NASA Technical Reports Server (NTRS)
Cook, Harvey A; Heinicke, Orville H; Haynie, William H
1947-01-01
An investigation was conducted on a full-scale air-cooled cylinder in order to establish an effective means of maintaining maximum-economy spark timing with varying engine operating conditions. Variable fuel-air-ratio runs were conducted in which relations were determined between the spark travel, and cylinder-pressure rise. An instrument for controlling spark timing was developed that automatically maintained maximum-economy spark timing with varying engine operating conditions. The instrument also indicated the occurrence of preignition.
NASA Astrophysics Data System (ADS)
Alaraj, Muhannad; Radenkovic, Miloje; Park, Jae-Do
2017-02-01
Microbial fuel cells (MFCs) are renewable and sustainable energy sources that can be used for various applications. The MFC output power depends on its biochemical conditions as well as the terminal operating points in terms of output voltage and current. There exists one operating point that gives the maximum possible power from the MFC, maximum power point (MPP), for a given operating condition. However, this MPP may vary and needs to be tracked in order to maintain the maximum power extraction from the MFC. Furthermore, MFC reactors often develop voltage overshoots that cause drastic drops in the terminal voltage, current, and the output power. When the voltage overshoot happens, an additional control measure is necessary as conventional MPPT algorithms will fail because of the change in the voltage-current relationship. In this paper, the extremum seeking (ES) algorithm was used to track the varying MPP and a voltage overshoot avoidance (VOA) algorithm is developed to manage the voltage overshoot conditions. The proposed ES-MPPT with VOA algorithm was able to extract 197.2 mJ during 10-min operation avoiding voltage overshoot, while the ES MPPT-only scheme stopped harvesting after only 18.75 mJ because of the voltage overshoot happened at 0.4 min.
40 CFR 64.4 - Submittal requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... proposed to satisfy § 64.3(b)(2) or (3) include differences from manufacturer recommendations, the owner or operator shall explain the reasons for the differences between the requirements proposed by the owner or... conditions representative of maximum emissions potential under anticipated operating conditions at the...
40 CFR 64.4 - Submittal requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... proposed to satisfy § 64.3(b)(2) or (3) include differences from manufacturer recommendations, the owner or operator shall explain the reasons for the differences between the requirements proposed by the owner or... conditions representative of maximum emissions potential under anticipated operating conditions at the...
NASA Astrophysics Data System (ADS)
Domínguez, César; Besson, Pierre
2014-09-01
The sensitivity of four different CPV module technologies to most operating conditions relevant to CPV systems has been studied, namely DNI, spectrum, cell and lens temperature and clearness of the sky. In order to isolate the influence of a single operation parameter, the analysis of long-term outdoor monitoring data is required. The effect of lens temperature on cell current has been found to vary greatly between modules due to the different optical architectures studied. Maximum sensitivity is found for silicone-on-glass primary lenses. The VOC thermal coefficient was found to vary between module technologies, probably due to differences in maximum local effective concentration.
46 CFR 172.087 - Cargo loading assumptions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... this subpart must be done for cargo weights and densities up to and including the maximum that is to be... condition of loading and operation, each cargo tank must be assumed to have its maximum free surface. ...
46 CFR 172.087 - Cargo loading assumptions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... this subpart must be done for cargo weights and densities up to and including the maximum that is to be... condition of loading and operation, each cargo tank must be assumed to have its maximum free surface. ...
46 CFR 172.087 - Cargo loading assumptions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... this subpart must be done for cargo weights and densities up to and including the maximum that is to be... condition of loading and operation, each cargo tank must be assumed to have its maximum free surface. ...
46 CFR 172.087 - Cargo loading assumptions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... this subpart must be done for cargo weights and densities up to and including the maximum that is to be... condition of loading and operation, each cargo tank must be assumed to have its maximum free surface. ...
46 CFR 172.087 - Cargo loading assumptions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... this subpart must be done for cargo weights and densities up to and including the maximum that is to be... condition of loading and operation, each cargo tank must be assumed to have its maximum free surface. ...
NASA Astrophysics Data System (ADS)
Kobayashi, Kenji; Takano, Ichiro; Sawada, Yoshio
A photovoltaic array shows relatively low output power density, and has a greatly drooping Current-Voltage (I-V) characteristic. Therefore, Maximum Power Point Tracking (MPPT) control is used to maximize the output power of the array. Many papers have been reported in relation to MPPT. However, the Current-Power (I-P) curve sometimes shows multi-local maximum points mode under non-uniform insolation conditions. The operating point of the PV system tends to converge to a local maximum output point which is not the real maximal output point on the I-P curve. Some papers have been also reported, trying to avoid this difficulty. However most of those control systems become rather complicated. Then, the two stage MPPT control method is proposed in this paper to realize a relatively simple control system which can track the real maximum power point even under non-uniform insolation conditions. The feasibility of this control concept is confirmed for steady insolation as well as for rapidly changing insolation by simulation study using software PSIM and LabVIEW. In addition, simulated experiment confirms fundament al operation of the two stage MPPT control.
NASA Technical Reports Server (NTRS)
Kopasakis, George
1997-01-01
Performance Seeking Control (PSC) attempts to find and control the process at the operating condition that will generate maximum performance. In this paper a nonlinear multivariable PSC methodology will be developed, utilizing the Fuzzy Model Reference Learning Control (FMRLC) and the method of Steepest Descent or Gradient (SDG). This PSC control methodology employs the SDG method to find the operating condition that will generate maximum performance. This operating condition is in turn passed to the FMRLC controller as a set point for the control of the process. The conventional SDG algorithm is modified in this paper in order for convergence to occur monotonically. For the FMRLC control, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for effective tuning of the FMRLC controller.
NASA Technical Reports Server (NTRS)
Hertel, Heinrich
1930-01-01
This report is intended to furnish bases for load assumptions in the designing of airplane controls. The maximum control forces and quickness of operation are determined. The maximum forces for a strong pilot with normal arrangement of the controls is taken as 1.25 times the mean value obtained from tests with twelve persons. Tests with a number of persons were expected to show the maximum forces that a man of average strength can exert on the control stick in operating the elevator and ailerons and also on the rudder bar. The effect of fatigue, of duration and of the nature (static or dynamic) of the force, as also the condition of the test subject (with or without belt) were also considered.
Performance analysis for minimally nonlinear irreversible refrigerators at finite cooling power
NASA Astrophysics Data System (ADS)
Long, Rui; Liu, Zhichun; Liu, Wei
2018-04-01
The coefficient of performance (COP) for general refrigerators at finite cooling power have been systematically researched through the minimally nonlinear irreversible model, and its lower and upper bounds in different operating regions have been proposed. Under the tight coupling conditions, we have calculated the universal COP bounds under the χ figure of merit in different operating regions. When the refrigerator operates in the region with lower external flux, we obtained the general bounds (0 < ε <(√{ 9 + 8εC } - 3) / 2) under the χ figure of merit. We have also calculated the universal bounds for maximum gain in COP under different operating regions to give a further insight into the COP gain with the cooling power away from the maximum one. When the refrigerator operates in the region located between maximum cooling power and maximum COP with lower external flux, the upper bound for COP and the lower bound for relative gain in COP present large values, compared to a relative small loss from the maximum cooling power. If the cooling power is the main objective, it is desirable to operate the refrigerator at a slightly lower cooling power than at the maximum one, where a small loss in the cooling power induces a much larger COP enhancement.
NASA Technical Reports Server (NTRS)
Morse, C R; Johnston, J R
1955-01-01
In order to determine the conditions of engine operation causing the most severe thermal stresses in the hot parts of a turbojet engine, a J47-25 engine was instrumented with thermocouples and operated to obtain engine material temperatures under steady-state and transient conditions. Temperatures measured during rated take-off conditions of nozzle guide vanes downstream of a single combustor differed on the order of 400 degrees F depending on the relation of the blades position to the highest temperature zone of the burner. Under the same operation conditions, measured midspan temperatures in a nozzle guide vane in the highest temperature zone of a combustor wake ranged from approximately 1670 degrees F at leading and trailing edges to 1340 degrees F at midchord on the convex side of the blade. The maximum measured nozzle-guide-vane temperature of 1920degrees at the trailing edge occurred during a rapid acceleration from idle to rated take-off speed following which the tail-pipe gas temperature exceeded maximum allowable temperature by 125 degrees F.
NASA Technical Reports Server (NTRS)
Harris, Herbert B.; Duffy, Robert T.; Erwin, Robert D., Jr.
1945-01-01
A continuous 50-hour test was conducted to determine the effect of maximum cruise-power operation at ultra-lean fuel-air mixture and increased spark advance on the mechanical conditions of cylinder components. The test was conducted on a nine-cylinder air-cooled radial engine at the following conditions:brake horsepower, 750; engine speed, 1900 rpm; brake mean effective pressure, 172 pounds per square inch; fuel-air ratio, 0.052; spark advance, 30 deg B.T.C.; and maximum rear-spark-plug-bushing temperature, 400 F. In addition to the data on corrosion and wear, data are presented and briefly discussed on the effect of engine operation at the conditions of this test on economy, knock, preignition, and mixture distribution. Cylinder, piston, and piston-ring wear was small and all cylinder component were in good condition at the conclusion of the 50-hour test except that all exhaust-valve guides were bellmouthed beyond the Army's specified limit and one exhaust-valve face was lightly burned. It is improbable that the light burning in one spot of the valve face would have progressed further because the burn was filled with a hard deposit so that the valve face formed an unbroken seal and the mating seat showed no evidence of burning. The bellmouthing of the exhaust-valve guides is believed to have been a result of the heavy carbon and lead-oxide deposits, which were present on the head end of the guided length of the exhaust-valve stem. Engine operational the conditions of this test was shown to result In a fuel saving of 16.8 percent on a cooled-power basis as compared with operation at the conditions recommended for this engine by the Army Air Forces for the same power.
Eboibi, B E; Lewis, D M; Ashman, P J; Chinnasamy, S
2014-10-01
The biomass of halophytic microalga Tetraselmis sp. with 16%w/w solids was converted into biocrude by a hydrothermal liquefaction (HTL) process in a batch reactor at different temperatures (310, 330, 350 and 370°C) and reaction times (5, 15, 30, 45 and 60min). The biocrude yield, elemental composition, energy density and severity parameter obtained at various reaction conditions were used to predict the optimum condition for maximum recovery of biocrude with improved quality. This study clearly indicated that the operating condition for obtaining maximum biocrude yield and ideal quality biocrude for refining were different. A maximum biocrude yield of ∼65wt% ash free dry weight (AFDW) was obtained at 350°C and 5min, with a severity parameter and energy density of 5.21 and ∼35MJ/kg, respectively. The treatment with 45min reaction time recorded ∼62wt% (AFDW) yield of biocrude with and energy density of ∼39MJ/kg and higher severity parameter of 7.53. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Quamruzzaman, M.; Mohammad, Nur; Matin, M. A.; Alam, M. R.
2016-10-01
Solar photovoltaics (PVs) have nonlinear voltage-current characteristics, with a distinct maximum power point (MPP) depending on factors such as solar irradiance and operating temperature. To extract maximum power from the PV array at any environmental condition, DC-DC converters are usually used as MPP trackers. This paper presents the performance analysis of a coupled inductor single-ended primary inductance converter for maximum power point tracking (MPPT) in a PV system. A detailed model of the system has been designed and developed in MATLAB/Simulink. The performance evaluation has been conducted on the basis of stability, current ripple reduction and efficiency at different operating conditions. Simulation results show considerable ripple reduction in the input and output currents of the converter. Both the MPPT and converter efficiencies are significantly improved. The obtained simulation results validate the effectiveness and suitability of the converter model in MPPT and show reasonable agreement with the theoretical analysis.
DMSP Auroral Charging at Solar Cycle 24 Maximum
NASA Technical Reports Server (NTRS)
Chandler, M.; Parker, L. Neergaard; Minow, J. I.
2013-01-01
It has been well established that polar orbiting satellites can experience mild to severe auroral charging levels (on the order of a few hundred volts to few kilovolts negative frame potentials) during solar minimum conditions. These same studies have shown a strong reduction in charging during the rising and declining phases of the past few solar cycles with a nearly complete suppression of auroral charging at solar maximum. Recently, we have observed examples of high level charging during the recent approach to Solar Cycle 24 solar maximum conditions not unlike those reported by Frooninckx and Sojka. These observations demonstrate that spacecraft operations during solar maximum cannot be considered safe from auroral charging when solar activity is low. We present a survey of auroral charging events experienced by the Defense Meteorological Satellite Program (DMSP) F16 satellite during Solar Cycle 24 maximum conditions. We summarize the auroral energetic particle environment and the conditions necessary for charging to occur in this environment, we describe how the lower than normal solar activity levels for Solar Cycle 24 maximum conditions are conducive to charging in polar orbits, and we show examples of the more extreme charging events, sometimes exceeding 1 kV, during this time period.
Commissioning and operational results of helium refrigeration system at JLab for the 12GeV upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knudsen, Peter N.; Ganni, Venkatarao; Dixon, Kelly D.
The new 4.5 K refrigerator system at the Jefferson Lab (JLab) Central Helium Liquefier (CHL-2) for the 12 GeV upgrade was commissioned in late spring of 2013, following the commissioning of the new compressor system, and has been supporting 12 GeV LINAC commissioning since that time. Six design modes were tested during commissioning, consisting of a maximum capacity, nominal capacity, maximum liquefaction, maximum refrigeration, maximum fill and a stand-by/reduced load condition. The maximum capacity was designed to support a 238 g/s, 30 K and 1.16 bar cold compressor return flow, a 15 g/s, 4.5 K liquefaction load and a 12.6more » kW, 35-55 K shield load. The other modes were selected to ensure proper component sizing and selection to allow the cold box to operate over a wide range of conditions and capacities. The cold box system is comprised of two physically independent cold boxes with interconnecting transfer-lines. The outside (upper) 300-60 K vertical cold box has no turbines and incorporates a liquid nitrogen pre-cooler and 80-K beds. The inside (lower) 60-4.5 K horizontal cold box houses seven turbines that are configured in four expansion stages including one Joule-Thompson expander and a 20-K bed. The helium compression system has five compressors to support three pressure levels in the cold box. This paper will summarize the analysis of the test data obtained over the wide range of operating conditions and capacities which were tested.« less
33 CFR 156.320 - Maximum operating conditions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... wave height is 3 meters (10 feet) or more. (b) Cargo transfer operations shall cease and transfer hoses shall be drained when— (1) The wind velocity exceeds 82 km/hr (44 knots); or (2) Wave heights exceed 5...
33 CFR 156.320 - Maximum operating conditions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... wave height is 3 meters (10 feet) or more. (b) Cargo transfer operations shall cease and transfer hoses shall be drained when— (1) The wind velocity exceeds 82 km/hr (44 knots); or (2) Wave heights exceed 5...
33 CFR 156.320 - Maximum operating conditions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... wave height is 3 meters (10 feet) or more. (b) Cargo transfer operations shall cease and transfer hoses shall be drained when— (1) The wind velocity exceeds 82 km/hr (44 knots); or (2) Wave heights exceed 5...
NASA Technical Reports Server (NTRS)
1948-01-01
An altitude-test-chamber investigation was conducted to determine the operational characteristics and altitude blow-out limits of a Solar afterburner in a 24C engine. At rated engine speed and maximum permissible turbine-discharge temperature, the altitude limit as determined by combustion blow-out occurred as a band of unstable operation of about 8000 feet altitude in width with maximum altitude limits from 32,000 feet at a Mach number of 0.3 to about 42,000 feet at a Mach number of 1.0. The maximum fuel-air ratio of the afterburner, as limited by maximum permissible turbine-discharge gas temperatures at rated engine speed, varied between 0.0295 and 0.0380 over a range of flight Mach numbers from 0.25 to 1.0 and at altitudes of 20,000 and 30,000 feet. Over this range of operating conditions, the fuel-air ratio at which lean blow-out occurred was from 10 to 19 percent below these maximum fuel-air ratios. Combustion was very smooth and uniform during operation; however, ignition of the burner was very difficult throughout the investigation. A failure of the flame holder after 12 hours and 15 minutes of afterburner operation resulted in termination of the investigation.
Thermodynamic analysis of steam-injected advanced gas turbine cycles
NASA Astrophysics Data System (ADS)
Pandey, Devendra; Bade, Mukund H.
2017-12-01
This paper deals with thermodynamic analysis of steam-injected gas turbine (STIGT) cycle. To analyse the thermodynamic performance of steam-injected gas turbine (STIGT) cycles, a methodology based on pinch analysis is proposed. This graphical methodology is a systematic approach proposed for a selection of gas turbine with steam injection. The developed graphs are useful for selection of steam-injected gas turbine (STIGT) for optimal operation of it and helps designer to take appropriate decision. The selection of steam-injected gas turbine (STIGT) cycle can be done either at minimum steam ratio (ratio of mass flow rate of steam to air) with maximum efficiency or at maximum steam ratio with maximum net work conditions based on the objective of plants designer. Operating the steam injection based advanced gas turbine plant at minimum steam ratio improves efficiency, resulting in reduction of pollution caused by the emission of flue gases. On the other hand, operating plant at maximum steam ratio can result in maximum work output and hence higher available power.
40 CFR 63.1207 - What are the performance testing requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... operating conditions that are most likely to reflect daily maximum operating variability, similar to a... operating variability, similar to a dioxin/furan compliance test; (B) You have not changed the design or... document the temperature location measurement in the comprehensive performance test plan, as required by...
Bar-Chart-Monitor System For Wind Tunnels
NASA Technical Reports Server (NTRS)
Jung, Oscar
1993-01-01
Real-time monitor system provides bar-chart displays of significant operating parameters developed for National Full-Scale Aerodynamic Complex at Ames Research Center. Designed to gather and process sensory data on operating conditions of wind tunnels and models, and displays data for test engineers and technicians concerned with safety and validation of operating conditions. Bar-chart video monitor displays data in as many as 50 channels at maximum update rate of 2 Hz in format facilitating quick interpretation.
33 CFR 156.320 - Maximum operating conditions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of the following conditions exist: (1) The wind velocity is 56 km/hr (30 knots) or more; or (2) The... shall be drained when— (1) The wind velocity exceeds 82 km/hr (44 knots); or (2) Wave heights exceed 5...
33 CFR 156.320 - Maximum operating conditions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of the following conditions exist: (1) The wind velocity is 56 km/hr (30 knots) or more; or (2) The... shall be drained when— (1) The wind velocity exceeds 82 km/hr (44 knots); or (2) Wave heights exceed 5...
Fired heater for coal liquefaction process
Ying, David H. S.; McDermott, Wayne T.; Givens, Edwin N.
1985-01-01
A fired heater for a coal liquefaction process is operated under conditions to maximize the slurry slug frequency and thereby improve the heat transfer efficiency. The operating conditions controlled are (1) the pipe diameter and pipe arrangement, (2) the minimum coal/solvent slurry velocity, (3) the maximum gas superficial velocity, and (4) the range of the volumetric flow velocity ratio of gas to coal/solvent slurry.
Ad-Hoc Sensor Networks for Maritime Interdiction Operations and Regional Security
2012-09-01
as resistant to rough sea conditions as the SHARC, since its maximum operation limit is sea state 3. Its maximum speed approaches three knots and...which renders it corrosion resistant and lightweight. Its length is 3.2 meters with a rotor diameter at 3.3 meters. It flies at speeds of 50 knots...NMIOTC main building and to a moored training ship (see Figure 50), (2) GSM/GPRS was networked with swimmers , (3) security patrol and target vessels
Photovoltaic array: Power conditioner interface characteristics
NASA Technical Reports Server (NTRS)
Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.
1982-01-01
The electrical output (power, current, and voltage) of flat plate solar arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as dc-to-ac power conditioners must be capable of accommodating widely varying input levels while maintaining operation at or near the maximum power point of the array. The array operating characteristics and extreme output limits necessary for the systematic design of array load interfaces under a wide variety of climatic conditions are studied. A number of interface parameters are examined, including optimum operating voltage, voltage energy, maximum power and current limits, and maximum open circuit voltage. The effect of array degradation and I-V curve fill factor or the array power conditioner interface is also discussed. Results are presented as normalized ratios of power conditioner parameters to array parameters, making the results universally applicable to a wide variety of system sizes, sites, and operating modes.
DMSP Auroral Charging at Solar Cycle 24 Maximum
NASA Technical Reports Server (NTRS)
Chandler, Michael; Parker, Linda Neergaard; Minow, Joseph I.
2013-01-01
It has been well established that polar orbiting satellites can experience mild to severe auroral charging levels (on the order of a few hundred volts to few kilovolts negative frame potentials) during solar minimum conditions (Frooninckx and Sojka, 1992; Anderson and Koons, 1996; Anderson, 2012). These same studies have shown a strong reduction in charging during the rising and declining phases of the past few solar cycles with a nearly complete suppression of auroral charging at solar maximum. Recently, we have observed examples of high level charging during the recent approach to Solar Cycle 24 solar maximum conditions not unlike those reported by Frooninckx and Sojka (1992). These observations demonstrate that spacecraft operations during solar maximum cannot be considered safe from auroral charging when solar activity is low. We present a survey of auroral charging events experienced by the Defense Meteorological Satellite Program (DMSP) F16 satellite during Solar Cycle 24 maximum conditions. We summarize the auroral energetic particle environment and the conditions necessary for charging to occur in this environment, we describe how the lower than normal solar activity levels for Solar Cycle 24 maximum conditions are conducive to charging in polar orbits, and we show examples of the more extreme charging events, sometimes exceeding 1 kV, during this time period.
Control strategy of grid-connected photovoltaic generation system based on GMPPT method
NASA Astrophysics Data System (ADS)
Wang, Zhongfeng; Zhang, Xuyang; Hu, Bo; Liu, Jun; Li, Ligang; Gu, Yongqiang; Zhou, Bowen
2018-02-01
There are multiple local maximum power points when photovoltaic (PV) array runs under partial shading condition (PSC).However, the traditional maximum power point tracking (MPPT) algorithm might be easily trapped in local maximum power points (MPPs) and cannot find the global maximum power point (GMPP). To solve such problem, a global maximum power point tracking method (GMPPT) is improved, combined with traditional MPPT method and particle swarm optimization (PSO) algorithm. Under different operating conditions of PV cells, different tracking algorithms are used. When the environment changes, the improved PSO algorithm is adopted to realize the global optimal search, and the variable step incremental conductance (INC) method is adopted to achieve MPPT in optimal local location. Based on the simulation model of the PV grid system built in Matlab/Simulink, comparative analysis of the tracking effect of MPPT by the proposed control algorithm and the traditional MPPT method under the uniform solar condition and PSC, validate the correctness, feasibility and effectiveness of the proposed control strategy.
System and method of vehicle operating condition management
Sujan, Vivek A.; Vajapeyazula, Phani; Follen, Kenneth; Wu, An; Moffett, Barty L.
2015-10-20
A vehicle operating condition profile can be determined over a given route while also considering imposed constraints such as deviation from time targets, deviation from maximum governed speed limits, etc. Given current vehicle speed, engine state and transmission state, the present disclosure optimally manages the engine map and transmission to provide a recommended vehicle operating condition that optimizes fuel consumption in transitioning from one vehicle state to a target state. Exemplary embodiments provide for offline and online optimizations relative to fuel consumption. The benefit is increased freight efficiency in transporting cargo from source to destination by minimizing fuel consumption and maintaining drivability.
Survey of DMSP Charging Events During the Period Preceding Cycle 23 Solar Maximum
NASA Technical Reports Server (NTRS)
Parker, Linda Neergaard; Minow, Joseph I.
2013-01-01
It has been well established that POLAR orbiting satellites can see mild to severe charging levels during solar minimum conditions (Frooninckx and Sojka, 1992, Anderson and Koons, 1996, Anderson, 2012). However, spacecraft operations during solar maximum cannot be considered safe from auroral charging. Recently, we have seen examples of high level charging during the recent approach to solar maximum. We present here a survey of charging events seen by the Defense Meteorological Satellite Program (DMSP) satellites (F16, F17) during the solstices of 2011 and 2012. In this survey, we summarize the condition necessary for charging to occur in this environment, we describe how the lower than normal maximum conditions are conducive to the environment conditions necessary for charging in the POLAR orbit, and we show examples of the more extreme charging events, sometimes exceeding 1 kV, during this time period. We also show examples of other interesting phenomenological events seen in the DMSP data, but which are not considered surface charging events, and discuss the differences.
Survey of DMSP Charging During the Period Preceding Cycle 24 Solar Maximum
NASA Technical Reports Server (NTRS)
NeergaardParker, L.; Minow, Joseph I.
2013-01-01
It has been well established that polar orbiting satellites can see mild to severe charging levels during solar minimum conditions (Frooninckx and Sojka, 1992, Anderson and Koons, 1996, Anderson, 2012). However, spacecraft operations during solar maximum cannot be considered safe from auroral charging. Recently, we have seen examples of high level charging during the recent approach to solar maximum. We present here a survey of charging events seen by the Defense Meteorological Satellite Program (DMSP) satellites (F16, F17) during the solstices of 2011 and 2012. In this survey, we summarize the condition necessary for charging to occur in this environment, we describe how the lower than normal maximum conditions are conducive to the environment conditions necessary for charging in the polar orbit, and we show examples of the more extreme charging events, sometimes exceeding 1 kV, during this time period. We also show examples of other interesting phenomenological events seen in the DMSP data, but which are not considered surface charging events, and discuss the differences.
Brockmann, D; Morgenroth, E
2010-03-01
In practice, partial nitrification to nitrite in biofilms has been achieved with a range of different operating conditions, but mechanisms resulting in reliable partial nitrification in biofilms are not well understood. In this study, mathematical biofilm modeling combined with Monte Carlo filtering was used to evaluate operating conditions that (1) lead to outcompetition of nitrite oxidizers from the biofilm, and (2) allow to maintain partial nitrification during long-term operation. Competition for oxygen was found to be the main mechanism for displacing nitrite oxidizers from the biofilm, and preventing re-growth of nitrite oxidizers in the long-term. To maintain partial nitrification in the model, a larger oxygen affinity (i.e., smaller half saturation constant) for ammonium oxidizers compared to nitrite oxidizers was required, while the difference in maximum growth rate was not important for competition under steady state conditions. Thus, mechanisms for washout of nitrite oxidizing bacteria from biofilms are different from suspended cultures where the difference in maximum growth rate is a key mechanism. Inhibition of nitrite oxidizers by free ammonia was not required to outcompete nitrite oxidizers from the biofilm, and to maintain partial nitrification to nitrite. But inhibition by free ammonia resulted in faster washout of nitrite oxidizers. Copyright 2009 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
V.T. Krivoshein; A.V. Makarov
The sequence of pushing coke ovens is one of the most important aspects of battery operation. The sequence must satisfy a number of technical and process conditions: (1) achieve maximum heating-wall life by avoiding destructive expansion pressure in freshly charged ovens and during pushing of the finished coke; (2) ensure uniform brickwork temperature and prevent overheating by compensating for the high thermal flux in freshly charged ovens due to accumulated heat in adjacent ovens that are in the second half of the coking cycle; (3) ensure the most favorable working conditions and safety for operating personnel; (4) provide additional opportunitiesmore » for repair personnel to perform various types of work, such as replacing coke-machine rails, without interrupting coal production; (5) perform the maximum number of coke-machine operations simultaneously: pushing, charging, and cleaning doors, frames, and standpipe elbows; and (6) reduce electricity consumption by minimizing idle travel of coke machines.« less
650-nm-band high-power and highly reliable laser diodes with a window-mirror structure
NASA Astrophysics Data System (ADS)
Shima, Akihiro; Hironaka, Misao; Ono, Ken-ichi; Takemi, Masayoshi; Sakamoto, Yoshifumi; Kunitsugu, Yasuhiro; Yamashita, Koji
1998-05-01
An active layer structure with 658 nm-emission at 25 degrees Celsius has been optimized in order to reduce the operating current of the laser diodes (LD) under high temperature condition. For improvement of the maximum output power and the reliability limited by mirror degradation, we have applied a zinc-diffused-type window-mirror structure which prevents the optical absorption at the mirror facet. As a result, the CW output power of 50 mW is obtained even at 80 degrees Celsius for a 650 micrometer-long window-mirror LD. In addition, the maximum light output power over 150 mW at 25 degrees Celsius has been realized without any optical mirror damage. In the aging tests, the LDs have been operating for over 2,500 - 5,000 hours under the CW condition of 30 - 50 mW at 60 degrees Celsius. The window-mirror structure also enables reliable 60 degree Celsius, 30 mW, CW operation of the LDs with 651 nm- emission at 25 degrees Celsius. Moreover, the maximum output power of around 100 mW even at 80 degrees Celsius and reliable 2,000-hour operation at 60 degrees Celsius, 70 mW have been realized for the first time by 659 nm LDs with a long cavity length of 900 micrometers.
Sensitivity of Runway Occupancy Time (ROT) to Various Rollout and Turnoff (ROTO) Factors. Volume 1
NASA Technical Reports Server (NTRS)
Goldthorpe, S. H.
1997-01-01
The Terminal Area Productivity (TAP) research program was initiated by NASA to increase the airport capacity for transport aircraft operations. One element of the research program is called Low Visibility Landing and Surface Operations (LVLASO). A goal of the LVLASO research is to develop transport aircraft technologies which reduce Runway Occupancy Time (ROT) so that it does not become the limiting factor in the terminal area operations that determine the capacity of a runway. Under LVLASO, the objective of this study was to determine the sensitivity of ROT to various factors associated with the Rollout and Turnoff (ROTO) operation for transport aircraft. The following operational factors were studied and are listed in the order of decreasing ROT sensitivity: ice/flood runway surface condition, exit entrance ground speed, number of exits, high-speed exit locations and spacing, aircraft type, touchdown ground speed standard deviation, reverse thrust and braking method, accurate exit prediction capability, maximum reverse thrust availability, spiral-arc vs. circle-arc exit geometry, dry/slush/wet/snow runway surface condition, maximum allowed deceleration, auto asymmetric braking on exit, do not stow reverse thrust before the exit, touchdown longitudinal location standard deviation, flap setting, anti-skid efficiency, crosswind conditions, stopping on the exit and touchdown lateral offset.
