Borgquist, Ola; Ingemansson, Richard; Malmsjö, Malin
2011-02-01
Negative-pressure wound therapy promotes healing by drainage of excessive fluid and debris and by mechanical deformation of the wound. The most commonly used negative pressure, -125 mmHg, may cause pain and ischemia, and the pressure often needs to be reduced. The aim of the present study was to examine wound contraction and fluid removal at different levels of negative pressure. Peripheral wounds were created in 70-kg pigs. The immediate effects of negative-pressure wound therapy (-10 to -175 mmHg) on wound contraction and fluid removal were studied in eight pigs. The long-term effects on wound contraction were studied in eight additional pigs during 72 hours of negative-pressure wound therapy at -75 mmHg. Wound contraction and fluid removal increased gradually with increasing levels of negative pressure until reaching a steady state. Maximum wound contraction was observed at -75 mmHg. When negative-pressure wound therapy was discontinued, after 72 hours of therapy, the wound surface area was smaller than before therapy. Maximum wound fluid removal was observed at -125 mmHg. Negative-pressure wound therapy facilitates drainage of wound fluid and exudates and results in mechanical deformation of the wound edge tissue, which is known to stimulate granulation tissue formation. Maximum wound contraction is achieved already at -75 mmHg, and this may be a suitable pressure for most wounds. In wounds with large volumes of exudate, higher pressure levels may be needed for the initial treatment period.
Iuchi, Terumi; Nakajima, Yukari; Fukuda, Moriyoshi; Matsuo, Junko; Okamoto, Hiroyuki; Sanada, Hiromi; Sugama, Junko
2014-05-01
Bed sheets generate high surface tension across the support surface and increase pressure to the body through a process known as the hammock effect. Using an anatomical model and a loading device characterized by extreme bony prominences, the present study compared pressure distributions on support surfaces across different bed making methods and bed sheet materials to determine the factors that influence pressure distribution. The model was placed on a pressure mapping system (CONFORMat; NITTA Corp., Osaka, Japan), and interface pressure was measured. Bed sheet elasticity and friction between the support surface and the bed sheets were also measured. For maximum interface pressure, the relative values of the following methods were higher than those of the control method, which did not use any bed sheets: cotton sheets with hospital corners (1.28, p = 0.02), polyester with no corners (1.29, p = 0.01), cotton with no corners (1.31, p = 0.003), and fitted polyester sheets (1.35, p = 0.002). Stepwise multiple regression analysis indicated that maximum interface pressure was negatively correlated with bed sheet elasticity (R(2) = 0.74). A statistically significant negative correlation was observed between maximum interface pressure and immersion depth, which was measured using the loading device (r = -0.40 and p = 0.04). We found that several combinations of bed making methods and bed sheet materials induced maximum interface pressures greater than those observed for the control method. Bed sheet materials influenced maximum interface pressure, and bed sheet elasticity was particularly important in reducing maximum interface pressure. Copyright © 2014 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.
Peták, Ferenc; Albu, Gergely; Lele, Enikö; Hantos, Zoltán; Morel, Denis R; Fontao, Fabienne; Habre, Walid
2009-03-01
The continuous changes in lung mechanics were related to those in pulmonary vascular resistance (Rv) during lung inflations to clarify the mechanical changes in the bronchoalveolar system and the pulmonary vasculature. Rv and low-frequency lung impedance data (Zl) were measured continuously in isolated, perfused rat lungs during 2-min inflation-deflation maneuvers between transpulmonary pressures of 2.5 and 22 cmH(2)O, both by applying positive pressure at the trachea and by generating negative pressure around the lungs in a closed box. ZL was averaged and evaluated for 2-s time windows; airway resistance (Raw), parenchymal damping and elastance (H) were determined in each window. Lung inflation with positive and negative pressures led to very similar changes in lung mechanics, with maximum decreases in Raw [-68 +/- 4 (SE) vs. -64 +/- 18%] and maximum increases in H (379 +/- 36 vs. 348 +/- 37%). Rv, however, increased with positive inflation pressure (15 +/- 1%), whereas it exhibited mild decreases during negative-pressure expansions (-3 +/- 0.3%). These results demonstrate that pulmonary mechanical changes are not affected by the opposing modes of lung inflations and confirm the importance of relating the pulmonary vascular pressures in interpreting changes in Rv.
Orthotopic bladder substitution in men revisited: identification of continence predictors.
Koraitim, M M; Atta, M A; Foda, M K
2006-11-01
We determined the impact of the functional characteristics of the neobladder and urethral sphincter on continence results, and determined the most significant predictors of continence. A total of 88 male patients 29 to 70 years old underwent orthotopic bladder substitution with tubularized ileocecal segment (40) and detubularized sigmoid (25) or ileum (23). Uroflowmetry, cystometry and urethral pressure profilometry were performed at 13 to 36 months (mean 19) postoperatively. The correlation between urinary continence and 28 urodynamic variables was assessed. Parameters that correlated significantly with continence were entered into a multivariate analysis using a logistic regression model to determine the most significant predictors of continence. Maximum urethral closure pressure was the only parameter that showed a statistically significant correlation with diurnal continence. Nocturnal continence had not only a statistically significant positive correlation with maximum urethral closure pressure, but also statistically significant negative correlations with maximum contraction amplitude, and baseline pressure at mid and maximum capacity. Three of these 4 parameters, including maximum urethral closure pressure, maximum contraction amplitude and baseline pressure at mid capacity, proved to be significant predictors of continence on multivariate analysis. While daytime continence is determined by maximum urethral closure pressure, during the night it is the net result of 2 forces that have about equal influence but in opposite directions, that is maximum urethral closure pressure vs maximum contraction amplitude plus baseline pressure at mid capacity. Two equations were derived from the logistic regression model to predict the probability of continence after orthotopic bladder substitution, including Z1 (diurnal) = 0.605 + 0.0085 maximum urethral closure pressure and Z2 (nocturnal) = 0.841 + 0.01 [maximum urethral closure pressure - (maximum contraction amplitude + baseline pressure at mid capacity)].
Water Pressure Distribution on a Twin-Float Seaplane
NASA Technical Reports Server (NTRS)
Thompson, F L
1930-01-01
This is the second of a series of investigations to determine water pressure distribution on various types of seaplane floats and hulls, and was conducted on a twin-float seaplane. It consisted of measuring water pressures and accelerations on a TS-1 seaplane during numerous landing and taxiing maneuvers at various speeds and angles. The results show that water pressures as great as 10 lbs. per sq. in.may occur at the step in various maneuvers and that pressures of approximately the same magnitude occur at the stern and near the bow in hard pancake landings with the stern way down. At the other parts of the float the pressures are less and are usually zero or slightly negative for some distance abaft the step. A maximum negative pressure of 0.87 lb. Per square inch was measured immediately abaft the step. The maximum positive pressures have a duration of approximately one-twentieth to one-hundredth second at any given location and are distributed over a very limited area at any particular instant.
Wlaźlak, Edyta; Surkont, Grzegorz; Shek, Ka L; Dietz, Hans P
2015-10-01
It has been claimed that urethral hypermobility and resting urethral pressure can largely explain stress incontinence in women. In this study we tried to replicate these findings in an unselected cohort of women seen for urodynamic testing, including as many potential confounders as possible. This study is a retrospective analysis of data obtained from 341 women. They attended for urodynamic testing due to symptoms of pelvic floor dysfunction. We excluded from the analysis women with a history of previous anti-incontinence and prolapse surgery. All patients had a standardised clinical assessment, 4D transperineal pelvic floor ultrasound and multichannel urodynamic testing. Urodynamic stress incontinence (USI) was diagnosed by multichannel urodynamic testing. Its severity was subjectively graded as mild, moderate and severe. Candidate variables were: age, BMI, symptoms of prolapse, vaginal parity, significant prolapse (compartment-specific), levator avulsion, levator hiatal area, Oxford grading, midurethral mobility, maximum urethral pressure (MUP), maximum cough pressure and maximum Valsalva pressure reached. On binary logistic regression, the following parameters were statistically significant in predicting urodynamic stress incontinence: age (P=0.03), significant rectocele (P=0.02), max. abdominal pressure reached (negatively, P<0.0001), midurethral mobility (P=0.0004) and MUP (negatively, P<0.0001). On multivariate analysis, accounting for multiple interdependencies, the following predictors remained significant: max. abdominal pressure reached (negatively, P<0.0001), cough pressure (P=0.006), midurethral mobility (P=0.003) and MUP (negatively, P<0.0001), giving an R(2) of 0.24. Mid-urethral mobility and MUP are the main predictors of USI. Demographic and clinical data are at best weak predictors. Our results suggest the presence of major unrecognised confounders. Copyright © 2015. Published by Elsevier Ireland Ltd.
NASA Astrophysics Data System (ADS)
Peng, Machuan; Xie, Lian; Pietrafesa, Leonard J.
The asymmetry of tropical cyclone induced maximum coastal sea level rise (positive surge) and fall (negative surge) is studied using a three-dimensional storm surge model. It is found that the negative surge induced by offshore winds is more sensitive to wind speed and direction changes than the positive surge by onshore winds. As a result, negative surge is inherently more difficult to forecast than positive surge since there is uncertainty in tropical storm wind forecasts. The asymmetry of negative and positive surge under parametric wind forcing is more apparent in shallow water regions. For tropical cyclones with fixed central pressure, the surge asymmetry increases with decreasing storm translation speed. For those with the same translation speed, a weaker tropical cyclone is expected to gain a higher AI (asymmetry index) value though its induced maximum surge and fall are smaller. With fixed RMW (radius of maximum wind), the relationship between central pressure and AI is heterogeneous and depends on the value of RMW. Tropical cyclone's wind inflow angle can also affect surge asymmetry. A set of idealized cases as well as two historic tropical cyclones are used to illustrate the surge asymmetry.
Shock-Wave Pulse Compression and Stretching of Dodecane and Mineral Oils
NASA Astrophysics Data System (ADS)
Bannikova, I. A.; Zubareva, A. N.; Utkin, A. V.
2018-04-01
The behavior of dodecane, vacuum, and transformer oils under shock-wave pulse compression and stretching are studied experimentally. The wave profiles are registered using a VISAR laser interferometer. The shock adiabats, the dependence of the sound velocity on the pressure, and the maximum negative pressures developed in the studied liquids are determined. It is shown that the negative pressure value does not depend on the deformation rate in the case of oils and is a strong function of the compression pulse amplitude in the case of dodecane.
Sun, Zhengming; Wang, Xiaoqing; Ling, Ming; Wang, Wei; Chang, Yanhai; Yang, Guang; Dong, Xianghui; Wu, Shixun; Wu, Xueyuan; Yang, Bo; Chen, Ming
2017-04-18
The purpose of this study was to test effects of negative pressure on tendon-bone healing after reconstruction of anterior cruciate ligament (ACL) in rabbits. Hind legs of 24 New Zealand White rabbits were randomly selected as negative pressure group and the contralateral hind legs as control. Reconstruction of the ACL was done. Joints of the negative pressure side were placed with drainage tubes connecting the micro-negative pressure aspirator. Control side was placed with ordinary drainage tubes. Drainage tubes on both sides were removed at the same time 5 days after operation. After 6 weeks, joint fluid was drawn to detect the expression levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α); at the same time, femur-ligament-tibia complex was obtained to determine tendon graft tension and to observe the histomorphology, blood vessels of the tendon-bone interface, and expression of vascular endothelial growth factor (VEGF). The maximum load breakage of tendon graft was significantly greater in the negative pressure group than in the control group (P < 0.05). Histological studies of the tendon-bone interface found that there was more new bone formation containing chondroid cells and aligned connective tissue in the negative pressure group than in the control group. Expression of VEGF was higher in the negative pressure group than in the control group (P < 0.01). Content of IL-1β and TNF-α in synovial fluid is lower in the negative pressure group than in the control group (P < 0.01). Intermittent negative pressure plays an active role in tendon-bone healing and creeping substitution of ACL reconstruction in the rabbits.
Vectorcardiographic results from Skylab medical experiment M092: Lower body negative pressure
NASA Technical Reports Server (NTRS)
Hoffler, G. W.; Johnson, R. L.; Nicogossian, A. E.; Bergman, S. A., Jr.; Jackson, M. M.
1974-01-01
Vectorcardiograms were recorded via a modified Frank lead system from all crewmen of the three Skylab missions in conjuction with the Lower Body Negative Pressure - M092 Experiment. Data were analyzed by a specially developed computer program (VECTAN). Design of the test sequences allowed direct comparisons of supine resting, Earth based (reference) vectorcardiograms with those taken during lower body negative pressure stress and those obtained at rest in orbit, as well as combinations of these conditions. Results revealed several statistically significant space flight related changes; namely, increased testing and lower body negative pressure stressed heart rates, modestly increased PR interval and corrected QTC interval, and greatly increased P and QPS loop maximal amplitudes. In addition, orientation changes in the QRS maximum vector and the J-vector at rest in space seem quite consistent among crewmen and different from those caused by the application of lower body negative pressure. No clinical abnormalities were observed. Etiology of these findings is conjectured to be, at least in part, related to fluid mass shifts occurring in weightlessness and attendant alterations in cardiovascular dynamics and myocardial autonomic control mechanisms.
Sundby, Øyvind H; Høiseth, Lars Øivind; Mathiesen, Iacob; Jørgensen, Jørgen J; Weedon-Fekjær, Harald; Hisdal, Jonny
2016-09-01
Intermittent negative pressure (INP) applied to the lower leg and foot may increase peripheral circulation. However, it is not clear how different patterns of INP affect macro- and microcirculation in the foot. The aim of this study was therefore to determine the effect of different patterns of negative pressure on foot perfusion in healthy volunteers. We hypothesized that short periods with INP would elicit an increase in foot perfusion compared to no negative pressure. In 23 healthy volunteers, we continuously recorded blood flow velocity in a distal foot artery, skin blood flow, heart rate, and blood pressure during application of different patterns of negative pressure (-40 mmHg) to the lower leg. Each participant had their right leg inside an airtight chamber connected to an INP generator. After a baseline period at atmospheric pressure, we applied four different 120 sec sequences with either constant negative pressure or different INP patterns, in a randomized order. The results showed corresponding fluctuations in blood flow velocity and skin blood flow throughout the INP sequences. Blood flow velocity reached a maximum at 4 sec after the onset of negative pressure (average 44% increase above baseline, P < 0.001). Skin blood flow and skin temperature increased during all INP sequences (P < 0.001). During constant negative pressure, average blood flow velocity, skin blood flow, and skin temperature decreased (P < 0.001). In conclusion, we observed increased foot perfusion in healthy volunteers after the application of INP on the lower limb. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Baharestani, Mona Mylene
2007-06-01
The clinical effectiveness of negative pressure wound therapy for the management of acute and chronic wounds is well documented in the adult population but information regarding its use in the pediatric population is limited. A retrospective, descriptive study was conducted to examine the clinical outcomes of using negative pressure wound therapy in the treatment of pediatric wounds. The medical records of 24 consecutive pediatric patients receiving negative pressure wound therapy were reviewed. Demographic data, wound etiology, time to closure, closure method, duration of negative pressure wound therapy, complications, dressing change frequency, dressing type used, and pressure settings were analyzed. All categorical variables in the dataset were summarized using frequency (count and percentages) and all continuous variables were summarized using median (minimum, maximum). The 24 pediatric patients (mean age 8.5 years [range 14 days to 18 years old]) had 24 wounds - 12 (50%) were infected at baseline. Sixteen patients had hypoalbuminemia and six had exposed hardware and bone in their wounds. Twenty-two wounds reached full closure in a median time of 10 days (range 2 to 45) following negative pressure wound therapy and flap closure (11), split-thickness skin graft (three), secondary (four), and primary (four) closure. Pressures used in this population ranged from 50 to 125 mm Hg and most wounds were covered with reticulated polyurethane foam. One patient developed a fistula during the course of negative pressure wound therapy. When coupled with appropriate systemic antibiotics, surgical debridement, and medical and nutritional optimization, in this population negative pressure wound therapy resulted in rapid granulation tissue and 92% successful wound closure. Future neonatal and pediatric negative pressure wound therapy usage registries and prospective studies are needed to provide a strong evidence base from which treatment decisions can be made in the management of these challenging cases, especially pertaining to the safety and efficacy of pressure settings, dressings, and interposing contact layer selection.
Effect of abdominal insufflation for laparoscopy on intracranial pressure.
Kamine, Tovy Haber; Papavassiliou, Efstathios; Schneider, Benjamin E
2014-04-01
Increased abdominal pressure may have a negative effect on intracranial pressure (ICP). Human data on the effects of laparoscopy on ICP are lacking. We retrospectively reviewed laparoscopic operations for ventriculoperitoneal shunt placement to determine the effect of insufflation on ICP. Nine patients underwent insufflation with carbon dioxide (CO(2)) at pressures ranging from 8 to 15 mm Hg and ICP measured through a ventricular catheter. We used a paired t test to compare ICP with insufflation and desufflation. Linear regression correlated insufflation pressure with ICP. The mean ICP increase with 15-mm Hg insufflation is 7.2 (95% CI, 5.4-9.1 [P < .001]) cm H(2)O. The increase in ICP correlated with increasing insufflation pressure (P = .04). Maximum ICP recorded was 25 cm H(2)O. Intracranial pressure significantly increases with abdominal insufflation and correlates with laparoscopic insufflation pressure. The maximum ICP measured was a potentially dangerous 25 cm H(2)O. Laparoscopy should be used cautiously in patients with a baseline elevated ICP or head trauma.
Luong, Trung Quan; Winter, Roland
2015-09-21
We investigated the combined effects of cosolvents and pressure on the hydrolysis of a model peptide catalysed by α-chymotrypsin. The enzymatic activity was measured in the pressure range from 0.1 to 200 MPa using a high-pressure stopped-flow systems with 10 ms time resolution. A kosmotropic (trimethalymine-N-oxide, TMAO) and chaotropic (urea) cosolvent and mixtures thereof were used as cosolvents. High pressure enhances the hydrolysis rate as a consequence of a negative activation volume, ΔV(#), which, depending on the cosolvent system, amounts to -2 to -4 mL mol(-1). A more negative activation volume can be explained by a smaller compression of the ES complex relative to the transition state. Kinetic constants, such as kcat and the Michaelis constant KM, were determined for all solution conditions as a function of pressure. With increasing pressure, kcat increases by about 35% and its pressure dependence by a factor of 1.9 upon addition of 2 M urea, whereas 1 M TMAO has no significant effect on kcat and its pressure dependence. Similarly, KM increases upon addition of urea 6-fold. Addition of TMAO compensates the urea-effect on kcat and KM to some extent. The maximum rate of the enzymatic reaction increases with increasing pressure in all solutions except in the TMAO : urea 1 : 2 mixture, where, remarkably, pressure is found to have no effect on the rate of the enzymatic reaction anymore. Our data clearly show that compatible solutes can easily override deleterious effects of harsh environmental conditions, such as high hydrostatic pressures in the 100 MPa range, which is the maximum pressure encountered in the deep biosphere on Earth.
Fabrication of Artificial Leaf to Develop Fluid Pump Driven by Surface Tension and Evaporation
NASA Astrophysics Data System (ADS)
Lee, Minki; Lim, Hosub; Lee, Jinkee
2017-11-01
Plants transport water from roots to leaves via xylem through transpiration, which is an evaporation process that occurs at the leaves. During transpiration, negative pressure can be generated by the porous structure of mesophyll cells in the leaves. Here, an artificial leaf mimicking structure using hydrogel, which has a nanoporous structure is fabricated. The cryogel method is used to develop a hierarchy structure on the nano- and microscale in the hydrogel media that is similar to the mesophyll cells and veins of a leaf, respectively. The theoretical model is analyzed to calculate the flow resistance in the artificial leaf, and compare the model with the experimental results. The experiment involves connecting a glass capillary tube at the bottom of the artificial leaf to observe the fluid velocity in the glass capillary tube generated by the negative pressure. The use of silicone oil as fluid instead of water to increase the flow resistance enables the measurement of negative pressure. The negative pressure of the artificial leaf is affected by several variables (e.g., pore size, wettability of the structure). Finally, by decreasing the pore size and increasing the wettability, the maximum negative pressure of the artificial leaf, -7.9 kPa is obtained.
Sun, Junfeng; Qian, Hua; Li, Xiaoguang; Tang, Xianling
2017-03-01
QishenYiqi Dripping Pill (QYDP) is a Chinese herbal medicine that originally was used for the treatment of coronary artery disease. Recently, QYDP was used as a complementary treatment for heart failure (HF) in China. An HF rat model was used to clarify the possible therapeutic effects of QYDP on HF. The HF rats were allocated to two groups, HF and HF+QYDP, while normal rats served as a negative control. Cardiac functions were evaluated echocardiographically and hemodynamically. Cardiac apoptosis and the expression of β-adrenergic receptors were also investigated. Compared to the HF group, rats in the HF+QYDP group had a significantly higher fraction shortening (p<0.05), ejection fraction (p<0.05), left ventricular systolic pressure (p<0.05), maximum positive derivatives of left ventricular pressure (p<0.05), maximum negative derivatives of left ventricular pressure (p<0.05), and β2-adrenergic receptor expression (p<0.05), and lower left ventricular end-diastolic pressure (p<0.05) and apoptotic index (p<0.05). The study results indicated that QYDP could efficiently improve HF, possibly by an inhibition of cardiac apoptosis via the β2-adrenergic receptor signaling pathway. Hence, QYDP might be a promising candidate drug for HF therapy.
Nonlinear focal shift beyond the geometrical focus in moderately focused acoustic beams.
Camarena, Francisco; Adrián-Martínez, Silvia; Jiménez, Noé; Sánchez-Morcillo, Víctor
2013-08-01
The phenomenon of the displacement of the position along the axis of the pressure, intensity, and radiation force maxima of focused acoustic beams under increasing driving voltages (nonlinear focal shift) is studied for the case of a moderately focused beam. The theoretical and experimental results show the existence of this shift along the axis when the initial pressure in the transducer increases until the acoustic field reaches the fully developed nonlinear regime of propagation. Experimental data show that at high amplitudes and for moderate focusing, the position of the on-axis pressure maximum and radiation force maximum can surpass the geometrical focal length. On the contrary, the on-axis pressure minimum approaches the transducer under increasing driving voltages, increasing the distance between the positive and negative peak pressure in the beam. These results are in agreement with numerical KZK model predictions and the existed data of other authors and can be explained according to the effect of self-refraction characteristic of the nonlinear regime of propagation.
Peladeau-Pigeon, Melanie
2017-01-01
Purpose The ability to generate tongue pressure plays a major role in bolus transport in swallowing. In studies of motor control, stability or variability of movement is a feature that changes with age, disease, task complexity, and perturbation. In this study, we explored whether age and tongue strength influence the stability of the tongue pressure generation pattern during isometric and swallowing tasks in healthy volunteers. Method Tongue pressure data, collected using the Iowa Oral Performance Instrument, were analyzed from 84 participants in sex-balanced and decade age-group strata. Tasks included maximum anterior and posterior isometric pressures and regular-effort saliva swallows. The cyclic spatiotemporal index (cSTI) was used to capture stability (vs. variability) in patterns of pressure generation. Mixed-model repeated measures analyses of covariance were performed separately for each task (anterior and posterior isometric pressures, saliva swallows) with between-participant factors of age group and sex, a within-participant factor of task repetition, and a continuous covariate of tongue strength. Results Neither age group nor sex effects were found. There was no significant relationship between tongue strength and the cSTI on the anterior isometric tongue pressure task (r = −.11). For the posterior isometric tongue pressure task, a significant negative correlation (r = −.395) was found between tongue strength and the cSTI. The opposite pattern of a significant positive correlation (r = .29) between tongue strength and the cSTI was seen for the saliva swallow task. Conclusions Tongue pressure generation patterns appear highly stable across repeated maximum isometric and saliva swallow tasks, despite advancing age. Greater pattern variability is seen with weaker posterior isometric pressures. Overall, saliva swallows had the lowest pressure amplitudes and highest pressure pattern variability as measured by the cSTI. PMID:29114767
Novel cavitation fluid jet polishing process based on negative pressure effects.
Chen, Fengjun; Wang, Hui; Tang, Yu; Yin, Shaohui; Huang, Shuai; Zhang, Guanghua
2018-04-01
Traditional abrasive fluid jet polishing (FJP) is limited by its high-pressure equipment, unstable material removal rate, and applicability to ultra-smooth surfaces because of the evident air turbulence, fluid expansion, and a large polishing spot in high-pressure FJP. This paper presents a novel cavitation fluid jet polishing (CFJP) method and process based on FJP technology. It can implement high-efficiency polishing on small-scale surfaces in a low-pressure environment. CFJP uses the purposely designed polishing equipment with a sealed chamber, which can generate a cavitation effect in negative pressure environment. Moreover, the collapse of cavitation bubbles can spray out a high-energy microjet and shock wave to enhance the material removal. Its feasibility is verified through researching the flow behavior and the cavitation results of the negative pressure cavitation machining of pure water in reversing suction flow. The mechanism is analyzed through a computational fluid dynamics simulation. Thus, its cavitation and surface removal mechanisms in the vertical CFJP and inclined CFJP are studied. A series of polishing experiments on different materials and polishing parameters are conducted to validate its polishing performance compared with FJP. The maximum removal depth increases, and surface roughness gradually decreases with increasing negative outlet pressures. The surface becomes smooth with the increase of polishing time. The experimental results confirm that the CFJP process can realize a high material removal rate and smooth surface with low energy consumption in the low-pressure environment, together with compatible surface roughness to FJP. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lim, Dae-Kwang; Im, Ha-Ni; Song, Sun-Ju
2016-01-01
The maximum power density of SOFC with 8YSZ electrolyte as the function of thickness was calculated by integrating partial conductivities of charge carriers under various DC bias conditions at a fixed oxygen chemical potential gradient at both sides of the electrolyte. The partial conductivities were successfully taken using the Hebb-Wagner polarization method as a function of temperature and oxygen partial pressure, and the spatial distribution of oxygen partial pressure across the electrolyte was calculated based on Choudhury and Patterson’s model by considering zero electrode polarization. At positive voltage conditions corresponding to SOFC and SOEC, the high conductivity region was expanded, but at negative cell voltage condition, the low conductivity region near n-type to p-type transition was expanded. In addition, the maximum power density calculated from the current-voltage characteristic showed approximately 5.76 W/cm2 at 700 oC with 10 μm thick-8YSZ, while the oxygen partial pressure of the cathode and anode sides maintained ≈0.21 and 10-22 atm.
Data book for 12.5-inch diameter SRB thermal model water flotation test - 14.7 psia, series P024
NASA Technical Reports Server (NTRS)
Allums, S. L.
1974-01-01
Tests were conducted to determine how thermal conditions affect space shuttle solid rocket booster (SRB) flotation. Acceleration, pressure, and temperature data were recorded from initial water impact to final flotation position using a 12.5-inch diameter thermal model of the SRB at ambient pressure. The model was 136.9 inches long and weighed 117.3 lbm. The tests indicated the following differences from ambient temperature tests: (1) significant negative static pressures can occur during penetration; (2) maximum penetration is increased; and (3) final flotation is in the spar buoy mode.
Hurd, Theresa; Trueman, Paul; Rossington, Alan
2014-03-01
Negative pressure wound therapy (NPWT) is widely used in the management of acute and chronic wounds. The purpose of this 8-week study was to evaluate outcomes of using a new canisterless, portable, single-use NPWT system in patients with wounds treated in a Canadian community healthcare setting. The device is designed to provide negative pressure at 80±20 mm Hg, 24 hours a day of continuous usage, for a maximum wear time of 7 days. Data on wound outcomes, including exudate levels, wound appearance, and wound area, were collected weekly by a Registered Nurse as part of routine practice. When treatment was discontinued, patients and nurses were asked to rate their satisfaction with the device. Data from patients who had used a conventional NPWT device to manage their wounds were retrospectively abstracted from their medical records. In the prospective study, conducted between October 2011 and July 2012, 326 patients (median age=61 years; range 17-91 years) with wounds of mixed etiology (53 pressure ulcers, 21 venous leg ulcers, 16 diabetic foot ulcers, and 15 traumatic and 221 surgical wounds) were treated for a maximum of 8 weeks with the portable NPWT device. The majority of patients (228 out of 326; 68%) achieved complete wound closure within 8 weeks of treatment. The Kaplan-Meier estimate of median time to healing of all wounds was 9 weeks. The majority of patients (318 patients, 97%) reported they were pleased or satisfied with the dressing performance. Nurses indicated satisfaction with the dressing performance for all but two patients (99%). The majority (89%) of patients managed with conventional NPWT (n=539) had an open surgical wound with moderate or high levels of exudate. Healing rates in the portable and conventional NPWT group were similar (10% to 11% per week). Portable, single-use NPWT has the potential to deliver good wound outcomes in community care settings and simplify the use of negative pressure for nurses and patients. Additional research is needed to evaluate treatment efficacy and cost effectiveness.
Pressure as a limit to bloater (Coregonus hoyi) vertical migration
TeWinkel, Leslie M.; Fleischer, Guy W.
1998-01-01
Observations of bloater vertical migration showed a limit to the vertical depth changes that bloater experience. In this paper, we conducted an analysis of maximum differences in pressure encountered by bloater during vertical migration. Throughout the bottom depths studied, bloater experienced maximum reductions in swim bladder volume equal to approximately 50-60% of the volume in midwater. The analysis indicated that the limit in vertical depth change may be related to a maximum level of positive or negative buoyancy for which bloater can compensate using alternative mechanisms such as hydrodynamic lift. Bloater may be limited in the extent of migration by either their depth of neutral buoyancy or the distance above the depth of neutral buoyancy at which they can still maintain their position in the water column. Although a migration limit for the bloater population was evident, individual distances of migration varied at each site. These variations in migration distances may indicate differences in depths of neutral buoyancy within the population. However, in spite of these variations, the strong correlation between shallowest depths of migration and swim bladder volume reduction across depths provides evidence that hydrostatic pressure limits the extent of daily vertical movement in bloater.
Data book for 12.5-inch diameter SRB thermal model water flotation test: 14.7 psia, series P020
NASA Technical Reports Server (NTRS)
Allums, S. L.
1974-01-01
Data acquired from the initial series of tests conducted to determine how thermal conditions affect SRB (Space Shuttle Solid Rocket Booster) flotation are presented. Acceleration, pressure, and temperature data recorded from initial water impact to final flotation position using a 12.5-inch diameter thermal model of the SRB at ambient pressure are included. The model was 136.9 inches long and weighed 117.3 lbm. The tests indicated the following differences from ambient temperature tests: (1) significant negative static pressures can occur during penetration; (2) maximum penetration is increased; and (3) final flotation is in the spar buoy mode.
Pulmonary function in patients with Huntington’s Disease
2014-01-01
Background Huntington’s disease (HD) is a neurodegenerative disorder characterized by progressive motor, cognitive and psychiatric disturbances. Chest muscle rigidity, respiratory muscle weakness, difficulty in clearing airway secretions and swallowing abnormalities have been described in patients with neurodegenerative disorders including HD. However limited information is available regarding respiratory function in HD patients. The purpose of this study was to investigate pulmonary function of patients with HD in comparison to healthy volunteers, and its association with motor severity. Methods Pulmonary function measures were taken from 18 (11 male, 7 female) manifest HD patients (53 ± 10 years), and 18 (10 male, 8 female) healthy volunteers (52 ± 11 years) with similar anthropometric and life-style characteristics to the recruited HD patients. Motor severity was quantified by the Unified Huntington’s Disease Rating Scale-Total Motor Score (UHDRS-TMS). Maximum respiratory pressure was measured on 3 separate days with a week interval to assess test-retest reliability. Results The test-retest reliability of maximum inspiratory and expiratory pressure measurements was acceptable for both HD patient and control groups (ICC ≥0.92), but the values over 3 days were more variable in the HD group (CV < 11.1%) than in the control group (CV < 7.6%). The HD group showed lower respiratory pressure, forced vital capacity, peak expiratory flow and maximum voluntary ventilation than the control group (p < 0.05). Forced vital capacity, maximum voluntary ventilation and maximum respiratory pressures were negatively (r = -0.57; -0.71) correlated with the UHDRS-TMS (p < 0.05). Conclusion Pulmonary function is decreased in manifest HD patients, and the magnitude of the decrease is associated with motor severity. PMID:24886346
NASA Technical Reports Server (NTRS)
Stickle, George W; Naiman, Irven; Crigler, John L
1940-01-01
Report presents the results of an investigation of full-scale nose-slot cowlings conducted in the NACA 20-foot wind tunnel to furnish information on the pressure drop available for cooling. Engine conductances from 0 to 0.12 and exit-slot conductances from 0 to 0.30 were covered. Two basic nose shapes were tested to determine the effect of the radius of curvature of the nose contour; the nose shape with the smaller radius of curvature gave the higher pressure drop across the engine. The best axial location of the slot for low-speed operation was found to be in the region of maximum negative pressure for the basic shape for the particular operating condition. The effect of the pressure operating condition on the available cooling pressure is shown.
Thekkinkattil, Dinesh K; Lim, Michael K; Nicholls, Marcus J; Sagar, Peter M; Finan, Paul J; Burke, Dermot A
2007-12-01
Anorectal manometry is commonly used to investigate fecal incontinence. Traditional practice dictates that measurements are performed with the patient in the left-lateral position however, episodes of fecal incontinence usually occur in the erect position. The influence of erect posture on anorectal manometry has not been studied. We examined the contribution of posture to commonly measured variables during manometry by performing assessment in the left-lateral position and the erect posture. Maximum mean resting pressure, vector volumes, and resting pressure gradient were compared. Complete data were available for 172 patients. Median age was 55 (interquartile range, 44-65) years. Thirty-seven (22 percent) patients were continent, and 135 (78 percent) were incontinent. Both resting pressure and vector volume increased significantly in the erect position for both continent (P = 0.008 and 0.001, respectively) and incontinent (P = 0.001 for both) patients. A significant negative correlation was seen between severity of incontinence and resting pressure in the erect posture and amount of change in maximum mean resting pressure from left-lateral to erect posture (Spearman coefficients = -0.203, -0.211, and P = 0.013, 0.017, respectively) but not with maximum mean resting pressure in the left-lateral position (Spearman coefficient = -0.119; P = 0.164). Our study shows significant increase in measurements of manometric variables in the erect position. The increase may be related to anal cushions, which have a significant role in this position. The measurements in erect posture are better correlated with severity of incontinence and may be a more physiologic method of performing anorectal manometry.
NASA Technical Reports Server (NTRS)
Golden, D. P., Jr.; Wolthuis, R. A.; Hoffler, G. W.; Gowen, R. J.
1974-01-01
Frequency bands that best discriminate the Korotkov sounds at systole and at diastole from the sounds immediately preceding these events are defined. Korotkov sound data were recorded from five normotensive subjects during orthostatic stress (lower body negative pressure) and bicycle ergometry. A spectral analysis of the seven Korotkov sounds centered about the systolic and diastolic auscultatory events revealed that a maximum increase in amplitude at the systolic transition occurred in the 18-26-Hz band, while a maximum decrease in amplitude at the diastolic transition occurred in the 40-60-Hz band. These findings were remarkably consistent across subjects and test conditions. These passbands are included in the design specifications for an automatic blood pressure measuring system used in conjuction with medical experiments during NASA's Skylab program.
Advanced launch system trajectory optimization using suboptimal control
NASA Technical Reports Server (NTRS)
Shaver, Douglas A.; Hull, David G.
1993-01-01
The maximum-final mass trajectory of a proposed configuration of the Advanced Launch System is presented. A model for the two-stage rocket is given; the optimal control problem is formulated as a parameter optimization problem; and the optimal trajectory is computed using a nonlinear programming code called VF02AD. Numerical results are presented for the controls (angle of attack and velocity roll angle) and the states. After the initial rotation, the angle of attack goes to a positive value to keep the trajectory as high as possible, returns to near zero to pass through the transonic regime and satisfy the dynamic pressure constraint, returns to a positive value to keep the trajectory high and to take advantage of minimum drag at positive angle of attack due to aerodynamic shading of the booster, and then rolls off to negative values to satisfy the constraints. Because the engines cannot be throttled, the maximum dynamic pressure occurs at a single point; there is no maximum dynamic pressure subarc. To test approximations for obtaining analytical solutions for guidance, two additional optimal trajectories are computed: one using untrimmed aerodynamics and one using no atmospheric effects except for the dynamic pressure constraint. It is concluded that untrimmed aerodynamics has a negligible effect on the optimal trajectory and that approximate optimal controls should be able to be obtained by treating atmospheric effects as perturbations.
The experimental study of matching between centrifugal compressor impeller and diffuser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamaki, H.; Nakao, H.; Saito, M.
1999-01-01
the centrifugal compressor for a marine use turbocharger with its design pressure ratio of 3.2 was tested with a vaneless diffuser and various vaned diffusers. Vaned diffusers were chosen to cover impeller operating range as broad as possible. The analysis of the static pressure ratio in the impeller and the diffusing system, consisting of the diffuser and scroll, showed that there were four possible combinations of characteristics of impeller pressure ratio and diffusing system pressure ratio. The flow rate, Q{sub P}, where the impeller achieved maximum static pressure ratio, was surge flow rate of the centrifugal compressor determined by themore » critical flow rate. In order to operate the compressor at a rate lower than Q{sub P}, the diffusing system, whose pressure recovery factor was steep negative slope near Q{sub P}, was needed. When the diffuser throat area was less than a certain value, the compressor efficiency deteriorated; however, the compressor stage pressure ratio was almost constant. In this study, by reducing the diffuser throat area, the compressor could be operated at a flow rate less than 40% of its design flow rate. Analysis of the pressure ratio in the impeller and diffusing systems at design and off-design speeds showed that the irregularities in surge line occurred when the component that controlled the negative slope on the compressor stage pressure ratio changed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Shu-Xia; Research group PLASMANT, Dept. Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp; Gao, Fei
2015-07-21
In this paper, the negative ion behavior in a C{sub 4}F{sub 8} inductively coupled plasma (ICP) is investigated using a hybrid model. The model predicts a non-monotonic variation of the total negative ion density with power at low pressure (10–30 mTorr), and this trend agrees well with experiments that were carried out in many fluorocarbon (fc) ICP sources, like C{sub 2}F{sub 6}, CHF{sub 3}, and C{sub 4}F{sub 8}. This behavior is explained by the availability of feedstock C{sub 4}F{sub 8} gas as a source of the negative ions, as well as by the presence of low energy electrons due tomore » vibrational excitation at low power. The maximum of the negative ion density shifts to low power values upon decreasing pressure, because of the more pronounced depletion of C{sub 4}F{sub 8} molecules, and at high pressure (∼50 mTorr), the anion density continuously increases with power, which is similar to fc CCP sources. Furthermore, the negative ion composition is identified in this paper. Our work demonstrates that for a clear understanding of the negative ion behavior in radio frequency C{sub 4}F{sub 8} plasma sources, one needs to take into account many factors, like the attachment characteristics, the anion composition, the spatial profiles, and the reactor configuration. Finally, a detailed comparison of our simulation results with experiments is conducted.« less
The watering of tall trees--embolization and recovery.
Gouin, Henri
2015-03-21
We can propound a thermo-mechanical understanding of the ascent of sap to the top of tall trees thanks to a comparison between experiments associated with the cohesion-tension theory and the disjoining pressure concept for liquid thin-films. When a segment of xylem is tight-filled with crude sap, the liquid pressure can be negative although the pressure in embolized vessels remains positive. Examples are given that illustrate how embolized vessels can be refilled and why the ascent of sap is possible even in the tallest trees avoiding the problem due to cavitation. However, the maximum height of trees is limited by the stability domain of liquid thin-films. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hidden negative linear compressibility in lithium l-tartrate.
Yeung, Hamish H-M; Kilmurray, Rebecca; Hobday, Claire L; McKellar, Scott C; Cheetham, Anthony K; Allan, David R; Moggach, Stephen A
2017-02-01
By decoupling the mechanical behaviour of building units for the first time in a wine-rack framework containing two different strut types, we show that lithium l-tartrate exhibits NLC with a maximum value, K max = -21 TPa -1 , and an overall NLC capacity, χ NLC = 5.1%, that are comparable to the most exceptional materials to date. Furthermore, the contributions from molecular strut compression and angle opening interplay to give rise to so-called "hidden" negative linear compressibility, in which NLC is absent at ambient pressure, switched on at 2 GPa and sustained up to the limit of our experiment, 5.5 GPa. Analysis of the changes in crystal structure using variable-pressure synchrotron X-ray diffraction reveals new chemical and geometrical design rules to assist the discovery of other materials with exciting hidden anomalous mechanical properties.
Exploding and Imaging of Electron Bubbles in Liquid Helium
NASA Astrophysics Data System (ADS)
Yadav, Neha; Vadakkumbatt, Vaisakh; Maris, Humphrey J.; Ghosh, Ambarish
2017-06-01
An electron bubble in liquid helium-4 under the saturated vapor pressure becomes unstable and explodes if the pressure becomes more negative than -1.9 bars. In this paper, we use focused ultrasound to explode electron bubbles. We then image at 30,000 frames per second the growth and subsequent collapse of the bubbles. We find that bubbles can grow to as large as 1 mm in diameter within 2 ms after the cavitation event. We examine the relation between the maximum size of the bubble and the lifetime and find good agreement with the experimental results.
Method for selectively orienting induced fractures in subterranean earth formations
Shuck, Lowell Z.
1977-02-01
The orientation of hydraulically-induced fractures in relatively deep subterranean earth formations is normally confined to vertical projections along a plane parallel to the maximum naturally occurring (tectonic) compressive stress field. It was found that this plane of maximum compressive stress may be negated and, in effect, re-oriented in a plane projecting generally orthogonal to the original tectonic stress plane by injecting liquid at a sufficiently high pressure into a wellbore fracture oriented in a plane parallel to the plane of tectonic stress for the purpose of stressing the surrounding earth formation in a plane generally orthogonal to the plane of tectonic stress. With the plane of maximum compressive stress re-oriented due to the presence of the induced compressive stress, liquid under pressure is injected into a second wellbore disposed within the zone influenced by the induced compressive stress but at a location in the earth formation laterally spaced from the fracture in the first wellbore for effecting a fracture in the second wellbore along a plane generally orthogonal to the fracture in the first wellbore.
Ooeda, Hiroki; Terashima, Ichiro; Taneda, Haruhiko
2017-02-01
Two hypotheses have been proposed to explain the mechanism preventing the refilling vessel water from being drained to the neighboring functional vessels under negative pressure. The pit membrane osmosis hypothesis proposes that the xylem parenchyma cells release polysaccharides that are impermeable to the intervessel pit membranes into the refilling vessel; this osmotically counteracts the negative pressure, thereby allowing the vessel to refill. The pit valve hypothesis proposes that gas trapped within intervessel bordered pits isolates the refilling vessel water from the surrounding functional vessels. Here, using the single-vessel method, we assessed these hypotheses in shoots of mulberry (Morus australis Poir.). First, we confirmed the occurrence of xylem refilling under negative pressure in the potted mulberry saplings. To examine the pit membrane osmosis hypothesis, we estimated the semi-permeability of pit membranes for molecules of various sizes and found that the pit membranes were not semi-permeable to polyethylene glycol of molecular mass <20,000. For the pit valve hypothesis, we formed pit valves in the intervessel pits in the short stem segments and measured the maximum liquid pressure up to which gases in bordered pits were retained. The threshold pressure ranged from 0.025 to 0.10 MPa. These values matched the theoretical value calculated from the geometry of the pit chamber (0.0692-0.101 MPa). Our results suggest that gas in the pits is retained by surface tension, even under substantial positive pressure to resolve gases in the refilling vessel, whereas the molecule size required for the pit membrane osmosis mechanism in mulberry would be unrealistically large. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Tian, C.; Weng, J.; Liu, Y.
2017-11-01
The convection heat transfer coefficient is one of the evaluation indexes of the brake disc performance. The method used in this paper to calculate the convection heat transfer coefficient is a fluid-solid coupling simulation method, because the calculation results through the empirical formula method have great differences. The model, including a brake disc, a car body, a bogie and flow field, was built, meshed and simulated in the software FLUENT. The calculation models were K-epsilon Standard model and Energy model. The working condition of the brake disc was considered. The coefficient of various parts can be obtained through the method in this paper. The simulation result shows that, under 160 km/h speed, the radiating ribs have the maximum convection heat transfer coefficient and the value is 129.6W/(m2·K), the average coefficient of the whole disc is 100.4W/(m2·K), the windward of ribs is positive-pressure area and the leeward of ribs is negative-pressure area, the maximum pressure is 2663.53Pa.
Magnetic field and pressure dependant resistivity behaviour of MnAs
NASA Astrophysics Data System (ADS)
Satya, A. T.; Amaladass, E. P.; Mani, Awadhesh
2018-04-01
The studies on the effect of magnetic field and external pressure on temperature dependant electrical resistivity behaviour of polycrystalline MnAs have been reported. At ambient pressure, ρ(T) shows a first order magnetic transition associated with change in sign of the temperature coefficient of resistivity from positive in the ferromagnetic (FM) phase to negative in the paramagnetic (PM) phase. The magneto resistance is negative and shows a peak at the FM transition temperature (T C ). The first order hysteresis width decreases with increase in magnetic field and the intersection of extrapolated linear variations of T C with field for the cooling and warming cycles enabled determination of the tricritical point. At high pressures, ρ(T) displays non monotonic variation exhibiting a low temperature minimum ({T}\\min L) and a high temperature maximum ({T}\\max H) accompanying broad thermal hysteresis above {T}\\min L. It is surmised that spin disorder scattering is responsible for the resistivity behaviour above {T}\\min L and the essential features of ρ(T) are qualitatively explained using Kasuya theoretical model. Below the {T}\\min L, ρ(T) follows linear logarithmic temperature dependence similar to the effect occurring due to Kondo type of scattering of conduction electrons with localised moments.
Static solutions in Einstein-Chern-Simons gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crisóstomo, J.; Gomez, F.; Mella, P.
In this paper we study static solutions with more general symmetries than the spherical symmetry of the five-dimensional Einstein-Chern-Simons gravity. In this context, we study the coupling of the extra bosonic field h{sup a} with ordinary matter which is quantified by the introduction of an energy-momentum tensor field associated with h{sup a}. It is found that exist (i) a negative tangential pressure zone around low-mass distributions (μ < μ{sub 1}) when the coupling constant α is greater than zero; (ii) a maximum in the tangential pressure, which can be observed in the outer region of a field distribution that satisfiesmore » μ < μ{sub 2}; (iii) solutions that behave like those obtained from models with negative cosmological constant. In such a situation, the field h{sup a} plays the role of a cosmological constant.« less
Postural Effects on Pharyngeal Protective Reflex Mechanisms
Malhotra, Atul; Trinder, John; Fogel, Robert; Stanchina, Michael; Patel, Sanjay R.; Schory, Karen; Kleverlaan, Darci; White, David P.
2012-01-01
Study Objectives Pharyngeal muscle dilators are important in obstructive sleep apnea pathogenesis because the failure of protective reflexes involving these muscles yields pharyngeal collapse. Conflicting results exist in the literature regarding the responsiveness of these muscles during stable non-rapid eye movement sleep. However, variations in posture in previous studies may have influenced these findings. We hypothesized that tongue protruder muscles are maximally responsive to negative pressure pulses during supine sleep, when posterior tongue displacement yields pharyngeal occlusion. Design We studied all subjects in the supine and lateral postures during wakefulness and stable non-rapid eye movement sleep by measuring genioglossus and tensor palatini electromyograms during basal breathing and following negative pressure pulses. Setting Upper-airway physiology laboratory of Sleep Medicine Division, Brigham and Women’s Hospital. Subjects/Participants 17 normal subjects. Measurements and Results We observed an increase in genioglossal responsiveness to negative pressure pulses in sleep as compared to wakefulness in supine subjects (3.9 percentage of maximum [%max] ± 1.1 vs 4.4 %max ± 1.0) but a decrease in the lateral decubitus position (4.1 %max ± 1.0 vs 1.5 %max ± 0.4), the interaction effect being significant. Despite this augmented reflex, collapsibility, as measured during negative pressure pulses, increased more while subjects were in the supine position as compared with the lateral decubitus position. While the interaction between wake-sleep state and position was also significant for the tensor palatini, the effect was weaker than for genioglossus, although, for tensor palatini, baseline activity was markedly reduced during non-rapid eye movement sleep as compared with wakefulness. Conclusions We conclude that body posture does have an important impact on genioglossal responsiveness to negative pressure pulses during non-rapid eye movement sleep. We speculate that this mechanism works to prevent pharyngeal occlusion when the upper airway is most vulnerable to collapse eg, during supine sleep. PMID:15532204
Chest wall mobility is related to respiratory muscle strength and lung volumes in healthy subjects.
Lanza, Fernanda de Cordoba; de Camargo, Anderson Alves; Archija, Lilian Rocha Ferraz; Selman, Jessyca Pachi Rodrigues; Malaguti, Carla; Dal Corso, Simone
2013-12-01
Chest wall mobility is often measured in clinical practice, but the correlations between chest wall mobility and respiratory muscle strength and lung volumes are unknown. We investigate the associations between chest wall mobility, axillary and thoracic cirtometry values, respiratory muscle strength (maximum inspiratory pressure and maximum expiratory pressure), and lung volumes (expiratory reserve volume, FEV(1), inspiratory capacity, FEV(1)/FVC), and the determinants of chest mobility in healthy subjects. In 64 healthy subjects we measured inspiratory capacity, FVC, FEV(1), expiratory reserve volume, maximum inspiratory pressure, and maximum expiratory pressure, and chest wall mobility via axillary and thoracic cirtometry. We used linear regression to evaluate the influence of the measured variables on chest wall mobility. The subjects' mean ± SD values were: age 24 ± 3 years, axillary cirtometry 6.3 ± 2.0 cm, thoracic cirtometry 7.5 ± 2.3 cm; maximum inspiratory pressure 90.4 ± 10.6% of predicted, maximum expiratory pressure 92.8 ± 13.5% of predicted, inspiratory capacity 99.7 ± 8.6% of predicted, FVC 101.9 ± 10.6% of predicted, FEV(1) 98.2 ± 10.3% of predicted, expiratory reserve volume 90.9 ± 19.9% of predicted. There were significant correlations between axillary cirtometry and FVC (r = 0.32), FEV(1) (r = 0.30), maximum inspiratory pressure (r = 0.48), maximum expiratory pressure (r = 0.25), and inspiratory capacity (r = 0.24), and between thoracic cirtometry and FVC (r = 0.50), FEV(1) (r = 0.48), maximum inspiratory pressure (r = 0.46), maximum expiratory pressure (r = 0.37), inspiratory capacity (r = 0.39), and expiratory reserve volume (r = 0.47). In multiple regression analysis the variable that best explained the axillary cirtometry variation was maximum inspiratory pressure (R(2) 0.23), and for thoracic cirtometry it was FVC and maximum inspiratory pressure (R(2) 0.32). Chest mobility in healthy subjects is related to respiratory muscle strength and lung function; the higher the axillary cirtometry and thoracic cirtometry values, the greater the maximum inspiratory pressure, maximum expiratory pressure, and lung volumes in healthy subjects.
Effects of acute hyperthermia on the carotid baroreflex control of heart rate in humans
NASA Astrophysics Data System (ADS)
Yamazaki, F.; Sagawa, S.; Torii, R.; Endo, Y.; Shiraki, K.
The purpose of this study was to examine the effect of hyperthermia on the carotid baroreceptor-cardiac reflexes in humans. Nine healthy males underwent acute hyperthermia (esophageal temperature 38.0° C) produced by hot water-perfused suits. Beat-to-beat heart rate (HR) responses were determined during positive and negative R-wave-triggered neck pressure steps from +40 to -65 mm Hg during normothermia and hyperthermia. The carotid baroreceptor-cardiac reflex sensitivity was evaluated from the maximum slope of the HR response to changes in carotid distending pressure. Buffering capacity of the HR response to carotid distending pressure was evaluated in % from a reference point calculated as (HR at 0 mm Hg neck pressure-minimum HR)/HR range ×100. An upward shift of the curve was evident in hyperthermia because HR increased from 57.7+/-2.4 beats/min in normothermia to 88.7+/-4.1 beats/min in hyperthermia (P<0.05) without changes in mean arterial pressure. The maximum slope of the curve in hyperthermia was similar to that in normothermia. The reference point was increased (P<0.05) during hyperthermia. These results suggest that the sensitivity of the carotid baroreflex of HR remains unchanged in hyperthermia. However, the capacity for tachycardia response to rapid onset of hypotension is reduced and the capacity for bradycardia response to sudden hypertension is increased during acute hyperthermia.
49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Maximum allowable operating pressure: Steel or... Operations § 192.619 Maximum allowable operating pressure: Steel or plastic pipelines. (a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating...
49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Maximum allowable operating pressure: Steel or... Operations § 192.619 Maximum allowable operating pressure: Steel or plastic pipelines. (a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating...
49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Maximum allowable operating pressure: Steel or... Operations § 192.619 Maximum allowable operating pressure: Steel or plastic pipelines. (a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating...
49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Maximum allowable operating pressure: Steel or... Operations § 192.619 Maximum allowable operating pressure: Steel or plastic pipelines. (a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating...
Maximum static inspiratory and expiratory pressures with different lung volumes
Lausted, Christopher G; Johnson, Arthur T; Scott, William H; Johnson, Monique M; Coyne, Karen M; Coursey, Derya C
2006-01-01
Background Maximum pressures developed by the respiratory muscles can indicate the health of the respiratory system, help to determine maximum respiratory flow rates, and contribute to respiratory power development. Past measurements of maximum pressures have been found to be inadequate for inclusion in some exercise models involving respiration. Methods Maximum inspiratory and expiratory airway pressures were measured over a range of lung volumes in 29 female and 19 male adults. A commercial bell spirometry system was programmed to occlude airflow at nine target lung volumes ranging from 10% to 90% of vital capacity. Results In women, maximum expiratory pressure increased with volume from 39 to 61 cmH2O and maximum inspiratory pressure decreased with volume from 66 to 28 cmH2O. In men, maximum expiratory pressure increased with volume from 63 to 97 cmH2O and maximum inspiratory pressure decreased with volume from 97 to 39 cmH2O. Equations describing pressures for both sexes are: Pe/Pmax = 0.1426 Ln( %VC) + 0.3402 R2 = 0.95 Pi/Pmax = 0.234 Ln(100 - %VC) - 0.0828 R2 = 0.96 Conclusion These results were found to be consistent with values and trends obtained by other authors. Regression equations may be suitable for respiratory mechanics models. PMID:16677384
Oyabu, Chikako; Ushigome, Emi; Matsumoto, Shinobu; Tanaka, Toru; Hasegawa, Goji; Nakamura, Naoto; Ohnishi, Masayoshi; Tsunoda, Sei; Ushigome, Hidetaka; Yokota, Isao; Tanaka, Muhei; Asano, Mai; Yamazaki, Masahiro; Fukui, Michiaki
2017-11-01
Maximum home systolic blood pressure has been shown to predict target organ damage. We aimed to clarify the association between maximum home systolic blood pressure and urine albumin to creatinine ratio, an indicator of early-phase diabetic nephropathy in patients with type 2 diabetes. In 1040 patients, we assessed the relationship of mean or maximum home systolic blood pressure and urine albumin to creatinine ratio, and compared the area under the receiver operating characteristic curve of mean or maximum home systolic blood pressure for diabetic nephropathy (urine albumin to creatinine ratio ⩾30 mg/g Cr). Multivariate linear regression analyses indicated that mean morning systolic blood pressure ( β = 0.010, p < 0.001) and maximum morning systolic blood pressure ( β = 0.008, p < 0.001) were significantly associated with urine albumin to creatinine ratio. Area under the receiver operating characteristic curve (95% confidence interval) for diabetic nephropathy in mean and maximum morning systolic blood pressure was 0.667 (0.634-0.700; p < 0.001) and 0.671 (0.638-0.703; p < 0.001), respectively. Maximum home systolic blood pressure, as well as mean home systolic blood pressure, was significantly associated with diabetic nephropathy in patients with type 2 diabetes.
46 CFR 54.10-5 - Maximum allowable working pressure (reproduces UG-98).
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Maximum allowable working pressure (reproduces UG-98). 54.10-5 Section 54.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Inspection, Reports, and Stamping § 54.10-5 Maximum allowable working pressure (reproduces UG-98). (a) The maximum allowable...
46 CFR 54.10-5 - Maximum allowable working pressure (reproduces UG-98).
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Maximum allowable working pressure (reproduces UG-98). 54.10-5 Section 54.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Inspection, Reports, and Stamping § 54.10-5 Maximum allowable working pressure (reproduces UG-98). (a) The maximum allowable...
46 CFR 54.10-5 - Maximum allowable working pressure (reproduces UG-98).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Maximum allowable working pressure (reproduces UG-98). 54.10-5 Section 54.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Inspection, Reports, and Stamping § 54.10-5 Maximum allowable working pressure (reproduces UG-98). (a) The maximum allowable...
46 CFR 54.10-5 - Maximum allowable working pressure (reproduces UG-98).
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Maximum allowable working pressure (reproduces UG-98). 54.10-5 Section 54.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Inspection, Reports, and Stamping § 54.10-5 Maximum allowable working pressure (reproduces UG-98). (a) The maximum allowable...
NASA Astrophysics Data System (ADS)
Viana, Liviany; Herdies, Dirceu; Muller, Gabriela
2017-04-01
An observational study was carried out to quantify the events of cold air outbreak moving above the Equator from 1980 to 2013 during the austral winter period (May, June, July, August and September), and later analyzed the behavior of the circulation responsible for this displacement. The observational datasets from the Sector of Climatological studies of the Institute of Airspace Control of the city of Iauarete (0.61N, 69.0W; 120m), located at the extreme northern of the Brazilian Amazon Basin, were used for the analyzes. The meteorological variables used were the temperatures minimum, maximum and maximum atmospheric pressure. A new methodology was used to identify these events, calculated by the difference between the monthly average and 2 (two) standard deviations for the extremes of the air temperature, and the sum of 1 (one) standard deviation for the maximum atmospheric pressure. As a result, a total of 11 cold events were recorded that reached the extreme northern of the Brazilian Amazon Basin, with values recorded at a minimum temperature of 17.8 °C, at the maximum temperature of 21.0 °C and maximum atmospheric pressure reaching 1021.2 hPa. These reductions and augmentation are equivalent to the negative anomalies of 5.9 and 8.7 °C at the minimum and maximum temperatures, respectively, while a positive anomaly of 7.1 hPa was observed at the maximum pressure. In relation to the dynamic behavior of large-scale circulation, a Rossby wave-type configuration propagating from west to east over subtropical latitudes was observed from the European Center for Medium-Range Weather Forecast (ECMWF) since the days before the arrival of the event in the city of Iauarete. This behavior was observed both in the anomalies of the gepotencial (250 hPa and 850 hPa) and in the southern component of the wind (250 hPa and 850 hPa), both presenting statistical significance of 99 % (Student's T test). Therefore, a new criterion for the identification of "friagens" in the tropical latitude has been able to represent the effects of colds air outbreak and the advancement of the cold air mass, which are subsidized by the large-scale circulation, and consequently contribute to the modifications in the weather and the life of the population over this Equatorial region.
Phase transition and entropy inequality of noncommutative black holes in a new extended phase space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Yan-Gang; Xu, Zhen-Ming, E-mail: miaoyg@nankai.edu.cn, E-mail: xuzhenm@mail.nankai.edu.cn
We analyze the thermodynamics of the noncommutative high-dimensional Schwarzschild-Tangherlini AdS black hole with the non-Gaussian smeared matter distribution by regarding a noncommutative parameter as an independent thermodynamic variable named as the noncommutative pressure . In the new extended phase space that includes this noncommutative pressure and its conjugate variable, we reveal that the noncommutative pressure and the original thermodynamic pressure related to the negative cosmological constant make the opposite effects in the phase transition of the noncommutative black hole, i.e. the former dominates the UV regime while the latter does the IR regime, respectively. In addition, by means of themore » reverse isoperimetric inequality, we indicate that only the black hole with the Gaussian smeared matter distribution holds the maximum entropy for a given thermodynamic volume among the noncommutative black holes with various matter distributions.« less
Strain measurements of the tibial insert of a knee prosthesis using a knee motion simulator.
Sera, Toshihiro; Iwai, Yuya; Yamazaki, Takaharu; Tomita, Tetsuya; Yoshikawa, Hideki; Naito, Hisahi; Matsumoto, Takeshi; Tanaka, Masao
2017-12-01
The longevity of a knee prosthesis is influenced by the wear of the tibial insert due to its posture and movement. In this study, we assumed that the strain on the tibial insert is one of the main reasons for its wear and investigated the influence of the knee varus-valgus angles on the mechanical stress of the tibial insert. Knee prosthesis motion was simulated using a knee motion simulator based on a parallel-link six degrees-of-freedom actuator and the principal strain and pressure distribution of the tibial insert were measured. In particular, the early stance phase obtained from in vivo X-ray images was examined because the knee is applied to the largest load during extension/flexion movement. The knee varus-valgus angles were 0° (neutral alignment), 3°, and 5° malalignment. Under a neutral orientation, the pressure was higher at the middle and posterior condyles. The first and second principal strains were larger at the high and low pressure areas, respectively. Even for a 3° malalignment, the load was concentrated at one condyle and the positive first principal strain increased dramatically at the high pressure area. The negative second principal strain was large at the low pressure area on the other condyle. The maximum equivalent strain was 1.3-2.1 times larger at the high pressure area. For a 5° malalignment, the maximum equivalent strain increased slightly. These strain and pressure measurements can provide the mechanical stress of the tibial insert in detail for determining the longevity of an artificial knee joint.
Goozée, Justine V; Murdoch, Bruce E; Theodoros, Deborah G
2002-01-01
A miniature pressure transducer was used to assess the interlabial contact pressures produced by a group of 19 adults (mean age 30.6 years) with dysarthria following severe traumatic brain injury (TBI) during a set of speech and nonspeech tasks. Ten parameters relating to lip strength, endurance, rate of movement and lip pressure accuracy and stability were measured from the nonspeech tasks. The results attained by the TBI group were compared against a group of 19 age- and sex-matched control subjects. Significant differences between the groups were found for maximum interlabial contact pressure, maximum rate of repetition of maximum pressure, and lip pressure accuracy at 50 and 10% levels of maximum pressure. In regards to speech, the interlabial contact pressures generated by the TBI group and control group did not differ significantly. When expressed as percentages of maximum pressure, however, the TBI group's interlabial pressures appeared to have been generated with greater physiological effort. Copyright 2002 S. Karger AG, Basel
Ren, Shuai; Cai, Maolin; Shi, Yan; Xu, Weiqing; Zhang, Xiaohua Douglas
2018-03-01
Bronchial diameter is a key parameter that affects the respiratory treatment of mechanically ventilated patients. In this paper, to reveal the influence of bronchial diameter on the airflow dynamics of pressure-controlled mechanically ventilated patients, a new respiratory system model is presented that combines multigeneration airways with lungs. Furthermore, experiments and simulation studies to verify the model are performed. Finally, through the simulation study, it can be determined that in airway generations 2 to 7, when the diameter is reduced to half of the original value, the maximum air pressure (maximum air pressure in lungs) decreases by nearly 16%, the maximum flow decreases by nearly 30%, and the total airway pressure loss (sum of each generation pressure drop) is more than 5 times the original value. Moreover, in airway generations 8 to 16, with increasing diameter, the maximum air pressure, maximum flow, and total airway pressure loss remain almost constant. When the diameter is reduced to half of the original value, the maximum air pressure decreases by 3%, the maximum flow decreases by nearly 5%, and the total airway pressure loss increases by 200%. The study creates a foundation for improvement in respiratory disease diagnosis and treatment. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Schobeiri, M. T.; John, J.
