Sample records for maximum oil yield

  1. Distillation Time as Tool for Improved Antimalarial Activity and Differential Oil Composition of Cumin Seed Oil.

    PubMed

    Zheljazkov, Valtcho D; Gawde, Archana; Cantrell, Charles L; Astatkie, Tess; Schlegel, Vicki

    2015-01-01

    A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given duration of the steam distillation time (DT). Ten DT durations were tested in this study: 5, 7.5, 15, 30, 60, 120, 240, 360, 480, and 600 min. Oil yields increased with an increase in the DT. Maximum oil yield (content, 2.3 g/100 seed), was achieved at 480 min; longer DT did not increase oil yields. The concentrations of the major oil constituents α-pinene (0.14-0.5% concentration range), β-pinene (3.7-10.3% range), γ-cymene (5-7.3% range), γ-terpinene (1.8-7.2% range), cumin aldehyde (50-66% range), α-terpinen-7-al (3.8-16% range), and β-terpinen-7-al (12-20% range) varied as a function of the DT. The concentrations of α-pinene, β-pinene, γ-cymene, γ-terpinene in the oil increased with the increase of the duration of the DT; α-pinene was highest in the oil obtained at 600 min DT, β-pinene and γ-terpinene reached maximum concentrations in the oil at 360 min DT; γ-cymene reached a maximum in the oil at 60 min DT, cumin aldehyde was high in the oils obtained at 5-60 min DT, and low in the oils obtained at 240-600 min DT, α-terpinen-7-al reached maximum in the oils obtained at 480 or 600 min DT, whereas β-terpinen-7-al reached a maximum concentration in the oil at 60 min DT. The yield of individual oil constituents (calculated from the oil yields and the concentration of a given compound at a particular DT) increased and reached a maximum at 480 or 600 min DT. The antimalarial activity of the cumin seed oil obtained during the 0-5 and at 5-7.5 min DT timeframes was twice higher than the antimalarial activity of the oils obtained at the other DT. This study opens the possibility for distinct marketing and utilization for these improved oils. The antioxidant capacity of the oil was highest in the oil obtained at 30 min DT and lowest in the oil from 360 min DT. The Michaelis-Menton and the Power nonlinear regression models developed in this study can be utilized to predict essential oil yield and composition of cumin seed at any given duration of DT and may also be useful to compare previous reports on cumin oil yield and composition. DT can be utilized to obtain cumin seed oil with improved antimalarial activity, improved antioxidant capacity, and with various compositions.

  2. Distillation Time as Tool for Improved Antimalarial Activity and Differential Oil Composition of Cumin Seed Oil

    PubMed Central

    Zheljazkov, Valtcho D.; Gawde, Archana; Cantrell, Charles L.; Astatkie, Tess; Schlegel, Vicki

    2015-01-01

    A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given duration of the steam distillation time (DT). Ten DT durations were tested in this study: 5, 7.5, 15, 30, 60, 120, 240, 360, 480, and 600 min. Oil yields increased with an increase in the DT. Maximum oil yield (content, 2.3 g/100 seed), was achieved at 480 min; longer DT did not increase oil yields. The concentrations of the major oil constituents α-pinene (0.14–0.5% concentration range), β-pinene (3.7–10.3% range), γ-cymene (5–7.3% range), γ-terpinene (1.8–7.2% range), cumin aldehyde (50–66% range), α-terpinen-7-al (3.8–16% range), and β-terpinen-7-al (12–20% range) varied as a function of the DT. The concentrations of α-pinene, β-pinene, γ-cymene, γ-terpinene in the oil increased with the increase of the duration of the DT; α-pinene was highest in the oil obtained at 600 min DT, β-pinene and γ-terpinene reached maximum concentrations in the oil at 360 min DT; γ-cymene reached a maximum in the oil at 60 min DT, cumin aldehyde was high in the oils obtained at 5–60 min DT, and low in the oils obtained at 240–600 min DT, α-terpinen-7-al reached maximum in the oils obtained at 480 or 600 min DT, whereas β-terpinen-7-al reached a maximum concentration in the oil at 60 min DT. The yield of individual oil constituents (calculated from the oil yields and the concentration of a given compound at a particular DT) increased and reached a maximum at 480 or 600 min DT. The antimalarial activity of the cumin seed oil obtained during the 0–5 and at 5–7.5 min DT timeframes was twice higher than the antimalarial activity of the oils obtained at the other DT. This study opens the possibility for distinct marketing and utilization for these improved oils. The antioxidant capacity of the oil was highest in the oil obtained at 30 min DT and lowest in the oil from 360 min DT. The Michaelis-Menton and the Power nonlinear regression models developed in this study can be utilized to predict essential oil yield and composition of cumin seed at any given duration of DT and may also be useful to compare previous reports on cumin oil yield and composition. DT can be utilized to obtain cumin seed oil with improved antimalarial activity, improved antioxidant capacity, and with various compositions. PMID:26641276

  3. Co-pyrolysis of rice straw and polypropylene using fixed-bed pyrolyzer

    NASA Astrophysics Data System (ADS)

    Izzatie, N. I.; Basha, M. H.; Uemura, Y.; Mazlan, M. A.; Hashim, M. S. M.; Amin, N. A. M.; Hamid, M. F.

    2016-11-01

    The present work encompasses the impact of temperature (450, 500, 550, 600 °C) on the properties of pyrolysis oil and on other product yield for the co-pyrolysis of Polypropylene (PP) plastics and rice straw. Co-pyrolysis of PP plastic and rice straw were conducted in a fixed-bed drop type pyrolyzer under an inert condition to attain maximum oil yield. Physically, the pyrolysis oil is dark-brown in colour with free flowing and has a strong acrid smell. Copyrolysis between these typically obtained in maximum pyrolysis oil yields up to 69% by ratio 1:1 at a maximum temperature of 550 °C. From the maximum yield of pyrolysis oil, characterization of pyrolysis product and effect of biomass type of the composition were evaluated. Pyrolysis oil contains a high water content of 66.137 wt.%. Furfural, 2- methylnaphthalene, tetrahydrofuran (THF), toluene and acetaldehyde were the major organic compounds found in pyrolysis oil of rice straw mixed with PP. Bio-char collected from co-pyrolysis of rice straw mixed with PP plastic has high calorific value of 21.190 kJ/g and also carbon content with 59.02 wt.% and could contribute to high heating value. The non-condensable gases consist of hydrogen, carbon monoxide, and methane as the major gas components.

  4. Distillation time alters essential oil yield, composition, and antioxidant activity of male Juniperus scopulorum trees.

    PubMed

    Zheljazkov, Valtcho D; Astatkie, Tess; Jeliazkova, Ekaterina A; Schlegel, Vicki

    2012-01-01

    The objective of this study was to evaluate the effect of 15 distillation times (DT), ranging from 1.25 to 960 min, on oil yield, essential oil profiles, and antioxidant capacity of male J. scopulorum trees. Essential oil yields were 0.07% at 1.25 min DT and reached a maximum of 1.48% at 840 min DT. The concentrations of alpha-thujene (1.76-2.75%), alpha-pinene (2.9-8.7%), sabinene (45-74.7%), myrcene (2.4-3.4%), and para-cymene (0.8-3.1%) were highest at the shortest DT (1.5 to 5 min) and decreased with increasing DT. Cis-sabinene hydrate (0.5-0.97%) and linalool plus trans-sabinene (0.56-1.6%) reached maximum levels at 40 min DT. Maximum concentrations of limonene (2.3-2.8%) and pregeijerene-B (0.06-1.4%) were obtained at 360-480 min DT, and 4-terpinenol (0.7-5.7%) at 480 min DT. Alpha-terpinene (0.16-2.9%), gamma-terpinene (0.3-4.9%) and terpinolene (0.3-1.4%) reached maximum at 720 min DT. The concentrations of delta-cadinene (0.06-1.65%), elemol (0-6.0%), and 8-alpha-acetoxyelemol (0-4.4%) reached maximum at 840 min DT. The yield of the essential oil constituents increased with increasing DT. Only linalool/transsabinene hydrate reached a maximum yield at 360 min DT. Maximum yields of the following constituents were obtained at 720 min DT: alpha-thujene, alpha-pinene, camphene, sabinene, myrcene, alpha-terpinene, para-cimene, limonene, gamma-terpinene, terpinolene, and 4-terpinenol. At 840 min DT, cis-sabinene hydrate, prejeijerene-B, gamma muurolene, delta-cadinene, reached maximum. At 960 min DT, maximum yields of beta-pinene, elemol, alphaeudesmol/betaeudesmol, 8-alpha-acetoxyelemol were reached. These changes were adequately modeled by either the Michaelis-Menten or the Power (Convex) nonlinear regression models. Oils from the 480 min DT showed higher antioxidant activity compared to samples collected at 40, 160, or 960 min DT. These results show the potential for obtaining essential oils with various compositions and antioxidant capacity from male J. scopulorum by varying DT. This study can be used as a reference paper for comparing results of reports where different lengths of the DT were used.

  5. Distillation time effect on lavender essential oil yield and composition.

    PubMed

    Zheljazkov, Valtcho D; Cantrell, Charles L; Astatkie, Tess; Jeliazkova, Ekaterina

    2013-01-01

    Lavender (Lavandula angustifolia Mill.) is one of the most widely grown essential oil crops in the world. Commercial extraction of lavender oil is done using steam distillation. The objective of this study was to evaluate the effect of the length of the distillation time (DT) on lavender essential oil yield and composition when extracted from dried flowers. Therefore, the following distillation times (DT) were tested in this experiment: 1.5 min, 3 min, 3.75 min, 7.5 min, 15 min, 30 min, 60 min, 90 min, 120 min, 150 min, 180 min, and 240 min. The essential oil yield (range 0.5-6.8%) reached a maximum at 60 min DT. The concentrations of cineole (range 6.4-35%) and fenchol (range 1.7-2.9%) were highest at the 1.5 min DT and decreased with increasing length of the DT. The concentration of camphor (range 6.6-9.2%) reached a maximum at 7.5-15 min DT, while the concentration of linalool acetate (range 15-38%) reached a maximum at 30 min DT. Results suggest that lavender essential oil yield may not increase after 60 min DT. The change in essential oil yield, and the concentrations of cineole, fenchol and linalool acetate as DT changes were modeled very well by the asymptotic nonlinear regression model. DT may be used to modify the chemical profile of lavender oil and to obtain oils with differential chemical profiles from the same lavender flowers. DT must be taken into consideration when citing or comparing reports on lavender essential oil yield and composition.

  6. Fast pyrolysis of palm kernel shells: influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds.

    PubMed

    Kim, Seon-Jin; Jung, Su-Hwa; Kim, Joo-Sik

    2010-12-01

    Palm kernel shells were pyrolyzed in a pyrolysis plant equipped with a fluidized-bed reactor and a char-separation system. The influence of reaction temperature, feed size and feed rate on the product spectrum was also investigated. In addition, the effect of reaction temperature on the yields of phenol and phenolic compounds in the bio-oil was examined. The maximum bio-oil yield was 48.7 wt.% of the product at 490 degrees C. The maximum yield of phenol plus phenolic compounds amounted to about 70 area percentage at 475 degrees C. The yield of pyrolytic lignin after its isolation from the bio-oil was approximately 46 wt.% based on the water and ash free oil. The pyrolytic lignin was mainly composed of phenol, phenolic compounds and oligomers of coniferyl, sinapyl and p-coumaryl alcohols. From the result of a GPC analysis, the number average molecular weight and the weight average molecular weight were 325 and 463 g/mol, respectively. 2010 Elsevier Ltd. All rights reserved.

  7. Biomass fast pyrolysis for bio-oil production in a fluidized bed reactor under hot flue atmosphere.

    PubMed

    Li, Ning; Wang, Xiang; Bai, Xueyuan; Li, Zhihe; Zhang, Ying

    2015-10-01

    Fast pyrolysis experiments of corn stalk were performed to investigate the optimal pyrolysis conditions of temperature and bed material for maximum bio-oil production under flue gas atmosphere. Under the optimized pyrolysis conditions, furfural residue, xylose residue and kelp seaweed were pyrolyzed to examine their yield distributions of products, and the physical characteristics of bio-oil were studied. The best flow rate of the flue gas at selected temperature is obtained, and the pyrolysis temperature at 500 degrees C and dolomite as bed material could give a maximum bio-oil yield. The highest bio-oil yield of 43.3% (W/W) was achieved from corn stalk under the optimal conditions. Two main fractions were recovered from the stratified bio-oils: light oils and heavy oils. The physical properties of heavy oils from all feedstocks varied little. The calorific values of heavy oils were much higher than that of light oils. The pyrolysis gas could be used as a gaseous fuel due to a relatively high calorific value of 6.5-8.5 MJ/m3.

  8. Optimisation of Croton gratissimus Oil Extraction by n-Hexane and Ethyl Acetate Using Response Surface Methodology.

    PubMed

    Jiyane, Phiwe Charles; Tumba, Kaniki; Musonge, Paul

    2018-04-01

    The extraction of oil from Croton gratissimus seeds was studied using the three-factor five-level full-factorial central composite rotatable design (CCRD) of the response surface methodology (RSM). The effect of the three factors selected, viz., extraction time, extraction temperature and solvent-to-feed ratio on the extraction oil yield was investigated when n-hexane and ethyl acetate were used as extraction solvents. The coefficients of determination (R 2 ) of the models developed were 0.98 for n-hexane extraction and 0.97 for ethyl acetate extraction. These results demonstrated that the models developed adequately represented the processes they described. From the optimized model, maximum extraction yield obtained from n-hexane and ethyl acetate extraction were 23.88% and 23.25%, respectively. In both cases the extraction temperature and solvent-to-feed ratio were 35°C and 5 mL/g, respectively. In n-hexane extraction the maximum conditions were reached only after 6 min whereas in ethyl acetate extraction it took 20 min to get the maximum extraction oil yield. Oil extraction of Croton gratissimus seeds, in this work, favoured the use of n-hexane as an extraction solvent as it offered higher oil yields at low temperatures and reduced residence times.

  9. Assessment of In-Place Oil Shale Resources of the Green River Formation, Piceance Basin, Western Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.; Pantea, Michael P.; Self, Jesse G.

    2009-01-01

    The U.S. Geological Survey (USGS) recently completed a reassessment of in-place oil shale resources, regardless of richness, in the Eocene Green River Formation in the Piceance Basin, western Colorado. A considerable amount of oil-yield data has been collected after previous in-place assessments were published, and these data were incorporated into this new assessment. About twice as many oil-yield data points were used, and several additional oil shale intervals were included that were not assessed previously for lack of data. Oil yields are measured using the Fischer assay method. The Fischer assay method is a standardized laboratory test for determining the oil yield from oil shale that has been almost universally used to determine oil yields for Green River Formation oil shales. Fischer assay does not necessarily measure the maximum amount of oil that an oil shale can produce, and there are retorting methods that yield more than the Fischer assay yield. However, the oil yields achieved by other technologies are typically reported as a percentage of the Fischer assay oil yield, and thus Fischer assay is still considered the standard by which other methods are compared.

  10. Production of biofuel from waste cooking palm oil using nanocrystalline zeolite as catalyst: process optimization studies.

    PubMed

    Taufiqurrahmi, Niken; Mohamed, Abdul Rahman; Bhatia, Subhash

    2011-11-01

    The catalytic cracking of waste cooking palm oil to biofuel was studied over different types of nano-crystalline zeolite catalysts in a fixed bed reactor. The effect of reaction temperature (400-500 °C), catalyst-to-oil ratio (6-14) and catalyst pore size of different nanocrystalline zeolites (0.54-0.80 nm) were studied over the conversion of waste cooking palm oil, yields of Organic Liquid Product (OLP) and gasoline fraction in the OLP following central composite design (CCD). The response surface methodology was used to determine the optimum value of the operating variables for maximum conversion as well as maximum yield of OLP and gasoline fraction, respectively. The optimum reaction temperature of 458 °C with oil/catalyst ratio=6 over the nanocrystalline zeolite Y with pore size of 0.67 nm gave 86.4 wt% oil conversion, 46.5 wt% OLP yield and 33.5 wt% gasoline fraction yield, respectively. The experimental results were in agreement with the simulated values within an experimental error of less than 5%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Water and Temperature Stresses Impact Canola (Brassica napus L.) Fatty Acid, Protein, and Yield over Nitrogen and Sulfur.

    PubMed

    Hammac, W Ashley; Maaz, Tai M; Koenig, Richard T; Burke, Ian C; Pan, William L

    2017-12-06

    Interactive effects of weather and soil nutrient status often control crop productivity. An experiment was conducted to determine effects of nitrogen (N) and sulfur (S) fertilizer rate, soil water, and atmospheric temperature on canola (Brassica napus L.) fatty acid (FA), total oil, protein, and grain yield. Nitrogen and sulfur were assessed in a 4-yr study with two locations, five N rates (0, 45, 90, 135, and 180 kg ha -1 ), and two S rates (0 and 17 kg ha -1 ). Water and temperature were assessed using variability across 12 site-years of dryland canola production. Effects of N and S were inconsistent. Unsaturated FA, oleic acid, grain oil, protein, and theoretical maximum grain yield were highly related to water and temperature variability across the site-years. A nonlinear model identified water and temperature conditions that enabled production of maximum unsaturated FA content, oleic acid content, total oil, protein, and theoretical maximum grain yield. Water and temperature variability played a larger role than soil nutrient status on canola grain constituents and yield.

  12. Thermal and catalytic slow pyrolysis of Calophyllum inophyllum fruit shell.

    PubMed

    Alagu, R M; Sundaram, E Ganapathy; Natarajan, E

    2015-10-01

    Pyrolysis of Calophyllum inophyllum shell was performed in a fixed bed pyrolyser to produce pyrolytic oil. Both thermal (without catalysts) and catalytic pyrolysis process were conducted to investigate the effect of catalysts on pyrolysis yield and pyrolysis oil characteristics. The yield of pyrolytic oil through thermal pyrolysis was maximum (41% wt) at 425 °C for particle size of 1.18 mm and heating rate of 40 °C/min. In catalytic pyrolysis the pyrolytic oil yield was maximum (45% wt) with both zeolite and kaolin catalysts followed by Al2O3 catalyst (44% wt). The functional groups and chemical components present in the pyrolytic oil are identified by Fourier Transform Infrared Spectroscopy (FT-IR) and Gas Chromatography-Mass Spectrometry (GC-MS) techniques. This study found that C. inophyllum shell is a potential new green energy source and that the catalytic pyrolysis process using zeolite catalyst improves the calorific value and acidity of the pyrolytic oil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Thermolysis of scrap tire and rubber in sub/super-critical water.

    PubMed

    Li, Qinghai; Li, Fuxin; Meng, Aihong; Tan, Zhongchao; Zhang, Yanguo

    2018-01-01

    The rapid growth of waste tires has become a serious environmental issue. Energy and material recovery is regarded as a promising use for waste tires. Thermolysis of scrap tire (ST), natural rubber (NR), and styrene-butadiene rubber (SBR) was carried out in subcritical and supercritical water using a temperature-pressure independent adjustable batch tubular reactor. As a result, oil yields increased as temperature and pressure increased, and they reached maximum values as the state of water was near the critical point. However, further increases in water temperature and pressure reduced the oil yields. The maximum oil yield of 21.21% was obtained at 420 °C and 18 MPa with a reaction time of 40 min. The relative molecular weights of the chemicals in the oil products were in the range of 70-140 g/mole. The oil produced from ST, NR, and SBR contained similar chemical compounds, but the oil yield of SR was between those of NR and SBR. The oil yield from thermolysis of subcritical or supercritical water should be further improved. The main gaseous products, including CH 4 , C 2 H 2 , C 2 H 4 , C 2 H 6 , and C 3 H 8 , increased with reaction time, temperature, and pressure, whereas the solid residues, including carbon black and impurities, decreased. These results provide useful information to develop a sub/super-critical water thermolysis process for energy and material regeneration from waste tires. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst.

    PubMed

    Liu, Shiyu; Xie, Qinglong; Zhang, Bo; Cheng, Yanling; Liu, Yuhuan; Chen, Paul; Ruan, Roger

    2016-03-01

    This study investigated fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst. Effects of reaction temperature, CaO/HZSM-5 ratio, and corn stover/scum ratio on co-pyrolysis product fractional yields and selectivity were investigated. Results showed that co-pyrolysis temperature was selected as 550°C, which provides the maximum bio-oil and aromatic yields. Mixed CaO and HZSM-5 catalyst with the weight ratio of 1:4 increased the aromatic yield to 35.77 wt.% of feedstock, which was 17% higher than that with HZSM-5 alone. Scum as the hydrogen donor, had a significant synergistic effect with corn stover to promote the production of bio-oil and aromatic hydrocarbons when the H/C(eff) value exceeded 1. The maximum yield of aromatic hydrocarbons (29.3 wt.%) were obtained when the optimal corn stover to scum ratio was 1:2. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Application of response surface methodology to optimise supercritical carbon dioxide extraction of essential oil from Cyperus rotundus Linn.

    PubMed

    Wang, Hongwu; Liu, Yanqing; Wei, Shoulian; Yan, Zijun

    2012-05-01

    Supercritical fluid extraction with carbon dioxide (SC-CO2 extraction) was performed to isolate essential oils from the rhizomes of Cyperus rotundus Linn. Effects of temperature, pressure, extraction time, and CO2 flow rate on the yield of essential oils were investigated by response surface methodology (RSM). The oil yield was represented by a second-order polynomial model using central composite rotatable design (CCRD). The oil yield increased significantly with pressure (p<0.0001) and CO2 flow rate (p<0.01). The maximum oil yield from the response surface equation was predicted to be 1.82% using an extraction temperature of 37.6°C, pressure of 294.4bar, extraction time of 119.8 min, and CO2 flow rate of 20.9L/h. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Integrated utilization of red radish seeds for the efficient production of seed oil and sulforaphene.

    PubMed

    Zhang, Jie; Zhou, Xing; Fu, Min

    2016-02-01

    Supercritical CO2 was used to obtain seed oil from red radish seeds. The influence of pressure, temperature, CO2 flow rate and time on extraction yield of oil were investigated in detail. The maximum extraction yield of oil was 92.07 ± 0.76% at the optimal extraction conditions. The physicochemical properties and fatty acid composition of oil indicated that the seed oil can be used as a dietary oil. Meanwhile, the high purity sulforaphene (96.84 ± 0.17%) was separated by solvent extraction coupled with preparative high performance liquid chromatography from red radish seed meal. The initial pH, R, extraction temperature and extraction time for each cycle had a considerable influence both on the extraction yield and purity of sulforaphene of crude product. The extraction of oil was directly responsible for an increase of 18.32% in the yield of sulforaphene. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Catalytic pyrolysis of waste furniture sawdust for bio-oil production.

    PubMed

    Uzun, Başak B; Kanmaz, Gülin

    2014-07-01

    In this study, the catalytic pyrolysis of waste furniture sawdust in the presence of ZSM-5, H-Y and MCM-41 (10 wt % of the biomass sample) was carried out in order to increase the quality of the liquid product at the various pyrolysis temperatures of 400, 450, 500 and 550(o)C. In the non-catalytic work, the maximum oil yield was obtained as 42% at 500(o)C in a fixed-bed reactor system. In the catalytic work, the maximum oil yield was decreased to 37.48, 30.04 and 29.23% in the presence of ZSM-5, H-Y and MCM-41, respectively. The obtained pyrolysis oils were analyzed by various spectroscopic and chromatographic techniques. It was determined that the use of a catalyst decreased acids and increased valuable organics found in the bio-oil. The removal of oxygen from bio-oil was confirmed with the results of the elemental analysis and gas chromatography-mass spectrometry. © The Author(s) 2014.

  18. The effect of organic solvent, temperature and mixing time on the production of oil from Moringa oleifera seeds

    NASA Astrophysics Data System (ADS)

    Ghazali, Q.; Yasin, N. H. M.

    2016-06-01

    The effect of three different organic solvent, temperature and mixing time on the production of oil from M.oleifera seeds were studied to evaluate the effectiveness in obtaining the high oil yield based on the percentage of oil production. The modified version of Soxhlet extraction method was carried out to extract the oil from M.oleifera seeds by using hexane, heptane and ethanol as the organic solvent. Among the three solvents, it is found that heptane yield higher oil from M.oleifera seeds with maximum oil yield of 36.37% was obtained followed by hexane and ethanol with 33.89% and 18.46%, respectively. By using heptane as a solvent, the temperature (60oC, 70oC, 80oC) and mixing time (6 h, 7 h, and 8 h) were investigated to ensure the high oil yield over the experimental ranges employed and high oil yield was obtained at 600C for 6 h with percentage oil yield of 36.37%. The fatty acid compositions of M.oleifera seeds oil were analyzed using Gas Chromatography/Mass Spectrometry (GC-MS). The main components of fatty acid contained in the oil extracted from M.oleifera seeds was oleic acid, followed by palmitic acid and arachidic acid, and small amount of behenic acid and margaric acid.

  19. Hydrodistillation extraction time effect on essential oil yield, composition, and bioactivity of coriander oil.

    PubMed

    Zheljazkov, Valtcho D; Astatkie, Tess; Schlegel, Vicki

    2014-01-01

    Coriander (Coriandrum sativum L.) is a major essential oil crop grown throughout the world. Coriander essential oil is extracted from coriander fruits via hydrodistillation, with the industry using 180-240 min of distillation time (DT), but the optimum DT for maximizing essential oil yield, composition of constituents, and antioxidant activities are not known. This research was conducted to determine the effect of DT on coriander oil yield, composition, and bioactivity. The results show that essential oil yield at the shorter DT was low and generally increased with increasing DT with the maximum yields achieved at DT between 40 and 160 min. The concentrations of the low-boiling point essential oil constituents: α-pinene, camphene, β-pinene, myrcene, para-cymene, limonene, and γ-terpinene were higher at shorter DT (< 2.5 min) and decreased with increasing DT; but the trend reversed for the high-boiling point constituents: geraniol and geranyl-acetate. The concentration of the major essential oil constituent, linalool, was 51% at DT 1.15 min, and increased steadily to 68% with increasing DT. In conclusion, 40 min DT is sufficient to maximize yield of essential oil; and different DT can be used to obtain essential oil with differential composition. Its antioxidant capacity was affected by the DT, with 20 and 240 min DT showing higher antioxidant activity. Comparisons of coriander essential oil composition must consider the length of the DT.

  20. Influence of biochemical composition during hydrothermal liquefaction of algae on product yields and fuel properties.

    PubMed

    Shakya, Rajdeep; Adhikari, Sushil; Mahadevan, Ravishankar; Shanmugam, Saravanan R; Nam, Hyungseok; Hassan, El Barbary; Dempster, Thomas A

    2017-11-01

    Hydrothermal liquefaction (HTL) of nine algae species were performed at two reaction temperatures (280 and 320°C) to compare the effect of their biomass composition on product yields and properties. Results obtained after HTL indicate large variations in terms of bio-oil yields and its properties. The maximum bio-oil yield (66wt%) was obtained at 320°C with a high lipid containing algae Nannochloropsis. The higher heating value of bio-oils ranged from 31 to 36MJ/kg and around 50% of the bio-oils was in the vacuum gas oil range while high lipid containing algae Nannochloropsis contained a significant portion (33-42%) in the diesel range. A predictive relationship between bio-oil yields and biochemical compositions was developed and showed a broad agreement between predictive and experimental yields. The aqueous phases obtained had high amount of TOC (12-43g/L), COD (35-160g/L), TN (1-18g/L), ammonium (0.34-12g/L) and phosphate (0.7-12g/L). Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Bio-oil production via fast pyrolysis of biomass residues from cassava plants in a fluidised-bed reactor.

    PubMed

    Pattiya, Adisak

    2011-01-01

    Biomass residues from cassava plants, namely cassava stalk and cassava rhizome, were pyrolysed in a fluidised-bed reactor for production of bio-oil. The aims of this work were to investigate the yields and properties of pyrolysis products produced from both feedstocks as well as to identify the optimum pyrolysis temperature for obtaining the highest organic bio-oil yields. Results showed that the maximum yields of the liquid bio-oils derived from the stalk and rhizome were 62 wt.% and 65 wt.% on dry basis, respectively. The pyrolysis temperatures that gave highest bio-oil yields for both feedstocks were in the range of 475-510 °C. According to the analysis of the bio-oils properties, the bio-oil derived from cassava rhizome showed better quality than that derived from cassava stalk as the former had lower oxygen content, higher heating value and better storage stability. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Catalytic co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production.

    PubMed

    Wang, Yunpu; Dai, Leilei; Fan, Liangliang; Cao, Leipeng; Zhou, Yue; Zhao, Yunfeng; Liu, Yuhuan; Ruan, Roger

    2017-03-01

    In this study, a ZrO 2 -based polycrystalline ceramic foam catalyst was prepared and used in catalytic co-pyrolysis of waste vegetable oil and high density polyethylene (HDPE) for hydrocarbon fuel production. The effects of pyrolysis temperature, catalyst dosage, and HDPE to waste vegetable oil ratio on the product distribution and hydrocarbon fuel composition were examined. Experimental results indicate that the maximum hydrocarbon fuel yield of 63.1wt. % was obtained at 430°C, and the oxygenates were rarely detected in the hydrocarbon fuel. The hydrocarbon fuel yield increased when the catalyst was used. At the catalyst dosage of 15wt.%, the proportion of alkanes in the hydrocarbon fuel reached 97.85wt.%, which greatly simplified the fuel composition and improved the fuel quality. With the augment of HDPE to waste vegetable oil ratio, the hydrocarbon fuel yield monotonously increased. At the HDPE to waste vegetable oil ratio of 1:1, the maximum proportion (97.85wt.%) of alkanes was obtained. Moreover, the properties of hydrocarbon fuel were superior to biodiesel and 0 # diesel due to higher calorific value, better low-temperature low fluidity, and lower density and viscosity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Utilization of heavy metal-rich tannery sludge for sweet basil (Ocimum basilicum L.) cultivation.

    PubMed

    Chand, Sukhmal; Singh, Shweta; Singh, Vinay Kumar; Patra, D D

    2015-05-01

    Unlike food crops, essential oil-bearing crops in which the oil is extracted through hydro-distillation can be a suitable crop to be grown in heavy metal-polluted soils as the oil does not carry any heavy metal. In a field experiment conducted at CIMAP, Lucknow, India during 2011 and 2012, influence of six doses of tannery sludge viz 0, 10, 20, 30, 40, and 50 t ha(-1) were tested, taking sweet basil (Ocimum basilicum) as the test crop. Maximum herb yield was obtained with the application of sludge at 20 t ha(-1). While in root, accumulation of Cd and Pb increased significantly up to 20 t ha(-1), Cr accumulation increased with increasing the dose of tannery sludge reaching maximum at 50 t ha(-1). Essential oil yield of basil (Ocimum basilicum) was significantly affected due to sludge application. Quality of essential oil, in term of chemical constituents, however, was marginally influenced due to tannery sludge application.

  4. Variations in Volatile Oil Yield and Composition of "Xin-yi" (Magnolia biondii Pamp. Flower Buds) at Different Growth Stages.

    PubMed

    Hu, Mingli; Bai, Mei; Ye, Wei; Wang, Yaling; Wu, Hong

    2018-06-01

    Dried flower buds of Magnolia biondii Pamp. are the main ingredient in "Xin-yi" in China, and the volatile oils of M. biondii flower buds are the principal medicinal component. Gas chromatographymass spectrometry (GC-MS) and microscopic techniques were employed to detect the volatile yields of M. biondii flowers at various growth stages. The volatile oil yields of M. biondii flowers differed significantly at different growth stages and were closely related to flower dry weight, oil cell density and degree of oil accumulation. In February 2016, flower buds had the highest dry weight, the maximum percentage of oil cells at the oil saturation stage and the highest density of oil cells, which coincided with the highest oil yield. In March 2016, flower buds had a lower dry weight, a higher percentage of oil cells at the oil-degrading stage and the lowest oil cell density, resulting in decreased oil yields. The total amounts of the major medicinal components in the M. biondii flower also showed regular changes at different growth stages. In January and February of 2016, M. biondii flowers had a higher dry weight, volatile oil yield and total content of medicinal ingredients, which was the best time for harvesting high-quality medicinal components. Our study reveals that volatile oil content and chemical composition are closely related to the growth stage of M. biondii flower buds. The results provide a scientific morphology and composition index for evaluating the medicinal value and harvesting of high-quality M. biondii medicinal herbs.

  5. Oil shale potential of the Heath and Tyler formations, Central Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, W.E.; Cole, G.A.

    The units in the middle of the Heath formation below the gypsum beds were found to have the highest oil yields. That interval was generally 25 to 50 ft (7.6 to 15.2 m) thick. The upper portion of the Heath formation yielded as much as 9.8 gal/ton in section 9, and 14.9 gal/ton in section 10. The Tyler formation was determined to have very low oil potential, with the maximum yield being 2.2 gal/ton. The instability of some of the Heath slopes could present problems in the mining of oil shale. Specific stratigraphic horizons in which zones of high andmore » low oil and metal contents occur would be extremely difficult to map in areas where the units have been displaced by landslide movement.« less

  6. Temperature influence on the fast pyrolysis of manure samples: char, bio-oil and gases production

    NASA Astrophysics Data System (ADS)

    Fernandez-Lopez, Maria; Anastasakis, Kostas; De Jong, Wiebren; Valverde, Jose Luis; Sanchez-Silva, Luz

    2017-11-01

    Fast pyrolysis characterization of three dry manure samples was studied using a pyrolyzer. A heating rate of 600°C/s and a holding time of 10 s were selected to reproduce industrial conditions. The effect of the peak pyrolysis temperature (600, 800 and 1000°C) on the pyrolysis product yield and composition was evaluated. Char and bio-oil were gravimetrically quantified. Scanning electron microscopy (SEM) was used to analyse the char structure. H2, CH4, CO and CO2 were measured by means of gas chromatography (GC). A decrease in the char yield and an increase of the gas yield were observed when temperature increased. From 800°C on, it was observed that the char yield of samples Dig R and SW were constant, which indicated that the primary devolatilization reactions stopped. This fact was also corroborated by GC analysis. The bio-oil yield slightly increased with temperature, showing a maximum of 20.7 and 27.8 wt.% for samples Pre and SW, respectively, whereas sample Dig R showed a maximum yield of 16.5 wt.% at 800°C. CO2 and CO were the main released gases whereas H2 and CH4 production increased with temperature. Finally, an increase of char porosity was observed with temperature.

  7. Oil extraction from Scenedesmus obliquus using a continuous microwave system--design, optimization, and quality characterization.

    PubMed

    Balasubramanian, Sundar; Allen, James D; Kanitkar, Akanksha; Boldor, Dorin

    2011-02-01

    A 1.2 kW, 2450 MHz resonant continuous microwave processing system was designed and optimized for oil extraction from green algae (Scenedesmus obliquus). Algae-water suspension (1:1 w/w) was heated to 80 and 95°C, and subjected to extraction for up to 30 min. Maximum oil yield was achieved at 95°C and 30 min. The microwave system extracted 76-77% of total recoverable oil at 20-30 min and 95°C, compared to only 43-47% for water bath control. Extraction time and temperature had significant influence (p<0.0001) on extraction yield. Oil analysis indicated that microwaves extracted oil containing higher percentages of unsaturated and essential fatty acids (indicating higher quality). This study validates for the first time the efficiency of a continuous microwave system for extraction of lipids from algae. Higher oil yields, faster extraction rates and superior oil quality demonstrate this system's feasibility for oil extraction from a variety of feedstock. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Conventional and catalytic pyrolysis of pinyon juniper biomass

    NASA Astrophysics Data System (ADS)

    Yathavan, Bhuvanesh Kumar

    Pinyon and juniper are invasive woody species in Western United States that occupy over 47 million acres of land. The US Bureau of Land Management (BLM) has embarked on harvesting these woody species to make room for range grasses for grazing. The major application of harvested pinyon-juniper (PJ) is low value firewood. Thus, there is a need to develop new high value products from this woody biomass to reduce the cost of harvesting. In this research PJ biomass was processed through pyrolysis technology to produce value added products. The first part of the thesis demonstrates the effect of PJ wood, bark and mixture biomass and temperature on the product yield and on the quality of the bio-oil produced. The second part focuses on the optimization of process parameters for maximum yield and the third part focuses on upgrading the bio-oil with an industrial catalyst (HZSM5) and an industrial waste product (red mud). The results obtained from the first part showed that PJ wood produced maximum bio-oil yield, followed by PJ mixture and bark. The bio-oil yield from PJ wood had low viscosity when compared to PJ mixture and PJ bark. The second part focused on studying the effect of process parameters (temperature, feed rate and the gas flow rate) on the total liquid, organic, water, char and gas yield. The results show that each response is affected by different factor level combinations, and maximum yield for each response was obtained at different factors level. The third part focused on catalytic pyrolysis of PJ biomass using both HZSM-5 catalyst and red mud. The mechanisms of catalysis by the two catalysts were quite different. Whereas the HZSM-5 rejected oxygen mostly as carbon monoxide and water and produced lower amounts of carbon dioxide, on the contrary the red mud produced more carbon dioxide and water and less carbon monoxide. The higher heating value of the red mud catalyzed oil (29.46 MJ/kg) was slightly higher than that catalyzed by HZSM-5 (28.55 MJ/kg). Thus, red mud can be used to achieve similar catalytic pyrolysis results as HZSM-5 catalysts.

  9. Statistical optimization of polysaccharide production by submerged cultivation of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt.: Fr.) P. Karst. MTCC 1039 (Aphyllophoromycetideae).

    PubMed

    Baskar, Gurunathan; Sathya, Shree Rajesh K Lakshmi Jai; Jinnah, Riswana Begum; Sahadevan, Renganathan

    2011-01-01

    Response surface methodology was employed to optimize the concentration of four important cultivation media components such as cottonseed oil cake, glucose, NH4Cl, and MgSO4 for maximum medicinal polysaccharide yield by Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum MTCC 1039 in submerged culture. The second-order polynomial model describing the relationship between media components and polysaccharide yield was fitted in coded units of the variables. The higher value of the coefficient of determination (R2 = 0.953) justified an excellent correlation between media components and polysaccharide yield, and the model fitted well with high statistical reliability and significance. The predicted optimum concentration of the media components was 3.0% cottonseed oil cake, 3.0% glucose, 0.15% NH4Cl, and 0.045% MgSO4, with the maximum predicted polysaccharide yield of 819.76 mg/L. The experimental polysaccharide yield at the predicted optimum media components was 854.29 mg/L, which was 4.22% higher than the predicted yield.

  10. Microwave pyrolysis of oily sludge with activated carbon.

    PubMed

    Chen, Yi-Rong

    2016-12-01

    The aim of this study is to explore catalytic microwave pyrolysis of crude oil storage tank sludge for fuels using granular activated carbon (GAC) as a catalyst. The effect of GAC loading on the yield of pyrolysis products was also investigated. Heating rate of oily sludge and yield of microwave pyrolysis products such as oil and fuel gas was found to depend on the ratio of GAC to oily sludge. The optimal GAC loading was found to be 10%, while much smaller and larger feed sizes adversely influenced production. During oily sludge pyrolysis, a maximum oil yield of 77.5% was achieved. Pyrolytic oils with high concentrations of diesel oil and gasoline (about 70 wt% in the pyrolytic oil) were obtained. The leaching of heavy metals, such as Cr, As and Pb, was also suppressed in the solid residue after pyrolysis. This technique provides advantages such as harmless treatment of oily sludge and substantial reduction in the consumption of energy, time and cost.

  11. Factors affecting the yield of bio-oil from the pyrolysis of coconut shell.

    PubMed

    Gao, Yun; Yang, Yi; Qin, Zhanbin; Sun, Yi

    2016-01-01

    Coconut is a high-quality agricultural product of the Asia-Pacific region. In this paper, coconut shell which mainly composed of cellulose, hemicellulose, lignin was used as a raw material for coconut shell oil from coconut shell pyrolysis. The influence of the pyrolysis temperature, heating rate and particle size on coconut oil yield was investigated, and the effect of heating rate on coconut oil components was discussed. Experimental results show that the maximum oil yield of 75.74 wt% (including water) were obtained under the conditions that the final pyrolysis temperature 575 °C, heating rate 20 °C/min, coconut shell diameter about 5 mm. Thermal gravimetric analysis was used and it can be seen that coconut shell pyrolysis process can be divided into three stages: water loss, pyrolysis and pyrocondensation. The main components of coconut-shell oil are water (about 50 wt%), aromatic, phenolic, acid, ketone and ether containing compounds.

  12. Plant species evaluated for new crop potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, M.E.

    1985-01-01

    Ninety-two plant species from various regions of the USA were screened for their energy-producing potential. Samples were analysed for oil, polyphenol, hydrocarbon and protein. Oil fractions of some species were analysed for classes of lipid constituents and yields of unsaponifiable matter and fatty acids were determined. Hydrocarbon fractions of some species were analysed for rubber, gutta and waxes. Average MW and MW distribution of rubber and gutta were determined. Complete analytical data for 16 species is presented. Large quantities of oil were obtained from Philadelphus coronarius, Cacalia muhlenbergii, Lindera benzoin and Koelreuteria paniculata. High yields of polyphenols came from Acermore » ginnala, Cornus obliqua and Salix caprea and maximum yields of hydrocarbon and protein were from Elymus virginicus and Lindera benzoin, respectively.« less

  13. Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils.

    PubMed

    Goula, Athanasia M; Ververi, Maria; Adamopoulou, Anna; Kaderides, Kyriakos

    2017-01-01

    The objective of this work was to develop a new process for pomegranate peels application in food industries based on ultrasound-assisted extraction of carotenoids using different vegetable oils as solvents. In this way, an oil enriched with antioxidants is produced. Sunflower oil and soy oil were used as alternative solvents and the effects of various parameters on extraction yield were studied. Extraction temperature, solid/oil ratio, amplitude level, and extraction time were the factors investigated with respect to extraction yield. Comparative studies between ultrasound-assisted and conventional solvent extraction were carried out in terms of processing procedure and total carotenoids content. The efficient extraction period for achieving maximum yield of pomegranate peel carotenoids was about 30min. The optimum operating conditions were found to be: extraction temperature, 51.5°C; peels/solvent ratio, 0.10; amplitude level, 58.8%; solvent, sunflower oil. A second-order kinetic model was successfully developed for describing the mechanism of ultrasound extraction under different processing parameters. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Two-step fast microwave-assisted pyrolysis of biomass for bio-oil production using microwave absorbent and HZSM-5 catalyst.

    PubMed

    Zhang, Bo; Zhong, Zhaoping; Xie, Qinglong; Liu, Shiyu; Ruan, Roger

    2016-07-01

    A novel technology of two-step fast microwave-assisted pyrolysis (fMAP) of corn stover for bio-oil production was investigated in the presence of microwave absorbent (SiC) and HZSM-5 catalyst. Effects of fMAP temperature and catalyst-to-biomass ratio on bio-oil yield and chemical components were examined. The results showed that this technology, employing microwave, microwave absorbent and HZSM-5 catalyst, was effective and promising for biomass fast pyrolysis. The fMAP temperature of 500°C was considered the optimum condition for maximum yield and best quality of bio-oil. Besides, the bio-oil yield decreased linearly and the chemical components in bio-oil were improved sequentially with the increase of catalyst-to-biomass ratio from 1:100 to 1:20. The elemental compositions of bio-char were also determined. Additionally, compared to one-step fMAP process, two-step fMAP could promote the bio-oil quality with a smaller catalyst-to-biomass ratio. Copyright © 2016. Published by Elsevier B.V.

  15. Optimisation of steam distillation extraction oil from onion by response surface methodology and its chemical composition.

    PubMed

    Wang, Zhao Dan; Li, Li Hua; Xia, Hui; Wang, Feng; Yang, Li Gang; Wang, Shao Kang; Sun, Gui Ju

    2018-01-01

    Oil extraction from onion was performed by steam distillation. Response surface methodology was applied to evaluate the effects of ratio of water to raw material, extraction time, zymolysis temperature and distillation times on yield of onion oil. The maximum extraction yield (1.779%) was obtained as following conditions: ratio of water to raw material was 1, extraction time was 2.5 h, zymolysis temperature was 36° and distillation time was 2.6 h. The experimental values agreed well with those predicted by regression model. The chemical composition of extracted onion oil under the optimum conditions was analysed by gas chromatography-mass spectrometry technology. The results showed that sulphur compounds, like alkanes, sulphide, alkenes, ester and alcohol, were the major components of onion oil.

  16. Influence of a glass wool hot vapour filter on yields and properties of bio-oil derived from rapid pyrolysis of paddy residues.

    PubMed

    Pattiya, Adisak; Suttibak, Suntorn

    2012-07-01

    This article reports experimental results of rapid or fast pyrolysis of rice straw (RS) and rice husk (RH) in a fluidised-bed reactor unit incorporated with a hot vapour filter. The objective of this research was to investigate the effects of pyrolysis temperatures and the use of glass wool hot vapour filtration on pyrolysis products. The results showed that the optimum pyrolysis temperatures for RS and RH were 405 and 452 °C, which gave maximum bio-oil yields of 54.1 and 57.1 wt.% on dry biomass basis, respectively. The use of the hot filter led to a reduction of 4-7 wt.% bio-oil yield. Nevertheless, the glass wool hot filtered bio-oils appeared to have better quality in terms of initial viscosity, solids content and ash content than the non-filtered ones. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Co-production of biochar, bio-oil and syngas from halophyte grass (Achnatherum splendens L.) under three different pyrolysis temperatures.

    PubMed

    Irfan, Muhammad; Chen, Qun; Yue, Yan; Pang, Renzhong; Lin, Qimei; Zhao, Xiaorong; Chen, Hao

    2016-07-01

    In the present study, pyrolysis of Achnatherum splendens L. was performed under three different pyrolysis temperature (300, 500, and 700°C) to investigate the characteristics of biochar, bio-oil, and syngas. Biochar yield decreased from 48% to 24%, whereas syngas yield increased from 34% to 54% when pyrolysis temperature was increased from 300 to 700°C. Maximum bio-oil yield (27%) was obtained at 500°C. The biochar were characterized for elemental composition, surface, and adsorption properties. The results showed that obtained biochar could be used as a potential soil amendment. The bio-oil and syngas co-products will be evaluated in the future as bioenergy sources. Overall, our results suggests that A. splendens L. could be utilized as a potential feedstock for biochar and bioenergy production through pyrolytic route. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. The slow and fast pyrolysis of cherry seed.

    PubMed

    Duman, Gozde; Okutucu, Cagdas; Ucar, Suat; Stahl, Ralph; Yanik, Jale

    2011-01-01

    The slow and fast pyrolysis of cherry seeds (CWS) and cherry seeds shells (CSS) was studied in fixed-bed and fluidized bed reactors at different pyrolysis temperatures. The effects of reactor type and temperature on the yields and composition of products were investigated. In the case of fast pyrolysis, the maximum bio-oil yield was found to be about 44 wt% at pyrolysis temperature of 500 °C for both CWS and CSS, whereas the bio yields were of 21 and 15 wt% obtained at 500 °C from slow pyrolysis of CWS and CSS, respectively. Both temperature and reactor type affected the composition of bio-oils. The results showed that bio-oils obtained from slow pyrolysis of CWS and CSS can be used as a fuel for combustion systems in industry and the bio-oil produced from fast pyrolysis can be evaluated as a chemical feedstock. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Extraction of citral oil from lemongrass (Cymbopogon Citratus) by steam-water distillation technique

    NASA Astrophysics Data System (ADS)

    Alam, P. N.; Husin, H.; Asnawi, T. M.; Adisalamun

    2018-04-01

    In Indonesia, production of citral oil from lemon grass (Cymbopogon Cytratus) is done by a traditional technique whereby a low yield results. To improve the yield, an appropriate extraction technology is required. In this research, a steam-water distillation technique was applied to extract the essential oil from the lemongrass. The effects of sample particle size and bed volume on yield and quality of citral oil produced were investigated. The drying and refining time of 2 hours were used as fixed variables. This research results that minimum citral oil yield of 0.53% was obtained on sample particle size of 3 cm and bed volume of 80%, whereas the maximum yield of 1.95% on sample particle size of 15 cm and bed volume of 40%. The lowest specific gravity of 0.80 and the highest specific gravity of 0.905 were obtained on sample particle size of 8 cm with bed volume of 80% and particle size of 12 cm with bed volume of 70%, respectively. The lowest refractive index of 1.480 and the highest refractive index of 1.495 were obtained on sample particle size of 8 cm with bed volume of 70% and sample particle size of 15 cm with bed volume of 40%, respectively. The solubility of the produced citral oil in alcohol was 70% in ratio of 1:1, and the citral oil concentration obtained was around 79%.

  20. Extraction of Oil from Flaxseed (Linum usitatissimum L.) Using Enzyme-Assisted Three-Phase Partitioning.

    PubMed

    Tan, Zhi-Jian; Yang, Zi-Zhen; Yi, Yong-Jian; Wang, Hong-Ying; Zhou, Wan-Lai; Li, Fen-Fang; Wang, Chao-Yun

    2016-08-01

    In this study, enzyme-assisted three-phase partitioning (EATPP) was used to extract oil from flaxseed. The whole procedure is composed of two parts: the enzymolysis procedure in which the flaxseed was hydrolyzed using an enzyme solution (the influencing parameters such as the type and concentration of enzyme, temperature, and pH were optimized) and three-phase partitioning (TPP), which was conducted by adding salt and t-butanol to the crude flaxseed slurry, resulting in the extraction of flaxseed oil into alcohol-rich upper phase. The concentration of t-butanol, concentration of salt, and the temperature were optimized to maximize the extraction yield. Under optimized conditions of a 49.29 % t-butanol concentration, 30.43 % ammonium sulfate concentration, and 35 °C extraction temperature, a maximum extraction yield of 71.68 % was obtained. This simple and effective EATPP can be used to achieve high extraction yields and oil quality, and thus, it is potential for large-scale oil production.

  1. Fast microwave assisted pyrolysis of biomass using microwave absorbent.

    PubMed

    Borges, Fernanda Cabral; Du, Zhenyi; Xie, Qinglong; Trierweiler, Jorge Otávio; Cheng, Yanling; Wan, Yiqin; Liu, Yuhuan; Zhu, Rongbi; Lin, Xiangyang; Chen, Paul; Ruan, Roger

    2014-03-01

    A novel concept of fast microwave assisted pyrolysis (fMAP) in the presence of microwave absorbents was presented and examined. Wood sawdust and corn stover were pyrolyzed by means of microwave heating and silicon carbide (SiC) as microwave absorbent. The bio-oil was characterized, and the effects of temperature, feedstock loading, particle sizes, and vacuum degree were analyzed. For wood sawdust, a temperature of 480°C, 50 grit SiC, with 2g/min of biomass feeding, were the optimal conditions, with a maximum bio-oil yield of 65 wt.%. For corn stover, temperatures ranging from 490°C to 560°C, biomass particle sizes from 0.9mm to 1.9mm, and vacuum degree lower than 100mmHg obtained a maximum bio-oil yield of 64 wt.%. This study shows that the use of microwave absorbents for fMAP is feasible and a promising technology to improve the practical values and commercial application outlook of microwave based pyrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Recovery of Palm Oil and Valuable Material from Oil Palm Empty Fruit Bunch by Sub-critical Water.

    PubMed

    Ahmad Kurnin, Nor Azrin; Shah Ismail, Mohd Halim; Yoshida, Hiroyuki; Izhar, Shamsul

    2016-01-01

    Oil palm empty fruit bunch (EFB) is one of the solid wastes produced in huge volume by palm oil mill. Whilst it still contains valuable oil, approximately 22.6 million tons is generated annually and treated as solid waste. In this work, sub-critical water (sub-cw) was used to extract oil, sugar and tar from spikelet of EFB. The spikelet was treated with sub-cw between 180-280°C and a reaction time of 2 and 5 minutes. The highest yield of oil was 0.075 g-oil/g-dry EFB, obtained at 240°C and reaction time of 5 minutes. Astonishingly, oil that was extracted through this method was 84.5% of that obtained through Soxhlet method using hexane. Yield of oil extracted was strongly affected by the reaction temperature and time. Higher reaction temperature induces the dielectric constant of water towards the non-polar properties of solvent; thus increases the oil extraction capability. Meanwhile, the highest yield of sugar was 0.20 g-sugar/g-dry EFB obtained at 220°C. At this temperature, the ion product of water is high enough to enable maximum sub-critical water hydrolysis reaction. This study showed that oil and other valuable material can be recovered using water at sub-critical condition, and most attractive without the use of harmful organic solvent.

  3. Effect of mechanical extraction parameters on the yield and quality of tobacco (Nicotiana tabacum L.) seed oil.

    PubMed

    Sannino, M; Del Piano, L; Abet, Massimo; Baiano, S; Crimaldi, M; Modestia, F; Raimo, F; Ricciardiello, G; Faugno, S

    2017-11-01

    The aim of this study was to investigate how the combination of extraction parameters, such as extraction temperature seeds preheating and screw rotation speed, influenced the yield and chemical quality of tobacco seed oil (TSO). For its peculiar properties, TSO can be used for several purposes, as raw material in the manufacturing of soap, paints, resins, lubricants, biofuels and also as edible oil. TSO was obtained using a mechanical screw press and the quality of the oil was evaluated by monitoring the free fatty acids (FFA), the peroxide value (PV), the spectroscopic indices K 232 , K 270 and ΔK and the fatty acid composition. The maximum extraction yield, expressed as percent of oil mechanically extracted respect to the oil content in the seeds, determined by solvent extraction, was obtained with the combination of the highest extraction temperature, the slowest screw rotation speed and seeds preheating. Under these conditions yield was 80.28 ± 0.33% (w/w), 25% higher than the lowest yield obtained among investigated conditions. The extraction temperature and seed preheating showed a significant effect on FFA, on spectroscopic indices K 232 , K 270 and ΔK values. The average values of these parameters slightly increased rising the temperature and in presence of preheating, the screw rotation speed did not affect the chemical characteristic tested. In the extraction conditions investigated no significant changes in PV and fatty acids composition of oil were observed.

  4. Analysis of parameter and interaction between parameter of the microwave assisted transesterification process of coconut oil using response surface methodology

    NASA Astrophysics Data System (ADS)

    Hidayanti, Nur; Suryanto, A.; Qadariyah, L.; Prihatini, P.; Mahfud, Mahfud

    2015-12-01

    A simple batch process was designed for the transesterification of coconut oil to alkyl esters using microwave assisted method. The product with yield above 93.225% of alkyl ester is called the biodiesel fuel. Response surface methodology was used to design the experiment and obtain the maximum possible yield of biodiesel in the microwave-assisted reaction from coconut oil with KOH as the catalyst. The results showed that the time reaction and concentration of KOH catalyst have significant effects on yield of alkyl ester. Based on the response surface methodology using the selected operating conditions, the time of reaction and concentration of KOH catalyst in transesterification process were 150 second and 0.25%w/w, respectively. The largest predicted and experimental yield of alkyl esters (biodiesel) under the optimal conditions are 101.385% and 93.225%, respectively. Our findings confirmed the successful development of process for the transesterification reaction of coconut oil by microwave-assisted heating, which is effective and time-saving for alkyl ester production.

  5. Pressurized liquid extraction and chemical characterization of safflower oil: A comparison between methods.

    PubMed

    Conte, Rogério; Gullich, Letícia M D; Bilibio, Denise; Zanella, Odivan; Bender, João P; Carniel, Naira; Priamo, Wagner L

    2016-12-15

    This work investigates the extraction process of safflower oil using pressurized ethanol, and compares the chemical composition obtained (in terms of fatty acids) with other extraction techniques. Soxhlet and Ultrasound showed maximum global yield of 36.53% and 30.41%, respectively (70°C and 240min). PLE presented maximum global yields of 25.62% (3mLmin(-1)), 19.94% (2mLmin(-1)) and 12.37% (1mLmin(-1)) at 40°C, 100bar and 60min. Palmitic acid showed the lower concentration in all experimental conditions (from 5.70% to 7.17%); Stearic and Linoleic acid presented intermediate concentrations (from 2.93% to 25.09% and 14.09% to 19.06%, respectively); Oleic acid showed higher composition (from 55.12% to 83.26%). Differences between percentages of fatty acids, depending on method were observed. Results may be applied to maximize global yields and select fatty acids, reducing the energetic costs and process time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Production of bio-oil rich in acetic acid and phenol from fast pyrolysis of palm residues using a fluidized bed reactor: Influence of activated carbons.

    PubMed

    Jeong, Jae-Yong; Lee, Uen-Do; Chang, Won-Seok; Jeong, Soo-Hwa

    2016-11-01

    In this study, palm residues were pyrolyzed in a bench-scale (3kg/h) fast pyrolysis plant equipped with a fluidized bed reactor and bio-oil separation system for the production of bio-oil rich in acetic acid and phenol. Pyrolysis experiments were performed to investigate the effects of reaction temperature and the types and amounts of activated carbon on the bio-oil composition. The maximum bio-oil yield obtained was approximately 47wt% at a reaction temperature of 515°C. The main compounds produced from the bio-oils were acetic acid, hydroxyacetone, phenol, and phenolic compounds such as cresol, xylenol, and pyrocatechol. When coal-derived activated carbon was applied, the acetic acid and phenol yields in the bio-oils reached 21 and 19wt%, respectively. Finally, bio-oils rich in acetic acid and phenol could be produced separately by using an in situ bio-oil separation system and activated carbon as an additive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Optimization of supercritical carbon dioxide extraction of essential oil from Dracocephalum kotschyi Boiss: An endangered medicinal plant in Iran.

    PubMed

    Nejad-Sadeghi, Masoud; Taji, Saeed; Goodarznia, Iraj

    2015-11-27

    Extraction of the essential oil from a medicinal plant called Dracocephalum kotschyi Boiss was performed by green technology of supercritical carbon dioxide (SC-CO2) extraction. A Taguchi orthogonal array design with an OA16 (4(5)) matrix was used to evaluate the effects of five extraction variables: pressure of 150-310bar, temperature of 40-60°C, average particle size of 250-1000μm, CO2 flow rate of 2-10ml/s and dynamic extraction time of 30-100min. The optimal conditions to obtain the maximum extraction yield were at 240bar, 60°C, 500μm, 10ml/s and 100min. The extraction yield under the above conditions was 2.72% (w/w) which is more than two times the maximum extraction yield that has been reported for this plant in the literature using traditional extraction techniques. Results from analysis of variance (ANOVA) indicated that the CO2 flow rate and the extraction time were the most significant factors on the extraction yield by percentage contribution of 44.27 and 28.86, respectively. Finally, the chemical composition of the essential oil was evaluated by using gas chromatography-mass spectroscopy (GC-MS). Citral, p-mentha-1,3,8-triene, D-3-carene and methyl geranate were the major components identified. Copyright © 2015. Published by Elsevier B.V.

  8. Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality.

    PubMed

    Fan, Liangliang; Chen, Paul; Zhang, Yaning; Liu, Shiyu; Liu, Yuhuan; Wang, Yunpu; Dai, Leilei; Ruan, Roger

    2017-02-01

    Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene (LDPE) with HZSM-5 and MgO was investigated. Effects of pyrolysis temperature, lignin to LDPE ratio, MgO to HZSM-5 ratio, and feedstock to catalyst ratio on the products yields and chemical profiles were examined. 500°C was the optimal co-pyrolysis temperature in terms of the maximum bio-oil yield. The proportion of aromatics increased with increasing LDPE content. In addition, with the addition of LDPE (lignin/LDPE=1/2), methoxyl group in the phenols was completely removed. A synergistic effect was found between lignin and LDPE. The proportion of aromatics increased and alkylated phenols decreased with increasing HZSM-5 to MgO ratio. The bio-oil yield increased with the addition of appropriate amount of catalyst and the proportion of alkylated phenols increased with increasing catalyst to feedstock ratio. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Optimization of soxhlet extraction and physicochemical analysis of crop oil from seed kernel of Feun Kase (Thevetia peruviana)

    NASA Astrophysics Data System (ADS)

    Suwari, Kotta, Herry Z.; Buang, Yohanes

    2017-12-01

    Optimizing the soxhlet extraction of oil from seed kernel of Feun Kase (Thevetia peruviana) for biodiesel production was carried out in this study. The solvent used was petroleum ether and methanol, as well as their combinations. The effect of three factors namely different solvent combinations (polarity), extraction time and extraction temperature were investigated for achieving maximum oil yield. Each experiment was conducted in 250 mL soxhlet apparatus. The physicochemical properties of the oil yield (density, kinematic viscosity, acid value, iodine value, saponification value, and water content) were also analyzed. The optimum conditions were found after 4.5 h with extraction time, extraction temperature at 65 oC and petroleum ether to methanol ratio of 90 : 10 (polarity index 0.6). The oil extract was found to be 51.88 ± 3.18%. These results revealed that the crop oil from seed kernel of Feun Kase (Thevetia peruviana) is a potential feedstock for biodiesel production.

  10. Inhibitors removal from bio-oil aqueous fraction for increased ethanol production.

    PubMed

    Sukhbaatar, Badamkhand; Li, Qi; Wan, Caixia; Yu, Fei; Hassan, El-Barbary; Steele, Philip

    2014-06-01

    Utilization of 1,6-anhydro-β-d-glucopyranose (levoglucosan) present (11% w/v) in the water fraction of bio-oil for ethanol production will facilitate improvement in comprehensive utilization of total carbon in biomass. One of the major challenges for conversion of anhydrous sugars from the bio-oil water fraction to bio-ethanol is the presence of inhibitory compounds that slow or impede the microbial fermentation process. Removal of inhibitory compounds was first approached by n-butanol extraction. Optimal ratio of n-butanol and bio-oil water fraction was 1.8:1. Removal of dissolved n-butanol was completed by evaporation. Concentration of sugars in the bio-oil water fraction was performed by membrane filtration and freeze drying. Fermentability of the pyrolytic sugars was tested by fermentation of hydrolyzed sugars with Saccharomyces pastorianus lager yeast. The yield of ethanol produced from pyrolytic sugars in the bio-oil water fraction reached a maximum of 98% of the theoretical yield. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Upgraded bio-oil production via catalytic fast co-pyrolysis of waste cooking oil and tea residual.

    PubMed

    Wang, Jia; Zhong, Zhaoping; Zhang, Bo; Ding, Kuan; Xue, Zeyu; Deng, Aidong; Ruan, Roger

    2017-02-01

    Catalytic fast co-pyrolysis (co-CFP) offers a concise and effective process to achieve an upgraded bio-oil production. In this paper, co-CFP experiments of waste cooking oil (WCO) and tea residual (TR) with HZSM-5 zeolites were carried out. The influences of pyrolysis reaction temperature and H/C ratio on pyrolytic products distribution and selectivities of aromatics were performed. Furthermore, the prevailing synergetic effect of target products during co-CFP process was investigated. Experimental results indicated that H/C ratio played a pivotal role in carbon yields of aromatics and olefins, and with H/C ratio increasing, the synergetic coefficient tended to increase, thus led to a dramatic growth of aromatics and olefins yields. Besides, the pyrolysis temperature made a significant contribution to carbon yields, and the yields of aromatics and olefins increased at first and then decreased at the researched temperature region. Note that 600°C was an optimum temperature as the maximum yields of aromatics and olefins could be achieved. Concerning the transportation fuel dependence and security on fossil fuels, co-CFP of WCO and TR provides a novel way to improve the quality and quantity of pyrolysis bio-oil, and thus contributes bioenergy accepted as a cost-competitive and promising alternative energy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Pyrolysis of oil palm mesocarp fiber catalyzed with steel slag-derived zeolite for bio-oil production.

    PubMed

    Kabir, G; Mohd Din, A T; Hameed, B H

    2018-02-01

    The pyrolysis of oil palm mesocarp fiber (OPMF) was catalyzed with a steel slag-derived zeolite (FAU-SL) in a slow-heating fixed-bed reactor at 450 °C, 550 °C, and 600 °C. The catalytic pyrolysis of OPMF produced a maximum yield of 47 wt% bio-oil at 550 °C, and the crude pyrolysis vapor (CPV) of this process yielded crude pyrolysis oil with broad distribution of bulky oxygenated organic compounds. The bio-oil composition produced at 550 °C contained mainly light and stable acid-rich carbonyls at a relative abundance of 48.02% peak area and phenolic compounds at 12.03% peak area. The FAU-SL high mesoporosity and strong surface acidity caused the conversion of the bulky CPV molecules into mostly light acid-rich carbonyls and aromatics through secondary reactions. The secondary reactions mechanisms facilitated by FAU-SL reduced the distribution of the organic compounds in the bio-oil to mostly acid-rich carbonyls and aromatic in contrast to other common zeolite. Copyright © 2017. Published by Elsevier Ltd.

  13. Box-Behnken design for investigation of microwave-assisted extraction of patchouli oil

    NASA Astrophysics Data System (ADS)

    Kusuma, Heri Septya; Mahfud, Mahfud

    2015-12-01

    Microwave-assisted extraction (MAE) technique was employed to extract the essential oil from patchouli (Pogostemon cablin). The optimal conditions for microwave-assisted extraction of patchouli oil were determined by response surface methodology. A Box-Behnken design (BBD) was applied to evaluate the effects of three independent variables (microwave power (A: 400-800 W), plant material to solvent ratio (B: 0.10-0.20 g mL-1) and extraction time (C: 20-60 min)) on the extraction yield of patchouli oil. The correlation analysis of the mathematical-regression model indicated that quadratic polynomial model could be employed to optimize the microwave extraction of patchouli oil. The optimal extraction conditions of patchouli oil was microwave power 634.024 W, plant material to solvent ratio 0.147648 g ml-1 and extraction time 51.6174 min. The maximum patchouli oil yield was 2.80516% under these optimal conditions. Under the extraction condition, the experimental values agreed with the predicted results by analysis of variance. It indicated high fitness of the model used and the success of response surface methodology for optimizing and reflect the expected extraction condition.

  14. Soy Sauce Residue Oil Extracted by a Novel Continuous Phase Transition Extraction under Low Temperature and Its Refining Process.

    PubMed

    Zhao, Lichao; Zhang, Yong; He, Liping; Dai, Weijie; Lai, Yingyi; Yao, Xueyi; Cao, Yong

    2014-04-09

    On the basis of previous single-factor experiments, extraction parameters of soy sauce residue (SSR) oil extracted using a self-developed continuous phase transition extraction method at low temperature was optimized using the response surface methodology. The established optimal conditions for maximum oil yield were n-butane solvent, 0.5 MPa extraction pressure, 45 °C temperature, 62 min extraction time, and 45 mesh raw material granularity. Under these conditions, the actual yield was 28.43% ± 0.17%, which is relatively close to the predicted yield. Meanwhile, isoflavone was extracted from defatted SSR using the same method, but the parameters and solvent used were altered. The new solvent was 95% (v/v) ethanol, and extraction was performed under 1.0 MPa at 60 °C for 90 min. The extracted isoflavones, with 0.18% ± 0.012% yield, mainly comprised daidzein and genistein, two kinds of aglycones. The novel continuous phase transition extraction under low temperature could provide favorable conditions for the extraction of nonpolar or strongly polar substances. The oil physicochemical properties and fatty acids compositions were analyzed. Results showed that the main drawback of the crude oil was the excess of acid value (AV, 63.9 ± 0.1 mg KOH/g) and peroxide value (POV, 9.05 ± 0.3 mmol/kg), compared with that of normal soybean oil. However, through molecular distillation, AV and POV dropped to 1.78 ± 0.12 mg KOH/g and 5.9 ± 0.08 mmol/kg, respectively. This refined oil may be used as feedstuff oil.

  15. Catalytic upgrading of bio-oil produced from hydrothermal liquefaction of Nannochloropsis sp.

    PubMed

    Shakya, Rajdeep; Adhikari, Sushil; Mahadevan, Ravishankar; Hassan, El Barbary; Dempster, Thomas A

    2018-03-01

    Upgrading of bio-oil obtained from hydrothermal liquefaction (HTL) of algae is necessary for it to be used as a fuel. In this study, bio-oil obtained from HTL of Nannochloropsis sp. was upgraded using five different catalysts (Ni/C, ZSM-5, Ni/ZSM-5, Ru/C and Pt/C) at 300 °C and 350 °C. The upgraded bio-oil yields were higher at 300 °C; however, higher quality upgraded bio-oils were obtained at 350 °C. Ni/C gave the maximum upgraded bio-oil yield (61 wt%) at 350 °C. However, noble metal catalysts (Ru/C and Pt/C) gave the better upgraded bio-oils in terms of acidity, heating values, and nitrogen values. The higher heating value of the upgraded bio-oils ranged from 40 to 44 MJ/kg, and the nitrogen content decreased from 5.37 to 1.29 wt%. Most of the upgraded bio-oils (35-40 wt%) were in the diesel range. The major components present in the gaseous products were CH 4 , CO, CO 2 and lower alkanes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Bacterial rhizosphere and endosphere populations associated with grasses and trees to be used for phytoremediation of crude oil contaminated soil.

    PubMed

    Fatima, Kaneez; Afzal, Muhammad; Imran, Asma; Khan, Qaiser M

    2015-03-01

    Different grasses and trees were tested for their growth in a crude oil contaminated soil. Three grasses, Lolium perenne, Leptochloa fusca, Brachiaria mutica, and two trees, Lecucaena leucocephala and Acacia ampliceps, were selected to investigate the diversity of hydrocarbon-degrading rhizospheric and endophytic bacteria. We found a higher number of hydrocarbon degrading bacteria associated with grasses than trees and that the endophytic bacteria were taxonomically different from rhizosphere associated bacteria showing their spatial distribution with reference to plant compartment as well as genotype. The rhizospheric soil yielded 22 (59.45 %), root interior yielded 9 (24.32 %) and shoot interior yielded 6 (16.21 %) hydrocarbon-degrading bacteria. These bacteria possessed genes encoding alkane hydroxylase and showed multiple plant growth-promoting activities. Bacillus (48.64 %) and Acinetobacter (18.91 %) were dominant genera found in this study. At 2 % crude oil concentration, all bacterial isolates exhibited 25 %-78 % oil degradation and Acinetobacter sp. strain BRSI56 degraded maximum. Our study suggests that for practical application, support of potential bacteria combined with the grasses is more effective approach than trees to remediate oil contaminated soils.

  17. Bio-oil from cassava peel: a potential renewable energy source.

    PubMed

    Ki, Ong Lu; Kurniawan, Alfin; Lin, Chun Xiang; Ju, Yi-Hsu; Ismadji, Suryadi

    2013-10-01

    In this work, liquid biofuel (bio-oil) was produced by pyrolizing cassava peel. The experiments were conducted isothermally in a fixed-bed tubular reactor at temperatures ranging from 400 to 600°C with a heating rate of 20°C/min. The chemical compositions of bio-oil were analyzed by a gas chromatography mass spectrometry (GC-MS) technique. For the optimization of liquid product, temperature was plotted to be the most decisive factor. The maximum yield of bio-oil ca. 51.2% was obtained at 525°C and the biofuel has a gross calorific value of 27.43 MJ/kg. The kinetic-based mechanistic model fitted well with experimental yield of pyrolysis products with the mean squared error (MSE) of 13.37 (R(2)=0.96) for solid (char), 16.24 (R(2)=0.95) for liquid (bio-oil), and 0.49 (R(2)=0.99) for gas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Mathematical modelling for extraction of oil from Dracocephalum kotschyi seeds in supercritical carbon dioxide.

    PubMed

    Sodeifian, Gholamhossein; Sajadian, Seyed Ali; Honarvar, Bizhan

    2018-04-01

    Extraction of oil from Dracocephalum kotschyi Boiss seeds using supercritical carbon dioxide was designed using central composite design to evaluate the effect of various operating parameters including pressure, temperature, particle size and extraction time on the oil yield. Maximum extraction yield predicted from response surface method was 71.53% under the process conditions with pressure of 220 bar, temperature of 35 °C, particle diameter of 0.61 mm and extraction time of 130 min. Furthermore, broken and intact cells model was utilised to consider mass transfer kinetics of extracted natural materials. The results revealed that the model had a good agreement with the experimental data. The oil samples obtained via supercritical and solvent extraction methods were analysed by gas chromatography. The most abundant acid was linolenic acid. The results analysis showed that there was no significant difference between the fatty acid contents of the oils obtained by the supercritical and solvent extraction techniques.

  19. Synthesis of biodiesel from pongamia oil using heterogeneous ion-exchange resin catalyst.

    PubMed

    Jaya, N; Selvan, B Karpanai; Vennison, S John

    2015-11-01

    Biodiesel is a clean-burning renewable substitute fuel for petroleum. Biodiesel could be effectively produced by transesterification reaction of triglycerides of vegetable oils with short-chain alcohols in the presence of homogeneous or heterogeneous catalysts. Conventionally, biodiesel manufacturing processes employ strong acids or bases as catalysts. But, separation of the catalyst and the by-product glycerol from the product ester is too expensive to justify the product use as an automobile fuel. Hence heterogeneous catalysts are preferred. In this study, transesterification of pongamia oil with ethanol was performed using a solid ion-exchange resin catalyst. It is a macro porous strongly basic anion exchange resin. The process parameters affecting the ethyl ester yield were investigated. The reaction conditions were optimized for the maximum yield of fatty acid ethyl ester (FAEE) of pongamia oil. The properties of FAEE were compared with accepted standards of biodiesel. Engine performance was also studied with pongamia oil diesel blend and engine emission characteristics were observed. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Kinetics of acid base catalyzed transesterification of Jatropha curcas oil.

    PubMed

    Jain, Siddharth; Sharma, M P

    2010-10-01

    Out of various non-edible oil resources, Jatropha curcas oil (JCO) is considered as future feedstock for biodiesel production in India. Limited work is reported on the kinetics of transesterification of high free fatty acids containing oil. The present study reports the results of kinetic study of two-step acid base catalyzed transesterification process carried out at an optimum temperature of 65 °C and 50 °C for esterification and transesterification respectively under the optimum methanol to oil ratio of 3:7 (v/v), catalyst concentration 1% (w/w) for H₂SO₄ and NaOH. The yield of methyl ester (ME) has been used to study the effect of different parameters. The results indicate that both esterification and transesterification reaction are of first order with reaction rate constant of 0.0031 min⁻¹ and 0.008 min⁻¹ respectively. The maximum yield of 21.2% of ME during esterification and 90.1% from transesterification of pretreated JCO has been obtained. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Factorial design of essential oil extraction from Fagraea fragrans Roxb. flowers and evaluation of its biological activities for perfumery and cosmetic applications.

    PubMed

    Yingngam, B; Brantner, A H

    2015-06-01

    To optimize the extraction yields of essential oil from Fagraea fragrans Roxb. flowers in hydro-distillation using a central composite design (CCD) and to evaluate its biological activities for perfumery and cosmetic applications. Central composite design was applied to study the influences of operational parameters [water to flower weight (X(1)) and distillation time (X(2))] on the yields of essential oil (Y). Chemical compositions of the essential oil extracted from the optimized condition were identified by gas chromatography-mass spectrometry. Antioxidant activities of the essential oil were determined against ABTS(•+) and DPPH(•) radicals, and the cytotoxic effects were assessed on human embryonic kidney (HEK293) cells by the use of the MTT assay. Also, the aromatic properties of the essential oil were evaluated by five healthy trained volunteers. The best conditions to obtain the maximum essential oil yield were 7.5 mL g(-1) (X(1)) and 215 min (X(2)). The experimental yield of the essential oil (0.35 ± 0.02% v/w) was close to the value predicted by a mathematical model (0.35 ± 0.01% v/w). 3-Octadecyne, Z,Z,Z-7,10,13-hexadecatrienal, E-nerolidol, pentadecanal and linalool were the major constituents of the essential oil. The essential oil showed moderate antioxidant capacities with no toxic effects on HEK293 cells at 1-250 μg mL(-1). Also, the essential oil exhibited a very strong aroma and was classified to be top- to middle-notes. The results offer the effectively operational conditions in the extraction of essential oil from F. fragrans using hydro-distillation. The essential oil could be used as a natural fragrance, having antioxidant activity with slight cytotoxicity, for perfumery and cosmetic applications. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  2. Intensification of biodiesel production from soybean oil and waste cooking oil in the presence of heterogeneous catalyst using high speed homogenizer.

    PubMed

    Joshi, Saurabh; Gogate, Parag R; Moreira, Paulo F; Giudici, Reinaldo

    2017-11-01

    In the present work, high speed homogenizer has been used for the intensification of biodiesel synthesis from soybean oil and waste cooking oil (WCO) used as a sustainable feedstock. High acid value waste cooking oil (27mg of KOH/g of oil) was first esterified with methanol using sulphuric acid as catalyst in two stages to bring the acid value to desired value of 1.5mg of KOH/g of oil. Transesterification of soybean oil (directly due to lower acid value) and esterified waste cooking oil was performed in the presence of heterogeneous catalyst (CaO) for the production of biodiesel. Various experiments were performed for understanding the effect of operating parameters viz. molar ratio, catalyst loading, reaction temperature and speed of rotation of the homogenizer. For soybean oil, the maximum biodiesel yield as 84% was obtained with catalyst loading of 3wt% and molar ratio of oil to methanol of 1:10 at 50°C with 12,000rpm as the speed of rotation in 30min. Similarly biodiesel yield of 88% was obtained from waste cooking oil under identical operating conditions except for the catalyst loading which was 1wt%. Significant increase in the rate of biodiesel production with yields from soybean oil as 84% (in 30min) and from WCO as 88% (30min) was established due to the use of high speed homogenizer as compared to the conventional stirring method (requiring 2-3h for obtaining similar biodiesel yield). The observed intensification was attributed to the turbulence caused at microscale and generation of fine emulsions due to the cavitational effects. Overall it can be concluded from this study that high speed homogenizer can be used as an alternate cavitating device to efficiently produce biodiesel in the presence of heterogeneous catalysts. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Optimization of the degumming process for camellia oil by the use of phospholipase C in pilot-scale system.

    PubMed

    Jiang, Xiaofei; Chang, Ming; Jin, Qingzhe; Wang, Xingguo

    2015-06-01

    In present study, phospholipase C (PLC) was applied in camellia oil degumming and the response surface method (RSM) was used to determine the optimum degumming conditions (reaction time, reaction temperature and enzyme dosage) for this enzyme. The optimum conditions for the minimum residual phosphorus content (15.14 mg/kg) and maximum yield of camellia oil (98.2 %) were obtained at reaction temperature 53 ºC, reaction time 2.2 h, PLC dosage 400 mg/kg and pH 5.4. The application of phospholipase A (PLA) - assisted degumming process could further reduce the residual phosphorus content of camellia oil (6.84 mg/kg) to make the oil suitable for physical refining while maintaining the maximal oil yield (98.2 %). These results indicate that PLC degumming process in combination with PLA treatment can be a commercially viable alternative for traditional degumming process. Study on the quality changes of degummed oils showed that the oxidative stability of camellia oil was slightly deceased after the enzymatic treatment, thus more attention should be paid to the oxidative stability in the further application.

  4. Microbial oil - A plausible alternate resource for food and fuel application.

    PubMed

    Bharathiraja, B; Sridharan, Sridevi; Sowmya, V; Yuvaraj, D; Praveenkumar, R

    2017-06-01

    Microbes have recourse to low-priced substrates like agricultural wastes and industrial efflux. A pragmatic approach towards an emerging field- the exploitation of microbial oils for biodiesel production, pharmaceutical and cosmetic applications, food additives, biopolymer production will be of immense remunerative significance in the near future. Due to high free fatty acid, nutritive content and simpler solvent extraction processes of microbial oils with plant oil, microbial oils can back plant oils in food applications. The purpose of this review is to evaluate the opulence of lipid production in native and standard micro-organisms and also to emphasize the vast array of applications including food and fuel by obtaining maximum yield. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Assessment of bioethanol yield by S. cerevisiae grown on oil palm residues: Monte Carlo simulation and sensitivity analysis.

    PubMed

    Samsudin, Mohd Dinie Muhaimin; Mat Don, Mashitah

    2015-01-01

    Oil palm trunk (OPT) sap was utilized for growth and bioethanol production by Saccharomycescerevisiae with addition of palm oil mill effluent (POME) as nutrients supplier. Maximum yield (YP/S) was attained at 0.464g bioethanol/g glucose presence in the OPT sap-POME-based media. However, OPT sap and POME are heterogeneous in properties and fermentation performance might change if it is repeated. Contribution of parametric uncertainty analysis on bioethanol fermentation performance was then assessed using Monte Carlo simulation (stochastic variable) to determine probability distributions due to fluctuation and variation of kinetic model parameters. Results showed that based on 100,000 samples tested, the yield (YP/S) ranged 0.423-0.501g/g. Sensitivity analysis was also done to evaluate the impact of each kinetic parameter on the fermentation performance. It is found that bioethanol fermentation highly depend on growth of the tested yeast. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Process optimization of an auger pyrolyzer with heat carrier using response surface methodology.