NASA Technical Reports Server (NTRS)
Goldthorpe, S. H.
1997-01-01
The Terminal Area Productivity (TAP) research program was initiated by NASA to increase the airport capacity for transport aircraft operations. One element of the research program is called Low Visibility Landing and Surface Operations (LVLASO). A goal of the LVLASO research is to develop transport aircraft technologies which reduce Runway Occupancy Time (ROT) so that it does not become the limiting factor in the terminal area operations that determine the capacity of a runway. Under LVLASO, the objective of this study was to determine the sensitivity of ROT to various factors associated with the Rollout and Turnoff (ROTO) operation for transport aircraft. The following operational factors were studied and are listed in the order of decreasing ROT sensitivity: ice/flood runway surface condition, exit entrance ground speed, number of exits, high-speed exit locations and spacing, aircraft type, touchdown ground speed standard deviation, reverse thrust and braking method, accurate exit prediction capability, maximum reverse thrust availability, spiral-arc vs. circle-arc exit geometry, dry/slush/wet/snow runway surface condition, maximum allowed deceleration, auto asymmetric braking on exit, do not stow reverse thrust before the exit, touchdown longitudinal location standard deviation, flap setting, anti-skid efficiency, crosswind conditions, stopping on the exit and touchdown lateral offset.
NASA Technical Reports Server (NTRS)
Huyse, Luc; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
Free-form shape optimization of airfoils poses unexpected difficulties. Practical experience has indicated that a deterministic optimization for discrete operating conditions can result in dramatically inferior performance when the actual operating conditions are different from the - somewhat arbitrary - design values used for the optimization. Extensions to multi-point optimization have proven unable to adequately remedy this problem of "localized optimization" near the sampled operating conditions. This paper presents an intrinsically statistical approach and demonstrates how the shortcomings of multi-point optimization with respect to "localized optimization" can be overcome. The practical examples also reveal how the relative likelihood of each of the operating conditions is automatically taken into consideration during the optimization process. This is a key advantage over the use of multipoint methods.
NASA Technical Reports Server (NTRS)
Lundquist, Ray A.; Leidecker, Henning
1998-01-01
The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: 3.7 amps per wire, bundle of 15 or more wires, 70 C environment, and vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.
Improving carbon dioxide yields and cell efficiencies for ethanol oxidation by potential scanning
NASA Astrophysics Data System (ADS)
Majidi, Pasha; Pickup, Peter G.
2014-12-01
An ethanol electrolysis cell with aqueous ethanol supplied to the anode and nitrogen at the cathode has been operated under potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At ambient temperature, faradaic yields of CO2 as high as 26% have been achieved, while only transient CO2 production was observed at constant potential. Yields increased substantially at higher temperatures, with maximum values at Pt anodes reaching 45% at constant potential and 65% under potential cycling conditions. Use of a PtRu anode increased the cell efficiency by decreasing the anode potential, but this was offset by decreased CO2 yields. Nonetheless, cycling increased the efficiency relative to constant potential. The maximum yields at PtRu and 80 °C were 13% at constant potential and 32% under potential cycling. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO, which occurs at lower potentials on PtRu than on Pt. These results will be important in the optimization of operating conditions for direct ethanol fuel cells and for the electrolysis of ethanol to produce clean hydrogen.
Hydrostatic Bearing Pad Maximum Load and Overturning Conditions for the 70-meter Antenna
NASA Technical Reports Server (NTRS)
Mcginness, H. D.
1985-01-01
The reflector diameters of the 64-m antennas were increased to 70-m. In order to evaluate the minimum film thickness of the hydrostatic bearing which supports the antenna weight, it is first necessary to have a good estimation of the maximum operational load on the most heavily loaded bearing pad. The maximum hydrostatic bearing load is shown to be sufficiently small and the ratios of stabilizing to over turning moments are ample.
Aerodynamic performance of a vibrating piezoelectric fan under varied operational conditions
NASA Astrophysics Data System (ADS)
Stafford, J.; Jeffers, N.
2014-07-01
This paper experimentally examines the bulk aerodynamic performance of a vibrating fan operating in the first mode of vibration. The influence of operating condition on the local velocity field has also been investigated to understand the flow distribution at the exit region and determine the stalling condition for vibrating fans. Fan motion has been generated and controlled using a piezoelectric ceramic attached to a stainless steel cantilever. The frequency and amplitude at resonance were 109.4 Hz and 12.5 mm, respectively. A test facility has been developed to measure the pressure-flow characteristics of the vibrating fan and simultaneously conduct local velocity field measurements using particle image velocimetry. The results demonstrate the impact of system characteristics on the local velocity field. High momentum regions generated due to the oscillating motion exist with a component direction that is tangent to the blade at maximum displacement. These high velocity zones are significantly affected by increasing impedance while flow reversal is a dominant feature at maximum pressure rise. The findings outlined provide useful information for design of thermal management solutions that may incorporate this air cooling approach.
NASA Astrophysics Data System (ADS)
Majidi, Pasha; Pickup, Peter G.
2014-12-01
A direct ethanol fuel cell has been operated under sinusoidal (AC) potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At 80 °C, faradaic yields of CO2 as high as 25% have been achieved with a PtRu anode catalyst, while the maximum CO2 production at constant potential was 13%. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO. These results will be important in the optimization of operating conditions for direct ethanol fuel cells, where the benefits of potential cycling are projected to increase as catalysts that produce CO2 more efficiently are implemented.
Pilot-scale verification of maximum tolerable hydrodynamic stress for mammalian cell culture.
Neunstoecklin, Benjamin; Villiger, Thomas K; Lucas, Eric; Stettler, Matthieu; Broly, Hervé; Morbidelli, Massimo; Soos, Miroslav
2016-04-01
Although several scaling bioreactor models of mammalian cell cultures are suggested and described in the literature, they mostly lack a significant validation at pilot or manufacturing scale. The aim of this study is to validate an oscillating hydrodynamic stress loop system developed earlier by our group for the evaluation of the maximum operating range for stirring, based on a maximum tolerable hydrodynamic stress. A 300-L pilot-scale bioreactor for cultivation of a Sp2/0 cell line was used for this purpose. Prior to cultivations, a stress-sensitive particulate system was applied to determine the stress values generated by stirring and sparging. Pilot-scale data, collected from 7- to 28-Pa maximum stress conditions, were compared with data from classical 3-L cultivations and cultivations from the oscillating stress loop system. Results for the growth behavior, analyzed metabolites, productivity, and product quality showed a dependency on the different environmental stress conditions but not on reactor size. Pilot-scale conditions were very similar to those generated in the oscillating stress loop model confirming its predictive capability, including conditions at the edge of failure.
Optimization Research on Ampacity of Underground High Voltage Cable Based on Interior Point Method
NASA Astrophysics Data System (ADS)
Huang, Feng; Li, Jing
2017-12-01
The conservative operation method which takes unified current-carrying capacity as maximum load current can’t make full use of the overall power transmission capacity of the cable. It’s not the optimal operation state for the cable cluster. In order to improve the transmission capacity of underground cables in cluster, this paper regards the maximum overall load current as the objective function and the temperature of any cables lower than maximum permissible temperature as constraint condition. The interior point method which is very effective for nonlinear problem is put forward to solve the extreme value of the problem and determine the optimal operating current of each loop. The results show that the optimal solutions obtained with the purposed method is able to increase the total load current about 5%. It greatly improves the economic performance of the cable cluster.
A Maximum Radius for Habitable Planets.
Alibert, Yann
2015-09-01
We compute the maximum radius a planet can have in order to fulfill two constraints that are likely necessary conditions for habitability: 1- surface temperature and pressure compatible with the existence of liquid water, and 2- no ice layer at the bottom of a putative global ocean, that would prevent the operation of the geologic carbon cycle to operate. We demonstrate that, above a given radius, these two constraints cannot be met: in the Super-Earth mass range (1-12 Mearth), the overall maximum that a planet can have varies between 1.8 and 2.3 Rearth. This radius is reduced when considering planets with higher Fe/Si ratios, and taking into account irradiation effects on the structure of the gas envelope.
14 CFR 33.49 - Endurance test.
Code of Federal Regulations, 2012 CFR
2012-01-01
... higher gear ratio under sea level conditions. The condition for operation for the alternate 5 minutes in... suppress detonation. (d) Helicopter engines. To be eligible for use on a helicopter each engine must either... sea level carburetor entrance pressure, if 105 percent of the rated maximum continuous power is not...
14 CFR 33.49 - Endurance test.
Code of Federal Regulations, 2011 CFR
2011-01-01
... higher gear ratio under sea level conditions. The condition for operation for the alternate 5 minutes in... suppress detonation. (d) Helicopter engines. To be eligible for use on a helicopter each engine must either... sea level carburetor entrance pressure, if 105 percent of the rated maximum continuous power is not...
NASA Technical Reports Server (NTRS)
Lundquist, Ray A.; Leidecker, Henning
1999-01-01
The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 degree C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire (2) bundle of 15 or more wires (3) 70 C environment (4) vacuum of 10(exp -5) torr or less To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.
NASA Technical Reports Server (NTRS)
Lundquist, Ray A.; Leidecker, Henning
1998-01-01
The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire; (2) bundle of 15 or more wires; (3) 70 C environment: and (4) vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.
Power tiller: vibration magnitudes and intervention development for vibration reduction.
Chaturvedi, Varun; Kumar, Adarsh; Singh, J K
2012-09-01
The operators of power tiller are exposed to a high level of vibration originating from the dynamic interaction between the soil and the machine. The vibration from the power tiller is transmitted from the handle to hands, arms and shoulders. In the present study, experiments were conducted in three operational conditions i.e. transportation on farm roads, tilling with cultivator and rota-tilling with rota-vator. The highest vibration values were observed in x-direction in all the experiments. The maximum vibration rms values for x-direction were 5.96, 6.81 and 8.00 ms(-2) in tilling with cultivator, transportation and rota-tilling respectively. Three materials were used for intervention development to reduce vibration magnitude. The maximum reduction of 25.30, 31.21 and 30.45% in transportation; 23.50, 30.64 and 20.86% in tilling with cultivator and 24.03, 29.18 and 25.52% in rota-tilling were achieved with polyurethane (PU), rubber and combination of PU and rubber intervention. It was found that the maximum vibration reductions were achieved with the rubber in all three operational conditions. The average exposure time for occurrence of white finger syndrome increased by 28-50% with incorporation of intervention in different operations. Physiological and postural parameters also improved with incorporation of interventions. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Creating Paths of Change: Under What Conditions Can Special Operations be the Supported Command
2018-03-01
goals.” Daft, Essentials of Organization Theory and Design , 48); I. V. Gordon et al., Comparing US Army Systems with Foreign Counterparts: Identifying...CODE A 13. ABSTRACT (maximum 200 words) This thesis focuses on command and control for irregular warfare operations and the organizational design ...compound warfare, unconventional warfare, special action force, village stability operations, organizational design , conventional warfare
NASA Astrophysics Data System (ADS)
Liu, Zhigang; Song, Wenguang; Kochan, Orest; Mykyichuk, Mykola; Jun, Su
2017-07-01
The method of theoretical analysis of temperature ranges for the maximum manifestation of the error due to acquired thermoelectric inhomogeneity of thermocouple legs is proposed in this paper. The drift function of the reference function of a type K thermocouples in a ceramic insulation, that consisted of 1.2 mm diameter thermoelements after their exposure to 800°C for 10 000 h in an oxidizing atmosphere (air), is analyzed. The method takes into account various operating conditions to determine the optimal conditions for studying inhomogeneous thermocouples. The method can be applied for other types of thermocouples when taking into account their specific characteristics and the conditions that they have been exposed to.
Optimal tuning of a confined Brownian information engine.
Park, Jong-Min; Lee, Jae Sung; Noh, Jae Dong
2016-03-01
A Brownian information engine is a device extracting mechanical work from a single heat bath by exploiting the information on the state of a Brownian particle immersed in the bath. As for engines, it is important to find the optimal operating condition that yields the maximum extracted work or power. The optimal condition for a Brownian information engine with a finite cycle time τ has been rarely studied because of the difficulty in finding the nonequilibrium steady state. In this study, we introduce a model for the Brownian information engine and develop an analytic formalism for its steady-state distribution for any τ. We find that the extracted work per engine cycle is maximum when τ approaches infinity, while the power is maximum when τ approaches zero.
Computer-Aided Modeling and Analysis of Power Processing Systems (CAMAPPS), phase 1
NASA Technical Reports Server (NTRS)
Kim, S.; Lee, J.; Cho, B. H.; Lee, F. C.
1986-01-01
The large-signal behaviors of a regulator depend largely on the type of power circuit topology and control. Thus, for maximum flexibility, it is best to develop models for each functional block a independent modules. A regulator can then be configured by collecting appropriate pre-defined modules for each functional block. In order to complete the component model generation for a comprehensive spacecraft power system, the following modules were developed: solar array switching unit and control; shunt regulators; and battery discharger. The capability of each module is demonstrated using a simplified Direct Energy Transfer (DET) system. Large-signal behaviors of solar array power systems were analyzed. Stability of the solar array system operating points with a nonlinear load is analyzed. The state-plane analysis illustrates trajectories of the system operating point under various conditions. Stability and transient responses of the system operating near the solar array's maximum power point are also analyzed. The solar array system mode of operation is described using the DET spacecraft power system. The DET system is simulated for various operating conditions. Transfer of the software program CAMAPPS (Computer Aided Modeling and Analysis of Power Processing Systems) to NASA/GSFC (Goddard Space Flight Center) was accomplished.
33 CFR 177.07 - Other unsafe conditions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... discretion, the continued operation of the vessel would create an unsafe condition. (c) Has a fuel leakage... applies to boats built after July 31, 1980); (e) Does not meet the requirements for backfire flame control... from the lowest point along the upper strake edge to the surface of the water. W=Maximum wave height in...
14 CFR 27.65 - Climb: all engines operating.
Code of Federal Regulations, 2013 CFR
2013-01-01
...; or (ii) At least 1:6 under standard sea level conditions. (b) Each helicopter must meet the following requirements: (1) VY must be determined— (i) For standard sea level conditions; (ii) At maximum weight; and...) For rotorcraft other than helicopters— (1) The steady rate of climb, at V Y, must be determined— (i...
14 CFR 27.65 - Climb: all engines operating.
Code of Federal Regulations, 2012 CFR
2012-01-01
...; or (ii) At least 1:6 under standard sea level conditions. (b) Each helicopter must meet the following requirements: (1) VY must be determined— (i) For standard sea level conditions; (ii) At maximum weight; and...) For rotorcraft other than helicopters— (1) The steady rate of climb, at V Y, must be determined— (i...
Haseli, Y
2016-05-01
The objective of this study is to investigate the thermal efficiency and power production of typical models of endoreversible heat engines at the regime of minimum entropy generation rate. The study considers the Curzon-Ahlborn engine, the Novikov's engine, and the Carnot vapor cycle. The operational regimes at maximum thermal efficiency, maximum power output and minimum entropy production rate are compared for each of these engines. The results reveal that in an endoreversible heat engine, a reduction in entropy production corresponds to an increase in thermal efficiency. The three criteria of minimum entropy production, the maximum thermal efficiency, and the maximum power may become equivalent at the condition of fixed heat input.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranson, W.F.; Schaeffel, J.A.; Murphree, E.A.
The response of prestressed and preheated plates subject to an exponentially decaying blast load was experimentally determined. A grid was reflected from the front surface of the plate and the response was recorded with a high speed camera. The camera used in this analysis was a rotating drum camera operating at 20,000 frames per second with a maximum of 224 frames at 39 microseconds separation. Inplane tension loads were applied to the plate by means of air cylinders. Maximum biaxial load applied to the plate was 500 pounds. Plate preheating was obtained with resistance heaters located in the specimen platemore » holder with a maximum capability of 500F. Data analysis was restricted to the maximum conditions at the center of the plate. Strains were determined from the photographic data and the stresses were calculated from the strain data. Results were obtained from zero preload conditions to a maximum of 480 pounds inplane tension loads and a plate temperature of 490F. The blast load ranged from 6 to 23 psi.« less
NASA Technical Reports Server (NTRS)
Delgado, Irebert R.; Steinetz, Bruce M.; Rimnac, Clare M.; Lewandowski, John J.
2008-01-01
The fatigue crack growth behavior of Grainex Mar-M 247 is evaluated for NASA s Turbine Seal Test Facility. The facility is used to test air-to-air seals primarily for use in advanced jet engine applications. Because of extreme seal test conditions of temperature, pressure, and surface speeds, surface cracks may develop over time in the disk bolt holes. An inspection interval is developed to preclude catastrophic disk failure by using experimental fatigue crack growth data. By combining current fatigue crack growth results with previous fatigue strain-life experimental work, an inspection interval is determined for the test disk. The fatigue crack growth life of the NASA disk bolt holes is found to be 367 cycles at a crack depth of 0.501 mm using a factor of 2 on life at maximum operating conditions. Combining this result with previous fatigue strain-life experimental work gives a total fatigue life of 1032 cycles at a crack depth of 0.501 mm. Eddy-current inspections are suggested starting at 665 cycles since eddy current detection thresholds are currently at 0.381 mm. Inspection intervals are recommended every 50 cycles when operated at maximum operating conditions.
CFD-Based Design Optimization Tool Developed for Subsonic Inlet
NASA Technical Reports Server (NTRS)
1995-01-01
The traditional approach to the design of engine inlets for commercial transport aircraft is a tedious process that ends with a less-than-optimum design. With the advent of high-speed computers and the availability of more accurate and reliable computational fluid dynamics (CFD) solvers, numerical optimization processes can effectively be used to design an aerodynamic inlet lip that enhances engine performance. The designers' experience at Boeing Corporation showed that for a peak Mach number on the inlet surface beyond some upper limit, the performance of the engine degrades excessively. Thus, our objective was to optimize efficiency (minimize the peak Mach number) at maximum cruise without compromising performance at other operating conditions. Using a CFD code NPARC, the NASA Lewis Research Center, in collaboration with Boeing, developed an integrated procedure at Lewis to find the optimum shape of a subsonic inlet lip and a numerical optimization code, ADS. We used a GRAPE-based three-dimensional grid generator to help automate the optimization procedure. The inlet lip shape at the crown and the keel was described as a superellipse, and the superellipse exponents and radii ratios were considered as design variables. Three operating conditions: cruise, takeoff, and rolling takeoff, were considered in this study. Three-dimensional Euler computations were carried out to obtain the flow field. At the initial design, the peak Mach numbers for maximum cruise, takeoff, and rolling takeoff conditions were 0.88, 1.772, and 1.61, respectively. The acceptable upper limits on the takeoff and rolling takeoff Mach numbers were 1.55 and 1.45. Since the initial design provided by Boeing was found to be optimum with respect to the maximum cruise condition, the sum of the peak Mach numbers at takeoff and rolling takeoff were minimized in the current study while the maximum cruise Mach number was constrained to be close to that at the existing design. With this objective, the optimum design satisfied the upper limits at takeoff and rolling takeoff while retaining the desirable cruise performance. Further studies are being conducted to include static and cross-wind operating conditions in the design optimization procedure. This work was carried out in collaboration with Dr. E.S. Reddy of NYMA, Inc.
40 CFR 63.8595 - How do I conduct performance tests and establish operating limits?
Code of Federal Regulations, 2011 CFR
2011-07-01
... with the production-based hydrogen fluoride (HF), hydrogen chloride (HCl), and particulate matter (PM) emission limits in Table 1 to this subpart, you must calculate your mass emissions per unit of production... specific conditions in Table 4 to this subpart. (d) You must test while operating at the maximum production...
Operations and Maintenance April Newsletter | Poster
Summertime is coming and with it warmer temperatures, so get out there and enjoy it. The Operations and Maintenance (O&M) department has talented individuals dedicated to maintaining your air conditioning equipment for maximum efficiency. Our staff are always ready to address issues even in the dog days of summer. Please be assured that we are working diligently to keep you
Parametric design criteria of an updated thermoradiative cell operating at optimal states
NASA Astrophysics Data System (ADS)
Zhang, Xin; Peng, Wanli; Lin, Jian; Chen, Xiaohang; Chen, Jincan
2017-11-01
An updated mode of the thermoradiative cell (TRC) with sub-band gap and non-radiative losses is proposed, which can efficiently harvest moderate-temperature heat energy and convert a part of heat into electricity. It is found that when the TRC is operated between the heat source at 800 K and the environment at 300 K , its maximum power output density and efficiency can attain 1490 W m-2 and 27.2 % , respectively. Moreover, the effects of some key parameters including the band gap and voltage output on the performance of the TRC are discussed. The optimally working regions of the power density, efficiency, band gap, and voltage output are determined. The maximum efficiency and power output density of the TRC operated at different temperatures are calculated and compared with those of thermophotovoltaic cells (TPVCs) and thermionic energy converters (TECs), and consequently, it is revealed that the maximum efficiency of the TRC operated at the moderate-temperature range is much higher than that of the TEC or the TPVC and the maximum power output density of the TRC is larger than that of the TEC but smaller than that of the TPVC. Particularly, the TRC is manufactured more easily than the near-field TPVC possessing a nanoscale vacuum gap. The results obtained will be helpful for engineers to choose the semiconductor materials, design and manufacture TRCs, and control operative conditions.
NASA Technical Reports Server (NTRS)
Shastry, Rohit; Huang, Wensheng; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani
2012-01-01
In order to further the design of future high-power Hall thrusters and provide experimental validation for ongoing modeling efforts, plasma potential and Langmuir probe measurements were performed on the 50-kW NASA-457Mv2. An electrostatic probe array comprised of a near-field Faraday probe, single Langmuir probe, and emissive probe was used to interrogate the near-field plume from approximately 0.1 - 2.0 mean thruster diameters downstream of the thruster exit plane at the following operating conditions: 300 V, 400 V and 500 V at 30 kW and 500 V at 50 kW. Results have shown that the acceleration zone is limited to within 0.4 mean thruster diameters of the exit plane while the high-temperature region is limited to 0.25 mean thruster diameters from the exit plane at all four operating conditions. Maximum plasma potentials in the near-field at 300 and 400 V were approximately 50 V with respect to cathode potential, while maximum electron temperatures varied from 24 - 32 eV, depending on operating condition. Isothermal lines at all operating conditions were found to strongly resemble the magnetic field topology in the high-temperature regions. This distribution was found to create regions of high temperature and low density near the magnetic poles, indicating strong, thick sheath formation along these surfaces. The data taken from this study are considered valuable for future design as well as modeling validation.
On the maximum principle for complete second-order elliptic operators in general domains
NASA Astrophysics Data System (ADS)
Vitolo, Antonio
This paper is concerned with the maximum principle for second-order linear elliptic equations in a wide generality. By means of a geometric condition previously stressed by Berestycki-Nirenberg-Varadhan, Cabré was very able to improve the classical ABP estimate obtaining the maximum principle also in unbounded domains, such as infinite strips and open connected cones with closure different from the whole space. Now we introduce a new geometric condition that extends the result to a more general class of domains including the complements of hypersurfaces, as for instance the cut plane. The methods developed here allow us to deal with complete second-order equations, where the admissible first-order term, forced to be zero in a preceding result with Cafagna, depends on the geometry of the domain.
Cerri, M O; Badino, A C
2012-08-01
In biochemical processes involving filamentous microorganisms, the high shear rate may damage suspended cells leading to viability loss and cell disruption. In this work, the influence of the shear conditions in clavulanic acid (CA) production by Streptomyces clavuligerus was evaluated in a 4-dm(3) conventional stirred tank (STB) and in 6-dm(3) concentric-tube airlift (ALB) bioreactors. Batch cultivations were performed in a STB at 600 and 800 rpm and 0.5 vvm (cultivations B1 and B2) and in ALB at 3.0 and 4.1 vvm (cultivations A1 and A2) to define two initial oxygen transfer conditions in both bioreactors. The average shear rate ([Formula: see text]) of the cultivations was estimated using correlations of recent literature based on experimental data of rheological properties of the broth (consistency index, K, and flow index, n) and operating conditions, impeller speed (N) for STB and superficial gas velocity in the riser (UGR) for ALB. In the same oxygen transfer condition, the [Formula: see text] values for ALB were higher than those obtained in STB. The maximum [Formula: see text] presented a strong correlation with a maximum consistency index (K (max)) of the broth. Close values of maximum CA production were obtained in cultivations A1 and A2 (454 and 442 mg L(-1)) with similar maximum [Formula: see text] values of 4,247 and 4,225 s(-1). In cultivations B1 and B2, the maximum CA production of 269 and 402 mg L(-1) were reached with a maximum [Formula: see text] of 904 and 1,786 s(-1). The results show that high values of average shear rate increase the CA production regardless of the oxygen transfer condition and bioreactor model.
Parameter Optimization and Operating Strategy of a TEG System for Railway Vehicles
NASA Astrophysics Data System (ADS)
Heghmanns, A.; Wilbrecht, S.; Beitelschmidt, M.; Geradts, K.
2016-03-01
A thermoelectric generator (TEG) system demonstrator for diesel electric locomotives with the objective of reducing the mechanical load on the thermoelectric modules (TEM) is developed and constructed to validate a one-dimensional thermo-fluid flow simulation model. The model is in good agreement with the measurements and basis for the optimization of the TEG's geometry by a genetic multi objective algorithm. The best solution has a maximum power output of approx. 2.7 kW and does not exceed the maximum back pressure of the diesel engine nor the maximum TEM hot side temperature. To maximize the reduction of the fuel consumption, an operating strategy regarding the system power output for the TEG system is developed. Finally, the potential consumption reduction in passenger and freight traffic operating modes is estimated under realistic driving conditions by means of a power train and lateral dynamics model. The fuel savings are between 0.5% and 0.7%, depending on the driving style.
The ac power line protection for an IEEE 587 Class B environment
NASA Technical Reports Server (NTRS)
Roehr, W. D.; Clark, O. M.
1984-01-01
The 587B series of protectors are unique, low clamping voltage transient suppressors to protect ac-powered equipment from the 6000V peak open-circuit voltage and 3000A short circuit current as defined in IEEE standard 587 for Category B transients. The devices, which incorporate multiple-stage solid-state protector components, were specifically designed to operate under multiple exposures to maximum threat levels in this severe environment. The output voltage peaks are limited to 350V under maximum threat conditions for a 120V ac power line, thus providing adequate protection to vulnerable electronic equipment. The principle of operation and test performance data is discussed.
Operations and Maintenance April Newsletter | Poster
Summertime is coming and with it warmer temperatures, so get out there and enjoy it. The Operations and Maintenance (O&M) department has talented individuals dedicated to maintaining your air conditioning equipment for maximum efficiency. Our staff are always ready to address issues even in the dog days of summer. Please be assured that we are working diligently to keep you comfortable.
Duong, The; Mulmudi, Hemant Kumar; Wu, YiLiang; Fu, Xiao; Shen, Heping; Peng, Jun; Wu, Nandi; Nguyen, Hieu T; Macdonald, Daniel; Lockrey, Mark; White, Thomas P; Weber, Klaus; Catchpole, Kylie
2017-08-16
Perovskite material with a bandgap of 1.7-1.8 eV is highly desirable for the top cell in a tandem configuration with a lower bandgap bottom cell, such as a silicon cell. This can be achieved by alloying iodide and bromide anions, but light-induced phase-segregation phenomena are often observed in perovskite films of this kind, with implications for solar cell efficiency. Here, we investigate light-induced phase segregation inside quadruple-cation perovskite material in a complete cell structure and find that the magnitude of this phenomenon is dependent on the operating condition of the solar cell. Under short-circuit and even maximum power point conditions, phase segregation is found to be negligible compared to the magnitude of segregation under open-circuit conditions. In accordance with the finding, perovskite cells based on quadruple-cation perovskite with 1.73 eV bandgap retain 94% of the original efficiency after 12 h operation at the maximum power point, while the cell only retains 82% of the original efficiency after 12 h operation at the open-circuit condition. This result highlights the need to have standard methods including light/dark and bias condition for testing the stability of perovskite solar cells. Additionally, phase segregation is observed when the cell was forward biased at 1.2 V in the dark, which indicates that photoexcitation is not required to induce phase segregation.
Multi-period equilibrium/near-equilibrium in electricity markets based on locational marginal prices
NASA Astrophysics Data System (ADS)
Garcia Bertrand, Raquel
In this dissertation we propose an equilibrium procedure that coordinates the point of view of every market agent resulting in an equilibrium that simultaneously maximizes the independent objective of every market agent and satisfies network constraints. Therefore, the activities of the generating companies, consumers and an independent system operator are modeled: (1) The generating companies seek to maximize profits by specifying hourly step functions of productions and minimum selling prices, and bounds on productions. (2) The goals of the consumers are to maximize their economic utilities by specifying hourly step functions of demands and maximum buying prices, and bounds on demands. (3) The independent system operator then clears the market taking into account consistency conditions as well as capacity and line losses so as to achieve maximum social welfare. Then, we approach this equilibrium problem using complementarity theory in order to have the capability of imposing constraints on dual variables, i.e., on prices, such as minimum profit conditions for the generating units or maximum cost conditions for the consumers. In this way, given the form of the individual optimization problems, the Karush-Kuhn-Tucker conditions for the generating companies, the consumers and the independent system operator are both necessary and sufficient. The simultaneous solution to all these conditions constitutes a mixed linear complementarity problem. We include minimum profit constraints imposed by the units in the market equilibrium model. These constraints are added as additional constraints to the equivalent quadratic programming problem of the mixed linear complementarity problem previously described. For the sake of clarity, the proposed equilibrium or near-equilibrium is first developed for the particular case considering only one time period. Afterwards, we consider an equilibrium or near-equilibrium applied to a multi-period framework. This model embodies binary decisions, i.e., on/off status for the units, and therefore optimality conditions cannot be directly applied. To avoid limitations provoked by binary variables, while retaining the advantages of using optimality conditions, we define the multi-period market equilibrium using Benders decomposition, which allows computing binary variables through the master problem and continuous variables through the subproblem. Finally, we illustrate these market equilibrium concepts through several case studies.
