theoretical and conceptual bases of each method, and present idealized scenarios to highlight the potential benefits and challenges of combining these techniques to remotely assess groundwater storage changes and other aspects of the dynamics of aquifer systems.
Investigation of temperature dependent magnetic hyperthermia in Fe3O4 ferrofluids
NASA Astrophysics Data System (ADS)
Nemala, Humeshkar Bhaskar
Magnetic nanoparticles (MNPs) of Fe3O4 and gamma-Fe2O3 have been exploited in the biomedical fields for imaging, targeted drug delivery and magnetic hyperthermia. Magnetic hyperthermia (MHT), the production of heat using ferrofluids, colloidal suspensions of MNPs, in an external AC magnetic field (amplitude, 100-500 Oe and frequency 50 kHz -1MHz), has been explored by many researchers, both in vitro and in vivo, as an alternative viable option to treat cancer. The heat energy generated by Neel and Brownian relaxation processes of the internal magnetic spins could be used to elevate local tissue temperature to about 46 ˚C to arrest cancerous growth. MHT, due to its local nature of heating, when combined with other forms of treatment such as chemotherapy and/or radiation therapy, it could become an effective therapy for cancer treatment. The efficiency of heat production in MHT is quantified by specific absorption rate (SAR), defined as the power output per gram of the MNPs used. In this thesis, ferrofluids consisting of Fe3O4 MNPs of three different sizes (˜ 10 - 13 nm) coated with two different biocompatible surfactants, dextran and polyethylene glycol (PEG), have been investigated. The structural and magnetic characterization of the MNPs were done using XRD, TEM, and DC magnetization measurements. While XRD revealed the crystallite size, TEM provided the information about morphology and physical size distribution of the MNPs. Magnetic measurements of M-vs-H curves for ferrofluids provided information about the saturation magnetization (Ms) and magnetic core size distribution of MNPs. Using MHT measurements, the SAR has been studied as a function of temperature, taking into account the heat loss due to non-adiabatic nature of the experimental set-up. The observed SAR values have been interpreted using the theoretical framework of linear response theory (LRT). We found the SAR values depend on particle size distribution of MNPs, Ms (65-80 emu/g) and the magnetic anisotropy energy density (K: 12-20 KJ/m3), as well as the amplitude and frequency of the applied AC field (amplitude, 150-250 Oe and frequency, 180-380 kHz). In general, Ms and magnetic core diameter of MNPs increased with the increase in particle size. However, our detailed analysis of MHT data show that although SAR increased with the particle size, the polydispersity of the particles as well as the magnetic anisotropy energy density significantly affected the SAR values. Dextran and PEG coatings essentially yielded similar SAR values ~ 100 W/g using ferrofluids of Fe3O4 MNPs with an average crystallite size of 11.6 +/- 2.1 nm, in AC field of 245 Oe and 375 KHz.
SAR Observation and Modeling of Gap Winds in the Prince William Sound of Alaska.
Liu, Haibo; Olsson, Peter Q; Volz, Karl
2008-08-22
Alaska's Prince William Sound (PWS) is a unique locale tending to have strong gap winds, especially in the winter season. To characterize and understand these strong surface winds, which have great impacts on the local marine and aviation activities, the surface wind retrieval from the Synthetic Aperture Radar data (SAR-wind) is combined with a numerical mesoscale model. Helped with the SAR-wind observations, the mesoscale model is used to study cases of strong winds and relatively weak winds to depict the nature of these winds, including the area of extent and possible causes of the wind regimes. The gap winds from the Wells Passage and the Valdez Arm are the most dominant gap winds in PWS. Though the Valdez Arm is north-south trending and Wells Passage is east-west oriented, gap winds often develop simultaneously in these two places when a low pressure system is present in the Northern Gulf of Alaska. These two gap winds often converge at the center of PWS and extend further out of the Sound through the Hinchinbrook Entrance. The pressure gradients imposed over these areas are the main driving forces for these gap winds. Additionally, the drainage from the upper stream glaciers and the blocking effect of the banks of the Valdez Arm probably play an important role in enhancing the gap wind.
Analysis of Ground Displacements in Taipei Area by Using High Resolution X-band SAR Interferometry
NASA Astrophysics Data System (ADS)
Tung, H.; Chen, H. Y.; Hu, J. C.
2014-12-01
Located at the northern part of Taiwan, Taipei is the most densely populated city and the center of politic, economic, and culture of this island. North of the Taipei basin, the active Tatun volcano group with the eruptive potential to devastate the entire Taipei is only 15 km away from the capital Taipei. Furthermore, the active Shanchiao fault located in the western margin of Taipei basin. Therefore, it is not only an interesting scientific topic but also a strong social impact to better understand the assessment and mitigation of geological hazard in the metropolitan Taipei city. In this study, we use 12 high resolution X-band SAR images from the new generation COSMO-SkyMed (CSK) constellation for associating with leveling and GPS data to monitor surface deformation around the Shanchiao fault and the Tatun volcano group. The stripmap mode of CSK SAR images provides spatial resolution of 3 m x 3 m, which is one order of magnitude better than the previous available satellite SAR data. Furthermore, the more frequent revisit of the same Area of Interest (AOI) of the present X-band missions provides massive datasets to avoid the baseline limitation and temporal decorrelation to improve the temporal resolution of deformation in time series. After transferring the GPS vectors and leveling data to the LOS direction by referring to continuous GPS station BANC, the R square between PS velocities and GPS velocities is approximate to 0.9, which indicates the high reliability of our PSInSAR result. In addition, the well-fitting profiles between leveling data and PSInSAR result along two leveling routes both demonstrate that the significant deformation gradient mainly occurs along the Shanchiao fault. The severe land subsidence area is located in the western part of Taipei basin just next to the Shanchiao fault with a maximum of SRD rate of 30 mm/yr. However, the severe subsidence area, Wuku, is also one industrial area in Taipei which could be attributed to anthropogenic effect. In the future, we will use all available images to monitor the temporal and spatial variation in deformation to better understand the activity of the Shanchiao fault.
Barnard, Dale L; Day, Craig W; Bailey, Kevin; Heiner, Matthew; Montgomery, Robert; Lauridsen, Larry; Winslow, Scott; Hoopes, Justin; Li, Joseph K-K; Lee, Jongdae; Carson, Dennis A; Cottam, Howard B; Sidwell, Robert W
2006-08-01
Because of the conflicting data concerning the SARS-CoV inhibitory efficacy of ribavirin, an inosine monophosphate (IMP) dehydrogenase inhibitor, studies were done to evaluate the efficacy of ribavirin and other IMP dehydrogenase inhibitors (5-ethynyl-1-beta-D-ribofuranosylimidazole-4-carboxamide (EICAR), mizoribine, and mycophenolic acid) in preventing viral replication in the lungs of BALB/c mice, a replication model for severe acute respiratory syndrome (SARS) infections (Subbarao, K., McAuliffe, J., Vogel, L., Fahle, G., Fischer, S., Tatti, K., Packard, M., Shieh, W.J., Zaki, S., Murphy, B., 2004. Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus (SARS-CoV) in the respiratory tract of mice. J. Virol. 78, 3572-3577). Ribavirin given at 75 mg/kg 4 h prior to virus exposure and then given twice daily for 3 days beginning at day 0 was found to increase virus lung titers and extend the length of time that virus could be detected in the lungs of mice. Other IMP dehydrogenase inhibitors administered near maximum tolerated doses using the same dosing regimen as for ribavirin were found to slightly enhance virus replication in the lungs. In addition, ribavirin treatment seemed also to promote the production of pro-inflammatory cytokines 4 days after cessation of treatment, although after 3 days of treatment ribavirin inhibited pro-inflammatory cytokine production in infected mice, significantly reducing the levels of the cytokines IL-1alpha, interleukin-5 (IL-5), monocyte chemotactic protein-1 (MCP-1), and granulocyte-macrophage colony stimulating factor (GM-CSF). These findings suggest that ribavirin may actually contribute to the pathogenesis of SARS-CoV by prolonging and/or enhancing viral replication in the lungs. By not inhibiting viral replication in the lungs of infected mice, ribavirin treatment may have provided a continual source of stimulation for the inflammatory response thought to contribute to the pathogenesis of the infection. Our data do not support the use of ribavirin or other IMP dehydrogenase inhibitors for treating SARS infections in humans.
Geodetic Imaging of the Earthquake Cycle
NASA Astrophysics Data System (ADS)
Tong, Xiaopeng
In this dissertation I used Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) to recover crustal deformation caused by earthquake cycle processes. The studied areas span three different types of tectonic boundaries: a continental thrust earthquake (M7.9 Wenchuan, China) at the eastern margin of the Tibet plateau, a mega-thrust earthquake (M8.8 Maule, Chile) at the Chile subduction zone, and the interseismic deformation of the San Andreas Fault System (SAFS). A new L-band radar onboard a Japanese satellite ALOS allows us to image high-resolution surface deformation in vegetated areas, which is not possible with older C-band radar systems. In particular, both the Wenchuan and Maule InSAR analyses involved L-band ScanSAR interferometry which had not been attempted before. I integrated a large InSAR dataset with dense GPS networks over the entire SAFS. The integration approach features combining the long-wavelength deformation from GPS with the short-wavelength deformation from InSAR through a physical model. The recovered fine-scale surface deformation leads us to better understand the underlying earthquake cycle processes. The geodetic slip inversion reveals that the fault slip of the Wenchuan earthquake is maximum near the surface and decreases with depth. The coseismic slip model of the Maule earthquake constrains the down-dip extent of the fault slip to be at 45 km depth, similar to the Moho depth. I inverted for the slip rate on 51 major faults of the SAFS using Green's functions for a 3-dimensional earthquake cycle model that includes kinematically prescribed slip events for the past earthquakes since the year 1000. A 60 km thick plate model with effective viscosity of 10 19 Pa · s is preferred based on the geodetic and geological observations. The slip rates recovered from the plate models are compared to the half-space model. The InSAR observation reveals that the creeping section of the SAFS is partially locked. This high-resolution deformation model will refine the moment accumulation rates and shear strain rates, which are not well resolved by previous models.
Parameterization and scaling of arctic ice conditions in the context of ice-atmospheric processes
NASA Technical Reports Server (NTRS)
Barry, R. G.; Steffen, K.; Heinrichs, J. F.; Key, J. R.; Maslanik, J. A.; Serreze, M. C.; Weaver, R. L.
1995-01-01
The goals of this project are to observe how the open water/thin ice fraction in a high-concentration ice pack responds to different short-period atmospheric forcings, and how this response is represented in different scales of observation. The objectives can be summarized as follows: determine the feasibility and accuracy of ice concentration and ice typing by ERS-1 SAR backscatter data, and whether SAR data might be used to calibrate concentration estimates from optical and massive-microwave sensors; investigate methods to integrate SAR data with other satellite data for turbulent heat flux parameterization at the ocean/atmosphere interface; determine how the development and evolution of open water/thin ice areas within the interior ice pack vary under different atmospheric synoptic regimes; compare how open-water/thin ice fractions estimated from large-area divergence measurements differ from fractions determined by summing localized openings in the pack; relate these questions of scale and process to methods of observation, modeling, and averaging over time and space.
Preprocessing of SAR interferometric data using anisotropic diffusion filter
NASA Astrophysics Data System (ADS)
Sartor, Kenneth; Allen, Josef De Vaughn; Ganthier, Emile; Tenali, Gnana Bhaskar
2007-04-01
The most commonly used smoothing algorithms for complex data processing are blurring functions (i.e., Hanning, Taylor weighting, Gaussian, etc.). Unfortunately, the filters so designed blur the edges in a Synthetic Aperture Radar (SAR) scene, reduce the accuracy of features, and blur the fringe lines in an interferogram. For the Digital Surface Map (DSM) extraction, the blurring of these fringe lines causes inaccuracies in the height of the unwrapped terrain surface. Our goal here is to perform spatially non-uniform smoothing to overcome the above mentioned disadvantages. This is achieved by using a Complex Anisotropic Non-Linear Diffuser (CANDI) filter that is a spatially varying. In particular, an appropriate choice of the convection function in the CANDI filter is able to accomplish the non-uniform smoothing. This boundary sharpening intra-region smoothing filter acts on interferometric SAR (IFSAR) data with noise to produce an interferogram with significantly reduced noise contents and desirable local smoothing. Results of CANDI filtering will be discussed and compared with those obtained by using the standard filters on simulated data.
The MM5 Numerical Model to Correct PSInSAR Atmospheric Phase Screen
NASA Astrophysics Data System (ADS)
Perissin, D.; Pichelli, E.; Ferretti, R.; Rocca, F.; Pierdicca, N.
2010-03-01
In this work we make an experimental analysis to research the capability of Numerical Weather Prediction (NWP) models as MM5 to produce high resolution (1km-500m) maps of Integrated Water Vapour (IWV) in the atmosphere to mitigate the well-known disturbances that affect the radar signal while travelling from the sensor to the ground and back. Experiments have been conducted over the area surrounding Rome using ERS data acquired during the three days phase in '94 and using Envisat data acquired in recent years. By means of the PS technique SAR data have been processed and the Atmospheric Phase Screen (APS) of Slave images with respect to a reference Master have been extracted. MM5 IWV maps have a much lower resolution than PSInSAR APS's: the turbulent term of the atmospheric vapour field cannot be well resolved by MM5, at least with the low resolution ECMWF inputs. However, the vapour distribution term that depends on the local topography has been found quite in accordance.
Parameterization and scaling of Arctic ice conditions in the context of ice-atmosphere processes
NASA Technical Reports Server (NTRS)
Barry, R. G.; Heinrichs, J.; Steffen, K.; Maslanik, J. A.; Key, J.; Serreze, M. C.; Weaver, R. W.
1994-01-01
This report summarizes achievements during year three of our project to investigate the use of ERS-1 SAR data to study Arctic ice and ice/atmosphere processes. The project was granted a one year extension, and goals for the final year are outlined. The specific objects of the project are to determine how the development and evolution of open water/thin ice areas within the interior ice pack vary under different atmospheric synoptic regimes; compare how open water/thin ice fractions estimated from large-area divergence measurements differ from fractions determined by summing localized openings in the pack; relate these questions of scale and process to methods of observation, modeling, and averaging over time and space; determine whether SAR data might be used to calibrate ice concentration estimates from medium and low-rate bit sensors (AVHRR and DMSP-OLS) and the special sensor microwave imager (SSM/I); and investigate methods to integrate SAR data for turbulent heat flux parametrization at the atmosphere interface with other satellite data.
Heterogeneity Measurement Based on Distance Measure for Polarimetric SAR Data
NASA Astrophysics Data System (ADS)
Xing, Xiaoli; Chen, Qihao; Liu, Xiuguo
2018-04-01
To effectively test the scene heterogeneity for polarimetric synthetic aperture radar (PolSAR) data, in this paper, the distance measure is introduced by utilizing the similarity between the sample and pixels. Moreover, given the influence of the distribution and modeling texture, the K distance measure is deduced according to the Wishart distance measure. Specifically, the average of the pixels in the local window replaces the class center coherency or covariance matrix. The Wishart and K distance measure are calculated between the average matrix and the pixels. Then, the ratio of the standard deviation to the mean is established for the Wishart and K distance measure, and the two features are defined and applied to reflect the complexity of the scene. The proposed heterogeneity measure is proceeded by integrating the two features using the Pauli basis. The experiments conducted on the single-look and multilook PolSAR data demonstrate the effectiveness of the proposed method for the detection of the scene heterogeneity.
PROBABILISTIC SAFETY ASSESSMENT OF OPERATIONAL ACCIDENTS AT THE WASTE ISOLATION PILOT PLANT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rucker, D.F.