1996-01-01
The turbomachinery wake flow development is largely influenced by streamline curvature and streamwise pressure gradient. The objective of this investigation is to study the development of the wake under the influence of streamline curvature and streamwise pressure gradient. The experimental investigation is carried out in two phases. The first phase involves the study of the wake behind a stationary circular cylinder (steady wake) in curved channels at positive, zero, and negative streamwise pressure gradients. The mean velocity and Reynolds stress components are measured using a X-hot-film probe. The measured quantities obtained in probe coordinates are transformed to a curvilinear coordinate system along the wake centerline and are presented in similarity coordinates. The results of the steady wakes suggest strong asymmetry in velocity and Reynolds stress components. However, the velocity defect profiles in similarity coordinates are almost symmetrical and follow the same distribution as the zero pressure gradient straight wake. The results of Reynolds stress distributions show higher values on the inner side of the wake than the outer side. Other quantities, including the decay of maximum velocity defect, growth of wake width, and wake integral parameters, are also presented for the three different pressure gradient cases of steady wake. The decay rate of velocity defect is fastest for the negative streamwise pressure gradient case and slowest for the positive pressure gradient case. Conversely, the growth of the wake width is fastest for the positive streamwise pressure gradient case and slowest for the negative streamwise pressure gradient. The second phase studies the development of periodic unsteady wakes generated by the circular cylinders of the rotating wake generator in a curved channel at zero streamwise pressure gradient. Instantaneous velocity components of the periodic unsteady wakes, measured with a stationary X-hot-film probe, are analyzed by the phase averaging techniques. The temporal distribution of velocity and Reynolds stress components obtained in a stationary frame of reference are transformed to a spatial distribution in a relative frame of reference. Profiles of phase-averaged velocity and Reynolds stress distributions in the relative frame of reference and similarity coordinates are presented. The velocity defect and Reynolds stress distributions agree with the results of the wake development behind a stationary cylinder in the curved channel at zero streamwise pressure gradient. The phase-averaged third-order correlations, presented in the relative frame of reference and similarity coordinates, show pronounced asymmetric features.
Razus, D; Brinzea, V; Mitu, M; Movileanu, C; Oancea, D
2011-06-15
The maximum rates of pressure rise during closed vessel explosions of propane-air mixtures are reported, for systems with various initial concentrations, pressures and temperatures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.3 bar; T(0)=298-423 K). Experiments were performed in a spherical vessel (Φ=10 cm) with central ignition. The deflagration (severity) index K(G), calculated from experimental values of maximum rates of pressure rise is examined against the adiabatic deflagration index, K(G, ad), computed from normal burning velocities and peak explosion pressures. At constant temperature and fuel/oxygen ratio, both the maximum rates of pressure rise and the deflagration indices are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, the maximum rates of pressure rise and deflagration indices are slightly influenced by the initial temperature; some influence of the initial temperature on maximum rates of pressure rise is observed only for propane-air mixtures far from stoichiometric composition. The differentiated temperature influence on the normal burning velocities and the peak explosion pressures might explain this behaviour. Copyright © 2011 Elsevier B.V. All rights reserved.
49 CFR 195.406 - Maximum operating pressure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance § 195.406 Maximum operating pressure. (a) Except for surge pressures and other variations from normal operations, no operator may operate a pipeline at a... 49 Transportation 3 2010-10-01 2010-10-01 false Maximum operating pressure. 195.406 Section 195...
49 CFR 195.406 - Maximum operating pressure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance § 195.406 Maximum operating pressure. (a) Except for surge pressures and other variations from normal operations, no operator may operate a pipeline at a... 49 Transportation 3 2012-10-01 2012-10-01 false Maximum operating pressure. 195.406 Section 195...
49 CFR 195.406 - Maximum operating pressure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance § 195.406 Maximum operating pressure. (a) Except for surge pressures and other variations from normal operations, no operator may operate a pipeline at a... 49 Transportation 3 2014-10-01 2014-10-01 false Maximum operating pressure. 195.406 Section 195...
49 CFR 195.406 - Maximum operating pressure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance § 195.406 Maximum operating pressure. (a) Except for surge pressures and other variations from normal operations, no operator may operate a pipeline at a... 49 Transportation 3 2011-10-01 2011-10-01 false Maximum operating pressure. 195.406 Section 195...
49 CFR 195.406 - Maximum operating pressure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance § 195.406 Maximum operating pressure. (a) Except for surge pressures and other variations from normal operations, no operator may operate a pipeline at a... 49 Transportation 3 2013-10-01 2013-10-01 false Maximum operating pressure. 195.406 Section 195...
Hyvärinen, Antti-Pekka; Brus, David; Zdímal, Vladimír; Smolík, Jiri; Kulmala, Markku; Viisanen, Yrjö; Lihavainen, Heikki
2006-06-14
Homogeneous nucleation rate isotherms of n-butanol+helium were measured in a laminar flow diffusion chamber at total pressures ranging from 50 to 210 kPa to investigate the effect of carrier gas pressure on nucleation. Nucleation temperatures ranged from 265 to 280 K and the measured nucleation rates were between 10(2) and 10(6) cm(-3) s(-1). The measured nucleation rates decreased as a function of increasing pressure. The pressure effect was strongest at pressures below 100 kPa. This negative carrier gas effect was also temperature dependent. At nucleation temperature of 280 K and at the same saturation ratio, the maximum deviation between nucleation rates measured at 50 and 210 kPa was about three orders of magnitude. At nucleation temperature of 265 K, the effect was negligible. Qualitatively the results resemble those measured in a thermal diffusion cloud chamber. Also the slopes of the isothermal nucleation rates as a function of saturation ratio were different as a function of total pressure, 50 kPa isotherms yielded the steepest slopes, and 210 kPa isotherms the shallowest slopes. Several sources of inaccuracies were considered in the interpretation of the results: uncertainties in the transport properties, nonideal behavior of the vapor-carrier gas mixture, and shortcomings of the used mathematical model. Operation characteristics of the laminar flow diffusion chamber at both under-and over-pressure were determined to verify a correct and stable operation of the device. We conclude that a negative carrier gas pressure effect is seen in the laminar flow diffusion chamber and it cannot be totally explained with the aforementioned reasons.
Li, Lu; Liu, Ju-Zhao; Luo, Meng; Wang, Wei; Huang, Yu-Yan; Efferth, Thomas; Wang, Hui-Mei; Fu, Yu-Jie
2016-10-15
In this study, green and efficient deep eutectic solvent-based negative pressure cavitation-assisted extraction (DES-NPCE) followed by macroporous resin column chromatography was developed to extract and separate four main isoflavonoids, i.e. prunetin, tectorigenin, genistein and biochanin A from Dalbergia odorifera T. Chen leaves. The extraction procedure was optimized systematically by single-factor experiments and a Box-Behnken experimental design combined with response surface methodology. The maximum extraction yields of prunetin, tectorigenin, genistein and biochanin A reached 1.204, 1.057, 0.911 and 2.448mg/g dry weight, respectively. Moreover, the direct enrichment and separation of four isoflavonoids in DES extraction solution was successfully achieved by macroporous resin AB-8 with recovery yields of more than 80%. The present study provides a convenient and efficient method for the green extraction and preparative separation of active compounds from plants. Copyright © 2016 Elsevier B.V. All rights reserved.
46 CFR 151.03-37 - Maximum allowable working pressure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Maximum allowable working pressure. 151.03-37 Section 151.03-37 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-37 Maximum allowable working pressure. The maximum allowable working...
46 CFR 151.03-37 - Maximum allowable working pressure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Maximum allowable working pressure. 151.03-37 Section 151.03-37 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-37 Maximum allowable working pressure. The maximum allowable working...
46 CFR 151.03-37 - Maximum allowable working pressure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Maximum allowable working pressure. 151.03-37 Section 151.03-37 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-37 Maximum allowable working pressure. The maximum allowable working...
46 CFR 151.03-37 - Maximum allowable working pressure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Maximum allowable working pressure. 151.03-37 Section 151.03-37 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-37 Maximum allowable working pressure. The maximum allowable working...
46 CFR 151.03-37 - Maximum allowable working pressure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Maximum allowable working pressure. 151.03-37 Section 151.03-37 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-37 Maximum allowable working pressure. The maximum allowable working...
40 CFR 147.1803 - Existing Class I and III wells authorized by rule-maximum injection pressure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... authorized by rule-maximum injection pressure. 147.1803 Section 147.1803 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED...—maximum injection pressure. The owner or operator shall limit injection pressure to the lesser of: (a) A...
40 CFR 63.7944 - How do I determine the maximum HAP vapor pressure of my remediation material?
Code of Federal Regulations, 2010 CFR
2010-07-01
... vapor pressure of my remediation material? 63.7944 Section 63.7944 Protection of Environment... Pollutants: Site Remediation Performance Tests § 63.7944 How do I determine the maximum HAP vapor pressure of my remediation material? (a) You must determine the maximum HAP vapor pressure of your remediation...
[The use of negative pressure wound therapy in the fixation of split-thickness skin grafts].
Ulianko, J; Janek, J; Laca, Ľ
2017-01-01
Negative pressure wound therapy is one of the latest methods of dealing with complicated healing wounds. It promotes granulation, mechanically attracts the edges of the wound, removes secretions, reduces the number of bacteria in the wound and reduces swelling. In addition to its use to start and enhance the healing process, this method is also important in the fixation of split-thickness skin grafts in non-ideal conditions. The goal of this article is to establish basic indications for negative pressure fixation of meshed split-thickness skin grafts in non-ideal conditions in the wound and to assess the impact of contamination of wounds on engraftment using vacuum therapy. Additional goals are to verify the use of this method of fixation in defects of various etiologies (trauma, ischemia), to optimize and determine the advantages and disadvantages of fixation of grafts using this method in clinical practice, and to evaluate the effectiveness of fixation of meshed split-thickness skin grafts. Set of 89 operated patients of both sexes, various ages, etiologies of defects, in non-ideal conditions; statistical evaluation of the percentage of engraftment, depending on the etiology of the defect, microbial contamination and location of the defect. Measured in vivo using a centimeter measure at the point of maximum length and width. Our set of 100% engraftments of StSG included 68 persons, 65 males and 24 females, in the following age groups: up to 30 years 11 persons; 3050 years 19 persons; 5070 years 38 persons; and above 70 years 21 persons, with negative microbial contamination of the defect in 20 cases, contamination with one germ in 33 cases, contamination with two germs in 22 cases and contamination with three germs in 14 cases. We obtained 100% engraftment in 68 cases, 9099% engraftment in 7 cases, 8089% engraftment in 5 cases, 7079% engraftment in 7 cases, and the 6069% and 5059% sets of engraftment were combined because of the low number of patients in this set. 51 of the patients had a traumatic origin of their defect, 22 had an ischemic origin of their defect and 16 had a different origin of their defect. We found a significant relationship between contamination and the percentage of engraftment, as well as dependence between patient age and the percentage of engraftment. Negative pressure fixation of meshed split-thickness skin grafts seems to be a convenient method of fixation in patients with defects of various origins in non-ideal conditions; this method increases the percentage of engraftment and apparently reduces the time required for fixation of the graft and the length of hospitalisation. We obtained 100% engraftment of StSG using negative pressure fixation. We concluded that traumatic origin had no effect on the percentage of engraftment, while ischemic origin had a significant effect on engraftment. Also, negative contamination of the defect had a positive effect on StSG engraftment, and contamination wit three microbial germs had a significant negative effect on the percentage of StSG engraftment using negative pressure fixation.Key words: negative pressure therapy - NPWT plastic surgery skin grafts complicated wounds.
Utanohara, Yuri; Hayashi, Ryo; Yoshikawa, Mineka; Yoshida, Mitsuyoshi; Tsuga, Kazuhiro; Akagawa, Yasumasa
2008-09-01
It is clinically important to evaluate tongue function in terms of rehabilitation of swallowing and eating ability. We have developed a disposable tongue pressure measurement device designed for clinical use. In this study we used this device to determine standard values of maximum tongue pressure in adult Japanese. Eight hundred fifty-three subjects (408 male, 445 female; 20-79 years) were selected for this study. All participants had no history of dysphagia and maintained occlusal contact in the premolar and molar regions with their own teeth. A balloon-type disposable oral probe was used to measure tongue pressure by asking subjects to compress it onto the palate for 7 s with maximum voluntary effort. Values were recorded three times for each subject, and the mean values were defined as maximum tongue pressure. Although maximum tongue pressure was higher for males than for females in the 20-49-year age groups, there was no significant difference between males and females in the 50-79-year age groups. The maximum tongue pressure of the seventies age group was significantly lower than that of the twenties to fifties age groups. It may be concluded that maximum tongue pressures were reduced with primary aging. Males may become weaker with age at a faster rate than females; however, further decreases in strength were in parallel for male and female subjects.
McKinney, Timothy B; Babin, Elizabeth A; Ciolfi, Veronica; McKinney, Cynthia R; Shah, Nima
2018-04-01
Air-charged (AC) and water-perfused (WP) catheters have been evaluated for differences in measuring pressures for voiding dysfunction. Typically, a two-catheter system was used. We believe that simultaneous pressure measurements with AC and WP in a single catheter will provide analogous pressures for coughs, Valsalvas, and maximum pressures in voiding pressure studies (VPS). This IRB approved prospective study included 50 women over age 21. AC dual TDOC catheters were utilized. The water-filling channel served as the bladder filler and the water pressure readings. Patients were evaluated with empty bladders and at volumes of 50-100 mL, 200 mL, and maximum capacity with cough and Valsalva maneuvers. Comparative analysis was performed on maximum stress peak pressures. At maximum bladder capacity, VPS was done and maximum voiding pressure was recorded. Comparing coughs and Valsalva maneuvers pressures, there was significant increase in variability between AC and WP measurements with less than 50 mL volume (P < 0.001). Significant correlations were observed between AC and WP measurements for coughs and Valsalvas with bladder volume over 50 mL. Visual impression showed virtually identical tracings. Cough measurements had an average difference of 0.25 cmH 2 O (±8.81) and Valsalva measurements had an average difference of 3.15 cmH 2 O (±4.72). Thirty-eight women had usable maximum voiding pressure measurements and had a strong correlation. Cystometrogram and maximum voiding pressure measurements done with either water or air charged catheters will yield similarly accurate results and are comparable. Results suggest more variability at low bladder volumes <50 mL. © 2018 Wiley Periodicals, Inc.
The Impacts of Aerosols on Hurricane Katrina under the Effect of Air-Sea Coupling
NASA Astrophysics Data System (ADS)
Lin, Y.; Hsieh, J. S.; Wang, Y.; Zhang, R.
2017-12-01
Aerosols can affect the development of tropical cyclones, which often involve intense interactions with the ocean. Therefore, the impacts of aerosols on the tropical cyclones are reckoned closely associated with the effect of ocean feedback, a priori, which has often been omitted by most of the previous modeling studies about the aerosol effects on tropical cyclones. We investigate the synergetic effects of aerosols and ocean feedback on the development of hurricane Katrina using a convection-resolving coupled regional model (WRF-ROMS). In comparison with observations, our coupled simulation under pristine aerosol condition well captures the pressure drop near the center of Katrina with maximum mean sea level pressure in good agreement with the observation albeit the simulated maximal wind speed is relatively weaker than the observation. Preliminary results suggest that the ocean feedback tends to work with (against) aerosols to suppress (enhance) the hurricane's center pressure drop/maximum wind intensity at the developing (decaying) stage, suggesting a positive (negative) feedback to the aerosols' suppression effect on hurricanes. Moreover, the size of the simulated hurricane considerably expands due to the elevated polluted aerosols while the expansion is weakened, along with the increased precipitation, by the effect of air-sea interactions during the developing stage, which demonstrates intricate nonlinear interactions between aerosols, the hurricane and the ocean.
NASA Astrophysics Data System (ADS)
Wang, Chaolin; Zhong, Shaobo; Zhang, Fushen; Huang, Quanyi
2016-11-01
Precipitation interpolation has been a hot area of research for many years. It had close relation to meteorological factors. In this paper, precipitation from 91 meteorological stations located in and around Yunnan, Guizhou and Guangxi Zhuang provinces (or autonomous region), Mainland China was taken into consideration for spatial interpolation. Multivariate Bayesian maximum entropy (BME) method with auxiliary variables, including mean relative humidity, water vapour pressure, mean temperature, mean wind speed and terrain elevation, was used to get more accurate regional distribution of annual precipitation. The means, standard deviations, skewness and kurtosis of meteorological factors were calculated. Variogram and cross- variogram were fitted between precipitation and auxiliary variables. The results showed that the multivariate BME method was precise with hard and soft data, probability density function. Annual mean precipitation was positively correlated with mean relative humidity, mean water vapour pressure, mean temperature and mean wind speed, negatively correlated with terrain elevation. The results are supposed to provide substantial reference for research of drought and waterlog in the region.
An apparatus for altering the mechanical load of the respiratory system.
Younes, M; Bilan, D; Jung, D; Kroker, H
1987-06-01
We describe an apparatus for altering the mechanical load against which the respiratory muscles operate in humans. A closed system incorporates a rolling seal spirometer. The spirometer piston shaft is coupled to a fast-responding linear actuator that develops force in proportion to desired command signals. The command signal may be flow (resistive loading or unloading), volume (elastic loading or unloading), constant voltage (continuous positive or negative pressure), or any external function. Combinations of loads can be applied. Logic circuits permit application of the load at specific times during the respiratory cycle, and the magnitude of the loads is continuously adjustable. Maximum pressure output is +/- 20 cmH2O. The apparatus permits loading or unloading over a range of ventilation extending from resting levels to those observed during high levels of exercise (over 100 l/min). In response to a square-wave input, pressure rises exponentially with a time constant of 20 ms.
49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.
Code of Federal Regulations, 2010 CFR
2010-10-01
... plastic pipelines. 192.619 Section 192.619 Transportation Other Regulations Relating to Transportation... Operations § 192.619 Maximum allowable operating pressure: Steel or plastic pipelines. (a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating...
NASA Technical Reports Server (NTRS)
Dolan, Joseph F.; Fisher, Richard R. (Technical Monitor)
2001-01-01
When asked to discuss Cyg XR-1, E. E. Salpeter once concluded, 'A black hole in Cyg X(R)-1 is the most conservative hypothesis.' Recent observations now make it likely that a black hole in Cyg XR-1 is the only hypothesis tenable. Chandrasekhar first showed that compact stars - those with the inward force of gravity on their outer layers balanced by the pressure generated by the Pauli exclusion principle acting on its electrons (in white dwarfs) or nucleons (in neutron stars) - have a maximum mass. Equilibrium is achieved at a minimum of the total energy of the star, which is the sum of the positive Fermi energy and the negative gravitational energy. The maximum mass attainable in equilibrium is found by setting E = 0: M(max) = 1.5 M(Sun). If the mass of the star is larger than this, then E can be decreased without bound by decreasing the star's radius and increasing its (negative) gravitational energy. No equilibrium value of the radius exist, and general relativity predicts that gravitational collapse to a point occurs. This point singularity is a black hole.
NASA Astrophysics Data System (ADS)
Lin, Yangzheng; Zhao, Zhisheng; Strobel, Timothy A.; Cohen, R. E.
2016-12-01
We investigated the stability and mechanical and electronic properties of 15 metastable mixed s p2-s p3 carbon allotropes in the family of interpenetrating graphene networks (IGNs) using density functional theory (DFT). IGN allotropes exhibit nonmonotonic bulk and linear compressibilities before their structures irreversibly transform into new configurations under large hydrostatic compression. The maximum bulk compressibilities vary widely between structures and range from 3.6 to 306 TPa-1. We find all the IGN allotropes have negative linear compressibilities with maximum values varying from -0.74 to -133 TPa-1. The maximal negative linear compressibility of Z33 (-133 TPa-1 at 3.4 GPa) exceeds previously reported values at pressures higher than 1.0 GPa. IGN allotropes can be classified as either armchair or zigzag type, and these two types of IGNs exhibit different electronic properties. Zigzag-type IGNs are node-line semimetals, while armchair-type IGNs are either semiconductors or node-loop or node-line semimetals. Experimental synthesis of these IGN allotropes might be realized since their formation enthalpies relative to graphite are only 0.1-0.5 eV/atom (that of C60 fullerene is about 0.4 eV/atom), and energetically feasible binary compound pathways are possible.
Code of Federal Regulations, 2012 CFR
2012-10-01
... distribution systems. (a) No person may operate a low-pressure distribution system at a pressure high enough to...) No person may operate a low pressure distribution system at a pressure lower than the minimum... 49 Transportation 3 2012-10-01 2012-10-01 false Maximum and minimum allowable operating pressure...
Code of Federal Regulations, 2011 CFR
2011-10-01
... distribution systems. (a) No person may operate a low-pressure distribution system at a pressure high enough to...) No person may operate a low pressure distribution system at a pressure lower than the minimum... 49 Transportation 3 2011-10-01 2011-10-01 false Maximum and minimum allowable operating pressure...
Code of Federal Regulations, 2013 CFR
2013-10-01
... distribution systems. (a) No person may operate a low-pressure distribution system at a pressure high enough to...) No person may operate a low pressure distribution system at a pressure lower than the minimum... 49 Transportation 3 2013-10-01 2013-10-01 false Maximum and minimum allowable operating pressure...
Code of Federal Regulations, 2014 CFR
2014-10-01
... distribution systems. (a) No person may operate a low-pressure distribution system at a pressure high enough to...) No person may operate a low pressure distribution system at a pressure lower than the minimum... 49 Transportation 3 2014-10-01 2014-10-01 false Maximum and minimum allowable operating pressure...
Code of Federal Regulations, 2010 CFR
2010-10-01
... distribution systems. (a) No person may operate a low-pressure distribution system at a pressure high enough to...) No person may operate a low pressure distribution system at a pressure lower than the minimum... 49 Transportation 3 2010-10-01 2010-10-01 false Maximum and minimum allowable operating pressure...
Anomalies in bulk supercooled water at negative pressure
Pallares, Gaël; El Mekki Azouzi, Mouna; González, Miguel A.; Aragones, Juan L.; Abascal, José L. F.; Valeriani, Chantal; Caupin, Frédéric
2014-01-01
Water anomalies still defy explanation. In the supercooled liquid, many quantities, for example heat capacity and isothermal compressibility κT, show a large increase. The question arises if these quantities diverge, or if they go through a maximum. The answer is key to our understanding of water anomalies. However, it has remained elusive in experiments because crystallization always occurred before any extremum is reached. Here we report measurements of the sound velocity of water in a scarcely explored region of the phase diagram, where water is both supercooled and at negative pressure. We find several anomalies: maxima in the adiabatic compressibility and nonmonotonic density dependence of the sound velocity, in contrast with a standard extrapolation of the equation of state. This is reminiscent of the behavior of supercritical fluids. To support this interpretation, we have performed simulations with the 2005 revision of the transferable interaction potential with four points. Simulations and experiments are in near-quantitative agreement, suggesting the existence of a line of maxima in κT (LMκT). This LMκT could either be the thermodynamic consequence of the line of density maxima of water [Sastry S, Debenedetti PG, Sciortino F, Stanley HE (1996) Phys Rev E 53:6144–6154], or emanate from a critical point terminating a liquid–liquid transition [Sciortino F, Poole PH, Essmann U, Stanley HE (1997) Phys Rev E 55:727–737]. At positive pressure, the LMκT has escaped observation because it lies in the “no man’s land” beyond the homogeneous crystallization line. We propose that the LMκT emerges from the no man’s land at negative pressure. PMID:24843177
46 CFR 52.01-55 - Increase in maximum allowable working pressure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Increase in maximum allowable working pressure. 52.01-55 Section 52.01-55 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-55 Increase in maximum allowable working pressure. (a) When...
46 CFR 52.01-55 - Increase in maximum allowable working pressure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Increase in maximum allowable working pressure. 52.01-55 Section 52.01-55 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-55 Increase in maximum allowable working pressure. (a) When...
46 CFR 52.01-55 - Increase in maximum allowable working pressure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Increase in maximum allowable working pressure. 52.01-55 Section 52.01-55 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-55 Increase in maximum allowable working pressure. (a) When...
46 CFR 52.01-55 - Increase in maximum allowable working pressure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Increase in maximum allowable working pressure. 52.01-55 Section 52.01-55 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-55 Increase in maximum allowable working pressure. (a) When...
46 CFR 52.01-55 - Increase in maximum allowable working pressure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Increase in maximum allowable working pressure. 52.01-55 Section 52.01-55 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-55 Increase in maximum allowable working pressure. (a) When...
46 CFR 154.408 - Cargo tank external pressure load.
Code of Federal Regulations, 2010 CFR
2010-10-01
... minimum internal pressure (maximum vacuum), and the maximum external pressure to which any portion of the... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank external pressure load. 154.408 Section 154... Equipment Cargo Containment Systems § 154.408 Cargo tank external pressure load. For the calculation...
49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...
49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...
49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...
49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...
49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...
Toxicological assessment and management options for boat pressure-washing wastewater.
Gerić, Marko; Gajski, Goran; Oreščanin, Višnja; Kollar, Robert; Franekić, Jasna; Garaj-Vrhovac, Vera
2015-04-01
Boats are washed periodically for maintenance in order to remove biofoulants from hulls, which results in the generation of wastewater. This study aimed at evaluating the cyto/genotoxic and mutagenic properties of wastewater produced by pressure washing of boats. The chemical characterisation of this wastewater showed that Cu, Zn, V, Cr, Fe, Pb, and select organic contaminants exceeded the maximum allowable values from 1.7 up to 96 times. The wastewater produced negative effects on human lymphocytes resulting in decreased cell viability after 4 and 24h of exposure. Chromosome aberration, micronucleus, and comet assay parameters were significantly higher after 24h of exposure. At the same time, the Salmonella typhimurium test showed negative for both TA98 and TA100 strains at all of the concentrations tested. After the treatment of wastewater using electrochemical methods/ozonation during real scale treatment plant, removal rates of colour, turbidity and heavy metals ranged from 99.4% to 99.9%, while the removal of total organic carbon (TOC) and chemical oxygen demand (COD) was above 85%. This was reflected in the removal of the wastewater's cyto/genotoxicity, which was comparable to negative controls in all of the conducted tests, suggesting that such plants could be implemented in marinas to minimise human impact on marine systems. Copyright © 2015 Elsevier Inc. All rights reserved.
Zhao, Bowen; Zhang, Hongwei; Xu, Qiang; Ge, Quanhu; Li, Bolong; Peng, Xinyu; Wu, Xiangwei
2017-05-01
To investigate the effects of long time different negative pressures on osteogenic diffe-rentiation of rabbit bone mesenchymal stem cells (BMSCs). The rabbit BMSCs were isolated and cultured by density gradient centrifugation. Flow cytometry was used to analyze expression of surface markers. The third passage cells cultured under condition of osteogenic induction and under different negative pressure of 0 mm Hg (control group), 75 mm Hg (low negative pressure group), and 150 mm Hg (high negative pressure group) (1 mm Hg=0.133 kPa), and the negative pressure time was 30 min/h. Cell growth was observed under phase contrast microscopy, and the growth curve was drawn; alkaline phosphatase (ALP) activity was detected by ELISA after induced for 3, 7, and 14 days. The mRNA and protein expressions of collagen type I (COL-I) and osteocalcin (OC) in BMSCs were analyzed by real-time fluorescence quantitative PCR and Western blot. The cultured cells were identified as BMSCs by flow cytometry. The third passage BMSCs exhibited typical long shuttle and irregular shape. Cell proliferation was inhibited with the increase of negative pressure. After induced for 4 days, the cell number of high negative pressure group was significantly less than that in control group and low negative pressure group ( P <0.05), but there was no significant difference between the low negative pressure group and the control group ( P >0.05); at 5-7 days, the cell number showed significant difference between 3 groups ( P <0.05). The greater the negative pressure was, the greater the inhibition of cell proliferation was. There was no significant difference in ALP activity between groups at 3 days after induction ( P >0.05); the ALP activity showed significant difference ( P <0.05) between the high negative pressure group and the control group at 7 days after induction; and significant difference was found in the ALP activity between 3 groups at 14 days after induction ( P <0.05). The greater the negative pressure was, the higher the ALP activity was. Real-time fluorescence quantitative PCR and Western blot detection showed that the mRNA and protein expressions of COL-I and OC protein were significantly higher in low negative pressure group and high negative pressure group than control group ( P <0.05), and in the high negative pressure group than the low negative pressure group ( P <0.05). With the increase of the negative pressure, the osteogenic differentiation ability of BMSCs increases gradually, but the cell proliferation is inhibited.
High methane natural gas/air explosion characteristics in confined vessel.
Tang, Chenglong; Zhang, Shuang; Si, Zhanbo; Huang, Zuohua; Zhang, Kongming; Jin, Zebing
2014-08-15
The explosion characteristics of high methane fraction natural gas were investigated in a constant volume combustion vessel at different initial conditions. Results show that with the increase of initial pressure, the peak explosion pressure, the maximum rate of pressure rise increase due to a higher amount (mass) of flammable mixture, which delivers an increased amount of heat. The increased total flame duration and flame development time result as a consequence of the higher amount of flammable mixture. With the increase of the initial temperature, the peak explosion pressures decrease, but the pressure increase during combustion is accelerated, which indicates a faster flame speed and heat release rate. The maximum value of the explosion pressure, the maximum rate of pressure rise, the minimum total combustion duration and the minimum flame development time is observed when the equivalence ratio of the mixture is 1.1. Additionally, for higher methane fraction natural gas, the explosion pressure and the maximum rate of pressure rise are slightly decreased, while the combustion duration is postponed. The combustion phasing is empirically correlated with the experimental parameters with good fitting performance. Furthermore, the addition of dilute gas significantly reduces the explosion pressure, the maximum rate of pressure rise and postpones the flame development and this flame retarding effect of carbon dioxide is stronger than that of nitrogen. Copyright © 2014 Elsevier B.V. All rights reserved.
33 CFR 156.170 - Equipment tests and inspections.
Code of Federal Regulations, 2014 CFR
2014-07-01
... distort under static liquid pressure at least 11/2 times the maximum allowable working pressure; and (iv... static liquid pressure test is successfully completed in the presence of the COTP. The test medium is not... static liquid pressure at least 11/2 times the maximum allowable working pressure; and (5) Each item of...
33 CFR 156.170 - Equipment tests and inspections.
Code of Federal Regulations, 2012 CFR
2012-07-01
... distort under static liquid pressure at least 11/2 times the maximum allowable working pressure; and (iv... static liquid pressure test is successfully completed in the presence of the COTP. The test medium is not... static liquid pressure at least 11/2 times the maximum allowable working pressure; and (5) Each item of...
33 CFR 156.170 - Equipment tests and inspections.
Code of Federal Regulations, 2013 CFR
2013-07-01
... distort under static liquid pressure at least 11/2 times the maximum allowable working pressure; and (iv... static liquid pressure test is successfully completed in the presence of the COTP. The test medium is not... static liquid pressure at least 11/2 times the maximum allowable working pressure; and (5) Each item of...
NASA Astrophysics Data System (ADS)
Abrosimov, S. A.; Bazhulin, A. P.; Bol'shakov, A. P.; Konov, V. I.; Krasyuk, I. K.; Pashinin, P. P.; Ral'chenko, V. G.; Semenov, A. Yu; Sovyk, D. N.; Stuchebryukhov, I. A.; Fortov, V. E.; Khishchenko, K. V.; Khomich, A. A.
2014-06-01
The spallation phenomena in poly- and single-crystal synthetic diamonds have been experimentally investigated. A shockwave impact on a target was implemented using a 70-ps laser pulse in the Kamerton-T facility. The ablation pressure of 0.66 TPa on the front target surface was formed by pulsed radiation of a neodymium phosphate glass laser (second harmonic λ = 0.527 mm, pulse energy 2.5 J) with an intensity as high as 2 × 1013 W cm-2. The maximum diamond spall strength σ* ≈ 16.5 GPa is found to be 24% of the theoretical ultimate strength. Raman scattering data indicate that a small amount of crystalline diamond in the spallation region on the rear side of the target is graphitised.
Direct measurements of the pressure distribution along the contact area during droplet impact
NASA Astrophysics Data System (ADS)
Nguyen, Thanh-Vinh; Matsumoto, Kiyoshi; Shimoyama, Isao
2016-11-01
We report direct measurements of the pressure distribution on the contact area during the impact of a droplet on a micropillar array. The measurements were realized using an array of MEMS-based force sensors fabricated underneath the micropillars. We show that immediately after the droplet hits the surface, the pressure becomes maximum at the center of the contact area and this maximum pressure value is more than 10 times larger than the dynamic pressure. This result emphasizes the effect of water-hammer-type pressure during the early stage of the impact. Furthermore, our measurement results demonstrate that the critical pressure associated with Cassie-Wenzel transition agrees well with the maximum capillary pressure of the micropillar array.
Bus, Sicco A; Maas, Josina C; Otterman, Nicoline M
2017-12-01
A forefoot-offloading shoes has a negative-heel rocker outsole and is used to treat diabetic plantar forefoot ulcers, but its mechanisms of action and their association with offloading and gait stability are not sufficiently clear. Ten neuropathic diabetic patients were tested in a forefoot-offloading shoe and subsequently in a control shoe with no specific offloading construction, both worn on the right foot (control shoe on left), while walking at 1.2m/s. 3D-instrumented gait analysis and simultaneous in-shoe plantar pressure measurements were used to explain the shoe's offloading efficacy and to define centre-of-pressure profiles and left-to-right symmetry in ankle joint dynamics (0-1, 1:maximum symmetry), as indicators for gait stability. Compared to the control shoe, peak forefoot pressures, vertical ground reaction force, plantar flexion angle, and ankle joint moment, all in terminal stance, and the proximal-to-distal centre-of-pressure trajectory were significantly reduced in the forefoot-offloading shoe (P<0.01). Peak ankle joint power was 51% lower in the forefoot-offloading shoe compared to the control shoe: 1.61 (0.35) versus 3.30 (0.84) W/kg (mean (SD), P<0.001), and was significantly associated with forefoot peak pressure (R 2 =0.72, P<0.001). Left-to-right symmetry in the forefoot-offloading shoe was 0.39 for peak ankle joint power. By virtue to their negative-heel rocker-outsole design, forefoot-offloading shoes significantly alter a neuropathic diabetic patient's gait towards a reduced push-off power that explains the shoe's offloading efficacy. However, gait symmetry and stability are compromised, and may be factors in the low perceived walking discomfort and limited use of these shoes in clinical practice. Shoe modifications (e.g. less negative heel, a more cushioning insole) may resolve this trade-off between efficacy and usability. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Shijia; Lord, Anton; Colic, Lejla; Krause, Anna Linda; Batra, Anil; Kretzschmar, Moritz A; Sweeney-Reed, Catherine M; Behnisch, Gusalija; Schott, Björn H; Walter, Martin
2017-01-01
Abstract Background The increasing use of ketamine as a potential rapid-onset antidepressant necessitates a better understanding of its effects on blood pressure and heart rate, well-known side effects at higher doses. For the subanesthetic dose used for depression, potential predictors of these cardiovascular effects are important factors influencing clinical decisions. Since ketamine influences the sympathetic nervous system, we investigated the impact of autonomic nervous system-related factors on the cardiovascular response: a genetic polymorphism in the norepinephrine transporter and gender effects. Methods Blood pressure and heart rate were monitored during and following administration of a subanesthetic dose of ketamine or placebo in 68 healthy participants (mean age 26.04 ±5.562 years) in a double-blind, randomized, controlled, parallel-design trial. The influences of baseline blood pressure/heart rate, gender, and of a polymorphism in the norepinephrine transporter gene (NET SLC6A2, rs28386840 [A-3081T]) on blood pressure and heart rate changes were investigated. To quantify changes in blood pressure and heart rate, we calculated the maximum change from baseline (ΔMAX) and the time until maximum change (TΔMAX). Results Systolic and diastolic blood pressure as well as heart rate increased significantly upon ketamine administration, but without reaching hypertensive levels. During administration, the systolic blood pressure at baseline (TP0Sys) correlated negatively with the time to achieve maximal systolic blood pressure (TΔMAXSys, P<.001). Furthermore, women showed higher maximal diastolic blood pressure change (ΔMAXDia, P<.001) and reached this peak earlier than men (TΔMAXDia, P=.017) at administration. NET rs28386840 [T] carriers reached their maximal systolic blood pressure during ketamine administration significantly earlier than [A] homozygous (TΔMAXSys, P=.030). In a combined regression model, both genetic polymorphism and TP0Sys were significant predictors of TΔMAXSys (P<.0005). Conclusions Subanesthetic ketamine increased both blood pressure and heart rate without causing hypertensive events. Furthermore, we identified gender and NET rs28386840 genotype as factors that predict increased cardiovascular sequelae of ketamine administration in our young, healthy study population providing a potential basis for establishing monitoring guidelines. PMID:29099972
The therapeutic effect of negative pressure in treating femoral head necrosis in rabbits.
Zhang, Yin-gang; Wang, Xuezhi; Yang, Zhi; Zhang, Hong; Liu, Miao; Qiu, Yushen; Guo, Xiong
2013-01-01
Because negative pressure can stimulate vascular proliferation, improve blood circulation and promote osteogenic differentiation of bone marrow stromal cells, we investigated the therapeutic effect of negative pressure on femoral head necrosis (FHN) in a rabbit model. Animals were divided into four groups (n = 60/group): [1] model control, [2] core decompression, [3] negative pressure and [4] normal control groups. Histological investigation revealed that at 4 and 8 weeks postoperatively, improvements were observed in trabecular bone shape, empty lacunae and numbers of bone marrow hematopoietic cells and fat cells in the negative pressure group compared to the core decompression group. At week 8, there were no significant differences between the negative pressure and normal control groups. Immunohistochemistry staining revealed higher expression of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-2 (BMP-2) in the femoral heads in the negative pressure group compared with the core decompression group. Transmission electron microscopy revealed that cell organelles were further developed in the negative pressure group compared with the core decompression group. Microvascular ink staining revealed an increased number of bone marrow ink-stained blood vessels, a thicker vascular lumen and increased microvascular density in the negative pressure group relative to the core decompression group. Real-time polymerase chain reaction revealed that expression levels of both VEGF and BMP-2 were higher in the negative pressure group compared with the core decompression group. In summary, negative pressure has a therapeutic effect on FHN. This effect is superior to core decompression, indicating that negative pressure is a potentially valuable method for treating early FHN.
The Therapeutic Effect of Negative Pressure in Treating Femoral Head Necrosis in Rabbits
Zhang, Yin-gang; Wang, Xuezhi; Yang, Zhi; Zhang, Hong; Liu, Miao; Qiu, Yushen; Guo, Xiong
2013-01-01
Because negative pressure can stimulate vascular proliferation, improve blood circulation and promote osteogenic differentiation of bone marrow stromal cells, we investigated the therapeutic effect of negative pressure on femoral head necrosis (FHN) in a rabbit model. Animals were divided into four groups (n = 60/group): [1] model control, [2] core decompression, [3] negative pressure and [4] normal control groups. Histological investigation revealed that at 4 and 8 weeks postoperatively, improvements were observed in trabecular bone shape, empty lacunae and numbers of bone marrow hematopoietic cells and fat cells in the negative pressure group compared to the core decompression group. At week 8, there were no significant differences between the negative pressure and normal control groups. Immunohistochemistry staining revealed higher expression of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-2 (BMP-2) in the femoral heads in the negative pressure group compared with the core decompression group. Transmission electron microscopy revealed that cell organelles were further developed in the negative pressure group compared with the core decompression group. Microvascular ink staining revealed an increased number of bone marrow ink-stained blood vessels, a thicker vascular lumen and increased microvascular density in the negative pressure group relative to the core decompression group. Real-time polymerase chain reaction revealed that expression levels of both VEGF and BMP-2 were higher in the negative pressure group compared with the core decompression group. In summary, negative pressure has a therapeutic effect on FHN. This effect is superior to core decompression, indicating that negative pressure is a potentially valuable method for treating early FHN. PMID:23383276
Nayak, Chitresh; Singh, Amit; Chaudhary, Himanshu; Unune, Deepak Rajendra
2017-10-23
Technological advances in prosthetics have attracted the curiosity of researchers in monitoring design and developments of the sockets to sustain maximum pressure without any soft tissue damage, skin breakdown, and painful sores. Numerous studies have been reported in the area of pressure measurement at the limb/socket interface, though, the relation between amputee's physiological parameters and the pressure developed at the limb/socket interface is still not studied. Therefore, the purpose of this work is to investigate the effects of patient-specific physiological parameters viz. height, weight, and stump length on the pressure development at the transtibial prosthetic limb/socket interface. Initially, the pressure values at the limb/socket interface were clinically measured during stance and walking conditions for different patients using strain gauges placed at critical locations of the stump. The measured maximum pressure data related to patient's physiological parameters was used to develop an artificial neural network (ANN) model. The effects of physiological parameters on the pressure development at the limb/socket interface were examined using the ANN model. The analyzed results indicated that the weight and stump length significantly affects the maximum pressure values. The outcomes of this work could be an important platform for the design and development of patient-specific prosthetic socket which can endure the maximum pressure conditions at stance and ambulation conditions.
A Pressure-Based Analysis of Vortex Ring Pinch-Off
NASA Astrophysics Data System (ADS)
Schlueter, Kristy; Braun, Noah; Dabiri, John
2014-11-01
This study investigated the development of vortex rings over a range of maximum stroke ratios, and analyzed vorticity and pressure data for clues to the physical mechanisms underlying vortex pinch-off. An impulsive piston velocity profile and Reynolds number of 3000 were used for all cases. The formation number was consistently found to be 3.6 +/-0.3. A recently developed algorithm was used to generate pressure fields by integrating the pressure gradient along several paths through the velocity field and taking the median to get explicit values for pressure. The formation time at the occurrence of a local maximum in the pressure between the vortex ring and the lip of the nozzle, known as the trailing pressure maximum, was found to occur concurrently with the formation number for each case, within the error associated with the temporal resolution of the data. This suggests that the trailing pressure maximum is an indicator of vortex ring pinch-off. This is consistent with the results of Lawson and Dawson (2014), who found that the appearance of the trailing pressure maximum was coincident with the formation number. This pressure based approach to determining vortex ring pinch-off will be applied to a biological flow to examine the efficiency of such a flow. This research was partially supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
14 CFR 25.365 - Pressurized compartment loads.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Pressurized compartment loads. For airplanes with one or more pressurized compartments the following apply: (a... differential loads from zero up to the maximum relief valve setting. (b) The external pressure distribution in... zero up to the maximum allowed during landing. (d) The airplane structure must be designed to be able...
46 CFR 151.50-13 - Propylene oxide.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Pressure vessel cargo tanks shall meet the requirements of Class II pressure vessels. (2) Cargo tanks shall be designed for the maximum pressure expected to be encountered during loading, storing and... cargo piping shall be subjected to a hydrostatic test of 11/2 times the maximum pressure to which they...
46 CFR 151.50-13 - Propylene oxide.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Pressure vessel cargo tanks shall meet the requirements of Class II pressure vessels. (2) Cargo tanks shall be designed for the maximum pressure expected to be encountered during loading, storing and... cargo piping shall be subjected to a hydrostatic test of 11/2 times the maximum pressure to which they...
46 CFR 151.50-13 - Propylene oxide.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Pressure vessel cargo tanks shall meet the requirements of Class II pressure vessels. (2) Cargo tanks shall be designed for the maximum pressure expected to be encountered during loading, storing and... cargo piping shall be subjected to a hydrostatic test of 11/2 times the maximum pressure to which they...
46 CFR 151.50-13 - Propylene oxide.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Pressure vessel cargo tanks shall meet the requirements of Class II pressure vessels. (2) Cargo tanks shall be designed for the maximum pressure expected to be encountered during loading, storing and... cargo piping shall be subjected to a hydrostatic test of 11/2 times the maximum pressure to which they...
46 CFR 151.50-13 - Propylene oxide.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Pressure vessel cargo tanks shall meet the requirements of Class II pressure vessels. (2) Cargo tanks shall be designed for the maximum pressure expected to be encountered during loading, storing and... cargo piping shall be subjected to a hydrostatic test of 11/2 times the maximum pressure to which they...
40 CFR 60.116b - Monitoring of operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... greater than or equal to 151 m3 storing a liquid with a maximum true vapor pressure greater than or equal... liquid with a maximum true vapor pressure greater than or equal to 15.0 kPa shall maintain a record of... than or equal to 75 m3 but less than 151 m3 storing a liquid with a maximum true vapor pressure that is...
40 CFR 60.116b - Monitoring of operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... greater than or equal to 151 m3 storing a liquid with a maximum true vapor pressure greater than or equal... liquid with a maximum true vapor pressure greater than or equal to 15.0 kPa shall maintain a record of... than or equal to 75 m3 but less than 151 m3 storing a liquid with a maximum true vapor pressure that is...
40 CFR 60.116b - Monitoring of operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... greater than or equal to 151 m3 storing a liquid with a maximum true vapor pressure greater than or equal... liquid with a maximum true vapor pressure greater than or equal to 15.0 kPa shall maintain a record of... than or equal to 75 m3 but less than 151 m3 storing a liquid with a maximum true vapor pressure that is...
40 CFR 60.116b - Monitoring of operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... greater than or equal to 151 m3 storing a liquid with a maximum true vapor pressure greater than or equal... liquid with a maximum true vapor pressure greater than or equal to 15.0 kPa shall maintain a record of... than or equal to 75 m3 but less than 151 m3 storing a liquid with a maximum true vapor pressure that is...
Shafagoj, Yanal A; Mohammed, Faisal I
2002-08-01
The physiological effects of cigarette smoking have been widely studied, however, little is known regarding the effects of smoking hubble-bubble. We examined the acute effects of hubble-bubble smoking on heart rate, systolic, diastolic, and mean arterial blood pressure and maximum end-expiratory carbon monoxide. This study was carried out in the student laboratory, School of Medicine, Department of Physiology, University of Jordan, Amman, Jordan, during the summer of 1999. In 18 healthy habitual hubble-bubble smokers, heart rate, blood pressure, and maximum end-expiratory carbon monoxide was measured before, during and post smoking of one hubble-bubble run (45 minutes). Compared to base line (time zero), at the end of smoking heart rate, systolic blood pressure, diastolic blood pressure, mean arterial blood pressure, and maximum end-expiratory carbon monoxide were increased 16 2.4 beats per minute, 6.7 2.5 mm Hg, 4.4 1.6 mm Hg, 5.2 1.7 mm Hg, and 14.2 1.8 ppm, (mean standard error of mean, P<.05). Acute short-term active hubble-bubble smoking elicits a modest increase in heart rate, systolic blood pressure, diastolic blood pressure, mean arterial blood pressure and maximum end-expiratory carbon monoxide in healthy hubble-bubble smokers.
Enhanced oil recovery using flash-driven steamflooding
Roark, Steven D.
1990-01-01
The present invention is directed to a novel steamflooding process which utilizes three specific stages of steam injection for enhanced oil recovery. The three stages are as follows: As steam is being injected into an oil-bearing reservoir through an injection well, the production rate of a production well located at a distance from the injection well is gradually restricted to a point that the pressure in the reservoir increases at a predetermined rate to a predetermined maximum value. After the maximum pressure has been reached, the production rate is increased to a value such that the predetermined maximum pressure value is maintained. Production at maximum pressure is continued for a length of time that will be unique for each individual reservoir. In some cases, this step of the steamflooding process of the invention may be omitted entirely. In the third stage of the steamflooding process of the invention, production rates at the producing well are increased gradually to allow the pressure to decrease down from the maximum pressure value to the original pressure value at the producing well. The rate of pressure reduction will be unique for each reservoir. After completing stage three, the three stages can be repeated or the steamflood may be terminated as considered desirable.
Comparison of masticatory performance and tongue pressure between children and young adults.
Fujita, Yuko; Ichikawa, Maika; Hamaguchi, Ayako; Maki, Kenshi
2018-04-01
The aims of the present study were to evaluate whether there are significant differences in masticatory performance by gender and dental stage. We also determined the factors directly associated with the masticatory performance in children, and those directly associated with masticatory performance in young adults. The study included 180 subjects, ranging in age from 6 to 12 years or 20 to 33 years. The subjects were divided into three groups according to the Hellman developmental stage (III A, III B, or VA); the groups were the subdivided according to gender. The body mass index (BMI), maximum tongue pressure, and sum of decayed, missing, and filled teeth (DMFT) were determined in all subjects. To investigate masticatory performance, the total number and maximum projected area of chewed particles of the jelly materials were measured. Masticatory performance had the highest values at Stage VA in both males and females. Regarding the maximum tongue pressure in females, Stage III B had the highest value of all stages. Multiple regression analysis showed that masticatory performance was associated with DMFT index, maximum tongue pressure, and BMI in children. Among young adults, masticatory performance was associated with DMFT index and maximum tongue pressure. Better masticatory performance is directly associated with better dental status, a higher BMI, and tongue pressure in schoolchildren. Additionally, masticatory performance was well-correlated with tongue pressure in young adults, although maximum tongue pressure reached its peak before Stage VA in females. We suggest that females need training with respect to tongue pressure, by the mixed dentition stage.
Reis, Leonardo O.; Barreiro, Guilherme C.; Prudente, Alessandro; Silva, Cleide M.; Bassani, José W. M.; D'Ancona, Carlos A. L.
2009-01-01
Objectives. Using a urethral device at the fossa navicularis, bladder pressure during voiding can be estimated by a minimal invasive technique. This study purposes a new diagnostic index for patients with lower urinary tract symptoms (LUTSs). Methods. Fifty one patients presenting with LUTSs were submitted to a conventional urodynamic and a minimal invasive study. The results obtained through the urethral device and invasive classic urodynamics were compared. The existing bladder outlet obstruction index (BOOI) equation that classifies men with LUTSs was modified to allow minimal invasive measurement of isovolumetric bladder pressure in place of detrusor pressure at maximum urine flow. Accuracy of the new equation for classifying obstruction was then tested in this group of men. Results. The modified equation identified men with obstruction with a positive predictive value of 68% and a negative predictive value of 70%, with an overall accuracy of 70%. Conclusions. The proposed equation can accurately classify over 70% of men without resorting to invasive pressure flow studies. We must now evaluate the usefulness of this classification for the surgical treatment of men with LUTSs. PMID:19125194
NASA Astrophysics Data System (ADS)
Miyazaki, Yusuke; Tachiya, Hiroshi; Anata, Kenji; Hojo, Akihiro
This study discusses a head injury mechanism in case of a human head subjected to impact, from results of impact experiments by using a physical model of a human head with high-shape fidelity. The physical model was constructed by using rapid prototyping technology from the three-dimensional CAD data, which obtained from CT/MRI images of a subject's head. As results of the experiments, positive pressure responses occurred at the impacted site, whereas negative pressure responses occurred at opposite the impacted site. Moreover, the absolute maximum value of pressure occurring at the frontal region of the intracranial space of the head model resulted in same or higher than that at the occipital site in each case that the impact force was imposed on frontal or occipital region. This result has not been showed in other study using simple shape physical models. And, the result corresponds with clinical evidences that brain contusion mainly occurs at the frontal part in each impact direction. Thus, physical model with accurate skull shape is needed to clarify the mechanism of brain contusion.
Transport properties of Y1-xNdxCo2 compounds
NASA Astrophysics Data System (ADS)
Uchima, K.; Takeda, M.; Zukeran, C.; Nakamura, A.; Arakaki, N.; Komesu, S.; Takaesu, Y.; Hedo, M.; Nakama, T.; Yagasaki, K.; Uwatoko, Y.; Burkov, A. T.
2012-12-01
Electrical resistivity ρ and thermopower S of light rare earth-based pseudo-binary Y1-xNdxCo2 alloys have been measured at temperatures from 2 K to 300 K and under pressures up to 3.5 GPa. The Curie temperature of the alloys, TC, determined from characteristic features in the temperature dependences of the transport properties, decreases with decreasing Nd concentration x and vanishes around xc = 0.3. The residual resistivity has a pronounced maximum at x = xc. The temperature coefficient of thermopower dS/dT at low temperature limit shows a complex dependence on alloy composition: it changes its sign from negative to positive at x ≍ 0.2, having a maximum at x = xc, and is nearly composition independent at x > 0.5. The pressure dependences of TC and ρ0 of Yo.6Ndo.4Co2 reveal the behavior similar to that observed in the Y1-xRxHCo2 (RH = heavy rare earth) alloy systems, which implies that the magnetic state of the Co-3d electron subsystem is responsible for the transport properties in the Y1-xNdxCo2 alloys.
Assessment of shock wave lithotripters via cavitation potential
Iloreta, Jonathan I.; Zhou, Yufeng; Sankin, Georgy N.; Zhong, Pei; Szeri, Andrew J.
2008-01-01
A method to characterize shock wave lithotripters by examining the potential for cavitation associated with the lithotripter shock wave (LSW) has been developed. The method uses the maximum radius achieved by a bubble subjected to a LSW as a representation of the cavitation potential for that region in the lithotripter. It is found that the maximum radius is determined by the work done on a bubble by the LSW. The method is used to characterize two reflectors: an ellipsoidal reflector and an ellipsoidal reflector with an insert. The results show that the use of an insert reduced the −6 dB volume (with respect to peak positive pressure) from 1.6 to 0.4 cm3, the −6 dB volume (with respect to peak negative pressure) from 14.5 to 8.3 cm3, and reduced the volume characterized by high cavitation potential (i.e., regions characterized by bubbles with radii larger than 429 µm) from 103 to 26 cm3. Thus, the insert is an effective way to localize the potentially damaging effects of shock wave lithotripsy, and suggests an approach to optimize the shape of the reflector. PMID:19865493
Altitude-Related Change in Endotracheal Tube Cuff Pressures in Helicopter EMS
Weisberg, Stacy N.; McCall, Jonathan C.; Tennyson, Joseph
2017-01-01
Introduction Over-inflation of endotracheal tube (ETT) cuffs has the potential to lead to scarring and stenosis of the trachea.1, 2,3, 4 The air inside an ETT cuff is subject to expansion as atmospheric pressure decreases, as happens with an increase in altitude. Emergency medical services helicopters are not pressurized, thereby providing a good environment for studying the effects of altitude changes ETT cuff pressures. This study aims to explore the relationship between altitude and ETT cuff pressures in a helicopter air-medical transport program. Methods ETT cuffs were initially inflated in a nonstandardized manner and then adjusted to a pressure of 25 cmH2O. The pressure was again measured when the helicopter reached maximum altitude. A final pressure was recorded when the helicopter landed at the receiving facility. Results We enrolled 60 subjects in the study. The mean for initial tube cuff pressures was 70 cmH2O. Maximum altitude for the program ranged from 1,000–3,000 feet above sea level, with a change in altitude from 800–2,480 feet. Mean cuff pressure at altitude was 36.52 ± 8.56 cmH2O. Despite the significant change in cuff pressure at maximum altitude, there was no relationship found between the maximum altitude and the cuff pressures measured. Conclusion Our study failed to demonstrate the expected linear relationship between ETT cuff pressures and the maximum altitude achieved during typical air-medical transportation in our system. At altitudes less than 3,000 feet above sea level, the effect of altitude change on ETT pressure is minimal and does not require a change in practice to saline-filled cuffs. PMID:28611883
Altitude-Related Change in Endotracheal Tube Cuff Pressures in Helicopter EMS.
Weisberg, Stacy N; McCall, Jonathan C; Tennyson, Joseph
2017-06-01
Over-inflation of endotracheal tube (ETT) cuffs has the potential to lead to scarring and stenosis of the trachea.1, 2,3, 4 The air inside an ETT cuff is subject to expansion as atmospheric pressure decreases, as happens with an increase in altitude. Emergency medical services helicopters are not pressurized, thereby providing a good environment for studying the effects of altitude changes ETT cuff pressures. This study aims to explore the relationship between altitude and ETT cuff pressures in a helicopter air-medical transport program. ETT cuffs were initially inflated in a nonstandardized manner and then adjusted to a pressure of 25 cmH 2 O. The pressure was again measured when the helicopter reached maximum altitude. A final pressure was recorded when the helicopter landed at the receiving facility. We enrolled 60 subjects in the study. The mean for initial tube cuff pressures was 70 cmH 2 O. Maximum altitude for the program ranged from 1,000-3,000 feet above sea level, with a change in altitude from 800-2,480 feet. Mean cuff pressure at altitude was 36.52 ± 8.56 cmH 2 O. Despite the significant change in cuff pressure at maximum altitude, there was no relationship found between the maximum altitude and the cuff pressures measured. Our study failed to demonstrate the expected linear relationship between ETT cuff pressures and the maximum altitude achieved during typical air-medical transportation in our system. At altitudes less than 3,000 feet above sea level, the effect of altitude change on ETT pressure is minimal and does not require a change in practice to saline-filled cuffs.
Ice nucleation triggered by negative pressure.
Marcolli, Claudia
2017-11-30
Homogeneous ice nucleation needs supercooling of more than 35 K to become effective. When pressure is applied to water, the melting and the freezing points both decrease. Conversely, melting and freezing temperatures increase under negative pressure, i.e. when water is stretched. This study presents an extrapolation of homogeneous ice nucleation temperatures from positive to negative pressures as a basis for further exploration of ice nucleation under negative pressure. It predicts that increasing negative pressure at temperatures below about 262 K eventually results in homogeneous ice nucleation while at warmer temperature homogeneous cavitation, i. e. bubble nucleation, dominates. Negative pressure occurs locally and briefly when water is stretched due to mechanical shock, sonic waves, or fragmentation. The occurrence of such transient negative pressure should suffice to trigger homogeneous ice nucleation at large supercooling in the absence of ice-nucleating surfaces. In addition, negative pressure can act together with ice-inducing surfaces to enhance their intrinsic ice nucleation efficiency. Dynamic ice nucleation can be used to improve properties and uniformity of frozen products by applying ultrasonic fields and might also be relevant for the freezing of large drops in rainclouds.
NASA Astrophysics Data System (ADS)
Rizvi, S. Tauqeer ul Islam; Linshu, He; ur Rehman, Tawfiq; Rafique, Amer Farhan
2012-11-01
A numerical optimization study of lifting body re-entry vehicles is presented for nominal as well as shallow entry conditions for Medium and Intermediate Range applications. Due to the stringent requirement of a high degree of accuracy for conventional vehicles, lifting re-entry can be used to attain the impact at the desired terminal flight path angle and speed and thus can potentially improve accuracy of the re-entry vehicle. The re-entry of a medium range and intermediate range vehicles is characterized by very high negative flight path angle and low re-entry speed as compared to a maneuverable re-entry vehicle or a common aero vehicle intended for an intercontinental range. Highly negative flight path angles at the re-entry impose high dynamic pressure as well as heat loads on the vehicle. The trajectory studies are carried out to maximize the cross range of the re-entry vehicle while imposing a maximum dynamic pressure constraint of 350 KPa with a 3 MW/m2 heat rate limit. The maximum normal acceleration and the total heat load experienced by the vehicle at the stagnation point during the maneuver have been computed for the vehicle for possible future conceptual design studies. It has been found that cross range capability of up to 35 km can be achieved with a lifting-body design within the heat rate and the dynamic pressure boundary at normal entry conditions. For shallow entry angle of -20 degree and intermediate ranges a cross range capability of up to 250 km can be attained for a lifting body design with less than 10 percent loss in overall range. The normal acceleration also remains within limits. The lifting-body results have also been compared with wing-body results at shallow entry condition. An hp-adaptive pseudo-spectral method has been used for constrained trajectory optimization.
A Study of the Response of the Human Cadaver Head to Impact
Hardy, Warren N.; Mason, Matthew J.; Foster, Craig D.; Shah, Chirag S.; Kopacz, James M.; Yang, King H.; King, Albert I.; Bishop, Jennifer; Bey, Michael; Anderst, William; Tashman, Scott
2008-01-01
High-speed biplane x-ray and neutral density targets were used to examine brain displacement and deformation during impact. Relative motion, maximum principal strain, maximum shear strain, and intracranial pressure were measured in thirty-five impacts using eight human cadaver head and neck specimens. The effect of a helmet was evaluated. During impact, local brain tissue tends to keep its position and shape with respect to the inertial frame, resulting in relative motion between the brain and skull and deformation of the brain. The local brain motions tend to follow looping patterns. Similar patterns are observed for impact in different planes, with some degree of posterior-anterior and right-left symmetry. Peak coup pressure and pressure rate increase with increasing linear acceleration, but coup pressure pulse duration decreases. Peak average maximum principal strain and maximum shear are on the order of 0.09 for CFC 60 Hz data for these tests. Peak average maximum principal strain and maximum shear increase with increasing linear acceleration, coup pressure, and coup pressure rate. Linear and angular acceleration of the head are reduced with use of a helmet, but strain increases. These results can be used for the validation of finite element models of the human head. PMID:18278591
Exhaust-Gas Pressure and Temperature Survey of F404-GE-400 Turbofan Engine
NASA Technical Reports Server (NTRS)
Walton, James T.; Burcham, Frank W., Jr.
1986-01-01
An exhaust-gas pressure and temperature survey of the General Electric F404-GE-400 turbofan engine was conducted in the altitude test facility of the NASA Lewis Propulsion System Laboratory. Traversals by a survey rake were made across the exhaust-nozzle exit to measure the pitot pressure and total temperature. Tests were performed at Mach 0.87 and a 24,000-ft altitude and at Mach 0.30 and a 30,000-ft altitude with various power settings from intermediate to maximum afterburning. Data yielded smooth pressure and temperature profiles with maximum jet temperatures approximately 1.4 in. inside the nozzle edge and maximum jet temperatures from 1 to 3 in. inside the edge. A low-pressure region located exactly at engine center was noted. The maximum temperature encountered was 3800 R.
The coronal structure of active regions
NASA Technical Reports Server (NTRS)
Landini, M.; Monsignori Fossi, B. C.; Krieger, A.; Vaiana, G. S.
1975-01-01
A four-parameter model, which assumes a Gaussian dependence of both temperature and pressure on distance from center, is used to fit the compact part of coronal active regions as observed in X-ray photographs from a rocket experiment. The four parameters are the maximum temperature, the maximum pressure, the width of the pressure distribution, and the width of the temperature distribution. The maximum temperature ranges from 2.2 to 2.8 million K, and the maximum density from 2 to 9 by 10 to the 9th power per cu cm. The range of the pressure-distribution width is from 2 to 4 by 10 to the 9th power cm and that of the temperature-distribution width from 2 to 7.
Chopra, Karan; Gowda, Arvind U; Morrow, Chris; Holton, Luther; Singh, Devinder P
2016-04-01
Complex abdominal wall reconstruction is beset by postoperative complications. A recent meta-analysis comparing the use of closed-incision negative-pressure therapy to standard dressings found a statistically significant reduction in surgical-site infection. The use of closed-incision negative-pressure therapy is gaining acceptance in this population; however, the economic impact of this innovative dressing remains unknown. In this study, a cost-utility analysis was performed assessing closed-incision negative-pressure therapy and standard dressings following closure of abdominal incisions in high-risk patients. Cost-utility methodology involved reviewing literature related to closed-incision negative-pressure therapy in abdominal wall surgery, obtaining utility estimates to calculate quality-adjusted life-year scores for successful surgery and surgery complicated by surgical-site infection, summing costs using Medicare Current Procedural Terminology codes, and creating a decision tree illuminating the most cost-effective dressing strategy. One-way sensitivity analysis was performed to assess the robustness of the results. The aforementioned meta-analysis comparing closed-incision negative-pressure therapy to standard dressings included a subset of five studies assessing abdominal wall surgery in 829 patients (260 closed-incision negative-pressure therapy and 569 standard dressings). Decision tree analysis revealed an estimated savings of $1546.52 and a gain of 0.0024 quality-adjusted life-year with closed-incision negative-pressure therapy compared with standard dressings; therefore, closed-incision negative-pressure therapy is a dominant treatment strategy. One-way sensitivity analysis revealed that closed-incision negative-pressure therapy is a cost-effective option when the surgical-site infection rate is greater than 16.39 percent. The use of closed-incision negative-pressure therapy is cost-saving following closure of abdominal incisions in high-risk patients.
Validation of lower body negative pressure as an experimental model of hemorrhage
Shade, Robert E.; Muniz, Gary W.; Bauer, Cassondra; Goei, Kathleen A.; Pidcoke, Heather F.; Chung, Kevin K.; Cap, Andrew P.; Convertino, Victor A.
2013-01-01
Lower body negative pressure (LBNP), a model of hemorrhage (Hem), shifts blood to the legs and elicits central hypovolemia. This study compared responses to LBNP and actual Hem in sedated baboons. Arterial pressure, pulse pressure (PP), central venous pressure (CVP), heart rate, stroke volume (SV), and +dP/dt were measured. Hem steps were 6.25%, 12.5%, 18.75%, and 25% of total estimated blood volume. Shed blood was returned, and 4 wk after Hem, the same animals were subjected to four LBNP levels which elicited equivalent changes in PP and CVP observed during Hem. Blood gases, hematocrit (Hct), hemoglobin (Hb), plasma renin activity (PRA), vasopressin (AVP), epinephrine (EPI), and norepinephrine (NE) were measured at baseline and maximum Hem or LBNP. LBNP levels matched with 6.25%, 12.5%, 18.75%, and 25% hemorrhage were −22 ± 6, −41 ± 7, −54 ± 10, and −71 ± 7 mmHg, respectively (mean ± SD). Hemodynamic responses to Hem and LBNP were similar. SV decreased linearly such that 25% Hem and matching LBNP caused a 50% reduction in SV. Hem caused a decrease in Hct, Hb, and central venous oxygen saturation (ScvO2). In contrast, LBNP increased Hct and Hb, while ScvO2 remained unchanged. Hem caused greater elevations in AVP and NE than LBNP, while PRA, EPI, and other hematologic indexes did not differ between studies. These results indicate that while LBNP does not elicit the same effect on blood cell loss as Hem, LBNP mimics the integrative cardiovascular response to Hem, and validates the use of LBNP as an experimental model of central hypovolemia associated with Hem. PMID:24356525
Sound field inside acoustically levitated spherical drop
NASA Astrophysics Data System (ADS)
Xie, W. J.; Wei, B.