Forced-air heating and air conditioning (HAC) systems caused an average and maximum increase in air infiltration rates of 1.8- and 4.3-fold, respectively, during brief whole-house studies of tracer gas decay In 39 occupied houses. An average Increase in air infiltration rate of 0...
Tuning the heat transfer medium and operating conditions in magnetic refrigeration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghahremani, Mohammadreza, E-mail: mghahrem@shepherd.edu; Dept. of Electrical and Computer Engineering, The George Washington University, Washington DC 20052; Aslani, Amir
A new experimental test bed has been designed, built, and tested to evaluate the effect of the system’s parameters on a reciprocating Active Magnetic Regenerator (AMR) near room temperature. Bulk gadolinium was used as the refrigerant, silicon oil as the heat transfer medium, and a magnetic field of 1.3 T was cycled. This study focuses on the methodology of single stage AMR operation conditions to get a high temperature span near room temperature. Herein, the main objective is not to report the absolute maximum attainable temperature span seen in an AMR system, but rather to find the system’s optimal operatingmore » conditions to reach that maximum span. The results of this research show that there is a optimal operating frequency, heat transfer fluid flow rate, flow duration, and displaced volume ratio in any AMR system. By optimizing these parameters in our AMR apparatus the temperature span between the hot and cold ends increased by 24%. The optimized values are system dependent and need to be determined and measured for any AMR system by following the procedures that are introduced in this research. It is expected that such optimization will permit the design of a more efficient magnetic refrigeration system.« less
Post carbon removal nitrifying MBBR operation at high loading and exposure to starvation conditions.
Young, Bradley; Delatolla, Robert; Kennedy, Kevin; LaFlamme, Edith; Stintzi, Alain
2017-09-01
This study investigates the performance of MBBR nitrifying biofilm post carbon removal at high loading and starvation conditions. The nitrifying MBBR, treating carbon removal lagoon effluent, achieved a maximum SARR of 2.13gN/m 2 d with complete conversion of ammonia to nitrate. The results also show the MBBR technology is capable of maintaining a stable biofilm under starvation conditions in systems that nitrify intermittently. The biomass exhibited a higher live fraction of total cells in the high loaded reactors (73-100%) as compared to the reactors operated in starvation condition (26-82%). For both the high loaded and starvation condition, the microbial communities significantly changed with time of operation. The nitrifying community, however, remained steady with the family Nitrosomonadacea as the primary AOBs and Nitrospira as the primary NOB. During starvation conditions, the relative abundance of AOBs decreased and Nitrospira increased corresponding to an NOB/AOB ratio of 5.2-12.1. Copyright © 2017 Elsevier Ltd. All rights reserved.
Al-Baldawi, Israa Abdul Wahab; Sheikh Abdullah, Siti Rozaimah; Abu Hasan, Hassimi; Suja, Fatihah; Anuar, Nurina; Mushrifah, Idris
2014-07-01
This study investigated the optimum conditions for total petroleum hydrocarbon (TPH) removal from diesel-contaminated water using phytoremediation treatment with Scirpus grossus. In addition, TPH removal from sand was adopted as a second response. The optimum conditions for maximum TPH removal were determined through a Box-Behnken Design. Three operational variables, i.e. diesel concentration (0.1, 0.175, 0.25% Vdiesel/Vwater), aeration rate (0, 1 and 2 L/min) and retention time (14, 43 and 72 days), were investigated by setting TPH removal and diesel concentration as the maximum, retention time within the given range, and aeration rate as the minimum. The optimum conditions were found to be a diesel concentration of 0.25% (Vdiesel/Vwater), a retention time of 63 days and no aeration with an estimated maximum TPH removal from water and sand of 76.3 and 56.5%, respectively. From a validation test of the optimum conditions, it was found that the maximum TPH removal from contaminated water and sand was 72.5 and 59%, respectively, which was a 5 and 4.4% deviation from the values given by the Box-Behnken Design, providing evidence that S. grossus is a Malaysian native plant that can be used to remediate wastewater containing hydrocarbons. Copyright © 2014 Elsevier Ltd. All rights reserved.
Onset conditions for gas phase reaction and nucleation in the CVD of transition metal oxides
NASA Technical Reports Server (NTRS)
Collins, J.; Rosner, D. E.; Castillo, J.
1992-01-01
A combined experimental/theoretical study is presented of the onset conditions for gas phase reaction and particle nucleation in hot substrate/cold gas CVD of transition metal oxides. Homogeneous reaction onset conditions are predicted using a simple high activation energy reacting gas film theory. Experimental tests of the basic theory are underway using an axisymmetric impinging jet CVD reactor. No vapor phase ignition has yet been observed in the TiCl4/O2 system under accessible operating conditions (below substrate temperature Tw = 1700 K). The goal of this research is to provide CVD reactor design and operation guidelines for achieving acceptable deposit microstructures at the maximum deposition rate while simultaneously avoiding homogeneous reaction/nucleation and diffusional limitations.
NASA Technical Reports Server (NTRS)
Edie, P. C.
1981-01-01
Straight and chopped DC motor performances for a Reliance EV-250AT motor with an EV-1 controller were examined. Effects of motor temperature and operating voltage are shown. It is found that the maximum motor efficiency is approximately 85% at low operating temperatures in the straight DC mode. Chopper efficiency is 95% under all operating conditions. For equal speeds, the motor operated in the chopped mode develops slightly more torque and draws more current than it does in the straight DC mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, K.R.; DeBusk, W.F.
Seasonal growth characteristics and biomass yield potential of 3 floating aquatic macrophytes cultured in nutrient nonlimiting conditions were evaluated in central Florida's climatic conditions. Growth cycle (growth curve) of the plants was found to be complete when maximum plant density was reached and no additional increase in growth was recorded. Biomass yield per unit area and time was found to be maximum in the linear phase of the growth curve; plant density in this phase was defined as ''operational plant density,'' a density range in which a biomass production system is operated to obtain the highest possible yields. Biomass yieldsmore » were found to be 106, 72, and 41 t(dry wt) ha/sup -1/yr/sup -1/, respectively, for water hyacinth (Eichhornia crassipes), water lettuce (Pistia stratiotes), and pennywort (Hydrocotyle umbellata). Operational plant density was found to be in the range of 500-2000 g dry wt m/sup -2/ for water hyacinth, 200-700 g dry wt m/sup -2/ for water lettuce, and 250-650 g dry wt/sup -2/ for pennywort. Seasonality was observed in growth rates but not in operational plant density. Specific growth rate (% increase per day) was found to maximum at low plant densities and decreased as the plant density increased. Results show that water hyacinth and water lettuce can be successfully grown for a period of about 10 mo, while pennywort, a cool season plant, can be integrated into water hyacinth/water lettuce biomass production system to obtain high yields in the winter.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, K.R.; DeBusk, W.F.
Seasonal growth characteristics and biomass yield potential of 3 floating aquatic macrophytes cultured in nutrient nonlimiting conditions were evaluated in central Florida's climatic conditions. Growth cycle (growth curve) of the plants was found to be complete when maximum plant density was reached and no additional increase in growth was recorded. Biomass yield per unit area and time was found to be maximum in the linear phase of the growth curve; plant density in this phase was defined as operational plant density, a density range in which a biomass production system is operated to obtain the highest possible yields. Biomass yieldsmore » were found to be 106, 72, and 41 t (dry wt) ha/sup -1/ yr/sup -1/, respectively, for water hyacinth (Eichhornia crassipes), water lettuce (Pistia stratiotes), and pennywort (Hydrocotyle umbellata). Operational plant density was found to be in the range of 500-2,000 g dry wt m/sup -2/ for water hyacinth, 200-700 g dry wt m/sup -2/ for water lettuce, and 250-650 g dry wt m/sup -2/ for pennywort. Seasonality was observed in growth rates but not in operational plant density. Specific growth rate (% increase per day) was found to maximum at low plant densities and decreased as the plant density increased. Results show that water hyacinth and water lettuce can be successfully grown for a period of about 10 mo, while pennywort, a cool season plant, can be integrated into water hyacinth/water lettuce biomass production system to obtain high yields in the winter.« less
14 CFR 23.1527 - Maximum operating altitude.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Maximum operating altitude. 23.1527 Section... Information § 23.1527 Maximum operating altitude. (a) The maximum altitude up to which operation is allowed... established. (b) A maximum operating altitude limitation of not more than 25,000 feet must be established for...
Anesthetic management for carbon dioxide laser surgery of the larynx.
Shaker, M H; Konchigeri, H N; Andrews, A H; Holinger, P H
1976-06-01
Fifty-one patients underwent 71 carbon dioxide laser procedures under general anesthesia for various intralaryngeal pathology. Anesthesia was induced with thiopental sodium, followed by succinylcholine to facilitate endotracheal intubation. For maintenance of anesthesia, 70% nitrous oxide was supplemented with halothane, enflurane or small doses of fentanyl. Succinylcholine, d-tubocurare or pancuronium were used to maintain muscular relaxation of jaw, pharyngeal and laryngeal muscles for a smooth lasing procedure. Small diameter (16-22 Fr.), red rubber, cuffed endotracheal tubes provided maximum working space, facilitated the controlled ventilation and reduced the explosion hazard of the anesthetic gases. Safely eyeglasses were used by all the personnel in the operating room against accidental injury to the cornea by the laser beam. Anesthetic management provided excellent operative conditions with maximum safety to the patient and the personnel in the operating room.
NASA Technical Reports Server (NTRS)
1984-01-01
Chesebrough-Pond's operates 32 plants across the nation and in those plants are more than 10,000 electric motors. In an effort to cut down on waste of electrical power used by these motors, Chesebrough organized a Corporate Advanced Technology Group to devise ways of improving productivity and cut manufacturing costs. Chesebrough used NASA's Marshall Space Flight Center's Power Factor Controller technology as a departure point for development of their own computerized motor controller that enables motors to operate at maximum efficiency regardless of the motor's applications or operating condition.
An experimental investigation of interaction between projectiles and flames
NASA Astrophysics Data System (ADS)
Baryshnikov, A. S.; Basargin, I. V.; Bobashev, S. V.; Monakhov, N. A.; Popov, P. A.; Sakharov, V. A.; Chistyakova, M. V.
2015-12-01
This investigation is devoted to the influence of a heated area of gas on model stability with the supersonic motion during free-flying operation. The conditions of the maximum influence on aerodynamics of body flight in an inhomogeneous heated area are ascertained.
NASA Astrophysics Data System (ADS)
Feehan, Paul M. N.
2017-09-01
We prove existence of solutions to boundary value problems and obstacle problems for degenerate-elliptic, linear, second-order partial differential operators with partial Dirichlet boundary conditions using a new version of the Perron method. The elliptic operators considered have a degeneracy along a portion of the domain boundary which is similar to the degeneracy of a model linear operator identified by Daskalopoulos and Hamilton [9] in their study of the porous medium equation or the degeneracy of the Heston operator [21] in mathematical finance. Existence of a solution to the partial Dirichlet problem on a half-ball, where the operator becomes degenerate on the flat boundary and a Dirichlet condition is only imposed on the spherical boundary, provides the key additional ingredient required for our Perron method. Surprisingly, proving existence of a solution to this partial Dirichlet problem with ;mixed; boundary conditions on a half-ball is more challenging than one might expect. Due to the difficulty in developing a global Schauder estimate and due to compatibility conditions arising where the ;degenerate; and ;non-degenerate boundaries; touch, one cannot directly apply the continuity or approximate solution methods. However, in dimension two, there is a holomorphic map from the half-disk onto the infinite strip in the complex plane and one can extend this definition to higher dimensions to give a diffeomorphism from the half-ball onto the infinite ;slab;. The solution to the partial Dirichlet problem on the half-ball can thus be converted to a partial Dirichlet problem on the slab, albeit for an operator which now has exponentially growing coefficients. The required Schauder regularity theory and existence of a solution to the partial Dirichlet problem on the slab can nevertheless be obtained using previous work of the author and C. Pop [16]. Our Perron method relies on weak and strong maximum principles for degenerate-elliptic operators, concepts of continuous subsolutions and supersolutions for boundary value and obstacle problems for degenerate-elliptic operators, and maximum and comparison principle estimates previously developed by the author [13].
NASA Astrophysics Data System (ADS)
Atik, L.; Petit, P.; Sawicki, J. P.; Ternifi, Z. T.; Bachir, G.; Della, M.; Aillerie, M.
2017-02-01
Solar panels have a nonlinear voltage-current characteristic, with a distinct maximum power point (MPP), which depends on the environmental factors, such as temperature and irradiation. In order to continuously harvest maximum power from the solar panels, they have to operate at their MPP despite the inevitable changes in the environment. Various methods for maximum power point tracking (MPPT) were developed and finally implemented in solar power electronic controllers to increase the efficiency in the electricity production originate from renewables. In this paper we compare using Matlab tools Simulink, two different MPP tracking methods, which are, fuzzy logic control (FL) and sliding mode control (SMC), considering their efficiency in solar energy production.
A Balanced Diaphragm Type of Maximum Cylinder Pressure Indicator
NASA Technical Reports Server (NTRS)
Spanogle, J A; Collins, John H , Jr
1930-01-01
A balanced diaphragm type of maximum cylinder pressure indicator was designed to give results consistent with engine operating conditions. The apparatus consists of a pressure element, a source of controlled high pressure and a neon lamp circuit. The pressure element, which is very compact, permits location of the diaphragm within 1/8 inch of the combustion chamber walls without water cooling. The neon lamp circuit used for indicating contact between the diaphragm and support facilitates the use of the apparatus with multicylinder engines.
Influence of maneuverability on helicopter combat effectiveness
NASA Technical Reports Server (NTRS)
Falco, M.; Smith, R.
1982-01-01
A computational procedure employing a stochastic learning method in conjunction with dynamic simulation of helicopter flight and weapon system operation was used to derive helicopter maneuvering strategies. The derived strategies maximize either survival or kill probability and are in the form of a feedback control based upon threat visual or warning system cues. Maneuverability parameters implicit in the strategy development include maximum longitudinal acceleration and deceleration, maximum sustained and transient load factor turn rate at forward speed, and maximum pedal turn rate and lateral acceleration at hover. Results are presented in terms of probability of skill for all combat initial conditions for two threat categories.
Altitude Performance of Modified J71 Afterburner with Revised Engine Operating Conditions
NASA Technical Reports Server (NTRS)
Useller, James W.; Russey, Robert E.
1955-01-01
An investigation was conducted in an altitude test chamber at the NACA Lewis laboratory to determine the effect of a revision of the rated engine operating conditions and modifications to the afterburner fue1 system, flameholder, and shell cooling on the augmented performance of the J71-A-2 (x-29) turbo jet engine operating at altitude . The afterburner modifications were made by the manufacturer to improve the endurance at sea-level, high-pressure conditions and to reduce the afterburner shell temperatures. The engine operating conditions of rated rotational speed and turbine-outlet gas temperature were increased. Data were obtained at conditions simulating flight at a Mach number of 0.9 and at altitudes from 40,000 to 60,000 feet. The afterburner modifications caused a reduction in afterburner combustion efficiency. The increase in rated engine speed and turbine-outlet temperature coupled with the afterburner modifications resulted in the over-all thrust of the engine and afterburner being unchanged at a given afterburner equivalence ratio, while the specific fuel consumption was increased slightly. A moderate shift in the range of equivalence ratios over which the afterburner would operate was encountered, but the maximum operable altitude remained unaltered. The afterburner-shell temperatures were also slightly reduced because of the modifications to the afterburner.
49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Maximum allowable operating pressure: Steel or... Operations § 192.619 Maximum allowable operating pressure: Steel or plastic pipelines. (a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating...
49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Maximum allowable operating pressure: Steel or... Operations § 192.619 Maximum allowable operating pressure: Steel or plastic pipelines. (a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating...
49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Maximum allowable operating pressure: Steel or... Operations § 192.619 Maximum allowable operating pressure: Steel or plastic pipelines. (a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating...
49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Maximum allowable operating pressure: Steel or... Operations § 192.619 Maximum allowable operating pressure: Steel or plastic pipelines. (a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating...
Grid Integration of Single Stage Solar PV System using Three-level Voltage Source Converter
NASA Astrophysics Data System (ADS)
Hussain, Ikhlaq; Kandpal, Maulik; Singh, Bhim
2016-08-01
This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.
NASA Astrophysics Data System (ADS)
Bandriyana, B.; Utaja
2010-06-01
Thermal stratification introduces thermal shock effect which results in local stress and fatique problems that must be considered in the design of nuclear power plant components. Local stress and fatique calculation were performed on the Pressurize Surge Line piping system of the Pressurize Water Reactor of the Nuclear Power Plant. Analysis was done on the operating temperature between 177 to 343° C and the operating pressure of 16 MPa (160 Bar). The stagnant and transient condition with two kinds of stratification model has been evaluated by the two dimensional finite elements method using the ANSYS program. Evaluation of fatigue resistance is developed based on the maximum local stress using the ASME standard Code formula. Maximum stress of 427 MPa occurred at the upper side of the top half of hot fluid pipe stratification model in the transient case condition. The evaluation of the fatigue resistance is performed on 500 operating cycles in the life time of 40 years and giving the usage value of 0,64 which met to the design requirement for class 1 of nuclear component. The out surge transient were the most significant case in the localized effects due to thermal stratification.
NASA Astrophysics Data System (ADS)
Liu, Mingliang; Lü, Zhe; Wei, Bo; Huang, Xiqiang; Zhang, Yaohui; Su, Wenhui
An annular micro-stack array consisting of four fuel cells has been fabricated and operated successfully in single-chamber conditions using a nitrogen-diluted oxygen-methane mixture as the operating gas. The single cells consist of a state-of-the-art porous NiO/Y 2O 3-stabilized ZrO 2 (YSZ) anode support, a YSZ electrolyte membrane and a modified La 0.7Sr 0.3MnO 3 (LSM) cathode. The annular configuration of the array is favorable for utilizing the heating effect. The maximum power output of the annular stack decreases with increasingCH 4/O 2 ratio. Its performance increases with increasing CH 4 flow rate and decreases with increasing N 2 flow rate. The power output of the stack is ∼380 mW at CH 4/O 2 = 1 and an N 2 flow rate of 100 sccm and the average maximum power density of each cell is ∼190 mW cm -2. The average performance of each cell in the annular micro-stack array is higher than that of an additional single cell placed next to the stack.
Minimum error discrimination between similarity-transformed quantum states
NASA Astrophysics Data System (ADS)
Jafarizadeh, M. A.; Sufiani, R.; Mazhari Khiavi, Y.
2011-07-01
Using the well-known necessary and sufficient conditions for minimum error discrimination (MED), we extract an equivalent form for the MED conditions. In fact, by replacing the inequalities corresponding to the MED conditions with an equivalent but more suitable and convenient identity, the problem of mixed state discrimination with optimal success probability is solved. Moreover, we show that the mentioned optimality conditions can be viewed as a Helstrom family of ensembles under some circumstances. Using the given identity, MED between N similarity transformed equiprobable quantum states is investigated. In the case that the unitary operators are generating a set of irreducible representation, the optimal set of measurements and corresponding maximum success probability of discrimination can be determined precisely. In particular, it is shown that for equiprobable pure states, the optimal measurement strategy is the square-root measurement (SRM), whereas for the mixed states, SRM is not optimal. In the case that the unitary operators are reducible, there is no closed-form formula in the general case, but the procedure can be applied in each case in accordance to that case. Finally, we give the maximum success probability of optimal discrimination for some important examples of mixed quantum states, such as generalized Bloch sphere m-qubit states, spin-j states, particular nonsymmetric qudit states, etc.
Minimum error discrimination between similarity-transformed quantum states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jafarizadeh, M. A.; Institute for Studies in Theoretical Physics and Mathematics, Tehran 19395-1795; Research Institute for Fundamental Sciences, Tabriz 51664
2011-07-15
Using the well-known necessary and sufficient conditions for minimum error discrimination (MED), we extract an equivalent form for the MED conditions. In fact, by replacing the inequalities corresponding to the MED conditions with an equivalent but more suitable and convenient identity, the problem of mixed state discrimination with optimal success probability is solved. Moreover, we show that the mentioned optimality conditions can be viewed as a Helstrom family of ensembles under some circumstances. Using the given identity, MED between N similarity transformed equiprobable quantum states is investigated. In the case that the unitary operators are generating a set of irreduciblemore » representation, the optimal set of measurements and corresponding maximum success probability of discrimination can be determined precisely. In particular, it is shown that for equiprobable pure states, the optimal measurement strategy is the square-root measurement (SRM), whereas for the mixed states, SRM is not optimal. In the case that the unitary operators are reducible, there is no closed-form formula in the general case, but the procedure can be applied in each case in accordance to that case. Finally, we give the maximum success probability of optimal discrimination for some important examples of mixed quantum states, such as generalized Bloch sphere m-qubit states, spin-j states, particular nonsymmetric qudit states, etc.« less
Haker, Steven; Wells, William M; Warfield, Simon K; Talos, Ion-Florin; Bhagwat, Jui G; Goldberg-Zimring, Daniel; Mian, Asim; Ohno-Machado, Lucila; Zou, Kelly H
2005-01-01
In any medical domain, it is common to have more than one test (classifier) to diagnose a disease. In image analysis, for example, there is often more than one reader or more than one algorithm applied to a certain data set. Combining of classifiers is often helpful, but determining the way in which classifiers should be combined is not trivial. Standard strategies are based on learning classifier combination functions from data. We describe a simple strategy to combine results from classifiers that have not been applied to a common data set, and therefore can not undergo this type of joint training. The strategy, which assumes conditional independence of classifiers, is based on the calculation of a combined Receiver Operating Characteristic (ROC) curve, using maximum likelihood analysis to determine a combination rule for each ROC operating point. We offer some insights into the use of ROC analysis in the field of medical imaging.
Haker, Steven; Wells, William M.; Warfield, Simon K.; Talos, Ion-Florin; Bhagwat, Jui G.; Goldberg-Zimring, Daniel; Mian, Asim; Ohno-Machado, Lucila; Zou, Kelly H.
2010-01-01
In any medical domain, it is common to have more than one test (classifier) to diagnose a disease. In image analysis, for example, there is often more than one reader or more than one algorithm applied to a certain data set. Combining of classifiers is often helpful, but determining the way in which classifiers should be combined is not trivial. Standard strategies are based on learning classifier combination functions from data. We describe a simple strategy to combine results from classifiers that have not been applied to a common data set, and therefore can not undergo this type of joint training. The strategy, which assumes conditional independence of classifiers, is based on the calculation of a combined Receiver Operating Characteristic (ROC) curve, using maximum likelihood analysis to determine a combination rule for each ROC operating point. We offer some insights into the use of ROC analysis in the field of medical imaging. PMID:16685884
14 CFR 25.1505 - Maximum operating limit speed.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Maximum operating limit speed. 25.1505... Operating Limitations § 25.1505 Maximum operating limit speed. The maximum operating limit speed (V MO/M MO airspeed or Mach Number, whichever is critical at a particular altitude) is a speed that may not be...
14 CFR 25.1505 - Maximum operating limit speed.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Maximum operating limit speed. 25.1505... Operating Limitations § 25.1505 Maximum operating limit speed. The maximum operating limit speed (V MO/M MO airspeed or Mach Number, whichever is critical at a particular altitude) is a speed that may not be...
Operation of mixed conducting metal oxide membrane systems under transient conditions
Carolan, Michael Francis [Allentown, PA
2008-12-23
Method of operating an oxygen-permeable mixed conducting membrane having an oxidant feed side, an oxidant feed surface, a permeate side, and a permeate surface, which method comprises controlling the differential strain between the permeate surface and the oxidant feed surface at a value below a selected maximum value by varying the oxygen partial pressure on either or both of the oxidant feed side and the permeate side of the membrane.
Ghunmi, Lina Abu; Zeeman, Grietje; Fayyad, Manar; van Lier, Jules B
2011-02-01
Knowing the biodegradability characteristics of grey water constituents is imperative for a proper design and operation of a biological treatment system of grey water. This study characterizes the different COD fractions of dormitory grey water and investigates the effect of applying different conditions in the biodegradation test. The maximum aerobic and anaerobic biodegradability and conversion rate for the different COD fractions is determined. The results show that, on average, dormitory grey water COD fractions are 28% suspended, 32% colloidal and 40% dissolved. The studied factors incubation time, inoculum addition and temperature are influencing the determined biodegradability. The maximum biodegradability and biodegradation rate differ between different COD fractions, viz. COD(ss), COD(col) and COD(diss). The dissolved COD fraction is characterised by the lowest degradation rate, both for anaerobic and aerobic conditions. The maximum biodegradability for aerobic and anaerobic conditions is 86 and 70% respectively, whereas the first order conversion rate constant, k₂₀, is 0.119 and 0.005 day⁻¹, respectively. The anaerobic and aerobic conversion rates in relation to temperature can be described by the Arrhenius relation, with temperature coefficients of 1.069 and 1.099, respectively.
Research on the treatment of oily wastewater by coalescence technology.
Li, Chunbiao; Li, Meng; Zhang, Xiaoyan
2015-01-01
Recently, oily wastewater treatment has become a hot research topic across the world. Among the common methods for oily wastewater treatment, coalescence is one of the most promising technologies because of its high efficiency, easy operation, smaller land coverage, and lower investment and operational costs. In this research, a new type of ceramic filter material was chosen to investigate the effects of some key factors including particle size of coarse-grained materials, temperature, inflow direction and inflow velocity of the reactor. The aim was to explore the optimum operating conditions for coarse-graining. Results of a series of tests showed that the optimum operating conditions were a combination of grain size 1-3 mm, water temperature 35 °C and up-flow velocity 8 m/h, which promised a maximum oil removal efficiency of 93%.
NASA Technical Reports Server (NTRS)
Schum, Harold J; Davison, Elmer H
1956-01-01
The over-all component performance characteristics of a J71 experimental three-stage turbine with 97 percent design stator areas were determined over a range of speed and pressure ratio at inlet-air conditions of approximately 35 inches of mercury absolute and 700 degrees R. The turbine break internal efficiency at design operating conditions was 0.877; the maximum efficiency of 0.886 occurred at a pressure ratio of 4.0 at 120 percent of design equivalent rotor speed. In general, the turbine yielded a wide range of efficient operation, permitting flexibility in the choice of different modes of engine operation. Limiting blade loading of the third rotor was approached but not obtained over the range of conditions investigated herein. At the design operating point, the turbine equivalent weight flow was approximately 105 percent of design. Choking of the third-rotor blades occurred at design speed and an over-all pressure ratio of 4.2.
Performance and operational improvements made to the Waukesha AT27-GL engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinbold, E.O.
1996-12-31
This paper presents the results of combustion and engine performance studies performed on the AT27GL lean burn engine. One study was to evaluate the effect of the pre-combustion chamber cup geometry on engine performance under several operating conditions including: Air-Fuel Ratio (AFR), ignition timing, and engine load. The study examined several combustion parameters; including IMEP, coefficient of variation of IMEP, heat release rates, and maximum combustion pressures. The study also examined engine thermal efficiency, and brake specific emissions of Oxides of Nitrogen, Carbon Monoxide, and Total Hydrocarbons (gaseous). Studies were also performed on different spark plug designs, comparing firing voltages,more » and electrode temperatures while operating under conditions of varying AFR, and ignition timing. In addition an Air-Fuel-Ratio controller was recently tested and released on the engine. The controller was tested under conditions of varying fuel quality, along with a detonation control system.« less
The effect of preignition on cylinder temperatures, pressures, power output, and piston failures
NASA Technical Reports Server (NTRS)
Corrington, Lester C; Fisher, William F
1947-01-01
An investigation was conducted using a cylinder of a V-type liquid-cooled engine to observe the behavior of the cylinder when operated under preignition conditions. Data were recorded that showed cylinder-head temperatures, time of ignition, engine speed, power output, and change in maximum cylinder pressure as a function of time as the engine entered preignition and was allowed to operate under preignition conditions for a short time. The effects of the following variables on the engine behavior during preignition were investigated: fuel-air ratio, power level, aromatic content of fuel, engine speed, mixture temperature, and preignition source. The power levels at which preignition would cause complete piston failure for the selected engine operating conditions and the types of failure encountered when using various values of clearance between the piston and cylinder barrel were determined. The fuels used had performance numbers high enough to preclude any possibility of knock throughout the test program.
Alkaline battery operational methodology
Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael
2016-08-16
Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.
14 CFR 27.1527 - Maximum operating altitude.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Maximum operating altitude. 27.1527 Section 27.1527 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... § 27.1527 Maximum operating altitude. The maximum altitude up to which operation is allowed, as limited...
14 CFR 29.1527 - Maximum operating altitude.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Maximum operating altitude. 29.1527 Section 29.1527 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Limitations § 29.1527 Maximum operating altitude. The maximum altitude up to which operation is allowed, as...
Underground coal mine instrumentation and test
NASA Technical Reports Server (NTRS)
Burchill, R. F.; Waldron, W. D.
1976-01-01
The need to evaluate mechanical performance of mine tools and to obtain test performance data from candidate systems dictate that an engineering data recording system be built. Because of the wide range of test parameters which would be evaluated, a general purpose data gathering system was designed and assembled to permit maximum versatility. A primary objective of this program was to provide a specific operating evaluation of a longwall mining machine vibration response under normal operating conditions. A number of mines were visited and a candidate for test evaluation was selected, based upon management cooperation, machine suitability, and mine conditions. Actual mine testing took place in a West Virginia mine.
Thermodynamic limits for solar energy conversion by a quantum-thermal hybrid system
NASA Technical Reports Server (NTRS)
Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.
1981-01-01
The limits are presented fo air mass 1.5 conditions. A maximum conversion efficiency of 74 percent is thermodynamically achievable for the quantum device operating at 3500 K and the heat engine in contact with a reservoir at 0 K. The efficiency drops to 56 percent for a cold reservoir at approximately room temperature conditions. Hybrid system efficiencies exceed 50 percent over receiver temperatures ranging from 1400 K to 4000 K, suggesting little benefit is gained in operating the system above 1400 K. The results are applied to a system consisting of a photovoltaic solar cell in series with a heat engine.