2000-09-01
This report presents a probabilistic safety assessment of radioactive doses as consequences from accident scenarios to complement the deterministic assessment presented in the Waste Isolation Pilot Plant (WIPP) Safety Analysis Report (SAR). The International Council of Radiation Protection (ICRP) recommends both assessments be conducted to ensure that ''an adequate level of safety has been achieved and that no major contributors to risk are overlooked'' (ICRP 1993). To that end, the probabilistic assessment for the WIPP accident scenarios addresses the wide range of assumptions, e.g. the range of values representing the radioactive source of an accident, that could possibly have beenmore » overlooked by the SAR. Routine releases of radionuclides from the WIPP repository to the environment during the waste emplacement operations are expected to be essentially zero. In contrast, potential accidental releases from postulated accident scenarios during waste handling and emplacement could be substantial, which necessitates the need for radiological air monitoring and confinement barriers (DOE 1999). The WIPP Safety Analysis Report (SAR) calculated doses from accidental releases to the on-site (at 100 m from the source) and off-site (at the Exclusive Use Boundary and Site Boundary) public by a deterministic approach. This approach, as demonstrated in the SAR, uses single-point values of key parameters to assess the 50-year, whole-body committed effective dose equivalent (CEDE). The basic assumptions used in the SAR to formulate the CEDE are retained for this report's probabilistic assessment. However, for the probabilistic assessment, single-point parameter values were replaced with probability density functions (PDF) and were sampled over an expected range. Monte Carlo simulations were run, in which 10,000 iterations were performed by randomly selecting one value for each parameter and calculating the dose. Statistical information was then derived from the 10,000 iteration batch, which included 5%, 50%, and 95% dose likelihood, and the sensitivity of each assumption to the calculated doses. As one would intuitively expect, the doses from the probabilistic assessment for most scenarios were found to be much less than the deterministic assessment. The lower dose of the probabilistic assessment can be attributed to a ''smearing'' of values from the high and low end of the PDF spectrum of the various input parameters. The analysis also found a potential weakness in the deterministic analysis used in the SAR, a detail on drum loading was not taken into consideration. Waste emplacement operations thus far have handled drums from each shipment as a single unit, i.e. drums from each shipment are kept together. Shipments typically come from a single waste stream, and therefore the curie loading of each drum can be considered nearly identical to that of its neighbor. Calculations show that if there are large numbers of drums used in the accident scenario assessment, e.g. 28 drums in the waste hoist failure scenario (CH5), then the probabilistic dose assessment calculations will diverge from the deterministically determined doses. As it is currently calculated, the deterministic dose assessment assumes one drum loaded to the maximum allowable (80 PE-Ci), and the remaining are 10% of the maximum. The effective average of drum curie content is therefore less in the deterministic assessment than the probabilistic assessment for a large number of drums. EEG recommends that the WIPP SAR calculations be revisited and updated to include a probabilistic safety assessment.« less
NASA Astrophysics Data System (ADS)
Bianchini, S.; Cigna, F.; Del Ventisette, C.; Moretti, S.; Casagli, N.
2012-04-01
Landslide phenomena represent a major geological hazard worldwide, threatening human lives and settlements, especially in urban areas where the potential socio-economic losses and damages are stronger because of the higher value of the element at risk exposure and vulnerability. The impact of these natural disasters in highly populated and vulnerable areas can be reduced or prevented by performing a proper detection of such ground movements, in order to support an appropriate urban planning. Mapping and monitoring of active landslides and vulnerable slopes can greatly benefit from radar satellite data analysis, due to the great cost-benefits ratio, non-invasiveness and high precision of remote sensing techniques. This work illustrates the potential of Persistent Scatterer Interferometry (PSI) using X-band SAR (Synthetic Aperture Radar) data for a detailed detection and characterization of landslide ground displacements at local scale. PSI analysis is a powerful tool for mapping and monitoring slow surface displacements, just particularly in built-up and urbanized areas where many radar benchmarks (the PS, Persistent Scatterers) are retrieved. We exploit X-band radar data acquired from the German satellite TerraSAR-X on Gimigliano site located in Calabria Region (Italy). The use of TerraSAR-X imagery significantly improves the level of detail of the analysis and extends the applicability of space-borne SAR interferometry to faster ground movements, due to higher spatial resolutions (up to 1 m), higher PS targets density and shorter repeat cycles (11 days) of X-band satellites with respect to the medium resolution SAR sensors, such as ERS1/2, ENVISAT and RADARSAT1/2. 27 SAR scenes were acquired over a 116.9 Km2 extended area from the satellite TerraSAR-X in Spotlight mode, along descending orbits, with a look angle of 34°, from November 2010 to October 2011. The images were processed by e-GEOS with the Persistent Scatterers Pairs (PSP) technique, providing the estimation of annual velocities of LOS (Line Of Sight) ground displacements and related deformation time series for the whole acquisition period. The methodology performed is based on the integration of recent radar PS data in X-band with historical SAR archives derived from ERS1/2 and ENVISAT data in C-band, and with geological and geomorphological evidences resulting from the existing auxiliary data (e.g. landslide databases, thematic maps and aerial orthophotos), finally validated with field checks and in situ observations in the study area. This operative procedure led to the detailed study of the spatial distribution and temporal evolution of ground movements phenomena in Gimigliano site. The outcomes of this work represent a valuable example of detection and characterization of landslide-induced phenomena identified in detail by PSI analysis in X-band at local scale. This approach showed that PSI technique has the potential to improve the quality and timeliness of landslide inventories and consequently help for the implementation of best strategies for risk mitigation and urban-environmental design. This work was carried out within the SAFER (Services and Applications For Emergency Response) project, funded by the European Commission within the 7th Framework Programme under the Global Monitoring for Environment and Security (EC GMES FP7) initiative.
Amazon Rain Forest Classification Using J-ERS-1 SAR Data
NASA Technical Reports Server (NTRS)
Freeman, A.; Kramer, C.; Alves, M.; Chapman, B.
1994-01-01
The Amazon rain forest is a region of the earth that is undergoing rapid change. Man-made disturbance, such as clear cutting for agriculture or mining, is altering the rain forest ecosystem. For many parts of the rain forest, seasonal changes from the wet to the dry season are also significant. Changes in the seasonal cycle of flooding and draining can cause significant alterations in the forest ecosystem.Because much of the Amazon basin is regularly covered by thick clouds, optical and infrared coverage from the LANDSAT and SPOT satellites is sporadic. Imaging radar offers a much better potential for regular monitoring of changes in this region. In particular, the J-ERS-1 satellite carries an L-band HH SAR system, which via an on-board tape recorder, can collect data from almost anywhere on the globe at any time of year.In this paper, we show how J-ERS-1 radar images can be used to accurately classify different forest types (i.e., forest, hill forest, flooded forest), disturbed areas such as clear cuts and urban areas, and river courses in the Amazon basin. J-ERS-1 data has also shown significant differences between the dry and wet season, indicating a strong potential for monitoring seasonal change. The algorithm used to classify J-ERS-1 data is a standard maximum-likelihood classifier, using the radar image local mean and standard deviation of texture as input. Rivers and clear cuts are detected using edge detection and region-growing algorithms. Since this classifier is intended to operate successfully on data taken over the entire Amazon, several options are available to enable the user to modify the algorithm to suit a particular image.
Liu, Xilin; Zhang, Milin; Richardson, Andrew G; Lucas, Timothy H; Van der Spiegel, Jan
2017-08-01
This paper presents a bidirectional brain machine interface (BMI) microsystem designed for closed-loop neuroscience research, especially experiments in freely behaving animals. The system-on-chip (SoC) consists of 16-channel neural recording front-ends, neural feature extraction units, 16-channel programmable neural stimulator back-ends, in-channel programmable closed-loop controllers, global analog-digital converters (ADC), and peripheral circuits. The proposed neural feature extraction units includes 1) an ultra low-power neural energy extraction unit enabling a 64-step natural logarithmic domain frequency tuning, and 2) a current-mode action potential (AP) detection unit with time-amplitude window discriminator. A programmable proportional-integral-derivative (PID) controller has been integrated in each channel enabling a various of closed-loop operations. The implemented ADCs include a 10-bit voltage-mode successive approximation register (SAR) ADC for the digitization of the neural feature outputs and/or local field potential (LFP) outputs, and an 8-bit current-mode SAR ADC for the digitization of the action potential outputs. The multi-mode stimulator can be programmed to perform monopolar or bipolar, symmetrical or asymmetrical charge balanced stimulation with a maximum current of 4 mA in an arbitrary channel configuration. The chip has been fabricated in 0.18 μ m CMOS technology, occupying a silicon area of 3.7 mm 2 . The chip dissipates 56 μW/ch on average. General purpose low-power microcontroller with Bluetooth module are integrated in the system to provide wireless link and SoC configuration. Methods, circuit techniques and system topology proposed in this work can be used in a wide range of relevant neurophysiology research, especially closed-loop BMI experiments.
Optimization of pelvic heating rate distributions with electromagnetic phased arrays.
Paulsen, K D; Geimer, S; Tang, J; Boyse, W E
1999-01-01
Deep heating of pelvic tumours with electromagnetic phased arrays has recently been reported to improve local tumour control when combined with radiotherapy in a randomized clinical trial despite the fact that rather modest elevations in tumour temperatures were achieved. It is reasonable to surmise that improvements in temperature elevation could lead to even better tumour response rates, motivating studies which attempt to explore the parameter space associated with heating rate delivery in the pelvis. Computational models which are based on detailed three-dimensional patient anatomy are readily available and lend themselves to this type of investigation. In this paper, volume average SAR is optimized in a predefined target volume subject to a maximum allowable volume average SAR outside this zone. Variables under study include the position of the target zone, the number and distribution of radiators and the applicator operating frequency. The results show a clear preference for increasing frequency beyond 100 MHz, which is typically applied clinically, especially as the number of antennae increases. Increasing both the number of antennae per circumferential distance around the patient, as well as the number of independently functioning antenna bands along the patient length, is important in this regard, although improvements were found to be more significant with increasing circumferential antenna density. However, there is considerable site specific variation and cases occur where lower numbers of antennae spread out over multiple longitudinal bands are more advantageous. The results presented here have been normalized relative to an optimized set of antenna array amplitudes and phases operating at 100 MHz which is a common clinical configuration. The intent is to provide some indications of avenues for improving the heating rate distributions achievable with current technology.
Titan dune heights retrieval by using Cassini Radar Altimeter
NASA Astrophysics Data System (ADS)
Mastrogiuseppe, M.; Poggiali, V.; Seu, R.; Martufi, R.; Notarnicola, C.
2014-02-01
The Cassini Radar is a Ku band multimode instrument capable of providing topographic and mapping information. During several of the 93 Titan fly-bys performed by Cassini, the radar collected a large amount of data observing many dune fields in multiple modes such as SAR, Altimeter, Scatterometer and Radiometer. Understanding dune characteristics, such as shape and height, will reveal important clues on Titan's climatic and geological history providing a better understanding of aeolian processes on Earth. Dunes are believed to be sculpted by the action of the wind, weak at the surface but still able to activate the process of sand-sized particle transport. This work aims to estimate dunes height by modeling the shape of the real Cassini Radar Altimeter echoes. Joint processing of SAR/Altimeter data has been adopted to localize the altimeter footprints overlapping dune fields excluding non-dune features. The height of the dunes was estimated by applying Maximum Likelihood Estimation along with a non-coherent electromagnetic (EM) echo model, thus comparing the real averaged waveform with the theoretical curves. Such analysis has been performed over the Fensal dune field observed during the T30 flyby (May 2007). As a result we found that the estimated dunes' peak to trough heights difference was in the order of 60-120 m. Estimation accuracy and robustness of the MLE for different complex scenarios was assessed via radar simulations and Monte-Carlo approach. We simulated dunes-interdunes different composition and roughness for a large set of values verifying that, in the range of possible Titan environment conditions, these two surface parameters have weak effects on our estimates of standard dune heights deviation. Results presented here are the first part of a study that will cover all Titan's sand seas.
Uter, Wolfgang; Johansen, Jeanne D; Börje, Anna; Karlberg, Ann-Therese; Lidén, Carola; Rastogi, Suresh; Roberts, David; White, Ian R
2013-10-01
Contact allergy to fragrances is still relatively common, affecting ∼ 16% of patients patch tested for suspected allergic contact dermatitis, considering all current screening allergens. The objective of the review is to systematically retrieve, evaluate and classify evidence on contact allergy to fragrances, in order to arrive at recommendations for targeting of primary and secondary prevention. Besides published evidence on contact allergy in humans, animal data (local lymph node assay), annual use volumes and structure-activity relationships (SARs) were considered for an algorithmic categorization of substances as contact allergens. A total of 54 individual chemicals and 28 natural extracts (essential oils) can be categorized as established contact allergens in humans, including all 26 substances previously identified as contact allergens (SCCNFP/0017/98). Twelve of the 54 individual chemicals are considered to be of special concern, owing to the high absolute number of reported cases of contact allergy (>100). Additionally, 18 single substances and one natural mixture are categorized as established contact allergens in animals. SARs, combined with limited human evidence, contributed to the categorization of a further 26 substances as likely contact allergens. In conclusion, the presence of 127 single fragrance substances and natural mixtures should, owing to their skin sensitizing properties, be disclosed, for example on the label. As an additional preventive measure, the maximum use concentration of 11 substances of special concern should be limited to 100 ppm. The substance hydroxyisohexyl 3-cyclohexene carboxaldehyde and the two ingredients chloroatranol and atranol in the natural extracts Evernia prunastri and Evernia furfuracea should not be present in cosmetic products. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
SARS coronavirus protein 7a interacts with human Ap4A-hydrolase.
Vasilenko, Natalia; Moshynskyy, Igor; Zakhartchouk, Alexander
2010-02-09
The SARS coronavirus (SARS-CoV) open reading frame 7a (ORF 7a) encodes a 122 amino acid accessory protein. It has no significant sequence homology with any other known proteins. The 7a protein is present in the virus particle and has been shown to interact with several host proteins; thereby implicating it as being involved in several pathogenic processes including apoptosis, inhibition of cellular protein synthesis, and activation of p38 mitogen activated protein kinase. In this study we present data demonstrating that the SARS-CoV 7a protein interacts with human Ap4A-hydrolase (asymmetrical diadenosine tetraphosphate hydrolase, EC 3.6.1.17). Ap4A-hydrolase is responsible for metabolizing the "allarmone" nucleotide Ap4A and therefore likely involved in regulation of cell proliferation, DNA replication, RNA processing, apoptosis and DNA repair. The interaction between 7a and Ap4A-hydrolase was identified using yeast two-hybrid screening. The interaction was confirmed by co-immunoprecipitation from cultured human cells transiently expressing V5-His tagged 7a and HA tagged Ap4A-hydrolase. Human tissue culture cells transiently expressing 7a and Ap4A-hydrolase tagged with EGFP and Ds-Red2 respectively show these proteins co-localize in the cytoplasm.
Zhang, Yue; Zou, Huanxin; Luo, Tiancheng; Qin, Xianxiang; Zhou, Shilin; Ji, Kefeng
2016-01-01
The superpixel segmentation algorithm, as a preprocessing technique, should show good performance in fast segmentation speed, accurate boundary adherence and homogeneous regularity. A fast superpixel segmentation algorithm by iterative edge refinement (IER) works well on optical images. However, it may generate poor superpixels for Polarimetric synthetic aperture radar (PolSAR) images due to the influence of strong speckle noise and many small-sized or slim regions. To solve these problems, we utilized a fast revised Wishart distance instead of Euclidean distance in the local relabeling of unstable pixels, and initialized unstable pixels as all the pixels substituted for the initial grid edge pixels in the initialization step. Then, postprocessing with the dissimilarity measure is employed to remove the generated small isolated regions as well as to preserve strong point targets. Finally, the superiority of the proposed algorithm is validated with extensive experiments on four simulated and two real-world PolSAR images from Experimental Synthetic Aperture Radar (ESAR) and Airborne Synthetic Aperture Radar (AirSAR) data sets, which demonstrate that the proposed method shows better performance with respect to several commonly used evaluation measures, even with about nine times higher computational efficiency, as well as fine boundary adherence and strong point targets preservation, compared with three state-of-the-art methods. PMID:27754385
NASA Astrophysics Data System (ADS)
Zhang, B.; Wdowinski, S.; Oliver-Cabrera, T.; Koirala, R.; Jo, M. J.; Osmanoglu, B.
2018-04-01
During Hurricane Irma's passage over Florida in September 2017, many sections of the state experienced heavy rain and sequent flooding. In order to drain water out of potential flooding zones and assess property damage, it is important to map the extent and magnitude of the flooded areas at various stages of the storm. We use Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR) observations, acquired by Sentinel-1 before, during and after the hurricane passage, which enable us to evaluate surface condition during different stages of the hurricane. This study uses multi-temporal images acquired under dry condition before the hurricane to constrain the background backscattering signature. Flooded areas are detected when the backscattering during the hurricane is statistically significantly different from the average dry conditions. The detected changes can be either an increase or decrease of the backscattering, which depends on the scattering characteristics of the surface. In addition, water level change information in Palmdale, South Florida is extracted from an interferogram with the aid of a local water gauge as the reference. The results of our flooding analysis revealed that the majority of the study area in South Florida was flooded during Hurricane Irma.
NASA Astrophysics Data System (ADS)
Fattahi, Heresh; Amelung, Falk
2016-08-01
We use 2004-2011 Envisat synthetic aperture radar imagery and InSAR time series methods to estimate the contemporary rates of strain accumulation in the Chaman Fault system in Pakistan and Afghanistan. At 29 N we find long-term slip rates of 16 ± 2.3 mm/yr for the Ghazaband Fault and of 8 ± 3.1 mm/yr for the Chaman Fault. This makes the Ghazaband Fault one of the most hazardous faults of the plate boundary zone. We further identify a 340 km long segment displaying aseismic surface creep along the Chaman Fault, with maximum surface creep rate of 8.1 ± 2 mm/yr. The observation that the Chaman Fault accommodates only 30% of the relative plate motion between India and Eurasia implies that the remainder is accommodated south and east of the Katawaz block microplate.