2007-05-01
The sound field inside an acoustically levitated small spherical water drop (radius of 1mm) is studied under different incident sound pressures (amplitude p0=2735-5643Pa). The transmitted pressure ptr in the drop shows a plane standing wave, which varies mainly in the vertical direction, and distributes almost uniformly in the horizontal direction. The maximum of ptr is always located at the lowermost point of the levitated drop. Whereas the secondary maximum appears at the uppermost point if the incident pressure amplitude p0 is higher than an intermediate value (3044Pa), in which there exists a pressure nodal surface in the drop interior. The value of the maximum ptr lies in a narrow range of 2489-3173Pa, which has a lower limit of 2489Pa when p0=3044Pa. The secondary maximum of ptr is rather small and only remarkable at high incident pressures.
40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels
Code of Federal Regulations, 2012 CFR
2012-07-01
... temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or pressure; and maximum...
Climatological variables and the incidence of Dengue fever in Barbados.
Depradine, Colin; Lovell, Ernest
2004-12-01
A retrospective study to determine relationships between the incidence of dengue cases and climatological variables and to obtain a predictive equation was carried out for the relatively small Caribbean island of Barbados which is divided into 11 parishes. The study used the weekly dengue cases and precipitation data for the years (1995 - 2000) that occurred in the small area of a single parish. Other climatological data were obtained from the local meteorological offices. The study used primarily cross correlation analysis and found the strongest correlation with the vapour pressure at a lag of 6 weeks. A weaker correlation occurred at a lag of 7 weeks for the precipitation. The minimum temperature had its strongest correlation at a lag of 12 weeks and the maximum temperature a lag of 16 weeks. There was a negative correlation with the wind speed at a lag of 3 weeks. The predictive models showed a maximum explained variance of 35%.
46 CFR 28.880 - Hydraulic equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... times the system's maximum operating pressure. (c) Each hydraulic system must be equipped with at least... sudden loss of control due to loss of hydraulic system pressure. A system is considered to be fail-safe... catalog number and maximum allowable working pressure. (k) Existing hydraulic piping, nonmetallic hose...
46 CFR 28.880 - Hydraulic equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... times the system's maximum operating pressure. (c) Each hydraulic system must be equipped with at least... sudden loss of control due to loss of hydraulic system pressure. A system is considered to be fail-safe... catalog number and maximum allowable working pressure. (k) Existing hydraulic piping, nonmetallic hose...
46 CFR 28.880 - Hydraulic equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... times the system's maximum operating pressure. (c) Each hydraulic system must be equipped with at least... sudden loss of control due to loss of hydraulic system pressure. A system is considered to be fail-safe... catalog number and maximum allowable working pressure. (k) Existing hydraulic piping, nonmetallic hose...
46 CFR 28.880 - Hydraulic equipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... times the system's maximum operating pressure. (c) Each hydraulic system must be equipped with at least... sudden loss of control due to loss of hydraulic system pressure. A system is considered to be fail-safe... catalog number and maximum allowable working pressure. (k) Existing hydraulic piping, nonmetallic hose...
Wang, H; Tang, Y; Zhang, Y; Xu, K; Zhao, J B
2018-05-10
Objective: To investigate the relationship between the maximum blood pressure fluctuation within 24 hours after admission and the prognosis at discharge. Methods: The patients with ischemic stroke admitted in Department of Neurology of the First Affiliated Hospital of Harbin Medical University within 24 hours after onset were consecutively selected from April 2016 to March 2017. The patients were grouped according to the diagnostic criteria of hypertension. Ambulatory blood pressure of the patients within 24 hours after admission were measured with bedside monitors and baseline data were collected. The patients were scored by NIHSS at discharge. The relationships between the maximum values of systolic blood pressure (SBP) or diastolic blood pressure (DBP) and the prognosis at discharge were analyzed. Results: A total of 521 patients with acute ischemic stroke were enrolled. They were divided into normal blood pressure group (82 cases) and hypertension group(439 cases). In normal blood pressure group, the maximum values of SBP and DBP were all in normal distribution ( P >0.05). The maximum value of SBP fluctuation was set at 146.6 mmHg. After adjustment for potential confounders, the OR for poor prognosis at discharge in patients with SBP fluctuation ≥146.6 mmHg was 2.669 (95 %CI : 0.594-11.992) compared with those with SBP fluctuation <146.6 mmHg. The maximum value of DBP fluctuation was set at 90.0 mmHg, and the adjusted OR for poor prognosis at discharge in patients with DBP fluctuation ≥90.0 mmHg was 0.416 (95 %CI : 0.087-1.992) compared with those with DBP fluctuation <90.0 mmHg. In hypertension group, the maximum values of SBP and DBP were not in normal distribution ( P <0.05). The maximum value of SBP fluctuation was set at median 171.0 mmHg. After adjustment for the confounders, the greater the maximum of SBP, the greater the risk of poor prognosis at discharge was, the OR was 1.636 (95 %CI : 1.014-2.641). The maximum value of DBP fluctuation was set at median 98.0 mmHg. After adjustment for the confounders, the greater the maximum of DBP, the greater the risk of poor prognosis at discharge was, the OR was 1.645 (95 %CI : 1.003-2.697). Conclusion: In acute ischemic stroke patients with normal blood pressure at admission, the maximum values of SBP and DBP within 24 hours after admission had no relationship with prognosis at discharge. In acute ischemic stroke patients with hypertension at admission, the maximum values of SBP and DBP within 24 hours after admission were associated with poor prognosis at discharge.
Sano, Hitomi; Ichioka, Shigeru
2015-08-01
This study investigated the role of nitric oxide (NO) in the mechanism of blood flow increase in the wound bed during negative pressure wound therapy (NPWT). We developed an improved experimental model that allowed visualisation of the wound bed microcirculation under NPWT. Wounds were created on the mouse ear, taking care to preserve the subdermal vascular plexus, because the wound bed microcirculation was visualised using an intravital microscope system. We investigated whether application of a NO synthase inhibitor (N(G) -nitro-l-arginine methyl ester: L-NAME) might diminish the effect of the NPWT in increasing the wound blood flow. The experimental animals were divided into a negative pressure group (negative pressure of -125 mmHg applied to the wound for 5 minutes; n = 8), and a negative pressure plus L-NAME group (administration of L-NAME prior to application of the negative pressure; n = 8). In the negative pressure group, significant increase of blood flow was observed at 1 minute after the negative pressure application, which was sustained until 5 minutes. On the contrary, in the negative pressure plus L-NAME group, no significant changes were observed throughout the period of observation. These findings suggest that NO synthesis is involved in the wound bed microcirculatory change induced by NPWT. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Tissue interface pressure and skin integrity in critically ill, mechanically ventilated patients.
Grap, Mary Jo; Munro, Cindy L; Wetzel, Paul A; Schubert, Christine M; Pepperl, Anathea; Burk, Ruth S; Lucas, Valentina
2017-02-01
To describe tissue interface pressure, time spent above critical pressure levels and the effect on skin integrity at seven anatomical locations. Descriptive, longitudinal study in critically ill mechanically ventilated adults, from Surgical Trauma ICU-STICU; Medical Respiratory ICU-MRICU; Neuroscience ICU-NSICU in a Mid-Atlantic urban university medical centre. Subjects were enroled in the study within 24hours of intubation. Tissue interface pressure was measured continuously using the XSENSOR pressure mapping system (XSENSOR Technology Corporation, Calgary, Canada). Skin integrity was observed at all sites, twice daily, using the National Pressure Ulcer Advisory Panel staging system, for the first seven ICU days and at day 10 and 14. Of the 132 subjects, 90.9% had no observed changes in skin integrity. Maximum interface pressure was above 32mmHg virtually 100% of the time for the sacrum, left and right trochanter. At the 45mmHg level, the left and right trochanter had the greatest amount of time above this level (greater than 95% of the time), followed by the sacrum, left and right scapula, and the left and right heels. Similarly, at levels above 60mmHg, the same site order applied. For those six subjects with sacral skin integrity changes, maximum pressures were greater than 32mmHg 100% of the time. Four of the six sacral changes were associated with greater amounts of time above both 45mmHg and 60mmHg than the entire sample. Maximum tissue interface pressure was above critical levels for the majority of the documented periods, especially in the sacrum, although few changes in skin integrity were documented. Time spent above critical levels for mean pressures were considerably less compared to maximum pressures. Maximum pressures may have reflected pressure spikes, but the large amount of time above the critical pressure levels remains substantial. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tissue interface pressure and skin integrity in critically ill, mechanically ventilated patients☆
Grap, Mary Jo; Munro, Cindy L.; Wetzel, Paul A.; Schubert, Christine M.; Pepperl, Anathea; Burk, Ruth S.; Lucas, Valentina
2016-01-01
Summary Objective To describe tissue interface pressure, time spent above critical pressure levels and the effect on skin integrity at seven anatomical locations. Design, setting, patients Descriptive, longitudinal study in critically ill mechanically ventilated adults, from Surgical Trauma ICU-STICU; Medical Respiratory ICU-MRICU; Neuroscience ICU-NSICU in a Mid-Atlantic urban university medical centre. Subjects were enroled in the study within 24 hours of intubation. Measurements Tissue interface pressure was measured continuously using the XSENSOR pressure mapping system (XSENSOR Technology Corporation, Calgary, Canada). Skin integrity was observed at all sites, twice daily, using the National Pressure Ulcer Advisory Panel staging system, for the first seven ICU days and at day 10 and 14. Results Of the 132 subjects, 90.9% had no observed changes in skin integrity. Maximum interface pressure was above 32 mmHg virtually 100% of the time for the sacrum, left and right trochanter. At the 45 mmHg level, the left and right trochanter had the greatest amount of time above this level (greater than 95% of the time), followed by the sacrum, left and right scapula, and the left and right heels. Similarly, at levels above 60 mmHg, the same site order applied. For those six subjects with sacral skin integrity changes, maximum pressures were greater than 32 mmHg100% of the time. Four of the six sacral changes were associated with greater amounts of time above both 45 mmHg and 60 mmHg than the entire sample. Conclusions Maximum tissue interface pressure was above critical levels for the majority of the documented periods, especially in the sacrum, although few changes in skin integrity were documented. Time spent above critical levels for mean pressures were considerably less compared to maximum pressures. Maximum pressures may have reflected pressure spikes, but the large amount of time above the critical pressure levels remains substantial. PMID:27836262
49 CFR 236.701 - Application, brake; full service.
Code of Federal Regulations, 2010 CFR
2010-10-01
... a split reduction in brake pipe pressure at a service rate until maximum brake cylinder pressure is developed. As applied to an automatic or electro-pneumatic brake with speed governor control, an application other than emergency which develops the maximum brake cylinder pressure, as determined by the design of...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-10
... profile that is dependent upon the pipelines attributes, its geographical location, design, operating... type of threats posed by the pipeline segment, including consideration of the age, design, pipe... calculation. There are several methods available for establishing MAOP or MOP. A hydrostatic pressure test...
Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER
NASA Astrophysics Data System (ADS)
Rauner, D.; Kurutz, U.; Fantz, U.
2015-04-01
As the negative hydrogen ion density nH- is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H- is measured directly, however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H- is produced in the plasma volume, laser photodetachment is applied as the standard method to measure nH-. The additional application of CRDS provides the possibility to directly obtain absolute values of nH-, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H- production and destruction processes. The modelled densities are adapted to the absolute measurements of nH- via CRDS, allowing to identify collisions of H- with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H- in the plasma volume at HOMER. Furthermore, the characteristic peak of nH- observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as ne determines the volume production rate via dissociative electron attachment to vibrationally excited hydrogen molecules.
[Progress of researches on the mechanism of cupping therapy].
Cui, Shuai; Cui, Jin
2012-12-01
Cupping therapy of Chinese medicine is able to relieve a variety of diseases or clinical conditions, which results from the comprehensive effects of multiple types of stimulation exerted onto the regional acupoint areas. Among the stimuli, the negative pressure from cupping is one of the main factors inducing therapeutic effects. In the present paper, the authors review development of researches on the underlying mechanism of therapeutic effects of cupping-negative pressure from 1) the factor of intra-cup negative pressure; 2) influence of intra-cup negative pressure on cup-blackspot formation; 3) influence of cupping on regional blood vessels and blood flow; 4) effect of cupping on regional ultrastructure of the capillary in the raw-surface tissue; 5) effect of cupping-negative pressure on regional endothelial cells; and 6) biological effects of negative pressure drainage. Generally, cupping induced negative pressure can dilate local blood vessels to improve microcirculation, promote capillary endothelial cells repair, accelerate granulation and angiogenesis, etc., in the regional tissues, normalizing the patients' functional state at last.
The relationships between air exposure, negative pressure, and hemolysis.
Pohlmann, Joshua R; Toomasian, John M; Hampton, Claire E; Cook, Keith E; Annich, Gail M; Bartlett, Robert H
2009-01-01
The purpose of this study was to describe the hemolytic effects of both negative pressure and an air-blood interface independently and in combination in an in vitro static blood model. Samples of fresh ovine or human blood (5 ml) were subjected to a bubbling air interface (0-100 ml/min) or negative pressure (0-600 mm Hg) separately, or in combination, for controlled periods of time and analyzed for hemolysis. Neither negative pressure nor an air interface alone increased hemolysis. However, when air and negative pressure were combined, hemolysis increased as a function of negative pressure, the air interface, and time. Moreover, when blood samples were exposed to air before initiating the test, hemolysis was four to five times greater than samples not preexposed to air. When these experiments were repeated using freshly drawn human blood, the same phenomena were observed, but the hemolysis was significantly higher than that observed in sheep blood. In this model, hemolysis is caused by combined air and negative pressure and is unrelated to either factor alone.
Negative hydrogen ions in a linear helicon plasma device
NASA Astrophysics Data System (ADS)
Corr, Cormac; Santoso, Jesse; Samuell, Cameron; Willett, Hannah; Manoharan, Rounak; O'Byrne, Sean
2015-09-01
Low-pressure negative ion sources are of crucial importance to the development of high-energy (>1 MeV) neutral beam injection systems for the ITER experimental tokamak device. Due to their high power coupling efficiency and high plasma densities, helicon devices may be able to reduce power requirements and potentially remove the need for caesium. In helicon sources, the RF power can be coupled efficiently into the plasma and it has been previously observed that the application of a small magnetic field can lead to a significant increase in the plasma density. In this work, we investigate negative ion dynamics in a high-power (20 kW) helicon plasma source. The negative ion fraction is measured by probe-based laser photodetachment, electron density and temperature are determined by a Langmuir probe and tuneable diode laser absorption spectroscopy is used to determine the density of the H(n = 2) excited atomic state and the gas temperature. The negative ion density and excited atomic hydrogen density display a maximum at a low applied magnetic field of 3 mT, while the electron temperature displays a minimum. The negative ion density can be increased by a factor of 8 with the application of the magnetic field. Spatial and temporal measurements will also be presented. The Australian Research Grants Council is acknowledged for funding.
NASA Astrophysics Data System (ADS)
Rusticucci, Matilde; Bettolli, Laura M.; de los Angeles Harris, M.
2002-02-01
The aim of this paper is to study the relationships between hospital emergencies and weather conditions by analysing summer and winter cases of patients requiring attention at the emergency room of a hospital in the city of Buenos Aires, Argentina. Hospital data have been sorted into seven different diagnostic groups as follows: (1) respiratory, cardiovascular and chest-pain complaints; (2) digestive, genitourinary and abdominal complaints; (3) neurological and psychopathological disorders; (4) infections; (5) contusion and crushing, bone and muscle complaints; (6) skin and allergies and (7) miscellaneous complaints. In general, there is an increase of 16.7% in winter while, for group 2 and group 6, there are more patients in summer, 54% and 75% respectively. In summer, the total number of patients for group 6 shows a significant positive correlation with temperature and dew-point temperature, and a negative correlation with the sea-level pressure for the same day. In winter, the same relationship exists, however its correlation is not as strong. The lags observed between these three variables: maximum dew-point temperature, maximum temperature, minimum air pressure and the peaks in admissions are 1, 2 and 4 days respectively. In winter, increases in temperature and dew point and decreases in pressure are followed by a peak in admissions for group 2. In winter, there are significantly more cases in group 5 on warm, dry days and on warm, wet days in the summer.
Negative-pressure wound therapy I: the paradox of negative-pressure wound therapy.
Kairinos, Nicolas; Solomons, Michael; Hudson, Donald A
2009-02-01
Does negative-pressure wound therapy reduce or increase the pressure of wound tissues? This seemingly obvious question has never been addressed by a study on living tissues. The aim of this study was to evaluate the nature of tissue pressure changes in relation to negative-pressure wound therapy. Three negative-pressure wound therapy dressing configurations were evaluated-circumferential, noncircumferential, and those within a cavity-on 15 human wounds, with five wounds in each category. Tissue pressure changes were recorded (using a strain gauge sensor) for each 75-mmHg increment in suction, up to -450 mmHg. In the circumferential and noncircumferential groups, tissue pressure was also measured over a 48-hour period at a set suction pressure of -125 mmHg (n = 10). In all three groups, mean tissue pressure increased proportionately to the amount of suction applied (p < 0.0005). Mean tissue pressure increments resulting from the circumferential dressings were significantly higher than those resulting from the noncircumferential (p < 0.0005) or cavity group (p < 0.0005); however, there was no significant difference between the latter two groups (p = 0.269). Over the 48-hour period, there was a significant mean reduction in the (increased) tissue pressure (p < 0.04 for circumferential and p < 0.0005 for noncircumferential), but in only three of 10 cases did this reduce to pressures less than those before dressing application. Negative-pressure wound therapy increases tissue pressure proportionately to the amount of suction, although this becomes less pronounced over 48 hours. This suggests that negative-pressure wound therapy dressings should be used with caution on tissues with compromised perfusion, particularly when they are circumferential.
33 CFR Appendix A to Part 154 - Guidelines for Detonation Flame Arresters
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CG-522). 1. Scope 1.1This standard provides the minimum requirements for design, construction.../Circ. 373/Rev. 1—Revised Standards for the Design, Testing and Locating of Devices to Prevent the... maximum design pressure drop for that maximum flow rate. 6.1.10Maximum operating pressure. 7. Materials 7...
Heiser, Brian; Okrasinski, E B; Murray, Rebecca; McCord, Kelly
The initial negative pressures of evacuated blood collection tubes (EBCT) and their in vitro performance as a rigid closed-suction surgical drain (CSSD) reservoir has not been evaluated in the scientific literature despite being described in both human and veterinary texts and journals. The initial negative pressures of EBCT sized 3, 6, 10, and 15 mL were measured and the stability of the system monitored. The pressure-to-volume curve as either air or water was added and maximal filling volumes were measured. Evacuated blood collection tubes beyond the manufacture's expiration date were evaluated for initial negative pressures and maximal filling volumes. Initial negative pressure ranged from -214 mm Hg to -528 mm Hg for EBCT within the manufacturer's expiration date. Different pressure-to-volume curves were found for air versus water. Optimal negative pressures of CSSD are debated in the literature. Drain purpose and type of exudates are factors that should be considered when deciding which EBCT size to implement. Evacuated blood collection tubes have a range of negative pressures and pressure-to-volume curves similar to previously evaluated CSSD rigid reservoirs. Proper drain management and using EBCT within labeled expiration date are important to ensure that expected negative pressures are generated.
NASA Technical Reports Server (NTRS)
Sanders, J. C.; Mendelson, Alexander
1945-01-01
Small high-speed single-cylinder compression-ignition engines were tested to determine their performance characteristics under high supercharging. Calculations were made on the energy available in the exhaust gas of the compression-ignition engines. The maximum power at any given maximum cylinder pressure was obtained when the compression pressure was equal to the maximum cylinder pressure. Constant-pressure combustion was found possible at an engine speed of 2200 rpm. Exhaust pressures and temperatures were determined from an analysis of indicator cards. The analysis showed that, at rich mixtures with the exhaust back pressure equal to the inlet-air pressure, there is excess energy available for driving a turbine over that required for supercharging. The presence of this excess energy indicates that a highly supercharged compression-ignition engine might be desirable as a compressor and combustion chamber for a turbine.
Kwak, Jae Gun; Lee, Jinkwon; Park, Minkyoung; Seo, Yu-Jin; Lee, Chang-Ha
2017-03-01
This study examined the degree of hemolysis during vacuum-assisted venous drainage at different negative pressures to identify an adequate negative pressure that provides effective venous drainage without significant hemolysis in open-heart surgery in children weighing less than 10 kg. Patients weighing less than 10 kg who underwent surgery for ventricular septal defect or atrial septal defect from 2011 to 2014 were enrolled. We used one of four negative pressures (20, 30, 40, or 60 mm Hg) for each patient. We measured haptoglobin, plasma hemoglobin, aspartate aminotransferase, and lactate dehydrogenase levels in the patients' blood three times perioperatively and determined the potential correlation between the change in each parameter with the level of negative pressure. Forty-six patients were enrolled in this study (mean age: 7.1 ± 7.0 months, mean body weight: 6.1 ± 1.8 kg). There were no significant differences according to the degree of negative pressure with respect to patient age, body weight, cardiopulmonary bypass (CPB) time, aorta cross-clamping time, blood flow during CPB, or lowest body temperature. All parameters that we measured reflected progression of hemolysis during CPB; however, the degree of change in the parameters did not correlate with negative pressure. In pediatric patients weighing less than 10 kg, the change in the degree of hemolysis did not differ with the amount of negative pressure. We may apply negative pressures up to 60 mm Hg without increasing the risk of hemolysis, with almost same the level of hemolysis using negative pressures of 20, 30, and 40 mm Hg for effective venous drainage and an ideal operative field during open-heart surgery.
Cao, Yi; Chastain, Roger A; Eloe, Emiley A; Nogi, Yuichi; Kato, Chiaki; Bartlett, Douglas H
2014-01-01
The diversity of deep-sea high-pressure-adapted (piezophilic) microbes in isolated monoculture remains low. In this study, a novel obligately psychropiezophilic bacterium was isolated from seawater collected from the Puerto Rico Trench at a depth of ∼6,000 m. This isolate, designated YC-1, grew best in a nutrient-rich marine medium, with an optimal growth hydrostatic pressure of 50 MPa (range, 20 to 70 MPa) at 8°C. Under these conditions, the maximum growth rate was extremely slow, 0.017 h(-1), and the maximum yield was 3.51 × 10(7) cells ml(-1). Cell size and shape changed with pressure, shifting from 4.0 to 5.0 μm in length and 0.5 to 0.8 μm in width at 60 MPa to 0.8- to 1.0-μm diameter coccoid cells under 20 MPa, the minimal pressure required for growth. YC-1 is a Gram-negative, facultatively anaerobic heterotroph. Its predominant cellular fatty acids are the monounsaturated fatty acids (MUFAs) C16:1 and C18:1. Unlike many other psychropiezophiles, YC-1 does not synthesize any polyunsaturated fatty acids (PUFAs). Phylogenetic analysis placed YC-1 within the family of Oceanospirillaceae, closely related to the uncultured symbiont of the deep-sea whale bone-eating worms of the genus Osedax. In common with some other members of the Oceanospirillales, including those enriched during the Deepwater Horizon oil spill, YC-1 is capable of hydrocarbon utilization. On the basis of its characteristics, YC-1 appears to represent both a new genus and a new species, which we name Profundimonas piezophila gen. nov., sp. nov.
Cao, Yi; Chastain, Roger A.; Eloe, Emiley A.; Nogi, Yuichi; Kato, Chiaki
2014-01-01
The diversity of deep-sea high-pressure-adapted (piezophilic) microbes in isolated monoculture remains low. In this study, a novel obligately psychropiezophilic bacterium was isolated from seawater collected from the Puerto Rico Trench at a depth of ∼6,000 m. This isolate, designated YC-1, grew best in a nutrient-rich marine medium, with an optimal growth hydrostatic pressure of 50 MPa (range, 20 to 70 MPa) at 8°C. Under these conditions, the maximum growth rate was extremely slow, 0.017 h−1, and the maximum yield was 3.51 × 107 cells ml−1. Cell size and shape changed with pressure, shifting from 4.0 to 5.0 μm in length and 0.5 to 0.8 μm in width at 60 MPa to 0.8- to 1.0-μm diameter coccoid cells under 20 MPa, the minimal pressure required for growth. YC-1 is a Gram-negative, facultatively anaerobic heterotroph. Its predominant cellular fatty acids are the monounsaturated fatty acids (MUFAs) C16:1 and C18:1. Unlike many other psychropiezophiles, YC-1 does not synthesize any polyunsaturated fatty acids (PUFAs). Phylogenetic analysis placed YC-1 within the family of Oceanospirillaceae, closely related to the uncultured symbiont of the deep-sea whale bone-eating worms of the genus Osedax. In common with some other members of the Oceanospirillales, including those enriched during the Deepwater Horizon oil spill, YC-1 is capable of hydrocarbon utilization. On the basis of its characteristics, YC-1 appears to represent both a new genus and a new species, which we name Profundimonas piezophila gen. nov., sp. nov. PMID:24123740
Development of multi-ampered D{sup {minus}} source for fusion applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacquot, C.; Belchenko, Y.; Bucalossi, J.
1996-07-01
Large current and high current density deuterium negative ion sources are investigated on the MANTIS test bed with the objective of producing several amperes of D{sup {minus}} beams, at an accelerated current density in the range 10{endash}20 mA/cm{sup 2}, for possible application in future neutral beam injectors, e.g. ITER. As a first step, the DRAGON source, which was built by Culham Laboratory was tested on the MANTIS test bed in order to test this large source using only {open_quote}{open_quote}pure volume{close_quote}{close_quote} production of negative ions. The accelerated negative ion current is found to be a strong function of the source operatingmore » pressure and the arc power, and a significant isotopic effect is observed. The maximum accelerated currents are 1.3 A of H{sup {minus}} (3.3 mA/cm{sup 2}) and 0.5 A (1.3 mA/cm{sup 2}) at 110 kW of arc power. Cesium injection from a non conventional dispenser together with an improved extraction system, have significantly improved the D-current. A maximum of 14 mA/cm{sup 2} of D{sup {minus}1} are accelerated at 30 kV, which corresponds potentially, to more than 5 A for a full aperture extraction with an arc power of 140 kW (2250 A of arc current). {copyright} {ital 1996 American Institute of Physics.}« less
40 CFR 63.7944 - How do I determine the maximum HAP vapor pressure of my remediation material?
Code of Federal Regulations, 2014 CFR
2014-07-01
... vapor pressure of my remediation material? 63.7944 Section 63.7944 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS... Pollutants: Site Remediation Performance Tests § 63.7944 How do I determine the maximum HAP vapor pressure of...
40 CFR 63.7944 - How do I determine the maximum HAP vapor pressure of my remediation material?
Code of Federal Regulations, 2012 CFR
2012-07-01
... vapor pressure of my remediation material? 63.7944 Section 63.7944 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS... Pollutants: Site Remediation Performance Tests § 63.7944 How do I determine the maximum HAP vapor pressure of...
40 CFR 63.7944 - How do I determine the maximum HAP vapor pressure of my remediation material?
Code of Federal Regulations, 2013 CFR
2013-07-01
... vapor pressure of my remediation material? 63.7944 Section 63.7944 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS... Pollutants: Site Remediation Performance Tests § 63.7944 How do I determine the maximum HAP vapor pressure of...
40 CFR 63.7944 - How do I determine the maximum HAP vapor pressure of my remediation material?
Code of Federal Regulations, 2011 CFR
2011-07-01
... vapor pressure of my remediation material? 63.7944 Section 63.7944 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS... Pollutants: Site Remediation Performance Tests § 63.7944 How do I determine the maximum HAP vapor pressure of...
49 CFR 229.49 - Main reservoir system.
Code of Federal Regulations, 2014 CFR
2014-10-01
... least one safety valve that shall prevent an accumulation of pressure of more than 15 pounds per square... or unloads and loads the air compressor within 5 pounds per square inch above or below the maximum... pressure is not less than 15 pounds per square inch above the maximum brake pipe pressure fixed by the...
49 CFR 229.49 - Main reservoir system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... least one safety valve that shall prevent an accumulation of pressure of more than 15 pounds per square... or unloads and loads the air compressor within 5 pounds per square inch above or below the maximum... pressure is not less than 15 pounds per square inch above the maximum brake pipe pressure fixed by the...
Acoustic Response of Microbubbles Derived from Phase-Change Nanodroplet
NASA Astrophysics Data System (ADS)
Kawabata, Ken-ichi; Asami, Rei; Azuma, Takashi; Umemura, Shin-ichiro
2010-07-01
An in vitro feasibility test for a novel ultrasound therapy using a type of superheated perfluorocarbon droplet, phase-change nanodroplet (PCND), was performed in gel phantoms with the goal of high selectivity and low invasiveness. Measurements of broadband signal emission revealed that a triggering ultrasound pulse (peak negative pressure of 2.4 MPa) reduces the pressure threshold for cavitation induced by a subsequent ultrasound exposure at an order of magnitude from 2.4 to 0.2 MPa. The maximum allowed interval between the two ultrasound exposures for inducing cavitation with 100- and 1,000-cycle triggering ultrasound was about 100 and 500 ms, respectively. The echo signal increases induced by the triggering ultrasound with 100- and 1000-cycles were enhanced and suppressed by the subsequent ultrasound exposure, respectively. This different behavior seemed to be due to the presence of enlarged free bubbles, which should be avoided for the localization of therapeutic effects.
Oliveira, Marcio Aparecido; Vidotto, Milena Carlos; Nascimento, Oliver Augusto; Almeida, Renato; Santoro, Ilka Lopes; Sperandio, Evandro Fornias; Jardim, José Roberto; Gazzotti, Mariana Rodrigues
2015-01-01
Studies have shown that physiopathological changes to the respiratory system can occur following thoracic and abdominal surgery. Laminectomy is considered to be a peripheral surgical procedure, but it is possible that thoracic spinal surgery exerts a greater influence on lung function. The aim of this study was to evaluate the pulmonary volumes and maximum respiratory pressures of patients undergoing cervical, thoracic or lumbar spinal surgery. Prospective study in a tertiary-level university hospital. Sixty-three patients undergoing laminectomy due to diagnoses of tumors or herniated discs were evaluated. Vital capacity, tidal volume, minute ventilation and maximum respiratory pressures were evaluated preoperatively and on the first and second postoperative days. Possible associations between the respiratory variables and the duration of the operation, surgical diagnosis and smoking status were investigated. Vital capacity and maximum inspiratory pressure presented reductions on the first postoperative day (20.9% and 91.6%, respectively) for thoracic surgery (P = 0.01), and maximum expiratory pressure showed reductions on the first postoperative day in cervical surgery patients (15.3%; P = 0.004). The incidence of pulmonary complications was 3.6%. There were reductions in vital capacity and maximum respiratory pressures during the postoperative period in patients undergoing laminectomy. Surgery in the thoracic region was associated with greater reductions in vital capacity and maximum inspiratory pressure, compared with cervical and lumbar surgery. Thus, surgical manipulation of the thoracic region appears to have more influence on pulmonary function and respiratory muscle action.
NASA Technical Reports Server (NTRS)
Hauser, Cavour H; Plohr, Henry W
1951-01-01
The nature of the flow at the exit of a row of turbine blades for the range of conditions represented by four different blade configurations was evaluated by the conservation-of-momentum principle using static-pressure surveys and by analysis of Schlieren photographs of the flow. It was found that for blades of the type investigated, the maximum exit tangential-velocity component is a function of the blade geometry only and can be accurately predicted by the method of characteristics. A maximum value of exit velocity coefficient is obtained at a pressure ratio immediately below that required for maximum blade loading followed by a sharp drop after maximum blade loading occurs.
A Balanced Diaphragm Type of Maximum Cylinder Pressure Indicator
NASA Technical Reports Server (NTRS)
Spanogle, J A; Collins, John H , Jr
1930-01-01
A balanced diaphragm type of maximum cylinder pressure indicator was designed to give results consistent with engine operating conditions. The apparatus consists of a pressure element, a source of controlled high pressure and a neon lamp circuit. The pressure element, which is very compact, permits location of the diaphragm within 1/8 inch of the combustion chamber walls without water cooling. The neon lamp circuit used for indicating contact between the diaphragm and support facilitates the use of the apparatus with multicylinder engines.
ORNL Interim Progress Report on Hydride Reorientation CIRFT Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jy-An John; Yan, Yong; Wang, Hong
A systematic study of H. B. Robinson (HBR) high burnup spent nuclear fuel (SNF) vibration integrity was performed in Phase I project under simulated transportation environments, using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot cell testing technology developed at Oak Ridge National Laboratory in 2013–14. The data analysis on the as-irradiated HBR SNF rods demonstrated that the load amplitude is the dominant factor that controls the fatigue life of bending rods. However, previous studies have shown that the hydrogen content and hydride morphology has an important effect on zirconium alloy mechanical properties. To address the effect of radial hydridesmore » in SNF rods, in Phase II a test procedure was developed to simulate the effects of elevated temperatures, pressures, and stresses during transfer-drying operations. Pressurized and sealed fuel segments were heated to the target temperature for a preset hold time and slow-cooled at a controlled rate. The procedure was applied to both non-irradiated/prehydrided and high-burnup Zircaloy-4 fueled cladding segments using the Nuclear Regulatory Commission-recommended 400°C maximum temperature limit at various cooling rates. Before testing high-burnup cladding, four out-of-cell tests were conducted to optimize the hydride reorientation (R) test condition with pre-hydride Zircaloy-4 cladding, which has the same geometry as the high burnup fuel samples. Test HR-HBR#1 was conducted at the maximum hoop stress of 145 MPa, at a 400°C maximum temperature and a 5°C/h cooling rate. On the other hand, thermal cycling was performed for tests HR-HBR#2, HR-HBR#3, and HR-HBR#4 to generate more radial hydrides. It is clear that thermal cycling increases the ratio of the radial hydride to circumferential hydrides. The internal pressure also has a significant effect on the radial hydride morphology. This report describes a procedure and experimental results of the four out-of-cell hydride reorientation tests of hydrided Zircaloy-4 cladding, which served as a guideline to prepare in-cell hydride reorientation samples with high burnup HBR fuel segments. This report also provides the Phase II CIRFT test data for the hydride reorientation irradiated samples. The variations in fatigue life are provided in terms of moment, equivalent stress, curvature, and equivalent strain for the tested SNFs. The CIRFT results appear to indicate that hydride reoriented treatment (HRT) have a negative effect on fatigue life, in addition to hydride reorientation effect. For HR4 specimen that had no pressurization procedure applied, the thermal annealing treatment alone showed a negative impact on the fatigue life compared to the HBR rod.« less
NASA Astrophysics Data System (ADS)
Lobit, P.; López Pérez, L.; Lhomme, J. P.; Gómez Tagle, A.
2017-07-01
This study evaluates the dew point method (Allen et al. 1998) to estimate atmospheric vapor pressure from minimum temperature, and proposes an improved model to estimate it from maximum and minimum temperature. Both methods were evaluated on 786 weather stations in Mexico. The dew point method induced positive bias in dry areas but also negative bias in coastal areas, and its average root mean square error for all evaluated stations was 0.38 kPa. The improved model assumed a bi-linear relation between estimated vapor pressure deficit (difference between saturated vapor pressure at minimum and average temperature) and measured vapor pressure deficit. The parameters of these relations were estimated from historical annual median values of relative humidity. This model removed bias and allowed for a root mean square error of 0.31 kPa. When no historical measurements of relative humidity were available, empirical relations were proposed to estimate it from latitude and altitude, with only a slight degradation on the model accuracy (RMSE = 0.33 kPa, bias = -0.07 kPa). The applicability of the method to other environments is discussed.
Controlled-frequency breath swimming improves swimming performance and running economy.
Lavin, K M; Guenette, J A; Smoliga, J M; Zavorsky, G S
2015-02-01
Respiratory muscle fatigue can negatively impact athletic performance, but swimming has beneficial effects on the respiratory system and may reduce susceptibility to fatigue. Limiting breath frequency during swimming further stresses the respiratory system through hypercapnia and mechanical loading and may lead to appreciable improvements in respiratory muscle strength. This study assessed the effects of controlled-frequency breath (CFB) swimming on pulmonary function. Eighteen subjects (10 men), average (standard deviation) age 25 (6) years, body mass index 24.4 (3.7) kg/m(2), underwent baseline testing to assess pulmonary function, running economy, aerobic capacity, and swimming performance. Subjects were then randomized to either CFB or stroke-matched (SM) condition. Subjects completed 12 training sessions, in which CFB subjects took two breaths per length and SM subjects took seven. Post-training, maximum expiratory pressure improved by 11% (15) for all 18 subjects (P < 0.05) while maximum inspiratory pressure was unchanged. Running economy improved by 6 (9)% in CFB following training (P < 0.05). Forced vital capacity increased by 4% (4) in SM (P < 0.05) and was unchanged in CFB. These findings suggest that limiting breath frequency during swimming may improve muscular oxygen utilization during terrestrial exercise in novice swimmers. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Maternal blood pressure and heart rate response to pelvic floor muscle training during pregnancy.
Ferreira, Cristine H; Naldoni, Luciane M V; Ribeiro, Juliana Dos Santos; Meirelles, Maria Cristina C C; Cavalli, Ricardo de Carvalho; Bø, Kari
2014-07-01
To assess whether maternal blood pressure (BP) and heart rate (HR) change significantly in response to pelvic floor muscle training during pregnancy. Longitudinal exploratory study with repeated measurements. Twenty-seven nulliparous healthy women of mean age 23.3 years (range 18-36) and mean body mass index 23.4 (range 23.1-29.5). Individual supervised pelvic floor muscle training from gestational week 20 till 36 with assessment of BP and HR at gestational weeks 20, 24, 28, 32 and 36. Systolic and diastolic BP was measured before and after each training session and HR was monitored during each session. Pelvic floor muscle training did not change BP. 77% (n = 21) of participants exceeded 70% of estimated maximum HR during at least one session. The time for exceeding 70% of estimated maximum HR was between 2.2 and 3.2 % of the total exercise session. Increases in BP and HR from gestational weeks 20 till 36 were within normal limits for pregnant women. Pelvic floor muscle training in nulliparous sedentary pregnant women does not increase BP. It significantly increases HR during the exercise sessions, but only for a limited period of time and with no negative long-term effect on BP or HR. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.
NASA Astrophysics Data System (ADS)
Zhang, Zhiying
Environmentally assisted cracking (EAC) of armour wires in flexible pipes, power cables and umbilicals is a major concern with the development of oil and gas fields and wind farms in harsh environments. Hydrogen induced cracking (HIC) or hydrogen embrittlement (HE) of steel armour wires used in deep-water and ultra-deep-water has been evaluated. Simulated tests have been carried out in simulated sea water, under conditions where the susceptibility is the highest, i.e. at room temperature, at the maximum negative cathodic potential and at the maximum stress level expected in service for 150 hours. Examinations of the tested specimens have not revealed cracking or blistering, and measurement of hydrogen content has confirmed hydrogen charging. In addition, sulphide stress cracking (SSC) and chloride stress cracking (CSC) of nickel-based alloy armour wires used in harsh down-hole environments has been evaluated. Simulated tests have been carried out in simulated solution containing high concentration of chloride, with high hydrogen sulphide partial pressure, at high stress level and at 120 °C for 720 hours. Examinations of the tested specimens have not revealed cracking or blistering. Subsequent tensile tests of the tested specimens at ambient pressure and temperature have revealed properties similar to the as-received specimens.
The phase diagram of water at negative pressures: virtual ices.
Conde, M M; Vega, C; Tribello, G A; Slater, B
2009-07-21
The phase diagram of water at negative pressures as obtained from computer simulations for two models of water, TIP4P/2005 and TIP5P is presented. Several solid structures with lower densities than ice Ih, so-called virtual ices, were considered as possible candidates to occupy the negative pressure region of the phase diagram of water. In particular the empty hydrate structures sI, sII, and sH and another, recently proposed, low-density ice structure. The relative stabilities of these structures at 0 K was determined using empirical water potentials and density functional theory calculations. By performing free energy calculations and Gibbs-Duhem integration the phase diagram of TIP4P/2005 was determined at negative pressures. The empty hydrates sII and sH appear to be the stable solid phases of water at negative pressures. The phase boundary between ice Ih and sII clathrate occurs at moderate negative pressures, while at large negative pressures sH becomes the most stable phase. This behavior is in reasonable agreement with what is observed in density functional theory calculations.
The Relationships between Air Exposure, Negative Pressure and Hemolysis
Pohlmann, Joshua R.; Toomasian, John M.; Hampton, Claire E.; Cook, Keith E.; Annich, Gail M.; Bartlett, Robert H.
2013-01-01
The purpose of this study was to describe the hemolytic effects of both negative pressure and an air-blood interface independently and in combination in an in-vitro static blood model. Samples of fresh ovine or human blood (5 mL) were subjected to a bubbling air interface (0–100 mL/min) or negative pressure (0–600 mmHg) separately, or in combination, for controlled periods of time, and analyzed for hemolysis. Neither negative pressure nor an air interface alone increased hemolysis. However, when air and negative pressure were combined, hemolysis increased as a function of negative pressure, the air interface, and time. Moreover, when blood samples were exposed to air prior to initiating the test, hemolysis was 4–5 times greater than samples not pre-exposed to air. When these experiments were repeated using freshly drawn human blood the same phenomena were observed, but the hemolysis was significantly higher than that observed in sheep blood. In this model, hemolysis is caused by combined air and negative pressure and is unrelated to either factor alone. PMID:19730004
Perez, Camilo; Chen, Hong; Matula, Thomas J; Karzova, Maria; Khokhlova, Vera A
2013-08-01
Extracorporeal shock wave therapy (ESWT) uses acoustic pulses to treat certain musculoskeletal disorders. In this paper the acoustic field of a clinical portable ESWT device (Duolith SD1) was characterized. Field mapping was performed in water for two different standoffs of the electromagnetic head (15 or 30 mm) using a fiber optic probe hydrophone. Peak positive pressures at the focus ranged from 2 to 45 MPa, while peak negative pressures ranged from -2 to -11 MPa. Pulse rise times ranged from 8 to 500 ns; shock formation did not occur for any machine settings. The maximum standard deviation in peak pressure at the focus was 1.2%, indicating that the Duolith SD1 generates stable pulses. The results compare qualitatively, but not quantitatively with manufacturer specifications. Simulations were carried out for the short standoff by matching a Khokhlov-Zabolotskaya-Kuznetzov equation to the measured field at a plane near the source, and then propagating the wave outward. The results of modeling agree well with experimental data. The model was used to analyze the spatial structure of the peak pressures. Predictions from the model suggest that a true shock wave could be obtained in water if the initial pressure output of the device were doubled.
Perez, Camilo; Chen, Hong; Matula, Thomas J.; Karzova, Maria; Khokhlova, Vera A.
2013-01-01
Extracorporeal shock wave therapy (ESWT) uses acoustic pulses to treat certain musculoskeletal disorders. In this paper the acoustic field of a clinical portable ESWT device (Duolith SD1) was characterized. Field mapping was performed in water for two different standoffs of the electromagnetic head (15 or 30 mm) using a fiber optic probe hydrophone. Peak positive pressures at the focus ranged from 2 to 45 MPa, while peak negative pressures ranged from −2 to −11 MPa. Pulse rise times ranged from 8 to 500 ns; shock formation did not occur for any machine settings. The maximum standard deviation in peak pressure at the focus was 1.2%, indicating that the Duolith SD1 generates stable pulses. The results compare qualitatively, but not quantitatively with manufacturer specifications. Simulations were carried out for the short standoff by matching a Khokhlov-Zabolotskaya-Kuznetzov equation to the measured field at a plane near the source, and then propagating the wave outward. The results of modeling agree well with experimental data. The model was used to analyze the spatial structure of the peak pressures. Predictions from the model suggest that a true shock wave could be obtained in water if the initial pressure output of the device were doubled. PMID:23927207
Experimental investigation of compliant wall surface deformation in a turbulent channel flow
NASA Astrophysics Data System (ADS)
Zhang, Cao; Wang, Jin; Katz, Joseph
2016-11-01
The dynamic response of a compliant wall under a turbulent channel flow is investigated by simultaneously measuring the time-resolved, 3D flow field (using tomographic PIV) and the 2D surface deformation (using interferometry). The pressure distributions are calculated by spatially integrating the material acceleration field. The Reynolds number is Reτ = 2300, and the centerline velocity (U0) is 15% of the material shear speed. The wavenumber-frequency spectra of the wall deformation contain a non-advected low-frequency component and advected modes, some traveling downstream at U0 and others at 0.72U0. Trends in the wall dynamics are elucidated by correlating the deformation with flow variables. The spatial pressure-deformation correlations peak at y/ h 0.12 (h is half channel height), the elevation of Reynolds shear stress maximum in the log-layer. Streamwise lagging of the deformation behind the pressure is caused in part by phase-lag of the pressure with decreasing distance from the wall, and in part by material damping. Positive deformations (bumps) are preferentially associated with ejections, which involve spanwise vortices located downstream and quasi-streamwise vortices with spanwise offset, consistent with hairpin-like structures. The negative deformations (dents) are preferentially associated with pressure maxima at the transition between an upstream sweep to a downstream ejection. Sponsored by ONR.
Filippidis, Aristotelis S; Kalani, M Yashar S; Nakaji, Peter; Rekate, Harold L
2011-11-01
Negative-pressure and low-pressure hydrocephalus are rare clinical entities that are frequently misdiagnosed. They are characterized by recurrent episodes of shunt failure because the intracranial pressure is lower than the opening pressure of the valve. In this report the authors discuss iatrogenic CSF leaks as a cause of low- or negative-pressure hydrocephalus after approaches to the cranial base. The authors retrospectively reviewed cases of low-pressure or negative-pressure hydrocephalus presenting after cranial approaches complicated with a CSF leak at their institution. Three patients were identified. Symptoms of high intracranial pressure and ventriculomegaly were present, although the measured pressures were low or negative. A blocked communication between the ventricles and the subarachnoid space was documented in 2 of the cases and presumed in the third. Shunt revisions failed repeatedly. In all cases, temporary clinical and radiographic improvement resulted from external ventricular drainage at subatmospheric pressures. The CSF leaks were sealed and CSF communication was reestablished operatively. In 1 case, neck wrapping was used with temporary success. Negative-pressure or low-pressure hydrocephalus associated with CSF leaks, especially after cranial base approaches, is difficult to treat. The solution often requires the utilization of subatmospheric external ventricular drains to establish a lower ventricular drainage pressure than the drainage pressure created in the subarachnoid space, where the pressure is artificially lowered by the CSF leak. Treatment involves correction of the CSF leak, neck wrapping to increase brain turgor and allow the pressure in the ventricles to rise to the level of the opening pressure of the valve, and reestablishing the CSF route.
2018-01-16
Complications Wounds; Negative Pressure Wound Therapy; Wound Healing Delayed; Incisional; Panniculectomy; Incisional Negative Pressure Wound Therapy; Incisional Vac; Wound Vac; Obese; Renal Failure; Kidney Transplant; Complications; Wound Healing Complication
Hydrodynamic performance and heat generation by centrifugal pumps.
Ganushchak, Y; van Marken Lichtenbelt, W; van der Nagel, T; de Jong, D S
2006-11-01
For over a century, centrifugal pumps (CP) have been used in various applications, from large industrial pumps to flow pumps for aquariums. However, the use of CP as blood pumps has a rather short history. Consequently, the hydraulic performance data for a blood CP are limited. The aim of our investigation was to study the hydraulic performance and the heat generation of three commercially available CP: Bio-Medicus Bio-Pump BP80 (Medtronic), Rotaflow (Jostra Medizintechnik), and DeltaStream DP2 (MEDOS Medizintechnik AQ). The study was performed using a circuit primed with a water-glycerin mixture with a dynamic viscosity of 0.00272 pa/s. Pressure-flow curves were obtained by a stepwise stagnation of the pump outlet or inlet. The temperature changes were observed using ThermaCAM SC2000 (Flir Systems). The pumps' performance in close to clinical conditions ('operating region') was analysed in this report. The 'operating region' in the case of the BP80 is positioned around the pressure-flow curve at a pump speed of 3000 rpm. In the case of the Rotaflow, the 'operating region' was between the pump pressure-flow curves at a speed of 3000 and 4000 rpm, and the DP2 was found between 7000 and 8000 rpm. The standard deviation of mean pressure through the pump was used to characterise the stability of the pump. In experiments with outlet stagnation, the BP80 demonstrated high negative association between flow and pressure variability (r = -0.68, p < 0.001). In experiments with the DP2, this association was positive (r = 0.68, p < 0.001). All pumps demonstrated significantly higher variability of pressure in experiments with inlet stagnation in comparison to the experiments with outlet stagnation. The rise of relative temperature in the inlet of a pump was closely related to the flow rate. The heating of fluid was more pronounced in the 'zero-flow' mode, especially in experiments with inlet stagnation. In summary, (1) the 'zero-flow' regime, which is described in the manuals of some commercially-available pumps, is the use of the pump outside the allowable operating region. It is potentially dangerous and should, therefore, never be used in clinical settings. (2) Using centrifugal pumps for kinetic-assisted venous return can only be performed safely when the negative pressure at the inlet of the pump is monitored continuously. The maximum allowable negative pressure has to be defined for each type of pump, and must be based on pump performance.
Telemetric Intracranial Pressure Monitoring with the Raumedic Neurovent P-tel.
Antes, Sebastian; Tschan, Christoph A; Heckelmann, Michael; Breuskin, David; Oertel, Joachim
2016-07-01
Devices enabling long-term intracranial pressure monitoring have been demanded for some time. The first solutions using telemetry were proposed in 1967. Since then, many other wireless systems have followed but some technical restrictions have led to unacceptable measurement uncertainties. In 2009, a completely revised telemetric pressure device called Neurovent P-tel was introduced to the market. This report reviews technical aspects, handling, possibilities of data analysis, and the efficiency of the probe in clinical routine. The telemetric device consists of 3 main parts: the passive implant, the active antenna, and the storage monitor. The implant with its parenchymal pressure transducer is inserted via a frontal burr hole. Pressure values can be registered with a frequency of 1 Hz or 5 Hz. Telemetrically gathered data can be viewed on the storage monitor or saved on a computer for detailed analyses. A total of 247 patients with suspected (n = 123) or known (n = 124) intracranial pressure disorders underwent insertion of the telemetric pressure probe. A detailed analysis of the long-term intracranial pressure profile including mean values, maximum and negative peaks, pathologic slow waves, and pulse pressure amplitudes is feasible using the detection rate of 5 Hz. This enables the verification of suspected diagnoses as normal-pressure hydrocephalus, benign intracranial hypertension, shunt malfunction, or shunt overdrainage. Long-term application also facilitates postoperative surveillance and supports valve adjustments of shunt-treated patients. The presented telemetric measurement system is a valuable and effective diagnostic tool in selected cases. Copyright © 2016 Elsevier Inc. All rights reserved.
Theoretical Evaluation of the Maximum Work of Free-Piston Engine Generators
NASA Astrophysics Data System (ADS)
Kojima, Shinji
2017-01-01
Utilizing the adjoint equations that originate from the calculus of variations, we have calculated the maximum thermal efficiency that is theoretically attainable by free-piston engine generators considering the work loss due to friction and Joule heat. Based on the adjoint equations with seven dimensionless parameters, the trajectory of the piston, the histories of the electric current, the work done, and the two kinds of losses have been derived in analytic forms. Using these we have conducted parametric studies for the optimized Otto and Brayton cycles. The smallness of the pressure ratio of the Brayton cycle makes the net work done negative even when the duration of heat addition is optimized to give the maximum amount of heat addition. For the Otto cycle, the net work done is positive, and both types of losses relative to the gross work done become smaller with the larger compression ratio. Another remarkable feature of the optimized Brayton cycle is that the piston trajectory of the heat addition/disposal process is expressed by the same equation as that of an adiabatic process. The maximum thermal efficiency of any combination of isochoric and isobaric heat addition/disposal processes, such as the Sabathe cycle, may be deduced by applying the methods described here.
Lee, Sang Yang; Niikura, Takahiro; Miwa, Masahiko; Sakai, Yoshitada; Oe, Keisuke; Fukazawa, Takahiro; Kawakami, Yohei; Kurosaka, Masahiro
2011-06-14
Treatment of soft tissue defects with exposed bones and joints, resulting from trauma, infection, and surgical complications, represents a major challenge. The introduction of negative pressure wound therapy has changed many wound management practices. Negative pressure wound therapy has recently been used in the orthopedic field for management of traumatic or open wounds with exposed bone, nerve, tendon, and orthopedic implants. This article describes a case of a patient with a large soft tissue defect and exposed knee joint, in which negative pressure wound therapy markedly improved wound healing. A 50-year-old man presented with an ulceration of his left knee with exposed joint, caused by severe wound infections after open reduction and internal fixation of a patellar fracture. After 20 days of negative pressure wound therapy, a granulated wound bed covered the exposed bones and joint.To our knowledge, this is the first report of negative pressure wound therapy used in a patient with a large soft tissue defect with exposed knee joint. Despite the chronic wound secondary to infection, healing was achieved through the use of the negative pressure wound therapy, thus promoting granulation tissue formation and closing the joint. We suggest negative pressure wound therapy as an alternative option for patients with lower limb wounds containing exposed bones and joints when free flap transfer is contraindicated. Our result added to the growing evidence that negative pressure wound therapy is a useful adjunctive treatment for open wounds around the knee joint. Copyright 2011, SLACK Incorporated.
Intrathoracic pressure regulation during cardiopulmonary resuscitation: a feasibility case-series.
Segal, Nicolas; Parquette, Brent; Ziehr, Jonathon; Yannopoulos, Demetris; Lindstrom, David
2013-04-01
Intrathoracic pressure regulation (IPR) is a novel, noninvasive therapy intended to increase cardiac output and blood pressure in hypotensive states by generating a negative end expiratory pressure of -12 cm H2O between positive pressure ventilations. In this first feasibility case-series, we tested the hypothesis that IPR improves End tidal (ET) CO2 during cardiopulmonary resuscitation (CPR). ETCO2 was used as a surrogate measure for circulation. All patients were treated initially with manual CPR and an impedance threshold device (ITD). When IPR-trained medics arrived on scene the ITD was removed and an IPR device (CirQLATOR™) was attached to the patient's advanced airway (intervention group). The IPR device lowered airway pressures to -9 mmHg after each positive pressure ventilation for the duration of the expiratory phase. ETCO2, was measured using a capnometer incorporated into the defibrillator system (LifePak™). Values are expressed as mean ± SEM. Results were compared using paired and unpaired Student's t test. p values of <0.05 were considered statistically significant. ETCO2 values in 11 patients in the case series were compared pre and during IPR therapy and also compared to 74 patients in the control group not treated with the new IPR device. ETCO2 values increased from an average of 21 ± 1 mmHg immediately before IPR application to an average value of 32 ± 5 mmHg and to a maximum value of 45 ± 5mmHg during IPR treatment (p<0.001). In the control group ETCO2 values did not change significantly. Return of spontaneous circulation (ROSC) rates were 46% (34/74) with standard CPR and ITD versus 73% (8/11) with standard CPR and the IPR device (p<0.001). ETCO2 levels and ROSC rates were significantly higher in the study intervention group. These findings demonstrate that during CPR circulation may be significantly augmented by generation of a negative end expiratory pressure between each breath. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Velocity and pressure characteristics of a model SSME high pressure fuel turbopump
NASA Technical Reports Server (NTRS)
Tse, D. G-N.; Sabnis, J. S.; Mcdonald, H.
1991-01-01
Under the present effort an experiment rig has been constructed, an instrumentation package developed and a series of mean and rms velocity and pressure measurements made in a turbopump which modelled the first stage of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump. The rig was designed so as to allow initial experiments with a single configuration consisting of a bell-mouth inlet, a flight impeller, a vaneless diffuser and a volute. Allowance was made for components such as inlet guide vanes, exit guide vanes, downstream pumps, etc. to be added in future experiments. This flexibility will provide a clear baseline set of experiments and allow evaluation in later experiments of the effect of adding specific components upon the pump performance properties. The rotational speed of the impeller was varied between 4260 and 7680 rpm which covered the range of scaled SSME rotation speeds when due allowance is made for the differing stagnation temperature, model to full scale. The results at the inlet obtained with rotational speeds of 4260, 6084 and 7680 rpm showed that the axial velocity at the bell-mouth inlet remained roughly constant at 2.2 of the bulk velocity at the exit of the turbopump near the center of the inlet, but it decreased rapidly with increasing radius at all three speeds. Reverse flow occurred at a radius greater than 0.9 R for all three speeds and the maximum negative velocity reduced from 1.3 of the bulk velocity at the exit of the turbopump at 4260 rpm to 0.35 at 7680 rpm, suggesting that operating at a speed closer to the design condition of 8700 rpm improved the inlet characteristics. The reverse flow caused positive prerotation at the impeller inlet which was negligibly small near the center but reached 0.7 of the impeller speed at the outer annulus. The results in the diffuser and the volute obtained at 7680 rpm show that the hub and shroud walls of the diffuser were characterized by regions of transient reverse flow with negative revolution-averaged velocity of 8 percent of the maximum forward revolution-averaged velocity at the center of the diffuser passage near the shroud wall.
Development of a gas-pressurized high-pressure μSR setup at the RIKEN-RAL Muon Facility
NASA Astrophysics Data System (ADS)
Watanabe, I.; Ishii, Y.; Kawamata, T.; Suzuki, T.; Pratt, F. L.; Done, R.; Chowdhury, M.; Goodway, C.; Dreyer, J.; Smith, C.; Southern, M.
2009-04-01
The development and testing of a gas-pressurized μSR setup for the RIKEN-RAL Muon Facility is reported. In collaboration with the high-pressure group of the ISIS Facility at the Rutherford Appleton Laboratory, a gas-pressurized setup for a pulsed muon beam at the RIKEN-RAL Muon Facility has been constructed in 2008. The sample is pressurized by helium gas and the designed maximum pressure is 6.4 kbar. The high-pressure cell can be cooled down to 2 K using an existing cryostat. Tests were made injecting the double-pulsed muon beam into a high-purity sample of Sn powder, which confirmed that the maximum pressure achieved at 2 K was close to the designed pressure.
Endotracheal Tube Cuff Pressures in Patients Intubated Prior to Helicopter EMS Transport.
Tennyson, Joseph; Ford-Webb, Tucker; Weisberg, Stacy; LeBlanc, Donald
2016-11-01
Endotracheal intubation is a common intervention in critical care patients undergoing helicopter emergency medical services (HEMS) transportation. Measurement of endotracheal tube (ETT) cuff pressures is not common practice in patients referred to our service. Animal studies have demonstrated an association between the pressure of the ETT cuff on the tracheal mucosa and decreased blood flow leading to mucosal ischemia and scarring. Cuff pressures greater than 30 cmH 2 O impede mucosal capillary blood flow. Multiple prior studies have recommended 30 cmH 2 O as the maximum safe cuff inflation pressure. This study sought to evaluate the inflation pressures in ETT cuffs of patients presenting to HEMS. We enrolled a convenience sample of patients presenting to UMass Memorial LifeFlight who were intubated by the sending facility or emergency medical services (EMS) agency. Flight crews measured the ETT cuff pressures using a commercially available device. Those patients intubated by the flight crew were excluded from this analysis as the cuff was inflated with the manometer to a standardized pressure. Crews logged the results on a research form, and we analyzed the data using Microsoft Excel and an online statistical analysis tool. We analyzed data for 55 patients. There was a mean age of 57 years (range 18-90). The mean ETT cuff pressure was 70 (95% CI= [61-80]) cmH 2 O. The mean lies 40 cmH 2 O above the maximum accepted value of 30 cmH 2 O (p<0.0001). Eighty-four percent (84%) of patients encountered had pressures above the recommended maximum. The most frequently recorded pressure was >120 cmH 2 O, the maximum pressure on the analog gauge. Patients presenting to HEMS after intubation by the referral agency (EMS or hospital) have ETT cuffs inflated to pressures that are, on average, more than double the recommended maximum. These patients are at risk for tracheal mucosal injury and scarring from decreased mucosal capillary blood flow. Hospital and EMS providers should use ETT cuff manometry to ensure that they inflate ETT cuffs to safe pressures.
Endotracheal Tube Cuff Pressures in Patients Intubated Prior to Helicopter EMS Transport
Tennyson, Joseph; Ford-Webb, Tucker; Weisberg, Stacy; LeBlanc, Donald
2016-01-01
Introduction Endotracheal intubation is a common intervention in critical care patients undergoing helicopter emergency medical services (HEMS) transportation. Measurement of endotracheal tube (ETT) cuff pressures is not common practice in patients referred to our service. Animal studies have demonstrated an association between the pressure of the ETT cuff on the tracheal mucosa and decreased blood flow leading to mucosal ischemia and scarring. Cuff pressures greater than 30 cmH2O impede mucosal capillary blood flow. Multiple prior studies have recommended 30 cmH2O as the maximum safe cuff inflation pressure. This study sought to evaluate the inflation pressures in ETT cuffs of patients presenting to HEMS. Methods We enrolled a convenience sample of patients presenting to UMass Memorial LifeFlight who were intubated by the sending facility or emergency medical services (EMS) agency. Flight crews measured the ETT cuff pressures using a commercially available device. Those patients intubated by the flight crew were excluded from this analysis as the cuff was inflated with the manometer to a standardized pressure. Crews logged the results on a research form, and we analyzed the data using Microsoft Excel and an online statistical analysis tool. Results We analyzed data for 55 patients. There was a mean age of 57 years (range 18–90). The mean ETT cuff pressure was 70 (95% CI= [61–80]) cmH2O. The mean lies 40 cmH2O above the maximum accepted value of 30 cmH2O (p<0.0001). Eighty-four percent (84%) of patients encountered had pressures above the recommended maximum. The most frequently recorded pressure was >120 cmH2O, the maximum pressure on the analog gauge. Conclusion Patients presenting to HEMS after intubation by the referral agency (EMS or hospital) have ETT cuffs inflated to pressures that are, on average, more than double the recommended maximum. These patients are at risk for tracheal mucosal injury and scarring from decreased mucosal capillary blood flow. Hospital and EMS providers should use ETT cuff manometry to ensure that they inflate ETT cuffs to safe pressures. PMID:27833679
NASA Technical Reports Server (NTRS)
Kelly, Thomas C.
1961-01-01
Aerodynamic loads results have been obtained in the Langley 8-foot transonic pressure tunnel at Mach numbers from 0.80 to 1.20 for a 1/10-scale model of the upper three stages of the Scout vehicle. Tests were conducted through an angle-of-attack range from -8 deg to 8 deg at an average test Reynolds number per foot of about 4.0 x 10(exp 6). Results indicated that the peak negative pressures associated with expansion corners at the nose and transition flare exhibit sizeable variations which occur over a relatively small Mach number range. The magnitude of the variations may cause the critical local loading condition for the full-scale vehicle to occur at a Mach number considerably lower than that at which the maximum dynamic pressure occurs in flight. The addition of protuberances simulating antennas and wiring conduits had slight, localized effects. The lift carryover from the nose and transition flare on the cylindrical portions of the model generally increased with an increase in Mach number.
Sound pressure level in a municipal preschool
Kemp, Adriana Aparecida Tahara; Delecrode, Camila Ribas; Guida, Heraldo Lorena; Ribeiro, André Knap; Cardoso, Ana Claúdia Vieira
2013-01-01
Summary Aim: To evaluate the sound pressure level to which preschool students are exposed. Method: This was a prospective, quantitative, nonexperimental, and descriptive study. To achieve the aim of the study we used an audio dosimeter. The sound pressure level (SPL) measurements were obtained for 2 age based classrooms. Preschool I and II. The measurements were obtained over 4 days in 8-hour sessions, totaling 1920 minutes. Results: Compared with established standards, the SPL measured ranged from 40.6 dB (A) to 105.8 dB (A). The frequency spectrum of the SPL was concentrated in the frequency range between 500 Hz and 4000 Hz. The older children produced higher SPLs than the younger ones, and the levels varied according to the activity performed. Painting and writing were the quietest activities, while free activities period and games were the noisiest. Conclusion: The SPLs measured at the preschool were higher and exceeded the maximum permitted level according to the reference standards. Therefore, the implementation of actions that aim to minimize the negative impact of noise in this environment is essential. PMID:25992013
The shouted voice: A pilot study of laryngeal physiology under extreme aerodynamic pressure.