77 FR 32884 - Airworthiness Directives; Eurocopter Deutschland GMBH Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-04
... than the engine fuel flow demand needed to achieve the OEI rating at high altitude. They state that... above 10,000 feet. This condition could result in high altitude operations when full OEI engine power is... installing a placard that corresponds to the maximum permissible flight altitude, amending the Rotorcraft...
NASA Technical Reports Server (NTRS)
Wolski, W.
1985-01-01
Results of experimental studies of emission cathodes made from lanthanum, yttrium, and gadolinium hexaborides are presented. Maximum thermal emission was obtained from lanthanum hexaboride electrodes. The hexaboride cathodes operated stably under conditions of large current density power draw, at high voltages and poor vacuum. A microtron electron gun with a lanthanum hexaboride cathode is described.
Energy Storage | Transportation Research | NREL
, and safe energy storage systems to power the next generation of electric-drive vehicles (EDVs). While lasting, safe, and operate at maximum efficiency in a wide range of driving conditions and climates. The Consumers, Industry, and the Environment As manufacturers develop new electric-drive vehicles, NREL acts as
NASA Astrophysics Data System (ADS)
Li, lingxue
2017-08-01
The paper designs a new wind-water cooling and heating water conditioner system, connects cooling tower with heat recovery device, which uses cooling water to completely remove the heat that does not need heat recollection, in order to ensure that the system can work efficiently with higher performance coefficient. After the test actual engineering operation, the system’s maximum cooling coefficient of performance can reach 3.5. Its maximum comprehensive coefficient of performance can reach 6.5. After the analysis of its economic and environmental, we conclude that the new system can save 89822 kw per year. It reflects energy-saving and environmental benefits of the cold and hot water air conditioning system.
[Microbial air monitoring in operating theatre: active and passive samplings].
Pasquarella, C; Masia, M D; Nnanga, Nga; Sansebastiano, G E; Savino, A; Signorelli, C; Veronesi, L
2004-01-01
Microbial air contamination was evaluated in 11 operating theatres using active and passive samplings. SAS (Surface Air System) air sampling was used to evaluate cfu/m3 and settle plates were used to measure the index of microbial air contamination (IMA). Samplings were performed at the same time on three different days, at three different times (before, during and after the surgical activity). Two points were monitored (patient area and perimeter of the operating theatre). Moreover, the cfu/m3 were evaluated at the air inlet of the conditioner system. 74.7% of samplings performed at the air inlet and 66.7% of the samplings performed at the patient area before the beginning of the surgical activity (at rest) exceeded the 35 cfu/m3 used as threshold value. 100% of IMA values exceeded the threshold value of 5. Using both active and passive sampling, the microbial contamination was shown to increase significantly during activity. The cfu values were higher at the patient area than at the perimeter of the operating theatre. Mean values of the cfu/m3 during activity at the patient area ranged from a minimum of 61+/-41 cfu/m3 to a maximum of 242+/-136 cfu/m3; IMA values ranged from a minimum of 19+/-10 to a maximum of 129+/-60. 15.2% of samplings performed at the patient area using SAS and 75.8% of samplings performed using settle plates exceeded the threshold values of 180 cfu/m3 and 25 respectively, with a significant difference of the percentages. The highest values were found in the operating theatre with inadequate structural and managerial conditions. These findings confirm that the microbiological quality of air may be considered a mirror of the hygienic conditions of the operating theatre. Settle plates proved to be more sensitive in detecting the increase of microbial air contamination related to conditions that could compromise the quality of the air in operating theatres.
49 CFR 195.406 - Maximum operating pressure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance § 195.406 Maximum operating pressure. (a) Except for surge pressures and other variations from normal operations, no operator may operate a pipeline at a... 49 Transportation 3 2010-10-01 2010-10-01 false Maximum operating pressure. 195.406 Section 195...
49 CFR 195.406 - Maximum operating pressure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance § 195.406 Maximum operating pressure. (a) Except for surge pressures and other variations from normal operations, no operator may operate a pipeline at a... 49 Transportation 3 2012-10-01 2012-10-01 false Maximum operating pressure. 195.406 Section 195...
49 CFR 195.406 - Maximum operating pressure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance § 195.406 Maximum operating pressure. (a) Except for surge pressures and other variations from normal operations, no operator may operate a pipeline at a... 49 Transportation 3 2014-10-01 2014-10-01 false Maximum operating pressure. 195.406 Section 195...
49 CFR 195.406 - Maximum operating pressure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance § 195.406 Maximum operating pressure. (a) Except for surge pressures and other variations from normal operations, no operator may operate a pipeline at a... 49 Transportation 3 2011-10-01 2011-10-01 false Maximum operating pressure. 195.406 Section 195...
49 CFR 195.406 - Maximum operating pressure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance § 195.406 Maximum operating pressure. (a) Except for surge pressures and other variations from normal operations, no operator may operate a pipeline at a... 49 Transportation 3 2013-10-01 2013-10-01 false Maximum operating pressure. 195.406 Section 195...
Optimized operation of dielectric laser accelerators: Single bunch
NASA Astrophysics Data System (ADS)
Hanuka, Adi; Schächter, Levi
2018-05-01
We introduce a general approach to determine the optimal charge, efficiency and gradient for laser driven accelerators in a self-consistent way. We propose a way to enhance the operational gradient of dielectric laser accelerators by leverage of beam-loading effect. While the latter may be detrimental from the perspective of the effective gradient experienced by the particles, it can be beneficial as the effective field experienced by the accelerating structure, is weaker. As a result, the constraint imposed by the damage threshold fluence is accordingly weakened and our self-consistent approach predicts permissible gradients of ˜10 GV /m , one order of magnitude higher than previously reported experimental results—with unbunched pulse of electrons. Our approach leads to maximum efficiency to occur for higher gradients as compared with a scenario in which the beam-loading effect on the material is ignored. In any case, maximum gradient does not occur for the same conditions that maximum efficiency does—a trade-off set of parameters is suggested.
NASA Technical Reports Server (NTRS)
Gracey, William; Jewel, Joseph W., Jr.; Carpenter, Gene T.
1960-01-01
The overall errors of the service altimeter installations of a variety of civil transport, military, and general-aviation airplanes have been experimentally determined during normal landing-approach and take-off operations. The average height above the runway at which the data were obtained was about 280 feet for the landings and about 440 feet for the take-offs. An analysis of the data obtained from 196 airplanes during 415 landing approaches and from 70 airplanes during 152 take-offs showed that: 1. The overall error of the altimeter installations in the landing- approach condition had a probable value (50 percent probability) of +/- 36 feet and a maximum probable value (99.7 percent probability) of +/- 159 feet with a bias of +10 feet. 2. The overall error in the take-off condition had a probable value of +/- 47 feet and a maximum probable value of +/- 207 feet with a bias of -33 feet. 3. The overall errors of the military airplanes were generally larger than those of the civil transports in both the landing-approach and take-off conditions. In the landing-approach condition the probable error and the maximum probable error of the military airplanes were +/- 43 and +/- 189 feet, respectively, with a bias of +15 feet, whereas those for the civil transports were +/- 22 and +/- 96 feet, respectively, with a bias of +1 foot. 4. The bias values of the error distributions (+10 feet for the landings and -33 feet for the take-offs) appear to represent a measure of the hysteresis characteristics (after effect and recovery) and friction of the instrument and the pressure lag of the tubing-instrument system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
X Liu; E Garboczi; m Grigoriu
Many parameters affect the cyclone efficiency, and these parameters can have different effects in different flow regimes. Therefore the maximum-efficiency cyclone length is a function of the specific geometry and operating conditions in use. In this study, we obtained a relationship describing the minimum particle diameter or maximum cyclone efficiency by using a theoretical approach based on cyclone geometry and fluid properties. We have compared the empirical predictions with corresponding literature data and observed good agreement. The results address the importance of fluid properties. Inlet and vortex finder cross-sections, cone-apex diameter, inlet Reynolds number and surface roughness are found tomore » be the other important parameters affecting cyclone height. The surface friction coefficient, on the other hand, is difficult to employ in the calculations.We developed a theoretical approach to find the maximum-efficiency heights for cyclones with tangential inlet and we suggested a relation for this height as a function of cyclone geometry and operating parameters. In order to generalize use of the relation, two dimensionless parameters, namely for geometric and operational variables, we defined and results were presented in graphical form such that one can calculate and enter the values of these dimensionless parameters and then can find the maximum efficiency height of his own specific cyclone.« less
Some results regarding stability of photovoltaic maximum-power-point tracking dc-dc converters
NASA Astrophysics Data System (ADS)
Schaefer, John F.
An analytical investigation of a class of photovoltaic (PV) maximum-power-point tracking dc-dc converters has yielded basic results relative to the stability of such devices. Necessary and sufficient conditions for stable operation are derived, and design tools are given. Specific results have been obtained for arbitrary PV arrays driving converters powering resistive loads and batteries. The analytical techniques are applicable to inverters, also. Portions of the theoretical results have been verified in operational devices: a 1500 watt unit has driven a 1-horsepower, 90-volt dc motor powering a water pump jack for over one year. Prior to modification shortly after initial installation, the unit exhibited instability at low levels of irradiance, as predicted by the theory. Two examples are provided.
Efficient protocols for Stirling heat engines at the micro-scale
NASA Astrophysics Data System (ADS)
Muratore-Ginanneschi, Paolo; Schwieger, Kay
2015-10-01
We investigate the thermodynamic efficiency of sub-micro-scale Stirling heat engines operating under the conditions described by overdamped stochastic thermodynamics. We show how to construct optimal protocols such that at maximum power the efficiency attains for constant isotropic mobility the universal law η=2 ηC/(4-ηC) , where ηC is the efficiency of an ideal Carnot cycle. We show that these protocols are specified by the solution of an optimal mass transport problem. Such solution can be determined explicitly using well-known Monge-Ampère-Kantorovich reconstruction algorithms. Furthermore, we show that the same law describes the efficiency of heat engines operating at maximum work over short time periods. Finally, we illustrate the straightforward extension of these results to cases when the mobility is anisotropic and temperature dependent.
Development of spiral-groove self-acting face seals
NASA Technical Reports Server (NTRS)
Obrien, M.
1977-01-01
An experimental evaluation and a 100-hour endurance test were performed on a spiral groove geometry, self-acting face seal. The seal was tested and operated successfully at maximum conditions of 243.8 m/s surface speed, 199.9 N/sq cm air pressure, and 645.4K (702 F) air temperature. The maximum speed condition of 243.8 m/s was obtained at a shaft speed of 72,500 rpm. Seal wear, gas leakage, and sealing element temperature were monitored during the test. Condition of the seal at the completion of the test was documented and found acceptable for further use. The spiral groove wear rate measured during the endurance test indicates a minimum potential seal life of over 2700 hours. Seal air leakage measured during the test program is within the range considered acceptable for consideration for use in a small gas turbine engine.
Simulation study on the maximum continuous working condition of a power plant boiler
NASA Astrophysics Data System (ADS)
Wang, Ning; Han, Jiting; Sun, Haitian; Cheng, Jiwei; Jing, Ying'ai; Li, Wenbo
2018-05-01
First of all, the boiler is briefly introduced to determine the mathematical model and the boundary conditions, then the boiler under the BMCR condition numerical simulation study, and then the BMCR operating temperature field analysis. According to the boiler actual test results and the hot BMCR condition boiler output test results, the simulation results are verified. The main conclusions are as follows: the position and size of the inscribed circle in the furnace and the furnace temperature distribution and test results under different elevation are compared and verified; Accuracy of numerical simulation results.
Conditioning of the 4 Curies Radium-226 Sealed Radiation Source in Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Punnachaiya, M.; Sawangsri, T.; Wanabongse, P.
This paper describes the conditioning of the 4 curies Radium-226 (Ra-226) sealed radiation source using as a teletherapy unit for cancer treatment in Thailand. The conditioning was under the International Atomic Energy Agency (IAEA) supervision and budgetary supports, comprised of 6 operational steps: the surface dose rate and actual dimension of radium unit measurements, the appropriate lead shielding design with IAEA approval, confirmation of radioactive contamination before conditioning (smear test and radon gas leakage test), transfer of radium source unit into the designed shielding, confirmation of radioactive contamination and dose rate measurement after conditioning, and transportation of Ra-226 conditioning wastemore » package to OAP interim waste storage. The Ra-226 unit was taken out of OAP temporary waste storage for the surface dose rate and the actual dimension measurements behind the 12 inches thick heavy concrete shielding. The maximum measured surface dose rate was 70 R/hr. The special lead container was designed according to its surface dose rate along the source unit which the maximum permissible dose limit for surface dose rate of waste package after conditioning at 2 mSv/hr was applied. The IAEA approved container had total weight of 2.4 ton. After the confirmation of radioactive contamination, Ra-226 source unit was transferred and loaded in the designed lead shielding within 2 minutes. The results of smear test before and after conditioning including radon gas leakage test revealed that there was no radioactive contamination. After conditioning, the surface dose rate measured on the top, bottom were 15,10 mR/hr and varied from 6 - 50 mR/hr around lead container. The Ra-226 conditioning waste package was safely transported to store in OAP interim waste storage. Total working time including the time consumed for radon gas leakage test was 3.5 hours. The total radiation dose received by 16 operators, were ranged from 1 - 69.84 {mu}Sv and the operational team completed the conditioning safely within the effective dose limit for occupational exposure of 50 mSv/year (200 {mu}Sv/day). (authors)« less
Determination of the maximum operating range of hydrodynamic stress in mammalian cell culture.
Neunstoecklin, Benjamin; Stettler, Matthieu; Solacroup, Thomas; Broly, Hervé; Morbidelli, Massimo; Soos, Miroslav
2015-01-20
Application of quality by design (QbD) requires identification of the maximum operating range for parameters affecting the cell culture process. These include hydrodynamic stress, mass transfer or gradients in dissolved oxygen and pH. Since most of these are affected by the impeller design and speed, the main goal of this work was to identify a maximum operating range for hydrodynamic stress, where no variation of cell growth, productivity and product quality can be ensured. Two scale-down models were developed operating under laminar and turbulent condition, generating repetitive oscillating hydrodynamic stress with maximum stress values ranging from 0.4 to 420Pa, to compare the effect of the different flow regimes on the cells behavior. Two manufacturing cell lines (CHO and Sp2/0) used for the synthesis of therapeutic proteins were employed in this study. For both cell lines multiple process outputs were used to determine the threshold values of hydrodynamic stress, such as cell growth, morphology, metabolism and productivity. They were found to be different in between the cell lines with values equal to 32.4±4.4Pa and 25.2±2.4Pa for CHO and Sp2/0, respectively. Below the measured thresholds both cell lines do not show any appreciable effect of the hydrodynamic stress on any critical quality attribute, while above, cells responded negatively to the elevated stress. To confirm the applicability of the proposed method, the obtained results were compared with data generated from classical small-scale reactors with a working volume of 3L. Copyright © 2014 Elsevier B.V. All rights reserved.
Simulation of atmospheric PAH emissions from diesel engines.
Durán, A; de Lucas, A; Carmona, M; Ballesteros, R
2001-08-01
Simulation of atmospheric PAH emissions in a typical European passenger car diesel engine at steady conditions or under a certification cycle is made using in-house software. It is based on neural fitting of experimental data from eight different fuels tested under five operating steady conditions (reproducing modes of the European transient urban/extraurban certification cycle). The software allows the determination of PAH emissions as a function of the fuel composition parameters (aromatic content, cetane index, gross heat power, nitrogen and sulphur content) and operation conditions (torque and engine speed). The mathematical model reproduces experimental data with a maximum error of 20%. This tool is very useful, since changes in parameters can be made without experimental cost and the trend in modifications in PAH emissions is immediately obvious.
33 CFR 165.1325 - Regulated Navigation Areas; Bars Along the Coasts of Oregon and Washington.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., wave period, and tidal currents. When a bar is restricted, the operation of recreational and... passengers. (13) Unsafe condition exists when the wave height within a regulated navigation area identified in paragraph (a) of this section is equal to or greater than the maximum wave height determined by...
A Plasma Ultraviolet Source for Short Wavelength Lasers.
1986-03-10
A high power blue-green laser was pumped with an array of the dense plasma focus . As the result of optimizing the operating conditions of the dense... plasma focus and laser system, the maximum untuned laser output exceeded 2.lmJ corresponding to the energy density 3J/cu cm which is much higher than
14 CFR 294.30 - Scope of service and equipment authorized.
Code of Federal Regulations, 2014 CFR
2014-01-01
... between any point or points in Canada and any point or points in the United States using small aircraft. (b) Nothing in this part shall be construed as authorizing the operation of large aircraft in charter... with the limitations and conditions of this part using aircraft designed to have: (1) A maximum...
14 CFR 294.30 - Scope of service and equipment authorized.
Code of Federal Regulations, 2012 CFR
2012-01-01
... between any point or points in Canada and any point or points in the United States using small aircraft. (b) Nothing in this part shall be construed as authorizing the operation of large aircraft in charter... with the limitations and conditions of this part using aircraft designed to have: (1) A maximum...
14 CFR 294.30 - Scope of service and equipment authorized.
Code of Federal Regulations, 2011 CFR
2011-01-01
... between any point or points in Canada and any point or points in the United States using small aircraft. (b) Nothing in this part shall be construed as authorizing the operation of large aircraft in charter... with the limitations and conditions of this part using aircraft designed to have: (1) A maximum...
Two Rotor Stratified Charge Rotary Engine (SCRE) Engine System Technology Evaluation
NASA Technical Reports Server (NTRS)
Hoffman, T.; Mack, J.; Mount, R.
1994-01-01
This report summarizes results of an evaluation of technology enablement component technologies as integrated into a two rotor Stratified Charge Rotary Engine (SCRE). The work constitutes a demonstration of two rotor engine system technology, utilizing upgraded and refined component technologies derived from prior NASA Contracts NAS3-25945, NAS3-24628 and NAS-23056. Technical objectives included definition of, procurement and assembly of an advanced two rotor core aircraft engine, operation with Jet-A fuel at Take-Off rating of 340 BHP (254kW) and operation at a maximum cruise condition of 255 BHP (190kW), 75% cruise. A fuel consumption objective of 0.435 LBS/BHP-Hr (265 GRS/kW-Hr) was identified for the maximum cruise condition. A critical technology component item, a high speed, unit injector fuel injection system with electronic control was defined, procured and tested in conjunction with this effort. The two rotor engine configuration established herein defines an affordable, advanced, Jet-A fuel capability core engine (not including reduction gear, propeller shaft and some aircraft accessories) for General Aviation of the mid-1990's and beyond.
Sarrai, Abd Elaziz; Hanini, Salah; Merzouk, Nachida Kasbadji; Tassalit, Djilali; Szabó, Tibor; Hernádi, Klára; Nagy, László
2016-01-01
The feasibility of the application of the Photo-Fenton process in the treatment of aqueous solution contaminated by Tylosin antibiotic was evaluated. The Response Surface Methodology (RSM) based on Central Composite Design (CCD) was used to evaluate and optimize the effect of hydrogen peroxide, ferrous ion concentration and initial pH as independent variables on the total organic carbon (TOC) removal as the response function. The interaction effects and optimal parameters were obtained by using MODDE software. The significance of the independent variables and their interactions was tested by means of analysis of variance (ANOVA) with a 95% confidence level. Results show that the concentration of the ferrous ion and pH were the main parameters affecting TOC removal, while peroxide concentration had a slight effect on the reaction. The optimum operating conditions to achieve maximum TOC removal were determined. The model prediction for maximum TOC removal was compared to the experimental result at optimal operating conditions. A good agreement between the model prediction and experimental results confirms the soundness of the developed model. PMID:28773551
NASA Astrophysics Data System (ADS)
Melnikov, A. A.; Kostishin, V. G.; Alenkov, V. V.
2017-05-01
Real operating conditions of a thermoelectric cooling device are in the presence of thermal resistances between thermoelectric material and a heat medium or cooling object. They limit performance of a device and should be considered when modeling. Here we propose a dimensionless mathematical steady state model, which takes them into account. Analytical equations for dimensionless cooling capacity, voltage, and coefficient of performance (COP) depending on dimensionless current are given. For improved accuracy a device can be modeled with use of numerical or combined analytical-numerical methods. The results of modeling are in acceptable accordance with experimental results. The case of zero temperature difference between hot and cold heat mediums at which the maximum cooling capacity mode appears is considered in detail. Optimal device parameters for maximal cooling capacity, such as fraction of thermal conductance on the cold side y, fraction of current relative to maximal j' are estimated in range of 0.38-0.44 and 0.48-0.95, respectively, for dimensionless conductance K' = 5-100. Also, a method for determination of thermal resistances of a thermoelectric cooling system is proposed.
Preliminary investigation of high power microwave plasmas for electrothermal thruster use
NASA Technical Reports Server (NTRS)
Power, John L.; Sullivan, Daniel J.
1993-01-01
Results are reported from preliminary tests to evaluate the high power microwave electrothermal thruster (MET) concept, which employs a free-floating plasma discharge maintained by applied CW microwave power to heat a propellant gas flow. Stable plasmas have been created and maintained in helium (He), nitrogen (N2), and hydrogen (H2) as propellants in both the TM(sub 011) and TM(sub 012) modes at discharge pressures from 10 Pa to 69 kPa. Reproducible starting conditions of pressure and power have been documented for all the plasmas. Vortical inflow of the propellant gas was observed to cause the formation of on-axis 'spike' plasmas. The formation and unformation conditions of these plasmas were studied. Operation in the spike plasma condition enables maximum power absorption with minimum wall heating and offers maximum efficiency in heating the propellant gas. In the spike condition, plasmas of the three propellant gases were investigated in an open channel configuration to a maximum applied power level of 11.2 kW (in N2). Microwave power coupling efficiencies of over 90 percent were routinely obtained at absorbed power levels up to 2 kW. Magnetic nozzle effects were investigated with a superconducting solenoid Al magnet applying a high magnetic field to the plasmas in and exiting from the discharge tube.
49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.
Code of Federal Regulations, 2010 CFR
2010-10-01
... plastic pipelines. 192.619 Section 192.619 Transportation Other Regulations Relating to Transportation... Operations § 192.619 Maximum allowable operating pressure: Steel or plastic pipelines. (a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating...
Comparison of four MPPT techniques for PV systems
NASA Astrophysics Data System (ADS)
Atik, L.; Petit, P.; Sawicki, J. P.; Ternifi, Z. T.; Bachir, G.; Aillerie, M.
2016-07-01
The working behavior of a module / PV array is non-linear and highly dependent on working conditions. As a given condition, there is only one point at which the level of available power at its output is maximum. This point varies with time, enlightenment and temperature. To ensure optimum operation, the use of MPPT control allows us to extract the maximum power. This paper presents a comparative study of four widely-adopted MPPT algorithms, such as Perturb and Observe, Incremental Conductance, Measurements of the variation of the open circuit voltage or of the short-circuit current. Their performance is evaluated using, for all these techniques. In particular, this study compares the behaviors of each technique in presence of solar irradiation variations and temperature fluctuations. These MPPT techniques will be compared using the Matlab / Simulink tool.
Speech Signal Processing Research. Appendices 1 thru 9
1975-12-01
is 2400 rpm for a maximum rotational latency of 25 ms and an average of 12.5 ms. The track to track access time is 12 ms, the average access time...in Table 1-3. Table 1-3. Capabilities and Limitations Description Characteristics Start-Up Time Operating Temperature Operating Humidity...Storage Conditions - - ■ ■ ■ -*****•******* ~40 seconds 0oC (320F) to +50oC (1220F) ambient 10% to 80% with no condensation Temperature =0oC(32oF) to
NASA Technical Reports Server (NTRS)
Wichmann, Horst; Marquardt, Kaiser; Goforth, Alyssa
1993-01-01
Design of a direct-acting valve (DAV) for a primary thruster which is fully interchangeable with a thruster equipped with pilot-operated valves is described. The DAV is based on a bellows to isolate propellants form the actuator for maximum resistance to iron nitrate and other contamination and to select optimum materials for the actuator. It provides improved seal performance under all operating conditions and insensitivity to pressure transients. As compared with the existing pilot-operated valve, the DAV design is much simpler, consists of fewer parts, and will be lower in cost.
Development of mainshaft seals for advanced air breathing propulsion systems
NASA Technical Reports Server (NTRS)
Dobek, L. J.
1973-01-01
A gas-film face seal design incorporating shrouded Rayleigh step lift pads at the primary sealing face was analyzed for performance over a wide range of gas turbine engine conditions. Acceptable leakage rates and operation without rubbing contact was predicted for engine conditions that included sealed pressures to 500 psi, sliding speeds to 600 ft/sec, and sealed gas temperatures to 1200 F. In the experimental evaluation, measured gas leakage rates were, in general, close to that predicted and sometimes lower. Satisfactory performance of the gas-film seal was demonstrated at the maximum seal seat axial runout expected in present positive contact face seal applications. Stable operation was shown when testing was performed with air-entrained dirt.
NASA Technical Reports Server (NTRS)
Oppenheimer, Frank L.; Lazar, James
1951-01-01
A .General Electric fuel and torque regulator was tested in conjunction with a T31-3 turbine-propeller engine in the sea-level static test stand at the NACA Lewis laboratory. The engine and control were operated over the entire speed range: 11,000 rpm, nominal flight idle, to 13,000 rpm, full power. Steady-state and transient data were recorded and are presented with a description of the four control loops being used in the system. Results of this investigation indicated that single-lever control operation was satisfactory under conditions of test. Transient data presented showed that turbine-outlet temperature did overshoot maximum operating value on acceleration but that the time duration of overshoot did not exceed approximately 1 second. This temperature limiting resulted from a control on fuel flow as a function of engine speed. Speed and torque first reached their desired values 0.4 second from the time of change in power-setting lever position. Maximum speed overshoot was 3 percent.
NASA Technical Reports Server (NTRS)
Wilson, T. G.
1980-01-01
The development of 5 kW converters with 100 kHz switching frequencies, consisting of two submodules each capable of 2.5 kW of output power, is discussed. Two semiconductor advances allowed increased power levels. Field effect transistors with ratings of 11 A and 400 V were operated in parallel to provide a converter output power of approximately 2000 W. Secondly, bipolar power switching transistor was operated in conjunction with a turn-off snubber circuit to provide converter output power levels approaching 1000 W. The interrelationships between mass, switching frequency, and efficiency were investigated. Converters were constructed for operation at a maximum output power level of 200 W, and a comparison was made for operation under similar input/output conditions for conversion frequencies of 20 kilohertz and 100 kilohertz. The effects of nondissipative turn-off snubber circuitry were also examined. Finally, a computerized instrumentation system allowing the measurement of pertinent converter operating conditions as well as the recording of converter waveforms is described.
Potumarthi, Ravichandra; Subhakar, Ch; Pavani, A; Jetty, Annapurna
2008-04-01
Calcium-alginate immobilization method for the production of alkaline protease by Bacillus licheniformis NCIM-2042 was optimized statistically. Four variables, such as sodium-alginate concentration, calcium chloride concentration, inoculum size and agitation speed were optimized by 2(4) full factorial central composite design and subsequent analysis and model validation by a second-order regression equation. Eleven carbon, 11 organic nitrogen and seven inorganic nitrogen sources were screened by two-level Plackett-Burman design for maximum alkaline protease production by using optimized immobilized conditions. The levels of four variables, such as Na-alginate 2.78%; CaCl(2), 2.15%; inoculum size, 8.10% and agitation, 139 rpm were found to be optimum for maximal production of protease. Glucose, soybean meal and ammonium sulfate were resulted in maximum protease production at 644 U/ml, 720 U/ml, and 806 U/ml when screened for carbon, organic nitrogen and inorganic nitrogen sources, respectively, using optimized immobilization conditions. Repeated fed batch mode of operation, using optimized immobilized conditions, resulted in continuous operation for 12 cycles without disintegration of beads. Cross-sectional scanning electron microscope images have shown the growth pattern of B. licheniformis in Ca-alginate immobilized beads.
A hybrid plasmonic waveguide terahertz quantum cascade laser
NASA Astrophysics Data System (ADS)
Degl'Innocenti, Riccardo; Shah, Yash D.; Wallis, Robert; Klimont, Adam; Ren, Yuan; Jessop, David S.; Beere, Harvey E.; Ritchie, David A.
2015-02-01
We present the realization of a quantum cascade laser emitting at around 2.85 THz, based on a hybrid plasmonic waveguide with a low refractive index dielectric cladding. This hybrid waveguide design allows the performance of a double-metal waveguide to be retained, while improving the emission far-field. A set of lasers based on the same active region material were fabricated with different metal layer thicknesses. A detailed characterization of the performance of these lasers revealed that there is an optimal trade-off that yields the best far-field emission and the maximum temperature of operation. By exploiting the pure plasmonic mode of these waveguides, the standard operation conditions of a double-metal quantum cascade laser were retrieved, such that the maximum operating temperature of these devices is not affected by the process. These results pave the way to realizing a class of integrated devices working in the terahertz range which could be further exploited to fabricate terahertz on-chip circuitry.
Cloth media filtration and membrane microfiltration: serial operation.
Tooker, Nicholas Brewster; Darby, Jeannie L
2007-02-01
A combined system comprised of a cloth media filter and a membrane microfilter operated in series was used to treat secondary effluent. The study objective was to investigate the effect of premembrane filtration on the maximum sustainable membrane flux, transmembrane pressure, and effluent quality. The maximum sustainable time-averaged flux under predefined operating conditions (i.e., 15-minute process cycle, 24-hour chemical cleaning cycle, and 30-day intensive cleaning cycle) was 127 L/m(2)x h. Typical flux rates for secondary effluent ranged from 40 to 55 L/m(2) x h. Effluent water quality from the combined system was high and independent of membrane flux and influent quality. Average membrane effluent water quality values were 0.04 NTU for turbidity and 1.4 mg/L for 5-day biochemical oxygen demand. Neither total nor fecal coliforms were detected. Based on the results presented herein, prefiltration would provide an annualized cost savings of approximately 12% over microfiltration alone for a 3.8 x 10(3) m(3)/d treatment facility.