NASA Technical Reports Server (NTRS)
Hoffer, R. M. (Principal Investigator); Knowlton, D. J.; Dean, M. E.
1981-01-01
A set of training statistics for the 30 meter resolution simulated thematic mapper MSS data was generated based on land use/land cover classes. In addition to this supervised data set, a nonsupervised multicluster block of training statistics is being defined in order to compare the classification results and evaluate the effect of the different training selection methods on classification performance. Two test data sets, defined using a stratified sampling procedure incorporating a grid system with dimensions of 50 lines by 50 columns, and another set based on an analyst supervised set of test fields were used to evaluate the classifications of the TMS data. The supervised training data set generated training statistics, and a per point Gaussian maximum likelihood classification of the 1979 TMS data was obtained. The August 1980 MSS data was radiometrically adjusted. The SAR data was redigitized and the SAR imagery was qualitatively analyzed.
Deltour, Isabelle; Wiart, Joe; Taki, Masao; Wake, Kanako; Varsier, Nadège; Mann, Simon; Schüz, Joachim; Cardis, Elisabeth
2011-12-01
The three-dimensional distribution of the specific absorption rate of energy (SAR) in phantom models was analysed to detect clusters of mobile phones producing similar spatial deposition of energy in the head. The clusters' characteristics were described from the phones external features, frequency band and communication protocol. Compliance measurements with phones in cheek and tilt positions, and on the left and right side of a physical phantom were used. Phones used the Personal Digital Cellular (PDC), Code division multiple access One (CdmaOne), Global System for Mobile Communications (GSM) and Nordic Mobile Telephony (NMT) communication systems, in the 800, 900, 1500 and 1800 MHz bands. Each phone's measurements were summarised by the half-ellipsoid in which the SAR values were above half the maximum value. Cluster analysis used the Partitioning Around Medoids algorithm. The dissimilarity measure was based on the overlap of the ellipsoids, and the Manhattan distance was used for robustness analysis. Within the 800 MHz frequency band, and in part within the 900 MHz and the 1800 MHz frequency bands, weak clustering was obtained for the handset shape (bar phone, flip with top and flip with central antennas), but only in specific positions (tilt or cheek). On measurements of 120 phones, the three-dimensional distribution of SAR in phantom models did not appear to be related to particular external phone characteristics or measurement characteristics, which could be used for refining the assessment of exposure to radiofrequency energy within the brain in epidemiological studies such as the Interphone. Copyright © 2011 Wiley Periodicals, Inc.
van Rhoon, Gerard C; Aleman, André; Kelfkens, Gert; Kromhout, Hans; Van Leeuwen, Flora E; Savelkoul, Huub F J; Wadman, Wytse J; Van De Weerdt, Rik D H J; Zwamborn, A Peter M; Van Rongen, Eric
2011-01-01
The Health Council of the Netherlands (HCN) and other organisations hold the basic assumption that induced electric current and the generation and absorption of heat in biological material caused by radiofrequency electromagnetic fields are the only causal effects with possible adverse consequences for human health that have been scientifically established to date. Hence, the exposure guidelines for the 10 MHz-10 GHz frequency range are based on avoiding adverse effects of increased temperatures that may occur of the entire human body at a specific absorption rate (SAR) level above 4 W/kg. During the workshop on Thermal Aspects of Radio Frequency Exposure on 11-12 January 2010 in Gaithersburg, Maryland, USA, the question was raised whether there would be a practical advantage in shifting from expressing the exposure limits in SAR to expressing them in terms of a maximum allowable temperature increase. This would mean defining adverse time-temperature thresholds. In this paper, the HCN discusses the need for this, considering six points: consistency, applicability, quantification, causality, comprehensibility and acceptability. The HCN concludes that it seems unlikely that a change of dosimetric quantity will help us forward in the discussion on the scientific controversies regarding the existence or non-existence of non-thermal effects in humans following long duration, low intensity exposure to electromagnetic fields. Therefore, the HCN favours maintaining the current approach of basic restrictions and reference levels being expressed as SAR and in V/m or µT, respectively.
Flood Extent Mapping for Namibia Using Change Detection and Thresholding with SAR
NASA Technical Reports Server (NTRS)
Long, Stephanie; Fatoyinbo, Temilola E.; Policelli, Frederick
2014-01-01
A new method for flood detection change detection and thresholding (CDAT) was used with synthetic aperture radar (SAR) imagery to delineate the extent of flooding for the Chobe floodplain in the Caprivi region of Namibia. This region experiences annual seasonal flooding and has seen a recent renewal of severe flooding after a long dry period in the 1990s. Flooding in this area has caused loss of life and livelihoods for the surrounding communities and has caught the attention of disaster relief agencies. There is a need for flood extent mapping techniques that can be used to process images quickly, providing near real-time flooding information to relief agencies. ENVISAT/ASAR and Radarsat-2 images were acquired for several flooding seasons from February 2008 to March 2013. The CDAT method was used to determine flooding from these images and includes the use of image subtraction, decision based classification with threshold values, and segmentation of SAR images. The total extent of flooding determined for 2009, 2011 and 2012 was about 542 km2, 720 km2, and 673 km2 respectively. Pixels determined to be flooded in vegetation were typically <0.5 % of the entire scene, with the exception of 2009 where the detection of flooding in vegetation was much greater (almost one third of the total flooded area). The time to maximum flooding for the 2013 flood season was determined to be about 27 days. Landsat water classification was used to compare the results from the new CDAT with SAR method; the results show good spatial agreement with Landsat scenes.
Sunohara, Tetsu; Hirata, Akimasa; Laakso, Ilkka; Onishi, Teruo
2014-07-21
This study investigates the specific absorption rate (SAR) and the in situ electric field in anatomically based human models for the magnetic field from an inductive wireless power transfer system developed on the basis of the specifications of the wireless power consortium. The transfer system consists of two induction coils covered by magnetic sheets. Both the waiting and charging conditions are considered. The transfer frequency considered in this study is 140 kHz, which is within the range where the magneto-quasi-static approximation is valid. The SAR and in situ electric field in the chest and arm of the models are calculated by numerically solving the scalar potential finite difference equation. The electromagnetic modelling of the coils in the wireless power transfer system is verified by comparing the computed and measured magnetic field distributions. The results indicate that the peak value of the SAR averaged over a 10 g of tissue and that of the in situ electric field are 72 nW kg(-1) and 91 mV m(-1) for a transmitted power of 1 W, Consequently, the maximum allowable transmitted powers satisfying the exposure limits of the SAR (2 W kg(-1)) and the in situ electric field (18.9 V m(-1)) are found to be 28 MW and 43 kW. The computational results show that the in situ electric field in the chest is the most restrictive factor when compliance with the wireless power transfer system is evaluated according to international guidelines.
Jung, H.-S.; Lu, Z.; Won, J.-S.; Poland, Michael P.; Miklius, Asta
2011-01-01
Surface deformation caused by an intrusion and small eruption during June 17-19, 2007, along the East Rift Zone of Kilauea Volcano, Hawaii, was three-dimensionally reconstructed from radar interferograms acquired by the Advanced Land Observing Satellite (ALOS) phased-array type L-band synthetic aperture radar (SAR) (PALSAR) instrument. To retrieve the 3-D surface deformation, a method that combines multiple-aperture interferometry (MAI) and conventional interferometric SAR (InSAR) techniques was applied to one ascending and one descending ALOS PALSAR interferometric pair. The maximum displacements as a result of the intrusion and eruption are about 0.8, 2, and 0.7 m in the east, north, and up components, respectively. The radar-measured 3-D surface deformation agrees with GPS data from 24 sites on the volcano, and the root-mean-square errors in the east, north, and up components of the displacement are 1.6, 3.6, and 2.1 cm, respectively. Since a horizontal deformation of more than 1 m was dominantly in the north-northwest-south-southeast direction, a significant improvement of the north-south component measurement was achieved by the inclusion of MAI measurements that can reach a standard deviation of 3.6 cm. A 3-D deformation reconstruction through the combination of conventional InSAR and MAI will allow for better modeling, and hence, a more comprehensive understanding, of the source geometry associated with volcanic, seismic, and other processes that are manifested by surface deformation.
Detection of surface deformation and ionospheric perturbation by the North Korea nuclear test
NASA Astrophysics Data System (ADS)
Park, S. C.; Lee, W. J.; Sohn, D. H.; Lee, D. K.; Jung, H. S.
2017-12-01
We used remote sensing data to detect the changes on surface and ionosphere due to the North Korea nuclear test. To analyze the surface deformation before and after the 6th North Korea (NK) nuclear test, we used Satellite Aperture Radar (SAR) images. It was reported that there were some surface deformation with about 10 cm by the 4th test (Wei, 2017) and the 5th test (Jo, 2017) using Interferometric SAR (InSAR) technique. However we could not obtain surface deformation by the 6th test using InSAR with Advanced Land Observation Satellite 2 (ALOS-2) data because of low coherence in the area close to the epicenter. Although the low coherence can be occurred due to several reasons, the main reason may be large deformation in this particular case. Therefore we applied pixel offset method to measure the amount of surface deformation in the area with low coherence. Pixel offset method calculates the deformation in the directions along track and Line-of-Sight (LOS) using cross correlation of intensity of two SAR images before and after the event for a pixel and is used frequently to obtain large deformation of glacier (e.g. Lee et al., 2015). Applying pixel offset method to the area of the 6th NK nuclear test, we obtained about 3 m surface deformation in maximum. It seems that the larger deformation occurs as the mountain slope is steeper.We then analyzed ionospheric perturbation using Global Navigation Satellite System (GNSS) data. If acoustic wave by a nuclear test goes up to the ionosphere and disturbs electron density, then the changes in slant total electron content (STEC) may be detected by GNSS satellites. STEC perturbation has been reported in the previous NK nuclear tests (e.g. Park et al., 2011). We analyzed the third order derivatives of STEC for 51 GNSS stations in South Korea and found that some perturbation were appeared at 4 stations about 20 40 minutes after the test.
NASA Astrophysics Data System (ADS)
Montgomery, J. S.; Hopkinson, C.; Brisco, B.; Patterson, S.; Chasmer, L.; Mahoney, C.
2017-12-01
Cultivation, irrigation networks, and infrastructure have all greatly impacted the ecology and hydrology of the Prairie Pothole and Boreal regions of western Canada. Due to sub-humid climate and high potential evaporation, many wetlands in these natural regions are seldom continuously occupied by water, and are often confined to local depressions. In the Boreal region, wetlands may be difficult to monitor due to their remote location, whereas prairie wetlands have highly varying degrees of surface water and soil saturation throughout the year. This study examines how high-resolution Lidar, Synthetic Aperture Radar (SAR), and optical data can be utilized in spatial-temporal studies to classify wetlands based on water extent, riparian vegetation, and topographic characteristics. An intensity (dB) threshold routine was used to extract open surface water extent to determine hydroperiod. Digital Elevation Models (DEM) are used with a topographic position index to infer local depressions, while Digital Surface Models (DSMs) are used to characterise vegetation structural characteristics within and proximal to wetlands. The proposed framework provides an index of wetland permanence and wetland class, where permanence varies seasonally and annually. Boreal wetland hydroperiod is less variable than that found in prairie pothole wetlands, most notably the semi-permanent class, varying by only 2%, compared to >50% in prairie pothole wetlands. For years studied, prairie pothole wetlands reached maximum water extent following major rainfall events. Seasonal and semi-permanent wetlands were found to have greater change in surface water between years than temporary wetlands (75.3% and 59.1% from average respectively). The lowest frequency of water pixel inundation for seasonal and semi-permanent wetlands was found to be in the year with the most precipitation during the growing season (2013, 384mm), compared to 2014 (289mm), and 2015 (310mm). A combination of statistical analyses and ground validation of the output classes is used to evaluate the data fusion approach (overall accuracies >80%, RMSE <4). The decision-tree modeling approach provides insight into dynamic wetland surface water changes that are important for wetland monitoring, conservation and land use development within western Canada.
US Search and Rescue Mission Control Center functions
NASA Technical Reports Server (NTRS)
1977-01-01
A satellite aided Search and Rescue (SAR) Mission concept consisting of a local coverage bent pipe system, and a global coverage system is described. The SAR instrument is to consist of a Canadian repeater and a French processor for which Canada and France, respectively are to evaluate health and trends. Performance evaluations of each system were provided. The United States and Canada will each have a Search and Rescue Mission Control Center (MCC) and their functions were also examined. A summary of the interface requirements necessary to perform each function was included as well as the information requirements between the USMCC and each of its interfaces. Physical requirements such as location, manning etc. of the USMCC were discussed.
Preliminary investigation of Zagros thrust-fold-belt deformation using SAR interferometry
NASA Technical Reports Server (NTRS)
Nilforoushan, Faramarz; Talbot, Christopher J.; Fielding, Eric J.
2005-01-01
Most of the Zagros deformation resulting from the convergence of Arabia and Eurasia takes place in the Southeast Zagros. To apply the SAR interferometry geodetic technique, a few ERS 1 & 2 satellite images were used to map this continuing deformation proven by GPS. Interferograms over 7 years show surprisingly high coherence. The unwrapped phases display a high correlation with topography reflecting atmospheric noise in addition to the desired tectonic signal. We estimate two simple linear trends and remove them from interferograms. The preliminary results show local uplift rates with a likely minimum of 1-2 mm/yr. These early crude results will be tested by more data in project No. 3174.
NASA Astrophysics Data System (ADS)
Dondurur, Mehmet
The primary objective of this study was to determine the degree to which modern SAR systems can be used to obtain information about the Earth's vegetative resources. Information obtainable from microwave synthetic aperture radar (SAR) data was compared with that obtainable from LANDSAT-TM and SPOT data. Three hypotheses were tested: (a) Classification of land cover/use from SAR data can be accomplished on a pixel-by-pixel basis with the same overall accuracy as from LANDSAT-TM and SPOT data. (b) Classification accuracy for individual land cover/use classes will differ between sensors. (c) Combining information derived from optical and SAR data into an integrated monitoring system will improve overall and individual land cover/use class accuracies. The study was conducted with three data sets for the Sleeping Bear Dunes test site in the northwestern part of Michigan's lower peninsula, including an October 1982 LANDSAT-TM scene, a June 1989 SPOT scene and C-, L- and P-Band radar data from the Jet Propulsion Laboratory AIRSAR. Reference data were derived from the Michigan Resource Information System (MIRIS) and available color infrared aerial photos. Classification and rectification of data sets were done using ERDAS Image Processing Programs. Classification algorithms included Maximum Likelihood, Mahalanobis Distance, Minimum Spectral Distance, ISODATA, Parallelepiped, and Sequential Cluster Analysis. Classified images were rectified as necessary so that all were at the same scale and oriented north-up. Results were analyzed with contingency tables and percent correctly classified (PCC) and Cohen's Kappa (CK) as accuracy indices using CSLANT and ImagePro programs developed for this study. Accuracy analyses were based upon a 1.4 by 6.5 km area with its long axis east-west. Reference data for this subscene total 55,770 15 by 15 m pixels with sixteen cover types, including seven level III forest classes, three level III urban classes, two level II range classes, two water classes, one wetland class and one agriculture class. An initial analysis was made without correcting the 1978 MIRIS reference data to the different dates of the TM, SPOT and SAR data sets. In this analysis, highest overall classification accuracy (PCC) was 87% with the TM data set, with both SPOT and C-Band SAR at 85%, a difference statistically significant at the 0.05 level. When the reference data were corrected for land cover change between 1978 and 1991, classification accuracy with the C-Band SAR data increased to 87%. Classification accuracy differed from sensor to sensor for individual land cover classes, Combining sensors into hypothetical multi-sensor systems resulted in higher accuracies than for any single sensor. Combining LANDSAT -TM and C-Band SAR yielded an overall classification accuracy (PCC) of 92%. The results of this study indicate that C-Band SAR data provide an acceptable substitute for LANDSAT-TM or SPOT data when land cover information is desired of areas where cloud cover obscures the terrain. Even better results can be obtained by integrating TM and C-Band SAR data into a multi-sensor system.
NASA Astrophysics Data System (ADS)
Owen, S. E.; Hua, H.; Rosen, P. A.; Agram, P. S.; Webb, F.; Simons, M.; Yun, S. H.; Sacco, G. F.; Liu, Z.; Fielding, E. J.; Lundgren, P.; Moore, A. W.