Lagier, Aude; Legou, Thierry; Galant, Camille; Amy de La Bretèque, Benoit; Meynadier, Yohann; Giovanni, Antoine
2017-12-01
The objective was to study the behavior of the larynx during shouted voice production, when the larynx is exposed to extremely high subglottic pressure. The study involved electroglottographic, acoustic, and aerodynamic analyses of shouts produced at maximum effort by three male participants. Under a normal speaking voice, the voice sound pressure level (SPL) is proportional to the subglottic pressure. However, when the subglottic pressure reached high levels, the voice SPL reached a maximum value and then decreased as subglottic pressure increased further. Furthermore, the electroglottographic signal sometimes lost its periodicity during the shout, suggesting irregular vocal fold vibration.
Magnetization at high pressure in CeP
NASA Astrophysics Data System (ADS)
Naka, T.; Matsumoto, T.; Okayama, Y.; Môri, N.; Haga, Y.; Suzuki, T.
1995-02-01
We have investigated the pressure dependence of magnetization below 60 K up to 1.6 GPa in the low-carrier concentration system CeP showing two step transitions at T = TL and TH under high pressure. At high pressure, M( P, T) exhibits a maximum at around the lower transition temperature TL. This behavior implies that the magnetic state changes at TL. The pressure dependence of isothermal magnetization M( P) is different above and below TL. In fact, M( P) below TL exhibits a maximum at around 1.4 GPa, whereas M( P) above TL increases steeply with pressure up to 1.6 GPa.
Flow fields and acoustics in a unilateral scarred vocal fold model.
Murugappan, Shanmugam; Khosla, Sid; Casper, Keith; Oren, Liran; Gutmark, Ephraim
2009-01-01
From prior work in an excised canine larynx model, it has been shown that intraglottal vortices form between the vocal folds during the latter part of closing. It has also been shown that the vortices generate a negative pressure between the folds, producing a suction force that causes sudden, rapid closing of the folds. This rapid closing will produce increased loudness and increased higher harmonics. We used a unilateral scarred excised canine larynx model to determine whether the intraglottal vortices and resulting acoustics were changed, compared to those of normal larynges. Acoustic, flow field, and high-speed imaging measurements from 5 normal and 5 unilaterally scarred canine larynges are presented in this report. Scarring was produced by complete resection of the vocal fold mucosa and superficial layer of the lamina propria on the right vocal fold only. Two months later, these dogs were painlessly sacrificed, and testing was done on the excised larynges during phonation. High-speed video imaging was then used to measure vocal fold displacement during different phases. Particle image velocimetry and acoustic measurements were used to describe possible acoustic effects of the vortices. A higher phonation threshold was required to excite the motion of the vocal fold in scarred larynges. As the subglottal pressure increased, the strength of the vortices and the higher harmonics both consistently increased. However, it was seen that increasing the maximum displacement of the scarred fold did not consistently increase the higher harmonics. The improvements that result from increasing subglottal pressure may be due to a combination of increasing the strength of the intraglottal vortices and increasing the maximum displacement of the vocal fold; however, the data in this study suggest that the vortices play a much more important role. The current study indicates that higher subglottal pressures may excite higher harmonics and improve loudness for patients with unilateral vocal fold scarring. This finding implies that therapies that raise the subglottal pressure may be helpful in improving voice quality.
Specific inspiratory muscle warm-up enhances badminton footwork performance.
Lin, Hua; Tong, Tom Kwokkeung; Huang, Chuanye; Nie, Jinlei; Lu, Kui; Quach, Binh
2007-12-01
The effects of inspiratory muscle (IM) warm-up on IM function and on the maximum distance covered in a subsequent incremental badminton-footwork test (FWmax) were examined. Ten male badminton players were recruited to perform identical tests in three different trials in a random order. The control trial did not involve an IM warm-up, whereas the placebo and experimental trials did involve an IM warm-up consisting of two sets of 30-breath manoeuvres with an inspiratory pressure-threshold load equivalent to 15% (PLA) and 40% (IMW) maximum inspiratory mouth pressure, respectively. In the IMW trial, IM function was improved with 7.8%+/-4.0% and 6.9%+/-3.5% increases from control found in maximal inspiratory pressure at zero flow (P0) and maximal rate of P0 development (MRPD), respectively (p<0.05). FWmax was enhanced 6.8%+/-3.7%, whereas the slope of the linear relationship of the increase in the rating of perceived breathlessness for every minute (RPB/min) was reduced (p<0.05). Reduction in blood lactate ([La-]b) accumulation was observed when the test duration was identical to that of the control trial (P<0.05). In the PLA trial, no parameter was changed from control. For the changes (Delta) in parameters in IMW (n=10), negative correlations were found between DeltaP0 and DeltaRPB/min (r2=0.58), DeltaMRPD and DeltaRPB/min (r2=0.48), DeltaRPB/min, and DeltaFWmax (r2=0.55), but not between Delta[La-]b accumulation and DeltaFWmax. Such findings suggest that the IM-specific warm-up improved footwork performance in the subsequent maximum incremental badminton-footwork test. The improved footwork was partly attributable to the reduced breathless sensation resulting from the enhanced IM function, whereas the contribution of the concomitant reduction in [La-]b accumulation was relatively minor.
NASA Astrophysics Data System (ADS)
Angell, C. Austen; Kapko, Vitaliy
2016-09-01
Following Vasisht et al’s identification of the second critical point (T c2, P c2) for liquid silicon in the Stillinger-Weber (S-W) model for silicon, we study the variation of T c2, P c2 with tetrahedral repulsion parameter in an extension of the earlier ‘potential tuning’ study of this system. We use the simple isochore crossing approach to identify the location of the second critical point (before any crystallization can occur) as a function of the ‘tuning’ or ‘tetrahedrality’, parameter λ, and identify two phenomena of high interest content. The first is that the second critical point pressure P c2, becomes less negative as λ decreases from the silicon value (meaning the drive to high tetrahedrality is decreased) and reaches zero pressure at the same value of lambda found to mark the onset of glassforming ability in an earlier study of this tunable system. The second is that, as the T c,2 approaches the temperature of the liquid-gas spinodal, λ > 22, the behavior of the temperature of maximum density (TMD) switches from the behavior seen in most current water pair potential models (locus of TMDs has a maximum), to the behavior seen in empirical engineering multiparameter equations of state (EoS) (and also by two parameter Speedy isothermal expansion EoS) for water, according to which the locus of TMDs of HDL phase has no maximum, and the EoS for HDL has no second critical point. At λ = 23 the behavior is isomorphic with that of the mW model of water, which is now seen to conform, at least closely, to the ‘critical point free’ scenario for water.
Zhang, Qi; Li, Wei; Lin, Da-Chao; He, Ning; Duan, Yun
2011-01-30
The aim of this paper is to provide new experimental data of the minimum ignition energy (MIE) of gaseous nitromethane/air mixtures to discuss the explosion pressure and the flame temperature as a function of nitromethane concentration. Observations on the influence of nitromethane concentration on combustion pressure and temperature through the pressure and temperature measure system show that peak temperature (the peak of combustion temperature wave) is always behind peak pressure (the peak of the combustion pressure wave) in arrival time, the peak combustion pressure of nitromethane increases in the range of its volume fraction 10-40% as the concentration of nitromethane increases, and it slightly decreases in the range of 40-50%. The maximum peak pressure is equal to 0.94 MPa and the minimum peak pressure 0.58 MPa. Somewhat similar to the peak pressure, the peak combustion temperature increases with the volume fraction of nitromethane in the range of 10-40%, and slightly decreases in 40-50%. The maximum peak temperature is 1340 °C and the minimum 860 °C. The combustion temperature rise rate increases with the concentration of nitromethane in 10-30%, while decreases in 30-50% and its maximum value of combustion temperature rise rate in 10-50% is 4200 °C/s at the volume fraction of 30%. Influence of the concentration of nitromethane on the combustion pressure rise rate is relatively complicated, and the maximum value of rise rate of combustion pressure wave in 10-50% is 11 MPa/s at the concentration 20%. Copyright © 2010 Elsevier B.V. All rights reserved.
Studies on droplet evaporation and combustion in high pressures
NASA Technical Reports Server (NTRS)
Sato, J.
1993-01-01
High pressure droplet evaporation and combustion have been studied up to 15 MPa under normal and microgravity fields. From the evaporation studies, it has been found that in the supercritical environments, the droplet evaporation rate and lifetime take a maximum and a minimum at an ambient pressure over the critical pressure. Its maximum and minimum points move toward the lower ambient pressures if the ambient temperature is increased. It has been found from the combustion studies that the burning life time takes a minimum at an ambient pressure being equal to the critical pressure. It is attributable to both the pressure dependency of the diffusion rate and the droplet evaporation characteristics described above.
Design of a Collapse-Mode CMUT With an Embossed Membrane for Improving Output Pressure.
Yu, Yuanyu; Pun, Sio Hang; Mak, Peng Un; Cheng, Ching-Hsiang; Wang, Jiujiang; Mak, Pui-In; Vai, Mang I
2016-06-01
Capacitive micromachined ultrasonic transducers (CMUTs) have emerged as a competitive alternative to piezoelectric ultrasonic transducers, especially in medical ultrasound imaging and therapeutic ultrasound applications, which require high output pressure. However, as compared with piezoelectric ultrasonic transducers, the output pressure capability of CMUTs remains to be improved. In this paper, a novel structure is proposed by forming an embossed vibrating membrane on a CMUT cell operating in the collapse mode to increase the maximum output pressure. By using a beam model in undamped conditions and finite-element analysis simulations, the proposed embossed structure showed improvement on the maximum output pressure of the CMUT cell when the embossed pattern was placed on the estimated location of the peak deflection. As compared with a uniform membrane CMUT cell worked in the collapse mode, the proposed CMUT cell can yield the maximum output pressure by 51.1% and 88.1% enhancement with a single embossed pattern made of Si3N4 and nickel, respectively. The maximum output pressures were improved by 34.9% (a single Si3N4 embossed pattern) and 46.7% (a single nickel embossed pattern) with the uniform membrane when the center frequencies of both original and embossed CMUT designs were similar.
Yang, Dongmei; Pan, Shaoan; Ding, Yiting; Tyree, Melvin T
2017-03-01
This paper provides a mini-review of evidence for negative turgor pressure in leaf cells starting with experimental evidence in the late 1950s and ending with biomechanical models published in 2014. In the present study, biomechanical models were used to predict how negative turgor pressure might be manifested in dead tissue, and experiments were conducted to test the predictions. The main findings were as follows: (i) Tissues killed by heating to 60 or 80 °C or by freezing in liquid nitrogen all became equally leaky to cell sap solutes and all seemed to pass freely through the cell walls. (ii) Once cell sap solutes could freely pass the cell walls, the shape of pressure-volume curves was dramatically altered between living and dead cells. (iii) Pressure-volume curves of dead tissue seem to measure negative turgor defined as negative when inside minus outside pressure is negative. (iv) Robinia pseudoacacia leaves with small palisade cells had more negative turgor than Metasequoia glyptostroboides with large cells. (v) The absolute difference in negative turgor between R. pseudoacacia and M. glyptostroboides approached as much as 1.0 MPa in some cases. The differences in the manifestation of negative turgor in living versus dead tissue are discussed. © 2016 John Wiley & Sons Ltd.
Small, high-pressure liquid hydrogen turbopump
NASA Technical Reports Server (NTRS)
Csomor, A.; Sutton, R.
1977-01-01
A high pressure, liquid hydrogen turbopump was designed, fabricated, and tested to a maximum speed of 9739 rad/s and a maximum pump discharge pressure of 2861 N/sq. cm. The approaches used in the analysis and design of the turbopump are described, and fabrication methods are discussed. Data obtained from gas generator tests, turbine performance calibration, and turbopump testing are presented.
Strong environmental tolerance of moss Venturiella under very high pressure
NASA Astrophysics Data System (ADS)
Ono, F.; Mori, Y.; Takarabe, K.; Nishihira, N.; Shindo, A.; Saigusa, M.; Matsushima, Y.; Saini, N. L.; Yamashita, M.
2010-03-01
It was shown by the present authors group that tardigrade can survive under high pressure of 7.5 GPa. In the case of land plants, however, no result of such experiment has been reported. We have extended our experiments to moss searching for lives under very high pressure. Spore placentas of moss Venturiella were sealed in a small Teflon capsule together with a liquid pressure medium. The capsule was put in the center of a pyrophillite cube, and the maximum pressure of 7.5 GPa was applied using a two-stage cubic anvil press. The pressure was kept constant at the maximum pressure for12, 24, 72 and 144 hours. After the pressure was released, the spores were seeded on a ager medium, and incubated for one week and more longer at 25°C with white light of 2000 lux. It was proved that 70-90% of the spores were alive and germinated after exposed to the maximum pressure of 7.5 GPa for up to 72 hours. However, after exposed to 7.5 GPa for 6 days, only 4 individuals in a hundred were germinated. The pressure tolerance of moss Venturiella is found to be stronger than a small animal, tardigrade.
Gafoor, V Abdul; Smita, B; Jose, James
2017-01-01
Idiopathic intracranial hypertension (IIH) is increased intracranial pressure (ICP) with normal cerebrospinal fluid (CSF) contents, in the absence of an intracranial mass, hydrocephalus, or other identifiable causes. The current knowledge of the treatment outcome of IIH is limited, and the data on the natural history of this entity are scant. The objective of the study is to study the treatment response of IIH by serially measuring the CSF opening pressure and to delineate the factors influencing the same. A prospective observational study in a cohort of fifty patients with IIH in whom CSF opening pressure was serially measured at pre-specified intervals. The mean CSF opening pressure at baseline was 302.4 ± 51.69 mm of H 2 O (range: 220-410). Even though a higher body mass index (BMI) showed a trend toward a higher CSF opening pressure, the association was not significant ( P = 0.168). However, the age of the patient had a significant negative correlation with the CSF pressure ( P = 0.006). The maximum reduction in CSF pressure occurred in the first 3 months of treatment, and thereafter it plateaued. Remission was attained in 12 (24%) patients. BMI had the strongest association with remission ( P = 0.001). In patients with IIH, treatment response is strongly related to BMI. However, patients with normal BMI are also shown to relapse and hence should have continuous, long-term follow-up. The reduction in CSF pressure attained in the first 3 months could reflect the long-term response to treatment.
Okubo, Bruno Memória; Matos, Anacélia Gomes de; Ribeiro Junior, Howard Lopes; Borges, Daniela de Paula; Oliveira, Roberta Taiane Germano de; de Castro, Marilena Facundo; Martins, Manoel Ricardo Alves; Gonçalves, Romélia Pinheiro; Bruin, Pedro Felipe Carvalhedo; Pinheiro, Ronald Feitosa; Magalhães, Silvia Maria Meira
2017-01-01
The ageing process is associated with gradual decline in respiratory system performance. Anemia is highly prevalent among older adults and usually associated with adverse outcomes. Myelodysplastic syndromes (MDS) are a heterogeneous group of hematologic malignancies with increasing incidence with age and characterized by anemia and other cytopenias. The main objectives of this study were to evaluate respiratory muscle strength and lung function in elderly patients with anemia, compare data between myelodysplastic syndromes and non-clonal anemias and evaluate the influence of serum IL-8 level and NF-kB activity on deteriorate pulmonary function in this specific population. Individuals aged 60 and older with anemia secondary to MDS, non-clonal anemia and healthy elderly individuals. Forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), and FEV1/ FVC ratio were measured by spirometry. Respiratory muscle strength was evaluated by maximal static respiratory pressures measurement. IL-8 analysis was performed by ELISA and activity of NF-kB by chemiluminescent assay. Mean Hb concentration was comparable between patients with anemia. Significant differences were detected between all patients with anemia and controls for maximum-effort inspiratory mouth pressure (PImax) and also for maximum-effort expiratory mouth pressure (PEmax). The MDS group recorded a significantly lower PImax and PEmax percent predicted when compared to non-clonal anemia group. For FVC and FEV1, a significant difference was found in anemic patients, with even significantly lower values for FVC and FEV1 in MDS group. No significant differences were detected for PImax and PEmax and spirometry parameters when anemic patients were stratified according to the degree of anemia. A significant negative impact in FVC (% pred), PImax (% pred) and PEmax (% pred) was observed in patients with MDS and higher levels of IL-8 or increased activity of NF-kB. A negative impact of anemia, independent of its degree, was demonstrated in respiratory muscle strength and lung function particularly in MDS. The well known elevated proinflammatory cytokines in MDS patients were proposed to play a role as was demonstrated by detrimental effect of higher IL-8 and NF-kB in pulmonary function tests in this population.
Water-Pressure Distribution on Seaplane Float
NASA Technical Reports Server (NTRS)
Thompson, F L
1929-01-01
The investigation presented in this report was conducted for the purpose of determining the distribution and magnitude of water pressures likely to be experienced on seaplane hulls in service. It consisted of the development and construction of apparatus for recording water pressures lasting one one-hundredth second or longer and of flight tests to determine the water pressures on a UO-1 seaplane float under various conditions of taxiing, taking off, and landing. The apparatus developed was found to operate with satisfactory accuracy and is suitable for flight tests on other seaplanes. The tests on the UO-1 showed that maximum pressures of about 6.5 pounds per square inch occur at the step for the full width of the float bottom. Proceeding forward from the step the maximum pressures decrease in magnitude uniformly toward the bow, and the region of highest pressures narrows toward the keel. Immediately abaft the step the maximum pressures are very small, but increase in magnitude toward the stern and there once reached a value of about 5 pounds per square inch. (author)
Numerical Modeling of Fluid Flow in Solid Tumors
Soltani, M.; Chen, P.
2011-01-01
A mathematical model of interstitial fluid flow is developed, based on the application of the governing equations for fluid flow, i.e., the conservation laws for mass and momentum, to physiological systems containing solid tumors. The discretized form of the governing equations, with appropriate boundary conditions, is developed for a predefined tumor geometry. The interstitial fluid pressure and velocity are calculated using a numerical method, element based finite volume. Simulations of interstitial fluid transport in a homogeneous solid tumor demonstrate that, in a uniformly perfused tumor, i.e., one with no necrotic region, because of the interstitial pressure distribution, the distribution of drug particles is non-uniform. Pressure distribution for different values of necrotic radii is examined and two new parameters, the critical tumor radius and critical necrotic radius, are defined. Simulation results show that: 1) tumor radii have a critical size. Below this size, the maximum interstitial fluid pressure is less than what is generally considered to be effective pressure (a parameter determined by vascular pressure, plasma osmotic pressure, and interstitial osmotic pressure). Above this size, the maximum interstitial fluid pressure is equal to effective pressure. As a consequence, drugs transport to the center of smaller tumors is much easier than transport to the center of a tumor whose radius is greater than the critical tumor radius; 2) there is a critical necrotic radius, below which the interstitial fluid pressure at the tumor center is at its maximum value. If the tumor radius is greater than the critical tumor radius, this maximum pressure is equal to effective pressure. Above this critical necrotic radius, the interstitial fluid pressure at the tumor center is below effective pressure. In specific ranges of these critical sizes, drug amount and therefore therapeutic effects are higher because the opposing force, interstitial fluid pressure, is low in these ranges. PMID:21673952
Effects of EVA gloves on grip strength and fatigue under low temperature and low pressure.
Tian, Yinsheng; Ding, Li; Liu, Heqing; Li, Yan; Li, Deyu; Wang, Li
2016-03-01
To study the effects of wearing extravehicular activity (EVA) gloves on grip strength and fatigue in low temperature, low pressure and mixing of two factors (low temperature and low pressure). The maximum grip strength and fatigue tests were performed with 10 healthy male subjects wearing gloves in a variety of simulated environments. The data was analysed using the normalization method. The results showed that wearing gloves significantly affected the maximum grip strength and fatigue. Pressure (29.6, 39.2 kPa) had more influence on the maximum grip compared with control group while low temperatures (-50, -90, -110 °C) had no influence on grip but affected fatigue dramatically. The results also showed that the maximum grip strength and fatigue were influenced significantly in a compound environment. Space environment remarkably reduced strength and endurance of the astronauts. However, the effects brought by the compound environment cannot be understood as the superimposition of low temperature and pressure effects. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Schuchmann, Maike; Siemers, Björn M
2010-09-17
Only recently data on bat echolocation call intensities is starting to accumulate. Yet, intensity is an ecologically crucial parameter, as it determines the extent of the bats' perceptual space and, specifically, prey detection distance. Interspecifically, we thus asked whether sympatric, congeneric bat species differ in call intensities and whether differences play a role for niche differentiation. Specifically, we investigated whether R. mehelyi that calls at a frequency clearly above what is predicted by allometry, compensates for frequency-dependent loss in detection distance by using elevated call intensity. Maximum echolocation call intensities might depend on body size or condition and thus be used as an honest signal of quality for intraspecific communication. We for the first time investigated whether a size-intensity relation is present in echolocating bats. We measured maximum call intensities and frequencies for all five European horseshoe bat species. Maximum intensity differed among species largely due to R. euryale. Furthermore, we found no compensation for frequency-dependent loss in detection distance in R. mehelyi. Intraspecifically, there is a negative correlation between forearm lengths and intensity in R. euryale and a trend for a negative correlation between body condition index and intensity in R. ferrumequinum. In R. hipposideros, females had 8 dB higher intensities than males. There were no correlations with body size or sex differences and intensity for the other species. Based on call intensity and frequency measurements, we estimated echolocation ranges for our study community. These suggest that intensity differences result in different prey detection distances and thus likely play some role for resource access. It is interesting and at first glance counter-intuitive that, where a correlation was found, smaller bats called louder than large individuals. Such negative relationship between size or condition and vocal amplitude may indicate an as yet unknown physiological or sexual selection pressure.
Schuchmann, Maike; Siemers, Björn M.
2010-01-01
Background Only recently data on bat echolocation call intensities is starting to accumulate. Yet, intensity is an ecologically crucial parameter, as it determines the extent of the bats' perceptual space and, specifically, prey detection distance. Interspecifically, we thus asked whether sympatric, congeneric bat species differ in call intensities and whether differences play a role for niche differentiation. Specifically, we investigated whether R. mehelyi that calls at a frequency clearly above what is predicted by allometry, compensates for frequency-dependent loss in detection distance by using elevated call intensity. Maximum echolocation call intensities might depend on body size or condition and thus be used as an honest signal of quality for intraspecific communication. We for the first time investigated whether a size-intensity relation is present in echolocating bats. Methodology/Principal Findings We measured maximum call intensities and frequencies for all five European horseshoe bat species. Maximum intensity differed among species largely due to R. euryale. Furthermore, we found no compensation for frequency-dependent loss in detection distance in R. mehelyi. Intraspecifically, there is a negative correlation between forearm lengths and intensity in R. euryale and a trend for a negative correlation between body condition index and intensity in R. ferrumequinum. In R. hipposideros, females had 8 dB higher intensities than males. There were no correlations with body size or sex differences and intensity for the other species. Conclusions/Significance Based on call intensity and frequency measurements, we estimated echolocation ranges for our study community. These suggest that intensity differences result in different prey detection distances and thus likely play some role for resource access. It is interesting and at first glance counter-intuitive that, where a correlation was found, smaller bats called louder than large individuals. Such negative relationship between size or condition and vocal amplitude may indicate an as yet unknown physiological or sexual selection pressure. PMID:20862252
Social judgment of abortion: a black-sheep effect in a Catholic sheepfold.
Bègue, L
2001-10-01
French Catholic participants (N = 340) with high or low religious identification read 1 of 8 scenarios presented as an interview with a female target 2 months after she had had an abortion. The experimental device varied situational pressure (pressure vs. no pressure), the target's religious social identity (Catholic vs. neutral), and the consequences of abortion for the target (positive vs. negative). The participants then rated the acceptability of the target's decision. The participants judged abortion more negatively in the no-pressure condition. Moreover, the participants with high religious identification judged abortion more negatively than did those with low religious identification. In partial support of a black-sheep effect, the participants with high religious identification judged the Catholic target more negatively than they judged the neutral one in some conditions (pressure, negative consequences). In other conditions (no pressure, both positive and negative consequences), the participants with low religious identification judged the Catholic target more positively than they judged the neutral one.
Lamina, Sikiru
2011-03-01
The purpose of the study was to investigate the effect of interval and continuous training program on blood pressure and serum uric acid (SUA) levels in subjects with hypertension. Three hundred and fifty-seven male patients with mild to moderate systolic blood pressure (SBP) between 140 and 179 and diastolic blood pressure (DBP) between 90 and 109 mm Hg essential hypertension were age-matched and grouped into interval, continuous, and control groups. The interval (work:rest ratio of 1:1) and continuous groups were involved in an 8-week interval and continuous training program of 45-60 minutes, at intensities of 60-79% of heart rate maximum, whereas the control group remained sedentary during this period. SBP, DBP, maximum oxygen uptake (VO2max) and SUA concentration were assessed. One-way analysis of variance and Scheffe and Pearson correlation tests were used in data analysis. Findings of the study revealed significant effect of exercise training program on VO2max, SBP, DBP, and SUA. However, there was no significant difference between the interval and continuous groups. Changes in VO2max negatively correlated with changes in SUA (r = -0.220) at p < 0.05. It was concluded that both moderate-intensity interval and continuous training programs are effective and neither seems superior to the other in the nonpharmacological management of hypertension and may prevent cardiovascular events through the downregulation of SUA in hypertension. Findings of the study support the recommendations of moderate-intensity interval and continuous training programs as adjuncts for nonpharmacological management of essential hypertension.
Skin blood flow with elastic compressive extravehicular activity space suit.
Tanaka, Kunihiko; Gotoh, Taro M; Morita, Hironobu; Hargens, Alan R
2003-10-01
During extravehicular activity (EVA), current space suits are pressurized with 100% oxygen at approximately 222 mmHg. A tight elastic garment, or mechanical counter pressure (MCP) suit that generates pressure by compression, may have several advantages over current space suit technology. In this study, we investigated local microcirculatory effects produced with negative ambient pressure with an MCP sleeve. The MCP glove and sleeve generated pressures similar to the current space suit. MCP remained constant during negative pressure due to unchanged elasticity of the material. Decreased skin capillary blood flow and temperature during MCP compression was counteracted by greater negative pressure or a smaller pressure differential.
21 CFR 868.5935 - External negative pressure ventilator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... ventilator. (a) Identification. An external negative pressure ventilator (e.g., iron lung, cuirass) is a device chamber that is intended to support a patient's ventilation by alternately applying and releasing external negative pressure over the diaphragm and upper trunk of the patient. (b) Classification. Class II...
Studies on unsteady pressure fields in the region of separating and reattaching flows
NASA Astrophysics Data System (ADS)
Govinda Ram, H. S.; Arakeri, V. H.
1990-12-01
Experimental studies on the measurement of pressure fields in the region of separating and reattaching flows behind several two-dimensional fore-bodies and one axisymmetric body are reported. In particular, extensive measurements of mean pressure, surface pressure fluctuation, and pressure fluctuation within the flow were made for a series of two-dimensional fore-body shapes consisting of triangular nose with varying included angle. The measurements from different bodies are compared and one of the important findings is that the maximum values of rms pressure fluctuation levels in the shear layer approaching reattachment are almost equal to the maximum value of the surface fluctuation levels.
Wang, Guo-Qi; Li, Tong-Tong; Li, Zhi-Rui; Zhang, Li-Cheng
2016-01-01
Objective. To investigate the effect of negative pressure conditions induced by NPWT on P. aeruginosa. Methods. P. aeruginosa was cultured in a Luria–Bertani medium at negative pressure of −125 mmHg for 24 h in the experimental group and at atmospheric pressure in the control group. The diameters of the colonies of P. aeruginosa were measured after 24 h. ELISA kit, orcinol method, and elastin-Congo red assay were used to quantify the virulence factors. Biofilm formation was observed by staining with Alexa Fluor® 647 conjugate of concanavalin A (Con A). Virulence-regulated genes were determined by quantitative RT-PCR. Results. As compared with the control group, growth of P. aeruginosa was inhibited by negative pressure. The colony size under negative pressure was significantly smaller in the experimental group than that in the controls (p < 0.01). Besides, reductions in the total amount of virulence factors were observed in the negative pressure group, including exotoxin A, rhamnolipid, and elastase. RT-PCR results revealed a significant inhibition in the expression level of virulence-regulated genes. Conclusion. Negative pressure could significantly inhibit the growth of P. aeruginosa. It led to a decrease in the virulence factor secretion, biofilm formation, and a reduction in the expression level of virulence-regulated genes. PMID:28074188
DEM interpolation weight calculation modulus based on maximum entropy
NASA Astrophysics Data System (ADS)
Chen, Tian-wei; Yang, Xia
2015-12-01
There is negative-weight in traditional interpolation of gridding DEM, in the article, the principle of Maximum Entropy is utilized to analyze the model system which depends on modulus of space weight. Negative-weight problem of the DEM interpolation is researched via building Maximum Entropy model, and adding nonnegative, first and second order's Moment constraints, the negative-weight problem is solved. The correctness and accuracy of the method was validated with genetic algorithm in matlab program. The method is compared with the method of Yang Chizhong interpolation and quadratic program. Comparison shows that the volume and scaling of Maximum Entropy's weight is fit to relations of space and the accuracy is superior to the latter two.
Fong, Kenton D; Hu, Dean; Eichstadt, Shaundra; Gupta, Deepak M; Pinto, Moshe; Gurtner, Geoffrey C; Longaker, Michael T; Lorenz, H Peter
2010-05-01
Negative-pressure wound therapy is traditionally achieved by attaching an electrically powered pump to a sealed wound bed and applying subatmospheric pressure by means of gauze or foam. The Smart Negative Pressure (SNaP) System (Spiracur, Inc., Sunnyvale, Calif.) is a novel ultraportable negative-pressure wound therapy system that does not require an electrically powered pump. Negative pressure produced by the SNaP System, and a powered pump, the wound vacuum-assisted closure advanced-therapy system (Kinetic Concepts, Inc., San Antonio, Texas), were compared in vitro using bench-top pressure sensor testing and microstrain and stress testing with pressure-sensitive film and micro-computed tomographic scan analysis. In addition, to test in vivo efficacy, 10 rats underwent miniaturized SNaP (mSNaP) device placement on open wounds. Subject rats were randomized to a system activation group (approximately -125 mmHg) or a control group (atmospheric pressure). Wound measurements and histologic data were collected for analysis. Bench measurement revealed nearly identical negative-pressure delivery and mechanical strain deformation patterns between both systems. Wounds treated with the mSNaP System healed faster, with decreased wound size by postoperative day 7 (51 percent versus 12 percent reduction; p < 0.05) and had more rapid complete reepithelialization (21 days versus 32 days; p < 0.05). The mSNaP device also induced robust granulation tissue formation. The SNaP System and an existing electrically powered negative-pressure wound therapy system have similar biomechanical properties and functional wound-healing benefits. The potential clinical efficacy of the SNaP device for the treatment of wounds is supported.
Code of Federal Regulations, 2010 CFR
2010-07-01
....7895(a) for Tanks Managing Remediation Material With a Maximum HAP Vapor Pressure Less Than 76.6 kPa 2... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Site Remediation Pt. 63... Tanks Managing Remediation Material With a Maximum HAP Vapor Pressure Less Than 76.6 kPa If your tank...
Low-level nocturnal wind maximum over the Central Amazon Basin
NASA Technical Reports Server (NTRS)
Greco, Steven; Ulanski, Stanley; Garstang, Michael; Houston, Samuel
1992-01-01
A low-level nocturnal wind maximum is shown to exist over extensive and nearly undisturbed rainforest near the central Amazon city of Manaus. Meteorological data indicate the presence of this nocturnal wind maximum during both the wet and dry seasons of the Central Amazon Basin. Daytime wind speeds which are characteristically 3-7 m/s between 300 and 1000 m increase to 10-15 m/s shortly after sunset. The wind-speed maximum is reached in the early evening, with wind speeds remaining high until several hours after sunrise. The nocturnal wind maximum is closely linked to a strong low-level inversion formed by radiational cooling of the rainforest canopy. Surface and low-level pressure gradients between the undisturbed forest and the large Amazon river system and the city of Manaus are shown to be responsible for much of the nocturnal wind increase. The pressure gradients are interpreted as a function of the thermal differences between undisturbed forest and the river/city. The importance of both the frictional decoupling and the horizontal pressure gradient suggest that the nocturnal wind maximum does not occur uniformly over all Amazonia. Low-level winds are thought to be pervasive under clear skies and strong surface cooling and that, in many places (i.e., near rivers), local pressure gradients enhance the low-level nocturnal winds.
NASA Astrophysics Data System (ADS)
Nwe, Y. Y.; Grundmann, G.
1990-11-01
Fluid inclusions in emeralds from the Habachtal, Central Tauern Window, have been studied by microthermometry. Results allow a detailed reconstruction of trapping history and evolution of the metamorphic fluids during the Middle Alpine Tauernkristallisation metamorphic event and some of the subsequent cooling period. Five different types of fluid inclusions, corresponding to at least five trapping periods, have been distinguished. In general, the earliest primary (type 1) inclusions, which occur as negative crystals or thin long tubes, are represented by low salinity ( < 10 wt. % NaCl equivalent) aqueous fluids with or without CO 2 with up to XCO 2 ≈ 0.04. Later primary type 2 inclusions are distinguished by different morphologies and distribution patterns. Lower salinity CO 2-free brines and CO 2-bearing denser inclusions with higher CO 2 contents (up to XCO 2 ≈ 0.11) are characteristic of this stage. The type 2 inclusions may also occur as pseudosecondary arrays. The effects of necking have been studied, and found to be considerable in the type 1 primary inclusions. This mechanism has occasionally resulted in the appearance of almost pure CO 2 fluids. The possibility of fluid immiscibility has been examined, and rejected, for the apparent "coexistence" of primary brine and CO 2-bearing inclusions. Instead, mixing of fluids which fluctuated between two different compositions is proposed. The fluctuation was probably due to the sequence of hydration reactions during the Tauernkristallisation. Maximum trapping pressures (3.6 kbar) obtained for stage 1 of the Tauernkristallisation are thought to represent a situation where sublithostatic fluid pressures exested in shear zones during the crystallisation period of many of the emerald cores and coexisting biotite and actinolite. Maximum fluid pressures of 7 kbar were obtained from the type 2 inclusions. This is similar to pressure estimates obtained from mineral equilibria. At least four phases of deformation are indicated by the trapping history. A pressure-temperature-time path for the Tauernkristallisation and the subsequent cooling/uplift period has been constructed for the Habachtal area, using the maximum pressure estimates obtained in this work together with previously existing data. In the cooling period, fluid pressures lower than the lithostatic load again prevailed. This difference, about 1-2 kbar, was probably due to late stage fracturing and/or the development of an open system. At least two more phases of minor deformation and three more stages of entrapment have been defined for this period. During this time, fluids gradually evolved towards more CO 2-poor, and less saline compositions. The present work shows that the possibility of fluctuations in fluid pressures must be considered seriously when attempting to define the PT cooling path from fluid inclusions in metamorphic rocks, especially those in shear zones. Postulations of retrograde PT paths based on fluid inclusions alone may result in pressure estimates which are too low.
Factors affecting plant growth in membrane nutrient delivery
NASA Technical Reports Server (NTRS)
Dreschel, T. W.; Wheeler, R. M.; Sager, J. C.; Knott, W. M.
1990-01-01
The development of the tubular membrane plant growth unit for the delivery of water and nutrients to roots in microgravity has recently focused on measuring the effects of changes in physical variables controlling solution availability to the plants. Significant effects of membrane pore size and the negative pressure used to contain the solution were demonstrated. Generally, wheat grew better in units with a larger pore size but equal negative pressure and in units with the same pore size but less negative pressure. Lettuce also exhibited better plant growth at less negative pressure.
Comparison of hydrodynamic simulations with two-shockwave drive target experiments
NASA Astrophysics Data System (ADS)
Karkhanis, Varad; Ramaprabhu, Praveen; Buttler, William
2015-11-01
We consider hydrodynamic continuum simulations to mimic ejecta generation in two-shockwave target experiments, where metallic surface is loaded by two successive shock waves. Time of second shock in simulations is determined to match experimental amplitudes at the arrival of the second shock. The negative Atwood number (A --> - 1) of ejecta simulations leads to two successive phase inversions of the interface corresponding to the passage of the shocks from heavy to light media in each instance. Metallic phase of ejecta (solid/liquid) depends on shock loading pressure in the experiment, and we find that hydrodynamic simulations quantify the liquid phase ejecta physics with a fair degree of accuracy, where RM instability is not suppressed by the strength effect. In particular, we find that our results of free surface velocity, maximum ejecta velocity, and maximum ejecta areal density are in excellent agreement with their experimental counterparts, as well as ejecta models. We also comment on the parametric space for hydrodynamic simulations in which they can be used to compare with the target experiments.
Cambridge, M L; Zavala-Perez, A; Cawthray, G R; Mondon, J; Kendrick, G A
2017-02-15
Highly saline brines from desalination plants expose seagrass communities to salt stress. We examined effects of raised salinity (46 and 54psu) compared with seawater controls (37psu) over 6weeks on the seagrass, Posidonia australis, growing in tanks with the aim of separating effects of salinity from other potentially deleterious components of brine and determining appropriate bioindicators. Plants survived exposures of 2-4weeks at 54psu, the maximum salinity of brine released from a nearby desalination plant. Salinity significantly reduced maximum quantum yield of PSII (chlorophyll a fluorescence emissions). Leaf water potential (Ψ w ) and osmotic potential (Ψ π ) were more negative at increased salinity, while turgor pressure (Ψ p ) was unaffected. Leaf concentrations of K + and Ca 2+ decreased, whereas concentrations of sugars (mainly sucrose) and amino acids increased. We recommend leaf osmolarity, ion, sugar and amino acid concentrations as bioindicators for salinity effects, associated with brine released in desalination plant outfalls. Copyright © 2016 Elsevier Ltd. All rights reserved.
Two optimal working regimes of the ”long” Iguasu gas centrifuge
NASA Astrophysics Data System (ADS)
Borman, V. D.; Bogovalov, S. V.; Borisevich, V. D.; Tronin, I. V.; Tronin, V. N.
2016-09-01
We argue on the basis of the results of optimization calculations that the dependence of the optimal separative power of the Iguasu gas centrifuge with 2 m rotor has two local maxima,corresponding pressures of p max1 = 35 mmHg and p max2 = 350 mmHg. The optimal separative power values in these maxima differ by the value of 0.6%. Low pressure maximum is caused by the thermal drive, whereas high pressure maximum is caused by both thermal and mechanical drives. High pressure maximum is located on wide ’’plateau” from p 1 = 200 mmHg to p 2 = 500 mmHg, where the optimal separative power changes in the range of 0.7%. In this way, Iguasu gas centrifuge has two optimal working regimes with different sets of working parameters and close slightly different values of the separative power. Calculations show that high pressure regime is less sensitive to the parameters change than low pressure one.
Performance of a green propellant thruster with discharge plasma
NASA Astrophysics Data System (ADS)
Shindo, Takahiro; Wada, Asato; Maeda, Hiroshi; Watanabe, Hiroki; Takegahara, Haruki
2017-02-01
A discharge plasma was applied to initiate the combustion of a hydroxylammonium nitrate-based propellant as a substitute for the catalysts that are typically employed. The resulting thrust and thrust-to-power ratio during short interval firing tests as well as the chamber pressure with a single pulse discharge were evaluated. A 1.5-s firing test generated a maximum thrust of 322 mN along with a thrust-to-power ratio of 0.95 mN/W. During the single-pulse discharge trials, pulsed discharge capacitor energies of 5.4, 10.8, and 16.4 J were assessed, and the maximum chamber pressure was found to increase as the energy was raised. The maximum chamber pressures varied widely between experimental trials, and a 16.4-J energy value resulted in the highest chamber pressure of over 1 MPaG. The time spans between the pulsed discharge and the peak chamber pressure were in the range of 1-2 ms, representing a chamber pressure increase rate much higher than those obtained with standard catalysts.
Maier, Maximilian B; Lenz, Christian A; Vogel, Rudi F
2017-01-01
The effect of high pressure thermal (HPT) processing on the inactivation of spores of proteolytic type B Clostridium botulinum TMW 2.357 in four differently composed low-acid foods (green peas with ham, steamed sole, vegetable soup, braised veal) was studied in an industrially feasible pressure range and temperatures between 100 and 120°C. Inactivation curves exhibited rapid inactivation during compression and decompression followed by strong tailing effects. The highest inactivation (approx. 6-log cycle reduction) was obtained in braised veal at 600 MPa and 110°C after 300 s pressure-holding time. In general, inactivation curves exhibited similar negative exponential shapes, but maximum achievable inactivation levels were lower in foods with higher fat contents. At high treatment temperatures, spore inactivation was more effective at lower pressure levels (300 vs. 600 MPa), which indicates a non-linear pressure/temperature-dependence of the HPT spore inactivation efficiency. A comparison of spore inactivation levels achievable using HPT treatments versus a conventional heat sterilization treatment (121.1°C, 3 min) illustrates the potential of combining high pressures and temperatures to replace conventional retorting with the possibility to reduce the process temperature or shorten the processing time. Finally, experiments using varying spore inoculation levels suggested the presence of a resistant fraction comprising approximately 0.01% of a spore population as reason for the pronounced tailing effects in survivor curves. The loss of the high resistance properties upon cultivation indicates that those differences develop during sporulation and are not linked to permanent modifications at the genetic level.
NASA Astrophysics Data System (ADS)
Wang, Xinyi; Shen, Jialong; Liu, Xinbo
2018-01-01
Against the technical defects of universally applicable beam tube monitoring system at present, such as air suction in the beam tube, line clogging, long sampling time, etc., the paper analyzes the current situation of the spontaneous combustion fire disaster forecast of mine in our country and these defects one by one. On this basis, the paper proposes a research thought that improving the positive pressure beam tube so as to substitute the negative pressure beam tube. Then, the paper introduces the beam tube monitoring system based on positive pressure technology through theoretical analysis and experiment. In the comparison with negative pressure beam tube, the paper concludes the advantage of the new system and draws the conclusion that the positive pressure beam tube is superior to the negative pressure beam tube system both in test result and test time. At last, the paper proposes prospect of the beam tube monitoring system based on positive pressure technology.
The Annual Cycle of Water Vapor on Mars as Observed by the Thermal Emission Spectrometer
NASA Technical Reports Server (NTRS)
Smith, Michael D.; Vondrak, Richard R. (Technical Monitor)
2001-01-01
Spectra taken by the Mars Global Surveyor Thermal Emission Spectrometer (TES) have been used to monitor the latitude, longitude, and seasonal dependence of water vapor for over one full Martian year (March 1999-March 2001). A maximum in water vapor abundance is observed at high latitudes during mid-summer in both hemispheres, reaching a maximum value of approximately 100 pr-micrometer in the north and approximately 50 pr-micrometer in the south. Low water vapor abundance (<5 pr-micrometer) is observed at middle and high latitudes in the fall and winter of both hemispheres. There are large differences in the hemispheric (north versus south) and seasonal (perihelion versus aphelion) behavior of water vapor. The latitudinal and seasonal dependence of the decay of the northern summer water vapor maximum implies cross-equatorial transport of water to the southern hemisphere, while there is little or no corresponding transport during the decay of the southern hemisphere summer maximum. The latitude-longitude dependence of annually-averaged water vapor (corrected for topography) has a significant positive correlation with albedo and significant negative correlations with thermal inertia and surface pressure. Comparison of TES results with those retrieved from the Viking Orbiter Mars Atmospheric Water Detectors (MAWD) experiments shows some similar features, but also many significant differences. The southern hemisphere maximum observed by TES was not observed by MAWD and the large latitudinal gradient in annually-averaged water vapor observed by MAWD does not appear in the TES results.
A novel vacuum assisted closure therapy model for use with percutaneous devices.
Cook, Saranne J; Nichols, Francesca R; Brunker, Lucille B; Bachus, Kent N
2014-06-01
Long-term maintenance of a dermal barrier around a percutaneous prosthetic device remains a common clinical problem. A technique known as Negative Pressure Wound Therapy (NPWT) uses negative pressure to facilitate healing of impaired and complex soft tissue wounds. However, the combination of using negative pressure with percutaneous prosthetic devices has not been investigated. The goal of this study was to develop a methodology to apply negative pressure to the tissues surrounding a percutaneous device in an animal model; no tissue healing outcomes are presented. Specifically, four hairless rats received percutaneous porous coated titanium devices implanted on the dorsum and were bandaged with a semi occlusive film dressing. Two of these animals received NPWT; two animals received no NPWT and served as baseline controls. Over a 28-day period, both the number of dressing changes required between the two groups as well as the pressures were monitored. Negative pressures were successfully applied to the periprosthetic tissues in a clinically relevant range with a manageable number of dressing changes. This study provides a method for establishing, maintaining, and quantifying controlled negative pressures to the tissues surrounding percutaneous devices using a small animal model. Published by Elsevier Ltd.
Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong
2014-01-01
An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa. PMID:24977219
Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauner, D.; Kurutz, U.; Fantz, U.
2015-04-08
As the negative hydrogen ion density n{sub H{sup −}} is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H{sup −} is measured directly,more » however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H{sup −} is produced in the plasma volume, laser photodetachment is applied as the standard method to measure n{sub H{sup −}}. The additional application of CRDS provides the possibility to directly obtain absolute values of n{sub H{sup −}}, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H{sup −} production and destruction processes. The modelled densities are adapted to the absolute measurements of n{sub H{sup −}} via CRDS, allowing to identify collisions of H{sup −} with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H{sup −} in the plasma volume at HOMER. Furthermore, the characteristic peak of n{sub H{sup −}} observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as n{sub e} determines the volume production rate via dissociative electron attachment to vibrationally excited hydrogen molecules.« less
21 CFR 878.4683 - Non-Powered suction apparatus device intended for negative pressure wound therapy.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Non-Powered suction apparatus device intended for... Surgical Devices § 878.4683 Non-Powered suction apparatus device intended for negative pressure wound therapy. (a) Identification. A non-powered suction apparatus device intended for negative pressure wound...
Yan, Ming-Ming; Chen, Cai-Yun; Zhao, Bao-Shan; Zu, Yuan-Gang; Fu, Yu-Jie; Liu, Wei; Efferth, Thomas
2010-10-01
The optimal conditions for extraction of astragalosides III and IV (AGs III and IV) in Radix Astragali by negative pressure cavitation-accelerated enzyme pretreatment were studied on the basis of a Box-Behnken design and response surface methodology. Experimental results showed that negative pressure, amount of enzyme and incubation temperature were the main factors governing the enzyme pretreatment of Radix Astragali. The optimum parameters were obtained as follows: negative pressure -0.08 Mpa, amount of enzyme 1.48% (w/w of materials) and incubation temperature 45 degrees C. Under the optimal conditions, the maximal extraction yields of AGs III and IV were 0.103 and 0.325 mg/g, which were 41.67% and 65.31% increased as compared to those without enzyme pretreatment, respectively. The effect of negative pressure cavitation and enzyme pretreatment on the structural changes of plant cells was observed by scanning electron microscopy. In conclusion, negative pressure cavitation-accelerated enzyme pretreatment was proved to be environment-friendly and economical, and could be used in secondary metabolites production. Copyright 2010 Elsevier Ltd. All rights reserved.
14 CFR Appendix C to Part 135 - Helicopter Flight Recorder Specifications
Code of Federal Regulations, 2012 CFR
2012-01-01
... Maximum range +5% 1 1% 2 Engine torque Maximum range ±5% 1 1% 2 Flight Control—Hydraulic Pressure Primary... kts., whichever is greater 1 1 kt. Altitude −1,000 ft. to 20,000 ft. pressure altitude ±100 to ±700 ft...
40 CFR 60.113 - Monitoring of operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.115a - Monitoring of operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.115a - Monitoring of operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.113 - Monitoring of operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.115a - Monitoring of operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.113 - Monitoring of operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.113 - Monitoring of operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.115a - Monitoring of operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.115a - Monitoring of operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.113 - Monitoring of operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
Pessoa, Isabela M B S; Houri Neto, Miguel; Montemezzo, Dayane; Silva, Luisa A M; Andrade, Armèle Dornelas De; Parreira, Verônica F
2014-01-01
The maximum static respiratory pressures, namely the maximum inspiratory pressure (MIP) and maximum expiratory pressure (MEP), reflect the strength of the respiratory muscles. These measures are simple, non-invasive, and have established diagnostic and prognostic value. This study is the first to examine the maximum respiratory pressures within the Brazilian population according to the recommendations proposed by the American Thoracic Society and European Respiratory Society (ATS/ERS) and the Brazilian Thoracic Association (SBPT). To establish reference equations, mean values, and lower limits of normality for MIP and MEP for each age group and sex, as recommended by the ATS/ERS and SBPT. We recruited 134 Brazilians living in Belo Horizonte, MG, Brazil, aged 20-89 years, with a normal pulmonary function test and a body mass index within the normal range. We used a digital manometer that operationalized the variable maximum average pressure (MIP/MEP). At least five tests were performed for both MIP and MEP to take into account a possible learning effect. We evaluated 74 women and 60 men. The equations were as follows: MIP=63.27-0.55 (age)+17.96 (gender)+0.58 (weight), r(2) of 34% and MEP= - 61.41+2.29 (age) - 0.03(age(2))+33.72 (gender)+1.40 (waist), r(2) of 49%. In clinical practice, these equations could be used to calculate the predicted values of MIP and MEP for the Brazilian population.
The Effect of Valve Cooling upon Maximum Permissible Engine Output as Limited by Knock
NASA Technical Reports Server (NTRS)
Munger, Maurice; Wilsted, H D; Mulcahy, B A
1942-01-01
A Wright GR-1820-G200 cylinder was tested over a wide range of fuel-air ratios at maximum permissible power output as limited by knock with three different degrees of valve cooling. The valves used were stock valves (solid inlet valve and hollow sodium-cooled exhaust valve), hollow valves with no coolant, and hollow valves with flowing water as a coolant. Curves showing the variation in maximum permissible values of inlet-air pressure, indicated mean effective pressure, cylinder charge, and indicated specific fuel consumption with change in fuel-air ratio and valve cooling are shown. The use of valves cooled by a stream of water passing through their hollow interiors permitted indicated mean effective pressures 10 percent higher than the mean effective pressures permissible with stock valves when the engine was operated with fuel-air ratios from 0.055 to 0.065. Operation of the engine with lean mixtures with uncooled hollow valves resulted in power output below the output obtained with the stock valves. The data show an increase in maximum permissible indicated mean effective pressure due to cooling the valves, which averages only 2.1 percent with fuel-air ratios from 0.075 to 0.105.
Velaei, Kobra; Torkman, Giti; Rezaie, Fatemealsadat; Amini, Abdollah; Noruzian, Mohsen; Tavassol, Azaedh; Bayat, Mehernoush
2012-01-01
This study used a biomechanical test to evaluate the effects of pentoxifylline administration on the wound healing process of an experimental pressure sore induced in rats. Under general anesthesia and sterile conditions, experimental pressure sores generated by no. 25 Halsted mosquito forceps were inflicted on 12 adult male rats. Pentoxifylline was injected intraperitoneally at a dose of 50 mg/kg daily from the day the pressure sore was generated, for a period of 20 days. At the end of 20 days, rats were sacrificed and skin samples extracted. Samples were biomechanically examined by a material testing instrument for maximum stress (N mm2), work up to maximum force (N), and elastic stiffness (N/mm). In the experimental group, maximum stress (2.05±0.15) and work up to maximum force (N/mm) (63.75±4.97) were significantly higher than the control group (1.3±0.27 and 43.3±14.96, P=0.002 and P=0.035, respectively). Pentoxifylline administration significantly accelerated the wound healing process in experimental rats with pressure sores, compared to that of the control group. PMID:23091522
Velaei, Kobra; Bayat, Mohammad; Torkman, Giti; Rezaie, Fatemealsadat; Amini, Abdollah; Noruzian, Mohsen; Tavassol, Azaedh; Bayat, Mehernoush
2012-09-01
This study used a biomechanical test to evaluate the effects of pentoxifylline administration on the wound healing process of an experimental pressure sore induced in rats. Under general anesthesia and sterile conditions, experimental pressure sores generated by no. 25 Halsted mosquito forceps were inflicted on 12 adult male rats. Pentoxifylline was injected intraperitoneally at a dose of 50 mg/kg daily from the day the pressure sore was generated, for a period of 20 days. At the end of 20 days, rats were sacrificed and skin samples extracted. Samples were biomechanically examined by a material testing instrument for maximum stress (N mm(2)), work up to maximum force (N), and elastic stiffness (N/mm). In the experimental group, maximum stress (2.05±0.15) and work up to maximum force (N/mm) (63.75±4.97) were significantly higher than the control group (1.3±0.27 and 43.3±14.96, P=0.002 and P=0.035, respectively). Pentoxifylline administration significantly accelerated the wound healing process in experimental rats with pressure sores, compared to that of the control group.
Moore, Jonathan P; Hainsworth, Roger; Drinkhill, Mark J
2004-01-01
We investigated whether the reflex responses to stimulation of pulmonary arterial baroreceptors were altered by intrathoracic pressure changes similar to those encountered during normal breathing. Dogs were anaesthetized with α-chloralose, a cardiopulmonary bypass was established, and the pulmonary trunk and its main branches as far as the first lobar arteries were vascularly isolated and perfused with venous blood. The chest was closed following connection to the perfusion circuit and pressures distending the aortic arch, carotid sinus and coronary artery baroreceptors were controlled. Changes in the descending aortic (systemic) perfusion pressure (SPP; flow constant) were used to assess changes in systemic vascular resistance. Values of SPP were plotted against mean pulmonary arterial pressure (PAP) and sigmoid functions applied. From these curves we derived the threshold pressures (corresponding to 5% of the overall response of SPP), the maximum slopes (equivalent to peak gain) and the corresponding PAP (equivalent to ‘set point’). Stimulus–response curves were compared between data obtained with intrathoracic pressure at atmospheric and with a phasic intrathoracic pressure ranging from atmospheric to around −10 mmHg (18 cycles min−1). Results were obtained from seven dogs and are given as means ±s.e.m. Compared to the values obtained when intrathoracic pressure was at atmospheric, the phasic intrathoracic pressure decreased the pulmonary arterial threshold pressure in five dogs; average change from 28.4 ± 5.9 to 19.3 ± 5.9 mmHg (P > 0.05). The inflexion pressure was significantly reduced from 37.8 ± 4.8 to 27.4 ± 4.0 mmHg (P < 0.03), but the slopes of the curves were not consistently changed. These results have shown that a phasic intrathoracic pressure, which simulates respiratory oscillations, displaces the stimulus–response curve of the pulmonary arterial baroreceptors to lower pressures so that it lies within a physiological range of pressures. PMID:14724182
Numerical and experimental analyses of out-of-plane deformation of triaxial woven fabric
NASA Astrophysics Data System (ADS)
Zhou, Hongtao; Xiao, Xueliang; Qian, Kun; Zhang, Kun; Zhang, Diantang
2018-05-01
With three sets of yarns interwoven in plane for angle-interlock structure, triaxial woven fabric (TWF) is a unique and perfect construction material for products subjected to multi-directional loads, as compared to classic fabrics of orthogonal structure. Finite-element analysis (FEA) and experimental methods are applied to study the out-of-plane deformation (OPD) behaviors of TWF and plain woven fabric (PWF). Among this, the yarn cross section, path and woven structure are obtained using optical microscopy, the related parameters are input to finite element model (FEM) for simulating the OPD behavior. This paper presents a detailed analysis on out-of-plane deformation behavior of TWF and PWF by the finite element method and experiment. In consideration of the comparability, TWF and PWF are designed and prepared with the same yarns and areal density (g/m2). The deformation profile, maximum stress and maximum deflection of TWF and PWF are obtained by FEA and experiment. It has been found that the maximum deflection and maximum stress of TWF is smaller than that of PWF under the same uniform negative pressure, both FEA and experiment. Furthermore, the stress distribution of TWF is more evenly than that of PWF, indicating that TWF exhibited superior isotropy in comparison with PWF for one more directional set of yarns in undertaking the OPD.
[Effects of synoptic type on surface ozone pollution in Beijing].
Tang, Gui-qian; Li, Xin; Wang, Xiao-ke; Xin, Jin-yuan; Hu, Bo; Wang, Li-li; Ren, Yu-fen; Wang, Yue-Si
2010-03-01
Ozone (O), influenced by meteorological factors, is a primary gaseous photochemical pollutant during summer to fall in Beijing' s urban ambient. Continuous monitoring during July to September in 2008 was carried out at four sites in Beijing. Analyzed with synoptic type, the results show that the ratios of pre-low cylonic (mainly Mongolia cyclone) and pre-high anticylonic to total weather conditions are about 42% and 20%, illustrating the high-and low-ozone episodes, respectively. At the pre-low cylonic conditions, high temperature, low humidity, mountain and valley winds caused by local circulation induce average hourly maximum ozone concentration (volume fraction) up to 102.2 x 10(-9), negative correlated with atmospheric pressure with a slope of -3.4 x 10(-9) Pa(-1). The time of mountain wind changed to valley wind dominates the diurnal time of maximum ozone, generally around 14:00. At the pre-high anticylonic conditions, low temperature, high humidity and systematic north wind induce average hourly maximum ozone concentration (volume fraction) only 49.3 x 10(-9), the diurnal time of maximum ozone is deferred by continuous north wind till about 16:00. The consistency of photochemical pollution in Beijing region shows that good correlation exists between synoptic type and ozone concentration. Therefore, getting an eye on the structure and evolution of synoptic type is of great significances for forecasting the photochemical pollution.
49 CFR 192.620 - Alternative maximum allowable operating pressure for certain steel pipelines.
Code of Federal Regulations, 2014 CFR
2014-10-01
... for certain steel pipelines. 192.620 Section 192.620 Transportation Other Regulations Relating to... STANDARDS Operations § 192.620 Alternative maximum allowable operating pressure for certain steel pipelines..., 2, or 3 location; (2) The pipeline segment is constructed of steel pipe meeting the additional...
49 CFR 192.620 - Alternative maximum allowable operating pressure for certain steel pipelines.
Code of Federal Regulations, 2011 CFR
2011-10-01
... of a maximum allowable operating pressure based on higher stress levels in the following areas: Take... pipeline at the increased stress level under this section with conventional operation; and (ii) Describe... targeted audience; and (B) Include information about the integrity management activities performed under...
49 CFR 192.620 - Alternative maximum allowable operating pressure for certain steel pipelines.
Code of Federal Regulations, 2013 CFR
2013-10-01
... of a maximum allowable operating pressure based on higher stress levels in the following areas: Take... pipeline at the increased stress level under this section with conventional operation; and (ii) Describe... targeted audience; and (B) Include information about the integrity management activities performed under...
49 CFR 192.620 - Alternative maximum allowable operating pressure for certain steel pipelines.
Code of Federal Regulations, 2012 CFR
2012-10-01
... of a maximum allowable operating pressure based on higher stress levels in the following areas: Take... pipeline at the increased stress level under this section with conventional operation; and (ii) Describe... targeted audience; and (B) Include information about the integrity management activities performed under...
França, Mariana Martins; Nogueira, Célia Regina; Hueb, João Carlos; Mendes, Adriana Lúcia; Padovani, Carlos Roberto; Mazeto, Gláucia Maria Ferreira da Silva
2016-10-01
The subclinical hypothyroidism (SH) and the metabolic syndrome (MS) have been associated with increased risk of atherosclerosis and cardiovascular disease (CVD). The measurement of carotid intima-media thickness (IMT) is capable of detecting early signs of atherosclerotic disease. The goal of the study was to compare the carotid IMT of patients with SH with and without the MS. Twenty-nine SH patients were subdivided into two groups: one with MS (SH + MS) and one without MS (SH - MS). The study also assessed a group of euthyroid patients (n = 31), also subdivided into two groups: one with MS (EU + MS) and one without MS (EU - MS). The clinical and laboratory data and the mean and maximum carotid IMT of the groups were compared. Maximum (P = 0.012) and mean (P = 0.025) IMT were higher in the SH + MS group than in the SH-MS group. Maximum IMT was higher in the SH + MS group than in the EU + MS group (P = 0.048). Maximum IMT was positively correlated with fasting glucose (FG; R = 0.621; P < 0.01) and body mass index (R = 0.258; P = 0.041) and negatively correlated with low-density lipoprotein cholesterol (LDL-C) (R = -0.297; P = 0.017). Mean IMT was positively correlated with FG (R = 0.580; P < 0.01), systolic blood pressure (R = 0.292; P = 0.02), and triglycerides (R = 0.250; P = 0.048) and negatively correlated with LDL-C (R = -0.288; P = 0.022). SH + MS patients have higher IMT than SH - MS or EU + MS patients, suggesting that SH may be one more CVD risk factor in patients with the MS.
Howell-Taylor, Melania; Hall, Macy G; Brownlee Iii, William J; Taylor, Mary
2008-09-01
Acute infection of surgical incision sites often requires specialized wound care in preparation for surgical closure. Optimal therapy for preparing such wounds for a secondary closure procedure remains uncertain. The authors report wound outcomes after administering acoustic pressure wound therapy in conjunction with negative pressure wound therapy with reticulated open-cell foam dressing changes to assist with bacteria removal from open, infected surgical-incision sites in preparation for secondary surgical closure in three patients. Before incorporating acoustic pressure wound therapy at the authors' facility, the average negative pressure wound therapy with reticulated open-cell foam dressing course prior to secondary surgical closure was 30 days; with its addition, two of three patients underwent successful surgical closure with no postoperative complications after 21 and 14 days, respectively; one patient succumbed to nonwound-related complications before wound closure. Larger, prospective studies are needed to evaluate combining negative pressure wound therapy with reticulated open-cell foam dressing and acoustic pressure wound therapy for infected, acute post surgery wounds.
Commissioning of two RF operation modes for RF negative ion source experimental setup at HUST
NASA Astrophysics Data System (ADS)
Li, D.; Chen, D.; Liu, K.; Zhao, P.; Zuo, C.; Wang, X.; Wang, H.; Zhang, L.
2017-08-01
An RF-driven negative ion source experimental setup, without a cesium oven and an extraction system, has been built at Huazhong University of Science and Technology (HUST). The working gas is hydrogen, and the typical operational gas pressure is 0.3 Pa. The RF generator is capable of delivering up to 20 kW at 0.9 - 1.1 MHz, and has two operation modes, the fixed-frequency mode and auto-tuning mode. In the fixed-frequency mode, it outputs a steady RF forward power (Pf) at a fixed frequency. In the auto-tuning mode, it adjusts the operating frequency to seek and track the minimum standing wave ratio (SWR) during plasma discharge. To achieve fast frequency tuning, the RF signal source adopts a direct digital synthesizer (DDS). To withstand high SWR during the discharge, a tetrode amplifier is chosen as the final stage amplifier. The trend of maximum power reflection coefficient |ρ|2 at plasma ignition is presented at the fixed frequency of 1.02 MHz with the Pf increasing from 5 kW to 20 kW, which shows the maximum |ρ|2 tends to be "steady" under high RF power. The experiments in auto-tuning mode fail due to over-current protection of screen grid. The possible reason is the relatively large equivalent anode impedance caused by the frequency tuning. The corresponding analysis and possible solution are presented.
Version 8 SBUV Ozone Profile Trends Compared with Trends from a Zonally Averaged Chemical Model
NASA Technical Reports Server (NTRS)
Rosenfield, Joan E.; Frith, Stacey; Stolarski, Richard
2004-01-01
Linear regression trends for the years 1979-2003 were computed using the new Version 8 merged Solar Backscatter Ultraviolet (SBUV) data set of ozone profiles. These trends were compared to trends computed using ozone profiles from the Goddard Space Flight Center (GSFC) zonally averaged coupled model. Observed and modeled annual trends between 50 N and 50 S were a maximum in the higher latitudes of the upper stratosphere, with southern hemisphere (SH) trends greater than northern hemisphere (NH) trends. The observed upper stratospheric maximum annual trend is -5.5 +/- 0.9 % per decade (1 sigma) at 47.5 S and -3.8 +/- 0.5 % per decade at 47.5 N, to be compared with the modeled trends of -4.5 +/- 0.3 % per decade in the SH and -4.0 +/- 0.2% per decade in the NH. Both observed and modeled trends are most negative in winter and least negative in summer, although the modeled seasonal difference is less than observed. Model trends are shown to be greatest in winter due to a repartitioning of chlorine species and the increasing abundance of chlorine with time. The model results show that trend differences can occur depending on whether ozone profiles are in mixing ratio or number density coordinates, and on whether they are recorded on pressure or altitude levels.