A hybrid plasmonic waveguide terahertz quantum cascade laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degl'Innocenti, Riccardo, E-mail: rd448@cam.ac.uk; Shah, Yash D.; Wallis, Robert
2015-02-23
We present the realization of a quantum cascade laser emitting at around 2.85 THz, based on a hybrid plasmonic waveguide with a low refractive index dielectric cladding. This hybrid waveguide design allows the performance of a double-metal waveguide to be retained, while improving the emission far-field. A set of lasers based on the same active region material were fabricated with different metal layer thicknesses. A detailed characterization of the performance of these lasers revealed that there is an optimal trade-off that yields the best far-field emission and the maximum temperature of operation. By exploiting the pure plasmonic mode of thesemore » waveguides, the standard operation conditions of a double-metal quantum cascade laser were retrieved, such that the maximum operating temperature of these devices is not affected by the process. These results pave the way to realizing a class of integrated devices working in the terahertz range which could be further exploited to fabricate terahertz on-chip circuitry.« less
Quantitative regulation of B cell division destiny by signal strength.
Turner, Marian L; Hawkins, Edwin D; Hodgkin, Philip D
2008-07-01
Differentiation to Ab secreting and isotype-switched effector cells is tightly linked to cell division and therefore the degree of proliferation strongly influences the nature of the immune response. The maximum number of divisions reached, termed the population division destiny, is stochastically distributed in the population and is an important parameter in the quantitative outcome of lymphocyte responses. In this study, we further assessed the variables that regulate B cell division destiny in vitro in response to T cell- and TLR-dependent stimuli. Both the concentration and duration of stimulation were able to regulate the average maximum number of divisions undergone for each stimulus. Notably, a maximum division destiny was reached during provision of repeated saturating stimulation, revealing that an intrinsic limit to proliferation exists even under these conditions. This limit was linked directly to division number rather than time of exposure to stimulation and operated independently of the survival regulation of the cells. These results demonstrate that a B cell population's division destiny is regulable by the stimulatory conditions up to an inherent maximum value. Division destiny is a crucial parameter in regulating the extent of B cell responses and thereby also the nature of the immune response mounted.
Wake wash waves produced by High Speed Crafts:measurements vs prediction
NASA Astrophysics Data System (ADS)
Benassai, Guido
2010-05-01
The subject of this study refers to the wake wash waves generated by High Speed Crafts observed at some distance away (typically one or multiple of ship lengths) from the line of travel of the vessel. The ratio of the vessel speed divided by the maximum wave celerity in shallow water (depth-based Froude number) or to the square root of the gravity by the vessel length (length-based Froude number) is often used to classify the wash. In fact the wash waves produced by vessels that travel at sub-critical Froude numbers are different in patterns (and hence applicable theory) from that produced by vessels which operate at the critical Froude number of 1 or at supercritical Froude numbers. High Speed Crafts generally operate at Fr>1, even if in some cases for safety of navigation they operate at Fr<1. In the study supercritical speed conditions were considered. The predicted wake wash was a result of a desk-top study and relied on the subject matter presented in numerous technical papers and publications, while the measured wake wash is a result of the first field measurements of wake wash produced by HSC operating in the Bay of Naples. The measurements were operated by a pressure gauge in three critical points where the distance from the coastline was less than 700m. These measurements were taken in shallow water (depth ranging from 4 to 5 meters) in calm weather conditions. The output of the tests were wave-elevation time histories upon which the maximum wave height Hm from the wave record was extracted. The wave height reported was therefore the highest wave, peak to through, which occurred in a wave train. The wave period is defined as double the related half period for the defined maximum wave height. For each wake wash measurement the vessel route was monitored aboard the crossing HSC and exact speed, distance and water obtained depth was determined. The obtained values of the wake wash were compared with predictions of wake wash obtained by similar vessels in analogous speed and depth conditions. Finally some comments and conclusions were given about the accordance between the measurements and the predictions of wake wash waves.
Optimal robust control strategy of a solid oxide fuel cell system
NASA Astrophysics Data System (ADS)
Wu, Xiaojuan; Gao, Danhui
2018-01-01
Optimal control can ensure system safe operation with a high efficiency. However, only a few papers discuss optimal control strategies for solid oxide fuel cell (SOFC) systems. Moreover, the existed methods ignore the impact of parameter uncertainty on system instantaneous performance. In real SOFC systems, several parameters may vary with the variation of operation conditions and can not be identified exactly, such as load current. Therefore, a robust optimal control strategy is proposed, which involves three parts: a SOFC model with parameter uncertainty, a robust optimizer and robust controllers. During the model building process, boundaries of the uncertain parameter are extracted based on Monte Carlo algorithm. To achieve the maximum efficiency, a two-space particle swarm optimization approach is employed to obtain optimal operating points, which are used as the set points of the controllers. To ensure the SOFC safe operation, two feed-forward controllers and a higher-order robust sliding mode controller are presented to control fuel utilization ratio, air excess ratio and stack temperature afterwards. The results show the proposed optimal robust control method can maintain the SOFC system safe operation with a maximum efficiency under load and uncertainty variations.
High-slope-efficiency 2.06 μm Ho: YLF laser in-band pumped by a fiber-coupled broadband diode.
Ji, Encai; Liu, Qiang; Nie, Mingming; Cao, Xuezhe; Fu, Xing; Gong, Mali
2016-03-15
We first demonstrate the laser performance of a compact 2.06 μm Ho: YLF laser resonantly pumped by a broadband fiber-coupled diode. In continuous-wave (CW) operation, maximum output power of 1.63 W, corresponding to a slope efficiency of 89.2%, was obtained with a near diffraction-limited beam quality. In actively Q-switched operation, maximum pulse energy of 1.1 mJ was achieved at the repetition frequency of 100 Hz. The minimum pulse duration was 43 ns. The performance in both the CW and Q-switched regimes indicates that the current fiber-coupled diode in-band pumped Ho: YLF laser has great potential in certain conditions that require several watts of output power or several millijoules of short pulse energy.
NASA Technical Reports Server (NTRS)
Stickle, George W; Naiman, Irven; Crigler, John L
1940-01-01
Report presents the results of an investigation of full-scale nose-slot cowlings conducted in the NACA 20-foot wind tunnel to furnish information on the pressure drop available for cooling. Engine conductances from 0 to 0.12 and exit-slot conductances from 0 to 0.30 were covered. Two basic nose shapes were tested to determine the effect of the radius of curvature of the nose contour; the nose shape with the smaller radius of curvature gave the higher pressure drop across the engine. The best axial location of the slot for low-speed operation was found to be in the region of maximum negative pressure for the basic shape for the particular operating condition. The effect of the pressure operating condition on the available cooling pressure is shown.
Electrical insulation design requirements and reliability goals
NASA Astrophysics Data System (ADS)
Ross, R. G., Jr.
1983-11-01
The solar cells in a photovoltaic module which must be electrically isolated from module exterior surfaces to satisfy a variety of safety and operating considerations are discussed. The performance and reliability of the insulation system are examined. Technical requirements involve the capability of withstanding the differential voltage from the solar cells to the module frame. The maximum system voltage includes consideration of maximum open circuit array voltages achieved under low-temperature, high-irradiance conditions, and transient overvoltages due to system feedback of lightning transients. The latter is bounded by the characteristics of incorporated voltage limiting devices such as MOVs.
Wang, Zuowei; Xia, Siqing; Xu, Xiaoyin; Wang, Chenhui
2016-02-01
In this study, a one-dimensional multispecies model (ODMSM) was utilized to simulate NO3(-)-N and ClO4(-) reduction performances in two kinds of H2-based membrane-aeration biofilm reactors (H2-MBfR) within different operating conditions (e.g., NO3(-)-N/ClO4(-) loading rates, H2 partial pressure, etc.). Before the simulation process, we conducted the sensitivity analysis of some key parameters which would fluctuate in different environmental conditions, then we used the experimental data to calibrate the more sensitive parameters μ1 and μ2 (maximum specific growth rates of denitrification bacteria and perchlorate reduction bacteria) in two H2-MBfRs, and the diversity of the two key parameters' values in two types of reactors may be resulted from the different carbon source fed in the reactors. From the simulation results of six different operating conditions (four in H2-MBfR 1 and two in H2-MBfR 2), the applicability of the model was approved, and the variation of the removal tendency in different operating conditions could be well simulated. Besides, the rationality of operating parameters (H2 partial pressure, etc.) could be judged especially in condition of high nutrients' loading rates. To a certain degree, the model could provide theoretical guidance to determine the operating parameters on some specific conditions in practical application.
Lessons learned: design, start-up, and operation of cryogenic systems
NASA Astrophysics Data System (ADS)
Bell, W. M.; Bagley, R. E.; Motew, S.; Young, P.-W.
2014-11-01
Cryogenic systems involving a pumped cryogenic fluid, such as liquid nitrogen (LN2), require careful design since the cryogen is close to its boiling point and cold. At 1 atmosphere, LN2 boils at 77.4 K (-320.4 F). These systems, typically, are designed to transport the cryogen, use it for process heat removal, or for generation of gas (GN2) for process use. As the design progresses, it is important to consider all aspects of the design including, cryogen storage, pressure control and safety relief systems, thermodynamic conditions, equipment and instrument selection, materials, insulation, cooldown, pump start-up, maximum design and minimum flow rates, two phase flow conditions, heat flow, process control to meet and maintain operating conditions, piping integrity, piping loads on served equipment, warm-up, venting, and shut-down. "Cutting corners" in the design process can result in stalled start-ups, field rework, schedule hits, or operational restrictions. Some of these "lessoned learned" are described in this paper.
Xian, Jiahui; Liu, Min; Chen, Wei; Zhang, Chunyong; Fu, Degang
2018-05-01
The electrochemical incineration of diethylenetriaminepentaacetic acid (DTPA) with boron-doped diamond (BDD) anode had been initially performed under galvanostatic conditions. The main and interaction effects of four operating parameters (flow rate, applied current density, sulfate concentration and initial DTPA concentration) on mineralization performance were investigated. Under similar experimental conditions, Doehlert matrix (DM) and central composite rotatable design (CCRD) were used as statistical multivariate methods in the optimization of the anodic oxidation processes. A comparison between DM model and CCRD model revealed that the former was more accurate, possibly due to its higher operating level numbers employed (7 levels for two variables). Despite this, these two models resulted in quite similar optimum operating conditions. The maximum TOC removal percentages at 180 min were 76.2% and 73.8% for case of DM and CCRD, respectively. In addition, with the aid of quantum chemistry calculation and LC/MS analysis, a plausible degradation sequence of DTPA on BDD anode was also proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-29
... maximum time interval between any engine run-ups from idle and the minimum ambient temperature associated with that run-up interval. This limitation is necessary because we do not currently have any specific requirements for run-up procedures for engine ground operation in icing conditions. The engine run-up procedure...
47 CFR 95.639 - Maximum transmitter power.
Code of Federal Regulations, 2012 CFR
2012-10-01
... condition of modulation, shall exceed: (1) 50 W Carrier power (average TP during one unmodulated RF cycle... output power authorized for LPRS stations is 100 mW. (f) In the MedRadio Service: (1) For transmitters..., the peak EIRP over the frequency bands of operation shall not exceed the lesser of 1 mW or 10 log B—7...
Can chilling tolerance of C4 photosynthesis in Miscanthus be transferred to sugarcane?
USDA-ARS?s Scientific Manuscript database
The goal of this study was to investigate if chilling tolerance of C4 photosynthesis in Miscanthus can be transferred to sugarcane. Net leaf CO2 uptake (Asat) and the maximum operating efficiency of photosystem II ('PSII) were measured in warm conditions (25 °C/20 °C), and then during and following ...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-20
... airplane will have a novel or unusual design feature(s) associated with an electronic flight control system... empennage and control surfaces. The Model EMB-550 airplane is designed for 8 passengers, with a maximum of... flight control design feature within the normal operational envelope in which sidestick deflection in the...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-06
... correlation for the General Electric Nuclear Energy advanced fuel designs (i.e., GE14 and GNF2 fuels) used at... Electric Nuclear Energy in its report, ``10 CFR 21 Reportable Condition Notification: Potential to Exceed... failure-maximum demand open (PRFO) transient as reported by General Electric Nuclear Energy in its Part 21...
Thermal Modelling Analysis of Spiral Wound Supercapacitor under Constant-Current Cycling
Wang, Kai; Li, Liwei; Yin, Huaixian; Zhang, Tiezhu; Wan, Wubo
2015-01-01
A three-dimensional modelling approach is used to study the effects of operating and ambient conditions on the thermal behaviour of the spiral wound supercapacitor. The transient temperature distribution during cycling is obtained by using the finite element method with an implicit predictor-multicorrector algorithm. At the constant current of 2A, the results show that the maximum temperature appears in core area. After 5 cycles, the maximum temperature is 34.5°C, while in steady state, it’s up to 42.5°C. This paper further studies the relationship between the maximum temperature and charge-discharge current. The maximum temperature will be more than 60°C after 5 cycles at the current of 4A, and cooling measurements should be taken at that time. It can provide thoughts on inner temperature field distribution and structure design of the spiral wound supercapacitor in working process. PMID:26444687
2013-01-01
The aim of this study was to investigate the effectiveness of dried activated sludge (DAS) and mixed dried activated sludge with rice husk silica (DAS & RHS) for removal of hydrogen sulfide (H2S). Two laboratory-scale filter columns (packed one litter) were operated. Both systems were operated under different conditions of two parameters, namely different inlet gas concentrations and different inlet flow rates. The DAS & RHS packed filter showed more than 99.96% removal efficiency (RE) with empty bed residence time (EBRT) of 45 to 90 s and 300 mg/L inlet concentration of H2S. However, the RE decreased to 96.87% with the EBRT of 30 s. In the same condition, the DAS packed filter showed 99.37% RE. Nonetheless, the RE was shown to have dropped to 82.09% with the EBRT of 30 s. The maximum elimination capacity (EC) was obtained in the DAS & RHS packed filter up to 52.32 g/m3h, with the RE of 96.87% and H2S mass loading rate of 54 g/m3h. The maximum EC in the DAS packed filter was obtained up to 44.33 g/m3h with the RE of 82.09% and the H2S mass loading rate of 54 g/m3h. After 53 days of operating time and 54 g/m3h of loading rates, the maximum pressure drop reached to 3.0 and 8.0 (mm H2O) for the DAS & RHS packed and DAS packed filters, respectively. Based on the findings of this study, the DAS & RHS could be considered as a more suitable packing material to remove H2S. PMID:23497048
NASA Technical Reports Server (NTRS)
Edie, P. C.
1981-01-01
Both straight and chopped dc motor performance data for a General Electric 5BY436A1 motor with a General Electric EV-1 controller is presented in tabular and graphical formats. Effects of motor temperature and operating voltage are also shown. The maximum motor efficiency is approximately 85% at low operating temperatures in the straight dc mode. Chopper efficiency can be assumed to be 95% under all operating conditions. For equal speeds, the motor operated in the chopped mode develops slightly more torque and draws more current than it does in the straight mode.
NASA Technical Reports Server (NTRS)
Tanner, J. A.
1972-01-01
An experimental investigation was conducted to study the performance of an aircraft tire under cyclic braking conditions and to study the performance of a currently operational aircraft antiskid braking system. Dry, damp, and flooded runway surface conditions were used in the investigation. The results indicated that under cyclic braking conditions the braking and cornering-force friction coefficients may be influenced by fluctuations in the vertical load, flexibility in the wheel support, and the spring coupling between the wheel and the tire-pavement interface. The cornering capability was shown to be negligible at wheel slip ratios well below a locked-wheel skid under all test surface conditions. The maximum available brake-force friction coefficient was shown to be dependent upon the runway surface condition, upon velocity, and, for wet runways, upon tire differences. Moderate reductions in vertical load and brake system pressure did not significantly affect the overall wet-runway performance of the tire.
NASA Technical Reports Server (NTRS)
Curren, A. N.
1978-01-01
A description of the methods used to measure component temperatures and heat-rejection rates in a simulated space environment on output stage tubes (OST's) developed for the Communications Technology Satellite is presented along with summaries of experimentally determined values. The OST's were operated over the entire anticipated operating drive range, from the dc beam (zero drive) condition to the 6-db overdrive condition. The baseplate temperature was varied from -10 to 58 C with emphasis placed on the testing done at 45 C, the normal anticipated operating temperature. The heat-rejection rate of the OST baseplate ranged from 7.6 W at the dc beam condition to 184.5 W at the 6-db overdrive condition; the heat-rejection rate of the multistage depressed collector (MDC) cover ranged from 192.2 to 155.9 W for the same conditions. The maximum OST temperature measured on the MDC cover was 227 C during a dc beam test. The minimum temperature measured, also on the MDC cover, was -67.5 C at the end of an extended simulated eclipse test period. No effects were observed on the OST thermal characteristics due to vibration testing or temperature-reversal cycle testing.
Comparison of four MPPT techniques for PV systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atik, L., E-mail: lotfi.atik@univ-usto.dz; Ternifi, Z. T.; Université de Lorraine, LMOPS, EA 4423, 57070 Metz
2016-07-25
The working behavior of a module / PV array is non-linear and highly dependent on working conditions. As a given condition, there is only one point at which the level of available power at its output is maximum. This point varies with time, enlightenment and temperature. To ensure optimum operation, the use of MPPT control allows us to extract the maximum power. This paper presents a comparative study of four widely-adopted MPPT algorithms, such as Perturb and Observe, Incremental Conductance, Measurements of the variation of the open circuit voltage or of the short-circuit current. Their performance is evaluated using, formore » all these techniques. In particular, this study compares the behaviors of each technique in presence of solar irradiation variations and temperature fluctuations. These MPPT techniques will be compared using the Matlab / Simulink tool.« less
49 CFR 174.86 - Maximum allowable operating speed.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Maximum allowable operating speed. 174.86 Section... operating speed. (a) For molten metals and molten glass shipped in packagings other than those prescribed in § 173.247 of this subchapter, the maximum allowable operating speed may not exceed 24 km/hour (15 mph...
49 CFR 174.86 - Maximum allowable operating speed.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Maximum allowable operating speed. 174.86 Section... operating speed. (a) For molten metals and molten glass shipped in packagings other than those prescribed in § 173.247 of this subchapter, the maximum allowable operating speed may not exceed 24 km/hour (15 mph...
Browns Ferry-1 single-loop operation tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
March-Leuba, J.; Wood, R.T.; Otaduy, P.J.
1985-09-01
This report documents the results of the stability tests performed on February 9, 1985, at the Browns Ferry Nuclear Power Plant Unit 1 under single-loop operating conditions. The observed increase in neutron noise during single-loop operation is solely due to an increase in flow noise. The Browns Ferry-1 reactor has been found to be stable in all modes of operation attained during the present tests. The most unstable test plateau corresponded to minimum recirculation pump speed in single-loop operation (test BFTP3). This operating condition had the minimum flow and maximum power-to-flow ratio. The estimated decay ratio in this plateau ismore » 0.53. The decay ratio decreased as the flow was increased during single-loop operation (down to 0.34 for test plateau BFTP6). This observation implies that the core-wide reactor stability follows the same trends in single-loop as it does in two-loop operation. Finally, no local or higher mode instabilities were found in the data taken from local power range monitors. The decay ratios estimated from the local power range monitors were not significantly different from those estimated from the average power range monitors.« less
NASA Astrophysics Data System (ADS)
Tariba, N.; Bouknadel, A.; Haddou, A.; Ikken, N.; Omari, Hafsa El; Omari, Hamid El
2017-01-01
The Photovoltaic Generator have a nonlinear characteristic function relating the intensity at the voltage I = f (U) and depend on the variation of solar irradiation and temperature, In addition, its point of operation depends directly on the load that it supplies. To fix this drawback, and to extract the maximum power available to the terminal of the generator, an adaptation stage is introduced between the generator and the load to couple the two elements as perfectly as possible. The adaptation stage is associated with a command called MPPT MPPT (Maximum Power Point Tracker) whose is used to force the PVG to operate at the MPP (Maximum Power Point) under variation of climatic conditions and load variation. This paper presents a comparative study between the adaptive controller for PV Systems using MIT rules and Lyapunov method to regulate the PV voltage. The Incremental Conductance (IC) algorithm is used to extract the maximum power from the PVG by calculating the voltage Vref, and the adaptive controller is used to regulate and track quickly the PV voltage. The two methods of the adaptive controller will be compared to prove their performance by using the PSIM tools and experimental test, and the mathematical model of step-up with PVG model will be presented.
NASA Astrophysics Data System (ADS)
Huang, X.; Oram, C.; Sick, M.
2014-03-01
More efforts are put on hydro-power to balance voltage and frequency within seconds for primary control in modern smart grids. This requires hydraulic turbines to run at off-design conditions. especially at low load or speed-no load. Besides. the tendency of increasing power output and decreasing weight of the turbine runners has also led to the high level vibration problem of the runners. especially high head Francis runners. Therefore. it is important to carry out the static and dynamic stress analyses of prototype high head Francis runners. This paper investigates the static and dynamic stresses on the prototype high head Francis runner based on site measurements and numerical simulations. The site measurements are performed with pressure transducers and strain gauges. Based on the measured results. computational fluid dynamics (CFD) simulations for the flow channel from stay vane to draft tube cone are performed. Static pressure distributions and dynamic pressure pulsations caused by rotor-stator interaction (RSI) are obtained under various operating conditions. With the CFD results. static and dynamic stresses on the runner at different operating points are calculated by means of the finite element method (FEM). The agreement between simulation and measurement is analysed with linear regression method. which indicates that the numerical result agrees well with that of measurement. Furthermore. the maximum static and dynamic stresses on the runner blade are obtained at various operating points. The relations of the maximum stresses and the power output are discussed in detail. The influences of the boundary conditions on the structural behaviour of the runner are also discussed.
NASA Astrophysics Data System (ADS)
Chen, B.; Su, J. H.; Guo, L.; Chen, J.
2017-06-01
This paper puts forward a maximum power estimation method based on the photovoltaic array (PVA) model to solve the optimization problems about group control of the PV water pumping systems (PVWPS) at the maximum power point (MPP). This method uses the improved genetic algorithm (GA) for model parameters estimation and identification in view of multi P-V characteristic curves of a PVA model, and then corrects the identification results through least square method. On this basis, the irradiation level and operating temperature under any condition are able to estimate so an accurate PVA model is established and the MPP none-disturbance estimation is achieved. The simulation adopts the proposed GA to determine parameters, and the results verify the accuracy and practicability of the methods.
Data collection system for a wide range of gas-discharge proportional neutron counters
NASA Astrophysics Data System (ADS)
Oskomov, V.; Sedov, A.; Saduyev, N.; Kalikulov, O.; Kenzhina, I.; Tautaev, E.; Mukhamejanov, Y.; Dyachkov, V.; Utey, Sh
2017-12-01
This article describes the development and creation of a universal system of data collection to measure the intensity of pulsed signals. As a result of careful analysis of time conditions and operating conditions of software and hardware complex circuit solutions were selected that meet the required specifications: frequency response is optimized in order to obtain the maximum ratio signal/noise; methods and modes of operation of the microcontroller were worked out to implement the objectives of continuous measurement of signal amplitude at the output of amplifier and send the data to a computer; function of control of high voltage source was implemented. The preliminary program has been developed for microcontroller in its simplest form, which works on a particular algorithm.
Sliding mode controller for a photovoltaic pumping system
NASA Astrophysics Data System (ADS)
ElOugli, A.; Miqoi, S.; Boutouba, M.; Tidhaf, B.
2017-03-01
In this paper, a sliding mode control scheme (SMC) for maximum power point tracking controller for a photovoltaic pumping system, is proposed. The main goal is to maximize the flow rate for a water pump, by forcing the photovoltaic system to operate in its MPP, to obtain the maximum power that a PV system can deliver.And this, through the intermediary of a sliding mode controller to track and control the MPP by overcoming the power oscillation around the operating point, which appears in most implemented MPPT techniques. The sliding mode control approach is recognized as one of the efficient and powerful tools for nonlinear systems under uncertainty conditions.The proposed controller with photovoltaic pumping system is designed and simulated using MATLAB/SIMULINK environment. In addition, to evaluate its performances, a classical MPPT algorithm using perturb and observe (P&O) has been used for the same system to compare to our controller. Simulation results are shown.
Optimal design and operation of a photovoltaic-electrolyser system using particle swarm optimisation
NASA Astrophysics Data System (ADS)
Sayedin, Farid; Maroufmashat, Azadeh; Roshandel, Ramin; Khavas, Sourena Sattari
2016-07-01
In this study, hydrogen generation is maximised by optimising the size and the operating conditions of an electrolyser (EL) directly connected to a photovoltaic (PV) module at different irradiance. Due to the variations of maximum power points of the PV module during a year and the complexity of the system, a nonlinear approach is considered. A mathematical model has been developed to determine the performance of the PV/EL system. The optimisation methodology presented here is based on the particle swarm optimisation algorithm. By this method, for the given number of PV modules, the optimal sizeand operating condition of a PV/EL system areachieved. The approach can be applied for different sizes of PV systems, various ambient temperatures and different locations with various climaticconditions. The results show that for the given location and the PV system, the energy transfer efficiency of PV/EL system can reach up to 97.83%.
Performance optimization of a photovoltaic chain conversion by the PWM control
NASA Astrophysics Data System (ADS)
Rezoug, M. R.; Chenni, R.
2017-02-01
The interest of the research technique of maximum power point tracking, exposed by this article, lays in the fact of work instantly on the real characteristic of the photovoltaic module. This work is based on instantaneous measurements of its terminals' current & voltage as well as the exploitation of the characteristic "Power - Duty Cycle" to define rapidly the Duty cycle in which power reaches its maximum value. To ensure instantaneous tracking of the point of maximum power, we use "DC/DC Converter" based on "Pulse Wave Modulation's (PWM) Command" controlled by an algorithm implanted in a microcontroller's memory. This algorithm responds to the quick changes in climate (sunlight and temperature). To identify the control parameters "VPV & IPV" at any change in operating conditions, sensors are projected. this algorithm applied to the Duty cycle of the static converter enables the control of power supplied by the photovoltaic generator thanks to oscillatory movement around the MPP. Our article highlights the importance of this technique which lays in its simplicity and performance in changing climatic conditions. This efficiency is confirmed by experimental tests and this technique will improve its predecessors.
William T. Simpson
1991-01-01
The modern dry kiln is a unique product of research, development, and experience. It is the only practical means now in wide use for rapid, high- volume drying of lumber to conditions necessary for maximum serviceability in housing, furniture, millwork, and many other wood products. As part of our charge to help further the efficient utilization of our nationâs timber...
Dil, Ebrahim Alipanahpour; Ghaedi, Mehrorang; Ghezelbash, Gholam Reza; Asfaram, Arash
2017-05-01
Present study is based on application of live yeast Yarrowia lipolytica 70562 as new biosorbent was investigated for the simultaneous biosorption of Crystal Violet (CV) and Brilliant Green (BG) from wastewater. The effect of operating parameters such as initial dye concentrations (6-14mgL -1 ), solution pH (4.0-8.0) and contact time (4-20h) was investigated by response surface methodology (RSM) for modeling and optimization of biosorption process and accordingly the best operational conditions was set as: initial CV and BG concentration of 8.0, and 10mgL -1 , pH of 7.0 and contact time of 16h. Above specified conditions lead to achievement of maximum biosorption of 98.823% and 99.927% for CV and BG dyes, respectively. The experimental equilibrium data well explained according to Langmuir isotherm model with maximum biosorption capacity of 65.359 and 56.497mgg -1 for BG and CV, respectively. The second order and intraparticle diffusion models as cooperative mechanism has high efficiency and performance for interpretation of real data. Copyright © 2017. Published by Elsevier Inc.
Rezvani, Alireza; Khalili, Abbas; Mazareie, Alireza; Gandomkar, Majid
2016-07-01
Nowadays, photovoltaic (PV) generation is growing increasingly fast as a renewable energy source. Nevertheless, the drawback of the PV system is its dependence on weather conditions. Therefore, battery energy storage (BES) can be considered to assist for a stable and reliable output from PV generation system for loads and improve the dynamic performance of the whole generation system in grid connected mode. In this paper, a novel topology of intelligent hybrid generation systems with PV and BES in a DC-coupled structure is presented. Each photovoltaic cell has a specific point named maximum power point on its operational curve (i.e. current-voltage or power-voltage curve) in which it can generate maximum power. Irradiance and temperature changes affect these operational curves. Therefore, the nonlinear characteristic of maximum power point to environment has caused to development of different maximum power point tracking techniques. In order to capture the maximum power point (MPP), a hybrid fuzzy-neural maximum power point tracking (MPPT) method is applied in the PV system. Obtained results represent the effectiveness and superiority of the proposed method, and the average tracking efficiency of the hybrid fuzzy-neural is incremented by approximately two percentage points in comparison to the conventional methods. It has the advantages of robustness, fast response and good performance. A detailed mathematical model and a control approach of a three-phase grid-connected intelligent hybrid system have been proposed using Matlab/Simulink. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Butze, H. F.; Liebert, C. H.
1976-01-01
The effect of ceramic coating of a JT8D combustor liner was investigated at simulated cruise and takeoff conditions with two fuels of widely different aromatic contents. Substantial decreases in maximum liner temperatures and flame radiation values were obtained with the ceramic-coated liner. Small reductions in exhaust gas smoke concentrations were observed with the ceramic-coated liner. Other performance parameters such as combustion efficiency and emissions of unburned hydrocarbons, CO, and NOx were not affected significantly. No deterioration of the ceramic coating was observed after about 6 hours of cyclic operation including several startups and shutdowns.
A Legendre tau-spectral method for solving time-fractional heat equation with nonlocal conditions.
Bhrawy, A H; Alghamdi, M A
2014-01-01
We develop the tau-spectral method to solve the time-fractional heat equation (T-FHE) with nonlocal condition. In order to achieve highly accurate solution of this problem, the operational matrix of fractional integration (described in the Riemann-Liouville sense) for shifted Legendre polynomials is investigated in conjunction with tau-spectral scheme and the Legendre operational polynomials are used as the base function. The main advantage in using the presented scheme is that it converts the T-FHE with nonlocal condition to a system of algebraic equations that simplifies the problem. For demonstrating the validity and applicability of the developed spectral scheme, two numerical examples are presented. The logarithmic graphs of the maximum absolute errors is presented to achieve the exponential convergence of the proposed method. Comparing between our spectral method and other methods ensures that our method is more accurate than those solved similar problem.