2017-12-01
A new era of geodetic imaging arrived with the launch of the ESA Sentinel-1A/B satellites in 2014 and 2016, and with the 2016 confirmation of the NISAR mission, planned for launch in 2021. These missions assure high quality, freely and openly distributed regularly sampled SAR data into the indefinite future. These unprecedented data sets are a watershed for solid earth sciences as we progress towards the goal of ubiquitous InSAR measurements. We now face the challenge of how to best address the massive volumes of data and intensive processing requirements. Should scientists individually process the same data independently themselves? Should a centralized service provider create standard products that all can use? Are there other approaches to accelerate science that are cost effective and efficient? The Advanced Rapid Imaging and Analysis (ARIA) project, a joint venture co-sponsored by California Institute of Technology (Caltech) and by NASA through the Jet Propulsion Laboratory (JPL), is focused on rapidly generating higher level geodetic imaging products and placing them in the hands of the solid earth science and local, national, and international natural hazard communities by providing science product generation, exploration, and delivery capabilities at an operational level. However, there are challenges in defining the optimal InSAR data products for the solid earth science community. In this presentation, we will present our experience with InSAR users, our lessons learned the advantages of on demand and standard products, and our proposal for the most effective path forward.
Measurements of RF heating during 3.0-T MRI of a pig implanted with deep brain stimulator.
Gorny, Krzysztof R; Presti, Michael F; Goerss, Stephan J; Hwang, Sun C; Jang, Dong-Pyo; Kim, Inyong; Min, Hoon-Ki; Shu, Yunhong; Favazza, Christopher P; Lee, Kendall H; Bernstein, Matt A
2013-06-01
To present preliminary, in vivo temperature measurements during MRI of a pig implanted with a deep brain stimulation (DBS) system. DBS system (Medtronic Inc., Minneapolis, MN) was implanted in the brain of an anesthetized pig. 3.0-T MRI was performed with a T/R head coil using the low-SAR GRE EPI and IR-prepped GRE sequences (SAR: 0.42 and 0.39 W/kg, respectively), and the high-SAR 4-echo RF spin echo (SAR: 2.9 W/kg). Fluoroptic thermometry was used to directly measure RF-related heating at the DBS electrodes, and at the implantable pulse generator (IPG). For reference the measurements were repeated in the same pig at 1.5 T and, at both field strengths, in a phantom. At 3.0T, the maximal temperature elevations at DBS electrodes were 0.46 °C and 2.3 °C, for the low- and high-SAR sequences, respectively. No heating was observed on the implanted IPG during any of the measurements. Measurements of in vivo heating differed from those obtained in the phantom. The 3.0-T MRI using GRE EPI and IR-prepped GRE sequences resulted in local temperature elevations at DBS electrodes of no more than 0.46 °C. Although no extrapolation should be made to human exams and much further study will be needed, these preliminary data are encouraging for the future use 3.0-T MRI in patients with DBS. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Salzer, Jacqueline T.; Milillo, Pietro; Varley, Nick; Perissin, Daniele; Pantaleo, Michele; Walter, Thomas R.
2017-04-01
Active volcanoes often display cyclic behaviour with alternating quiescent and eruptive periods. Continuously monitoring volcanic processes such as deformation, seismicity and degassing, irrespective of their current status, is crucial for understanding the parameters governing the fluid transport within the edifice and the transitions between different regimes. However, mapping the deformation and details of fluid escape at the summit of steep sloped volcanoes and integrating these with other types of data is challenging. Here we present for the first time the near-3D surface deformation field derived from high resolution radar interferometry (InSAR) acquired by the satellite TerraSAR-X at a degassing volcano dome and interpret the results in combination with overflight infrared and topographic data. We find that the results strongly differ depending on the chosen InSAR time series method, which potentially overprints the true physical complexities of small scale, shallow deformation processes. We present a new method for accurate mapping of heterogeneities in the dome deformation, and comparison to the topography and precisely located surface temperature anomalies. The identified deformation is dominated by strong but highly localized subsidence of the summit dome. Our results highlight the competing effects of the topography, permeability and shallow volcanic structures controlling the degassing pathways. On small spatial scales compaction sufficiently reduced the dome permeability to redirect the fluid flow. High resolution InSAR monitoring of volcanic domes thus provides valuable data for constraining models of their internal structure, degassing pathways and densification processes.
High-accuracy single-pass InSAR DEM for large-scale flood hazard applications
NASA Astrophysics Data System (ADS)
Schumann, G.; Faherty, D.; Moller, D.
2017-12-01
In this study, we used a unique opportunity of the GLISTIN-A (NASA airborne mission designed to characterizing the cryosphere) track to Greenland to acquire a high-resolution InSAR DEM of a large area in the Red River of the North Basin (north of Grand Forks, ND, USA), which is a very flood-vulnerable valley, particularly in spring time due to increased soil moisture content near state of saturation and/or, typical for this region, snowmelt. Having an InSAR DEM that meets flood inundation modeling and mapping requirements comparable to LiDAR, would demonstrate great application potential of new radar technology for national agencies with an operational flood forecasting mandate and also local state governments active in flood event prediction, disaster response and mitigation. Specifically, we derived a bare-earth DEM in SAR geometry by first removing the inherent far range bias related to airborne operation, which at the more typical large-scale DEM resolution of 30 m has a sensor accuracy of plus or minus 2.5 cm. Subsequently, an intelligent classifier based on informed relationships between InSAR height, intensity and correlation was used to distinguish between bare-earth, roads or embankments, buildings and tall vegetation in order to facilitate the creation of a bare-earth DEM that would meet the requirements for accurate floodplain inundation mapping. Using state-of-the-art LiDAR terrain data, we demonstrate that capability by achieving a root mean squared error of approximately 25 cm and further illustrating its applicability to flood modeling.
The outbreak of SARS at Tan Tock Seng Hospital--relating epidemiology to control.
Chen, Mark I C; Leo, Yee-Sin; Ang, Brenda S P; Heng, Bee-Hoon; Choo, Philip
2006-05-01
The outbreak of severe acute respiratory syndrome (SARS) began after the index case was admitted on 1 March 2003. We profile the cases suspected to have acquired the infection in Tan Tock Seng Hospital (TTSH), focussing on major transmission foci, and also describe and discuss the impact of our outbreak control measures. Using the World Health Organization (WHO) case definitions for probable SARS adapted to the local context, we studied all cases documented to have passed through TTSH less than 10 days prior to the onset of fever. Key data were collected in liaison with clinicians and through a team of onsite epidemiologists. There were 105 secondary cases in TTSH. Healthcare staff (57.1%) formed the majority, followed by visitors (30.5%) and inpatients (12.4%). The earliest case had onset of fever on 4 March 2003, and the last case, on 5 April 2003. Eighty-nine per cent had exposures to 7 wards which had cases of SARS that were not isolated on admission. In 3 of these wards, major outbreaks resulted, each with more than 20 secondary cases. Attack rates amongst ward-based staff ranged from 0% to 32.5%. Of 13 inpatients infected, only 4 (30.8%) had been in the same room or cubicle as the index case for the ward. The outbreak of SARS at TTSH showed the challenges of dealing with an emerging infectious disease with efficient nosocomial spread. Super-spreading events and initial delays in outbreak response led to widespread dissemination of the outbreak to multiple wards.
Measurements of RF Heating during 3.0T MRI of a Pig Implanted with Deep Brain Stimulator
Gorny, Krzysztof R; Presti, Michael F; Goerss, Stephan J; Hwang, Sun C; Jang, Dong-Pyo; Kim, Inyong; Shu, Yunhong; Favazza, Christopher P; Lee, Kendall H; Bernstein, Matt A
2012-01-01
Purpose To present preliminary, in vivo temperature measurements during MRI of a pig implanted with a deep brain stimulation (DBS) system. Materials and Methods DBS system (Medtronic Inc., Minneapolis, MN) was implanted in the brain of an anesthetized pig. 3.0T MRI was performed with a T/R head coil using the low-SAR GRE EPI and IR-prepped GRE sequences (SAR: 0.42 W/kg and 0.39 W/kg, respectively), and the high-SAR 4-echo RF spin echo (SAR: 2.9 W/kg). Fluoroptic thermometry was used to directly measure RF-related heating at the DBS electrodes, and at the implantable pulse generator (IPG). For reference the measurements were repeated in the same pig at 1.5T and, at both field strengths, in a phantom. Results At 3.0T, the maximal temperature elevations at DBS electrodes were 0.46 °C and 2.3 °C, for the low- and high-SAR sequences, respectively. No heating was observed on the implanted IPG during any of the measurements. Measurements of in-vivo heating differed from those obtained in the phantom. Conclusion The 3.0T MRI using GRE EPI and IR-prepped GRE sequences resulted in local temperature elevations at DBS electrodes of no more than 0.46°C. Although no extrapolation should be made to human exams and much further study will be needed, these preliminary data are encouraging for the future use 3.0T MRI in patients with DBS. PMID:23228310
A METHOD FOR IN-SITU CHARACTERIZATION OF RF HEATING IN PARALLEL TRANSMIT MRI
Alon, Leeor; Deniz, Cem Murat; Brown, Ryan; Sodickson, Daniel K.; Zhu, Yudong
2012-01-01
In ultra high field magnetic resonance imaging, parallel radio-frequency (RF) transmission presents both opportunities and challenges for specific absorption rate (SAR) management. On one hand, parallel transmission provides flexibility in tailoring electric fields in the body while facilitating magnetization profile control. On the other hand, it increases the complexity of energy deposition as well as possibly exacerbating local SAR by improper design or delivery of RF pulses. This study shows that the information needed to characterize RF heating in parallel transmission is contained within a local power correlation matrix. Building upon a calibration scheme involving a finite number of magnetic resonance thermometry measurements, the present work establishes a way of estimating the local power correlation matrix. Determination of this matrix allows prediction of temperature change for an arbitrary parallel transmit RF pulse. In the case of a three transmit coil MR experiment in a phantom, determination and validation of the power correlation matrix was conducted in less than 200 minutes with induced temperature changes of <4 degrees C. Further optimization and adaptation are possible, and simulations evaluating potential feasibility for in vivo use are presented. The method allows general characteristics indicative of RF coil/pulse safety determined in situ. PMID:22714806
NASA Astrophysics Data System (ADS)
Cong, Runmin; Han, Ping; Li, Chongyi; He, Jiaji; Zhang, Zaiji
2016-09-01
Targets of interest are different in various applications in which manmade targets, such as aircraft, ships, and buildings, are given more attention. Manmade target extraction methods using synthetic aperture radar (SAR) images are designed in response to various demands, which include civil uses, business purposes, and military industries. This plays an increasingly vital role in monitoring, military reconnaissance, and precision strikes. Achieving accurate and complete results through traditional methods is becoming more challenging because of the scattered complexity of polarization in polarimetric synthetic aperture radar (PolSAR) image. A multistage decision-based method is proposed composed of power decision, dominant scattering mechanism decision, and reflection symmetry decision. In addition, the theories of polarimetric contrast enhancement, generalized Y decomposition, and maximum eigenvalue ratio are applied to assist the decision. Fully PolSAR data are adopted to evaluate and verify the approach. Experimental results show that the method can achieve an effective result with a lower false alarm rate and clear contours. Finally, on this basis, a universal framework of change detection for manmade targets is presented as an application of our method. Two sets of measured data are also used to evaluate and verify the effectiveness of the change-detection algorithm.
Bayes classification of interferometric TOPSAR data
NASA Technical Reports Server (NTRS)
Michel, T. R.; Rodriguez, E.; Houshmand, B.; Carande, R.
1995-01-01
We report the Bayes classification of terrain types at different sites using airborne interferometric synthetic aperture radar (INSAR) data. A Gaussian maximum likelihood classifier was applied on multidimensional observations derived from the SAR intensity, the terrain elevation model, and the magnitude of the interferometric correlation. Training sets for forested, urban, agricultural, or bare areas were obtained either by selecting samples with known ground truth, or by k-means clustering of random sets of samples uniformly distributed across all sites, and subsequent assignments of these clusters using ground truth. The accuracy of the classifier was used to optimize the discriminating efficiency of the set of features that was chosen. The most important features include the SAR intensity, a canopy penetration depth model, and the terrain slope. We demonstrate the classifier's performance across sites using a unique set of training classes for the four main terrain categories. The scenes examined include San Francisco (CA) (predominantly urban and water), Mount Adams (WA) (forested with clear cuts), Pasadena (CA) (urban with mountains), and Antioch Hills (CA) (water, swamps, fields). Issues related to the effects of image calibration and the robustness of the classification to calibration errors are explored. The relative performance of single polarization Interferometric data classification is contrasted against classification schemes based on polarimetric SAR data.
NASA Astrophysics Data System (ADS)
Zhang, G.; Hetland, E.; Shan, X.
2017-12-01
We investigate the rupture process of the April 25, 2015 Gorkha, Nepal Mw7.9 earthquake, and its biggest aftershock on May 12, 2015, based on joint inversion of teleseismic body waves, InSAR and GPS measurements. The Gorkha earthquake propagated unilaterally to the southeast along the MFT, with coseismic slip separating into patches up-dip and down-dip of the hypocenter. Slip in the up-dip patch initially surrounded a region on the fault that did not slip. About 15 seconds after being surrounded, this region of no slip then slipped, filling in the slip deficit. The delayed slip accounts for about 20% of the moment release in the Gorkha earthquake. The inferred coseismic slip in the Kodari earthquake is localized to one patch, extending to the south and southeast from the hypocenter, and 20-30 km to the northeast of the main slip patch in the Ghorka earthquake. The maximum coseismic slip in both the Gorkha and Kodari earthquakes is about 4.5 meters.
NASA Astrophysics Data System (ADS)
Hertzberg, Jean
2005-11-01
Cough generated infectious aerosols are of interest while developing strategies for the mitigation of disease risks ranging from the common cold to SARS. In this work, the velocity field of human cough was measured using particle image velocimetry (PIV). The project subjects (total 29) coughed into an enclosure seeded with stage fog for most measurements. Cough flow speed profiles, average widths of the cough jet, waveform, and maximum cough speeds were measured. Maximum cough speeds ranged from 1.5 m/s to 28.8 m/s. No correlation was found for maximum cough flow speeds to height or gender. The slow growth of the width of the cough flow suggests that a cough may penetrate farther into a room than a steady jet of similar volume. The velocity profile was found to scale with the square root of downstream distance.
NASA Astrophysics Data System (ADS)
Bardi, Federica; Frodella, William; Ciampalini, Andrea; Bianchini, Silvia; Del Ventisette, Chiara; Gigli, Giovanni; Fanti, Riccardo; Moretti, Sandro; Basile, Giuseppe; Casagli, Nicola
2014-10-01
The potential use of the integration of PSI (Persistent Scatterer Interferometry) and GB-InSAR (Ground-based Synthetic Aperture Radar Interferometry) for landslide hazard mitigation was evaluated for mapping and monitoring activities of the San Fratello landslide (Sicily, Italy). Intense and exceptional rainfall events are the main factors that triggered several slope movements in the study area, which is susceptible to landslides, because of its steep slopes and silty-clayey sedimentary cover. In the last three centuries, the town of San Fratello was affected by three large landslides, developed in different periods: the oldest one occurred in 1754, damaging the northeastern sector of the town; in 1922 a large landslide completely destroyed a wide area in the western hillside of the town. In this paper, the attention is focussed on the most recent landslide that occurred on 14 February 2010: in this case, the phenomenon produced the failure of a large sector of the eastern hillside, causing severe damages to buildings and infrastructures. In particular, several slow-moving rotational and translational slides occurred in the area, making it suitable to monitor ground instability through different InSAR techniques. PS-InSAR™ (permanent scatterers SAR interferometry) techniques, using ERS-1/ERS-2, ENVISAT, RADARSAT-1, and COSMO-SkyMed SAR images, were applied to analyze ground displacements during pre- and post-event phases. Moreover, during the post-event phase in March 2010, a GB-InSAR system, able to acquire data continuously every 14 min, was installed collecting ground displacement maps for a period of about three years, until March 2013. Through the integration of space-borne and ground-based data sets, ground deformation velocity maps were obtained, providing a more accurate delimitation of the February 2010 landslide boundary, with respect to the carried out traditional geomorphological field survey. The integration of GB-InSAR and PSI techniques proved to be very effective in landslide mapping in the San Fratello test site, representing a valid scientific support for local authorities and decision makers during the post-emergency management.
NASA Astrophysics Data System (ADS)
Dammann, D. O.; Eicken, H.; Meyer, F. J.; Mahoney, A. R.