NASA Astrophysics Data System (ADS)
Yonemori, Seiya; Kamakura, Taku; Ono, Ryo
2014-10-01
Atmospheric-pressure plasmas are of emerging interest for new plasma applications such as cancer treatment, cell activation and sterilization. In those biomedical processes, reactive oxygen/nitrogen species (ROS/RNS) are said that they play significant role. It is though that active species give oxidative stress and induce biomedical reactions. In this study, we measured OH, NO, O and N atoms using laser induced fluorescence (LIF) measurement and found that voltage polarity affect particular ROS. When negative high voltage was applied to the plasma jet, O atom density was tripled compared to the case of positive applied voltage. In that case, O atom density was around 3 × 1015 [cm-3] at maximum. In contrast, OH and NO density did not change their density depending on the polarity of applied voltage, measured as in order of 1013 and 1014 [cm-3] at maximum, respectively. From ICCD imaging measurement, it could be seen that negative high voltage enhanced secondary emission in plasma bullet propagation and it can affect the effective production of particular ROS. Since ROS/RNS dose can be a quantitative criterion to control plasma biomedical application, those measurement results is able to be applied for in vivo and in vitro plasma biomedical experiments. This study is supported by the Grant-in-Aid for Science Research by the Ministry of Education, Culture, Sport, Science and Technology.
Control of Flowing Liquid Films by Electrostatic Fields in Space
NASA Technical Reports Server (NTRS)
Griffing, E. M.; Bankoff, S. G.; Schluter, R. A.; Miksis, M. J.
1999-01-01
The interaction of a spacially varying electric field and a flowing thin liquid film is investigated experimentally for the design of a proposed light weight space radiator. Electrodes are utilized to create a negative pressure at the bottom of a fluid film and suppress leaks if a micrometeorite punctures the radiator surface. Experimental pressure profiles under a vertical falling film, which passes under a finite electrode, show that fields of sufficient strength can be used safely in such a device. Leak stopping experiments demonstrate that leaks can be stopped with an electric field in earth gravity. A new type of electrohydrodynamic instability causes waves in the fluid film to develop into 3D cones and touch the electrode at a critical voltage. Methods previously used to calculate critical voltages for non moving films are shown to be inappropriate for this situation. The instability determines a maximum field which may be utilized in design, so the possible dependence of critical voltage on electrode length, height above the film, and fluid Reynolds number is discussed.
NASA Technical Reports Server (NTRS)
Houdeville, R.; Cousteix, J.
1979-01-01
The development of a turbulent unsteady boundary layer with a mean pressure gradient strong enough to induce separation, in order to complete the extend results obtained for the flat plate configuration is presented. The longitudinal component of the velocity is measured using constant temperature hot wire anemometer. The region where negative velocities exist is investigated with a laser Doppler velocimeter system with BRAGG cells. The boundary layer responds by forced pulsation to the perturbation of potential flow. The unsteady effects observed are very important. The average location of the zero skin friction point moves periodically at the perturbation frequency. Average velocity profiles from different instants in the cycle are compared. The existence of a logarithmic region enables a simple calculation of the maximum phase shift of the velocity in the boundary layer. An attempt of calculation by an integral method of boundary layer development is presented, up to the point where reverse flow starts appearing.
The Effect of Hydration on Voice Quality in Adults: A Systematic Review.
Alves, Maxine; Krüger, Esedra; Pillay, Bhavani; van Lierde, Kristiane; van der Linde, Jeannie
2017-11-06
We aimed to critically appraise scientific, peer-reviewed articles, published in the past 10 years on the effects of hydration on voice quality in adults. This is a systematic review. Five databases were searched using the key words "vocal fold hydration", "voice quality", "vocal fold dehydration", and "hygienic voice therapy". The Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines were followed. The included studies were scored based on American Speech-Language-Hearing Association's levels of evidence and quality indicators, as well as the Cochrane Collaboration's risk of bias tool. Systemic dehydration as a result of fasting and not ingesting fluids significantly negatively affected the parameters of noise-to-harmonics ratio (NHR), shimmer, jitter, frequency, and the s/z ratio. Water ingestion led to significant improvements in shimmer, jitter, frequency, and maximum phonation time values. Caffeine intake does not appear to negatively affect voice production. Laryngeal desiccation challenges by oral breathing led to surface dehydration which negatively affected jitter, shimmer, NHR, phonation threshold pressure, and perceived phonatory effort. Steam inhalation significantly improved NHR, shimmer, and jitter. Only nebulization of isotonic solution decreased phonation threshold pressure and showed some indication of a potential positive effect of nebulization substances. Treatments in high humidity environments prove to be effective and adaptations of low humidity environments should be encouraged. Recent literature regarding vocal hydration is high quality evidence. Systemic hydration is the easiest and most cost-effective solution to improve voice quality. Recent evidence therefore supports the inclusion of hydration in a vocal hygiene program. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Multi-bottle, no compressor, mean pressure control system for a Stirling engine
Corey, John A.
1990-01-01
The invention relates to an apparatus for mean pressure control of a Stirling engine without the need for a compressor. The invention includes a multi-tank system in which there is at least one high pressure level tank and one low pressure level tank wherein gas flows through a maximum pressure and supply line from the engine to the high pressure tank when a first valve is opened until the maximum pressure of the engine drops below that of the high pressure tank opening an inlet regulator to permit gas flow from the engine to the low pressure tank. When gas flows toward the engine it flows through the minimum pressure supply line 2 when a second valve is opened from the low pressure tank until the tank reaches the engine's minimum pressure level at which time the outlet regulator opens permitting gas to be supplied from the high pressure tank to the engine. Check valves between the two tanks prevent any backflow of gas from occurring.
Abdominal drainage following cholecystectomy: high, low, or no suction?
McCormack, T. T.; Abel, P. D.; Collins, C. D.
1983-01-01
A prospective trial to assess the effect of suction in an abdominal drain following cholecystectomy was carried out. Three types of closed drainage system were compared: a simple tube drain, a low negative pressure drain, and a high negative pressure drain: 120 consecutive patients undergoing cholecystectomy were randomly allocated to one of the three drainage groups. There was no significant difference in postoperative pyrexia, wound infection, chest infection, or hospital stay. This study failed to demonstrate any clinically useful difference between high negative pressure, low negative pressure, and static drainage system were compared: a simple tube drain, a low negative used, suction is not necessary and a simple tube drain (greater than 6 mm internal diameter) is the most effective form of drainage. PMID:6614773
Increased in-shoe lateral plantar pressures with chronic ankle instability.
Schmidt, Heather; Sauer, Lindsay D; Lee, Sae Yong; Saliba, Susan; Hertel, Jay
2011-11-01
Previous plantar pressure research found increased loads and slower loading response on the lateral aspect of the foot during gait with chronic ankle instability compared to healthy controls. The studies had subjects walking barefoot over a pressure mat and results have not been confirmed with an in-shoe plantar pressure system. Our purpose was to report in-shoe plantar pressure measures for chronic ankle instability subjects compared to healthy controls. Forty-nine subjects volunteered (25 healthy controls, 24 chronic ankle instability) for this case-control study. Subjects jogged continuously on a treadmill at 2.68 m/s (6.0 mph) while three trials of ten consecutive steps were recorded. Peak pressure, time-to-peak pressure, pressure-time integral, maximum force, time-to-maximum force, and force-time integral were assessed in nine regions of the foot with the Pedar-x in-shoe plantar pressure system (Novel, Munich, Germany). Chronic ankle instability subjects demonstrated a slower loading response in the lateral rearfoot indicated by a longer time-to-peak pressure (16.5% +/- 10.1, p = 0.001) and time-to-maximum force (16.8% +/- 11.3, p = 0.001) compared to controls (6.5% +/- 3.7 and 6.6% +/- 5.5, respectively). In the lateral midfoot, ankle instability subjects demonstrated significantly greater maximum force (318.8 N +/- 174.5, p = 0.008) and peak pressure (211.4 kPa +/- 57.7, p = 0.008) compared to controls (191.6 N +/- 74.5 and 161.3 kPa +/- 54.7). Additionally, ankle instability subjects demonstrated significantly higher force-time integral (44.1 N/s +/- 27.3, p = 0.005) and pressure-time integral (35.0 kPa/s +/- 12.0, p = 0.005) compared to controls (23.3 N/s +/- 10.9 and 24.5 kPa/s +/- 9.5). In the lateral forefoot, ankle instability subjects demonstrated significantly greater maximum force (239.9N +/- 81.2, p = 0.004), force-time integral (37.0 N/s +/- 14.9, p = 0.003), and time-to-peak pressure (51.1% +/- 10.9, p = 0.007) compared to controls (170.6 N +/- 49.3, 24.3 N/s +/- 7.2 and 43.8% +/- 4.3). Using an in-shoe plantar pressure system, chronic ankle instability subjects had greater plantar pressures and forces in the lateral foot compared to controls during jogging. These findings may have implications in the etiology and treatment of chronic ankle instability.
Systemic glyceryl trinitrate reduces anal sphincter tone: is there a therapeutic indication?
Connolly, C; Tierney, S; Grace, P
2018-05-01
Nitric oxide (NO) has diverse roles as a biological messenger. [1] Topically applied nitrate donors cause relaxation of the internal anal sphincter (IAS) and facilitate healing of anal fissures [2,3]. Systemic nitrates are commonly used for the treatment of ischaemic heart disease, yet the effects of systemically administered nitrates on the smooth muscle of the IAS are unknown. Our aim was to test the hypothesis that systemically administered nitrates at a normal dose, cause inhibition of anal sphincter activity. With fully informed consent, anal manometry was performed on nine volunteers. Maximum and mean anal resting pressure (representing the IAS), maximum squeeze pressure (representing the external anal sphincter), heart rate and blood pressure were measured, before and after administration of a normal 400 μg dose of sublingual glyceryl trinitrate spray. Data are expressed as mean (± standard error of the mean (SEM)). In four females and five males ranging from 19 to 50 years of age, administration of GTN resulted in a significant reduction in systolic blood pressure from 138 ± 5 to 127 ± 4 mmHg, P < 0.01. Mean resting pressure, over 5 min, was significantly reduced from 70 ± 10 to 62 ± 10 mmHg P < 0.05. The maximum resting pressure was also significantly reduced from 109 ± 12 to 86 ± 10 mmHg P = 0.04. Maximum squeeze pressure, heart rate and diastolic blood pressure were not significantly reduced. Systemic nitrates significantly inhibit internal anal sphincter function.
Ethnic Differences in Physical Fitness, Blood Pressure and Blood Chemistry in Women (AGES 20-63)
NASA Technical Reports Server (NTRS)
Ayers, G. W.; Wier, L. T.; Jackson, A. S.; Stuteville, J. E.; Keptra, Sean (Technical Monitor)
1999-01-01
This study examined the role of ethnicity on the aerobic fitness, blood pressure, and selected blood chemistry values of women. One hundred twenty-four females (mean age 41.37 +/- 9.0) were medically Examined at the NASA/Johnson Space Center occupational health clinic. Ethnic groups consisted of 23 Black (B), 18 Hispanic (H) and 83 Non-minority (NM). Each woman had a maximum Bruce treadmill stress test (RER greater than or = 1.1) and a negative ECG. Indirect calorimetry, skinfolds, self-report physical activity (NASA activity scale), seated blood pressure, and blood chemistry panel determined VO2max, percent fat, level of physical activity, blood pressure and blood chemistry values. ANOVA revealed that the groups did not differ (p greater than 0.05) in age, VO2 max, weight, percent fat, level of physical activity, total cholesterol, or HDL-C. However, significant differences (p greater than 0.05) were noted in BMI, diastolic blood pressure, and blood chemistries. BMI was 3.17 higher in H than in NM; resting diastolic pressures were 5.69 and 8.05 mmHg. lower in NM and H than in B; triglycerides were 48.07 and 37.21 mg/dl higher in H than in B and NM; hemoglobin was .814 gm/dl higher in NM than B; fasting blood sugar was 15.41 mg/dl higher in H than NM; The results of this study showed that ethnic groups differed in blood pressure and blood chemistry values but not aerobic fitness or physical activity. There was an ethnic difference in BMI but not percent fat.
Design of a Two-Stage Light Gas Gun for Muzzle Velocities of 10 - 11 kms
NASA Technical Reports Server (NTRS)
Bogdanoff, David W.
2016-01-01
Space debris poses a major risk to spacecraft. In low earth orbit, impact velocities can be 10 11 kms and as high as 15 kms. For debris shield design, it would be desirable to be able to launch controlled shape projectiles to these velocities. The design of the proposed 10 11 kmsec gun uses, as a starting point, the Ames 1.280.22 two stage gun, which has achieved muzzle velocities of 10 11.3 kmsec. That gun is scaled up to a 0.3125 launch tube diameter. The gun is then optimized with respect to maximum pressures by varying the pump tube length to diameter ratio (LD), the piston mass and the hydrogen pressure. A pump tube LD of 36.4 is selected giving the best overall performance. Piezometric ratios for the optimized guns are found to be 2.3, much more favorable than for more traditional two stage light gas guns, which range from 4 to 6. The maximum powder chamber pressures are 20 to 30 ksi. To reduce maximum pressures, the desirable range of the included angle of the cone of the high pressure coupling is found to be 7.3 to 14.6 degrees. Lowering the break valve rupture pressure is found to lower the maximum projectile base pressure, but to raise the maximum gun pressure. For the optimized gun with a pump tube LD of 36.4, increasing the muzzle velocity by decreasing the projectile mass and increasing the powder loads is studied. It appears that saboted spheres could be launched to 10.25 and possibly as high as 10.7 10.8 kmsec, and that disc-like plastic models could be launched to 11.05 kms. The use of a tantalum liner to greatly reduce bore erosion and increase muzzle velocity is discussed. With a tantalum liner, CFD code calculations predict muzzle velocities as high as 12 to 13 kms.
Cader, Samária Ali; de Souza Vale, Rodrigo Gomes; Zamora, Victor Emmanuel; Costa, Claudia Henrique; Dantas, Estélio Henrique Martin
2012-01-01
The purpose of this study was to evaluate the extubation process in bed-ridden elderly intensive care patients receiving inspiratory muscle training (IMT) and identify predictors of successful weaning. Twenty-eight elderly intubated patients in an intensive care unit were randomly assigned to an experimental group (n = 14) that received conventional physiotherapy plus IMT with a Threshold IMT(®) device or to a control group (n = 14) that received only conventional physiotherapy. The experimental protocol for muscle training consisted of an initial load of 30% maximum inspiratory pressure, which was increased by 10% daily. The training was administered for 5 minutes, twice daily, 7 days a week, with supplemental oxygen from the beginning of weaning until extubation. Successful extubation was defined by the ventilation time measurement with noninvasive positive pressure. A vacuum manometer was used for measurement of maximum inspiratory pressure, and the patients' Tobin index values were measured using a ventilometer. The maximum inspiratory pressure increased significantly (by 7 cm H(2)O, 95% confidence interval [CI] 4-10), and the Tobin index decreased significantly (by 16 breaths/ min/L, 95% CI -26 to 6) in the experimental group compared with the control group. The Chi-squared distribution did not indicate a significant difference in weaning success between the groups (χ(2) = 1.47; P = 0.20). However, a comparison of noninvasive positive pressure time dependence indicated a significantly lower value for the experimental group (P = 0.0001; 95% CI 13.08-18.06). The receiver-operating characteristic curve showed an area beneath the curve of 0.877 ± 0.06 for the Tobin index and 0.845 ± 0.07 for maximum inspiratory pressure. The IMT intervention significantly increased maximum inspiratory pressure and significantly reduced the Tobin index; both measures are considered to be good extubation indices. IMT was associated with a reduction in noninvasive positive pressure time in the experimental group.
Effects of negative pressures on epithelial tight junctions and migration in wound healing.
Hsu, Chih-Chin; Tsai, Wen-Chung; Chen, Carl Pai-Chu; Lu, Yun-Mei; Wang, Jong-Shyan
2010-08-01
Negative-pressure wound therapy has recently gained popularity in chronic wound care. This study attempted to explore effects of different negative pressures on epithelial migration in the wound-healing process. The electric cell-substrate impedance sensing (ECIS) technique was used to create a 5 x 10(-4) cm(2) wound in the Madin-Darby canine kidney (MDCK) and human keratinocyte (HaCaT) cells. The wounded cells were cultured in a negative pressure incubator at ambient pressure (AP) and negative pressures of 75 mmHg (NP(75)), 125 mmHg (NP(125)), and 175 mmHg (NP(175)). The effective time (ET), complete wound healing time (T(max)), healing rate (R(heal)), cell diameter, and wound area over time at different pressures were evaluated. Traditional wound-healing assays were prepared for fluorescent staining of cells viability, cell junction proteins, including ZO-1 and E-cadherin, and actins. Amount of cell junction proteins at AP and NP(125) was also quantified. In MDCK cells, the ET (1.25 +/- 0.27 h), T(max) (1.76 +/- 0.32 h), and R(heal) (2.94 +/- 0.62 x 10(-4) cm(2)/h) at NP(125) were significantly (P < 0.01) different from those at three other pressure conditions. In HaCaT cells, the T(max) (7.34 +/- 0.29 h) and R(heal) (6.82 +/- 0.26 x 10(-5) cm(2)/h) at NP(125) were significantly (P < 0.01) different from those at NP(75). Prominent cell migration features were identified in cells at the specific negative pressure. Cell migration activities at different pressures can be documented with the real-time wound-healing measurement system. Negative pressure of 125 mmHg can help disassemble the cell junction to enhance epithelial migration and subsequently result in quick wound closure.
Continuous Negative Abdominal Pressure Reduces Ventilator-induced Lung Injury in a Porcine Model.
Yoshida, Takeshi; Engelberts, Doreen; Otulakowski, Gail; Katira, Bhushan; Post, Martin; Ferguson, Niall D; Brochard, Laurent; Amato, Marcelo B P; Kavanagh, Brian P
2018-04-27
In supine patients with acute respiratory distress syndrome, the lung typically partitions into regions of dorsal atelectasis and ventral aeration ("baby lung"). Positive airway pressure is often used to recruit atelectasis, but often overinflates ventral (already aerated) regions. A novel approach to selective recruitment of dorsal atelectasis is by "continuous negative abdominal pressure." A randomized laboratory study was performed in anesthetized pigs. Lung injury was induced by surfactant lavage followed by 1 h of injurious mechanical ventilation. Randomization (five pigs in each group) was to positive end-expiratory pressure (PEEP) alone or PEEP with continuous negative abdominal pressure (-5 cm H2O via a plexiglass chamber enclosing hindlimbs, pelvis, and abdomen), followed by 4 h of injurious ventilation (high tidal volume, 20 ml/kg; low expiratory transpulmonary pressure, -3 cm H2O). The level of PEEP at the start was ≈7 (vs. ≈3) cm H2O in the PEEP (vs. PEEP plus continuous negative abdominal pressure) groups. Esophageal pressure, hemodynamics, and electrical impedance tomography were recorded, and injury determined by lung wet/dry weight ratio and interleukin-6 expression. All animals survived, but cardiac output was decreased in the PEEP group. Addition of continuous negative abdominal pressure to PEEP resulted in greater oxygenation (PaO2/fractional inspired oxygen 316 ± 134 vs. 80 ± 24 mmHg at 4 h, P = 0.005), compliance (14.2 ± 3.0 vs. 10.3 ± 2.2 ml/cm H2O, P = 0.049), and homogeneity of ventilation, with less pulmonary edema (≈10% less) and interleukin-6 expression (≈30% less). Continuous negative abdominal pressure added to PEEP reduces ventilator-induced lung injury in a pig model compared with PEEP alone, despite targeting identical expiratory transpulmonary pressure.
Cardiovascular effects of pimobendan in healthy mature horses.
Afonso, T; Giguère, S; Rapoport, G; Barton, M H; Coleman, A E
2016-05-01
Pimobendan is an inodilator used in dogs for the management of heart failure due to myxomatous valve disease or dilated cardiomyopathy. The lack of data regarding the effects of pimobendan in horses prevents the rational use of this drug. To determine the cardiovascular effects of pimobendan in healthy mature horses. Randomised experimental study. Five horses were fasted overnight prior to receiving i.v. pimobendan (0.25 mg/kg bwt), intragastric (i.g.) pimobendan (0.25 mg/kg bwt) or i.g. placebo with a washout period of one week between each administration. Horses were instrumented for the measurement of right ventricular (RV) minimum pressure, RV maximum pressure, RV end diastolic pressure, and maximum rate of increase and decrease in RV pressure before and 0.5, 1, 2, 4, and 8 h after drug administration. Arterial blood pressure, central venous pressure, cardiac output and heart rate were measured at the same time points. Data were expressed as a maximum percentage of change over baseline values. There were no adverse effects associated with administration of pimobendan. The percentage increase in heart rate was significantly greater for horses given pimobendan i.g. (33 ± 4%) and i.v. (36 ± 14%) than for those given a placebo (-2 ± 7%). The percentage increase in maximum rate of increase in RV pressure (35 ± 36%) and the percentage decrease in minimum pressure (47 ± 24%) and end diastolic pressure (34 ± 13%) were significantly greater in horses given pimobendan i.v. than in those given placebo. Other variables measured were not significantly different between treatment groups. Pimobendan administered i.v. has positive chronotropic and inotropic effects in healthy mature horses and warrants further investigation for the treatment of heart failure in horses. © 2015 EVJ Ltd.
Modeling internal ballistics of gas combustion guns.
Schorge, Volker; Grossjohann, Rico; Schönekess, Holger C; Herbst, Jörg; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias
2016-05-01
Potato guns are popular homemade guns which work on the principle of gas combustion. They are usually constructed for recreational rather than criminal purposes. Yet some serious injuries and fatalities due to these guns are reported. As information on the internal ballistics of homemade gas combustion-powered guns is scarce, it is the aim of this work to provide an experimental model of the internal ballistics of these devices and to investigate their basic physical parameters. A gas combustion gun was constructed with a steel tube as the main component. Gas/air mixtures of acetylene, hydrogen, and ethylene were used as propellants for discharging a 46-mm caliber test projectile. Gas pressure in the combustion chamber was captured with a piezoelectric pressure sensor. Projectile velocity was measured with a ballistic speed measurement system. The maximum gas pressure, the maximum rate of pressure rise, the time parameters of the pressure curve, and the velocity and path of the projectile through the barrel as a function of time were determined according to the pressure-time curve. The maximum gas pressure was measured to be between 1.4 bar (ethylene) and 4.5 bar (acetylene). The highest maximum rate of pressure rise was determined for hydrogen at (dp/dt)max = 607 bar/s. The muzzle energy was calculated to be between 67 J (ethylene) and 204 J (acetylene). To conclude, this work provides basic information on the internal ballistics of homemade gas combustion guns. The risk of injury to the operator or bystanders is high, because accidental explosions of the gun due to the high-pressure rise during combustion of the gas/air mixture may occur.
Burst pressure investigation of filament wound type IV composite pressure vessel
NASA Astrophysics Data System (ADS)
Farhood, Naseer H.; Karuppanan, Saravanan; Ya, H. H.; Baharom, Mohamad Ariff
2017-12-01
Currently, composite pressure vessels (PVs) are employed in many industries such as aerospace, transportations, medical etc. Basically, the use of PVs in automotive application as a compressed natural gas (CNG) storage cylinder has been growing rapidly. Burst failure due to the laminate failure is the most critical failure mechanism for composite pressure vessels. It is predominantly caused by excessive internal pressure due to an overfilling or an overheating. In order to reduce fabrication difficulties and increase the structural efficiency, researches and studies are conducted continuously towards the proper selection of vessel design parameters. Hence, this paper is focused on the prediction of first ply failure pressure for such vessels utilizing finite element simulation based on Tsai-Wu and maximum stress failure criterions. The effects of laminate stacking sequence and orientation angle on the burst pressure were investigated in this work for a constant layered thickness PV. Two types of winding design, A [90°2/∓θ16/90°2] and B [90°2/∓θ]ns with different orientations of helical winding reinforcement were analyzed for carbon/epoxy composite material. It was found that laminate A sustained a maximum burst pressure of 55 MPa for a sequence of [90°2/∓15°16/90°2] while the laminate B returned a maximum burst pressure of 45 MPa corresponding to a stacking sequence of [90°2/±15°/90°2/±15°/90°2/±15° ....] up to 20 layers for a constant vessel thickness. For verification, a comparison was done with the literature under similar conditions of analysis and good agreement was achieved with a maximum difference of 4% and 10% for symmetrical and unsymmetrical layout, respectively.
The extraction of negative carbon ions from a volume cusp ion source
NASA Astrophysics Data System (ADS)
Melanson, Stephane; Dehnel, Morgan; Potkins, Dave; McDonald, Hamish; Hollinger, Craig; Theroux, Joseph; Martin, Jeff; Stewart, Thomas; Jackle, Philip; Philpott, Chris; Jones, Tobin; Kalvas, Taneli; Tarvainen, Olli
2017-08-01
Acetylene and carbon dioxide gases are used in a filament-powered volume-cusp ion source to produce negative carbon ions for the purpose of carbon implantation for gettering applications. The beam was extracted to an energy of 25 keV and the composition was analyzed with a spectrometer system consisting of a 90° dipole magnet and a pair of slits. It is found that acetylene produces mostly C2- ions (up to 92 µA), while carbon dioxide produces mostly O- with only trace amounts of C-. Maximum C2- current was achieved with 400 W of arc power and, the beam current and composition were found to be highly dependent on the pressure in the source. The beam properties as a function of source settings are analyzed, and plasma properties are measured with a Langmuir probe. Finally, we describe testing of a new RF H- ion source, found to produce more than 6 mA of CW H- beam.
Shah, Dignesh; Alderson, Andrew; Corden, James; Satyadas, Thomas; Augustine, Titus
2018-02-01
This study undertook the in vivo measurement of surface pressures applied by the fingers of the surgeon during typical representative retraction movements of key human abdominal organs during both open and hand-assisted laparoscopic surgery. Surface pressures were measured using a flexible thin-film pressure sensor for 35 typical liver retractions to access the gall bladder, 36 bowel retractions, 9 kidney retractions, 8 stomach retractions, and 5 spleen retractions across 12 patients undergoing open and laparoscopic abdominal surgery. The maximum and root mean square surface pressures were calculated for each organ retraction. The maximum surface pressures applied to these key abdominal organs are in the range 1 to 41 kPa, and the average maximum surface pressure for all organs and procedures was 14 ± 3 kPa. Surface pressure relaxation during the retraction hold period was observed. Generally, the surface pressures are higher, and the rate of surface pressure relaxation is lower, in the more confined hand-assisted laparoscopic procedures than in open surgery. Combined video footage and pressure sensor data for retraction of the liver in open surgery enabled correlation of organ retraction distance with surface pressure application. The data provide a platform to design strategies for the prevention of retraction injuries. They also form a basis for the design of next-generation organ retraction and space creation surgical devices with embedded sensors that can further quantify intraoperative retraction forces to reduce injury or trauma to organs and surrounding tissues.
Moore, George E; Levine, Michael; Anderson, Johnna D; Trapp, Robert J
2008-01-01
Gastric dilatation-volvulus (GDV) is a life-threatening condition in dogs and other species in which the stomach dilates and rotates on itself. The etiology of the disease is multi-factorial, but explicit precipitating causes are unknown. This study sought to determine if there was a significant association between changes in hourly-measured temperature and/or atmospheric pressure and the occurrence of GDV in the population of high-risk working dogs in Texas. The odds of a day being a GDV day, given certain temperature and atmospheric pressure conditions for that day or the day before, was estimated using logistic regression models. There were 57 days in which GDV(s) occurred, representing 2.60% of the days in the 6-year study period. The months of November, December, and January collectively accounted for almost half (47%) of all cases. Disease risk was negatively associated with daily maximum temperature. An increased risk of GDV was weakly associated with the occurrence of large hourly drops in temperature that day and of higher minimum barometric pressure that day and the day before GDV occurrence, but extreme changes were not predictive of the disease.
NASA Astrophysics Data System (ADS)
Moore, George E.; Levine, Michael; Anderson, Johnna D.; Trapp, Robert J.
2008-01-01
Gastric dilatation-volvulus (GDV) is a life-threatening condition in dogs and other species in which the stomach dilates and rotates on itself. The etiology of the disease is multi-factorial, but explicit precipitating causes are unknown. This study sought to determine if there was a significant association between changes in hourly-measured temperature and/or atmospheric pressure and the occurrence of GDV in the population of high-risk working dogs in Texas. The odds of a day being a GDV day, given certain temperature and atmospheric pressure conditions for that day or the day before, was estimated using logistic regression models. There were 57 days in which GDV(s) occurred, representing 2.60% of the days in the 6-year study period. The months of November, December, and January collectively accounted for almost half (47%) of all cases. Disease risk was negatively associated with daily maximum temperature. An increased risk of GDV was weakly associated with the occurrence of large hourly drops in temperature that day and of higher minimum barometric pressure that day and the day before GDV occurrence, but extreme changes were not predictive of the disease.
Modeling of an electrohydraulic lithotripter with the KZK equation.
Averkiou, M A; Cleveland, R O
1999-07-01
The acoustic pressure field of an electrohydraulic extracorporeal shock wave lithotripter is modeled with a nonlinear parabolic wave equation (the KZK equation). The model accounts for diffraction, nonlinearity, and thermoviscous absorption. A numerical algorithm for solving the KZK equation in the time domain is used to model sound propagation from the mouth of the ellipsoidal reflector of the lithotripter. Propagation within the reflector is modeled with geometrical acoustics. It is shown that nonlinear distortion within the ellipsoidal reflector can play an important role for certain parameters. Calculated waveforms are compared with waveforms measured in a clinical lithotripter and good agreement is found. It is shown that the spatial location of the maximum negative pressure occurs pre-focally which suggests that the strongest cavitation activity will also be in front of the focus. Propagation of shock waves from a lithotripter with a pressure release reflector is considered and because of nonlinear propagation the focal waveform is not the inverse of the rigid reflector. Results from propagation through tissue are presented; waveforms are similar to those predicted in water except that the higher absorption in the tissue decreases the peak amplitude and lengthens the rise time of the shock.
Morrell, Kjirste C; Hodge, W Andrew; Krebs, David E; Mann, Robert W
2005-10-11
Pressures on normal human acetabular cartilage have been collected from two implanted instrumented femoral head hemiprostheses. Despite significant differences in subjects' gender, morphology, mobility, and coordination, in vivo pressure measurements from both subjects covered similar ranges, with maximums of 5-6 MPa in gait, and as high as 18 MPa in other movements. Normalized for subject weight and height (nMPa), for free-speed walking the maximum pressure values were 25.2 for the female subject and 24.5 for the male subject. The overall maximum nMPa values were 76.2 for the female subject during rising from a chair at 11 months postoperative and 82.3 for the male subject while descending steps at 9 months postoperative. These unique in vivo data are consistent with corresponding cadaver experiments and model analyses. The collective results, in vitro data, model studies, and now corroborating in vivo data support the self-pressurizing "weeping" theory of synovial joint lubrication and provide unique information to evaluate the influence of in vivo pressure regimes on osteoarthritis causation and the efficacy of augmentations to, and substitutions for, natural cartilage.
NASA Technical Reports Server (NTRS)
Moore, C S; Collins, J H
1932-01-01
Results of motoring tests are presented showing the effect of passage diameter on chamber and cylinder compression pressures, maximum pressure differences, and f.m.e.p. over a speed range from 300 to 1,750 r.p.m. Results of engine performance tests are presented which show the effect of passage diameter on m.e.p., explosion pressures, specific fuel consumption, and rates of pressure rise for a range of engine speeds from 500 to 1,500 r.p.m. The cylinder compression pressure, the maximum pressure difference, and the f.m.e.p. decreased rapidly as the passage diameter increased to 29/64 inch, whereas further increase in passage diameter effected only a slight change. The most suitable passage diameter for good engine performance and operating characteristics was 29/64 inch. Passage diameter became less critical with a decrease in engine speed. Therefore, the design should be based on maximum operating speed. Optimum performance and satisfactory combustion control could not be obtained by means of any single diameter of the connecting passage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurinat, J.; Kesterson, M.; Hensel, S.
The documented safety analysis for the Savannah River Site evaluates the consequences of a postulated 1000 °C fire in a glovebox. The radiological dose consequences for a pressurized release of plutonium oxide powder during such a fire depend on the maximum pressure that is attained inside the oxide storage vial. To enable evaluation of the dose consequences, pressure transients and venting flow rates have been calculated for exposure of the storage vial to the fire. A standard B vial with a capacity of approximately 8 cc was selected for analysis. The analysis compares the pressurization rate from heating and evaporationmore » of moisture adsorbed onto the plutonium oxide contents of the vial with the pressure loss due to venting of gas through the threaded connection between the vial cap and body. Tabulated results from the analysis include maximum pressures, maximum venting velocities, and cumulative vial volumes vented during the first 10 minutes of the fire transient. Results are obtained for various amounts of oxide in the vial, various amounts of adsorbed moisture, different vial orientations, and different surface fire exposures.« less
Who Chokes Under Pressure? The Big Five Personality Traits and Decision-Making under Pressure.
Byrne, Kaileigh A; Silasi-Mansat, Crina D; Worthy, Darrell A
2015-02-01
The purpose of the present study was to examine whether the Big Five personality factors could predict who thrives or chokes under pressure during decision-making. The effects of the Big Five personality factors on decision-making ability and performance under social (Experiment 1) and combined social and time pressure (Experiment 2) were examined using the Big Five Personality Inventory and a dynamic decision-making task that required participants to learn an optimal strategy. In Experiment 1, a hierarchical multiple regression analysis showed an interaction between neuroticism and pressure condition. Neuroticism negatively predicted performance under social pressure, but did not affect decision-making under low pressure. Additionally, the negative effect of neuroticism under pressure was replicated using a combined social and time pressure manipulation in Experiment 2. These results support distraction theory whereby pressure taxes highly neurotic individuals' cognitive resources, leading to sub-optimal performance. Agreeableness also negatively predicted performance in both experiments.
Physical understanding of the tropical cyclone wind-pressure relationship.
Chavas, Daniel R; Reed, Kevin A; Knaff, John A
2017-11-08
The relationship between the two common measures of tropical cyclone intensity, the central pressure deficit and the peak near-surface wind speed, is a long-standing problem in tropical meteorology that has been approximated empirically yet lacks physical understanding. Here we provide theoretical grounding for this relationship. We first demonstrate that the central pressure deficit is highly predictable from the low-level wind field via gradient wind balance. We then show that this relationship reduces to a dependence on two velocity scales: the maximum azimuthal-mean azimuthal wind speed and half the product of the Coriolis parameter and outer storm size. This simple theory is found to hold across a hierarchy of models spanning reduced-complexity and Earth-like global simulations and observations. Thus, the central pressure deficit is an intensity measure that combines maximum wind speed, storm size, and background rotation rate. This work has significant implications for both fundamental understanding and risk analysis, including why the central pressure better explains historical economic damages than does maximum wind speed.
Pekalski, A A; Zevenbergen, J F; Braithwaite, M; Lemkowitz, S M; Pasman, H J
2005-02-14
Experimental and theoretical investigation of explosive decomposition of ethylene oxide (EO) at fixed initial experimental parameters (T=100 degrees C, P=4 bar) in a 20-l sphere was conducted. Safety-related parameters, namely the maximum explosion pressure, the maximum rate of pressure rise, and the Kd values, were experimentally determined for pure ethylene oxide and ethylene oxide diluted with nitrogen. The influence of the ignition energy on the explosion parameters was also studied. All these dependencies are quantified in empirical formulas. Additionally, the effect of turbulence on explosive decomposition of ethylene oxide was investigated. In contrast to previous studies, it is found that turbulence significantly influences the explosion severity parameters, mostly the rate of pressure rise. Thermodynamic models are used to calculate the maximum explosion pressure of pure and of nitrogen-diluted ethylene oxide, at different initial temperatures. Soot formation was experimentally observed. Relation between the amounts of soot formed and the explosion pressure was experimentally observed and was calculated.
2014-06-01
high tolerance to central hypovolemia induced by lower body negative pressure Carmen Hinojosa-Laborde1*, Kathy L. Ryan1, Caroline A. Rickards2 and...patients with high tolerance. Using lower body negative pressure (LBNP) as an experimental model to induce central hypovolemia, we have shown that...hypovolemia is associated with mainte- nance of adequate perfusion pressure (i.e., arterial blood pres- sure) to vital organs. Therefore, we hypothesize that
46 CFR 61.15-5 - Steam piping.
Code of Federal Regulations, 2010 CFR
2010-10-01
... hydrostatic test equal to 11/4 times the maximum allowable working pressure at the same periods prescribed for boilers in § 61.05-10. The hydrostatic test shall be applied from the boiler drum to the throttle valve... should be subjected to a hydrostatic test at a pressure of 11/4 times the maximum allowable working...
Yanagisawa, Yukio; Matsuo, Yoshimi; Shuntoh, Hisato; Horiuchi, Noriaki
2014-01-01
[Purpose] The purpose of this study was to elucidate the effect of expiratory resistive loading on orbicularis oris muscle activity. [Subjects] Subjects were 23 healthy individuals (11 males, mean age 25.5±4.3 years; 12 females, mean age 25.0±3.0 years). [Methods] Surface electromyography was performed to measure the activity of the orbicularis oris muscle during maximum lip closure and resistive loading at different expiratory pressures. Measurement was performed at 10%, 30%, 50%, and 100% of maximum expiratory pressure (MEP) for all subjects. The t-test was used to compare muscle activity between maximum lip closure and 100% MEP, and analysis of variance followed by multiple comparisons was used to compare the muscle activities observed at different expiratory pressures. [Results] No significant difference in muscle activity was observed between maximum lip closure and 100% MEP. Analysis of variance with multiple comparisons revealed significant differences among the different expiratory pressures. [Conclusion] Orbicularis oris muscle activity increased with increasing expiratory resistive loading. PMID:24648644
NASA Astrophysics Data System (ADS)
Whiting, Michael; Preston, Barry; Mucklejohn, Stuart; Santos, Monica; Lister, Graeme
2016-09-01
Here we present an investigation into the feasibility of creating a diagnostic tool for obtaining maximum arc temperature measurements within a high pressure electrodeless discharge; utilizing integrating sphere measurements of optically thin lines emitted from mercury atoms within commercially available high pressure mercury lamp arc tubes. The optically thin lines chosen were 577 nm and 1014 nm from a 250 W high pressure mercury lamp operated at various powers. The effective temperature could be calculated by considering the relative intensities of the two optically thin lines and comparison with the theoretical ratio of the temperature dependent power emitted from the lines derived from the atomic spectral data provided by NIST. The calculations gave effective arc temperatures of 5755, 5804 and 5820 K at 200, 225, 250 W respectively. This method was subsequently used as a basis for determining maximum effective arc temperature within microwave-driven electrodeless discharge capsules, with varying mercury content of 6.07, 9.4 and 12.95 mg within 1 × 10-6 m3 giving maximum effective temperatures of 5163, 4768 and 4715 K respectively at 240 W.
NASA Technical Reports Server (NTRS)
Cook, Harvey A; Heinicke, Orville H; Haynie, William H
1947-01-01
An investigation was conducted on a full-scale air-cooled cylinder in order to establish an effective means of maintaining maximum-economy spark timing with varying engine operating conditions. Variable fuel-air-ratio runs were conducted in which relations were determined between the spark travel, and cylinder-pressure rise. An instrument for controlling spark timing was developed that automatically maintained maximum-economy spark timing with varying engine operating conditions. The instrument also indicated the occurrence of preignition.
[Sulphureous mud-bath therapy and changes in blood pressure: observational investigation].
Costantino, M; Marongiu, M B; Russomanno, G; Conti, V; Manzo, V; Filippelli, A
2015-01-01
The chronic arthropathies currently appear to be a major cause of disability with a negative impact on quality of life and health care spending. The mud-bath therapy is a spa treatment that induces benefic effects in chronic rheumatic diseases. It has long been debated on the assumption that the mud-bath spa therapy could have adverse cardiovascular effects which often induce caution and even a contraindication to the use of this treatment in chronic arthropathies associated with cardiovascular alterations such as hypertension. The aim of this observational study was to investigate, in arthrorheumatic subjects, the effects of sulphureous mud-bath cycle on blood pressure and the possible appearance of adverse drug reaction. 169 patients, with age range 42-86 years, suffering by chronic arthropathies were treated with sulphureous mud-bath therapy for 2 weeks. According to the arterial pressure values, measured before the spa treatment, the patients considered were divided in three groups: with normal blood pressure (NOR group); with high blood pressure, after, the latter group was divided in IPET (patients in treatment with antihypertensive drugs) and IPENT (patients not in antihypertensive therapy). The arterial pressure values, maximum and minimum, expressed in mmHg, were detected in the first (T1) - sixth (T6) and twelfth (T12) day of spa treatment. The media arterial pressure values collected before and after T1, before and after T6, before and after T12 , before T1 and after T12 were compared. The data, presented as mean±SD, were compared with the paired Student t test. A p value ≤0.05 was considered significant. The comparison between the mean values detected in pre and post T1, pre and post T6, pre and post T12 have showed that sulphureous mud-bath therapy induced a significant (p<0.05) reduction of arterial blood pressure values in patients suffering of chronic arthropathies with high blood pressure in antihypertensive therapy or not (IPET and IPENT groups); while in patients with normal blood pressure (NOR group) were observed modest reduction at the limit of statistical significance. Similarly, the comparison between the data detected at the end of sulphureous mud-bath therapy (post-T12) vs baseline (pre-T1) have demonstrated: in IPET and IPENT groups a significant (p<0,01) decrease of arterial blood pressure values; in NOR group very small decrease, this reduction is significant (p<0.05) only for maximum arterial pressure value. Were not observed adverse drug reaction. The results of our study, in according with the few data in the literature, evidenced that is possible include the sulphureous mud-bath therapy in interdisciplinary therapeutic p rotocol of patients suffering of chronic arthropathies and arterial hypertension.
Stice, Eric; Maxfield, Jennifer; Wells, Tony
2003-07-01
Experiments have found that pressure to be thin from the media promotes body dissatisfaction and negative affect, but the effects of social pressure to be thin have not been examined experimentally. Thus, this study tested whether social pressure to be thin fosters body dissatisfaction and negative affect. Young women (N = 120) were randomly assigned to a condition wherein an ultra-thin confederate complained about how fat she felt and voiced intentions to lose weight or a control condition wherein she discussed a neutral topic. Exposure to social pressure to be thin resulted in increased body dissatisfaction but not negative affect. The effects were not moderated by initial thin-ideal internalization, body dissatisfaction, or social support. Results support the assertion that peer pressure to be thin promotes body dissatisfaction but suggest that this factor may not contribute to negative affect. Copyright 2003 by Wiley Periodicals, Inc.
46 CFR 58.30-25 - Accumulators.
Code of Federal Regulations, 2010 CFR
2010-10-01
... pressure vessel in which energy is stored under high pressure in the form of a gas or a gas and hydraulic... pressures not exceeding the maximum allowable working pressures. When an accumulator forms an integral part...
NASA Technical Reports Server (NTRS)
Fisher, David F.; Banks, Daniel W.; Richwine, David M.
1990-01-01
Pressure distributions measured on the forebody and the leading-edge extensions (LEX's) of the NASA F-18 high alpha research vehicle (HARV) were reported at 10 and 50 degree angles of attack and at Mach 0.20 to 0.60. The results were correlated with HARV flow visualization and 6-percent scale F-18 wind-tunnel-model test results. The general trend in the data from the forebody was for the maximum suction pressure peaks to first appear at an angle of attack (alpha) of approximately 19 degrees and increase in magnitude with angle of attack. The LEX pressure distribution general trend was the inward progression and increase in magnitude of the maximum suction peaks up to vortex core breakdown and then the decrease and general flattening of the pressure distribution beyond that. No significant effect of Mach number was noted for the forebody results. However, a substantial compressibility effect on the LEX's resulted in a significant reduction in vortex-induced suction pressure as Mach number increased. The forebody primary and the LEX secondary vortex separation lines, from surface flow visualization, correlated well with the end of pressure recovery, leeward and windward, respectively, of maximum suction pressure peaks. The flight to wind-tunnel correlations were generally good with some exceptions.
Dome of magnetic order inside the nematic phase of sulfur-substituted FeSe under pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, Li; Kaluarachchi, Udhara; Bohmer, Anna
2017-07-18
The pressure dependence of the structural, magnetic, and superconducting transitions and of the superconducting upper critical field were studied in sulfur-substituted Fe ( Se 1 - x S x ) . We performed resistance measurements on single crystals with three substitution levels ( x = 0.043 , 0.096, 0.12) under hydrostatic pressures up to 1.8 GPa and in magnetic fields up to 9 T and were compared to data on pure FeSe. Our results illustrate the effects of chemical and physical pressure on Fe ( Se 1 - x S x ). Furthermore, on increasing sulfur content, magnetic order inmore » the low-pressure range is strongly suppressed to a small domelike region in the phase diagrams. But, T s is much less suppressed by sulfur substitution, and T c of Fe ( Se 1 - x S x ) exhibits similar nonmonotonic pressure dependence with a local maximum and a local minimum present in the low-pressure range for all x . The local maximum in T c coincides with the emergence of the magnetic order above T c . At this pressure the slope of the upper critical field decreases abruptly, which may indicate a Fermi-surface reconstruction. The minimum of T c correlates with a broad maximum of the upper critical field slope normalized by T c .« less
Pressure-induced superconductivity in a three-dimensional topological material ZrTe5
Zhou, Yonghui; Wu, Juefei; Ning, Wei; Li, Nana; Du, Yongping; Chen, Xuliang; Zhang, Ranran; Chi, Zhenhua; Wang, Xuefei; Zhu, Xiangde; Lu, Pengchao; Ji, Cheng; Wan, Xiangang; Yang, Zhaorong; Sun, Jian; Yang, Wenge; Tian, Mingliang; Zhang, Yuheng; Mao, Ho-kwang
2016-01-01
As a new type of topological materials, ZrTe5 shows many exotic properties under extreme conditions. Using resistance and ac magnetic susceptibility measurements under high pressure, while the resistance anomaly near 128 K is completely suppressed at 6.2 GPa, a fully superconducting transition emerges. The superconducting transition temperature Tc increases with applied pressure, and reaches a maximum of 4.0 K at 14.6 GPa, followed by a slight drop but remaining almost constant value up to 68.5 GPa. At pressures above 21.2 GPa, a second superconducting phase with the maximum Tc of about 6.0 K appears and coexists with the original one to the maximum pressure studied in this work. In situ high-pressure synchrotron X-ray diffraction and Raman spectroscopy combined with theoretical calculations indicate the observed two-stage superconducting behavior is correlated to the structural phase transition from ambient Cmcm phase to high-pressure C2/m phase around 6 GPa, and to a mixture of two high-pressure phases of C2/m and P-1 above 20 GPa. The combination of structure, transport measurement, and theoretical calculations enable a complete understanding of the emerging exotic properties in 3D topological materials under extreme environments. PMID:26929327
Responses to negative pressure surrounding the neck in anesthetized animals.
Wolin, A D; Strohl, K P; Acree, B N; Fouke, J M
1990-01-01
Continuous positive pressure applied at the nose has been shown to cause a decrease in upper airway resistance. The present study was designed to determine whether a similar positive transmural pressure gradient, generated by applying a negative pressure at the body surface around the neck, altered upper airway patency. Studies were performed in nine spontaneously breathing anesthetized supine dogs. Airflow was measured with a pneumotachograph mounted on an airtight muzzle placed over the nose and mouth of each animal. Upper airway pressure was measured as the differential pressure between the extrathoracic trachea and the inside of the muzzle. Upper airway resistance was monitored as an index of airway patency. Negative pressure (-2 to -20 cmH2O) was applied around the neck by using a cuirass extending from the jaw to the thorax. In each animal, increasingly negative pressures were transmitted to the airway wall in a progressive, although not linear, fashion. Decreasing the pressure produced a progressive fall in upper airway resistance, without causing a significant change in respiratory drive or respiratory timing. At -5 cmH2O pressure, there occurred a significant fall in upper airway resistance, comparable with the response of a single, intravenous injection of sodium cyanide (0.5-3.0 mg), a respiratory stimulant that produces substantial increases in respiratory drive. We conclude that upper airway resistance is influenced by the transmural pressure across the airway wall and that such a gradient can be accomplished by making the extraluminal pressure more negative.(ABSTRACT TRUNCATED AT 250 WORDS)
Cavitation clouds created by shock scattering from bubbles during histotripsy
Maxwell, Adam D.; Wang, Tzu-Yin; Cain, Charles A.; Fowlkes, J. Brian; Sapozhnikov, Oleg A.; Bailey, Michael R.; Xu, Zhen
2011-01-01
Histotripsy is a therapy that focuses short-duration, high-amplitude pulses of ultrasound to incite a localized cavitation cloud that mechanically breaks down tissue. To investigate the mechanism of cloud formation, high-speed photography was used to observe clouds generated during single histotripsy pulses. Pulses of 5−20 cycles duration were applied to a transparent tissue phantom by a 1-MHz spherically focused transducer. Clouds initiated from single cavitation bubbles that formed during the initial cycles of the pulse, and grew along the acoustic axis opposite the propagation direction. Based on these observations, we hypothesized that clouds form as a result of large negative pressure generated by the backscattering of shockwaves from a single bubble. The positive-pressure phase of the wave inverts upon scattering and superimposes on the incident negative-pressure phase to create this negative pressure and cavitation. The process repeats with each cycle of the incident wave, and the bubble cloud elongates toward the transducer. Finite-amplitude propagation distorts the incident wave such that the peak-positive pressure is much greater than the peak-negative pressure, which exaggerates the effect. The hypothesis was tested with two modified incident waves that maintained negative pressure but reduced the positive pressure amplitude. These waves suppressed cloud formation which supported the hypothesis. PMID:21973343
14 CFR 29.1521 - Powerplant limitations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...
14 CFR 29.1521 - Powerplant limitations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...
14 CFR 29.1521 - Powerplant limitations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...
14 CFR 29.1521 - Powerplant limitations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...
14 CFR 29.1521 - Powerplant limitations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...
Ohmori, S; Matsumura, K; Kajioka, T; Fukuhara, M; Abe, I; Fujishima, M
2000-07-01
The spectral power of heart rate variability has been shown to be negatively correlated with left ventricular mass (LVM), suggesting the contribution of left ventricular hypertrophy to autonomic dysfunction in essential hypertension. However, a simultaneous assessment of autonomic function and ambulatory blood pressure in relation to LVM has not been carried out. The objective of the present study was to elucidate the synergistic effects of ambulatory blood pressure and autonomic nerve activity on the heart. We enrolled 25 ambulant patients with untreated essential hypertension (9 men and 16 women; mean age 50.6 +/- 2.0 years). The ambulatory blood pressure and heart rate variability were simultaneously monitored every 30 min for 24 h. The spectral power of high-frequency (HF: 0.15 to 0.4 Hz) and low-frequency (LF: 0.05 to 0.15 Hz) bands were measured, and the ratio of LF to HF (LF/HF) was calculated. LF/HF and HF were used as indexes of sympathetic and parasympathetic activities, respectively. LVM was determined by echocardiography. Both the average daytime and nighttime systolic ambulatory blood pressures significantly correlated with the LVM index (r= 0.644, p< 0.001; and r= 0.428, p< 0.05; respectively), although there was no such correlation with the clinic blood pressures. In contrast, a single reading of ambulatory systolic blood pressure measured when LF/HF reached a maximum value was significantly correlated with the LVM index independently of age and sex (partial r= 0.484, p< 0.05). These results suggest that the ambulatory systolic blood pressure during increases in the activity of the sympathetic nervous system is able to infer LVM in essential hypertension.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimund, Kevin K.; McCutcheon, Jeffrey R.; Wilson, Aaron D.
A general method was developed for estimating the volumetric energy efficiency of pressure retarded osmosis via pressure-volume analysis of a membrane process. The resulting model requires only the osmotic pressure, π, and mass fraction, w, of water in the concentrated and dilute feed solutions to estimate the maximum achievable specific energy density, uu, as a function of operating pressure. The model is independent of any membrane or module properties. This method utilizes equilibrium analysis to specify the volumetric mixing fraction of concentrated and dilute solution as a function of operating pressure, and provides results for the total volumetric energy densitymore » of similar order to more complex models for the mixing of seawater and riverwater. Within the framework of this analysis, the total volumetric energy density is maximized, for an idealized case, when the operating pressure is π/(1+√w⁻¹), which is lower than the maximum power density operating pressure, Δπ/2, derived elsewhere, and is a function of the solute osmotic pressure at a given mass fraction. It was also found that a minimum 1.45 kmol of ideal solute is required to produce 1 kWh of energy while a system operating at “maximum power density operating pressure” requires at least 2.9 kmol. Utilizing this methodology, it is possible to examine the effects of volumetric solution cost, operation of a module at various pressure, and operation of a constant pressure module with various feed.« less
Is applicable thermodynamics of negative temperature for living organisms?
NASA Astrophysics Data System (ADS)
Atanasov, Atanas Todorov
2017-11-01
During organismal development the moment of sexual maturity can be characterizes by nearly maximum basal metabolic rate and body mass. Once the living organism reaches extreme values of the mass and the basal metabolic rate, it reaches near equilibrium thermodynamic steady state physiological level with maximum organismal complexity. Such thermodynamic systems that reach equilibrium steady state level at maximum mass-energy characteristics can be regarded from the prospective of thermodynamics of negative temperature. In these systems the increase of the internal and free energy is accompanied with decrease of the entropy. In our study we show the possibility the living organisms to regard as thermodynamic system with negative temperature
Burke, Lauri
2012-01-01
Additionally, this research establishes a methodology to calculate the injectivity of a target formation. Because injectivity describes the pressure increase due to the introduction of fluids into a formation, the relevant application of injectivity is to determine the pressure increase, due to an injection volume and flow rate, that will induce fractures in the reservoir rocks. This quantity is defined mathematically as the maximum pressure differential between the hydrostatic gradient and the fracture gradient of the target formation. Injectivity is mathematically related to the maximum pressure differential of the formation, and can be used to determine the upper limit for the pressure increase that an injection target can withstand before fracturing.
Dziuda, Łukasz; Krej, Mariusz; Śmietanowski, Maciej; Sobotnicki, Aleksander; Sobiech, Mariusz; Kwaśny, Piotr; Brzozowska, Anna; Baran, Paulina; Kowalczuk, Krzysztof; Skibniewski, Franciszek W
2018-05-17
Lower body negative pressure (LBNP) is a method derived from space medicine, which in recent years has been increasingly used by clinicians to assess the efficiency of the cardiovascular regulatory mechanisms. LBNP with combined tilt testing is considered as an effective form of training to prevent orthostatic intolerance. We have developed a prototype system comprising a tilt table and LBNP chamber, and tested it in the context of the feasibility of the device for assessing the pilots' efficiency. The table allows for controlled tilting in the range from -45 to +80° at the maximum change rate of 45°/s. The LBNP value can smoothly be adjusted down to -100 mmHg at up to 20 mmHg/s. 17 subjects took part in the pilot study. A 24-minute scenario included -100 mmHg supine LBNP, head up tilt (HUT) and -60 mmHg LBNP associated with HUT, separated by resting phases. The most noticeable changes were observed in stroke volume (SV). During supine LBNP, HUT and the combined stimulus, a decrease of the SV value by 20%, 40% and below 50%, respectively, were detected. The proposed system can map any pre-programed tilt and LBNP profiles, and the pilot study confirmed the efficiency of performing experimental procedures.
NASA Astrophysics Data System (ADS)
Gonor, Alexander; Hooton, Irene
2006-07-01
Impact of a rigid projectile (impactor), against a metal target and a condensed explosive surface considered as the important process accompanying the normal entry of a rigid projectile into a target, was overlooked in the preceding studies. Within the framework of accurate shock wave theory, the flow-field, behind the shock wave attached to the perimeter of the adjoined surface, was defined. An important result is the peak pressure rises at points along the target surface away from the stagnation point. The maximum values of the peak pressure are 2.2 to 3.2 times higher for the metallic and soft targets (nitromethane, PBX 9502), than peak pressure values at the stagnation point. This effect changes the commonly held notion that the maximum peak pressure is reached at the projectile stagnation point. In the present study the interaction of a spherical decaying blast wave, caused by an underwater explosion, with a piece-wise plane target, having corner configurations, is investigated. The numerical calculation results in the determination of the vulnerable spots on the target, where the maximum peak overpressure surpassed that for the head-on shock wave reflection by a factor of 4.
Preventing Seal Leak During Negative Pressure Wound Therapy Near External Fixators: A Technical Tip.
Mannino, Brian J; Pullen, Michael W; Gaines, Robert
2017-03-01
Negative pressure wound therapy is an effective tool for the treatment of open wounds. Occasionally these wounds are associated with injuries or procedures that require treatment with an external fixator. This article shows how a simple, inexpensive, and commercially available product can be used to prevent loss of suction around external fixator pins within the negative pressure wound treatment area.
Negative-pressure polymorphs made by heterostructural alloying
Perkins, John D.
2018-01-01
The ability of a material to adopt multiple structures, known as polymorphism, is a fascinating natural phenomenon. Various polymorphs with unusual properties are routinely synthesized by compression under positive pressure. However, changing a material’s structure by applying tension under negative pressure is much more difficult. We show how negative-pressure polymorphs can be synthesized by mixing materials with different crystal structures—a general approach that should be applicable to many materials. Theoretical calculations suggest that it costs less energy to mix low-density structures than high-density structures, due to less competition for space between the atoms. Proof-of-concept experiments confirm that mixing two different high-density forms of MnSe and MnTe stabilizes a Mn(Se,Te) alloy with a low-density wurtzite structure. This Mn(Se,Te) negative-pressure polymorph has 2× to 4× lower electron effective mass compared to MnSe and MnTe parent compounds and has a piezoelectric response that none of the parent compounds have. This example shows how heterostructural alloying can lead to negative-pressure polymorphs with useful properties—materials that are otherwise nearly impossible to make. PMID:29725620
Negative-pressure polymorphs made by heterostructural alloying.
Siol, Sebastian; Holder, Aaron; Steffes, James; Schelhas, Laura T; Stone, Kevin H; Garten, Lauren; Perkins, John D; Parilla, Philip A; Toney, Michael F; Huey, Bryan D; Tumas, William; Lany, Stephan; Zakutayev, Andriy
2018-04-01
The ability of a material to adopt multiple structures, known as polymorphism, is a fascinating natural phenomenon. Various polymorphs with unusual properties are routinely synthesized by compression under positive pressure. However, changing a material's structure by applying tension under negative pressure is much more difficult. We show how negative-pressure polymorphs can be synthesized by mixing materials with different crystal structures-a general approach that should be applicable to many materials. Theoretical calculations suggest that it costs less energy to mix low-density structures than high-density structures, due to less competition for space between the atoms. Proof-of-concept experiments confirm that mixing two different high-density forms of MnSe and MnTe stabilizes a Mn(Se,Te) alloy with a low-density wurtzite structure. This Mn(Se,Te) negative-pressure polymorph has 2× to 4× lower electron effective mass compared to MnSe and MnTe parent compounds and has a piezoelectric response that none of the parent compounds have. This example shows how heterostructural alloying can lead to negative-pressure polymorphs with useful properties-materials that are otherwise nearly impossible to make.
Boland, Michelle; Miele, Emily M; Delude, Katie
2017-10-07
The purpose was to identify off-ice testing variables that correlate to skating and game performance in Division I collegiate women ice hockey players. Twenty female, forward and defensive players (19.95 ± 1.35 yr) were assessed for weight, height, percent fat mass (%FAT), bone mineral density, predicted one repetition maximum (RM) absolute and relative (REL%) bench press (BP) and hex bar deadlift (HDL), lower body explosive power, anaerobic power, countermovement vertical jump (CMJ), maximum inspiratory pressure (MIP), and on-ice repeated skate sprint (RSS) performance. The on-ice RSS test included 6 timed 85.6 m sprints with participants wearing full hockey equipment; fastest time (FT), average time (AT) and fatigue index (FI) for the first length skate (FLS; 10 m) and total length skate (TLS; 85.6 m) were used for analysis. Game performance was evaluated with game statistics: goals, assists, points, plus-minus, and shots on goal (SOG). Correlation coefficients were used to determine relationships. Percent fat mass was positively correlated (p < 0.05) with FLS-FI and TLS-AT; TLS-FT was negatively correlated with REL%HDL; BP-RM was negatively correlated with FLS-FT and FLS-AT; MIP positively correlated with assists, points, and SOG; FLS-AT negatively correlated with assists. Game performance in women ice hockey players may be enhanced by greater MIP, repeat acceleration ability, and mode-specific training. Faster skating times were associated with lower %FAT. Skating performance in women ice hockey players may be enhanced by improving body composition, anaerobic power, and both lower and upper body strength in off-ice training.
Pneumatic Control Device for the Pershing 2 Adaption Kit
1979-03-14
forward force to main- tain a pressure seal (this, versus an-I6-to 25 pound maximum reverse .force component due to pressure). In all probability, initial...stem forward force to main- tain a pressure seal (this, versus an 48-to-25-pound maximum " reverse.force, component due-topressue). In-all probability...PII Li L! Ramn Eniern Inc Contrato . 2960635 GAS GENERATOR COMPATIBILITY U TEST REPORT 1.j Requirement s The requirements for the Pershing II, Phase I
Rate of rise in diastolic blood pressure influences vascular sympathetic response to mental stress.
El Sayed, Khadigeh; Macefield, Vaughan G; Hissen, Sarah L; Joyner, Michael J; Taylor, Chloe E
2016-12-15
Research indicates that individuals may experience a rise (positive responders) or fall (negative responders) in muscle sympathetic nerve activity (MSNA) during mental stress. In this study, we examined the early blood pressure responses (including the peak, time of peak and rate of rise in blood pressure) to mental stress in positive and negative responders. Negative MSNA responders to mental stress exhibit a more rapid rise in diastolic pressure at the onset of the stressor, suggesting a baroreflex-mediated suppression of MSNA. In positive responders there is a more sluggish rise in blood pressure during mental stress, which appears to be MSNA-driven. This study suggests that whether MSNA has a role in the pressor response is dependent upon the reactivity of blood pressure early in the task. Research indicates that individuals may experience a rise (positive responders) or fall (negative responders) in muscle sympathetic nerve activity (MSNA) during mental stress. The aim was to examine the early blood pressure response to stress in positive and negative responders and thus its influence on the direction of change in MSNA. Blood pressure and MSNA were recorded continuously in 21 healthy young males during 2 min mental stressors (mental arithmetic, Stroop test) and physical stressors (cold pressor, handgrip exercise, post-exercise ischaemia). Participants were classified as negative or positive responders according to the direction of the mean change in MSNA during the stressor tasks. The peak changes, time of peak and rate of changes in blood pressure were compared between groups. During mental arithmetic negative responders experienced a significantly greater rate of rise in diastolic blood pressure in the first minute of the task (1.3 ± 0.5 mmHg s -1 ) compared with positive responders (0.4 ± 0.1 mmHg s -1 ; P = 0.03). Similar results were found for the Stroop test. Physical tasks elicited robust parallel increases in blood pressure and MSNA across participants. It is concluded that negative MSNA responders to mental stress exhibit a more rapid rise in diastolic pressure at the onset of the stressor, suggesting a baroreflex-mediated suppression of MSNA. In positive responders there is a more sluggish rise in blood pressure during mental stress, which appears to be MSNA-driven. This study suggests that whether MSNA has a role in the pressor response is dependent upon the reactivity of blood pressure early in the task. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Rate of rise in diastolic blood pressure influences vascular sympathetic response to mental stress
El Sayed, Khadigeh; Macefield, Vaughan G.; Hissen, Sarah L.; Joyner, Michael J.
2016-01-01
Key points Research indicates that individuals may experience a rise (positive responders) or fall (negative responders) in muscle sympathetic nerve activity (MSNA) during mental stress.In this study, we examined the early blood pressure responses (including the peak, time of peak and rate of rise in blood pressure) to mental stress in positive and negative responders.Negative MSNA responders to mental stress exhibit a more rapid rise in diastolic pressure at the onset of the stressor, suggesting a baroreflex‐mediated suppression of MSNA. In positive responders there is a more sluggish rise in blood pressure during mental stress, which appears to be MSNA‐driven.This study suggests that whether MSNA has a role in the pressor response is dependent upon the reactivity of blood pressure early in the task. Abstract Research indicates that individuals may experience a rise (positive responders) or fall (negative responders) in muscle sympathetic nerve activity (MSNA) during mental stress. The aim was to examine the early blood pressure response to stress in positive and negative responders and thus its influence on the direction of change in MSNA. Blood pressure and MSNA were recorded continuously in 21 healthy young males during 2 min mental stressors (mental arithmetic, Stroop test) and physical stressors (cold pressor, handgrip exercise, post‐exercise ischaemia). Participants were classified as negative or positive responders according to the direction of the mean change in MSNA during the stressor tasks. The peak changes, time of peak and rate of changes in blood pressure were compared between groups. During mental arithmetic negative responders experienced a significantly greater rate of rise in diastolic blood pressure in the first minute of the task (1.3 ± 0.5 mmHg s−1) compared with positive responders (0.4 ± 0.1 mmHg s−1; P = 0.03). Similar results were found for the Stroop test. Physical tasks elicited robust parallel increases in blood pressure and MSNA across participants. It is concluded that negative MSNA responders to mental stress exhibit a more rapid rise in diastolic pressure at the onset of the stressor, suggesting a baroreflex‐mediated suppression of MSNA. In positive responders there is a more sluggish rise in blood pressure during mental stress, which appears to be MSNA‐driven. This study suggests that whether MSNA has a role in the pressor response is dependent upon the reactivity of blood pressure early in the task. PMID:27690366
Oxygen Partial Pressure and Oxygen Concentration Flammability: Can They Be Correlated?