    PubMed

    Brown, J N; Brown, R C

    2012-01-01

    A 1 kg/h auger reactor utilizing mechanical mixing of steel shot heat carrier was used to pyrolyze red oak wood biomass. Response surface methodology was employed using a circumscribed central composite design of experiments to optimize the system. Factors investigated were: heat carrier inlet temperature and mass flow rate, rotational speed of screws in the reactor, and volumetric flow rate of sweep gas. Conditions for maximum bio-oil and minimum char yields were high flow rate of sweep gas (3.5 standard L/min), high heat carrier temperature (∼600 °C), high auger speeds (63 RPM) and high heat carrier mass flow rates (18 kg/h). Regression models for bio-oil and char yields are described including identification of a novel interaction effect between heat carrier mass flow rate and auger speed. Results suggest that auger reactors, which are rarely described in literature, are well suited for bio-oil production. The reactor achieved liquid yields greater than 73 wt.%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Lignin-rich biomass of cotton by-products for biorefineries via pyrolysis.

    PubMed

    Chen, Jiao; Liang, Jiajin; Wu, Shubin

    2016-10-01

    Pyrolysis was demonstrated to investigate the thermal decomposition characteristics and potential of lignin-rich cotton by-products cotton exocarp (CE) and spent mushroom substrate consisted of cotton by-products (MSC) for biorefineries. The chemical component and structure alteration of CE and MSC was found to affect their thermochemical behaviors. The bio-oil yield from CE was 58.13wt% while the maximum yield from MSC was 45.01% at 600°C. The phenolic compounds obtained from CE and MSC were 33.9% and 39.2%, respectively. The yield of acetic acid from MSC between 400 and 600°C was about 30-38% lower than that from CE, which suggests the high quality of bio-oil was obtained. Biochar from MSC via slow pyrolysis had a high mass yield (44.38wt%) with well-developed pore structure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The effects of temperature and catalysts on the pyrolysis of industrial wastes (herb residue).

    PubMed

    Wang, Pan; Zhan, Sihui; Yu, Hongbing; Xue, Xufang; Hong, Nan

    2010-05-01

    Pyrolysis of herb residue was investigated in a fixed-bed to determine the effects of pyrolysis temperature and catalysts (ZSM-5, Al-SBA-15 and alumina) on the products yields and the qualities of bio-oils. The results indicated that the maximum bio-oil yield of 34.26% was obtained at 450 degrees Celsius with 10 wt.% alumina catalyst loaded. The pyrolytic oils were examined by ultimate analysis and calorific values determination, and the results indicated that the presence of all catalysts decreased the oxygen content of bio-oils and increased the calorific values. The order of the catalytic effect for upgrading the pyrolytic oil was Al(2)O(3)>Al-SBA-15>ZSM-5. The bio-oil with the lowest oxygen content (26.71%) and the highest calorific value (25.94 MJ kg(-1)) was obtained with 20 wt.% alumina catalyst loaded. Furthermore, the gas chromatography/mass spectrometry (GC/MS) was used in order to investigate the components of obtained pyrolytic oils. It was found that the alumina catalyst could clearly enhance the formation of aliphatics and aromatics. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  9. Optimization of microwave assisted extraction of essential oils from Iranian Rosmarinus officinalis L. using RSM.

    PubMed

    Akhbari, Maryam; Masoum, Saeed; Aghababaei, Fahimeh; Hamedi, Sepideh

    2018-06-01

    In this study, the efficiencies of conventional hydro-distillation and novel microwave hydro-distillation methods in extraction of essential oil from Rosemary officinalis leaves have been compared. In order to attain the best yield and also highest quality of the essential oil in the microwave assisted method, the optimal values of operating parameters such as extraction time, microwave irradiation power and water volume to plant mass ratio were investigated using central composite design under response surface methodology. Optimal conditions for obtaining the maximum extraction yield in the microwave assisted method were predicted as follows: extraction time of 85 min, microwave power of 888 W, and water volume to plant mass ratio of 0.5 ml/g. The extraction yield at these predicted conditions was computed as 0.7756%. The qualities of the obtained essential oils under designed experiments were optimized based on total contents of four major compounds (α-pinene, 1,8-cineole, camphor and verbenone) which determined by gas chromatography equipped with mass spectroscopy (GC-MS). The highest essential oil quality (55.87%) was obtained at extraction time of 68 min; microwave irradiation power of 700 W; and water volume to plant mass ratio of zero.

  10. Development and application of a continuous fast microwave pyrolysis system for sewage sludge utilization.

    PubMed

    Zhou, Junwen; Liu, Shiyu; Zhou, Nan; Fan, Liangliang; Zhang, Yaning; Peng, Peng; Anderson, Erik; Ding, Kuan; Wang, Yunpu; Liu, Yuhuan; Chen, Paul; Ruan, Roger

    2018-05-01

    A continuous fast microwave-assisted pyrolysis system was designed, fabricated, and tested with sewage sludge. The system is equipped with continuous biomass feeding, mixing of biomass and microwave absorbent, and separated catalyst upgrading. The effect of the sludge pyrolysis temperature (450, 500, 550, and 600 °C) on the products yield, distribution and potentially energy recovery were investigated. The physical, chemical, and energetic properties of the raw sewage sludge and bio-oil, char and gas products obtained were analyzed using elemental analyzer, GC-MS, Micro-GC, SEM and ICP-OES. While the maximum bio-oil yield of 41.39 wt% was obtained at pyrolysis temperature of 550 °C, the optimal pyrolysis temperature for maximum overall energy recovery was 500 °C. The absence of carrier gas in the process may be responsible for the high HHV of gas products. This work could provide technical support for microwave-assisted system scale-up and sewage sludge utilization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Optimization of experimental conditions for composite biodiesel production from transesterification of mixed oils of Jatropha and Pongamia

    NASA Astrophysics Data System (ADS)

    Yogish, H.; Chandrashekara, K.; Pramod Kumar, M. R.

    2012-11-01

    India is looking at the renewable alternative sources of energy to reduce its dependence on import of crude oil. As India imports 70 % of the crude oil, the country has been greatly affected by increasing cost and uncertainty. Biodiesel fuel derived by the two step acid transesterification of mixed non-edible oils from Jatropha curcas and Pongamia (karanja) can meet the requirements of diesel fuel in the coming years. In the present study, different proportions of Methanol, Sodium hydroxide, variation of Reaction time, Sulfuric acid and Reaction Temperature were adopted in order to optimize the experimental conditions for maximum biodiesel yield. The preliminary studies revealed that biodiesel yield varied widely in the range of 75-95 % using the laboratory scale reactor. The average yield of 95 % was obtained. The fuel and chemical properties of biodiesel, namely kinematic viscosity, specific gravity, density, flash point, fire point, calorific value, pH, acid value, iodine value, sulfur content, water content, glycerin content and sulfated ash values were found to be within the limits suggested by Bureau of Indian Standards (BIS 15607: 2005). The optimum combination of Methanol, Sodium hydroxide, Sulfuric acid, Reaction Time and Reaction Temperature are established.

  12. Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production.

    PubMed

    Yan, Dong; Lu, Yue; Chen, Yi-Feng; Wu, Qingyu

    2011-06-01

    The by-product of sugar refinery-waste molasses was explored as alternative to glucose-based medium of Chlorella protothecoides in this study. Enzymatic hydrolysis is required for waste molasses suitable for algal growth. Waste molasses hydrolysate was confirmed as a sole source of full nutrients to totally replace glucose-based medium in support of rapid growth and high oil yield from algae. Under optimized conditions, the maximum algal cell density, oil content, and oil yield were respectively 70.9 g/L, 57.6%, and 40.8 g/L. The scalability of the waste molasses-fed algal system was confirmed from 0.5L flasks to 5L fermenters. The quality of biodiesel from waste molasses-fed algae was probably comparable to that from glucose-fed ones. Economic analysis indicated the cost of oil production from waste molasses-fed algae reduced by 50%. Significant cost reduction of algal biodiesel production through fermentation engineering based on the approach is expected. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. "Solvent-free" ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process.

    PubMed

    Adam, Fanny; Abert-Vian, Maryline; Peltier, Gilles; Chemat, Farid

    2012-06-01

    In order to comply with criteria of green chemistry concepts and sustainability, a new procedure has been performed for solvent-free ultrasound-assisted extraction (UAE) to extract lipids from fresh Nannochloropsis oculata biomass. Through response surface methodology (RSM) parameters affecting the oil recovery were optimized. Optimum conditions for oil extraction were estimated as follows: (i) 1000 W ultrasonic power, (ii) 30 min extraction time and (iii) biomass dry weight content at 5%. Yields were calculated by the total fatty acids methyl esters amounts analyzed by GC-FID-MS. The maximum oil recovery was around 0.21%. This value was compared with the one obtained with the conventional extraction method (Bligh and Dyer). Furthermore, effect of temperature on the yield was also investigated. The overall results show an innovative and effective extraction method adapted for microalgae oil recovery, without using solvent and with an enable scaling up. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Effect of gamma and e-beam radiation on the essential oils of Thymus vulgaris thymoliferum, Eucalyptus radiata, and Lavandula angustifolia.

    PubMed

    Haddad, Mohamed; Herent, Marie-France; Tilquin, Bernard; Quetin-Leclercq, Joëlle

    2007-07-25

    The microbiological contamination of raw plant materials is common and may be adequately reduced by radiation processing. This study evaluated the effects of gamma- and e-beam ionizing radiations (25 kGy) on three plants used as food or as medicinal products (Thymus vulgaris L., Eucalyptus radiata D.C., and Lavandula angustifolia Mill.) as well as their effects on extracted or commercial essential oils and pure standard samples. Comparison between irradiated and nonirradiated samples was performed by GC/FID and GC/MS. At the studied doses, gamma and e-beam ionizing radiation did not induce any detectable qualitative or quantitative significant changes in the contents and yields of essential oils immediately after ionizing radiation of plants or commercial essential oils and standards. As the maximum dose tested (25 kGy) is a sterilizing dose (much higher than doses used for decontamination of vegetable drugs), it is likely that even decontamination with lower doses will not modify yields or composition of essential oils of these three plants.

  15. Metal accumulation, growth, antioxidants and oil yield of Brassica juncea L. exposed to different metals.

    PubMed

    Sinha, Sarita; Sinam, Geetgovind; Mishra, Rohit Kumar; Mallick, Shekhar

    2010-09-01

    In agricultural fields, heavy metal contamination is responsible for limiting the crop productivity and quality. This study reports that the plants of Brassica juncea L. cv. Pusa bold grown on contaminated substrates [Cu, Cr(VI), As(III), As(V)] under simulated field conditions have shown translocation of metals to the upper part and its sequestration in the leaves without significantly affecting on oil yield, except for Cr and higher concentration of As(V), compared to control. Decrease in the oil content in As(V) treated plants was observed in a dose dependent manner; however, maximum decrease was recorded in Cr treated plants. Among all the metal treatments, Cr was the most toxic as evident from the decrease in oil content, growth parameters and antioxidants. The accumulation of metals was below the detection limit in the seeds grown on 10 and 30 mg kg(-1) As(III) and Cr(VI); 10 mg kg(-1) As(V)) and thus can be recommended only for oil cultivation. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  16. Effect of operating conditions on hydrothermal liquefaction of Spirulina over Ni/TiO2 catalyst.

    PubMed

    Tian, Wenying; Liu, Renlong; Wang, Wenjia; Yin, Zhaosen; Yi, Xuewen

    2018-05-04

    In this study, the effects of reaction temperature, holding time, algae/water ratio and catalyst dosage on the yield and quality of bio-oil produced via the HTL of Spirulina were investigated. The maximum bio-oil yield (43.05 wt%) and energy recovery (ER) value (64.62%) were obtained at 260 °C for 30 min, with an algae/water ratio of 1/4 and a catalyst dosage of 5 wt%. The bio-oil samples were characterized by elemental analysis, Gas Chromatography-Mass Spectrometry (GC-MS), Fourier Transform Infrared (FI-IR), and Thermo-gravimetric analysis (TGA). Results indicated that higher heating values (HHVs) of bio-oils were in the range of 27.28-36.01 MJ/kg, and main compounds of bio-oil were amides, esters, nitriles, hydroperoxide and alkanes. Adding of the Ni/TiO 2 catalyst can decrease the contents of oxygenated and nitrogenous compounds and promote the formation of desirable components such as esters and alkanes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk.

    PubMed

    Biswas, Bijoy; Pandey, Nidhi; Bisht, Yashasvi; Singh, Rawel; Kumar, Jitendra; Bhaskar, Thallada

    2017-08-01

    Pyrolysis studies on conventional biomass were carried out in fixed bed reactor at different temperatures 300, 350, 400 and 450°C. Agricultural residues such as corn cob, wheat straw, rice straw and rice husk showed that the optimum temperatures for these residues are 450, 400, 400 and 450°C respectively. The maximum bio-oil yield in case of corn cob, wheat straw, rice straw and rice husk are 47.3, 36.7, 28.4 and 38.1wt% respectively. The effects of pyrolysis temperature and biomass type on the yield and composition of pyrolysis products were investigated. All bio-oils contents were mainly composed of oxygenated hydrocarbons. The higher area percentages of phenolic compounds were observed in the corn cob bio-oil than other bio-oils. From FT-IR and 1 H NMR spectra showed a high percentage of aliphatic functional groups for all bio-oils and distribution of products is different due to differences in the composition of agricultural biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Interactive effect of supplemental ultraviolet B and elevated ozone on seed yield and oil quality of two cultivars of linseed (Linum usitatissimum L.) carried out in open top chambers.

    PubMed

    Tripathi, Ruchika; Agrawal, Shashi B

    2013-03-30

    Current scenarios of global climate change predict a significant increase in ultraviolet B (UV-B) and tropospheric ozone (O₃) in the near future. Both UV-B and O₃ can have detrimental effects on the productivity and yield quality of important agricultural crops. The present study was conducted to investigate the individual and interactive effects of supplemental UV-B (sUV-B) (ambient + 7.2 kJ m⁻² day⁻¹) and O₃ (ambient + 10 ppb) on the yield and oil quality of two cultivars of linseed (Linum usitatissimum L.). The mean monthly ambient O₃ concentration varied from 27.7 to 59.0 ppb during the experimental period. O₃ affected fruit formation, while sUV-B was mainly responsible for ovule abortion. Seed sugar and protein contents showed maximum reduction in O₃-treated plants, while mineral nutrient levels were most affected by sUV-B + O₃ treatment. Rancid oil of low nutritional quality and containing long-chain fatty acids was favoured along with a decrease in oil content. sUV-B and O₃ individually as well as in combination caused deterioration of the yield and quality of oil and seeds of linseed. However, the individual effect of O₃ was more damaging than the effect of sUV-B or sUV-B + O₃, and cultivar T-397 performed better than Padmini. © 2012 Society of Chemical Industry.

  19. Production and optimization of polyhydroxyalkanoates from non-edible Calophyllum inophyllum oil using Cupriavidus necator.

    PubMed

    Arumugam, A; Senthamizhan, S G; Ponnusami, V; Sudalai, S

    2018-06-01

    Polyhydroxyalkanoates (PHA) are biodegradable polymers found in the cellular masses of a wide range of bacterial species and the demand for PHA is steadily growing. In this work we have produced PHA from a low-cost substrate, Calophyllum inophyllum oil, using Cupriavidus necator. Effects of various process parameters such as Oil concentration, Nitrogen source and inoculum size on the production of PHA were studied using Response Surface Methodology. A quadratic equation was used in the model to fit the experimental data. It was found that the model could satisfactorily predict the PHA yield (R 2 =99.17%). Linear, quadratic and interaction terms used in the model were found to be statistically significant. Maximum PHA yield of 10.6gL -1 was obtained under the optimized conditions of oil concentration - 17.5%, inoculum concentration - 50mL/L and nitrogen content - 1.125gL -1 , respectively. The product obtained was characterized using FTIR and NMR to confirm that it was PHA. The results demonstrate that C. inophyllum oil, a non-edible oil, can be potentially used as a low-cost substrate for the production of PHA. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Modeling the initial mechanical response and yielding behavior of gelled crude oil

    NASA Astrophysics Data System (ADS)

    Lei, Chen; Gang, Liu; Xingguo, Lu; Minghai, Xu; Yuannan, Tang

    2018-05-01

    The initial mechanical response and yielding behavior of gelled crude oil under constant shear rate conditions were investigated. By putting the Maxwell mechanical analog and a special dashpot in parallel, a quasi-Jeffreys model was obtained. The kinetic equation of the structural parameter in the Houska model was simplified reasonably so that a simplified constitutive equation of the special dashpot was expressed. By introducing a damage factor into the constitutive equation of the special dashpot and the Maxwell mechanical analog, we established a constitutive equation of the quasi-Jeffreys model. Rheological tests of gelled crude oil were conducted by imposing constant shear rates and the relationship between the shear stress and shear strain under different shear rates was plotted. It is found that the constitutive equation can fit the experimental data well under a wide range of shear rates. Based on the fitted parameters in the quasi-Jeffreys model, the shear stress changing rules of the Maxwell mechanical analog and the special dashpot were calculated and analyzed. It is found that the critical yield strain and the corresponding shear strain where shear stress of the Maxwell analog is the maximum change slightly under different shear rates. And then a critical damage softening strain which is irrelevant to the shearing conditions was put forward to describe the yielding behavior of gelled crude oil.

  1. Management of soybean oil refinery wastes through recycling them for producing biosurfactant using Pseudomonas aeruginosa MR01.

    PubMed

    Partovi, Maryam; Lotfabad, Tayebe Bagheri; Roostaazad, Reza; Bahmaei, Manochehr; Tayyebi, Shokoufe

    2013-06-01

    Biosurfactant production through a fermentation process involving the biodegradation of soybean oil refining wastes was studied. Pseudomonas aeruginosa MR01 was able to produce extracellular biosurfactant when it was cultured in three soybean oil refinement wastes; acid oil, deodorizer distillate and soapstock, at different carbon to nitrogen ratios. Subsequent fermentation kinetics in the three types of waste culture were also investigated and compared with kinetic behavior in soybean oil medium. Biodegradation of wastes, biosurfactant production, biomass growth, nitrate consumption and the number of colony forming units were detected in four proposed media, at specified time intervals. Unexpectedly, wastes could stimulate the biodegradation activity of MR01 bacterial cells and thus biosurfactant synthesis beyond that of the refined soybean oil. This is evident from higher yields of biodegradation and production, as revealed in the waste cultures (Ydeg|(Soybean oil) = 53.9 % < Ydeg|(wastes) and YP/S|(wastes) > YP/S|(Soybean oil) = 0.31 g g(-1), respectively). Although production yields were approximately the same in the three waste cultures (YP/S|(wastes) =/~ 0.5 g g(-1)), microbial activity resulted in higher yields of biodegradation (96.5 ± 1.13 %), maximum specific growth rate (μ max = 0.26 ± 0.02 h(-1)), and biosurfactant purity (89.6 %) with a productivity of 14.55 ± 1.10 g l(-1), during the bioconversion of soapstock into biosurfactant. Consequently, applying soybean oil soapstock as a substrate for the production of biosurfactant with commercial value has the potential to provide a combination of economical production with environmental protection through the biosynthesis of an environmentally friendly (green) compound and reduction of waste load entering the environment. Moreover, this work inferred spectrophotometry as an easy method to detect rhamnolipids in the biosurfactant products.

  2. Simultaneous degumming and production of a natural gum from Crotalaria juncea seeds: Physicochemical and rheological characterization.

    PubMed

    Sadhukhan, Suvra; Bhattacharjee, Annesha; Sarkar, Ujjaini; Baidya, Pabitra Kumar; Baksi, Sibashish

    2018-05-01

    The oil extracted from Crotalaria juncea (Sunn-hemp) contains 70% of gum. Several methods of degumming are attempted in order to maximize the yield of gum. During appropriate water induced degumming, about 95-98% of phosphatides are separated. The maximum oil yield for two types of degummimg processes are 0.59% and 0.69% corresponding to hot water and pure O-phosphoric acid (19.88 N) treatment respectively. The % oil yield obtained for TOP degumming is about 0.78%. Physico-chemical characteristics of the isolated gum such as moisture, ash, protein, fat and aqueous solubility along with FTIR and TGA analysis are studied in order to evaluate the effect of extraction process. The behaviour of gum on the molecular scale is evaluated through alcohol treatment. Chromatographic analysis determines the monosaccharide content of the gum with glucose: xylose: arabinose::54: 34:1. Rheological characterization shows that the juncea gum solutions are shear rate dependent and the behaviour is shear-thinning (or pseudoplastic). Results show that the temperature dependent viscosity decreases with increasing shear rate. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. A study on experimental characteristic of microwave-assisted pyrolysis of microalgae.

    PubMed

    Hu, Zhifeng; Ma, Xiaoqian; Chen, Chunxiang

    2012-03-01

    The microwave-assisted pyrolysis of Chlorella vulgaris was carried out under different microwave power levels, catalysts and contents of activated carbon and solid residue. The products, pyrolysis temperature and temperature rising rate were analyzed in order to obtain the optimal conditions. The results indicated that the higher the microwave power level was, the higher the maximum temperature rising rate and pyrolysis temperature were. The maximum bio-oil yield (35.83 wt.%) and gas yield (52.37%) were achieved under the microwave power of 1500 W and 2250 W, respectively. And 2250 W was the optimal power to obtain bio-fuel product. High microwave power level and catalyst can enhance the production of gas. Catalysts can promote the pyrolysis of C. vulgaris, and activated carbon was the best among the tested catalysts followed by the solid residue. The optimal content of activated carbon is 5% with the maximum bio-fuel yield of 87.47%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Evaluating the effectiveness of various biochars as porous media for biodiesel synthesis via pseudo-catalytic transesterification.

    PubMed

    Lee, Jechan; Jung, Jong-Min; Oh, Jeong-Ik; Ok, Yong Sik; Lee, Sang-Ryong; Kwon, Eilhann E

    2017-05-01

    This study focuses on investigating the optimized chemical composition of biochar used as porous material for biodiesel synthesis via pseudo-catalytic transesterification. To this end, six biochars from different sources were prepared and biodiesel yield obtained from pseudo-catalytic transesterification of waste cooking oil using six biochars were measured. Biodiesel yield and optimal reaction temperature for pseudo-catalytic transesterification were strongly dependent on the raw material of biochar. For example, biochar generated from maize residue exhibited the best performance, which yield was reached ∼90% at 300°C; however, the maximum biodiesel yield with pine cone biochar was 43% at 380°C. The maximum achievable yield of biodiesel was sensitive to the lignin content of biomass source of biochar but not sensitive to the cellulose and hemicellulose content. This study provides an insight for screening the most effective biochar as pseudo-catalytic porous material, thereby helping develop more sustainable and economically viable biodiesel synthesis process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Biodiesel production in crude oil contaminated environment using Chlorella vulgaris.

    PubMed

    Xaaldi Kalhor, Aadel; Mohammadi Nassab, Adel Dabbagh; Abedi, Ehsan; Bahrami, Ahmad; Movafeghi, Ali

    2016-12-01

    Biodiesel is a valuable alternative to fossil fuels and many countries choose biodiesel as an unconventional energy source. A large number of investigations have been done on microalgae as a source of oil production. In recent years, wastewater pollutions have caused many ecological problems, and therefore, wastewater phycoremediation has attracted the international attention. This paper studied the cultivation of Chlorella vulgaris in a crude oil polluted environment for biodiesel production. Intended concentrations were 10 and 20gperliter (crude oil/water) at two times. The results showed that the growth of C. vulgaris was improved in wastewater and the maximum amount of dry mass and oil was produced at the highest concentration of crude oil (0.41g and 0.15g/l, respectively). In addition, dry mass and oil yield of the microalga were significantly enhanced by increasing the experiment duration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Supercritical water pyrolysis of sewage sludge.

    PubMed

    Ma, Wenchao; Du, Guiyue; Li, Jian; Fang, Yuanhao; Hou, Li'an; Chen, Guanyi; Ma, Degang

    2017-01-01

    Municipal sewage sludge (SS) from wastewater treatment plant containing high water content (>85wt.%), lead to the difficulty of co-combustion with MSW or coal due to the high cost of drying. This study explores an alternative method by supercritical water (SCW) pyrolysis of sewage sludge (SS) in a high pressure reaction vessel. The effects of temperature and moisture content of SS on yield and composition of the products (bio-oil, bio char and non-condensable gas) were studied. A temperature of 385°C and moisture content of 85wt.% were found to be the optimum conditions for the maximum bio-oil production of 37.23wt.%, with a higher heating value of 31.08MJ/kg. In the optimum condition, the yields of aliphatic hydrocarbon and phenols were about 29.23wt.% and 12.51wt.%, respectively. The physical and chemical properties of bio-char were analyzed by using XRF and BET. Results of GC analyses of NCG showed that it has the maximum HHV of 13.39MJ/m 3 at 445°C and moisture content of 85wt.%. The reaction path from SS to bio-oil through SCW pyrolysis was given. Moreover, carbon balance was calculated for the optimal condition, and finding out that 64.27wt.% of the carbon content was transferred from SS to bio-oil. Finally, this work demonstrates that the SCW pyrolysis is a promising disposal method for SS. Copyright © 2016. Published by Elsevier Ltd.

  7. Pyrolysis polygeneration of poplar wood: Effect of heating rate and pyrolysis temperature.

    PubMed

    Chen, Dengyu; Li, Yanjun; Cen, Kehui; Luo, Min; Li, Hongyan; Lu, Bin

    2016-10-01

    The pyrolysis of poplar wood were comprehensively investigated at different pyrolysis temperatures (400, 450, 500, 550, and 600°C) and at different heating rates (10, 30, and 50°C/min). The results showed that BET surface area of biochar, the HHV of non-condensable gas and bio-oil reached the maximum values of 411.06m(2)/g, 14.56MJ/m(3), and 14.39MJ/kg, under the condition of 600°C and 30°C/min, 600°C and 50°C/min, and 550°C and 50°C/min, respectively. It was conducive to obtain high mass and energy yield of bio-oil at 500°C and higher heating rate, while lower pyrolysis temperature and heating rate contributed towards obtaining both higher mass yield and energy yield of biochar. However, higher pyrolysis temperature and heating rate contributed to obtain both higher mass yield and energy yield of the non-condensable gas. In general, compared to the heating rate, the pyrolysis temperature had more effect on the product properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. In situ impact of petrochemicals on the photosynthesis of the seagrass Zostera capricorni.

    PubMed

    Macinnis-Ng, Catriona M O; Ralph, Peter J

    2003-11-01

    We used photosynthetic activity (measured as chlorophyll a fluorescence) and photosynthetic pigment concentrations to assess the effect of pulsed exposures of aged crude oil (Champion Crude), dispersant (VDC) and an oil+dispersant mixture on the seagrass Zostera capricorni Aschers in laboratory and field experiments, using custom-made chambers. Samples were exposed for 10 h to 0.25% and 0.1% concentrations of aged crude oil and dispersant as well as mixtures of 0.25% oil+0.05% dispersant and 0.1% oil+0.02% dispersant. During this time and for the subsequent four day recovery period, the maximum and effective quantum yields of photosystem II (Fv/Fm and DeltaF/Fm' respectively) were measured. In the laboratory experiments, both values declined in response to oil exposure and remained low during the recovery period. Dispersant exposure caused a decline in both values during the recovery period, while the mixture of aged crude oil+dispersant had little impact on both quantum yields. In situ samples were less sensitive than laboratory samples, showing no photosynthetic impact due to dispersant and oil+dispersant mixture. Despite an initial decline in DeltaF/Fm', in situ oil-exposed samples recovered by the end of the experiment. Chlorophyll pigment analysis showed only limited ongoing impact in both laboratory and field situations. This study suggests that laboratory experiments may overestimate the ongoing impact of petrochemicals on seagrass whilst the dispersant VDC can reduce the impact of oil on seagrass photosynthesis.

  9. Pyrolysis of oil palm mesocarp fiber and palm frond in a slow-heating fixed-bed reactor: A comparative study.

    PubMed

    Kabir, G; Mohd Din, A T; Hameed, B H

    2017-10-01

    Oil palm mesocarp fiber (OPMF) and palm frond (PF) were respectively devolatilized by pyrolysis to OPMF-oil and PF-oil bio-oils and biochars, OPMF-char and PF-char in a slow-heating fixed-bed reactor. In particular, the OPMF-oil and PF-oil were produced to a maximum yield of 48wt% and 47wt% bio-oils at 550°C and 600°C, respectively. The high heating values (HHVs) of OPMF-oil and PF-oil were respectively found to be 23MJ/kg and 21MJ/kg, whereas 24.84MJ/kg and 24.15MJ/kg were for the corresponding biochar. The HHVs of the bio-oils and biochars are associated with low O/C ratios to be higher than those of the corresponding biomass. The Fourier transform infrared spectra and peak area ratios highlighted the effect of pyrolysis temperatures on the bio-oil compositions. The bio-oils are pervaded with numerous oxygenated carbonyl and aromatic compounds as suitable feedstocks for renewable fuels and chemicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Photocatalytic production and processing of conjugated linoleic acid-rich soy oil.

    PubMed

    Jain, Vishal P; Proctor, Andrew

    2006-07-26

    Daily intake of conjugated linoleic acid (CLA), an anticarcinogenic, antiatherosclerotic, antimutagenic agent, and antioxidant, from dairy and meat products is substantially less than estimated required values. The objective of this study was to obtain CLA-rich soybean oil by a customized photochemical reaction system with an iodine catalyst and evaluate the effect of processing on iodine and iodo compounds after adsorption. After 144 h of irradiation, a total CLA yield of 24% (w/w) total oil was obtained with 0.15% (w/w) iodine. Trans,trans isomers (17.5%) formed the majority of the total yield and are also associated with health benefits. The isomers cis-9,trans-11 and trans-10,cis-12 CLA, associated with maximum health benefits, formed approximately 3.5% of the total oil. This amount is quite significant considering that total CLA obtained from dairy sources is only 0.6%. ATR-FTIR, 1H NMR, and GC-MS analyses indicated the absence of peroxide and aldehyde protons, providing evidence that secondary lipid oxidation products were not formed during the photochemical reaction. Adsorption processing vastly reduced the iodine and iodocompounds without CLA loss. Photocatalysis significantly increased the levels of CLA in soybean oil.

  11. Production of a Lipopeptide Biosurfactant by a Novel Bacillus sp. and Its Applicability to Enhanced Oil Recovery.

    PubMed

    Varadavenkatesan, Thivaharan; Murty, Vytla Ramachandra

    2013-01-01

    Biosurfactants are surface-active compounds derived from varied microbial sources including bacteria and fungi. They are secreted extracellularly and have a wide range of exciting properties for bioremediation purposes. They also have vast applications in the food and medicine industry. With an objective of isolating microorganisms for enhanced oil recovery (EOR) operations, the study involved screening of organisms from an oil-contaminated site. Morphological, biochemical, and 16S rRNA analysis of the most promising candidate revealed it to be Bacillus siamensis, which has been associated with biosurfactant production, for the first time. Initial fermentation studies using mineral salt medium supplemented with crude oil resulted in a maximum biosurfactant yield of 0.64 g/L and reduction of surface tension to 36.1 mN/m at 96 h. Characterization studies were done using thin layer chromatography and Fourier transform infrared spectroscopy. FTIR spectra indicated the presence of carbonyl groups, alkyl bonds, and C-H and N-H stretching vibrations, typical of peptides. The extracted biosurfactant was stable at extreme temperatures, pH, and salinity. Its applicability to EOR was further verified by conducting sand pack column studies that yielded up to 60% oil recovery.

  12. Production of Biodiesel from Acid Oil via a Two-Step Enzymatic Transesterification.

    PubMed

    Choi, Nakyung; Lee, Jeom-Sig; Kwak, Jieun; Lee, Junsoo; Kim, In-Hwan

    2016-11-01

    A two-step enzymatic transesterification process in a solvent-free system has been developed as a novel approach to the production of biodiesel using acid oil from rice bran oil soapstock. The acid oil consisted of 53.7 wt% fatty acids, 2.4 wt% monoacylglycerols, 9.1 wt% diacylglycerols, 28.8 wt% triacylglycerols, and 6.0 wt% others. Three immobilized lipases were evaluated as potential biocatalysts, including Novozym 435 from Candida antarctica, Lipozyme RM IM from Rhizomucor miehei, and Lipozyme TL IM from Thermomyces lanuginosus. The effects of molar ratio of acid oil to ethanol, temperature, and enzyme loading were investigated to determine the optimum conditions for the transesterification with the three immobilized lipases. The optimum conditions of the three immobilized lipases were a molar ratio of 1:5 (acid oil to ethanol), the temperature range of 30-40°C, and the enzyme loading range of 5-10%. The two-step transesterification was then conducted under the optimum conditions of each lipase. The stepwise use of Novozym 435 and Lipozyme TL IM or Lipozyme RM IM and Lipozyme TL IM resulted in similar or higher levels of yield to the individual lipases. The maximum yields obtained in both stepwise uses were ca. 92%.

  13. Distillation time modifies essential oil yield, composition, and antioxidant capacity of fennel (Foeniculum vulgare Mill).

    PubMed

    Zheljazkov, Valtcho D; Horgan, Thomas; Astatkie, Tess; Schlegel, Vicki

    2013-01-01

    Fennel (Foeniculum vulgare Mill) is an essential oil crop grown worldwide for production of essential oil, as medicinal or as culinary herb. The essential oil is extracted via steam distillation either from the whole aboveground biomass (herb) or from fennel fruits (seed). The hypothesis of this study was that distillation time (DT) can modify fennel oil yield, composition, and antioxidant capacity of the oil. Therefore, the objective of this study was to evaluate the effect of eight DT (1.25, 2.5, 5, 10, 20, 40, 80, and 160 min) on fennel herb essential oil. Fennel essential oil yield (content) reached a maximum of 0.68% at 160 min DT. The concentration of trans-anethole (32.6-59.4% range in the oil) was low at 1.25 min DT, and increased with an increase of the DT. Alpha-phelandrene (0.9-10.5% range) was the lowest at 1.25 min DT and higher at 10, 80, and 160 min DT. Alpha-pinene (7.1-12.4% range) and beta-pinene (0.95-1.64% range) were higher in the shortest DT and the lowest at 80 min DT. Myrcene (0.93-1.95% range), delta-3-carene (2.1-3.7% range), cis-ocimene (0-0.23% range), and gamma-terpinene (0.22-2.67% range) were the lowest at 1.25 min DT and the highest at 160 min DT. In contrast, the concentrations of paracymene (0.68-5.97% range), fenchone (9.8-22.7% range), camphor (0.21-0.51% range), and cis-anethole (0.14-4.66% range) were highest at shorter DT (1.25-5 min DT) and the lowest at the longer DT (80-160 min DT). Fennel oils from the 20 and 160 min DT had higher antioxidant capacity than the fennel oil obtained at 1.25 min DT. DT can be used to obtain fennel essential oil with differential composition. DT must be reported when reporting essential oil content and composition of fennel essential oil. The results from this study may be used to compare reports in which different DT to extract essential oil from fennel biomass were used.

  14. Response Surface Methodology for Optimizing the Production of Biosurfactant by Candida tropicalis on Industrial Waste Substrates

    PubMed Central

    Almeida, Darne G.; Soares da Silva, Rita de Cássia F.; Luna, Juliana M.; Rufino, Raquel D.; Santos, Valdemir A.; Sarubbo, Leonie A.

    2017-01-01

    Biosurfactant production optimization by Candida tropicalis UCP0996 was studied combining central composite rotational design (CCRD) and response surface methodology (RSM). The factors selected for optimization of the culture conditions were sugarcane molasses, corn steep liquor, waste frying oil concentrations and inoculum size. The response variables were surface tension and biosurfactant yield. All factors studied were important within the ranges investigated. The two empirical forecast models developed through RSM were found to be adequate for describing biosurfactant production with regard to surface tension (R2 = 0.99833) and biosurfactant yield (R2 = 0.98927) and a very strong, negative, linear correlation was found between the two response variables studied (r = −0.95). The maximum reduction in surface tension and the highest biosurfactant yield were 29.98 mNm−1 and 4.19 gL−1, respectively, which were simultaneously obtained under the optimum conditions of 2.5% waste frying oil, 2.5%, corn steep liquor, 2.5% molasses, and 2% inoculum size. To validate the efficiency of the statistically optimized variables, biosurfactant production was also carried out in 2 and 50 L bioreactors, with yields of 5.87 and 7.36 gL−1, respectively. Finally, the biosurfactant was applied in motor oil dispersion, reaching up to 75% dispersion. Results demonstrated that the CCRD was suitable for identifying the optimum production conditions and that the new biosurfactant is a promising dispersant for application in the oil industry. PMID:28223971

  15. Oil point and mechanical behaviour of oil palm kernels in linear compression

    NASA Astrophysics Data System (ADS)

    Kabutey, Abraham; Herak, David; Choteborsky, Rostislav; Mizera, Čestmír; Sigalingging, Riswanti; Akangbe, Olaosebikan Layi

    2017-07-01

    The study described the oil point and mechanical properties of roasted and unroasted bulk oil palm kernels under compression loading. The literature information available is very limited. A universal compression testing machine and vessel diameter of 60 mm with a plunger were used by applying maximum force of 100 kN and speed ranging from 5 to 25 mm min-1. The initial pressing height of the bulk kernels was measured at 40 mm. The oil point was determined by a litmus test for each deformation level of 5, 10, 15, 20, and 25 mm at a minimum speed of 5 mmmin-1. The measured parameters were the deformation, deformation energy, oil yield, oil point strain and oil point pressure. Clearly, the roasted bulk kernels required less deformation energy compared to the unroasted kernels for recovering the kernel oil. However, both kernels were not permanently deformed. The average oil point strain was determined at 0.57. The study is an essential contribution to pursuing innovative methods for processing palm kernel oil in rural areas of developing countries.

  16. Changes of Peel Essential Oil Composition of Four Tunisian Citrus during Fruit Maturation

    PubMed Central

    Bourgou, Soumaya; Rahali, Fatma Zohra; Ourghemmi, Iness; Saïdani Tounsi, Moufida

    2012-01-01

    The present work investigates the effect of ripening stage on the chemical composition of essential oil extracted from peel of four citrus: bitter orange (Citrus aurantium), lemon (Citrus limon), orange maltaise (Citrus sinensis), and mandarin (Citrus reticulate) and on their antibacterial activity. Essential oils yields varied during ripening from 0.46 to 2.70%, where mandarin was found to be the richest. Forty volatile compounds were identified. Limonene (67.90–90.95%) and 1,8-cineole (tr-14.72%) were the most represented compounds in bitter orange oil while limonene (37.63–69.71%), β-pinene (0.63–31.49%), γ-terpinene (0.04–9.96%), and p-cymene (0.23–9.84%) were the highest ones in lemon. In the case of mandarin, the predominant compounds were limonene (51.81–69.00%), 1,8-cineole (0.01–26.43%), and γ-terpinene (2.53–14.06%). However, results showed that orange peel oil was dominated mainly by limonene (81.52–86.43%) during ripening. The results showed that ripening stage influenced significantly the antibacterial activity of the oils against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. This knowledge could help establish the optimum harvest date ensuring the maximum essential oil, limonene, as well as antibacterial compounds yields of citrus. PMID:22645427

  17. Optimization of the pyrolysis process of empty fruit bunch (EFB) in a fixed-bed reactor through a central composite design (CCD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, Alina Rahayu; Hamzah, Zainab; Daud, Mohamed Zulkali Mohamed

    2014-07-10

    The production of crude palm oil from the processing of palm fresh fruit bunches in the palm oil mills in Malaysia hs resulted in a huge quantity of empty fruit bunch (EFB) accumulated. The EFB was used as a feedstock in the pyrolysis process using a fixed-bed reactor in the present study. The optimization of process parameters such as pyrolysis temperature (factor A), biomass particle size (factor B) and holding time (factor C) were investigated through Central Composite Design (CCD) using Stat-Ease Design Expert software version 7 with bio-oil yield considered as the response. Twenty experimental runs were conducted. Themore » results were completely analyzed by Analysis of Variance (ANOVA). The model was statistically significant. All factors studied were significant with p-values < 0.05. The pyrolysis temperature (factor A) was considered as the most significant parameter because its F-value of 116.29 was the highest. The value of R{sup 2} was 0.9564 which indicated that the selected factors and its levels showed high correlation to the production of bio-oil from EFB pyrolysis process. A quadratic model equation was developed and employed to predict the highest theoretical bio-oil yield. The maximum bio-oil yield of 46.2 % was achieved at pyrolysis temperature of 442.15 °C using the EFB particle size of 866 μm which corresponded to the EFB particle size in the range of 710–1000 μm and holding time of 483 seconds.« less

  18. Fish protein hydrolysates: application in deep-fried food and food safety analysis.

    PubMed

    He, Shan; Franco, Christopher; Zhang, Wei

    2015-01-01

    Four different processes (enzymatic, microwave-intensified enzymatic, chemical, and microwave-intensified chemical) were used to produce fish protein hydrolysates (FPH) from Yellowtail Kingfish for food applications. In this study, the production yield and oil-binding capacity of FPH produced from different processes were evaluated. Microwave intensification significantly increased the production yields of enzymatic process from 42% to 63%. It also increased the production yields of chemical process from 87% to 98%. The chemical process and microwave-intensified chemical process produced the FPH with low oil-binding capacity (8.66 g oil/g FPH and 6.25 g oil/g FPH), whereas the microwave-intensified enzymatic process produced FPH with the highest oil-binding capacity (16.4 g oil/g FPH). The FPH from the 4 processes were applied in the formulation of deep-fried battered fish and deep-fried fish cakes. The fat uptake of deep-fried battered fish can be reduced significantly from about 7% to about 4.5% by replacing 1% (w/w) batter powder with FPH, and the fat uptake of deep-fried fish cakes can be significantly reduced from about 11% to about 1% by replacing 1% (w/w) fish mince with FPH. Food safety tests of the FPH produced by these processes demonstrated that the maximum proportion of FPH that can be safely used in food formulation is 10%, due to its high content of histamine. This study demonstrates the value of FPH to the food industry and bridges the theoretical studies with the commercial applications of FPH. © 2015 Institute of Food Technologists®

  19. Optimization of the pyrolysis process of empty fruit bunch (EFB) in a fixed-bed reactor through a central composite design (CCD)

    NASA Astrophysics Data System (ADS)

    Mohamed, Alina Rahayu; Hamzah, Zainab; Daud, Mohamed Zulkali Mohamed

    2014-07-01

    The production of crude palm oil from the processing of palm fresh fruit bunches in the palm oil mills in Malaysia hs resulted in a huge quantity of empty fruit bunch (EFB) accumulated. The EFB was used as a feedstock in the pyrolysis process using a fixed-bed reactor in the present study. The optimization of process parameters such as pyrolysis temperature (factor A), biomass particle size (factor B) and holding time (factor C) were investigated through Central Composite Design (CCD) using Stat-Ease Design Expert software version 7 with bio-oil yield considered as the response. Twenty experimental runs were conducted. The results were completely analyzed by Analysis of Variance (ANOVA). The model was statistically significant. All factors studied were significant with p-values < 0.05. The pyrolysis temperature (factor A) was considered as the most significant parameter because its F-value of 116.29 was the highest. The value of R2 was 0.9564 which indicated that the selected factors and its levels showed high correlation to the production of bio-oil from EFB pyrolysis process. A quadratic model equation was developed and employed to predict the highest theoretical bio-oil yield. The maximum bio-oil yield of 46.2 % was achieved at pyrolysis temperature of 442.15 °C using the EFB particle size of 866 μm which corresponded to the EFB particle size in the range of 710-1000 μm and holding time of 483 seconds.

  20. Chemical composition, plant genetic differences, and antifungal activity of the essential oil of Helichrysum italicum G. Don ssp. microphyllum (Willd) Nym.

    PubMed

    Angioni, Alberto; Barra, Andrea; Arlorio, Marco; Coisson, Jean Daniel; Russo, Maria T; Pirisi, Filippo M; Satta, Maurizio; Cabras, Paolo

    2003-02-12

    The chemical composition of the essential oil of the Sardinian dwarf curry plant [Helichrysum italicum G. Don ssp. microphyllum (Willd) Nym] was studied. Genetic analysis suggested the presence of two chemotypes; morphological and chemical differences confirmed the presence of two chemotypes (A and B). The maximum yields were 0.18 and 0.04% (v/w) for flowering tops and stems, respectively. The concentrations of nerol and its esters (acetate and propionate), limonene, and linalool reach their highest values during the flowering stage both in flowers and in stems. Besides the essential oil, type B showed an interesting antifungal activity.

  1. Improvement of efficiency of oil extraction from wild apricot kernels by using enzymes.

    PubMed

    Bisht, Tejpal Singh; Sharma, Satish Kumar; Sati, Ramesh Chandra; Rao, Virendra Kumar; Yadav, Vijay Kumar; Dixit, Anil Kumar; Sharma, Ashok Kumar; Chopra, Chandra Shekhar

    2015-03-01

    An experiment was conducted to evaluate and standardize the protocol for enhancing recovery of oil and quality from cold pressed wild apricot kernels by using various enzymes. Wild apricot kernels were ground into powder in a grinder. Different lots of 3 kg powdered kernel were prepared and treated with different concentrations of enzyme solutions viz. Pectazyme (Pectinase), Mashzyme (Cellulase) and Pectazyme + Mashzyme. Kernel powder mixed with enzyme solutions were kept for 2 h at 50(±2) °C temperature for enzymatic treatment before its use for oil extraction through oil expeller. Results indicate that use of enzymes resulted in enhancement of oil recovery by 9.00-14.22 %. Maximum oil recovery was observed at 0.3-0.4 % enzyme concentration for both the enzymes individually, as well as in combination. All the three enzymatic treatments resulted in increasing oil yield. However, with 0.3 % (Pectazyme + Mashzyme) combination, maximum oil recovery of 47.33 % could be observed against were 33.11 % in control. The oil content left (wasted) in the cake and residue were reduced from 11.67 and 11.60 % to 7.31 and 2.72 % respectively, thus showing a high increase in efficiency of oil recovery from wild apricot kernels. Quality characteristics indicate that the oil quality was not adversely affected by enzymatic treatment. It was concluded treatment of powdered wild apricot kernels with 0.3 % (Pectazyme + Mashzyme) combination was highly effective in increasing oil recovery by 14.22 % without adversely affecting the quality and thus may be commercially used by the industry for reducing wastage of highly precious oil in the cake.

  2. Successful scaling-up of self-sustained pyrolysis of oil palm biomass under pool-type reactor.

    PubMed

    Idris, Juferi; Shirai, Yoshihito; Andou, Yoshito; Mohd Ali, Ahmad Amiruddin; Othman, Mohd Ridzuan; Ibrahim, Izzudin; Yamamoto, Akio; Yasuda, Nobuhiko; Hassan, Mohd Ali

    2016-02-01

    An appropriate technology for waste utilisation, especially for a large amount of abundant pressed-shredded oil palm empty fruit bunch (OFEFB), is important for the oil palm industry. Self-sustained pyrolysis, whereby oil palm biomass was combusted by itself to provide the heat for pyrolysis without an electrical heater, is more preferable owing to its simplicity, ease of operation and low energy requirement. In this study, biochar production under self-sustained pyrolysis of oil palm biomass in the form of oil palm empty fruit bunch was tested in a 3-t large-scale pool-type reactor. During the pyrolysis process, the biomass was loaded layer by layer when the smoke appeared on the top, to minimise the entrance of oxygen. This method had significantly increased the yield of biochar. In our previous report, we have tested on a 30-kg pilot-scale capacity under self-sustained pyrolysis and found that the higher heating value (HHV) obtained was 22.6-24.7 MJ kg(-1) with a 23.5%-25.0% yield. In this scaled-up study, a 3-t large-scale procedure produced HHV of 22.0-24.3 MJ kg(-1) with a 30%-34% yield based on a wet-weight basis. The maximum self-sustained pyrolysis temperature for the large-scale procedure can reach between 600 °C and 700 °C. We concluded that large-scale biochar production under self-sustained pyrolysis was successfully conducted owing to the comparable biochar produced, compared with medium-scale and other studies with an electrical heating element, making it an appropriate technology for waste utilisation, particularly for the oil palm industry. © The Author(s) 2015.

  3. Vacuum pyrolysis of waste tires with basic additives.

    PubMed

    Zhang, Xinghua; Wang, Tiejun; Ma, Longlong; Chang, Jie

    2008-11-01

    Granules of waste tires were pyrolyzed under vacuum (3.5-10 kPa) conditions, and the effects of temperature and basic additives (Na2CO3, NaOH) on the properties of pyrolysis were thoroughly investigated. It was obvious that with or without basic additives, pyrolysis oil yield increased gradually to a maximum and subsequently decreased with a temperature increase from 450 degrees C to 600 degrees C, irrespective of the addition of basic additives to the reactor. The addition of NaOH facilitated pyrolysis dramatically, as a maximal pyrolysis oil yield of about 48 wt% was achieved at 550 degrees C without the addition of basic additives, while a maximal pyrolysis oil yield of about 50 wt% was achieved at 480 degrees C by adding 3 wt% (w/w, powder/waste tire granules) of NaOH powder. The composition analysis of pyrolytic naphtha (i.b.p. (initial boiling point) approximately 205 degrees C) distilled from pyrolysis oil showed that more dl-limonene was obtained with basic additives and the maximal content of dl-limonene in pyrolysis oil was 12.39 wt%, which is a valuable and widely-used fine chemical. However, no improvement in pyrolysis was observed with Na2CO3 addition. Pyrolysis gas was mainly composed of H2, CO, CH4, CO2, C2H4 and C2H6. Pyrolytic char had a surface area comparable to commercial carbon black, but its proportion of ash (above 11.5 wt%) was much higher.

  4. A study on the performance and emission characteristics of esterified pinnai oil tested in VCR engine.

    PubMed

    Ashok Kumar, T; Chandramouli, R; Mohanraj, T

    2015-11-01

    Biodiesel is a clean renewable fuel derived from vegetable oils and animal fats. It is biodegradable, oxygenated, non toxic and free from sulfur and aromatics. The biodiesel prepared from pinnai oil undergoes acid esterification followed by alkaline transesterification process. The fatty acid methyl esters components were identified using gas chromatography and compared with the standard properties. The properties of biodiesel are comparable with diesel. The yield of the biodiesel production depends upon the process parameters such as reaction temperature, pH, time duration and amount of catalyst. The yield of biodiesel by transesterification process was 73% at 55°C. This fuel was tested in a variable compression ratio engine with blend ratios of B10 and B20. During the test runs the compression ratio of the engine was varied from 15:1 to 18:1 and the torque is adjusted from zero to maximum value of 22Nm. The performance characteristics such as the brake thermal efficiency, brake specific energy consumption and exhaust gas temperature of the engine are analyzed. The combustion characteristics of biodiesel like ignition delay, combustion duration and maximum gas temperature and the emission characteristics are also analyzed. The performance characteristics, combustion characteristics and engine emission are effective in the variable compression ratio engine with biodiesel and it is compared with diesel. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. The effects of catalysts on the conversion of organic matter and bio-fuel production in the microwave pyrolysis of sludge at different temperatures.

    PubMed

    Ma, Rui; Huang, Xiaofei; Zhou, Yang; Fang, Lin; Sun, Shichang; Zhang, Peixin; Zhang, Xianghua; Zhao, Xuxin

    2017-08-01

    Adding catalyst could improve the yields and qualities of bio-gas and bio-oil, and realize the oriented production. Results showed that the catalytic gas-production capacities of CaO were higher than those of Fe 2 O 3 , and the bio-gas yield at 800°C reached a maximum of 35.1%. Because the polar cracking active sites of CaO reduced the activation energy of the pyrolysis reaction and resulted in high catalytic cracking efficiencies. In addition, the quality of bio-oil produced by CaO was superior to that by Fe 2 O 3 , although the bio-oil yield of CaO was relatively weak. The light bio-fuel oriented catalytic pyrolysis could be realized when adding different catalysts. At 800°C, CaO was 45% higher than Fe 2 O 3 in aspect of H 2 production while Fe 2 O 3 was 103% higher than CaO in aspect of CH 4 production. Therefore, CaO was more suitable for H 2 production and Fe 2 O 3 was more suitable for CH 4 production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. High quality bergamot oil from Greece: Chemical analysis using chiral gas chromatography and larvicidal activity against the West Nile virus vector.

    PubMed

    Melliou, Eleni; Eleni, Melliou; Michaelakis, Antonios; Antonios, Michaelakis; Koliopoulos, George; George, Koliopoulos; Skaltsounis, Alexios-Leandros; Alexios-Leandros, Skaltsounis; Magiatis, Prokopios; Prokopios, Magiatis

    2009-02-18

    Tauhe essential oils contained in the rind of the fruit and the leaves of bergamot from Greece (Citrus aurantium subsp. bergamia) were studied. The bergamot trees in question were cultivated on Kefalonia Island. The plant material (leaves and fruits in different stages of maturity) was collected between December and March for a two year period. The rind of the fruit was separated manually and the essential oil was obtained either by cold pressing or by hydrodistillation. The maximum yield calculated on a wet weight of fresh rinds basis was 1.8%. The essential oils were first analyzed by GC-MS with a DB-5 column and then with a beta-Dex enantiomeric column. The main constituent of the cold pressed essential oil of the rind was (-)-linalyl acetate with optical purity >99.9%. Other important constituents were (-)-linalool, (+)-limonene and gamma-terpinene. The best value of linalool/linalyl acetate ratio was 0.38 and the maximum sum of linalool+linalyl acetate was found to be 55.8%. The larvacidal activities of the obtained essential oils and the compounds (+/-)-linalyl acetate, (+/-)-linalool and (-)-linalool were evaluated against larvae of the mosquito species Culex pipiens (Diptera: Culicidae), the West Nile virus vector, under laboratory conditions. The cold pressed essential oil showed an LC(50) value of 58 mg/L, while the LC(50) value of the corresponding essential oil obtained by hydrostillation was 106 mg/L. The essential oil of the leaves presented similar larvicidal toxicity with the cold pressed oil of the rind (LC(50)=68 mg/L).

  7. Transitions from functionalization to fragmentation reactions of laboratory secondary organic aerosol (SOA) generated from the OH oxidation of alkane precursors.

    PubMed

    Lambe, Andrew T; Onasch, Timothy B; Croasdale, David R; Wright, Justin P; Martin, Alexander T; Franklin, Jonathan P; Massoli, Paola; Kroll, Jesse H; Canagaratna, Manjula R; Brune, William H; Worsnop, Douglas R; Davidovits, Paul

    2012-05-15

    Functionalization (oxygen addition) and fragmentation (carbon loss) reactions governing secondary organic aerosol (SOA) formation from the OH oxidation of alkane precursors were studied in a flow reactor in the absence of NO(x). SOA precursors were n-decane (n-C10), n-pentadecane (n-C15), n-heptadecane (n-C17), tricyclo[5.2.1.0(2,6)]decane (JP-10), and vapors of diesel fuel and Southern Louisiana crude oil. Aerosol mass spectra were measured with a high-resolution time-of-flight aerosol mass spectrometer, from which normalized SOA yields, hydrogen-to-carbon (H/C) and oxygen-to-carbon (O/C) ratios, and C(x)H(y)+, C(x)H(y)O+, and C(x)H(y)O(2)+ ion abundances were extracted as a function of OH exposure. Normalized SOA yield curves exhibited an increase followed by a decrease as a function of OH exposure, with maximum yields at O/C ratios ranging from 0.29 to 0.74. The decrease in SOA yield correlates with an increase in oxygen content and decrease in carbon content, consistent with transitions from functionalization to fragmentation. For a subset of alkane precursors (n-C10, n-C15, and JP-10), maximum SOA yields were estimated to be 0.39, 0.69, and 1.1. In addition, maximum SOA yields correspond with a maximum in the C(x)H(y)O+ relative abundance. Measured correlations between OH exposure, O/C ratio, and H/C ratio may enable identification of alkane precursor contributions to ambient SOA.

  8. Catalytic Hydrodeoxygenation of Bio-oil Model Compounds over Pt/HY Catalyst

    NASA Astrophysics Data System (ADS)

    Lee, Heejin; Kim, Hannah; Yu, Mi Jin; Ko, Chang Hyun; Jeon, Jong-Ki; Jae, Jungho; Park, Sung Hoon; Jung, Sang-Chul; Park, Young-Kwon

    2016-06-01

    The hydrodeoxygenation of a model compound of lignin-derived bio-oil, guaiacol, which can be obtained from the pyrolysis of biomass to bio-oil, has attracted considerable research attention because of its huge potential as a substitute for conventional fuels. In this study, platinum-loaded HY zeolites (Pt/HY) with different Si/Al molar ratios were used as catalysts for the hydrodeoxygenation of guaiacol, anisole, veratrole, and phenol to a range of hydrocarbons, such as cyclohexane. The cyclohexane (major product) yield increased with increasing number of acid sites. To produce bio-oil with the maximum level of cyclohexane and alkylated cyclohexanes, which would be suitable as a substitute for conventional transportation fuels, the Si/Al molar ratio should be optimized to balance the Pt particle-induced hydrogenation with acid site-induced methyl group transfer. The fuel properties of real bio-oil derived from the fast pyrolysis of cork oak was improved using the Pt/HY catalyst.

  9. Catalytic Hydrodeoxygenation of Bio-oil Model Compounds over Pt/HY Catalyst.

    PubMed

    Lee, Heejin; Kim, Hannah; Yu, Mi Jin; Ko, Chang Hyun; Jeon, Jong-Ki; Jae, Jungho; Park, Sung Hoon; Jung, Sang-Chul; Park, Young-Kwon

    2016-06-30

    The hydrodeoxygenation of a model compound of lignin-derived bio-oil, guaiacol, which can be obtained from the pyrolysis of biomass to bio-oil, has attracted considerable research attention because of its huge potential as a substitute for conventional fuels. In this study, platinum-loaded HY zeolites (Pt/HY) with different Si/Al molar ratios were used as catalysts for the hydrodeoxygenation of guaiacol, anisole, veratrole, and phenol to a range of hydrocarbons, such as cyclohexane. The cyclohexane (major product) yield increased with increasing number of acid sites. To produce bio-oil with the maximum level of cyclohexane and alkylated cyclohexanes, which would be suitable as a substitute for conventional transportation fuels, the Si/Al molar ratio should be optimized to balance the Pt particle-induced hydrogenation with acid site-induced methyl group transfer. The fuel properties of real bio-oil derived from the fast pyrolysis of cork oak was improved using the Pt/HY catalyst.

  10. 1,3-Regiospecific ethanolysis of soybean oil catalyzed by crosslinked porcine pancreas lipase aggregates.

    PubMed

    Ramos, Margarita D; Miranda, Letícia P; Giordano, Raquel L C; Fernandez-Lafuente, Roberto; Kopp, William; Tardioli, Paulo W

    2018-04-25

    The preparation of crosslinked aggregates of pancreatic porcine lipase (PPL-CLEA) was systematically studied, evaluating the influence of three precipitants and two crosslinking agents, as well as the use of soy protein as an alternative feeder protein on the catalytic properties and stability of the immobilized PPL. Standard CLEAs showed a global yield (CLEA' observed activity/offered total activity) of less than 4%, whereas with the addition of soy protein (PPL:soy protein mass ratio of 1:3) the global yield was approximately fivefold higher. The CLEA of PPL prepared with soy protein as feeder (PPL:soy protein mass ratio of 1:3) and glutaraldehyde as crosslinking reagent (10 μmol of aldehyde groups/mg of total protein) was more active mainly because of the reduced enzyme leaching in the washing step. This CLEA, named PPL-SOY-CLEA, had an immobilization yield around 60% and an expressed activity around 40%. In the ethanolysis of soybean oil, the PPL-SOY-CLEA yielded maximum fatty acid ethyl ester (FAEE) concentration around 12-fold higher than that achieved using soluble PPL (34 h reaction at 30°C, 300 rpm stirring, soybean oil/ethanol molar ratio of 1:5) with an enzyme load around 2-fold lower (very likely due to free enzyme inactivation). The operational stability of the PPL-SOY-CLEA in the ethanolysis of soybean oil in a vortex flow type reactor showed that FAEE yield was higher than 50% during ten reaction cycles of 24 h. This reactor configuration may be an attractive alternative to the conventional stirred reactors for biotransformations in industrial plants using carrier-free biocatalysts. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  11. Liquid fuel generation from algal biomass via a two-step process: effect of feedstocks.

    PubMed

    Xu, Yu-Ping; Duan, Pei-Gao; Wang, Feng; Guan, Qing-Qing

    2018-01-01

    In this study, a two-step processing method (hydrothermal liquefaction followed by catalytic upgrading) was used to produce upgraded bio-oil. A comprehensive screening analysis of algal species, including four microalgae and four macroalgae, was conducted to bridge the gap between previous accounts of microalgae and macroalgae hydrothermal liquefaction and the upgrading process of the resulting crude bio-oils. Hydrothermal liquefaction using eight algal biomasses was performed at 350 °C for 1 h. The microalgae always produced a higher crude bio-oil yield than the macroalgae due to their high lipid content, among which Schizochytrium limacinum provided the maximum crude bio-oil yield of 54.42 wt%. For microalgae, higher amounts of N in the biomass resulted in higher amounts of N in the crude bio-oil; however, contrary results were observed for the macroalgae. The crude bio-oils generated from both the microalgae and macroalgae were characterized as having a high viscosity, total acid number, and heteroatom content, and they were influenced by the biochemical compositions of the feedstocks. Next, all eight-crude bio-oils were treated at 400 °C for 2 h with 10 wt% Ru/C using tetralin as the hydrogen donor. The hydrogen source was provided after tetralin was transformed to naphthalene. All the upgraded bio-oils had higher energy densities and significantly lower N, O, and S contents and viscosities than their corresponding crude bio-oils. However, the H/C molar ratio of the upgraded bio-oils decreased due to the absence of external hydrogen relative to the crude bio-oils. The S content of the upgraded bio-oil produced from upgrading the Schizochytrium limacinum crude bio-oil was even close to the 50 ppm requirement of China IV diesel. Microalgae are better feedstocks than macroalgae for liquid fuel production. Biochemical components have a significant impact on the yield and composition of crude bio-oil. Tetralin does not perform as well as external hydrogen for controlling coke formation. The S content of the upgraded bio-oil can be reduced to 76 ppm for the crude bio-oil produced from Schizochytrium limacinum . Upgraded bio-oils have similar properties to those of naphtha and jet fuel.

  12. Lipase production in solid-state fermentation monitoring biomass growth of aspergillus niger using digital image processing.

    PubMed

    Dutra, Júlio C V; da C Terzi, Selma; Bevilaqua, Juliana Vaz; Damaso, Mônica C T; Couri, Sônia; Langone, Marta A P; Senna, Lilian F

    2008-03-01

    The aim of this study was to monitor the biomass growth of Aspergillus niger in solid-state fermentation (SSF) for lipase production using digital image processing technique. The strain A. niger 11T53A14 was cultivated in SSF using wheat bran as support, which was enriched with 0.91% (m/v) of ammonium sulfate. The addition of several vegetable oils (castor, soybean, olive, corn, and palm oils) was investigated to enhance lipase production. The maximum lipase activity was obtained using 2% (m/m) castor oil. In these conditions, the growth was evaluated each 24 h for 5 days by the glycosamine content analysis and digital image processing. Lipase activity was also determined. The results indicated that the digital image process technique can be used to monitor biomass growth in a SSF process and to correlate biomass growth and enzyme activity. In addition, the immobilized esterification lipase activity was determined for the butyl oleate synthesis, with and without 50% v/v hexane, resulting in 650 and 120 U/g, respectively. The enzyme was also used for transesterification of soybean oil and ethanol with maximum yield of 2.4%, after 30 min of reaction.

  13. Lipase Production in Solid-State Fermentation Monitoring Biomass Growth of Aspergillus niger Using Digital Image Processing

    NASA Astrophysics Data System (ADS)

    Dutra, Julio C. V.; da Terzi, Selma C.; Bevilaqua, Juliana Vaz; Damaso, Mônica C. T.; Couri, Sônia; Langone, Marta A. P.; Senna, Lilian F.

    The aim of this study was to monitor the biomass growth of Aspergillus niger in solid-state fermentation (SSF) for lipase production using digital image processing technique. The strain A. niger 11T53A14 was cultivated in SSF using wheat bran as support, which was enriched with 0.91% (m/v) of ammonium sulfate. The addition of several vegetable oils (castor, soybean, olive, corn, and palm oils) was investigated to enhance lipase production. The maximum lipase activity was obtained using 2% (m/m) castor oil. In these conditions, the growth was evaluated each 24 h for 5 days by the glycosamine content analysis and digital image processing. Lipase activity was also determined. The results indicated that the digital image process technique can be used to monitor biomass growth in a SSF process and to correlate biomass growth and enzyme activity. In addition, the immobilized esterification lipase activity was determined for the butyl oleate synthesis, with and without 50% v/v hexane, resulting in 650 and 120 U/g, respectively. The enzyme was also used for transesterification of soybean oil and ethanol with maximum yield of 2.4%, after 30 min of reaction.

  14. Yield and seed oil content response of dwarf, rapid-cycling Brassica to nitrogen treatments, planting density, and carbon dioxide enrichment

    NASA Technical Reports Server (NTRS)

    Frick, J.; Nielsen, S. S.; Mitchell, C. A.

    1994-01-01

    Effects of N level (15 to 30 mM), time of N increase (14 to 28 days after planting), and planting density (1163 to 2093 plants/m2) were determined for crop yield responses of dwarf, rapid-cycling brassica (Brassica napus L., CrGC 5-2, Genome: ACaacc). Crops were grown in solid-matrix hydroponic systems and under controlled-environment conditions, including nonsupplemented (ambient) or elevated CO2 concentrations (998 +/- 12 micromoles mol-1). The highest seed yield rate obtained (4.4 g m-2 day-1) occurred with the lowest N level (15 mM) applied at the latest treatment time (day 28). In all trials, CO2 enrichment reduced seed yield rate and harvest index by delaying the onset of flowering and senescence and stimulating vegetative shoot growth. The highest shoot biomass accumulation rate (55.5 g m-2 day-1) occurred with the highest N level (30 mM) applied at the earliest time (day 14). Seed oil content was not significantly affected by CO2 enrichment. Maximum seed oil content (30% to 34%, dry weight basis) was obtained using the lowest N level (15 mM) initiated at the latest treatment time (day 28). In general, an increase in seed oil content was accompanied by a decrease in seed protein. Seed carbohydrate, moisture, and ash contents did not vary significantly in response to experimental treatments. Effects of N level and time of N increase were consistently significant for most crop responses. Planting density was significant only under elevated CO2 conditions.

  15. Biodiesel production from waste cooking oil using copper doped zinc oxide nanocomposite as heterogeneous catalyst.

    PubMed

    Gurunathan, Baskar; Ravi, Aiswarya

    2015-01-01

    A novel CZO nanocomposite was synthesized and used as heterogeneous catalyst for transesterification of waste cooking oil into biodiesel using methanol as acyl acceptor. The synthesized CZO nanocomposite was characterized in FESEM with an average size of 80 nm as nanorods. The XRD patterns indicated the substitution of ZnO in the hexagonal lattice of Cu nanoparticles. The 12% (w/w) nanocatalyst concentration, 1:8 (v:v) O:M ratio, 55 °C temperature and 50 min of reaction time were found as optimum for maximum biodiesel yield of 97.71% (w/w). Hence, the use of CZO nanocomposite can be used as heterogeneous catalyst for biodiesel production from waste cooking oil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Optimization of transesterification of rubber seed oil using heterogeneous catalyst calcium oxide

    NASA Astrophysics Data System (ADS)

    Inggrid, Maria; Kristanto, Aldi; Santoso, Herry

    2015-12-01

    Biodiesel is an alternative fuel manufactured with the help of alkali hydroxide catalyst through transesterification reaction of vegetable oil. This study aims to examine methods and the most suitable conditions for transesterification reaction producing biodiesel from crude rubber seed oil by varying process parameters such as the molar ratio of alcohol, CaO amount as the alkaline catalyst, and reaction time. The rubber seed oil has a high level of free fatty acid content, which means the use of homogenous alkaline catalyst gives some technological problems such as soap formation which leaded in difficulty in the separation and purification of the product. Calcium oxide (CaO) is one of the most favorable heterogeneous base catalysts because it's reusable, noncorrosive, and low cost. Pre-treatment was performed by acid esterification with H2SO4 as the catalyst to decrease the content of free fatty acid in the rubber seed oil, in this pretreatment process the 12% FFA of crude oil could be reduced to below 3% FFA. The product after esterification process was then transesterified by alkaline transesterification by varying process parameters to convert triglyceride into biodiesel. The study found that maximum curvature for biodiesel yield occurred at 9:1 molar ratio of alcohol, 5%w catalyst loading, and 3 hours reaction time. Design expert software is used to determine the optimum point from experimental data. The result showed that the optimum yield of methyl ester from transesterification was 73.5 % by mass with 0.69 degree of desirability. The yielded methyl ester was tested for its density, viscosity, acid number, and solubility to meet SNI requirement standards.

  17. Optimization of palm oil extraction from Decanter cake of small crude palm oil mill by aqueous surfactant solution using RSM

    NASA Astrophysics Data System (ADS)

    Ahmadi Pirshahid, Shewa; Arirob, Wallop; Punsuvon, Vittaya

    2018-04-01

    The use of hexane to extract vegetable oil from oilseeds or seed cake is of growing concern due to its environmental impact such as its smelling and toxicity. In our method, used Response Surface Methodology (RSM) was applied to study the optimum condition of decanter cake obtained from small crude palm oil with aqueous surfactant solution. For the first time, we provide an optimum condition of preliminary study with decanter cake extraction to obtain the maximum of oil yield. The result from preliminary was further used in RSM study by using Central Composite Design (CCD) that consisted of thirty experiments. The effect of four independent variables: the concentration of Sodium Dodecyl Sulfate (SDS) as surfactant, temperature, the ratio by weight to volume of cake to surfactant solution and the amount of sodium chloride (NaCl) on dependent variables are studied. Data were analyzed using Design-Expert 8 software. The results showed that the optimum condition of decanter cake extraction were 0.016M of SDS solution concentration, 73°C of extraction temperature, 1:10 (g:ml) of the ratio of decanter cake to SDS solution and 2% (w/w) of NaCl amount. This condition gave 77.05% (w/w) oil yield. The chemical properties of the extracted palm oil from this aqueous surfactant extraction are further investigated compared with the hexane extraction. The obtained result showed that all properties of both extractions were nearly the same.

  18. Raman spectroscopy for the evaluation of the effects of different concentrations of Copper on the chemical composition and biological activity of basil essential oil

    NASA Astrophysics Data System (ADS)

    Nawaz, Haq; Hanif, Muhammad Asif; Ayub, Muhammad Adnan; Ishtiaq, Faiqa; Kanwal, Nazish; Rashid, Nosheen; Saleem, Muhammad; Ahmad, Mushtaq

    2017-10-01

    The present study is performed to evaluate the effect of different concentrations of Cu as fertilizer on the chemical composition of basil essential oil and its biological activity including antioxidant and antifungal activities by employing Raman spectroscopy. Moreover, the effect of Cu is also determined on the vegetative growth and essential oil yield. Both, antifungal and antioxidant activities were found to be maximum with essential oils obtained at 0.04 mg/l concentration of Cu fertilizer. The results of the GC-MS and Raman spectroscopy have revealed that the linalool and estragole are found to be as a major chemical compound in basil essential oil. The Raman spectral changes associated with these biological components lead to the conclusion that estragole seems to have dominating effect in the biological activities of the basil essential oil as compared to linalool although the latter is observed in greater concentration.

  19. Comprehensive characterization of hydrothermal liquefaction products obtained from woody biomass under various alkali catalyst concentrations.

    PubMed

    Hwang, Hyewon; Lee, Jae Hoon; Choi, In-Gyu; Choi, Joon Weon

    2018-01-29

    Hydrothermal liquefaction (HTL) of lignocellulosic biomass has been widely investigated for the production of renewable and alternative bio-crude oil. In this study, catalytic hydrothermal processing of two biomasses (larch and Mongolian oak) was performed using different K 2 CO 3 concentrations (0, 0.1, 0.5, 1.0 wt% of solvent) to improve fuel yield and properties. HTL oil, hydrochar, water-soluble fraction (WSF) and gas were characterized, and carbon balance was investigated. As a result, the maximum yield of HTL oil, 27.7 wt% (Mongolian oak) and 25.7 wt% (larch), and the highest carbon conversion ratio was obtained with 0.5 wt% of catalyst. The high catalyst concentration also resulted in an increase in higher heating values up to 31.9 MJ/kg. In addition, the amount of organic compounds in HTL oil also increased, specifically for lignin-derived compounds including catechol and hydroquinone which can be derived from secondary hydrolysis of lignin. On the other hand, formation of hydrochar was suppressed with the addition of alkali catalyst and the yield dramatically decreased from 30.7-40.8 wt.% to 20.0-21.8 wt.%. Furthermore, it was revealed that WSF had low organic carbon content less than 3.4% and high potassium content mostly derived from alkali catalyst, indicating that it may be reusable with simple purification. This work suggests that the addition of the proper amount of alkali catalyst can improve the production efficiency and quality of bio-crude oil, and another potential of WSF to be recyclable in further work.

  20. Influence of metals on essential oil content and composition of lemongrass (Cymbopogon citratus (D.C.) Stapf.) grown under different levels of red mud in sewage sludge amended soil.

    PubMed

    Gautam, Meenu; Agrawal, Madhoolika

    2017-05-01

    Lemongrass is a commercially important perennial herb with medicinal value and ability to tolerate high alkaline and saline conditions. Essential oil bearing plants can grow safely in soil contaminated with heavy metals without severe effects on morphology and oil yield. The present study was aimed to assess the essential oil content and composition in lemongrass in response to elevated metals in above-ground plant parts. Pot experiment was conducted for six months using sewage sludge as soil amendment (soil: sludge: 2:1 w/w) followed by red mud treatments (0, 5, 10 and 15% w/w). Garden soil without sludge and red mud was control and there were ten replicates of each treatment. Oil content in leaves was differently affected due to presence of metals in soil under different treatments. Oil content under S RM5 (5% red mud) treatment was raised by 42.9 and 11.5% compared to the control and S RM0 treatment, respectively. Among identified compounds in oil under red mud treatments, 17 compounds contributed more than 90% of total volatiles (citral contributing approximately 70%). Under S RM10 treatment, essential oil showed maximum citral content (75.3%). Contents of Fe, Zn, Cu, Cd, Ni and Pb in above-ground plant parts exceeded, whereas Mn was detected within WHO permissible limits for medicinal plants. However, metal contents in essential oil were well within FSSAI limits for food. The study suggests utilization of 5 and 10% red mud in sludge amended soil for lemongrass cultivation to have better oil yield and quality, without metal contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Production of haploids and doubled haploids in oil palm

    PubMed Central

    2010-01-01

    Background Oil palm is the world's most productive oil-food crop despite yielding well below its theoretical maximum. This maximum could be approached with the introduction of elite F1 varieties. The development of such elite lines has thus far been prevented by difficulties in generating homozygous parental types for F1 generation. Results Here we present the first high-throughput screen to identify spontaneously-formed haploid (H) and doubled haploid (DH) palms. We secured over 1,000 Hs and one DH from genetically diverse material and derived further DH/mixoploid palms from Hs using colchicine. We demonstrated viability of pollen from H plants and expect to generate 100% homogeneous F1 seed from intercrosses between DH/mixoploids once they develop female inflorescences. Conclusions This study has generated genetically diverse H/DH palms from which parental clones can be selected in sufficient numbers to enable the commercial-scale breeding of F1 varieties. The anticipated step increase in productivity may help to relieve pressure to extend palm cultivation, and limit further expansion into biodiverse rainforest. PMID:20929530

  2. Histograms showing variations in oil yield, water yield, and specific gravity of oil from Fischer assay analyses of oil-shale drill cores and cuttings from the Piceance Basin, northwestern Colorado

    USGS Publications Warehouse

    Dietrich, John D.; Brownfield, Michael E.; Johnson, Ronald C.; Mercier, Tracey J.

    2014-01-01

    Recent studies indicate that the Piceance Basin in northwestern Colorado contains over 1.5 trillion barrels of oil in place, making the basin the largest known oil-shale deposit in the world. Previously published histograms display oil-yield variations with depth and widely correlate rich and lean oil-shale beds and zones throughout the basin. Histograms in this report display oil-yield data plotted alongside either water-yield or oil specific-gravity data. Fischer assay analyses of core and cutting samples collected from exploration drill holes penetrating the Eocene Green River Formation in the Piceance Basin can aid in determining the origins of those deposits, as well as estimating the amount of organic matter, halite, nahcolite, and water-bearing minerals. This report focuses only on the oil yield plotted against water yield and oil specific gravity.

  3. Microwave-enhanced pyrolysis of natural algae from water blooms.

    PubMed

    Zhang, Rui; Li, Linling; Tong, Dongmei; Hu, Changwei

    2016-07-01

    Microwave-enhanced pyrolysis (MEP) of natural algae under different reaction conditions was carried out. The optimal conditions for bio-oil production were the following: algae particle size of 20-5 mesh, microwave power of 600W, and 10% of activated carbon as microwave absorber and catalyst. The maximum liquid yield obtained under N2, 10% H2/Ar, and CO2 atmosphere was 49.1%, 51.7%, and 54.3% respectively. The energy yield of bio-products was 216.7%, 236.9% and 208.7% respectively. More long chain fatty acids were converted into hydrocarbons by hydrodeoxygenation under 10% H2/Ar atmosphere assisted by microwave over activated carbon containing small amounts of metals. Under CO2 atmosphere, carboxylic acids (66.6%) were the main products in bio-oil because the existence of CO2 vastly inhibited the decarboxylation. The MEP of algae was quick and efficient for bio-oil production, which provided a way to not only ameliorate the environment but also obtain fuel or chemicals at the same time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Sunflower shells utilization for energetic purposes in an integrated approach of energy crops: laboratory study pyrolysis and kinetics.

    PubMed

    Zabaniotou, A A; Kantarelis, E K; Theodoropoulos, D C

    2008-05-01

    Sunflower is a traditional crop which can be used for the production of bioenergy and liquid biofuels. A study of the pyrolytic behaviour of sunflower residues at temperatures from 300 to 600 degrees C has been carried out. The experiments were performed in a captive sample reactor under atmospheric pressure and helium as sweeping gas. The yields of the derived pyrolysis products were determined in relation to temperature, with constant sweeping gas flow of 50 cm3 min(-1) and heating rate of 40 degrees Cs(-1). The maximum gas yield of around 53 wt.% was obtained at 500 degrees C, whereas maximum oil yield of about 21 wt.% was obtained at 400 degrees C. A simple first order kinetic model has been applied for the devolatilization of biomass. Kinetic constants have been estimated: E=78.15 kJ mol(-1); k(0)=1.03 x 10(3)s(-1).

  5. Off-flavors removal and storage improvement of mackerel viscera by supercritical carbon dioxide extraction.

    PubMed

    Lee, Min Kyung; Uddin, M Salim; Chun, Byung Soo

    2008-07-01

    The oil in mackerel viscera was extracted by supercritical carbon dioxide (SCO2) at a semi-batch flow extraction process and the fatty acids composition in the oil was identified. Also the off-flavors removal in mackerel viscera and the storage improvement of the oils were carried out. As results obtained, by increasing pressure and temperature, quantity was increased. The maximum yield of oils obtained from mackerel viscera by SCO, extraction was 118 mgg(-1) (base on dry weight of freeze-dried raw anchovy) at 50 degrees C, 350 bar And the extracted oil contained high concentration of EPA and DHA. Also it was found that the autoxidation of the oils using SCO2 extraction occurred very slowly compared to the oils by organic solvent extraction. The off-flavors in the powder after SCO2 extraction were significantly removed. Especially complete removal of the trimethylamine which influences a negative compound to the products showed. Also other significant off-flavors such as aldehydes, sulfur-containing compounds, ketones, acids or alcohols were removed by the extraction.