2016-12-01
Arctic landfast sea ice provides important services to people, including coastal communities and industry, as well as key marine biota. In many regions of the Arctic, the use of landfast sea ice by all stakeholders is increasingly limited by reduced stability of the ice cover, which results in more deformation and rougher ice conditions as well as reduced extent and an increased likelihood of detachment from the shore. Here, we use Synthetic Aperture Radar Interferometry (InSAR) to provide stakeholder-relevant data on key constraints for sea ice use, in particular ice stability and morphology, which are difficult to assess using conventional SAR. InSAR has the capability to detect small-scale landfast ice displacements, which are linked to important coastal hazards, including the formation of cracks, ungrounding of ice pressure ridges, and catastrophic breakout events. While InSAR has previously been used to identify the extent of landfast ice and regions of deformation within, quantitative analysis of small-scale ice motion has yet to be thoroughly validated and its potential remains largely underutilized in sea ice science. Using TanDEM-X interferometry, we derive surface displacements of landfast ice within Elson Lagoon near Barrow, Alaska, which we validate using in-situ DGPS data. We then apply an inverse model to estimate rates and patterns of shorefast ice deformation in other regions of landfast ice using interferograms generated with long-temporal baseline L-band ALOS-1 PALSAR-1 data. The model is able to correctly identify deformation modes and proxies for the associated relative internal elastic stress. The derived potential for fractures corresponds well with large-scale sea ice patterns and local in-situ observations. The utility of InSAR to quantify sea ice roughness has also been explored using TanDEM-X bistatic interferometry, which eliminates the effects of temporal changes in the ice cover. The InSAR-derived DEM shows good correlation with a high-resolution Structure from Motion DEM and laser surveys collected during a field campaign utilizing unmanned aircraft.
Sentinel-1 Constellation for nationwide deformation mapping with InSAR -- From science to operations
NASA Astrophysics Data System (ADS)
Dehls, John; Larsen, Yngvar; Marinkovic, Petar
2016-04-01
For more than a decade, InSAR has been used in Norway study landslides and subsidence. Initial studies concentrated on understanding and validating the technique in various settings. During the last five years, however, we have moved towards using InSAR in operational settings. Of all the challenges we have faced, the largest has been regular access to SAR imagery. The Sentinel-1 constellation will bring a paradigm shift to the field with its operational characteristics: mission configuration, acquisition planning, and data distribution policy. For the first time, we will have nationwide acquisitions with an unprecedented temporal spacing. By the end of this year, we will have a sufficiently long time series of data to produce an initial version of a national deformation map. Within the ESA SEOM InSARap project, we have developed the necessary updates of interferometric processing tools necessary to handle the novel TOPS mode, and successfully demonstrated the performance of S1 InSAR in a number of scientific applications. However, to fully exploit the key advantages of the Sentinel-1 mission, we still face a number of scientific and operational challenges, due to the new and unique characteristics of the mission. Specifically, the large coverage and dense temporal sampling results in very large data sets with a vastly increased information content, which still needs new algorithmic development to extract. In the context of national mapping, optimal harmonization of deformation maps based on overlapping individual S1 stacks is the most prominent challenge. Urban areas in Norway face much the same problems as many other cities throughout the world; subsidence due to soil compaction and groundwater changes or excavation, and resulting damage to infrastructure. More unique to Norway is the threat to lives caused by large unstable rock slopes along the steep fjords. In the 20th century alone, catastrophic rock slope failures leading to tsunamis in fjords and large lakes, caused the deaths of nearly 200 people. Each of these failures was preceded by years of slow deformation. Through systematic mapping, including the use of InSAR, we have now identified more than 70 unstable rock slopes that are deforming and have the potential to collapse. In order to meet the needs of the local communities living under the threat of these landslides, as well as the urban areas dealing with subsidence problems, we are developing an automatically updated, nationwide InSAR service based upon the Sentinel-1 constellation. The proposed map product will be periodically updated and will be of a different resolution for urban and non-urban areas. Deformation data will be fed directly into the decision-support tools of various local, regional and national authorities via appropriate web GIS protocols. The data will also be made available to the public via a web map interface with simple tools to query and visualize the information.
SAR Interferometry: On the Coherence Estimation in non Stationary Scenes
NASA Astrophysics Data System (ADS)
Ballatore, P.
2005-05-01
The possibility of producing good quality satellite SAR interferometry allows observations of terrain mass movement as small as millimetric scales, with applicability in researches about landslides, volcanoes, seismology and others. SAR interferometric images is characterized by the presence of random speckle, whose pattern does not correspond to the underlying image structure. However the local brightness of speckle reflects the local echogenicity of the underlying scatters. Specifically, the coherence between interferometric pair is generally considered as an indicator of interferogram quality. Moreover, it leads to useful image segmentations and it can be employed in data mining and database browsing algorithms. SAR coherence is generally computed by substituting the ensemble averages with the spatial averages, by assuming ergodicity in the estimation window sub-areas. Nevertheless, the actual results may depend on the spatial size scale of the sampling window used for the computation. This is especially true in the cases of fast coherence estimator algorithms, which make use of the correlation coefficient's square root (Rignon and van Zyl, IEEE Trans. Geosci.Remote Sensing, vol. 31, n. 4, pp. 896-906, 1993; Guarnieri and Prati, IEEE Trans. Geosci. Remote Sensing, vol. 35, n. 3, pp. 660-669, 1997). In fact, the correlation coefficient is increased by image texture, due to non stationary absolute values within single sample estimation windows. For example, this can happen in the case of mountainous lands, and, specifically, in the case of the Italian Southern Appennini region around Benevento city, which is of specific geophysical attention for its numerous seismic and landslide terrain movements. In these cases, dedicated techniques are applied for compensating texture effects. This presentation shows an example of interferometric coherence image depending on the spatial size of sampling window. Moreover, the different methodologies present in literature for texture effect control are briefly summarized and applied to our specific exemplary case. A quantitative comparison among resulting coherences is illustrated and discussed in terms of different experimental applicability.
ARIA: Delivering state-of-the-art InSAR products to end users
NASA Astrophysics Data System (ADS)
Agram, P. S.; Owen, S. E.; Hua, H.; Manipon, G.; Sacco, G. F.; Bue, B. D.; Fielding, E. J.; Yun, S. H.; Simons, M.; Webb, F.; Rosen, P. A.; Lundgren, P.; Liu, Z.
2016-12-01
Advanced Rapid Imaging and Analysis (ARIA) Center for Natural Hazards aims to bring state-of-the-art geodetic imaging capabilities to an operational level in support of local, national, and international hazard response communities. ARIA project's first foray into operational generation of InSAR products was with Calimap Project, in collaboration with ASI-CIDOT, using X-band data from the Cosmo-SkyMed constellation. Over the last year, ARIA's processing infrastructure has been significantly upgraded to exploit the free stream of high quality C-band SAR data from ESA's Sentinel-1 mission and related algorithmic improvements to the ISCE software. ARIA's data system can now operationally generate geocoded unwrapped phase and coherence products in GIS-friendly formats from Sentinel-1 TOPS mode data in an automated fashion, and this capability is currently being exercised various study sites across the United States including Hawaii, Central California, Iceland and South America. The ARIA team, building on the experience gained from handling X-band data and C-band data, has also built an automated machine learning-based classifier to label the auto-generated interferograms based on phase unwrapping quality. These high quality "time-series ready" InSAR products generated using state-of-the-art processing algorithms can be accessed by end users using two different mechanisms - 1) a Faceted-search interface that includes browse imagery for quick visualization and 2) an ElasticSearch-based API to enable bulk automated download, post-processing and time-series analysis. In this talk, we will present InSAR results from various global events that ARIA system has responded to. We will also discuss the set of geospatial big data tools including GIS libraries and API tools, that end users will need to familiarize themselves with in order to maximize the utilization of continuous stream of InSAR products from the Sentinel-1 and NISAR missions that the ARIA project will generate.
Detection of the mid-latitude Sporadic-E signal using GNSS/TEC and ALOS2 InSAR data
NASA Astrophysics Data System (ADS)
Suzuki, T.; Maeda, J.; Furuya, M.; Heki, K.
2016-12-01
Sporadic E (Es) is known to generate unusual propagation of VHF waves over long distances, which is caused by a layer of ionization that irregularly appears within the E region of the ionosphere. However, the generation mechanism of Es remains unclear, because the conventional ionosonde observation of Es has limited spatial resolution. Maeda et al. (2016) succeeded in capturing mid-latitude Es signal over Japan two-dimensionally as an image, using InSAR, and demonstrated the detailed spatial structure of Es. As InSAR is clearly useful for capturing Es, we aim to detect mid-latitude Es over Japan by InSAR, following Maeda et al. (2016). First, we chose the dates whose critical frequencies of Es (foEs) were more than 15MHz at ionosonde in Kokubunji, Wakkanai and Yamagawa in the morning and noon in 2016 from May to June; Es is known to be frequent in the local daytime of summer season. Secondly, we chose the ALOS-2/PALSAR-2 data sets whose observation area, dates and time matches the data above as closely as possible. Thirdly, we generated Global Navigation Satellite System - Total Electron Content (GNSS-TEC) map whose areas, dates and time become the same as the above and if Es appeared in GNSS-TEC map, we generate interferogram. We could detect interesting phase changes in the pair of February 17, 2016 (Master) and May 25, 2016 (Slave) along a track from Tottori to Okayama. The location of the phase shift is close to the Es on the GNSS-TEC image. Therefore, we can consider the phase shift as the edge of Es. This is the second successful detection of Es signals, using InSAR. Also, we are going to separate the Es signal from other non-dispersive signals, using split-band InSAR technique.
The ionic charge of Copper-64 complexes conjugated to an engineered antibody effects biodistribution
Dearling, Jason L. J.; Smith, Suzanne V.; Paterson, Brett M.; ...
2015-04-15
The development of biomolecules as imaging probes requires radiolabeling methods that do not significantly influence their biodistribution. Sarcophagine (Sar) chelators form extremely stable complexes with copper, and are therefore a promising option for labeling proteins with ⁶⁴Cu. However, initial studies using the first-generation sarcophagine bifunctional chelator SarAr to label the engineered antibody fragment ch14.18-ΔC H2 (MW 120 kDa) with ⁶⁴Cu showed high tracer retention in the kidneys,(>38% injected dose per gram (ID/g) 48 h post-injection), presumably because the high local positive charge on the Cu II-SarAr moiety resulted in increased binding of the labeled protein to the negatively charged basalmore » cells of the glomerulus. To test this hypothesis, ch14.18-ΔC H2 was conjugated with a series of Sar derivatives of decreasing positive charge and three commonly used macrocyclic polyaza polycarboxylate (PAC) BFCs. The immunoconjugates were labeled with ⁶⁴Cu and injected into mice, and PET/CT images were obtained at 24 and 48 h post injection (p.i.). At 48 h p.i., ex vivo biodistribution was carried out. In addition, to demonstrate the potential of metastasis detection using ⁶⁴Cu-labeled ch14.18-ΔC H2, a preclinical imaging study of intrahepatic neuroblastoma tumors was performed carried out. Reducing the positive charge on the Sar chelators decreased kidney uptake of Cu-labeled ch14.18-ΔC H2 by more than 6-fold, from >45 ID/g to <6% ID/g, while the uptake in most other tissues, including liver, was relatively unchanged. However, despite this dramatic decrease, the renal uptake of the PAC BFCs was generally lower than that of the Sar derivatives, as was the liver uptake. Uptake of ⁶⁴Cu-labeled ch14.18-ΔC H2 in neuroblastoma hepatic metastases was detected using PET.« less
InSAR-Detected Tidal Flow in Louisiana's Coastal Wetlands
NASA Astrophysics Data System (ADS)
Oliver-Cabrera, T.; Wdowinski, S.
2014-12-01
The Louisiana coast is among the most productive coastal area in the US and home to the largest coastal wetland area in the nation. However, Louisiana coastal wetlands have been threatened by natural (sea-level rise) and human (infrastructure development) stresses; they constitute the major part of the wetland loss of the country. Monitoring Louisiana's coastal wetlands represent a large challenge for local and federal authorities due to the large amount of area and hostile environment. Insofar, optical remote sensing observations have been used to classify the wetlands, monitor land cover changes, and assess the wetland loss over time. However, optical data is insensitive to surface flow and, hence, unable to detect the width of the tidal zone and changes in this area over time. SAR interferometry can provide useful information and ease the monitoring task. Wetland InSAR is the only application of the InSAR technology that provides information of aquatic surface. It provides useful information on surface water level changes in both inland and coastal wetlands. In this study, we use InSAR and tide gauge observations to detect and compare surface water level changes in response to ocean tide propagation through the Louisiana coastal wetlands. Our data consist of ALOS PALSAR, Radarsat-1 and tide gauge information over the coast of Louisiana. In order to detect water level changes, we used mainly high coherence interferferograms with short temporal baselines (46-92 days for ALOS data and 24-48 days for Radarsat-1). Interferometric processing of the data provides details maps of water level changes in the coastal zone. Preliminary results indicate tidal changes of up 30 cm and that tidal flow is limited to 8-10 km from the open water. Our results also show that the tidal flow is disrupted by various man-made structures as, canals and roads. The high spatial resolution wetland InSAR observations can provide useful constraints for detailed coastal wetland flow models.
NASA Astrophysics Data System (ADS)
Richter, Nicole; Salzer, Jacqueline Tema; de Zeeuw-van Dalfsen, Elske; Perissin, Daniele; Walter, Thomas R.
2018-03-01
Small-scale geomorphological changes that are associated with the formation, development, and activity of volcanic craters and eruptive vents are often challenging to characterize, as they may occur slowly over time, can be spatially localized, and difficult, or dangerous, to access. Using high-spatial and high-temporal resolution synthetic aperture radar (SAR) imagery collected by the German TerraSAR-X (TSX) satellite in SpotLight mode in combination with precise topographic data as derived from Pléiades-1A satellite data, we investigate the surface deformation within the nested summit crater system of Láscar volcano, Chile, the most active volcano of the central Andes. Our aim is to better understand the structural evolution of the three craters that comprise this system, to assess their physical state and dynamic behavior, and to link this to eruptive activity and associated hazards. Using multi-temporal SAR interferometry (MT-InSAR) from ascending and descending orbital geometries, we retrieve the vertical and east-west components of the displacement field. This time series indicates constant rates of subsidence and asymmetric horizontal displacements of all summit craters between June 2012 and July 2014, as well as between January 2015 and March 2017. The vertical and horizontal movements that we observe in the central crater are particularly complex and cannot be explained by any single crater formation mechanism; rather, we suggest that short-term activities superimposed on a combination of ongoing crater evolution processes, including gravitational slumping, cooling and compaction of eruption products, as well as possible piston-like subsidence, are responsible for the small-scale geomorphological changes apparent in our data. Our results demonstrate how high-temporal resolution synthetic aperture radar interferometry (InSAR) time series can add constraints on the geomorphological evolution and structural dynamics of active crater and vent systems at volcanoes worldwide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dearling, Jason L. J.; Smith, Suzanne V.; Paterson, Brett M.
The development of biomolecules as imaging probes requires radiolabeling methods that do not significantly influence their biodistribution. Sarcophagine (Sar) chelators form extremely stable complexes with copper, and are therefore a promising option for labeling proteins with ⁶⁴Cu. However, initial studies using the first-generation sarcophagine bifunctional chelator SarAr to label the engineered antibody fragment ch14.18-ΔC H2 (MW 120 kDa) with ⁶⁴Cu showed high tracer retention in the kidneys,(>38% injected dose per gram (ID/g) 48 h post-injection), presumably because the high local positive charge on the Cu II-SarAr moiety resulted in increased binding of the labeled protein to the negatively charged basalmore » cells of the glomerulus. To test this hypothesis, ch14.18-ΔC H2 was conjugated with a series of Sar derivatives of decreasing positive charge and three commonly used macrocyclic polyaza polycarboxylate (PAC) BFCs. The immunoconjugates were labeled with ⁶⁴Cu and injected into mice, and PET/CT images were obtained at 24 and 48 h post injection (p.i.). At 48 h p.i., ex vivo biodistribution was carried out. In addition, to demonstrate the potential of metastasis detection using ⁶⁴Cu-labeled ch14.18-ΔC H2, a preclinical imaging study of intrahepatic neuroblastoma tumors was performed carried out. Reducing the positive charge on the Sar chelators decreased kidney uptake of Cu-labeled ch14.18-ΔC H2 by more than 6-fold, from >45 ID/g to <6% ID/g, while the uptake in most other tissues, including liver, was relatively unchanged. However, despite this dramatic decrease, the renal uptake of the PAC BFCs was generally lower than that of the Sar derivatives, as was the liver uptake. Uptake of ⁶⁴Cu-labeled ch14.18-ΔC H2 in neuroblastoma hepatic metastases was detected using PET.« less
NASA Astrophysics Data System (ADS)
McAlpin, D. B.; Meyer, F. J.; Lu, Z.; Beget, J. E.