A Legendre tau-Spectral Method for Solving Time-Fractional Heat Equation with Nonlocal Conditions
Bhrawy, A. H.; Alghamdi, M. A.
2014-01-01
We develop the tau-spectral method to solve the time-fractional heat equation (T-FHE) with nonlocal condition. In order to achieve highly accurate solution of this problem, the operational matrix of fractional integration (described in the Riemann-Liouville sense) for shifted Legendre polynomials is investigated in conjunction with tau-spectral scheme and the Legendre operational polynomials are used as the base function. The main advantage in using the presented scheme is that it converts the T-FHE with nonlocal condition to a system of algebraic equations that simplifies the problem. For demonstrating the validity and applicability of the developed spectral scheme, two numerical examples are presented. The logarithmic graphs of the maximum absolute errors is presented to achieve the exponential convergence of the proposed method. Comparing between our spectral method and other methods ensures that our method is more accurate than those solved similar problem. PMID:25057507
An Extensive Unified Thermo-Electric Module Characterization Method
Attivissimo, Filippo; Guarnieri Calò Carducci, Carlo; Lanzolla, Anna Maria Lucia; Spadavecchia, Maurizio
2016-01-01
Thermo-Electric Modules (TEMs) are being increasingly used in power generation as a valid alternative to batteries, providing autonomy to sensor nodes or entire Wireless Sensor Networks, especially for energy harvesting applications. Often, manufacturers provide some essential parameters under determined conditions, like for example, maximum temperature difference between the surfaces of the TEM or for maximum heat absorption, but in many cases, a TEM-based system is operated under the best conditions only for a fraction of the time, thus, when dynamic working conditions occur, the performance estimation of TEMs is crucial to determine their actual efficiency. The focus of this work is on using a novel procedure to estimate the parameters of both the electrical and thermal equivalent model and investigate their relationship with the operating temperature and the temperature gradient. The novelty of the method consists in the use of a simple test configuration to stimulate the modules and simultaneously acquire electrical and thermal data to obtain all parameters in a single test. Two different current profiles are proposed as possible stimuli, which use depends on the available test instrumentation, and relative performance are compared both quantitatively and qualitatively, in terms of standard deviation and estimation uncertainty. Obtained results, besides agreeing with both technical literature and a further estimation method based on module specifications, also provides the designer a detailed description of the module behavior, useful to simulate its performance in different scenarios. PMID:27983575
An Extensive Unified Thermo-Electric Module Characterization Method.
Attivissimo, Filippo; Guarnieri Calò Carducci, Carlo; Lanzolla, Anna Maria Lucia; Spadavecchia, Maurizio
2016-12-13
Thermo-Electric Modules (TEMs) are being increasingly used in power generation as a valid alternative to batteries, providing autonomy to sensor nodes or entire Wireless Sensor Networks, especially for energy harvesting applications. Often, manufacturers provide some essential parameters under determined conditions, like for example, maximum temperature difference between the surfaces of the TEM or for maximum heat absorption, but in many cases, a TEM-based system is operated under the best conditions only for a fraction of the time, thus, when dynamic working conditions occur, the performance estimation of TEMs is crucial to determine their actual efficiency. The focus of this work is on using a novel procedure to estimate the parameters of both the electrical and thermal equivalent model and investigate their relationship with the operating temperature and the temperature gradient. The novelty of the method consists in the use of a simple test configuration to stimulate the modules and simultaneously acquire electrical and thermal data to obtain all parameters in a single test. Two different current profiles are proposed as possible stimuli, which use depends on the available test instrumentation, and relative performance are compared both quantitatively and qualitatively, in terms of standard deviation and estimation uncertainty. Obtained results, besides agreeing with both technical literature and a further estimation method based on module specifications, also provides the designer a detailed description of the module behavior, useful to simulate its performance in different scenarios.
Removal of nitrate and sulphate from biologically treated municipal wastewater by electrocoagulation
NASA Astrophysics Data System (ADS)
Sharma, Arun Kumar; Chopra, A. K.
2017-06-01
The present investigation observed the effect of current density ( j), electrocoagulation (EC) time, inter electrode distance, electrode area, initial pH and settling time on the removal of nitrate (NO3 -) and sulphate (SO4 2-) from biologically treated municipal wastewater (BTMW), and optimization of the operating conditions of the EC process. A glass chamber of two-liter volume was used for the experiments with DC power supply using two electrode plates of aluminum (Al-Al). The maximum removal of NO3 - (63.21 %) and SO4 2- (79.98 %) of BTMW was found with the optimum operating conditions: current density: 2.65 A/m2, EC time: 40 min, inter electrode distance: 0.5 cm, electrode area: 160 cm2, initial pH: 7.5 and settling time: 60 min. The EC brought down the concentration of NO3 - within desirable limit of the Bureau of Indian Standard (BIS)/WHO for drinking water. Under optimal operating conditions, the operating cost was found to be 1.01/m3 of water in terms of the electrode consumption (23.71 × 10-5 kg Al/m3) and energy consumption (101.76 kWh/m3).
Design and experimental investigation of an ejector in an air-conditioning and refrigeration system
DOE Office of Scientific and Technical Information (OSTI.GOV)
AL-Khalidy, N.; Zayonia, A.
1995-12-31
This paper discusses the conservation of energy in a refrigerant ejector refrigerating machine using heat driven from the concentrator collectors. The working refrigerant was R-113. The design of an ejector operating in an air-conditioning and refrigerating system with a low thermal source (70 C to 100 C) is presented. The influence of three major parameters--boiler, condenser, and evaporator temperature--on ejector efficiency is discussed. Experimental results show that the condenser temperature is the major influence at a low evaporator temperature. The maximum ejector efficiency was 31%.
Automatic ranging circuit for a digital panel meter
Mueller, Theodore R.; Ross, Harley H.
1976-01-01
This invention relates to a range changing circuit that operates in conjunction with a digital panel meter of fixed sensitivity. The circuit decodes the output of the panel meter and uses that information to change the gain of an input amplifier to the panel meter in order to insure that the maximum number of significant figures is always displayed in the meter. The circuit monitors five conditions in the meter and responds to any of four combinations of these conditions by means of logic elements to carry out the function of the circuit.
Faraday anomalous dispersion optical filters
NASA Technical Reports Server (NTRS)
Shay, T. M.; Yin, B.
1992-01-01
The present calculations of the performance of Faraday anomalous dispersion optical filters (FADOF) on IR transitions indicate that such filters may furnish high transmission, narrow-pass bandwidth, and low equivalent noise bandwidth under optimum operating conditions. A FADOF consists of an atomic vapor cell between crossed polarizers that are subject to a dc magnetic field along the optical path; when linearly polarized light travels along the direction of the magnetic field through the dispersive atomic vapor, a polarization rotation occurs. If FADOF conditions are suitably adjusted, a maximum transmission with very narrow bandwidth is obtained.
NASA Technical Reports Server (NTRS)
Edie, P. C.
1981-01-01
Performance data on the General Electric 5BT 2366C10 series wound dc motor and EV-1 Chopper Controller is supplied for the electric vehicle manufacturer. Data is provided for both straight and chopped dc input to the motor, at 2 motor temperature levels. Testing was done at 6 voltage increments to the motor, and 2 voltage increments to the controller. Data results are presented in both tabular and graphical forms. Tabular information includes motor voltage and current input data, motor speed and torque output data, power data and temperature data. Graphical information includes torque-speed, motor power output-speed, torque-current, and efficiency-speed plots under the various operating conditions. The data resulting from this testing shows the speed-torque plots to have the most variance with operating temperature. The maximum motor efficiency is between 86% and 87%, regardless of temperature or mode of operation. When the chopper is utilized, maximum motor efficiency occurs when the chopper duty cycle approaches 100%.
NASA Astrophysics Data System (ADS)
Sakellariou, J. S.; Fassois, S. D.
2017-01-01
The identification of a single global model for a stochastic dynamical system operating under various conditions is considered. Each operating condition is assumed to have a pseudo-static effect on the dynamics and be characterized by a single measurable scheduling variable. Identification is accomplished within a recently introduced Functionally Pooled (FP) framework, which offers a number of advantages over Linear Parameter Varying (LPV) identification techniques. The focus of the work is on the extension of the framework to include the important FP-ARMAX model case. Compared to their simpler FP-ARX counterparts, FP-ARMAX models are much more general and offer improved flexibility in describing various types of stochastic noise, but at the same time lead to a more complicated, non-quadratic, estimation problem. Prediction Error (PE), Maximum Likelihood (ML), and multi-stage estimation methods are postulated, and the PE estimator optimality, in terms of consistency and asymptotic efficiency, is analytically established. The postulated estimators are numerically assessed via Monte Carlo experiments, while the effectiveness of the approach and its superiority over its FP-ARX counterpart are demonstrated via an application case study pertaining to simulated railway vehicle suspension dynamics under various mass loading conditions.
Preliminary analysis of hot spot factors in an advanced reactor for space electric power systems
NASA Technical Reports Server (NTRS)
Lustig, P. H.; Holms, A. G.; Davison, H. W.
1973-01-01
The maximum fuel pin temperature for nominal operation in an advanced power reactor is 1370 K. Because of possible nitrogen embrittlement of the clad, the fuel temperature was limited to 1622 K. Assuming simultaneous occurrence of the most adverse conditions a deterministic analysis gave a maximum fuel temperature of 1610 K. A statistical analysis, using a synthesized estimate of the standard deviation for the highest fuel pin temperature, showed probabilities of 0.015 of that pin exceeding the temperature limit by the distribution free Chebyshev inequality and virtually nil assuming a normal distribution. The latter assumption gives a 1463 K maximum temperature at 3 standard deviations, the usually assumed cutoff. Further, the distribution and standard deviation of the fuel-clad gap are the most significant contributions to the uncertainty in the fuel temperature.
Giuliano, A; Bolzonella, D; Pavan, P; Cavinato, C; Cecchi, F
2013-01-01
In this study the optimization of the biogas yield from anaerobic co-digestion of manures and energy crops was carried out using four pilot scale CSTRs under different operating conditions. The effect on biogas yield of the partial substitution of energy crops with agro-waste was also investigated. For each substrate used during the continuous trials, BMP batch assays were also carried out to verify the maximum methane yield theoretically obtainable. Continuous operation results indicated that the co-digestion of manures, energy crops and agro-waste was viable at all operating conditions tested, with the greatest specific gas production of 0.54 m(3)/kg VS(fed) at an organic load rate of 2 kg TVS/m(3)(r)d consisting of 50% manure, 25% energy crops and 25% agro-waste on VS basis. No significant differences were observed between high and low loaded reactors suggesting the possibility of either improving the OLR in existing anaerobic reactors or reducing the design volumes of new reactors. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tsui, Lok-kun; Zafferoni, Claudio; Lavacchi, Alessandro; Innocenti, Massimo; Vizza, Francesco; Zangari, Giovanni
2015-10-01
Direct alkaline ethanol fuel cells (DEFCs) are usually run with Pd anodic catalysts, but their performance can be improved by utilizing alloys of Pd and Co. The oxyphilic Co serves to supply ample -OH to the ethanol oxidation reaction, accelerating the rate limiting step at low overpotential under alkaline conditions. Pd-Co films with compositions between 20 and 80 at% Co can be prepared by electrodeposition from a NH3 complexing electrolyte. Cyclic voltammetry studies show that the ethanol oxidation peak exhibits increasing current density with increasing Co content, reaching a maximum at 77% Co. In contrast, potentiostatic measurements under conditions closer to fuel cell operating conditions show that a 50 at% Co alloy has the highest performance. Importantly, the Co-Pd film is also found to undergo phase and morphological transformations during ethanol oxidation, resulting in a change from a compact film to high surface area flake-like structures containing Co3O4 and CoOOH; such a transformation instead is not observed when operating at a constant potential of 0.7 VRHE.
An experimental study of tone excited heated jets
NASA Technical Reports Server (NTRS)
Lepicovsky, J.; Ahuja, K. K.; Salikuddin, M.
1984-01-01
The objective of this investigation was to obtain detailed experimental data on the effects of upstream acoustic excitation on the mixing of heated jets with the surrounding air. Based on the information gathered in the literature survey, a technical approach was developed to carry out a systematic set of mean flowfield measurements for a broad range of jet operating and acoustic excitation conditions. Most of the results were obtained at Mach numbers of 0.3 and 0.8 and total temperatures of up to 800 K. Some measurements were made also for the fully expanded supersonic jet of Mj = 1.15. The maximum level of excitation was Le equal to or less than 150 dB and a range of excitation frequencies up to fe = 4 kHz was used. The important results derived from this study can be summarized as follows: (1) the sensitivity of heated jets to upstream acoustic excitation varies strongly with the jet operating conditions, (2) the threshold excitation level increases with increasing jet temperature, and (3) the preferred Strouhal number does not change significantly with a change of the jet operating conditions.
Posadas, Esther; Marín, David; Blanco, Saúl; Lebrero, Raquel; Muñoz, Raúl
2017-05-01
The bioconversion of biogas to biomethane coupled to centrate treatment was evaluated in an outdoors pilot scale high rate algal pond interconnected to an external CO 2 -H 2 S absorption column (AC) via settled broth recirculation. CO 2 -removal efficiencies ranged from 50 to 95% depending on the alkalinity of the cultivation broth and environmental conditions, while a complete H 2 S removal was achieved regardless of the operational conditions. A maximum CH 4 concentration of 94% with a limited O 2 and N 2 stripping was recorded in the upgraded biogas at recycling liquid/biogas ratios in the AC of 1 and 2. Process operation at a constant biomass productivity of 15gm -2 d -1 and the minimization of effluent generation supported high carbon and nutrient recoveries in the harvested biomass (C=66±8%, N=54±18%, P≈100% and S=16±3%). Finally, a low diversity in the structure of the microalgae population was promoted by the environmental and operational conditions imposed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Analysis of possibilities of waste heat recovery in off-road vehicles
NASA Astrophysics Data System (ADS)
Wojciechowski, K. T.; Zybala, R.; Leszczynski, J.; Nieroda, P.; Schmidt, M.; Merkisz, J.; Lijewski, P.; Fuc, P.
2012-06-01
The paper presents the preliminary results of the waste heat recovery investigations for an agricultural tractor engine (7.4 dm3) and excavator engine (7.2 dm3) in real operating conditions. The temperature of exhaust gases and exhaust mass flow rate has been measured by precise portable exhaust emissions analyzer SEMTECH DS (SENSORS Inc.). The analysis shows that engines of tested vehicles operate approximately at constant speed and load. The average temperature of exhaust gases is in the range from 300 to 400 °C for maximum gas mass flows of 1100 kg/h and 1400 kg/h for tractor and excavator engine respectively. Preliminary tests show that application of TEGs in tested off-road vehicles offers much more beneficial conditions for waste heat recovery than in case of automotive engines.
Mears, Lisa; Stocks, Stuart M; Albaek, Mads O; Cassells, Benny; Sin, Gürkan; Gernaey, Krist V
2017-07-01
A novel model-based control strategy has been developed for filamentous fungal fed-batch fermentation processes. The system of interest is a pilot scale (550 L) filamentous fungus process operating at Novozymes A/S. In such processes, it is desirable to maximize the total product achieved in a batch in a defined process time. In order to achieve this goal, it is important to maximize both the product concentration, and also the total final mass in the fed-batch system. To this end, we describe the development of a control strategy which aims to achieve maximum tank fill, while avoiding oxygen limited conditions. This requires a two stage approach: (i) calculation of the tank start fill; and (ii) on-line control in order to maximize fill subject to oxygen transfer limitations. First, a mechanistic model was applied off-line in order to determine the appropriate start fill for processes with four different sets of process operating conditions for the stirrer speed, headspace pressure, and aeration rate. The start fills were tested with eight pilot scale experiments using a reference process operation. An on-line control strategy was then developed, utilizing the mechanistic model which is recursively updated using on-line measurements. The model was applied in order to predict the current system states, including the biomass concentration, and to simulate the expected future trajectory of the system until a specified end time. In this way, the desired feed rate is updated along the progress of the batch taking into account the oxygen mass transfer conditions and the expected future trajectory of the mass. The final results show that the target fill was achieved to within 5% under the maximum fill when tested using eight pilot scale batches, and over filling was avoided. The results were reproducible, unlike the reference experiments which show over 10% variation in the final tank fill, and this also includes over filling. The variance of the final tank fill is reduced by over 74%, meaning that it is possible to target the final maximum fill reproducibly. The product concentration achieved at a given set of process conditions was unaffected by the control strategy. Biotechnol. Bioeng. 2017;114: 1459-1468. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
The optimization problems of CP operation
NASA Astrophysics Data System (ADS)
Kler, A. M.; Stepanova, E. L.; Maximov, A. S.
2017-11-01
The problem of enhancing energy and economic efficiency of CP is urgent indeed. One of the main methods for solving it is optimization of CP operation. To solve the optimization problems of CP operation, Energy Systems Institute, SB of RAS, has developed a software. The software makes it possible to make optimization calculations of CP operation. The software is based on the techniques and software tools of mathematical modeling and optimization of heat and power installations. Detailed mathematical models of new equipment have been developed in the work. They describe sufficiently accurately the processes that occur in the installations. The developed models include steam turbine models (based on the checking calculation) which take account of all steam turbine compartments and regeneration system. They also enable one to make calculations with regenerative heaters disconnected. The software for mathematical modeling of equipment and optimization of CP operation has been developed. It is based on the technique for optimization of CP operating conditions in the form of software tools and integrates them in the common user interface. The optimization of CP operation often generates the need to determine the minimum and maximum possible total useful electricity capacity of the plant at set heat loads of consumers, i.e. it is necessary to determine the interval on which the CP capacity may vary. The software has been applied to optimize the operating conditions of the Novo-Irkutskaya CP of JSC “Irkutskenergo”. The efficiency of operating condition optimization and the possibility for determination of CP energy characteristics that are necessary for optimization of power system operation are shown.
Dareioti, Margarita Andreas; Kornaros, Michael
2015-01-01
The aim of this study was to investigate the effect of hydraulic retention time (HRT) on hydrogen and methane production using a two-stage anaerobic process. Two continuously stirred tank reactors (CSTRs) were used under mesophilic conditions (37°C) in order to enhance acidogenesis and methanogenesis. A mixture of pretreated ensiled sorghum, cheese whey and liquid cow manure (55:40:5, v/v/v) was used. The acidogenic reactor was operated at six different HRTs of 5, 3, 2, 1, 0.75 and 0.5d, under controlled pH5.5, whereas the methanogenic reactor was operated at three HRTs of 24, 16 and 12d. The maximum H2 productivity (2.14L/LRd) and maximum H2 yield (0.70mol H2/mol carbohydrates consumed) were observed at 0.5d HRT. On the other hand, the maximum CH4 production rate of 0.90L/LRd was achieved at HRT of 16d, whereas at lower HRT the process appeared to be inhibited and/or overloaded. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Norbeck, Jack H.; Horne, Roland N.
2018-05-01
The maximum expected earthquake magnitude is an important parameter in seismic hazard and risk analysis because of its strong influence on ground motion. In the context of injection-induced seismicity, the processes that control how large an earthquake will grow may be influenced by operational factors under engineering control as well as natural tectonic factors. Determining the relative influence of these effects on maximum magnitude will impact the design and implementation of induced seismicity management strategies. In this work, we apply a numerical model that considers the coupled interactions of fluid flow in faulted porous media and quasidynamic elasticity to investigate the earthquake nucleation, rupture, and arrest processes for cases of induced seismicity. We find that under certain conditions, earthquake ruptures are confined to a pressurized region along the fault with a length-scale that is set by injection operations. However, earthquakes are sometimes able to propagate as sustained ruptures outside of the zone that experienced a pressure perturbation. We propose a faulting criterion that depends primarily on the state of stress and the earthquake stress drop to characterize the transition between pressure-constrained and runaway rupture behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neises, T. W.; Wagner, M. J.; Gray, A. K.
Research of advanced power cycles has shown supercritical carbon dioxide power cycles may have thermal efficiency benefits relative to steam cycles at temperatures around 500 - 700 degrees C. To realize these benefits for CSP, it is necessary to increase the maximum outlet temperature of current tower designs. Research at NREL is investigating a concept that uses high-pressure supercritical carbon dioxide as the heat transfer fluid to achieve a 650 degrees C receiver outlet temperature. At these operating conditions, creep becomes an important factor in the design of a tubular receiver and contemporary design assumptions for both solar and traditionalmore » boiler applications must be revisited and revised. This paper discusses lessons learned for high-pressure, high-temperature tubular receiver design. An analysis of a simplified receiver tube is discussed, and the results show the limiting stress mechanisms in the tube and the impact on the maximum allowable flux as design parameters vary. Results of this preliminary analysis indicate an underlying trade-off between tube thickness and the maximum allowable flux on the tube. Future work will expand the scope of design variables considered and attempt to optimize the design based on cost and performance metrics.« less
Tank 241-AZ-101 criticality assessment resulting from pump jet mixing: Sludge mixing simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onishi, Y.; Recknagle, K.
Tank 241-AZ-101 (AZ-101) is one of 28 double-shell tanks located in the AZ farm in the Hanford Site`s 200 East Area. The tank contains a significant quantity of fissile materials, including an estimated 9.782 kg of plutonium. Before beginning jet pump mixing for mitigative purposes, the operations must be evaluated to demonstrate that they will be subcritical under both normal and credible abnormal conditions. The main objective of this study was to address a concern about whether two 300-hp pumps with four rotating 18.3-m/s (60-ft/s) jets can concentrate plutonium in their pump housings during mixer pump operation and cause amore » criticality. The three-dimensional simulation was performed with the time-varying TEMPEST code to determine how much the pump jet mixing of Tank AZ-101 will concentrate plutonium in the pump housing. The AZ-101 model predicted that the total amount of plutonium within the pump housing peaks at 75 g at 10 simulation seconds and decreases to less than 10 g at four minutes. The plutonium concentration in the entire pump housing peaks at 0.60 g/L at 10 simulation seconds and is reduced to below 0.1 g/L after four minutes. Since the minimum critical concentration of plutonium is 2.6 g/L, and the minimum critical plutonium mass under idealized plutonium-water conditions is 520 g, these predicted maximums in the pump housing are much lower than the minimum plutonium conditions needed to reach a criticality level. The initial plutonium maximum of 1.88 g/L still results in safety factor of 4.3 in the pump housing during the pump jet mixing operation.« less
Lavella, Mario; Botto, Daniele
2018-06-21
Slots in the disk of aircraft turbines restrain the centrifugal load of blades. Contact surfaces between the blade root and the disk slot undergo high contact pressure and relative displacement that is the typical condition in which fretting occurs. The load level ranges from zero to the maximum during take-off. This cycle is repeated for each mission. In this paper, a fretting fatigue analysis of additively manufactured blades is presented. Blades are made of an intermetallic alloy γTiAl. Fretting fatigue experiments were performed at a frequency of 0.5 Hz and at a temperature of 640 °C to match the operating condition of real blades. The minimum load was fixed at 0.5 KN and three maximum loads were applied, namely 16, 18 and 20 kN. Both an analytical and a two-dimensional finite element model were used to evaluate the state of stress at the contact interfaces. The results of the analytical model showed good agreement with the numerical model. Experiments showed that cracks nucleate where the analytical model predicts the maximum contact pressure and the numerical model predicts the maximum equivalent stress. A parametric analysis performed with the analytical model indicates that there exists an optimum geometry to minimize the contact pressure. Tests showed that the component life changed dramatically with the maximum load variation. Optical topography and scanning electron microscopy (SEM) analysis reveals information about the damage mechanism.
Huang, Yize; Jivraj, Jamil; Zhou, Jiaqi; Ramjist, Joel; Wong, Ronnie; Gu, Xijia; Yang, Victor X D
2016-07-25
A surgical laser soft tissue ablation system based on an adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser operating in pulsed or CW mode with nitrogen assistance is demonstrated. Ex vivo ablation on soft tissue targets such as muscle (chicken breast) and spinal cord (porcine) with intact dura are performed at different ablation conditions to examine the relationship between the system parameters and ablation outcomes. The maximum laser average power is 14.4 W, and its maximum peak power is 133.1 W with 21.3 μJ pulse energy. The maximum CW power density is 2.33 × 106 W/cm2 and the maximum pulsed peak power density is 2.16 × 107 W/cm2. The system parameters examined include the average laser power in CW or pulsed operation mode, gain-switching frequency, total ablation exposure time, and the input gas flow rate. The ablation effects were measured by microscopy and optical coherence tomography (OCT) to evaluate the ablation depth, superficial heat-affected zone diameter (HAZD) and charring diameter (CD). Our results conclude that the system parameters can be tailored to meet different clinical requirements such as ablation for soft tissue cutting or thermal coagulation for future applications of hemostasis.
An Evaluation of the Success Rate of Sermo Dam Management in Daerah Istimewa Yogyakarta
NASA Astrophysics Data System (ADS)
Andriawan, A.; Sobriyah; Ikhsan, C.
2017-11-01
In dam operating and maintaining activities, there are some activities becoming the main function: the assessment of dam condition to keep monitoring and safeguarding the condition of dam as the main building. To achieve the maximum service, the maximal dam management is required as well and it should be followed with management evaluation. This case study was taken place in Sermo Dam of Daerah Istimewa Yogyakarta during 2015 - 2017. The method applied in this study was descriptive quantitative one, conducting a research using primary and secondary data. In this research, the assessment of dam condition was viewed from 1 (one) component, dam body, so that the component weight was 100%. The value of dam body condition was obtained from data of Sermo Dam monitoring in 2015-2016 and from the result of field survey in 2017. The result of research showed that the condition values of Sermo Dam with dam body component were 92.66% in 2015, 92.99% in 2016, and 93.99% in 2017. The result also showed that the value of dam body condition tended to increase during 2015-2017. To maintain the condition, the maximal operation and maintenance of dam was recommended.
Design and preliminary results of a fuel flexible industrial gas turbine combustor
NASA Technical Reports Server (NTRS)
Novick, A. S.; Troth, D. L.; Yacobucci, H. G.
1981-01-01
The design characteristics are presented of a fuel tolerant variable geometry staged air combustor using regenerative/convective cooling. The rich/quench/lean variable geometry combustor is designed to achieve low NO(x) emission from fuels containing fuel bound nitrogen. The physical size of the combustor was calculated for a can-annular combustion system with associated operating conditions for the Allison 570-K engine. Preliminary test results indicate that the concept has the potential to meet emission requirements at maximum continuous power operation. However, airflow sealing and improved fuel/air mixing are necessary to meet Department of Energy program goals.
Natural environment design criteria for the Space Station definition and preliminary design
NASA Astrophysics Data System (ADS)
Vaughan, W. W.; Green, C. E.
1985-03-01
The natural environment design criteria for the Space Station Program (SSP) definition and preliminary design are presented. Information on the atmospheric, dynamic and thermodynamic environments, meteoroids, radiation, magnetic fields, physical constants, etc. is provided with the intension of enabling all groups involved in the definition and preliminary design studies to proceed with a common and consistent set of natural environment criteria requirements. The space station program elements (SSPE) shall be designed with no operational sensitivity to natural environment conditions during assembly, checkout, stowage, launch, and orbital operations to the maximum degree practical.
Natural environment design criteria for the Space Station definition and preliminary design
NASA Technical Reports Server (NTRS)
Vaughan, W. W.; Green, C. E.
1985-01-01
The natural environment design criteria for the Space Station Program (SSP) definition and preliminary design are presented. Information on the atmospheric, dynamic and thermodynamic environments, meteoroids, radiation, magnetic fields, physical constants, etc. is provided with the intension of enabling all groups involved in the definition and preliminary design studies to proceed with a common and consistent set of natural environment criteria requirements. The space station program elements (SSPE) shall be designed with no operational sensitivity to natural environment conditions during assembly, checkout, stowage, launch, and orbital operations to the maximum degree practical.
Use of Traffic Intent Information by Autonomous Aircraft in Constrained Operations
NASA Technical Reports Server (NTRS)
Wing, David J.; Barmore, Bryan E.; Krishnamurthy, Karthik
2002-01-01
This paper presents findings of a research study designed to provide insight into the issue of intent information exchange in constrained en-route air-traffic operations and its effect on pilot decision-making and flight performance. The piloted simulation was conducted in the Air Traffic Operations Laboratory at the NASA Langley Research Center. Two operational modes for autonomous flight management were compared under conditions of low and high operational complexity (traffic and airspace hazard density). The tactical mode was characterized primarily by the use of traffic state data for conflict detection and resolution and a manual approach to meeting operational constraints. The strategic mode involved the combined use of traffic state and intent information, provided the pilot an additional level of alerting, and allowed an automated approach to meeting operational constraints. Operational constraints applied in the experiment included separation assurance, schedule adherence, airspace hazard avoidance, flight efficiency, and passenger comfort. The strategic operational mode was found to be effective in reducing unnecessary maneuvering in conflict situations where the intruder's intended maneuvers would resolve the conflict. Conditions of high operational complexity and vertical maneuvering resulted in increased proliferation of conflicts, but both operational modes exhibited characteristics of stability based on observed conflict proliferation rates of less than 30 percent. Scenario case studies illustrated the need for maneuver flight restrictions to prevent the creation of new conflicts through maneuvering and the need for an improved user interface design that appropriately focuses the pilot's attention on conflict prevention information. Pilot real-time assessment of maximum workload indicated minimal sensitivity to operational complexity, providing further evidence that pilot workload is not the limiting factor for feasibility of an en-route distributed traffic management system, even under highly constrained conditions.