  6. Statistical optimization for lipase production from solid waste of vegetable oil industry.

    PubMed

    Sahoo, Rajesh Kumar; Kumar, Mohit; Mohanty, Swati; Sawyer, Matthew; Rahman, Pattanathu K S M; Sukla, Lala Behari; Subudhi, Enketeswara

    2018-04-21

    The production of biofuel using thermostable bacterial lipase from hot spring bacteria out of low-cost agricultural residue olive oil cake is reported in the present paper. Using a lipase enzyme from Bacillus licheniformis, a 66.5% yield of methyl esters was obtained. Optimum parameters were determined, with maximum production of lipase at a pH of 8.2, temperature 50.8°C, moisture content of 55.7%, and biosurfactant content of 1.693 mg. The contour plots and 3D surface responses depict the significant interaction of pH and moisture content with biosurfactant during lipase production. Chromatographic analysis of the lipase transesterification product was methyl esters, from kitchen waste oil under optimized conditions, generated methyl palmitate, methyl stearate, methyl oleate, and methyl linoleate.

  7. Conversion of crude Jatropha curcas seed oil into biodiesel using liquid recombinant Candida rugosa lipase isozymes.

    PubMed

    Kuo, Ting-Chun; Shaw, Jei-Fu; Lee, Guan-Chiun

    2015-09-01

    The versatile Candida rugosa lipase (CRL) has been widely used in biotechnological applications. However, there have not been feasibility reports on the transesterification of non-edible oils to produce biodiesel using the commercial CRL preparations, mixtures of isozymes. In the present study, four liquid recombinant CRL isozymes (CRL1-CRL4) were investigated to convert various non-edible oils into biodiesel. The results showed that recombinant CRL2 and CRL4 exhibited superior catalytic efficiencies for producing fatty acid methyl ester (FAME) from Jatropha curcas seed oil. A maximum 95.3% FAME yield was achieved using CRL2 under the optimal conditions (50 wt% water, an initial 1 equivalent of methanol feeding, and an additional 0.5 equivalents of methanol feeding at 24h for a total reaction time of 48 h at 37 °C). We concluded that specific recombinant CRL isozymes could be excellent biocatalysts for the biodiesel production from low-cost crude Jatropha oil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Catalytic Hydrodeoxygenation of Bio-oil Model Compounds over Pt/HY Catalyst

    PubMed Central

    Lee, Heejin; Kim, Hannah; Yu, Mi Jin; Ko, Chang Hyun; Jeon, Jong-Ki; Jae, Jungho; Park, Sung Hoon; Jung, Sang-Chul; Park, Young-Kwon

    2016-01-01

    The hydrodeoxygenation of a model compound of lignin-derived bio-oil, guaiacol, which can be obtained from the pyrolysis of biomass to bio-oil, has attracted considerable research attention because of its huge potential as a substitute for conventional fuels. In this study, platinum-loaded HY zeolites (Pt/HY) with different Si/Al molar ratios were used as catalysts for the hydrodeoxygenation of guaiacol, anisole, veratrole, and phenol to a range of hydrocarbons, such as cyclohexane. The cyclohexane (major product) yield increased with increasing number of acid sites. To produce bio-oil with the maximum level of cyclohexane and alkylated cyclohexanes, which would be suitable as a substitute for conventional transportation fuels, the Si/Al molar ratio should be optimized to balance the Pt particle-induced hydrogenation with acid site-induced methyl group transfer. The fuel properties of real bio-oil derived from the fast pyrolysis of cork oak was improved using the Pt/HY catalyst. PMID:27357731

  9. Optimization study of ethanolic fermentation from oil palm trunk, rubberwood and mixed hardwood hydrolysates using Saccharomyces cerevisiae.

    PubMed

    Chin, K L; H'ng, P S; Wong, L J; Tey, B T; Paridah, M T

    2010-05-01

    Ethanolic fermentation using Saccharomyces cerevisiae was carried out on three types of hydrolysates produced from lignocelulosic biomass which are commonly found in Malaysia such as oil palm trunk, rubberwood and mixed hardwood. The effect of fermentation temperature and pH of hydrolysate was evaluated to optimize the fermentation efficiency which defined as maximum ethanol yield in minimum fermentation time. The fermentation process using different temperature of 25 degrees Celsius, 30 degrees Celsius and 40 degrees Celsius were performed on the prepared fermentation medium adjusted to pH 4, pH 6 and pH 7, respectively. Results showed that the fermentation time was significantly reduced with the increase of temperature but an adverse reduction in ethanol yield was observed using temperature of 40 degrees Celsius. As the pH of hydrolysate became more acidic, the ethanol yield increased. Optimum fermentation efficiency for ethanolic fermentation of lignocellulosic hydrolysates using S. cerevisiae can be obtained using 33.2 degrees Celsius and pH 5.3. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Production and optimization of biodiesel using mixed immobilized biocatalysts in packed bed reactor.

    PubMed

    Bakkiyaraj, S; Syed, Mahin Basha; Devanesan, M G; Thangavelu, Viruthagiri

    2016-05-01

    Vegetable oils are used as raw materials for biodiesel production using transesterification reaction. Several methods for the production of biodiesel were developed using chemical (alkali and acidic compounds) and biological catalysts (lipases). Biodiesel production catalyzed by lipases is energy and cost-saving processes and is carried out at normal temperature and pressure. The need for an efficient method for screening larger number of variables has led to the adoption of statistical experimental design. In the present study, packed bed reactor was designed to study with mixed immobilized biocatalysts to have higher productivity under optimum conditions. Contrary to the single-step acyl migration mechanism, a two-step stepwise reaction mechanism involving immobilized Candida rugosa lipase and immobilized Rhizopus oryzae cells was employed for the present work. This method was chosen because enzymatic hydrolysis followed by esterification can tolerate high free fatty acid containing oils. The effects of flow rate and bed height on biodiesel yield were studied using two factors five-level central composite design (CCD) and response surface methodology (RSM). Maximum biodiesel yield of 85 and 81 % was obtained for jatropha oil and karanja oil with the optimum bed height and optimum flow rate of 32.6 cm and 1.35 L/h, and 32.6 cm and 1.36 L/h, respectively.

  11. Microwave pyrolysis of textile dyeing sludge in a continuously operated auger reactor: Condensates and non-condensable gases.

    PubMed

    Gao, Zuopeng; Zhang, Hedong; Ao, Wenya; Li, Jing; Liu, Guangqing; Chen, Xiaochun; Fu, Jie; Ran, Chunmei; Liu, Yang; Kang, Qinhao; Mao, Xiao; Dai, Jianjun

    2017-09-01

    This paper investigated an auger pyrolyser under microwave irradiation using textile dyeing sludge (DS) as the feedstock. Microwave power, temperature, auger speed, gas velocity and addition of catalysts were studied. In terms of ICP-MS, Cu and As concentrations in condensates, depending on pyrolysis temperatures, exceeded the wastewater discharge standard in China. The condensate and oil yields reached maximum (i.e. 12.86 wt% and 0.84 wt%, respectively) at 650 °C. The content of aromatic compounds in the oil increased as temperature increased, up to 88.38% (GC-MS area) at 750 °C. Heterocyclic aromatic compounds containing nitrogen accounted for 20%-58% of the pyrolysis oil. Addition of catalysts such as CaO and Fe decreased pyrolysis oil yield and increased the content of H 2 . The H 2 content increased from 25.39v% without catalyst to 64.17v% with addition of 30 wt% CaO. The electricity consumption was 0.80-2.64 kWh/kg wet sludge from 450 to 750 °C and auger speed range of 1-9 rpm. Higher auger speeds and lower temperatures led to lower electricity consumption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Comparison of supercritical fluid extraction and ultrasound-assisted extraction of fatty acids from quince (Cydonia oblonga Miller) seed using response surface methodology and central composite design.

    PubMed

    Daneshvand, Behnaz; Ara, Katayoun Mahdavi; Raofie, Farhad

    2012-08-24

    Fatty acids of Cydonia oblonga Miller cultivated in Iran were obtained by supercritical (carbon dioxide) extraction and ultrasound-assisted extraction methods. The oils were analyzed by capillary gas chromatography using mass spectrometric detections. The compounds were identified according to their retention indices and mass spectra (EI, 70eV). The experimental parameters of SFE such as pressure, temperature, modifier volume, static and dynamic extraction time were optimized using a Central Composite Design (CCD) after a 2(5) factorial design. Pressure and dynamic extraction time had significant effect on the extraction yield, while the other factors (temperature, static extraction time and modifier volume) were not identified as significant factors under the selected conditions. The results of chemometrics analysis showed the highest yield for SFE (24.32%), which was obtained at a pressure of 353bar, temperature of 35°C, modifier (methanol) volume of 150μL, and static and dynamic extraction times of 10 and 60min, respectively. Ultrasound-assisted extraction (UAE) of Fatty acids from C. oblonga Miller was optimized, using a rotatable central composite design. The optimum conditions were as follows: solvent (n-hexane) volume, 22mL; extraction time, 30min; and extraction temperature, 55°C. This resulted in a maximum oil recovery of 19.5%. The extracts with higher yield from both methods were subjected to transesterification and GC-MS analysis. The results show that the oil obtained by SFE with the optimal operating conditions allowed a fatty acid composition similar to the oil obtained by UAE in optimum condition and no significant differences were found. The major components of oil extract were Linoleic, Palmitic, Oleic, Stearic and Eicosanoic acids. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Utilization of Solid Waste as a Substrate for Production of Oil from Oleaginous Microorganisms.

    PubMed

    Laker, Fortunate; Agaba, Arnold; Akatukunda, Andrew; Gazet, Robert; Barasa, Joshua; Nanyonga, Sarah; Wendiro, Deborah; Wacoo, Alex Paul

    2018-01-01

    The overwhelming demand of oil and fats to meet the ever increasing needs for biofuel, cosmetics production, and other industrial purposes has enhanced a number of innovations in this industry. One such innovation is the use of microorganisms as alternative sources of oil and fats. Organic solid waste that is causing a big challenge of disposal worldwide is biodegradable and can be utilized as substrate for alternative oil production. The study evaluated the potential of isolated yeast-like colonies to grow and accumulate oil by using organic solid waste as substrate. Of the 25 yeast-like colonies isolated from the soil samples collected from three different suburbs in Kampala district, Uganda, 20 were screened positive for accumulation of lipid but only 2 were oleaginous. The NHC isolate with the best oil accumulation potential of 48.8% was used in the central composite design (CCD) experiments. The CCD experimental results revealed a maximum oil yield of 61.5% from 1.25 g/L cell biomass at 10 g/L of solid waste and temperature of 25°C. The study revealed that organic solid waste could be used as a substrate for microbial oil production.

  14. Analysis of BJ493 diesel engine lubrication system properties

    NASA Astrophysics Data System (ADS)

    Liu, F.

    2017-12-01

    The BJ493ZLQ4A diesel engine design is based on the primary model of BJ493ZLQ3, of which exhaust level is upgraded to the National GB5 standard due to the improved design of combustion and injection systems. Given the above changes in the diesel lubrication system, its improved properties are analyzed in this paper. According to the structures, technical parameters and indices of the lubrication system, the lubrication system model of BJ493ZLQ4A diesel engine was constructed using the Flowmaster flow simulation software. The properties of the diesel engine lubrication system, such as the oil flow rate and pressure at different rotational speeds were analyzed for the schemes involving large- and small-scale oil filters. The calculated values of the main oil channel pressure are in good agreement with the experimental results, which verifies the proposed model feasibility. The calculation results show that the main oil channel pressure and maximum oil flow rate values for the large-scale oil filter scheme satisfy the design requirements, while the small-scale scheme yields too low main oil channel’s pressure and too high. Therefore, application of small-scale oil filters is hazardous, and the large-scale scheme is recommended.

  15. Production of bioethanol by direct bioconversion of oil-palm industrial effluent in a stirred-tank bioreactor.

    PubMed

    Alam, Md Zahangir; Kabbashi, Nassereldeen A; Hussin, S Nahdatul I S

    2009-06-01

    The purpose of this study was to evaluate the feasibility of producing bioethanol from palm-oil mill effluent generated by the oil-palm industries through direct bioconversion process. The bioethanol production was carried out through the treatment of compatible mixed cultures such as Thrichoderma harzianum, Phanerochaete chrysosporium, Mucor hiemalis, and yeast, Saccharomyces cerevisiae. Simultaneous inoculation of T. harzianum and S. cerevisiae was found to be the mixed culture that yielded the highest ethanol production (4% v/v or 31.6 g/l). Statistical optimization was carried out to determine the operating conditions of the stirred-tank bioreactor for maximum bioethanol production by a two-level fractional factorial design with a single central point. The factors involved were oxygen saturation level (pO(2)%), temperature, and pH. A polynomial regression model was developed using the experimental data including the linear, quadratic, and interaction effects. Statistical analysis showed that the maximum ethanol production of 4.6% (v/v) or 36.3 g/l was achieved at a temperature of 32 degrees C, pH of 6, and pO(2) of 30%. The results of the model validation test under the developed optimum process conditions indicated that the maximum production was increased from 4.6% (v/v) to 6.5% (v/v) or 51.3 g/l with 89.1% chemical-oxygen-demand removal.

  16. Performance of rotary kiln reactor for the elephant grass pyrolysis.

    PubMed

    De Conto, D; Silvestre, W P; Baldasso, C; Godinho, M

    2016-10-01

    The influence of process conditions (rotary speed/temperature) on the performance of a rotary kiln reactor for non-catalytic pyrolysis of a perennial grass (elephant grass) was investigated. The product yields, the production of non-condensable gases as well as the biochar properties were evaluated. The maximum H2 yield was close to that observed for catalytic pyrolysis processes, while the bio-oil yield was higher than reported for pyrolysis of other biomass in rotary kiln reactors. A H2/CO ratio suitable for Fischer-Tropsch synthesis (FTS) was obtained. The biochars presented an alkaline pH (above 10) and interesting contents of nutrients, as well as low electrical conductivity, indicating a high potential as soil amendment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Microbial inhibitory and radical scavenging activities of cold-pressed terpeneless Valencia orange (Citrus sinensis) oil in different dispersing agents.

    PubMed

    Chalova, Vesela I; Crandall, Philip G; Ricke, Steven C

    2010-04-15

    Due to their low solubility in water, oil-based bioactive compounds require dispersion in a surface-active agent or appropriate solvents to ensure maximum contact with microorganisms. These combinations, however, may change their physical and/or chemical characteristics and consequently alter the desired functionality. The objective of this study was to determine the impact of selected dispersing agents, ethanol, dimethyl sulfoxide (DMSO), and Tween-80, on cold-pressed terpeneless (CPT) Valencia orange oil to function as a free radical scavenger and an antimicrobial food additive. When dissolved in ethanol or DMSO, the orange oil fraction had similar minimum inhibitory concentrations (MIC) for Listeria monocytogenes ATCC 19 115 (0.3% and 0.25% v/v respectively), which were significantly lower (P

  18. Improvement of bio-oil yield and quality in co-pyrolysis of corncobs and high density polyethylene in a fixed bed reactor at low heating rate

    NASA Astrophysics Data System (ADS)

    Supramono, D.; Lusiani, S.

    2016-11-01

    Over the past few decades, interest in developing biomass-derived fuel has been increasing rapidly due to the decrease in fossil fuel reserves. Bio-oil produced by biomass pyrolysis however contains high oxygen compounds resulting in low calorific-value fuel and therefore requiring upgrading. In co-pyrolysis of the feed blend of plastics of High Density Polyethylene (HDPE) and biomass of com cob particles, at some compositions free radicals from plastic decomposition containing more hydrogen radicals are able to bond oxygen radicals originating from biomass to reduce oxygenate compounds in the bio-oil thus increasing bio-oil quality. This phenomenon is usually called synergetic effect. In addition to that, the pattern of heating of the feed blend in the pyrolysis reactor is predicted to affect biooil quality and yield. In a batch reactor, co-pyrolysis of corncobs and HDPE requires low heating rate to reach a peak temperature at temperature rise period followed by heating for some time at peak temperature called holding time at constant temperature period. No research has been carried out to investigate how long holding time is set in co-pyrolysis of plastic and biomass to obtain high yield of bio-oil. Holding time may affect either crosslinking of free radicals in gas phase, which increases char product, or secondary pyrolysis in the gas phase, which increases non-condensable gas in the gas phase of pyrolysis reactor, both of which reduce bio-oil yield. Therefore, holding time of co-pyrolysis affects the mass rate of bio-oil formation as the pyrolysis proceeds and quality of the bio-oil. In the present work, effects of holding time on the yield and quality of bio-oil have been investigated using horizontal fixed bed of the feed blends at heating rate of 5°C, peak temperature of 500°C and N2 flow rate of 700 ml/minute. Holding time was varied from 0 to 70 minutes with 10 minutes interval. To investigate the effects of holding time, the composition of HDPE in the feed blend was varied 0, 50 and 100%, while the synergetic effect was investigated by varying the composition of HDPE in the feed blend 0, 25, 50, 75, and 100%. The results show that synergetic effect for non-oxygenate compound production started to work at 63% HDPE in the feed blend and beyond. It was observed that extension of holding time exceeding 0 minutes allowed increase ofbio-oil production rate followed reduction of the rate. Pyrolysis ofboth the corncob feed and the feed blend containing 50% HDPE equally reached maximum bio-oil production rate at holding time of 50 minutes, while that of HDPE feed at 30 minutes. The result pertaining to holding time indicates that biomass in the feed blend governs crosslinking - secondary pyrolysis in the co-pyrolysis.

  19. Genetic progress in sunflower crop in Rio Grande do Sul State, Brazil.

    PubMed

    Follmann, D N; Cargnelutti Filho, A; Lorentz, L H; Boligon, A A; Caraffa, M; Wartha, C A

    2017-04-13

    The sunflower has adaptability to growing regions with different climatic and soil characteristics, showing drought tolerance and high-quality oil production. The State of Rio Grande do Sul is the third largest sunflower producer in Brazil, with research related to the sunflower breeding initiated after the decade of 1950. The aim of this study was to evaluate the genetic progress for grain yield, oil content, and oil yield of sunflower (Helianthus annuus L.) in the State of Rio Grande do Sul. Data of grain yield, oil content, and oil yield obtained from 58 sunflower cultivar yield trials in 19 municipalities in Rio Grande do Sul during the period from 2005 to 2014 were used. Genetic progress was studied according to the methodology proposed by Vencovsky and data from sunflower cultivar yield trials were used. Annual genetic progress of sunflower during the period of 10 years (2005-2014) was 132.46 kg⋅ha -1 ⋅year -1 for grain yield, -0.17%/year for oil content, and 48.11 kg⋅ha -1 ⋅year -1 for oil yield. The sunflower-breeding programs in the State of Rio Grande do Sul were efficient for the traits grain yield and oil yield and presented no efficiency for oil content.

  20. Investigation on the quality of bio-oil produced through fast pyrolysis of biomass-polymer waste mixture

    NASA Astrophysics Data System (ADS)

    Jourabchi, S. A.; Ng, H. K.; Gan, S.; Yap, Z. Y.

    2016-06-01

    A high-impact poly-styrene (HIPS) was mixed with dried and ground coconut shell (CS) at equal weight percentage. Fast pyrolysis was carried out on the mixture in a fixed bed reactor over a temperature range of 573 K to 1073 K, and a nitrogen (N2) linear velocity range of 7.8x10-5 m/s to 6.7x10-2 m/s to produce bio-oil. Heat transfer and fluid dynamics of the pyrolysis process inside the reactor was visualised by using Computational Fluid Dynamics (CFD). The CFD modelling was validated by experimental results and they both indicated that at temperature of 923 K and N2 linear velocity of 7.8x10-5 m/s, the maximum bio-oil yield of 52.02 wt% is achieved.

  1. Analysis of Benzo[a]pyrene in Vegetable Oils Using Molecularly Imprinted Solid Phase Extraction (MISPE) Coupled with Enzyme-Linked Immunosorbent Assay (ELISA)

    PubMed Central

    Pschenitza, Michael; Hackenberg, Rudolf; Niessner, Reinhard; Knopp, Dietmar

    2014-01-01

    This paper describes the development of a molecularly imprinted polymer-based solid phase extraction (MISPE) method coupled with enzyme-linked immunosorbent assay (ELISA) for determination of the PAH benzo[a]pyrene (B[a]P) in vegetable oils. Different molecularly imprinted polymers (MIPs) were prepared using non-covalent 4-vinylpyridine/divinylbenzene co-polymerization at different ratios and dichloromethane as porogen. Imprinting was done with a template mixture of phenanthrene and pyrene yielding a broad-specific polymer for PAHs with a maximum binding capacity (Q) of ∼32 μg B[a]P per 50 mg of polymer. The vegetable oil/n-hexane mixture (1:1, (v/v)) was pre-extracted with acetonitrile, the solvent evaporated, the residue reconstituted in n-hexane and subjected to MISPE. The successive washing with n-hexane and isopropanol revealed most suitable to remove lipid matrix constituents. After elution of bound PAHs from MISPE column with dichloromethane, the solvent was evaporated, the residue reconstituted with dimethyl sulfoxide and diluted 100-fold with methanol/water (10:90, (v/v)) for analysis of B[a]P equivalents with an ELISA. The B[a]P recovery rates in spiked vegetable oil samples of different fatty acid composition were determined between 63% and 114%. The presence of multiple PAHs in the oil sample, because of MIP selectivity and cross-reactivity of the ELISA, could yield overestimated B[a]P values. PMID:24887045

  2. Differential gene expression at different stages of mesocarp development in high- and low-yielding oil palm.

    PubMed

    Wong, Yick Ching; Teh, Huey Fang; Mebus, Katharina; Ooi, Tony Eng Keong; Kwong, Qi Bin; Koo, Ka Loo; Ong, Chuang Kee; Mayes, Sean; Chew, Fook Tim; Appleton, David R; Kulaveerasingam, Harikrishna

    2017-06-21

    The oil yield trait of oil palm is expected to involve multiple genes, environmental influences and interactions. Many of the underlying mechanisms that contribute to oil yield are still poorly understood. In this study, we used a microarray approach to study the gene expression profiles of mesocarp tissue at different developmental stages, comparing genetically related high- and low- oil yielding palms to identify genes that contributed to the higher oil-yielding palm and might contribute to the wider genetic improvement of oil palm breeding populations. A total of 3412 (2001 annotated) gene candidates were found to be significantly differentially expressed between high- and low-yielding palms at at least one of the different stages of mesocarp development evaluated. Gene Ontologies (GO) enrichment analysis identified 28 significantly enriched GO terms, including regulation of transcription, fatty acid biosynthesis and metabolic processes. These differentially expressed genes comprise several transcription factors, such as, bHLH, Dof zinc finger proteins and MADS box proteins. Several genes involved in glycolysis, TCA, and fatty acid biosynthesis pathways were also found up-regulated in high-yielding oil palm, among them; pyruvate dehydrogenase E1 component Subunit Beta (PDH), ATP-citrate lyase, β- ketoacyl-ACP synthases I (KAS I), β- ketoacyl-ACP synthases III (KAS III) and ketoacyl-ACP reductase (KAR). Sucrose metabolism-related genes such as Invertase, Sucrose Synthase 2 and Sucrose Phosphatase 2 were found to be down-regulated in high-yielding oil palms, compared to the lower yield palms. Our findings indicate that a higher carbon flux (channeled through down-regulation of the Sucrose Synthase 2 pathway) was being utilized by up-regulated genes involved in glycolysis, TCA and fatty acid biosynthesis leading to enhanced oil production in the high-yielding oil palm. These findings are an important stepping stone to understand the processes that lead to production of high-yielding oil palms and have implications for breeding to maximize oil production.

  3. Physical Activation of Oil Palm Empty Fruit Bunch via CO2 Activation Gas for CO2 Adsorption

    NASA Astrophysics Data System (ADS)

    Joseph, C. G.; Quek, K. S.; Daud, W. M. A. W.; Moh, P. Y.

    2017-06-01

    In this study, different parameters for the preparation of activated carbon were investigated for their yield and CO2 capture capabilities. The activated carbon was prepared from Oil Palm Empty Fruit Bunch (OPEFB) via a 2-step physical activation process. The OPEFB was pyrolyzed under inert conditions at 500 °C and activated via CO2. A 2-factorial design was employed and the effects of activation temperature, activation dwell time and gas flow rate on yield and CO2 capture capabilities were compared and studied. The yield obtained ranged from between 20 - 26, whereby the temperature was determined to be the most significant factor in influencing CO2 uptake. The CO2 capture capacity was determined using Temperature Programmed Desorption (TPD) technique. The CO2 uptake of EFB activated carbon achieved was between 1.85 - 2.09 mmol/g. TPD analysis has shown that the surface of AC were of basic nature. AC was found to be able to withhold the CO2 up to 663°C before maximum desorption occurs. The surface area and pore size of OPEFB obtained from BET analysis is 2.17 m2 g-1 and 0.01 cm3 g-1. After activation, both surface area and pore size increased with a maximum observed surface area and pore size of 548.07 m2 g-1 and 0.26 cm3 g-1. Surface morphology, functional groups, pore size and surface area were analyzed using SEM, FT-IR, TPD and BET.

  4. Pyrolysis of azolla, sargassum tenerrimum and water hyacinth for production of bio-oil.

    PubMed

    Biswas, Bijoy; Singh, Rawel; Krishna, Bhavya B; Kumar, Jitendra; Bhaskar, Thallada

    2017-10-01

    Pyrolysis of azolla, sargassum tenerrimum and water hyacinth were carried out in a fixed-bed reactor at different temperatures in the range of 300-450°C in the presence of nitrogen (inert atmosphere). The objective of this study is to understand the effect of compositional changes of various aquatic biomass samples on product distribution and nature of products during slow pyrolysis. The maximum liquid product yield of azolla, sargassum tenerrimum and water hyacinth (38.5, 43.4 and 24.6wt.% respectively) obtained at 400, 450 and 400°C. Detailed analysis of the bio-oil and bio-char was investigated using 1 H NMR, FT-IR, and XRD. The characterization of bio-oil showed a high percentage of aliphatic functional groups and presence of phenolic, ketones and nitrogen-containing group. The characterization results showed that the bio-oil obtained from azolla, sargassum tenerrimum and water hyacinth can be potentially valuable as a fuel and chemicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Progesterone administration by nasal spray in menopausal women: comparison between two different spray formulations.

    PubMed

    Cicinelli, E; Savino, F; Cagnazzo, I; Scorcia, P; Galantino, P

    1992-12-01

    The aim of the study was to compare the bioavailability of progesterone dissolved in almond oil or dimethicone, and administered by nasal spray. Twenty healthy menopausal women were randomly allocated to treatment by four doses of intranasal spray either of a progesterone solution in almond oil, 2 mg/0.1 ml, corresponding to a total dose of approximately 11 mg of progesterone, or a progesterone solution in dimethicone 5 mg/0.1 ml corresponding to a total dose of approximately 28 mg of progesterone. Circulating progesterone levels were calculated at various time intervals following administration. The formulation with almond oil yielded a maximum progesterone concentration (Cmax of 3.75 ng/ml at Tmax = 60 min, and the area under the curve (AUC0-720) value was 1481.6 +/- 343. The formulation with dimethicone yielded a mean Cmax of 1.049 ng/ml at Tmax = 30 min; the AUC0-720 value was 302.06 +/- 37.5. Therefore, bioavailability of progesterone dissolved in almond oil proved to be largely superior compared to the solution in dimethicone. The crucial role of the carrier in the spray formulations is discussed; in addition to ensuring clinical safety, it must have good solubility for progesterone, be fluid enough to enable efficient 'spraying' and also must allow progesterone to be absorbed through the nasal mucosa.

  6. Pyrolysis of hornbeam (Carpinus betulus L.) sawdust: Characterization of bio-oil and bio-char.

    PubMed

    Moralı, Uğur; Yavuzel, Nazan; Şensöz, Sevgi

    2016-12-01

    Slow pyrolysis of hornbeam (Carpinus betulus L.) sawdust was performed to produce bio-oil and bio-char. The operational variables were as follows: pyrolysis temperature (400-600°C), heating rate (10-50°Cmin -1 ) and nitrogen flow rate (50-150cm 3 min -1 ). Physicochemical and thermogravimetric characterizations of hornbeam sawdust were performed. The characteristics of bio-oil and bio-char were analyzed on the basis of various spectroscopic and chromatographic techniques such as FTIR, GC-MS, 1H NMR, SEM, BET. Higher heating value, density and kinematic viscosity of the bio-oil with maximum yield of 35.28% were 23.22MJkg -1 , 1289kgm -3 and 0.6mm 2 s -1 , respectively. The bio-oil with relatively high fuel potential can be obtained from the pyrolysis of the hornbeam sawdust and the bio-char with a calorific value of 32.88MJkg -1 is a promising candidate for solid fuel applications that also contributes to the preservation of the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Effect of ultrasound pre-treatment of hemp (Cannabis sativa L.) seed on supercritical CO2 extraction of oil.

    PubMed

    Da Porto, C; Natolino, A; Decorti, D

    2015-03-01

    Ultrasound pre-treatment of intact hemp seeds without any solvent assistance was carried out for 10, 20 and 40 min prior to SCCO2 extraction at 40 °C, 300 bar and 45 kg CO2/kg feed. Sonication time effect on SC-CO2 extraction was investigated by the extraction kinetics. The maximum extraction yield was estimated to be 24.03 (% w/w) after 10 min of ultrasonic pre-treatment. The fatty acid compositions of the oils extracted by SC-CO2 without and with ultrasound pre-treatments was analyzed using gas chromatography. It was shown that the content of linoleic, α-linolenic and oleic acids (the most abundant unsaturated fatty acids) of the hemp seed oils were not affected significantly by the application of ultrasound. UV spectroscopy indices (K232 and K268) and antiradical capacity were used to follow the quality of oils. Significant were the changes in their antiradical capacity due to ultrasound treatment. A comparison with the oil extracted by Soxhlet was also given.

  8. Co-pyrolysis of lignocellulosic biomass and microalgae: Products characteristics and interaction effect.

    PubMed

    Chen, Wei; Chen, Yingquan; Yang, Haiping; Xia, Mingwei; Li, Kaixu; Chen, Xu; Chen, Hanping

    2017-12-01

    Co-pyrolysis of biomass has a potential to change the quality of pyrolytic bio-oil. In this work, co-pyrolysis of bamboo, a typical lignocellulosic biomass, and Nannochloropsis sp. (NS), a microalgae, was carried out in a fixed bed reactor at a range of mixing ratio of NS and bamboo, to find out whether the quality of pyrolytic bio-oil was improved. A significant improvement on bio-oil after co-pyrolysis of bamboo and NS was observed that bio-oil yield increased up to 66.63wt% (at 1:1) and the content of long-chain fatty acids in bio-oil also dramatically increased (the maximum up to 50.92% (13.57wt%) at 1:1) whereas acetic acid, O-containing species, and N-containing compounds decreased greatly. Nitrogen transformation mechanism during co-pyrolysis also was explored. Results showed that nitrogen in microalgae preferred to transform into solid char and gas phase during co-pyrolysis, while more pyrrolic-N and quaternary-N generated with diminishing protein-N and pyridinic-N in char. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Extraction of fleshing oil from waste limed fleshings and biodiesel production.

    PubMed

    Sandhya, K V; Abinandan, S; Vedaraman, N; Velappan, K C

    2016-02-01

    The aim of the study was focused on extraction of fleshing oil from limed fleshings with different neutralization process by ammonium chloride (NH4Cl) and hydrochloric acid (HCl) followed by solvent extraction. The production of fatty acid methyl esters (FAMEs) from limed fleshing oil by two stage process has also been investigated. The central composite design (CCD) was used to study the effect of process variables viz., amount of flesh, particle size and time of fleshing oil extraction. The maximum yield of fleshing oil from limed fleshings post neutralization by ammonium chloride (NH4Cl) and hydrochloric acid (HCl) was 26.32g and 12.43g obtained at 200g of flesh, with a particle size of 3.90mm in the time period of 2h. Gas chromatography analysis reveals that the biodiesel (FAME) obtained from limed fleshings is rich in oleic and palmitic acids with weight percentages 46.6 and 32.2 respectively. The resulting biodiesel was characterized for its physio-chemical properties of diesel as per international standards (EN14214). Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Characteristics of products from fast pyrolysis of fractions of waste square timber and ordinary plywood using a fluidized bed reactor.

    PubMed

    Jung, Su-Hwa; Kim, Seon-Jin; Kim, Joo-Sik

    2012-06-01

    Fractions of waste square timber and waste ordinary plywood were pyrolyzed in a pyrolysis plant equipped with a fluidized bed reactor and a dual char separation system. The maximum bio-oil yield of about 65 wt.% was obtained at reaction temperatures of 450-500 °C for both feed materials. For quantitative analysis of bio-oil, the relative response factor (RRF) of each component was calculated using an effective carbon number (ECN) that was multiplied by the peak area of each component detected by a GC-FID. The predominant compounds in the bio-oils were methyl acetate, acids, hydroxyacetone, furfural, non-aromatic ketones, levoglucosan and phenolic compounds. The WOP-derived bio-oil showed it to have relatively high nitrogen content. Increasing the reaction temperature was shown to have little effect on nitrogen removal. The ash and solid contents of both bio-oils were below 0.1 wt.% due to the excellent performance of the char separation system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Oil palm frond juice as future fermentation substrate: a feasibility study.

    PubMed

    Maail, Che Mohd Hakiman Che; Ariffin, Hidayah; Hassan, Mohd Ali; Shah, Umi Kalsom Md; Shirai, Yoshihito

    2014-01-01

    Oil palm frond (OPF) juice is a potential industrial fermentation substrate as it has high sugars content and the OPF are readily available daily. However, maximum sugars yield and storage stability of the OPF juice are yet to be determined. This study was conducted to determine the effect of physical pretreatment and storage duration of OPF petiole on sugars yield. Storage stability of OPF juice at different storing conditions was also investigated. It was found that OPF petiole squeezed by hydraulic pressing machine gave the highest sugars recovery at almost 40 g/kg, accounting for a recovery yield of 88%. Storage of OPF petiole up to 72 hrs prior to squeezing reduced the free sugars by 11 g/kg. Concentrated OPF juice with 95% water removal had the best storage stability at both 4 and 30°C, when it was stored for 10 days. Moreover, concentrated OPF syrup prepared by thermal processing did not give any Maillard effect on microbial growth. Based on our results, OPF juice meets all the criteria as a good fermentation substrate as it is renewable, consistently available, and easy to be obtained, it does not inhibit microbial growth and product formation, and it contains no impurities.

  12. Effects of Pyrolysis Temperature on Product Yields and Energy Recovery from Co-Feeding of Cotton Gin Trash, Cow Manure, and Microalgae: A Simulation Study.

    PubMed

    Hanif, Muhammad Usman; Capareda, Sergio C; Iqbal, Hamid; Arazo, Renato Ortiz; Baig, Muhammad Anwar

    2016-01-01

    The intensive search of new and cleaner energy catches interest in recent years due to huge consumption of fossil fuels coupled with the challenge of energy and environmental sustainability. Production of renewable and environmentally benign energy from locally available raw materials is coming in the frontline. In this work, conversion of the combined biomass (cotton gin trash, cow manure, and Microalgae [Nannochloropsis oculata]) through batch pyrolysis has been investigated. The effect of temperature to the production of energy fuels such as bio-oil, char, and biogas have been simulated considering the yield and energy content as responses. Result of the investigation generally revealed that the proportions of the different biomass did not significantly affect the product yield and energy recovery. Significant effect of temperature is evident in the simulation result of energy recovery whereby maximum conversion was achieved at 400°C for char (91 wt%), 600°C for syngas (22 wt%), and 551°C for bio-oil (48 wt%). Overall energy conversion efficiency of 75.5% was obtained at 589°C in which 15.6 MJ/kg of mixed biomass will be elevated to pyrolysis products.

  13. Fast pyrolysis of potassium impregnated poplar wood and characterization of its influence on the formation as well as properties of pyrolytic products.

    PubMed

    Hwang, Hyewon; Oh, Shinyoung; Cho, Tae-Su; Choi, In-Gyu; Choi, Joon Weon

    2013-12-01

    TGA results indicated that the maximum decomposition temperature of the biomass decreased from 373.9 to 359.0°C with increasing potassium concentration. For fast pyrolysis, char yield of potassium impregnated biomass doubled regardless of pyrolysis temperature compared to demineralized one. The presence of potassium also affected bio-oil properties. Water content increased from 14.4 to 19.7 wt% and viscosity decreased from 34 to 16.2 cSt, but the pH value of the bio-oil remained stable. Gas chromatography/mass spectroscopy (GC/MS) analysis revealed that potassium promoted thermochemical reactions, thus causing a decrease of levoglucosan and an increase of small molecules and lignin-derived phenols in bio-oil. Additionally, various forms of aromatic hydrocarbons, probably derived from lignins, were detected in non-condensed pyrolytic gas fractions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Co-pyrolysis of microwave-assisted acid pretreated bamboo sawdust and soapstock.

    PubMed

    Wang, Yunpu; Wu, Qiuhao; Duan, Dengle; Zhang, Yayun; Ruan, Roger; Liu, Yuhuan; Fu, Guiming; Zhang, Shumei; Zhao, Yunfeng; Dai, Leilei; Fan, Liangliang

    2018-05-30

    Fast microwave-assisted co-pyrolysis of pretreated bamboo sawdust and soapstock was conducted. The pretreatment process was carried out under microwave irradiation. The effects of microwave irradiation temperature, irradiation time, and concentration of hydrochloric acid on product distribution from co-pyrolysis and the relative contents of the major components in bio-oil were investigated. A maximum bio-oil yield of 40.00 wt.% was obtained at 200 °C for 60 min with 0.5 M hydrochloric acid. As pretreatment temperature, reaction time and acid concentration increased, respectively, the relative contents of phenols, diesel fraction (C12 + aliphatics), and other oxygenates decreased. The gasoline fraction (including C5-C12 aliphatics and aromatics) ranged from 55.77% to 73.30% under various pretreatment conditions. Therefore, excessive reaction time and concentration of acid are not beneficial to upgrading bio-oil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Total recovery of nitrogen and phosphorus from three wetland plants by fast pyrolysis technology.

    PubMed

    Liu, Wu-Jun; Zeng, Fan-Xin; Jiang, Hong; Yu, Han-Qing

    2011-02-01

    Fast pyrolysis of three wetland plants (Alligator weed, Oenanthe javanica and Typha angustifolia) in a vertical drop fixed bed reactor was investigated in this study. The experiments were carried out at different pyrolysis temperatures, and the maximum bio-oil yields achieved were 42.3%, 40.2% and 43.6% for Alligator weed, Oenanthe javanica and Typha angustifolia, respectively. The elemental composition of the bio-oil and char were analyzed, and the results show that a low temperature was appropriate for the nitrogen and phosphorus enrichment in char. GC-MS analysis shows that nitrogenous compounds, phenols and oxygenates were the main categories in the bio-oil. A series of leaching tests were carried out to examine the recovery of the nitrogen and phosphorus in the char, and the results indicate that significant fractions of nitrogen and phosphorus could be recovered by leaching process. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Production of biodiesel from bioethanol and Brassica carinata oil: oxidation stability study.

    PubMed

    Bouaid, Abderrahim; Martinez, Mercedes; Aracil, Jose

    2009-04-01

    In the present work the synthesis from bioethanol and Brassica carinata, as alternative vegetable oil, using KOH as catalyst, has been developed and optimized by application of the factorial design and response surface methodology (RSM). Temperature and catalyst concentration were found to have significant influence on conversion. A second-order model was obtained to predict conversions as a function of temperature and catalyst concentration. The maximum yield of ester (98.04%) was obtained working with an initial concentration of catalyst (1.5%) and an operation temperature of (35 degrees C). Results show that the acid value, peroxide value, and viscosity, increased while the iodine value decreased with increasing storage time of the biodiesel sample. Fatty acid ethyl esters (biodiesel) from B. carinata oil were very stable because they did not demonstrate rapid increase in peroxide value, acid value, and viscosity with increasing storage time to a period of 12 months.

  17. Study on the microwave catalytic pyrolysis characteristics and energy consumption analysis of oil shale

    NASA Astrophysics Data System (ADS)

    Chen, Chunxiang; Cheng, Zheng; Xu, Qing; Qin, Songheng

    2018-04-01

    In order to explore the high-efficient utilization of oil shale, the effects of different microwave powers and different kinds of catalysts (metal oxides and metal salts) on the temperature characteristics and product yield towards the oil shale are investigated by microwave catalytic pyrolysis. The results show that the effect of microwave power on the heating and pyrolysis rates of oil shale is significant, and the maximum output of shale oil is 5.1% when the microwave power is 1500W; CaO has a certain effect on the temperature rise of oil shale, and MgO and CuO have a certain degree of inhibition, but the addition of three kinds of metal oxidation is beneficial to increase the shale oil production; From the perspective of unit power consumption and gas production, the catalytic effect order of three kinds of metal oxides is MgO> CaO> CuO; The addition of three kinds of metal salts is favorable for the increase of pyrolysis temperature of oil shale, after adding 5% ZnCl2, the unit power consumption of shale oil and pyrolysis gas increases by 62.60% and 81.96% respectively. After adding 5% NaH2PO3, the unit power consumption of shale oil increases by 64.64%, and reduces by 9.56% by adding 5% MgCl2.

  18. Characterization of biotechnologically relevant extracellular lipase produced by Aspergillus terreus NCFT 4269.10

    PubMed Central

    Sethi, Bijay Kumar; Nanda, Prativa Kumari; Sahoo, Santilata

    2016-01-01

    Enzyme production by Aspergillus terreus NCFT 4269.10 was studied under liquid static surface and solid-state fermentation using mustard oil cake as a substrate. The maximum lipase biosynthesis was observed after incubation at 30 °C for 96 h. Among the domestic oils tested, the maximum lipase biosynthesis was achieved using palm oil. The crude lipase was purified 2.56-fold to electrophoretic homogeneity, with a yield of 8.44%, and the protein had a molecular weight of 46.3 kDa as determined by SDS-PAGE. Enzyme characterization confirmed that the purified lipase was most active at pH 6.0, temperature of 50 °C, and substrate concentration of 1.5%. The enzyme was thermostable at 60 °C for 1 h, and the optimum enzyme–substrate reaction time was 30 min. Sodium dodecyl sulfate and commercial detergents did not significantly affect lipase activity during 30-min incubation at 30 °C. Among the metal ions tested, the maximum lipase activity was attained in the presence of Zn2+, followed by Mg2+ and Fe2+. Lipase activity was not significantly affected in the presence of ethylenediaminetetraacetic acid, sodium lauryl sulfate and Triton X-100. Phenylmethylsulfonyl fluoride (1 mM) and the reducing, β-mercaptoethanol significantly inhibited lipase activity. The remarkable stability in the presence of detergents, additives, inhibitors and metal ions makes this lipase unique and a potential candidate for significant biotechnological exploitation. PMID:26887237

  19. Roselle (Hibiscus sabdariffa L.) and soybean oil effects on quality characteristics of pork patties studied by response surface methodology.

    PubMed

    Jung, Eunkyung; Joo, Nami

    2013-07-01

    Response surface methodology was used to investigate the effect and interactions of processing variables such as roselle extract (0.1-1.3%), soybean oil (5-20%) on physicochemical, textural and sensory properties of cooked pork patties. It was found that reduction in thickness, pH, L* and b* values decreased; however, water-holding capacity, reduction in diameter and a* values increased, respectively, as the amount of roselle increased. Soybean oil addition increased water-holding capacity, reduction in thickness, b* values of the patties. The hardness depended on the roselle and soybean oil added, as its linear effect was negative at p<0.01. The preference of color, tenderness, juiciness, and overall quality depend on the addition of roselle and soybean oil. The maximum overall quality score (5.42) was observed when 12.5 g of soybean oil and 0.7 g of roselle extract was added. The results of this optimization study would be useful for meat industry that tends to increase the product yield for patties using the optimum levels of ingredients by RSM. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. High-level expression and characterization of a chimeric lipase from Rhizopus oryzae for biodiesel production.

    PubMed

    Yu, Xiao-Wei; Sha, Chong; Guo, Yong-Liang; Xiao, Rong; Xu, Yan

    2013-02-21

    Production of biodiesel from non-edible oils is receiving increasing attention. Tung oil, called "China wood oil" is one kind of promising non-edible biodiesel oil in China. To our knowledge, tung oil has not been used to produce biodiesel by enzymatic method. The enzymatic production of biodiesel has been investigated extensively by using Rhizopus oryzae lipase as catalyst. However, the high cost of R. oryzae lipase remains a barrier for its industrial applications. Through different heterologous expression strategies and fermentation techniques, the highest expression level of the lipase from R. oryzae reached 1334 U/mL in Pichia pastoris, which is still not optimistic for industry applications. The prosequence of lipases from Rhizopus sp. is very important for the folding and secretion of an active lipase. A chimeric lipase from R. oryzae was constructed by replacing the prosequence with that from the R. chinensis lipase and expressed in P. pastoris. The maximum activity of the chimera reached 4050 U/mL, which was 11 fold higher than that of the parent. The properties of the chimera were studied. The immobilized chimera was used successfully for biodiesel production from tung oil, which achieved higher FAME yield compared with the free chimeric lipase, non-chimeric lipase and mature lipase. By response surface methodology, three variables, water content, methanol to tung oil molar ratio and enzyme dosage were proved to be crucial parameters for biosynthesis of FAME and the FAME yield reached 91.9±2.5% at the optimized conditions by adding 5.66 wt.% of the initial water based on oil weight, 3.88 of methanol to tung oil molar ratio and 13.24 wt.% of enzyme concentration based on oil weight at 40°C. This is the first report on improving the expression level of the lipase from R. oryzae by replacing prosequences. The immobilized chimera was used successfully for biodiesel production from tung oil. Using tung oil as non-edible raw material and a chimeric lipase from R. oryzae as an economic catalyst make this study a promising one for biodiesel applications.

  1. [Effect of near infrared spectrum on the precision of PLS model for oil yield from oil shale].

    PubMed

    Wang, Zhi-Hong; Liu, Jie; Chen, Xiao-Chao; Sun, Yu-Yang; Yu, Yang; Lin, Jun

    2012-10-01

    It is impossible to use present measurement methods for the oil yield of oil shale to realize in-situ detection and these methods unable to meet the requirements of the oil shale resources exploration and exploitation. But in-situ oil yield analysis of oil shale can be achieved by the portable near infrared spectroscopy technique. There are different correlativities of NIR spectrum data formats and contents of sample components, and the different absorption specialities of sample components shows in different NIR spectral regions. So with the proportioning samples, the PLS modeling experiments were done by 3 formats (reflectance, absorbance and K-M function) and 4 regions of modeling spectrum, and the effect of NIR spectral format and region to the precision of PLS model for oil yield from oil shale was studied. The results show that the best data format is reflectance and the best modeling region is combination spectral range by PLS model method and proportioning samples. Therefore, the appropriate data format and the proper characteristic spectral region can increase the precision of PLS model for oil yield form oil shale.

  2. [Effects of sowing date and planting density on the seed yield and oil content of winter oilseed rape].

    PubMed

    Zhang, Shu-Jie; Li, Ling; Zhang, Chun-Lei

    2012-05-01

    A field experiment was conducted to investigate the effects of different sowing date and planting density on the seed yield and seed oil content of winter oilseed rape (Brassica napus). Sowing date mainly affected the seed yield of branch raceme, while planting density affected the seed yields of both branch raceme and main raceme. The seed oil content was less affected by sowing date. The proportion of the seed yield of main raceme to the seed yield per plant increased with increasing planting density, and the seed oil content of main raceme was about 1% higher than that of branch raceme. Consequently, the seed oil production per plot increased significantly with increasing planting density. In the experimental region, the sowing date of winter oilseed rape should be earlier than mid-October. When sowing in late October, the seed yield would be decreased significantly. A planting density of 36-48 plants x m(-2) could improve the seed yield and oil content of winter oilseed rape.

  3. Biodiesel production from non-edible Silybum marianum oil using heterogeneous solid base catalyst under ultrasonication.

    PubMed

    Takase, Mohammed; Chen, Yao; Liu, Hongyang; Zhao, Ting; Yang, Liuqing; Wu, Xiangyang

    2014-09-01

    The aim of this study is to investigate modified TiO2 doped with C4H4O6HK as heterogeneous solid base catalyst for transesterification of non-edible, Silybum marianum oil to biodiesel using methanol under ultrasonication. Upon screening the catalytic performance of modified TiO2 doped with different K-compounds, 0.7 C4H4O6HK doped on TiO2 was selected. The preparation of the catalyst was done using incipient wetness impregnation method. Having doped modified TiO2 with C4H4O6HK, followed by impregnation, drying and calcination at 600 °C for 6 h, the catalyst was characterized by XRD, FTIR, SEM, BET, TGA, UV and the Hammett indicators. The yield of the biodiesel was proportional to the catalyst basicity. The catalyst had granular and porous structures with high basicity and superior performance. Combined conditions of 16:1 molar ratio of methanol to oil, 5 wt.% catalyst amount, 60 °C reaction temperature and 30 min reaction time was enough for maximum yield of 90.1%. The catalyst maintained sustained activity after five cycles of use. The oxidative stability which was the main problem of the biodiesel was improved from 2.0 h to 3.2h after 30 days using ascorbic acid as antioxidant. The other properties including the flash point, cetane number and the cold flow ones were however, comparable to international standards. The study indicated that Ti-0.7-600-6 is an efficient, economical and environmentally, friendly catalyst under ultrasonication for producing biodiesel from S. marianum oil with a substantial yield. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Influence of geography, seasons and pedology on chemical composition and anti-inflammatory activities of essential oils from Lippia multiflora Mold leaves.

    PubMed

    Soro, Lêniféré Chantal; Munier, Sylvie; Pelissier, Yves; Grosmaire, Lidwine; Yada, Rickey; Kitts, David; Ocho-Anin Atchibri, Anin Louise; Guzman, Caroline; Boudard, Frédéric; Menut, Chantal; Robinson, Jean Charles; Poucheret, Patrick

    2016-12-24

    Lippia multiflora is a plant with nutritional and pharmaco-therapeutic properties that is native to central and occidental Africa. The potential effects of plants on health are associated with their chemical composition. Therefore, the present study aimed to identify chemical variations in essential oils of Lippia multiflora as a function of geographic origin and time of annual harvest to determine optimal chemical profiles for ethno-pharmacotherapeutic applications. Experimental plants were cultivated at Abidjan (LPA), Toumodi (LPT) and Bondoukou (LPB). Natural Lippia multiflora seeds were sourced to produce standardized plants over a period of six months. Standard plants (n=40) were re-introduced into natural plots, cultivated for 12 months and leaves were sampled monthly in a standardized fashion. Essentials oils (n=36) were then extracted from these samples by hydro-distillation according to the European Pharmacopoeia and qualitatively and quantitatively analyzed using GC/FID and GC/MS. These data were then analyzed using Principal Component Analysis (PCA). Anti-inflammatory properties were also assessed against activated macrophages in vitro. The results indicated that chemical profiles and essential oil yields vary according to the location where the plants were cultivated. One essential oil chemotype corresponded to the LPA and LPT sites and one corresponded to the LPB site. Statistical analysis of the chemical profiles and monthly evolution of the three sites over a period of one year allowed assessment of variations in composition and the subsequent choice of the optimal harvest time for ethnopharmacological applications. Anti-inflammatory activity apparently correlated with chemical profiles of essential oils and the geographic origins of the plants. The optimal harvest time was associated with the maximum yield of pharmacological compounds with the most potential interest for health. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Changes in growth, essential oil yield and composition of geranium (Pelargonium graveolens L.) as affected by growing media.

    PubMed

    Rezaei Nejad, Abdolhossein; Ismaili, Ahmad

    2014-03-30

    Using proper growing medium is known to be an effective way to improve crop growth and yield. However, the effects of growing media on geranium essential oil have scarcely ever been examined in detail. In this research, the effects of different growing media (soil, sand, pumice, perlite and perlite + cocopeat) on growth, oil yield and composition of geranium were studied. Growth was significantly improved in soilless-grown plants compared with soil-grown plants. Oil yield of soilless-grown plants (except for pumice) was about threefold higher than that of soil-grown plants. The increase in oil yield was correlated with higher leaf dry weight (r²  = 0.96), as oil content was not affected. The citronellol/geranium ratio of oil was clearly affected by growing media, ranging from 5:1 in soil culture to 3:1 in soilless culture. The latter is acceptable for perfumery. Compared with soil, soilless media could produce higher yields of high-quality geranium oil that fits market requirements. Growth, oil yield and composition of plants grown in sand (a cheap and abundant growing medium) were not significantly different from those of plants grown in perlite and perlite + cocopeat. © 2013 Society of Chemical Industry.

  6. Stability analysis of oil yield in oil palm (Elaeis guineensis) progenies in different environments.

    PubMed

    Rafii, M Y; Jalani, B S; Rajanaidu, N; Kushairi, A; Puteh, A; Latif, M A

    2012-10-04

    We evaluated 38 dura x pisifera (DP) oil palm progenies in four locations in Malaysia for genotype by environment interaction and genotypic stability studies. The DP progenies derived from crosses between pisifera palms of AVROS, Serdang S27B, Serdang 29/36, and Lever Cameroon were chosen to be the males' parent and Deli dura palms designated as females' parent. All the locations differed in terms of soil physical and chemical properties, and the soil types ranged from coastal clay to inland soils. The genotype by environment interaction and stability of the individual genotypes were analyzed for oil yield trait using several stability techniques. A genotype by environment interaction was detected for oil yield and it had a larger variance component than genotypic variance (σ(2)(gl)/σ(2)(g) = 139.7%). Genotype by environment interaction of oil yield was largely explained by a non-linear relationship between genotypic and environmental values. Overall assessment of individual genotypic stability showed that seven genotypes were highly stable and had consistent performance over the environments for the oil yield trait [total individual genotype stability scored more than 10 and mean oil yielded above the average of the environment (genotype means are more than 34.37 kg·palm(-1)·year(-1))]. These genotypes will be useful for oil palm breeding and tissue culture programs for developing high oil yielding planting materials with stable performance.

  7. Efficacy of anise oil, dwarf-pine oil and chamomile oil against thymidine-kinase-positive and thymidine-kinase-negative herpesviruses.

    PubMed

    Koch, Christine; Reichling, Jürgen; Kehm, Roland; Sharaf, Mona M; Zentgraf, Hanswalter; Schneele, Jürgen; Schnitzler, Paul

    2008-11-01

    The effect of anise oil, dwarf-pine oil and chamomile oil against different thymidine-kinase-positive (aciclovir-sensitive) and thymidine-kinase-negative (aciclovir-resistant) herpes simplex virus type 1 (HSV-1) strains was examined. Clinical HSV-1 isolates containing frameshift mutations in the thymidine kinase (TK) gene, an insertion or a deletion, yield a non-functional thymidine kinase enzyme resulting in phenotypical resistance against aciclovir. The inhibitory activity of three different essential oils against herpes simplex virus isolates was tested in-vitro using a plaque reduction assay. All essential oils exhibited high levels of antiviral activity against aciclovir-sensitive HSV strain KOS and aciclovir-resistant clinical HSV isolates as well as aciclovir-resistant strain Angelotti. At maximum noncytotoxic concentrations of the plant oils, plaque formation was significantly reduced by 96.6-99.9%, when herpesviruses were preincubated with drugs before attachment to host cells. No significant effect on viral infectivity could be achieved by adding these compounds during the replication phase. These results indicate that anise oil, dwarf-pine oil and chamomile oil affected the virus by interrupting adsorption of herpesviruses and in a different manner than aciclovir, which is effective after attachment inside the infected cells. Thus the investigated essential oils are capable of exerting a direct effect on HSV and might be useful in the treatment of drug-resistant viruses. Chamomile oil did not reveal any irritating potential on hen's egg chorioallantoic membrane, demonstrated the highest selectivity index among the oils tested and was highly active against clinically relevant aciclovir-resistant HSV-1 strains.

  8. Has the use of talc an effect on yield and extra virgin olive oil quality?

    PubMed

    Caponio, Francesco; Squeo, Giacomo; Difonzo, Graziana; Pasqualone, Antonella; Summo, Carmine; Paradiso, Vito Michele

    2016-08-01

    The maximization of both extraction yield and extra virgin olive oil quality during olive processing are the main objectives of the olive oil industry. As regards extraction yield, it can be improved by both acting on time/temperature of malaxation and using physical coadjuvants. It is well known that, generally, increasing temperature of malaxation gives an increase in oil extraction yield due to a reduction in oily phase viscosity; however, high malaxation temperature can compromise the nutritional and health values of extra virgin olive oil, leading to undesirable effects such as accelerated oxidative process and loss of volatile compounds responsible for oil flavor and fragrance. The addition of physical coadjuvants in olive oil processing during the malaxation phase, not excluded by EC regulations owing to its exclusively physical action, is well known to promote the breakdown of oil/water emulsions and consequently make oil extraction easier, thus increasing the yield. Among physical coadjuvants, micronized natural talc is used for olive oil processing above all for Spanish and Italian olive cultivars. The quality of extra virgin olive oil depends on numerous variables such as olive cultivar, ripeness degree and quality, machines utilized for processing, oil storage conditions, etc. However, the coadjuvants utilized in olive processing can also influence virgin olive oil characteristics. The literature highlights an increase in oil yield by micronized natural talc addition during olive processing, whereas no clear trend was observed as regards the chemical, nutritional and sensory characteristics of extra virgin olive oil. Although an increase in oil stability was reported, no effect of talc was found on the evolution of virgin olive oil quality indices during storage. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Pyrolysis of Woody Residue Feedstocks: Upgrading of Bio-Oils from Mountain-Pine-Beetle-Killed Trees and Hog Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacher, Alan H.; Elliott, Douglas C.; Olarte, Mariefel V.

    Liquid transportation fuel blend-stocks were produced by pyrolysis and catalytic upgrading of woody residue biomass. Mountain pine beetle killed wood and hog fuel from a saw mill were pyrolyzed in a 1 kg/h fluidized bed reactor and subsequently upgraded to hydrocarbons in a continuous fixed bed hydrotreater. Upgrading was performed by catalytic hydrotreatment in a two-stage bed at 170°C and 405°C with a per bed LHSV between 0.17 and 0.19. The overall yields from biomass to upgraded fuel were similar for both feeds: 24-25% despite the differences in bio-oil (intermediate) mass yield. Pyrolysis bio-oil mass yield was 61% from MPBKmore » wood, and subsequent upgrading of the bio-oil gave an average mass yield of 41% to liquid fuel blend stocks. Hydrogen was consumed at an average of 0.042g/g of bio-oil fed, with final oxygen content in the product fuel ranging from 0.31% to 1.58% over the course of the test. Comparatively for hog fuel, pyrolysis bio-oil mass yield was lower at 54% due to inorganics in the biomass, but subsequent upgrading of that bio-oil had an average mass yield of 45% to liquid fuel, resulting in a similar final mass yield to fuel compared to the cleaner MPBK wood. Hydrogen consumption for the hog fuel upgrading averaged 0.041 g/g of bio-oil fed, and the final oxygen content of the product fuel ranged from 0.09% to 2.4% over the run. While it was confirmed that inorganic laded biomass yields less bio-oil, this work demonstrated that the resultant bio-oil can be upgraded to hydrocarbons at a higher yield than bio-oil from clean wood. Thus the final hydrocarbon yield from clean or residue biomass pyrolysis/upgrading was similar.« less

  10. High-level expression and characterization of a chimeric lipase from Rhizopus oryzae for biodiesel production

    PubMed Central

    2013-01-01

    Background Production of biodiesel from non-edible oils is receiving increasing attention. Tung oil, called “China wood oil” is one kind of promising non-edible biodiesel oil in China. To our knowledge, tung oil has not been used to produce biodiesel by enzymatic method. The enzymatic production of biodiesel has been investigated extensively by using Rhizopus oryzae lipase as catalyst. However, the high cost of R. oryzae lipase remains a barrier for its industrial applications. Through different heterologous expression strategies and fermentation techniques, the highest expression level of the lipase from R. oryzae reached 1334 U/mL in Pichia pastoris, which is still not optimistic for industry applications. Results The prosequence of lipases from Rhizopus sp. is very important for the folding and secretion of an active lipase. A chimeric lipase from R. oryzae was constructed by replacing the prosequence with that from the R. chinensis lipase and expressed in P. pastoris. The maximum activity of the chimera reached 4050 U/mL, which was 11 fold higher than that of the parent. The properties of the chimera were studied. The immobilized chimera was used successfully for biodiesel production from tung oil, which achieved higher FAME yield compared with the free chimeric lipase, non-chimeric lipase and mature lipase. By response surface methodology, three variables, water content, methanol to tung oil molar ratio and enzyme dosage were proved to be crucial parameters for biosynthesis of FAME and the FAME yield reached 91.9±2.5% at the optimized conditions by adding 5.66 wt.% of the initial water based on oil weight, 3.88 of methanol to tung oil molar ratio and 13.24 wt.% of enzyme concentration based on oil weight at 40°C. Conclusions This is the first report on improving the expression level of the lipase from R. oryzae by replacing prosequences. The immobilized chimera was used successfully for biodiesel production from tung oil. Using tung oil as non-edible raw material and a chimeric lipase from R. oryzae as an economic catalyst make this study a promising one for biodiesel applications. PMID:23432946

  11. Growth kinetics of Chlorococcum humicola - A potential feedstock for biomass with biofuel properties.

    PubMed

    Thomas, Jibu; Jayachithra, E V

    2015-11-01

    Economically viable production facilities for microalgae depend on the optimization of growth parameters with regard to nutrient requirements. Using microalgae to treat industrial effluents containing heavy metals presents an alternative to the current practice of using physical and chemical methods. Present work focuses on the statistical optimization of growth of Chlorococcum humicola to ascertain the maximum production of biomass. Plackett Burman design was carried out to screen the significant variables influencing biomass production. Further, Response Surface Methodology was employed to optimize the effect of inoculum, light intensity and pH on net biomass yield. Optimum conditions for maximum biomass yield were identified to be inoculum at 15%, light intensity to be 1500lx and pH 8.5. Theoretical and predicted values were in agreement and thus the model was found to be significant. Gas chromatography analyses of the FAME derivatives showed a high percentage of saturated fatty acids thereby confirming the biofuel properties of the oil derived from algal biomass. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Catalytic pyrolysis of Alcea pallida stems in a fixed-bed reactor for production of liquid bio-fuels.

    PubMed

    Aysu, Tevfik

    2015-09-01

    Pyrolysis of Alcea pallida stems was performed in a fixed-bed tubular reactor with and without catalyst at three different temperatures. The effects of pyrolysis parameters including temperature and catalyst on the product yields were investigated. It was found that higher temperature resulted in lower liquid (bio-oil) and solid (bio-char) yields and higher gas yields. Catalysts had different effects on product yields and composition of bio-oils. Liquid yields were increased in the presence of zinc chloride and alumina but decreased with calcium hydroxide, tincal and ulexite. The highest bio-oil yield (39.35%) by weight including aqueous phase was produced with alumina catalyst at 500 °C. The yields of bio-char, bio-oil and gas produced, as well as the compositions of the resulting bio-oils were determined by elemental analysis, TGA, FT-IR and GC-MS. 160 different compounds were identified by GC-MS in the bio-oils obtained at 500 °C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Comparative assessment of various lipid extraction protocols and optimization of transesterification process for microalgal biodiesel production.

    PubMed

    Mandal, Shovon; Patnaik, Reeza; Singh, Amit Kumar; Mallick, Nirupama

    2013-01-01

    Biodiesel, using microalgae as feedstocks, is being explored as the most potent form of alternative diesel fuel for sustainable economic development. A comparative assessment of various protocols for microalgal lipid extraction was carried out using five green algae, six blue-green algae and two diatom species treated with different single and binary solvents both at room temperature and using a soxhlet. Lipid recovery was maximum with chloroform-methanol in the soxhlet extractor. Pretreatments ofbiomass, such as sonication, homogenization, bead-beating, lyophilization, autoclaving, microwave treatment and osmotic shock did not register any significant rise in lipid recovery. As lipid recovery using chloroform-methanol at room temperature demonstrated a marginally lower value than that obtained under the soxhlet extractor, on economical point of view, the former is recommended for microalgal total lipid extraction. Transesterification process enhances the quality of biodiesel. Experiments were designed to determine the effects of catalyst type and quantity, methanol to oil ratio, reaction temperature and time on the transesterification process using response surface methodology. Fatty acid methyl ester yield reached up to 91% with methanol:HCl:oil molar ratio of 82:4:1 at 65 degrees C for 6.4h reaction time. The biodiesel yield relative to the weight of the oil was found to be 69%.

  14. Optimization of ultrasound-assisted extraction of crude oil from winter melon (Benincasa hispida) seed using response surface methodology and evaluation of its antioxidant activity, total phenolic content and fatty acid composition.

    PubMed

    Bimakr, Mandana; Rahman, Russly Abdul; Taip, Farah Saleena; Adzahan, Noranizan Mohd; Sarker, Md Zaidul Islam; Ganjloo, Ali

    2012-10-08

    In the present study, ultrasound-assisted extraction of crude oil from winter melon seeds was investigated through response surface methodology (RSM). Process variables were power level (25-75%), temperature (45-55 °C) and sonication time (20-40 min). It was found that all process variables have significant (p < 0.05) effects on the response variable. A central composite design (CCD) was used to determine the optimum process conditions. Optimal conditions were identified as 65% power level, 52 °C temperature and 36 min sonication time for maximum crude yield (108.62 mg-extract/g-dried matter). The antioxidant activity, total phenolic content and fatty acid composition of extract obtained under optimized conditions were determined and compared with those of oil obtained by the Soxhlet method. It was found that crude extract yield (CEY) of ultrasound-assisted extraction was lower than that of the Soxhlet method, whereas antioxidant activity and total phenolic content of the extract obtained by ultrasound-assisted extraction were clearly higher than those of the Soxhlet extract. Furthermore, both extracts were rich in unsaturated fatty acids. The major fatty acids of the both extracts were linoleic acid and oleic acid.

  15. Catalytic microwave pyrolysis of oil palm fiber (OPF) for the biochar production.

    PubMed

    Hossain, Md Arafat; Ganesan, Poo Balan; Sandaran, Shanti Chandran; Rozali, Shaifulazuar Bin; Krishnasamy, Sivakumar

    2017-12-01

    Microwave pyrolysis of oil palm fiber (OPF) with three types of Na-based catalysts was experimentally investigated to produce biochar. Sodium hydroxide (NaOH), sodium chloride (NaCl), and sodium carbonate (Na 2 CO 3 ) with purity 99.9% were selected for this investigation. Microwave muffle reactor (Model: HAMiab-C1500) with a microwave power controller including a microwave generator was used to perform the microwave pyrolysis. OPF particles were used after removing foreign materials, impurities, and dust. Microwave power ranges from 400 to 900 W, temperature ranges from 450 to 700 °C, and N 2 flow rates ranges from 200 to -1200 cm 3 /min were used along with all three Na-based catalysts for this investigation. Lower microwave power, temperature, and N 2 flow rate have been found favorable for higher yield of biochar. NaOH is to be found as the more suitable catalyst than NaCl and Na 2 CO 3 to produce biochar. A maximum biochar yield (51.42 wt%) has been found by using the catalysts NaOH at N 2 flow rate of 200 cm 3 /min. One sample of the biochar (maximum yield without catalysts) was selected for further characterization via thermo gravimetric analysis (TGA), scanning electron microscopy (SEM), BET surface area, Fourier transform infrared spectroscopy (FTIR), and ultimate and proximate analysis. SEM and BET surface area analysis showed the presence of some pores in the biochar. High percentage of carbon (60.24 wt%) was also recorded in the sample biochar. The pores and high percentage of carbon of biochar have significant impact on soil fertilization by increasing the carbon sequestration in the soil. It assists to slow down the decomposition rate of nutrients from soil and therefore enhances the soil quality.

  16. Comparison of oilseed yields: a preliminary review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duke, J.A.; Bagby, M.O.

    It was assumed that for most oilseed crops, 90% of the oil yield might be considered as profit. To compare oil seeds, pertinent portions of the yield and energy paragraphs from a summary published by Dr. Duke for DOE Grant No. 59-2246-1-6-054-0 with Dr. Bagby as ADODR were reproduced. The seed yields ranged from 200 to 14,000 kg/ha, the low one too low to consider and the high one suspiciously high. The yield of 14,000 kg oil per hectare is equivalent to more than 30 barrels of oil per hectare. The energy species included ambrette, tung-oil tree, cashew, wood-oil tree,more » mu-oil tree, peanut, mustard greens; rape, colza; black mustard, turnip, safflower, colocynth, coconut, crambe, African oil palm, soybean, cotton, sunflower, Eastern black walnut, Engligh walnut, meadow foam, flax, macadamia nuts, opium poppy, perilla, almond, castorbean, Chinese tallow tree, sesame, jojoba, yellow mustard, stokes' aster, and Zanzibar oilvine. 1 table. (DP)« less

  17. β-Sitosterol: supercritical carbon dioxide extraction from sea buckthorn (Hippophae rhamnoides L.) seeds.

    PubMed

    Sajfrtová, Marie; Licková, Ivana; Wimmerová, Martina; Sovová, Helena; Wimmer, Zdenek

    2010-04-22

    Supercritical fluid extraction represents an efficient and environmentally friendly technique for isolation of phytosterols from different plant sources. Sea buckthorn (Hippophae rhamnoides L.) seeds were extracted with supercritical carbon dioxide at pressures ranging from 15-60 MPa and temperatures of 40-80 degrees C. Oil and β-sitosterol yields were measured in the extraction course and compared with Soxhlet extraction with hexane. The average yield of β-sitosterol was 0.31 mg/g of seeds. The maximum concentration of β-sitosterol in the extract, 0.5% w/w, was achieved at 15 MPa, 40 degrees C, and a carbon dioxide consumption of 50 g/g of seeds. The extraction rate was maximal at 60 MPa and 40 degrees C. Both β-sitosterol yield and its concentration in the extract obtained with hexane were lower than with carbon dioxide.

  18. Photochemical dissolution of Turkish lignites in tetralin at different irradiation power and reaction times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F. Karacan; T. Torul

    2007-08-15

    The effect of the power of ultraviolet (UV) irradiation on the tetrahydrofuran (THF) solubles yield (the total soluble product) and the soluble product distribution of the dissolution of Turkish lignites (Beypazari and Tuncbilek lignite) in tetralin at ambient temperatures has been investigated. The lignite samples were exposed to UV irradiation for 1, 2, 3, 5, and 10 days in the power of irradiation ranging from 0 to 180 W at 60 W intervals. The yields of THF solubles and oils increased with increasing irradiation power and time. The optimum irradiation power depends on the irradiation time to obtain the highestmore » degradation products. However, the yield of degradation products depends also on the lignite type. The largest fraction obtained from lignites by photochemical energy is oil. While the yields of THF solubles and oils sharply increased with irradiation power at longer reaction times, the yields of asphaltenes (AS) slightly decreased. Increasing oil yields is relatively larger when AS yields tend to decrease. These trends of AS and oil yields are ascribable to conversion of AS to oils at higher power. Small changes were observed in the PAS yields under all conditions. 27 refs., 5 figs., 1 tab.« less

  19. Essential Oil Extraction, Chemical Analysis and Anti-Candida Activity of Calamintha nepeta (L.) Savi subsp. glandulosa (Req.) Ball-New Approaches.

    PubMed

    Božović, Mijat; Garzoli, Stefania; Sabatino, Manuela; Pepi, Federico; Baldisserotto, Anna; Andreotti, Elisa; Romagnoli, Carlo; Mai, Antonello; Manfredini, Stefano; Ragno, Rino

    2017-01-26

    A comprehensive study on essential oils extracted from different Calamintha nepeta (L.) Savi subsp. glandulosa (Req.) Ball samples from Tarquinia (Italy) is reported. In this study, the 24-h steam distillation procedure for essential oil preparation, in terms of different harvesting and extraction times, was applied. The Gas chromatography-mass spectrometry (GC/MS) analysis showed that C. nepeta (L.) Savi subsp. glandulosa (Req.) Ball essential oils from Tarquinia belong to the pulegone-rich chemotype. The analysis of 44 samples revealed that along with pulegone, some other chemicals may participate in exerting the related antifungal activity. The results indicated that for higher activity, the essential oils should be produced with at least a 6-h steam distillation process. Even though it is not so dependent on the period of harvesting, it could be recommended not to harvest the plant in the fruiting stage, since no significant antifungal effect was shown. The maximum essential oil yield was obtained in August, with the highest pulegone percentage. To obtain the oil with a higher content of menthone, September and October should be considered as the optimal periods. Regarding the extraction duration, vegetative stage material gives the oil in the first 3 h, while material from the reproductive phase should be extracted at least at 6 or even 12 h.

  20. An investigation of age and yield of fresh fruit bunches of oil palm based on ALOS PALSAR 2

    NASA Astrophysics Data System (ADS)

    Darmawan, S.; Takeuchi, W.; Haryati, A.; M, R. Najib A.; Na'aim, M.

    2016-06-01

    The objective on this study is to investigate age and yield of FFB of oil palms based on ALOS PALSAR 2. Study areas in oil palm plantations areas of Jerantut, Pahang Malaysia. Methodology consists collecting of ALOS PALSAR 2 and tabular data on the study area, processing of ALOS PALSAR 2 including of converting digital numbers to normalize radar cross sections (NRCS), topography correction and filtering, making of regions of interest according to areas of age and yield of FFB of oil palms and making of relationship analysis between backscatter value of HH, HV and age and yield of FFB of oil palm. The results have showed relationship between HH, HV and age of oil palm which R2 of 0.63 for HH and 0.42 for HV that indicated increasing of age of oil palm as increasing of HH and HV value. Also relationship between HH, HV and yield of FFB of oil palm which R2 of 0.26 for HH and 0.15 for HV, that indicated increasing of yield of FFB as decreasing of HH and HV value.

  1. A photometric method for the estimation of the oil yield of oil shale

    USGS Publications Warehouse

    Cuttitta, Frank

    1951-01-01

    A method is presented for the distillation and photometric estimation of the oil yield of oil-bearing shales. The oil shale is distilled in a closed test tube and the oil extracted with toluene. The optical density of the toluene extract is used in the estimation of oil content and is converted to percentage of oil by reference to a standard curve. This curve is obtained by relating the oil yields determined by the Fischer assay method to the optical density of the toluene extract of the oil evolved by the new procedure. The new method gives results similar to those obtained by the Fischer assay method in a much shorter time. The applicability of the new method to oil-bearing shale and phosphatic shale has been tested.

  2. Thermogravimetric analysis and kinetic modeling of low-transition-temperature mixtures pretreated oil palm empty fruit bunch for possible maximum yield of pyrolysis oil.

    PubMed

    Yiin, Chung Loong; Yusup, Suzana; Quitain, Armando T; Uemura, Yoshimitsu; Sasaki, Mitsuru; Kida, Tetsuya

    2018-05-01

    The impacts of low-transition-temperature mixtures (LTTMs) pretreatment on thermal decomposition and kinetics of empty fruit bunch (EFB) were investigated by thermogravimetric analysis. EFB was pretreated with the LTTMs under different duration of pretreatment which enabled various degrees of alteration to their structure. The TG-DTG curves showed that LTTMs pretreatment on EFB shifted the temperature and rate of decomposition to higher values. The EFB pretreated with sucrose and choline chloride-based LTTMs had attained the highest mass loss of volatile matter (78.69% and 75.71%) after 18 h of pretreatment. For monosodium glutamate-based LTTMs, the 24 h pretreated EFB had achieved the maximum mass loss (76.1%). Based on the Coats-Redfern integral method, the LTTMs pretreatment led to an increase in activation energy of the thermal decomposition of EFB from 80.00 to 82.82-94.80 kJ/mol. The activation energy was mainly affected by the demineralization and alteration in cellulose crystallinity after LTTMs pretreatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Co-composting of palm oil mill sludge-sawdust.

    PubMed

    Yaser, Abu Zahrim; Abd Rahman, Rakmi; Kalil, Mohd Sahaid

    2007-12-15

    Composting of Palm Oil Mill Sludge (POMS) with sawdust was conducted in natural aerated reactor. Composting using natural aerated reactor is cheap and simple. The goal of this study is to observe the potential of composting process and utilizing compost as media for growing Cymbopogun citratus, one of Malaysia herbal plant. The highest maximum temperature achieved is about 40 degrees C and to increase temperature bed, more biodegradable substrate needs to be added. The pH value decrease along the process with final pH compost is acidic (pH 5.7). The highest maximum organic losses are about 50% with final C/N ratio of the compost is about 19. Final compost also showed some fertilizing value but need to be adjusted to obtain an ideal substrate. Addition of about 70% sandy soil causes highest yield and excellent root development for C. citratus in potted media. Beside that, compost from POMS-sawdust also found to have fertilizer value and easy to handle. Composting of POMS with sawdust shows potential as an alternative treatment to dispose and recycle waste components.

  4. Catalytic upgrading of bio-products derived from pyrolysis of red macroalgae Gracilaria gracilis with a promising novel micro/mesoporous catalyst.

    PubMed

    Norouzi, Omid; Tavasoli, Ahmad; Jafarian, Sajedeh; Esmailpour, Sasan

    2017-11-01

    Conversion of Gracilaria gracilis (G. gracilis) into bio-products was carried out via pyrolysis at different temperatures to determine its potential for phenol-rich bio-oil. Co-Mo supported on zeolites (HZSM-5), mesoporous (HMS) catalysts and their composites (ZH) were investigated and compared to each other on catalytic pyrolysis processes. In non-catalytic tests, the maximum weight percentage of bio-oil was 42wt% at 500°C and had the maximum amount of phenol (6.28wt%). in the catalytic tests by ZH composites; the addition of zeolite content in the structure of composites significantly decreased total concentrations of acetic acid and formic acid from 9.56 to 8.12wt% and slightly decreased phenol and furfural concentrations from 6.65 and 6.98 to 5.88 and 5.49wt%, respectively. Furthermore, the best selectivity for hydrogen yield (6.08mmol/g macroalgae) and lowest amount of acetic acid (5.4wt%) was observed for CoMo/ZH-20 catalyst, that is synthesized by 20wt% of zeolite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Sustainable management in crop monocultures: the impact of retaining forest on oil palm yield.

    PubMed

    Edwards, Felicity A; Edwards, David P; Sloan, Sean; Hamer, Keith C

    2014-01-01

    Tropical agriculture is expanding rapidly at the expense of forest, driving a global extinction crisis. How to create agricultural landscapes that minimise the clearance of forest and maximise sustainability is thus a key issue. One possibility is protecting natural forest within or adjacent to crop monocultures to harness important ecosystem services provided by biodiversity spill-over that may facilitate production. Yet this contrasts with the conflicting potential that the retention of forest exports dis-services, such as agricultural pests. We focus on oil palm and obtained yields from 499 plantation parcels spanning a total of ≈23,000 ha of oil palm plantation in Sabah, Malaysian Borneo. We investigate the relationship between the extent and proximity of both contiguous and fragmented dipterocarp forest cover and oil palm yield, controlling for variation in oil palm age and for environmental heterogeneity by incorporating proximity to non-native forestry plantations, other oil palm plantations, and large rivers, elevation and soil type in our models. The extent of forest cover and proximity to dipterocarp forest were not significant predictors of oil palm yield. Similarly, proximity to large rivers and other oil palm plantations, as well as soil type had no significant effect. Instead, lower elevation and closer proximity to forestry plantations had significant positive impacts on oil palm yield. These findings suggest that if dipterocarp forests are exporting ecosystem service benefits or ecosystem dis-services, that the net effect on yield is neutral. There is thus no evidence to support arguments that forest should be retained within or adjacent to oil palm monocultures for the provision of ecosystem services that benefit yield. We urge for more nuanced assessments of the impacts of forest and biodiversity on yields in crop monocultures to better understand their role in sustainable agriculture.

  6. Sustainable Management in Crop Monocultures: The Impact of Retaining Forest on Oil Palm Yield

    PubMed Central

    Edwards, Felicity A.; Edwards, David P.; Sloan, Sean; Hamer, Keith C.

    2014-01-01

    Tropical agriculture is expanding rapidly at the expense of forest, driving a global extinction crisis. How to create agricultural landscapes that minimise the clearance of forest and maximise sustainability is thus a key issue. One possibility is protecting natural forest within or adjacent to crop monocultures to harness important ecosystem services provided by biodiversity spill-over that may facilitate production. Yet this contrasts with the conflicting potential that the retention of forest exports dis-services, such as agricultural pests. We focus on oil palm and obtained yields from 499 plantation parcels spanning a total of ≈23,000 ha of oil palm plantation in Sabah, Malaysian Borneo. We investigate the relationship between the extent and proximity of both contiguous and fragmented dipterocarp forest cover and oil palm yield, controlling for variation in oil palm age and for environmental heterogeneity by incorporating proximity to non-native forestry plantations, other oil palm plantations, and large rivers, elevation and soil type in our models. The extent of forest cover and proximity to dipterocarp forest were not significant predictors of oil palm yield. Similarly, proximity to large rivers and other oil palm plantations, as well as soil type had no significant effect. Instead, lower elevation and closer proximity to forestry plantations had significant positive impacts on oil palm yield. These findings suggest that if dipterocarp forests are exporting ecosystem service benefits or ecosystem dis-services, that the net effect on yield is neutral. There is thus no evidence to support arguments that forest should be retained within or adjacent to oil palm monocultures for the provision of ecosystem services that benefit yield. We urge for more nuanced assessments of the impacts of forest and biodiversity on yields in crop monocultures to better understand their role in sustainable agriculture. PMID:24638038

  7. Valorization of algal waste via pyrolysis in a fixed-bed reactor: Production and characterization of bio-oil and bio-char.