2014-12-01
Augustine Island is a small, 8x11 km island in South Central Alaska's lower Cook Inlet. It is approximately 280 km southwest of Anchorage, and occupied entirely by its namesake Augustine Volcano. At Augustine Volcano, SAR data suitable for interferometry is available from 1992 to 2005, from March 2006 to April 2007, and from July 2007 to October 2010. Its last two eruptive episodes, in 1986 and 2006, resulted in substantial pyroclastic flow deposits (PFDs) on the Volcano's north flank. Earlier InSAR analyses of the area, from 1992-1999, identified local subsidence, but no volcano-wide deformation indicative of magma-chamber evacuation. In contrast to previous studies, we use InSAR data to determine a range of geophysical parameters for PFDs emplaced during the Augustine's two most recent eruption cycles. Based on InSAR measurements between 1992 and 2010, we reconstruct the deformation behavior of PFDs emplaced during Augustine's last two eruption cycles. Using a combination of InSAR measurements and modeling, we determine the thickness and long-term deformation of overlaying pyroclastic flow deposits emplaced in 1986 and 2006. Consistent with previous observations of pyroclastic flows, we found that the PFDs on Augustine Island rapidly subsided after emplacement due to an initial compaction of the material. We determined the length of this initial settling period and measured the compaction rate. Subsequent to this initial rapid subsidence, we found that PFD deformation slowed to a more persistent, linear, long-term rate, related to cooling of the deposits. We established that the deposits' contraction rate is linearly related to their thickness and measured the contraction rate. Finally, a study of long term coherence properties of the Augustine PFDs showed remarkable stability of the surface over long time periods. This information provides clues on the structural properties and composition of the emplaced material.
Liang, Guohua; Hui, Dafeng; Wu, Xiaoying; Wu, Jianping; Liu, Juxiu; Zhou, Guoyi; Zhang, Deqiang
2016-02-01
Soil respiration is a major pathway in the global carbon cycle and its response to environmental changes is an increasing concern. Here we explored how total soil respiration (RT) and its components respond to elevated acid rain in a mixed conifer and broadleaf forest, one of the major forest types in southern China. RT was measured twice a month in the first year under four treatment levels of simulated acid rain (SAR: CK, the local lake water, pH 4.7; T1, water pH 4.0; T2, water pH 3.25; and T3, water pH 2.5), and in the second year, RT, litter-free soil respiration (RS), and litter respiration (RL) were measured simultaneously. The results indicated that the mean rate of RT was 2.84 ± 0.20 μmol CO2 m(-2) s(-1) in the CK plots, and RS and RL contributed 60.7% and 39.3% to RT, respectively. SAR marginally reduced (P = 0.08) RT in the first year, but significantly reduced RT and its two components in the second year (P < 0.05). The negative effects were correlated with the decrease in soil microbial biomass and fine root biomass due to soil acidification under the SAR. The temperature coefficients (Q10) of RT and its two components generally decreased with increasing levels of the SAR, but only the decrease of RT and RL was significant (P < 0.05). In addition, the contribution of RL to RT decreased significantly under the SAR, indicating that RL was more sensitive to the SAR than RS. In the context of elevated acid rain, the decline trend of RT in the forests in southern China appears to be attributable to the decline of soil respiration in the litter layer.
Wu, Xiaoping; Tian, Jinfeng; Schmitter, Sebastian; Vaughan, J Tommy; Uğurbil, Kâmil; Van de Moortele, Pierre-François
2016-06-01
We explore the advantages of using a double-ring radiofrequency (RF) array and slice orientation to design parallel transmission (pTx) multiband (MB) pulses for simultaneous multislice (SMS) imaging with whole-brain coverage at 7 Tesla (T). A double-ring head array with 16 elements split evenly in two rings stacked in the z-direction was modeled and compared with two single-ring arrays consisting of 8 or 16 elements. The array performance was evaluated by designing band-specific pTx MB pulses with local specific absorption rate (SAR) control. The impact of slice orientations was also investigated. The double-ring array consistently and significantly outperformed the other two single-ring arrays, with peak local SAR reduced by up to 40% at a fixed excitation error of 0.024. For all three arrays, exciting sagittal or coronal slices yielded better RF performance than exciting axial or oblique slices. A double-ring RF array can be used to drastically improve SAR versus excitation fidelity tradeoff for pTx MB pulse design for brain imaging at 7 T; therefore, it is preferable against single-ring RF array designs when pursuing various biomedical applications of pTx SMS imaging. In comparing the stripline arrays, coronal and sagittal slices are more advantageous than axial and oblique slices for pTx MB pulses. Magn Reson Med 75:2464-2472, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Accurate estimation of sigma(exp 0) using AIRSAR data
NASA Technical Reports Server (NTRS)
Holecz, Francesco; Rignot, Eric
1995-01-01
During recent years signature analysis, classification, and modeling of Synthetic Aperture Radar (SAR) data as well as estimation of geophysical parameters from SAR data have received a great deal of interest. An important requirement for the quantitative use of SAR data is the accurate estimation of the backscattering coefficient sigma(exp 0). In terrain with relief variations radar signals are distorted due to the projection of the scene topography into the slant range-Doppler plane. The effect of these variations is to change the physical size of the scattering area, leading to errors in the radar backscatter values and incidence angle. For this reason the local incidence angle, derived from sensor position and Digital Elevation Model (DEM) data must always be considered. Especially in the airborne case, the antenna gain pattern can be an additional source of radiometric error, because the radar look angle is not known precisely as a result of the the aircraft motions and the local surface topography. Consequently, radiometric distortions due to the antenna gain pattern must also be corrected for each resolution cell, by taking into account aircraft displacements (position and attitude) and position of the backscatter element, defined by the DEM data. In this paper, a method to derive an accurate estimation of the backscattering coefficient using NASA/JPL AIRSAR data is presented. The results are evaluated in terms of geometric accuracy, radiometric variations of sigma(exp 0), and precision of the estimated forest biomass.
Yang, Jie; Swenson, Nathan G; Cao, Min; Chuyong, George B; Ewango, Corneille E N; Howe, Robert; Kenfack, David; Thomas, Duncan; Wolf, Amy; Lin, Luxiang
2013-01-01
Ecologists have historically used species-area relationships (SARs) as a tool to understand the spatial distribution of species. Recent work has extended SARs to focus on individual-level distributions to generate individual species area relationships (ISARs). The ISAR approach quantifies whether individuals of a species tend have more or less species richness surrounding them than expected by chance. By identifying richness 'accumulators' and 'repellers', respectively, the ISAR approach has been used to infer the relative importance of abiotic and biotic interactions and neutrality. A clear limitation of the SAR and ISAR approaches is that all species are treated as evolutionarily independent and that a large amount of work has now shown that local tree neighborhoods exhibit non-random phylogenetic structure given the species richness. Here, we use nine tropical and temperate forest dynamics plots to ask: (i) do ISARs change predictably across latitude?; (ii) is the phylogenetic diversity in the neighborhood of species accumulators and repellers higher or lower than that expected given the observed species richness?; and (iii) do species accumulators, repellers distributed non-randomly on the community phylogenetic tree? The results indicate no clear trend in ISARs from the temperate zone to the tropics and that the phylogenetic diversity surrounding the individuals of species is generally only non-random on very local scales. Interestingly the distribution of species accumulators and repellers was non-random on the community phylogenies suggesting the presence of phylogenetic signal in the ISAR across latitude.
The relationship between the spatial scaling of biodiversity and ecosystem stability
Delsol, Robin; Loreau, Michel; Haegeman, Bart
2018-01-01
Aim Ecosystem stability and its link with biodiversity have mainly been studied at the local scale. Here we present a simple theoretical model to address the joint dependence of diversity and stability on spatial scale, from local to continental. Methods The notion of stability we use is based on the temporal variability of an ecosystem-level property, such as primary productivity. In this way, our model integrates the well-known species–area relationship (SAR) with a recent proposal to quantify the spatial scaling of stability, called the invariability–area relationship (IAR). Results We show that the link between the two relationships strongly depends on whether the temporal fluctuations of the ecosystem property of interest are more correlated within than between species. If fluctuations are correlated within species but not between them, then the IAR is strongly constrained by the SAR. If instead individual fluctuations are only correlated by spatial proximity, then the IAR is unrelated to the SAR. We apply these two correlation assumptions to explore the effects of species loss and habitat destruction on stability, and find a rich variety of multi-scale spatial dependencies, with marked differences between the two assumptions. Main conclusions The dependence of ecosystem stability on biodiversity across spatial scales is governed by the spatial decay of correlations within and between species. Our work provides a point of reference for mechanistic models and data analyses. More generally, it illustrates the relevance of macroecology for ecosystem functioning and stability. PMID:29651225
NASA Astrophysics Data System (ADS)
Ciampalini, Andrea; Raspini, Federico; Bianchini, Silvia; Frodella, William; Bardi, Federica; Lagomarsino, Daniela; Di Traglia, Federico; Moretti, Sandro; Proietti, Chiara; Pagliara, Paola; Onori, Roberta; Corazza, Angelo; Duro, Andrea; Basile, Giuseppe; Casagli, Nicola
2015-11-01
Landslide geodatabases, including inventories and thematic data, today are fundamental tools for national and/or local authorities in susceptibility, hazard and risk management. A well organized landslide geo-database contains different kinds of data such as past information (landslide inventory maps), ancillary data and updated remote sensing (space-borne and ground based) data, which can be integrated in order to produce landslide susceptibility maps, updated landslide inventory maps and hazard and risk assessment maps. Italy is strongly affected by landslide phenomena which cause victims and significant economic damage to buildings and infrastructure, loss of productive soils and pasture lands. In particular, the Messina Province (southern Italy) represents an area where landslides are recurrent and characterized by high magnitude, due to several predisposing factors (e.g. morphology, land use, lithologies) and different triggering mechanisms (meteorological conditions, seismicity, active tectonics and volcanic activity). For this area, a geodatabase was created by using different monitoring techniques, including remote sensing (e.g. SAR satellite ERS1/2, ENVISAT, RADARSAT-1, TerraSAR-X, COSMO-SkyMed) data, and in situ measurements (e.g. GBInSAR, damage assessment). In this paper a complete landslide geodatabase of the Messina Province, designed following the requirements of the local and national Civil Protection authorities, is presented. This geo-database was used to produce maps (e.g. susceptibility, ground deformation velocities, damage assessment, risk zonation) which today are constantly used by the Civil Protection authorities to manage the landslide hazard of the Messina Province.
Design and characterisation of miniaturised cavity-backed patch antenna for microwave hyperthermia.
Chakaravarthi, Geetha; Arunachalam, Kavitha
2015-01-01
The aim of this study was to describe the design and characterisation of a miniaturised 434 MHz patch antenna enclosed in a metal cavity for microwave hyperthermia treatment of cancer. Electromagnetic (EM) field distribution in the near field of a microstrip patch irradiating body tissue was studied using finite element method (FEM) simulations. Antenna miniaturisation was achieved through dielectric loading with very high permittivity, metal enclosure, patch folding and shorting post. Frequency dependent electrical properties of materials were incorporated wherever appropriate using dispersion model and measurements. Antenna return loss and specific absorption rate (SAR) at 434 MHz were measured on muscle phantoms for characterisation. The design was progressively optimised to yield a compact 434 MHz patch (22 mm × 8.8 mm × 10 mm) inside a metal cavity (40 mm × 12 mm) with integrated coupling water bolus (35 mm). The fabricated antenna with integrated water bolus was self resonant at 434 MHz without load, and has better than -10 dB return loss (S11) with 13-20 MHz bandwidth on two different phantoms. SAR at 434 MHz measured using an infrared (IR) thermal camera on split phantoms indicated penetration depth for -3 dB SAR as 8.25 mm compared to 8.87 mm for simulation. The simulated and measured SAR coverage along phantom depth was 3.09 cm(2) and 3.21 cm(2) respectively at -3 dB, and 6.42 cm(2) and 9.07 cm(2) respectively at -6 dB. SAR full width at half maximum (FWHM) at 5 mm and 20 mm depths were 54.68 mm and 51.18 mm respectively in simulation, and 49.47 mm and 43.75 mm respectively in experiments. Performance comparison of the cavity-backed patch indicates more than 89% co-polarisation and higher directivity which resulted in deeper penetration compared to the patch applicators of similar or larger size proposed for hyperthermia treatment of cancer. The fabricated cavity-backed applicator is self-resonant at 434 MHz with a negligible shift in resonance when coupled to different phantoms, Δf/f0 less than 1.16%. IR thermography-based SAR measurements indicated that the -3 dB SAR of the cavity-backed aperture antenna covered the radiating aperture surface at 5 mm and 20 mm depths. It can be concluded that the compact cavity-backed patch antenna has stable resonance, higher directivity and low cross polarisation, and is suitable for design of microwave hyperthermia array applicators with adjustable heating pattern for superficial and/or deep tissue heating.
Motion of David Glacier in East Antarctica Observed by COSMO-SkyMed Differential SAR Interferometry
NASA Astrophysics Data System (ADS)
Han, H.; Lee, H.
2011-12-01
David glacier, located in Victoria Land, East Antarctica (75°20'S, 161°15'E), is an outlet glacier of 13 km width near the grounding line and 50 km long from the source to the grounding line. David glacier flows into Ross Sea forming Drygalski Ice Tongue, 100 km long and 23 km wide. In this study, we extracted a surface displacement map of David by applying differential SAR interferometry (DInSAR) to one-day tandem pairs obtained from COSMO-SkyMed satellites on April 28-29 (descending orbit) and May 5-6 (ascending orbit), 2011, respectively. Terra ASTER global digital elevation model (GDEM) is used to remove the topographic effect from the COSMO-SkyMed interferograms. David glacier showed maximum displacement of 35 cm during April 28-29 and 20 cm during May 5-6 in the direction of radar line of sight. The glacier can be divided into several blocks by the disparities of displacement between the different sliding zone. Surface displacement map contains errors originated from orbit data, atmospheric conditions, DEM error. GDEM is generated from the ASTER optical images acquired from 2000 to 2008. It has the vertical accuracy of about 20 m at 95% confidence with the 30 m of horizontal posting. The accuracy of GDEM reduces when cloud cover is included in the ASTER image. Particularly in the snow and ice area, GDEM is inaccurate due to whiteout effect during stereo matching. The inaccuracy of GDEM could be a reason of the observed glacier motion in the opposite direction of gravity. This problem can be solved by using TanDEM-X DEM. Bistatic acquisition of SAR images from the constellation of TerraSAR-X and TanDEM-X will generate a global DEM with the vertical accuracy better than 2 m and the horizontal posting of 12 m. We plan to perform DInSAR of COSMO-SkyMed one-day tandem pairs again when the high-accuracy TanDEM-X DEM is available in the near future. As a conclusion, we could analyze the displacement of David glacier in East Antarctica. The glacier showed very fast motion forming a block of streamlines with different flow velocity. For more accurate analysis, we will use TanDEM-X DEM to perform the DInSAR. The flow characteristics, ice mass balance, ice discharge rate of David glacier remains as an ongoing research.
Verhaart, René F; Fortunati, Valerio; Verduijn, Gerda M; van der Lugt, Aad; van Walsum, Theo; Veenland, Jifke F; Paulides, Margarethus M
2014-12-01
In current clinical practice, head and neck (H&N) hyperthermia treatment planning (HTP) is solely based on computed tomography (CT) images. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast over CT. The purpose of the authors' study is to investigate the relevance of using MRI in addition to CT for patient modeling in H&N HTP. CT and MRI scans were acquired for 11 patients in an immobilization mask. Three observers manually segmented on CT, MRI T1 weighted (MRI-T1w), and MRI T2 weighted (MRI-T2w) images the following thermo-sensitive tissues: cerebrum, cerebellum, brainstem, myelum, sclera, lens, vitreous humor, and the optical nerve. For these tissues that are used for patient modeling in H&N HTP, the interobserver variation of manual tissue segmentation in CT and MRI was quantified with the mean surface distance (MSD). Next, the authors compared the impact of CT and CT and MRI based patient models on the predicted temperatures. For each tissue, the modality was selected that led to the lowest observer variation and inserted this in the combined CT and MRI based patient model (CT and MRI), after a deformable image registration. In addition, a patient model with a detailed segmentation of brain tissues (including white matter, gray matter, and cerebrospinal fluid) was created (CT and MRIdb). To quantify the relevance of MRI based segmentation for H&N HTP, the authors compared the predicted maximum temperatures in the segmented tissues (Tmax) and the corresponding specific absorption rate (SAR) of the patient models based on (1) CT, (2) CT and MRI, and (3) CT and MRIdb. In MRI, a similar or reduced interobserver variation was found compared to CT (maximum of median MSD in CT: 0.93 mm, MRI-T1w: 0.72 mm, MRI-T2w: 0.66 mm). Only for the optical nerve the interobserver variation is significantly lower in CT compared to MRI (median MSD in CT: 0.58 mm, MRI-T1w: 1.27 mm, MRI-T2w: 1.40 mm). Patient models based on CT (Tmax: 38.0 °C) and CT and MRI (Tmax: 38.1 °C) result in similar simulated temperatures, while CT and MRIdb (Tmax: 38.5 °C) resulted in significantly higher temperatures. The SAR corresponding to these temperatures did not differ significantly. Although MR imaging reduces the interobserver variation in most tissues, it does not affect simulated local tissue temperatures. However, the improved soft-tissue contrast provided by MRI allows generating a detailed brain segmentation, which has a strong impact on the predicted local temperatures and hence may improve simulation guided hyperthermia.