NASA Technical Reports Server (NTRS)
Harper, Susana A.; Juarez, Alfredo; Perez, Horacio, III; Hirsch, David B.; Beeson, Harold D.
2016-01-01
NASA possesses a large quantity of flammability data performed in ISS airlock (30% Oxygen 526mmHg) and ISS cabin (24.1% Oxygen 760 mmHg) conditions. As new programs develop, other oxygen and pressure conditions emerge. In an effort to apply existing data, the question arises: Do equivalent oxygen partial pressures perform similarly with respect to flammability? This paper evaluates how material flammability performance is impacted from both the Maximum Oxygen Concentration (MOC) and Maximum Total Pressures (MTP) perspectives. From these studies, oxygen partial pressures can be compared for both the MOC and MTP methods to determine the role of partial pressure in material flammability. This evaluation also assesses the influence of other variables on flammability performance. The findings presented in this paper suggest flammability is more dependent on oxygen concentration than equivalent partial pressure.
Thermodynamic models for bounding pressurant mass requirements of cryogenic tanks
NASA Technical Reports Server (NTRS)
Vandresar, Neil T.; Haberbusch, Mark S.
1994-01-01
Thermodynamic models have been formulated to predict lower and upper bounds for the mass of pressurant gas required to pressurize a cryogenic tank and then expel liquid from the tank. Limiting conditions are based on either thermal equilibrium or zero energy exchange between the pressurant gas and initial tank contents. The models are independent of gravity level and allow specification of autogenous or non-condensible pressurants. Partial liquid fill levels may be specified for initial and final conditions. Model predictions are shown to successfully bound results from limited normal-gravity tests with condensable and non-condensable pressurant gases. Representative maximum collapse factor maps are presented for liquid hydrogen to show the effects of initial and final fill level on the range of pressurant gas requirements. Maximum collapse factors occur for partial expulsions with large final liquid fill fractions.
Pandey, Sajan; Jin, Yi; Gao, Liang; Zhou, Cheng Cheng; Cui, Da Ming
2017-03-01
Negative-pressure hydrocephalus (NegPH), a very rare condition of unknown etiology and optimal treatment, usually presents postneurosurgery with clinical and imaging features of hydrocephalus, but with negative cerebrospinal fluid pressure. We describe a NegPH case of -3 mm Hg intracranial pressure that was successfully treated to achieve 5 mm Hg under continuous intracranial pressure monitoring with horizontal positioning, head down and legs elevated to 10°-15°, neck wrapping for controlled venous drainage, chest and abdomen bandages, infusion of 5% dextrose fluid to lower plasma osmolarity (Na + , 130-135 mmol/L), daily cerebrospinal fluid drainage >200 mL, and arterial blood gas partial pressure of carbon dioxide >40 mm Hg. Copyright © 2016 Elsevier Inc. All rights reserved.
Residual Negative Pressure in Vacuum Tubes Might Increase the Risk of Spurious Hemolysis.
Xiao, Tong-Tong; Zhang, Qiao-Xin; Hu, Jing; Ouyang, Hui-Zhen; Cai, Ying-Mu
2017-05-01
We planned a study to establish whether spurious hemolysis may occur when negative pressure remains in vacuum tubes. Four tubes with different vacuum levels (-54, -65, -74, and -86 kPa) were used to examine blood drawn from one healthy volunteer; the tubes were allowed to stand for different times (1, 2, 3, and 4 hours). The plasma was separated and immediately tested for free hemoglobin (FHb). Thirty patients were enrolled in a verification experiment. The degree of hemolysis observed was greater when the remaining negative pressure was higher. Significant differences were recorded in the verification experiment. The results suggest that residual negative pressure might increase the risk of spurious hemolysis.
Advances in wound healing: topical negative pressure therapy
Jones, S; Banwell, P; Shakespeare, P
2005-01-01
In clinical practice many wounds are slow to heal and difficult to manage. The recently introduced technique of topical negative pressure therapy (TNP) has been developed to try to overcome some of these difficulties. TNP applies a controlled negative pressure to the surface of a wound that has potential advantages for wound treatment and management. Although the concept itself, of using suction in wound management is not new, the technique of applying a negative pressure at the surface of the wound is. This paper explores the origins and proposed mechanisms of action of TNP therapy and discusses the types of wounds that are thought to benefit most from use of this system. PMID:15937199
Mann, H J; Fuhs, D W; Cerra, F B
1988-03-01
The influence of the piston-cassette pump fill stroke on the pharmacodynamic response to sodium nitroprusside was evaluated prospectively in 10 adult patients in the surgical intensive-care unit. Simultaneous analog recordings of blood pressure and fill stroke were made over three complete pump fill cycles in each patient. Sodium nitroprusside flow rates and concentrations were recorded throughout the data-collection period. Analysis was based on the maximum pressure obtained during the two-minute baseline period before a fill stroke (Pmax baseline), the pressure at the initiation of the fill stroke (P initial), and the maximum pressure obtained during the two-minute period after the fill stroke (Pmax postfill). The maximum systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean blood pressure (MBP) during the baseline and post-fill-stroke periods were significantly different. The mean (+/- S.D.) variability in pressure between the time periods Pmax baseline and Pmax postfill was 3.9 +/- 5.8 mm Hg for SBP (range, -8 to +16), 3.5 +/- 5.7 mm Hg for DBP (range, -7 to +13), and 3.6 +/- 5.6 mm Hg for MBP (range, -7 to +14). The likelihood of a pharmacodynamic change was inconsistent both between and within patients. Within patients the difference between cycles for the variability between time periods ranged from a minimum of 2 mm Hg to a maximum of 16 mm Hg for SBP, 2 mm Hg to 17 mm Hg for DBP, and 1 mm Hg to 17 mm Hg for MBP. The variability within the baseline period (Pmax baseline - P initial) in SBP was significantly greater than the variability between the time periods, while the differences for DBP and MBP were not significant.(ABSTRACT TRUNCATED AT 250 WORDS)
Tight swimming trunks to prevent post scrotal surgery: an experimental justification.
Al-Abed, Yahya A; Carr, Thomas W
2013-01-01
To conduct a study to measure the pressure effects of the different scrotal supports applied on a simulated expanding scrotal hematoma. We created a model of an expanding hematoma with simultaneous pressure recording using a urodynamics system. Pressures were recorded independently first without application of any support. Then, three types of scrotal supports were tested, including Euron Net Knickers, scrotal suspensory bandage, and tight swimming trunks brand Speedo® brief and shorts. Subsequent pressures were recorded using the model created, which was applied inside the supports worn by two male volunteers A and B. Without any external compression, the pressure inside the simulated expanding hematoma "balloon" reached a maximum of 15 cmH2O. The pressures measured whilst wearing "Netelast knickers" in both subjects A and B reached a maximum of 15 cmH2O suggesting that this garment exerted no measurable compression. The suspensory scrotal support was then tested in both subjects. As the balloon started to fill with saline, the simulated hematoma pushed the scrotal support forward resulting in falling of the balloon outside the scrotal support. Subsequently, Speedo® briefs and shorts were tested. With Speedo® briefs, maximum filling pressures of 49 cmH2O and 40 cmH2O were reached in subjects A and B, respectively. When using Speedo® shorts, however, maximum pressures of 55 cmH2O in subject A and 54 cmH2O in subject B were reached at the end of the balloon filling to 300 mL of saline. The use of tight swimming trunks (Speedo®) has led to satisfactory results in the prevention of hematoma post scrotal surgery.
Zehnder, Pascal; Roth, Beat; Burkhard, Fiona C; Kessler, Thomas M
2008-09-01
We determined and compared urethral pressure measurements using air charged and microtip catheters in a prospective, single-blind, randomized trial. A consecutive series of 64 women referred for urodynamic investigation underwent sequential urethral pressure measurements using an air charged and a microtip catheter in randomized order. Patients were blinded to the type and sequence of catheter used. Agreement between the 2 catheter systems was assessed using the Bland and Altman 95% limits of agreement method. Intraclass correlation coefficients of air charged and microtip catheters for maximum urethral closure pressure at rest were 0.97 and 0.93, and for functional profile length they were 0.9 and 0.78, respectively. Pearson's correlation coefficients and Lin's concordance coefficients of air charged and microtip catheters were r = 0.82 and rho = 0.79 for maximum urethral closure pressure at rest, and r = 0.73 and rho = 0.7 for functional profile length, respectively. When applying the Bland and Altman method, air charged catheters gave higher readings than microtip catheters for maximum urethral closure pressure at rest (mean difference 7.5 cm H(2)O) and functional profile length (mean difference 1.8 mm). There were wide 95% limits of agreement for differences in maximum urethral closure pressure at rest (-24.1 to 39 cm H(2)O) and functional profile length (-7.7 to 11.3 mm). For urethral pressure measurement the air charged catheter is at least as reliable as the microtip catheter and it generally gives higher readings. However, air charged and microtip catheters cannot be used interchangeably for clinical purposes because of insufficient agreement. Hence, clinicians should be aware that air charged and microtip catheters may yield completely different results, and these differences should be acknowledged during clinical decision making.
Maximum Aerodynamic Force on an Ascending Space Vehicle
ERIC Educational Resources Information Center
Backman, Philip
2012-01-01
The March 2010 issue of "The Physics Teacher" includes a great article by Metz and Stinner on the kinematics and dynamics of a space shuttle launch. Within those pages is a brief mention of an event known in the language of the National Aeronautics and Space Administration (NASA) as "maximum dynamic pressure" (called simply "Max.AirPressure" in…
Effect of Training Frequency on Maximum Expiratory Pressure
ERIC Educational Resources Information Center
Anand, Supraja; El-Bashiti, Nour; Sapienza, Christine
2012-01-01
Purpose: To determine the effects of expiratory muscle strength training (EMST) frequency on maximum expiratory pressure (MEP). Method: We assigned 12 healthy participants to 2 groups of training frequency (3 days per week and 5 days per week). They completed a 4-week training program on an EMST trainer (Aspire Products, LLC). MEP was the primary…
40 CFR Table 4 to Subpart Ffff of... - Emission Limits for Storage Tanks
Code of Federal Regulations, 2014 CFR
2014-07-01
... applies to your storage tanks: For each . . . For which . . . Then you must . . . 1. Group 1 storage tank a. The maximum true vapor pressure of total HAP at the storage temperature is ≥76.6 kilopascals i... maximum true vapor pressure of total HAP at the storage temperature is <76.6 kilopascals i. Comply with...
40 CFR Table 4 to Subpart Ffff of... - Emission Limits for Storage Tanks
Code of Federal Regulations, 2013 CFR
2013-07-01
... applies to your storage tanks: For each . . . For which . . . Then you must . . . 1. Group 1 storage tank a. The maximum true vapor pressure of total HAP at the storage temperature is ≥76.6 kilopascals i... maximum true vapor pressure of total HAP at the storage temperature is <76.6 kilopascals i. Comply with...
Generation of a pulsed low-energy electron beam using the channel spark device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgarhy, M. A. I., E-mail: elgarhy@azhar.edu.eg; Hassaballa, S. E.; Rashed, U. M.
2015-12-15
For the generation of low-energy electron beam, the design and characteristics of channel spark discharge (CSD) operating at a low voltage are presented in this paper. The discharge voltage, discharge current, X-ray emissions, and electron beam current were experimentally determined. The effects of the applied voltage, working gas pressure, and external capacitance on the CSD and beam parameters were measured. At an applied voltage of 11 kV, an oxygen gas pressure of 25 mTorr, and an external capacitance of 16.45 nF, the maximum measured current was 900 A. The discharge current increased with the increase in the pressure and capacitance,more » while its periodic time decreased with the increase in the pressure. Two types of the discharge were identified and recorded: the hollow cathode discharge and the conduction discharge. A Faraday cup was used to measure the beam current. The maximum measured beam current was 120 A, and the beam signal exhibited two peaks. The increase in both the external capacitance and the applied discharge voltage increased the maximum electron beam current. The electron-beam pulse time decreased with the increase in the gas pressure at a constant voltage and increased with the decrease in the applied discharge voltage. At an applied voltage of 11 kV and an oxygen gas pressure of 15 mTorr, the maximum beam energy was 2.8 keV. The X-ray signal intensity decreased with the increase in the gas pressure and increased with the increase in the capacitance.« less
In-Flight Lower Body Negative Pressure - Skylab Experiment M092
NASA Technical Reports Server (NTRS)
1973-01-01
This chart details Skylab's In-Flight Lower Body Negative Pressure experiment facility, a medical evaluation designed to monitor changes in astronauts' cardiovascular systems during long-duration space missions. This experiment collected in-flight data for predicting the impairment of physical capacity and the degree of orthostatic intolerance to be expected upon return to Earth. Data to be collected were blood pressure, heart rate, body temperature, vectorcardiogram, lower body negative pressure, leg volume changes, and body mass. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.
Firefighter's compressed air breathing system pressure vessel development program
NASA Technical Reports Server (NTRS)
Beck, E. J.
1974-01-01
The research to design, fabricate, test, and deliver a pressure vessel for the main component in an improved high-performance firefighter's breathing system is reported. The principal physical and performance characteristics of the vessel which were required are: (1) maximum weight of 9.0 lb; (2) maximum operating pressure of 4500 psig (charge pressure of 4000 psig); (3) minimum contained volume of 280 in. 3; (4) proof pressure of 6750 psig; (5) minimum burst pressure of 9000 psig following operational and service life; and (6) a minimum service life of 15 years. The vessel developed to fulfill the requirements described was completely sucessful, i.e., every category of performence was satisfied. The average weight of the vessel was found to be about 8.3 lb, well below the 9.0 lb specification requirement.
Frankel, Jonathan K; Rezaee, Rod P; Harvey, Donald J; McBeath, Evan R; Zender, Chad A; Lavertu, Pierre
2015-11-01
Cervical necrotizing fasciitis is an aggressive infection that can be rapidly fatal if aggressive therapies are not initiated early. Negative pressure wound therapy has been established as an effective tool in promoting wound healing, but its use in the acutely infected wound has been avoided because it limits frequent irrigations and standard dressing changes. We discuss a novel application of negative pressure wound therapy with instillation in an immunocompromised patient with extensive cervical necrotizing fasciitis. The negative pressure wound therapy with instillation provided pain relief by minimizing the frequency of dressing changes, increased the speed of healing, helped to control infection, and facilitated the development of a healthy wound bed sufficient for reconstruction with a split thickness skin graft. The role of negative pressure wound therapy with instillation continues to expand and can be used in the management of both acute and chronic wounds in the head and neck. © 2015 Wiley Periodicals, Inc.
IN VITRO COMPARISON OF MAXIMUM PRESSURE DEVELOPED BY IRRIGATION SYSTEMS IN A KIDNEY MODEL.
Proietti, Silvia; Dragos, Laurian; Somani, Bhaskar K; Butticè, Salvatore; Talso, Michele; Emiliani, Esteban; Baghdadi, Mohammed; Giusti, Guido; Traxer, Olivier
2017-04-05
To evaluate in vitro the maximum pressure generated in an artificial kidney model when people of different levels of strengths used various irrigation systems. Fifteen people were enrolled and divided in 3 groups based on their strengths. Individual strength was evaluated according to the maximum pressure each participant was able to achieve using an Encore™ Inflator. The irrigation systems evaluated were: T-FlowTM Dual Port, HilineTM, continuous flow single action pumping system (SAPSTM) with the system close and open, Irri-flo IITM, a simple 60-ml syringe and PeditrolTM . Each irrigation system was connected to URF-V2 ureteroscope, which was inserted into an artificial kidney model. Each participant was asked to produce the maximum pressure possible with every irrigation device. Pressure was measured with the working channel (WC) empty, with a laser fiber and a basket inside. The highest pressure was achieved with the 60 ml-syringe system and the lowest with SAPS continuous version system (with continuous irrigation open), compared to the other irrigation devices (p< 0.0001). Irrespective of the irrigation system, there was a significant difference in the pressure between the WC empty and when occupied with the laser fiber or the basket inside it (p<0.0001). The stratification between the groups showed that the most powerful group could produce the highest pressure in the kidney model with all the irrigation devices in almost any situation. The exception to this was the T-Flow system, which was the only device where no statistical differences were detected among these groups. The use of irrigation systems can often generate excessive pressure in an artificial kidney model, especially with an unoccupied WC of the ureteroscope. Depending on the strength of force applied, very high pressure can be generated by most irrigation devices irrespective of whether the scope is occupied or not.
Pressures generated in vitro during Stabident intraosseous injections.
Whitworth, J M; Ramlee, R A M; Meechan, J G
2005-05-01
To test the hypothesis that the Stabident intraosseous injection is a potentially high-pressure technique, which carries serious risks of anaesthetic cartridge failure. A standard Astra dental syringe was modified to measure the internal pressure of local anaesthetic cartridges during injection. Intra-cartridge pressures were measured at 1 s intervals during slow (approximately 15 s) and rapid (<10 s) injections of 2% Xylocaine with 1:80,000 adrenaline (0.25 cartridge volumes) into air (no tissue resistance), or into freshly prepared Stabident perforation sites in the anterior mandible of freshly culled young and old sheep (against tissue resistance). Each injection was repeated 10 times over 3 days. Absolute maximum pressures generated by each category of injection, mean pressures at 1 s intervals in each series of injections, and standard deviations were calculated. Curves of mean maximum intra-cartridge pressure development with time were plotted for slow and rapid injections, and one-way anova (P<0.05) conducted to determine significant differences between categories of injection. Pressures created when injecting into air were less than those needed to inject into tissue (P<0.001). Fast injection produced greater intra-cartridge pressures than slow delivery (P<0.05). Injection pressures rose more quickly and to higher levels in small, young sheep mandibles than in larger, old sheep mandibles. The absolute maximum intra-cartridge pressure developed during the study was 3.31 MPa which is less than that needed to fracture glass cartridges. Stabident intraosseous injection conducted in accordance with the manufacturer's instructions does not present a serious risk of dangerous pressure build-up in local anaesthetic cartridges.
Room temperature ferromagnetism in transition metal-doped black phosphorous
NASA Astrophysics Data System (ADS)
Jiang, Xiaohong; Zhang, Xinwei; Xiong, Fang; Hua, Zhenghe; Wang, Zhihe; Yang, Shaoguang
2018-05-01
High pressure high temperature synthesis of transition metal (TM = V, Cr, Mn, Fe, Co, Ni, and Cu) doped black phosphorus (BP) was performed. Room temperature ferromagnetism was observed in Cr and Mn doped BP samples. X-ray diffraction and Raman measurements revealed pure phase BP without any impurity. Transport measurements showed us semiconducting character in 5 at. % doped BP samples Cr5%P95% and Mn5%P95%. The magnetoresistance (MR) studies presented positive MR in the relatively high temperature range and negative MR in the low temperature range. Compared to that of pure BP, the maximum MR was enhanced in Cr5%P95%. However, paramagnetism was observed in V, Fe, Co, Ni, and Cu doped BP samples.
Origin of negative thermal expansion in Zn2GeO4 revealed by high pressure study
NASA Astrophysics Data System (ADS)
Cheng, Xuerui; Yuan, Jie; Zhu, Xiang; Yang, Kun; Liu, Miao; Qi, Zeming
2018-03-01
Zn2GeO4, as an open-framework structure compound, exhibits negative thermal expansion (NTE) below room temperature. In this work, we investigated the structural stability and phonon modes employing the x-ray diffraction and Raman spectroscopy under high pressure up to 23.0 GPa within a diamond anvil cell, and we observed that a pressure-induced irreversible amorphization took place around 10.1 GPa. Bulk modulus, pressure coefficients, and Grüneisen parameters were measured for the initial rhombohedral structure. Several low-frequency rigid-unit modes are found to have negative Grüneisen parameter, which accounts for the primary part of NTE in Zn2GeO4. These results further confirm the hypothesis that the pressure-induced amorphization and the negative thermal expansion are correlated phenomena.
NASA Technical Reports Server (NTRS)
Tanaka, Kunihiko; Waldie, James; Steinbach, Gregory C.; Webb, Paul; Tourbier, Dietmar; Knudsen, Jeffrey; Jarvis, Christine W.; Hargens, Alan R.
2002-01-01
INTRODUCTION: Current space suits are rigid, gas-pressurized shells that protect astronauts from the vacuum of space. A tight elastic garment or mechanical-counter-pressure (MCP) suit generates pressure by compression and may have several advantages over current space suit technology. In this study, we investigated local microcirculatory effects produced with and without a prototype MCP glove. METHODS: The right hand of eight normal volunteers was studied at normal ambient pressure and during exposure to -50, -100 and -150 mm Hg with and without the MCP glove. Measurements included the pressure against the hand, skin microvascular flow, temperature on the dorsum of the hand, and middle finger girth. RESULTS: Without the glove, skin microvascular flow and finger girth significantly increased with negative pressure, and the skin temperature decreased compared with the control condition. The MCP glove generated approximately 200 mm Hg at the skin surface; all measured values remained at control levels during exposure to negative pressure. DISCUSSION: Without the glove, skin microvascular flow and finger girth increased with negative pressure, probably due to a blood shift toward the hand. The elastic compression of the material of the MCP glove generated pressure on the hand similar to that in current gas-pressurized space suit gloves. The MCP glove prevented the apparent blood shift and thus maintained baseline values of the measured variables despite exposure of the hand to negative pressure.
NASA Astrophysics Data System (ADS)
Yeck, William L.; Block, Lisa V.; Wood, Christopher K.; King, Vanessa M.
2015-01-01
The Paradox Valley Unit (PVU), a salinity control project in southwest Colorado, disposes of brine in a single deep injection well. Since the initiation of injection at the PVU in 1991, earthquakes have been repeatedly induced. PVU closely monitors all seismicity in the Paradox Valley region with a dense surface seismic network. A key factor for understanding the seismic hazard from PVU injection is the maximum magnitude earthquake that can be induced. The estimate of maximum magnitude of induced earthquakes is difficult to constrain as, unlike naturally occurring earthquakes, the maximum magnitude of induced earthquakes changes over time and is affected by injection parameters. We investigate temporal variations in maximum magnitudes of induced earthquakes at the PVU using two methods. First, we consider the relationship between the total cumulative injected volume and the history of observed largest earthquakes at the PVU. Second, we explore the relationship between maximum magnitude and the geometry of individual seismicity clusters. Under the assumptions that: (i) elevated pore pressures must be distributed over an entire fault surface to initiate rupture and (ii) the location of induced events delineates volumes of sufficiently high pore-pressure to induce rupture, we calculate the largest allowable vertical penny-shaped faults, and investigate the potential earthquake magnitudes represented by their rupture. Results from both the injection volume and geometrical methods suggest that the PVU has the potential to induce events up to roughly MW 5 in the region directly surrounding the well; however, the largest observed earthquake to date has been about a magnitude unit smaller than this predicted maximum. In the seismicity cluster surrounding the injection well, the maximum potential earthquake size estimated by these methods and the observed maximum magnitudes have remained steady since the mid-2000s. These observations suggest that either these methods overpredict maximum magnitude for this area or that long time delays are required for sufficient pore-pressure diffusion to occur to cause rupture along an entire fault segment. We note that earthquake clusters can initiate and grow rapidly over the course of 1 or 2 yr, thus making it difficult to predict maximum earthquake magnitudes far into the future. The abrupt onset of seismicity with injection indicates that pore-pressure increases near the well have been sufficient to trigger earthquakes under pre-existing tectonic stresses. However, we do not observe remote triggering from large teleseismic earthquakes, which suggests that the stress perturbations generated from those events are too small to trigger rupture, even with the increased pore pressures.
Noise in the operating rooms of Greek hospitals.
Tsiou, Chrisoula; Efthymiatos, Gerasimos; Katostaras, Theophanis
2008-02-01
This study is an evaluation of the problem of noise pollution in operating rooms. The high sound pressure level of noise in the operating theatre has a negative impact on communication between operating room personnel. The research took place at nine Greek public hospitals with more than 400 beds. The objective evaluation consisted of sound pressure level measurements in terms of L(eq), as well as peak sound pressure levels in recordings during 43 surgeries in order to identify sources of noise. The subjective evaluation consisted of a questionnaire answered by 684 operating room personnel. The views of operating room personnel were studied using Pearson's X(2) Test and Fisher's Exact Test (SPSS Version 10.00), a t-test comparison was made of mean sound pressure levels, and the relationship of measurement duration and sound pressure level was examined using linear regression analysis (SPSS Version 13.00). The sound pressure levels of noise per operation and the sources of noise varied. The maximum measured level of noise during the main procedure of an operation was measured at L(eq)=71.9 dB(A), L(1)=84.7 dB(A), L(10)=76.2 dB(A), and L(99)=56.7 dB(A). The hospital building, machinery, tools, and people in the operating room were the main noise factors. In order to eliminate excess noise in the operating room it may be necessary to adopt a multidisciplinary approach. An improvement in environment (background noise levels), the implementation of effective standards, and the focusing of the surgical team on noise matters are considered necessary changes.
90-kilobar diamond-anvil high-pressure cell for use on an automatic diffractometer.
Schiferl, D; Jamieson, J C; Lenko, J E
1978-03-01
A gasketed diamond-anvil high-pressure cell is described which can be used on a four-circle automatic diffractometer to collect x-ray intensity data from single-crystal samples subjected to truly hydrostatic pressures of over 90 kilobars. The force generating system exerts only forces normal to the diamond faces to obtain maximum reliability. A unique design allows exceptionally large open areas for maximum x-ray access and is particularly well suited for highly absorbing materials, as the x rays are not transmitted through the sample. Studies on ruby show that high-pressure crystal structure determinations may be done rapidly, reliably, and routinely with this system.
Methods and apparatus for moving and separating materials exhibiting different physical properties
Peterson, Stephen C.; Brimhall, Owen D.; McLaughlin, Thomas J.; Baker, Charles D.; Sparks, Sam L.
1991-01-01
Methods and apparatus for controlling the movement of materials having different physical properties when one of the materials is a fluid. The invention does not rely on flocculation, sedimentation, centrifugation, the buoyancy of the materials, or any other gravity dependent characteristic, in order to achieve its desired results. The methods of the present invention provide that a first acoustic wave is propagated through a vessel containing the materials. A second acoustic wave, at a frequency different than the first acoustic wave, is also propagated through the vessel so that the two acoustic waves are superimposed upon each other. The superimposition of the two waves creates a beat frequency wave. The beat frequency wave comprises pressure gradients dividing regions of maximum and minimum pressure. The pressure gradients and the regions of maximum and minimum pressure move through space and time at a group velocity. The moving pressure gradients and regions of maximum and minimum pressure act upon the materials so as to move one of the materials towards a predetermined location in the vessel. The present invention provides that the materials may be controllably moved toward a location, aggregated at a particular location, or physically separated from each other.
Methods and apparatus for moving and separating materials exhibiting different physical properties
Peterson, Stephen C.; Brimhall, Owen D.; McLaughlin, Thomas J.; Baker, Charles D.; Sparks, Sam L.
1988-01-01
Methods and apparatus for controlling the movement of materials having different physical properties when one of the materials is a fluid. The invention does not rely on flocculation, sedimentation, centrifugation, the buoyancy of the materials, or any other gravity dependent characteristic, in order to achieve its desired results. The methods of the present invention provide that a first acoustic wave is progpagated through a vessel containing the materials. A second acoustic wave, at a frequency different than the first acoustic wave, is also propagated through the vessel so that the two acoustic waves are superimposed upon each other. The superimposition of the two waves creates a beat frequency wave. The beat frequency wave comprises pressure gradients dividing regions of maximum and minimum pressure. The pressure gradients and the regions of maximum and minimum pressure move through space and time at a group velocity. The moving pressure gradients and regions of maximum and minimum pressure act upon the marterials so as to move one of the materials towards a predetermined location in the vessel. The present invention provides that the materials may be controllably moved toward a location, aggreated at a particular location, or physically separated from each other.
Flash x-ray generator having a liquid-anode diode
NASA Astrophysics Data System (ADS)
Oizumi, Teiji; Sato, Eiichi; Shikoda, Arimitsu; Sagae, Michiaki; Takahashi, Kei; Tamakawa, Yoshiharu; Yanagisawa, Toru; Ojima, Hidenori; Takayama, Kazuyoshi; Fujiwara, Akihiro; Mitoya, Kanji
1995-05-01
The constructions and the fundamental studies of a flash x-ray generator having a liquid-anode diode are described. This flash x-ray generator consisted of the following essential components: a high-voltage power supply, a high-voltage pulser, a thyratron pulser as a trigger device, an oil diffusion pump, and a flash x-ray tube. The main condenser was negatively charged from 50 to 70 kV by the power supply, and the electric charges in the condenser were discharged to the x-ray tube after closing a gap switch by using the thyratron pulser. The flash x- ray tube was of a diode type having a mercury anode and a ferrite cathode. The pressure of the tube was primarily determined by the steam pressure of mercury as a function of temperature. The maximum output voltage from the pulser was about -1 times the charged voltage. The maximum tube voltage and current were approximately 60 kV and 3 kA, respectively, with a charged voltage of -60 kV and a space between the anode and cathode electrodes (AC space) of 2.0 mm. The pulse widths of flash x rays were about 50 ns, and the x-ray intensity measured by a thermoluminescence dosimeter had a value of about 2.5 (mu) C/kg at 0.3 m per pulse with a charged voltage of -70 kV and an AC space of 1.0 mm.
Assessment of dual-point drag reduction for an executive-jet modified airfoil section
NASA Technical Reports Server (NTRS)
Allison, Dennis O.; Mineck, Raymond E.
1996-01-01
This paper presents aerodynamic characteristics and pressure distributions for an executive-jet modified airfoil and discusses drag reduction relative to a baseline airfoil for two cruise design points. A modified airfoil was tested in the adaptive-wall test section of the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT) for Mach numbers ranging from 0.250 to 0.780 and chord Reynolds numbers ranging from 3.0 x 10(exp 6) to 18.0 x 10(exp 6). The angle of attack was varied from minus 2 degrees to almost 10 degrees. Boundary-layer transition was fixed at 5 percent of chord on both the upper and lower surfaces of the model for most of the test. The two design Mach numbers were 0.654 and 0.735, chord Reynolds numbers were 4.5 x 10(exp 6) and 8.9 x 10(exp 6), and normal-force coefficients were 0.98 and 0.51. Test data are presented graphically as integrated force and moment coefficients and chordwise pressure distributions. The maximum normal-force coefficient decreases with increasing Mach number. At a constant normal-force coefficient in the linear region, as Mach number increases an increase occurs in the slope of normal-force coefficient versus angle of attack, negative pitching-moment coefficient, and drag coefficient. With increasing Reynolds number at a constant normal-force coefficient, the pitching-moment coefficient becomes more negative and the drag coefficient decreases. The pressure distributions reveal that when present, separation begins at the trailing edge as angle of attack is increased. The modified airfoil, which is designed with pitching moment and geometric constraints relative to the baseline airfoil, achieved drag reductions for both design points (12 and 22 counts). The drag reductions are associated with stronger suction pressures in the first 10 percent of the upper surface and weakened shock waves.
Seitz, Andreas Martin; Lubomierski, Anja; Friemert, Benedikt; Ignatius, Anita; Dürselen, Lutz
2012-06-01
We examined the influence of partial meniscectomy of 10 mm width on 10 human cadaveric knee joints, as it is performed during the treatment of radial tears in the posterior horn of the medial meniscus, on maximum contact pressure, contact area (CA), and meniscal hoop strain in the lateral and medial knee compartments. In case of 0° and 30° flexion angle, 20% and 50% partial meniscectomy did not influence maximum contact pressure and area. Only in case of 60° knee flexion, 50% partial resection increased medial maximum contact pressure and decreased the medial CA statistically significant. However, 100% partial resection increased maximum contact pressure and decreased CA significantly in the meniscectomized medial knee compartment in all tested knee positions. No significant differences were noted for meniscal hoop strain. From a biomechanical point of view, our in vitro study suggests that the medial joint compartment is not in danger of accelerated cartilage degeneration up to a resection limit of 20% meniscal depth and 10 mm width. Contact mechanics are likely to be more sensitive to partial meniscectomy at higher flexion angles, which has to be further investigated. Copyright © 2011 Orthopaedic Research Society.
Metastable superheated ice in liquid-water inclusions under high negative pressure
Roedder, E.
1967-01-01
In some microscopic inclusions (consisting of aqueous liquid and vapor) in minerals, freezing eliminates the vapor phase because of greater volume occupied by the resulting ice. When vapor fails to nucleate again on partial melting, the resulting negative pressure (hydrostatic tension) inside the inclusions permits the existence of ice I crystals under reversible, metastable equilibrium, at temperatures as high as +6.5??C and negative pressures possibly exceeding 1000 bars.
High-pressure Infrared Spectra of Tal and Lawsonite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott,H.; Liu, Z.; Hemley, R.
2007-01-01
We present high-pressure infrared spectra of two geologically important hydrous minerals: talc, Mg3Si4O10(OH)2 and lawsonite, CaAl2Si2O7(OH)2{center_dot}H2O,{center_dot}at room temperature. For lawsonite, our data span the far infrared region from 150 to 550 cm-1 and extend to 25 GPa. We combine our new spectroscopic data with previously published high-pressure mid-infrared and Raman data to constrain the Gr{umlt u}neisen parameter and vibrational density of states under pressure. In the case of talc, we present high-pressure infrared data that span both the mid and far infrared from 150 to 3800 cm-1 covering lattice, silicate, and hydroxyl stretching vibrations to a maximum pressure of 30more » GPa. Both phases show remarkable metastability well beyond their nominal maximum thermodynamic stability at simultaneous high-pressure and high-temperature conditions.« less
Neural control of vascular reactions: impact of emotion and attention.
Okon-Singer, Hadas; Mehnert, Jan; Hoyer, Jana; Hellrung, Lydia; Schaare, Herma Lina; Dukart, Juergen; Villringer, Arno
2014-03-19
This study investigated the neural regions involved in blood pressure reactions to negative stimuli and their possible modulation by attention. Twenty-four healthy human subjects (11 females; age = 24.75 ± 2.49 years) participated in an affective perceptual load task that manipulated attention to negative/neutral distractor pictures. fMRI data were collected simultaneously with continuous recording of peripheral arterial blood pressure. A parametric modulation analysis examined the impact of attention and emotion on the relation between neural activation and blood pressure reactivity during the task. When attention was available for processing the distractor pictures, negative pictures resulted in behavioral interference, neural activation in brain regions previously related to emotion, a transient decrease of blood pressure, and a positive correlation between blood pressure response and activation in a network including prefrontal and parietal regions, the amygdala, caudate, and mid-brain. These effects were modulated by attention; behavioral and neural responses to highly negative distractor pictures (compared with neutral pictures) were smaller or diminished, as was the negative blood pressure response when the central task involved high perceptual load. Furthermore, comparing high and low load revealed enhanced activation in frontoparietal regions implicated in attention control. Our results fit theories emphasizing the role of attention in the control of behavioral and neural reactions to irrelevant emotional distracting information. Our findings furthermore extend the function of attention to the control of autonomous reactions associated with negative emotions by showing altered blood pressure reactions to emotional stimuli, the latter being of potential clinical relevance.
Negative-pressure polymorphs made by heterostructural alloying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siol, Sebastian; Holder, Aaron; Steffes, James
The ability of a material to adopt multiple structures, known as polymorphism, is a fascinating natural phenomenon. Various polymorphs with unusual properties are routinely synthesized by compression under positive pressure. However, changing a material's structure by applying tension under negative pressure is much more difficult. We show how negative-pressure polymorphs can be synthesized by mixing materials with different crystal structures - a general approach that should be applicable to many materials. Theoretical calculations suggest that it costs less energy to mix low-density structures than high-density structures, due to less competition for space between the atoms. Proof-of-concept experiments confirm that mixingmore » two different high-density forms of MnSe and MnTe stabilizes a Mn(Se,Te) alloy with a low-density wurtzite structure. This Mn(Se,Te) negative-pressure polymorph has 2x to 4x lower electron effective mass compared to MnSe and MnTe parent compounds and has a piezoelectric response that none of the parent compounds have. Lastly, this example shows how heterostructural alloying can lead to negative-pressure polymorphs with useful properties - materials that are otherwise nearly impossible to make.« less
Negative-pressure polymorphs made by heterostructural alloying
Siol, Sebastian; Holder, Aaron; Steffes, James; ...
2018-04-20
The ability of a material to adopt multiple structures, known as polymorphism, is a fascinating natural phenomenon. Various polymorphs with unusual properties are routinely synthesized by compression under positive pressure. However, changing a material's structure by applying tension under negative pressure is much more difficult. We show how negative-pressure polymorphs can be synthesized by mixing materials with different crystal structures - a general approach that should be applicable to many materials. Theoretical calculations suggest that it costs less energy to mix low-density structures than high-density structures, due to less competition for space between the atoms. Proof-of-concept experiments confirm that mixingmore » two different high-density forms of MnSe and MnTe stabilizes a Mn(Se,Te) alloy with a low-density wurtzite structure. This Mn(Se,Te) negative-pressure polymorph has 2x to 4x lower electron effective mass compared to MnSe and MnTe parent compounds and has a piezoelectric response that none of the parent compounds have. Lastly, this example shows how heterostructural alloying can lead to negative-pressure polymorphs with useful properties - materials that are otherwise nearly impossible to make.« less
Negative pressures and spallation in water drops subjected to nanosecond shock waves
Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.; ...
2016-05-16
Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPamore » were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.« less
NASA Astrophysics Data System (ADS)
Fukao, Y.; Sugioka, H.; Ito, A.; Shiobara, H.; Sandanbata, O.; Watada, S.; Satake, K.
2016-12-01
An array of ocean bottom pressure gauges was deployed off east of Aogashima island of the Izu-Bonin arc from May 2014 to May 2015. The array consists of 10 ocean bottom pressure gauges using ParoScientific quartz resonators which can measure absolute water pressure at 7000m depth with nano-resolution. The array configures equilateral triangles with minimum and maximum lengths of 10 and 30km. This array recorded seismic and tsunami waves from the CLVD-type earthquake (M5.7) of May 02, 2015, that occurred near Torishima Island 100 km distant from the array. Comparison with records of ordinary thrust earthquakes with similar magnitudes at similar distances indicates that this event generated anomalously large tsunamis relative to seismic waves. We made an array analysis for the phase speed, propagating azimuth and travel time of tsunami wave in a frequency range 1-10 mHz, where the dispersion effect is significant. The results show excellent agreements with the frequency-dependent ray-tracing calculations. The tsunami trace apparently starts with positive onset (pressure increase) and reaches a maximum amplitude of about 200Pa (≈2cm in tsunami height). A closer inspection, however, shows a preceding negative small pulse (Fig. 1), suggesting that the seafloor deformation at the tsunami source consists of a central large uplift and a peripheral small depression. This mode of deformation is qualitatively consistent with a finite CLVD source uniformly shortened laterally and uniformly stretched vertically without volume change. The detection of weak initial motions is indebted to the array deployment of sensitive pressure gauges far away from coastal regions. The bandpass-filtered waveform is drastically different between the lower and higher frequency ranges. The waveform is single-peaked in the lower frequency range (<5 mHz) but is ringing in the higher frequency range (>5 mHz), corresponding to the tsunami spectrum that consists of the broad primary peak around 3.5 mHz and the sharp double peaks at around 6.5 and 9 mHz. We interpret the broad primary peak as due to the tsunami source associated with seafloor deformation and the sharp double peaks as due to wave resonance (seiche) inside the Smith Caldera.
Johnston, G R; Feeney, D A; Osborne, C A; Johnston, S D; Smith, F O; Jessen, C R
1985-03-01
Positive-contrast retrograde urethrocystograms were obtained serially on 12 male dogs weighing 11.4 to 23.2 kg before, during, and after the injection of contrast medium until the urinary bladder neck and prostatic and membranous portions of the urethra remained open and distended as viewed by fluoroscopy. Correlations of intravesical volumes and pressures required to achieve maximum distension of the midprostatic portion of the urethra with body weight and surface area were not significant. Because of the variability in intravesical volumes and pressures encountered at maximum distension of the prostatic portion of the urethra, a dose of contrast material expressed relative to body weight or surface area could not be determined for consistently providing maximum distension of the prostatic portion of the urethra.
Kim, Cheol Ki; Ryu, Ju Seok; Song, Sun Hong; Koo, Jung Hoi; Lee, Kyung Duck; Park, Hee Sun; Oh, Yoongul; Min, Kyunghoon
2015-06-01
To observe changes in pharyngeal pressure during the swallowing process according to postures in normal individuals using high-resolution manometry (HRM). Ten healthy volunteers drank 5 mL of water twice while sitting in a neutral posture. Thereafter, they drank the same amount of water twice in the head rotation and head tilting postures. The pressure and time during the deglutition process for each posture were measured with HRM. The data obtained for these two postures were compared with those obtained from the neutral posture. The maximum pressure, area, rise time, and duration in velopharynx (VP) and tongue base (TB) were not affected by changes in posture. In comparison, the maximum pressure and the pre-upper esophageal sphincter (UES) maximum pressure of the lower pharynx in the counter-catheter head rotation posture were lower than those in the neutral posture. The lower pharynx pressure in the catheter head tilting posture was higher than that in the counter-catheter head tilting. The changes in the VP peak and epiglottis, VP and TB peaks, and the VP onset and post-UES time intervals were significant in head tilting and head rotation toward the catheter postures, as compared with neutral posture. The pharyngeal pressure and time parameter analysis using HRM determined the availability of head rotation as a compensatory technique for safe swallowing. Tilting the head smoothes the progress of food by increasing the pressure in the pharynx.
Effects of Head Rotation and Head Tilt on Pharyngeal Pressure Events Using High Resolution Manometry
Kim, Cheol Ki; Song, Sun Hong; Koo, Jung Hoi; Lee, Kyung Duck; Park, Hee Sun; Oh, Yoongul; Min, Kyunghoon
2015-01-01
Objective To observe changes in pharyngeal pressure during the swallowing process according to postures in normal individuals using high-resolution manometry (HRM). Methods Ten healthy volunteers drank 5 mL of water twice while sitting in a neutral posture. Thereafter, they drank the same amount of water twice in the head rotation and head tilting postures. The pressure and time during the deglutition process for each posture were measured with HRM. The data obtained for these two postures were compared with those obtained from the neutral posture. Results The maximum pressure, area, rise time, and duration in velopharynx (VP) and tongue base (TB) were not affected by changes in posture. In comparison, the maximum pressure and the pre-upper esophageal sphincter (UES) maximum pressure of the lower pharynx in the counter-catheter head rotation posture were lower than those in the neutral posture. The lower pharynx pressure in the catheter head tilting posture was higher than that in the counter-catheter head tilting. The changes in the VP peak and epiglottis, VP and TB peaks, and the VP onset and post-UES time intervals were significant in head tilting and head rotation toward the catheter postures, as compared with neutral posture. Conclusion The pharyngeal pressure and time parameter analysis using HRM determined the availability of head rotation as a compensatory technique for safe swallowing. Tilting the head smoothes the progress of food by increasing the pressure in the pharynx. PMID:26161349
Steib, Simon; Hentschke, Christian; Welsch, Goetz; Pfeifer, Klaus; Zech, Astrid
2013-08-01
Sensorimotor control is permanently impaired following functional ankle instability and temporarily decreased following fatigue. Little is known on potential interactions between both conditions. The purpose was to investigate the effect of fatiguing exercise on sensorimotor control in athletes with and without (coper, controls) functional ankle instability. 19 individuals with functional ankle instability, 19 ankle sprain copers, and 19 non-injured controls participated in this cohort study. Maximum reach distance in the star excursion balance test, unilateral jump landing stabilization time, center of pressure sway velocity in single-leg-stance, and passive ankle joint position sense were assessed before and immediately after fatiguing treadmill running. A three factorial linear mixed model was specified for each outcome to evaluate the effects of group, exhausting exercise (fatigue) and their interactions (group by fatigue). Effect sizes were calculated as Cohen's d. Maximum reach distance in the star excursion balance test, jump stabilization time and sway velocity, but not joint position sense, were negatively affected by fatigue in all groups. Effect sizes were moderate, ranging from 0.27 to 0.68. No significant group by fatigue interactions were found except for one measure. Copers showed significantly larger prefatigue to postfatigue reductions in anterior reach direction (P≤0.001; d=-0.55) compared to the ankle instability (P=0.007) and control group (P=0.052). Fatiguing exercise negatively affected postural control but not proprioception. Ankle status did not appear to have an effect on fatigue-induced sensorimotor control impairments. © 2013.
NASA Technical Reports Server (NTRS)
Wingenback, W.; Carter, J., Jr.
1979-01-01
A conceptual design of a 3600 rpm reciprocation expander was developed for maximum thermal input power of 80 kW. The conceptual design covered two engine configurations; a single cylinder design for simple cycle operation and a two cylinder design for reheat cycle operation. The reheat expander contains a high pressure cylinder and a low pressure cylinder with steam being reheated to the initial inlet temperature after expansion in the high pressure cylinder. Power generation is accomplished with a three-phase induction motor coupled directly to the expander and connected electrically to the public utility power grid. The expander, generator, water pump and control system weigh 297 kg and are dish mounted. The steam condenser, water tank and accessory pumps are ground based. Maximum heat engine efficiency is 33 percent: maximum power conversion efficiency is 30 percent. Total cost is $3,307 or $138 per kW of maximum output power.
Hydrological and Dynamical Characteristics of Summertime Droughts over U.S. Great Plains.
NASA Astrophysics Data System (ADS)
Chang, Fong-Chiau; Smith, Eric A.
2001-05-01
A drought pattern and its time evolution over the U.S. Great Plains are investigated from time series of climate divisional monthly mean surface air temperature and total precipitation anomalies. The spatial pattern consists of correlated occurrences of high (low) surface air temperature and deficit (excess) rainfall. The center of maximum amplitude in rain fluctuation is around Kansas City; that of temperature is over South Dakota. Internal consistency between temperature and precipitation variability is the salient feature of the drought pattern. A drought index is used to quantify drought severity for the period 1895-1996. The 12 severest drought months (in order) during this period are June 1933, June 1988, July 1936, August 1983, July 1934, July 1901, June 1931, August 1947, July 1930, June 1936, July 1954, and August 1936. Hydrological conditions are examined using National Centers for Environmental Prediction (NCEP) reanalysis precipitable water (PW) and monthly surface observations from Kansas City, Missouri, and Bismarck, North Dakota, near the drought centers. This analysis explains why droughts exhibit negative surface relative humidity anomalies accompanied by larger than normal monthly mean daily temperature ranges and why maximum PWs are confined to a strip of about 10° longitude from New Mexico and Arizona into the Dakotas and Minnesota.Dynamical conditions are examined using NCEP reanalysis sea level pressures and 500- and 200-mb geopotential heights. The analysis indicates a midtroposphere wave train with positive centers situated over the North Pacific, North America, and the North Atlantic, with negative centers in the southeastern Gulf of Alaska and Davis Strait. Above-normal sea level pressures over New Mexico, the North Atlantic, and the subtropical Pacific along with below-normal sea level pressures over the Gulf of Alaska eastward to Canada, Davis Strait, and Greenland are present during drought periods. The most prominent feature is the strong anticyclone over central North America.On a regional scale, midtropospheric westerly winds are weakened (or become easterly) south of a thermal heat low centered in South Dakota during drought episodes because of the north-south temperature reversal perturbation. The associated westward displaced Bermuda high leads to enhanced low-level warm flow into the Dakotas, thus helping to maintain the reversal in the meridional temperature gradient and the concomitant thermal wind reversal. Enhanced moisture transport from the Gulf of California into the western plains (part of the Great Basin monsoon process) results from the large-scale perturbation pressure pattern. Middle-upper level convergence maintains the water vapor strip east of the Rocky Mountains, while the Mississippi valley undergoes moisture cutoff from both this process and the westward shift in the Bermuda high. The strip of maximum PW then undergoes enhanced solar and infrared absorption that feeds back on the thermal heat low. Surface air temperatures warm while sinking motion balances middle-upper level radiative cooling around the Kansas City area. This is the dynamical coupling that leads to reduced surface relative humidities. The centers of high surface air temperature and deficit rainfall are dynamically consistent with patterns in geopotential heights, vertical velocities, and water vapor amounts.
Chen, Bin; Kao, Huang-Kai; Dong, Ziqing; Jiang, Zhaohua; Guo, Lifei
2017-01-01
Negative-pressure wound therapy and pulsed radiofrequency energy are two clinical modalities used to treat soft-tissue wounds. They are purported to affect healing differently. The aim of this experimental study was to contrast the two modalities at a mechanistic level and to investigate whether their combined therapy could achieve additive and complementary effects on wound healing. Full-thickness dorsal cutaneous wounds of diabetic, db/db, mice were treated with either negative-pressure wound therapy, pulsed radiofrequency energy, or combined therapies. Macroscopic healing kinetics were examined. Epidermal regeneration (proliferation rate and length of reepithelialization) and neovascularization (blood vessel density) were investigated. Messenger RNA levels indicative of angiogenic (basic fibroblast growth factor), profibrotic (transforming growth factor-β), epidermal proliferative (keratinocyte growth factor), and extracellular matrix remodeling (collagen 1) processes were measured in wound tissues. All three treatment groups displayed faster wound healing. The negative-pressure wound therapy/pulsed radiofrequency energy combined therapy led to significantly faster healing than either the negative-pressure wound therapy or pulsed radiofrequency energy therapy alone. Epidermal regeneration and neovascularization were enhanced in all three groups. The two negative-pressure wound therapy groups (alone and combined with pulsed radiofrequency energy) demonstrated more significant increases in expression of all assayed growth factors than the pulsed radiofrequency energy group. Furthermore, the combined therapy exhibited a more profound elevation in collagen 1 expression than either of the two therapies alone. Combining the negative-pressure wound therapy and pulsed radiofrequency energy modalities can achieve additive benefits in cutaneous healing, and the two therapies can be easily used together to complement each other in clinical wound treatments.
Blood pressure responses to LBNP in nontrained and trained hypertensive rats
NASA Technical Reports Server (NTRS)
Bedford, T. G.; Tipton, C. M.
1992-01-01
To study the influences of 16 wk of endurance training on the reflex regulation of resting blood pressure, nontrained (NT) and trained (T) female hypertensive rats (SHR) were subjected to conditions of lower body negative pressure (LBNP). Measurements of muscle cytochrome oxidase activity and run time to exhaustion indicated that the animals were endurance trained. The rats (NT = 6, T = 7) were tranquilized with 300-600 micrograms.kg-1 diazepam (IV) before heart rates and blood pressures were measured over a range of 2.5-10.0 mm Hg of negative pressure. When subjected to conditions of LBNP, the reflex tachycardia of the T group was greater than the NT at the lower (-2.5 and -5.0 mm Hg) negative pressures. Although arterial pressure declines were similar in both groups, the T group experienced significantly less of a decline in central venous pressure than the NT animals. When chlorisondamine was used as a ganglionic blocker (2.5 mg.kg-1, IV), the fall in CVP at 10 mm Hg negative pressure was greater for the NT group while the fall in the initial systemic arterial pressure was more for the T group. From these results we concluded that training had altered the interaction between cardiopulmonary and arterial baroreflexes in these hypertensive rats and a nonneural component had been altered such as cardiac function.
2014-06-30
baroreceptor stimu- lation (i.e., lower arterial blood pressure ) suggests an association between a depressed baroreflex response and development of...orthostatic tolerance, blood pressure regulation, lower body negative pressure , parasympathetic activity, sympathetic activity, propranolol, atropine...body negative pressure (LBNP) so that comparisons of physiology in individuals with high and low tolerance to central hypovolemia could be studied at
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-17
... Suction Apparatus Device Intended for Negative Pressure Wound Therapy AGENCY: Food and Drug Administration...- powered suction apparatus device intended for negative pressure wound therapy (NPWT) into class II... ``Class II Special Controls Guidance Document: Non-Powered Suction Apparatus Device Intended for Negative...
NASA Astrophysics Data System (ADS)
Krajícek, Zdenek; Bergoglio, Mercede; Pražák, Dominik; Pasqualin, Stefano
2014-01-01
This report describes a EURAMET bilateral supplementary comparison between Czech CMI and Italian INRIM in low negative gauge pressure in gas (nitrogen), denoted as EURAMET.M.P-S12. The digital non-rotating pressure balance FPG8601 manufactured by Fluke/DH-Instruments, USA is normally used for gauge and absolute pressures in the range from 1 Pa to 15 kPa, but with some modifications it can be used also for the negative gauge pressures in the same range. During the preparation of the visit of INRIM at CMI for the last comparison within the framework of EURAMET.M.P-K4.2010, it was agreed to also perform an additional comparison in the range from 300 Pa to 15 kPa of negative gauge pressure. The measurements were performed in October 2012. Both institutes successfully proved their equivalence in all the tested points in the range from 300 Pa to 15 kPa of negative gauge pressure in a comparison that had, so far, been unique. . Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
49 CFR 178.347-4 - Pressure relief.
Code of Federal Regulations, 2010 CFR
2010-10-01
... adequate vapor and liquid capacity to limit the tank pressure to the cargo tank test pressure at maximum... 49 Transportation 2 2010-10-01 2010-10-01 false Pressure relief. 178.347-4 Section 178.347-4... Specifications for Containers for Motor Vehicle Transportation § 178.347-4 Pressure relief. (a) Each cargo tank...
Regulation of landslide motion by dilatancy and pore pressure feedback
Iverson, R.M.
2005-01-01
A new mathematical model clarifies how diverse styles and rates of landslide motion can result from regulation of Coulomb friction by dilation or contraction of water-saturated basal shear zones. Normalization of the model equations shows that feedback due to coupling between landslide motion, shear zone volume change, and pore pressure change depends on a single dimensionless parameter ??, which, in turn, depends on the dilatancy angle ?? and the intrinsic timescales for pore pressure generation and dissipation. If shear zone soil contracts during slope failure, then ?? 0, and negative feedback permits slow, steady landslide motion to occur while positive pore pressure is supplied by rain infiltration. Steady state slip velocities v0 obey v0 = -(K/??) p*e, where K is the hydraulic conductivity and p*e is the normalized (dimensionless) negative pore pressure generated by dilation. If rain infiltration and attendant pore pressure growth continue unabated, however, their influence ultimately overwhelms the stabilizing influence of negative p*e. Then, unbounded landslide acceleration occurs, accentuated by an instability that develops if ?? diminishes as landslide motion proceeds. Nonetheless, numerical solutions of the model equations show that slow, nearly steady motion of a clay-rich landslide may persist for many months as a result of negative pore pressure feedback that regulates basal Coulomb friction. Similarly stabilized motion is less likely to occur in sand-rich landslides that are characterized by weaker negative feedback.
Yang, Dongmei; Li, Junhui; Ding, Yiting; Tyree, Melvin T
2017-03-01
The physiological advantages of negative turgor pressure, P t , in leaf cells are water saving and homeostasis of reactants. This paper advances methods for detecting the occurrence of negative P t in leaves. Biomechanical models of pressure-volume (PV) curves predict that negative P t does not change the linearity of PV curve plots of inverse balance pressure, P B , versus relative water loss, but it does predict changes in either the y-intercept or the x-intercept of the plots depending on where cell collapse occurs in the P B domain because of negative P t . PV curve analysis of Robinia leaves revealed a shift in the x-intercept (x-axis is relative water loss) of PV curves, caused by negative P t of palisade cells. The low x-intercept of the PV curve was explained by the non-collapse of palisade cells in Robinia in the P B domain. Non-collapse means that P t smoothly falls from positive to negative values with decreasing cell volume without a dramatic change in slope. The magnitude of negative turgor in non-collapsing living cells was as low as -1.3 MPa and the relative volume of the non-collapsing cell equaled 58% of the total leaf cell volume. This study adds to the growing evidence for negative P t . © 2016 John Wiley & Sons Ltd.
A liquid-liquid transition can exist in monatomic transition metals with a positive melting slope
Lee, Byeongchan; Lee, Geun Woo
2016-01-01
Liquid-liquid transitions under high pressure are found in many elemental materials, but the transitions are known to be associated with either sp-valent materials or f-valent rare-earth elements, in which the maximum or a negative slope in the melting line is readily suggestive of the transition. Here we find a liquid-liquid transition with a positive melting slope in transition metal Ti from structural, electronic, and thermodynamic studies using ab-initio molecular dynamics calculations, showing diffusion anomaly, but no density anomaly. The origin of the transition in liquid Ti is a pressure-induced increase of local structures containing very short bonds with directionality in electronic configurations. This behavior appears to be characteristic of the early transition metals. In contrast, the late transition metal liquid Ni does not show the L-L transition with pressure. This result suggests that the possibility of the L-L transition decreases from early to late transition metals as electronic structures of late transition metals barely have a Jahn-Teller effect and bond directionality. Our results generalize that a phase transition in disordered materials is found with any valence band regardless of the sign of the melting slope, but related to the symmetry of electronic structures of constituent elements. PMID:27762334
He, Chiyang; Zhu, Zaifang; Gu, Congying; Lu, Joann; Liu, Shaorong
2012-03-02
Numerous micropumps have been developed, but few of them can produce adequate flow rate and pressure for high-performance liquid chromatography (HPLC) applications. We have recently developed an innovative hybrid electroosmotic pump (EOP) to solve this problem. The basic unit of a hybrid pump consists of a +EOP (the pumping element is positively charged) and a -EOP (the pumping element is negatively charged). The outlet of the +EOP is then joined with the inlet of the -EOP, forming a basic pump unit, while the anode of a positive high voltage (HV) power supply is placed at the joint. The inlet and outlet of this pump unit are electrically grounded. With this configuration, we can stack many of such pump units in series to boost the pumping power. In this work, we describe in details how an open-capillary hybrid EOP is constructed and characterize this pump systematically. We also show that a hybrid EOP with ten serially stacked pump units can deliver a maximum pressure of 21.5 MPa (∼3100 psi). We further demonstrate the feasibility of using this hybrid EOP to drive eluents for HPLC separations of proteins and peptides. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Stotz, I. L.; Iaffaldano, G.; Davies, D. R.
2018-01-01
The Pacific Plate is thought to be driven mainly by slab pull, associated with subduction along the Aleutians-Japan, Marianas-Izu-Bonin, and Tonga-Kermadec trenches. This implies that viscous flow within the sub-Pacific asthenosphere is mainly generated by overlying plate motion (i.e., Couette flow) and that the associated shear stresses at the lithosphere's base are resisting such motion. Recent studies on glacial isostatic adjustment and lithosphere dynamics provide tighter constraints on the viscosity and thickness of Earth's asthenosphere and, therefore, on the amount of shear stress that asthenosphere and lithosphere mutually exchange, by virtue of Newton's third law of motion. In light of these constraints, the notion that subduction is the main driver of present-day Pacific Plate motion becomes somewhat unviable, as the pulling force that would be required by slabs exceeds the maximum available from their negative buoyancy. Here we use coupled global models of mantle and lithosphere dynamics to show that the sub-Pacific asthenosphere features a significant component of pressure-driven (i.e., Poiseuille) flow and that this has driven at least 50% of the Pacific Plate motion since, at least, 15 Ma. A corollary of our models is that a sublithospheric pressure difference as high as ±50 MPa is required across the Pacific domain.
He, Chiyang; Zhu, Zaifang; Gu, Congying; ...
2012-01-09
Numerous micropumps have been developed, but few of them can produce adequate flow rate and pressure for high-performance liquid chromatography (HPLC) applications. We have recently developed an innovative hybrid electroosmotic pump (EOP) to solve this problem. The basic unit of a hybrid pump consists of a +EOP (the pumping element is positively charged) and a -EOP (the pumping element is negatively charged). The outlet of the +EOP is then joined with the inlet of the -EOP, forming a basic pump unit, while the anode of a positive high voltage (HV) power supply is placed at the joint. The inlet andmore » outlet of this pump unit are electrically grounded. With this configuration, we can stack many of such pump units in series to boost the pumping power. In this work, we describe in details how an open-capillary hybrid EOP is constructed and characterize this pump systematically. We also show that a hybrid EOP with ten serially stacked pump units can deliver a maximum pressure of 21.5 MPa (~3100 psi). Here, we further demonstrate the feasibility of using this hybrid EOP to drive eluents for HPLC separations of proteins and peptides.« less
de Gregorio, Cesar; Arias, Ana; Navarrete, Natalia; Del Rio, Veronica; Oltra, Enrique; Cohenca, Nestor
2013-01-01
The purpose of this investigation was to determine the effect that apical preparation size and preparation taper have on the volume of irrigant delivered at the working length for different canal curvatures using apical negative pressure irrigation. One hundred fifty-five human teeth (55 maxillary canines and 100 mandibular molars) were used in this study. Root canals were prepared with rotary instruments to a size 35.04 and separated into 3 experimental groups according to their degree of curvature: group A (n = 50) included canal curvatures ranging from 0° to 10°, group B (n = 50) from 11° to 30°, and group C (n = 50) from 31° to 65°. Samples of each curvature group were further randomized to experimental subgroups according to the apical size and taper as follow: 35.06, 40.04, 40.06, 45.04, and 45.06. The apical third was irrigated using a microcannula and the volume of NaOCl suctioned at the working length under negative pressure was measured over a period of 30 seconds using a fluid recovery trap. Positive controls consisted of measuring the maximum volume of 5.25% NaOCl capable of being suctioned by the microcannula from an open glass vial over 30 seconds. Negative control was the volume of irrigant aspirated by the microcannula with a preparation size of 25.04 over 30 seconds. The volume of irrigant was significantly greater when the apical preparation size increased from 35.06 to 40.04. As the apical preparation taper increased further from 40.04 to 40.06, the volume of irrigant significantly improved in group B, but it was not significant in group A. Apical preparation sizes greater than 40.06 did not show an increase of the volume of irrigant aspirated. The degree of root canal curvature decreased the volume of irrigant at the working length for a given apical size and taper. An apical preparation of 40.06 significantly increased the volume and exchange of irrigant at the working length regardless of curvature. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
López-de-Uralde-Villanueva, Ibai; Candelas-Fernández, Pablo; de-Diego-Cano, Beatriz; Mínguez-Calzada, Orcález; Del Corral, Tamara
2018-06-01
The objective of this study was to evaluate whether the addition of manual therapy and therapeutic exercise protocol to inspiratory muscle training was more effective in improving maximum inspiratory pressure than inspiratory muscle training in isolation. This is a single-blinded, randomized controlled trial. In total, 43 patients with asthma were included in this study. The patients were allocated into one of the two groups: (1) inspiratory muscle training ( n = 21; 20-minute session) or (2) inspiratory muscle training (20-minute session) combined with a program of manual therapy (15-minute session) and therapeutic exercise (15-minute session; n = 22). All participants received 12 sessions, two days/week, for six weeks and performed the domiciliary exercises protocol. The main measures such as maximum inspiratory pressure, spirometric measures, forward head posture, and thoracic kyphosis were recorded at baseline and after the treatment. For the per-protocol analysis, between-group differences at post-intervention were observed in maximum inspiratory pressure (19.77 cmH 2 O (11.49-28.04), P < .05; F = 22.436; P < .001; η 2 p = 0.371) and forward head posture (-1.25 cm (-2.32 to -0.19), P < .05; F = 5.662; P = .022; η 2 p = 0.13). The intention-to-treat analysis showed the same pattern of findings. The inspiratory muscle training combined with a manual therapy and therapeutic exercise program is more effective than its application in isolation for producing short-term maximum inspiratory pressure and forward head posture improvements in patients with asthma.
A pressure-amplifying framework material with negative gas adsorption transitions.