    PubMed

    Aboulkas, A; Hammani, H; El Achaby, M; Bilal, E; Barakat, A; El Harfi, K

    2017-11-01

    The aim of the present work is to develop processes for the production of bio-oil and bio-char from algae waste using the pyrolysis at controlled conditions. The pyrolysis was carried out at different temperatures 400-600°C and different heating rates 5-50°C/min. The algal waste, bio-oil and bio-char were successfully characterized using Elemental analysis, Chemical composition, TGA, FTIR, 1 H NMR, GC-MS and SEM. At a temperature of 500°C and a heating rate of 10°C/min, the maximum yield of bio-oil and bio-char was found to be 24.10 and 44.01wt%, respectively, which was found to be strongly influenced by the temperature variation, and weakly affected by the heating rate variation. Results show that the bio-oil cannot be used as bio-fuel, but can be used as a source of value-added chemicals. On the other hand, the bio-char is a promising candidate for solid fuel applications and for the production of carbon materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Ultrasonic-assisted production of biodiesel from transesterification of palm oil over ostrich eggshell-derived CaO catalysts.

    PubMed

    Chen, Guanyi; Shan, Rui; Shi, Jiafu; Yan, Beibei

    2014-11-01

    In this study, waste ostrich eggshell-derived calcium oxide (denoted as CaO(OE)) particles were synthesized and explored as cost-effective catalysts for the ultrasonic-assisted transesterification of palm oil. The physicochemical properties of the resultant catalysts were characterized by XRD, N2 adsorption, XRF and Hammett indicator, while the catalytic activity was evaluated through transesterification of palm oil with methanol under ultrasonic conditions. More specifically, the CaO(OE) showed comparable catalytic activity to the one derived from commercial calcium carbonate (denoted as CaO(Lab)). Moreover, under ultrasonic conditions, the catalytic activity of CaO(OE) could be enhanced significantly. The maximum yield of fatty acid methyl esters could reach 92.7% under the optimal condition of reaction time of 60 min with ultrasonic power of 60% (120 W), methanol-to-oil ratio of 9:1, and catalyst loading of 8 wt.%. The results indicated that the CaO(OE) catalysts showed good catalytic performance and reusability, and may potentially reduce the cost of biodiesel production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Olive oil quality and ripening in super-high-density Arbequina orchard.

    PubMed

    Benito, Marta; Lasa, José Manuel; Gracia, Pilar; Oria, Rosa; Abenoza, María; Varona, Luis; Sánchez-Gimeno, Ana Cristina

    2013-07-01

    The aim of this work was to evaluate the evolution of the quality of extra virgin olive oil obtained from a super-high-density Arbequina orchard, under a drip irrigation system, throughout the ripening process. For this objective, physicochemical, nutritional and sensory parameters were studied. In addition, the oxidative stability, pigment content and colour evolution of olive oil were analysed during the ripening process. Free acidity increased slightly throughout the ripening process, while peroxide value and extinction coefficient decreased. Total phenol content and oxidative stability showed a similar trend, increasing at the beginning of ripening up to a maximum and thereafter decreasing. α-Tocopherol and pigment contents decreased with ripening, leading to changes in colour coordinates. Sensory parameters were correlated with total phenol content, following a similar trend throughout the maturation process. By sampling and monitoring the ripeness index weekly, it would be possible to determine an optimal harvesting time for olives according to the industrial yield and the physicochemical, nutritional and sensory properties of the olive oil. © 2012 Society of Chemical Industry.

  10. Hydrothermal liquefaction of separated dairy manure for production of bio-oils with simultaneous waste treatment.

    PubMed

    Theegala, Chandra S; Midgett, Jason S

    2012-03-01

    A bench scale hydrothermal liquefaction (HTL) system was tested using dairy manure to explore biooil production and waste treatment potential. Carbon monoxide was used as the process gas and sodium carbonate (Na(2)CO(3)) as catalyst. At a 350°C process temperature, the HTL unit produced 3.45 g (± 0.21) of acetone soluble oil fractions (ASF), with an average Higher Heating Value of 32.16 (± 0.23) MJ kg(-1). A maximum ASF yield of 4.8 g was produced at a process temperature of 350°C and 1g of catalyst. The best ASF yield corresponded to 67.6% of energy contained in the raw manure. GC-MS analysis of ASF indicated that the highest quantities of phenolic compounds were formed when 1g catalyst was used. Chemical Oxygen Demand (COD) reduction in the dischargeable slurry was as high as 75%. The results point to an alternative dairy waste treatment technology with a potential to generate transportable biooils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Green bio-oil extraction for oil crops

    NASA Astrophysics Data System (ADS)

    Zainab, H.; Nurfatirah, N.; Norfaezah, A.; Othman, H.

    2016-06-01

    The move towards a green bio-oil extraction technique is highlighted in this paper. The commonly practised organic solvent oil extraction technique could be replaced with a modified microwave extraction. Jatropha seeds (Jatropha curcas) were used to extract bio-oil. Clean samples were heated in an oven at 110 ° C for 24 hours to remove moisture content and ground to obtain particle size smaller than 500μm. Extraction was carried out at different extraction times 15 min, 30 min, 45 min, 60 min and 120 min to determine oil yield. The biooil yield obtained from microwave assisted extraction system at 90 minutes was 36% while that from soxhlet extraction for 6 hours was 42%. Bio-oil extracted using the microwave assisted extraction (MAE) system could enhance yield of bio-oil compared to soxhlet extraction. The MAE extraction system is rapid using only water as solvent which is a nonhazardous, environment-friendly technique compared to soxhlet extraction (SE) method using hexane as solvent. Thus, this is a green technique of bio-oil extraction using only water as extractant. Bio-oil extraction from the pyrolysis of empty fruit bunch (EFB), a biomass waste from oil palm crop, was enhanced using a biocatalyst derived from seashell waste. Oil yield for non-catalytic extraction was 43.8% while addition of seashell based biocatalyst was 44.6%. Oil yield for non-catalytic extraction was 43.8% while with addition of seashell-based biocatalyst was 44.6%. The pH of bio-oil increased from 3.5 to 4.3. The viscosity of bio-oil obtained by catalytic means increased from 20.5 to 37.8 cP. A rapid and environment friendly extraction technique is preferable to enhance bio-oil yield. The microwave assisted approach is a green, rapid and environmental friendly extraction technique for the production of bio-oil bearing crops.

  12. Subcritical hydrothermal liquefaction of cattle manure to bio-oil: Effects of conversion parameters on bio-oil yield and characterization of bio-oil.

    PubMed

    Yin, Sudong; Dolan, Ryan; Harris, Matt; Tan, Zhongchao

    2010-05-01

    In this study, cattle manure was converted to bio-oil by subcritical hydrothermal liquefaction in the presence of NaOH. The effects of conversion temperature, process gas, initial conversion pressure, residence time and mass ratio of cattle manure to water on the bio-oil yield were studied. The bio-oil was characterized in terms of elemental composition, higher heating value, ultraviolet-visible (UV/Vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Results showed that the bio-oil yield depended on the conversion temperature and the process gas. Higher initial conversion pressure, longer residence time and larger mass ratio of cattle manure to water, however, had negative impacts on the bio-oil yield. The higher heating value of bio-oil was 35.53MJ/kg on average. The major non-polar components of bio-oil were toluene, ethyl benzene and xylene, which are components of crude oil, gasoline and diesel. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Oil Palm Frond Juice as Future Fermentation Substrate: A Feasibility Study

    PubMed Central

    Che Maail, Che Mohd Hakiman; Ariffin, Hidayah; Hassan, Mohd Ali; Shah, Umi Kalsom Md; Shirai, Yoshihito

    2014-01-01

    Oil palm frond (OPF) juice is a potential industrial fermentation substrate as it has high sugars content and the OPF are readily available daily. However, maximum sugars yield and storage stability of the OPF juice are yet to be determined. This study was conducted to determine the effect of physical pretreatment and storage duration of OPF petiole on sugars yield. Storage stability of OPF juice at different storing conditions was also investigated. It was found that OPF petiole squeezed by hydraulic pressing machine gave the highest sugars recovery at almost 40 g/kg, accounting for a recovery yield of 88%. Storage of OPF petiole up to 72 hrs prior to squeezing reduced the free sugars by 11 g/kg. Concentrated OPF juice with 95% water removal had the best storage stability at both 4 and 30°C, when it was stored for 10 days. Moreover, concentrated OPF syrup prepared by thermal processing did not give any Maillard effect on microbial growth. Based on our results, OPF juice meets all the criteria as a good fermentation substrate as it is renewable, consistently available, and easy to be obtained, it does not inhibit microbial growth and product formation, and it contains no impurities. PMID:25057489

  14. Effects of Pyrolysis Temperature on Product Yields and Energy Recovery from Co-Feeding of Cotton Gin Trash, Cow Manure, and Microalgae: A Simulation Study

    PubMed Central

    Hanif, Muhammad Usman; Capareda, Sergio C.; Iqbal, Hamid; Arazo, Renato Ortiz; Baig, Muhammad Anwar

    2016-01-01

    The intensive search of new and cleaner energy catches interest in recent years due to huge consumption of fossil fuels coupled with the challenge of energy and environmental sustainability. Production of renewable and environmentally benign energy from locally available raw materials is coming in the frontline. In this work, conversion of the combined biomass (cotton gin trash, cow manure, and Microalgae [Nannochloropsis oculata]) through batch pyrolysis has been investigated. The effect of temperature to the production of energy fuels such as bio-oil, char, and biogas have been simulated considering the yield and energy content as responses. Result of the investigation generally revealed that the proportions of the different biomass did not significantly affect the product yield and energy recovery. Significant effect of temperature is evident in the simulation result of energy recovery whereby maximum conversion was achieved at 400°C for char (91 wt%), 600°C for syngas (22 wt%), and 551°C for bio-oil (48 wt%). Overall energy conversion efficiency of 75.5% was obtained at 589°C in which 15.6 MJ/kg of mixed biomass will be elevated to pyrolysis products. PMID:27043929

  15. Biomass to hydrogen-rich syngas via catalytic steam gasification of bio-oil/biochar slurry.

    PubMed

    Chen, Guanyi; Yao, Jingang; Liu, Jing; Yan, Beibei; Shan, Rui

    2015-12-01

    The catalytic steam gasification of bio-oil/biochar slurry (bioslurry) for hydrogen-rich syngas production was investigated in a fixed-bed reactor using LaXFeO3 (X=Ce, Mg, K) perovskite-type catalysts. The effects of elemental substitution in LaFeO3, temperature, water to carbon molar ratio (WCMR) and bioslurry weight hourly space velocity (WbHSV) were examined. The results showed that La0.8Ce0.2FeO3 gave the best performance among the prepared catalysts and had better catalytic activity and stability than the commercial 14 wt.% Ni/Al2O3. The deactivation caused by carbon deposition and sintering was significantly depressed in the case of La0.8Ce0.2FeO3 catalyst. Both higher temperature and lower WbHSV contributed to more H2 yield. The optimal WCMR was found to be 2, and excessive introducing of steam reduced hydrogen yield. The La0.8Ce0.2FeO3 catalyst gave a maximum H2 yield of 82.01% with carbon conversion of 65.57% under the optimum operating conditions (temperature=800°C, WCMR=2 and WbHSV=15.36h(-1)). Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Conversion of secondary pulp/paper sludge powder to liquid oil products for energy recovery by direct liquefaction in hot-compressed water.

    PubMed

    Xu, Chunbao; Lancaster, Jody

    2008-03-01

    The present work demonstrated that secondary pulp/paper sludge powder, with a higher heating value of 18.3MJ/kg on a dry basis, could be effectively converted into liquid oil products by direct liquefaction in hot-compressed water with and without catalyst. Treatments of secondary pulp/paper sludge in water at 250-380 degrees C for 15-120min in the presence of N(2) atmosphere resulted in yields of water-soluble oils at 20-45wt% and yields of heavy oils at 15-25wt%, with higher heating values of 10-15 and >35MJ/kg, respectively. The higher caloric values for the heavy oil products were accounted for by their compositions of long-chain carboxylic acids, heterocyclic nitrogen compounds and phenolic compounds and derivatives as evidenced by the gas chromatograph (GC)/MS measurements. The liquefaction product yields were significantly influenced by the liquefaction temperature, the residence time, the initial biomass concentration, catalysts and the liquefaction atmosphere (inert or reducing). Within the temperature range (250-380 degrees C) tested, the lowest temperature produced the highest yield of total oils (at 60wt%), while the greatest yield of heavy oil (at about 24wt%) was obtained at 350 degrees C. If the temperature was fixed at 280 degrees C, a greater yield of heavy oil (reaching as high as 25wt% for 120min) was obtained as the length of reaction time increased. Similarly, a higher initial biomass concentration produced a greater yield of heavy oil but a reduced yield of water-soluble oil. The presence of 0.1M K(2)CO(3) dramatically enhanced organic conversion, but suppressed the formation of both heavy oil and water-soluble oil. The use of the two alkaline earth metal catalysts, i.e., Ca(OH)(2) and Ba(OH)(2), did not alter organic conversion, but it catalyzed the formation of water-soluble oil and produced higher yields of total oil products. It was also demonstrated that the reducing atmosphere (i.e., H(2)) in the liquefaction process promoted the heavy oil formation while suppressing the water-soluble oil formation. With the presence of 0.1M Ca(OH)(2) and 2MPa H(2), liquefaction of the sludge powder in water at 280 degrees C for 60min produced a higher yield of heavy oil (26wt%), almost two times as high as that in N(2) (13.6wt%), resulting in a greater net energy efficiency. It was thus suggested that direct liquefaction of secondary pulp/paper sludge in hot-compressed water with Ca(OH)(2) catalyst and in the presence of H(2) could be an effective approach to recovering energy from the waste for production of liquid oil products.

  17. The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene.

    PubMed

    Solak, Agnieszka; Rutkowski, Piotr

    2014-02-01

    Cellulose/polyethylene (CPE) mixture 3:1, w/w with and without three clay catalysts (K10 - montmorillonite K10, KSF - montmorillonite KSF, B - Bentonite) addition were subjected to pyrolysis at temperatures 400, 450 and 500°C with heating rate of 100°C/s to produce bio-oil with high yield. The pyrolytic oil yield was in the range of 41.3-79.5 wt% depending on the temperature, the type and the amount of catalyst. The non-catalytic fast pyrolysis at 500°C gives the highest yield of bio-oil (79.5 wt%). The higher temperature of catalytic pyrolysis of cellulose/polyethylene mixture the higher yield of bio-oil is. Contrarily, increasing amount of montmorillonite results in significant, almost linear decrease in bio-oil yield followed by a significant increase of gas yield. The addition of clay catalysts to CPE mixture has a various influence on the distribution of bio-oil components. The addition of montmorillonite K10 to cellulose/polyethylene mixture promotes the deepest conversion of polyethylene and cellulose. Additionally, more saturated than unsaturated hydrocarbons are present in resultant bio-oils. The proportion of liquid hydrocarbons is the highest when a montmorillonite K10 is acting as a catalyst. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Biodiesel production from microbial oil derived from wood isolate Trichoderma reesei.

    PubMed

    Bharathiraja, B; Sowmya, V; Sridharan, Sridevi; Yuvaraj, D; Jayamuthunagai, J; Praveenkumar, R

    2017-09-01

    In the present study Trichoderma reesei, a wood isolate can yield high biomass quantities up to 30g/L, yielding 32.4% of lipids of dry cell weight (DCW). Biodiesel production from Trichoderma reesei involved simple unit operations like filtration and ultrasonication, yet giving good lipid yield with desirable bio-diesel properties. Optimization of ultrasonication conditions was done to ensure maximum lipid extraction. SEM analysis of ultrasonicated samples showed distinct breakage of fungal hyphae. The lipids were found to contain 49.7% saturated fatty acids. Transesterification using chemical and biological catalysts were compared and 96.09% efficiency was observed for lipase-catalyzed transesterification. The bio-diesel properties satisfied ASTM and EN specifications with cetane number: 53.1, iodine value: 63.34g, saponification value: 235.07mg KOH/g, cold flow plugging point: 9.13°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. β-Sitosterol: Supercritical Carbon Dioxide Extraction from Sea Buckthorn (Hippophae rhamnoides L.) Seeds

    PubMed Central

    Sajfrtová, Marie; Ličková, Ivana; Wimmerová, Martina; Sovová, Helena; Wimmer, Zdeněk

    2010-01-01

    Supercritical fluid extraction represents an efficient and environmentally friendly technique for isolation of phytosterols from different plant sources. Sea buckthorn (Hippophae rhamnoides L.) seeds were extracted with supercritical carbon dioxide at pressures ranging from 15–60 MPa and temperatures of 40–80 °C. Oil and β-sitosterol yields were measured in the extraction course and compared with Soxhlet extraction with hexane. The average yield of β-sitosterol was 0.31 mg/g of seeds. The maximum concentration of β-sitosterol in the extract, 0.5% w/w, was achieved at 15 MPa, 40 °C, and a carbon dioxide consumption of 50 g/g of seeds. The extraction rate was maximal at 60 MPa and 40 °C. Both β-sitosterol yield and its concentration in the extract obtained with hexane were lower than with carbon dioxide. PMID:20480045

  20. Simulation of Oil Palm Shell Pyrolysis to Produce Bio-Oil with Self-Pyrolysis Reactor

    NASA Astrophysics Data System (ADS)

    Fika, R.; Nelwan, L. O.; Yulianto, M.

    2018-05-01

    A new self-pyrolysis reactor was designed to reduce the utilization of electric heater due to the energy saving for the production of bio-oil from oil palm shell. The yield of the bio- oil was then evaluated with the developed mathematical model by Sharma [1] with the characteristic of oil palm shell [2]. During the simulation, the temperature on the combustion chamber on the release of the bio-oil was utilized to determine the volatile composition from the combustion of the oil palm shell as fuel. The mass flow was assumed constant for three experiments. The model resulted in a significant difference between the simulated bio-oil and experiments. The bio-oil yields from the simulation were 22.01, 16.36, and 21.89 % (d.b.) meanwhile the experimental yields were 10.23, 9.82, and 8.41% (d.b.). The char yield varied from 30.7 % (d.b.) from the simulation to 40.9 % (d.b.) from the experiment. This phenomenon was due to the development of process temperature over time which was not considered as one of the influential factors in producing volatile matters on the simulation model. Meanwhile the real experiments highly relied on the process conditions (reactor type, temperature over time, gas flow). There was also possibilities of the occurrence of the gasification inside the reactor which caused the liquid yield was not as high as simulated. Further simulation model research on producing the bio-oil yield will be needed to predict the optimum condition and temperature development on the newly self-pyrolysis reactor.

  1. [Bio-oil production from biomass pyrolysis in molten salt].

    PubMed

    Ji, Dengxiang; Cai, Tengyue; Ai, Ning; Yu, Fengwen; Jiang, Hongtao; Ji, Jianbing

    2011-03-01

    In order to investigate the effects of pyrolysis conditions on bio-oil production from biomass in molten salt, experiments of biomass pyrolysis were carried out in a self-designed reactor in which the molten salt ZnCl2-KCl (with mole ratio 7/6) was selected as heat carrier, catalyst and dispersion agent. The effects of metal salt added into ZnCl2-KCl and biomass material on biomass pyrolysis were discussed, and the main compositions of bio-oil were determined by GC-MS. Metal salt added into molten salt could affect pyrolysis production yields remarkably. Lanthanon salt could enhance bio-oil yield and decrease water content in bio-oil, when mole fraction of 5.0% LaCl3 was added, bio-oil yield could reach up to 32.0%, and water content of bio-oil could reduce to 61.5%. The bio-oil and char yields were higher when rice straw was pyrolysed, while gas yield was higher when rice husk was used. Metal salts showed great selectivity on compositions of bio-oil. LiCl and FeCl2 promoted biomass to pyrolyse into smaller molecular weight compounds. CrCl3, CaCl2 and LaCl3 could restrain second pyrolysis of bio-oil. The research provided a scientific reference for production of bio-oil from biomass pyrolysis in molten salt.

  2. Differential abundance analysis of mesocarp protein from high- and low-yielding oil palms associates non-oil biosynthetic enzymes to lipid biosynthesis.

    PubMed

    Ooi, Tony Eng Keong; Yeap, Wan Chin; Daim, Leona Daniela Jeffery; Ng, Boon Zean; Lee, Fong Chin; Othman, Ainul Masni; Appleton, David Ross; Chew, Fook Tim; Kulaveerasingam, Harikrishna

    2015-01-01

    The oil palm Elaeis guineensis Jacq. which produces the highest yield per unit land area of the oil crops is the most important commercial oil crop in South East Asia. The fleshy mesocarp of oil palm fruit, where oil is mostly derived from, contains up to 90 % dry weight of oil (one of the most concentrated in plant tissues). Hence, there is attention given to gain insights into the processes of oil deposition in this oil rich tissue. For that purpose, two-dimensional differential gel electrophoresis (DIGE) coupled with western assays, were used here to analyze differential protein levels in genetically-related high-and low-yielding oil palm mesocarps. From the DIGE comparative analysis in combination with western analysis, 41 unique differentially accumulated proteins were discovered. Functional categorization of these proteins placed them in the metabolisms of lipid, carbohydrate, amino acids, energy, structural proteins, as well as in other functions. In particular, higher abundance of fructose-1,6-biphosphate aldolase combined with reduced level of triosephosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase may be indicative of important flux balance changes in glycolysis, while amino acid metabolism also appeared to be closely linked with oil yield. Forty-one proteins in several important biological pathways were identified as exhibiting differential in abundance at critical oil production stages. These confirm that oil yield is a complex trait involving the regulation of genes in multiple biological pathways. The results also provide insights into key control points of lipid biosynthesis in oil palm and can assist in the development of genetic markers for use in oil palm breeding programmes.

  3. Bioflocculant production and biosorption of zinc and lead by a novel bacterial species, Achromobacter sp. TERI-IASST N, isolated from oil refinery waste.

    PubMed

    Subudhi, Sanjukta; Batta, Neha; Pathak, Mihirjyoti; Bisht, Varsha; Devi, Arundhuti; Lal, Banwari; Al khulifah, Bader

    2014-10-01

    A bioflocculant-producing bacterial isolate designated as 'TERI-IASST N' was isolated from activated sludge samples collected from an oil refinery. This isolate demonstrated maximum bioflocculation activity (74%) from glucose among 15 different bioflocculant-producing bacterial strains isolated from the sludge samples and identified as Achromobacter sp. based on 16S rRNA gene sequence. Optimization of pH and supplementation of urea as nitrogen source in the production medium enhanced the flocculation activity of strain TERI-IASST N to 84% (at pH 6). This strain revealed maximum flocculation activity (90%) from sucrose compared to the flocculation activity observed from other carbon sources as investigated (glucose, lactose, fructose, maltose and starch). Ca(2+) served as the suitable divalent cation for maximum bioflocculation activity of TERI-IASST strain N. Maximum flocculation activity was observed at optimum C/N ratio of 1. Flocculation activity of this strain decreased to 75% in the presence of heavy metals; Zn, Pb, Ni, Cu and Cd. In addition strain N revealed considerable biosorption of Zn (430mgL(-1)) and Pb (30mgL(-1)). Bioflocculant yield of strain N was 10.5gL(-1). Fourier transform infrared spectrum indicated the presence of carboxyl, hydroxyl, and amino groups, typical of glycoprotein. Spectroscopic analysis of bioflocculant by nuclear magnetic resonance revealed that it is a glycoprotein, consisting of 57% total sugar and 13% protein. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield.

    PubMed

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-06-01

    Soybean [Glycine max (L.) Merrill] seed oil is the primary global source of edible oil and a major renewable and sustainable feedstock for biodiesel production. Therefore, increasing the relative oil concentration in soybean is desirable; however, that goal is complex due to the quantitative nature of the oil concentration trait and possible effects on major agronomic traits such as seed yield or protein concentration. The objectives of the present study were to study the relationship between seed oil concentration and important agronomic and seed quality traits, including seed yield, 100-seed weight, protein concentration, plant height, and days to maturity, and to identify oil quantitative trait loci (QTL) that are co-localized with the traits evaluated. A population of 203 F4:6 recombinant inbred lines, derived from a cross between moderately high oil soybean genotypes OAC Wallace and OAC Glencoe, was developed and grown across multiple environments in Ontario, Canada, in 2009 and 2010. Among the 11 QTL associated with seed oil concentration in the population, which were detected using either single-factor ANOVA or multiple QTL mapping methods, the number of QTL that were co-localized with other important traits QTL were six for protein concentration, four for seed yield, two for 100-seed weight, one for days to maturity, and one for plant height. The oil-beneficial allele of the QTL tagged by marker Sat_020 was positively associated with seed protein concentration. The oil favorable alleles of markers Satt001 and GmDGAT2B were positively correlated with seed yield. In addition, significant two-way epistatic interactions, where one of the interacting markers was solely associated with seed oil concentration, were identified for the selected traits in this study. The number of significant epistatic interactions was seven for yield, four for days to maturity, two for 100-seed weight, one for protein concentration, and one for plant height. The identified molecular markers associated with oil-related QTL in this study, which also have positive effects on other important traits such as seed yield and protein concentration, could be used in the soybean marker breeding programs aimed at developing either higher seed yield and oil concentration or higher seed protein and oil concentration per hectare. Alternatively, selecting complementary parents with greater breeding values due to positive epistatic interactions could lead to the development of higher oil soybean cultivars.

  5. Advances of two-stage riser catalytic cracking of heavy oil for maximizing propylene yield (TMP) process.

    PubMed

    Chaohe, Yang; Xiaobo, Chen; Jinhong, Zhang; Chunyi, Li; Honghong, Shan

    Two-stage riser catalytic cracking of heavy oil for maximizing propylene yield (TMP) process proposed by State Key Laboratory of Heavy oil Processing, China University of Petroleum, can remarkably enhance the propylene yield and minimize the dry gas and coke yields, and obtain high-quality light oils (gasoline and diesel). It has been commercialized since 2006. Up to now, three TMP commercial units have been put into production and other four commercial units are under design and construction. The commercial data showed that taking paraffinic based Daqing (China) atmospheric residue as the feedstock, the propylene yield reached 20.31 wt%, the liquid products yield (the total yield of liquefied petroleum gas, gasoline, and diesel) was 82.66 wt%, and the total yield of dry gas and coke was 14.28 wt%. Moreover, the research octane number of gasoline could be up to 96.

  6. [Prediction of the side-cut product yield of atmospheric/vacuum distillation unit by NIR crude oil rapid assay].

    PubMed

    Wang, Yan-Bin; Hu, Yu-Zhong; Li, Wen-Le; Zhang, Wei-Song; Zhou, Feng; Luo, Zhi

    2014-10-01

    In the present paper, based on the fast evaluation technique of near infrared, a method to predict the yield of atmos- pheric and vacuum line was developed, combined with H/CAMS software. Firstly, the near-infrared (NIR) spectroscopy method for rapidly determining the true boiling point of crude oil was developed. With commercially available crude oil spectroscopy da- tabase and experiments test from Guangxi Petrochemical Company, calibration model was established and a topological method was used as the calibration. The model can be employed to predict the true boiling point of crude oil. Secondly, the true boiling point based on NIR rapid assay was converted to the side-cut product yield of atmospheric/vacuum distillation unit by H/CAMS software. The predicted yield and the actual yield of distillation product for naphtha, diesel, wax and residual oil were compared in a 7-month period. The result showed that the NIR rapid crude assay can predict the side-cut product yield accurately. The near infrared analytic method for predicting yield has the advantages of fast analysis, reliable results, and being easy to online operate, and it can provide elementary data for refinery planning optimization and crude oil blending.

  7. The influence of purge times on the yields of essential oil components extracted from plants by pressurized liquid extraction.

    PubMed

    Wianowska, Dorota

    2014-01-01

    The influence of different purge times on the yield of the main essential oil constituents of rosemary (Rosmarinus officinalis L.), thyme (Thymus vulgaris L.), and chamomile (Chamomilla recutita L.) was investigated. The pressurized liquid extraction process was performed by applying different extraction temperatures and solvents. The results presented in the paper show that the estimated yield of essential oil components extracted from the plants in the pressurized liquid extraction process is purge time-dependent. The differences in the estimated yields are mainly connected with the evaporation of individual essential oil components and the applied solvent during the purge; the more volatile an essential oil constituent is, the greater is its loss during purge time, and the faster the evaporation of the solvent during the purge process is, the higher the concentration of less volatile essential oil components in the pressurized liquid extraction receptacle. The effect of purge time on the estimated yield of individual essential oil constituents is additionally differentiated by the extraction temperature and the extraction ability of the applied solvent.

  8. Fatty acids characterization, oxidative perspectives and consumer acceptability of oil extracted from pre-treated chia (Salvia hispanica L.) seeds.

    PubMed

    Imran, Muhammad; Nadeem, Muhammad; Manzoor, Muhammad Faisal; Javed, Amna; Ali, Zafar; Akhtar, Muhammad Nadeem; Ali, Muhammad; Hussain, Yasir

    2016-09-20

    Chia (Salvia hispanica L.) seeds have been described as a good source of lipids, protein, dietary fiber, polyphenolic compounds and omega-3 polyunsaturated fatty acids. The consumption of chia seed oil helps to improve biological markers related to metabolic syndrome diseases. The oil yield and fatty acids composition of chia oil is affected by several factors such as pre-treatment method and size reduction practices. Therefore, the main mandate of present investigate was to study the effect of different seed pre-treatments on yield, fatty acids composition and sensory acceptability of chia oil at different storage intervals and conditions. Raw chia seeds were characterized for proximate composition. Raw chia seeds after milling were passed through sieves to obtain different particle size fractions (coarse, seed particle size ≥ 10 mm; medium, seed particle size ≥ 5 mm; fine, seed particle size ≤ 5 mm). Heat pre-treatment of chia seeds included the water boiling (100 C°, 5 min), microwave roasting (900 W, 2450 MHz, 2.5 min), oven drying (105 ± 5 °C, 1 h) and autoclaving (121 °C, 15 lbs, 15 min) process. Extracted oil from pre-treated chia seeds were stored in Tin cans at 25 ± 2 °C and 4 ± 1 °C for 60-days and examined for physical (color, melting point, refractive index), oxidative (iodine value, peroxide value, free fatty acids), fatty acids (palmitic, stearic, oleic, linoleic, α-linolenic) composition and sensory (appearance, flavor, overall acceptability) parameters, respectively. The proximal composition of chia seeds consisted of 6.16 ± 0.24 % moisture, 34.84 ± 0.62 % oil, 18.21 ± 0.45 % protein, 4.16 ± 0.37 % ash, 23.12 ± 0.29 % fiber, and 14.18 ± 0.23 % nitrogen contents. The oil yield as a result of seed pre-treatments was found in the range of 3.43 ± 0.22 % (water boiled samples) to 32.18 ± 0.34 % (autoclaved samples). The oil samples at day 0 indicated the maximum color (R and Y Lovibond scale) value for oven drying while at storage day 60 (25 ± 2 °C), the highest color value was found for autoclave pre-treatment. The slightly increasing trend of color values for all treatments was observed during the storage period. The lowest iodine value (182.83 ± 1.18 g/100 g at storage day 0 & 173.49 ± 1.21 g/100 g at storage day 60, 25 ± 2 °C) was calculated for autoclaved samples while the maximum iodine value (193.42 ± 1.14 g/100 g at storage day 0 & 190.36 ± 1.17 g/100 g at storage day 60, 25 ± 2 °C) was recorded for raw chia samples. The significant increasing trend for all treatments was observed in case of peroxide value and free fatty acids production during storage. Maximum decrease in linoleic (35 %) and α-linolenic (18 %) fatty acids was observed in autoclaved samples. The oil from pre-treated seed samples obtained decreasing scores for sensory parameters throughout the storage period at different conditions. As a result, chia seeds are an important source of lipids and essential fatty acids. The water boiling and high temperature processing of chia seeds provides instability to lipids during storage at room temperature. However, detailed investigation is required on the processing performance and storage stability of food products supplemented with pre-treated chia seeds and furthers their effect on biological system.

  9. Studies on dhal recovery from pre-treated pigeon pea ( Cajanus cajan L .) cultivars.

    PubMed

    Hiregoudar, Sharanagouda; Sandeep, T N; Nidoni, Udaykumar; Shrestha, Bijay; Meda, Venkatesh

    2014-05-01

    Dhal recovery from three popular varieties of North Karnataka was studied using CFTRI mini dhal mill with five different treatments at three different levels. It was observed that Gulyal variety treated with mustard oil recorded maximum hulling efficiency (79.4%) and finished product (68.8%) when compared to a Maruti and Asha variety. However, acetic acid treatment recorded higher hulling efficiency (76.5%) for Maruti followed by Asha (56.9%). The plant growth promoting rhizobacteria (PGPR) treatment yielded minimum hulling efficiency and finished product recovery for all the varieties.

  10. Identification and validation of quantitative trait loci for seed yield, oil and protein contents in two recombinant inbred line populations of soybean.

    PubMed

    Wang, Xianzhi; Jiang, Guo-Liang; Green, Marci; Scott, Roy A; Song, Qijian; Hyten, David L; Cregan, Perry B

    2014-10-01

    Soybean seeds contain high levels of oil and protein, and are the important sources of vegetable oil and plant protein for human consumption and livestock feed. Increased seed yield, oil and protein contents are the main objectives of soybean breeding. The objectives of this study were to identify and validate quantitative trait loci (QTLs) associated with seed yield, oil and protein contents in two recombinant inbred line populations, and to evaluate the consistency of QTLs across different environments, studies and genetic backgrounds. Both the mapping population (SD02-4-59 × A02-381100) and validation population (SD02-911 × SD00-1501) were phenotyped for the three traits in multiple environments. Genetic analysis indicated that oil and protein contents showed high heritabilities while yield exhibited a lower heritability in both populations. Based on a linkage map constructed previously with the mapping population and using composite interval mapping and/or interval mapping analysis, 12 QTLs for seed yield, 16 QTLs for oil content and 11 QTLs for protein content were consistently detected in multiple environments and/or the average data over all environments. Of the QTLs detected in the mapping population, five QTLs for seed yield, eight QTLs for oil content and five QTLs for protein content were confirmed in the validation population by single marker analysis in at least one environment and the average data and by ANOVA over all environments. Eight of these validated QTLs were newly identified. Compared with the other studies, seven QTLs for seed yield, eight QTLs for oil content and nine QTLs for protein content further verified the previously reported QTLs. These QTLs will be useful for breeding higher yield and better quality cultivars, and help effectively and efficiently improve yield potential and nutritional quality in soybean.

  11. Highly oil-producing microalgae selected through directed-evolution on a microfludic chip

    NASA Astrophysics Data System (ADS)

    Mestler, Troy; Estevez-Torres, Andre; Lambert, Guillaume; Austin, Robert H.

    2009-03-01

    Some species of photosynthetic microalgae produce signi?cant amounts of oil which can be easily converted to diesel fuel. However, as it stands today, biodiesel is signi?cantly more expensive than fossil fuels. We wish to improve the oil yield and production rate of a single species of microalgae through directed evolution. We propose to utilize our microfabication technology to create microhabitats to control the nutrient environment of the species, monitor oil production through Raman Spectroscopy, and punish colonies of algae which have low oil yield. We believe this process will produce a mutant species with a high oil yield.

  12. Acid--chlorite pretreatment and liquefaction of cornstalk in hot-compressed water for bio-oil production.

    PubMed

    Liu, Hua-Min; Feng, Bing; Sun, Run-Cang

    2011-10-12

    In this study, cornstalk was pretreated by an acid-chlorite delignification procedure to enhance the conversion of cornstalk to bio-oil in hot-compressed water liquefaction. The effects of the pretreatment conditions on the compositional and structural changes of the cornstalk and bio-oil yield were investigated. It was found that acid-chlorite pretreatment changed the main components and physical structures of cornstalk and effectively enhanced the bio-oil yield. Shorter residence time favored production of the total bio-oil products, whereas longer time led to cracking of the products. A high water loading was found to be favorable for high yields of total bio-oil and water-soluble oil. GC-MS analysis showed that the water-soluble oil and heavy oil were the complicated products of C(5-10) and C(8-11) organic compounds.

  13. Conversion of cornstalk to bio-oil in hot-compressed water: effects of ultrasonic pretreatment on the yield and chemical composition of bio-oil, carbon balance, and energy recovery.

    PubMed

    Shi, Wen; Gao, Yahui; Yang, Guohui; Zhao, Yaping

    2013-08-07

    An ultrasonic pretreatment method was developed to enhance the yield of bio-oil obtained from the liquefaction of cornstalks in hot-compressed water at different reaction temperatures (260-340 °C) and residence times (0-40 min). Influences of ultrasonic pretreatment on the physicochemical properties of cornstalks and bio-oil yields were investigated. The results show that ultrasonic pretreatment obviously increases surface areas of cornstalks, decreases crystallinities, and erodes the structures of lignin, leading to more exposure of cellulose and hemicellulose. The yield of bio-oil was increased remarkably by 10.1% for 40 min sonicated cornstalks under the optimum liquefied conditions (300 °C for 0 min of residence time). Carbon balance indicates that ultrasonic pretreatment increases the carbon conversion of cornstalks to heavy oil and water-soluble oil. Energy balance indicates that the sonicated cornstalks have positive energy efficiencies. GC-MS analyses demonstrate ultrasonic pretreatment increases the contents of the phenols in heavy oil and water-soluble oil.

  14. Study of optimal extraction conditions for achieving high yield and antioxidant activity of tomato seed oil.

    PubMed

    Shao, Dongyan; Atungulu, Griffiths G; Pan, Zhongli; Yue, Tianli; Zhang, Ang; Li, Xuan

    2012-08-01

    Value of tomato seed has not been fully recognized. The objectives of this research were to establish suitable processing conditions for extracting oil from tomato seed by using solvent, determine the impact of processing conditions on yield and antioxidant activity of extracted oil, and elucidate kinetics of the oil extraction process. Four processing parameters, including time, temperature, solvent-to-solid ratio and particle size were studied. A second order model was established to describe the oil extraction process. Based on the results, increasing temperature, solvent-to-solid ratio, and extraction time increased oil yield. In contrast, larger particle size reduced the oil yield. The recommended oil extraction conditions were 8 min of extraction time at temperature of 25 °C, solvent-to-solids ratio of 5/1 (v/w) and particle size of 0.38 mm, which gave oil yield of 20.32% with recovery rate of 78.56%. The DPPH scavenging activity of extracted oil was not significantly affected by the extraction parameters. The inhibitory concentration (IC(50) ) of tomato seed oil was 8.67 mg/mL which was notably low compared to most vegetable oils. A 2nd order model successfully described the kinetics of tomato oil extraction process and parameters of extraction kinetics including initial extraction rate (h), equilibrium concentration of oil (C(s) ), and the extraction rate constant (k) could be precisely predicted with R(2) of at least 0.957. The study revealed that tomato seed which is typically treated as a low value byproduct of tomato processing has great potential in producing oil with high antioxidant capability. The impact of processing conditions including time, temperature, solvent-to-solid ratio and particle size on yield, and antioxidant activity of extracted tomato seed oil are reported. Optimal conditions and models which describe the extraction process are recommended. The information is vital for determining the extraction processing conditions for industrial production of high quality tomato seed oil. Journal of Food Science © 2012 Institute of Food Technologists® No claim to original US government works.

  15. Optimization of rhamnolipid production from Pseudomonas aeruginosa PBS towards application for microbial enhanced oil recovery.

    PubMed

    Sharma, Rajni; Singh, Jagdish; Verma, Neelam

    2018-01-01

    The present work reveals the potential of biosurfactant producing P. aeruginosa PBS for microbial enhanced oil recovery (MEOR). The biosurfactant production medium and culture conditions were optimized using response surface methodology. The optimization of media components and process parameters was consecutively executed in two sets of experimental runs designed by central composite rotatable design (CCRD). The maximum biosurfactant yield was attained with 2% fresh inoculum of P. aeruginosa PBS in minimal salt medium (pH 7), possessing 2.17% sodium citrate as C-source and 0.5% yeast extract as N-source, after 48 h upon incubation at 30 °C/150 rpm. Under optimum conditions, biosurfactant yield was increased more than threefold and turned out to be 2.65 g/L as compared to 0.82 g/L under previous conditions. The biosurfactant was characterized as a glycolipid comprising of four rhamnolipid homologs (RhaRhaC 10 C 10 , RhaRhaC 8 C 10 , RhaRhaC 12 C 10 /RhaRhaC 10 C 12 , RhaC 10 C 10 ) by thin layer chromatography, fourier transform infrared spectroscopy, nuclear magnetic resonance and mass spectrometry. The produced biosurfactant was highly efficient for oil recovery application showing extreme reduction in surface tension of medium (71.80 to 23.76 mN/m), immense hydrocarbons emulsification capacity (50-60%) and greater stability at wide range of temperature (4-100 °C) and pH (4-10) along with an excellent (56.18 ± 1.59%) additional oil recovery in sand-pack column lab test.

  16. Diurnal effects on spearmint oil yields and composition

    USDA-ARS?s Scientific Manuscript database

    ‘Native’ spearmint (Mentha spicata L.) is one of the two spearmint species grown commercially in the United States and other countries for essential oil production. The two major constituents of spearmint oil are carvone and limonene. It is not known if the essential oil yield (content) and composit...

  17. Distillation time as tool for improved antimalarial activity and differential oil composition of cumin seed oil

    USDA-ARS?s Scientific Manuscript database

    A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given...

  18. Chemometric investigation of light-shade effects on essential oil yield and morphology of Moroccan Myrtus communis L.

    PubMed

    Fadil, Mouhcine; Farah, Abdellah; Ihssane, Bouchaib; Haloui, Taoufik; Lebrazi, Sara; Zghari, Badreddine; Rachiq, Saâd

    2016-01-01

    To investigate the effect of environmental factors such as light and shade on essential oil yield and morphological traits of Moroccan Myrtus communis, a chemometric study was conducted on 20 individuals growing under two contrasting light environments. The study of individual's parameters by principal component analysis has shown that essential oil yield, altitude, and leaves thickness were positively correlated between them and negatively correlated with plants height, leaves length and leaves width. Principal component analysis and hierarchical cluster analysis have also shown that the individuals of each sampling site were grouped separately. The one-way ANOVA test has confirmed the effect of light and shade on essential oil yield and morphological parameters by showing a statistically significant difference between them from the shaded side to the sunny one. Finally, the multiple linear model containing main, interaction and quadratic terms was chosen for the modeling of essential oil yield in terms of morphological parameters. Sun plants have a small height, small leaves length and width, but they are thicker and richer in essential oil than shade plants which have shown almost the opposite. The highlighted multiple linear model can be used to predict essential oil yield in the studied area.

  19. Developmental changes in growth, yield and volatile oil of some chinese garlic lines in comparison with the local cultivar "Balady".

    PubMed

    Abouziena, H F; El-Saeid, Hamed M

    2013-10-15

    Balady cultivar and six Chinese lines were planted to study their developmental growth, yield and essential oil variations. Bulb of Balady cultivar had more two folds of cloves number per bulb than the Chinese lines. On the contrary Balady cv had the lowest clove weight compared to all Chinese lines. Chinese lines significantly surppassed the Balady cultivar in the bulb yield ha(-1). The bulb yield ha(-1) could be arrangement in descending order as follow Line B > Line F > Line D > Line C > Line A > Line E > Balady cv. Line B significantly surpassed the other tested lines in oil yield and had 7 folds oil yield plant(-1) than the local cultivar. The main compound in the bulb was found to be methylallay disulfide in both Chinese lines and Balady cultivar. Some components which found in the garlic bulbs at the age 150 days disappeared at the maturity time. Chinese Line B recorded the highest bulb yield and volatile oil content comparing with other lines.

  20. The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solak, Agnieszka; Rutkowski, Piotr, E-mail: piotr.rutkowski@pwr.wroc.pl

    2014-02-15

    Highlights: • Non-catalytic and catalytic fast pyrolysis of cellulose/polyethylene blend was carried out in a laboratory scale reactor. • Optimization of process temperature was done. • Optimization of clay catalyst type and amount for co-pyrolysis of cellulose and polyethylene was done. • The product yields and the chemical composition of bio-oil was investigated. - Abstract: Cellulose/polyethylene (CPE) mixture 3:1, w/w with and without three clay catalysts (K10 – montmorillonite K10, KSF – montmorillonite KSF, B – Bentonite) addition were subjected to pyrolysis at temperatures 400, 450 and 500 °C with heating rate of 100 °C/s to produce bio-oil with highmore » yield. The pyrolytic oil yield was in the range of 41.3–79.5 wt% depending on the temperature, the type and the amount of catalyst. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil (79.5 wt%). The higher temperature of catalytic pyrolysis of cellulose/polyethylene mixture the higher yield of bio-oil is. Contrarily, increasing amount of montmorillonite results in significant, almost linear decrease in bio-oil yield followed by a significant increase of gas yield. The addition of clay catalysts to CPE mixture has a various influence on the distribution of bio-oil components. The addition of montmorillonite K10 to cellulose/polyethylene mixture promotes the deepest conversion of polyethylene and cellulose. Additionally, more saturated than unsaturated hydrocarbons are present in resultant bio-oils. The proportion of liquid hydrocarbons is the highest when a montmorillonite K10 is acting as a catalyst.« less

  1. Biodiesel Production from Chlorella protothecoides Oil by Microwave-Assisted Transesterification

    PubMed Central

    Gülyurt, Mustafa Ömer; Özçimen, Didem; İnan, Benan

    2016-01-01

    In this study, biodiesel production from microalgal oil by microwave-assisted transesterification was carried out to investigate its efficiency. Transesterification reactions were performed by using Chlorella protothecoides oil as feedstock, methanol, and potassium hydroxide as the catalyst. Methanol:oil ratio, reaction time and catalyst:oil ratio were investigated as process parameters affected methyl ester yield. 9:1 methanol/oil molar ratio, 1.5% KOH catalyst/oil ratio and 10 min were optimum values for the highest fatty acid methyl ester yield. PMID:27110772

  2. Biodiesel Production from Chlorella protothecoides Oil by Microwave-Assisted Transesterification.

    PubMed

    Gülyurt, Mustafa Ömer; Özçimen, Didem; İnan, Benan

    2016-04-22

    In this study, biodiesel production from microalgal oil by microwave-assisted transesterification was carried out to investigate its efficiency. Transesterification reactions were performed by using Chlorella protothecoides oil as feedstock, methanol, and potassium hydroxide as the catalyst. Methanol:oil ratio, reaction time and catalyst:oil ratio were investigated as process parameters affected methyl ester yield. 9:1 methanol/oil molar ratio, 1.5% KOH catalyst/oil ratio and 10 min were optimum values for the highest fatty acid methyl ester yield.

  3. Olive oil pilot-production assisted by pulsed electric field: impact on extraction yield, chemical parameters and sensory properties.

    PubMed

    Puértolas, Eduardo; Martínez de Marañón, Iñigo

    2015-01-15

    The impact of the use of pulsed electric field (PEF) technology on Arroniz olive oil production in terms of extraction yield and chemical and sensory quality has been studied at pilot scale in an industrial oil mill. The application of a PEF treatment (2 kV/cm; 11.25 kJ/kg) to the olive paste significantly increased the extraction yield by 13.3%, with respect to a control. Furthermore, olive oil obtained by PEF showed total phenolic content, total phytosterols and total tocopherols significantly higher than control (11.5%, 9.9% and 15.0%, respectively). The use of PEF had no negative effects on general chemical and sensory characteristics of the olive oil, maintaining the highest quality according to EU legal standards (EVOO; extra virgin olive oil). Therefore, PEF could be an appropriate technology to improve olive oil yield and produce EVOO enriched in human-health-related compounds, such as polyphenols, phytosterols and tocopherols. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Effect of jasmonic acid elicitation on the yield, chemical composition, and antioxidant and anti-inflammatory properties of essential oil of lettuce leaf basil (Ocimum basilicum L.).

    PubMed

    Złotek, Urszula; Michalak-Majewska, Monika; Szymanowska, Urszula

    2016-12-15

    The effect of elicitation with jasmonic acid (JA) on the plant yield, the production and composition of essential oils of lettuce leaf basil was evaluated. JA-elicitation slightly affected the yield of plants and significantly increased the amount of essential oils produced by basil - the highest oil yield (0.78±0.005mL/100gdw) was achieved in plants elicited with 100μM JA. The application of the tested elicitor also influenced the chemical composition of basil essential oils - 100μM JA increased the linalool, eugenol, and limonene levels, while 1μM JA caused the highest increase in the methyl eugenol content. Essential oils from JA-elicited basil (especially 1μM and 100μM) exhibited more effective antioxidant and anti-inflammatory potential; therefore, this inducer may be a very useful biochemical tool for improving production and composition of herbal essential oils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Essential Oil of Amomum maximum Roxb. and Its Bioactivities against Two Stored-Product Insects.

    PubMed

    Guo, Shan-Shan; You, Chun-Xue; Liang, Jun-Yu; Zhang, Wen-Juan; Yang, Kai; Geng, Zhu-Feng; Wang, Cheng-Fang; Du, Shu-Shan; Lei, Ning

    2015-01-01

    Amomum maximum Roxb. is a perennial herb distributed in South China and Southeast Asia. The objective of this work was to analyze the chemical constituents and assess insecticidal and repellent activities of the essential oil from Amomum maximum fruits against Tribolium castaneum (Herbst) and Liposcelis bostrychophila (Badonnel). The essential oil was obtained by hydrodistillation and analyzed by gas chromatography-flame ionization detector and gas chromatography-mass spectrometry. The main components of the essential oil were identified to be β-pinene (23.39%), β-caryophyllene (16.43%), α-pinene (7.55%), sylvestrene (6.61%) and ç-cadinene (4.19%). It was found that the essential oil of A. maximum fruits possessed contact and fumigant toxicities against T. castaneum adults (LD50 = 29.57 μg/adult and LC(50) = 23.09 mg/L air, respectively) and showed contact toxicity against L. bostrychophila (LD(50) = 67.46 μg/cm(2)). Repellency of the crude oil was also evaluated. After 2 h treatment, the essential oil possessed 100% repellency at 78.63 nL/cm(2) against T. castaneum and 84% repellency at 63.17 nL/cm(2) against L. bostrychophila. The results indicated that the essential oil of A. maximum fruits had the potential to be developed as a natural insecticide and repellent for control of T. castaneum and L. bostrychophila.

  6. Adaptability and phenotypic stability of soybean cultivars for grain yield and oil content.

    PubMed

    Silva, K B; Bruzi, A T; Zuffo, A M; Zambiazzi, E V; Soares, I O; de Rezende, P M; Fronza, V; Vilela, G D L; Botelho, F B S; Teixeira, C M; de O Coelho, M A

    2016-04-25

    The aim of this study was to verify the adaptability and stability of soybean cultivars with regards to yield and oil content. Data of soybean yield and oil content were used from experiments set up in six environments in the 2011/12 and 2012/13 crop seasons in the municipalities of Patos de Minas, Uberaba, Lavras, and São Gotardo, Minas Gerais, Brazil, testing 36 commercial soybean cultivars of both conventional and transgenic varieties. The Wricke method and GGE biplot analysis were used to evaluate adaptability and stability of these cultivars. Large variations were observed in grain yield in relation to the different environments studied, showing that these materials are adaptable. The cultivars exhibited significant differences in oil content. The cultivars BRSGO204 (Goiânia) and BRSMG (Garantia) exhibited the greatest average grain yield in the different environments studied, and the cultivar BRSMG 760 SRR had the greatest oil content among the cultivars evaluated. Ecovalence was adopted to identify the most stable cultivars, and the estimates were nearly uniform both for grain yield and oil content, showing a variation of 0.07 and 0.01%, respectively. The GGE biplot was efficient at identifying cultivars with high adaptability and phenotype stability.

  7. Co-processing of olive bagasse with crude rapeseed oil via pyrolysis.

    PubMed

    Uçar, Suat; Karagöz, Selhan

    2017-05-01

    The co-pyrolysis of olive bagasse with crude rapeseed oil at different blend ratios was investigated at 500ºC in a fixed bed reactor. The effect of olive bagasse to crude rapeseed oil ratio on the product distributions and properties of the pyrolysis products were comparatively investigated. The addition of crude rapeseed oil into olive bagasse in the co-pyrolysis led to formation of upgraded biofuels in terms of liquid yields and properties. While the pyrolysis of olive bagasse produced a liquid yield of 52.5 wt %, the highest liquid yield of 73.5 wt % was obtained from the co-pyrolysis of olive bagasse with crude rapeseed oil at a blend ratio of 1:4. The bio-oil derived from olive bagasse contained 5% naphtha, 10% heavy naphtha, 30% gas oil, and 55% heavy gas oil. In the case of bio-oil obtained from the co-pyrolysis of olive bagasse with crude rapeseed oil at a blend ratio of 1:4, the light naphtha, heavy naphtha, and light gas oil content increased. This is an indication of the improved characteristics of the bio-oil obtained from the co-processing. The heating value of bio-oil from the pyrolysis of olive bagasse alone was 34.6 MJ kg -1 and the heating values of bio-oils obtained from the co-pyrolysis of olive bagasse with crude rapeseed oil ranged from 37.6 to 41.6 MJ kg -1 . It was demonstrated that the co-processing of waste biomass with crude plant oil is a good alternative to improve bio-oil yields and properties.

  8. Effect of acid, steam explosion, and size reduction pretreatments on bio-oil production from sweetgum, switchgrass, and corn stover.

    PubMed

    Wang, Hui; Srinivasan, Radhakrishnan; Yu, Fei; Steele, Philip; Li, Qi; Mitchell, Brian; Samala, Aditya

    2012-05-01

    Bio-oil produced from biomass by fast pyrolysis has the potential to be a valuable substitute for fossil fuels. In a recent work on pinewood, we found that pretreatment alters the structure and chemical composition of biomass, which influence fast pyrolysis. In this study, we evaluated dilute acid, steam explosion, and size reduction pretreatments on sweetgum, switchgrass, and corn stover feedstocks. Bio-oils were produced from untreated and pretreated feedstocks in an auger reactor at 450 °C. The bio-oil's physical properties of pH, water content, acid value, density, and viscosity were measured. The chemical characteristics of the bio-oils were determined by gas chromatography-mass spectrometry. The results showed that bio-oil yield and composition were influenced by the pretreatment method and feedstock type. Bio-oil yields of 52, 33, and 35 wt% were obtained from medium-sized (0.68-1.532 mm) untreated sweetgum, switchgrass, and corn stover, respectively, which were higher than the yields from other sizes. Bio-oil yields of 56, 46, and 51 wt% were obtained from 1% H(2)SO(4)-treated medium-sized sweetgum, switchgrass, and corn stover, respectively, which were higher than the yields from untreated and steam explosion treatments.

  9. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass.

    PubMed

    Leng, Lijian; Li, Jun; Yuan, Xingzhong; Li, Jingjing; Han, Pei; Hong, Yuchun; Wei, Feng; Zhou, Wenguang

    2018-03-01

    Co-liquefaction of municipal sewage sludge (MSS) and lignocellulosic biomass such as rice straw or wood sawdust at different mixing ratios and the characterization of the obtained bio-oil and bio-char were investigated. Synergistic effects were found during co-processing of MSS with biomass for production of bio-oil with higher yield and better fuel properties than those from individual feedstock. The co-liquefaction of MSS/rice straw (4/4, wt) increased the bio-oil yield from 22.74% (bio-oil yield from liquefaction of MSS individually) or 23.67% (rice straw) to 32.45%. Comparable increase on bio-oil yield was also observed for MSS/wood sawdust mixtures (2/6, wt). The bio-oils produced from MSS/biomass mixtures were mainly composed of esters and phenols with lower boiling points (degradation temperatures) than those from individual feedstock (identified with higher heavy bio-oil fractions). These synergistic effects were probably resulted from the interactions between the intermittent products of MSS and those of biomass during processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Catalytic hydroprocessing of fast pyrolysis oils: Impact of biomass feedstock on process efficiency

    DOE PAGES

    Carpenter, Daniel; Westover, Tyler; Howe, Daniel; ...

    2016-12-01

    Here, we report here on an experimental study to produce refinery-ready fuel blendstocks via catalytic hydrodeoxygenation (upgrading) of pyrolysis oil using several biomass feedstocks and various blends. Blends were tested along with the pure materials to determine the effect of blending on product yields and qualities. Within experimental error, oil yields from fast pyrolysis and upgrading are shown to be linear functions of the blend components. Switchgrass exhibited lower fast pyrolysis and upgrading yields than the woody samples, which included clean pine, oriented strand board (OSB), and a mix of pinon and juniper (PJ). The notable exception was PJ, formore » which the poor upgrading yield of 18% was likely associated with the very high viscosity of the PJ fast pyrolysis oil (947 cp). The highest fast pyrolysis yield (54% dry basis) was obtained from clean pine, while the highest upgrading yield (50%) was obtained from a blend of 80% clean pine and 20% OSB (CP 8OSB 2). For switchgrass, reducing the fast pyrolysis temperature to 450 degrees C resulted in a significant increase to the pyrolysis oil yield and reduced hydrogen consumption during hydrotreating, but did not directly affect the hydrotreating oil yield. The water content of fast pyrolysis oils was also observed to increase linearly with the summed content of potassium and sodium, ranging from 21% for clean pine to 37% for switchgrass. Multiple linear regression models demonstrate that fast pyrolysis is strongly dependent upon the contents lignin and volatile matter as well as the sum of potassium and sodium.« less

  11. Biodiesel fuel production from waste cooking oil using radiation-grafted fibrous catalysts

    NASA Astrophysics Data System (ADS)

    Ueki, Yuji; Saiki, Seiichi; Hoshina, Hiroyuki; Seko, Noriaki

    2018-02-01

    Waste cooking oil, which can be used as a raw material for biodiesel fuel (BDF), contains two kinds of oil components: triglycerides (TGs) and free fatty acids (FFAs). Therefore, both alkaline-type and acid-type catalysts are needed to produce BDF from waste cooking oil. In this study, an alkaline-type grafted fibrous catalyst bearing OH- ions was synthesized by radiation-induced emulsion grafting of 4-chloromethylstyrene onto a polyethylene-coated polypropylene (PE/PP) nonwoven fabric, amination with trimethylamine, and further treatment with NaOH. Furthermore, an acid-type catalyst bearing H+ ions was synthesized by radiation-induced emulsion grafting of ethyl p-styrenesulfonate onto a PE/PP nonwoven fabric, saponification with NaOH, and protonation with HNO3. The OH- and H+ densities of the grafted fibrous catalysts were controlled by the grafting yield. The maximum OH- and H+ densities of the catalysts were 3.6 mmol-OH-/g-catalyst and 3.4 mmol-H+/g-catalyst, respectively. The performances of the catalysts were evaluated in the batchwise transesterification of TGs and ethanol, and the batchwise esterification of FFAs and ethanol. In both cases, TGs and FFAs were gradually converted into BDF. The mixed oil and four actual waste cooking oils, which contained both TGs and FFAs, were completely converted into BDF by sequential catalytic reactions with the acid-type grafted fibrous catalyst and then the alkaline-type grafted fibrous catalyst.

  12. Improvement of biodiesel production by lipozyme TL IM-catalyzed methanolysis using response surface methodology and acyl migration enhancer.

    PubMed

    Wang, Y; Wu, H; Zong, M H

    2008-10-01

    The process of biodiesel production from corn oil catalyzed by lipozyme TL IM, an inexpensive 1,3-position specific lipase from Thermomyces lanuginosus was optimized by response surface methodology (RSM) and a central composite rotatable design (CCRD) was used to study the effects of enzyme dosage, ratio of t-butanol to oil (v/v) and ratio of methanol to oil (mol/mol) on the methyl esters (ME) yield of the methanolysis. The optimum combinations for the reaction were 25.9U/goil of enzyme, 0.58 volume ratio of t-butanol to oil and 0.5, 0.5, 2.8 molar equivalent of methanol to oil added at the reaction time of 0, 2, and 4h, respectively, by which a ME yield of 85.6%, which was very close to the predicted value of 85.0%, could be obtained after reaction for 12h. Waste oil was found to be more suitable feedstock, and could give 93.7% ME yield under the optimum conditions described above. Adding triethylamine (TEA), an acyl migration enhancer, could efficiently improve the ME yield of the methanolysis of corn oil, giving a ME yield of 92.0%.

  13. Optimization of parameters for enhanced oil recovery from enzyme treated wild apricot kernels.

    PubMed

    Rajaram, Mahatre R; Kumbhar, Baburao K; Singh, Anupama; Lohani, Umesh Chandra; Shahi, Navin C

    2012-08-01

    Present investigation was undertaken with the overall objective of optimizing the enzymatic parameters i.e. moisture content during hydrolysis, enzyme concentration, enzyme ratio and incubation period on wild apricot kernel processing for better oil extractability and increased oil recovery. Response surface methodology was adopted in the experimental design. A central composite rotatable design of four variables at five levels was chosen. The parameters and their range for the experiments were moisture content during hydrolysis (20-32%, w.b.), enzyme concentration (12-16% v/w of sample), combination of pectolytic and cellulolytic enzyme i.e. enzyme ratio (30:70-70:30) and incubation period (12-16 h). Aspergillus foetidus and Trichoderma viride was used for production of crude enzyme i.e. pectolytic and cellulolytic enzyme respectively. A complete second order model for increased oil recovery as the function of enzymatic parameters fitted the data well. The best fit model for oil recovery was also developed. The effect of various parameters on increased oil recovery was determined at linear, quadric and interaction level. The increased oil recovery ranged from 0.14 to 2.53%. The corresponding conditions for maximum oil recovery were 23% (w.b.), 15 v/w of the sample, 60:40 (pectolytic:cellulolytic), 13 h. Results of the study indicated that incubation period during enzymatic hydrolysis is the most important factor affecting oil yield followed by enzyme ratio, moisture content and enzyme concentration in the decreasing order. Enzyme ratio, incubation period and moisture content had insignificant effect on oil recovery. Second order model for increased oil recovery as a function of enzymatic hydrolysis parameters predicted the data adequately.

  14. Enhanced production of Aspergillus tamarii lipase for recovery of fat from tannery fleshings

    PubMed Central

    Dayanandan, A.; Rani, S. Hilda Vimala; Shanmugavel, M.; Gnanamani, A.; Rajakumar, G. Suseela

    2013-01-01

    The influence of various oil cakes has been investigated for high level production of lipase using Aspergillus tamarii MTCC 5152. By solid state fermentation in wheat bran containing 2.5% w/w gingili oil cake at 70% v/w moisture content the fungus produced a maximal yield of lipase (758 ± 3.61 u/g) after 5 days of incubation using 2% v/w inoculum containing 106 spores/mL. Wheat bran and gingili oil cake with supplementation of gingili oil (1.0% w/w), glucose (0.5% w/w) and peptone (0.5% w/w) gives an increased enzyme production of 793 ± 6.56 u/g. The enzyme shows maximum activity at pH 7.0, temperature 50 °C and was stable between the pH 5.0–8.0 and temperature up to 60 °C. Crude lipase (3%) applied to tannery fleshing shows 92% fat solubility. The results demonstrate that fat obtained from tannery fleshing, a by-product of the leather industry has a high potential for biodiesel production and the proteinaceous residue obtained can be used as animal feed. PMID:24688497

  15. Development and characterisation of novel heterogeneous palm oil mill boiler ash-based catalysts for biodiesel production.

    PubMed

    Ho, Wilson Wei Sheng; Ng, Hoon Kiat; Gan, Suyin

    2012-12-01

    Novel heterogeneous catalysts from calcium oxide (CaO)/calcined calcium carbonate (CaCO(3)) loaded onto different palm oil mill boiler ashes were synthesised and used in the transesterification of crude palm oil (CPO) with methanol to yield biodiesel. Catalyst preparation parameters including the type of ash support, the weight percentage of CaO and calcined CaCO(3) loadings, as well as the calcination temperature of CaCO(3) were optimised. The catalyst prepared by loading of 15 wt% calcined CaCO(3) at a fixed temperature of 800°C on fly ash exhibited a maximum oil conversion of 94.48%. Thermogravimetric analysis (TGA) revealed that the CaCO(3) was transformed into CaO at 770°C and interacted well with the ash support, whereas rich CaO, Al(2)O(3) and SiO(2) were identified in the composition using X-ray diffraction (XRD). The fine morphology size (<5 μm) and high surface area (1.719 m(2)/g) of the fly ash-based catalyst rendered it the highest catalytic activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Two-Stage Conversion of High Free Fatty Acid Jatropha curcas Oil to Biodiesel Using Brønsted Acidic Ionic Liquid and KOH as Catalysts

    PubMed Central

    Das, Subrata; Thakur, Ashim Jyoti; Deka, Dhanapati

    2014-01-01

    Biodiesel was produced from high free fatty acid (FFA) Jatropha curcas oil (JCO) by two-stage process in which esterification was performed by Brønsted acidic ionic liquid 1-(1-butylsulfonic)-3-methylimidazolium chloride ([BSMIM]Cl) followed by KOH catalyzed transesterification. Maximum FFA conversion of 93.9% was achieved and it reduced from 8.15 wt% to 0.49 wt% under the optimum reaction conditions of methanol oil molar ratio 12 : 1 and 10 wt% of ionic liquid catalyst at 70°C in 6 h. The ionic liquid catalyst was reusable up to four times of consecutive runs under the optimum reaction conditions. At the second stage, the esterified JCO was transesterified by using 1.3 wt% KOH and methanol oil molar ratio of 6 : 1 in 20 min at 64°C. The yield of the final biodiesel was found to be 98.6% as analyzed by NMR spectroscopy. Chemical composition of the final biodiesel was also determined by GC-MS analysis. PMID:24987726

  17. The ultrasound-assisted aqueous extraction of rice bran oil.

    PubMed

    Khoei, Maryam; Chekin, Fereshteh

    2016-03-01

    In this work, aqueous extraction of rice bran oil was done without and with ultrasound pretreatment. Key factors controlling the extraction and optimal operating conditions were identified. The highest extraction efficiency was found at pH=12, temperature of 45°C, agitation speed of 800rpm and agitation time of 15min, ultrasound treatment time of 70min and ultrasound treatment temperature of 25°C. Moreover, extraction yields were compared to ultrasound-assisted aqueous extraction and Soxhlet extraction. The results showed that the yield of rice bran oil at ultrasound-assisted aqueous extraction was close to the yield of oil extracted by hexane Soxhlet extraction. This result implied that the yield of rice bran oil was significantly influenced by ultrasound. With regard to quality, the oil extracted by ultrasound-assisted aqueous process had a lower content of free fatty acid and lower color imparting components than the hexane-extracted oil. Also, effect of parboiling of paddy on hexane and ultrasound-assisted aqueous extraction was studied. Both extraction methods gives higher percentage of oil from par boiled rice bran compared with raw rice bran. This may be due to the fact that parboiling releases the oil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Supercritical fluid extraction of peach (Prunus persica) almond oil: process yield and extract composition.

    PubMed

    Mezzomo, Natália; Mileo, Bruna R; Friedrich, Maria T; Martínez, Julian; Ferreira, Sandra R S

    2010-07-01

    Peach kernels are industrial residues from the peach processing, contain oil with important therapeutic properties and attractive nutritional aspects because of the high concentration of oleic and linoleic acids. The extraction method used to obtain natural compounds from raw matter is critical for product quality definition. Thus, the aim of this work was to compare peach almond extraction yields obtained by different procedures: soxhlet extractions (Sox) with different solvents; hydrodistillation (HD); ethanolic maceration (Mac) followed by fractionation with various solvents, and supercritical fluid extraction (SFE) at 30, 40 and 50 degrees C and at 100, 200 and 300bar, performed with pure CO(2) and with a co-solvent. The extracts were evaluated with respect to fatty acid composition (FAC), fractionated chemical profile (FCP) and total phenolic content (TPC). The Sox total yields were generally higher than those obtained by SFE. The crossover pressure for SFE was between 260 and 280bar. The FAC results show oleic and linoleic acids as main components, especially for Sox and SFE extracts. The FCP for samples obtained by Sox and Mac indicated the presence of benzaldehyde and benzyl alcohol, components responsible for almond flavor and with important industrial uses, whereas the SFE extracts present a high content of a possible flavonoid. The higher TPC values were obtained by Sox and Mac with ethanol. In general, the maximum pressure in SFE produced the highest yield, TPC and oleic acid content. The use of ethanol at 5% as co-solvent in SFE did not result in a significant effect on any evaluated parameter. The production of peach almond oil through all techniques is substantially adequate and SFE presented advantages, with respect to the quality of the extracts due to the high oleic acid content, as presented by some Sox samples. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. Influence sample sizing of citrus hystrix essential oil from hydrodistillation extraction

    NASA Astrophysics Data System (ADS)

    Yahya, A.; Amadi, I.; Hashib, S. A.; Mustapha, F. A.

    2018-03-01

    Essential oil extracted from kaffir lime leaves through hydrodistillation. The objective of this study is to quantify the oil production rate by identify the significant influence of particle size on kaffir lime leaves. Kaffir lime leaves were ground and separated by using siever into 90, 150, 300 μm and other kaffir lime leaves. The mean essential oil yield of 0.87, 0.52, 0.41 and 0.3% was obtained. 90 μm of ground gives the highest yield compared to other sizes. Thus, it can be concluded that in quantifying oil production rate, the relevance of different size of particle is clearly affects the amount of oil yield. In analysing the composition of kaffir lime essential oil using GC-MS, there were 38 compounds found in the essential oil. Some of the major compounds of the kaffir lime leave oils were detected while some are not, may due to oil experience thermal degradation which consequently losing some significant compounds in controlled temperature.

  20. Improvement of neutral oil quality in the production of sulfonate additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhurba, A.S.; Bludilin, V.M.; Antonov, V.N.

    This paper is concerned with improvement of neutral oil used as materials for sulfonation to produce additives for lubricating oils. In this article the authors analyze the basic reasons for the unsatisfactory quality of the neutral oil and attempt to define the ways in which the process technology can be improved so as to produce neutral oil with the required composition, at the same time raising the efficiency of utilization of the MSG-8 oil used as a feedstock for this process. Experimental results are presented which demonstrate the feasibility of sulfonating neutral oil in the high-speed mixer under near-optimal conditions.more » The yield of sulfonic acid approaches the theoretical yield. With the lowest contents of aromatic hydrocarbons in the original neutral oil, the aromatic hydrocarbons are almost completely converted to sulfonic acids. The yield of neutral oil is sufficiently high, and the residual content of aromatic hydrocarbons in the oil is no greater than 3%.« less

  1. Ball milling pretreatment of oil palm biomass for enhancing enzymatic hydrolysis.

    PubMed

    Zakaria, Mohd Rafein; Fujimoto, Shinji; Hirata, Satoshi; Hassan, Mohd Ali

    2014-08-01

    Oil palm biomass, namely empty fruit bunch and frond fiber, were pretreated using a planetary ball mill. Particle sizes and crystallinity index values of the oil palm biomass were significantly reduced with extended ball mill processing time. The treatment efficiency was evaluated by the generation of glucose, xylose, and total sugar conversion yields from the pretreatment process compared to the amount of sugars from raw materials. Glucose and xylose contents were determined using high-performance liquid chromatography. An increasing trend in glucose and xylose yield as well as total sugar conversion yield was observed with decreasing particle size and crystallinity index. Oil palm frond fiber exhibited the best material yields using ball milling pretreatment with generated glucose, xylose, and total sugar conversion yields of 87.0, 81.6, and 85.4%, respectively. In contrast, oil palm empty fruit bunch afforded glucose and xylose of 70.0 and 82.3%, respectively. The results obtained in this study showed that ball mill-treated oil palm biomass is a suitable pretreatment method for high conversion of glucose and xylose.

  2. Modification of yield and composition of essential oils by distillation time

    USDA-ARS?s Scientific Manuscript database

    Field and laboratory experiments were conducted to model the length of the steam distillation time (DT) on essential oil yield and oil composition of peppermint, lemongrass, and palmarosa oils. The DTs tested were 1.25, 2.5, 5, 10, 20, 40, 80, and 160 min for peppermint, and 1.25, 2.5, 5, 10, 20, 40...

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, Daniel; Westover, Tyler; Howe, Daniel

    Here, we report here on an experimental study to produce refinery-ready fuel blendstocks via catalytic hydrodeoxygenation (upgrading) of pyrolysis oil using several biomass feedstocks and various blends. Blends were tested along with the pure materials to determine the effect of blending on product yields and qualities. Within experimental error, oil yields from fast pyrolysis and upgrading are shown to be linear functions of the blend components. Switchgrass exhibited lower fast pyrolysis and upgrading yields than the woody samples, which included clean pine, oriented strand board (OSB), and a mix of pinon and juniper (PJ). The notable exception was PJ, formore » which the poor upgrading yield of 18% was likely associated with the very high viscosity of the PJ fast pyrolysis oil (947 cp). The highest fast pyrolysis yield (54% dry basis) was obtained from clean pine, while the highest upgrading yield (50%) was obtained from a blend of 80% clean pine and 20% OSB (CP 8OSB 2). For switchgrass, reducing the fast pyrolysis temperature to 450 degrees C resulted in a significant increase to the pyrolysis oil yield and reduced hydrogen consumption during hydrotreating, but did not directly affect the hydrotreating oil yield. The water content of fast pyrolysis oils was also observed to increase linearly with the summed content of potassium and sodium, ranging from 21% for clean pine to 37% for switchgrass. Multiple linear regression models demonstrate that fast pyrolysis is strongly dependent upon the contents lignin and volatile matter as well as the sum of potassium and sodium.« less

  4. ACC oxidase and miRNA 159a, and their involvement in fresh fruit bunch yield (FFB) via sex ratio determination in oil palm.

    PubMed

    Somyong, Suthasinee; Poopear, Supannee; Sunner, Supreet Kaur; Wanlayaporn, Kitti; Jomchai, Nukoon; Yoocha, Thippawan; Ukoskit, Kittipat; Tangphatsornruang, Sithichoke; Tragoonrung, Somvong

    2016-06-01

    Oil palm (Elaeis guineesis Jacq.) is the most productive oil-bearing crop, yielding more oil per area than any other oil-bearing crops. However, there are still efforts to improve oil palm yield, in order to serve consumer and manufacturer demand. Oil palm produces female and male inflorescences in an alternating cycle. So, high sex ratio (SR), the ratio of female inflorescences to the total inflorescences, is a favorable trait in term of increasing yields in oil palm. This study aims to understand the genetic control for SR related traits, such as fresh fruit bunch yield (FFB), by characterizing genes at FFB quantitative trait loci (QTLs) on linkage 10 (chromosome 6) and linkage 15 (chromosome 10). Published oil palm sequences at the FFB QTLs were used to develop gene-based and simple sequence repeat (SSR) markers. We used the multiple QTL analysis model (MQM) to characterize the relationship of new markers with the SR traits in the oil palm population. The RNA expression of the most linked QTL genes was also evaluated in various tissues of oil palm. We identified EgACCO1 (encoding aminocyclopropane carboxylate (ACC) oxidase) at chromosome 10 and EgmiR159a (microRNA 159a) at chromosome 6 to be the most linked QTL genes or determinants for FFB yield and/or female inflorescence number with a phenotype variance explained (PVE) from 10.4 to 15 % and suggest that these play the important roles in sex determination and differentiation in oil palm. The strongest expression of EgACCO1 and the predicted precursor of EgmiR159a was found in ovaries and, to a lesser extent, fruit development. In addition, highly normalized expression of EgmiR159a was found in female flowers. In summary, the QTL analysis and the RNA expression reveal that EgACCO1 and EgmiR159a are the potential genetic factors involved in female flower determination and hence would affect yield in oil palm. However, to clarify how these genetic factors regulate female flower determination, more investigation of their down regulation or target may be essential. Additionally, if more sex determination genes controlled by plant hormones are identified, it may possible to reveal a crosstalk of sex determination genes with hormones and environment factors.

  5. Effect of drying on yield and calorific values of extractables from leafy spurge (Euphorbia esula)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiatr, S.M.

    1984-04-01

    The effect of dehydration on yield and calorific values has been investigated for oils, hydrocarbons, and poly-phenols extracted from leaves of Euphorbia esula (leafy spurge). Methods of dehydration employed were with a warm oven (50 degrees C), a hot oven (105 degrees C), at room temperature (25 degrees C), and with freeze drying. Generally, dehydration resulted in a loss of yield for all extractives. Noteworthy exceptions were oil yields from the warm-oven or air-dried biomass which did not differ significantly from fresh tissue. Significant differences in calorific values (range 4643-5192 cal/g) were observed for each category of whole leafy biomassmore » dehydrated as indicated above. Dehydration reduced the calorific value of oils (range 9483-10,095 cal/g) but tended to increase the calorific values of polyphenols (range 4178-6033 cal/g). NMR spectroscopy of the oil fraction suggested that dehydration did not grossly alter the composition of oils, despite differences in yield and calorific values.« less

  6. Effect of drying on yield and calorific values of extractables from leafy spurge (Euphorbia esula)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiatr, S.M.

    1984-01-01

    The effect of dehydration on yield and calorific values has been investigated for oils, hydrocarbons, and polyphenols extracted from leaves of Euphorbia esula (leafy spurge). Methods of dehydration employed were with a warm oven (50/sup 0/C), a hot oven (105/sup 0/C), at room temperature (25/sup 0/C), and with freeze drying. Generally, dehydration resulted in a loss of yield for all extractives. Noteworthy exceptions were oil yields from the warm-oven- or air-dried biomass which did not differ significantly from fresh tissue. Significant differences in calorific values (range 4643-5192 cal/g) were observed for each category of whole leafy biomass dehydrated as indicatedmore » above. Dehydration reduced the calorific value of oils (range 9483-10,095 cal/g) but tended to increase the calorific values of polyphenols (range 4178-6033 cal/g). NMR spectroscopy of the oil fraction suggested that dehydration did not grossly alter the composition of oils, despite differences in yield and calorific values.« less

  7. Study of quantitative and qualitative variations in essential oils of Sicilian Rosmarinus officinalis L.

    PubMed

    Tuttolomondo, Teresa; Dugo, Giacomo; Ruberto, Giuseppe; Leto, Claudio; Napoli, Edoardo M; Cicero, Nicola; Gervasi, Teresa; Virga, Giuseppe; Leone, Raffaele; Licata, Mario; La Bella, Salvatore

    2015-01-01

    In this study the chemical characterisation of 10 Sicilian Rosmarinus officinalis L. biotypes essential oils is reported. The main goal of this work was to analyse the relationship between the essential oils yield and the geographical distribution of the species plants. The essential oils were analysed by GC-FID and GC-MS. Hierarchical cluster analysis and principal component analysis statistical methods were used to cluster biotypes according to the essential oils chemical composition. The essential oil yield ranged from 0.8 to 2.3 (v/w). In total 82 compounds have been identified, these represent 96.7-99.9% of the essential oil. The most represented compounds in the essential oils were 1.8-cineole, linalool, α-terpineol, verbenone, α-pinene, limonene, bornyl acetate and terpinolene. The results show that the essential oil yield of the 10 biotypes is affected by the environmental characteristics of the sampling sites while the chemical composition is linked to the genetic characteristics of different biotypes.

  8. Economic incentive for applying vetiver grass to remediate lead, copper and zinc contaminated soils.

    PubMed

    Danh, Luu Thai; Truong, Paul; Mammucari, Raffaella; Fostert, Neil

    2011-01-01

    The application of vetiver grass (Chrysopogon zizaniodes) for phytoremediation of heavy metal contaminated soils can be promoted by economic return through essential oil production. Four levels of lead (0, 500, 2000, and 8000 mg kg(-1) dry soil), copper (0, 100, 400, and 1600 mg kg(-1) dry soil) and zinc (0, 400, 1600, and 6400 mg kg(-1) dry soil) were used to study their effects on vetiver growth, essential oil composition and yield. This study also investigated the effect of nitrogen concentrations on vetiver oil yield. Vetiver accumulated high concentrations of Pb, Cu and Zn in roots (3246, 754 and 2666 mg kg(-1), respectively) and small amounts of contaminants in shoots (327, 55, and 642 mg kg(-1), respectively). Oil content and yield were not affected at low and moderate concentrations of Cu and Zn. Only the application of Pb had a significant detrimental effect on oil composition. Extraction of vetiver essential oils by hydrodistillation produced heavy metal free products. High level of nitrogen reduced oil yields. Results show that phytoremediation of Cu and Zn contaminated soils by vetiver can generate revenue from the commercialization of oil extracts.