Incentives for Reporting Infectious Disease Outbreaks
ERIC Educational Resources Information Center
Malani, Anup; Laxminarayan, Ramanan
2011-01-01
The global spread of diseases such as swine flu and SARS highlights the difficult decision governments face when presented with evidence of a local outbreak. Reporting the outbreak may bring medical assistance but is also likely to trigger trade sanctions by countries hoping to contain the disease. Suppressing the information may avoid trade…
Predictive testing to characterize substances for their skin sensitization potential has historically been based on animal models such as the Local Lymph Node Assay (LLNA) and the Guinea Pig Maximization Test (GPMT). In recent years, EU regulations have provided a strong incentiv...
Theory and Measurement of Partially Correlated Persistent Scatterers
NASA Astrophysics Data System (ADS)
Lien, J.; Zebker, H. A.
2011-12-01
Interferometric synthetic aperture radar (InSAR) time-series methods can effectively estimate temporal surface changes induced by geophysical phenomena. However, such methods are susceptible to decorrelation due to spatial and temporal baselines (radar pass separation), changes in orbital geometries, atmosphere, and noise. These effects limit the number of interferograms that can be used for differential analysis and obscure the deformation signal. InSAR decorrelation effects may be ameliorated by exploiting pixels that exhibit phase stability across the stack of interferograms. These so-called persistent scatterer (PS) pixels are dominated by a single point-like scatterer that remains phase-stable over the spatial and temporal baseline. By identifying a network of PS pixels for use in phase unwrapping, reliable deformation measurements may be obtained even in areas of low correlation, where traditional InSAR techniques fail to produce useful observations. PS identification is challenging in natural terrain, due to low reflectivity and few corner reflectors. Shanker and Zebker [1] proposed a PS pixel selection technique based on maximum-likelihood estimation of the associated signal-to-clutter ratio (SCR). In this study, we further develop the underlying theory for their technique, starting from statistical backscatter characteristics of PS pixels. We derive closed-form expressions for the spatial, rotational, and temporal decorrelation of PS pixels as a function of baseline and signal-to-clutter ratio. We show that previous decorrelation and critical baseline expressions [2] are limiting cases of our result. We then describe a series of radar scattering simulations and show that the simulated decorrelation matches well with our analytic results. Finally, we use our decorrelation expressions with maximum-likelihood SCR estimation to analyze an area of the Hayward Fault Zone in the San Francisco Bay Area. A series of 38 images of the area were obtained from C-band ERS radar satellite passes between May 1995 and December 2000. We show that the interferogram stack exhibits PS decorrelation trends in agreement with our analytic results. References 1. P. Shanker and H. Zebker, "Persistent scatterer selection using maximum likelihood estimation," Geophysical Research Letters, Vol. 34, L22301, 2007. 2. H. Zebker and J. Villasenor, "Decorrelation in Interferometric Radar Echos," IEEE Transactions on Geoscience and Remote Sensing, Vol. 30, No. 5, Sept. 1992.
Calculation of change in brain temperatures due to exposure to a mobile phone
NASA Astrophysics Data System (ADS)
Van Leeuwen, G. M. J.; Lagendijk, J. J. W.; Van Leersum, B. J. A. M.; Zwamborn, A. P. M.; Hornsleth, S. N.; Kotte, A. N. T. J.
1999-10-01
In this study we evaluated for a realistic head model the 3D temperature rise induced by a mobile phone. This was done numerically with the consecutive use of an FDTD model to predict the absorbed electromagnetic power distribution, and a thermal model describing bioheat transfer both by conduction and by blood flow. We calculated a maximum rise in brain temperature of 0.11 °C for an antenna with an average emitted power of 0.25 W, the maximum value in common mobile phones, and indefinite exposure. Maximum temperature rise is at the skin. The power distributions were characterized by a maximum averaged SAR over an arbitrarily shaped 10 g volume of approximately 1.6 W kg-1. Although these power distributions are not in compliance with all proposed safety standards, temperature rises are far too small to have lasting effects. We verified our simulations by measuring the skin temperature rise experimentally. Our simulation method can be instrumental in further development of safety standards.
Sedimentary Environments Mapping in the Yellow Sea Using TanDEM-X and Optic Satellites
NASA Astrophysics Data System (ADS)
Ryu, J. H.; Lee, Y. K.; Kim, S. W.
2017-12-01
Due to land reclamation and dredging, 57% of China's coastal wetlands have disappeared since the 1950s, and the total area of tidal flats in South Korea decreased from approximately 2,800km2 in 1990 to 2392km2 in 2005(Qiu, 2011 and MLTM, 2010). Intertidal DEM and sedimentary facies are useful for understanding intertidal functions and monitoring their response to natural and anthropogenic actions. Highly accurate intertidal DEMs with 5-m resolution were generated based on the TanDEM-X interferometric SAR (InSAR) technique because TanDEM-X allows the acquisition of the coherent InSAR pairs with no time lag or approximately 10-second temporal baseline between master and slave SAR image. We successfully generated intertidal zone DEMs with 5-7-m spatial resolutions and interferometric height accuracies better than 0.15 m for three representative tidal flats on the west coast of the Korean Peninsula and one site of chinese coastal region in the Yellow Sea. Surface sediment classification based on remotely sensed data must circumspectly consider an effective critical grain size, water content, local topography, and intertidal structures. The earlier studies have some limitation that the classification map is not considered to analysis various environmental conditions. Therefore, the purpose of this study was minutely to mapping the surface sedimentary facies by analyzing the tidal channel, topography with multi-sensor remotely sensed data and in-situ data.
Analysis of building deformation in landslide area using multisensor PSInSAR™ technique.
Ciampalini, Andrea; Bardi, Federica; Bianchini, Silvia; Frodella, William; Del Ventisette, Chiara; Moretti, Sandro; Casagli, Nicola
2014-12-01
Buildings are sensitive to movements caused by ground deformation. The mapping both of spatial and temporal distribution, and of the degree of building damages represents a useful tool in order to understand the landslide evolution, magnitude and stress distribution. The high spatial resolution of space-borne SAR interferometry can be used to monitor displacements related to building deformations. In particular, PSInSAR technique is used to map and monitor ground deformation with millimeter accuracy. The usefulness of the above mentioned methods was evaluated in San Fratello municipality (Sicily, Italy), which was historically affected by landslides: the most recent one occurred on 14th February 2010. PSInSAR data collected by ERS 1/2, ENVISAT, RADARSAT-1 were used to study the building deformation velocities before the 2010 landslide. The X-band sensors COSMO-SkyMed and TerraSAR-X were used in order to monitor the building deformation after this event. During 2013, after accurate field inspection on buildings and structures, damage assessment map of San Fratello were created and then compared to the building deformation velocity maps. The most interesting results were obtained by the comparison between the building deformation velocity map obtained through COSMO-SkyMed and the damage assessment map. This approach can be profitably used by local and Civil Protection Authorities to manage the post-event phase and evaluate the residual risks.
NASA Astrophysics Data System (ADS)
Beyene, F.; Knospe, S.; Busch, W.
2015-04-01
Landslide detection and monitoring remain difficult with conventional differential radar interferometry (DInSAR) because most pixels of radar interferograms around landslides are affected by different error sources. These are mainly related to the nature of high radar viewing angles and related spatial distortions (such as overlays and shadows), temporal decorrelations owing to vegetation cover, and speed and direction of target sliding masses. On the other hand, GIS can be used to integrate spatial datasets obtained from many sources (including radar and non-radar sources). In this paper, a GRID data model is proposed to integrate deformation data derived from DInSAR processing with other radar origin data (coherence, layover and shadow, slope and aspect, local incidence angle) and external datasets collected from field study of landslide sites and other sources (geology, geomorphology, hydrology). After coordinate transformation and merging of data, candidate landslide representing pixels of high quality radar signals were filtered out by applying a GIS based multicriteria filtering analysis (GIS-MCFA), which excludes grid points in areas of shadow and overlay, low coherence, non-detectable and non-landslide deformations, and other possible sources of errors from the DInSAR data processing. At the end, the results obtained from GIS-MCFA have been verified by using the external datasets (existing landslide sites collected from fieldworks, geological and geomorphologic maps, rainfall data etc.).
Wu, Jianping; Liang, Guohua; Hui, Dafeng; Deng, Qi; Xiong, Xin; Qiu, Qingyan; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang
2016-02-15
With the continuing increase in anthropogenic activities, acid rain remains a serious environmental threat, especially in the fast developing areas such as southern China. To detect how prolonged deposition of acid rain would influence soil organic carbon accumulation in mature subtropical forests, we conducted a field experiment with simulated acid rain (SAR) treatments in a monsoon evergreen broadleaf forest at Dinghushan National Nature Reserve in southern China. Four levels of SAR treatments were set by irrigating plants with water of different pH values: CK (the control, local lake water, pH ≈ 4.5), T1 (water pH=4.0), T2 (water pH=3.5), and T3 (water pH=3.0). Results showed reduced pH measurements in the topsoil exposed to simulated acid rains due to soil acidification. Soil respiration, soil microbial biomass and litter decomposition rates were significantly decreased by the SAR treatments. As a result, T3 treatment significantly increased the total organic carbon by 24.5% in the topsoil compared to the control. Furthermore, surface soil became more stable as more recalcitrant organic matter was generated under the SAR treatments. Our results suggest that prolonged acid rain exposure may have the potential to facilitate soil organic carbon accumulation in the subtropical forest in southern China. Copyright © 2015 Elsevier B.V. All rights reserved.
Slip distribution, strain accumulation and aseismic slip on the Chaman Fault system
NASA Astrophysics Data System (ADS)
Amelug, F.
2015-12-01
The Chaman fault system is a transcurrent fault system developed due to the oblique convergence of the India and Eurasia plates in the western boundary of the India plate. To evaluate the contemporary rates of strain accumulation along and across the Chaman Fault system, we use 2003-2011 Envisat SAR imagery and InSAR time-series methods to obtain a ground velocity field in radar line-of-sight (LOS) direction. We correct the InSAR data for different sources of systematic biases including the phase unwrapping errors, local oscillator drift, topographic residuals and stratified tropospheric delay and evaluate the uncertainty due to the residual delay using time-series of MODIS observations of precipitable water vapor. The InSAR velocity field and modeling demonstrates the distribution of deformation across the Chaman fault system. In the central Chaman fault system, the InSAR velocity shows clear strain localization on the Chaman and Ghazaband faults and modeling suggests a total slip rate of ~24 mm/yr distributed on the two faults with rates of 8 and 16 mm/yr, respectively corresponding to the 80% of the total ~3 cm/yr plate motion between India and Eurasia at these latitudes and consistent with the kinematic models which have predicted a slip rate of ~17-24 mm/yr for the Chaman Fault. In the northern Chaman fault system (north of 30.5N), ~6 mm/yr of the relative plate motion is accommodated across Chaman fault. North of 30.5 N where the topographic expression of the Ghazaband fault vanishes, its slip does not transfer to the Chaman fault but rather distributes among different faults in the Kirthar range and Sulaiman lobe. Observed surface creep on the southern Chaman fault between Nushki and north of City of Chaman, indicates that the fault is partially locked, consistent with the recorded M<7 earthquakes in last century on this segment. The Chaman fault between north of the City of Chaman to North of Kabul, does not show an increase in the rate of strain accumulation. However, lack of seismicity on this segment, presents a significant hazard on Kabul. The high rate of strain accumulation on the Ghazaband fault and lack of evidence for the rupture of the fault during the 1935 Quetta earthquake, present a growing earthquake hazard to the Balochistan and the populated areas such as the city of Quetta.
InSAR Remote Sensing of Localized Surface Layer Subsidence in New Orleans, LA
NASA Astrophysics Data System (ADS)
An, K.; Jones, C. E.; Blom, R. G.; Kent, J. D.; Ivins, E. R.
2015-12-01
More than half of Louisiana's drinking water is dependent on groundwater, and extraction of these resources along with high oil and gas production has contributed to localized subsidence in many parts of New Orleans. This increases the vulnerability of levee failure during intense storms such as Hurricane Katrina in 2005, before which rapid subsidence had already been identified and contributed to the failing levees and catastrophic flooding. An interferogram containing airborne radar data from NASA's UAVSAR was combined with local geographic information systems (GIS) data for 2009-12 to help identify the sources of subsidence and mask out unrelated features such as surface water. We have observed the highest vertical velocity rates at the NASA Michoud Assembly Facility (high water use) and Norco (high oil/gas production). Many other notable features such as the: Bonnet-Carre Spillway, MRGO canal, levee lines along the Lower 9th Ward and power plants, are also showing concerning rates of subsidence. Even new housing loads, soil type differences, and buried beach sands seem to have modest correlations with patterns seen in UAVSAR. Current hurricane protection and coastal restoration efforts still have not incorporated late 20th century water level and geodetic data into their projections. Using SAR interferometry and local GIS datasets, areas of subsidence can be identified in a more efficient and economical manner, especially for emergency response.
Murbach, Manuel; Neufeld, Esra; Cabot, Eugenia; Zastrow, Earl; Córcoles, Juan; Kainz, Wolfgang; Kuster, Niels
2016-09-01
To assess the effect of radiofrequency (RF) shimming of a 3 Tesla (T) two-port body coil on B1 + uniformity, the local specific absorption rate (SAR), and the local temperature increase as a function of the thermoregulatory response. RF shimming alters induced current distribution, which may result in large changes in the level and location of absorbed RF energy. We investigated this effect with six anatomical human models from the Virtual Population in 10 imaging landmarks and four RF coils. Three thermoregulation models were applied to estimate potential local temperature increases, including a newly proposed model for impaired thermoregulation. Two-port RF shimming, compared to circular polarization mode, can increase the B1 + uniformity on average by +32%. Worst-case SAR excitations increase the local RF power deposition on average by +39%. In the first level controlled operating mode, induced peak temperatures reach 42.5°C and 45.6°C in patients with normal and impaired thermoregulation, respectively. Image quality with 3T body coils can be significantly increased by RF shimming. Exposure in realistic scan scenarios within guideline limits can be considered safe for a broad patient population with normal thermoregulation. Patients with impaired thermoregulation should not be scanned outside of the normal operating mode. Magn Reson Med 76:986-997, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Radiofrequency Exposures of Workers on Low-Power FM Radio Transmitters.
Valic, Blaž; Kos, Bor; Gajšek, Peter
2017-05-01
Low-power radio transmitters are one of the most common radio frequency sources and the exposure limit values (ELVs) for occupational exposure may be exceeded close to them. Therefore, a detailed analysis and assessment of occupational exposure in their vicinity is presented in the paper. For 20 different exposure scenarios, electric field strength and specific absorption rate (SAR) values were computed to determine whether the action levels (ALs) and ELVs of the European directive 2013/35/EU are exceeded for different 500 W radio transmitters. The results show that the ALs are very conservative for such exposure situations. Even when the ALs are greatly exceeded, the SAR values are not necessarily above the limit. However, in some situations, the ELVs were also exceeded. The local 10 g averaged value of the SAR can be exceeded if the worker is grounded (in direct contact with the steel structure), while the whole body ELVs can be exceeded for exposures at distances of <1 m from the transmitting dipole array antennas. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Improved Goldstein Interferogram Filter Based on Local Fringe Frequency Estimation.
Feng, Qingqing; Xu, Huaping; Wu, Zhefeng; You, Yanan; Liu, Wei; Ge, Shiqi
2016-11-23
The quality of an interferogram, which is limited by various phase noise, will greatly affect the further processes of InSAR, such as phase unwrapping. Interferometric SAR (InSAR) geophysical measurements', such as height or displacement, phase filtering is therefore an essential step. In this work, an improved Goldstein interferogram filter is proposed to suppress the phase noise while preserving the fringe edges. First, the proposed adaptive filter step, performed before frequency estimation, is employed to improve the estimation accuracy. Subsequently, to preserve the fringe characteristics, the estimated fringe frequency in each fixed filtering patch is removed from the original noisy phase. Then, the residual phase is smoothed based on the modified Goldstein filter with its parameter alpha dependent on both the coherence map and the residual phase frequency. Finally, the filtered residual phase and the removed fringe frequency are combined to generate the filtered interferogram, with the loss of signal minimized while reducing the noise level. The effectiveness of the proposed method is verified by experimental results based on both simulated and real data.