NASA Astrophysics Data System (ADS)
Shen, Bingjun; Jin, Lihong; Zhang, Jiajia; Tian, Jian
2016-09-01
We report a diode-pumped continuous-wave tri-wavelength Nd:LuVO4 laser operating at 916, 1086, and 1089 nm. A theoretical analysis has been introduced to determine the threshold conditions for simultaneous tri-wavelength laser operation. Using a T-shaped cavity, we realized efficient tri-wavelength operation at 4F3/2 → 4I9/2 and 4F3/2 → 4I11/2 transitions for Nd:LuVO4 crystal, simultaneously. The maximum output power was 2.8 W, which included 916, 1086, and 1089 nm, and the optical conversion efficiency was 15.1%. To our knowledge, this is the first work that realizes simultaneous tri-wavelength Nd:LuVO4 laser operation.
Wind loading analysis and strategy for deflection reduction on HET wide field upgrade
NASA Astrophysics Data System (ADS)
South, Brian J.; Soukup, Ian M.; Worthington, Michael S.; Zierer, Joseph J.; Booth, John A.; Good, John M.
2010-07-01
Wind loading can be a detrimental source of vibration and deflection for any large terrestrial optical telescope. The Hobby-Eberly Telescope* (HET) in the Davis Mountains of West Texas is undergoing a Wide Field Upgrade (WFU) in support of the Dark Energy Experiment (HETDEX) that will greatly increase the size of the instrumentation subjected to operating wind speeds of up to 20.1 m/s (45 mph). A non-trivial consideration for this telescope (or others) is to quantify the wind loads and resulting deflections of telescope structures induced under normal operating conditions so that appropriate design changes can be made. A quasi-static computational fluid dynamics (CFD) model was generated using wind speeds collected on-site as inputs to characterize dynamic wind forces on telescope structures under various conditions. The CFD model was refined until predicted wind speed and direction inside the dome agreed with experimental data. The dynamic wind forces were then used in static loading analysis to determine maximum deflections under typical operating conditions. This approach also allows for exploration of operating parameters without impact to the observation schedule of the telescope. With optimum combinations of parameters (i.e. dome orientation, tracker position, and louver deployment), deflections due to current wind conditions can be significantly reduced. Furthermore, the upper limit for operating wind speed could be increased, provided these parameters are monitored closely. This translates into increased image quality and observing time.
Maestre, Juan P; Gamisans, Xavier; Gabriel, David; Lafuente, Javier
2007-03-01
Packing materials play a key role in the performance of bioreactors for waste gas treatment and particularly in biofilter applications. In this work, the performance of four differently packed biofilters operated in parallel for the treatment of relatively high inlet concentration of toluene was studied. The reactors were compared for determining the suitability of coconut fiber, digested sludge compost from a waste water treatment plant, peat and pine leaves as packing materials for biofiltration of toluene. A deep characterisation of materials was carried out. Biological activity and packing capabilities related to toluene removal were determined throughout 240 days of operation under different conditions of nutrients addition and watering regime. Also, biofilters recovering after a short shutdown was investigated. Nutrient addition resulted in improved removal efficiencies (RE) and elimination capacities (EC) of biofilters reaching maximum ECs between 75 and 95 g m(-3)h(-1) of toluene. In the first 80 days, the pH decreased progressively within the reactors, causing a population change from bacteria to fungi, which were the predominant decontaminant microorganisms thereafter. All reactors were found to recover the RE rapidly after a 5 days shutdown and, in a maximum of 7 days, all reactors had been completely recuperated. These results point out that fungal biofilters are a suitable choice to treat high loads of toluene. In general, coconut fiber and compost biofilters exhibited a better performance in terms of elimination capacity and long-term stability.
Gao, Song; Rupp, Erik; Bell, Suzanne; Willinger, Martin; Foley, Theresa; Barbaris, Brian; Sáez, A. Eduardo; Arnold, Robert G.; Betterton, Eric
2010-01-01
A new thermocatalytic method to destroy chlorinated solvents has been developed in the laboratory and tested in a pilot field study. The method employs a conventional Pt/Rh catalyst on a ceramic honeycomb. Reactions proceed at moderate temperatures in the simultaneous presence of oxygen and a reductant (mixed redox conditions) to minimize catalyst deactivation. In the laboratory, stable operation with high conversions (above 90% at residence times shorter than 1 s) for perchloroethylene (PCE) is achieved using hydrogen as the reductant. A molar ratio of H2/O2 = 2 yields maximum conversions; the temperature required to produce maximum conversions is sensitive to influent PCE concentration. When a homologous series of aliphatic alkanes is used to replace hydrogen as the reductant, the resultant mixed redox conditions also produce high PCE conversions. It appears that the dissociation energy of the C–H bond in the respective alkane molecule is a strong determinant of the activation energy, and therefore the reaction rate, for PCE conversion. This new method was employed in a pilot field study in Tucson, Arizona. The mixed redox system was operated semicontinuously for 240 days with no degradation of catalyst performance and complete destruction of PCE and trichloroethylene in a soil vapor extraction gas stream. Use of propane as the reductant significantly reduced operating costs. Mixed redox destruction of chlorinated solvents provides a potentially viable alternative to current soil and groundwater remediation technologies. PMID:18991945
Longitudinal-bending mode micromotor using multilayer piezoelectric actuator.
Yao, K; Koc, B; Uchino, K
2001-07-01
Longitudinal-bending mode ultrasonic motors with a diameter of 3 mm were fabricated using stacked multilayer piezoelectric actuators, which were self-developed from hard lead zirconate titanate (PZT) ceramic. A bending vibration was converted from a longitudinal vibration with a longitudinal-bending coupler. The motors could be bidirectionally operated by changing driving frequency. Their starting and braking torque were analyzed based on the transient velocity response. With a load of moment of inertia 2.5 x 10(-7) kgm2, the motor showed a maximum starting torque of 127.5 microNm. The braking torque proved to be a constant independent on the motor's driving conditions and was roughly equivalent to the maximum starting torque achievable with our micromotors.
A multisensor system for airborne surveillance of oil pollution
NASA Technical Reports Server (NTRS)
Edgerton, A. T.; Ketchal, R.; Catoe, C.
1973-01-01
The U.S. Coast Guard is developing a prototype airborne oil surveillance system for use in its Marine Environmental Protection Program. The prototype system utilizes an X-band side-looking radar, a 37-GHz imaging microwave radiometer, a multichannel line scanner, and a multispectral low light level system. The system is geared to detecting and mapping oil spills and potential pollution violators anywhere within a 25 nmi range of the aircraft flight track under all but extreme weather conditions. The system provides for false target discrimination and maximum identification of spilled materials. The system also provides an automated detection alarm, as well as a color display to achieve maximum coupling between the sensor data and the equipment operator.
Hot-spot heating susceptibility due to reverse bias operating conditions
NASA Technical Reports Server (NTRS)
Gonzalez, C. C.
1985-01-01
Because of field experience (indicating that cell and module degradation could occur as a result of hot spot heating), a laboratory test was developed at JPL to determine hot spot susceptibility of modules. The initial hot spot testing work at JPL formed a foundation for the test development. Test parameters are selected as follows. For high shunt resistance cells, the applied back bias test current is set equal to the test cell current at maximum power. For low shunt resistance cells, the test current is set equal to the cell short circuit current. The shadow level is selected to conform to that which would lead to maximum back bias voltage under the appropriate test current level. The test voltage is determined by the bypass diode frequency. The test conditions are meant to simulate the thermal boundary conditions for 100 mW/sq cm, 40C ambient environment. The test lasts 100 hours. A key assumption made during the development of the test is that no current imbalance results from the connecting of multiparallel cell strings. Therefore, the test as originally developed was applicable for single string case only.
NASA Astrophysics Data System (ADS)
Hosseini-Bioki, M. M.; Rashidinejad, M.; Abdollahi, A.
2013-11-01
Load shedding is a crucial issue in power systems especially under restructured electricity environment. Market-driven load shedding in reregulated power systems associated with security as well as reliability is investigated in this paper. A technoeconomic multi-objective function is introduced to reveal an optimal load shedding scheme considering maximum social welfare. The proposed optimization problem includes maximum GENCOs and loads' profits as well as maximum loadability limit under normal and contingency conditions. Particle swarm optimization (PSO) as a heuristic optimization technique, is utilized to find an optimal load shedding scheme. In a market-driven structure, generators offer their bidding blocks while the dispatchable loads will bid their price-responsive demands. An independent system operator (ISO) derives a market clearing price (MCP) while rescheduling the amount of generating power in both pre-contingency and post-contingency conditions. The proposed methodology is developed on a 3-bus system and then is applied to a modified IEEE 30-bus test system. The obtained results show the effectiveness of the proposed methodology in implementing the optimal load shedding satisfying social welfare by maintaining voltage stability margin (VSM) through technoeconomic analyses.
NASA Technical Reports Server (NTRS)
Macks, E Fred; Nemeth, Zolton N
1951-01-01
A comparison of the operating characteristics of 75-millimeter-bore (size 215) cylindrical-roller one-piece inner-race-riding cage-type bearings was made using a laboratory test rig and a turbojet engine. Cooling correlation parameters were determined by means of dimensional analysis, and the generalized results for both the inner- and outer-race bearing operating temperatures are compared for the laboratory test rig and the turbojet engine. Inner- and outer-race cooling-correlation curves were obtained for the turbojet-engine turbine-roller bearing with the same inner- and outer-race correlation parameters and exponents as those determined for the laboratory test-rig bearing. The inner- and outer-race turbine roller-bearing temperatures may be predicted from a single curve, regardless of variations in speed, load, oil flow, oil inlet temperature, oil inlet viscosity, oil-jet diameter or any combination of these parameters. The turbojet-engine turbine-roller-bearing inner-race temperatures were 30 to 60 F greater than the outer-race-maximum temperatures, the exact values depending on the operating condition and oil viscosity; these results are in contrast to the laboratory test-rig results where the inner-race temperatures were less than the outer-race-maximum temperatures. The turbojet-engine turbine-roller bearing, maximum outer-race circumferential temperature variation was approximately 30 F for each of the oils used. The effect of oil viscosity on inner- and outer-race turbojet-engine turbine-roller-bearing temperatures was found to be significant. With the lower viscosity oil (6x10(exp -7) reyns (4.9 centistokes) at 100 F; viscosity index, 83), the inner-race temperature was approximately 30 to 35 F less than with the higher viscosity oil (53x10(exp -7) reyns (42.8 centistokes) at 100 F; viscosity index, 150); whereas the outer-race-maximum temperatures were 12 to 28 F lower with the lower viscosity oil over the DN range investigated.
Space Transportation Main Engine
NASA Technical Reports Server (NTRS)
Monk, Jan C.
1992-01-01
The topics are presented in viewgraph form and include the following: Space Transportation Main Engine (STME) definition, design philosophy, robust design, maximum design condition, casting vs. machined and welded forgings, operability considerations, high reliability design philosophy, engine reliability enhancement, low cost design philosophy, engine systems requirements, STME schematic, fuel turbopump, liquid oxygen turbopump, main injector, and gas generator. The major engine components of the STME and the Space Shuttle Main Engine are compared.
NASA Astrophysics Data System (ADS)
Bottasso, C. L.; Croce, A.; Riboldi, C. E. D.
2014-06-01
The paper presents a novel approach for the synthesis of the open-loop pitch profile during emergency shutdowns. The problem is of interest in the design of wind turbines, as such maneuvers often generate design driving loads on some of the machine components. The pitch profile synthesis is formulated as a constrained optimal control problem, solved numerically using a direct single shooting approach. A cost function expressing a compromise between load reduction and rotor overspeed is minimized with respect to the unknown blade pitch profile. Constraints may include a load reduction not-to-exceed the next dominating loads, a not-to-be-exceeded maximum rotor speed, and a maximum achievable blade pitch rate. Cost function and constraints are computed over a possibly large number of operating conditions, defined so as to cover as well as possible the operating situations encountered in the lifetime of the machine. All such conditions are simulated by using a high-fidelity aeroservoelastic model of the wind turbine, ensuring the accuracy of the evaluation of all relevant parameters. The paper demonstrates the capabilities of the novel proposed formulation, by optimizing the pitch profile of a multi-MW wind turbine. Results show that the procedure can reliably identify optimal pitch profiles that reduce design-driving loads, in a fully automated way.
Flight Test Results for the NICMOS Cryocooler
NASA Technical Reports Server (NTRS)
Dolan, F. X.; McCormick, J. A.; Nellis, G. F.; Sixsmith, H.; Swift, W. L.
1999-01-01
In October 1998 a mechanical cryocooler and cryogenic circulator loop were flown on NASA's STS-95 as part of the Hubble Orbital System Test (HOST). The system will be installed on the Hubble Space Telescope (HST) during Service Mission #3 in 2000 and will provide cooling to the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). It will extend the useful life of that instrument by 5 to 10 years. This was the first successful space demonstration of a turbobrayton cryocooler. The cooler is a single stage reverse Brayton type, using low-vibration high-speed miniature turbomachines for the compression and expansion functions. A miniature centrifugal cryogenic circulator is used to deliver refrigerated neon to the instrument. During the mission, the cooler operated without anomalies for approximately 185 hours over a range of conditions to verify its mechanical, thermodynamic and control functions. The cryocooler satisfied all mission objectives including maximum cooldown to near-design operating conditions, warm and cold starts and stops, operation at near-design temperatures, and demonstration of long-term temperature stability. This paper presents a description of the cooler and its operation during the HOST flight.
NASA Technical Reports Server (NTRS)
Scibbe, H. W.; Winn, L. W.; Eusepi, M.
1976-01-01
The bearing, consisting of a 150-mm ball bearing and a centrifugally actuated, conical, fluid-film bearing, was fatigue tested. Test conditions were representative of a mainshaft ball bearing in a gas turbine engine operating at maximum thrust load to simulate aircraft takeoff conditions. Tests were conducted up to 16000 rpm and at this speed an axial load of 15568 newtons (3500 lb) was safely supported by the hybrid bearing system. Through the series-hybrid bearing principle, the effective ball bearing speed was reduced to approximately one-half of the shaft speed. It was concluded that a speed reduction of this magnitude results in a ten-fold increase in the ball bearing fatigue life. A successful evaluation of fluid-film bearing lubricant supply failure was performed repeatedly at an operating speed of 10,000 rpm. A complete and smooth changeover to full-scale ball bearing operation was effected when the oil supply to the fluid-film bearing was cut off. Reactivation of the fluid-film oil supply system resulted in a flawless return to the original mode of hybrid operation.
Fuzzy observer-based control for maximum power-point tracking of a photovoltaic system
NASA Astrophysics Data System (ADS)
Allouche, M.; Dahech, K.; Chaabane, M.; Mehdi, D.
2018-04-01
This paper presents a novel fuzzy control design method for maximum power-point tracking (MPPT) via a Takagi and Sugeno (TS) fuzzy model-based approach. A knowledge-dynamic model of the PV system is first developed leading to a TS representation by a simple convex polytopic transformation. Then, based on this exact fuzzy representation, a H∞ observer-based fuzzy controller is proposed to achieve MPPT even when we consider varying climatic conditions. A specified TS reference model is designed to generate the optimum trajectory which must be tracked to ensure maximum power operation. The controller and observer gains are obtained in a one-step procedure by solving a set of linear matrix inequalities (LMIs). The proposed method has been compared with some classical MPPT techniques taking into account convergence speed and tracking accuracy. Finally, various simulation and experimental tests have been carried out to illustrate the effectiveness of the proposed TS fuzzy MPPT strategy.
Efficiency at maximum power output of quantum heat engines under finite-time operation.
Wang, Jianhui; He, Jizhou; Wu, Zhaoqi
2012-03-01
We study the efficiency at maximum power, η(m), of irreversible quantum Carnot engines (QCEs) that perform finite-time cycles between a hot and a cold reservoir at temperatures T(h) and T(c), respectively. For QCEs in the reversible limit (long cycle period, zero dissipation), η(m) becomes identical to the Carnot efficiency η(C)=1-T(c)/T(h). For QCE cycles in which nonadiabatic dissipation and the time spent on two adiabats are included, the efficiency η(m) at maximum power output is bounded from above by η(C)/(2-η(C)) and from below by η(C)/2. In the case of symmetric dissipation, the Curzon-Ahlborn efficiency η(CA)=1-√(T(c)/T(h)) is recovered under the condition that the time allocation between the adiabats and the contact time with the reservoir satisfy a certain relation.
Blue-Light Hazard From Gas Metal Arc Welding of Aluminum Alloys.
Nakashima, Hitoshi; Takahashi, Jyunya; Fujii, Nobuyuki; Okuno, Tsutomu
2017-10-01
The objective was to quantify the blue-light hazard from gas metal arc welding (GMAW) of aluminum alloys. The exposure level is expected to depend on the welding conditions. Therefore, it is important to identify the blue-light hazard under various welding conditions. We experimentally conducted GMAW of aluminum alloys under various welding conditions and measured the spectral radiance of the arcs. The effective blue-light radiance, which the American Conference of Governmental Industrial Hygienists has defined to quantify the exposure level of blue light, was calculated from the measured spectral radiance. The maximum acceptable exposure duration per 10000 s for this effective blue-light radiance was calculated. The effective blue-light radiance measured in this study was in the range of 2.9-20.0 W cm-2·sr. The corresponding maximum acceptable exposure duration per 10000 s was only 5.0-34 s, so it is hazardous to view the welding arc. The effective blue-light radiance was higher at higher welding currents than at lower welding currents, when pulsed welding currents were used rather than steady welding currents, and when magnesium was included in the welding materials. It is very hazardous to view the arcs in GMAW of aluminum alloys. Welders and their helpers should use appropriate eye protection in arc-welding operations. They should also avoid direct light exposure when starting an arc-welding operation. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Extreme Spacecraft Charging in Polar Low Earth Orbit
NASA Technical Reports Server (NTRS)
Colson, Andrew D.; Minow, Joseph I.; Parker, L. Neergaard
2012-01-01
Spacecraft in low altitude, high inclination (including sun -synchronous) orbits are widely used for remote sensing of the Earth fs land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems episodically charge to frame potentials in the kilovolt range when exposed to space weather environments characterized by a high flux of energetic (approx.10 fs kilovolt) electrons in regions of low background plasma density. Auroral charging conditions are similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. We first review the physics of space environment interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments. Finally, a set of extreme DMSP charging events are described varying in maximum negative frame potential from approx.0.6 kV to approx.2 kV, focusing on the characteristics of the charging events that are of importance both to the space system designer and to spacecraft operators. The goal of the presentation is to bridge the gap between scientific studies of auroral charging and the need for engineering teams to understand how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, E-E; Pan, Shu-Yuan; Yang, Liuhanzi
2015-09-15
Highlights: • Carbonation was performed using CO{sub 2}, wastewater and bottom ash in a slurry reactor. • A maximum capture capacity of 102 g CO{sub 2} per kg BA was achieved at mild conditions. • A maximum carbonation conversion of MSWI-BA was predicted to be 95% by RSM. • The CO{sub 2} emission from Bali incinerator could be expected to reduce by 6480 ton/y. • The process energy consumption per ton CO{sub 2} captured was estimated to be 180 kW h. - Abstract: Accelerated carbonation of alkaline wastes including municipal solid waste incinerator bottom ash (MSWI-BA) and the cold-rolling wastewatermore » (CRW) was investigated for carbon dioxide (CO{sub 2}) fixation under different operating conditions, i.e., reaction time, CO{sub 2} concentration, liquid-to-solid ratio, particle size, and CO{sub 2} flow rate. The MSWI-BA before and after carbonation process were analyzed by the thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The MSWI-BA exhibits a high carbonation conversion of 90.7%, corresponding to a CO{sub 2} fixation capacity of 102 g per kg of ash. Meanwhile, the carbonation kinetics was evaluated by the shrinking core model. In addition, the effect of different operating parameters on carbonation conversion of MSWI-BA was statistically evaluated by response surface methodology (RSM) using experimental data to predict the maximum carbonation conversion. Furthermore, the amount of CO{sub 2} reduction and energy consumption for operating the proposed process in refuse incinerator were estimated. Capsule abstract: CO{sub 2} fixation process by alkaline wastes including bottom ash and cold-rolling wastewater was developed, which should be a viable method due to high conversion.« less
Shareef, Hussain; Mutlag, Ammar Hussein; Mohamed, Azah
2017-01-01
Many maximum power point tracking (MPPT) algorithms have been developed in recent years to maximize the produced PV energy. These algorithms are not sufficiently robust because of fast-changing environmental conditions, efficiency, accuracy at steady-state value, and dynamics of the tracking algorithm. Thus, this paper proposes a new random forest (RF) model to improve MPPT performance. The RF model has the ability to capture the nonlinear association of patterns between predictors, such as irradiance and temperature, to determine accurate maximum power point. A RF-based tracker is designed for 25 SolarTIFSTF-120P6 PV modules, with the capacity of 3 kW peak using two high-speed sensors. For this purpose, a complete PV system is modeled using 300,000 data samples and simulated using the MATLAB/SIMULINK package. The proposed RF-based MPPT is then tested under actual environmental conditions for 24 days to validate the accuracy and dynamic response. The response of the RF-based MPPT model is also compared with that of the artificial neural network and adaptive neurofuzzy inference system algorithms for further validation. The results show that the proposed MPPT technique gives significant improvement compared with that of other techniques. In addition, the RF model passes the Bland-Altman test, with more than 95 percent acceptability.
Shareef, Hussain; Mohamed, Azah
2017-01-01
Many maximum power point tracking (MPPT) algorithms have been developed in recent years to maximize the produced PV energy. These algorithms are not sufficiently robust because of fast-changing environmental conditions, efficiency, accuracy at steady-state value, and dynamics of the tracking algorithm. Thus, this paper proposes a new random forest (RF) model to improve MPPT performance. The RF model has the ability to capture the nonlinear association of patterns between predictors, such as irradiance and temperature, to determine accurate maximum power point. A RF-based tracker is designed for 25 SolarTIFSTF-120P6 PV modules, with the capacity of 3 kW peak using two high-speed sensors. For this purpose, a complete PV system is modeled using 300,000 data samples and simulated using the MATLAB/SIMULINK package. The proposed RF-based MPPT is then tested under actual environmental conditions for 24 days to validate the accuracy and dynamic response. The response of the RF-based MPPT model is also compared with that of the artificial neural network and adaptive neurofuzzy inference system algorithms for further validation. The results show that the proposed MPPT technique gives significant improvement compared with that of other techniques. In addition, the RF model passes the Bland–Altman test, with more than 95 percent acceptability. PMID:28702051
Fumigation of Alcohol in a Light Duty Automotive Diesel Engine
NASA Technical Reports Server (NTRS)
Broukhiyan, E. M. H.; Lestz, S. S.
1981-01-01
A light-duty automotive Diesel engine was fumigated with methanol in amounts up to 35% and 50% of the total fuel energy respectively in order to determine the effect of alcohol fumigation on engine performance at various operating conditons. Engine fuel efficiency, emissions, smoke, and the occurrence of severe knock were the parameters used to evaluate performance. Raw exhaust particulate and its soluble organic extract were screened for biological activity using the Ames Salmonella typhimurium assay. Results are given for a test matrix made up of twelve steady-state operating conditions. For all conditions except the 1/4 rack (light load) condition, modest thermal efficiency gains were noted upon ethanol fumigation. Methanol showed the same increase at 3/4 and full rack (high load) conditions. However, engine roughness or the occurrence of severe knock limited the maximum amount of alcohol that could be fumigated. Brake specific nitrogen oxide concentrations were found to decrease for all ethanol conditions tested. Oxides of nitrogen emissions, on a volume basis, decreased for all alcohol conditions tested. Based on the limited particulate data analyzed, it appears that ethanol fumigation, like methanol fumigation, while lowering the mass of particulated emitted, does enhance the biological activity of that particulate.
Compression-ignition engine tests of several fuels
NASA Technical Reports Server (NTRS)
Spanogle, J A
1932-01-01
The tests reported in this paper were made to devise simple engine tests which would rate fuels as to their comparative value and their suitability for the operating conditions of the individual engine on which the tests are made. Three commercial fuels were used in two test engines having combustion chambers with and without effective air flow. Strictly comparative performance tests gave almost identical results for the three fuels. Analysis of indicator cards allowed a differentiation between fuels on a basis of rates of combustion. The same comparative ratings were obtained by determining the consistent operating range of injection advance angle for the three fuels. The difference in fuels is more pronounced in a quiescent combustion chamber than in one with high-velocity air flow. A fuel is considered suitable for the operating conditions of an engine with a quiescent combustion chamber if it permits the injection of the fuel to be advanced beyond the optimum without exceeding allowable knock or allowable maximum cylinder pressures.
NASA Technical Reports Server (NTRS)
OConnor, Cornelius J.; Rutishauser, David K.
2001-01-01
An aspect of airport terminal operations that holds potential for efficiency improvements is the separation criteria applied to aircraft for wake vortex avoidance. These criteria evolved to represent safe spacing under weather conditions conducive to the longest wake hazards, and are consequently overly conservative during a significant portion of operations. Under many ambient conditions, such as moderate crosswinds or turbulence, wake hazard durations are substantially reduced. To realize this reduction NASA has developed a proof-of-concept Aircraft Vortex Spacing System (AVOSS). Successfully operated in a real-time field demonstration during July 2000 at the Dallas Ft. Worth International Airport, AVOSS is a novel integration of weather sensors, wake sensors, and analytical wake prediction algorithms. Gains in airport throughput using AVOSS spacing as compared to the current criteria averaged 6%, with peak values approaching the theoretical maximum of 16%. The average throughput gain translates to 15-40% reductions in delay when applied to realistic capacity ratios at major airports.
NASA Astrophysics Data System (ADS)
Zakaria, Siti Nor Farhana; Aziz, Hamidi Abdul
2017-10-01
One of an anaerobic stabilized landfill leachate in Malaysia underwent ozonation process. The sample rich in chemical oxygen demand (COD) was collected from Alor Pongsu Landfill Site, Perak (APLS). This site has been operating since year 2000. The leachate also contains other pollutants that exceeded the standard discharge limit for wastewater effluents. The effectiveness of ozone (O3) dosage, pH variation, and reaction time during ozonation was evaluated to measure the performance of O3 and determine the maximum operational conditions for this treatment. The maximum removal efficiency for COD was 50% at an ozone dosage of 31 g/m3, natural of pH 8.5, and reaction time of 60 min. The biodegradability ratio (BOD5/COD) improved from 0.08 to 0.23 after treatment with O3. The ozonation method has enhanced the biodegradability ratio and resulted high percentage removal of COD. This improvement showed that oxidation has a great potential to remediate recalcitrant pollutant wastes, such as landfill leachate.
36 CFR 3.15 - What is the maximum noise level for the operation of a vessel?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false What is the maximum noise... SERVICE, DEPARTMENT OF THE INTERIOR BOATING AND WATER USE ACTIVITIES § 3.15 What is the maximum noise level for the operation of a vessel? (a) A person may not operate a vessel at a noise level exceeding...
36 CFR 3.15 - What is the maximum noise level for the operation of a vessel?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false What is the maximum noise... SERVICE, DEPARTMENT OF THE INTERIOR BOATING AND WATER USE ACTIVITIES § 3.15 What is the maximum noise level for the operation of a vessel? (a) A person may not operate a vessel at a noise level exceeding...
NASA Astrophysics Data System (ADS)
Sone, Yoshitsugu; Uno, Masatoshi; Hirose, Kazuyuki; Tajima, Michio; Ooto, Hiroki; Yamamoto, Masahiro; Eguro, Takashi; Sakai, Shigeru; Yoshida, Teiji
2005-05-01
The Japanese satellite 'HAYABUSA' is currently en route to an asteroid named ITOKAWA. The satellite is powered by a 13.2 Ah lithium-ion secondary battery. To realize maximum performance of the battery for long flight operation, the state-of-charge (SOC) of the battery is maintained at ca. 65% during storage in case it is required for contingency operations. To maintain this SOC condition, the battery is charged once a week. We further charge the battery up to 4.1 V/cell using bypass circuits to balance the cells every four months. The capacity of the battery was measured during the flight operation, which revealed the appropriate capacity for the HAYABUSA mission.
NASA Astrophysics Data System (ADS)
Baglio, V.; Stassi, A.; Matera, F. V.; Di Blasi, A.; Antonucci, V.; Aricò, A. S.
An investigation of properties and operating parameters of a passive DMFC monopolar mini-stack, such as catalyst loading and methanol concentration, was carried out. From this analysis, it was derived that a proper Pt loading is necessary to achieve the best compromise between electrode thickness and number of catalytic sites for the anode and cathode reactions to occur at suitable rates. Methanol concentrations ranging from 1 M up to 10 M and an air-breathing operation mode were investigated. A maximum power of 225 mW was obtained at ambient conditions for a three-cell stack, with an active single cell area of 4 cm 2, corresponding to a power density of about 20 mW cm -2.
Nickel-cadium batteries for Apollo telescope mount
NASA Technical Reports Server (NTRS)
Kirsch, W. W.; Shikoh, A. E.
1974-01-01
The operational testing and evaluation program is presented which was conducted on 20-ampere-hour nickel-cadmium (Ni-Cd) batteries for use on the Apollo telescope mount (ATM). The test program was initiated in 1967 to determine if the batteries could meet ATM mission requirements and to determine operating characteristics and methods. The ATM system power and charging power for the Ni-Cd secondary batteries is provided by a solar array during the 58-minute daylight portion of the orbit; during the 36-minute night portion of the orbit, the Ni-Cd secondary batteries will supply ATM system power. The test results reflect battery operating characteristics and parameters relative to simulated ATM orbital test conditions. Maximum voltage, charge requirements, capacity, temperature, and cyclic characteristics are presented.