  9. Fluidized-bed pyrolysis of oil shale: oil yield, composition, and kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, J H; Huss, E B; Ott, L L

    1982-09-01

    A quartz isothermal fluidized-bed reactor has been used to measure kinetics and oil properties relevant to surface processing of oil shale. The rate of oil formation has been described with two sequential first-order rate equations characterized by two rate constants, k/sub 1/ = 2.18 x 10/sup 10/ exp(-41.6 kcal/RT) s/sup -1/ and k/sub 2/ = 4.4 x 10/sup 6/ exp(-29.7 kcal/RT) s/sup -1/. These rate constants together with an expression for the appropriate weighting coefficients describe approximately 97/sup +/% of the total oil produced. A description is given of the results of different attempts to mathematically describe the data inmore » a manner suitable for modeling applications. Preliminary results are also presented for species-selective kinetics of methane, ethene, ethane and hydrogen, where the latter is clearly distinguished as the product of a distinct intermediate. Oil yields from Western oil shale are approximately 100% Fischer assay. Oil composition is as expected based on previous work and the higher heating rates (temperatures) inherent in fluidized-bed pyrolysis. Neither the oil yield, composition nor the kinetics varied with particle size between 0.2 and 2.0 mm within experimental error. The qualitatively expected change in oil composition due to cracking was observed over the temperature range studied (460 to 540/sup 0/C). Eastern shale exhibited significantly faster kinetics and higher oil yields than did Western shale.« less

  10. Identification of Rubisco rbcL and rbcS in Camellia oleifera and their potential as molecular markers for selection of high tea oil cultivars.

    PubMed

    Chen, Yongzhong; Wang, Baoming; Chen, Jianjun; Wang, Xiangnan; Wang, Rui; Peng, Shaofeng; Chen, Longsheng; Ma, Li; Luo, Jian

    2015-01-01

    Tea oil derived from seeds of Camellia oleifera Abel. is high-quality edible oil in China. This study isolated full-length cDNAs of Rubisco subunits rbcL and rbcS from C. oleifera. The rbcL has 1,522 bp with a 1,425 bp coding region, encoding 475 amino acids; and the rbcS has 615 bp containing a 528 bp coding region, encoding 176 amino acids. The expression level of the two genes, designated as Co-rbcL and Co-rbcS, was determined in three C. oleifera cultivars: Hengchong 89, Xianglin 1, and Xianglin 14 whose annual oil yields were 546.9, 591.4, and 657.7 kg ha(-1), respectively. The Co-rbcL expression in 'Xianglin 14' was significantly higher than 'Xianglin 1', and 'Xianglin 1' was greater than 'Hengchong 89'. The expression levels of Co-rbcS in 'Xianglin 1' and 'Xianglin 14' were similar but were significantly greater than in 'Hengchong 89'. The net photosynthetic rate of 'Xianglin 14' was significantly higher than 'Xianglin 1', and 'Xianglin 1' was higher than 'Hengchong 89'. Pearson's correlation analysis showed that seed yields and oil yields were highly correlated with the expression level of Co-rbcL at P < 0.001 level; and the expression of Co-rbcS was correlated with oil yield at P < 0.01 level. Net photosynthetic rate was also correlated with oil yields and seed yields at P < 0.001 and P < 0.01 levels, respectively. Our results suggest that Co-rbcS and Co-rbcL in particular could potentially be molecular markers for early selection of high oil yield cultivars. In combination with the measurement of net photosynthetic rates, the early identification of potential high oil production cultivars would significantly shorten plant breeding time and increase breeding efficiency.

  11. Using the candidate gene approach for detecting genes underlying seed oil concentration and yield in soybean.

    PubMed

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-07-01

    Increasing the oil concentration in soybean seeds has been given more attention in recent years because of demand for both edible oil and biodiesel production. Oil concentration in soybean is a complex quantitative trait regulated by many genes as well as environmental conditions. To identify genes governing seed oil concentration in soybean, 16 putative candidate genes of three important gene families (GPAT: acyl-CoA:sn-glycerol-3-phosphate acyltransferase, DGAT: acyl-CoA:diacylglycerol acyltransferase, and PDAT: phospholipid:diacylglycerol acyltransferase) involved in triacylglycerol (TAG) biosynthesis pathways were selected and their sequences retrieved from the soybean database ( http://www.phytozome.net/soybean ). Three sequence mutations were discovered in either coding or noncoding regions of three DGAT soybean isoforms when comparing the parents of a 203 recombinant inbreed line (RIL) population; OAC Wallace and OAC Glencoe. The RIL population was used to study the effects of these mutations on seed oil concentration and other important agronomic and seed composition traits, including seed yield and protein concentration across three field locations in Ontario, Canada, in 2009 and 2010. An insertion/deletion (indel) mutation in the GmDGAT2B gene in OAC Wallace was significantly associated with reduced seed oil concentration across three environments and reduced seed yield at Woodstock in 2010. A mutation in the 3' untranslated (3'UTR) region of GmDGAT2C was associated with seed yield at Woodstock in 2009. A mutation in the intronic region of GmDGAR1B was associated with seed yield and protein concentration at Ottawa in 2010. The genes identified in this study had minor effects on either seed yield or oil concentration, which was in agreement with the quantitative nature of the traits. However, the novel gene-specific markers designed in the present study can be used in soybean breeding for marker-assisted selection aimed at increasing seed yield and oil concentration with no significant impact on seed protein concentration.

  12. Preliminary report on the geology, geophysics and hydrology of USBM/AEC Colorado core hole No. 2, Piceance Creek Basin, Rio Blanco County, Colorado

    USGS Publications Warehouse

    Ege, J.R.; Carroll, R.D.; Welder, F.A.

    1967-01-01

    Approximately 1,400 feet of continuous core was taken .between 800-2,214 feet in depth from USBM/AEC Colorado core hole No. 2. The drill, site is located in the Piceance Creek basin, Rio Blanco County, Colorado. From ground surface the drill hole penetrated 1,120 feet of the Evacuation Creek Member and 1,094 feet of oil shale in the Parachute Creek Member of the Green River Formation. Oil shale yielding more than 20 gallons per ton occurs between 1,260-2,214 feet in depth. A gas explosion near the bottom of the hole resulted in abandonment of the exploratory hole which was still in oil shale. The top of the nahcolite zone is at 1,693 feet. Below this depth the core contains common to abundant amounts of sodium bicarbonate salt intermixed with oil shale. The core is divided into seven structural zones that reflect changes in joint intensity, core loss and broken core due to natural causes. The zone of poor core recovery is in the Interval between 1,300-1,450 feet. Results of preliminary geophysical log analyses indicate that oil yields determined by Fischer assay compare favorably with yields determined by geophysical log analyses. There is strong evidence that analyses of complete core data from Colorado core holes No. 1 and No. 2 reveal a reliable relationship between geophysical log response and oil yield. The quality of the logs is poor in the rich shale section and the possibility of repeating the logging program should be considered. Observations during drilling, coring, and hydrologic testing of USBM/AEC Colorado core hole No. 2 reveal that the Parachute Creek Member of the Green River Formation is the principal aquifer water in the Parachute Creek Member is under artesian pressure. The upper part of the aquifer has a higher hydrostatic head than, and is hydrologically separated from the lower part of the aquifer. The transmissibility of the aquifer is about 3500 gpd per foot. The maximum water yield of the core hole during testing was about 500 gpm. Chemical analyses of water samples indicate that the content of dissolved solids is low, the principal ions being sodium and bicarbonate. Although the hole was originally cored, to a depth of 2,214 feet, ,the present depth is about 2,100 feet. This report presents a preliminary evaluation of core examination, geophysical log interpretation and hydrological tests from the USBM/AEC Colorado core hole No. 2. The cooperation of the U.S. Bureau of Mines is gratefully acknowledged. The reader is referred to Carroll and others (1967) for comparison of USBM/AEC Col0rado core hole No. 1 with USBM/AEC Colorado core hole No. 2.

  13. Sinking a Granular Raft

    NASA Astrophysics Data System (ADS)

    Protière, Suzie; Josserand, Christophe; Aristoff, Jeffrey M.; Stone, Howard A.; Abkarian, Manouk

    2017-03-01

    We report experiments that yield new insights on the behavior of granular rafts at an oil-water interface. We show that these particle aggregates can float or sink depending on dimensionless parameters taking into account the particle densities and size and the densities of the two fluids. We characterize the raft shape and stability and propose a model to predict its shape and maximum length to remain afloat. Finally we find that wrinkles and folds appear along the raft due to compression by its own weight, which can trigger destabilization. These features are characteristics of an elastic instability, which we discuss, including the limitations of our model.

  14. Effect of operating parameters on bio-fuel production from waste furniture sawdust.

    PubMed

    Uzun, Basak Burcu; Kanmaz, Gülin

    2013-04-01

    Fast pyrolysis is an effective technology for conversion of biomass into energy and value-added chemicals instead of burning them directly. In this study, fast pyrolysis of waste furniture sawdust (pine sawdust) was investigated under various reaction conditions (reaction time, pyrolysis temperature, heating rate, residence time and particle size) in a tubular reactor. The optimum reaction conditions for bio-oil production was found as reaction time of 5 min, pyrolysis temperature of 500 °C, heating rate of 300 °C min(-1) under nitrogen flow rate of 400 cm(3) min(-1). At these conditions, maximum bio-oil yield was obtained as 42.09%. Pyrolysis oils were characterized by using various elemental analyses, fourier - transformation infrared (FT-IR) spectrometry and gas chromatography-mass spectrometry (GC-MS). The results of the GC-MS showed that cracking of large molecular phenolics was followed by partial conversion into phenol and alkylated phenols (45%) during the pyrolysis. According to the experimental and characterization results; the liquid product could be used as feedstock for the chemical industry or petroleum crude for refinery.

  15. Meta-analyses of oil yield in Cuphea PSR23

    USDA-ARS?s Scientific Manuscript database

    Oil content and composition of Cuphea seed are of special economic value as raw materials for industrial and food applications. The inherent unpredictability in determining and predicting Cuphea’s oil yield is attributed, in part, to the indeterminate growth habit and the persistence of the domestic...

  16. Deconstruction of lignocellulosic biomass with hydrated cerium (III) chloride in water and ethanol

    DOE PAGES

    Akalin, Mehmet K.; Das, Parthapratim; Alper, Koray; ...

    2017-08-08

    Lignocellulosic biomass was decomposed to produce crude bio-oil in water and ethanol using hydrated cerium (III) chloride as a catalyst. Use of the catalyst affected not only the yield of crude bio-oil but also the composition of bio-crude for both water and ethanol. The catalyst had a detrimental effect on the crude bio-oil yields obtained from water processing for all runs. However, in ethanol, use of the catalyst improved the crude bio-oil yields in all tested runs. The solid residue yields decreased with the catalyst use in the runs with water but increased in all studies with ethanol, except thosemore » with the shortest tested residence time of 10 min. The highest crude bio-oil yield of 48.2 wt% was obtained at 300 °C using 5 mmol of hydrated cerium (III) chloride at a residence time of 90 min in ethanol. The heating values of the crude bio-oils increased with the catalyst use for both water and ethanol processing. In conclusion, the highest heating value of 33.3 MJ kg –1 was obtained with hydrated cerium (III) chloride at 300 °C and a residence time of 120 min.« less

  17. Deconstruction of lignocellulosic biomass with hydrated cerium (III) chloride in water and ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akalin, Mehmet K.; Das, Parthapratim; Alper, Koray

    Lignocellulosic biomass was decomposed to produce crude bio-oil in water and ethanol using hydrated cerium (III) chloride as a catalyst. Use of the catalyst affected not only the yield of crude bio-oil but also the composition of bio-crude for both water and ethanol. The catalyst had a detrimental effect on the crude bio-oil yields obtained from water processing for all runs. However, in ethanol, use of the catalyst improved the crude bio-oil yields in all tested runs. The solid residue yields decreased with the catalyst use in the runs with water but increased in all studies with ethanol, except thosemore » with the shortest tested residence time of 10 min. The highest crude bio-oil yield of 48.2 wt% was obtained at 300 °C using 5 mmol of hydrated cerium (III) chloride at a residence time of 90 min in ethanol. The heating values of the crude bio-oils increased with the catalyst use for both water and ethanol processing. In conclusion, the highest heating value of 33.3 MJ kg –1 was obtained with hydrated cerium (III) chloride at 300 °C and a residence time of 120 min.« less

  18. Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed.

    PubMed

    Heo, Hyeon Su; Park, Hyun Ju; Park, Young-Kwon; Ryu, Changkook; Suh, Dong Jin; Suh, Young-Woong; Yim, Jin-Heong; Kim, Seung-Soo

    2010-01-01

    The amount of waste furniture generated in Korea was over 2.4 million tons in the past 3 years, which can be used for renewable energy or fuel feedstock production. Fast pyrolysis is available for thermo-chemical conversion of the waste wood mostly into bio-oil. In this work, fast pyrolysis of waste furniture sawdust was investigated under various reaction conditions (pyrolysis temperature, particle size, feed rate and flow rate of fluidizing medium) in a fluidized-bed reactor. The optimal pyrolysis temperature for increased yields of bio-oil was 450 degrees C. Excessively smaller or larger feed size negatively affected the production of bio-oil. Higher flow and feeding rates were more effective for the production of bio-oil, but did not greatly affect the bio-oil yields within the tested ranges. The use of product gas as the fluidizing medium had a potential for increased bio-oil yields.

  19. Supercritical Carbon Dioxide Extraction of the Oak Silkworm (Antheraea pernyi) Pupal Oil: Process Optimization and Composition Determination

    PubMed Central

    Pan, Wen-Juan; Liao, Ai-Mei; Zhang, Jian-Guo; Dong, Zeng; Wei, Zhao-Jun

    2012-01-01

    Supercritical carbon dioxide (SC-CO2) extraction of oil from oak silkworm pupae was performed in the present research. Response surface methodology (RSM) was applied to optimize the parameters of SC-CO2 extraction, including extraction pressure, temperature, time and CO2 flow rate on the yield of oak silkworm pupal oil (OSPO). The optimal extraction condition for oil yield within the experimental range of the variables researched was at 28.03 MPa, 1.83 h, 35.31 °C and 20.26 L/h as flow rate of CO2. Under this condition, the oil yield was predicted to be 26.18%. The oak silkworm pupal oil contains eight fatty acids, and is rich in unsaturated fatty acids and α-linolenic acid (ALA), accounting for 77.29% and 34.27% in the total oil respectively. PMID:22408458

  20. Pyrolysis of flax straw: Characterization of char, liquid, and gas as fuel

    NASA Astrophysics Data System (ADS)

    Tushar, Mohammad Shahed Hasan Khan

    The demand for energy continues to outstrip its supply and necessitates the development of renewable energy options. Biomass has been recognized as a major renewable energy source to supplement the declining fossil fuel source of energy. It is the most popular form of renewable energy and, currently, biofuel production is becoming more promising. Being carbon neutral, readily available, and low in sulphur content makes biomass a very promising source of renewable energy. In the present research, both the isothermal and non-isothermal pressurized pyrolysis of flax straw is studied for the first time. In case of isothermal pyrolysis, the influence of pyrolysis temperature and reaction time on char yield and morphology was investigated. The applied pyrolysis temperature was varied between 300 and 500°C. The reaction time was varied from 15 to 60 min. The char yield was found to decrease as pyrolysis temperature and reaction time increased. The char structure and surface morphology were thoroughly investigated by means of x-ray diffraction (XRD), temperature-programmed oxidation (TPO), and scanning electron microscopy (SEM). The degree of porosity and graphitization increased as pyrolysis temperature and time increased. In fact, the experiment performed at 500°C for 1h duration did not yield any char; only residual ash could be obtained. The TPO studies on the char samples corroborated the XRD findings and showed the presence of two types of carbon, namely, amorphous filamentous carbon and graphitic carbon. A thermogravimetric analysis (TGA) of the char was performed to gain an understanding of combustion kinetics and reactivity. It implied that the reactivity of the char decreases as temperature increases, and this finding is well supported by the TPO, TGA, SEM, and XRD characterization data. Furthermore, an empirical global model was devised based on the power law to estimate activation energy and other kinetic parameters. For the non-isothermal pressurized pyrolysis of flax straw, the experiments were carried out at different pressures, ranging from 10 to 40 psig. The three types of products thus obtained (gas, liquid, char) were thoroughly quantified and analyzed. The yields of the products were found to be dependent on the experimental conditions. It was observed that 10 psig of pressure gave the maximum yield of bio-oil, while 20 psig pressure lead to maximum char yield. The gaseous products were analyzed using an online GC, while the bio-oils were characterized using an offline GC/MS. SEM studies were performed to study the char morphology and porosity. The main gaseous products observed were CO, H2, CO2, CH 4, and C3. The bio-oils were mainly composed of phenolic compounds, carboxylic acids, and furfural. The pH and density of the bio-oils was found to increase as pyrolysis pressure increased. SEM investigation gave insights into the porosity of chars; as pressure increased, an increase in the porosity of char was noted. XRD studies showed that amorphous hydrocarbon and graphitic carbons are the major constituents of char, which was supported by TPO experiments. A TGA study showed two reaction zones for char oxidation. The kinetic parameters of oxidation were estimated using a power law model, which was also used for isothermal pyrolysis and isothermal char oxidation kinetics. Based on the data generated, the pressure of 10 psig was found to be optimum for bio-oil production, while a pressure of 20 psig was optimum for char production. With the increase in pressure, the production of individual gas components increased within the pressure range studied. Finally, with the increase in reaction pressure, temperature and time, the produced chars became less reactive.

  1. Simultaneous treatment (cell disruption and lipid extraction) of wet microalgae using hydrodynamic cavitation for enhancing the lipid yield.

    PubMed

    Lee, Ilgyu; Han, Jong-In

    2015-06-01

    Simultaneous treatment (combining with cell disruption and lipid extraction) using hydrodynamic cavitation (HC) was applied to Nannochloropsis salina to demonstrate a simple and integrated way to produce oil from wet microalgae. A high lipid yield from the HC (25.9-99.0%) was observed compared with autoclave (16.2-66.5%) and ultrasonication (5.4-26.9%) in terms of the specific energy input (500-10,000 kJ/kg). The optimal conditions for the simultaneous treatment were established using a statistical approach. The efficiency of the simultaneous method was also demonstrated by comparing each separate treatment. The maximum lipid yield (predicted: 45.9% and experimental: 45.5%) was obtained using 0.89% sulfuric acid with a cavitation number of 1.17 for a reaction time of 25.05 min via response surface methodology. Considering its comparable extractability, energy-efficiency, and potential for scale-up, HC may be a promising method to achieve industrial-scale microalgae operation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Effects of methanol-to-oil ratio, catalyst amount and reaction time on the FAME yield by in situ transesterification of rubber seeds (Hevea brasiliensis)

    NASA Astrophysics Data System (ADS)

    Abdulkadir, Bashir Abubakar; Uemura, Yoshimitsu; Ramli, Anita; Osman, Noridah B.; Kusakabe, Katsuki; Kai, Takami

    2014-10-01

    In this research, biodiesel is produced by in situ transesterification (direct transesterification) method from the rubber seeds using KOH as a catalyst. The influence of methanol to seeds mass ratio, duration of reaction, and catalyst loading was investigated. The result shows that, the best ratio of seeds to methanol is 1:6 (10 g seeds with 60 g methanol), 120 minutes reaction time and catalyst loading of 3.0 g. The maximum FAME yield obtain was 70 %. This findings support FAME production from the seeds of rubber tree using direct transesterifcation method from the seeds of rubber tree as an alternative to diesel fuel. Also, significant properties of biodiesel such as cloud point, density, pour point, specific gravity, and viscosity were investigated.

  3. Engineering Camelina sativa (L.) Crantz for enhanced oil and seed yields by combining diacylglycerol acyltransferase1 and glycerol-3-phosphate dehydrogenase expression.

    PubMed

    Chhikara, Sudesh; Abdullah, Hesham M; Akbari, Parisa; Schnell, Danny; Dhankher, Om Parkash

    2018-05-01

    Plant seed oil-based liquid transportation fuels (i.e., biodiesel and green diesel) have tremendous potential as environmentally, economically and technologically feasible alternatives to petroleum-derived fuels. Due to their nutritional and industrial importance, one of the major objectives is to increase the seed yield and oil production of oilseed crops via biotechnological approaches. Camelina sativa, an emerging oilseed crop, has been proposed as an ideal crop for biodiesel and bioproduct applications. Further increase in seed oil yield by increasing the flux of carbon from increased photosynthesis into triacylglycerol (TAG) synthesis will make this crop more profitable. To increase the oil yield, we engineered Camelina by co-expressing the Arabidopsis thaliana (L.) Heynh. diacylglycerol acyltransferase1 (DGAT1) and a yeast cytosolic glycerol-3-phosphate dehydrogenase (GPD1) genes under the control of seed-specific promoters. Plants co-expressing DGAT1 and GPD1 exhibited up to 13% higher seed oil content and up to 52% increase in seed mass compared to wild-type plants. Further, DGAT1- and GDP1-co-expressing lines showed significantly higher seed and oil yields on a dry weight basis than the wild-type controls or plants expressing DGAT1 and GPD1 alone. The oil harvest index (g oil per g total dry matter) for DGTA1- and GPD1-co-expressing lines was almost twofold higher as compared to wild type and the lines expressing DGAT1 and GPD1 alone. Therefore, combining the overexpression of TAG biosynthetic genes, DGAT1 and GPD1, appears to be a positive strategy to achieve a synergistic effect on the flux through the TAG synthesis pathway, and thereby further increase the oil yield. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Lipase-catalyzed biodiesel production and quality with Jatropha curcas oil: exploring its potential for Central America.

    PubMed

    Bueso, Francisco; Moreno, Luis; Cedeño, Mathew; Manzanarez, Karla

    2015-01-01

    Extensive native Jatropha curcas L. (Jatropha) crop areas have been planted in Central America marginal lands since 2008 as a non-edible prospective feedstock alternative to high-value, edible palm oil. Jatropha biodiesel is currently exclusively produced in the region at commercial scale utilizing alkaline catalysts. Recently, a free, soluble Thermomyces lanuginosus (TL) 1,3 specific lipase has shown promise as biocatalyst, reportedly yielding up to 96 % ASTM D6751 compliant biodiesel after 24 h transesterification of soybean, canola oils and other feedstocks. Biodiesel conversion rate and quality of enzymatically catalyzed transesterification of Jatropha oil was evaluated. Two lipases: free, soluble TL and immobilized Candida antarctica (CA) catalyzed methanolic transesterification of crude Jatropha and refined palm oil. Jatropha yields were similar to palm biodiesel with NaOH as catalyst. After 24 h transesterification, Jatropha (81 %) and palm oil (86 %) biodiesel yields with TL as catalyst were significantly higher than CA (<70 %) but inferior to NaOH (>90 %). Enzymatic catalysts (TL and CA) produced Jatropha biodiesel with optimum flow properties but did not complied with ASTM D6751 stability parameters (free fatty acid content and oil stability index). Biodiesel production with filtered, degummed, low FFA Jatropha oil using a free liquid lipase (TL) as catalyst showed higher yielding potential than immobilized CA lipase as substitute of RBD palm oil with alkaline catalyst. However, Jatropha enzymatic biodiesel yield and stability were inferior to alkaline catalyzed biodiesel and not in compliance with international quality standards. Lower quality due to incomplete alcoholysis and esterification, potential added costs due to need of more than 24 h to achieve comparable biodiesel yields and extra post-transesterification refining reactions are among the remaining drawbacks for the environmentally friendlier enzymatic catalysis of crude Jatropha oil to become an economically viable alternative to chemical catalysis.

  5. Biodiesel production using waste frying oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charpe, Trupti W.; Rathod, Virendra K., E-mail: vk.rathod@ictmumbai.edu.in

    2011-01-15

    Research highlights: {yields} Waste sunflower frying oil is successfully converted to biodiesel using lipase as catalyst. {yields} Various process parameters that affects the conversion of transesterification reaction such as temperature, enzyme concentration, methanol: oil ratio and solvent are optimized. {yields} Inhibitory effect of methanol on lipase is reduced by adding methanol in three stages. {yields} Polar solvents like n-hexane and n-heptane increases the conversion of tranesterification reaction. - Abstract: Waste sunflower frying oil is used in biodiesel production by transesterification using an enzyme as a catalyst in a batch reactor. Various microbial lipases have been used in transesterification reaction tomore » select an optimum lipase. The effects of various parameters such as temperature, methanol:oil ratio, enzyme concentration and solvent on the conversion of methyl ester have been studied. The Pseudomonas fluorescens enzyme yielded the highest conversion. Using the P. fluorescens enzyme, the optimum conditions included a temperature of 45 deg. C, an enzyme concentration of 5% and a methanol:oil molar ratio 3:1. To avoid an inhibitory effect, the addition of methanol was performed in three stages. The conversion obtained after 24 h of reaction increased from 55.8% to 63.84% because of the stage-wise addition of methanol. The addition of a non-polar solvent result in a higher conversion compared to polar solvents. Transesterification of waste sunflower frying oil under the optimum conditions and single-stage methanol addition was compared to the refined sunflower oil.« less

  6. Silane Modification of Glass and Silica Surfaces to Obtain Equally Oil-Wet Surfaces in Glass-Covered Silicon Micromodel Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grate, Jay W.; Warner, Marvin G.; Pittman, Jonathan W.

    2013-08-05

    The wettability of silicon and glass surfaces can be modified by silanization. However, similar treatments of glass and silica surfaces using the same silane do not necessarily yield the same wettability as determined by the oil-water contact angle. In this technical note, surface cleaning pretreatments were investigated to determine conditions that would yield oil-wet surfaces on glass with similar wettability to silica surfaces treated with the same silane, and both air-water and oil-water contact angles were determined. Air-water contact angles were less sensitive to differences between silanized silica and glass surfaces, often yielding similar values while the oil-water contact anglesmore » were quite different. Borosilicate glass surfaces cleaned with standard cleaning solution 1 (SC1) yield intermediate-wet surfaces when silanized with hexamethyldisilazane, while the same cleaning and silanization yields oil-wet surfaces on silica. However, cleaning glass in boiling concentrated nitric acid creates a surface that can be silanized to obtain oil-wet surfaces using HDMS. Moreover, this method is effective on glass with prior thermal treatment at an elevated temperature of 400oC. In this way, silica and glass can be silanized to obtain equally oil-wet surfaces using HMDS. It is demonstrated that pretreatment and silanization is feasible in silicon-silica/glass micromodels previously assembled by anodic bonding, and that the change in wettability has a significant observable effect on immiscisble fluid displacements in the pore network.« less

  7. Novel Insights into the Influence of Seed Sarcotesta Photosynthesis on Accumulation of Seed Dry Matter and Oil Content in Torreya grandis cv. “Merrillii”

    PubMed Central

    Hu, Yuanyuan; Zhang, Yongling; Yu, Weiwu; Hänninen, Heikki; Song, Lili; Du, Xuhua; Zhang, Rui; Wu, Jiasheng

    2018-01-01

    Seed oil content is an important trait of nut seeds, and it is affected by the import of carbon from photosynthetic sources. Although green leaves are the main photosynthetic organs, seed sarcotesta photosynthesis also supplies assimilates to seed development. Understanding the relationship between seed photosynthesis and seed development has theoretical and practical significance in the cultivation of Torreya grandis cv. “Merrillii.” To assess the role of seed sarcotesta photosynthesis on the seed development, anatomical and physiological traits of sarcotesta were measured during two growing seasons in the field. Compared with the attached current-year leaves, the sarcotesta had higher gross photosynthetic rate at the first stage of seed development. At the late second stage of seed development, sarcotesta showed down-regulation of PSII activity, as indicated by significant decrease in the following chlorophyll fluorescence parameters: the maximum PSII efficiency (Fv/Fm), the PSII quantum yield (ΦPSII), and the photosynthetic quenching coefficient (qP). The ribulose 1, 5—bisphosphate carboxylase (Rubisco) activity, the total chlorophyll content (Chl(a+b)) and nitrogen content in the sarcotesta were also significantly decreased during that period. Treatment with DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] preventing seed photosynthesis decreased the seed dry weight and the oil content by 25.4 and 25.5%, respectively. We conclude that seed photosynthesis plays an important role in the dry matter accumulation at the first growth stage. Our results also suggest that down-regulation of seed photosynthesis is a plant response to re-balance the source-sink ratio at the second growth stage. These results suggest that seed photosynthesis is important for biomass accumulation and oil synthesis of the Torreya seeds. The results will facilitate achieving higher yields and oil contents in nut trees by selection for higher seed photosynthesis cultivars. PMID:29375592

  8. Seed oil extraction from red prickly pear using hexane and supercritical CO2 : assessment of phenolic compound composition, antioxidant and antibacterial activities.

    PubMed

    Koubaa, Mohamed; Mhemdi, Houcine; Barba, Francisco J; Angelotti, Armel; Bouaziz, Fatma; Chaabouni, Semia Ellouz; Vorobiev, Eugène

    2017-01-01

    Investigating Opuntia species for their seed oil content is of much importance owing to their potential use for food and in cosmetic applications. These oils have an important content in unsaturated fatty acids as well as antioxidant compounds (e.g. polyphenols, vitamin E), which have been associated with the prevention of some chronic diseases. Moreover, Opuntia stricta oils possess important antimicrobial activities. For instance, the main focus of this study was to compare the effectiveness of conventional (hexane extraction) and novel (supercritical (SC)-CO 2 ) extraction methods for the recovery of oil and phenolic compounds from O. stricta seeds. The oil yield of both extracts was then compared and the polyphenol content and composition of both extracts were determined by liquid chromatography-high-resolution mass spectrometry. Additionally, antioxidant (DPPH assay) and antimicrobial activities (disc diffusion method) of O. stricta seed oils were determined. The oil yield (based on Soxhlet's method) of O. stricta seeds was determined using SC-CO 2 (49.9 ± 2.2%), and hexane (49.0 ± 1.5%). Although obtaining similar oil extraction yields using the two methods, the extracted oil using SC-CO 2 was more enriched in polyphenols (172.2 ± 11.9 µg gallic acid equivalents (GAE) g -1 oil) than that extracted using hexane (76.0 ± 6.9 µg GAE g -1 of oil). Polyphenol profiles showed that the SC-CO 2 process led to the yield of more compounds (45) than that using hexane extraction (11). Moreover, the antioxidant and antimicrobial activities of SC-CO 2 extract showed a high percentage of inhibition. SC-CO 2 extraction of O. stricta seed oil led to extraction of oil with a similar yield to that with hexane extraction, but with higher polyphenol content. The extract containing polyphenols exhibited high antioxidant and antibacterial properties, demonstrating their great potential as feedstock for high-oil quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Utilization of Agro-Industry Residue for Rhamnolipid Production by P. aeruginosa AMB AS7 and Its Application in Chromium Removal.

    PubMed

    Samykannu, Mariaamalraj; Achary, Anant

    2017-09-01

    Coconut oil sludge and oil cake was utilized as carbon source for biosurfactant production by Pseudomonas aeruginosa AMB AS7. The results of optimization study revealed that 1.5% (w/v) of coconut oil cake, 2% (w/v) of coconut oil sludge, pH 7.2, 37 °C, and 120 rpm were the optimum conditions for biosurfactant production. The yield coefficient of biosurfactant on biomass (Y P/X ) was 1.29 g/g. Besides, the results indicated that aeration of 0.5 vvm and agitation of 450 rpm in bioreactor resulted in high volumetric productivity of biosurfactant (r p ) and specific product formation rate (q p ) of 0.115 g/(L h) and 0.0131 g/(g h), respectively in medium containing 2% (w/v) coconut oil sludge. The maximum biosurfactant concentration of 5.53 g/L was obtained during 60 h of cultivation. The emulsification index (EI 24 ) against coconut oil was found to be 88.42 ± 0.5%, and cell surface hydrophobicity of P. aeruginosa AMB AS7 was obtained 32.4 ± 0.9%. FTIR and GC-MS analysis revealed that the biosurfactant is rhamnolipid with anionic charge. The critical micelle concentration (CMC) of rhamnolipid was found to be 50 mg/L. It was found that 66.95% of chromium from aqueous solution can be removed using rhamnolipid at its CMC.

  10. Characterization of medium-chain triacylglycerol (MCT)-enriched seed oil from Cinnamomum camphora (Lauraceae) and its oxidative stability.

    PubMed

    Hu, Jiang-Ning; Zhang, Bing; Zhu, Xue-Mei; Li, Jing; Fan, Ya-Wei; Liu, Rong; Tang, Liang; Lee, Ki-Teak; Deng, Ze-Yuan

    2011-05-11

    Medium-chain triacylglycerol (MCT)-enriched oil was extracted by supercritical fluid extraction of carbon dioxide (SFE-CO(2)) from Cinnamomum camphora seeds. The SFE-CO(2) process was optimized using the Box-Behnken design (BBD). The maximum oil yield (42.82%) was obtained under the optimal SFE-CO(2) conditions: extraction pressure, 21.16 MPa; extraction temperature, 45.67 °C; and extraction time, 2.38 h. Subsequently, the physicochemical characteristics, fatty acid composition, triacylglycerol (TAG) composition, tocopherol content, and DSC profile as well as oxidative stabilities of C. camphora seed oil (CCSO) were studied. Results showed that CCSO contained two major medium-chain fatty acids, capric acid (53.27%) and lauric acid (39.93%). The predominant TAG species in CCSO was LaCC/CLaC (ECN 32, 79.29%). Meanwhile, it can be found that CCSO had much higher oxidative stabilities than coconut oil due to the higher content of tocopherols in CCSO (α-tocopherol, 8.67 ± 0.51 mg/100 g; γ-tocopherol, 22.6 ± 1.02 mg/100 g; δ-tocopherol, 8.38 ± 0.47 mg/100 g). Conclusively, CCSO with such a high level of MCTs and high oxidative stabilities could be potentially applied in special food for specific persons such as weak patients and overweight persons because oils enriched in MCTs can be rapidly absorbed into body to provide energy without fat accumulation.

  11. Effect of different liming levels on the biomass production and essential oil extraction yield of Cunila galioides Benth.

    PubMed

    Mossi, A J; Pauletti, G F; Rota, L; Echeverrigaray, S; Barros, I B I; Oliveira, J V; Paroul, N; Cansian, R L

    2012-11-01

    Poejo is an aromatic and medicinal plant native to highland areas of south Brazil, in acid soils with high Al3+ concentration. The main objective of the present work was to evaluate the effect of liming on the extraction yield of essential oil of three chemotypes of poejo (Cunila galioides Benth). For this purpose, the experiments were performed in a greenhouse, using 8-litre pots. The treatments were four dosages of limestone (0, 3.15, 12.5, and 25 g.L(-1)) and a completely random experimental design was used, with four replications and three chemotypes, set up in a 3 × 4 factorial arrangement. The parameters evaluated were dry weight of aerial parts, essential oil content and chemical composition of essential oil. Results showed that liming affects the biomass production, essential oil yield and chemical composition, with cross interaction verified between chemotype and limestone dosage. For the higher dosage lower biomass production, lower yield of essential oil as well as the lowest content of citral (citral chemotype) and limonene (menthene chemotype) was observed. In the ocimene chemotype, no liming influence was observed on the essential oil yield and on the content of major compounds. The dosage of 3.15 g.L(-1) can be considered the best limestone dosage for the production of poejo for the experimental conditions evaluated.

  12. Hardening of particle/oil/water suspensions due to capillary bridges: Experimental yield stress and theoretical interpretation.

    PubMed

    Danov, Krassimir D; Georgiev, Mihail T; Kralchevsky, Peter A; Radulova, Gergana M; Gurkov, Theodor D; Stoyanov, Simeon D; Pelan, Eddie G

    2018-01-01

    Suspensions of colloid particles possess the remarkable property to solidify upon the addition of minimal amount of a second liquid that preferentially wets the particles. The hardening is due to the formation of capillary bridges (pendular rings), which connect the particles. Here, we review works on the mechanical properties of such suspensions and related works on the capillary-bridge force, and present new rheological data for the weakly studied concentration range 30-55 vol% particles. The mechanical strength of the solidified capillary suspensions, characterized by the yield stress Y, is measured at the elastic limit for various volume fractions of the particles and the preferentially wetting liquid. A quantitative theoretical model is developed, which relates Y with the maximum of the capillary-bridge force, projected on the shear plane. A semi-empirical expression for the mean number of capillary bridges per particle is proposed. The model agrees very well with the experimental data and gives a quantitative description of the yield stress, which increases with the rise of interfacial tension and with the volume fractions of particles and capillary bridges, but decreases with the rise of particle radius and contact angle. The quantitative description of capillary force is based on the exact theory and numerical calculation of the capillary bridge profile at various bridge volumes and contact angles. An analytical formula for Y is also derived. The comparison of the theoretical and experimental strain at the elastic limit reveals that the fluidization of the capillary suspension takes place only in a deformation zone of thickness up to several hundred particle diameters, which is adjacent to the rheometer's mobile plate. The reported experimental results refer to water-continuous suspension with hydrophobic particles and oily capillary bridges. The comparison of data for bridges from soybean oil and hexadecane surprisingly indicate that the yield strength is greater for the suspension with soybean oil despite its lower interfacial tension against water. The result can be explained with the different contact angles of the two oils in agreement with the theoretical predictions. The results could contribute for a better understanding, quantitative prediction and control of the mechanical properties of three-phase capillary suspensions solid/liquid/liquid. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Parameters influencing the yield and composition of the essential oil from Cretan Vitex agnus-castus fruits.

    PubMed

    Sørensen, J M; Katsiotis, S T

    2000-04-01

    Mature and immature fruits of a Cretan Vitex agnus-castus L. population were chosen to investigate different parameters such as comminution, maturity, distillation period and extraction method influencing the essential oil yield and composition. The effect of the comminution and the maturity of the plant material showed highly significant differences in yield and composition of the essential oils obtained, as well as the distillation duration from one to five hours and the method applied (hydrodistillation and simultaneous distillation extraction). The variation of 36 essential oil components due to the parameters applied was studied. The results showed that many different essential oil qualities can be obtained from the same plant material according to the parameters employed in its extraction. Entire fruits hydrodistilled for one hour yielded an oil much richer in monoterpene hydrocarbons and oxygenated compounds whereas the best combination to obtain an oil rich in less volatile compounds is by SDE of comminuted fruits for five hours. For mature fruits the main components varied as follows due to the parameters studied: sabinene 16.4-44.1%, 1,8-cineole 8.4-15.2%, beta-caryophyllene 2.1-5.0%, and trans-beta-farnesene 5.0-11.7%.

  14. [Solidification of volatile oil with graphene oxide].

    PubMed

    Yan, Hong-Mei; Jia, Xiao-Bin; Zhang, Zhen-Hai; Sun, E; Xu, Yi-Hao

    2015-02-01

    To evaluate the properties of solidifying volatile oil with graphene oxide, clove oil and zedoary turmeric oil were solidified by graphene oxide. The amount of graphene oxide was optimized with the eugenol yield and curcumol yield as criteria. Curing powder was characterized by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The effects of graphene oxide on dissolution in vitro and thermal stability of active components were studied. The optimum solidification ratio of graphene oxide to volatile oil was 1:1. Dissolution rate of active components had rare influence while their thermal stability improved after volatile oil was solidified. Solidifying herbal volatile oil with graphene oxide deserves further study.

  15. Antioxidants from slow pyrolysis bio-oil of birch wood: Application for biodiesel and biobased lubricants

    USDA-ARS?s Scientific Manuscript database

    Birch wood was slowly pyrolyzed to produce bio-oil and biochar. Slow pyrolysis conditions including reaction temperature, residence time, and particle size of the feed were optimized to maximize bio-oil yield. Particle size had an insignificant effect, whereas yields of up to 56% were achieved using...

  16. Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating.

    PubMed

    Duan, Dengle; Wang, Yunpu; Dai, Leilei; Ruan, Roger; Zhao, Yunfeng; Fan, Liangliang; Tayier, Maimaitiaili; Liu, Yuhuan

    2017-10-01

    Microwave-assisted fast co-pyrolysis of lignin and polypropylene for bio-oil production was conducted using the ex-situ catalysis technology. Effects of catalytic temperature, feedstock/catalyst ratio, and lignin/polypropylene ratio on product distribution and chemical components of bio-oil were investigated. The catalytic temperature of 250°C was the most conducive to bio-oil production in terms of the yield. The bio-oil yield decreased with the addition of catalyst during ex-situ catalytic co-pyrolysis. When the feedstock/catalyst ratio was 2:1, the minimum char and coke values were 21.22% and 1.54%, respectively. The proportion of cycloalkanes decreased and the aromatics increased with the increasing catalyst loading. A positive synergistic effect was observed between lignin and polypropylene. The char yield dramatically deceased and the bio-oil yield improved during co-pyrolysis compared with those during lignin pyrolysis alone. The proportion of oxygenates dramatically and the minimum value of 6.74% was obtained when the lignin/polypropylene ratio was 1:1. Copyright © 2017. Published by Elsevier Ltd.

  17. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor

    DOE PAGES

    Morgan, Trevor James; Turn, Scott Q.; George, Anthe

    2015-08-26

    A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when working at 450°C with a volatiles residence time of 1.4 s, ~37 wt% relative to the dry ash free feedstock (excluding pyrolysis water). The amountsmore » of char (organic fraction) and permanent gases under these conditions are ~4 wt% and 8 wt% respectively. The bio-oil yield stated above is for 'dry' bio-oil after rotary evaporation to remove solvent, which results in volatiles and pyrolysis water being removed from the bio-oil. The material removed during drying accounts for the remainder of the pyrolysis products. The 'dry' bio-oil produced under these conditions contains ~56 wt% carbon which is ~40 wt% of the carbon present in the feedstock. The oxygen content of the 450°C, 1.4 s 'dry' bio-oil is ~38 wt%, which accounts for ~33 wt% of the oxygen in the feedstock. At higher temperature or longer residence time less bio-oil and char is recovered and more gas and light volatiles are produced. Increasing the temperature has a more significant effect on product yields and composition than increasing the volatiles residence time. At 600°C and a volatiles residence time of 1.2 seconds the bio-oil yield is ~21 wt% of the daf feedstock, with a carbon content of 64 wt% of the bio-oil. The bio-oil yield from banagrass is significantly lower than from woody biomass or grasses such as switchgrass or miscanthus, but is similar to barley straw. In conclusion, the reason for the low bio-oil yield from banagrass is thought to be related to its high ash content (8.5 wt% dry basis) and high concentration of alkali and alkali earth metals (totaling ~2.8 wt% relative to the dry feedstock) which are catalytic and increase cracking reactions during pyrolysis.« less

  18. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor

    PubMed Central

    Morgan, Trevor James; Turn, Scott Q.; George, Anthe

    2015-01-01

    A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when working at 450°C with a volatiles residence time of 1.4 s, ~37 wt% relative to the dry ash free feedstock (excluding pyrolysis water). The amounts of char (organic fraction) and permanent gases under these conditions are ~4 wt% and 8 wt% respectively. The bio-oil yield stated above is for 'dry' bio-oil after rotary evaporation to remove solvent, which results in volatiles and pyrolysis water being removed from the bio-oil. The material removed during drying accounts for the remainder of the pyrolysis products. The 'dry' bio-oil produced under these conditions contains ~56 wt% carbon which is ~40 wt% of the carbon present in the feedstock. The oxygen content of the 450°C, 1.4 s 'dry' bio-oil is ~38 wt%, which accounts for ~33 wt% of the oxygen in the feedstock. At higher temperature or longer residence time less bio-oil and char is recovered and more gas and light volatiles are produced. Increasing the temperature has a more significant effect on product yields and composition than increasing the volatiles residence time. At 600°C and a volatiles residence time of 1.2 seconds the bio-oil yield is ~21 wt% of the daf feedstock, with a carbon content of 64 wt% of the bio-oil. The bio-oil yield from banagrass is significantly lower than from woody biomass or grasses such as switchgrass or miscanthus, but is similar to barley straw. The reason for the low bio-oil yield from banagrass is thought to be related to its high ash content (8.5 wt% dry basis) and high concentration of alkali and alkali earth metals (totaling ~2.8 wt% relative to the dry feedstock) which are catalytic and increase cracking reactions during pyrolysis. PMID:26308860

  19. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Trevor James; Turn, Scott Q.; George, Anthe

    A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when working at 450°C with a volatiles residence time of 1.4 s, ~37 wt% relative to the dry ash free feedstock (excluding pyrolysis water). The amountsmore » of char (organic fraction) and permanent gases under these conditions are ~4 wt% and 8 wt% respectively. The bio-oil yield stated above is for 'dry' bio-oil after rotary evaporation to remove solvent, which results in volatiles and pyrolysis water being removed from the bio-oil. The material removed during drying accounts for the remainder of the pyrolysis products. The 'dry' bio-oil produced under these conditions contains ~56 wt% carbon which is ~40 wt% of the carbon present in the feedstock. The oxygen content of the 450°C, 1.4 s 'dry' bio-oil is ~38 wt%, which accounts for ~33 wt% of the oxygen in the feedstock. At higher temperature or longer residence time less bio-oil and char is recovered and more gas and light volatiles are produced. Increasing the temperature has a more significant effect on product yields and composition than increasing the volatiles residence time. At 600°C and a volatiles residence time of 1.2 seconds the bio-oil yield is ~21 wt% of the daf feedstock, with a carbon content of 64 wt% of the bio-oil. The bio-oil yield from banagrass is significantly lower than from woody biomass or grasses such as switchgrass or miscanthus, but is similar to barley straw. In conclusion, the reason for the low bio-oil yield from banagrass is thought to be related to its high ash content (8.5 wt% dry basis) and high concentration of alkali and alkali earth metals (totaling ~2.8 wt% relative to the dry feedstock) which are catalytic and increase cracking reactions during pyrolysis.« less

  20. Potential resource materials from Ohio plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, M.E.; Roth, W.B.; Bagby, M.O.

    Previously, the Northern Regional Research Center (NRRC) has studied chemical and botanical features of about 800 plant species in a program to identify potential renewable sources of industrial raw materials. In this program, another 64 species from northwestern and southwestern Ohio were studied for the present report. Aboveground samples were quantitatively analyzed for moisture, ash, crude protein, oil, polyphenol, and hydrocarbon. Plant oils were examined for classes of constituents. Oils were saponified and analyzed for yields of organic acids and unsaponifiable matter. Hydrocarbons were examined for the presence of rubber, gutta, and waxes. Rubber and gutta were analyzed for weight-averagemore » molecular weight and molecular weight distribution. Data are presented for 89 species of the 64 that gave the higher chemical yields. Rhus typhina gave outstanding yields of oil (6.5%) and polyphenol (30.8%) (moisture- plus ash-free basis). Liatris aspera yielded substantial amounts of oil (4.7%) and polyphenol (22.7%), whereas Cornus racemosa yielded a substantial amount of oil (4.4%) but a more typical yield of polyphenol (11.0%). Nuphar advena and Epilobium angustifolium had considerable amounts of polyphenol (16.2, 16.3%) but little oil. Nuphar advena contained the most crude protein (24.8%). Noteworthy amounts of hydrocarbon were extracted from Calamagrostis canadensis (1.1%), Aster umbellatus (0.8%), and Solidago riddellii (0.7%). Polyisoprenes in the hydrocarbon fractions of the latter 3 species were identified as gutta for C. canadensis and rubber for A. umbellatus and S. riddellii. Botanical features of the 8 species are briefly discussed.« less

  1. Palm-Based Neopentyl Glycol Diester: A Potential Green Insulating Oil.

    PubMed

    Raof, Nurliyana A; Yunus, Robiah; Rashid, Umer; Azis, Norhafiz; Yaakub, Zaini

    2018-01-01

    The transesterification of high oleic palm oil methyl ester (HOPME) with neopentyl glycol (NPG) has been investigated. The present study revealed the application of low-pressure technology as a new synthesis method to produce NPG diesters. Single variable optimization and response surface methodology (RSM) were implemented to optimize the experimental conditions to achieve the maximum composition (wt%) of NPG diesters. The main objective of this study was to optimize the production of NPG diesters and to characterize the optimized esters with typical chemical, physical and electrical properties to study its potential as insulating oil. The transesterification reaction between HOPME and NPG was conducted in a 1L three-neck flask reactor at specified temperature, pressure, molar ratio and catalyst concentration. For the optimization, four factors have been studied and the diester product was characterized by using gas chromatography (GC) analysis. The synthesized esters were then characterized with typical properties of transformer oil such as flash point, pour point, viscosity and breakdown voltage and were compared with mineral insulating oil and commercial NPG dioleate. For formulation, different samples of NPG diesters with different concentration of pour point depressant were prepared and each sample was tested for its pour point measurement. The optimum conditions inferred from the analyses were: molar ratio of HOPME to NPG of 2:1.3, temperature = 182°C, pressure = 0.6 mbar and catalyst concentration of 1.2%. The synthesized NPG diesters showed very important improvement in fire safety compared to mineral oil with flash point of 300°C and 155°C, respectively. NPG diesters also exhibit a relatively good viscosity of 21 cSt. The most striking observation to emerge from the data comparison with NPG diester was the breakdown voltage, which was higher than mineral oil and definitely in conformance to the IEC 61099 limit at 67.5 kV. The formulation of synthesized NPD diesters with VISCOPLEX® pour point depressant has successfully increased the pour point of NPG diester from -14°C to -48°C. The reaction time for the transesterification of HOPME with NPG to produce NPG diester was successfully reduced to 1 hour from the 14 hours required in the earlier synthesis method. The main highlight of this study was the excess reactant which is no longer methyl ester but the alcohol (NPG). The optimum reaction conditions for the synthesis were molar ratio of 2:1.13 for NPG:HOPME, 182°C, 0.6 mbar and catalyst concentration of 1.2 wt%. The maximum NPG diester yield of 87 wt% was consistent with the predicted yield of 87.7 wt% obtained from RSM. The synthesized diester exhibited better insulating properties than the commercial products especially with regards to the breakdown voltage, flash point and moisture content. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Transesterification process to manufacture ethyl ester of rape oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korus, R.A.; Hoffman, D.S.; Bam, N.

    1993-12-31

    A process for the production of the ethyl ester of winter rape [EEWR] for use as a biodiesel fuel has been studied. The essential part of the process is the transesterification of rape oil with ethanol, in the presence of a catalyst, to yield the ethyl ester of rape oil as a product and glycerin as a by-product. Experiments have been performed to determine the optimum conditions for the preparation of EEWR. The process variables were: (1) temperature, (2) catalyst, (3) rate of agitation, (4) water content of the alcohol used, and (5) the amount of excess alcohol used. Themore » optimum conditions were: (1) room temperature, (2) 0.5% sodium methoxide or 1% potassium hydroxide catalyst by weight of rapeseed oil, (3) extremely vigorous agitation with some splashing during the initial phase of the reaction and agitation was not necessary after the reaction mixture became homogeneous, (4) absolute ethanol was necessary for high conversion, and (5) 50% excess ethanol with NaOCH{sub 3} or 100% excess with KOH gave a maximum conversion. Viscosity, cloud point and pour point of the EEWR were measured. A preliminary break-even cost for the commercial production of EEWR was found to be $0.55/liter [$2.08/US gallon].« less

  3. Organic acid pretreatment of oil palm trunk: effect on enzymatic saccharification and ethanol production.

    PubMed

    Rattanaporn, Kittipong; Tantayotai, Prapakorn; Phusantisampan, Theerawut; Pornwongthong, Peerapong; Sriariyanun, Malinee

    2018-04-01

    Effective lignocellulosic biomass saccharification is one of the crucial requirements of biofuel production via fermentation process. Organic acid pretreatments have been gained much interests as one of the high potential methods for promoting enzymatic saccharification of lignocellulosic materials due to their lower hazardous properties and lower production of inhibitory by-products of fermentation than typical chemical pretreatment methods. In this study, three organic acids, including acetic acid, oxalic acid, and citric acid, were examined for improvement of enzymatic saccharification and bioethanol production from oil palm trunk biomass. Based on response surface methodology, oxalic acid pretreated biomass released the maximum reducing sugar of 144 mg/g-pretreated biomass at the optimum condition, which was higher than untreated samples for 2.30 times. The released sugar yield of oil palm trunk also corresponded to the results of FT-IR analysis, which revealed the physical modification of cellulose and hemicellulose surface structures of pretreated biomass. Nevertheless, citric acid pretreatment is the most efficient pretreatment method to improve bioethanol fermentation of Saccharomyces cerevisiae TISTR 5606 at 1.94 times higher than untreated biomass. These results highlighted the selection of organic acid pretreatment as a potential method for biofuel production from oil palm trunk feedstocks.

  4. Essential oil composition of sweet basil (Ocimum basilicum L.) in symbiotic relationship with Piriformospora indica and paclobutrazol application under salt stress.

    PubMed

    Keramati, Sara; Pirdashti, Hemmatollah; Babaeizad, Valliollah; Dehestani, Ali

    2016-12-01

    Essential oil content and oil composition of paclobutrazol treated sweet basil (Ocimum basilicum L.) plant inoculated with Piriformospora indica under salt stress were investigated by GC-MS. The results show a slight increase in essential oil content when basil plants subjected to moderate salinity stress (3 dS m -1 of NaCl). It decreased signifiicantly with increasing salinity level to 9 dS m -1 . The findings revealed that leaf area, above ground and leaf dry weights, essential oil content and yield were significantly affected by P. indica inoculation, however paclobutrazol application significantly influenced essential oil yield but not content. Fungal symbiosis as well as paclobutrazol application ameliorated the negative effects of salinity on dry matter and essential oil yield. The main constituents found in the volatile oil of O. basilicum in control treatment were Geranial (26.03%), Neral (24.88%) and Estragole (24.78%). The compounds concentrations showed some differences in P. indica and paclobutrazol treatments. The results demonstrate that micorrhiza-like fungi concomitantly increase essential oil production and biomass in sweet basil, a medicinal herb rich in commercially valuable essential oils.

  5. Identification of Rubisco rbcL and rbcS in Camellia oleifera and their potential as molecular markers for selection of high tea oil cultivars

    PubMed Central

    Chen, Yongzhong; Wang, Baoming; Chen, Jianjun; Wang, Xiangnan; Wang, Rui; Peng, Shaofeng; Chen, Longsheng; Ma, Li; Luo, Jian

    2015-01-01

    Tea oil derived from seeds of Camellia oleifera Abel. is high-quality edible oil in China. This study isolated full-length cDNAs of Rubisco subunits rbcL and rbcS from C. oleifera. The rbcL has 1,522 bp with a 1,425 bp coding region, encoding 475 amino acids; and the rbcS has 615 bp containing a 528 bp coding region, encoding 176 amino acids. The expression level of the two genes, designated as Co-rbcL and Co-rbcS, was determined in three C. oleifera cultivars: Hengchong 89, Xianglin 1, and Xianglin 14 whose annual oil yields were 546.9, 591.4, and 657.7 kg ha-1, respectively. The Co-rbcL expression in ‘Xianglin 14’ was significantly higher than ‘Xianglin 1’, and ‘Xianglin 1’ was greater than ‘Hengchong 89’. The expression levels of Co-rbcS in ‘Xianglin 1’ and ‘Xianglin 14’ were similar but were significantly greater than in ‘Hengchong 89’. The net photosynthetic rate of ‘Xianglin 14’ was significantly higher than ‘Xianglin 1’, and ‘Xianglin 1’ was higher than ‘Hengchong 89’. Pearson’s correlation analysis showed that seed yields and oil yields were highly correlated with the expression level of Co-rbcL at P < 0.001 level; and the expression of Co-rbcS was correlated with oil yield at P < 0.01 level. Net photosynthetic rate was also correlated with oil yields and seed yields at P < 0.001 and P < 0.01 levels, respectively. Our results suggest that Co-rbcS and Co-rbcL in particular could potentially be molecular markers for early selection of high oil yield cultivars. In combination with the measurement of net photosynthetic rates, the early identification of potential high oil production cultivars would significantly shorten plant breeding time and increase breeding efficiency. PMID:25873921

  6. Closing oil palm yield gaps among Indonesian smallholders through industry schemes, pruning, weeding and improved seeds

    PubMed Central

    Soliman, T.; Lim, F. K. S.; Lee, J. S. H.

    2016-01-01

    Oil palm production has led to large losses of valuable habitats for tropical biodiversity. Sparing of land for nature could in theory be attained if oil palm yields increased. The efficiency of oil palm smallholders is below its potential capacity, but the factors determining efficiency are poorly understood. We employed a two-stage data envelopment analysis approach to assess the influence of agronomic, supply chain and management factors on oil palm production efficiency in 190 smallholders in six villages in Indonesia. The results show that, on average, yield increases of 65% were possible and that fertilizer and herbicide use was excessive and inefficient. Adopting industry-supported scheme management practices, use of high-quality seeds and higher pruning and weeding rates were found to improve efficiency. Smallholder oil palm production intensification in Indonesia has the capacity to increase production by 26%, an equivalent of 1.75 million hectares of land. PMID:27853605

  7. Closing oil palm yield gaps among Indonesian smallholders through industry schemes, pruning, weeding and improved seeds.

    PubMed

    Soliman, T; Lim, F K S; Lee, J S H; Carrasco, L R

    2016-08-01

    Oil palm production has led to large losses of valuable habitats for tropical biodiversity. Sparing of land for nature could in theory be attained if oil palm yields increased. The efficiency of oil palm smallholders is below its potential capacity, but the factors determining efficiency are poorly understood. We employed a two-stage data envelopment analysis approach to assess the influence of agronomic, supply chain and management factors on oil palm production efficiency in 190 smallholders in six villages in Indonesia. The results show that, on average, yield increases of 65% were possible and that fertilizer and herbicide use was excessive and inefficient. Adopting industry-supported scheme management practices, use of high-quality seeds and higher pruning and weeding rates were found to improve efficiency. Smallholder oil palm production intensification in Indonesia has the capacity to increase production by 26%, an equivalent of 1.75 million hectares of land.

  8. A Factorial Analysis Study on Enzymatic Hydrolysis of Fiber Pressed Oil Palm Frond for Bioethanol Production

    NASA Astrophysics Data System (ADS)

    Hashim, F. S.; Yussof, H. W.; Zahari, M. A. K. M.; Illias, R. M.; Rahman, R. A.

    2016-03-01

    Different technologies have been developed to for the conversion of lignocellulosic biomass to suitable fermentation substrates for bioethanol production. The enzymatic conversion of cellulose seems to be the most promising technology as it is highly specific and does not produce substantial amounts of unwanted byproducts. The effects of agitation speed, enzyme loading, temperature, pH and reaction time on the conversion of glucose from fiber pressed oil palm frond (FPOPF) for bioethanol production were screened by statistical analysis using response surface methodology (RSM). A half fraction two-level factorial analysis with five factors was selected for the experimental design to determine the best enzymatic conditions that produce maximum amount of glucose. FPOPF was pre-treated with alkaline prior to enzymatic hydrolysis. The enzymatic hydrolysis was performed using a commercial enzyme Cellic CTec2. From this study, the highest yield of glucose concentration was 9.736 g/L at 72 hours reaction time at 35 °C, pH 5.6, and 1.5% (w/v) of enzyme loading. The model obtained was significant with p-value <0.0001. It is suggested that this model had a maximum point which is likely to be the optimum point and possible for the optimization process.

  9. Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates.

    PubMed

    Obruca, Stanislav; Petrik, Sinisa; Benesova, Pavla; Svoboda, Zdenek; Eremka, Libor; Marova, Ivana

    2014-07-01

    Spent coffee grounds (SCG), an important waste product of the coffee industry, contain approximately 15 wt% of coffee oil. The aim of this work was to investigate the utilization of oil extracted from SCG as a substrate for the production of poly(3-hydroxybutyrate) (PHB) by Cupriavidus necator H16. When compared to other waste/inexpensive oils, the utilization of coffee oil resulted in the highest biomass as well as PHB yields. Since the correlation of PHB yields and the acid value of oil indicated a positive effect of the presence of free fatty acids in oil on PHB production (correlation coefficient R (2) = 0.9058), superior properties of coffee oil can be probably attributed to the high content of free fatty acids which can be simply utilized by the bacteria culture. Employing the fed-batch mode of cultivation, the PHB yields, the PHB content in biomass, the volumetric productivity, and the Y P/S yield coefficient reached 49.4 g/l, 89.1 wt%, 1.33 g/(l h), and 0.82 g per g of oil, respectively. SCG are annually produced worldwide in extensive amounts and are disposed as solid waste. Hence, the utilization of coffee oil extracted from SCG is likely to improve significantly the economic aspects of PHB production. Moreover, since oil extraction decreased the calorific value of SCG by only about 9 % (from 19.61 to 17.86 MJ/kg), residual SCG after oil extraction can be used as fuel to at least partially cover heat and energy demands of fermentation, which should even improve the economic feasibility of the process.

  10. Effect of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions.

    PubMed

    Gupta, M L; Prasad, Arun; Ram, Muni; Kumar, Sushil

    2002-01-01

    The effects of inoculation with vesicular-arbuscular mycorrhizal (VAM) fungus Glomusfasciculatum on the root colonization, growth, essential oil yield and nutrient acquisition of three cultivars of menthol mint (Mentha arvensis); Kalka, Shivalik and Gomti, were studied under field conditions. The VAM inoculation significantly increased the root colonization, plant height, fresh herbage and dry matter yield. oil content and oil yield as compared to non-inoculated cultivars. The effect of VAM inoculation on the root colonization, growth and yield of mint was more pronounced with the cv Shivalik than the cvs Kalka and Gomati, indicating Shivalik as a highly mycorrhizal dependent genotype. VAM inoculation significantly increased the uptake of N, P and K by shoot tissues of mint, but most markedly increased the uptake of P. The VAM-inoculated mint plants depleted the available N, P and K in the rhizosphere soil as compared to non-inoculated control plants, however the extent of nutrient depletion was greater for P than N and K. We conclude that the VAM inoculation could significantly increase the root colonization, growth, essential oil yield and nutrient acquisition of mint for obtaining economic production under field conditions.

  11. Modeling olive-crop forecasting in Tunisia

    NASA Astrophysics Data System (ADS)

    Ben Dhiab, Ali; Ben Mimoun, Mehdi; Oteros, Jose; Garcia-Mozo, Herminia; Domínguez-Vilches, Eugenio; Galán, Carmen; Abichou, Mounir; Msallem, Monji

    2017-05-01

    Tunisia is the world's second largest olive oil-producing region after the European Union. This paper reports on the use of models to forecast local olive crops, using data for Tunisia's five main olive-producing areas: Mornag, Jemmel, Menzel Mhiri, Chaal, and Zarzis. Airborne pollen counts were monitored over the period 1993-2011 using a Cour trap. Forecasting models were constructed using agricultural data (harvest size in tonnes of fruit/year) and data for several weather-related and phenoclimatic variables (rainfall, humidity, temperature, Growing Degree Days, and Chilling). Analysis of these data revealed that the amount of airborne pollen emitted over the pollen season as a whole (i.e., the Pollen Index) was the variable most influencing harvest size. Findings for all local models also indicated that the amount, timing, and distribution of rainfall (except during blooming) had a positive impact on final olive harvests. Air temperature also influenced final crop yield in three study provinces (Menzel Mhiri, Chaal, and Zarzis), but with varying consequences: in the model constructed for Chaal, cumulative maximum temperature from budbreak to start of flowering contributed positively to yield; in the Menzel Mhiri model, cumulative average temperatures during fruit development had a positive impact on output; in Zarzis, by contrast, cumulative maximum temperature during the period prior to flowering negatively influenced final crop yield. Data for agricultural and phenoclimatic variables can be used to construct valid models to predict annual variability in local olive-crop yields; here, models displayed an accuracy of 98, 93, 92, 91, and 88 % for Zarzis, Mornag, Jemmel, Chaal, and Menzel Mhiri, respectively.

  12. Optimization study of Chromalaena odorata essential oil extracted using solventless extraction technique

    NASA Astrophysics Data System (ADS)

    Nasshorudin, Dalila; Ahmad, Muhammad Syarhabil; Mamat, Awang Soh; Rosli, Suraya

    2015-05-01

    Solventless extraction process of Chromalaena odorata using reduced pressure and temperature has been investigated. The percentage yield of essential oil produce was calculated for every experiment with different experimental condition. The effect of different parameters, such as temperature and extraction time on the yield was investigated using the Response Surface Methodology (RSM) through Central Composite Design (CCD). The temperature and extraction time were found to have significant effect on the yield of extract. A final essential oil yield was 0.095% could be extracted under the following optimized conditions; a temperature of 80 °C and a time of 8 hours.

  13. [Study on absorbing volatile oil with mesoporous carbon].

    PubMed

    Yan, Hong-mei; Jia, Xiao-bin; Zhang, Zhen-hai; Sun, E; Yang Nan

    2014-11-01

    Clove oil and turmeric oil were absorbed by mesoporous carbon. The absorption ratio of mesoporous carbon to volatile oil was optimized with the eugenol yield and curcumol yield as criteria Curing powder was characterized by scanning electron microscopy (SEM) and differential scanning calorietry (DSC). The effects of mesoporous carbon on dissolution in vitro and thermal stability of active components were studied. They reached high adsorption rate when the absorption ratio of mesoporous carbon to volatile oil was 1:1. When volatile oil was absorbed, dissolution rate of active components had a little improvement and their thermal stability improved after volatile oil was absorbed by the loss rate decreasing more than 50%. Absorbing herbal volatile oil with mesoporous carbon deserves further studying.

  14. Alternative oil extraction methods from Echium plantagineum L. seeds using advanced techniques and green solvents.

    PubMed

    Castejón, Natalia; Luna, Pilar; Señoráns, Francisco J

    2018-04-01

    The edible oil processing industry involves large losses of organic solvent into the atmosphere and long extraction times. In this work, fast and environmentally friendly alternatives for the production of echium oil using green solvents are proposed. Advanced extraction techniques such as Pressurized Liquid Extraction (PLE), Microwave Assisted Extraction (MAE) and Ultrasound Assisted Extraction (UAE) were evaluated to efficiently extract omega-3 rich oil from Echium plantagineum seeds. Extractions were performed with ethyl acetate, ethanol, water and ethanol:water to develop a hexane-free processing method. Optimal PLE conditions with ethanol at 150 °C during 10 min produced a very similar oil yield (31.2%) to Soxhlet using hexane for 8 h (31.3%). UAE optimized method with ethanol at mild conditions (55 °C) produced a high oil yield (29.1%). Consequently, advanced extraction techniques showed good lipid yields and furthermore, the produced echium oil had the same omega-3 fatty acid composition than traditionally extracted oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Studies on pyrolysis and gasification of automobile shredder residue in China.

    PubMed

    Ni, Feijian; Chen, Ming

    2014-10-01

    With increasing automobile ownerships in China, the number of end-of-life vehicles has also rapidly increased. However, the automobile shredder residue generated during the dismantling of end-of-life vehicles in China is not treated properly and has caused great resource waste and environmental problems. In this work, automobile shredder residue from a domestic end-of-life vehicles dismantling company was comprehensively studied through element analysis, combustion heat experiment, proximate analysis, and thermogravimetric analysis. The feasibility of using pyrolysis combined with gasification to treat and recycle automobile shredder residue was investigated. The produced gas, oil, and residue yield was measured and the correlation between their yield and the experimental temperature and ratio of air to automobile shredder residue feed was studied. It is found that when ratio of air and experimental temperature are 1.5 mol kg(-1) and 900 °C, respectively, the heat energy of the gas produced per kilogram treated automobile shredder residue reaches a maximum value of 11.28 MJ. The characteristics of pyrolysis oil and solid residue were studied. The solid residue takes up 4.65%~5.57% of the original end-of-life vehicles weight. This greatly helps to reach the target of a 95% recycling rate. © The Author(s) 2014.

  16. Application of Heavy Metal Rich Tannery Sludge on Sustainable Growth, Yield and Metal Accumulation by Clarysage (Salvia sclarea L.).

    PubMed

    Chand, Sukhmal; Yaseen, M; Rajkumari; Patra, D D

    2015-01-01

    A field experiment was conducted to evaluate the effective utilization of tannery sludge for cultivation of clarysage (Salvia sclarea) at CIMAP research farm, Lucknow, India during the year 2012-2013. Six doses (0, 20, 40, 60, 80, 100 tha(-1)) of processed tannery sludge were tested in randomised block design with four replications. Results revealed that maximum shoot, root, dry matter and oil yield were obtained with application of 80 tha(-1)of tannery sludge and these were 94, 113 and 61% higher respectively, over control. Accumulation of heavy metals (Cr, Ni, Fe, Pb) were relatively high in shoot portion of the plant than root. Among heavy metals, magnitude of chromium accumulation was higher than nickel, iron and lead in shoot as well as in root. Linalool, linalyl acetate and sclareol content in oil increased by 13,8 and 27% respectively over control, with tannery sludge application at 80 tha(-1). Heavy metals such as chromium, cadmium and lead content reduced in postharvest soil when compared to initial status. Results indicated that clarysage (Salvia sclarea) can be grown in soil amended with 80 tha(-1)sludge and this can be a suitable accumulator of heavy metals for phytoremediation of metal polluted soils.

  17. Microbial lipid production by oleaginous Rhodococci cultured in lignocellulosic autohydrolysates

    DOE PAGES

    Wei, Zhen; Zeng, Guangming; Huang, Fang; ...

    2015-07-04

    Metabolic synthesis of single cell oils (SCOs) for biodiesel application by heterotrophic oleaginous microorganisms is being hampered by the high cost of culture media. This study investigated the possibility of using loblolly pine and sweetgum autohydrolysates as economic feedstocks for microbial lipid production by oleaginous Rhodococcus opacus ( R. opacus) PD630 and DSM 1069. Results revealed that when the substrates were detoxified by the removal of inhibitors (such as HMF—hydroxymethyl-furfural), the two strains exhibited viable growth patterns after a short adaptation/lag phase. R. opacus PD630 accumulated as much as 28.6 % of its cell dry weight (CDW) in lipids whilemore » growing on detoxified sweetgum autohydrolysate (DSAH) that translates to 0.25 g/l lipid yield. The accumulation of SCOs reached the level of oleagenicity in DSM 1069 cells (28.3 % of CDW) as well, while being cultured on detoxified pine autohydrolysate (DPAH), with the maximum lipid yield of 0.31 g/l. The composition of the obtained microbial oils varied depending on the substrates provided. These results indicate that lignocellulosic autohydrolysates can be used as low-cost fermentation substrates for microbial lipid production by wild-type R. opacus species. Furthermore, the variety of applications for aqueous liquors from lignocellulosic pretreatment has been expanded, allowing for the further optimization of the integrated biorefinery.« less

  18. Potential of agroindustrial waste from olive oil industry for fuel ethanol production.

    PubMed

    Georgieva, Tania I; Ahring, Birgitte K

    2007-12-01

    Olive pulp (OP) is a highly polluting semi-solid residue generated from the two-stage extraction processing of olives and is a major environmental issue in Southern Europe, where 80% of the world olive oil is produced. At present, OP is either discarded to the environment or combusted with low calorific value. In this work, utilization of OP as a potential substrate for production of bioethanol was studied. Enzymatic hydrolysis and subsequent glucose fermentation by baker's yeast were evaluated for OP from 10% to 30% dry matter (i.e., undiluted). Enzymatic hydrolysis resulted in an increase in glucose concentration by 75%, giving final glucose yields near 70%. Fermentation of undiluted OP hydrolysate (OPH) resulted in the maximum ethanol produced (11.2 g/L) with productivity of 2.1 g/L/h. Ethanol yields were similar for all tested OPH concentrations and were in the range of 0.49-0.51 g/g. Results showed that yeast could effectively ferment OPH even without nutrient addition, revealing the tolerance of yeast to OP toxicity. Because of low xylan (12.4%) and glucan (16%) content in OP, this specific type of OP is not a suitable material for producing only ethanol and thus, bioethanol production should be integrated with production of other value-added products.

  19. The antibacterial and antifungal activity of essential oils extracted from Guatemalan medicinal plants.

    PubMed

    Miller, Andrew B; Cates, Rex G; Lawrence, Michael; Soria, J Alfonso Fuentes; Espinoza, Luis V; Martinez, Jose Vicente; Arbizú, Dany A

    2015-04-01

    Essential oils are prevalent in many medicinal plants used for oral hygiene and treatment of diseases. Medicinal plant species were extracted to determine the essential oil content. Those producing sufficient oil were screened for activity against Staphylococcus aureus, Escherichia coli, Streptococcus mutans, Lactobacillus acidophilus, and Candida albicans. Plant samples were collected, frozen, and essential oils were extracted by steam distillation. Minimum inhibitory concentrations (MIC) were determined using a tube dilution assay for those species yielding sufficient oil. Fifty-nine of the 141 plant species produced sufficient oil for collection and 12 species not previously reported to produce essential oils were identified. Essential oil extracts from 32 species exhibited activity against one or more microbes. Oils from eight species were highly inhibitory to S. mutans, four species were highly inhibitory to C. albicans, and 19 species yielded MIC values less than the reference drugs. RESULTS suggest that 11 species were highly inhibitory to the microbes tested and merit further investigation. Oils from Cinnamomum zeylanicum Blume (Lauraceae), Citrus aurantiifolia (Christm.) Swingle (Rutaceae), Lippia graveolens Kunth (Verbenaceae), and Origanum vulgare L. (Lamiaceae) yielded highly significant or moderate activity against all microbes and have potential as antimicrobial agents. Teas prepared by decoction or infusion are known methods for extracting essential oils. Oils from 11 species were highly active against the microbes tested and merit investigation as to their potential for addressing health-related issues and in oral hygiene.

  20. Prediction of wax buildup in 24 inch cold, deep sea oil loading line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asperger, R.G.; Sattler, R.E.; Tolonen, W.J.

    1981-10-01

    When designing pipelines for cold environments, it is important to know how to predict potential problems due to wax deposition on the pipeline's inner surface. The goal of this work was to determine the rate of wax buildup and the maximum, equlibrium wax thickness for a North Sea field loading line. The experimental techniques and results used to evaluate the waxing potential of the crude oil (B) are described. Also, the theoretic model which was used for predicting the maximum wax deposit thickness in the crude oil (B) loading pipeline at controlled temperatures of 40 F (4.4 C) and 100more » F (38 C), is illustrated. Included is a recommendation of a procedure for using hot oil at the end of a tanker loading period in order to dewax the crude oil (B) line. This technique would give maximum heating of the pipeline and should be followed by shutting the hot oil into the pipeline at the end of the loading cycle which will provide a hot oil soaking to help soften existing wax. 14 references.« less

  1. Production of bio-based phenolic resin and activated carbon from bio-oil and biochar derived from fast pyrolysis of palm kernel shells.

    PubMed

    Choi, Gyung-Goo; Oh, Seung-Jin; Lee, Soon-Jang; Kim, Joo-Sik

    2015-02-01

    A fraction of palm kernel shells (PKS) was pyrolyzed in a fluidized bed reactor. The experiments were performed in a temperature range of 479-555 °C to produce bio-oil, biochar, and gas. All the bio-oils were analyzed quantitatively and qualitatively by GC-FID and GC-MS. The maximum content of phenolic compounds in the bio-oil was 24.8 wt.% at ∼500 °C. The maximum phenol content in the bio-oil, as determined by the external standard method, was 8.1 wt.%. A bio-oil derived from the pyrolysis of PKS was used in the synthesis of phenolic resin, showing that the bio-oil could substitute for fossil phenol up to 25 wt.%. The biochar was activated using CO2 at a final activation temperature of 900 °C with different activation time (1-3 h) to produce activated carbon. Activated carbons produced were microporous, and the maximum surface area of the activated carbons produced was 807 m(2)/g. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Comparison of Enzymatic and Ultrasonic Extraction of Albumin from Defatted Pumpkin (Cucurbita pepo)
Seed Powder

    PubMed Central

    Tu, Gia Loi; Bui, Thi Hoang Nga; Tran, Thi Thu Tra; Ton, Nu Minh Nguyet

    2015-01-01

    Summary In this study, ultrasound- and enzyme-assisted extractions of albumin (water-soluble protein group) from defatted pumpkin (Cucurbita pepo) seed powder were compared. Both advanced extraction techniques strongly increased the albumin yield in comparison with conventional extraction. The extraction rate was two times faster in the ultrasonic extraction than in the enzymatic extraction. However, the maximum albumin yield was 16% higher when using enzymatic extraction. Functional properties of the pumpkin seed albumin concentrates obtained using the enzymatic, ultrasonic and conventional methods were then evaluated. Use of hydrolase for degradation of cell wall of the plant material did not change the functional properties of the albumin concentrate in comparison with the conventional extraction. The ultrasonic extraction enhanced water-holding, oil-holding and emulsifying capacities of the pumpkin seed albumin concentrate, but slightly reduced the foaming capacity, and emulsion and foam stability. PMID:27904383

  3. Comparison of Enzymatic and Ultrasonic Extraction of Albumin from Defatted Pumpkin (Cucurbita pepo)
Seed Powder.

    PubMed

    Tu, Gia Loi; Bui, Thi Hoang Nga; Tran, Thi Thu Tra; Ton, Nu Minh Nguyet; Man Le, Van Viet

    2015-12-01

    In this study, ultrasound- and enzyme-assisted extractions of albumin (water-soluble protein group) from defatted pumpkin ( Cucurbita pepo ) seed powder were compared. Both advanced extraction techniques strongly increased the albumin yield in comparison with conventional extraction. The extraction rate was two times faster in the ultrasonic extraction than in the enzymatic extraction. However, the maximum albumin yield was 16% higher when using enzymatic extraction. Functional properties of the pumpkin seed albumin concentrates obtained using the enzymatic, ultrasonic and conventional methods were then evaluated. Use of hydrolase for degradation of cell wall of the plant material did not change the functional properties of the albumin concentrate in comparison with the conventional extraction. The ultrasonic extraction enhanced water-holding, oil-holding and emulsifying capacities of the pumpkin seed albumin concentrate, but slightly reduced the foaming capacity, and emulsion and foam stability.

  4. Correlation between electron spin resonance spectra and oil yield in eastern oil shales

    USGS Publications Warehouse

    Choudhury, M.; Rheams, K.F.; Harrell, J.W.

    1986-01-01

    Organic free radical spin concentrations were measured in 60 raw oil shale samples from north Alabama and south Tennessee and compared with Fischer assays and uranium concentrations. No correlation was found between spin concentration and oil yield for the complete set of samples. However, for a 13 sample set taken from a single core hole, a linear correlation was obtained. No correlation between spin concentration and uranium concentration was found. ?? 1986.

  5. Optimization of supercritical carbon dioxide extraction of Piper Betel Linn leaves oil and total phenolic content

    NASA Astrophysics Data System (ADS)

    Aziz, A. H. A.; Yunus, M. A. C.; Arsad, N. H.; Lee, N. Y.; Idham, Z.; Razak, A. Q. A.

    2016-11-01

    Supercritical Carbon Dioxide (SC-CO2) Extraction was applied to extract piper betel linn leaves. The piper betel leaves oil was used antioxidant, anti-diabetic, anticancer and antistroke. The aim of this study was to optimize the conditions of pressure, temperature and flowrate for oil yield and total phenolic content. The operational conditions of SC-CO2 studied were pressure (10, 20, 30 MPa), temperature (40, 60, 80 °C) and flowrate carbon dioxide (4, 6, 8 mL/min). The constant parameters were average particle size and extraction regime, 355pm and 3.5 hours respectively. First order polynomial expression was used to express the extracted oil while second order polynomial expression was used to express the total phenolic content and the both results were satisfactory. The best conditions to maximize the total extraction oil yields and total phenolic content were 30 MPa, 80 °C and 4.42 mL/min leading to 7.32% of oil and 29.72 MPa, 67.53 °C and 7.98 mL/min leading to 845.085 mg GAE/g sample. In terms of optimum condition with high extraction yield and high total phenolic content in the extracts, the best operating conditions were 30 MPa, 78 °C and 8 mL/min with 7.05% yield and 791.709 mg gallic acid equivalent (GAE)/g sample. The most dominant condition for extraction of oil yield and phenolic content were pressure and CO2 flowrate. The results show a good fit to the proposed model and the optimal conditions obtained were within the experimental range with the value of R2 was 96.13% for percentage yield and 98.52% for total phenolic content.