Krause, Simon; Bon, Volodymyr; Senkovska, Irena; Stoeck, Ulrich; Wallacher, Dirk; Többens, Daniel M; Zander, Stefan; Pillai, Renjith S; Maurin, Guillaume; Coudert, François-Xavier; Kaskel, Stefan
2016-04-21
Adsorption-based phenomena are important in gas separations, such as the treatment of greenhouse-gas and toxic-gas pollutants, and in water-adsorption-based heat pumps for solar cooling systems. The ability to tune the pore size, shape and functionality of crystalline porous coordination polymers--or metal-organic frameworks (MOFs)--has made them attractive materials for such adsorption-based applications. The flexibility and guest-molecule-dependent response of MOFs give rise to unexpected and often desirable adsorption phenomena. Common to all isothermal gas adsorption phenomena, however, is increased gas uptake with increased pressure. Here we report adsorption transitions in the isotherms of a MOF (DUT-49) that exhibits a negative gas adsorption; that is, spontaneous desorption of gas (methane and n-butane) occurs during pressure increase in a defined temperature and pressure range. A combination of in situ powder X-ray diffraction, gas adsorption experiments and simulations shows that this adsorption behaviour is controlled by a sudden hysteretic structural deformation and pore contraction of the MOF, which releases guest molecules. These findings may enable technologies using frameworks capable of negative gas adsorption for pressure amplification in micro- and macroscopic system engineering. Negative gas adsorption extends the series of counterintuitive phenomena such as negative thermal expansion and negative refractive indices and may be interpreted as an adsorptive analogue of force-amplifying negative compressibility transitions proposed for metamaterials.
Increasing preferred step rate during running reduces plantar pressures.
Gerrard, James M; Bonanno, Daniel R
2018-01-01
Increasing preferred step rate during running is a commonly used strategy in the management of running-related injuries. This study investigated the effect of different step rates on plantar pressures during running. Thirty-two healthy runners ran at a comfortable speed on a treadmill at five step rates (preferred, ±5%, and ±10%). For each step rate, plantar pressure data were collected using the pedar-X in-shoe system. Compared to running with a preferred step rate, a 10% increase in step rate significantly reduced peak pressure (144.5±46.5 vs 129.3±51 kPa; P=.033) and maximum force (382.3±157.6 vs 334.0±159.8 N; P=.021) at the rearfoot, and reduced maximum force (426.4±130.4 vs 400.0±116.6 N; P=.001) at the midfoot. In contrast, a 10% decrease in step rate significantly increased peak pressure (144.5±46.5 vs 161.5±49.3 kPa; P=.011) and maximum force (382.3±157.6 vs 425.4±155.3 N; P=.032) at the rearfoot. Changing step rate by 5% provided no effect on plantar pressures, and no differences in plantar pressures were observed at the medial forefoot, lateral forefoot or hallux between the step rates. This study's findings indicate that increasing preferred step rate by 10% during running will reduce plantar pressures at the rearfoot and midfoot, while decreasing step rate by 10% will increase plantar pressures at the rearfoot. However, changing preferred step rate by 5% will provide no effect on plantar pressures, and forefoot pressures are unaffected by changes in step rate. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Morimoto, Yusuke; Ferretti, Mario; Ekdahl, Max; Smolinski, Patrick; Fu, Freddie H
2009-01-01
The purpose of this study was to compare the tibiofemoral contact area and pressure after single-bundle (SB) and double-bundle (DB) anterior cruciate ligament (ACL) reconstruction by use of 2 femoral and 2 tibial tunnels in intact cadaveric knees. Tibiofemoral contact area and mean and maximum pressures were measured by pressure-sensitive film (Fujifilm, Valhalla, NY) inserted between the tibia and femur. The knee was subjected to a 1,000-N axial load by use of a uniaxial testing machine at 0 degrees , 15 degrees , 30 degrees , and 45 degrees of flexion. Three conditions were evaluated: (1) intact ACL, (2) SB ACL reconstruction (n = 10 knees), and (3) DB ACL reconstruction (n = 9 knees). When compared with the intact knee, DB ACL reconstruction showed no significant difference in tibiofemoral contact area and mean and maximum pressures. SB ACL reconstruction had a significantly smaller contact area on the lateral and medial tibiofemoral joints at 30 degrees and 15 degrees of flexion. SB ACL reconstruction also had significantly higher mean pressures at 15 degrees of flexion on the medial tibiofemoral joint and at 0 degrees and 15 degrees of flexion on the lateral tibiofemoral joint, as well as significantly higher maximum pressures at 15 degrees of flexion on the lateral tibiofemoral joint. SB ACL reconstruction resulted in a significantly smaller tibiofemoral contact area and higher pressures. DB ACL more closely restores the normal contact area and pressure mainly at low flexion angles. Our findings suggest that the changes in the contact area and pressures after SB ACL reconstruction may be one of the causes of osteoarthritis on long-term follow-up. DB ACL reconstruction may reduce the incidence of osteoarthritis by closely restoring contact area and pressure.
Numerical simulation of CO2 scroll compressor in transcritical compression cycle
NASA Astrophysics Data System (ADS)
Wang, Hongli; Tian, JingRui; Du, Yuanhang; Hou, Xiujuan
2018-05-01
Based on the theory of thermodynamics and kinetics, the mathematical model of an orbiting scroll was established and the stress deformations were employed by ANSYS software. Under the action of pressure load, the results show that the serious displacement part is located in the center of the gear head and the maximum deformation is about 7.33 μm. The maximum radial displacement is about 4.42 μm. The maximum radial stress point occurs in the center of the gear head and the maximum stress is about 40.9 MPa. The maximum axial displacement is about 2.31 μm. The maximum axial stress point occurs in the gear head and the maximum stress is about 44.7 MPa. Under the action of temperature load, the results show that the serious deformation part is located in the center of the gear head and the maximum deformation is about 6.3 μm. The maximum thermal stress occurs in the center of the gear head and the maximum thermal stress is about 86.36 MPa. Under the combined action of temperature load and pressure load, the results show that the serious deformation part and the maximum stress are located in the center of the gear head, and the value are about 7.79 μm and 74.19 MPa, respectively.
Generation and characterization of field-emitting surface dielectric barrier discharges in liquids
NASA Astrophysics Data System (ADS)
Kawamura, Tomohisa; Kanno, Moriyuki; Stauss, Sven; Kuribara, Koichi; Pai, David Z.; Ito, Tsuyohito; Terashima, Kazuo
2018-01-01
Field-emitting surface dielectric barrier discharges (FESDBDs), previously generated in CO2 from high pressures up to supercritical conditions using 10 kHz ac excitation, were investigated in non-aqueous liquid CO2 and liquid silicone oil. In both liquids, the maximum amount of negative charge Q-deposited as a function of the applied voltage amplitude was consistent with the Fowler-Nordheim equation, which demonstrated the presence of field emission. Furthermore, purely continuum optical emission spectra attributable to electron-neutral bremsstrahlung were confirmed. The fact that these characteristics were identical to those in high-pressure CO2 reported from previous research shows that FESDBDs can be generated independently of the medium type and that they are low-power (on the order of 10 mW) discharges. To investigate the charging function of FESDBDs, the motion of fine particles suspended above the FESDBDs was studied by high-speed imaging. It revealed that the speed of fine particles affected by the FESDBDs depends on the particle size, the FESDBDs' function being to charge fine particles.
Acoustic radiation force control: Pulsating spherical carriers.
Rajabi, Majid; Mojahed, Alireza
2018-02-01
The interaction between harmonic plane progressive acoustic beams and a pulsating spherical radiator is studied. The acoustic radiation force function exerted on the spherical body is derived as a function of the incident wave pressure and the monopole vibration characteristics (i.e., amplitude and phase) of the body. Two distinct strategies are presented in order to alter the radiation force effects (i.e., pushing and pulling states) by changing its magnitude and direction. In the first strategy, an incident wave field with known amplitude and phase is considered. It is analytically shown that the zero- radiation force state (i.e., radiation force function cancellation) is achievable for specific pulsation characteristics belong to a frequency-dependent straight line equation in the plane of real-imaginary components (i.e., Nyquist Plane) of prescribed surface displacement. It is illustrated that these characteristic lines divide the mentioned displacement plane into two regions of positive (i.e., pushing) and negative (i.e., pulling) radiation forces. In the second strategy, the zero, negative and positive states of radiation force are obtained through adjusting the incident wave field characteristics (i.e., amplitude and phase) which insonifies the radiator with prescribed pulsation characteristics. It is proved that zero radiation force state occurs for incident wave pressure characteristics belong to specific frequency-dependent circles in Nyquist plane of incident wave pressure. These characteristic circles divide the Nyquist plane into two distinct regions corresponding to positive (out of circles) and negative (in the circles) values of radiation force function. It is analytically shown that the maximum amplitude of negative radiation force is exactly equal to the amplitude of the (positive) radiation force exerted upon the sphere in the passive state, by the same incident field. The developed concepts are much more deepened by considering the required power supply for distinct cases of zero, negative and positive radiation force states along with the frequency dependent asymmetry index. In addition, considering the effect of phase difference between the incident wave field and the pulsating object, and its possible variation with respect to spatial position of object, some practical points about the spatial average of generated radiation force, the optimal state of operation, the stability of zero radiation force states and the possibly of precise motion control are discussed. This work would extend the novel concept of smart carriers to and may be helpful for robust single-beam acoustic handling techniques. Furthermore, the shown capability of precise motion control may be considered as a new way toward smart acoustic driven micro-mechanisms and micro-machines. Copyright © 2017 Elsevier B.V. All rights reserved.
Estimation of Bladder Contractility From Intravesical Pressure–Volume Measurements
Fry, Christopher H.; Gammie, Andrew; Drake, Marcus John; Abrams, Paul; Kitney, Darryl Graham; Vahabi, Bahareh
2017-01-01
Aims To describe parameters from urodynamic pressure recordings that describe urinary bladder contractility through the use of principles of muscle mechanics. Methods Subtracted detrusor pressure and voided flow were recorded from patients undergoing filling cystometry. The isovolumetric increase of detrusor pressure, P, of a voluntary bladder contraction before voiding was used to generate a plot of (dP/dt)/P versus P. Extrapolation of the plot to the y-axis and the x-axis generated a contractility parameter, vCE (the maximum rate of pressure development) and the maximum isovolumetric pressure, P0, respectively. Similar curves were obtained in ex vivo pig bladders with different concentrations of the inotropic agent carbachol and shown in a supplement. Results Values of vCE, but not P0, diminished with age in female subjects. vCE was most significantly associated with the 20–80% duration of isovolumetric contraction t20–80;and a weaker association with maximum flow rate and BCI in women. P0 was not associated with any urodynamic variable in women, but in men was with t20–80 and isovolumetric pressure indices. Conclusions The rate of isovolumetric subtracted detrusor pressure (t20–80) increase shows a very significant association with indices of bladder contractility as derived from a derived force–velocity curve. We propose that t20–80 is a detrusor contractility parameter (DCP). PMID:27265671
2014-10-01
pulse oximeter (Cardiocap/5; Datex-Ohmeda, Louisville, CO). The EKG and pulse oximeter tracings were interfaced with a personal computer for con- tinuous...responses to reduced central venous pressure (CVP) and pulse pressure (PP) elicited during graded lower body negative pressure (LBNP) to those observed...Johnson BD, Curry TB, Convertino VA, & Joyner MJ. The association between pulse pressure and stroke volume during lower body negative pressure and
Effect of Background Pressure on the Performance and Plume of the HiVHAc Hall Thruster
NASA Technical Reports Server (NTRS)
Huang, Wensheng; Kamhawi, Hani; Haag, Thomas
2013-01-01
During the Single String Integration Test of the NASA HiVHAc Hall thruster, a number of plasma diagnostics were implemented to study the effect of varying facility background pressure on thruster operation. These diagnostics include thrust stand, Faraday probe, ExB probe, and retarding potential analyzer. The test results indicated a rise in thrust and discharge current with background pressure. There was also a decrease in ion energy per charge, an increase in multiply-charged species production, a decrease in plume divergence, and a decrease in ion beam current with increasing background pressure. A simplified ingestion model was applied to determine the maximum acceptable background pressure for thrust measurement. The maximum acceptable ingestion percentage was found to be around 1%. Examination of the diagnostics results suggest the ionization and acceleration zones of the thruster were shifting upstream with increasing background pressure.
Advanced cooling techniques for high-pressure hydrocarbon-fueled engines
NASA Technical Reports Server (NTRS)
Cook, R. T.
1979-01-01
The regenerative cooling limits (maximum chamber pressure) for 02/hydrocarbon gas generator and staged combustion cycle rocket engines over a thrust range of 89,000 N (20,000lbf) to 2,669,000 N (600,000 lbf) for a reusable life of 250 missions were defined. Maximum chamber pressure limits were first determined for the three propellant combinations (O2/CH4, O2/C3H8, and O2/RP-1 without a carbon layer (unenhanced designs). Chamber pressure cooling enhancement limits were then established for seven thermal barriers. The thermal barriers evaluated for these designs were: carbon layer, ceramic coating, graphite liner, film cooling, transpiration cooling, zoned combustion, and a combination of two of the above. All fluid barriers were assessed a 3 percent performance loss. Sensitivity studies were then conducted to determine the influence of cycle life and RP-1 decomposition temperature on chamber pressure limits. Chamber and nozzle design parameters are presented for the unenahanced and enhanced designs. The maximum regenerative cooled chamber pressure limits were attained with the O2/CH4 propellant combination. The O2/RP-1 designs relied on a carbon layer and liquid gas injection chamber contours, short chamber, to be competitive with the other two propellant combinations. This was attributed to the low decomposition temperature of RP-1.
Yu, Lulu; Kronen, Ryan J; Simon, Laura E; Stoll, Carolyn R T; Colditz, Graham A; Tuuli, Methodius G
2018-02-01
The objective of the study was to assess the effect of prophylactic negative-pressure wound therapy on surgical site infections and other wound complications in women after cesarean delivery. We searched Ovid Medline, Embase, SCOPUS, Cochrane Database of Systematic Reviews, and ClinicalTrials.gov. We included randomized controlled trials and observational studies comparing prophylactic negative-pressure wound therapy with standard wound dressing for cesarean delivery. The primary outcome was surgical site infection after cesarean delivery. Secondary outcomes were composite wound complications, wound dehiscence, wound seroma, endometritis, and hospital readmission. Heterogeneity was assessed using Higgin's I 2 . Relative risks with 95% confidence intervals were calculated using random-effects models. Six randomized controlled trials and 3 cohort studies in high-risk mostly obese women met inclusion criteria and were included in the meta-analysis. Six were full-text articles, 2 published abstracts, and 1 report of trial results in ClinicalTrials.gov. Studies were also heterogeneous in the patients included and type of negative-pressure wound therapy device. The risk of surgical site infection was significantly lower with the use of prophylactic negative-pressure wound therapy compared with standard wound dressing (7 studies: pooled risk ratio, 0.45; 95% confidence interval, 0.31-0.66; adjusted risk ratio, -6.0%, 95% confidence interval, -10.0% to -3.0%; number needed to treat, 17, 95% confidence interval, 10-34). There was no evidence of significant statistical heterogeneity (I 2 = 9.9%) or publication bias (Egger P = .532). Of the secondary outcomes, only composite wound complications were significantly reduced in patients receiving prophylactic negative-pressure wound therapy compared with standard dressing (9 studies: pooled risk ratio, 0.68, 95% confidence interval, 0.49-0.94). Studies on the effectiveness of prophylactic negative-pressure wound therapy at cesarean delivery are heterogeneous but suggest a reduction in surgical site infection and overall wound complications. Larger definitive trials are needed to clarify the clinical utility of prophylactic negative-pressure wound therapy after cesarean delivery. Copyright © 2017 Elsevier Inc. All rights reserved.
George, William H.; Davis, Kelly Cue; Masters, N. Tatiana; Kajumulo, Kelly F.; Stappenbeck, Cynthia A.; Norris, Jeanette; Heiman, Julia R.; Staples, Jennifer M.
2015-01-01
Highly intoxicated versus sober women were evaluated using multi-group path analyses to test the hypothesis that sexual victimization history would interact with partner pressure to forgo condom use, resulting in greater condom-decision abdication – letting the man decide whether or not to use a condom. After beverage administration, community women (n=408) projected themselves into a scenario depicting a male partner exerting high or low pressure for unprotected sex. Mood, anticipated negative reactions from the partner, and condom-decision abdication were assessed. In both control and alcohol models, high pressure increased anticipated negative partner reaction, and positive mood was associated with increased abdication. In the alcohol model, victimization predicted abdication via anticipated negative partner reaction, and pressure decreased positive mood and abdication. In the control model, under high pressure, victimization history severity was positively associated with abdication. Findings implicate condom-decision abdication as an important construct in understanding how women’s sexual victimization histories may exert sustained impact on sexual interactions. PMID:26340952
Stress and Negative Relationship Quality among Older Couples: Implications for Blood Pressure
Newton, Nicky J.; Cranford, James A.; Ryan, Lindsay H.
2016-01-01
Objectives: The cardiovascular system may represent a significant pathway by which marriage and stress influence health, but research has focused on married individuals cross-sectionally. This study examined associations among chronic stress, negative spousal relationship quality, and systolic blood pressure over time among middle-aged and older husbands and wives. Method: Participants were from the nationally representative longitudinal Health and Retirement Study. A total of 1,356 (N = 2,712) married and cohabitating couples completed psychosocial and biomeasure assessments in waves 2006 and 2010. Analyses examined whether Wave 1 (2006) relationship quality and stress were associated with changes in blood pressure over time. Results: The effects of stress and negative relationship quality were dyadic and varied by gender. Husbands had increased blood pressure when wives reported greater stress, and this link was exacerbated by negative spousal relationship quality. Negative relationship quality predicted increased blood pressure when both members of the couple reported negative quality relations. Discussion: Findings support the dyadic biopsychosocial model of marriage and health indicating: (a) stress and relationship quality directly effect the cardiovascular system, (b) relationship quality moderates the effect of stress, and (c) the dyad rather than only the individual should be considered when examining marriage and health. PMID:25852106
Petrologic Constraints on Magma Plumbing Systems Beneath Hawaiian Volcanoes
NASA Astrophysics Data System (ADS)
Li, Y.; Peterman, K. J.; Scott, J. L.; Barton, M.
2016-12-01
We have calculated the pressures of partial crystalliztion of basaltic magmas from Hawaii using a petrological method. A total of 1576 major oxide analyses of glasses from four volcanoes (Kilauea and the Puna Ridge, Loihi, Mauna Loa, and Mauna Kea, on the Big Island) were compiled and used as input data. Glasses represent quenched liquid compositions and are ideal for calculation of pressures of partial crystallization. The results were filtered to exclude samples that yielded unrealistic high errors associated with the calculated pressure or negative value of pressure, and to exclude samples with non-basaltic compositions. Calculated pressures were converted to depths of partial crystallization. The majority (68.2%) of pressures for the shield-stage subaerial volcanoes Kilauea, Mauna Loa, and Mauna Kea, fall in the range 0-140 MPa, corresponding to depths of 0-5 km. Glasses from the Puna Ridge yield pressures ranging from 18 to 126 MPa and are virtually identical to pressures determined from glasses from Kilauea (0 to 129 MPa). These results are consistent with the presence of magma reservoirs at depths of 0-5 km beneath the large shield volcanoes. The inferred depth of the magma reservoir beneath the summit of Kilauea (average = 1.8 km, maximum = 5 km) agrees extremely well with depths ( 2-6 km) estimated from seismic studies. The results for Kilauea and Mauna Kea indicate that significant partial crystallization also occurs beneath the summit reservoirs at depths up to 11 km. These results are consistent with seismic evidence for the presence of a magma reservoir at 8-11 km beneath Kilauea at the base of the volcanic pile. The results for Loihi indicate crystallization at higher average pressures (100-400 MPa) and depths (3-14 km) than the large shield volcanoes, suggesting that the plumbing system is not yet fully developed, and that the Hawaiian volcanic plumbing systems evolve over time.
Variation of plantar pressure in Chinese diabetes mellitus.
Yang, Chuan; Xiao, Huisheng; Wang, Chuan; Mai, LiFang; Liu, Dan; Qi, Yiqing; Ren, Meng; Yan, Li
2015-01-01
To investigate dynamic changes in plantar pressure in Chinese diabetes mellitus patients and to provide a basis for further preventing diabetic foot. This is a cross-sectional investigation including 649 Chinese diabetes mellitus patients (diabetes group) and 808 "normal" Chinese persons (nondiabetes group) with normal blood glucose levels. All the subjects provided a complete medical history and underwent a physical examination and a 75-g oral glucose tolerance test. All subjects walked barefoot with their usual gait, and their dynamic plantar forces were measured using the one-step method with a plantar pressure measurement instrument; 5 measurements were performed for each foot. No significant differences were found in age, height, body weight, or body mass index between the two groups. The fasting blood glucose levels, plantar contact time, maximum force, pressure-time integrals and force-time integrals in the diabetes group were significantly higher than those in the nondiabetes group (p < 0.05). However, the maximum pressure was significantly higher in the nondiabetes group than in the diabetes group (p < 0.05). No difference was found in the contact areas between the two groups (p > 0.05). The maximum plantar force distributions were essentially the same, with the highest force found for the medial heel, followed by the medial forefoot and the first toe. The peak plantar pressure was located at the medial forefoot for the nondiabetes group and at the hallucis for the diabetes group. In the diabetes group, the momentum in each plantar region was higher than that in the nondiabetes group; this difference was especially apparent in the heel, the lateral forefoot and the hallucis. The dynamic plantar pressures in diabetic patients differ from those in nondiabetic people with increased maximum force and pressure, a different distribution pattern and significantly increased momentum, which may lead to the formation of foot ulcers. © 2015 by the Wound Healing Society.
Nonextensivity in a Dark Maximum Entropy Landscape
NASA Astrophysics Data System (ADS)
Leubner, M. P.
2011-03-01
Nonextensive statistics along with network science, an emerging branch of graph theory, are increasingly recognized as potential interdisciplinary frameworks whenever systems are subject to long-range interactions and memory. Such settings are characterized by non-local interactions evolving in a non-Euclidean fractal/multi-fractal space-time making their behavior nonextensive. After summarizing the theoretical foundations from first principles, along with a discussion of entropy bifurcation and duality in nonextensive systems, we focus on selected significant astrophysical consequences. Those include the gravitational equilibria of dark matter (DM) and hot gas in clustered structures, the dark energy(DE) negative pressure landscape governed by the highest degree of mutual correlations and the hierarchy of discrete cosmic structure scales, available upon extremizing the generalized nonextensive link entropy in a homogeneous growing network.
Kraus, Stephen R; Lemack, Gary E; Sirls, Larry T; Chai, Toby C; Brubaker, Linda; Albo, Michael; Leng, Wendy W; Lloyd, L Keith; Norton, Peggy; Litman, Heather J
2011-12-01
To identify urodynamic changes that correlate with successful outcomes after stress urinary incontinence (SUI) surgery. Six-hundred fifty-five women were randomized to Burch colposuspension or autologous fascial sling as part of the multicenter Stress Incontinence Surgical Treatment Efficacy Trial. Preoperatively and 24 months after surgery, participants underwent standardized urodynamic testing that included noninvasive uroflowmetry, cystometrogram, and pressure flow studies. Changes in urodynamic parameters were correlated to a successful outcome, defined a priori as (1) negative pad test; (2) no urinary incontinence on 3-day diary; (3) negative cough and Valsalva stress test; (4) no self-reported SUI symptoms on the Medical, Epidemiologic and Social Aspects of Aging Questionnaire; and (5) no re-treatment for SUI. Subjects who met criteria for surgical success showed a greater relative increase in mean Pdet@Qmax (baseline vs 24 months) than women who were considered surgical failures (P = .008). Although a trend suggested an association between greater increases in bladder outlet obstruction index and outcome success, this was not statistically significant. Other urodynamic variables, such as maximum uroflow, bladder compliance, and the presence of preoperative or de novo detrusor overactivity did not differ with respect to outcome status. Successful outcomes in both surgical groups (Burch and sling) were associated with higher voiding pressures relative to preoperative baseline values. However, concomitant changes in other urodynamic voiding parameters were not significantly associated with outcome. Copyright © 2011 Elsevier Inc. All rights reserved.
Fracture mechanics technology for optimum pressure vessel design.
NASA Technical Reports Server (NTRS)
Bjeletich, J. G.; Morton, T. M.
1973-01-01
A technique has been developed to design a maximum efficiency reliable pressure vessel of given geometry and service life. The technique for ensuring reliability of the minimum weight vessel relies on the application of linear elastic fracture mechanics and fracture mechanics concepts. The resultant design incorporates potential fatigue and stress corrosion crack extension during service of a worst case initial flaw. Maximum stress for safe life is specified by the design technique, thereby minimizing weight. Ratios of pressure and toughness parameters are employed to avoid arbitrary specification of design stress level which would lead to a suboptimum design.
NASA Astrophysics Data System (ADS)
Bogovalov, S. V.; Borman, V. D.; Borisevich, V. D.; Davidenko, O. V.; Tronin, I. V.; Tronin, V. N.
2016-09-01
The results of optimization calculations of the separative power of the ’’high-speed” Iguasu gas centrifuge are presented. Iguasu gas centrifuge has the rotational speed of 1000 m/s, the rotor length of 1 m. The dependence of the optimal separative power on the pressure of the working gas on the rotor wall was obtained using the numerical simulations. It is shown, that maximum of the optimal separative power corresponds to the pressure of 1100 mmHg. Maximum value of separative power is 31.9 SWU.
ANATOMY OF HELICAL EXTRAGALACTIC JETS: THE CASE OF S5 0836+710
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perucho, M.; Kovalev, Y. Y.; Lobanov, A. P.
Helical structures are common in extragalactic jets. They are usually attributed in the literature to periodical phenomena in the source (e.g., precession). In this work, we use very long baseline interferometry data of the radio jet in the quasar S5 0836+710 and hypothesize that the ridgeline of helical jets like this corresponds to a pressure maximum in the jet and assume that the helically twisted pressure maximum is the result of a helical wave pattern. For our study, we use observations of the jet in S5 0836+710 at different frequencies and epochs. The results show that the structures observed aremore » physical and not generated artificially by the observing arrays. Our hypothesis that the observed intensity ridgeline can correspond to a helically twisted pressure maximum is confirmed by our observational tests. This interpretation allows us to explain jet misalignment between parsec and kiloparsec scales when the viewing angle is small, and also brings us to the conclusion that high-frequency observations may show only a small region of the jet flow concentrated around the maximum pressure ridgeline observed at low frequencies. Our work provides a potential explanation for the apparent transversal superluminal speeds observed in several extragalactic jets by means of transversal shift of an apparent core position with time.« less
NASA Technical Reports Server (NTRS)
Smiley, Robert F.; Haines, Gilbert A.
1949-01-01
Bureau of Aeronautics Design Specifications SS-IC-2 for water loads in sheltered water are compared with experimental water loads obtained during a full--scale landing investigation. This investigation was conducted with a JRS-1 flying boat which has a 20 degrees dead-rise V-bottom with a partial chine flare. The range of landing conditions included airspeeds between 88 and 126 feet per second, sinking speeds between 1.6 and 9.1 feet per second, flight angles less than 6 degrees, and trims between 2 degrees and 12 degrees. Landings were moderate and were made in calm water. Measurements were obtained of maximum over-all loads, maximum pitching moments, and pressure distributions. Maximum experimental loads include over-all load factors of 2g, moments of 128,000 pound-feet, and maximum local pressures greater than 40 pounds per square inch. Experimental over-all loads are approximately one-half the design values, while local pressures are of the same order as or larger than pressures calculated from specifications for plating, stringer, floor, and frame design. The value of this comparison is limited, to some extent, by the moderate conditions of the test and by the necessary simplifying assumptions used in comparing the specifications with the experimental loads.
46 CFR 61.05-10 - Boilers in service.
Code of Federal Regulations, 2010 CFR
2010-10-01
... question, shall be subjected to a hydrostatic test of 11/2 times the maximum allowable working pressure... pressure. (d) In applying hydrostatic pressure to boilers, arrangements shall be made to prevent main and auxiliary stop valves from being simultaneously subjected to the hydrostatic pressure on one side and steam...
Code of Federal Regulations, 2011 CFR
2011-10-01
..., excluding the allowance for corrosion and the thickness for loadings other than pressure, as provided for in the ASME Code. (e) Test pressure means a hydrostatic pressure of at least one and one-half times the maximum allowable working pressure. (f) Dynamic loading conditions means the following: (1) A loading in...
Code of Federal Regulations, 2012 CFR
2012-10-01
..., excluding the allowance for corrosion and the thickness for loadings other than pressure, as provided for in the ASME Code. (e) Test pressure means a hydrostatic pressure of at least one and one-half times the maximum allowable working pressure. (f) Dynamic loading conditions means the following: (1) A loading in...
Code of Federal Regulations, 2013 CFR
2013-10-01
..., excluding the allowance for corrosion and the thickness for loadings other than pressure, as provided for in the ASME Code. (e) Test pressure means a hydrostatic pressure of at least one and one-half times the maximum allowable working pressure. (f) Dynamic loading conditions means the following: (1) A loading in...
Code of Federal Regulations, 2014 CFR
2014-10-01
..., excluding the allowance for corrosion and the thickness for loadings other than pressure, as provided for in the ASME Code. (e) Test pressure means a hydrostatic pressure of at least one and one-half times the maximum allowable working pressure. (f) Dynamic loading conditions means the following: (1) A loading in...
49 CFR 229.31 - Main reservoir tests.
Code of Federal Regulations, 2010 CFR
2010-10-01
... appropriately safe environment. (d) Each aluminum main reservoir before being placed in use and at intervals... working pressure fixed by the chief mechanical officer. The test date, place, and pressure shall be... be subjected to a hydrostatic pressure of at least 25 percent more than the maximum working pressure...
The optimal pressure for initial flush with UW solution in heart procurement.
Mohara, Jun; Tsutsumi, Hirofumi; Takeyoshi, Izumi; Tokumine, Masahiko; Aizaki, Masahiro; Ishikawa, Susumu; Matsumoto, Koshi; Morishita, Yasuo
2002-03-01
University of Wisconsin (UW) solution is widely used in organ preservation. Some investigators have reported that high pressure during initial flush with UW solution may induce vasoconstriction and endothelial damage, because of its high potassium content and high viscosity. However, using lower pressure during the initial flush may lead to irregular distribution of the solution and incomplete flushing of blood components from coronary vascular beds. This experimental study evaluated the effects of a range of initial flush pressures during heart procurement, followed by orthotopic transplantation of the graft after 12 hours of preservation. Twelve pairs of adult mongrel dogs, weighing 9 to 14 kg, formed the recipient-donor combinations. After determining hemodynamic status by measuring cardiac output, left ventricular pressure (LVP), and maximum positive and negative change in LVP (+/-LVdP/dt), donor hearts were excised. Coronary vascular beds were flushed with 4 degrees C UW solution at a pressure of 60 mm Hg in the low-pressure group (n = 6) and at 120 mm Hg in the high-pressure group (n = 6). After 12 hours of cold preservation, orthotopic transplantation was performed using cardiopulmonary bypass (CPB). The hemodynamics of the transplanted graft were assessed by comparing recovery rates (%) from donor hearts 2 hours after weaning from CPB. Endothelin-1 (ET-1) levels were measured in the blood obtained from the coronary sinus 30 minutes after reperfusion. The transplanted grafts were then harvested for histologic study and measurement of adenosine triphosphate (ATP) content. Cardiac output, LVP, LVdP/dt and myocardial tissue ATP content were significantly better (p < 0.05) in the high-pressure group than in the low-pressure group. We found no significant differences in ET-1 levels between the groups. Transmission electron microscopic findings revealed that degeneration of the mitochondria was less extensive in the high-pressure group than in the low-pressure group. We observed no obvious ultrastructural damage to the endothelial cells in either group. When using UW solution in heart procurement, high pressure is better to completely wash out the blood components and distribute the solution.
Sulter, A M; Wit, H P
1996-11-01
Glottal volume velocity waveform characteristics of 224 subjects, categorized in four groups according to gender and vocal training, were determined, and their relations to sound-pressure level, fundamental frequency, intra-oral pressure, and age were analyzed. Subjects phonated at three intensity conditions. The glottal volume velocity waveforms were obtained by inverse filtering the oral flow. Glottal volume velocity waveforms were parameterized with flow-based (minimum flow, ac flow, average flow, maximum flow declination rate) and time-based parameters (closed quotient, closing quotient, speed quotient), as well as with derived parameters (vocal efficiency and glottal resistance). Higher sound-pressure levels, intra-oral pressures, and flow-parameter values (ac flow, maximum flow declination rate) were observed, when compared with previous investigations. These higher values might be the result of the specific phonation tasks (stressed /ae/ vowel in a word and a sentence) or filtering processes. Few statistically significant (p < 0.01) differences in parameters were found between untrained and trained subjects [the maximum flow declination rate and the closing quotient were higher in trained women (p < 0.001), and the speed quotient was higher in trained men (p < 0.005)]. Several statistically significant parameter differences were found between men and women [minimum flow, ac flow, average flow, maximum flow declination rate, closing quotient, glottal resistance (p < 0.001), and closed quotient (p < 0.005)]. Significant effects of intensity condition were observed on ac flow, maximum flow declination rate, closing quotient, and vocal efficiency in women (p < 0.005), and on minimum flow, ac flow, average flow, maximum flow declination rate, closed quotient, and vocal efficiency in men (p < 0.01).
Does teacher evaluation based on student performance predict motivation, well-being, and ill-being?
Cuevas, Ricardo; Ntoumanis, Nikos; Fernandez-Bustos, Juan G; Bartholomew, Kimberley
2018-06-01
This study tests an explanatory model based on self-determination theory, which posits that pressure experienced by teachers when they are evaluated based on their students' academic performance will differentially predict teacher adaptive and maladaptive motivation, well-being, and ill-being. A total of 360 Spanish physical education teachers completed a multi-scale inventory. We found support for a structural equation model that showed that perceived pressure predicted teacher autonomous motivation negatively, predicted amotivation positively, and was unrelated to controlled motivation. In addition, autonomous motivation predicted vitality positively and exhaustion negatively, whereas controlled motivation and amotivation predicted vitality negatively and exhaustion positively. Amotivation significantly mediated the relation between pressure and vitality and between pressure and exhaustion. The results underline the potential negative impact of pressure felt by teachers due to this type of evaluation on teacher motivation and psychological health. Copyright © 2018 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
Stokes, Tracey H; Follmar, Keith E; Silverstein, Ari D; Weizer, Alon Z; Donatucci, Craig F; Anderson, Everett E; Erdmann, Detlev
2006-06-01
From 1988 to 2005, 8 men who presented with penoscrotal elephantiasis underwent penile shaft degloving and reduction scrotoplasty, followed by transplantation of a split-thickness skin graft (STSG) to the penile shaft. The etiology of elephantiasis in these patients included self-injection of viscous fluid and postsurgical obstructive lymphedema. In the 6 most recent cases, negative-pressure dressings were applied over the STSG to promote graft take, and STSG take rate was 100%. The results of our series corroborate those of a previous report, which showed circumferential negative-pressure dressings to be safe and efficacious in bolstering STSGs to the penile shaft. Furthermore, these results suggest that the use of negative-pressure dressings may improve graft take in this patient population.
A review of negative-pressure wound therapy in the management of burn wounds.
Kantak, Neelesh A; Mistry, Riyam; Halvorson, Eric G
2016-12-01
Negative pressure has been employed in various aspects of burn care and the aim of this study was to evaluate the evidence for each of those uses. The PubMed and Cochrane CENTRAL databases were queried for articles in the following areas: negative pressure as a dressing for acute burns, intermediate treatment prior to skin grafting, bolster for skin autografts, dressing for integration of dermal substitutes, dressing for skin graft donor sites, and integrated dressing in large burns. Fifteen studies met our inclusion criteria. One study showed negative pressure wound therapy improved perfusion in acute partial-thickness burns, 8 out of 9 studies showed benefits when used as a skin graft bolster dressing, 1 out of 2 studies showed improved rate of revascularization when used over dermal substitutes, and 1 study showed increased rate of re-epithelialization when used over skin graft donor sites. Negative pressure can improve autograft take when used as a bolster dressing. There is limited data to suggest that it may also improve the rate of revascularization of dermal substitutes and promote re-epithelialization of skin graft donor sites. Other uses suggested by studies that did not meet our inclusion criteria include improving vascularity in acute partial-thickness burns and as an integrated dressing for the management of large burns. Further studies are warranted for most clinical applications to establish negative pressure as an effective adjunct in burn wound care. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.
Dual fuel diesel engine operation using LPG
NASA Astrophysics Data System (ADS)
Mirica, I.; Pana, C.; Negurescu, N.; Cernat, Al; Nutu, N. C.
2016-08-01
Diesel engine fuelling with LPG represents a good solution to reduce the pollutant emissions and to improve its energetic performances. The high autoignition endurance of LPG requires specialized fuelling methods. From all possible LPG fuelling methods the authors chose the diesel-gas method because of the following reasons: is easy to be implemented even at already in use engines; the engine does not need important modifications; the LPG-air mixture has a high homogeneity with favorable influences over the combustion efficiency and over the level of the pollutant emissions, especially on the nitrogen oxides emissions. This paper presents results of the theoretical and experimental investigations on operation of a LPG fuelled heavy duty diesel engine at two operating regimens, 40% and 55%. For 55% engine load is also presented the exhaust gas recirculation influence on the pollutant emission level. Was determined the influence of the diesel fuel with LPG substitution ratio on the combustion parameters (rate of heat released, combustion duration, maximum pressure, maximum pressure rise rate), on the energetic parameters (indicate mean effective pressure, effective efficiency, energetic specific fuel consumption) and on the pollutant emissions level. Therefore with increasing substitute ratio of the diesel fuel with LPG are obtained the following results: the increase of the engine efficiency, the decrease of the specific energetic consumption, the increase of the maximum pressure and of the maximum pressure rise rate (considered as criteria to establish the optimum substitute ratio), the accentuated reduction of the nitrogen oxides emissions level.
Carotid-cardiac baroreflex response and LBNP tolerance following resistance training
NASA Technical Reports Server (NTRS)
Tatro, D. L.; Dudley, G. A.; Convertino, V. A.
1992-01-01
The purpose of this study was to examine the effect of lower body resistance training on cardiovascular control mechanisms and blood pressure maintenance during an orthostatic challenge. Lower body negative pressure (LBNP) tolerance, carotid-cardiac baroreflex function (using neck chamber pressure), and calf compliance were measured in eight healthy males before and after 19 wk of knee extension and leg press training. Resistance training sessions consisted of four or five sets of 6-12 repetitions of each exercise, performed two times per week. Training increased strength 25 +/- 3 (SE) percent (P = 0.0003) and 31 +/- 6 percent (P = 0.0004), respectively, for the leg press and knee extension exercises. Average fiber size in biopsy samples of m. vastus lateralis increased 21 +/- 5 percent (P = 0.0014). Resistance training had no significant effect on LBNP tolerance. However, calf compliance decreased in five of the seven subjects measured, with the group average changing from 4.4 +/- 0.6 ml.mm Hg-1 to 3.9 +/- 0.3 ml.mm Hg-1 (P = 0.3826). The stimulus-response relationship of the carotid-cardiac baroreflex response shifted to the left on the carotid pressure axis as indicated by a reduction of 6 mm Hg in baseline systolic blood pressure (P = 0.0471). In addition, maximum slope increased from 5.4 +/- 1.3 ms.mm Hg-1 before training to 6.6 +/- 1.6 ms.mm Hg-1 after training (P = 0.0141). Our results suggest the possibility that high resistance, lower extremity exercise training can cause a chronic increase in sensitivity and resetting of the carotid-cardiac baroreflex.
Escobedo-Avellaneda, Zamantha; Pérez-Simón, Izaskun; Lavilla-Martín, María; Baranda-González, Ana; Welti-Chanes, Jorge
2017-03-01
A new approach to the use of high hydrostatic pressure is its combination with high and intermediate temperatures applied to obtain safe foods of high quality. The effect of high hydrostatic pressure on color, residual polyphenol oxidase and pectin methylesterase activity, and total phenolic and l-ascorbic acid contents of orange-strawberry-banana beverages was evaluated. Beverages were treated at 500 and 600 MPa at 19-64 ℃ during 2-10 min. The effect of the come up time was also evaluated and results were compared with the untreated and the thermally processed (80 ℃/7 min) products. Untreated beverages had total phenolic content of 210.2±12.3 mg gallic acid/100 g and 19.1 ± 0.6 mg l-ascorbic acid/100 g. For most high hydrostatic pressure treatment conditions, total phenolic content, l-ascorbic acid, and color did not change significantly. Maximum levels of inactivation of polyphenol oxidase and pectin methylesterase were 96.2 and 48% at 600 MPa/64 ℃/10 min, while the thermal treatment led to inactivation of 99.6 and 94.1% of both enzymes, but with negative color changes. l-ascorbic acid content was slightly decreased with the thermal treatment while total phenolic content was not affected. High hydrostatic pressure treatments of beverages at 600 MPa/64 ℃/10 min are recommended to retain maximal total phenolic content and l-ascorbic acid and achieve an acceptable polyphenol oxidase inactivation level.
What pressure is exerted on the retina by heavy tamponade agents?
Wong, David; Williams, Rachel; Stappler, Theodor; Groenewald, Carl
2005-05-01
Histological changes in the retina during the use of heavy tamponade agents have been linked with the pressure on the retina caused by the increased specific gravity of the agent. This paper calculates the possible increases in pressure due to these agents and questions the validity of this argument. A model eye chamber was used to make measurements of the shape of F6H8 bubbles, with incrementally increasing volumes, and thus calculate the maximum possible increase in pressure under the tamponade agent. The maximum increase in pressure under an F6H8 tamponade which completely fills an eye with a diameter of 2.2 cm would be 0.52 mmHg. This increase in pressure is within normal diurnal pressure changes in the eye; therefore, it would seem unlikely that such an increase could cause the histological changes observed. With increasing volumes of a heavy tamponade agent, aqueous is excluded from a greater area of retina. This could account for the pathological changes reported.
Investigations on cooling with forced flow of He II. Part 2
NASA Astrophysics Data System (ADS)
Srinivasan, R.; Hofmann, A.
The measurements described in Part 1 of this Paper have been extended to a pressure of 7 bar . The value of the conductivity function, f( T), at a temperature greater than Tmax, at which it exhibits a maximum, drops rapidly with increasing pressure. Below Tmax the change in f( T) with pressure is less drastic. The Gorter-Mellink constant, AGM, increases linearly with pressure in the range 1.5-2 K and its pressure coefficient at 1 bar is 0.038 ± 0.01 per bar, independent of temperature. The superfilter is tested at 1.8 K. The flow through the superfilter is Gorter-Mellink flow. The maximum flow rate decreases as the pressure increases. The temperature distribution in the test section with and without flow is adequately described by the one-dimensional model discussed in Part 1. It is concluded that for heat transfer to He II in forced flow there is no advantage in working at pressures > 1 bar. 1 bar = 100 kPa
dos Reis Santos, Israel; Danaga, Aline Roberta; de Carvalho Aguiar, Isabella; Oliveira, Ezequiel Fernandes; Dias, Ismael Souza; Urbano, Jessica Julioti; Martins, Aline Almeida; Ferraz, Leonardo Macario; Fonsêca, Nina Teixeira; Fernandes, Virgilio; Fernandes, Vinicius Alves Thomaz; Lopes, Viviane Cristina Delgado; Leitão Filho, Fernando Sérgio Studart; Nacif, Sérgio Roberto; de Carvalho, Paulo de Tarso Camillo; Sampaio, Luciana Maria Malosá; Giannasi, Lílian Christiane; Romano, Salvatore; Insalaco, Giuseppe; Araujo, Ana Karina Fachini; Dellê, Humberto; Souza, Nadia Karina Guimarães; Giannella-Neto, Daniel; Oliveira, Luis Vicente Franco
2013-10-08
Chronic kidney disease (CKD) is one of the most serious public health problems. The increasing prevalence of CKD in developed and developing countries has led to a global epidemic. The hypothesis proposed is that patients undergoing dialysis would experience a marked negative influence on physiological variables of sleep and autonomic nervous system activity, compromising quality of life. A prospective, consecutive, double blind, randomized controlled clinical trial is proposed to address the effect of dialysis on sleep, pulmonary function, respiratory mechanics, upper airway collapsibility, autonomic nervous activity, depression, anxiety, stress and quality of life in patients with CKD. The measurement protocol will include body weight (kg); height (cm); body mass index calculated as weight/height(2); circumferences (cm) of the neck, waist, and hip; heart and respiratory rates; blood pressures; Mallampati index; tonsil index; heart rate variability; maximum ventilatory pressures; negative expiratory pressure test, and polysomnography (sleep study), as well as the administration of specific questionnaires addressing sleep apnea, excessive daytime sleepiness, depression, anxiety, stress, and quality of life. CKD is a major public health problem worldwide, and its incidence has increased in part by the increased life expectancy and increasing number of cases of diabetes mellitus and hypertension. Sleep disorders are common in patients with renal insufficiency. Our hypothesis is that the weather weight gain due to volume overload observed during interdialytic period will influence the degree of collapsibility of the upper airway due to narrowing and predispose to upper airway occlusion during sleep, and to investigate the negative influences of haemodialysis in the physiological variables of sleep, and autonomic nervous system, and respiratory mechanics and thereby compromise the quality of life of patients. The protocol for this study is registered with the Brazilian Registry of Clinical Trials (ReBEC RBR-7yhr4w and World Health Organization under Universal Trial Number UTN: U1111-1127-9390 [http://www.ensaiosclinicos.gov.br/rg/RBR-7yhr4w/]).
Application of low-pressure negative pressure wound therapy to ischaemic wounds.
Kasai, Yoshiaki; Nemoto, Hitoshi; Kimura, Naohiro; Ito, Yoshinori; Sumiya, Noriyoshi
2012-03-01
Negative pressure wound therapy (NPWT) is a useful wound dressing that can be applied to a wide variety of wounds. Patients with ischaemic wounds, however, may experience further necrosis with NPWT at the commonly recommended pressure of -125 mm Hg. We hypothesized that with a suction pressure of -125 mm Hg, tissue pressure will likely occlude most of the capillaries adjacent to the wound edge. Therefore, we treated three patients with ischaemic wounds using low-pressure NPWT at -50 mm Hg. All wounds healed successfully without further necrosis at the wound edge. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Skaburskis, M; Helal, R; Zidulka, A
1987-10-01
Patients with noncardiogenic pulmonary edema requiring ventilatory assistance are usually supported with CPPV using positive end-expiratory pressure (PEEP), but CPPV requires endotracheal intubation and may decrease cardiac output (QT). The purpose of this study was to examine thoracoabdominal continuous negative pressure ventilation (CNPV) using external negative end-expiratory pressure (NEEP). The effects on gas exchange and hemodynamics were compared with those of CPPV with PEEP, with the premise that CNPV might sustain venous return and improve QT. In 6 supine, anesthetized and paralyzed dogs with oleic-acid-induced pulmonary edema, 30 min of CNPV was alternated twice with 30 min of CPPV. Positive and negative pressure ventilation were carefully matched for fractional inspired oxygen concentration (FIO2 = 0.56), breathing frequency, and tidal volume. In addition, we matched the increase in delta FRC obtained with the constant distending pressures produced by both modes of ventilation. An average of -9 cm H2O of NEEP produced the same delta FRC as 10.8 cm H2O of PEEP. Gas exchange did not differ significantly between the 2 modes. However, QT was 15.8% higher during CNPV than during CPPV (p less than 0.02). Mixed venous oxygen saturation also improved during CNPV compared with that during CPPV (58.3 versus 54.5%, p less than 0.01). Negative pressure ventilation using NEEP may be a viable alternative to positive pressure ventilation with PEEP in the management of critically ill patients with noncardiogenic pulmonary edema. It offers comparable improvement in gas exchange with the advantages of less cardiac depression and the possible avoidance of endotracheal intubation.
Decreased cardiopulmonary baroreflex sensitivity in Chagas' heart disease.
Consolim-Colombo, F M; Filho, J A; Lopes, H F; Sobrinho, C R; Otto, M E; Riccio, G M; Mady, C; Krieger, E M
2000-12-01
No study has been performed on reflexes originating from receptors in the heart that might be involved in the pathological lesions of Chagas' heart disease. Our study was undertaken to analyze the role of cardiopulmonary reflex on cardiovascular control in Chagas' disease. We studied 14 patients with Chagas' disease without heart failure and 12 healthy matched volunteers. Central venous pressure, arterial blood pressure, heart rate, forearm blood flow, and forearm vascular resistance were recorded during deactivation of cardiopulmonary receptors. By reducing central venous pressure by applying -10 and -15 mm Hg of negative pressure to the lower body, we observed (a) a similar decrease of central venous pressure in both groups; (b) a marked increase in forearm vascular resistance in the control group but a blunted increase in the Chagas' group; and (c) no significant changes in blood pressure and heart rate. To analyze cardiopulmonary and arterial receptors, we applied -40 mm Hg of lower-body negative pressure. As a consequence, (a) central venous pressure decreased similarly in both groups; (b) blood pressure was maintained in the control group, whereas in patients with Chagas' disease, a decrease in systolic and mean arterial pressure occurred; (c) heart rate increased in both groups; and (d) forearm vascular resistance increased significantly and similarly in both groups. Unloading of receptors with low levels of lower-body negative pressure did not increase forearm vascular resistance in patients with Chagas' disease, which suggests that the reflex mediated by cardiopulmonary receptors is impaired in patients with Chagas' disease without heart failure. Overall control of circulation appears to be compromised because patients did not maintain blood pressure under high levels of lower-body negative pressure.
Left ventricular function during lower body negative pressure
NASA Technical Reports Server (NTRS)
Ahmad, M.; Blomqvist, C. G.; Mullins, C. B.; Willerson, J. T.
1977-01-01
The response of the human left ventricle to lower body negative pressure (LBNP) and the relation between left ventricular function and hemodynamic response were investigated. Ventricular function curves relating stroke volume to end-diastolic volume were obtained in 12 normal men. Volume data were derived from echocardiographic measurements of left ventricular end-systolic and end-diastolic diameters at rest and during lower body negative pressure (LBNP) at minus 40 mm Hg. End-diastolic volume decreased by 19% and stroke volume by 22%. There were no significant changes in heart rate, arterial blood pressure, or end-systolic volume. Thus, moderate levels of LBNP significantly reduce preload and stroke volume without affecting contractile state. The absence of significant changes in heart rate and arterial blood pressure in the presence of a significant reduction in stroke volume is consistent with an increase in systemic peripheral resistance mediated by low-pressure baroreceptors.
The cerebral hemodynamics of normotensive hypovolemia during lower-body negative pressure
NASA Technical Reports Server (NTRS)
Giller, C. A.; Levine, B. D.; Meyer, Y.; Buckey, J. C.; Lane, L. D.; Borchers, D. J.
1992-01-01
Although severe hypovolemia can lead to hypotension and neurological decline, many patients with neurosurgical disorders experience a significant hypovolemia while autonomic compensatory mechanisms maintain a normal blood pressure. To assess the effects of normotensive hypovolemia upon cerebral hemodynamics, transcranial Doppler ultrasound monitoring of 13 healthy volunteers was performed during graded lower-body negative pressure of up to -50 mm Hg, an accepted laboratory model for reproducing the physiological effects of hypovolemia. Middle cerebral artery flow velocity declined by 16% +/- 4% (mean +/- standard error of the mean) and the ratio between transcranial Doppler ultrasound pulsatility and systemic pulsatility rose 22% +/- 8%, suggesting cerebral small-vessel vasoconstriction in response to the sympathetic activation unmasked by lower-body negative pressure. This vasoconstriction may interfere with the autoregulatory response to a sudden fall in blood pressure, and may explain the common observation of neurological deficit during hypovolemia even with a normal blood pressure.
Improvement of Expansive Soils Using Chemical Stabilizers
NASA Astrophysics Data System (ADS)
Ikizler, S. B.; Senol, A.; Khosrowshahi, S. K.; Hatipoğlu, M.
2014-12-01
The aim of this study is to investigate the effect of two chemical stabilizers on the swelling potential of expansive soil. A high plasticity sodium bentonite was used as the expansive soil. The additive materials including fly ash (FA) and lime (L) were evaluated as potential stabilizers to decrease the swelling pressure of bentonite. Depending on the type of additive materials, they were blended with bentonite in different percentages to assess the optimum state and approch the maximum swell pressure reduction. According to the results of swell pressure test, both fly ash and lime reduce the swelling potential of bentonite but the maximum improvement occurs using bentonite-lime mixture while the swelling pressure reduction approaches to 49%. The results reveal a significant reduction of swelling potential of expansive soil using chemical stabilizers. Keywords: Expansive soil; swell pressure; chemical stabilization; fly ash; lime
Pressure Flammability Thresholds of Selected Aerospace Materials
NASA Technical Reports Server (NTRS)
Hirsch, David B.; Williams, James H.; Harper, Susana A.; Beeson, Harold D.; Ruff, Gary A.; Pedley, Michael D.
2010-01-01
A test program was performed to determine the highest pressure in oxygen where materials used in the planned NASA Constellation Program Orion Crew Exploration Vehicle (CEV) Crew Module (CM) would not propagate a flame if an ignition source was present. The test methodology used was similar to that previously used to determine the maximum oxygen concentration (MOC) at which self-extinguishment occurs under constant total pressure conditions. An upward limiting pressure index (ULPI) was determined, where approximately 50 percent of the materials self-extinguish in a given environment. Following this, the maximum total pressure (MTP) was identified; where all samples tested (at least five) self-extinguished following the NASA-STD-6001.A Test 1 burn length criteria. The results obtained on seven materials indicate that the non-metallic materials become flammable in oxygen between 0.4 and 0.9 psia.
Hua, Xijin; Li, Junyan; Wang, Ling; Jin, Zhongmin; Wilcox, Ruth; Fisher, John
2014-01-01
Edge loading can negatively impact the biomechanics and long-term performance of hip replacements. Although edge loading has been widely investigated for hard-on-hard articulations, limited work has been conducted for hard-on-soft combinations. The aim of the present study was to investigate edge loading and its effect on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR). A three-dimensional finite element model was developed based on a modular MoP bearing. Different cup inclination angles and head lateral microseparation were modelled and their effect on the contact mechanics of the modular MoP hip replacement were examined. The results showed that lateral microseparation caused loading of the head on the rim of the cup, which produced substantial increases in the maximum von Mises stress in the polyethylene liner and the maximum contact pressure on both the articulating surface and backside surface of the liner. Plastic deformation of the liner was observed under both standard conditions and microseparation conditions, however, the maximum equivalent plastic strain in the liner under microseparation conditions of 2000 µm was predicted to be approximately six times that under standard conditions. The study has indicated that correct positioning the components to avoid edge loading is likely to be important clinically even for hard-on-soft bearings for THR. PMID:25218504
Kondo temperature and Heavy Fermion behavior in Yb1-xYxCuAl series of alloys
NASA Astrophysics Data System (ADS)
Rojas, D. P.; Gandra, F. G.; Medina, A. N.; Fernández Barquín, L.; Gómez Sal, J. C.
2018-05-01
Results on x-ray diffraction, electrical resistivity, specific heat and magnetization on the Yb1-xYxCuAl series of compounds are reported. The analysis of the x-ray data shows the increase of the unit cell volume with the Y dilution. The electrical resistivity shows an evolution from Kondo lattice regime for x ≤ 0.6 to single impurity behavior for x = 0.8 and 0.94. The electronic coefficient γ shows values of Heavy Fermion systems along the series for 0 ≤ x < 1 . On the other hand, dc magnetic susceptibility measurements show typical curves of intermediate valence systems with a maximum around 25 K. Below this maximum, the values of low temperature susceptibility (χ (0)) decrease with the increase of Y content. From the dependence of χ (0) and γ upon Y substitution, an increase of 12% of the Kondo temperature (TK) for x = 0.8 alloy respect to the reference YbCuAl (x = 0) is estimated. This is further supported by the evolution of the temperature of the maximum in the magnetic contribution of the specific heat. The overall results can be explained by the increase of the hybridization as consequence of negative pressure effects obtained by the chemical substitution of Yb by Y, thus leading to the increase of TK, in agreement with the Doniach's diagram.
Self-generating oscillating pressure exercise device
NASA Technical Reports Server (NTRS)
Watenpaugh, Donald E. (Inventor)
1994-01-01
An exercise device, especially suitable for zero gravity workouts, has a collapsible chamber which generates negative pressure on the lower portion of a body situated therein. The negative pressure is generated by virtue of leg, hand and shoulder interaction which contracts and expands the chamber about the person and by virtue of air flow regulation by valve action.
Nakadate, Hiromichi; Inuzuka, Koji; Akanuma, Suguru; Kakuta, Akira; Aomura, Shigeru
2014-04-16
Intracranial pressure changes during head impact cause brain injuries such as vasogenic edema and cerebral contusion. However, the influence of impulsive pressure on endothelial function has not yet been fully studied in vitro. In this study, we developed a pressure loading device that produced positive and negative pressures by modifying an in vitro fluid percussion model and examined the effects of the amplitude and duration of the pressures on endothelial permeability. Human umbilical vein endothelial cells were subjected to three types of positive pressure (average amplitude/average duration of 352 kPa/23 ms, 73 kPa/27 ms, and 70 kPa/44 ms) and three types of negative pressure (-72 kPa/41 ms, -67 kPa/104 ms, and -91 kPa/108 ms), and the transendothelial electrical resistance (TEER) was measured between 15 min and 24 h after pressure loading for quantifying the formation of an integral monolayer of endothelial cells. After loading, vascular endothelial- (VE-) cadherin, an endothelium-specific cell-cell adhesion molecule involved in endothelial barrier function, was stained and observed using fluorescence microscopy. The pressure loading device could produce positive pressure pulses with amplitudes of 53-1348 kPa and durations of 9-29.1 ms and negative pressure pulses with amplitudes of -52 - -93 kPa and durations of 42.9-179.5 ms. The impulsive pressure reduced the TEER associated with the change in VE-cadherin localization. Additionally, TEER decreased considerably at 15 min and 6 h post-loading, with these changes being significant in positive pressure with larger amplitude and shorter duration and in all types of negative pressures compared to pre-loading. The changes in intracranial pressure during head impact impair endothelial barrier function by the disruption of the integrity of endothelial cell-cell junctions, and the degree of increase in endothelial permeability depends on the amplitude, duration, and direction (compressive and tensile) of the impulsive pressure.
Failure Mechanisms of Hollow Fiber Supported Ionic Liquid Membranes
Zeh, Matthew; Wickramanayake, Shan; Hopkinson, David
2016-01-01
Hollow fiber supported ionic liquid membranes (SILMs) were tested using the bubble point method to investigate potential failure modes, including the maximum transmembrane pressure before loss of the ionic liquid from the support. Porous hollow fiber supports were fabricated with different pore morphologies using Matrimid® and Torlon® as the polymeric material and 1-hexyl-3-methylimidalzolium bis(trifluoromethylsulfonyl)imide ([C6mim][Tf2N]) as the ionic liquid (IL) component. Hollow fiber SILMs were tested for their maximum pressure before failure, with pressure applied either from the bore side or shell side. It was found that the membranes exhibited one or more of three different modes of failure when pressurized: liquid loss (occurring at the bubble point), rupture, and collapse. PMID:27023620
NASA Technical Reports Server (NTRS)
Huff, Ronald G.
1989-01-01
Tests were conducted in the NASA Lewis Research Center's Powered Lift Facility to experimentally evaluate the noise generated by a flight weight, 12 in. butterfly valve installed in a proposed vertical takeoff and landing thrust vectoring system. Fluctuating pressure measurements were made in the circular duct upstream and downstream of the valve. This data report presents the results of these tests. The maximum overall sound pressure level is generated in the duct downstream of the valve and reached a value of 180 dB at a valve pressure ratio of 2.8. At the higher valve pressure ratios the spectra downstream of the valve is broad banded with its maximum at 1000 Hz.
Rebmann, Terri
2005-12-01
Many US hospitals lack the capacity to house safely a surge of potentially infectious patients, increasing the risk of secondary transmission. Respiratory protection and negative-pressure rooms are needed to prevent transmission of airborne-spread diseases, but US hospitals lack available and/or properly functioning negative-pressure rooms. Creating new rooms or retrofitting existing facilities is time-consuming and expensive. Safe methods of managing patients with airborne-spread diseases and establishing temporary negative-pressure and/or protective environments were determined by a literature review. Relevant data were analyzed and synthesized to generate a response algorithm. Ideal patient management and placement guidelines, including instructions for choosing respiratory protection and creating temporary negative-pressure or other protective environments, were delineated. Findings were summarized in a treatment algorithm. The threat of bioterrorism and emerging infections increases health care's need for negative-pressure and/or protective environments. The algorithm outlines appropriate response steps to decrease transmission risk until an ideal protective environment can be utilized. Using this algorithm will prepare infection control professionals to respond more effectively during a surge of potentially infectious patients following a bioterrorism attack or emerging infectious disease outbreak.
Dan, Abhijit; Gochev, Georgi; Miller, Reinhard
2015-07-01
Oscillating drop tensiometry was applied to study adsorbed interfacial layers at water/air and water/hexane interfaces formed from mixed solutions of β-lactoglobulin (BLG, 1 μM in 10 mM buffer, pH 7 - negative net charge) and the anionic surfactant SDS or the cationic DoTAB. The interfacial pressure Π and the dilational viscoelasticity modulus |E| of the mixed layers were measured for mixtures of varying surfactant concentrations. The double capillary technique was employed which enables exchange of the protein solution in the drop bulk by surfactant solution (sequential adsorption) or by pure buffer (washing out). The first protocol allows probing the influence of the surfactant on a pre-adsorbed protein layer thus studying the protein/surfactant interactions at the interface. The second protocol gives access to the residual values of Π and |E| measured after the washing out procedure thus bringing information about the process of protein desorption. The DoTAB/BLG complexes exhibit higher surface activity and higher resistance to desorption in comparison with those for the SDS/BLG complexes due to hydrophobization via electrostatic binding of surfactant molecules. The neutral DoTAB/BLG complexes achieve maximum elastic response of the mixed layer. Mixed BLG/surfactant layers at the water/oil interface are found to reach higher surface pressure and lower maximum dilational elasticity than those at the water/air surface. The sequential adsorption mode experiments and the desorption study reveal that binding of DoTAB to pre-adsorbed BLG globules is somehow restricted at the water/air surface in comparison with the case of complex formation in the solution bulk and subsequently adsorbed at the water/air surface. Maximum elasticity is achieved with washed out layers obtained after simultaneous adsorption, i.e. isolation of the most surface active DoTAB/BLG complex. These specific effects are much less pronounced at the W/H interface. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tesfuhuney, Weldemichael A.; Walker, Sue; Van Rensburg, Leon D.; Steyn, A. Stephan
2016-08-01
In a cropped field, microclimate and thermal stability conditions depend on the canopy structures and the prevailing weather. The main aim of the study therefore was to characterize the vertical profiles of weather variables within and above a maize (Zea mays L.) canopy and to describe the water vapour pressure deficit (VPD) under different atmospheric and soil surface conditions for both wide and narrow runoff strips with the in-field rainwater harvesting (IRWH) system. Micrometeorological measurements of wind, temperature and relative humidity were performed at eight levels, within canopy (1.8 and 2.1 m), and just above the canopy (2.4, 2.7, 3.0, and 3.3 m) up to reference levels (3.9 and 4.5 m) when the maize reached a maximum height of 2.2 m. Under incomplete canopy cover of the IRWH system, two important factors complicated evapotranspiration estimation, namely the local advection and high temperatures of the bare soil between adjacent plant rows. Diurnal variations of water vapour related to turbulence at each locality and its position in the thermal internal boundary layers. Generally, advection was more pronounced in wide runoff strips than narrow strips. On wide runoff strips the wind was more effective in replacing the air between the rows and maintained a higher driving force for evaporation. The maximum VPD over the narrow strips was observed at reference level during a dry day, at about 2.2 kPa in the afternoon, while wet day VPD reached a maximum of 1.8 kPa. The VPD of the wide runoff strips correlated negatively with wind speed, but showed a fairly positive correlation with some scattered values on wet days after rain. Therefore, profile characteristics within and above plant canopies played a key role in determining the VPD and consequently, could help to explain transpiration rates of crops. Hence, VPD relations enhanced the understanding of the heat energy exchange processes under the heterogeneous nature of maize canopy of the IRWH tillage system.
Measurement and Modeling of Acoustic Fields in a Gel Phantom at High Intensities
NASA Astrophysics Data System (ADS)
Canney, Michael S.; Bailey, Michael R.; Khokhlova, Vera A.; Crum, Lawrence A.
2006-05-01
The goal of this work was to compare measured and numerically predicted HIFU pressure waveforms in water and a tissue-mimicking phantom. Waveforms were measured at the focus of a 2-MHz HIFU transducer with a fiber optic hydrophone. The transducer was operated with acoustic powers ranging from 2W to 300W. A KZK-type equation was used for modeling the experimental conditions. Strongly asymmetric nonlinear waves with peak positive pressure up to 80 MPa and peak negative pressure up to 20 MPa were measured in water, while waves up to 50 MPa peak positive pressure and 15 MPa peak negative pressure were measured in tissue phantoms. The values of peak negative pressure corresponded well with numerical simulations and were significantly smaller than predicted by linear extrapolation from low-level measurements. The values of peak positive pressures differed only at high levels of excitation where bandwidth limitations of the hydrophone failed to fully capture the predicted sharp shock fronts.