Improved Goldstein Interferogram Filter Based on Local Fringe Frequency Estimation
Feng, Qingqing; Xu, Huaping; Wu, Zhefeng; You, Yanan; Liu, Wei; Ge, Shiqi
2016-01-01
The quality of an interferogram, which is limited by various phase noise, will greatly affect the further processes of InSAR, such as phase unwrapping. Interferometric SAR (InSAR) geophysical measurements’, such as height or displacement, phase filtering is therefore an essential step. In this work, an improved Goldstein interferogram filter is proposed to suppress the phase noise while preserving the fringe edges. First, the proposed adaptive filter step, performed before frequency estimation, is employed to improve the estimation accuracy. Subsequently, to preserve the fringe characteristics, the estimated fringe frequency in each fixed filtering patch is removed from the original noisy phase. Then, the residual phase is smoothed based on the modified Goldstein filter with its parameter alpha dependent on both the coherence map and the residual phase frequency. Finally, the filtered residual phase and the removed fringe frequency are combined to generate the filtered interferogram, with the loss of signal minimized while reducing the noise level. The effectiveness of the proposed method is verified by experimental results based on both simulated and real data. PMID:27886081
Characteristics of Forests in Western Sayani Mountains, Siberia from SAR Data
NASA Technical Reports Server (NTRS)
Ranson, K. Jon; Sun, Guoqing; Kharuk, V. I.; Kovacs, Katalin
1998-01-01
This paper investigated the possibility of using spaceborne radar data to map forest types and logging in the mountainous Western Sayani area in Siberia. L and C band HH, HV, and VV polarized images from the Shuttle Imaging Radar-C instrument were used in the study. Techniques to reduce topographic effects in the radar images were investigated. These included radiometric correction using illumination angle inferred from a digital elevation model, and reducing apparent effects of topography through band ratios. Forest classification was performed after terrain correction utilizing typical supervised techniques and principal component analyses. An ancillary data set of local elevations was also used to improve the forest classification. Map accuracy for each technique was estimated for training sites based on Russian forestry maps, satellite imagery and field measurements. The results indicate that it is necessary to correct for topography when attempting to classify forests in mountainous terrain. Radiometric correction based on a DEM (Digital Elevation Model) improved classification results but required reducing the SAR (Synthetic Aperture Radar) resolution to match the DEM. Using ratios of SAR channels that include cross-polarization improved classification and
NASA Astrophysics Data System (ADS)
Fischer, Peter; Schuegraf, Philipp; Merkle, Nina; Storch, Tobias
2018-04-01
This paper presents a hybrid evolutionary algorithm for fast intensity based matching between satellite imagery from SAR and very high-resolution (VHR) optical sensor systems. The precise and accurate co-registration of image time series and images of different sensors is a key task in multi-sensor image processing scenarios. The necessary preprocessing step of image matching and tie-point detection is divided into a search problem and a similarity measurement. Within this paper we evaluate the use of an evolutionary search strategy for establishing the spatial correspondence between satellite imagery of optical and radar sensors. The aim of the proposed algorithm is to decrease the computational costs during the search process by formulating the search as an optimization problem. Based upon the canonical evolutionary algorithm, the proposed algorithm is adapted for SAR/optical imagery intensity based matching. Extensions are drawn using techniques like hybridization (e.g. local search) and others to lower the number of objective function calls and refine the result. The algorithm significantely decreases the computational costs whilst finding the optimal solution in a reliable way.
NASA Astrophysics Data System (ADS)
Miyagi, Y.; Ozawa, T.
2010-12-01
The Solomon Islands are located in the southwest of the Pacific Ocean. The Australian, Woodlark, and Solomon Sea plates subduct toward the northeast beneath the Pacific plate. Interaction among these four plates cause complicated tectonics around the Solomon Islands, and have caused interplate earthquakes in the subduction zone (e.g. Lay and Kanamori, 1980; Xu and Schwarts, 1993). On April 1, 2007 (UTC), an M8.1 interplate earthquake occurred in the subduction zone between the Pacific Plate and the Australian Plate. This earthquake was accompanied by a large tsunami and caused considerable damage in the area. The Japan Aerospace Exploration Agency (JAXA) carried out emergency observations using the Phased Array type L-band Synthetic Aperture Rader (PALSAR) installed on Advanced Land Observing Satellite (ALOS), and detected more than 2m of maximum displacement using differential interferometric SAR (DInSAR) technique. Miyagi et al. (2009) estimated a slip distribution of the seismic fault mainly from the PALSAR/DInSAR data and suggested that most of a seismic gap was filled by the 2007 events, but a small seismic gap connecting to an Mw7.0-sized earthquake still remained. On January 3, 2010, an M7.1 earthquake occurred in the vicinity of the remnant seismic gap. ALOS/PALSAR observed epicentral area both before and after the event, and detected crustal deformation associated with the earthquake. We inferred fault model using the PALSAR/DInSAR data and concluded that the 2010 event was the supposed thrust earthquake filling the remnant seismic gap. A distribution of coulomb failure stress change in the epicentral area after the 2007 event suggested the possibility that the 2010 event was triggered by the 2007 earthquake.
Masterlark, Timothy; Lu, Zhong; Rykhus, Russell P.
2006-01-01
Interferometric synthetic aperture radar (InSAR) imagery documents the consistent subsidence, during the interval 1992–1999, of a pyroclastic flow deposit (PFD) emplaced during the 1986 eruption of Augustine Volcano, Alaska. We construct finite element models (FEMs) that simulate thermoelastic contraction of the PFD to account for the observed subsidence. Three-dimensional problem domains of the FEMs include a thermoelastic PFD embedded in an elastic substrate. The thickness of the PFD is initially determined from the difference between post- and pre-eruption digital elevation models (DEMs). The initial excess temperature of the PFD at the time of deposition, 640 °C, is estimated from FEM predictions and an InSAR image via standard least-squares inverse methods. Although the FEM predicts the major features of the observed transient deformation, systematic prediction errors (RMSE = 2.2 cm) are most likely associated with errors in the a priori PFD thickness distribution estimated from the DEM differences. We combine an InSAR image, FEMs, and an adaptive mesh algorithm to iteratively optimize the geometry of the PFD with respect to a minimized misfit between the predicted thermoelastic deformation and observed deformation. Prediction errors from an FEM, which includes an optimized PFD geometry and the initial excess PFD temperature estimated from the least-squares analysis, are sub-millimeter (RMSE = 0.3 mm). The average thickness (9.3 m), maximum thickness (126 m), and volume (2.1 × 107m3) of the PFD, estimated using the adaptive mesh algorithm, are about twice as large as the respective estimations for the a priori PFD geometry. Sensitivity analyses suggest unrealistic PFD thickness distributions are required for initial excess PFD temperatures outside of the range 500–800 °C.
Black, J. L.; Diment, L. M.; Alouan, L. A.; Johnson, P. R.; Armour, C. L.; Badgery-Parker, T.; Burcher, E.
1992-01-01
1. In many species, both NK1 and NK2 tachykinin receptors appear to be important in mediating the contraction of airway smooth muscle. We have examined the distribution and characterization of receptors for tachykinins in rabbit airways using functional length tension studies, autoradiography and radioligand binding studies. 2. Contractile responses to tachykinins were elicited in four different areas of the respiratory tree--trachea, and three progressively more distal areas of the right bronchus. The NK2 receptor-preferring agonists, neurokinin A (NKA), neuropeptide gamma (NP gamma) and the NK2-selective [Lys5 MeLeu9, Nle10]-NKA(4-10) [NKA (4-10) analogue] produced similar contraction in all four areas. Substance P (SP) and the NK1-selective [Sar9,Met(O2)11]-SP (Sar-SP) exhibited a marked location-dependence in the magnitude of contraction, producing minimal contraction in the trachea and more proximal bronchi with contractions becoming progressively larger in the more distal airways. Senktide (which is selective for the NK3 receptor) produced negligible contraction in all areas. 3. The NK2-selective antagonist, MDL29,913, was a weak antagonist of NKA and NKA(4-10) analogue. At a concentration of 2 microM, it produced a small but significant shift in the response curve to NKA and a greater shift (8 fold) in the curve to NKA(4-10) analogue, but it had no effect on responses to Sar-SP. The non peptide NK1 receptor antagonist, CP-96,345, was also unexpectedly weak in this preparation. The pD2 value for Sar-SP was decreased 27 fold by CP-96,345 at a concentration of 1 microM, without alteration in the maximum response.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 4 PMID:1384914
Iterative Self-Dual Reconstruction on Radar Image Recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martins, Charles; Medeiros, Fatima; Ushizima, Daniela
2010-05-21
Imaging systems as ultrasound, sonar, laser and synthetic aperture radar (SAR) are subjected to speckle noise during image acquisition. Before analyzing these images, it is often necessary to remove the speckle noise using filters. We combine properties of two mathematical morphology filters with speckle statistics to propose a signal-dependent noise filter to multiplicative noise. We describe a multiscale scheme that preserves sharp edges while it smooths homogeneous areas, by combining local statistics with two mathematical morphology filters: the alternating sequential and the self-dual reconstruction algorithms. The experimental results show that the proposed approach is less sensitive to varying window sizesmore » when applied to simulated and real SAR images in comparison with standard filters.« less
Synthetic aperture radar target simulator
NASA Technical Reports Server (NTRS)
Zebker, H. A.; Held, D. N.; Goldstein, R. M.; Bickler, T. C.
1984-01-01
A simulator for simulating the radar return, or echo, from a target seen by a SAR antenna mounted on a platform moving with respect to the target is described. It includes a first-in first-out memory which has digital information clocked in at a rate related to the frequency of a transmitted radar signal and digital information clocked out with a fixed delay defining range between the SAR and the simulated target, and at a rate related to the frequency of the return signal. An RF input signal having a frequency similar to that utilized by a synthetic aperture array radar is mixed with a local oscillator signal to provide a first baseband signal having a frequency considerably lower than that of the RF input signal.
Hoffman, Steven J; Justicz, Victoria
2016-07-01
To develop and validate a method for automatically quantifying the scientific quality and sensationalism of individual news records. After retrieving 163,433 news records mentioning the Severe Acute Respiratory Syndrome (SARS) and H1N1 pandemics, a maximum entropy model for inductive machine learning was used to identify relationships among 500 randomly sampled news records that correlated with systematic human assessments of their scientific quality and sensationalism. These relationships were then computationally applied to automatically classify 10,000 additional randomly sampled news records. The model was validated by randomly sampling 200 records and comparing human assessments of them to the computer assessments. The computer model correctly assessed the relevance of 86% of news records, the quality of 65% of records, and the sensationalism of 73% of records, as compared to human assessments. Overall, the scientific quality of SARS and H1N1 news media coverage had potentially important shortcomings, but coverage was not too sensationalizing. Coverage slightly improved between the two pandemics. Automated methods can evaluate news records faster, cheaper, and possibly better than humans. The specific procedure implemented in this study can at the very least identify subsets of news records that are far more likely to have particular scientific and discursive qualities. Copyright © 2016 Elsevier Inc. All rights reserved.
A new scheme for urban impervious surface classification from SAR images
NASA Astrophysics Data System (ADS)
Zhang, Hongsheng; Lin, Hui; Wang, Yunpeng
2018-05-01
Urban impervious surfaces have been recognized as a significant indicator for various environmental and socio-economic studies. There is an increasingly urgent demand for timely and accurate monitoring of the impervious surfaces with satellite technology from local to global scales. In the past decades, optical remote sensing has been widely employed for this task with various techniques. However, there are still a range of challenges, e.g. handling cloud contamination on optical data. Therefore, the Synthetic Aperture Radar (SAR) was introduced for the challenging task because it is uniquely all-time- and all-weather-capable. Nevertheless, with an increasing number of SAR data applied, the methodology used for impervious surfaces classification remains unchanged from the methods used for optical datasets. This shortcoming has prevented the community from fully exploring the potential of using SAR data for impervious surfaces classification. We proposed a new scheme that is comparable to the well-known and fundamental Vegetation-Impervious surface-Soil (V-I-S) model for mapping urban impervious surfaces. Three scenes of fully polarimetric Radsarsat-2 data for the cities of Shenzhen, Hong Kong and Macau were employed to test and validate the proposed methodology. Experimental results indicated that the overall accuracy and Kappa coefficient were 96.00% and 0.8808 in Shenzhen, 93.87% and 0.8307 in Hong Kong and 97.48% and 0.9354 in Macau, indicating the applicability and great potential of the new scheme for impervious surfaces classification using polarimetric SAR data. Comparison with the traditional scheme indicated that this new scheme was able to improve the overall accuracy by up to 4.6% and Kappa coefficient by up to 0.18.
NASA Astrophysics Data System (ADS)
Fang, Li; Xu, Yusheng; Yao, Wei; Stilla, Uwe
2016-11-01
For monitoring of glacier surface motion in pole and alpine areas, radar remote sensing is becoming a popular technology accounting for its specific advantages of being independent of weather conditions and sunlight. In this paper we propose a method for glacier surface motion monitoring using phase correlation (PC) based on point-like features (PLF). We carry out experiments using repeat-pass TerraSAR X-band (TSX) and Sentinel-1 C-band (S1C) intensity images of the Taku glacier in Juneau icefield located in southeast Alaska. The intensity imagery is first filtered by an improved adaptive refined Lee filter while the effect of topographic reliefs is removed via SRTM-X DEM. Then, a robust phase correlation algorithm based on singular value decomposition (SVD) and an improved random sample consensus (RANSAC) algorithm is applied to sequential PLF pairs generated by correlation using a 2D sinc function template. The approaches for glacier monitoring are validated by both simulated SAR data and real SAR data from two satellites. The results obtained from these three test datasets confirm the superiority of the proposed approach compared to standard correlation-like methods. By the use of the proposed adaptive refined Lee filter, we achieve a good balance between the suppression of noise and the preservation of local image textures. The presented phase correlation algorithm shows the accuracy of better than 0.25 pixels, when conducting matching tests using simulated SAR intensity images with strong noise. Quantitative 3D motions and velocities of the investigated Taku glacier during a repeat-pass period are obtained, which allows a comprehensive and reliable analysis for the investigation of large-scale glacier surface dynamics.
Mapping Tropical Forest Mosaics with C- and L-band SAR: First Results from Osa Peninsula, Costa Rica
NASA Astrophysics Data System (ADS)
Pinto, N.; Hensley, S.; Aguilar-Amuchastegui, N.; Broadbent, E. N.; Ahmed, R.
2016-12-01
In tropical countries, economic incentives and improved infrastructure are creating forest mosaics where small-scale farming and industrial plantations are embedded within and potentially replacing native ecosystems. Practices such as agroforestry, slash-and-burn cultivation, and oil palm monocultures bring widely different impacts on carbon stocks. Characterizing these production systems is not only critical to ascribe deforestation to particular drivers, but also essential to understand the impact of macroeconomic scenarios, national policies, and land tenure schemes on carbon fluxes. The last decade has experienced a dramatic improvement in the extent and consistency of tree cover and gross deforestation products from optical imagery. At the same time, recent work shows that Synthetic Aperture Radar (SAR) can complement optical data and reveal structural types that cannot be easily resolved with reflectance measurements alone. While these results demonstrate the validity of sensor fusion methodologies, they typically rely on local classifications or even manual delineation and as such they cannot support large-scale investigations. Furthermore, there have been few attempts to exploit PolInSAR or multiple wavelengths that can provide critical information to resolve natural and anthropogenic land cover types. We report results from our research at Costa Rica's Osa Peninsula. This site is ideal for algorithm development as it includes a highly diverse tropical forest within Corcovado National Park, as well as agroforestry zones, mangroves, and palm plantations. We first integrate SAR backscatter and coherence data from NASA's L-band UAVSAR, JAXA's ALOS/PALSAR, and ESA's Sentinel to produce a map of structural types. Second, we assess whether coherence measurements and PolInSAR retrievals can be used to resolve forest stand differences at 30m resolution and disitinguish between primary and secondary forest sites.
Analysis of an integrated 8-channel Tx/Rx body array for use as a body coil in 7-Tesla MRI
NASA Astrophysics Data System (ADS)
Orzada, Stephan; Bitz, Andreas K.; Johst, Sören; Gratz, Marcel; Völker, Maximilian N.; Kraff, Oliver; Abuelhaija, Ashraf; Fiedler, Thomas M.; Solbach, Klaus; Quick, Harald H.; Ladd, Mark E.
2017-06-01
Object In this work an 8-channel array integrated into the gap between the gradient coil and bore liner of a 7-Tesla whole-body magnet is presented that would allow a workflow closer to that of systems at lower magnetic fields that have a built-in body coil; this integrated coil is compared to a local 8-channel array built from identical elements placed directly on the patient. Materials and Methods SAR efficiency and the homogeneity of the right-rotating B1 field component (B_1^+) are investigated numerically and compared to the local array. Power efficiency measurements are performed in the MRI System. First in vivo gradient echo images are acquired with the integrated array. Results While the remote array shows a slightly better performance in terms of B_1^+ homogeneity, the power efficiency and the SAR efficiency are inferior to those of the local array: the transmit voltage has to be increased by a factor of 3.15 to achieve equal flip angles in a central axial slice. The g-factor calculations show a better parallel imaging g-factor for the local array. The field of view of the integrated array is larger than that of the local array. First in vivo images with the integrated array look subjectively promising. Conclusion Although some RF performance parameters of the integrated array are inferior to a tight-fitting local array, these disadvantages might be compensated by the use of amplifiers with higher power and the use of local receive arrays. In addition, the distant placement provides the potential to include more elements in the array design.