  6. Optimizing oil and xanthorrhizol extraction from Curcuma xanthorrhiza Roxb. rhizome by supercritical carbon dioxide.

    PubMed

    Salea, Rinaldi; Widjojokusumo, Edward; Veriansyah, Bambang; Tjandrawinata, Raymond R

    2014-09-01

    Oil and xanthorrhizol extraction from Curcuma xanthorrhiza Roxb. rhizome by supercritical carbon dioxide was optimized using Taguchi method. The factors considered were pressure, temperature, carbon dioxide flowrate and time at levels ranging between 10-25 MPa, 35-60 °C, 10-25 g/min and 60-240 min respectively. The highest oil yield (8.0 %) was achieved at factor combination of 15 MPa, 50 °C, 20 g/min and 180 min whereas the highest xanthorrhizol content (128.3 mg/g oil) in Curcuma xanthorrhiza oil was achieved at a factor combination of 25 MPa, 50 °C, 15 g/min and 60 min. Soxhlet extraction with n-hexane and percolation with ethanol gave oil yield of 5.88 %, 11.73 % and xanthorrhizol content of 42.6 mg/g oil, 75.5 mg/g oil, respectively. The experimental oil yield and xanthorrhizol content at optimum conditions agreed favourably with values predicted by computational process. The xanthorrizol content extracted using supercritical carbon dioxide was higher than extracted using Soxhlet extraction and percolation process.

  7. Non-tenera Contamination and the Economic Impact of SHELL Genetic Testing in the Malaysian Independent Oil Palm Industry

    PubMed Central

    Ooi, Leslie C.-L.; Low, Eng-Ti L.; Abdullah, Meilina O.; Nookiah, Rajanaidu; Ting, Ngoot C.; Nagappan, Jayanthi; Manaf, Mohamad A. A.; Chan, Kuang-Lim; Halim, Mohd A.; Azizi, Norazah; Omar, Wahid; Murad, Abdul J.; Lakey, Nathan; Ordway, Jared M.; Favello, Anthony; Budiman, Muhammad A.; Van Brunt, Andrew; Beil, Melissa; Leininger, Michael T.; Jiang, Nan; Smith, Steven W.; Brown, Clyde R.; Kuek, Alex C. S.; Bahrain, Shabani; Hoynes-O’Connor, Allison; Nguyen, Amelia Y.; Chaudhari, Hemangi G.; Shah, Shivam A.; Choo, Yuen-May; Sambanthamurthi, Ravigadevi; Singh, Rajinder

    2016-01-01

    Oil palm (Elaeis guineensis) is the most productive oil bearing crop worldwide. It has three fruit forms, namely dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), which are controlled by the SHELL gene. The fruit forms exhibit monogenic co-dominant inheritance, where tenera is a hybrid obtained by crossing maternal dura and paternal pisifera palms. Commercial palm oil production is based on planting thin-shelled tenera palms, which typically yield 30% more oil than dura palms, while pisifera palms are female-sterile and have little to no palm oil yield. It is clear that tenera hybrids produce more oil than either parent due to single gene heterosis. The unintentional planting of dura or pisifera palms reduces overall yield and impacts land utilization that would otherwise be devoted to more productive tenera palms. Here, we identify three additional novel mutant alleles of the SHELL gene, which encode a type II MADS-box transcription factor, and determine oil yield via control of shell fruit form phenotype in a manner similar to two previously identified mutant SHELL alleles. Assays encompassing all five mutations account for all dura and pisifera palms analyzed. By assaying for these variants in 10,224 mature palms or seedlings, we report the first large scale accurate genotype-based determination of the fruit forms in independent oil palm planting sites and in the nurseries that supply them throughout Malaysia. The measured non-tenera contamination rate (10.9% overall on a weighted average basis) underscores the importance of SHELL genetic testing of seedlings prior to planting in production fields. By eliminating non-tenera contamination, comprehensive SHELL genetic testing can improve sustainability by increasing yield on existing planted lands. In addition, economic modeling demonstrates that SHELL gene testing will confer substantial annual economic gains to the oil palm industry, to Malaysian gross national income and to Malaysian government tax receipts. PMID:27446094

  8. Non-tenera Contamination and the Economic Impact of SHELL Genetic Testing in the Malaysian Independent Oil Palm Industry.

    PubMed

    Ooi, Leslie C-L; Low, Eng-Ti L; Abdullah, Meilina O; Nookiah, Rajanaidu; Ting, Ngoot C; Nagappan, Jayanthi; Manaf, Mohamad A A; Chan, Kuang-Lim; Halim, Mohd A; Azizi, Norazah; Omar, Wahid; Murad, Abdul J; Lakey, Nathan; Ordway, Jared M; Favello, Anthony; Budiman, Muhammad A; Van Brunt, Andrew; Beil, Melissa; Leininger, Michael T; Jiang, Nan; Smith, Steven W; Brown, Clyde R; Kuek, Alex C S; Bahrain, Shabani; Hoynes-O'Connor, Allison; Nguyen, Amelia Y; Chaudhari, Hemangi G; Shah, Shivam A; Choo, Yuen-May; Sambanthamurthi, Ravigadevi; Singh, Rajinder

    2016-01-01

    Oil palm (Elaeis guineensis) is the most productive oil bearing crop worldwide. It has three fruit forms, namely dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), which are controlled by the SHELL gene. The fruit forms exhibit monogenic co-dominant inheritance, where tenera is a hybrid obtained by crossing maternal dura and paternal pisifera palms. Commercial palm oil production is based on planting thin-shelled tenera palms, which typically yield 30% more oil than dura palms, while pisifera palms are female-sterile and have little to no palm oil yield. It is clear that tenera hybrids produce more oil than either parent due to single gene heterosis. The unintentional planting of dura or pisifera palms reduces overall yield and impacts land utilization that would otherwise be devoted to more productive tenera palms. Here, we identify three additional novel mutant alleles of the SHELL gene, which encode a type II MADS-box transcription factor, and determine oil yield via control of shell fruit form phenotype in a manner similar to two previously identified mutant SHELL alleles. Assays encompassing all five mutations account for all dura and pisifera palms analyzed. By assaying for these variants in 10,224 mature palms or seedlings, we report the first large scale accurate genotype-based determination of the fruit forms in independent oil palm planting sites and in the nurseries that supply them throughout Malaysia. The measured non-tenera contamination rate (10.9% overall on a weighted average basis) underscores the importance of SHELL genetic testing of seedlings prior to planting in production fields. By eliminating non-tenera contamination, comprehensive SHELL genetic testing can improve sustainability by increasing yield on existing planted lands. In addition, economic modeling demonstrates that SHELL gene testing will confer substantial annual economic gains to the oil palm industry, to Malaysian gross national income and to Malaysian government tax receipts.

  9. Modification of aqueous enzymatic oil extraction to increase the yield of corn oil from dry fractionated corn germ

    USDA-ARS?s Scientific Manuscript database

    In previous aqueous enzymatic extraction experiments we reported an oil yield of 67 grams from 800 grams of dry fractionated corn germ. In the current experiments, a dispersion of 10% cooked, dry-fractionated germ in water and was treated with amylases and a cellulase complex. A foam fraction was s...

  10. Optimization of Supercritical CO2 Extraction of Fish Oil from Viscera of African Catfish (Clarias gariepinus)

    PubMed Central

    Sarker, Mohamed Zaidul Islam; Selamat, Jinap; Habib, Abu Sayem Md. Ahsan; Ferdosh, Sahena; Akanda, Mohamed Jahurul Haque; Jaffri, Juliana Mohamed

    2012-01-01

    Fish oil was extracted from the viscera of African Catfish using supercritical carbon dioxide (SC-CO2). A Central Composite Design of Response Surface methodology (RSM) was employed to optimize the SC-CO2 extraction parameters. The oil yield (Y) as response variable was executed against the four independent variables, namely pressure, temperature, flow rate and soaking time. The oil yield varied with the linear, quadratic and interaction of pressure, temperature, flow rate and soaking time. Optimum points were observed within the variables of temperature from 35 °C to 80 °C, pressure from 10 MPa to 40 MPa, flow rate from 1 mL/min to 3 mL/min and soaking time from 1 h to 4 h. However, the extraction parameters were found to be optimized at temperature 57.5 °C, pressure 40 MPa, flow rate 2.0 mL/min and soaking time 2.5 h. At this optimized condition, the highest oil yields were found to be 67.0% (g oil/100 g sample on dry basis) in the viscera of catfish which was reasonable to the yields of 78.0% extracted using the Soxhlet method. PMID:23109854

  11. Influence of temperature and reaction time on the conversion of polystyrene waste to pyrolysis liquid oil.

    PubMed

    Miandad, R; Nizami, A S; Rehan, M; Barakat, M A; Khan, M I; Mustafa, A; Ismail, I M I; Murphy, J D

    2016-12-01

    This paper aims to investigate the effect of temperature and reaction time on the yield and quality of liquid oil produced from a pyrolysis process. Polystyrene (PS) type plastic waste was used as a feedstock in a small pilot scale batch pyrolysis reactor. At 400°C with a reaction time of 75min, the gas yield was 8% by mass, the char yield was 16% by mass, while the liquid oil yield was 76% by mass. Raising the temperature to 450°C increased the gas production to 13% by mass, reduced the char production to 6.2% and increased the liquid oil yield to 80.8% by mass. The optimum temperature and reaction time was found to be 450°C and 75min. The liquid oil at optimum conditions had a dynamic viscosity of 1.77mPas, kinematic viscosity of 1.92cSt, a density of 0.92g/cm 3 , a pour point of -60°C, a freezing point of -64°C, a flash point of 30.2°C and a high heating value (HHV) of 41.6MJ/kg this is similar to conventional diesel. The gas chromatography with mass spectrophotometry (GC-MS) analysis showed that liquid oil contains mainly styrene (48%), toluene (26%) and ethyl-benzene (21%) compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Multigene Engineering of Triacylglycerol Metabolism Boosts Seed Oil Content in Arabidopsis1[W][OPEN

    PubMed Central

    van Erp, Harrie; Kelly, Amélie A.; Menard, Guillaume; Eastmond, Peter J.

    2014-01-01

    Increasing the yield of oilseed crops is an important objective for biotechnologists. A number of individual genes involved in triacylglycerol metabolism have previously been reported to enhance the oil content of seeds when their expression is altered. However, it has yet to be established whether specific combinations of these genes can be used to achieve an additive effect and whether this leads to enhanced yield. Using Arabidopsis (Arabidopsis thaliana) as an experimental system, we show that seed-specific overexpression of WRINKLED1 (a transcriptional regulator of glycolysis and fatty acid synthesis) and DIACYLGLYCEROL ACYLTRANSFERASE1 (a triacylglycerol biosynthetic enzyme) combined with suppression of the triacylglycerol lipase SUGAR-DEPENDENT1 results in a higher percentage seed oil content and greater seed mass than manipulation of each gene individually. Analysis of total seed yield per plant suggests that, despite a reduction in seed number, the total yield of oil is also increased. PMID:24696520

  13. Ridge sowing of sunflower (Helianthus annuus L.) in a minimum till system improves the productivity, oil quality, and profitability on a sandy loam soil under an arid climate.

    PubMed

    Sher, Ahmad; Suleman, Muhammad; Qayyum, Abdul; Sattar, Abdul; Wasaya, Allah; Ijaz, Muhammad; Nawaz, Ahmad

    2018-04-01

    Sunflower (Helianthus annuus L.) is a major oilseed crop grown for its edible oil across the globe including Pakistan. In Pakistan, the production of edible oil is less than the required quantity; the situation is being worsened with the increasing population. Thus, there is dire need to grow those sunflower genotypes which perform better under a given set of agronomic practices. In this 2-year study, we compared four sunflower genotypes, viz., Armoni, Kundi, Sinji, and S-278 for their yield potential, oil contents, fatty acid composition, and profitability under three sowing methods, viz., bed sowing, line sowing, and ridge sowing and two tillage system, viz., plow till and minimum till. Among the sunflower genotypes, the genotype Armoni produced the highest plant height, number of leaves, head diameter, 1000-achene weight, and achene yield; the oil contents and oleic acid were the highest in genotype Sinji. Among the sowing methods, the highest number of leaves per plant, head diameter, number of achenes per head, achene yield, and oil contents were recorded in ridge sowing. Among the tillage systems, the highest head diameter 16. 2 cm, 1000-achene weight (57.2 g), achene yield (1.8 t ha -1 ), oil contents (35.2%), and oleic acid (15.2%) were recorded in minimum till sunflower. The highest net benefits and benefit to cost ratio were recorded in minimum till ridge sown Armoni genotype. In conclusion, the genotype Armoni should be grown on ridges to achieve the highest achene yield, oil contents, and net profitability.

  14. Fast pyrolysis of tropical biomass species and influence of water pretreatment on product distributions

    DOE PAGES

    Morgan, Trevor James; Turn, Scott Q.; Sun, Ning; ...

    2016-03-15

    Here, the fast pyrolysis behaviour of pretreated banagrass was examined at four temperatures (between 400 and 600 C) and four residence times (between ~1.2 and 12 s). The pretreatment used water washing/leaching to reduce the inorganic content of the banagrass. Yields of bio-oil, permanent gases and char were determined at each reaction condition and compared to previously published results from untreated banagrass. Comparing the bio-oil yields from the untreated and pretreated banagrass shows that the yields were greater from the pretreated banagrass by 4 to 11 wt% (absolute) at all reaction conditions. The effect of pretreatment (i.e. reducing the amountmore » of ash, and alkali and alkali earth metals) on pyrolysis products is: 1) to increase the dry bio-oil yield, 2) to decrease the amount of undetected material, 3) to produce a slight increase in CO yield or no change, 4) to slightly decrease CO 2 yield or no change, and 5) to produce a more stable bio-oil (less aging). Char yield and total gas yield were unaffected by feedstock pretreatment. Four other tropical biomass species were also pyrolyzed under one condition (450°C and 1.4 s residence time) for comparison to the banagrass results. The samples include two hardwoods: leucaena and eucalyptus, and two grasses: sugarcane bagasse and energy-cane. A sample of pretreated energy-cane was also pyrolyzed. Of the materials tested, the best feedstocks for fast pyrolysis were sugarcane bagasse, pretreated energy cane and eucalyptus based on the yields of 'dry bio-oil', CO and CO 2. On the same basis, the least productive feedstocks are untreated banagrass followed by pretreated banagrass and leucaena.« less

  15. Fast pyrolysis of tropical biomass species and influence of water pretreatment on product distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Trevor James; Turn, Scott Q.; Sun, Ning

    Here, the fast pyrolysis behaviour of pretreated banagrass was examined at four temperatures (between 400 and 600 C) and four residence times (between ~1.2 and 12 s). The pretreatment used water washing/leaching to reduce the inorganic content of the banagrass. Yields of bio-oil, permanent gases and char were determined at each reaction condition and compared to previously published results from untreated banagrass. Comparing the bio-oil yields from the untreated and pretreated banagrass shows that the yields were greater from the pretreated banagrass by 4 to 11 wt% (absolute) at all reaction conditions. The effect of pretreatment (i.e. reducing the amountmore » of ash, and alkali and alkali earth metals) on pyrolysis products is: 1) to increase the dry bio-oil yield, 2) to decrease the amount of undetected material, 3) to produce a slight increase in CO yield or no change, 4) to slightly decrease CO 2 yield or no change, and 5) to produce a more stable bio-oil (less aging). Char yield and total gas yield were unaffected by feedstock pretreatment. Four other tropical biomass species were also pyrolyzed under one condition (450°C and 1.4 s residence time) for comparison to the banagrass results. The samples include two hardwoods: leucaena and eucalyptus, and two grasses: sugarcane bagasse and energy-cane. A sample of pretreated energy-cane was also pyrolyzed. Of the materials tested, the best feedstocks for fast pyrolysis were sugarcane bagasse, pretreated energy cane and eucalyptus based on the yields of 'dry bio-oil', CO and CO 2. On the same basis, the least productive feedstocks are untreated banagrass followed by pretreated banagrass and leucaena.« less

  16. Fast Pyrolysis of Tropical Biomass Species and Influence of Water Pretreatment on Product Distributions

    PubMed Central

    Morgan, Trevor James; Turn, Scott Q.; Sun, Ning; George, Anthe

    2016-01-01

    The fast pyrolysis behaviour of pretreated banagrass was examined at four temperatures (between 400 and 600 C) and four residence times (between ~1.2 and 12 s). The pretreatment used water washing/leaching to reduce the inorganic content of the banagrass. Yields of bio-oil, permanent gases and char were determined at each reaction condition and compared to previously published results from untreated banagrass. Comparing the bio-oil yields from the untreated and pretreated banagrass shows that the yields were greater from the pretreated banagrass by 4 to 11 wt% (absolute) at all reaction conditions. The effect of pretreatment (i.e. reducing the amount of ash, and alkali and alkali earth metals) on pyrolysis products is: 1) to increase the dry bio-oil yield, 2) to decrease the amount of undetected material, 3) to produce a slight increase in CO yield or no change, 4) to slightly decrease CO2 yield or no change, and 5) to produce a more stable bio-oil (less aging). Char yield and total gas yield were unaffected by feedstock pretreatment. Four other tropical biomass species were also pyrolyzed under one condition (450°C and 1.4 s residence time) for comparison to the banagrass results. The samples include two hardwoods: leucaena and eucalyptus, and two grasses: sugarcane bagasse and energy-cane. A sample of pretreated energy-cane was also pyrolyzed. Of the materials tested, the best feedstocks for fast pyrolysis were sugarcane bagasse, pretreated energy cane and eucalyptus based on the yields of 'dry bio-oil', CO and CO2. On the same basis, the least productive feedstocks are untreated banagrass followed by pretreated banagrass and leucaena. PMID:26978265

  17. Fast Pyrolysis of Tropical Biomass Species and Influence of Water Pretreatment on Product Distributions.

    PubMed

    Morgan, Trevor James; Turn, Scott Q; Sun, Ning; George, Anthe

    2016-01-01

    The fast pyrolysis behaviour of pretreated banagrass was examined at four temperatures (between 400 and 600 C) and four residence times (between ~1.2 and 12 s). The pretreatment used water washing/leaching to reduce the inorganic content of the banagrass. Yields of bio-oil, permanent gases and char were determined at each reaction condition and compared to previously published results from untreated banagrass. Comparing the bio-oil yields from the untreated and pretreated banagrass shows that the yields were greater from the pretreated banagrass by 4 to 11 wt% (absolute) at all reaction conditions. The effect of pretreatment (i.e. reducing the amount of ash, and alkali and alkali earth metals) on pyrolysis products is: 1) to increase the dry bio-oil yield, 2) to decrease the amount of undetected material, 3) to produce a slight increase in CO yield or no change, 4) to slightly decrease CO2 yield or no change, and 5) to produce a more stable bio-oil (less aging). Char yield and total gas yield were unaffected by feedstock pretreatment. Four other tropical biomass species were also pyrolyzed under one condition (450°C and 1.4 s residence time) for comparison to the banagrass results. The samples include two hardwoods: leucaena and eucalyptus, and two grasses: sugarcane bagasse and energy-cane. A sample of pretreated energy-cane was also pyrolyzed. Of the materials tested, the best feedstocks for fast pyrolysis were sugarcane bagasse, pretreated energy cane and eucalyptus based on the yields of 'dry bio-oil', CO and CO2. On the same basis, the least productive feedstocks are untreated banagrass followed by pretreated banagrass and leucaena.

  18. Essential oil composition and antifungal activity of Foeniculum vulgare Mill obtained by different distillation conditions.

    PubMed

    Mimica-Dukić, N; Kujundzić, S; Soković, M; Couladis, M

    2003-04-01

    The influence of different hydrodistillation conditions was evaluated from the standpoint of essential oil yield, chemical composition and antifungal activity from seeds of Foeniculum vulgare Mill. Three hydrodistillation conditions were considered. The main constituents of the oils were: (E)-anethole (72.27%-74.18%), fenchone (11.32%-16.35%) and methyl chavicol (3.78%-5.29%). The method of distillation significantly effected the essential oil yield and quantitative composition, although the antifungal activity of the oils against some fungi was only slightly altered. Copyright 2003 John Wiley & Sons, Ltd.

  19. Geochemistry of Israeli oil shales: a review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirav, M.; Ginzburg, D.

    1983-01-01

    The oil shales of Israel are widely distributed throughout the country and have current reserves of about 3500 million tons located in the following deposits: Zin, Oron, Ef'e, Hartuv, and Nabi-Musa. The geochemistry and chemical analysis of these shales are discussed, along with the calorific value, oil yield, and trace elements. The main components influencing the quality of the oil shales are organic matter, carbonate, clay minerals, and apatite. Compositional variations within the organic matter are responsible for changes in the relative calorific value and retorted oil yield while fluidized bed combustion is affected by the inorganic components. (JMT)

  20. Recovery of energy and iron from oily sludge pyrolysis in a fluidized bed reactor.

    PubMed

    Qin, Linbo; Han, Jun; He, Xiang; Zhan, Yiqiu; Yu, Fei

    2015-05-01

    In the steel industry, about 0.86 ton of oily sludge is produced for every 1000 tons of rolling steel. Due to the adverse impact on human health and the environment, oily sludge is designated as a hazardous waste in the Resource Conservation and Recovery Act (RCRT). In this paper, the pyrolysis treatment of oily sludge is studied in a fluidized bed reactor at a temperature range of 400-600 °C. During oily sludge pyrolysis, a maximum oil yield of 59.2% and a minimum energy loss of 19.0% are achieved at 500 °C. The energy consumption of treating 1 kg oily sludge is only 2.4-2.9 MJ. At the same time, the energy of produced oil, gas and solid residue are 20.8, 6.32, and 0.83 MJ, respectively. In particular, it is found that the solid residue contains more than 42% iron oxide, which can be used as the raw material for iron production. Thus, the simultaneous recovery of energy and iron from oil sludge by pyrolysis is feasible. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Green waste cooking oil-based rigid polyurethane foam

    NASA Astrophysics Data System (ADS)

    Enderus, N. F.; Tahir, S. M.

    2017-11-01

    Polyurethane is a versatile polymer traditionally prepared using petroleum-based raw material. Petroleum, however, is a non-renewable material and polyurethane produced was found to be non-biodegradable. In quest for a more environmentally friendly alternative, wastecooking oil, a highly abundant domestic waste with easily derivatized structure, is a viable candidate to replace petroleum. In this study,an investigation to determine physical and chemical properties of rigid polyurethane (PU) foam from waste cooking oil (WCO) was carried out. WCO was first adsorbed by using coconut husk activated carbon adsorbent prior to be used for polyol synthesis. The purified WCO was then used to synthesize polyol via transesterification reaction to yield alcohol groups in the WCO chains structure. Finally, the WCO-based polyol was used to prepare rigid PU foam. The optimum formulation for PU formation was found to be 90 polyol: 60 glycerol: 54 water: 40 diethanolamine: 23 diisocyanate. The rigid PU foam has density of 208.4 kg/m3 with maximum compressive strength and capability to receive load at 0.03 MPa and 0.09 kN, respectively. WCO-based PU can potentially be used to replace petroleum-based PU as house construction materials such as insulation panels.

  2. Pyrolysis and kinetic analyses of a perennial grass (Saccharum ravannae L.) from north-east India: Optimization through response surface methodology and product characterization.

    PubMed

    Saikia, Ruprekha; Baruah, Bhargav; Kalita, Dipankar; Pant, Kamal K; Gogoi, Nirmali; Kataki, Rupam

    2018-04-01

    The objective of the present investigation was to optimize the pyrolysis condition of an abundantly available and low cost perennial grass of north-east India Saccharum ravannae L. (S. ravannae) using response surface methodology based on central composite design. Kinetic study of the biomass was conducted at four different heating rates of 10, 20, 40 and 60 °C min -1 and results were interpreted by Friedman, Kissinger Akira Sunnose and Flynn-Wall-Ozawa methods. Average activation energy 151.45 kJ mol -1 was used for evaluation of reaction mechanism following Criado master plot. Maximum bio-oil yield of 38.1 wt% was obtained at pyrolysis temperature of 550 °C, heating rate of 20 °C min -1 and nitrogen flow rate of 226 mL min -1 . Study on bio-oil quality revealed higher content of hydrocarbon, antioxidant property, total phenolic content and metal chelating capacity. These opened up probable applications of S. ravannae bio-oil in different fields including fuel, food industry and biomedical domain. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Microwave-assisted co-pyrolysis of brown coal and corn stover for oil production.

    PubMed

    Zhang, Yaning; Fan, Liangliang; Liu, Shiyu; Zhou, Nan; Ding, Kuan; Peng, Peng; Anderson, Erik; Addy, Min; Cheng, Yanling; Liu, Yuhuan; Li, Bingxi; Snyder, John; Chen, Paul; Ruan, Roger

    2018-07-01

    The controversial synergistic effect between brown coal and biomass during co-pyrolysis deserves further investigation. This study detailed the oil production from microwave-assisted co-pyrolysis of brown coal (BC) and corn stover (CS) at different CS/BC ratios (0, 0.33, 0.50, 0.67, and 1) and pyrolysis temperatures (500, 550, and 600 °C). The results showed that a higher CS/BC ratio resulted in higher oil yield, and a higher pyrolysis temperature increased oil yield for brown coal and coal/corn mixtures. Corn stover and brown coal showed different pyrolysis characteristics, and positive synergistic effect on oil yield was observed only at CS/BC ratio of 0.33 and pyrolysis temperature of 600 °C. Oils from brown coal mainly included hydrocarbons and phenols whereas oils from corn stover and coal/corn mixtures were dominated by ketones, phenols, and aldehydes. Positive synergistic effects were observed for ketones, aldehydes, acids, and esters whereas negative synergistic effects for hydrocarbons, phenols and alcohols. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Kinetics of coffee industrial residue pyrolysis using distributed activation energy model and components separation of bio-oil by sequencing temperature-raising pyrolysis.

    PubMed

    Chen, Nanwei; Ren, Jie; Ye, Ziwei; Xu, Qizhi; Liu, Jingyong; Sun, Shuiyu

    2016-12-01

    This study was carried out to investigate the kinetics of coffee industrial residue (CIR) pyrolysis, the effect of pyrolysis factors on yield of bio-oil component and components separation of bio-oil. The kinetics of CIR pyrolysis was analyzed using distributed activation energy model (DAEM), based on the experiments in thermogravimetric analyzer (TGA), and it indicated that the average of activation energy (E) is 187.86kJ·mol -1 . The bio-oils were prepared from CIR pyrolysis in vacuum tube furnace, and its components were determined by gas chromatography/mass spectrometry (GC-MS). Among pyrolysis factors, pyrolysis temperature is the most influential factor on components yield of bio-oil, directly concerned with the volatilization and yield of components (palmitic acid, linoleic acid, oleic acid, octadecanoic acid and caffeine). Furthermore, a new method (sequencing temperature-raising pyrolysis) was put forward and applied to the components separation of bio-oil. Based on experiments, a solution of components separation of bio-oil was come out. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Production of bio-oil and biochar from soapstock via microwave-assisted co-catalytic fast pyrolysis.

    PubMed

    Dai, Leilei; Fan, Liangliang; Liu, Yuhuan; Ruan, Roger; Wang, Yunpu; Zhou, Yue; Zhao, Yunfeng; Yu, Zhenting

    2017-02-01

    In this study, production of bio-oil and biochar from soapstock via microwave-assisted co-catalytic fast pyrolysis combining the advantages of in-situ and ex-situ catalysis was performed. The effects of catalyst and pyrolysis temperature on product fractional yields and bio-oil chemical compositions were investigated. From the perspective of bio-oil yield, the optimal pyrolysis temperature was 550°C. The use of catalysts reduced the water content, and the addition of bentonite increased the bio-oil yield. Up to 84.16wt.% selectivity of hydrocarbons in the bio-oil was obtained in the co-catalytic process. In addition, the co-catalytic process can reduce the proportion of oxygenates in the bio-oil to 15.84wt.% and eliminate the N-containing compounds completely. The addition of bentonite enhanced the BET surface area of bio-char. In addition, the bio-char removal efficiency of Cd 2+ from soapstock pyrolysis in presence of bentonite was 27.4wt.% higher than without bentonite. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Response of Biomass Development, Essential Oil, and Composition of Plectranthus amboinicus (Lour.) Spreng. to Irrigation Frequency and Harvest Time.

    PubMed

    Sabra, Ali S; Astatkie, Tessema; Alataway, Abed; Mahmoud, Abeer A; Gendy, Ahmed S H; Said-Al Ahl, Hussein A H; Tkachenko, Kirill G

    2018-03-01

    A greenhouse experiment was conducted to study the effects of four irrigation intervals (4, 8, 12, and 16 days) and six harvests (2, 4, 6, 8, 10, and 12 months after transplanting) on biomass, essential oil content, and composition of Plectranthus amboinicus (Lour.) Spreng. Fresh weight and essential oil yield decreased with increasing irrigation interval; whereas, essential oil content was stimulated by water stress and increased as the irrigation interval increased. Fresh weight of Plectranthus amboinicus irrigated every 4 days peaked when harvested at 6 months, but essential oil content peaked when irrigated every 16 days and harvested at 2 months after transplantation. On the other hand, essential oil yield peaked when irrigated every 8 days and harvested at 6 months. Thymol, p-cymene, γ-terpinene, and β-caryophyllene were the major compounds, and they peaked at different irrigation intervals and harvest times. This study showed biomass, essential oil content, and yield as well as the major and minor constituents of Plectranthus amboinicus are influenced by irrigation interval and the timing of harvest. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiefelbein, C.; Ho, T.

    Changes in the physical properties (measured in terms of vitrinite reflectance, elemental analysis, and C-13 nuclear magnetic resonance) of an immature coal (0.46% R{sub o}) from Craig County, Colorado, that was thermally altered using hydrous pyrolysis were used to establish a correspondence between hydrous pyrolysis time/temperature reaction conditions and relative maturity (expressed in terms of vitrinite reflectance). This correspondence was used to determine the oil generation maturity limits for an immature hydrogen-rich (Type I fluorescing amorphous oil-prone kerogen) source rock from an offshore Congo well that was thermally altered using the same reaction conditions as applied to the immature coal.more » The resulting changes in the physical properties of the altered source rock, measured in terms of decreasing reactive carbon content (from Rock-Eval pyrolysis), were used to construct a hydrocarbon yield curve from which the relative maturity associated with the onset, main phase, and peak of oil generation was determined. Results, substantiated by anhydrous pyrolysis techniques, indicate that the source rock from Congo has a late onset of appreciable ({gt}10% transformation) oil generation (0.9% R{sub o} {plus minus} 0.1%), generates maximum quantities of oil from about 1.1 to 1.3% R{sub o}, and reaches the end (or peak) of the primary oil generating window at approximately 1.4% R{sub o} ({plus minus}0.1%) when secondary cracking reactions become important. However, the bottom of the oil window can be extended to about 1.6% R{sub o} because the heavy molecular weight degradation by-products (asphaltenes) that are not efficiently expelled from source rocks continue to degrade into progressively lower molecular weight hydrocarbons.« less

  8. A sub-canopy structure for simulating oil palm in the Community Land Model (CLM-Palm): phenology, allocation and yield

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Roupsard, O.; Bernoux, M.; Le Maire, G.; Panferov, O.; Kotowska, M. M.; Knohl, A.

    2015-11-01

    In order to quantify the effects of forests to oil palm conversion occurring in the tropics on land-atmosphere carbon, water and energy fluxes, we develop a new perennial crop sub-model CLM-Palm for simulating a palm plant functional type (PFT) within the framework of the Community Land Model (CLM4.5). CLM-Palm is tested here on oil palm only but is meant of generic interest for other palm crops (e.g., coconut). The oil palm has monopodial morphology and sequential phenology of around 40 stacked phytomers, each carrying a large leaf and a fruit bunch, forming a multilayer canopy. A sub-canopy phenological and physiological parameterization is thus introduced so that each phytomer has its own prognostic leaf growth and fruit yield capacity but with shared stem and root components. Phenology and carbon and nitrogen allocation operate on the different phytomers in parallel but at unsynchronized steps, separated by a thermal period. An important phenological phase is identified for the oil palm - the storage growth period of bud and "spear" leaves which are photosynthetically inactive before expansion. Agricultural practices such as transplanting, fertilization and leaf pruning are represented. Parameters introduced for the oil palm were calibrated and validated with field measurements of leaf area index (LAI), yield and net primary production (NPP) from Sumatra, Indonesia. In calibration with a mature oil palm plantation, the cumulative yields from 2005 to 2014 matched notably well between simulation and observation (mean percentage error = 3 %). Simulated inter-annual dynamics of PFT-level and phytomer-level LAI were both within the range of field measurements. Validation from eight independent oil palm sites shows the ability of the model to adequately predict the average leaf growth and fruit yield across sites and sufficiently represent the significant nitrogen- and age-related site-to-site variability in NPP and yield. Results also indicate that seasonal dynamics of yield and remaining small-scale site-to-site variability of NPP are driven by processes not yet implemented in the model or reflected in the input data. The new sub-canopy structure and phenology and allocation functions in CLM-Palm allow exploring the effects of tropical land-use change, from natural ecosystems to oil palm plantations, on carbon, water and energy cycles and regional climate.

  9. Yield and composition of grape seed oils extracted by supercritical carbon dioxide and petroleum ether: varietal effects.

    PubMed

    Beveridge, Thomas H J; Girard, Benoit; Kopp, Thomas; Drover, John C G

    2005-03-09

    Grape seed has a well-known potential for production of oil as a byproduct of winemaking and is currently produced as a specialty oil byproduct of wine manufacture. Seed oils from eight varieties of grapes crushed for wine production in British Columbia were extracted by supercritical carbon dioxide (SCE) and petroleum ether (PE). Oil yields by SCE ranged from 5.85 +/- 0.33 to 13.6 +/- 0.46% (w/w), whereas PE yields ranged from 6.64 +/- 0.16 to 11.17 +/- 0.05% (+/- is standard deviation). The oils contained alpha-, beta-, and gamma-tocopherols and alpha- and gamma-tocotrienols, with gamma-tocotrienol being most important quantitatively. In both SCE- and PE-extracted oils, phytosterols were a prominent feature of the unsaponifiable fraction, with beta-sitosterol quantitatively most important with both extractants. Total phytosterol extraction was higher with SCE than with PE in seven of eight variety extractions. Fatty acid composition of oils from all varieties tested, and from both extraction methods, indicated linoleic acid as the major component ranging from 67.56 to 73.23% of the fatty acids present, in agreement with literature reports.

  10. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil.

    PubMed

    Zheng, Ji-Lu; Zhu, Ming-Qiang; Wu, Hai-tang

    2015-09-01

    It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2wt% bio-oil, having a high heating value of 32.35MJ/kg and a viscosity of 305cp, and 22wt% solid residue were realized at a liquefaction temperature of 250°C, a reaction time of 60min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Salt-induced modulation in inorganic nutrients, antioxidant enzymes, proline content and seed oil composition in safflower (Carthamus tinctorius L.).

    PubMed

    Siddiqi, Ejaz Hussain; Ashraf, Muhammad; Al-Qurainy, Fahad; Akram, Nudrat Aisha

    2011-12-01

    Safflower (Carthamus tinctorius L.) has gained considerable ground as a potential oil-seed crop. However, its yield and oil production are adversely affected under saline conditions. The present study was conducted to appraise the influence of salt (NaCl) stress on yield, accumulation of different inorganic elements, free proline and activities of some key antioxidant enzymes in plant tissues as well as seed oil components in safflower. Two safflower accessions differing in salt tolerance (Safflower-33 (salt sensitive) and Safflower-39 (salt tolerant)) were grown under saline (150 mmol L(-1) ) conditions and salt-induced changes in the earlier-mentioned physiological attributes were determined. Salt stress enhanced leaf and root Na(+) , Cl(-) and proline accumulation and activities of leaf superoxide dismutase, catalase and peroxidase, while it decreased K(+) , Ca(2+) and K(+) /Ca(2+) and Ca(2+) /Na(+) ratios and seed yield, 100-seed weight, number of seeds, as well as capitula, seed oil contents and oil palmitic acid. No significant effect of salt stress was observed on seed oil α-tocopherols, stearic acid, oleic acid or linoleic acid contents. Of the two safflower lines, salt-sensitive Safflower-33 was higher in leaf and root Na(+) and Cl(-) , while Safflower-39 was higher in leaf and root K(+) , K(+) /Ca(2+) and Ca(2+) /Na(+) and seed yield, 100-seed weight, catalase activity, seed oil contents, seed oil α-tocopherol and palmitic acid. Other attributes remained almost unaffected in both accessions. Overall, high salt tolerance of Safflower-39 could be attributed to Na(+) and Cl(-) exclusion, high accumulation of K(+) and free proline, enhanced CAT activity, seed oil α-tocopherols and palmitic acid contents. Copyright © 2011 Society of Chemical Industry.

  12. Comparison of oil refining and biodiesel production process between screw press and n-hexane techniques from beauty leaf feedstock

    NASA Astrophysics Data System (ADS)

    Bhuiya, M. M. K.; Rasul, M. G.; Khan, M. M. K.; Ashwath, N.

    2016-07-01

    The Beauty Leaf Tree (Callophylum inophyllum) is regarded as an alternative source of energy to produce 2nd generation biodiesel due to its potentiality as well as high oil yield content in the seed kernels. The treating process is indispensable during the biodiesel production process because it can augment the yield as well as quality of the product. Oil extracted from both mechanical screw press and solvent extraction using n-hexane was refined. Five replications each of 25 gm of crude oil for screw press and five replications each of 25 gm of crude oil for n-hexane were selected for refining as well as biodiesel conversion processes. The oil refining processes consists of degumming, neutralization as well as dewaxing. The degumming, neutralization and dewaxing processes were performed to remove all the gums (phosphorous-based compounds), free fatty acids, and waxes from the fresh crude oil before the biodiesel conversion process carried out, respectively. The results indicated that up to 73% and 81% of mass conversion efficiency of the refined oil in the screw press and n-hexane refining processes were obtained, respectively. It was also found that up to 88% and 90% of biodiesel were yielded in terms of mass conversion efficiency in the transesterification process for the screw press and n-hexane techniques, respectively. While the entire processes (refining and transesterification) were considered, the conversion of beauty leaf tree (BLT) refined oil into biodiesel was yielded up to 65% and 73% of mass conversion efficiency for the screw press and n-hexane techniques, respectively. Physico-chemical properties of crude and refined oil, and biodiesel were characterized according to the ASTM standards. Overall, BLT has the potential to contribute as an alternative energy source because of high mass conversion efficiency.

  13. Catalytic conversion of biomass pyrolysis-derived compounds with chemical liquid deposition (CLD) modified ZSM-5.

    PubMed

    Zhang, Huiyan; Luo, Mengmeng; Xiao, Rui; Shao, Shanshan; Jin, Baosheng; Xiao, Guomin; Zhao, Ming; Liang, Junyu

    2014-03-01

    Chemical liquid deposition (CLD) with KH550, TEOS and methyl silicone oil as the modifiers was used to modify ZSM-5 and deposit its external acid sites. The characteristics of modified catalysts were tested by catalytic conversion of biomass pyrolysis-derived compounds. The effects of different modifying conditions (deposited amount, temperature, and time) on the product yields and selectivities were investigated. The results show KH550 modified ZSM-5 (deposited amount of 4%, temperature of 20°C and time of 6h) produced the maximum yields of aromatics (24.5%) and olefins (16.5%), which are much higher than that obtained with original ZSM-5 catalyst (18.8% aromatics and 9.8% olefins). The coke yield decreased from 44.1% with original ZSM-5 to 26.7% with KH550 modified ZSM-5. The selectivities of low-molecule-weight hydrocarbons (ethylene and benzene) decreased, while that of higher molecule-weight hydrocarbons (propylene, butylene, toluene, and naphthalene) increased comparing with original ZSM-5. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Fast co-pyrolysis of waste newspaper with high-density polyethylene for high yields of alcohols and hydrocarbons.

    PubMed

    Chen, Weimin; Shi, Shukai; Chen, Minzhi; Zhou, Xiaoyan

    2017-09-01

    Waste newspaper (WP) was first co-pyrolyzed with high-density polyethylene (HDPE) using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) to enhance the yields of alcohols and hydrocarbons. The effects of WP: HDPE feed ratio (100:0, 75:25, 50:50, 25:75, 0:100) and temperature (500-800°C) on products distribution were investigated and the interaction mechanism during co-pyrolysis was also proposed. Maximum yields of alcohols and hydrocarbons reached 85.88% (feed ratio 50:50wt.%, 600°C). Hydrogen supplements and deoxidation by HDPE and subsequently fragments recombination result in the conversion of aldehydes and ketones into branched hydrocarbons. Radicals from WP degradation favor the secondary crack for HDPE products resulting in the formation of linear hydrocarbons with low carbon number. Hydrocarbons with activated radical site from HDPE degradation were interacted with hydroxyl from WP degradation promoting the formation of linear long chain alcohols. Moreover, co-pyrolysis significantly enhanced condensable oil qualities, which were close to commercial diesel No. 0. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Transesterification of rapeseed oil for biodiesel production in trickle-bed reactors packed with heterogeneous Ca/Al composite oxide-based alkaline catalyst.

    PubMed

    Meng, Yong-Lu; Tian, Song-Jiang; Li, Shu-Fen; Wang, Bo-Yang; Zhang, Min-Hua

    2013-05-01

    A conventional trickle bed reactor and its modified type both packed with Ca/Al composite oxide-based alkaline catalysts were studied for biodiesel production by transesterification of rapeseed oil and methanol. The effects of the methanol usage and oil flow rate on the FAME yield were investigated under the normal pressure and methanol boiling state. The oil flow rate had a significant effect on the FAME yield for the both reactors. The modified trickle bed reactor kept over 94.5% FAME yield under 0.6 mL/min oil flow rate and 91 mL catalyst bed volume, showing a much higher conversion and operational stability than the conventional type. With the modified trickle bed reactor, both transesterification and methanol separation could be performed simultaneously, and glycerin and methyl esters were separated additionally by gravity separation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joyce, Blake L.; Zheljazkov, Valtcho D.; Sykes, Robert

    Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha -1 and 15.11 Mg palmarosa ha -1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha -1 respectively compared to reported 1749–3691 L ethanol ha -1 for switchgrass. Pretreated lemongrassmore » yielded 198 mL ethanol (g biomass) -1 and pretreated palmarosa yielded 170 mL ethanol (g biomass) -1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha -1 with an estimated value of USD $857 and $1005 ha -1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels.« less

  17. Effects of ambient and elevated level of ozone on Brassica campestris L. with special reference to yield and oil quality parameters.

    PubMed

    Tripathi, Ruchika; Agrawal, S B

    2012-11-01

    Tropospheric ozone (O(3)) has become a serious threat to growth and yield of important agricultural crops over Asian regions including India. Effect of elevated O(3) (ambient+10ppb) was studied on Brassica campestris L. (cv. Sanjukta and Vardan) in open top chambers under natural field conditions. Eight hourly mean ambient O(3) concentration varied from 26.3ppb to 69.5ppb during the growth period. Plants under O(3) exposure showed reductions in photosynthetic rate, reproductive parameters, yield as well as seed and oil quality. Cultivar Sanjukta showed more reduction in photosynthetic characteristics, reproductive structures and seed and oil quality. However, total yield was more affected in Vardan. Exposure of O(3) increased the degree of unsaturation and level of PUFA, ω-6fatty acid, linolenic acid and erucic acid in oil indicating the deterioration of its quality. The study further confirmed that there is a correspondence between O(3) induced change in photosynthetic processes, reproductive development and yield and did not find any compensatory response in the final yield. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Studies on performance evaluation of a green plasticizer made by enzymatic esterification of furfuryl alcohol and castor oil fatty acid.

    PubMed

    Mukherjee, Sohini; Ghosh, Mahua

    2017-02-10

    The esterification of furfuryl alcohol (FA) and castor oil fatty acid (COFA) at 3:1 molar ratio, by immobilized Candida antarctica Lipase B (NS 435 from Novozyme) in a solvent free system gave a maximum yield of 88.64% (%w/w) at 5h. Performance of the FA-COFA ester plasticized Ethyl Cellulose (EC) films were evaluated by surface morphologies, XRD analysis, mechanical properties,thermal properties, water vapor permeability and migration stability test. It was an effective plasticizer with better mechanical properties and thermal stability at the increasing concentration of FA-COFA ester (15-25%) containing EC film, than the traditional plasticizer, i.e; dibutyl phthalate (DBP) in producing good quality films. Chemical structure and the intermolecular interactions between FA-COFA ester and ethyl cellulose chains were the causative agents of these outstanding performances. Therefore, this FA-COFA ester, with significant plasticizing property, at a certain concentration, can be a substitute of DBP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Autocatalytic Pyrolysis of Wastewater Biosolids for Product Upgrading.

    PubMed

    Liu, Zhongzhe; McNamara, Patrick; Zitomer, Daniel

    2017-09-05

    The main goals for sustainable water resource recovery include maximizing energy generation, minimizing adverse environmental impacts, and recovering beneficial resources. Wastewater biosolids pyrolysis is a promising technology that could help facilities reach these goals because it produces biochar that is a valuable soil amendment as well as bio-oil and pyrolysis gas (py-gas) that can be used for energy. The raw bio-oil, however, is corrosive; therefore, employing it as fuel is challenging using standard equipment. A novel pyrolysis process using wastewater biosolids-derived biochar (WB-biochar) as a catalyst was investigated to decrease bio-oil and increase py-gas yield for easier energy recovery. WB-biochar catalyst increased the py-gas yield nearly 2-fold, while decreasing bio-oil production. The catalyzed bio-oil also contained fewer constituents based on GC-MS and GC-FID analyses. The energy shifted from bio-oil to py-gas, indicating the potential for easier on-site energy recovery using the relatively clean py-gas. The metals contained in wastewater biosolids played an important role in upgrading pyrolysis products. The Ca and Fe in WB-biochar reduced bio-oil yield and increased py-gas yield. The py-gas energy increase may be especially useful at water resource recovery facilities that already combust anaerobic digester biogas for energy since it may be possible to blend biogas and py-gas for combined use.

  20. Absorption of CO2 from modified flue gases of power generation Tarahan chemically using NaOH and Na2CO3 and biologically using microalgae

    NASA Astrophysics Data System (ADS)

    Purba, Elida; Agustina, Dewi; Putri Pertama, Finka; Senja, Fita

    2018-03-01

    This research was carried out on the absorption of CO2 from the modified flue gases of power generation Tarahan using NaOH (sodium hydroxide) and Na2CO3 (sodium carbonate). The operation was conducted in a packed column absorber and then the output gases from the packed column was fed into photo-bioreactor for biological absorption. In the photo-bioreactor, two species of microalgae, N. occulata and T. chuii, were cultivated to both absorb CO2 gas and to produce biomass for algal oil. The aims of this research were, first, to determine the effect of absorbent flow rate on the reduction of CO2 and on the decrease of output gas temperature, second, to determine the characteristics of methyl ester obtained from biological absorption process. Flow rates of the absorbent were varied as 1, 2, and 3 l/min. The concentrations of NaOH and Na2CO3 were 1 M at a constant gas flow rate of 6 l/min. The output concentrations of CO2 from the absorber was analyzed using Gas Chromatography 2014-AT SHIMADZU Corp 08128. The results show that both of the absorbents give different trends. From the absorption using NaOH, it can be concluded that the higher the flow rate, the higher the absorption rate obtained. The highest flow rate achieved maximum absorption of 100%. On the other hand, absorption with Na2CO3 revealed the opposite trend where the higher the flow rates the lower the absorption rate. The highest absorption using Na2CO3 was obtained with the lowest flow rate, 1 l/min, that was 45,5%. As the effect of flow rate on output gas temperature, the temperature decreased with increasing flow rates for both absorbents. The output gas temperature for NaOH and Na2CO3 were consecutively 35 °C and 31 °C with inlet gas temperature of 50°C. Absorption of CO2 biologically resulted a reduction of CO2 up to 60% from the input gas concentration. Algal oil was extracted with mixed hexane and chloroform to obtain algal oil. Extracted oil was transesterified to methyl ester using sodium hydroxide as a catalyst. The results of in-situ transesterification method cannot be identified. Both microalgae achieved maximum yield at 2% catalyst concentration. Nannochloropsis occulata achieved the highest yield of algal oil that is 88.5%. The highest content of methyl ester from Nannochloropsis occulata was undecanoic acid methyl ester by 55.42% and the result from Tetraselmis chuii was palmitic acid methyl ester by 81.58%.

  1. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Ji-Lu, E-mail: triace@163.com; Zhu, Ming-Qiang; Wu, Hai-tang

    Highlights: • Swine carcasses can be converted to bio-oil by alkaline hydrothermal liquefaction. • It seems that the use of the bio-oil for heat or CHP is technically suitable. • Some valuable chemicals were found in the bio-oils. • The bio-oil and the solid residue constituted an energy efficiency of 93.63% for the feedstock. • The solid residue can be used as a soil amendment, to sequester C and for preparing activated carbon. - Abstract: It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, themore » effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2 wt% bio-oil, having a high heating value of 32.35 MJ/kg and a viscosity of 305cp, and 22 wt% solid residue were realized at a liquefaction temperature of 250 °C, a reaction time of 60 min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels.« less

  2. Techno-economic and resource analysis of hydroprocessed renewable jet fuel.

    PubMed

    Tao, Ling; Milbrandt, Anelia; Zhang, Yanan; Wang, Wei-Cheng

    2017-01-01

    Biomass-derived jet fuel is an alternative jet fuel (AJF) showing promise of reducing the dependence on fossil fuel and greenhouse gas emissions. Hydroprocessed esters and fatty acids (HEFA) concept is also known as one of the pathways for producing bio jet fuel. HEFA fuel was approved by the American Society for Testing and Materials in 2011, and can be blended up to 50% with conventional jet fuel. Since then, several HEFA economic and life-cycle assessments have been published in literature. However, there have been limited analyses on feedstock availability, composition, and their impact on hydrocarbon yield (particularly jet blendstock yield) and overall process economics. This study examines over 20 oil feedstocks, their geographic distribution and production levels, oil yield, prices, and chemical composition. The results of our compositional analysis indicate that most oils contain mainly C 16 and C 18 fatty acids except pennycress, yellow grease, and mustard, which contain higher values and thus would require hydrocracking to improve jet fuel production. Coconut oil has a large content of shorter carbon fatty acids, making it a good feedstock candidate for renewable gasoline instead of jet substitutes' production. Techno-economic analysis (TEA) was performed for five selected oil feedstocks-camelina, pennycress, jatropha, castor bean, and yellow grease-using the HEFA process concept. The resource analysis indicates that oil crops currently grown in the United States (namely soybean) have relatively low oil yield when compared to oil crops grown in other parts of the world, such as palm, coconut, and jatropha. Also, non-terrestrial oil sources, such as animal fats and greases, have relatively lower prices than terrestrial oil crops. The minimum jet fuel selling price for these five resources ranges between $3.8 and $11.0 per gallon. The results of our TEA and resource studies indicate the key cost drivers for a biorefinery converting oil to jet hydrocarbons are as follows: oil price, conversion plant capacity, fatty acid profile, addition of hydrocracker, and type of hydroprocessing catalysts.

  3. Microcapsules with a pH responsive polymer: influence of the encapsulated oil on the capsule morphology.

    PubMed

    Wagdare, Nagesh A; Marcelis, Antonius T M; Boom, Remko M; van Rijn, Cees J M

    2011-11-01

    Microcapsules were prepared by microsieve membrane cross flow emulsification of Eudragit FS 30D/dichloromethane/edible oil mixtures in water, and subsequent phase separation induced by extraction of the dichloromethane through an aqueous phase. For long-chain triglycerides and jojoba oil, core-shell particles were obtained with the oil as core, surrounded by a shell of Eudragit. Medium chain triglyceride (MCT oil) was encapsulated as relatively small droplets in the Eudragit matrix. The morphology of the formed capsules was investigated with optical and SEM microscopy. Extraction of the oil from the core-shell capsules with hexane resulted in hollow Eudragit capsules with porous shells. It was shown that the differences are related to the compatibility of the oils with the shell-forming Eudragit. An oil with poor compatibility yields microcapsules with a dense Eudragit shell on a single oil droplet as the core; oils having better compatibility yield porous Eudragit spheres with several oil droplets trapped inside. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. A sub-canopy structure for simulating oil palm in the Community Land Model: phenology, allocation and yield

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Roupsard, O.; Bernoux, M.; Le Maire, G.; Panferov, O.; Kotowska, M. M.; Knohl, A.

    2015-06-01

    Land surface modelling has been widely used to characterize the two-way interactions between climate and human activities in terrestrial ecosystems such as deforestation, agricultural expansion, and urbanization. Towards an effort to quantify the effects of forests to oil palm conversion occurring in the tropics on land-atmosphere carbon, water and energy fluxes, we introduce a new perennial crop plant functional type (PFT) for oil palm. Due to the modular and sequential nature of oil palm growth (around 40 stacked phytomers) and yield (fruit bunches axillated on each phytomer), we developed a specific sub-canopy structure for simulating palm's growth and yield within the framework of the Community Land Model (CLM4.5). In this structure each phytomer has its own prognostic leaf growth and fruit yield capacity like a PFT but with shared stem and root components among all phytomers. Phenology and carbon and nitrogen allocation operate on the different phytomers in parallel but at unsynchronized steps, so that multiple fruit yields per annum are enabled in terms of carbon and nitrogen outputs. An important phenological phase is identified for the palm PFT - the storage growth period of bud and "spear" leaves which are photosynthetically inactive before expansion. Agricultural practices such as transplanting, fertilization, and leaf pruning are represented. Parameters introduced for the new PFT were calibrated and validated with field measurements of leaf area index (LAI) and yield from Sumatra, Indonesia. In calibration with a mature oil palm plantation, the cumulative yields from 2005 to 2014 matched perfectly between simulation and observation (mean percentage error = 4 %). Simulated inter-annual dynamics of PFT-level and phytomer-level LAI were both within the range of field measurements. Validation from eight independent oil palm sites shows the ability of the model to adequately predict the average leaf growth and fruit yield across sites but also indicates that seasonal dynamics and site-to-site variability of yield are driven by processes not yet implemented in the model. The new sub-canopy structure and phenology and allocation functions now allow exploring the effects of tropical land use change, from natural ecosystems to oil palm plantations, on carbon, water and energy cycles and regional climate.

  5. Climate impacts on palm oil yields in the Nigerian Niger Delta

    NASA Astrophysics Data System (ADS)

    Okoro, Stanley U.; Schickhoff, Udo; Boehner, Juergen; Schneider, Uwe A.; Huth, Neil

    2016-04-01

    Palm oil production has increased in recent decades and is estimated to increase further. The optimal role of palm oil production, however, is controversial because of resource conflicts with alternative land uses. Local conditions and climate change affect resource competition and the desirability of palm oil production. Based on this, crop yield simulations using different climate model output under different climate scenarios could be important tool in addressing the problem of uncertainty quantification among different climate model outputs. Previous studies on this region have focused mostly on single experimental fields, not considering variations in Agro-Ecological Zones, climatic conditions, varieties and management practices and, in most cases not extending to various IPCC climate scenarios and were mostly based on single climate model output. Furthermore, the uncertainty quantification of the climate- impact model has rarely been investigated on this region. To this end we use the biophysical simulation model APSIM (Agricultural Production Systems Simulator) to simulate the regional climate impact on oil palm yield over the Nigerian Niger Delta. We also examine whether the use of crop yield model output ensemble reduces the uncertainty rather than the use of climate model output ensemble. The results could serve as a baseline for policy makers in this region in understanding the interaction between potentials of energy crop production of the region as well as its food security and other negative feedbacks that could be associated with bioenergy from oil palm. Keywords: Climate Change, Climate impacts, Land use and Crop yields.

  6. Process optimisation of microwave-assisted extraction of peony ( Paeonia suffruticosa Andr .) seed oil using hexane-ethanol mixture and its characterisation

    Treesearch

    Xiaoli Sun; Wengang Li; Jian Li; Yuangang Zu; Chung-Yun Hse; Jiulong Xie; Xiuhua Zhao

    2016-01-01

    Ethanol and hexane mixture agent microwave-assisted extraction (MAE) method was conducted to extract peony (Paeonia suffruticosa Andr.) seed oil (PSO). The aim of the study was to optimise the extraction for both yield and energy consumption in mixture agent MAE. The highest oil yield (34.49%) and lowest unit energy consumption (14 125.4 J g -1)...

  7. L-lactate production from biodiesel-derived crude glycerol by metabolically engineered Enterococcus faecalis: cytotoxic evaluation of biodiesel waste and development of a glycerol-inducible gene expression system.

    PubMed

    Doi, Yuki

    2015-03-01

    Biodiesel waste is a by-product of the biodiesel production process that contains a large amount of crude glycerol. To reuse the crude glycerol, a novel bioconversion process using Enterococcus faecalis was developed through physiological studies. The E. faecalis strain W11 could use biodiesel waste as a carbon source, although cell growth was significantly inhibited by the oil component in the biodiesel waste, which decreased the cellular NADH/NAD(+) ratio and then induced oxidative stress to cells. When W11 was cultured with glycerol, the maximum culture density (optical density at 600 nm [OD600]) under anaerobic conditions was decreased 8-fold by the oil component compared with that under aerobic conditions. Furthermore, W11 cultured with dihydroxyacetone (DHA) could show slight or no growth in the presence of the oil component with or without oxygen. These results indicated that the DHA kinase reaction in the glycerol metabolic pathway was sensitive to the oil component as an oxidant. The lactate dehydrogenase (Ldh) activity of W11 during anaerobic glycerol metabolism was 4.1-fold lower than that during aerobic glycerol metabolism, which was one of the causes of low l-lactate productivity. The E. faecalis pflB gene disruptant (Δpfl mutant) expressing the ldhL1LP gene produced 300 mM l-lactate from glycerol/crude glycerol with a yield of >99% within 48 h and reached a maximum productivity of 18 mM h(-1) (1.6 g liter(-1) h(-1)). Thus, our study demonstrates that metabolically engineered E. faecalis can convert crude glycerol to l-lactate at high conversion efficiency and provides critical information on the recycling process for biodiesel waste. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Transcranial route of brain targeted delivery of methadone in oil.

    PubMed

    Pathirana, W; Abhayawardhana, P; Kariyawasam, H; Ratnasooriya, W D

    2009-05-01

    The unique anatomical arrangement of blood vessels and sinuses in the human skull and the brain, the prevalence of a high density of skin appendages in the scalp, extracranial vessels of the scalp communicating with the brain via emissary veins and most importantly, the way that the scalp is used in Ayurvedic medical system in treating diseases associated with the brain show that a drug could be transcranially delivered and targeted to the brain through the scalp. The present study was to investigate by measuring the antinociceptive effect on rats whether the opioid analgesic methadone could be delivered and targeted to the brain by transcranial delivery route. A non aqueous solution of methadone base in sesame oil was used for the application on the scalp. Animal studies were carried out using six groups of male rats consisting of group 1, the oral control treated with distilled water 1 ml; group 2, the oral positive control treated with methadone hydrochloride solution 316.5 mug/ml; group 3, the negative control treated transcranially with the blank sesame oil 0.2 ml and three test groups 4, 5 and 6 treated with three different dose levels of the transcranial oil formulation of methadone base, 41.6 mug/0.2 ml, 104 mug/0.2 ml and 208 mug/0.2 ml, respectively. The antinociceptive effects were examined by subjecting the rats to the hot plate and tail flick tests. The two higher concentrations of the three transcranial methadone formulations yielded response vs time curves showing nearly equal maximum antinociceptive effects similar to that of the oral positive control. Maximum analgesic effect after transcranial administration was observed between 1st and 2nd h and declined up to 6th hour. The results indicate that the transcranial brain targeted delivery of methadone base in the form of an oil based non aqueous solution results in statistically significant antinociceptive effects under experimental conditions. Therefore, it is possible to deliver central nervous system drugs through the proposed transcranial route when suitably formulated.

  9. Comparison of High-Speed Operating Characteristics of Size 215 Cylindrical-Roller Bearings as Determined in Turbojet Engine and in Laboratory Test Rig

    NASA Technical Reports Server (NTRS)

    Macks, E Fred; Nemeth, Zolton N

    1951-01-01

    A comparison of the operating characteristics of 75-millimeter-bore (size 215) cylindrical-roller one-piece inner-race-riding cage-type bearings was made using a laboratory test rig and a turbojet engine. Cooling correlation parameters were determined by means of dimensional analysis, and the generalized results for both the inner- and outer-race bearing operating temperatures are compared for the laboratory test rig and the turbojet engine. Inner- and outer-race cooling-correlation curves were obtained for the turbojet-engine turbine-roller bearing with the same inner- and outer-race correlation parameters and exponents as those determined for the laboratory test-rig bearing. The inner- and outer-race turbine roller-bearing temperatures may be predicted from a single curve, regardless of variations in speed, load, oil flow, oil inlet temperature, oil inlet viscosity, oil-jet diameter or any combination of these parameters. The turbojet-engine turbine-roller-bearing inner-race temperatures were 30 to 60 F greater than the outer-race-maximum temperatures, the exact values depending on the operating condition and oil viscosity; these results are in contrast to the laboratory test-rig results where the inner-race temperatures were less than the outer-race-maximum temperatures. The turbojet-engine turbine-roller bearing, maximum outer-race circumferential temperature variation was approximately 30 F for each of the oils used. The effect of oil viscosity on inner- and outer-race turbojet-engine turbine-roller-bearing temperatures was found to be significant. With the lower viscosity oil (6x10(exp -7) reyns (4.9 centistokes) at 100 F; viscosity index, 83), the inner-race temperature was approximately 30 to 35 F less than with the higher viscosity oil (53x10(exp -7) reyns (42.8 centistokes) at 100 F; viscosity index, 150); whereas the outer-race-maximum temperatures were 12 to 28 F lower with the lower viscosity oil over the DN range investigated.

  10. Advanced direct coal liquefaction concepts. Quarterly report, January 1, 1993--March 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, D.J.; Parker, R.J.; Simpson, P.L.

    1993-07-01

    Five barrels of a Wilsonville process derived solvent (V-1074) from Black Thunder coal were obtained. This material boils within the preferred gas oil range, is more aromatic than previous solvents, and will therefore be used for the bench unit studies. Several repeat runs were performed in the autoclave to confirm the results of the matrix study. In addition, runs were carried out with different catalysts, with agglomerates and with the V-1074 solvent. The results of the autoclave runs were analyzed with respect to coal conversion, CO conversion, oil yield, hydrogen consumption and oxygen removal. It was concluded that the bestmore » operating conditions for the first stage operation was a temperature of at least 390{degrees}C, residence time of at least 30 minutes, cold CO pressure of at least 600 psig and potassium carbonate catalyst (2% wt on total feed). The data also indicated however, that the coal conversion goes through a maximum, and too high a severity leads to retrograde reaction and lower coal solubilization. The scope for increasing temperature and time is therefore limited. Petrographic examination of the THF insoluble resids from the autoclave program indicated a maximum coal conversion of about 90% for Black Thunder coal. The bench unit construction was also essentially completed and the bench unit program to be carded out in the next twelve months was defined.« less

  11. Incubation of Aquilaria subintegra with Microbial Culture Supernatants Enhances Production of Volatile Compounds and Improves Quality of Agarwood Oil.

    PubMed

    Monggoot, Sakon; Kulsing, Chadin; Wong, Yong Foo; Pripdeevech, Patcharee

    2018-06-01

    Incubation with microbial culture supernatants improved essential oil yield from Aquilaria subintegra woodchips. The harvested woodchips were incubated with de man, rogosa and sharpe (MRS) agar, yeast mold (YM) agar medium and six different microbial culture supernatants obtained from Lactobacillus bulgaricus , L. acidophilus , Streptococcus thermophilus , Lactococcus lactis , Saccharomyces carlsbergensis and S. cerevisiae prior to hydrodistillation. Incubation with lactic acid bacteria supernatants provided higher yield of agarwood oil (0.45% w/w) than that obtained from yeast (0.25% w/w), agar media (0.23% w/w) and water (0.22% w/w). The composition of agarwood oil from all media and microbial supernatant incubations was investigated by using gas chromatography-mass spectrometry. Overall, three major volatile profiles were obtained, which corresponded to water soaking (control), as well as, both YM and MRS media, lactic acid bacteria, and yeast supernatant incubations. Sesquiterpenes and their oxygenated derivatives were key components of agarwood oil. Fifty-two volatile components were tentatively identified in all samples. Beta-agarofuran, α-eudesmol, karanone, α-agarofuran and agarospirol were major components present in most of the incubated samples, while S. cerevisiae -incubated A. subintegra provided higher amount of phenyl acetaldehyde. Microbial culture supernatant incubation numerically provided the highest yield of agarwood oil compared to water soaking traditional method, possibly resulting from activity of extracellular enzymes produced by the microbes. Incubation of agarwood with lactic acid bacteria supernatant significantly enhanced oil yields without changing volatile profile/composition of agarwood essential oil, thus this is a promising method for future use.

  12. Isolation, biomass estimation and characterization of the biofuel potential of diatom Navicula Sphaerophora

    NASA Astrophysics Data System (ADS)

    Papu, Nabam Hina; Lingfa, Pradip

    2018-04-01

    Navicula Sphaerophora was isolated from a fresh water reservoir in Arunachal Pradesh, India. N. Sphaerophora was grown on two different culture media, chu13 medium and Miracle Gro-medium. The maximum yield was obtained by using culture medium chu13(5.08 g/100ml of culture media). Microalgae crude oil was extracted using soxhlation method with three different solvents n-hexane, iso-propanol and hexane/ iso-propanol mixture. The maximum crude oil was obtained using n-hexane as a solvent (13.8% of dry weight biomass). The crude oil was converted into biodiesel using single stage transesterification process with sodium hydroxide (NaOH) as a base catalyst. Fuel properties of algae biodiesel satisfied biodiesel standard ASTM D6751 and use of this fuel should be comparable with petroleum diesel. Further short term engine test was conducted on single cylinder direct injection diesel engine at four different load (25%,50%,75% and 100%). Three different petroleum diesel and Microalgae Biodiesel blends (10%, 20% and 30%) were prepared. The influence of biodiesel blends on BSFC (brake specific fuel consumption), BTE (brake thermal efficiency), oxides of nitrogen (NOx), UBHC (unburnt hydrocarbons), carbonmonoxide (CO) and smoke opacity was studied and compared with petroleum diesel. Microalgae methyl ester 50% blend (B50) had lowest brake thermal efficiency (BTE) and highest Brake specific fuel consumption (BSFC) as compared to diesel; this may be due to Lower calorific value. HC, CO emission and smoke opacity reduces significantly with microalgae methyl ester. However, the NOx emission increases with all blends when compared to petroleum diesel. 10% microalgae blend with petroleum diesel showed the closet performance to petroleum diesel. Results obtained from present investigation confirmed the biofuel potentiality of Navicula Sphaerophora.

  13. Trading forests for yields in the Peruvian Amazon

    NASA Astrophysics Data System (ADS)

    Gibbs, Holly

    2012-03-01

    Our knowledge of how agriculture expands, and the types of land it replaces, is remarkably limited across the tropics. Most remote-sensing studies focus on the net gains and losses in forests and agricultural land rather than the land-use transition pathways (Gibbs et al 2010). Only a handful of studies identify land sources for new croplands or plantations, and then only for farming systems aggregated together (e.g., Koh and Wilcove 2008, Morton et al 2006, Gibbs et al 2010). Gutiérrez-Vélez et al (2011), however, have taken a leap forward by tracking the different expansion pathways for smallholder and industrial oil palm plantations. Using a combination of Landsat, MODIS and field surveys, they investigate whether higher yields in new agricultural lands spare forests in the Peruvian Amazon and in a smaller focus area in the Ucayali region. Across the Peruvian Amazon, they show that between 2000 and 2010, new high-yield oil palm plantations replaced forests 72% of the time and accounted for 1.3% of total deforestation, with most expansion occurring after 2006. Gutiérrez-Vélez et al went further in the Ucayali region and compared land sources for new high-yield and low-yield plantations. Expansion of higher-yield agricultural lands should logically reduce the total area needed for production, thus potentially sparing forests. In the Ucayali focus area, expansion of high-yield oil palm did convert less total land area but more forest was cleared than with low-yield expansion. Smaller-scale plantations tended to expand into already cleared areas while industrial-scale plantations traded their greater yields for forests, leading to higher land-clearing carbon emissions per production unit (Gibbs et al 2008). Gutiérrez-Vélez et al show that higher yields may require less land for production but more forest may be lost in the process, and they emphasize the need for stronger incentives for land sparing. The potential land-saving nature of these high-yield plantations could be further analyzed by considering whether they help depress global prices, reducing incentives to expand elsewhere (Angelsen and Kaimowitz 2001). The significance of the study goes well beyond the bounds of Ucayli, and highlights risks to Amazonian forests from oil palm expansion (Butler and Laurance 2010). Oil palm is an astoundingly profitable and productive crop, with typical oil yields more than ten times that of soy. Some have even argued that oil palm is innately land sparing because it would take substantially more land for all other oil-bearing crops to provide the same output. However, most production gains from oil palm have occurred through increased area rather than increased yield, and in many cases expansion has been through forest clearing (Koh and Wilcove 2008, Gibbs et al 2010). The findings of Gutiérrez-Vélez et al (2011) are particularly significant considering that the booming palm oil sectors in Indonesia and Malaysia, which currently produce over 80% of the world's product, are facing a host of pressures that constrain future area expansion. Malaysia has little remaining land suited for plantations and Indonesia faces intensifying international scrutiny over the future of their forestlands. Consequently, the Amazon basin is widely considered the new frontier, with more than half of its forest area suitable for palm oil cultivation (Butler and Laurance 2010) and growing incentives from Brazil's Program for the Sustainable Production of Oil Palm, which aims to utilize degraded lands and spur reforestation efforts. Their results also illuminate another key issue, namely the constraints faced by large-scale producers when they seek to expand plantation area. Emerging demand-side conservation efforts, such as the Roundtable for Sustainable Palm Oil (RSPO), assume that already cleared and non-forested lands are freely available. Gutiérrez-Vélez et al (2011) hint at the obstacles to using such cleared lands, which is that they are inhabited and often have contested land tenure. We must carefully consider our consumption of these commodities in the face of growing land scarcity (Lambin and Meyfroidt 2011). If high-yield plantations displace low-yield plantations they too may follow the path of industrial agriculture and resume destruction of the forests that conservation efforts aim to protect. Without clear incentives to spare land, we could be trading forest for higher yields. References Angelsen A and Kaimowitz D 2001 Agricultural Technologies and Tropical Deforestation (New York: CABI Publishing) (www.cifor.org/publications/pdf files/books/bangelsen0101e0.pdf) Butler R and Laurance W 2010 Is oil palm the next emerging threat to the Amazon? Trop. Conserv. Sci. 2 1-10 Gibbs H K, Johnston M, Foley J A, Holloway T, Monfreda C, Ramankutty N and Zaks D 2008 Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology Environ. Res. Lett. 3 034001 Gibbs H K, Ruesch A S, Achard F, Clayton M K, Holmgren P, Ramankutty N and Foley J A 2010 Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s Proc. Natl Acad. Sci. 107 16732-7 Gutiérrez-Vélez V H, DeFries R, Pinedo-Vásquez M, Uriarte M, Padoch C, Baethgen W, Fernandes K and Lim Y 2011 High-yield oil palm expansion spares land at the expense of forests in the Peruvian Amazon Environ. Res. Lett. 6 044029 Koh L and Wilcove D 2008 Is oil palm agriculture really destroying tropical biodiversity? Conserv. Lett. 1 60-4 Lambin E and Meyfroidt P 2011 Inaugural article: global land use change, economic globalization, and the looming land scarcity Proc. Natl Acad. Sci. 108 93465-72 Morton D C et al 2006 Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon Proc. Natl Acad. Sci. USA 103 14637-41

  14. Ultrasound-assisted extraction (UAE) and solvent extraction of papaya seed oil: yield, fatty acid composition and triacylglycerol profile.

    PubMed

    Samaram, Shadi; Mirhosseini, Hamed; Tan, Chin Ping; Ghazali, Hasanah Mohd

    2013-10-10

    The main objective of the current work was to evaluate the suitability of ultrasound-assisted extraction (UAE) for the recovery of oil from papaya seed as compared to conventional extraction techniques (i.e., Soxhlet extraction (SXE) and solvent extraction (SE)). In the present study, the recovery yield, fatty acid composition and triacylglycerol profile of papaya seed oil obtained from different extraction methods and conditions were compared. Results indicated that both solvent extraction (SE, 12 h/25 °C) and ultrasound-assisted extraction (UAE) methods recovered relatively high yields (79.1% and 76.1% of total oil content, respectively). Analysis of fatty acid composition revealed that the predominant fatty acids in papaya seed oil were oleic (18:1, 70.5%-74.7%), palmitic (16:0, 14.9%-17.9%), stearic (18:0, 4.50%-5.25%), and linoleic acid (18:2, 3.63%-4.6%). Moreover, the most abundant triacylglycerols of papaya seed oil were triolein (OOO), palmitoyl diolein (POO) and stearoyl oleoyl linolein (SOL). In this study, ultrasound-assisted extraction (UAE) significantly (p < 0.05) influenced the triacylglycerol profile of papaya seed oil, but no significant differences were observed in the fatty acid composition of papaya seed oil extracted by different extraction methods (SXE, SE and UAE) and conditions.

  15. Effect of glycerol as co-solvent on yields of bio-oil from rice straw through hydrothermal liquefaction.

    PubMed

    Cao, Leichang; Zhang, Cheng; Hao, Shilai; Luo, Gang; Zhang, Shicheng; Chen, Jianmin

    2016-11-01

    This study examined the effect of glycerol used as a co-solvent on yields of bio-oil derived from rice straw through hydrothermal liquefaction (HTL). The reaction was conducted in a high-pressure batch reactor with different volume ratios of glycerol to water. The quality of the derived bio-oil was analyzed in terms of its elemental composition, heating value, water content, ash content, and acid number. Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry were conducted to analyze the chemical composition of the derived bio-oils. The following optimal conditions were obtained: 1:1 vol ratio of glycerol to water with 5wt% of Na2CO3 at 260°C for 1h. Under these conditions, 50.31wt% of bio-oil and 26.65wt% of solid residue were produced. Therefore, glycerol can be used as a co-solvent in HTL of rice straw at moderate temperatures to obtain bio-oil with high yield and quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Suppression of the SUGAR-DEPENDENT1 triacylglycerol lipase family during seed development enhances oil yield in oilseed rape (Brassica napus L.).

    PubMed

    Kelly, Amélie A; Shaw, Eve; Powers, Stephen J; Kurup, Smita; Eastmond, Peter J

    2013-04-01

    Increasing the productivity of oilseed crops is an important challenge for plant breeders and biotechnologists. To date, attempts to increase oil production in seeds via metabolic pathway engineering have focused on boosting synthetic capacity. However, in the tissues of many organisms, it is well established that oil levels are determined by both anabolism and catabolism. Indeed, the oil content of rapeseed (Brassica napus L.) has been reported to decline by approximately 10% in the final stage of development, as the seeds desiccate. Here, we show that RNAi suppression of the SUGAR-DEPENDENT1 triacylglycerol lipase gene family during seed development results in up to an 8% gain in oil yield on either a seed, plant or unit area basis in the greenhouse, with very little adverse impact on seed vigour. Suppression of lipolysis could therefore constitute a new method for enhancing oil yield in oilseed crops. © 2012 The Authors Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  17. Bio-oil production from palm fronds by fast pyrolysis process in fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Rinaldi, Nino; Simanungkalit, Sabar P.; Kiky Corneliasari, S.

    2017-01-01

    Fast pyrolysis process of palm fronds has been conducted in the fluidized bed reactor to yield bio-oil product (pyrolysis oil). The process employed sea sand as the heat transfer medium. The objective of this study is to design of the fluidized bed rector, to conduct fast pyrolysis process to product bio-oil from palm fronds, and to characterize the feed and bio-oil product. The fast pyrolysis process was conducted continuously with the feeding rate around 500 g/hr. It was found that the biomass conversion is about 35.5% to yield bio-oil, however this conversion is still minor. It is suggested due to the heating system inside the reactor was not enough to decompose the palm fronds as a feedstock. Moreover, the acids compounds ware mostly observed on the bio-oil product.

  18. Biodiesel production from rice bran oil by transesterification using heterogeneous catalyst natural zeolite modified with K2CO3

    NASA Astrophysics Data System (ADS)

    Taslim; Iriany; Bani, O.; Parinduri, S. Z. D. M.; Ningsih, P. R. W.

    2018-02-01

    In the present study, an effort had been made to use natural zeolite from Tapanuli Utara, North Sumatera as a potential catalyst for biodiesel production. Biodiesel production is usuallythrough transesterification, and a catalyst is employed to improve reaction rate and yield. In this research rice bran oil (RBO) was used as feedstock. The objective of this work was to discover the effectiveness of natural zeolite modified by K2CO3 as catalysts in biodiesel production from RBO. K2CO3/natural zeolite catalyst modification was by impregnation method at various K2CO3 concentrations followed by drying and calcination. Transesterification was conducted at 65°C and 500 rpm. Effect of process variables such as the amount of catalyst, reaction time, and the molar ratio of methanol to RBO was investigated.The maximum yield of 98.18% biodiesel was obtained by using 10:1 molar ratio of methanol to RBO at a reaction time of 3 hours in the presence of 4 w% catalyst. The obtained biodiesel was then characterized by its density, viscosity and ester content. The biodiesel properties met the Indonesia standard (SNI).The results showed that natural zeolite modified by K2CO3 was suitable as a catalyst in the synthesis of biodiesel through transesterification from RBO.

  19. Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts.

    PubMed

    Miandad, R; Barakat, M A; Rehan, M; Aburiazaiza, A S; Ismail, I M I; Nizami, A S

    2017-11-01

    This study aims to examine the catalytic pyrolysis of various plastic wastes in the presence of natural and synthetic zeolite catalysts. A small pilot scale reactor was commissioned to carry out the catalytic pyrolysis of polystyrene (PS), polypropylene (PP), polyethylene (PE) and their mixtures in different ratios at 450°C and 75min. PS plastic waste resulted in the highest liquid oil yield of 54% using natural zeolite and 50% using synthetic zeolite catalysts. Mixing of PS with other plastic wastes lowered the liquid oil yield whereas all mixtures of PP and PE resulted in higher liquid oil yield than the individual plastic feedstocks using both catalysts. The GC-MS analysis revealed that the pyrolysis liquid oils from all samples mainly consisted of aromatic hydrocarbons with a few aliphatic hydrocarbon compounds. The types and amounts of different compounds present in liquid oils vary with some common compounds such as styrene, ethylbenzene, benzene, azulene, naphthalene, and toluene. The FT-IR data also confirmed that liquid oil contained mostly aromatic compounds with some alkanes, alkenes and small amounts of phenol group. The produced liquid oils have high heating values (HHV) of 40.2-45MJ/kg, which are similar to conventional diesel. The liquid oil has potential to be used as an alternative source of energy or fuel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Getty: producing oil from diatomite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zublin, L.

    1981-10-01

    Getty Oil Company has developed unconventional oil production techniques which will yield oil from diatomaceous earth. They propose to mine oil-saturated diatomite using open-pit mining methods. Getty's diatomite deposit in the McKittrick field of California is unique because it is cocoa brown and saturated with crude oil. It is classified also as a tightly packed deposit, and oil cannot be extracted by conventional oil field methods.

  1. Method for retorting oil shale

    DOEpatents

    Shang, Jer-Yu; Lui, A.P.

    1985-08-16

    The recovery of oil from oil shale is provided in a fluidized bed by using a fluidizing medium of a binary mixture of carbon dioxide and 5 steam. The mixture with a steam concentration in the range of about 20 to 75 volume percent steam provides an increase in oil yield over that achievable by using a fluidizing gas of carbon dioxide or steam alone when the mixture contains higher steam concentrations. The operating parameters for the fluidized bed retorted are essentially the same as those utilized with other gaseous fluidizing mediums with the significant gain being in the oil yield recovered which is attributable solely to the use of the binary mixture of carbon dioxide and steam. 2 figs.

  2. Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii.

    PubMed

    Joyce, Blake L; Zheljazkov, Valtcho D; Sykes, Robert; Cantrell, Charles L; Hamilton, Choo; Mann, David G J; Rodriguez, Miguel; Mielenz, Jonathan R; Astatkie, Tess; Stewart, C Neal

    2015-01-01

    Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha-1 respectively compared to reported 1749-3691 L ethanol ha-1 for switchgrass. Pretreated lemongrass yielded 198 mL ethanol (g biomass)-1 and pretreated palmarosa yielded 170 mL ethanol (g biomass)-1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha-1 with an estimated value of USD $857 and $1005 ha-1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels.