LeChevallier, Mark W; Gullick, Richard W; Karim, Mohammad R; Friedman, Melinda; Funk, James E
2003-03-01
The potential for public health risks associated with intrusion of contaminants into water supply distribution systems resulting from transient low or negative pressures is assessed. It is shown that transient pressure events occur in distribution systems; that during these negative pressure events pipeline leaks provide a potential portal for entry of groundwater into treated drinking water; and that faecal indicators and culturable human viruses are present in the soil and water exterior to the distribution system. To date, all observed negative pressure events have been related to power outages or other pump shutdowns. Although there are insufficient data to indicate whether pressure transients are a substantial source of risk to water quality in the distribution system, mitigation techniques can be implemented, principally the maintenance of an effective disinfectant residual throughout the distribution system, leak control, redesign of air relief venting, and more rigorous application of existing engineering standards. Use of high-speed pressure data loggers and surge modelling may have some merit, but more research is needed.
Ionospheric Convection in the Postnoon Auroral Oval: SuperDARN and Polar UVI Observations
NASA Technical Reports Server (NTRS)
Kozlovsky, A.; Koustov, A.; Lyatsky, W.; Kangas, J.; Parks, G.; Chua, D.
2002-01-01
Super Dual Auroral Radar Network (SuperDARN) observations, ultraviolet imaging from the Polar satellite (UVI), and particle precipitation data from DMSP satellites have been used to investigate the electrodynamics of the postnoon auroral oval in the Northern hemisphere. We show that: (1) For negative IMF By, the convection reversal (CR) was co-located with the maximum of auroral luminosity, but during positive IMF By the convection reversal was poleward of the auroral oval up to several degrees in latitude; (2) Postnoon auroral oval was associated with a large-scale upward field-aligned current (FAC) of the order of 6x10(exp -7). A m(exp -2) in magnitude (the FAC was inferred from the SuperDARN and UVI data). For negative IMF By, maximum of the auroral intensity coincides in latitude with the maximum of the upward field-aligned current. However, for positive IMF By. the maximum of the upward FAC was shifted to the poleward edge of the auroral oval; (3) In response to the IMF By turning from positive to negative, the maximum of the auroral luminosity did not change its position noticeably, but the position of the convection reversal changed considerably from 80-81 degs to about 76 degs MLAT, and the maximum of FAC moved from 77-78 degs to about 76 degs MLAT. Thus, after IMF By turns negative, both the FAC maximum and CR tend to coincide with the auroral maximum; (4) The IMF Bz positive deflection was followed by a decrease in both field-aligned current intensity and auroral luminosity. However, the decrease in the auroral luminosity lags behind the FAC decrease by about 12 min. Firstly, these observations allow us to suggest that the IMF By-related electric field can penetrate into the closed magnetosphere and produce convection and FAC changes in the region of the postnoon auroral oval. Secondly, we suggest that the interchange instability is a promising mechanism for the postnoon auroras.
Within-Breath Control of Genioglossal Muscle Activation in Humans: Effect of Sleep-Wake State
Fogel, Robert B; Trinder, John; Malhotra, Atul; Stanchina, Michael; Edwards, Jill K; Schory, Karen E; White, David P
2003-01-01
Pharyngeal dilator muscles are clearly important in the pathogenesis of obstructive sleep apnoea syndrome. Substantial data support the role of a local negative pressure reflex in modifying genioglossal activation across inspiration during wakefulness. Using a model of passive negative pressure ventilation, we have previously reported a tight relationship between varying intrapharyngeal negative pressures and genioglossal muscle activation (GGEMG) during wakefulness. In this study, we used this model to examine the slope of the relationship between epiglottic pressure (Pepi) and GGEMG, during stable NREM sleep and the transition from wakefulness to sleep. We found that there was a constant relationship between negative epiglottic pressure and GGEMG during both basal breathing (BB) and negative pressure ventilation (NPV) during wakefulness (slope GGEMG/Pepi 1.86 ± 0.3 vs. 1.79 ± 0.3 arbitrary units (a.u.) cmH2O−1). However, while this relationship remained stable during NREM sleep during BB, it was markedly reduced during NPV during sleep (2.27 ± 0.4 vs. 0.58 ± 0.1 a.u. cmH2O−1). This was associated with a markedly higher pharyngeal airflow resistance during sleep during NPV. At the transition from wakefulness to sleep there was also a greater reduction in peak GGEMG seen during NPV than during BB. These data suggest that while the negative pressure reflex is able to maintain GGEMG during passive NPV during wakefulness, this reflex is unable to do so during sleep. The loss of this protective mechanism during sleep suggests that an airway dependent upon such mechanisms (as in the patient with sleep apnoea) will be prone to collapse during sleep. PMID:12807995
Finite Element Analysis of Patella Alta: A Patellofemoral Instability Model.
Watson, Nicole A; Duchman, Kyle R; Grosland, Nicole M; Bollier, Matthew J
2017-01-01
This study aims to provide biomechanical data on the effect of patella height in the setting of medial patellofemoral ligament (MPFL) reconstruction using finite element analysis. The study will also examine patellofemoral joint biomechanics using variable femoral insertion sites for MPFL reconstruction. A previously validated finite element knee model was modified to study patella alta and baja by translating the patella a given distance to achieve each patella height ratio. Additionally, the models were modified to study various femoral insertion sites of the MPFL (anatomic, anterior, proximal, and distal) for each patella height model, resulting in 32 unique scenarios available for investigation. In the setting of patella alta, the patellofemoral contact area decreased, resulting in a subsequent increase in maximum patellofemoral contact pressures as compared to the scenarios with normal patellar height. Additionally, patella alta resulted in decreased lateral restraining forces in the native knee scenario as well as following MPFL reconstruction. Changing femoral insertion sites had a variable effect on patellofemoral contact pressures; however, distal and anterior femoral tunnel malpositioning in the setting of patella alta resulted in grossly elevated maximum patellofemoral contact pressures as compared to other scenarios. Patella alta after MPFL reconstruction results in decreased lateral restraining forces and patellofemoral contact area and increased maximum patellofemoral contact pressures. When the femoral MPFL tunnel is malpositioned anteriorly or distally on the femur, the maximum patellofemoral contact pressures increase with severity of patella alta. When evaluating patients with patellofemoral instability, it is important to recognize patella alta as a potential aggravating factor. Failure to address patella alta in the setting of MPFL femoral tunnel malposition may result in even further increases in patellofemoral contact pressures, making it essential to optimize intraoperative techniques to confirm anatomic MPFL femoral tunnel positioning.
Finite Element Analysis of Patella Alta: A Patellofemoral Instability Model
Duchman, Kyle R.; Grosland, Nicole M.; Bollier, Matthew J.
2017-01-01
Abstract Background: This study aims to provide biomechanical data on the effect of patella height in the setting of medial patellofemoral ligament (MPFL) reconstruction using finite element analysis. The study will also examine patellofemoral joint biomechanics using variable femoral insertion sites for MPFL reconstruction. Methods: A previously validated finite element knee model was modified to study patella alta and baja by translating the patella a given distance to achieve each patella height ratio. Additionally, the models were modified to study various femoral insertion sites of the MPFL (anatomic, anterior, proximal, and distal) for each patella height model, resulting in 32 unique scenarios available for investigation. Results: In the setting of patella alta, the patellofemoral contact area decreased, resulting in a subsequent increase in maximum patellofemoral contact pressures as compared to the scenarios with normal patellar height. Additionally, patella alta resulted in decreased lateral restraining forces in the native knee scenario as well as following MPFL reconstruction. Changing femoral insertion sites had a variable effect on patellofemoral contact pressures; however, distal and anterior femoral tunnel malpositioning in the setting of patella alta resulted in grossly elevated maximum patellofemoral contact pressures as compared to other scenarios. Conclusions: Patella alta after MPFL reconstruction results in decreased lateral restraining forces and patellofemoral contact area and increased maximum patellofemoral contact pressures. When the femoral MPFL tunnel is malpositioned anteriorly or distally on the femur, the maximum patellofemoral contact pressures increase with severity of patella alta. Clinical Relevance: When evaluating patients with patellofemoral instability, it is important to recognize patella alta as a potential aggravating factor. Failure to address patella alta in the setting of MPFL femoral tunnel malposition may result in even further increases in patellofemoral contact pressures, making it essential to optimize intraoperative techniques to confirm anatomic MPFL femoral tunnel positioning. PMID:28852343
Generation of subnanosecond electron beams in air at atmospheric pressure
NASA Astrophysics Data System (ADS)
Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.
2009-11-01
Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.
Causes and Control of Corrosion in Buried-Conduit Heat Distribution Systems
1991-07-01
rubber , and foamed plastics such as polyurethanic anld phenolic) nominally contain 10 to 500 ppmn soluble chloide.’ Further, insulation can also become...pressure ratings. A maximum P X T limitation exists for all gasket materials. For example, the maximum temperature and pressure ratings for an EPDM ...ethylene propylene diene monomer) rubber material are, respectively, 3() ’F and 150 psi. The material, however, cannot be expected to perform
Vocal warm-up increases phonation threshold pressure in soprano singers at high pitch.
Motel, Tamara; Fisher, Kimberly V; Leydon, Ciara
2003-06-01
Vocal warm-up is thought to optimize singing performance. We compared effects of short-term, submaximal, vocal warm-up exercise with those of vocal rest on the soprano voice (n = 10, ages 19-21 years). Dependent variables were the minimum subglottic air pressure required for vocal fold oscillation to occur (phonation threshold pressure, Pth), and the maximum and minimum phonation fundamental frequency. Warm-up increased Pth for high pitch phonation (p = 0.033), but not for comfortable (p = 0.297) or low (p = 0.087) pitch phonation. No significant difference in the maximum phonation frequency (p = 0.193) or minimum frequency (p = 0.222) was observed. An elevated Pth at controlled high pitch, but an unchanging maximum and minimum frequency production suggests that short-term vocal exercise may increase the viscosity of the vocal fold and thus serve to stabilize the high voice.
NASA Astrophysics Data System (ADS)
Katsura, T.; Fei, H.; Koizumi, S.; Sakamoto, N.; Yurimoto, H.
2016-12-01
Although the water corporation has been considered to enhance the electrical conductivity of olivine by the proton conduction, the magnitude of the proton conduction is relatively small at asthenospheric temperatures because of its smaller activation energy than those of the small polaron and ionic conductions. However, the water incorporation could enhance the ionic conduction, because it should increase the defect density in the Mg sites. Since the ionic conductivity is proportional to the diffusivity, we have measured the self-diffusion coefficients of Mg in forsterite as a function of pressure, temperature and water content. We annealed fine-grained polycrystalline aggregates of forsterite with water contents up to 300 ppm, on whose polished plane a 25Mg-enriched Mg2SiO4 thin film was made, at pressures of 1 to 13 GPa and temperatures of 1100 to 1300 K. The lattice and grain-boundary diffusion coefficients were calculated simultaneously using profiles obtained by the depth analysis of SIMS. Experimental results gave the activation energy of 280 ± 30 and 360 ± 30 kJ/mol, activation volumes of 4.3 ± 0.3 and 3.9 ± 0.7 cm3/mol, and water content exponents of 1.2 ± 0.2 and 1.0 ± 0.1 for the lattice and grain-boundary diffusions, respectively. Using the ionic conduction data by Constable [2006] and Yoshino et al. [2009], and the water and pressure effects on Mg diffusivity in this study, the ionic conduction is found by 2 orders of magnitude higher than the small polaron and proton conductions under oceanic-asthenosphere conditions. Thus, the high conductivity of the oceanic asthenosphere will be governed by the water-enhanced ionic conduction. The negative pressure dependence of the Mg diffusivity and the gradual temperature increase in the asthenosphere will produce a conductivity maximum at the top of the asthenosphere. The high-conductivity layer at the top of the asthenosphere observed under very young oceanic plates can be attributed to this ionic conduction maximum.
Studies on centrifugal clutch judder behavior and the design of frictional lining materials
NASA Astrophysics Data System (ADS)
Li, Tse-Chang; Huang, Yu-Wen; Lin, Jen-Fin
2016-01-01
This study examines the judder behavior of a centrifugal clutch from the start of hot spots in the conformal contact, then the repeated developments of thermoelastic instability, and finally the formation of cyclic undulations in the vibrations, friction coefficient and torque. This behavior is proved to be consistent with the testing results. Using the Taguchi method, 18 kinds of frictional lining specimens were prepared in order to investigate their performance in judder resistance and establish a relationship between judder behavior and the Ts/Td (Ts: static torque; Td: dynamic torque) and dμ/dVx (μ: friction coefficient; Vx: relative sliding velocity of frictional lining and clutch drum) parameters. These specimens are also provided to examine the effects and profitability with regard to the centrifugal clutch, and find the relative importance of the various control factors. Theoretical models for the friction coefficient (μ), the critical sliding velocity (Vc) with clutch judder, and the contact pressure ratio p* /pbar (p*: pressure undulation w.r.t. pbar; pbar: mean contact pressure) and temperature corresponding to judder behavior are developed. The parameters of the contact pressure ratio and temperature are shown to be helpful to explain the occurrence of judder. The frictional torque and the rotational speeds of the driveline, clutch, and clutch drum as functions of engagement time for 100 clutch cycles are obtained experimentally to evaluate dμ/dVx and Ts/Td. A sharp rise in the maximum p* /pbar occurred when the relative sliding velocity reached the critical velocity, Vc. An increase in the maximum p* /pbar generally led to an increase of the (initially negative) dμ/dVx value, and thus the severity of judder. The fluctuation intensity of dμ/dVx becomes a governing factor of the growth of dμ/dVx itself in the engagement process. The mean values of dμ/dVx and Ts/Td for the clutching tests with 100 cycles can be roughly divided into three groups dependent on the fluctuation intensities of these two parameters, for each of which there is a linear relationship.
49 CFR 173.337 - Nitric oxide.
Code of Federal Regulations, 2010 CFR
2010-10-01
... charged to a pressure of not more than 5,170 kPa (750 psi) at 21 °C (70 °F). Transportation of nitric... with a minimum test pressure of 200 bar. The maximum working pressure of the cylinder must not exceed 50 bar. The pressure in the cylinder at 65 °C (149 °F) may not exceed the test pressure. The use of...
49 CFR 173.337 - Nitric oxide.
Code of Federal Regulations, 2014 CFR
2014-10-01
... charged to a pressure of not more than 5,170 kPa (750 psi) at 21 °C (70 °F). Transportation of nitric... with a minimum test pressure of 200 bar. The maximum working pressure of the cylinder must not exceed 50 bar. The pressure in the cylinder at 65 °C (149 °F) may not exceed the test pressure. The use of...
49 CFR 173.337 - Nitric oxide.
Code of Federal Regulations, 2011 CFR
2011-10-01
... charged to a pressure of not more than 5,170 kPa (750 psi) at 21 °C (70 °F). Transportation of nitric... with a minimum test pressure of 200 bar. The maximum working pressure of the cylinder must not exceed 50 bar. The pressure in the cylinder at 65 °C (149 °F) may not exceed the test pressure. The use of...
49 CFR 173.337 - Nitric oxide.
Code of Federal Regulations, 2012 CFR
2012-10-01
... charged to a pressure of not more than 5,170 kPa (750 psi) at 21 °C (70 °F). Transportation of nitric... with a minimum test pressure of 200 bar. The maximum working pressure of the cylinder must not exceed 50 bar. The pressure in the cylinder at 65 °C (149 °F) may not exceed the test pressure. The use of...
49 CFR 173.337 - Nitric oxide.
Code of Federal Regulations, 2013 CFR
2013-10-01
... charged to a pressure of not more than 5,170 kPa (750 psi) at 21 °C (70 °F). Transportation of nitric... with a minimum test pressure of 200 bar. The maximum working pressure of the cylinder must not exceed 50 bar. The pressure in the cylinder at 65 °C (149 °F) may not exceed the test pressure. The use of...
40 CFR 63.9921 - What are the installation, operation and maintenance requirements for my monitors?
Code of Federal Regulations, 2011 CFR
2011-07-01
...) For the pressure drop CPMS, you must: (i) Locate the pressure sensor(s) in or as close to a position... calibration quarterly and transducer calibration monthly. (v) Conduct calibration checks any time the sensor exceeds the manufacturer's specified maximum operating pressure range, or install a new pressure sensor...
40 CFR 63.9921 - What are the installation, operation and maintenance requirements for my monitors?
Code of Federal Regulations, 2014 CFR
2014-07-01
...) For the pressure drop CPMS, you must: (i) Locate the pressure sensor(s) in or as close to a position... calibration quarterly and transducer calibration monthly. (v) Conduct calibration checks any time the sensor exceeds the manufacturer's specified maximum operating pressure range, or install a new pressure sensor...
40 CFR 63.9921 - What are the installation, operation and maintenance requirements for my monitors?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) For the pressure drop CPMS, you must: (i) Locate the pressure sensor(s) in or as close to a position... calibration quarterly and transducer calibration monthly. (v) Conduct calibration checks any time the sensor exceeds the manufacturer's specified maximum operating pressure range, or install a new pressure sensor...
40 CFR 63.9921 - What are the installation, operation and maintenance requirements for my monitors?
Code of Federal Regulations, 2013 CFR
2013-07-01
...) For the pressure drop CPMS, you must: (i) Locate the pressure sensor(s) in or as close to a position... calibration quarterly and transducer calibration monthly. (v) Conduct calibration checks any time the sensor exceeds the manufacturer's specified maximum operating pressure range, or install a new pressure sensor...
Cai, Kai-yu; Zhang, Wei-zhong; Qiu, Hui-li; Wu, Mei-zhi
2007-03-01
To analyze the clinical factors relating to arterial elastic function measured with pulse wave velocity (PWV), large and small arterial elastic indexes (C(1) and C(2)) and augmentation index (AI) in hypertensive patients. A total of 2176 hypertensive patients were enrolled and divided into three groups: Elastic function was measured in 1100 subjects by (PWV), in 647 subjects by C(1) and C(2) and in 429 by AI. PWV was positively correlated with age, systolic pressure, pulse pressure and negatively correlated with body height and weights (all P < 0.05). C(1) and C(2) values were higher in male than that in female patients (P < 0.01) and negatively correlated with age, systolic pressure, pulse pressure and heart rate while positively correlated with body height, weight and body mass index. In hypercholesterolemia patients (n = 168), C(1) and C(2) were negatively correlated with serum cholesterol level (P < 0.05). AI value was higher in female than that in male patients (P < 0.01) and positively correlated with age, systolic pressure, diastolic pressure, pulse pressure while negatively correlated with body height, weight and heart rate. Age, systolic and pulse pressure as well as body height and weights are the main factors correlated to arterial elastic function measured by PWV, C(1) and C(2) and AI.
Ishida, Kenichiro; Noborio, Mitsuhiro; Nishimura, Tetsuro; Ieki, Yohei; Shimahara, Yumiko; Sogabe, Taku; Ehara, Naoki; Saoyama, Yuki; Sadamitsu, Daikai
2016-04-01
A 53-year-old woman developed septic shock associated with non-clostridial gas gangrene. She presented to the emergency department with two large open wounds on both thighs and in her sacral region. Non-enhanced computed tomography showed air density in contact with the right iliopsoas, which extended to the posterior compartment of the thigh. We made repeated efforts at surgical debridement of the wound with resection of necrotic tissues. Using negative pressure wound therapy-assisted dermatotraction, the pus pockets and the wound dehiscence decreased in size. Using this method we were successful in achieving delayed closure without skin grafts. Negative pressure wound therapy can be an effective treatment for large and infected open contoured wounds. Negative pressure wound therapy-assisted dermatotraction might be beneficial for poorly healing, large, open wounds in patients in poor condition and with insufficient reserve to tolerate reconstructive surgery.
NASA Technical Reports Server (NTRS)
1976-01-01
The University of Miami School of Medicine asked the Research Triangle Institute for assistance in improvising the negative pressure technique to relieve respiratory distress in infants. Marshall Space Flight Center and Johnson Space Center engineers adapted this idea to the lower-body negative-pressure system seals used during the Skylab missions. Some 20,000 babies succumb to respiratory distress in the U.S. each year, a condition in which lungs progressively lose their ability to oxygenate blood. Both positive and negative pressure techniques have been used - the first to force air into lungs, the second to keep infant's lungs expanded. Negative pressure around chest helps the baby expand his lungs and maintain proper volume of air. If doctors can keep the infant alive for four days, the missing substance in the lungs will usually form in sufficient quantity to permit normal breathing. The Skylab chamber and its leakproof seals were adapted for medical use.
NASA Technical Reports Server (NTRS)
1974-01-01
The standard plate cells exhibited higher average end-of-charge (EOC) voltages than the cells with teflonated negative plates; they also delivered a higher capacity output in ampere hours following these charges. All the cells reached a pressure of 20 psia before reaching the voltage limit of 1.550 volts during the pressure versus capacity test. The average ampere hours in and voltages at this pressure were 33.6 and 1.505 volts respectively for the teflonated negative plate cells and 35.5 and 1.523 volts for the standard plate cells. All cells exhibited pressure decay in the range of 1 to 7 psia during the last 30 minutes of the 1-hour open circuit stand. Average capacity out for the teflonated and standard negative plate cells was 29.4 and 29.9 ampere hours respectively.
NASA Astrophysics Data System (ADS)
Mueller, H. J.; Beckmann, F.; Dobson, D. P.; Hunt, S. A.; Secco, R.; Lauterjung, J.; Lathe, C.
2014-12-01
Viscosity data of melts measured under in situ high pressure conditions are crucial for the understanding of Earth's lower mantle and the interior of terrestrial and extrasolar Super-Earth planets. We report recent technical advances and techniques enabling falling sphere viscosity measurements in single- and double-stage DIA-type multi-anvil apparatus. For the experiments we used presses with a maximum load of 250 tons and 1750 tons. We anticipate that our system will enable viscosity measurements up to the maximum pressure for non-diamond anvils, i.e. pressures up to some 30 GPa. For the development of the new set ups the deformation of the cell assemblies were analyzed by X-ray absorption tomography at beamline W II at DESY/HASYLAB after the high pressure runs. These analysis gave considerable insights into strategies for improving the cell assembly with the result that the optimized assemblies could be used at much higher pressures without blow-outs. We think this approach is much faster and more beneficial than the classical way of trial and error. Additionally to prevent high pressure blow outs the task was to make the whole melting chamber accessible for the high pressure X-radiography system up to the maximum pressures. This way the accuracy and reliability of the measurements can be improved. For this goal we used X-ray transparent cBN-anvils at the single-stage DIA large volume press. Because this material is recently not available for the cube size of 32 mm this aproach did not work for the double-stage DIA. As a very useful and economical alternative we used slotted carbide anvils filled with fired pyrophyllite bars. To improve the frame quality of the platinum spheres taken by the CCD-camera the energy of the monochromatic X-rays had to be increased to 100 keV. The resulting ascent of scattered radiation required a new design of the X-radiography unit. Our results are demonstrated with viscosity measurements following Stokes law by evaluation of X-radiography sequences taken by a CCD-camera at pressures of 5 GPa as well as 10 GPa and temperatures of 1890 K. As the first result we could increase the maximum pressure range of published viscosity measurements with dacite melts by almost factor 1.5 (see Tinker et al., 2004).
NASA Technical Reports Server (NTRS)
Ungar, Eugene K.
2014-01-01
The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared observation experiments. The experiments carry sensors cooled to liquid helium (LHe) temperatures. A question arose regarding the heat input and peak pressure that would result from a sudden loss of the dewar vacuum insulation. Owing to concerns about the adequacy of dewar pressure relief in the event of a sudden loss of the dewar vacuum insulation, the SOFIA Program engaged the NASA Engineering and Safety Center (NESC). This report summarizes and assesses the experiments that have been performed to measure the heat flux into LHe dewars following a sudden vacuum insulation failure, describes the physical limits of heat input to the dewar, and provides an NESC recommendation for the wall heat flux that should be used to assess the sudden loss of vacuum insulation case. This report also assesses the methodology used by the SOFIA Program to predict the maximum pressure that would occur following a loss of vacuum event.
Drag reduction and thrust generation by tangential surface motion in flow past a cylinder
NASA Astrophysics Data System (ADS)
Mao, Xuerui; Pearson, Emily
2018-03-01
Sensitivity of drag to tangential surface motion is calculated in flow past a circular cylinder in both two- and three-dimensional conditions at Reynolds number Re ≤ 1000 . The magnitude of the sensitivity maximises in the region slightly upstream of the separation points where the contour lines of spanwise vorticity are normal to the cylinder surface. A control to reduce drag can be obtained by (negatively) scaling the sensitivity. The high correlation of sensitivities of controlled and uncontrolled flow indicates that the scaled sensitivity is a good approximation of the nonlinear optimal control. It is validated through direct numerical simulations that the linear range of the steady control is much higher than the unsteady control, which synchronises the vortex shedding and induces lock-in effects. The steady control injects angular momentum into the separating boundary layer, stabilises the flow and increases the base pressure significantly. At Re=100 , when the maximum tangential motion reaches 50% of the free-stream velocity, the vortex shedding, boundary-layer separation and recirculation bubbles are eliminated and 32% of the drag is reduced. When the maximum tangential motion reaches 2.5 times of the free-stream velocity, thrust is generated and the power savings ratio, defined as the ratio of the reduced drag power to the control input power, reaches 19.6. The mechanism of drag reduction is attributed to the change of the radial gradient of spanwise vorticity (partial r \\hat{ζ } ) and the subsequent accelerated pressure recovery from the uncontrolled separation points to the rear stagnation point.
Volumetric velocity measurements in restricted geometries using spiral sampling: a phantom study.
Nilsson, Anders; Revstedt, Johan; Heiberg, Einar; Ståhlberg, Freddy; Bloch, Karin Markenroth
2015-04-01
The aim of this study was to evaluate the accuracy of maximum velocity measurements using volumetric phase-contrast imaging with spiral readouts in a stenotic flow phantom. In a phantom model, maximum velocity, flow, pressure gradient, and streamline visualizations were evaluated using volumetric phase-contrast magnetic resonance imaging (MRI) with velocity encoding in one (extending on current clinical practice) and three directions (for characterization of the flow field) using spiral readouts. Results of maximum velocity and pressure drop were compared to computational fluid dynamics (CFD) simulations, as well as corresponding low-echo-time (TE) Cartesian data. Flow was compared to 2D through-plane phase contrast (PC) upstream from the restriction. Results obtained with 3D through-plane PC as well as 4D PC at shortest TE using a spiral readout showed excellent agreements with the maximum velocity values obtained with CFD (<1 % for both methods), while larger deviations were seen using Cartesian readouts (-2.3 and 13 %, respectively). Peak pressure drop calculations from 3D through-plane PC and 4D PC spiral sequences were respectively 14 and 13 % overestimated compared to CFD. Identification of the maximum velocity location, as well as the accurate velocity quantification can be obtained in stenotic regions using short-TE spiral volumetric PC imaging.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Additional construction requirements for steel pipe using alternative maximum allowable operating pressure. 192.328 Section 192.328 Transportation... Lines and Mains § 192.328 Additional construction requirements for steel pipe using alternative maximum...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Additional construction requirements for steel pipe using alternative maximum allowable operating pressure. 192.328 Section 192.328 Transportation... Lines and Mains § 192.328 Additional construction requirements for steel pipe using alternative maximum...
NASA Astrophysics Data System (ADS)
Cuss, Robert J.; Wiseall, Andrew C.; Tamayo-Mas, Elena; Harrington, Jon F.
2018-04-01
The injection of super-critical CO2 into a depleted reservoir will alter the pore pressure of the basin, which if sufficiently perturbed could result in fault slip. Therefore, knowledge of the acceptable pressure limits is required in order to maintain fault stability. A two-part laboratory study was conducted on fully saturated kaolinite fault gouge to investigate this issue. Previously, we showed that fault slip occurred once pore-pressure within the gouge was sufficient to overcome the normal stress acting on the fault. For kaolinite, this behaviour occurred at a pressure similar to the yield stress. The current study shows that following a slow-reduction in the maximum principal stress, as would be expected through changes in effective stress, the reactivation pressure shows a stress memory. Consequently, the pressure necessary to initiate fault slip is similar to that required at the maximum stress encountered. Therefore, fault slip is at least partially controlled by the previous maximum stress and not the current stress state. During the slow reduction in normal stress, the flow characteristics of the fault remain unchanged until pore-pressure exceeds shear stress and does not increase significantly until it exceeds normal stress. This results in fault slip, which slows the rate of flow increase as shear is an effective self-sealing mechanism. These observations lead to the conclusion that stress history is a vital parameter when considering fault stability.
Stress and Negative Relationship Quality among Older Couples: Implications for Blood Pressure.
Birditt, Kira S; Newton, Nicky J; Cranford, James A; Ryan, Lindsay H
2016-09-01
The cardiovascular system may represent a significant pathway by which marriage and stress influence health, but research has focused on married individuals cross-sectionally. This study examined associations among chronic stress, negative spousal relationship quality, and systolic blood pressure over time among middle-aged and older husbands and wives. Participants were from the nationally representative longitudinal Health and Retirement Study. A total of 1,356 (N = 2,712) married and cohabitating couples completed psychosocial and biomeasure assessments in waves 2006 and 2010. Analyses examined whether Wave 1 (2006) relationship quality and stress were associated with changes in blood pressure over time. The effects of stress and negative relationship quality were dyadic and varied by gender. Husbands had increased blood pressure when wives reported greater stress, and this link was exacerbated by negative spousal relationship quality. Negative relationship quality predicted increased blood pressure when both members of the couple reported negative quality relations. Findings support the dyadic biopsychosocial model of marriage and health indicating: (a) stress and relationship quality directly effect the cardiovascular system, (b) relationship quality moderates the effect of stress, and (c) the dyad rather than only the individual should be considered when examining marriage and health. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
2011-01-01
Background Evidence is mounting regarding the clinically significant effect of temperature on blood pressure. Methods In this cross-sectional study the authors obtained minimum and maximum temperatures and their respective previous week variances at the geographic locations of the self-reported residences of 26,018 participants from a national cohort of blacks and whites, aged 45+. Linear regression of data from 20,623 participants was used in final multivariable models to determine if these temperature measures were associated with levels of systolic or diastolic blood pressure, and whether these relations were modified by stroke-risk region, race, education, income, sex hypertensive medication status, or age. Results After adjustment for confounders, same-day maximum temperatures 20°F lower had significant associations with 1.4 mmHg (95% CI: 1.0, 1.9) higher systolic and 0.5 mmHg (95% CI: 0.3, 0.8) higher diastolic blood pressures. Same-day minimum temperatures 20°F lower had a significant association with 0.7 mmHg (95% CI: 0.3, 1.0) higher systolic blood pressures but no significant association with diastolic blood pressure differences. Maximum and minimum previous-week temperature variabilities showed significant but weak relationships with blood pressures. Parameter estimates showed effect modification of negligible magnitude. Conclusions This study found significant associations between outdoor temperature and blood pressure levels, which remained after adjustment for various confounders including season. This relationship showed negligible effect modification. PMID:21247466
Noelting, Jessica; Ratuapli, Shiva K; Bharucha, Adil E; Harvey, Doris M; Ravi, Karthik; Zinsmeister, Alan R
2012-10-01
High-resolution manometry (HRM) is used to measure anal pressures in clinical practice but normal values have not been available. Although rectal evacuation is assessed by the rectoanal gradient during simulated evacuation, there is substantial overlap between healthy people and defecatory disorders, and the effects of age are unknown. We evaluated the effects of age on anorectal pressures and rectal balloon expulsion in healthy women. Anorectal pressures (HRM), rectal sensation, and balloon expulsion time (BET) were evaluated in 62 asymptomatic women ranging in age from 21 to 80 years (median age 44 years) without risk factors for anorectal trauma. In total, 30 women were aged <50 years. Age is associated with lower (r=-0.47, P<0.01) anal resting (63 (5) (≥50 years), 88 (3) (<50 years), mean (s.e.m.)) but not squeeze pressures; higher rectal pressure and rectoanal gradient during simulated evacuation (r=0.3, P<0.05); and a shorter (r=-0.4, P<0.01) rectal BET (17 (9) s (≥50 years) vs. 31 (10) s (<50 years)). Only 5 women had a prolonged (>60 s) rectal BET but 52 had higher anal than rectal pressures (i.e., negative gradient) during simulated evacuation. The gradient was more negative in younger (-41 (6) mm Hg) than older (-12 (6) mm Hg) women and negatively (r=-0.51, P<0.0001) correlated with rectal BET but only explained 16% of the variation in rectal BET. These observations provide normal values for anorectal pressures by HRM. Increasing age is associated with lower anal resting pressure, a more positive rectoanal gradient during simulated evacuation, and a shorter BET in asymptomatic women. Although the rectoanal gradient is negatively correlated with rectal BET, this gradient is negative even in a majority of asymptomatic women, undermining the utility of a negative gradient for diagnosing defecatory disorders by HRM.
Yang, Xiujiang; Sun, Bo; Zhu, Haihang; Jiang, Ziting
2015-01-01
The aim was to explore the effect of negative pressure on the proliferation and metastasis of human pancreatic cancer SW1990 cells. Three groups were conducted in the work: normal control group (NC group, 0 mm Hg), low negative pressure group (LN group, -300 mm Hg), and high negative pressure group (HN group, -600 mm Hg). Cell morphological assay was conducted using an inverted Nikon TE2000-S microscope. Cell viability was assayed using cell counting kit-8 solution. Cell apoptosis was evaluated with flow cytometry. Cell migration was investigated using transwell assay. Compared to LN and HN groups, SW1990 cells in NC group grew quite well, showing a higher density. The NC group represented the highest cell viability. The HN group represented the lowest cell viability, which was lower than that of the LN group (P < 0.01). The apoptosis rate in NC group, LN group and HN group was 1.91% ± 0.13%, 2.31% ± 0.06% and 15.22% ± 0.81%, respectively (P < 0.05). The average number of migration cells in NC group was 53.60 ± 4.14 (× 200), which was decreased to 18.93 ± 3.67 and 11.07 ± 3.01 in LN group and HN group, respectively (P < 0.01). The negative pressure shows suppression effects on the proliferation and metastasis of human pancreatic cancer SW1990 cells. It is indicated that negative pressure may be involved in the development of human pancreatic cancer by influencing cell biological characteristics.
Takeda, Shohei; Inada, Yutaka; Fukui, Noriyuki; Tomaru, Teruaki
1997-03-01
ATP and diadenosine tetraphosphate (AP 4 A) have been shown to produce vasodilation mediated by P 1 - and P 2 -purinoceptor, respectively. The differing mechanisms involved in this vasodilating activity may induce different systemic hemodynamic changes. We compared the hemodynamic effects of AP 4 A-induced hypotension with those induced by ATP. Fourteen mongrel dogs were anesthetized with 0.87% halothane in oxygen (1 MAC). After the baseline period, mean arterial pressure was reduced to 60 mmHg for 60 min by the infusion of AP 4 A or ATP. The ATP- and AP 4 A-induced hypotension resulted in a maximum reduction in systemic vascular resistance of 43% and 46%, respectively (P<0.01), associated with a significant increase in stroke volume index. With ATP, a 20% of maximum increase (P<0.05) in cardiac index (CI) was observed during the induced hypotension. In contrast, AP 4 A-induced hypotension did not result in any changes in CI throughout the observation period. The varying results concerning CI during the ATP- and AP 4 A-induced hypotension were probably due to differences in ventricular filling pressure, since AP 4 A-induced hypotension was associated with decreases (P<0.01) in both right atrial and pulmonary capillary wedge pressures, whereas neither of these variables significantly changed with ATP. The hypotension induced by either ATP or AP 4 A was associated with a significant decrease in heart rate (HR). However, both the magnitude and duration of decreases in HR due to ATP-induced hypotension were more pronounced than those seen with AP 4 A. In conclusion, while both drugs were equally capable of inducing hypotension, our results suggest that AP 4 A was more suitable for induced hypotension because of its potent vasodilatory action with venodilation and less negative chronotropic action.
Beillas, Philippe; Alonzo, François; Chevalier, Marie-Christine; Lesire, Philippe; Leopold, Franck; Trosseille, Xavier; Johannsen, Heiko
2012-10-01
The Abdominal Pressure Twin Sensors (APTS) for Q3 and Q6 dummies are composed of soft polyurethane bladders filled with fluid and equipped with pressure sensors. Implanted within the abdominal insert of child dummies, they can be used to detect abdominal loading due to the belt during frontal collisions. In the present study - which is part of the EC funded CASPER project - two versions of APTS (V1 and V2) were evaluated in abdominal belt compression tests, torso flexion test (V1 only) and two series of sled tests with degraded restraint conditions. The results suggest that the two versions have similar responses, and that the pressure sensitivity to torso flexion is limited. The APTS ability to detect abdominal loading in sled tests was also confirmed, with peak pressures typically below 1 bar when the belt loaded only the pelvis and the thorax (appropriate restraint) and values above that level when the abdomen was loaded directly (inappropriate restraint). Then, accident reconstructions performed as part of CASPER and previous EC funded projects were reanalyzed. Selected data from 19 dummies (12 Q6 and 7 Q3) were used to plot injury risk curves. Maximum pressure, maximum pressure rate and their product were all found to be injury predictors. Maximum pressure levels for a 50% risk of AIS3+ were consistent with the levels separating appropriate and inappropriate restraint in the sled tests (e.g. 50% risk of AIS3+ at 1.09 bar for pressure filtered CFC180). Further work is needed to refine the scaling techniques between ages and confirm the risk curves.
An analysis of collegiate band directors' exposure to sound pressure levels
NASA Astrophysics Data System (ADS)
Roebuck, Nikole Moore
Noise-induced hearing loss (NIHL) is a significant but unfortunate common occupational hazard. The purpose of the current study was to measure the magnitude of sound pressure levels generated within a collegiate band room and determine if those sound pressure levels are of a magnitude that exceeds the policy standards and recommendations of the Occupational Safety and Health Administration (OSHA), and the National Institute of Occupational Safety and Health (NIOSH). In addition, reverberation times were measured and analyzed in order to determine the appropriateness of acoustical conditions for the band rehearsal environment. Sound pressure measurements were taken from the rehearsal of seven collegiate marching bands. Single sample t test were conducted to compare the sound pressure levels of all bands to the noise exposure standards of OSHA and NIOSH. Multiple regression analysis were conducted and analyzed in order to determine the effect of the band room's conditions on the sound pressure levels and reverberation times. Time weighted averages (TWA), noise percentage doses, and peak levels were also collected. The mean Leq for all band directors was 90.5 dBA. The total accumulated noise percentage dose for all band directors was 77.6% of the maximum allowable daily noise dose under the OSHA standard. The total calculated TWA for all band directors was 88.2% of the maximum allowable daily noise dose under the OSHA standard. The total accumulated noise percentage dose for all band directors was 152.1% of the maximum allowable daily noise dose under the NIOSH standards, and the total calculated TWA for all band directors was 93dBA of the maximum allowable daily noise dose under the NIOSH standard. Multiple regression analysis revealed that the room volume, the level of acoustical treatment and the mean room reverberation time predicted 80% of the variance in sound pressure levels in this study.
DiMarco, Anthony F.; Kowalski, Krzysztof E.; Geertman, Robert T.; Hromyak, Dana R.
2009-01-01
Objective Evaluation of the capacity of lower thoracic spinal cord stimulation (SCS) to activate the expiratory muscles and generate large airway pressures and high peak airflows characteristic of cough, in subjects with tetraplegia. Design Clinical trial. Setting In-patient hospital setting for electrode insertion; out-patient setting for measurement of respiratory pressures; home setting for application of SCS. Participants Subjects (N = 9; 8 men, 1 woman) with cervical spinal cord injury and weak cough. Intervention(s) A fully implantable electrical stimulation system was surgically placed in each subject. Partial hemilaminectomies were made to place single-disc electrodes in the epidural space at the T9, T11 and L1 spinal levels. A radiofrequency receiver was placed in the subcutaneous pocket over the anterior portion of the chest wall. Electrode wires were tunneled subcutaneously and connected to the receiver. Stimulation was applied by activating a small portable external stimulus controller box powered by a rechargeable battery to each electrode lead alone and in combination. Main Outcome Measure(s) Airway pressure and peak airflow generation achieved with SCS. Results Supramaximal SCS resulted in large airway pressures and high peak airflow rates during stimulation at each electrode lead. Maximum airway pressures and peak airflow rates were achieved with combined stimulation of any 2 leads. At total lung capacity, mean maximum airway pressure generation and peak airflow rates were 137 ± 30 cmH2O (mean ± SE) and 8.6 ± 1.8 (mean ± SE) L/s, respectively. Conclusions Lower thoracic SCS results in near maximum activation of the expiratory muscles and the generation of high positive airway pressures and peak airflow rates in the range of those observed with maximum cough efforts in normal individuals. PMID:19406289
Gutiérrez-Martín, P; Vírseda-Chamorro, M; Salinas Casado, J; Gómez-Rodríguez, A; Esteban-Fuertes, M
2015-05-01
To determine the urodynamic efficacy and factors that influence the urodynamic results of treatment of neurogenic detrusor hyperactivity with intradetrusor injection of botulinum toxin type A (BTX-A) in patients with spinal cord injury (SCI). A retrospective study was conducted with a cohort of 70 patients composed of 40 men and 30 women with stable SCI (mean age, 39 ± 13.3 years) who underwent an intradetrusor injection of 300 IUs of BTX-A. A urodynamic study was conducted prior to the injection and 6 ± 4.3 months after the treatment. New urodynamic studies were subsequently performed up to an interval of 16 ± 12.2 months. The BTX-A significantly increased (p < .05) the cystomanometric bladder capacity, the bladder volume of the first involuntary contraction of the detrusor and the postvoid residue. We observed a decrease that tended towards statistical significance (p < .1) of the maximum detrusor pressure and the maximum urine flow. Neither the bladder accommodation nor the urethral resistance index (bladder outlet obstruction index) varied significantly. The increase in vesical capacity was maintained in 50% of the sample for more than 32 months. Age, sex, anticholinergic treatment and lesion age showed no influence in terms of the increase in bladder capacity. The indwelling urinary catheter (IUC) was the only statistically significant negative factor. The urodynamic effect of BTX-A is maintained for a considerable time interval. The IUC negatively influences the result of the treatment. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.
Sonic boom prediction for the Langley Mach 2 low-boom configuration
NASA Technical Reports Server (NTRS)
Madson, Michael D.
1992-01-01
Sonic boom pressure signatures and aerodynamic force data for the Langley Mach 2 low sonic boom configuration were computed using the TranAir full-potential code. A solution-adaptive Cartesian grid scheme is utilized to compute off-body flow field data. Computations were performed with and without nacelles at several angles of attack. Force and moment data were computed to measure nacelle effects on the aerodynamic characteristics and sonic boom footprints of the model. Pressure signatures were computed both on and off ground-track. Near-field pressure signature computations on ground-track were in good agreement with experimental data. Computed off ground-track signatures showed that maximum pressure peaks were located off ground-track and were significantly higher than the signatures on ground-track. Bow shocks from the nacelle inlets increased lift and drag, and also increased the magnitude of the maximum pressure both on and off ground-track.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herberger, Sarah M.; Boring, Ronald L.
Abstract Objectives: This paper discusses the differences between classical human reliability analysis (HRA) dependence and the full spectrum of probabilistic dependence. Positive influence suggests an error increases the likelihood of subsequent errors or success increases the likelihood of subsequent success. Currently the typical method for dependence in HRA implements the Technique for Human Error Rate Prediction (THERP) positive dependence equations. This assumes that the dependence between two human failure events varies at discrete levels between zero and complete dependence (as defined by THERP). Dependence in THERP does not consistently span dependence values between 0 and 1. In contrast, probabilistic dependencemore » employs Bayes Law, and addresses a continuous range of dependence. Methods: Using the laws of probability, complete dependence and maximum positive dependence do not always agree. Maximum dependence is when two events overlap to their fullest amount. Maximum negative dependence is the smallest amount that two events can overlap. When the minimum probability of two events overlapping is less than independence, negative dependence occurs. For example, negative dependence is when an operator fails to actuate Pump A, thereby increasing his or her chance of actuating Pump B. The initial error actually increases the chance of subsequent success. Results: Comparing THERP and probability theory yields different results in certain scenarios; with the latter addressing negative dependence. Given that most human failure events are rare, the minimum overlap is typically 0. And when the second event is smaller than the first event the max dependence is less than 1, as defined by Bayes Law. As such alternative dependence equations are provided along with a look-up table defining the maximum and maximum negative dependence given the probability of two events. Conclusions: THERP dependence has been used ubiquitously for decades, and has provided approximations of the dependencies between two events. Since its inception, computational abilities have increased exponentially, and alternative approaches that follow the laws of probability dependence need to be implemented. These new approaches need to consider negative dependence and identify when THERP output is not appropriate.« less
Numerical study of a confocal ultrasonic setup for creation of cavitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafond, Maxime, E-mail: maxime.lafond@inserm.fr; Chavrier, Françoise; Prieur, Fabrice
2015-10-28
Acoustic cavitation is used for various therapeutic applications such as local enhancement of drug delivery, histotripsy or hyperthermia. One of the utmost important parameter for cavitation creation is the rarefaction pressure. The typical magnitude of the rarefaction pressure required to initiate cavitation from gas dissolved in tissue is beyond the range of the megapascal. Because nonlinear effects need to be taken into account, a numerical simulator based on the Westervelt equation was used to study the pressure waveform and the acoustic field generated by a setup for creation of cavitation consisting of two high intensity focused ultrasound transducers mounted confocally.more » At constant acoustic power, simulations with only one and both transducers from the confocal setup showed that the distortion of the pressure waveform due to the combined effects of nonlinearity and diffraction is less pronounced when both confocal transducers are used. Consequently, the confocal setup generates a greater peak negative pressure at focus which is more favorable for cavitation initiation. Comparison between the confocal setup and a single transducer with the same total emitting surface puts in evidence the role of the spatial separation of the two beams. Furthermore, it has been previously shown that the location of the peak negative pressure created by a single transducer shifts from focus towards the transducers in the presence of nonlinear effects. The simulator was used to study a configuration where the acoustical axes of transducers intersect on the peak negative pressure instead of the geometrical focus. For a representative confocal setup, namely moderate nonlinear effects, a 2% increase of the peak negative pressure and 8% decrease of the peak positive pressure resulted from this configuration. These differences tend to increase by increasing nonlinear effects. Although the optimal position of the transducers varies with the nonlinear regimen, the intersection point remains the location of the peak negative pressure in any case. Thus, unlike the location of the peak negative pressure for a single transducer can shift by a few millimeters, the focal point of a confocal device is independent of the power. This point is particularly important for therapeutic applications, frequently requiring high spatial accuracy. An experiment conducted shows that cavitation creation can be achieved easier with confocal ultrasound.« less
Liu, Jun; Guo, Ting; Wang, Dong; Ying, Hanjie
2015-01-01
A Clostridium beijerinckii mutant M13 was derived from C. beijerinckii NCIMB 8052 by atmospheric pressure glow discharge. C. beijerinckii M13 generated a maximum output power density of 79.2 mW m(-2) and a maximum output voltage of 230 mV in a microbial fuel cell containing 1 g glucose l(-1) as carbon source and 0.15 g methyl viologen l(-1) as an electron carrier.
Gait analysis in hallux valgus.
Blomgren, M; Turan, I; Agadir, M
1991-01-01
The solar pressure zones were analyzed in the feet of 66 patients suffering from hallux valgus, together with 60 normal subjects. The EMED Gait Analysis System was used. In the hallux valgus group, the maximum pressure was found to be increased significantly in the small toe region and more proximally situated, close to the metatarsophalangeal joint. In the normal subjects, the maximum pressure was increased significantly in the first, second, third, and fourth metatarsal and heel regions. In general, the hallux valgus group had smaller contact areas compared to the control group. The increased pressure in the small toe region, together with the smaller contact areas manifested by the hallux valgus group, were interpreted in this work as being the possible causes of the metatarsalgia seen in patients with the deformity.
NASA Technical Reports Server (NTRS)
Emami, Saied; Trexler, Carl A.; Auslender, Aaron H.; Weidner, John P.
1995-01-01
This report details experimentally derived operational characteristics of numerous two-dimensional planar inlet-combustor isolator configurations at a Mach number of 4. Variations in geometry included (1) inlet cowl length; (2) inlet cowl rotation angle; (3) isolator length; and (4) utilization of a rearward-facing isolator step. To obtain inlet-isolator maximum pressure-rise data relevant to ramjet-engine combustion operation, configurations were mechanically back pressured. Results demonstrated that the combined inlet-isolator maximum back-pressure capability increases as a function of isolator length and contraction ratio, and that the initiation of unstart is nearly independent of inlet cowl length, inlet cowl contraction ratio, and mass capture. Additionally, data are presented quantifying the initiation of inlet unstarts and the corresponding unstart pressure levels.
Oxidation at through-hole defects in fused slurry silicide coated columbium alloys FS-85 and Cb-752
NASA Technical Reports Server (NTRS)
Levine, S. R.
1973-01-01
Metal recession and interstitial contamination at 0.08-centimeter-diameter through-hole intentional defects in fused slurry silicide coated FS-85 and Cb-752 columbium alloys were studied to determine the tolerance of these materials to coating defects. Five external pressure reentry simulation exposures to 1320 C and 4.7 x 1,000 N/sq m (maximum pressure) resulted in a consumed metal zone having about twice the initial defect diameter for both alloys with an interstitial contamination zone extending about three to four initial defect diameters. Self-healing occurred in the 1.33 x 10 N/sq m, 1320 C exposures and to a lesser extent in internal pressure reentry cycles to 1320 C and 1.33 x 100 N/sq m (maximum pressure).
The behavior of nanothermite reaction based on Bi2O3/Al
NASA Astrophysics Data System (ADS)
Wang, L.; Luss, D.; Martirosyan, K. S.
2011-10-01
We studied the impact of aluminum particle size and the thickness of surrounding alumina layer on the dynamic pressure discharge of nanothermite reactions in the Bi2O3/Al system. A pressure discharge from 9 to 13 MPa was generated using as-synthesized Bi2O3 nano-particles produced by combustion synthesis and Al nanoparticles with size from 3 μm to 100 nm. The maximum reaction temperature was measured to be ˜2700 °C. The estimated activation energy of the reaction was 45 kJ/mol. A very large (several orders of magnitude) difference existed between the rate of the pressure pulse release by nanothermite reactions and by thermite reactions with large aluminum particles. The maximum observed pressurization rate was 3200 GPa/s. The time needed to reach the peak pressure was 0.01 ms and 100 ms for aluminum particles with diameter of 100 nm and 70 microns, respectively. The discharge pressure was a monotonic decreasing function of the thickness of the surrounding alumina layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhoya, Walter; Tsoi, Georgiy; Vohra, Yogesh
Simultaneous high-pressure X-ray diffraction and electrical resistance measurements have been carried out on a PbO-type {alpha}-FeSe{sub 0.92} compound to a pressure of 44 GPa and temperatures down to 4 K using designer diamond anvils at synchrotron source. A ambient temperature, a structural phase transition from a tetragonal (P4/nmm) phase to an orthorhombic (Pbnm) phase is observed at 11 GPa and the Pbnm phase persists up to 74 GPa. The superconducting transition temperature (T{sub c}) increases rapidly with pressure reaching a maximum of {approx}28 K at {approx}6 GPa and decreases at higher pressures, disappearing completely at 14.6 GPa. Simultaneous pressure-dependent X-raymore » diffraction and resistance measurements at low temperatures show superconductivity only in a low-pressure orthorhombic (Cmma) phase of the {alpha}-FeSe{sub 0.92}. Upon increasing pressure at 10 K near T{sub c}, crystalline phases change from a mixture of orthorhombic (Cmma) and hexagonal (P63/mmc) phases to a high-pressure orthorhombic (Pbnm) phase near 6.4 GPa where T{sub c} is maximum.« less
Method and apparatus for simulating gravitational forces on a living organism
NASA Technical Reports Server (NTRS)
Thornton, W. E. (Inventor)
1983-01-01
A method and apparatus for simulating gravitational forces on a living organism wherein a series of negative pressures are externally applied to successive length-wise sections of a lower limb of the organism. The pressures decreasing progressively with distance of said limb sections from the heart of the organism. A casing defines a chamber adapted to contain the limb of the organism and is rigidified to resist collapse upon the application of negative pressures to the interior of the chamber. Seals extend inwardly from the casing for effective engagement with the limb of the organism and, in cooperation with the limb, subdivide the chamber into a plurality of compartments each in negative pressure communicating relation with the limb.
Comparison of hydrodynamic simulations with two-shockwave drive target experiments
NASA Astrophysics Data System (ADS)
Karkhanis, Varad; Ramaprabhu, Praveen; Buttler, William
2015-11-01
We consider hydrodynamic continuum simulations to mimic ejecta generation in two-shockwave target experiments, where metallic surface is loaded by two successive shock waves. Time of second shock in simulations is determined to match experimental amplitudes at the arrival of the second shock. The negative Atwood number
NASA Technical Reports Server (NTRS)
Mottard, Elmo J.
1959-01-01
A hydrodynamic investigation was made in Langley tank no. 1 of a planing surface which was curved longitudinally in the shape of a circular arc with the center of curvature above the model and had a beam of inches and a radius of curvature of 20 beams. The planing surface had length-beam ratio of 9 and an angle of dead rise of 0 deg. Wetted length, resistance, and trimming moment were determined for values of load coefficient C(sub Delta) from -4.2 to 63.9 and values of speed coefficient C(sub V) from 6 to 25. The effects of convexity were to increase the wetted length-beam ratio (for a given lift), to decrease the lift-drag ratio, to move the center of pressure forward, and ta increase the trim for maximum lift-drag ratio as compared with values for a flat surface. The effects were greatest at low trims and large drafts. The maximum negative lift coefficient C(sub L,b) obtainable with a ratio of the radius of curvature to the beam of 20 was -0.02. The effects of camber were greater in magnitude for convexity than for the same amount of concavity.
NASA Astrophysics Data System (ADS)
Novikova, Y.; Zubanov, V.
2018-01-01
The article describes the numerical investigation of the input air irregularity influence of turbofan engine on its characteristics. The investigated fan has a wide-blade, an inlet diameter about 2 meters, a pressure ratio about 1.6 and the bypass ratio about 4.8. The flow irregularity was simulated by the flap input in the fan inlet channel. Input of flap was carried out by an amount of 10 to 22,5% of the input channel diameter with increments of 2,5%. A nonlinear harmonic analysis (NLH-analysis) of NUMECA Fine/Turbo software was used to study the flow irregularity. The behavior of the calculated LPC characteristics repeats the experiment behavior, but there is a quantitative difference: the calculated efficiency and pressure ratio of booster consistent with the experimental data within 3% and 2% respectively, the calculated efficiency and pressure ratio of fan duct - within 4% and 2.5% respectively. An increasing the level of air irregularity in the input stage of the fan reduces the calculated mass flow, maximum pressure ratio and efficiency. With the value of flap input 12.5%, reducing the maximum air flow is 1.44%, lowering the maximum pressure ratio is 2.6%, efficiency decreasing is 3.1%.
40 CFR 1065.720 - Liquefied petroleum gas.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., C3H8 Minimum, 0.85 m3/m3 ASTM D2163-05. Vapor pressure at 38 °C Maximum, 1400 kPa ASTM D1267-02 or 2598-022. Volatility residue (evaporated temperature, 35 °C) Maximum, −38 °C ASTM D1837-02a. Butanes Maximum, 0.05 m3/m3 ASTM D2163-05. Butenes Maximum, 0.02 m3/m3 ASTM D2163-05. Pentenes and heavier Maximum...
46 CFR 151.50-42 - Ethyl ether.
Code of Federal Regulations, 2011 CFR
2011-10-01
... openings shall be in the top of the tank. (2) Pressure vessel type tanks shall be designed for the maximum pressure to which they may be subjected when pressure is used to discharge the cargo, but in no case shall the design pressure be less than 50 pounds per square inch gauge. All openings shall be in the top of...
46 CFR 151.50-42 - Ethyl ether.
Code of Federal Regulations, 2014 CFR
2014-10-01
... openings shall be in the top of the tank. (2) Pressure vessel type tanks shall be designed for the maximum pressure to which they may be subjected when pressure is used to discharge the cargo, but in no case shall the design pressure be less than 50 pounds per square inch gauge. All openings shall be in the top of...
46 CFR 151.50-42 - Ethyl ether.
Code of Federal Regulations, 2013 CFR
2013-10-01
... openings shall be in the top of the tank. (2) Pressure vessel type tanks shall be designed for the maximum pressure to which they may be subjected when pressure is used to discharge the cargo, but in no case shall the design pressure be less than 50 pounds per square inch gauge. All openings shall be in the top of...
Negative pressure wound therapy and external fixation device: a simple way to seal the dressing.
Bulla, Antonio; Farace, Francesco; Uzel, André-Pierre; Casoli, Vincent
2014-07-01
Negative pressure therapy is widely applied to treat lower limb trauma. However, sealing a negative pressure dressing in the presence of an external fixation device may be difficult and time consuming. Therefore, screws, pins, wires, etc, may preclude the vacuum, preventing the plastic drape to perfectly adhere to the foam. To maintain the vacuum, we tried to prevent air leaking around the screws putting bone wax at the junction between the pins and the plastic drape. This solution, in our hands, avoids air leakage and helps maintain vacuum in a fast and inexpensive way.
The use of negative pressure in critical necrotizing fasciitis treatment: a case presentation.
Ge, Kui; Xu, Bing; Wu, Jia-Jun; Wu, Minjie; Lu, Shuliang; Xie, Ting
2014-09-01
Surgery complemented by antibiotics forms the backbone of the successful management of necrotizing fasciitis. But it will be very difficult to clear away extensive necrotizing tissue thoroughly in critically ill patients when their vital signs are unstable. The authors report the case of a 33-year-old woman who had extensive necrotizing fasciitis of the right lower limb with septic shock. The patient was severely anemic and malnutrition and had been given conservative debridement at bedside, that is, only detached necrotizing tissues was taken away while some other necrotizing tissue still remained, so that the skin tissue within the same area could be saved as much as possible. After debridement, negative pressure was applied at 125 mm Hg. Broad-spectrum antibiotics and effective supplementation were also complemented, thus controlling the septic shock. All necrotizing tissues were detached, and the sparing vital skin on necrotizing fascia was preserved successfully after negative pressure treatment. The patient was finally saved. In conclusion, negative pressure treatment may help diminish toxin absorbance, detach gangrene tissue, and preserve sparing vital tissue. This case suggests the value of combined use of negative pressure therapy and conservative debridement in critically ill patients with extensive necrotizing fasciitis. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Valenti, Roser
KFe2As2 shows an intricate behavior as a function of pressure. At ambient pressure the system is superconductor with a low critical temperature Tc=3.4 K and follows a V-shaped pressure dependence of Tc for moderate pressures with a local minimum at a pressure of 1.5 GPa. Under high pressures Pc=15 GPa, KFe2As2 exhibits a structural phase transition from a tetragonal to a collapsed tetragonal phase accompanied by a boost of the superconducting critical temperature up to 12 K. On the other hand, negative pressures realized through substitution of K by Cs or Rb decrease Tc down to 2.25K. In this talk we will discuss recent progress on the understanding of the microscopic origin of this pressure-dependent behavior by considering a combination of ab initio density functional theory with dynamical mean field theory and spin fluctuation theory calculations. We will argue that a Lifshitz transition associated with the structural collapse changes the pairing symmetry from d-wave (tetragonal) to s+/- (collapsed tetragonal) at high pressures while at ambient and negative pressures correlation effects appear to be detrimental for superconductivity. Further, we shall establish cross-links to the chalcogenide family, in particular FeSe under pressure. The Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged for financial support.
Evaluation of Ultra High Pressure (UHP) Firefighting in a Room-and-Contents Fire
2017-03-15
Burn Room and Hangar Temperature Prior to Ignition ............................................... 18 Figure 12. Effect of Temperature on Normalized...Figure 20. Maximum Average Temperature and Heat Flux ......................................................... 22 Figure 21. Effect of Maximum Average...Aspirated Ceiling Temperature .................................... 23 Figure 22. Effect of Maximum Average Floor Heat Flux on Extinguishment Quantity
NASA Astrophysics Data System (ADS)
Han, Qi-Gang; Yang, Wen-Ke; Zhu, Pin-Wen; Ban, Qing-Chu; Yan, Ni; Zhang, Qiang
2013-07-01
In order to increase the maximum cell pressure of the cubic high pressure apparatus, we have developed a new structure of tungsten carbide cubic anvil (tapered cubic anvil), based on the principle of massive support and lateral support. Our results indicated that the tapered cubic anvil has some advantages. First, tapered cubic anvil can push the transfer rate of pressure well into the range above 36.37% compare to the conventional anvil. Second, the rate of failure crack decreases about 11.20% after the modification of the conventional anvil. Third, the limit of static high-pressure in the sample cell can be extended to 13 GPa, which can increase the maximum cell pressure about 73.3% than that of the conventional anvil. Fourth, the volume of sample cell compressed by tapered cubic anvils can be achieved to 14.13 mm3 (3 mm diameter × 2 mm long), which is three and six orders of magnitude larger than that of double-stage apparatus and diamond anvil cell, respectively. This work represents a relatively simple method for achieving higher pressures and larger sample cell.
Liquid Nitrogen Subcooler Pressure Vessel Engineering Note
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rucinski, R.; /Fermilab
1997-04-24
The normal operating pressure of this dewar is expected to be less than 15 psig. This vessel is open to atmospheric pressure thru a non-isolatable vent line. The backpressure in the vent line was calculated to be less than 1.5 psig at maximum anticipated flow rates.
Aerodynamic design of a rotor blade for minimum noise radiation
NASA Technical Reports Server (NTRS)
Karamcheti, K.; Yu, Y. H.
1974-01-01
An analysis of the aerodynamic design of a hovering rotor blade for obtaining minimum aerodynamic rotor noise has been carried out. In this analysis, which is based on both acoustical and aerodynamic considerations, attention is given only to the rotational noise due to the pressure fluctuations on the blade surfaces. The lift distribution obtained in this analysis has different characteristics from those of the conventional distribution. The present distribution shows negative lift values over a quarter of the span from the blade tip, and a maximum lift at about the midspan. Results are presented to show that the noise field is considerably affected by the shape of the lift distribution along the blade and that noise reduction of about 5 dB may be obtained by designing the rotor blade to yield minimum noise.
Blaedel, K.L.; Lord, S.C.; Murray, I.
1986-07-17
A passive fluid pressure relief and check valve allows the relief pressure to be slaved to a reference pressure independently of the exhaust pressure. The pressure relief valve is embodied by a submerged vent line in a sealing fluid, the relief pressure being a function of the submerged depth. A check valve is embodied by a vertical column of fluid (the maximum back pressure being a function of the height of the column of fluid). The pressure is vented into an exhaust system which keeps the exhaust out of the area providing the reference pressure.
2014-01-01
Background Intracranial pressure changes during head impact cause brain injuries such as vasogenic edema and cerebral contusion. However, the influence of impulsive pressure on endothelial function has not yet been fully studied in vitro. In this study, we developed a pressure loading device that produced positive and negative pressures by modifying an in vitro fluid percussion model and examined the effects of the amplitude and duration of the pressures on endothelial permeability. Methods Human umbilical vein endothelial cells were subjected to three types of positive pressure (average amplitude/average duration of 352 kPa/23 ms, 73 kPa/27 ms, and 70 kPa/44 ms) and three types of negative pressure (−72 kPa/41 ms, −67 kPa/104 ms, and −91 kPa/108 ms), and the transendothelial electrical resistance (TEER) was measured between 15 min and 24 h after pressure loading for quantifying the formation of an integral monolayer of endothelial cells. After loading, vascular endothelial- (VE-) cadherin, an endothelium-specific cell-cell adhesion molecule involved in endothelial barrier function, was stained and observed using fluorescence microscopy. Results The pressure loading device could produce positive pressure pulses with amplitudes of 53–1348 kPa and durations of 9–29.1 ms and negative pressure pulses with amplitudes of −52–−93 kPa and durations of 42.9–179.5 ms. The impulsive pressure reduced the TEER associated with the change in VE-cadherin localization. Additionally, TEER decreased considerably at 15 min and 6 h post-loading, with these changes being significant in positive pressure with larger amplitude and shorter duration and in all types of negative pressures compared to pre-loading. Conclusions The changes in intracranial pressure during head impact impair endothelial barrier function by the disruption of the integrity of endothelial cell-cell junctions, and the degree of increase in endothelial permeability depends on the amplitude, duration, and direction (compressive and tensile) of the impulsive pressure. PMID:24739360