  3. Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii

    DOE PAGES

    Joyce, Blake L.; Zheljazkov, Valtcho D.; Sykes, Robert; ...

    2015-10-05

    Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha -1 and 15.11 Mg palmarosa ha -1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha -1 respectively compared to reported 1749–3691 L ethanol ha -1 for switchgrass. Pretreated lemongrassmore » yielded 198 mL ethanol (g biomass) -1 and pretreated palmarosa yielded 170 mL ethanol (g biomass) -1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha -1 with an estimated value of USD $857 and $1005 ha -1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels.« less

  4. Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii

    PubMed Central

    Joyce, Blake L.; Zheljazkov, Valtcho D.; Sykes, Robert; Cantrell, Charles L.; Hamilton, Choo; Mann, David G. J.; Rodriguez, Miguel; Mielenz, Jonathan R.; Astatkie, Tess; Stewart, C. Neal

    2015-01-01

    Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha-1 respectively compared to reported 1749–3691 L ethanol ha-1 for switchgrass. Pretreated lemongrass yielded 198 mL ethanol (g biomass)-1 and pretreated palmarosa yielded 170 mL ethanol (g biomass)-1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha-1 with an estimated value of USD $857 and $1005 ha-1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels. PMID:26437026

  5. Oil production by entrained pyrolysis of biomass and processing of oil and char

    DOEpatents

    Knight, James A.; Gorton, Charles W.

    1990-01-02

    Entrained pyrolysis of lignocellulosic material proceeds from a controlled pyrolysis-initiating temperature to completion of an oxygen free environment at atmospheric pressure and controlled residence time to provide a high yield recovery of pyrolysis oil together with char and non-condensable, combustible gases. The residence time is a function of gas flow rate and the initiating temperature is likewise a function of the gas flow rate, varying therewith. A controlled initiating temperature range of about 400.degree. C. to 550.degree. C. with corresponding gas flow rates to maximize oil yield is disclosed.

  6. Effects of Tree-crop Farming on Land-cover Transitions in a Mosaic Landscape in the Eastern Region of Ghana.

    PubMed

    Asubonteng, Kwabena; Pfeffer, Karin; Ros-Tonen, Mirjam; Verbesselt, Jan; Baud, Isa

    2018-05-11

    Tree crops such as cocoa and oil palm are important to smallholders' livelihoods and national economies of tropical producer countries. Governments seek to expand tree-crop acreages and improve yields. Existing literature has analyzed socioeconomic and environmental effects of tree-crop expansion, but its spatial effects on the landscape are yet to be explored. This study aims to assess the effects of tree-crop farming on the composition and the extent of land-cover transitions in a mixed cocoa/oil palm landscape in Ghana. Land-cover maps of 1986 and 2015 produced through ISODATA, and maximum likelihood classification were validated with field reference, Google Earth data, and key respondent interviews. Post-classification change detection was conducted and the transition matrix analyzed using intensity analysis. Cocoa and oil palm areas have increased in extent by 8.9% and 11.2%, respectively, mainly at the expense of food-crop land and forest. The intensity of forest loss to both tree crops is at a lower intensity than the loss of food-crop land. There were transitions between cocoa and oil palm, but the gains in oil palm outweigh those of cocoa. Cocoa and oil palm have increased in area and dominance. The main cover types converted to tree-crop areas are food-crop land and off-reserve forest. This is beginning to have serious implications for food security and livelihood options that depend on ecosystem services provided by the mosaic landscape. Tree-crop policies should take account of the geographical distribution of tree-commodity production at landscape level and its implications for food production and ecosystems services.

  7. [Comparison on extraction of volatile oils from Lithospermum erythrorhizon by different methods].

    PubMed

    Yang, Ri-fu; Huang, Ping-ping; Qiu, Tai-qiu; Fan, Xiao-dan

    2011-02-01

    To extract the volatile oils from Lithospermum erythrorhizon via ultrasound-enhanced sub-critical water extraction (USWE) and compare with ultrasound-enhanced solvent extraction (USE) and steam distillation extraction (SD). The extraction yield of the volatile oils, the containing components of extract, the effect of scanvenging activities on free radical DPPH and reducing activities as well as the inhibitory on escherichia coli and staphylococcus aureus were investigated. The extraction yield of volatile oils by USWE, USE and SD were 2.39%, 1.93% and 0.62%, respectively, the extracts by three methods all contained six major components, but the extracts by SD and USE contained more impurities. The inhibitory effect on escherichia coli and staphylococcus aureus of the extract by SD and its reducing action were the best,but those by USWE were the worst. the extraction yield of volatile oils by USWE is the highest, and it contains less impurities based on the worst in reducing power and inhibitory effects.

  8. A comparison of essential oils obtained from lavandin via different extraction processes: Ultrasound, microwave, turbohydrodistillation, steam and hydrodistillation.

    PubMed

    Périno-Issartier, Sandrine; Ginies, Christian; Cravotto, Giancarlo; Chemat, Farid

    2013-08-30

    A total of eight extraction techniques ranging from conventional methods (hydrodistillation (HD), steam distillation (SD), turbohydrodistillation (THD)), through innovative techniques (ultrasound assisted extraction (US-SD) and finishing with microwave assisted extraction techniques such as In situ microwave-generated hydrodistillation (ISMH), microwave steam distillation (MSD), microwave hydrodiffusion and gravity (MHG), and microwave steam diffusion (MSDf)) were used to extract essential oil from lavandin flowers and their results were compared. Extraction time, yield, essential oil composition and sensorial analysis were considered as the principal terms of comparison. The essential oils extracted using the more innovative processes were quantitatively (yield) and qualitatively (aromatic profile) similar to those obtained from the conventional techniques. The method which gave the best results was the microwave hydrodiffusion and gravity (MHG) method which gave reduced extraction time (30min against 220min for SD) and gave no differences in essential oil yield and sensorial perception. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Variability and performance evaluation of introgressed Nigerian dura x Deli dura oil palm progenies.

    PubMed

    Noh, A; Rafii, M Y; Mohd Din, A; Kushairi, A; Norziha, A; Rajanaidu, N; Latif, M A; Malek, M A

    2014-04-03

    Twelve introgressed oil palm (Elaeis guineensis) progenies of Nigerian dura x Deli dura were evaluated for bunch yield, yield attributes, bunch quality components and vegetative characters at the Malaysian Palm Oil Board Research Station, in Keratong, Pahang, Malaysia. Analysis of variance revealed significant to highly significant genotypic differences, indicating sufficient genetic variability among the progenies for bunch yield and its attributes, vegetative characters and bunch quality components, except fruit to bunch ratio. Fresh fruit bunch yield ranged from 167 kg·palm(-1)·year(-1) in PK1330 to 212 kg·palm(-1)·year(-1) in PK1351, with a mean yield of 192 kg·palm(-1)·year(-1). Among the progeny, PK1313 had the highest oil to bunch ratio (19.36%), due to its high mesocarp to fruit ratio, fruit to bunch ratio and low shell to fruit ratio. Among the progenies, PK1313 produced the highest oil yield of 31.4 kg·palm(-1)·year(-1), due to a high mesocarp to fruit ratio (61.2%) and a low shell to fruit ratio (30.7%), coupled with high fruit to bunch ratio (65.6%). PK1330 was found promising for selection, as it had desirable vegetative characters, including smaller petiole cross section (27.15 cm2), short rachis length (4.83 m), short palm height (1.85 m), and the lowest leaf number (164.6), as these vegetative characters are prerequisites for selecting palms for high density planting and high yield per hectare. The genetic variability among the progenies was found to be high, indicating ample scope for further breeding, followed by selection.

  10. Multifunctional two-stage riser fluid catalytic cracking process.

    PubMed

    Zhang, Jinhong; Shan, Honghong; Chen, Xiaobo; Li, Chunyi; Yang, Chaohe

    This paper described the discovering process of some shortcomings of the conventional fluid catalytic cracking (FCC) process and the proposed two-stage riser (TSR) FCC process for decreasing dry gas and coke yields and increasing light oil yield, which has been successfully applied in 12 industrial units. Furthermore, the multifunctional two-stage riser (MFT) FCC process proposed on the basis of the TSR FCC process was described, which were carried out by the optimization of reaction conditions for fresh feedstock and cycle oil catalytic cracking, respectively, by the coupling of cycle oil cracking and light FCC naphtha upgrading processes in the second-stage riser, and the specially designed reactor for further reducing the olefin content of gasoline. The pilot test showed that it can further improve the product quality, increase the diesel yield, and enhance the conversion of heavy oil.

  11. Development of a highly efficient oil degumming process using a novel phosphatidylinositol-specific phospholipase C enzyme.

    PubMed

    Cerminati, Sebastián; Eberhardt, Florencia; Elena, Claudia E; Peirú, Salvador; Castelli, María E; Menzella, Hugo G

    2017-06-01

    Enzymatic degumming using phospholipase C (PLC) enzymes may be used in environmentally friendly processes with improved oil recovery yields. In this work, phosphatidylinositol-specific phospholipase C (PIPLC) candidates obtained from an in silico analysis were evaluated for oil degumming. A PIPLC from Lysinibacillus sphaericus was shown to efficiently remove phosphatidylinositol from crude oil, and when combined with a second phosphatidylcholine and phosphatidylethanolamine-specific phospholipase C, the three major phospholipids were completely hydrolyzed, providing an extra yield of oil greater than 2.1%, compared to standard methods. A remarkably efficient fed-batch Escherichia coli fermentation process producing ∼14 g/L of the recombinant PIPLC enzyme was developed, which may facilitate the adoption of this cost-effective oil-refining process.

  12. Improving oxidative stability of echium oil emulsions fabricated by Microfluidics: Effect of ionic gelation and phenolic compounds.

    PubMed

    Comunian, Talita A; Ravanfar, Raheleh; de Castro, Inar Alves; Dando, Robin; Favaro-Trindade, Carmen S; Abbaspourrad, Alireza

    2017-10-15

    Echium oil is rich in omega-3 fatty acids, which are important because of their benefits to human health; it is, however, unstable. The objective of this work was the coencapsulation of echium oil and quercetin or sinapic acid by microfluidic and ionic gelation techniques. The treatments were analyzed utilizing optical and scanning electron microscopy, encapsulation yield, particle size, thermogravimetry, Fourier transform infrared spectroscopy, stability under stress conditions, and oil oxidative/phenolic compound stability for 30days at 40°C. High encapsulation yield values were obtained (91-97% and 77-90% for the phenolic compounds and oil) and the encapsulated oil was almost seven times more stable than the non-encapsulated oil (0.34 vs 2.42mgMDA/kg oil for encapsulated and non-encapsulated oil, respectively). Encapsulation was shown to promote oxidative stability, allowing new vehicles for the application of these compounds in food without the use of solvents and high temperature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A Time-Series of Surface Oil Distribution Detected by Satellite SAR During the Deepwater Horizon Blowout

    NASA Astrophysics Data System (ADS)

    MacDonald, I. R.; Garcia-Pineda, O. G.; Solow, A.; Daneshgar, S.; Beet, A.

    2013-12-01

    Oil discharged as a result of the Deepwater Horizon disaster was detected on the surface of the Gulf of Mexico by synthetic aperture radar satellites from 25 April 2010 until 4 August 2010. SAR images were not restricted by daylight or cloud-cover. Distribution of this material is a tracer for potential environmental impacts and an indicator of impact mitigation due to response efforts and physical forcing factors. We used a texture classifying neural network algorithm for semi-supervised processing of 176 SAR images from the ENVISAT, RADARSAT I, and COSMO-SKYMED satellites. This yielded an estimate the proportion of oil-covered water within the region sampled by each image with a nominal resolution of 10,000 sq m (100m pixels), which was compiled as a 5-km equal area grid covering the northern Gulf of Mexico. Few images covered the entire impact area, so analysis was required to compile a regular time-series of the oil cover. A Gaussian kernel using a bandwidth of 2 d was used to estimate oil cover percent in each grid at noon and midnight throughout the interval. Variance and confidence intervals were calculated for each grid and for the global 12-h totals. Results animated across the impact region show the spread of oil under the influence of physical factors. Oil cover reached an early peak of 17032.26 sq km (sd 460.077) on 18 May, decreasing to 27% of this total on 4 June, following by sharp increase to an overall maximum of 18424.56 sq km (sd 424.726) on 19 June. There was a significant negative correlation between average wind stress and the total area of oil cover throughout the time-series. Correlation between response efforts including aerial and subsurface application of dispersants and burning of gathered oil was negative, positive, or indeterminate at different time segments during the event. Daily totals for oil-covered surface waters of the Gulf of Mexico during 25 April - 9 August 2010 with upper and lower 0.95 confidence limits on estimate. (No oil visible after 4 August.)

  14. Salinity impact on yield, water use, mineral and essential oil content of fennel (Foeniculum vulgare Mill.)

    USDA-ARS?s Scientific Manuscript database

    The experimental study was carried out to determine the effects of salinity on water consumption, plant height, fresh and seed yields, biomass production, ion accumulation and essential oil content of fennel (Foeniculum vulgare Mill.) under greenhouse conditions. The experiment was conducted with a ...

  15. Subcritical Fluid Extraction of Chinese Quince Seed: Optimization and Product Characterization.

    PubMed

    Wang, Li; Wu, Min; Liu, Hua-Min; Ma, Yu-Xiang; Wang, Xue-De; Qin, Guang-Yong

    2017-03-25

    Chinese quince seed (CQS) is an underutilized oil source and a potential source of unsaturated fatty acids and α-tocopherol-rich oil. Subcritical fluid (SCF) extraction is executed at lower pressures and temperatures than the pressures and temperatures used in supercritical fluid extraction. However, no studies on the SCF extraction of CQS oil are reported. Therefore, the objective of this study was to evaluate the use of SCF for the extraction of CQS oil and to compare the use of SCF with the classical Soxhlet (CS) and supercritical CO₂ (SC-CO₂) extraction methods. Response surface methodology (RSM) was used to investigate the extraction conditions: temperature (45-65 °C), time (30-50 min), and solvent/solid ratio (5-15 mL/g). The optimization results showed that the highest yield (27.78%) was obtained at 56.18 °C, 40.20 min, and 12.57 mL/g. The oil extracted by SCF had a higher unsaturated fatty acid content (86.37%-86.75%), higher α-tocopherol content (576.0-847.6 mg/kg), lower acid value (3.97 mg/g), and lower peroxide value (0.02 meq O₂/kg) than extractions using CS and SC-CO 2 methods. The SCF-defatted meal of oilseed exhibited the highest nitrogen solubility index (49.64%) and protein dispersibility index (50.80%), demonstrating that SCF extraction was a promising and efficient technique as an alternative to CS and SC-CO 2 methods, as very mild operating conditions and an eco-friendly solvent can be used in the process with maximum preservation of the quality of the meal.

  16. 14 CFR 23.1011 - General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... General. (a) For oil systems and components that have been approved under the engine airworthiness...) Each engine must have an independent oil system that can supply it with an appropriate quantity of oil... the maximum oil consumption of the engine under the same conditions, plus a suitable margin to ensure...

  17. 14 CFR 23.1011 - General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... General. (a) For oil systems and components that have been approved under the engine airworthiness...) Each engine must have an independent oil system that can supply it with an appropriate quantity of oil... the maximum oil consumption of the engine under the same conditions, plus a suitable margin to ensure...

  18. 14 CFR 23.1011 - General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... General. (a) For oil systems and components that have been approved under the engine airworthiness...) Each engine must have an independent oil system that can supply it with an appropriate quantity of oil... the maximum oil consumption of the engine under the same conditions, plus a suitable margin to ensure...

  19. 14 CFR 23.1011 - General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... General. (a) For oil systems and components that have been approved under the engine airworthiness...) Each engine must have an independent oil system that can supply it with an appropriate quantity of oil... the maximum oil consumption of the engine under the same conditions, plus a suitable margin to ensure...

  20. 14 CFR 23.1011 - General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... General. (a) For oil systems and components that have been approved under the engine airworthiness...) Each engine must have an independent oil system that can supply it with an appropriate quantity of oil... the maximum oil consumption of the engine under the same conditions, plus a suitable margin to ensure...

  1. Biosurfactant production through Bacillus sp. MTCC 5877 and its multifarious applications in food industry.

    PubMed

    Anjum, Farhan; Gautam, Gunjan; Edgard, Gnansounou; Negi, Sangeeta

    2016-08-01

    In this study Bacillus sp. MTCC5877 was explored for the production of biosurfactant (BSs) and various carbon sources 1% (w/v), 0.5% (w/v) nitrogen sources were tested at different pH, and temperature. Yield was measured in terms of Emulsification index (EI), Oil Displacement Area (ODA) and Drop Collapse Area (DCA) and maximum emulsification activities of BSs were found (E24) 50%, 76% and 46%, respectively, and maximum ODA of 5.0, 6.2 and 4.7cm, were shown respectively. The BS was able to reduce the surface tension of water from 72 to 30mN/m and 72 to 32mN/m. Structural compositions of BS were confirmed by FTIR, GC-MS and NMR. Anti-adhesive property of BS was determined and found effective against biofilm formation. It could remove 73% Cd from vegetable which confirms its application in food industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Experimental investigation of the role of rock fabric in gas generation and expulsion during thermal maturation: Anhydrous closed-system pyrolysis of a bitumen-rich Eagle Ford Shale

    USGS Publications Warehouse

    Shao, Deyong; Ellis, Geoffrey S.; Li, Yanfang; Zhang, Tongwei

    2018-01-01

    Gold-tube pyrolysis experiments were conducted on miniature core plugs and powdered rock from a bitumen-rich sample of Eagle Ford Shale to investigate the role of rock fabric in gas generation and expulsion during thermal maturation. The samples were isothermally heated at 130, 300, 310, 333, 367, 400, and 425 °C for 72 h under a confining pressure of 68.0 MPa, corresponding to six levels of induced thermal maturity: pre-oil generation (130 °C/72 h), incipient oil/bitumen generation (300 and 310 °C/72 h), early oil generation (333 °C/72 h), peak oil generation (367 °C/72 h), early oil cracking (400 °C/72 h), and late oil cracking (425 °C/72 h). Experimental results show that gas retention coupled with compositional fractionation occurs in the core plug experiments and varies as a function of thermal maturity. During the incipient oil/bitumen generation stage, yields of methane through pentane (C1–C5) from core plugs are significantly lower than those from rock powder, and gases from core plugs are enriched in methane. However, the differences in C1–C5 gas yield and composition decrease throughout the oil generation stage, and by the oil cracking stage no obvious compositional difference in C1–C5 gases exists. The decrease in the effect of rock fabric on gas yield and composition with increasing maturity is the result of an increase in gas expulsion efficiency. Pyrolysis of rock powder yields 4–16 times more CO2 compared to miniature core plugs, with δ13CCO2 values ranging from −2.9‰ to −0.6‰, likely due to carbonate decomposition accelerated by reactions with organic acids. Furthermore, lower yields of gaseous alkenes and H2 from core plug experiments sugge

  3. Libya, Algeria and Egypt: crude oil potential from known deposits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietzman, W.D.; Rafidi, N.R.; Ross, T.A.

    1982-04-01

    An analysis is presented of the discovered crude oil resources, reserves, and estimated annual production from known fields of the Republics of Libya, Algeria, and Egypt. Proved reserves are defined as the remaining producible oil as of a specified date under operating practice in effect at that time and include estimated recoverable oil in undrilled portions of a given structure or structures. Also included in the proved reserve category are the estimated indicated additional volumes of recoverable oil from the entire oil reservoir where fluid injection programs have been started in a portion, or portions, of the reservoir. The indicatedmore » additional reserves (probable reserves) reported herein are the volumes of crude oil that might be obtained with the installation of secondary recovery or pressure maintenance operations in reservoirs where none have been previously installed. The sum of cumulative production, proved reserves, and probable reserves is defined as the ultimate oil recovery from known deposits; and resources are defined as the original oil in place (OOIP). An assessment was made of the availability of crude oil under three assumed sustained production rates for each country; an assessment was also made of each country's capability of sustaining production at, or near, the 1980 rates assuming different limiting reserve to production ratios. Also included is an estimate of the potential maximum producing capability from known deposits that might be obtained from known accumulations under certain assumptions, using a simple time series approach. The theoretical maximum oil production capability from known fields at any time is the maximum deliverability rate assuming there are no equipment, investment, market, or political constraints.« less

  4. Techno-economic and resource analysis of hydroprocessed renewable jet fuel

    DOE PAGES

    Tao, Ling; Milbrandt, Anelia; Zhang, Yanan; ...

    2017-11-09

    Biomass-derived jet fuel is an alternative jet fuel (AJF) showing promise of reducing the dependence on fossil fuel and greenhouse gas emissions. Hydroprocessed esters and fatty acids (HEFA) concept is also known as one of the pathways for producing bio jet fuel. HEFA fuel was approved by the American Society for Testing and Materials in 2011, and can be blended up to 50% with conventional jet fuel. Since then, several HEFA economic and life-cycle assessments have been published in literature. However, there have been limited analyses on feedstock availability, composition, and their impact on hydrocarbon yield (particularly jet blendstock yield)more » and overall process economics. Our study examines over 20 oil feedstocks, their geographic distribution and production levels, oil yield, prices, and chemical composition. The results of our compositional analysis, thus, indicate that most oils contain mainly C16 and C18 fatty acids except pennycress, yellow grease, and mustard, which contain higher values and thus would require hydrocracking to improve jet fuel production. Coconut oil has a large content of shorter carbon fatty acids, making it a good feedstock candidate for renewable gasoline instead of jet substitutes' production. Techno-economic analysis (TEA) was performed for five selected oil feedstocks - camelina, pennycress, jatropha, castor bean, and yellow grease - using the HEFA process concept. The resource analysis indicates that oil crops currently grown in the United States (namely soybean) have relatively low oil yield when compared to oil crops grown in other parts of the world, such as palm, coconut, and jatropha. Also, non-terrestrial oil sources, such as animal fats and greases, have relatively lower prices than terrestrial oil crops. The minimum jet fuel selling price for these five resources ranges between $3.8 and $11.0 per gallon. The results of our TEA and resource studies indicate the key cost drivers for a biorefinery converting oil to jet hydrocarbons are as follows: oil price, conversion plant capacity, fatty acid profile, addition of hydrocracker, and type of hydroprocessing catalysts.« less

  5. Techno-economic and resource analysis of hydroprocessed renewable jet fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Ling; Milbrandt, Anelia; Zhang, Yanan

    Biomass-derived jet fuel is an alternative jet fuel (AJF) showing promise of reducing the dependence on fossil fuel and greenhouse gas emissions. Hydroprocessed esters and fatty acids (HEFA) concept is also known as one of the pathways for producing bio jet fuel. HEFA fuel was approved by the American Society for Testing and Materials in 2011, and can be blended up to 50% with conventional jet fuel. Since then, several HEFA economic and life-cycle assessments have been published in literature. However, there have been limited analyses on feedstock availability, composition, and their impact on hydrocarbon yield (particularly jet blendstock yield)more » and overall process economics. Our study examines over 20 oil feedstocks, their geographic distribution and production levels, oil yield, prices, and chemical composition. The results of our compositional analysis, thus, indicate that most oils contain mainly C16 and C18 fatty acids except pennycress, yellow grease, and mustard, which contain higher values and thus would require hydrocracking to improve jet fuel production. Coconut oil has a large content of shorter carbon fatty acids, making it a good feedstock candidate for renewable gasoline instead of jet substitutes' production. Techno-economic analysis (TEA) was performed for five selected oil feedstocks - camelina, pennycress, jatropha, castor bean, and yellow grease - using the HEFA process concept. The resource analysis indicates that oil crops currently grown in the United States (namely soybean) have relatively low oil yield when compared to oil crops grown in other parts of the world, such as palm, coconut, and jatropha. Also, non-terrestrial oil sources, such as animal fats and greases, have relatively lower prices than terrestrial oil crops. The minimum jet fuel selling price for these five resources ranges between $3.8 and $11.0 per gallon. The results of our TEA and resource studies indicate the key cost drivers for a biorefinery converting oil to jet hydrocarbons are as follows: oil price, conversion plant capacity, fatty acid profile, addition of hydrocracker, and type of hydroprocessing catalysts.« less

  6. Production and fuel characteristics of vegetable oil from oilseed crops in the Pacific Northwest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auld, D.L.; Bettis, B.L.; Peterson, C.L.

    1982-01-01

    The purpose of this research was to evaluate the potential yield and fuel quality of various oilseed crops adapted to the Pacific Northwest as a source of liquid fuel for diesel engines. The seed yield and oil production of three cultivars of winter rape (Brassica napus L.), two cultivars of safflower (Carthamus tinctorius L.) and two cultivars of sunflower (Helianthus annuus L.) were evaluated in replicated plots at Moscow. Additional trials were conducted at several locations in Idaho, Oregon and Washington. Sunflower, oleic and linoleic safflower, and low and high erucic acid rapeseed were evaluated for fatty acid composition, energymore » content, viscosity and engine performance in short term tests. During 20 minute engine tests power output, fuel economy and thermal efficiency were compared to diesel fuel. Winter rape produced over twice as much farm extractable oil as either safflower or sunflower. The winter rape cultivars, Norde and Jet Neuf had oil yields which averaged 1740 and 1540 L/ha, respectively. Vegetable oils contained 94 to 95% of the KJ/L of diesel fuel, but were 11.1 to 17.6 times more viscous. Viscosity of the vegetable oils was closely related to fatty acid chain length and number of unsaturated bonds (R/sup 2/=.99). During short term engine tests all vegetable oils produced power outputs equivalent to diesel, and had thermal efficiencies 1.8 to 2.8% higher than diesel. Based on these results it appears that species and cultivars of oilseed crops to be utilized as a source of fuel should be selected on the basis of oil yield. 1 figure, 5 tables.« less

  7. Anaerobic digestion of glycerol and co-digestion of glycerol and pig manure.

    PubMed

    Nuchdang, Sasikarn; Phalakornkule, Chantaraporn

    2012-06-30

    The potential of glycerol obtained from transesterification of waste cooking oil as a main carbon source for biogas production was investigated. The glycerol was highly contaminated with oils and fats and was pretreated with sulfuric acid. Using a carbon source of glucose as a control, we compared biogas production from the acid-treated glycerol in a synthetic medium and the acid-treated glycerol mixed with pig manure. The anaerobic digestion of acid-treated glycerol with supplement in a synthetic medium was found to be satisfactory at organic loading rates (OLR) between 1.3, 1.6 and 2.6 g chemical oxygen demand (COD) L(-1) d(-1). The maximum methane yield of 0.32 L at Standard temperature and pressure (STP) g(-1) COD removal was achieved at an OLR of 1.6 g COD L(-1) d(-1) and the methane content was 54% on an average. At a higher organic loading rate of 5.4 g COD L(-1) d(-1), the propionic acid to acetic acid ratio was higher than the critical threshold limit for metabolic imbalance. Anaerobic digestion of acid-treated glycerol with pig manure was also investigated at the COD ratio of 80:20 (glycerol:pig manure). The anaerobic digestion of acid-treated glycerol with pig manure was found to be satisfactory at organic loading rates between 1.3, 1.7, 2.9 and 5.0 g COD L(-1) d(-1) in terms of COD reduction (>80%) and methane content of (62% on an average). However, the biogas production rate was found to significantly decrease at the highest load. The maximum methane yield of 0.24 L STP g(-1) COD removal was achieved at an OLR of 1.3 g COD L(-1) d(-1). Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. 46 CFR 148.310 - Seed cake.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... apply to solvent-extracted rape seed meal, pellets, soya bean meal, cotton seed meal, or sunflower seed meal that— (1) Contains a maximum of 4 percent vegetable oil and a maximum of 15 percent vegetable oil... cake. (e) The seed cake must be kept as dry as practical at all times. (f) If the seed cake is solvent...

  9. Effect of nitrogen source on growth and lipid accumulation in Scenedesmus abundans and Chlorella ellipsoidea.

    PubMed

    González-Garcinuño, Álvaro; Tabernero, Antonio; Sánchez-Álvarez, José Ma; Martin Del Valle, Eva M; Galán, Miguel A

    2014-12-01

    Discovering microalgae strains containing a high lipid yield and adequate fatty acid composition is becoming a crucial fact in algae-oil factories. In this study, two unknown strains, named Scenedesmus abundans and Chlorella ellipsoidea, have been tested for their response to different nitrogen sources, in order to determine its influence in the production of lipids. For S. abundans, autotrophic culture with ammonium nitrate offers the maximum lipid yield, obtaining up to 3.55 mg L(-1) d(-1). For C. ellipsoidea, heterotrophic culture with ammonium nitrate has been shown to be the best condition, reaching a lipid production of 9.27 mg L(-1) d(-1). Moreover, fatty acid composition obtained from these cultures meets international biodiesel standards with an important amount of C18:1, achieving 70% of total fatty acids and thus representing a potential use of these two strains at an industrial scale. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Thermogravimetric and kinetic study of Pinyon pine in the various gases.

    PubMed

    Kim, Seung-Soo; Shenoy, Alok; Agblevor, Foster A

    2014-03-01

    As a renewable resource, Pinyon pine can be converted into bio-oil, gas, and char through pyrolysis. It is known that recycling of the non-condensable gases, which are produced by fast pyrolysis, can increase liquid yield and decrease char yield. In this study, pyrolysis characteristics and kinetics of Pinyon pine were investigated in TGA using simulated non-condensable gases (N2, H2/N2, H2/CO2, and He/CO/H2). The apparent activation energy of Pinyon pine increased from 43.9 to 160.3kJ mol(-1) with increasing pyrolysis conversion from 5% to 95% in pure nitrogen, and reaction order was 1.35. When hydrogen (H2) and carbon monoxide (CO) mixtures were used as simulated gases, the maximum degradation temperature and activation energy decreased by 4-11°C and 6.1-10.2kJ/mol, respectively. The results show that recycling of non-condensable gases could positively influence the fast pyrolysis of biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Slicing of silicon into sheet material: Silicon sheet growth development for the large area silicon sheet task of the Low Cost Silicon Solar Array project

    NASA Technical Reports Server (NTRS)

    Fleming, J. R.

    1978-01-01

    The limits of blade tolerance were defined. The standard blades are T-2 thickness tolerance. Good results were obtained by using a slurry fluid consisting of mineral oil and a lubricity additive. Adjustments of the formulation and fine tuning of the cutting process with the new fluid are necessary. Test results and consultation indicate that the blade breakage encountered with water based slurries is unavoidable. Two full capacity (974 wafer) runs were made on the large prototype saw. Both runs resulted in extremely low yield. However, the reasons for the low yield were lack of proper technique rather than problems with machine function. The test on the effect of amount of material etched off of an as-sawn wafer on solar cell efficiency were completed. The results agree with previous work at JPL in that the minimum material removed per side that gives maximum efficiency is on the order of 10 microns.

  12. Influence of Phenological Stages on Yield and Quality of Oregano (Origanum vulgare L.) Under the Agroclimatic Condition of Doon Valley (Uttarakhand)

    PubMed Central

    Chauhan, N. K.; Singh, S.; Haider, S. Z.; Lohani, H.

    2013-01-01

    A field experiment was conducted under the agroclimatic conditions of Doon valley, in order to determine the effects of phenological stages on herbage yield and quality of oil in oregano (Origanum vulgare L.). Plants were harvested in five phenological stages, i.e. early vegetative, late vegetative, flower initiation, full bloom, and fruit set stages. Results showed the significant effects of phenological stages on herbage, yield, and quality of oregano. Harvesting at full bloom stage showed better results in terms of herbage and oil yield. The quality of essential oil was evaluated using GC and GC/MS. Thymol content was rich in all the stages (46.90-62.26%) followed by γ-terpinene (1.11-11.75%) and p-cymene (3.11-5.32%). PMID:24302806

  13. Manufacturing vegetable oil based biodiesel: An engineering management perspective

    USDA-ARS?s Scientific Manuscript database

    According to the USDA, 6.45 million tons of cottonseed was produced in 2007. Each ton will yield approximately 44 to 46 gallons unrefined oil. Cottonseed oil bio-diesel could have the potential to create a more competitive oil market for oil mills. The proposed cost model is based on an existing cot...

  14. Activity antifungal of the essential oils; aqueous and ethanol extracts from Citrus aurantium L.

    PubMed

    Metoui, N; Gargouri, S; Amri, I; Fezzani, T; Jamoussi, B; Hamrouni, L

    2015-01-01

    Our study is about the essential oil of Citrus aurantium L. in Tunisia and its plant extract. The yield of this essential oil is 0, 56% but the yield of the extract of plant was 17.1% for the aqueous extract ant 18.3% for the ethanolic extract. The analysis of chemical composition by using GC and GC/MS showed the essential oil of C. aurantium L. species to be rich in monoterpenes such as α-terpineol, lianolyl acetate, linalool and limonene. The antifungal activity of this oil showed us an inhibition of the germination of mushrooms, in the same way we could note that the biologic activities are generally assigned to the chemotypes high content in oxygenated monoterpene.

  15. Phase separation of bio-oil produced by co-pyrolysis of corn cobs and polypropylene

    NASA Astrophysics Data System (ADS)

    Supramono, D.; Julianto; Haqqyana; Setiadi, H.; Nasikin, M.

    2017-11-01

    In co-pyrolysis of biomass-plastics, bio-oil produced contains both oxygenated and non-oxygenated compounds. High oxygen composition is responsible for instability and low heating value of bio-oil and high acid content for corrosiveness. Aims of the present work are to evaluate possibilities of achieving phase separation between oxygenated and non-oxygenated compounds in bio-oil using a proposed stirred tank reactor and to achieve synergistic effects on bio-oil yield and non-oxygenated compound layer yield. Separation of bio-oil into two layers, i.e. that containing oxygenated compounds (polar phase) and non-oxygenated compounds (non-polar phase) is important to obtain pure non-polar phase ready for the next processing of hydrogenation and used directly as bio-fuel. There has been no research work on co-pyrolysis of biomass-plastic considering possibility of phase separation of bio-oil. The present work is proposing a stirred tank reactor for co-pyrolysis with nitrogen injection, which is capable of tailoring co-pyrolysis conditions leading to low viscosity and viscosity asymmetry, which induce phase separation between polar phase and non-polar phase. The proposed reactor is capable of generating synergistic effect on bio-oil and non-polar yields as the composition of PP in feed is more than 25% weight in which non-polar layers contain only alkanes, alkenes, cycloalkanes and cycloalkenes.

  16. Fractional conversion of microalgae from water blooms.

    PubMed

    Zhou, Yingdong; Li, Linling; Zhang, Rui; Hu, Changwei

    2017-09-21

    Fractional conversion of natural algae cyanobacteria from Taihu Lake was conducted. The raw Taihu Lake algae (TLA) and pretreated samples were pyrolyzed at 290 °C and 450 °C according to the TGA results. Extraction of lipids or saccharides from the TLA was performed as a pretreatment to obtain lipid extracted algae (LEA) or saccharide extracted algae (SEA). The total yields of bio-oil from fractional pyrolysis were 40.9 wt% from TLA, 42.3 wt% from LEA, and 48.5 wt% from SEA. From TLA, the major components of the bio-oil were fatty acids, amides and hydrocarbons (heptadecane) at 290 °C whereas those at 450 °C were phenols and C 10 -C 15 hydrocarbons. Following the lipid extraction, acids, amides and indoles accounted for a large proportion at 290 °C, while the main products obtained at 450 °C were phenols, indoles and pyrroles. It is worth mentioning that the yield of bio-oil from the LEA had increased, and the composition of the bio-oil was simplified. Moreover, the average molecular weight of the bio-oil obtained from LEA had decreased. Interestingly, the extraction of saccharides inhibited pyrolysis of the lipids, so the distribution of the bio-oil from SEA changed only a little. Fractional pyrolysis of pretreated microalgae not only increased the bio-oil yield but also improved the quality of the bio-oil.

  17. Ozone dose-response relationships for spring oilseed rape and broccoli

    NASA Astrophysics Data System (ADS)

    De Bock, Maarten; Op de Beeck, Maarten; De Temmerman, Ludwig; Guisez, Yves; Ceulemans, Reinhart; Vandermeiren, Karine

    2011-03-01

    Tropospheric ozone is an important air pollutant with known detrimental effects for several crops. Ozone effects on seed yield, oil percentage, oil yield and 1000 seed weight were examined for spring oilseed rape ( Brassica napus cv. Ability). For broccoli ( Brassica oleracea L. cv. Italica cv. Monaco) the effects on fresh marketable weight and total dry weight were studied. Current ozone levels were compared with an increase of 20 and 40 ppb during 8 h per day, over the entire growing season. Oilseed rape seed yield was negatively correlated with ozone dose indices calculated from emergence until harvest. This resulted in an R2 of 0.24 and 0.26 ( p < 0.001) for the accumulated hourly O 3 exposure over a threshold of 40 ppb (AOT40) and the phytotoxic ozone dose above a threshold of 6 nmol m -2 s -1 (POD 6) respectively. Estimated critical levels, above which 5% yield reduction is expected, were 3.7 ppm h and 4.4 mmol m -2 respectively. Our results also confirm that a threshold value of 6 nmol s -1 m -2 projected leaf area, as recommended for agricultural crops (UNECE, Mills, 2004), can indeed be applied for spring oilseed rape. The reduction of oilseed rape yield showed the highest correlation with the ozone uptake during the vegetative growth stage: when only the first 47 days after emergence were used to calculate POD 6, R2 values increased up to 0.476 or even 0.545 when the first 23 days were excluded. The highest ozone treatments, corresponding to the future ambient level by 2100 (IPCC, Meehl et al., 2007), led to a reduction of approximately 30% in oilseed rape seed yield in comparison to the current ozone concentrations. Oil percentage was also significantly reduced in response to ozone ( p < 0.001). As a consequence oil yield was even more severely affected by elevated ozone exposure compared to seed yield: critical levels for oil yield dropped to 3.2 ppm h and 3.9 mmol m -2. For broccoli the applied ozone doses had no effect on yield.

  18. Starch-Soybean Oil Composites with High Oil: Starch Ratios Prepared by Steam Jet Cooking

    USDA-ARS?s Scientific Manuscript database

    Aqueous mixtures of soybean oil and starch were jet cooked at oil:starch ratios ranging from 0.5:1 to 4:1 to yield dispersions of micron-sized oil droplets that were coated with a thin layer of starch at the oil-water interface. The jet cooked dispersions were then centrifuged at 2060 and 10,800 x ...

  19. Optimising the operational parameters of a spherical steriliser for the treatment of oil palm fresh fruit bunch

    NASA Astrophysics Data System (ADS)

    Kumaradevan, D.; Chuah, K. H.; Moey, L. K.; Mohan, V.; Wan, W. T.

    2015-09-01

    The extraction of crude palm oil (CPO) begins with the sterilization of oil palm fresh fruit bunch (FFB) in a pressurized, saturated-steam chamber. Sterilization loosens the palm fruits from the stalks and deactivates the free fatty acid (FFA)-producing enzymes. Operational parameters affecting the quality and yield of CPO from an industrial spherical sterilizer are studied at a palm oil mill. The factors are the ripeness of FFB, the number of days before treatment of FFB, and the number of pressure peaks applied in the sterilization process. The results indicate that the degree of ripeness of FFB is the most important parameter affecting the quality and yield of CPO. Ripeness is graded based on the fruits’ colour and the presence of loose fruits. Over ripe FFB that goes for the sterilization process has higher FFA content in CPO and more oil loss to the condensate chamber. The spontaneous reaction on FFB due to accumulation at the loading ramp also gives rise to higher FFA content. Oil loss to condensate chamber is reduced using a two-peak sterilization technique for over ripe FFB; the peak refers to the pressure level of stream after a flushing and refilling cycle. Overall, the generated solution improves the quality and yield of the palm oil mill.

  20. The role of ants, birds and bats for ecosystem functions and yield in oil palm plantations.

    PubMed

    Denmead, Lisa H; Darras, Kevin; Clough, Yann; Diaz, Patrick; Grass, Ingo; Hoffmann, Munir P; Nurdiansyah, Fuad; Fardiansah, Rico; Tscharntke, Teja

    2017-07-01

    One of the world's most important and rapidly expanding crops, oil palm, is associated with low levels of biodiversity. Changes in predator communities might alter ecosystem services and subsequently sustainable management but these links have received little attention to date. Here, for the first time, we manipulated ant and flying vertebrate (birds and bats) access to oil palms in six smallholder plantations in Sumatra (Indonesia) and measured effects on arthropod communities, related ecosystem functions (herbivory, predation, decomposition and pollination) and crop yield. Arthropod predators increased in response to reductions in ant and bird access, but the overall effect of experimental manipulations on ecosystem functions was minimal. Similarly, effects on yield were not significant. We conclude that ecosystem functions and productivity in oil palm are, under current levels of low pest pressure and large pollinator populations, robust to large reductions of major predators. © 2017 by the Ecological Society of America.

  1. Ultrasonic-assisted extraction of essential oil from Botryophora geniculate using different extracting solvents

    NASA Astrophysics Data System (ADS)

    Habibullah, Wilfred, Cecilia Devi

    2016-11-01

    This study compares the performance of ionic liquids to substitute conventional solvents (hexane, dichloromethane and methanol) to extract essential oil from Botryophora geniculate plant. Two different Ionic liquids ([C3MIM][Ac], [C4MIM][Ac]) with co-solvent diethyl ether were used in the ultrasonic-assisted extraction. The effect of various experimental conditions such as time, temperature and solvent were studied. Gas chromatography-mass spectroscopy (GC-MS) was used to analyze essential oils. The results showed that in ultrasonic-assisted extraction using ionic liquids as a solvent gave highest yield (9.5%) in 30 min at temperature 70°C. When using ultrasonic bath with hexane, dichloromethane and methanol, yields was (3.34%), (3.6%) and (3.81%) at 90 min, respectively were obtained. The ultrasonic-assisted extraction under optimal extraction conditions (time 30 min, temperature of 70°C) gave the best yield for the essential oil extraction.

  2. ESolvent-free, enzyme-catalyzed biodiesel production from mango, neem, and shea oils via response surface methodology.

    PubMed

    Nde, Divine Bup; Astete, Carlos; Boldor, Dorin

    2015-12-01

    Mango, neem and shea kernels produce non-conventional oils whose potentials are not fully exploited. To give an added value to these oils, they were transesterified into biodiesel in a solvent-free system using immobilized enzyme lipozyme from Mucor miehei. The Doehlert experimental design was used to evaluate the methyl ester (ME) yields as influenced by enzyme concentration-EC, temperature-T, added water content-AWC, and reaction time-RT. Biodiesel yields were quantified by (1)H NMR spectroscopy and subsequently modeled by a second order polynomial equation with interactions. Lipozyme enzymes were more tolerant to high temperatures in neem and shea oils reaction media compared to that of mango oil. The optimum reaction conditions EC, T, AWC, and RT assuring near complete conversion were as follows: mango oil 7.25 %, 36.6 °C, 10.9 %, 36.4 h; neem oil EC = 7.19 %, T = 45.7 °C, AWC = 8.43 %, RT = 25.08 h; and shea oil EC = 4.43 %, T = 45.65 °C, AWC = 6.21 % and RT = 25.08 h. Validation experiments of these optimum conditions gave ME yields of 98.1 ± 1.0, 98.5 ± 1.6 and 99.3 ± 0.4 % for mango, neem and shea oils, respectively, which all met ASTM biodiesel standards.

  3. Cosuppression of limonene-3-hydroxylase in peppermint promotes accumulation of limonene in the essential oil.

    PubMed

    Mahmoud, Soheil S; Williams, Matthew; Croteau, Rodney

    2004-03-01

    cDNA clones encoding limonene synthase and limonene-3-hydroxylase, both driven by the CaMV 35S promoter, were independently transformed into peppermint (Menthaxpiperita) to alter the production and disposition of (-)-limonene, the first committed intermediate of essential oil biosynthesis in this species. Although both genes were constitutively expressed in leaves of transformed plants, the corresponding enzyme activities were not significantly increased in the glandular trichome sites of essential oil biosynthesis; thus, there was no effect on oil yield or composition in the regenerated plants. Cosuppression of the hydroxylase gene, however, resulted in the accumulation of limonene (up to 80% of the essential oil compared to about 2% of the oil in wild type plants), without influence on oil yield. These results indicate that limonene does not impose negative feedback on the synthase, or apparently influence other enzymes of monoterpene biosynthesis in peppermint, and suggests that pathway engineering can be employed to significantly alter essential oil composition without adverse metabolic consequences.

  4. A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed.

    PubMed

    Kim, Sung Won; Koo, Bon Seok; Lee, Dong Hyun

    2014-06-01

    The pyrolysis of Scenedesmus sp. and Jatropha seedshell cake (JSC) was investigated under similar operating condition in a fluidized bed reactor for comparison of pyrolytic behaviors from different species of lipids-containing biomass. Microalgae showed a narrower main peak in differential thermogravimetric curve compared to JSC due to different constituents. Pyrolysis liquid yields were similar; liquid's oil proportion of microalgae is higher than JSC. Microalgae bio-oil was characterized by similar carbon and hydrogen contents and higher H/C and O/C molar ratios compared to JSC due to compositional difference. The pyrolytic oils from microalgae and JSC contained more oxygen and nitrogen and less sulfur than petroleum and palm oils. The pyrolytic oils showed high yields of fatty oxygenates and nitrogenous compounds. The microalgae bio-oil features in high concentrations of aliphatic compounds, fatty acid alkyl ester, alcohols and nitriles. Microalgae showed potentials for alternative feedstock for green diesel, and commodity and valuable chemicals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Comparative evaluation of chemical and enzymatic saccharification of mixotrophically grown de-oiled microalgal biomass for reducing sugar production.

    PubMed

    Pancha, Imran; Chokshi, Kaumeel; Maurya, Rahulkumar; Bhattacharya, Sourish; Bachani, Pooja; Mishra, Sandhya

    2016-03-01

    For the commercialization of microalgal based biofuels, utilization of de-oiled carbohydrate rich biomass is important. In the present study, chemo-enzymatic hydrolysis of mixotrophically grown Scenedesmus sp. CCNM 1077 de-oiled biomass is evaluated. Among the chemical hydrolysis, use of 0.5M HCl for 45 min at 121°C resulted in highest saccharification yield of 37.87% w/w of de-oiled biomass. However, enzymatic hydrolysis using Viscozyme L at loading rate of 20 FBGU/g of de-oiled biomass, pH 5.5 and temperature 45°C for 72 h resulted in saccharification yield of 43.44% w/w of de-oiled biomass. Further, 78% ethanol production efficiency was achieved with enzymatically hydrolyzed de-oiled biomass using yeast Saccharomyces cerevisiae ATCC 6793. These findings of the present study show application of mixotrophically grown de-oiled biomass of Scenedesmus sp. CCNM 1077 as promising feedstock for bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Performance, blood parameters and meat yield in broiler chickens supplemented with Mexican oregano oil

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to evaluate the inclusion of Mexican oregano oil (MOO) Lippia berlandieri Schauer in broiler diets during grow-out on performance, blood parameters, and meat yield. One hundred and sixty-two one-day-old broilers, randomly divided into three equal groups (treatments): CON =...

  7. Transesterification of Waste Olive Oil by "Candida" Lipase

    ERIC Educational Resources Information Center

    Shen, Xiangping; Vasudevan, Palligarnai T.

    2008-01-01

    Biodiesel was produced by transesterification of waste olive oil with methanol and Novozym [R] 435. The effect of the molar ratio of methanol to triolein, mode of methanol addition, reaction temperature, and mixing speed on biodiesel yield was determined. The effect of different acyl acceptors and/or solvents on biodiesel yield was also evaluated.…

  8. Oil palm natural diversity and the potential for yield improvement

    PubMed Central

    Barcelos, Edson; Rios, Sara de Almeida; Cunha, Raimundo N. V.; Lopes, Ricardo; Motoike, Sérgio Y.; Babiychuk, Elena; Skirycz, Aleksandra; Kushnir, Sergei

    2015-01-01

    African oil palm has the highest productivity amongst cultivated oleaginous crops. Species can constitute a single crop capable to fulfill the growing global demand for vegetable oils, which is estimated to reach 240 million tons by 2050. Two types of vegetable oil are extracted from the palm fruit on commercial scale. The crude palm oil and kernel palm oil have different fatty acid profiles, which increases versatility of the crop in industrial applications. Plantations of the current varieties have economic life-span around 25–30 years and produce fruits around the year. Thus, predictable annual palm oil supply enables marketing plans and adjustments in line with the economic forecasts. Oil palm cultivation is one of the most profitable land uses in the humid tropics. Oil palm fruits are the richest plant source of pro-vitamin A and vitamin E. Hence, crop both alleviates poverty, and could provide a simple practical solution to eliminate global pro-vitamin A deficiency. Oil palm is a perennial, evergreen tree adapted to cultivation in biodiversity rich equatorial land areas. The growing demand for the palm oil threatens the future of the rain forests and has a large negative impact on biodiversity. Plant science faces three major challenges to make oil palm the key element of building the future sustainable world. The global average yield of 3.5 tons of oil per hectare (t) should be raised to the full yield potential estimated at 11–18t. The tree architecture must be changed to lower labor intensity and improve mechanization of the harvest. Oil composition should be tailored to the evolving needs of the food, oleochemical and fuel industries. The release of the oil palm reference genome sequence in 2013 was the key step toward this goal. The molecular bases of agronomically important traits can be and are beginning to be understood at the single base pair resolution, enabling gene-centered breeding and engineering of this remarkable crop. PMID:25870604

  9. Oil palm natural diversity and the potential for yield improvement.

    PubMed

    Barcelos, Edson; Rios, Sara de Almeida; Cunha, Raimundo N V; Lopes, Ricardo; Motoike, Sérgio Y; Babiychuk, Elena; Skirycz, Aleksandra; Kushnir, Sergei

    2015-01-01

    African oil palm has the highest productivity amongst cultivated oleaginous crops. Species can constitute a single crop capable to fulfill the growing global demand for vegetable oils, which is estimated to reach 240 million tons by 2050. Two types of vegetable oil are extracted from the palm fruit on commercial scale. The crude palm oil and kernel palm oil have different fatty acid profiles, which increases versatility of the crop in industrial applications. Plantations of the current varieties have economic life-span around 25-30 years and produce fruits around the year. Thus, predictable annual palm oil supply enables marketing plans and adjustments in line with the economic forecasts. Oil palm cultivation is one of the most profitable land uses in the humid tropics. Oil palm fruits are the richest plant source of pro-vitamin A and vitamin E. Hence, crop both alleviates poverty, and could provide a simple practical solution to eliminate global pro-vitamin A deficiency. Oil palm is a perennial, evergreen tree adapted to cultivation in biodiversity rich equatorial land areas. The growing demand for the palm oil threatens the future of the rain forests and has a large negative impact on biodiversity. Plant science faces three major challenges to make oil palm the key element of building the future sustainable world. The global average yield of 3.5 tons of oil per hectare (t) should be raised to the full yield potential estimated at 11-18t. The tree architecture must be changed to lower labor intensity and improve mechanization of the harvest. Oil composition should be tailored to the evolving needs of the food, oleochemical and fuel industries. The release of the oil palm reference genome sequence in 2013 was the key step toward this goal. The molecular bases of agronomically important traits can be and are beginning to be understood at the single base pair resolution, enabling gene-centered breeding and engineering of this remarkable crop.

  10. Effect of filter media size, mass flow rate and filtration stage number in a moving-bed granular filter on the yield and properties of bio-oil from fast pyrolysis of biomass.

    PubMed

    Paenpong, Chaturong; Inthidech, Sudsakorn; Pattiya, Adisak

    2013-07-01

    Fast pyrolysis of cassava rhizome was performed in a bench-scale fluidised-bed reactor unit incorporated with a cross-flow moving-bed granular filter. The objective of this research was to examine several process parameters including the granular size (425-1160 μm) and mass flow rate (0-12 g/min) as well as the number of the filtration stages (1-2 stages) on yields and properties of bio-oil. The results showed that the bio-oil yield decreased from 57.7 wt.% to 42.0-49.2 wt.% when increasing the filter media size, the mass flow rate and the filtration stage number. The effect of the process parameters on various properties of bio-oil is thoroughly discussed. In general, the bio-oil quality in terms of the solids content, ash content, initial viscosity, viscosity change and ageing rate could be enhanced by the hot vapour granular filtration. Therefore, bio-oil of high stability could be produced by the pyrolysis reactor configuration designed in this work. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Characterization of asphaltene molecular structures by cracking under hydrogenation conditions and prediction of the viscosity reduction from visbreaking of heavy oils

    NASA Astrophysics Data System (ADS)

    Rueda Velasquez, Rosa Imelda

    The chemical building blocks that comprise petroleum asphaltenes were determined by cracking samples under conditions that minimized alterations to aromatic and cycloalkyl groups. Hydrogenation conditions that used tetralin as hydrogen-donor solvent, with an iron-based catalyst, allowed asphaltenes from different geological regions to yield 50-60 wt% of distillates (<538°C fraction), with coke yields below 10 wt%. Control experiments with phenanthrene and 5alpha-cholestane confirmed low hydrogenation catalytic activity, and preservation of the cycloalkyl structures. Quantitative recovery of cracking products and characterization of the distillates, by gas chromatography-field ionization--time of flight high resolution mass spectrometry, displayed remarkable similarity in molecular composition for the different asphaltenes. Paraffins and 1-3 ring aromatics were the most abundant building blocks. The diversity of molecules identified, and the high yield of paraffins were consistent with high heterogeneity and complexity of molecules, built up by smaller fragments attached to each other by bridges. The sum of material remaining as vacuum residue and coke was in the range of 35-45 wt%; this total represents the maximum amount of large clusters in asphaltenes that could not be converted to lighter compounds under the evaluated cracking conditions. These analytical data for Cold Lake asphaltenes were transformed into probability density functions that described the molecular weight distributions of the building blocks. These distributions were input for a Monte Carlo approach that allowed stochastic construction of asphaltenes and simulation of their cracking reactions to examine differences in the distributions of products associated to the molecular topology. The construction algorithm evidenced that a significant amount of asphaltenes would consist of 3-5 building blocks. The results did not show significant differences between linear and dendritic molecular architectures, but suggested that dendritic molecules would experience slower reaction rates as they required more breakages to reach a given yield of distillates. Thermal cracking of asphaltenes in heavy oils and bitumens can dramatically reduce viscosity, enabling pipeline transportation with less solvent addition. The viscosities of the products from visbreaking reactions of two different heavy oils were modeled with lumped kinetics based on boiling point pseudo-components, and with the estimation of their individual fluid properties. The model was tuned with experimental viscosity data, and provided estimations of viscosities at different temperatures with absolute average deviations lower than 31%.

  12. 50 CFR 648.20 - Maximum optimum yield (OYs).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Maximum optimum yield (OYs). 648.20 Section 648.20 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Measures for the Atlantic Mackerel, Squid, and Butterfish Fisheries § 648.20 Maximum optimum yield (OYs...

  13. Application of fluorescence and PARAFAC to assess vertical distribution of subsurface hydrocarbons and dispersant during the Deepwater Horizon oil spill.

    PubMed

    Mendoza, Wilson G; Riemer, Daniel D; Zika, Rod G

    2013-05-01

    We evaluated the use of excitation and emission matrix (EEM) fluorescence and parallel factorial analysis (PARAFAC) modeling techniques for monitoring crude oil components in the water column. Four of the seven derived PARAFAC loadings were associated with the Macondo crude oil components. The other three components were associated with the dispersant, an unresolved component and colored dissolved organic matter (CDOM). The fluorescence of the associated benzene and naphthalene-like components of crude oil exhibited a maximum at ∼1200 m. The maximum fluorescence of the component associated with the dispersant (i.e., Corexit EC9500A) was observed at the same depth. The plume observed at this depth was attributed to the dispersed crude oil from the Deepwater Horizon oil spill. Results demonstrate the application of EEM and PARAFAC to simultaneously monitor selected PAH, dispersant-containing and humic-like fluorescence components in the oil spill region in the Gulf of Mexico.

  14. The Optimal Forest Rotation: A Discussion and Annotated Bibliography

    Treesearch

    David H. Newman

    1988-01-01

    The literature contains six different criteria of the optimal forest rotation: (1) maximum single-rotation physical yield, (2) maximum single-rotation annual yield, (3) maximum single-rotation discounted net revenues, (4) maximum discounted net revenues from an infinite series of rotations, (5) maximum annual net revenues, and (6) maximum internal rate of return. First...

  15. Enhanced yield of phenolic extracts from banana peels (Musa acuminata Colla AAA) and cinnamon barks (Cinnamomum varum) and their antioxidative potentials in fish oil.

    PubMed

    Anal, Anil Kumar; Jaisanti, Sirorat; Noomhorm, Athapol

    2014-10-01

    The bioactive compounds of banana peels and cinnamon barks were extracted by vacuum microwave and ultrasonic-assisted extraction methods at pre-determined temperatures and times. These methods enhance the yield extracts in shorter time. The highest yields of both extracts were obtained from the conditions which employed the highest temperature and the longest time. The extracts' yield from cinnamon bark method was higher by ultrasonic than vacuum microwave method, while vacuum microwave method gave higher extraction yield from banana peel than ultrasonic method. The phenolic contents of cinnamon bark and banana peel extracts were 467 and 35 mg gallic acid equivalent/g extract, respectively. The flavonoid content found in banana peel and cinnamon bark extracts were 196 and 428 mg/g quercetin equivalent, respectively. In addition, it was found that cinnamon bark gave higher 2,2-Diphenyl-1-1 picryhydrazyl (DPPH) radical scavenging activity and total antioxidant activity (TAA). The antioxidant activity of the extracts was analyzed by measuring the peroxide and p-anisidine values after oxidation of fish oils, stored for a month (30 days) at 25 °C and showed lesser peroxide and p-anisidine values in the fish oils containing the sample extracts in comparison to the fish oil without containing any extract. The banana peel and cinnamon extracts had shown the ability as antioxidants to prevent the oxidation of fish oil and might be considered as rich sources of natural antioxidant.

  16. Characterization of Chemically and Thermally Treated Oil-in-Water Heteroaggregates and Comparison to Conventional Emulsions.

    PubMed

    Maier, Christiane; Reichert, Corina L; Weiss, Jochen

    2016-10-01

    Heteroaggregated oil-in-water (O/W) emulsions formed by targeted combination of oppositely charged emulsion droplets were proposed to be used for the modulation of physical properties of food systems, ideally achieving the formation of a particulate 3-dimensional network at comparably low-fat content. In this study, rheological properties of Quillaja saponins (QS), sugar beet pectin (SBP), and whey protein isolate (WPI) stabilized conventional and heteroaggregated O/W emulsions at oil contents of 10% to 60% (w/w) were investigated. Selected systems having an oil content of 30% (w/w) and different particle sizes (d 43 ≤ 1.1 or ≥16.7 μm) were additionally subjected to chemical (genipin or glutaraldehyde) and thermal treatments, aiming to increase network stability. Subsequently, their rheological properties and stability were assessed. Yield stresses (τ 0 ) of both conventional and heteroaggregated O/W emulsions were found to depend on emulsifier type, oil content, and initial droplet size. For conventional emulsions, high yield stresses were only observed for SBP-based emulsions (τ 0 , SBP approximately 157 Pa). Highest yield stresses of heteroaggregates were observed when using small droplets stabilized by SBP/WPI (approximately 15.4 Pa), being higher than those of QS/WPI (approximately 1.6 Pa). Subsequent treatments led to significant alterations in rheological properties for SBP/WPI systems, with yield stresses increasing 29-fold (glutaraldehyde) and 2-fold (thermal treatment) compared to untreated heteroaggregates, thereby surpassing yield stresses of similarly treated conventional SBP emulsions. Genipin-driven treatments proved to be ineffective. Results should be of interest to food manufacturers wishing to design viscoelastic food emulsion based systems at lower oil droplet contents. © 2016 Institute of Food Technologists®.

  17. Hydrothermal liquefaction pathways for low-nitrogen biocrude from wet algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanzella, Francis; Lim, Jin-Ping

    Our SRI International (SRI) team has developed a new two-step hydrothermal liquefaction (HTL) process to convert wet algal biomass into biocrude oil. The first step in the process (low-temperature HTL or HTL1) yields crude oil but, most importantly, it selectively dissolves nitrogen-containing compounds in the aqueous phase. Once the oil and the aqueous phase are separated, the low-nitrogen soft solids left behind can be taken to the second step (high-temperature HTL or HTL2) for full conversion to biocrude. HTL2 will hence yield low-nitrogen biocrude, which can be hydro-processed to yield transportation fuels. The expected high carbon yield and low nitrogenmore » content can lead to a transportation fuel from algae that avoids two problems common to existing algae-to-fuel processes: (1) poisoning of the hydro-processing catalyst; and (2) inefficient conversion of algae-to-liquid fuels. The process we studied would yield a new route to strategic energy production from domestic sources.« less

  18. Diversity of plant oil seed-associated fungi isolated from seven oil-bearing seeds and their potential for the production of lipolytic enzymes.

    PubMed

    Venkatesagowda, Balaji; Ponugupaty, Ebenezer; Barbosa, Aneli M; Dekker, Robert F H

    2012-01-01

    Commercial oil-yielding seeds (castor, coconut, neem, peanut, pongamia, rubber and sesame) were collected from different places in the state of Tamil Nadu (India) from which 1279 endophytic fungi were isolated. The oil-bearing seeds exhibited rich fungal diversity. High Shannon-Index H' was observed with pongamia seeds (2.847) while a low Index occurred for coconut kernel-associated mycoflora (1.018). Maximum Colonization Frequency (%) was observed for Lasiodiplodia theobromae (176). Dominance Index (expressed in terms of the Simpson's Index D) was high (0.581) for coconut kernel-associated fungi, and low for pongamia seed-borne fungi. Species Richness (Chao) of the fungal isolates was high (47.09) in the case of neem seeds, and low (16.6) for peanut seeds. All 1279 fungal isolates were screened for lipolytic activity employing a zymogram method using Tween-20 in agar. Forty isolates showed strong lipolytic activity, and were morphologically identified as belonging to 19 taxa (Alternaria, Aspergillus, Chalaropsis, Cladosporium, Colletotrichum, Curvularia, Drechslera, Fusarium, Lasiodiplodia, Mucor, Penicillium, Pestalotiopsis, Phoma, Phomopsis, Phyllosticta, Rhizopus, Sclerotinia, Stachybotrys and Trichoderma). These isolates also exhibited amylolytic, proteolytic and cellulolytic activities. Five fungal isolates (Aspergillus niger, Chalaropsis thielavioides, Colletotrichum gloeosporioides, Lasiodiplodia theobromae and Phoma glomerata) exhibited highest lipase activities, and the best producer was Lasiodiplodia theobromae (108 U/mL), which was characterized by genomic sequence analysis of the ITS region of 18S rDNA.

  19. Response surface methodology assisted biodiesel production from waste cooking oil using encapsulated mixed enzyme.

    PubMed

    Razack, Sirajunnisa Abdul; Duraiarasan, Surendhiran

    2016-01-01

    In the recent scenario, consumption of petroleum fuels has increased to greater height which has led to deforestation and decline in fossil fuels. In order to tackle the perilous situation, alternative fuel has to be generated. Biofuels play a vital role in substituting the diesel fuels as they are renewable and ecofriendly. Biodiesel, often referred to as green fuel, could be a potential replacement as it could be synthesized from varied substrates, advantageous being the microalgae in several ways. The present investigation was dealt with the interesterification of waste cooking oil using immobilised lipase from mixed cultures for biodiesel production. In order to standardize the production for a scale up process, the parameters necessary for interesterification had been optimized using the statistical tool, Central Composite Design - Response Surface Methodology. The optimal conditions required to generate biodiesel were 2 g enzyme load, 1:12 oil to methyl acetate ratio, 60 h reaction time and 35 °C temperature, yielding a maximum of 93.61% biodiesel. The immobilised lipase beads remain stable without any changes in their function and structure even after 20 cycles which made this study, less cost intensive. In conclusion, the study revealed that the cooking oil, a residue of many dining centers, left as waste product, can be used as a potential raw material for the production of ecofriendly and cost effective biofuel, the biodiesel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Synthesis, characterization and application of lipase-conjugated citric acid-coated magnetic nanoparticles for ester synthesis using waste frying oil.

    PubMed

    Patel, Unisha; Chauhan, Kishor; Gupte, Shilpa

    2018-04-01

    In the present work, magnetic nanoparticles (MNPs) were prepared by chemical precipitation of trivalent and divalent iron ions which were functionalized using citric acid. The bacterial isolate Staphylococcus epidermidis KX781317 was isolated from oil-contaminated site. The isolate produced lipase, which was purified and immobilized on magnetic nanoparticles (MNPs) for ester synthesis from waste frying oil (WFO). The characterization of MNPs employed conventional TEM, XRD and FTIR techniques. TEM analysis of MNPs showed the particle size in the range of 20-50 nm. FTIR spectra revealed the binding of citric acid to Fe 3 O 4 and lipase on citric acid-coated MNPs. The citric acid-coated MNPs and lipase-conjugated citric acid-coated MNPs had similar XRD patterns which indicate MNPs could preserve their magnetic properties. The maximum immobilization efficiency 98.21% of lipase-containing citric acid-coated MNPs was observed at ratio 10:1 of Cit-MNPs:lipase. The pH and temperature optima for lipase conjugated with Cit-MNPs were 7 and 35 °C, respectively. Isobutanol was found to be an effective solvent for ester synthesis and 1:2 ratio of oil:alcohol observed significant for ester formation. The ester formation was determined using TLC and the % yield of ester conversion was calculated. The rate of ester formation is directly proportional to the enzyme load. Formed esters were identified as isobutyl laurate ester and isobutyl myristate ester through GC-MS analysis.

  1. Hydrodistillation time affects dill seed essential oil yield, composition, and bioactivity

    USDA-ARS?s Scientific Manuscript database

    Dill (Anethum graveolens L.) essential oil is widely used by the food and pharmaceutical industries. We hypothesized that the chemical constituents of dill seed essential oil are eluted at different times during the hydrodistillation process, resulting in oils with different composition and bioactiv...

  2. Optimization of Ultrasonic-Microwave Synergistic Extraction of Ricinine from Castor Cake by Response Surface Methodology.

    PubMed

    Xu, Wei; Yan, Xiuhua; Shao, Rong; Chen, Ligen; Ke, Zengguang

    Castor cake is the residue in castor oil production in which many active components exist and the major one among them is ricinine. In this study, optimization of extraction of ricinine from castor cake using ultrasonic-microwave synergistic extraction (UMSE) was investigated to obtain high yield and purity by Box-Behnken design (BBD) response surface design. The optimal conditions of extraction were: ultrasound power 342 W, extracting time 5 min, microwave power 395 W, and non-significant factor of liquid/solid ratio 1:10. The crude extraction was recrystallized from ethanol. As a result, the maximum yield of ricinine was approximately 67.52%. The purity of ricinine was 99.39% which was determined by high performance liquid chromatography (HPLC). Additionally, the structure of purified ricinine was identified by fourier transforms infrared (FTIR) and liquid chromatography-mass spectrometry (LC-MS). Scanning electron microscope (SEM) was used to characterize the prismatic crystals morphology of ricinine. Results demonstrated that the present method combined the advantages of ultrasonic extraction and microwave extraction, which is time-saving with high extraction yield. Our results offer a suitable method for large-scale isolation of ricinine.

  3. Extraction and identification of bioactive compounds from agarwood leaves

    NASA Astrophysics Data System (ADS)

    Lee, N. Y.; Yunus, M. A. C.; Idham, Z.; Ruslan, M. S. H.; Aziz, A. H. A.; Irwansyah, N.

    2016-11-01

    Agarwood commonly known as gaharu, aloeswood or eaglewood have been used as traditional medicine for centuries and its essential oil also being used as perfumery ingredients and aroma enhancers in food products. However, there is least study on the agarwood leaves though it contains large number of biomolecules component that show diverse pharmacological activity. Previous study showed that the extracted compounds from the leaves possess activities like anti-mutagenic, anti-tumor and anti-helminthic. The main objectives of this research were to determine bioactive compounds in agarwood leaves; leaves extract and oil yield obtained from maceration and soxhlet extraction methods respectively. The maceration process was performed at different operating temperature of 25°C, 50°C and 75°C and different retention time at 30, 60, 90 and 120 minutes. Meanwhile, various solvents were used to extract the oil from agarwood leaves using soxhlet method which are hexane, water, isopropanol and ethanol. The extracted oil from agarwood leaves by soxhlet extraction was analyzed using gas chromatography mass spectrometry. The results showed that the highest extract of 1.53% was obtained when increase the temperature to 75 °C and longest retention time of 120 minutes gave the highest oil yield of 2.10 % by using maceration. This is because at higher temperature enhances the solubility solute and diffusivity coefficient, thus increase the extract yield while longer retention time allow the reaction between solvent and solute occurred more rapidly giving higher extract. Furthermore, the soxhlet extraction using n-hexane as the solvent gave the highest oil yield as compared to other solvent due to the non-polar properties of n-hexane increase the efficiency of oil which is also non-polar to soluble in the solvent. In addition, the results also reported that the oil extracted from agarwood leaves contains bioactive compounds which are phytol, squalene, n-hexadecanoic acid and octadecatrienoic acid. Therefore, oil extracted from agarwood leaves has the potential to be applied in food, pharmaceutical, nutraceutical and cosmetics industries.

  4. A modified approach for isolation of essential oil from fruit of Amorpha fruticosa Linn using microwave-assisted hydrodistillation concatenated liquid-liquid extraction.

    PubMed

    Chen, Fengli; Jia, Jia; Zhang, Qiang; Gu, Huiyan; Yang, Lei

    2017-11-17

    In this work, a modified technique was developed to separate essential oil from the fruit of Amorpha fruticosa using microwave-assisted hydrodistillation concatenated liquid-liquid extraction (MHD-LLE). The new apparatus consists of two series-wound separation columns for separating essential oil, one is the conventional oil-water separation column, and the other is the extraction column of components from hydrosol using an organic solvent. Therefore, the apparatus can simultaneously collect the essential oil separated on the top of hydrosol and the components extracted from hydrosol using an organic solvent. Based on the yield of essential oil in the first and second separation columns, the effects of parameters were investigated by single factor experiments and Box-Behnken design. Under the optimum conditions (2mL ethyl ether as the extraction solvent in the second separation column, 12mL/g liquid-solid ratio, 4.0min homogenate time, 35min microwave irradiation time and 540W microwave irradiation power), satisfactory yields for the essential oil in the first separation column (10.31±0.33g/kg) and second separation column (0.82±0.03g/kg) were obtained. Compared with traditional methods, the developed method gave a higher yield of essential oil in a shorter time. In addition, GC-MS analysis of the essential oil indicated significant differences of the relative contents of individual volatile components in the essential oils obtained in the two separation columns. Therefore, the MHD-LLE technique developed here is a good alternative for the isolation of essential oil from A. fruticosa fruit as well as other herbs. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Inhibitory effect of essential oils obtained from plants grown in Colombia on yellow fever virus replication in vitro.

    PubMed

    Meneses, Rocío; Ocazionez, Raquel E; Martínez, Jairo R; Stashenko, Elena E

    2009-03-06

    An antiviral drug is needed for the treatment of patients suffering from yellow fever. Several compounds present in plants can inactive in vitro a wide spectrum of animal viruses. In the present study the inhibitory effect of essential oils of Lippia alba, Lippia origanoides, Oreganum vulgare and Artemisia vulgaris on yellow fever virus (YFV) replication was investigated. The cytotoxicity (CC(50)) on Vero cells was evaluated by the MTT reduction method. The minimum concentration of the essential oil that inhibited virus titer by more than 50% (MIC) was determined by virus yield reduction assay. YFV was incubated 24 h at 4 degrees C with essential oil before adsorption on Vero cell, and viral replication was carried out in the absence or presence of essential oil. Vero cells were exposed to essential oil 24 h at 37 degrees C before the adsorption of untreated-virus. The CC(50) values were less than 100 microg/mL and the MIC values were 3.7 and 11.1 microg/mL. The CC(50)/MIC ratio was of 22.9, 26.4, 26.5 and 8.8 for L. alba, L origanoides, O. vulgare and A. vulgaris, respectively. The presence of essential oil in the culture medium enhances the antiviral effect: L. origanoides oil at 11.1 microg/mL produced a 100% reduction of virus yield, and the same result was observed with L. alba, O. vulgare and A. vulgaris oils at 100 microg/mL. No reduction of virus yield was observed when Vero cells were treated with essential oil before the adsorption of untreated-virus. The essential oils evaluated in the study showed antiviral activities against YFV. The mode of action seems to be direct virus inactivation.

  6. 30 CFR 253.61 - When is a guarantor subject to direct action for claims?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Claims for Oil-Spill Removal...) If you participate in an insurance guaranty for a COF incident (i.e., oil-spill discharge or substantial threat of the discharge of oil) that is subject to claims under this part, then your maximum...

  7. Tennessee plant species screened for renewable energy sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, M.E.; Bagby, M.O.

    The USDA Northern Regional Research Center (NRRC) has previously studied chemical and botanical characteristics of about 1000 plant species in efforts to identify potential new plant sources for industrial raw materials. For this report, an additional 51 species were collected from Tennessee and studied. Above-ground plant samples were analyzed for yields of oils, polyphenols, hydrocarbons, protein, and ash. Oils were examined for the presence of seven classes of lipids and analyzed for yields of fatty acids and unsaponifiable matter. Hydrocarbons were examined for the presence of rubber, gutta, and waxes. Rubber and gutta were analyzed for average molecular weight (MW)more » and MW distribution. Chemical and botanical data are presented for eight of the 51 species. A checklist of the 43 other species is given; data on these are available from NRRC. Lapsana communis yielded the most oil (6.1%; dry, ash-free, plant sample basis). Ilex montana yielded the most polyphenol (21.5%) plus 4.5% oil. Agrimonia parviflora and Catalpa bignonioides gave substantial yields of polyphenol (20.0% and 17.9%, respectively), and Passiflora incarnata contained the most apparent protein (19.8%). Chrysopsis graminifolia, Solidago erecta, and Verbesina alternifolia were identified as rubber-producing species with 0.4-0.7% hydrocarbon.« less

  8. Microwave pyrolysis of distillers dried grain with solubles (DDGS) for biofuel production.

    PubMed

    Lei, Hanwu; Ren, Shoujie; Wang, Lu; Bu, Quan; Julson, James; Holladay, John; Ruan, Roger

    2011-05-01

    Microwave pyrolysis of distillers dried grain with solubles (DDGS) was investigated to determine the effects of pyrolytic conditions on the yields of bio-oil, syngas, and biochar. Pyrolysis process variables included reaction temperature, time, and power input. Microwave pyrolysis of DDGS was analyzed using response surface methodology to find out the effect of process variables on the biofuel (bio-oil and syngas) conversion yield and establish prediction models. Bio-oil recovery was in the range of 26.5-50.3 wt.% of the biomass. Biochar yields were 23.5-62.2% depending on the pyrolysis conditions. The energy content of DDGS bio-oils was 28 MJ/kg obtained at the 650°C and 8 min, which was about 66.7% of the heating value of gasoline. GC/MS analysis indicated that the biooil contained a series of important and useful chemical compounds: aliphatic and aromatic hydrocarbons. At least 13% of DDGS bio-oil was the same hydrocarbon compounds found in regular unleaded gasoline. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Ultrasound-assisted extraction and quantitation of oils from Syzygium aromaticum flower bud (clove) with supercritical carbon dioxide.

    PubMed

    Yang, Yu-Chiao; Wei, Ming-Chi; Hong, Show-Jen

    2014-01-03

    This study evaluated ultrasound-assisted supercritical carbon dioxide (USC-CO2) extraction for determining the extraction yields of oils and the contents of eugenol, β-caryophyllene, eugenyl acetate and α-humulene from clove buds. Compared to traditional SC-CO2 extraction, USC-CO2 extraction might provide a 13.5% increase in the extraction yield for the oil while utilizing less severe operating parameters, such as temperature, pressure, CO2 flow rate and the time consumed by the process. Our results were comparable to those obtained using the heat reflux extraction method, though the yield was improved by 20.8% using USC-CO2. In kinetic studies, the USC-CO2 extraction of clove oil followed second-order kinetics. The activation energy for the oil extraction was 76.56kJ/mol. The USC-CO2 procedure facilitated the use of mild extraction conditions, improved extraction efficiency and the quality of products and is a potential method for industry. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Microwave pyrolysis of distillers dried grain with solubles (DDGS) for biofuel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Hanwu; Ren, Shoujie; Wang, Lu

    2011-05-01

    Microwave pyrolysis of distillers dried grain with solubles (DDGS) was investigated to determine the effects of pyrolytic conditions on the yields of bio-oil, syngas, and biochar. Pyrolysis process variables included reaction temperature, time, and power input. Microwave pyrolysis of DDGS was analyzed using response surface methodology to find out the effect of process variables on the biofuel (bio-oil and syn- gas) conversion yield and establish prediction models. Bio-oil recovery was in the range of 26.5–50.3 wt.% of the biomass. Biochar yields were 23.5–62.2% depending on the pyrolysis conditions. The energy con- tent of DDGS bio-oils was 28 MJ/kg obtained atmore » the 650 oC and 8 min, which was about 66.7% of the heat- ing value of gasoline. GC/MS analysis indicated that the biooil contained a series of important and useful chemical compounds: aliphatic and aromatic hydrocarbons. At least 13% of DDGS bio-oil was the same hydrocarbon compounds found in regular unleaded gasoline.« less

  11. Biogas production from Jatropha curcas press-cake.

    PubMed

    Staubmann, R; Foidl, G; Foidl, N; Gübitz, G M; Lafferty, R M; Arbizu, V M; Steiner, W

    1997-01-01

    Seeds of the tropical plant Jatropha curcas (purge nut, physic nut) are used for the production of oil. Several methods for oil extraction have been developed. In all processes, about 50% of the weight of the seeds remain as a press cake containing mainly protein and carbohydrates. Investigations have shown that this residue contains toxic compounds and cannot be used as animal feed without further processing. Preliminary experiments have shown that the residue is a good substrate for biogas production. Biogas formation was studied using a semicontinous upflow anaerobic sludge blanket (UASB) reactor; a contact-process and an anaerobic filter each reactor having a total volume of 110 L. A maximum production rate of 3.5 m3 m"3 d"1 was obtained in the anaerobic filter with a loading rate of 13 kg COD m~3 d"1. However, the UASB reactor and the contact-process were not suitable for using this substrate. When using an anaerobic filter with Jatropha curcas seed cake as a substrate, 76% of the COD was degraded and 1 kg degraded COD yielded 355 L of biogas containing 70% methane.

  12. Valorization of residual bacterial biomass waste after polyhydroxyalkanoate isolation by hydrothermal treatment.

    PubMed

    Wei, Liqing; Liang, Shaobo; Coats, Erik R; McDonald, Armando G

    2015-12-01

    Hydrothermal treatment (HTT) was used to convert residual bacterial biomass (RBB), recovered from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production, into valuable bioproducts. The effect of processing temperatures (150, 200, and 250°C) on the bioproducts (water-solubles (WSs), bio-oil, insoluble residue, and gas) was investigated. The yields of bio-oil and gas were higher at higher temperatures. The maximum WS content (28 wt%) was obtained at 200°C. GCMS analysis showed higher content of aromatics and N-containing compounds with increasing temperature. ESI-MS revealed chemical compounds (e.g. protein, carbohydrate, lipids, and lignin) associated with RBB are fragmented into smaller molecules (monomers) at higher HTT temperatures. The WS fraction contained totally 838, 889 and 886mg/g acids and 160, 31 and 21 mg/g carbohydrate for HTT at 150, 200, and 250°C, respectively. The solid residues contain unconverted compounds, especially after HTT at 150°C. The WS products (acids and carbohydrates) could be used directly for PHA biosynthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Online monitoring of P(3HB) produced from used cooking oil with near-infrared spectroscopy.

    PubMed

    Cruz, Madalena V; Sarraguça, Mafalda Cruz; Freitas, Filomena; Lopes, João Almeida; Reis, Maria A M

    2015-01-20

    Online monitoring process for the production of polyhydroxyalkanoates (PHA), using cooking oil (UCO) as the sole carbon source and Cupriavidus necator, was developed. A batch reactor was operated and hydroxybutyrate homopolymer was obtained. The biomass reached a maximum concentration of 11.6±1.7gL(-1) with a polymer content of 63±10.7% (w/w). The yield of product on substrate was 0.77±0.04gg(-1). Near-infrared (NIR) spectroscopy was used for online monitoring of the fermentation, using a transflectance probe. Partial least squares regression was applied to relate NIR spectra with biomass, UCO and PHA concentrations in the broth. The NIR predictions were compared with values obtained by offline reference methods. Prediction errors to these parameters were 1.18, 2.37 and 1.58gL(-1) for biomass, UCO and PHA, respectively, which indicate the suitability of the NIR spectroscopy method for online monitoring and as a method to assist bioreactor control. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Perennial grass (Arundo donax L.) as a feedstock for thermo-chemical conversion to energy and materials.

    PubMed

    Saikia, Ruprekha; Chutia, Rahul Singh; Kataki, Rupam; Pant, Kamal K

    2015-01-01

    In the present study, perennial grass species Arundo donax L. was pyrolysed in a fixed-bed reactor and characterization was performed for the liquid and the solid products. The effect of process parameters such as temperature (350-650 °C), heating rate (10 °C and 40 °C min(-1)) and sweeping gas flow rate (50-250 ml min(-1)) was also investigated. Maximum bio-oil yield of ∼ 26% was observed at 500 °C for the heating rate of 40 °C min(-1). Chemical composition of the bio-oil was analysed through NMR, FTIR and GC-MS. The biochar was characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy along with elemental analysis (CHN). The biochar produced as a co-product of A. donax pyrolysis can be a potential soil amendment with multiple benefits including increased soil fertility and C-sequestration. Current investigation suggests suitability of A. donax as a potential feedstock for exploitation of energy and biomaterials through pyrolytic route. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Rotor dynamic behaviour of a high-speed oil-free motor compressor with a rigid coupling supported on four radial magnetic bearings

    NASA Technical Reports Server (NTRS)

    Schmied, J.; Pradetto, J. C.

    1994-01-01

    The combination of a high-speed motor, dry gas seals, and magnetic bearings realized in this unit facilitates the elimination of oil. The motor is coupled with a quill shaft to the compressor. This yields higher natural frequencies of the rotor than with the use of a diaphragm coupling and helps to maintain a sufficient margin of the maximum speed to the frequency of the second compressor bending mode. However, the controller of each bearing then has to take the combined modes of both machines into account. The requirements for the controller to ensure stability and sufficient damping of all critical speeds are designed and compared with the implemented controller. The calculated closed loop behavior was confirmed experimentally, except the stability of some higher modes due to slight frequency deviations of the rotor model to the actual rotor. The influence of a mechanical damper as a device to provide additional damping to high models is demonstrated theoretically. After all, it was not necessary to install the damper, since all modes cold be stabilized by the controller.

  16. Influence of alkyl chain length compatibility on microemulsion structure and solubilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, V.K.; O'Connell, J.P.; Shah, D.O.

    1980-06-01

    The water solubilization capacity of water/oil microemulsions is studied as a function of alkyl chain length of oil (C/sub 8/ to C/sub 16/), surfactant (C/sub 14/ and C/sub 18/ fatty acid soaps), and alcohol (C/sub 4/ to C/sub 7/). Sodium stearate and sodium myristate were used as surfactants. For n-butanol microemulsions the maximum amount of water solubilized in the microemulsion decreased continuously with increasing oil chain length; for n-heptanol it increased continuously. For n-pentanol and n-hexanol systems, water solubilization reached a maximum when the oil chain length plus alcohol chain length was equal to that of the surfactant. The electricmore » resistance and dielectric constant of the microemulsions also are measured as a function of alkyl chain length of the oil. 48 references.« less

  17. Effect of high oleic acid soybean on seed oil, protein concentration, and yield

    USDA-ARS?s Scientific Manuscript database

    Soybeans with high oleic acid content are desired by oil processors because of their improved oxidative stability for broader use in food, fuel and other products. However, non-GMO high-oleic soybeans have tended to have low seed yield. The objective of this study was to test non-GMO, high-oleic s...

  18. Fast, Low-Cost and Non-Destructive Physico-Chemical Analysis of Virgin Olive Oils Using Near-Infrared Reflectance Spectroscopy

    PubMed Central

    Garrido-Varo, Ana; Sánchez, María-Teresa; De la Haba, María-José; Torres, Irina; Pérez-Marín, Dolores

    2017-01-01

    Near-Infrared (NIR) Spectroscopy was used for the non-destructive assessment of physico-chemical quality parameters in olive oil. At the same time, the influence of the sample presentation mode (spinning versus static cup) was evaluated using two spectrophotometers with similar optical characteristics. A total of 478 olive oil samples were used to develop calibration models, testing various spectral signal pre-treatments. The models obtained by applying MPLS regression to spectroscopic data yielded promising results for olive oil quality measurements, particularly for acidity, the peroxide index and alkyl and ethyl ester content. The results obtained indicate that this non-invasive technology can be used successfully by the olive oil sector to categorize olive oils, to detect potential fraud and to provide consumers with more reliable information. Although both sample presentation modes yielded comparable results, equations constructed with samples scanned using the spinning mode provided greater predictive capacity. PMID:29144417

  19. The hard choice for alternative biofuels to diesel in Brazil.

    PubMed

    Carioca, J O B; Hiluy Filho, J J; Leal, M R L V; Macambira, F S

    2009-01-01

    This paper selects biofuel scenarios to substitute diesel in Brazil based on oil reserves increase, diesel imports, CO(2) emissions, crops agronomic yields, byproducts marketing and social impacts. This hard task still considers that agricultural practices in developing countries have large social impacts. Brazil presents high consumption of diesel oil in transport; low agronomic yield of traditional vegetable oil crops, which demand large cultivation areas contrasting with microalgae and palm oils which present high productivity. Concerning technologies, thermal cracking and transesterification of vegetable oils present a difficult economic situation related to vegetable oils price, food competition and glycerin market; BTL technology, meaning thermal gasification of biomass to liquids, faces problems related to low density of biomaterials and low viscosity of synthetic biodiesel produced. Biorefinery algal integrated systems and co-solvent technology to introduce up to 8% of ethanol into diesel seem to be feasible routes to reduce diesel consumption.

  20. Effect of second cooling on the chemical components of essential oils from orange peel (Citrus sinensis).

    PubMed

    Chen, Yulong; Wu, Jijun; Xu, Yujuan; Fu, Manqing; Xiao, Gengsheng

    2014-09-03

    A second cooling was added to the oil collectors of an improved Clevenger-type apparatus (ICT) to investigate the thermal reaction of essential oils from orange peel compared to a traditional Clevenger-type apparatus (CT). The results demonstrated the yield rate of essential oil from ICT was significantly higher (p < 0.05) than that from CT. The major components of the essential oils consisted of monoterpenes, such as d-limonene, β-myrcene, β-pinene, γ-terpinene, α-pinene. Interestingly, ICT prevented the thermal reaction-the transformation of β-myrcene to β-thujene-and reduced the oxidation on α-pinene and β-pinene of the essential oil in comparison to CT. In addition, the yield rate of γ-terpinene can also be improved via ICT compared to CT. Thus, ICT is an effective improvement to traditional CT.

  1. Torrefaction reduction of coke formation on catalysts used in esterification and cracking of biofuels from pyrolysed lignocellulosic feedstocks

    DOEpatents

    Kastner, James R; Mani, Sudhagar; Hilten, Roger; Das, Keshav C

    2015-11-04

    A bio-oil production process involving torrefaction pretreatment, catalytic esterification, pyrolysis, and secondary catalytic processing significantly reduces yields of reactor char, catalyst coke, and catalyst tar relative to the best-case conditions using non-torrefied feedstock. The reduction in coke as a result of torrefaction was 28.5% relative to the respective control for slow pyrolysis bio-oil upgrading. In fast pyrolysis bio-oil processing, the greatest reduction in coke was 34.9%. Torrefaction at 275.degree. C. reduced levels of acid products including acetic acid and formic acid in the bio-oil, which reduced catalyst coking and increased catalyst effectiveness and aromatic hydrocarbon yields in the upgraded oils. The process of bio-oil generation further comprises a catalytic esterification of acids and aldehydes to generate such as ethyl levulinate from lignified biomass feedstock.

  2. Influence of Oil on Refrigerant Evaporator Performance

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Soo; Nagata, Karsuya; Katsuta, Masafumi; Tomosugi, Hiroyuki; Kikuchi, Kouichiro; Horichi, Toshiaki

    In vapor compression refrigeration system using oil-lubricated compressors, some amount of oil is always circulated through the system. Oil circulation can have a significant influence on the evaporator performance of automotive air conditioner which is especially required to cool quickly the car interior after a period standing in the sun. An experimental investigation was carried out an electrically heated horizontal tube to measure local heat transfer coefficients for various flow rates and heat fluxes during forced convection boiling of pure refrigerant R12 and refrigerant-oil mixtures (0-11% oil concentration by weight) and the results were compared with oil free performance. Local heat transfer coefficients increased at the region of low vapor quality by the addition of oil. On the other hand, because the oil-rich liquid film was formed on the heat transfer surface, heat transfer coefficients gradually decreased as the vapor quality became higher. Average heat transfer coefficient reached a maximum at about 4% oil concentration and this trend agreed well with the results of Green and Furse. Previous correlations, using the properties of the refrigerant-oil mixture, could not predict satisfactorily the local heat transfer coefficients data. New correlation modified by oil concentration factor was developed for predicting the corresponding heat transfer coefficient for refrigerant-oil mixture convection boiling. The maximum percent deviation between predicted and measured heat transfer coefficient was within ±30%.

  3. Impact of ductility on hydraulic fracturing in shales

    NASA Astrophysics Data System (ADS)

    MacMinn, Chris; Auton, Lucy

    2016-04-01

    Hydraulic fracturing is a method for extracting natural gas and oil from low-permeability rocks such as shale via the high-pressure injection of fluid into the bulk of the rock. The goal is to initiate and propagate fractures that will provide hydraulic access deeper into the reservoir, enabling gas or oil to be collected from a larger region of the rock. Fracture is the tensile failure of a brittle material upon reaching a threshold tensile stress, but some shales have a high clay content and may yield plastically before fracturing. Plastic deformation is the shear failure of a ductile material, during which stress relaxes through irreversible rearrangements of the particles of the material. Here, we investigate the impact of the ductility of shales on hydraulic fracturing. We first consider a simple, axisymmetric model for radially outward fluid injection from a wellbore into a ductile porous rock. We use this model to show that plastic deformation greatly reduces the maximum tensile stress, and that this maximum stress does not always occur at the wellbore. We then complement these results with laboratory experiments in an analogue system, and with numerical simulations based on the discrete element method (DEM), both of which suggest that ductile failure can indeed dramatically change the resulting deformation pattern. These results imply that hydraulic fracturing may fail in ductile rocks, or that the required injection rate for fracking may be much larger than the rate predicted from models that assume purely elastic mechanical behavior.

  4. Microwave-assisted extraction of Nigella sativa L. essential oil and evaluation of its antioxidant activity.

    PubMed

    Abedi, Abdol-Samad; Rismanchi, Marjan; Shahdoostkhany, Mehrnoush; Mohammadi, Abdorreza; Mortazavian, Amir Mohammad

    2017-11-01

    It has been previously reported that the essential oil of Nigella sativa L. seeds and its major active component, thymoquinone (TQ), possess a broad variety of biological activities and therapeutic properties. In this work, microwave-assisted extraction (MAE) of the essential oil from Nigella sativa L. seeds and its antioxidant activity were studied. Response surface methodology based on central composite design was used to evaluate the effects of extraction time, irradiation power and moisture content on extraction yield and TQ content. Optimal parameters obtained by CCD and RSM were extraction time 30 min, irradiation power 450 W, and moisture content 50%. The extraction yield and TQ content of the essential oil were 0.33 and 20% under the optimum conditions, respectively. In contrast, extraction yield and TQ amount of oil obtained by hydrodistillation (HD) were 0.23 and 3.71%, respectively. The main constituents of the essential oil extracted by MAE and HD were p -cymene, TQ, α-thujene and longifolene, comprising more than 60% of total peak area. The antioxidant capacity of essential oils extracted by different methods were evaluated using 2,2-diphenyl-1-picrylhydrazyl and Ferric reducing antioxidant power assays, and compared with traditional antioxidants. The results showed that MAE method was a viable alternative to HD for the essential oil extraction from N. sativa seeds due to the excellent extraction efficiency, higher thymoquinone content, and stronger antioxidant activity.

  5. Synthesis of fatty acid methyl ester from used vegetable cooking oil by solid reusable Mg 1-x Zn 1+x O2 catalyst.

    PubMed

    Olutoye, M A; Hameed, B H

    2011-02-01

    Fatty acid methyl ester was produced from used vegetable cooking oil using Mg(1-)(x) Zn(1+)(x)O(2) solid catalyst and the performance monitored in terms of ester content obtained. Used vegetable cooking oil was employed to reduce operation cost of biodiesel. The significant operating parameters which affect the overall yield of the process were studied. The highest ester content, 80%, was achieved with the catalyst during 4h 15 min reaction at 188°C with methanol to oil ratio of 9:1 and catalyst loading of 2.55 wt% oil. Also, transesterification of virgin oil gave higher yield with the heterogeneous catalyst and showed high selectivity towards ester production. The used vegetable cooking oil did not require any rigorous pretreatment. Catalyst stability was examined and there was no leaching of the active components, and its performance was as good at the fourth as at the first cycle. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Production of wax esters via microbial oil synthesis from food industry waste and by-product streams.

    PubMed

    Papadaki, Aikaterini; Mallouchos, Athanasios; Efthymiou, Maria-Nefeli; Gardeli, Chryssavgi; Kopsahelis, Nikolaos; Aguieiras, Erika C G; Freire, Denise M G; Papanikolaou, Seraphim; Koutinas, Apostolis A

    2017-12-01

    The production of wax esters using microbial oils was demonstrated in this study. Microbial oils produced from food waste and by-product streams by three oleaginous yeasts were converted into wax esters via enzymatic catalysis. Palm oil was initially used to evaluate the influence of temperature and enzyme activity on wax ester synthesis catalysed by Novozyme 435 and Lipozyme lipases using cetyl, oleyl and behenyl alcohols. The highest conversion yields (up to 79.6%) were achieved using 4U/g of Novozyme 435 at 70°C. Transesterification of microbial oils to behenyl and cetyl esters was achieved at conversion yields up to 87.3% and 69.1%, respectively. Novozyme 435 was efficiently reused for six and three cycles during palm esters and microbial esters synthesis, respectively. The physicochemical properties of microbial oil derived behenyl esters were comparable to natural waxes. Wax esters from microbial oils have potential applications in cosmetics, chemical and food industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Light response of sunflower and canola as affected by plant density, plant genotype and N fertilization.

    PubMed

    Soleymani, A

    2017-08-01

    Crop response to light is an important parameter determining crop growth. Three field (split plots) experiments were conducted to investigate the effects of plant density, plant genotype and N fertilization on the light absorption and light extinction of sunflower (Helianthus annuus L.) and canola (Brassica napus L.). A detailed set of plant growth, light absorption and crop yield and oil related parameters were determined. Light was measured at noon during the sunny days with clear sky. In experiment I, although the plant density (PD) of 14 resulted in the highest rate of sunflower light absorption (31.37%) and light extinction (0.756), the highest rate of grain yield and grain oil yield was resulted at PD12 at 3639 and 1457.9kg/ha, respectively; as well as by genotype SUP.A. In experiment II (canola), PD80 resulted in the highest rate of light absorption (13.13%), light extinction (0.63), grain yield (2189.4kg/ha) and grain oil yield (556.54kg/ha). This was also the case for Genotype H. In experiment III (canola), although N150 resulted in the highest rate of light absorption (10.74%) and light extinction (0.48), the highest rate of grain yield (3413.6kg/ha) and grain oil yield (891.86kg/ha) was resulted at N100 as well as by Genotype H401. Results indicate how light properties, crop growth and yield of sunflower and canola can be affected by plant and environmental parameters, which are also of practical use by farmers. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Complementary blending of meadowfoam seed oil methyl esters with biodiesel prepared from soybean and waste cooking oils to enhance fuel properties

    USDA-ARS?s Scientific Manuscript database

    The complementary blending of meadowfoam seed oil methyl esters (MFME) with soybean and waste cooking oil methyl esters (SME and WCME) was investigated. MFME prepared from cold-pressed meadowfoam oil exhibited an exceptionally high induction period (IP) of 66.2 h whereas SME and WCME yielded conside...

  9. Yield and oil composition of 38 basil (Ocimum basilicum L.) accessions grown in Mississippi.

    PubMed

    Zheljazkov, Valtcho D; Callahan, Amber; Cantrell, Charles L

    2008-01-09

    A field experiment was conducted to assess yield, oil content, and composition of 38 genotypes of sweet basil ( Ocimum basilicum L.). Overall, biomass yields were high and comparable to those reported in the literature. However, basil genotypes differed significantly with respect to oil content and composition. Oil content of the tested accessions varied from 0.07% to 1.92% in dry herbage. On the basis of the oil composition, basil accessions were divided into seven groups: (1) high-linalool chemotype [19-73% (-)-linalool], (2) linalool-eugenol chemotype [six chemotypes with 28-66% (-)-linalool and 5-29% eugenol], (3) methyl chavicol chemotype [six accessions with 20-72% methyl chavicol and no (-)-linalool], (4) methyl chavicol-linalool chemotype [six accessions with 8-29% methyl chavicol and 8-53% (-)-linalool], (5) methyl eugenol-linalool chemotype [two accessions with 37% and 91% methyl eugenol and 60% and 15% (-)-linalool], (6) methyl cinnamate-linalool chemotype [one accession with 9.7% methyl cinnamate and 31% (-)-linalool], and (7) bergamotene chemotype [one accession with bergamotene as major constituent, 5% eucalyptol, and <1% (-)-linalool]. Our results demonstrated that basil could be a viable essential oil crop in Mississippi. The availability of various chemotypes offers the opportunity for production of basil to meet the market requirements of specific basil oils or individual compounds such as (-)-linalool, eugenol, methyl chavicol, methyl cinnamate, or methyl eugenol.

  10. Hydrotreatment of bio-oil distillates produced from pyrolysis and hydrothermal liquefaction of duckweed: A comparison study.

    PubMed

    Wang, Feng; Tian, Ye; Zhang, Cai-Cai; Xu, Yu-Ping; Duan, Pei-Gao

    2018-09-15

    A comprehensive comparison of hydrothermal liquefaction (HTL) to the pyrolysis of duckweed was conducted to determine the yields and components of the crude bio-oils and their distillates. The upgrading behaviors of the distillates were thoroughly investigated with the use of used engine oil as a solvent. With all other variables fixed, HTL produced crude bio-oil with a lower H/C ratio (1.28 ± 0.03) than pyrolysis did (1.45 ± 0.04). However, its distillates had a higher H/C ratio (1.60 ± 0.05) and total yield (66.1 ± 2.0 wt%) than pyrolysis (1.46 ± 0.04 and 47.2 ± 1.4 wt%, respectively). Phenolics and nitrogenous heterocycles constituted relatively major proportions of the two crude bio-oils and most of their distillates. Obvious differences in molecular composition between the two crude bio-oils and their distillates were ascribed to the distinct impacts of HTL and pyrolysis and were affected by the distillate temperature. Co-hydrotreating with used engine oil (UEO) provided the upgraded bio-oils much higher H/C ratios (~1.78 ± 0.05) and higher heating values (~45.5 ± 1.4 MJ·kg -1 ), as well as much lower contents of N, O and S compared to their initial distillates. Aromatics and alkanes constituted a large proportion in most of upgraded bio-oils. N removal from the pyrolysis distillates was easier than from the HTL distillates. Distinct differences in yields and molecular compositions for the upgraded bio-oils were also attributed to the different influences associated with the two conversion routes. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Annual committed effective dose from olive oil (due to 238U, 232Th, and 222Rn) estimated for members of the Moroccan public from ingestion and skin application.

    PubMed

    Misdaq, M A; Touti, R

    2012-03-01

    Olive oil is traditionally refined and widely consumed by Moroccan rural populations. Uranium (238U), thorium (232Th), radon (222Rn), and thoron (220Rn) contents were measured in various locally produced olive oil samples collected in rural areas of Morocco. These radionuclides were also measured inside various bottled virgin olive oils consumed by the Moroccan populations. CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs) were used. Annual committed effective doses due to 238U, 232Th, and 222Rn from the ingestion of olive oil by the members of the general public were determined. The maximum total committed effective dose due to 238U, 232Th, and 222Rn from the ingestion of olive oil by adult members of Moroccan rural populations was found equal to 5.9 µSv y-1. The influence of pollution due to building material dusts and phosphates on the radiation dose to workers from the ingestion of olive oil was investigated, and it was found that the maximum total committed effective dose due to 238U, 232Th, and 222Rn was on the order of 0.22 mSy y-1. Committed effective doses to skin due to 238U, 232Th, and 222Rn from the application of olive oil masks by rural women were evaluated. The maximum total committed effective dose to skin due to 238U, 232Th, and 222Rn was found equal to 0.07 mSy y-1 cm-2.

  12. Application of different fertilizers on morphological traits of dill (Anethum graveolens L.).

    PubMed

    Nejatzadeh-Barandozi, Fatemeh; Gholami-Borujeni, Fathollah

    2014-12-01

    The aim of this study was to evaluate the effects of nitroxin biofertilizer and chemical fertilizer on the growth, yield, and essential oil composition of dill. The experiment was conducted under field condition in randomized complete block design with three replications and two factors. The first factor was the concentrations of nitroxin biofertilizer (0%, 50%, and 100%) of the recommended amount (1 l of biological fertilizer for 30 kg of seed). The second factor was the following chemical fertilizer treatments: no fertilizer (control) and 50 and 100 kg ha(-1) urea along with 300 kg ha(-1) ammonium phosphate. Different characteristics such as plant height, number of umbel per plant, number of umbellet per umbel, number of grain per umbellet, 1,000 seed weight, grain yield, biological yield, and oil percentage were recorded. According to the results, the highest height, biological yield, and grain yield components (except harvest index) were obtained on biological fertilizer. The results showed the highest essential oil content detected in biological fertilizer and chemical fertilizer. Identification of essential oil composition showed that the content of carvone increased with the application of biofertilizers and chemical fertilizers. The results indicated that the application of biofertilizers enhanced yield and other plant criteria in this plant. Generally, it seems that the use of biofertilizers or combinations of biofertilizer and chemical fertilizer could improve dill performance in addition to reduction of environmental pollution.

  13. Extraction methods of Amaranthus sp. grain oil isolation.

    PubMed

    Krulj, Jelena; Brlek, Tea; Pezo, Lato; Brkljača, Jovana; Popović, Sanja; Zeković, Zoran; Bodroža Solarov, Marija

    2016-08-01

    Amaranthus sp. is a fast-growing crop with well-known beneficial nutritional values (rich in protein, fat, dietary fiber, ash, and minerals, especially calcium and sodium, and containing a higher amount of lysine than conventional cereals). Amaranthus sp. is an underexploited plant source of squalene, a compound of high importance in the food, cosmetic and pharmaceutical industries. This paper has examined the effects of the different extraction methods (Soxhlet, supercritical fluid and accelerated solvent extraction) on the oil and squalene yield of three genotypes of Amaranthus sp. grain. The highest yield of the extracted oil (78.1 g kg(-1) ) and squalene (4.7 g kg(-1) ) in grain was obtained by accelerated solvent extraction (ASE) in genotype 16. Post hoc Tukey's HSD test at 95% confidence limit showed significant differences between observed samples. Principal component analysis (PCA) and cluster analysis (CA) were used for assessing the effect of different genotypes and extraction methods on oil and squalene yield, and also the fatty acid composition profile. Using coupled PCA and CA of observed samples, possible directions for improving the quality of product can be realized. The results of this study indicate that it is very important to choose both the right genotype and the right method of extraction for optimal oil and squalene yield. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  14. Catalytic pyrolysis of car tire waste using expanded perlite.

    PubMed

    Kar, Y

    2011-08-01

    In this study, the non-catalytic and catalytic pyrolysis experiments were conducted on the sample of tire waste using expanded perlite as an additive material to determine especially the effect of temperature and catalyst-to-tire ratio on the products yields and the compositions and qualities of pyrolytic oils (NCPO and CPO). Non-catalytic studies, which were carried out under the certain conditions (a nitrogen flow of 100mL/min and a heating rate of 10°C/min), showed that the highest yield of pyrolytic oil (NCPO) was 60.02wt.% at 425°C. Then, the catalytic pyrolysis studies were carried out at catalyst-to-tire ratio range of 0.05-0.25 and the highest catalytic pyrolytic oil (CPO) yield was 65.11wt.% at the ratio of 0.10 with the yield increase of 8.48wt.% compared with the non-catalytic pyrolysis. Lastly, the pyrolytic oils were characterized with applying a various techniques such as elemental analyses and various chromatographic and spectroscopic techniques (GC-MS, (1)H NMR, FT-IR, etc.). The characterization results revealed that the pyrolytic oils which were complex mixtures of C(5)-C(15) organic compounds (predominantly aromatic compounds) and also the CPO compared to the NCPO was more similar to conventional fuels in view of the certain fuel properties. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Chemicals derived from pyrolysis bio-oils as antioxidants in fuels and lubricants

    USDA-ARS?s Scientific Manuscript database

    Softwood and hardwood lignins and hardwood were pyrolyzed to produce bio-oils to produce lignin-derived bio-oils of which phenols were the major component. These bio-oils were extracted with alkali to yield a range of lignin-related phenols having molecular weights (MWs) from 110 to 344. When tested...

  16. Oils from wild, micropropagated plants, calli, and suspended cells of Euphorbia characias L.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandes-Ferreira, M.; Pais, M.S.S.; Novais, J.M.

    1991-12-31

    Micropropagated Euphorbia characias plants gave higher yields of crude oil than did wild ones. Leaves of either wild and micropropagated plants contained more oil than did stems. Triterpenols, hydrocarbons, and free and esterified fatty acids are components of the crude oil produced by stems, young and mature leaves of wild and micropropagated E. characias plants, as well as by calli and suspended cells. With the exception of the free fatty acids fraction, all crude oil fractions were higher in micropropagated plants than in the wild ones. The crude oil content of leaves of either wild or micropropagated plants was highermore » than that of stems. However the triterpenols yields were higher in stems than in leaves, both in wild and micropropagated plants. The composition of the triterpenol fraction of the crude oil obtained from calli and suspended cells is quite different from that produced by any in vivo parent plant organ studied. Free fatty acids constitute the main fraction of the crude oil obtained from calli and suspended cells.« less

  17. Catalytic cracking of Mayan gas oil and selected hydrotreated products: Topical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, J.W.; Zagula, E.J.; Brinkman, D.W.

    1988-01-01

    The catalytic cracking of a Mayan vacuum gas oil and the products from mild, moderate, and severe hydrotreating of this gas oil was evaluated over a low-metal equilibrium catalyst in a microconfined bed unit (MCBU). Results obtained with the Mayan feedstocks are compared with those of an earlier study conducted with similar feedstocks obtained from a Wilmington (CA) crude oil. Two levels of catalytic cracking severity were used in the evaluation. Performance and product analysis showed that hydrotreating improves the yields obtained from catalytic cracking and the quality of the resultant products. In contrast to results obtained with the Wilmingtonmore » feedstocks, conversion and gasoline yield do not improve with severity of the hydrotreating of the Mayan vacuum gas oils. The insensitivity of the cracking performance to hydrotreating severity may reflect the more facile removal of polar compounds (heteroatom compounds) on hydrotreating of the Mayan gas oil in comparison to the Wilmington. Sulfur and nitrogen contents of the liquid products (gasoline, light cycle oil, heavy cycle oil) decreased as the severity of the feed hydrotreating increased. 7 refs., 12 figs., 15 tabs.« less

  18. Microwave-assisted extraction of silkworm pupal oil and evaluation of its fatty acid composition, physicochemical properties and antioxidant activities.

    PubMed

    Hu, Bin; Li, Cheng; Zhang, Zhiqing; Zhao, Qing; Zhu, Yadong; Su, Zhao; Chen, Yizi

    2017-09-15

    Microwave-assisted extraction (MAE) of oil from silkworm pupae was firstly performed in the present research. The response surface methodology was applied to optimize the parameters for MAE. The yield of oil by MAE was 30.16% under optimal conditions of a mixed solvent consisting of ethanol and n-hexane (1:1, v/v), microwave power (360W), liquid to solid ratio (7.5/1mL/g), microwave time (29min). Moreover, oil extracted by MAE was quantitatively (yield) and qualitatively (fatty acid profile) similar to those obtained using Soxhlet extraction (SE), but oil extracted by MAE exhibited favourable physicochemical properties and oxidation stability. Additionally, oil extracted by MAE had a higher content of total phenolic, and it showed stronger antioxidant activities. Scanning electron microscopy revealed that microwave technique efficiently promoted the release of oil by breaking down the cell structure of silkworm pupae. Therefore, MAE can be an effective method for the silkworm pupal oil extraction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Synthesis of fatty acid methyl ester from the transesterification of high- and low-acid-content crude palm oil (Elaeis guineensis) and karanj oil (Pongamia pinnata) over a calcium-lanthanum-aluminum mixed-oxides catalyst.

    PubMed

    Syamsuddin, Y; Murat, M N; Hameed, B H

    2016-08-01

    The synthesis of fatty acid methyl ester (FAME) from the high- and low-acid-content feedstock of crude palm oil (CPO) and karanj oil (KO) was conducted over CaO-La2O3-Al2O3 mixed-oxide catalyst. Various reaction parameters were investigated using a batch reactor to identify the best reaction condition that results in the highest FAME yield for each type of oil. The transesterification of CPO resulted in a 97.81% FAME yield with the process conditions of 170°C reaction temperature, 15:1 DMC-to-CPO molar ratio, 180min reaction time, and 10wt.% catalyst loading. The transesterification of KO resulted in a 96.77% FAME yield with the conditions of 150°C reaction temperature, 9:1 DMC-to-KO molar ratio, 180min reaction time, and 5wt.% catalyst loading. The properties of both products met the ASTM D6751 and EN 14214 standard requirements. The above results showed that the CaO-La2O3-Al2O3 mixed-oxide catalyst was suitable for high- and low-acid-content vegetable oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Colored shade nets induced changes in growth, anatomy and essential oil of Pogostemon cablin.

    PubMed

    Ribeiro, Aurislaine S; Ribeiro, Mariana S; Bertolucci, Suzan K V; Bittencourt, Wanderley J M; Carvalho, Alexandre A DE; Tostes, Wesley N; Alves, Eduardo; Pinto, José E B P

    2018-04-16

    The purpose of this investigation was to determine the influence of colored shade nets on the growth, anatomy and essential oil content, yield and chemical composition of Pogostemon cablin. The plants were cultivated under full sunlight, black, blue and red nets. The harvesting was performed 5 months after planting and it was followed by the analysis of plant growth parameters, leaf anatomy, essential oil content, yield and chemical composition. The plants grown under red net have produced more leaf, shoot, total dry weight and leaf area. Plants cultivated under colored nets showed differences in morphological features. Plants maintained under red net had a higher leaf blade thickness and polar and equatorial diameter of the stomata ratio. Additionally, higher yield of essential oil in the leaves was observed under red and blue colored shade net. The essential oil of the plants grown under red net showed the highest relative percentage of patchoulol (66.84%). Therefore, it is possible using colored shade nets to manipulate P. cablin growth, as well as its essential oil production with several chemical compositions. The analyses of principal components allowed observing that pogostol has negative correlation with α-guaiene and α-bulnesene. There was difference in total dry weight and patchoulol content when the patchouli is cultured under the red colored shade nets.

  1. Climate-based statistical regression models for crop yield forecasting of coffee in humid tropical Kerala, India

    NASA Astrophysics Data System (ADS)

    Jayakumar, M.; Rajavel, M.; Surendran, U.

    2016-12-01

    A study on the variability of coffee yield of both Coffea arabica and Coffea canephora as influenced by climate parameters (rainfall (RF), maximum temperature (Tmax), minimum temperature (Tmin), and mean relative humidity (RH)) was undertaken at Regional Coffee Research Station, Chundale, Wayanad, Kerala State, India. The result on the coffee yield data of 30 years (1980 to 2009) revealed that the yield of coffee is fluctuating with the variations in climatic parameters. Among the species, productivity was higher for C. canephora coffee than C. arabica in most of the years. Maximum yield of C. canephora (2040 kg ha-1) was recorded in 2003-2004 and there was declining trend of yield noticed in the recent years. Similarly, the maximum yield of C. arabica (1745 kg ha-1) was recorded in 1988-1989 and decreased yield was noticed in the subsequent years till 1997-1998 due to year to year variability in climate. The highest correlation coefficient was found between the yield of C. arabica coffee and maximum temperature during January (0.7) and between C. arabica coffee yield and RH during July (0.4). Yield of C. canephora coffee had highest correlation with maximum temperature, RH and rainfall during February. Statistical regression model between selected climatic parameters and yield of C. arabica and C. canephora coffee was developed to forecast the yield of coffee in Wayanad district in Kerala. The model was validated for years 2010, 2011, and 2012 with the coffee yield data obtained during the years and the prediction was found to be good.

  2. Reductive Catalytic Fractionation of Corn Stover Lignin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Eric M.; Katahira, Rui; Reed, Michelle

    Reductive catalytic fractionation (RCF) has emerged as an effective biomass pretreatment strategy to depolymerize lignin into tractable fragments in high yields. We investigate the RCF of corn stover, a highly abundant herbaceous feedstock, using carbon-supported Ru and Ni catalysts at 200 and 250 degrees C in methanol and, in the presence or absence of an acid cocatalyst (H3PO4 or an acidified carbon support). Three key performance variables were studied: (1) the effectiveness of lignin extraction as measured by the yield of lignin oil, (2) the yield of monomers in the lignin oil, and (3) the carbohydrate retention in the residualmore » solids after RCF. The monomers included methyl coumarate/ferulate, propyl guaiacol/syringol, and ethyl guaiacol/syringol. The Ru and Ni catalysts performed similarly in terms of product distribution and monomer yields. The monomer yields increased monotonically as a function of time for both temperatures. At 6 h, monomer yields of 27.2 and 28.3% were obtained at 250 and 200 degrees C, respectively, with Ni/C. The addition of an acid cocatalysts to the Ni/C system increased monomer yields to 32% for acidified carbon and 38% for phosphoric acid at 200 degrees C. The monomer product distribution was dominated by methyl coumarate regardless of the use of the acid cocatalysts. The use of phosphoric acid at 200 degrees C or the high temperature condition without acid resulted in complete lignin extraction and partial sugar solubilization (up to 50%) thereby generating lignin oil yields that exceeded the theoretical limit. In contrast, using either Ni/C or Ni on acidified carbon at 200 degrees C resulted in moderate lignin oil yields of ca. 55%, with sugar retention values >90%. Notably, these sugars were amenable to enzymatic digestion, reaching conversions >90% at 96 h. Characterization studies on the lignin oils using two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance and gel permeation chromatrography revealed that soluble oligomers are formed via solvolysis, followed by further fragmentation on the catalyst surface via hydrogenolysis. Overall, the results show that clear trade-offs exist between the levels of lignin extraction, monomer yields, and carbohydrate retention in the residual solids for different RCF conditions of corn stover.« less

  3. [Contributions to the chemical study of the essential oil isolated from coriander fruits (Sandra cultivar)].

    PubMed

    Trifan, Adriana; Aprotosoaie, Ana Clara; Spac, A; Hăncianu, Monica; Miron, Anca; Stănescu, Ursula

    2011-01-01

    Coriandrum sativum L. (Apiaceae) is a well known herb, native to the Mediterranean region, also intensively cultivated in Romania. The essential oil obtained from Coriandri fructus posseses antimicrobial, antioxidant and anxiolytic effects. Many parameters such as genetic and climatic factors or agronomical practices can influence the yield and composition of the volatile fraction. Plant density is an important factor for the microenvironment in coriander field. In order to study the effect of planting density on the yield of the essential oil and its composition, a bifactorial experiment was carried out on coriander plants (Sandra cultivar). The experiment was performed with three plant densities on the row (0, 15 and 20 cm); the distance between plant rows was 12.5, 25 and 50 cm, respectively. So, it resulted nine experimental variants. The essential oils obtained by hydrodistillation from fruits have been characterized using gas chromatography and mass spectroscopy analysis (GC-MS). The highest yield (7.9866 kg/ha) was obtained for the plants spaced at 20 cm in between and 25 cm row spacing. The highest content of monoterpene alcohols (50.96%) was obtained with 25 cm row spacing and plant spaced at 0 cm on the row. The main components in all oils were monoterpene alcohols (40.75% - 50.96%) and monoterpenes (32.43-38.44%). The essential oil of coriander fruits (Sandra cultivar) does not meet the requirements of the European Pharmacopoeia, especially concerning the content in linalool. Nevertheless, the high content in monoterpene alcohols and monoterpenes recommends the use of the essential oil as immunomodulatory, analgesic and antiinflammatory agent in rheumatology and also as an antibacterial and antiviral agent. Consequently, the changes in yield and composition of the essential oil of Sandra coriander should be assesed during several periods of vegetation in order to conclude on its pharmaceutical quality.

  4. Effect of catalyst additives on the production of biofuels from palm oil cracking in a transport riser reactor.

    PubMed

    Chew, Thiam Leng; Bhatia, Subhash

    2009-05-01

    Catalytic cracking of crude palm oil (CPO) and used palm oil (UPO) were studied in a transport riser reactor for the production of biofuels at a reaction temperature of 450 degrees C, with residence time of 20s and catalyst-to-oil ratio (CTO) of 5 gg(-1). The effect of HZSM-5 (different Si/Al ratios), beta zeolite, SBA-15 and AlSBA-15 were studied as physically mixed additives with cracking catalyst Rare earth-Y (REY). REY catalyst alone gave 75.8 wt% conversion with 34.5 wt% of gasoline fraction yield using CPO, whereas with UPO, the conversion was 70.9 wt% with gasoline fraction yield of 33.0 wt%. HZSM-5, beta zeolite, SBA-15 and AlSBA-15 as additives with REY increased the conversion and the yield of organic liquid product. The transport riser reactor can be used for the continuous production of biofuels from cracking of CPO and UPO over REY catalyst.

  5. Quality of Lupinus albus L. (white lupin) seed: extent of genotypic and environmental effects.

    PubMed

    Annicchiarico, Paolo; Manunza, Patrizia; Arnoldi, Anna; Boschin, Giovanna

    2014-07-16

    White lupin seed can be used for traditional and functional foods or as animal feed. This study aimed to support lupin breeders and production stakeholders by assessing the extent of genotypic, environmental, and genotype × environment (GE) interaction effects on seed contents of oil, tocopherols (TOC), and quinolizidine alkaloids (QA), grain yield, and seed weight of eight elite genotypes grown in two climatically contrasting Italian locations for two cropping years. On average, plants in the subcontinental climate site exhibited higher grain yield and seed size, about 8% lower oil content, and almost 85% higher QA content than those in the Mediterranean climate site. The range of genotype means was 2.97-5.14 t/ha for yield, 92-110 mg/g for oil, and 0.121-0.133 mg/g for TOC. TOC amount was largely unpredictable and featured large GE interactions that hinder its genetic improvement. Oil and alkaloid contents and seed size are more predictable and offer potential for selection.

  6. Influence of the reaction conditions on the enzyme catalyzed transesterification of castor oil: A possible step in biodiesel production.

    PubMed

    Andrade, Thalles A; Errico, Massimiliano; Christensen, Knud V

    2017-11-01

    The identification of the influence of the reaction parameters is of paramount importance when defining a process design. In this work, non-edible castor oil was reacted with methanol to produce a possible component for biodiesel blends, using liquid enzymes as the catalyst. Temperature, alcohol-to-oil molar ratio, enzyme and added water contents were the reaction parameters evaluated in the transesterification reactions. The optimal conditions, giving the optimal final FAME yield and FFA content in the methyl ester-phase was identified. At 35°C, 6.0 methanol-to-oil molar ratio, 5wt% of enzyme and 5wt% of water contents, 94% of FAME yield and 6.1% of FFA in the final composition were obtained. The investigation was completed with the analysis of the component profiles, showing that at least 8h are necessary to reach a satisfactory FAME yield together with a minor FFA content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Production of biodiesel from Jatropha curcas L. oil catalyzed by SO₄²⁻/ZrO₂ catalyst: effect of interaction between process variables.

    PubMed

    Yee, Kian Fei; Lee, Keat Teong; Ceccato, Riccardo; Abdullah, Ahmad Zuhairi

    2011-03-01

    This study reports the conversion of Jatrophacurcas L. oil to biodiesel catalyzed by sulfated zirconia loaded on alumina catalyst using response surface methodology (RSM), specifically to study the effect of interaction between process variables on the yield of biodiesel. The transesterification process variables studied were reaction temperature, reaction duration, molar ratio of methanol to oil and catalyst loading. Results from this study revealed that individual as well as interaction between variables significantly affect the yield of biodiesel. With this information, it was found that 4h of reaction at 150°C, methanol to oil molar ratio of 9.88 mol/mol and 7.61 wt.% for catalyst loading gave an optimum biodiesel yield of 90.32 wt.%. The fuel properties of Jatropha biodiesel were characterized and it indeed met the specification for biodiesel according to ASTM D6751. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Isolation and characterization of hydrophobic compounds from carbohydrate matrix of Pistacia atlantica.

    PubMed

    Samavati, Vahid; Adeli, Mostafa

    2014-01-30

    The present work is focused on the optimization of hydrophobic compounds extraction process from the carbohydrate matrix of Iranian Pistacia atlantica seed at laboratory level using ultrasonic-assisted extraction. Response surface methodology (RSM) was used to optimize oil seed extraction yield. Independent variables were extraction temperature (30, 45, 60, 75 and 90°C), extraction time (10, 15, 20, 25, 30 and 35 min) and power of ultrasonic (20, 40, 60, 80 and 100 W). A second order polynomial equation was used to express the oil extraction yield as a function of independent variables. The responses and variables were fitted well to each other by multiple regressions. The optimum extraction conditions were as follows: extraction temperature of 75°C, extraction time of 25 min, and power of ultrasonic of 80 W. A comparison between seed oil composition extracted by ultrasonic waves under the optimum operating conditions determined by RSM for oil yield and by organic solvent was reported. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Investigation of waste biomass co-pyrolysis with petroleum sludge using a response surface methodology.

    PubMed

    Hu, Guangji; Li, Jianbing; Zhang, Xinying; Li, Yubao

    2017-05-01

    The treatment of waste biomass (sawdust) through co-pyrolysis with refinery oily sludge was carried out in a fixed-bed reactor. Response surface method was applied to evaluate the main and interaction effects of three experimental factors (sawdust percentage in feedstock, temperature, and heating rate) on pyrolysis oil and char yields. It was found that the oil and char yields increased with sawdust percentage in feedstock. The interaction between heating rate and sawdust percentage as well as between heating rate and temperature was significant on the pyrolysis oil yield. The higher heating value of oil originated from sawdust during co-pyrolysis at a sawdust/oily sludge ratio of 3:1 increased by 5 MJ/kg as compared to that during sawdust pyrolysis alone, indicating a synergistic effect of co-pyrolysis. As a result, petroleum sludge can be used as an effective additive in the pyrolysis of waste biomass for improving its energy recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effect of Subcritical Fluid Extraction on the High Quality of Headspace Oil from Jasminum sambac (L.) Aiton.

    PubMed

    Ye, Qiuping; Jin, Xinyi; Wei, Shiqin; Zheng, Gongyu; Li, Xinlei

    2016-05-01

    Subcritical fluid extraction (SFE), as a novel method, was applied to investigate the yield, quality, and sensory evaluation of headspace oil from Jasminum sambac (L.) Aiton in comparison with petroleum ether extraction (PEE). The results indicated that the yield of the headspace oil using SFE was significantly higher (P < 0.05) than when using PEE. SFE contributed to obtaining alcohols and ethers, prevented the thermal reaction of terpenes, and reduced α-caryophyllene and β-caryophyllene in the headspace oil. The contents of linalool (21.90%) and benzyl acetate (16.31%) were higher via SFE than PEE. In addition, the sensory evaluation of SFE was superior to PEE, indicating a fresh, jasmine-like odor and green-yellow color. Thus, SFE is an improved method for obtaining natural headspace oil from jasmine flowers.

  11. Catalytic cracking of the top phase fraction of bio-oil into upgraded liquid oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunarno; Chemical Engineering Department, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur,Yogyakarta 55281; Rochmadi,

    The energy consumption is increasing, while oil reserves as a primary energy resource are decreasing, so that is the reason seeking alternative energy source is inevitable. Biomass especially oil palm empty fruit bunches (EFB) which is abundant in Indonesia can be processed into bio-oil by pyrolysis process. The potential for direct substitution of bio-oil for petroleum may be limited due to the high viscosity, high oxygen content, low heating value, and corrosiveness. Consequently, upgrading of the bio-oil before use is inevitable to give a wider variety of applications of its liquid product. Furthermore, upgrading process to improve the quality ofmore » bio-oil by reduction of oxygenates involves process such as catalytic cracking. The objective of this research is to study the effect of operation temperature on yield and composition of upgraded liquid oil and to determine physical properties. Bio-oil derived from EFB was upgraded through catalytic cracking using series tubular reactor under atmospheric pressure on a silica-alumina catalyst. Results show that increasing temperature from 450 to 600 °C, resulting in decreasing of upgraded liquid oil (ULO) yield, decreasing viscosity and density of ULO, but increasing in calorimetric value of ULO. The increasing temperature of cracking also will increase the concentration of gasoline and kerosene in ULO.« less

  12. Activation of Aspen Wood with Carbon Dioxide and Phosphoric Acid for Removal of Total Organic Carbon from Oil Sands Produced Water: Increasing the Yield with Bio-Oil Recycling

    PubMed Central

    Veksha, Andrei; Bhuiyan, Tazul I.; Hill, Josephine M.

    2016-01-01

    Several samples of activated carbon were prepared by physical (CO2) and chemical (H3PO4) activation of aspen wood and tested for the adsorption of organic compounds from water generated during the recovery of bitumen using steam assisted gravity drainage. Total organic carbon removal by the carbon samples increased proportionally with total pore volume as determined from N2 adsorption isotherms at −196 °C. The activated carbon produced by CO2 activation had similar removal levels for total organic carbon from the water (up to 70%) to those samples activated with H3PO4, but lower yields, due to losses during pyrolysis and activation. A method to increase the yield when using CO2 activation was proposed and consisted of recycling bio-oil produced from previous runs to the aspen wood feed, followed by either KOH addition (0.48%) or air pretreatment (220 °C for 3 h) before pyrolysis and activation. By recycling the bio-oil, the yield of CO2 activated carbon (after air pretreatment of the mixture) was increased by a factor of 1.3. Due to the higher carbon yield, the corresponding total organic carbon removal, per mass of wood feed, increased by a factor of 1.2 thus improving the overall process efficiency. PMID:28787817

  13. Effect of dietary fatty acid supplements, varying in fatty acid composition, on milk fat secretion in dairy cattle fed diets supplemented to less than 3% total fatty acids.

    PubMed

    Stoffel, C M; Crump, P M; Armentano, L E

    2015-01-01

    Dietary fatty acids can affect both milk fat yield and fatty acid (FA) composition. This relationship is well established when the dietary level of FA exceeds 3% of diet dry matter (DM). We could find no reports directly examining the effects of dietary FA profile on milk fat at levels below 3%. Twenty-four primiparous and 36 multiparous lactating cows were paired by production (1 high with 1 low, within parity) to form 30 experimental units. Pairs were fed 6 diets in five 6×6 balanced Latin squares with 21-d periods, and data were collected during the last 5d of each period. Two control diets were fed: a corn control diet (CC; 29% corn silage, 16% alfalfa silage, 19% corn grain, and 8% distillers grain on a DM basis) containing 1.8% FA; and a low-oil control diet (LOC; 9% corn silage, 35% alfalfa silage, 20% food-grade corn starch, and 8% corn gluten feed on a DM basis) containing 1.2% FA. A portion of the food-grade corn starch in LOC was replaced with 4 different FA supplements to create the 4 treatment diets. Treatments were 1.7% (DM basis) of a 50:50 blend of corn oil and high-linoleic safflower oil (LO), 1.7% high-oleic sunflower oil (OO), 1.7% palm oil (PO), or 1.8% calcium salts of palm fatty acids (PFA). The resultant diets were thus enriched in linoleic (LO), oleic (OO), or palmitic acid (PO and PFA). Dietary treatments did not affect dry matter intake. Addition of any of the fat sources to LOC resulted in increased milk yield, but milk fat yields and milk FA composition were variable for the different treatments. The LO treatment resulted in lower milk fat yield, fat concentration, and C16:0 yield but increased both trans-10 C18:1 and trans-10,cis-12 C18:2 yields compared with the other added FA treatments. Diets PO and PFA resulted in increased milk C16:0 yield and decreased total milk C18 yield compared with OO. Regression analysis revealed a negative coefficient for dietary linoleic acid content over basal (LOC) for both milk short-chain FA yield and C16:0 yield. Dietary linoleic acid content also had a positive coefficient for milk trans-10 C18:1 and trans-10,cis-12 conjugated linoleic acid yield. These results demonstrate that even when total dietary FA are below 3%, free oils rich in linoleic acid can reduce milk fat yield by reducing secretion of milk FA with fewer than 18 carbons. Fatty acid composition of fat supplements is important even at this low level of total dietary fat. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Extraction of essential oil from baby Java orange (Citrus sinensis) solid waste using water and steam distillation

    NASA Astrophysics Data System (ADS)

    Dewi, I. A.; Prastyo, A. M.; Wijana, S.

    2018-03-01

    Baby java orange (Citrus sinensis) is commonly consumed as juice. Processing of baby java orange leaves organic waste which consist of the mesocarp, exocarp, seed, and wall of the orange. Therefore, it is necessary to process baby java orange waste to be valuable products. The purpose of this study was to provide added value to unutilized baby java orange waste, and to find out the pretreatment of time-delay process that maximize the yield of essential oil produced. Essential oil processing can be done by water and steam distillation. The study used randomized block design with one factor namely distillation time-delay process by air drying consisted of 4 levels i.e. the distillation delay for 2, 4, 6, and 8 days. The best treatment was determined based on the yield. The best essential oil from baby java orange waste was obtained from the treatment of distillation delay-process of 8 days. This pretreatment generated yield value of 0.63% with moisture content of 24.21%. By estimating the price of essential oil showed that this effort not only reduced the bulky organic waste but also provided potential economical value.

  15. Processing of centrifuged solids from liquefied coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weintraub, M.; Akhtar, S.; Yavorsky, P.M.

    The centrifuged residues from coal liquefaction processes present two problems which the Pittsburgh ETC has found to be controllable by thermal processing of the material: the residues contain significant amounts of carbon and oil that should be recovered, and their sticky, malodorous, dough-like nature makes them difficult to handle. This paper reports the results of heat treatments using several types of processing equipment and two different temperature ranges. Pyrolysis in the range of 1,100/sup 0/ to 1,400/sup 0/F yielded 20 to 30 wt % of oil product, depending on the source of the residue and its initial oil content. Lowermore » temperature heating (e.g., 600/sup 0/F) yielded less oil, but did produce a non-sticky friable solid. The percent oil yield was a function of temperature, residence time, and thickness of the layer exposed. A one-eighth inch thick sample became friable in 15 to 30 minutes exposure to 600/sup 0/F, during which time it lost about 13 percent of its weight. The tests included measurements on a steel conveyor belt, which could become the commercial embodiment of this treatment.« less

  16. Bio oil synthesis by coupling biological biomass pretreatment and catalytic hydroliquefaction process.

    PubMed

    Hamieh, S; Beauchet, R; Lemee, L; Toufaily, J; Koubaissy, B; Hamieh, T; Pouilloux, Y; Pinard, L

    2014-03-01

    The bio-oil synthesis from a mixture of wastes (7wt.% straw, 38wt.% wood, and 45wt.% grass) was carried out by direct liquefaction reaction using Raney Nickel as catalyst and tetralin as solvent. The green wastes were biologically degraded during 3 months. Longer the destructuration time; higher the yield into oil is. Biological pretreatment of green wastes promotes the liquefaction process. Among the components of degraded biomass, Humin, the major fraction (60-80wt.%) that was favored by the biological treatment, yields to a bio oil extremely energetic with a HHV close to biopetroleum (40MJ kg(-1)), contrariwise, Fulvic acids (2-12wt.%), the minor fraction is refractory to liquefaction reaction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Steam distillation extraction kinetics regression models to predict essential oil yield, composition, and bioactivity of chamomile oil

    USDA-ARS?s Scientific Manuscript database

    Chamomile (Matricaria chamomilla L.) is one of the most widely spread and used medicinal and essential oil crop in the world. Chamomile essential oil is extracted via steam distillation of the inflorescences (flowers). In this study, distillation time (DT) was found to be a crucial determinant of yi...

  18. Study of optimal extraction conditions for achieving high yield and antioxidant activity of tomato seed oil

    USDA-ARS?s Scientific Manuscript database

    Tomato seeds resulting from tomato processing by-product have not been effectively utilized as value-added products. This study investigated the kinetics of oil extraction from tomato seeds and sought to optimize the oil extraction conditions. The oil was extracted by using hexane as solvent for 0 t...

  19. Foliar essential oils and deer browsing preference of Douglas-fir genotypes

    Treesearch

    M.A. Radwan

    1978-01-01

    Yield and composition of essential oils were compared in foliage of Douglas-fir. Five clones with different susceptibilities to deer browsing were used; foliage was collected during the dormant season. There were no qualitative differences among the oils of the different clones, but the oils differed quantitatively in all variables measured. Eight variables appeared...

  20. Implications of Increasing Light Tight Oil Production for U.S. Refining

    EIA Publications

    2015-01-01

    EIA retained Turner, Mason & Company to provide analysis of the implications of increasing domestic light tight oil production for U.S. refining, focusing on regional crude supply/demand balances, refinery crude slates, operations, capital investment, product yields, crude oil exports/imports, petroleum product exports, infrastructure constraints and expansions, and crude oil price relationships.

  1. Hydrocarbon Liquid Production from Biomass via Hot-Vapor-Filtered Fast Pyrolysis and Catalytic Hydroprocessing of the Bio-oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Douglas C.; Wang, Huamin; French, Richard

    2014-08-14

    Hot-vapor filtered bio-oils were produced from two different biomass feedstocks, oak and switchgrass, and the oils were evaluated in hydroprocessing tests for production of liquid hydrocarbon products. Hot-vapor filtering reduced bio-oil yields and increased gas yields. The yields of fuel carbon as bio-oil were reduced by ten percentage points by hot-vapor filtering for both feedstocks. The unfiltered bio-oils were evaluated alongside the filtered bio-oils using a fixed bed catalytic hydrotreating test. These tests showed good processing results using a two-stage catalytic hydroprocessing strategy. Equal-sized catalyst beds, a sulfided Ru on carbon catalyst bed operated at 220°C and a sulfided CoMomore » on alumina catalyst bed operated at 400°C were used with the entire reactor at 100 atm operating pressure. The products from the four tests were similar. The light oil phase product was fully hydrotreated so that nitrogen and sulfur were below the level of detection, while the residual oxygen ranged from 0.3 to 2.0%. The density of the products varied from 0.80 g/ml up to 0.86 g/ml over the period of the test with a correlated change of the hydrogen to carbon atomic ratio from 1.79 down to 1.57, suggesting some loss of catalyst activity through the test. These tests provided the data needed to assess the suite of liquid fuel products from the process and the activity of the catalyst in relationship to the existing catalyst lifetime barrier for the technology.« less

  2. Effect of oil content and kernel processing of corn silage on digestibility and milk production by dairy cows.

    PubMed

    Weiss, W P; Wyatt, D J

    2000-02-01

    Corn silages were produced from a high oil corn hybrid and from its conventional hybrid counterpart and were harvested with a standard silage chopper or a chopper equipped with a kernel processing unit. High oil silages had higher concentrations of fatty acids (5.5 vs. 3.4% of dry matter) and crude protein (8.4 vs. 7.5% of dry matter) than the conventional hybrid. Processed silage had larger particle size than unprocessed silage, but more starch was found in small particles for processed silage. Dry matter intake was not influenced by treatment (18.4 kg/d), but yield of fat-corrected milk (23.9 vs. 22.6 kg/d) was increased by feeding high oil silage. Overall, processing corn silage did not affect milk production, but cows fed processed conventional silage tended to produce more milk than did cows fed unprocessed conventional silage. Milk protein percent, but not yield, was reduced with high oil silage. Milk fat percent, but not yield, was higher with processed silage. Overall, processed silage had higher starch digestibility, but the response was much greater for the conventional silage hybrid. The concentration of total digestible nutrients (TDN) tended to be higher for diets with high oil silage (71.6 vs. 69.9%) and tended to be higher for processed silage than unprocessed silage (71.7 vs. 69.8%), but an interaction between variety and processing was observed. Processing conventional corn silage increased TDN to values similar to high oil corn silage but processing high oil corn silage did not influence TDN.

  3. Antioxidant Activity of Essential Oil Extracted by SC-CO₂ from Seeds of Trachyspermum ammi.

    PubMed

    Singh, Aarti; Ahmad, Anees

    2017-07-11

    Bcakground: Extracts obtained from natural sources such as plants are of immense importance for humans. Methods: Therefore this study was conducted to obtain essential oil from the seeds of T. ammi by conventional and non-conventional methods. Hydrodistillation (HD), Solvent Extraction (SE), Ultrasonication (US), and Supercritical Carbon-dioxide (SC-CO₂) extraction techniques were used to extract essential oil from the powdered seeds of T. ammi . A quality control method for each extracted oil was developed using HPTLC, FTIR, and GC-MS. The optimization process was carried out using fractional factorial design (FFD) under which three parameters were considered: pressure (150, 175, and 300 bar), temperature (25, 30, and 40 °C), and CO₂ flow rate (5, 10, 15 g/min). Results: The yield of essential oil obtained from the HD, SE, US, and SC-CO₂ methods were 1.20%, 1.82%, 2.30%, and 2.64% v/w , respectively. Antioxidant activity was determined by the DPPH and superoxide scavenging methods and the IC 50 (Inhibition Concentration) values of the T. ammi oil sample were found to be 36.41 and 20.55 µg mL -1 , respectively. Conclusion: The present paper reported that different extraction methods lead to different yields of essential oils and the choice of a suitable method is extremely important to obtain more preferred compounds. The yield was higher in the SC-CO₂ method and it is a sustainable and green extraction technique. Many important constituents were detected in analytical techniques. Antioxidant activities carried out showed that essential oil extracted from T. ammi seeds possess significant antioxidant activity.

  4. Sequential Elution of Essential Oil Constituents during Steam Distillation of Hops (Humulus lupulus L.) and Influence on Oil Yield and Antimicrobial Activity.

    PubMed

    Jeliazkova, Ekaterina; Zheljazkov, Valtcho D; Kačániova, Miroslava; Astatkie, Tess; Tekwani, Babu L

    2018-06-07

    The profile and bioactivity of hops (Humulus lupulus L.) essential oil, a complex natural product extracted from cones via steam distillation, depends on genetic and environmental factors, and may also depend on extraction process. We hypothesized that compound mixtures eluted sequentially and captured at different timeframes during the steam distillation process of whole hop cones would have differential chemical and bioactivity profiles. The essential oil was collected sequentially at 8 distillation time (DT) intervals: 0-2, 2-5, 5-10, 10-30, 30-60, 60-120, 120-180, and 180-240 min. The control was a 4-h non-interrupted distillation. Nonlinear regression models described the DT and essential oil compounds relationship. Fractions yielded 0.035 to 0.313% essential oil, while control yielded 1.47%. The oil eluted during the first hour was 83.2%, 9.6% during the second hour, and only 7.2% during the second half of the distillation. Essential oil (EO) fractions had different chemical profile. Monoterpenes were eluted early, while sequiterpenes were eluted late. Myrcene and linalool were the highest in 0-2 min fraction, β-caryophyllene, β-copaene, β-farnesene, and α-humulene were highest in fractions from middle of distillation, whereas α- bergamotene, γ-muurolene, β- and α-selinene, γ- and δ-cadinene, caryophyllene oxide, humulne epoxide II, τ-cadinol, and 6-pentadecen-2-one were highest in 120-180 or 180-240 min fractions. The Gram-negative Escherichia coli was strongly inhibited by essential oil fractions from 2-5 min and 10-30 min, followed by oil fraction from 0-2 min. The strongest inhibition activity against Gram-negative Yersinia enterocolitica, and Gram-positive Clostridium perfringens, Enterococcus faecalis, and Staphylococcus aureus subs. aureus was observed with the control essential oil. This is the first study to describe significant activity of hops essential oils against Trypanosoma brucei, a parasitic protozoan that causes African trypanosomiasis (sleeping sickness in humans and nagana in other animals). Hops essential oil fractions or whole oil may be used as antimicrobial agents or for the development of new drugs.

  5. Effects of Hydrological Parameters on Palm Oil Fresh Fruit Bunch Yield)

    NASA Astrophysics Data System (ADS)

    Nda, M.; Adnan, M. S.; Suhadak, M. A.; Zakaria, M. S.; Lopa, R. T.

    2018-04-01

    Climate change effects and variability have been studied by many researchers in diverse geophysical fields. Malaysia produces large volume of palm oil, the effects of climate change on hydrological parameters (rainfall and precipitation) could have adverse effects on palm oil fresh fruit bunch (FFB) production with implications at both local and international market. It is important to understand the effects of climate change on crop yield to adopt new cultivation techniques and guaranteeing food security globally. Based on this background, the paper’s objective is to investigate the effects of rainfall and temperature pattern on crop yield (FFB) within five years period (2013 - 2017) at Batu Pahat District. The Man - Kendall rank technique (trend test) and statistical analyses (correlation and regression) were applied to the dataset used for the study. The results reveal that there are variabilities in rainfall and temperature from one month to the other and the statistical analysis reveals that the hydrological parameters have an insignificant effect on crop yield.

  6. Generation and migration of Bitumen and oil from the oil shale interval of the Eocene Green River formation, Uinta Basin, Utah

    USGS Publications Warehouse

    Johnson, Ronald C.; Birdwell, Justin E.; Mercier, Tracey J.

    2016-01-01

    The results from the recent U.S. Geological Survey assessment of in-place oil shale resources of the Eocene Green River Formation, based primarily on the Fischer assay method, are applied herein to define areas where the oil shale interval is depleted of some of its petroleum-generating potential along the deep structural trough of the basin and to make: (1) a general estimates of the amount of this depletion, and (2) estimate the total volume of petroleum generated. Oil yields (gallons of oil per ton of rock, GPT) and in-place oil (barrels of oil per acre, BPA) decrease toward the structural trough of the basin, which represents an offshore lacustrine area that is believed to have originally contained greater petroleum-generating potential than is currently indicated by measured Fischer assay oil yields. Although this interval is considered to be largely immature for oil generation based on vitrinite reflectance measurements, the oil shale interval is a likely source for the gilsonite deposits and much of the tar sands in the basin. Early expulsion of petroleum may have occurred due to the very high organic carbon content and oil-prone nature of the Type I kerogen present in Green River oil shale. In order to examine the possible sources and migration pathways for the tar sands and gilsonite deposits, we have created paleogeographic reconstructions of several oil shale zones in the basin as part of this study.

  7. Laboratory study of the effects of combustion gases on retorting of Green River oil shale with superheated steam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, A.L.; Bullen, E.A.; Jacobs, H.R.

    The leached zone of the Parachute Creek member of the Piceance Basin in the Green River Formation has a unique natural porosity that makes it a likely source for in-situ production of oil from oil shale by injection of superheated steam. The Equity Oil Co. of Salt Lake City, in cooperation with the U. S. Department of Energy, carried out field tests using surface generated steam. Difficulties in delivering steam of sufficiently high temperature to the formation resulted in an experiment which was only marginally successful yielding less than 1 percent of the estimated 300,000 barrels of oil in place.more » In 1981, personnel at Sandia National Laboratory suggested that a downhole steam generator which could produce steam at temperatures in excess of 1000/sup 0/F (538/sup 0/C) at depth could well solve the temperature problem. In order to evaluate the effects of combustion gases which would be injected along with steam, should a downhole steam generator be used, laboratory studies have been completed using steam diluted with CO/sub 2/ and with CO/sub 2/ and N/sub 2/ as the heating medium. Results of experiments in an autoclave reactor and in a laboratory retort are reported. The temperature, residence time, and partial pressure of steam are the parameters which effect oil yield and oil quality. Oil properties are reported for several experimental conditions and include oil yield, boiling point distributions, pour points, gravity, and elemental and hydrocarbon-type analyses. Both the autoclave and laboratory retort experiments indicate that CO/sub 2/ and N/sub 2/ do not take a reactive part in the formation of oils except as they dilute the steam. However, the presence of CO/sub 2/ in the gaseous atmosphere during retorting does promote a low-temperature transformation of dolomite to calcite in the inorganic matrix of the oil shale.« less

  8. Inhibitory effect of essential oils obtained from plants grown in Colombia on yellow fever virus replication in vitro

    PubMed Central

    Meneses, Rocío; Ocazionez, Raquel E; Martínez, Jairo R; Stashenko, Elena E

    2009-01-01

    Background An antiviral drug is needed for the treatment of patients suffering from yellow fever. Several compounds present in plants can inactive in vitro a wide spectrum of animal viruses. Aim In the present study the inhibitory effect of essential oils of Lippia alba, Lippia origanoides, Oreganum vulgare and Artemisia vulgaris on yellow fever virus (YFV) replication was investigated. Methods The cytotoxicity (CC50) on Vero cells was evaluated by the MTT reduction method. The minimum concentration of the essential oil that inhibited virus titer by more than 50% (MIC) was determined by virus yield reduction assay. YFV was incubated 24 h at 4°C with essential oil before adsorption on Vero cell, and viral replication was carried out in the absence or presence of essential oil. Vero cells were exposed to essential oil 24 h at 37°C before the adsorption of untreated-virus. Results The CC50 values were less than 100 μg/mL and the MIC values were 3.7 and 11.1 μg/mL. The CC50/MIC ratio was of 22.9, 26.4, 26.5 and 8.8 for L. alba, L origanoides, O. vulgare and A. vulgaris, respectively. The presence of essential oil in the culture medium enhances the antiviral effect: L. origanoides oil at 11.1 μg/mLproduced a 100% reduction of virus yield, and the same result was observed with L. alba, O. vulgare and A. vulgaris oils at100 μg/mL. No reduction of virus yield was observed when Vero cells were treated with essential oil before the adsorption of untreated-virus. Conclusion The essential oils evaluated in the study showed antiviral activities against YFV. The mode of action seems to be direct virus inactivation. PMID:19267922

  9. Kristiina Iisa | NREL

    Science.gov Websites

    ," Topics in Catalysis (2016) "Hydrotreating the Organic Fraction of Biomass Pyrolysis Oil to a Biomass via Hot-Vapor-Filtered Fast Pyrolysis and Catalytic Hydroprocessing of the Bio-oil," Energy & Fuels (2014) "Evaluate Impact of Catalyst Type on Oil Yield and Hydrogen Consumption from

  10. Bio-oil from fast pyrolysis of lignin: Effects of process and upgrading parameters.

    PubMed

    Fan, Liangliang; Zhang, Yaning; Liu, Shiyu; Zhou, Nan; Chen, Paul; Cheng, Yanling; Addy, Min; Lu, Qian; Omar, Muhammad Mubashar; Liu, Yuhuan; Wang, Yunpu; Dai, Leilei; Anderson, Erik; Peng, Peng; Lei, Hanwu; Ruan, Roger

    2017-10-01

    Effects of process parameters on the yield and chemical profile of bio-oil from fast pyrolysis of lignin and the processes for lignin-derived bio-oil upgrading were reviewed. Various process parameters including pyrolysis temperature, reactor types, lignin characteristics, residence time, and feeding rate were discussed and the optimal parameter conditions for improved bio-oil yield and quality were concluded. In terms of lignin-derived bio-oil upgrading, three routes including pretreatment of lignin, catalytic upgrading, and co-pyrolysis of hydrogen-rich materials have been investigated. Zeolite cracking and hydrodeoxygenation (HDO) treatment are two main methods for catalytic upgrading of lignin-derived bio-oil. Factors affecting zeolite activity and the main zeolite catalytic mechanisms for lignin conversion were analyzed. Noble metal-based catalysts and metal sulfide catalysts are normally used as the HDO catalysts and the conversion mechanisms associated with a series of reactions have been proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A study of pyrolysis of oil shale of the Leningrad deposit by solid heat carrier

    NASA Astrophysics Data System (ADS)

    Gerasimov, G. Ya; Khaskhachikh, V. V.; Potapov, O. P.

    2017-11-01

    The investigation of the oil shale pyrolysis with a solid heat carrier was carried out using the experimental retorting system that simulates the Galoter industrial process. This system allows verifying both fractional composition of the oil shale and solid heat carrier, and their ratio and temperature. The oil shale of the Leningradsky deposit was used in the work, and quartz sand was used as the solid heat carrier. It is shown that the yield of the shale oil under the pyrolysis with solid heat carrier exceeds by more than 20% the results received in the standard Fisher retort. Using ash as the solid heat carrier results in a decrease in the yield of oil and gas with simultaneous increase in the amount of the solid residue. This is due to the chemical interaction of the acid components of the vapor-gas mixture with the oxides of alkaline-earth metals that are part of the ash.

  12. Yeast lipids from cardoon stalks, stranded driftwood and olive tree pruning residues as possible extra sources of oils for producing biofuels and biochemicals.

    PubMed

    Tasselli, Giorgia; Filippucci, Sara; Borsella, Elisabetta; D'Antonio, Silvia; Gelosia, Mattia; Cavalaglio, Gianluca; Turchetti, Benedetta; Sannino, Ciro; Onofri, Andrea; Mastrolitti, Silvio; De Bari, Isabella; Cotana, Franco; Buzzini, Pietro

    2018-01-01

    Some lignocellulosic biomass feedstocks occur in Mediterranean Countries. They are still largely unexploited and cause considerable problems due to the lack of cost-effective harvesting, storage and disposal technologies. Recent studies found that some basidiomycetous yeasts are able to accumulate high amount of intracellular lipids for biorefinery processes (i.e., biofuels and biochemicals). Accordingly, the above biomass feedstocks could be used as carbon sources (after their pre-treatment and hydrolysis) for lipid accumulation by oleaginous yeasts. Cardoon stalks, stranded driftwood and olive tree pruning residues were pre-treated with steam-explosion and enzymatic hydrolysis for releasing free mono- and oligosaccharides. Lipid accumulation tests were performed at two temperatures (20 and 25 °C) using Leucosporidium creatinivorum DBVPG 4794, Naganishia adeliensis DBVPG 5195 and Solicoccozyma terricola DBVPG 5870. S. terricola grown on cardoon stalks at 20 °C exhibited the highest lipid production (13.20 g/l), a lipid yield (28.95%) close to the maximum theoretical value and a lipid composition similar to that found in palm oil. On the contrary, N. adeliensis grown on stranded driftwood and olive tree pruning residues exhibited a lipid composition similar to those of olive and almonds oils. A predictive evaluation of the physical properties of the potential biodiesel obtainable by lipids produced by tested yeast strains has been reported and discussed. Lipids produced by some basidiomycetous yeasts grown on Mediterranean lignocellulosic biomass feedstocks could be used as supplementary sources of oils for producing biofuels and biochemicals.

  13. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery.

    PubMed

    Amani, Hossein; Müller, Markus Michael; Syldatk, Christoph; Hausmann, Rudolf

    2013-07-01

    Recently, several investigations have been carried out on the in situ bacteria flooding, but the ex situ biosurfactant production and addition to the sand pack as agents for microbial enhanced oil recovery (MEOR) has little been studied. In order to develop suitable technology for ex situ MEOR processes, it is essential to carry out tests about it. Therefore, this work tries to fill the gap. The intention of this study was to investigate whether the rhamnolipid mix could be produced in high enough quantities for enhanced oil recovery in the laboratory scale and prove its potential use as an effective material for field application. In this work, the ability of Pseudomonas aeruginosa MM1011 to grow and produce rhamnolipid on sunflower as sole carbon source under nitrogen limitation was shown. The production of Rha-C10-C10 and Rha2-C10-C10 was confirmed by thin-layer chromatography and high-performance liquid chromatography analysis. The rhamnolipid mixture obtained was able to reduce the surface and interfacial tension of water to 26 and 2 mN/m, respectively. The critical micelle concentration was 120 mg/L. Maximum rhamnolipid production reached to about 0.7 g/L in a shake flask. The yield of rhamnolipid per biomass (Y RL/x ), rhamnolipid per sunflower oil (Y RL/s ), and the biomass per sunflower oil (Y x/s ) for shake flask were obtained about 0.01, 0.0035, and 0.035 g g(-1), respectively. The stability of the rhamnolipid at different salinities, pH and temperature, and also, its emulsifying activity has been investigated. It is an effective surfactant at very low concentrations over a wide range of temperatures, pHs, and salt concentrations, and it also has the ability to emulsify oil, which is essential for enhanced oil recovery. With 120 mg/L rhamnolipid, 27 % of original oil in place was recovered after water flooding from a sand pack. This result not only suggests rhamnolipids as appropriate model biosurfactants for MEOR, but it even shows the potential as a biosurfactant of choice for actual MEOR applications.

  14. Biodiesel production using alkaline ionic liquid and adopted as lubricity additive for low-sulfur diesel fuel.

    PubMed

    Luo, Hui; Fan, Weiyu; Li, Yang; Nan, Guozhi

    2013-07-01

    Preparation of biodiesel from vegetable oils, such as rapeseed oil, soybean oil and sunflower oil, catalyzed by an alkaline ionic liquid 1-butyl-3-methylimidazolium imidazolide ([Bmim]Im) was investigated in this work. The results demonstrated that [Bmim]Im exhibited high activity and the yield of biodiesel was up to 95% or more when molar ratio of methanol to vegetable oil was 6:1, ionic liquid dosage was 6 wt.%, reaction temperature was 60°C, and reaction time was 60 min. After [Bmim]Im was used for the sixth time, the yield of biodiesel still remained at about 95%. The effects of the biodiesels on the lubricity of low-sulfur diesel fuel were also investigated using the High Frequency Reciprocating Rig method, and the results showed that sunflower biodiesel and soybean biodiesel had higher lubrication performance than that of rapeseed biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Fast pyrolysis of oil palm shell (OPS)

    NASA Astrophysics Data System (ADS)

    Abdullah, Nurhayati; Sulaiman, Fauziah; Aliasak, Zalila

    2015-04-01

    Biomass is an important renewable source of energy. Residues that are obtained from harvesting and agricultural products can be utilised as fuel for energy generation by conducting any thermal energy conversion technology. The conversion of biomass to bio oil is one of the prospective alternative energy resources. Therefore, in this study fast pyrolysis of oil palm shell was conducted. The main objective of this study was to find the optimum condition for high yield bio-oil production. The experiment was conducted using fixed-bed fluidizing pyrolysis system. The biomass sample was pyrolysed at variation temperature of 450°C - 650°C and at variation residence time of 0.9s - 1.35s. The results obtained were further discussed in this paper. The basic characteristic of the biomass sample was also presented here. The experiment shows that the optimum bio-oil yield was obtained at temperature of 500°C at residence time 1.15s.

  16. Retardation effect of nitrogen compounds and condensed aromatics on shale oil catalytic cracking processing and their characterization.

    PubMed

    Li, Nan; Chen, Chen; Wang, Bin; Li, Shaojie; Yang, Chaohe; Chen, Xiaobo

    Untreated shale oil, shale oil treated with HCl aqueous solution and shale oil treated with HCl and furfural were used to do comparative experiments in fixed bed reactors. Nitrogen compounds and condensed aromatics extracted by HCl and furfural were characterized by electrospray ionization Fourier transform cyclotron resonance mass spectrometry and gas chromatography and mass spectrometry, respectively. Compared with untreated shale oil, the conversion and yield of liquid products increased considerably after removing basic nitrogen compounds by HCl extraction. Furthermore, after removing nitrogen compounds and condensed aromatics by both HCl and furfural, the conversion and yield of liquid products further increased. In addition, N 1 class species are predominant in both basic and non-basic nitrogen compounds, and they are probably indole, carbazole, cycloalkyl-carbazole, pyridine and cycloalkyl-pyridine. As for the condensed aromatics, most of them possess aromatic rings with two to three rings and zero to four carbon atom.

  17. Effect of lithium salts addition on the ionic liquid based extraction of essential oil from Farfarae Flos.

    PubMed

    Li, Zhen-Yu; Zhang, Sha-Sha; Jie-Xing; Qin, Xue-Mei

    2015-01-01

    In this study, an ionic liquids (ILs) based extraction approach has been successfully applied to the extraction of essential oil from Farfarae Flos, and the effect of lithium chloride was also investigated. The results indicated that the oil yields can be increased by the ILs, and the extraction time can be reduced significantly (from 4h to 2h), compared with the conventional water distillation. The addition of lithium chloride showed different effect according to the structures of ILs, and the oil yields may be related with the structure of cation, while the chemical compositions of essential oil may be related with the anion. The reduction of extraction time and remarkable higher efficiency (5.41-62.17% improved) by combination of lithium salt and proper ILs supports the suitability of the proposed approach. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Nannochloropsis algae pyrolysis with ceria-based catalysts for production of high-quality bio-oils.

    PubMed

    Aysu, Tevfik; Sanna, Aimaro

    2015-10-01

    Pyrolysis of Nannochloropsis was carried out in a fixed-bed reactor with newly prepared ceria based catalysts. The effects of pyrolysis parameters such as temperature and catalysts on product yields were investigated. The amount of bio-char, bio-oil and gas products, as well as the compositions of the resulting bio-oils was determined. The results showed that both temperature and catalyst had significant effects on conversion of Nannochloropsis into solid, liquid and gas products. The highest bio-oil yield (23.28 wt%) and deoxygenation effect was obtained in the presence of Ni-Ce/Al2O3 as catalyst at 500°C. Ni-Ce/Al2O3 was able to retain 59% of the alga starting energy in the bio-oil, compared to only 41% in absence of catalyst. Lower content of acids and oxygen in the bio-oil, higher aliphatics (62%), combined with HHV show promise for production of high-quality bio-oil from Nannochloropsis via Ni-Ce/Al2O3 catalytic pyrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Alternative to conventional extraction of vetiver oil: Microwave hydrodistillation of essential oil from vetiver roots (Vetiveria zizanioides)

    NASA Astrophysics Data System (ADS)

    Kusuma, H. S.; Altway, A.; Mahfud, M.

    2017-12-01

    In this study the extraction of essential oil from vetiver roots (Vetiveria zizanioides) has been carried out by using microwave hydrodistillation. In the extraction of vetiver oil using microwave hydrodistillation method is studied the effect of microwave power, feed to solvent (F/S) ratio and extraction time on the yield of vetiver oil. Besides, in this study can be seen that microwave hydrodistillation method offers important advantages over hydrodistillation, such as shorter extraction time (3 h vs. 24 h for hydrodistillation); better yields (0.49% vs. 0.46% for hydrodistillation); and environmental impact (energy cost is appreciably higher for performing hydrodistillation than that required for extraction using microwave hydrodistillation). Based on the analysis using GC-MS can be seen 19 components on vetiver oil that has been extracted using microwave hydrodistillation. In addition, GC-MS analysis showed that the main components of vetiver oil that has been extracted using microwave hydrodistillation method were β-Gurjunene (30.12%), α-Vetivone (20.12%), 4-(1-cyclohexenyl)-2-trimethylsilymethyl-1-buten-3-yne (13.52%) and δ-Selinene (7.27%).

  20. Comprehension of direct extraction of hydrophilic antioxidants using vegetable oils by polar paradox theory and small angle X-ray scattering analysis.

    PubMed

    Li, Ying; Fabiano-Tixier, Anne Sylvie; Ruiz, Karine; Rossignol Castera, Anne; Bauduin, Pierre; Diat, Olivier; Chemat, Farid

    2015-04-15

    Since the polar paradox theory rationalised the fact that polar antioxidants are more effective in nonpolar media, extractions of phenolic compounds in vegetable oils were inspired and achieved in this study for obtaining oils enriched in phenolic compounds. Moreover, the influence of surfactants on the extractability of phenolic compounds was experimentally studied first, followed by the small angle X-ray scattering analysis for the oil structural observation before and after extraction so as to better understand the dissolving mechanism underpinning the extraction. The results showed a significant difference on the extraction yield of phenolic compounds among oils, which was mainly dependent on their composition instead of the unsaturation of fatty acids. Appropriate surfactant additions could significantly improve extraction yield for refined sunflower oils, which 1% w/w addition of glyceryl oleate was determined as the optimal. Besides, 5% w/w addition of lecithin performed the best in oil enrichments compared with mono- and di-glycerides. Copyright © 2014 Elsevier Ltd. All rights reserved.

Top