Barzgar, Sonya; Hettiaratchi, Joseph Patrick; Pearse, Lauretta; Kumar, Sunil
2017-12-01
This study focussed on evaluating the effect of hydrogen sulfide (H 2 S) on biological oxidation of waste methane (CH 4 ) gas in compost biofilters, Batch experiments were conducted to determine the dependency of maximum methane oxidation rate (V max ) on two main factors; pH and moisture content, as well as their interaction effects. The maximum V max was observed at a pH of 7.2 with decreasing V max values observed with decreasing pH, irrespective of moisture content. Flow-through columns operated at a pH of 4.5 oxidized CH 4 at a flux rate of 53g/m 2 /d compared to 146g/m 2 /d in columns operated at neutral pH. No oxidation activity was observed for columns operated at pH 2.5, and DNA sequencing analysis of samples led to the conclusion that highly acidic conditions were responsible for inhibiting the ability of methanotrophs to oxidize CH 4 . Biofilter columns operated at pH 2.5 contained only 2% methanotrophs (type I) out of the total microbial population, compared to 55% in columns operated at pH 7.5. Overall, changes in the population of methanotrophs with acidification within the biofilters compromised its capacity to oxidize CH 4 which demonstrated that a compost biofilter could not operate efficiently in the presence of high levels of H 2 S. Copyright © 2017 Elsevier Ltd. All rights reserved.
A simple respirogram-based approach for the management of effluent from an activated sludge system.
Li, Zhi-Hua; Zhu, Yuan-Mo; Yang, Cheng-Jian; Zhang, Tian-Yu; Yu, Han-Qing
2018-08-01
Managing wastewater treatment plant (WWTP) based on respirometric analysis is a new and promising field. In this study, a multi-dimensional respirogram space was constructed, and an important index R es/t (ratio of in-situ respiration rate to maximum respiration rate) was derived as an alarm signal for the effluent quality control. A smaller R es/t value suggests better effluent. The critical R' es/t value used for determining whether the effluent meets the regulation depends on operational conditions, which were characterized by temperature and biomass ratio of heterotrophs to autotrophs. With given operational conditions, the critical R' es/t value can be calculated from the respirogram space and effluent conditions required by the discharge regulation, with no requirement for calibration of parameters or any additional measurements. Since it is simple, easy to use, and can be readily implemented online, this approach holds a great promise for applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Experimental investigation of bioethanol liquid phase dehydration using natural clinoptilolite.
Karimi, Samira; Ghobadian, Barat; Omidkhah, Mohammad-Reza; Towfighi, Jafar; Tavakkoli Yaraki, Mohammad
2016-05-01
An experimental study of bioethanol adsorption on natural Iranian clinoptilolite was carried out. Dynamic breakthrough curves were used to investigate the best adsorption conditions in bioethanol liquid phase. A laboratory setup was designed and fabricated for this purpose. In order to find the best operating conditions, the effect of liquid pressure, temperature and flow rate on breakthrough curves and consequently, maximum ethanol uptake by adsorbent were studied. The effects of different variables on final bioethanol concentration were investigated using Response Surface Methodology (RSM). The results showed that by working at optimum condition, feed with 96% (v/v) initial ethanol concentration could be purified up to 99.9% (v/v). In addition, the process was modeled using Box-Behnken model and optimum operational conditions to reach 99.9% for final ethanol concentration were found equal to 10.7 °C, 4.9 bar and 8 mL/min for liquid temperature, pressure and flow rate, respectively. Therefore, the selected natural Iranian clinoptilolite was found to be a promising adsorbent material for bioethanol dehydration process.
Experimental investigation of bioethanol liquid phase dehydration using natural clinoptilolite
Karimi, Samira; Ghobadian, Barat; Omidkhah, Mohammad-Reza; Towfighi, Jafar; Tavakkoli Yaraki, Mohammad
2016-01-01
An experimental study of bioethanol adsorption on natural Iranian clinoptilolite was carried out. Dynamic breakthrough curves were used to investigate the best adsorption conditions in bioethanol liquid phase. A laboratory setup was designed and fabricated for this purpose. In order to find the best operating conditions, the effect of liquid pressure, temperature and flow rate on breakthrough curves and consequently, maximum ethanol uptake by adsorbent were studied. The effects of different variables on final bioethanol concentration were investigated using Response Surface Methodology (RSM). The results showed that by working at optimum condition, feed with 96% (v/v) initial ethanol concentration could be purified up to 99.9% (v/v). In addition, the process was modeled using Box–Behnken model and optimum operational conditions to reach 99.9% for final ethanol concentration were found equal to 10.7 °C, 4.9 bar and 8 mL/min for liquid temperature, pressure and flow rate, respectively. Therefore, the selected natural Iranian clinoptilolite was found to be a promising adsorbent material for bioethanol dehydration process. PMID:27222748
Lee, Pil Hyong; Hwang, Sang Soon
2009-01-01
In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0–100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane. PMID:22291556
Lee, Pil Hyong; Hwang, Sang Soon
2009-01-01
In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0-100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane.
Thermo-electric analysis of the interconnection of the LHC main superconducting bus bars
NASA Astrophysics Data System (ADS)
Granieri, P. P.; Breschi, M.; Casali, M.; Bottura, L.; Siemko, A.
2013-01-01
Spurred by the question of the maximum allowable energy for the operation of the Large Hadron Collider (LHC), we have progressed in the understanding of the thermo-electric behavior of the 13 kA superconducting bus bars interconnecting its main magnets. A deep insight of the underlying mechanisms is required to ensure the protection of the accelerator against undesired effects of resistive transitions. This is especially important in case of defective interconnections which can jeopardize the operation of the whole LHC. In this paper we present a numerical model of the interconnections between the main dipole and quadrupole magnets, validated against experimental tests of an interconnection sample with a purposely built-in defect. We consider defective interconnections featuring a lack of bonding among the superconducting cables and the copper stabilizer components, such as those that could be present in the machine. We evaluate the critical defect length limiting the maximum allowable current for powering the magnets. We determine the dependence of the critical defect length on different parameters as the heat transfer towards the cooling helium bath, the quality of manufacturing, the operating conditions and the protection system parameters, and discuss the relevant mechanisms.
Maximum Relative Entropy of Coherence: An Operational Coherence Measure.
Bu, Kaifeng; Singh, Uttam; Fei, Shao-Ming; Pati, Arun Kumar; Wu, Junde
2017-10-13
The operational characterization of quantum coherence is the cornerstone in the development of the resource theory of coherence. We introduce a new coherence quantifier based on maximum relative entropy. We prove that the maximum relative entropy of coherence is directly related to the maximum overlap with maximally coherent states under a particular class of operations, which provides an operational interpretation of the maximum relative entropy of coherence. Moreover, we show that, for any coherent state, there are examples of subchannel discrimination problems such that this coherent state allows for a higher probability of successfully discriminating subchannels than that of all incoherent states. This advantage of coherent states in subchannel discrimination can be exactly characterized by the maximum relative entropy of coherence. By introducing a suitable smooth maximum relative entropy of coherence, we prove that the smooth maximum relative entropy of coherence provides a lower bound of one-shot coherence cost, and the maximum relative entropy of coherence is equivalent to the relative entropy of coherence in the asymptotic limit. Similar to the maximum relative entropy of coherence, the minimum relative entropy of coherence has also been investigated. We show that the minimum relative entropy of coherence provides an upper bound of one-shot coherence distillation, and in the asymptotic limit the minimum relative entropy of coherence is equivalent to the relative entropy of coherence.
Code of Federal Regulations, 2014 CFR
2014-07-01
... filter Wet scrubber Dry scrubber followed by fabric filter and wet scrubber Maximum operating parameters: Maximum charge rate Continuous 1×hour ✔ ✔ ✔ Maximum fabric filter inlet temperature Continuous 1×minute...
Code of Federal Regulations, 2013 CFR
2013-07-01
... filter Wet scrubber Dry scrubber followed by fabric filter and wet scrubber Maximum operating parameters: Maximum charge rate Continuous 1×hour ✔ ✔ ✔ Maximum fabric filter inlet temperature Continuous 1×minute...
High-Flow Jet Exit Rig Designed and Fabricated
NASA Technical Reports Server (NTRS)
Buehrle, Robert J.; Trimarchi, Paul A.
2003-01-01
The High-Flow Jet Exit Rig at the NASA Glenn Research Center is designed to test single flow jet nozzles and to measure the appropriate thrust and noise levels. The rig has been designed for the maximum hot condition of 16 lbm/sec of combustion air at 1960 R (maximum) and to produce a maximum thrust of 2000 lb. It was designed for cold flow of 29.1 lbm/sec of air at 530 R. In addition, it can test dual-flow nozzles (nozzles with bypass flow in addition to core flow) with independent control of each flow. The High- Flow Jet Exit Rig was successfully fabricated in late 2001 and is being readied for checkout tests. The rig will be installed in Glenn's Aeroacoustic Propulsion Laboratory. The High-Flow Jet Exit Rig consists of the following major components: a single component force balance, the natural-gas-fueled J-79 combustor assembly, the plenum and manifold assembly, an acoustic/instrumentation/seeding (A/I/S) section, a table, and the research nozzles. The rig will be unique in that it is designed to operate uncooled. The structure survives the 1960 R test condition because it uses carefully selected high temperature alloy materials such as Hastelloy-X. The lower plenum assembly was designed to operate at pressures to 450 psig at 1960 R, in accordance with the ASME B31.3 piping code. The natural gas-fueled combustor fires directly into the lower manifold. The hot air is directed through eight 1-1/2-in. supply pipes that supply the upper plenum. The flow is conditioned in the upper plenum prior to flowing to the research nozzle. The 1-1/2-in. supply lines are arranged in a U-shaped design to provide for a flexible piping system. The combustor assembly checkout was successfully conducted in Glenn's Engine Component Research Laboratory in the spring of 2001. The combustor is a low-smoke version of the J79 combustor used to power the F4 Phantom military aircraft. The natural gas-fueled combustor demonstrated high-efficiency combustion over a wide range of operating conditions. This wide operating envelope is required to support the testing of both single- and dual-flow nozzles. Key research goals include providing simultaneous, highly accurate acoustic, flow, and thrust measurements on jet nozzle models in realistic flight conditions, as well as providing scaleable acoustic results. The High-Flow Jet Exit Rig is a second-generation high-flow test rig. Improvements include cleaner flow with reduced levels of particulate, soot, and odor. Choked-flow metering is required with plus or minus 0.25-percent accuracy. Thrust measurements from 0 to 2000 lbf are required with plus or minus 0.25-percent accuracy. Improved acoustics will be achieved by minimizing noise through large pipe bend radii, lower internal flow velocities, and microdrilled choke plates with thousands of 0.040-in.- diameter holes.
49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...
49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...
49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...
49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...
49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...
Lighting Condition Analysis for Mars Moon Phobos
NASA Technical Reports Server (NTRS)
Li, Zu Qun; Crues, Edwin Z.; Bielski, Paul; De Carufel, Guy
2016-01-01
A manned mission to Phobos may be an important precursor and catalyst for the human exploration of Mars, as it will fully demonstrate the technologies for a successful Mars mission. A comprehensive understanding of Phobos' environment such as lighting condition and gravitational acceleration are essential to the mission success. The lighting condition is one of many critical factors for landing zone selection, vehicle power subsystem design, and surface mobility vehicle path planning. Due to the orbital characteristic of Phobos, the lighting condition will change dramatically from one Martian season to another. This study uses high fidelity computer simulation to investigate the lighting conditions, specifically the solar radiation flux over the surface, on Phobos. Ephemeris data from the Jet Propulsion Laboratory (JPL) DE405 model was used to model the state of the Sun, the Earth, and Mars. An occultation model was developed to simulate Phobos' self-shadowing and its solar eclipses by Mars. The propagated Phobos' state was compared with data from JPL's Horizon system to ensure the accuracy of the result. Results for Phobos lighting condition over one Martian year are presented in this paper, which include length of solar eclipse, average solar radiation intensity, surface exposure time, total maximum solar energy, and total surface solar energy (constrained by incident angle). The results show that Phobos' solar eclipse time changes throughout the Martian year with the maximum eclipse time occurring during the Martian spring and fall equinox and no solar eclipse during the Martian summer and winter solstice. Solar radiation intensity is close to minimum at the summer solstice and close to maximum at the winter solstice. Total surface exposure time is longer near the north pole and around the anti- Mars point. Total maximum solar energy is larger around the anti-Mars point. Total surface solar energy is higher around the anti-Mars point near the equator. The results from this study and others like it will be important in determining landing site selection, vehicle system design and mission operations for the human exploration of Phobos and subsequently Mars.
Penloglou, Giannis; Vasileiadou, Athina; Chatzidoukas, Christos; Kiparissides, Costas
2017-08-01
An integrated metabolic-polymerization-macroscopic model, describing the microbial production of polyhydroxybutyrate (PHB) in Azohydromonas lata bacteria, was developed and validated using a comprehensive series of experimental measurements. The model accounted for biomass growth, biopolymer accumulation, carbon and nitrogen sources utilization, oxygen mass transfer and uptake rates and average molecular weights of the accumulated PHB, produced under batch and fed-batch cultivation conditions. Model predictions were in excellent agreement with experimental measurements. The validated model was subsequently utilized to calculate optimal operating conditions and feeding policies for maximizing PHB productivity for desired PHB molecular properties. More specifically, two optimal fed-batch strategies were calculated and experimentally tested: (1) a nitrogen-limited fed-batch policy and (2) a nitrogen sufficient one. The calculated optimal operating policies resulted in a maximum PHB content (94% g/g) in the cultivated bacteria and a biopolymer productivity of 4.2 g/(l h), respectively. Moreover, it was demonstrated that different PHB grades with weight average molecular weights of up to 1513 kg/mol could be produced via the optimal selection of bioprocess operating conditions.
1975-11-11
acids such as myristic or oleic 12 acid . The maximum amount of these impurities is 3 weight percent. 13 Surface active agents are objectionable in ...lubricants require the lubricant to 21 operate in an environment having high pressure and high shear 22 conditions, a temperature variation from below... in naval rapid firing guns. It is required that lubricants for 4 these guns be effective from -54°C to +150°C. 5 Exi3ting lubricants have had
Synthetic Vision Technology Demonstration. Volume 1. Executive Summary
1993-12-01
instrufentation to permit Measurement Of fog and precipitation through Which the aircraft was flouwn as well as system and pilot performanc during those operations...normalized to the maximum value measured by these two sensors. No sharpness values could be extracted from the 95 GHz data for the higher rain rates ... extinction inferred from the measured visibility for the low visibility conditions was generally lower than for clear weather, but the visibility was
Ollson, Christopher A; Whitfield Aslund, Melissa L; Knopper, Loren D; Dan, Tereza
2014-01-01
The regions of Durham and York in Ontario, Canada have partnered to construct an energy-from-waste (EFW) thermal treatment facility as part of a long term strategy for the management of their municipal solid waste. In this paper we present the results of a comprehensive ecological risk assessment (ERA) for this planned facility, based on baseline sampling and site specific modeling to predict facility-related emissions, which was subsequently accepted by regulatory authorities. Emissions were estimated for both the approved initial operating design capacity of the facility (140,000 tonnes per year) and the maximum design capacity (400,000 tonnes per year). In general, calculated ecological hazard quotients (EHQs) and screening ratios (SRs) for receptors did not exceed the benchmark value (1.0). The only exceedances noted were generally due to existing baseline media concentrations, which did not differ from those expected for similar unimpacted sites in Ontario. This suggests that these exceedances reflect conservative assumptions applied in the risk assessment rather than actual potential risk. However, under predicted upset conditions at 400,000 tonnes per year (i.e., facility start-up, shutdown, and loss of air pollution control), a potential unacceptable risk was estimated for freshwater receptors with respect to benzo(g,h,i)perylene (SR=1.1), which could not be attributed to baseline conditions. Although this slight exceedance reflects a conservative worst-case scenario (upset conditions coinciding with worst-case meteorological conditions), further investigation of potential ecological risk should be performed if this facility is expanded to the maximum operating capacity in the future. © 2013.
Advanced Reciprocating Engine Systems (ARES) Research at Argonne National Laboratory. A Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Sreenath; Biruduganti, Muni; Bihari, Bipin
The goals of these experiments were to determine the potential of employing spectral measurements to deduce combustion metrics such as HRR, combustion temperatures, and equivalence ratios in a natural gas-fired reciprocating engine. A laser-ignited, natural gas-fired single-cylinder research engine was operated at various equivalence ratios between 0.6 and 1.0, while varying the EGR levels between 0% and maximum to thereby ensure steady combustion. Crank angle-resolved spectral signatures were collected over 266-795 nm, encompassing chemiluminescence emissions from OH*, CH*, and predominantly by CO2* species. Further, laser-induced gas breakdown spectra were recorded under various engine operating conditions.
CW and femtosecond operation of a diode-pumped Yb:BaY(2)F(8) laser.
Galzerano, G; Coluccelli, N; Gatti, D; Di Lieto, A; Tonelli, M; Laporta, P
2010-03-15
We report for the first time on laser action of a diode-pumped Yb:BaY(2)F(8) crystal. Both CW and femtosecond operations have been demonstrated at room-temperature conditions. A maximum output power of 0.56 W, a slope efficiency of 34%, and a tunability range from 1013 to 1067 nm have been obtained in CW regime. Transform-limited pulse trains with a minimum duration of 275 fs, an average power of 40 mW, and a repetition rate of 83 MHz have been achieved in a passive mode-locked regime using a semiconductor saturable absorber mirror.
Thermal and hydraulic analysis of a cylindrical blanket module design for a tokamak reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, A.Y.
1978-10-01
Various existing blanket design concepts for a tokamak fusion reactor were evaluated and assessed. These included the demonstration power reactors of ORNL, GA and others. As a result of this study, a cylindrical, modularized blanket design concept was developed. The module is a double-walled, stainless steel 316 cylinder containing liquid lithium for tritium breeding and is cooled by pressurized helium. Steady state and transient thermal conditions under normal and some off-design conditions were analyzed and presented. At the steady state reference operating point the maximum structure temperature is 452/sup 0/C at the maximum stressed location and is 495/sup 0/C atmore » the less stressed location. The coolant inlet pressure is 54.4 atm, the inlet temperature is 200/sup 0/C and the exit temperature is 435/sup 0/C. The coolant could be utilized with a helium/steam turbine power conversion system with a cycle thermal efficiency of 30.8%.« less
Kleidon, A.
2010-01-01
The Earth system is remarkably different from its planetary neighbours in that it shows pronounced, strong global cycling of matter. These global cycles result in the maintenance of a unique thermodynamic state of the Earth's atmosphere which is far from thermodynamic equilibrium (TE). Here, I provide a simple introduction of the thermodynamic basis to understand why Earth system processes operate so far away from TE. I use a simple toy model to illustrate the application of non-equilibrium thermodynamics and to classify applications of the proposed principle of maximum entropy production (MEP) to such processes into three different cases of contrasting flexibility in the boundary conditions. I then provide a brief overview of the different processes within the Earth system that produce entropy, review actual examples of MEP in environmental and ecological systems, and discuss the role of interactions among dissipative processes in making boundary conditions more flexible. I close with a brief summary and conclusion. PMID:20368248
Kleidon, A
2010-05-12
The Earth system is remarkably different from its planetary neighbours in that it shows pronounced, strong global cycling of matter. These global cycles result in the maintenance of a unique thermodynamic state of the Earth's atmosphere which is far from thermodynamic equilibrium (TE). Here, I provide a simple introduction of the thermodynamic basis to understand why Earth system processes operate so far away from TE. I use a simple toy model to illustrate the application of non-equilibrium thermodynamics and to classify applications of the proposed principle of maximum entropy production (MEP) to such processes into three different cases of contrasting flexibility in the boundary conditions. I then provide a brief overview of the different processes within the Earth system that produce entropy, review actual examples of MEP in environmental and ecological systems, and discuss the role of interactions among dissipative processes in making boundary conditions more flexible. I close with a brief summary and conclusion.
Utilization of Drinking Water Treatment Slurry to Produce Aluminum Sulfate Coagulant.
Fouad, Mahmoud M; Razek, Taha M A; Elgendy, Ahmed S
2017-02-01
In Egypt, water treatment consumes about 365 000 tons of aluminum sulfate and produces more than 100 million tons of sludge per year. The common disposal system of sludge in Egypt is to discharge it into natural waterways. Toxicity of aluminum, environmental regulations and costs of chemicals used in water treatment and sludge treatment processes led to an evaluation of coagulant recovery and subsequent reuse. The present work aimed at aluminum recovery from sludge of El-Shiekh Zayd water treatment plant (WTP) to produce aluminum sulfate coagulant. Sludge was characterized and the effect of five variables was tested and the process efficiency was evaluated at different operating conditions. Maximum recovery is 94.2% at acid concentration 1.5 N, sludge weight 5 g, mixing speed 60 rpm, temperature 60 °C and leaching time 40 min. Then optimum conditions were applied to get maximum recovery for aluminum sulfate and compared to commercial coagulant on raw water of El-Shiekh Zayd (WTP).
2018-01-01
The heat exchange properties of aircrew clothing including a Constant Wear Immersion Suit (CWIS), and the environmental conditions in which heat strain would impair operational performance, were investigated. The maximum evaporative potential (im/clo) of six clothing ensembles (three with a flight suit (FLY) and three with a CWIS) of varying undergarment layers were measured with a heated sweating manikin. Biophysical modelling estimated the environmental conditions in which body core temperature would elevate above 38.0°C during routine flight. The im/clo was reduced with additional undergarment layers, and was more restricted in CWIS compared to FLY ensembles. A significant linear relationship (r2 = 0.98, P<0.001) was observed between im/clo and the highest wet-bulb globe temperature in which the flight scenario could be completed without body core temperature exceeding 38.0°C. These findings provide a valuable tool for clothing manufacturers and mission planners for the development and selection of CWIS’s for aircrew. PMID:29723267
Energy Efficiency and Productivity Enhancement of Microbial Electrosynthesis of Acetate
LaBelle, Edward V.; May, Harold D.
2017-01-01
It was hypothesized that a lack of acetogenic biomass (biocatalyst) at the cathode of a microbial electrosynthesis system, due to electron and nutrient limitations, has prevented further improvement in acetate productivity and efficiency. In order to increase the biomass at the cathode and thereby performance, a bioelectrochemical system with this acetogenic community was operated under galvanostatic control and continuous media flow through a reticulated vitreous carbon (RVC) foam cathode. The combination of galvanostatic control and the high surface area cathode reduced the electron limitation and the continuous flow overcame the nutrient limitation while avoiding the accumulation of products and potential inhibitors. These conditions were set with the intention of operating the biocathode through the production of H2. Biofilm growth occurred on and within the unmodified RVC foam regardless of vigorous H2 generation on the cathode surface. A maximum volumetric rate or space time yield for acetate production of 0.78 g/Lcatholyte/h was achieved with 8 A/Lcatholyte (83.3 A/m2projected surface area of cathode) supplied to the continuous flow/culture bioelectrochemical reactors. The total Coulombic efficiency in H2 and acetate ranged from approximately 80–100%, with a maximum of 35% in acetate. The overall energy efficiency ranged from approximately 35–42% with a maximum to acetate of 12%. PMID:28515713
ANN based Real-Time Estimation of Power Generation of Different PV Module Types
NASA Astrophysics Data System (ADS)
Syafaruddin; Karatepe, Engin; Hiyama, Takashi
Distributed generation is expected to become more important in the future generation system. Utilities need to find solutions that help manage resources more efficiently. Effective smart grid solutions have been experienced by using real-time data to help refine and pinpoint inefficiencies for maintaining secure and reliable operating conditions. This paper proposes the application of Artificial Neural Network (ANN) for the real-time estimation of the maximum power generation of PV modules of different technologies. An intelligent technique is necessary required in this case due to the relationship between the maximum power of PV modules and the open circuit voltage and temperature is nonlinear and can't be easily expressed by an analytical expression for each technology. The proposed ANN method is using input signals of open circuit voltage and cell temperature instead of irradiance and ambient temperature to determine the estimated maximum power generation of PV modules. It is important for the utility to have the capability to perform this estimation for optimal operating points and diagnostic purposes that may be an early indicator of a need for maintenance and optimal energy management. The proposed method is accurately verified through a developed real-time simulator on the daily basis of irradiance and cell temperature changes.
Energy Efficiency and Productivity Enhancement of Microbial Electrosynthesis of Acetate.
LaBelle, Edward V; May, Harold D
2017-01-01
It was hypothesized that a lack of acetogenic biomass (biocatalyst) at the cathode of a microbial electrosynthesis system, due to electron and nutrient limitations, has prevented further improvement in acetate productivity and efficiency. In order to increase the biomass at the cathode and thereby performance, a bioelectrochemical system with this acetogenic community was operated under galvanostatic control and continuous media flow through a reticulated vitreous carbon (RVC) foam cathode. The combination of galvanostatic control and the high surface area cathode reduced the electron limitation and the continuous flow overcame the nutrient limitation while avoiding the accumulation of products and potential inhibitors. These conditions were set with the intention of operating the biocathode through the production of H 2 . Biofilm growth occurred on and within the unmodified RVC foam regardless of vigorous H 2 generation on the cathode surface. A maximum volumetric rate or space time yield for acetate production of 0.78 g/L catholyte /h was achieved with 8 A/L catholyte (83.3 A/m 2 projected surface area of cathode) supplied to the continuous flow/culture bioelectrochemical reactors. The total Coulombic efficiency in H 2 and acetate ranged from approximately 80-100%, with a maximum of 35% in acetate. The overall energy efficiency ranged from approximately 35-42% with a maximum to acetate of 12%.
26 CFR 1.410(a)-4 - Maximum age conditions and time of participation.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 26 Internal Revenue 5 2012-04-01 2011-04-01 true Maximum age conditions and time of participation.... § 1.410(a)-4 Maximum age conditions and time of participation. (a) Maximum age conditions—(1) General...) if the plan excludes from participation (on the basis of age) an employee who has attained an age...
26 CFR 1.410(a)-4 - Maximum age conditions and time of participation.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 26 Internal Revenue 5 2011-04-01 2011-04-01 false Maximum age conditions and time of participation.... § 1.410(a)-4 Maximum age conditions and time of participation. (a) Maximum age conditions—(1) General...) if the plan excludes from participation (on the basis of age) an employee who has attained an age...
26 CFR 1.410(a)-4 - Maximum age conditions and time of participation.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Maximum age conditions and time of participation... Maximum age conditions and time of participation. (a) Maximum age conditions—(1) General rule. A plan is... excludes from participation (on the basis of age) an employee who has attained an age specified by the plan...
Geometric scaling of artificial hair sensors for flow measurement under different conditions
NASA Astrophysics Data System (ADS)
Su, Weihua; Reich, Gregory W.
2017-03-01
Artificial hair sensors (AHSs) have been developed for prediction of the local flow speed and aerodynamic force around an airfoil and subsequent application in vibration control of the airfoil. Usually, a specific sensor design is only sensitive to the flow speeds within its operating flow measurement region. This paper aims at expanding this flow measurement concept of using AHSs to different flow speed conditions by properly sizing the parameters of the sensors, including the dimensions of the artificial hair, capillary, and carbon nanotubes (CNTs) that make up the sensor design, based on a baseline sensor design and its working flow condition. In doing so, the glass fiber hair is modeled as a cantilever beam with an elastic foundation, subject to the distributed aerodynamic drag over the length of the hair. Hair length and diameter, capillary depth, and CNT height are scaled by keeping the maximum compressive strain of the CNTs constant for different sensors under different speed conditions. Numerical studies will demonstrate the feasibility of the geometric scaling methodology by designing AHSs for aircraft with different dimensions and flight conditions, starting from the same baseline sensor. Finally, the operating bandwidth of the scaled sensors are explored.
NASA Astrophysics Data System (ADS)
Onn, Shing-Chung; Chiang, Hau-Jei; Hwang, Hang-Che; Wei, Jen-Ko; Cherng, Dao-Lien
1993-06-01
The dynamic behavior of a 2D turbulent mixing and combustion process has been studied numerically in the main combustion chamber of a solid-propellant ducted rocket (SDR). The mathematical model is based on the Favre-averaged conservation equations developed by Cherng (1990). Combustion efficiency, rather than specific impulse from earlier studies, is applied successfully to optimize the effects of two parameters by a multiple linear regression model. Specifically, the fuel-air equivalence ratio of the operating conditions and the air inlet location of configurations for the SDR combustor have been studied. For a equivalence ratio near the stoichiometric condition, the use of specific impulse or combustion efficiency will show similar trend in characterizing the reacting flow field in the combustor. For the overall fuel lean operating conditions, the change of combustion efficiency is much more sensitive to that of air inlet location than specific impulse does, suggesting combustion efficiency a better property than specific impulse in representing the condition toward flammability limits. In addition, the air inlet for maximum efficiency, in general, appears to be located at downstream of that for highest specific impulse. The optimal case for the effects of two parameters occurs at fuel lean condition, which shows a larger recirculation zone in front, deeper penetration of ram air into the combustor and much larger high temperature zone near the centerline of the combustor exit than those shown in the optimal case for overall equivalence ratio close to stoichiometric.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-16
... Tests and Inspections for Compliance With Maximum Authorized Train Speeds and Other Speed Restrictions... safety advisory; Operational tests and inspections for compliance with maximum authorized train speeds and other speed restrictions. SUMMARY: FRA is issuing Safety Advisory 2013-08 to stress to railroads...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Additional construction requirements for steel pipe using alternative maximum allowable operating pressure. 192.328 Section 192.328 Transportation... Lines and Mains § 192.328 Additional construction requirements for steel pipe using alternative maximum...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Additional construction requirements for steel pipe using alternative maximum allowable operating pressure. 192.328 Section 192.328 Transportation... Lines and Mains § 192.328 Additional construction requirements for steel pipe using alternative maximum...
A Flight Evaluation and Analysis of the Effect of Icing Conditions on the ZPG-2 Airship
NASA Technical Reports Server (NTRS)
Lewis, Willilam; Perkins, Porter J., Jr.
1958-01-01
A series of test flights was conducted by the U. S. Navy over a 3- year period to evaluate the effects of icing on the operation of the ZPG-2 airship. In supercooled. clouds, ice formed only on the forward edges of small protuberances and wires and presented no serious hazard to operation. Ice accretions of the glaze type which occurred in conditions described as freezing drizzle adversely affected various components to a somewhat greater extent. The results indicated, a need for protection of certain components such as antennas, propellers, and certain parts of the control system. The tests showed that icing of the large surface of the envelope occurred only in freezing rain or drizzle. Because of the infrequent occurrence of these conditions, the potential maximum severity could not be estimated from the test results. The increases in heaviness caused by icing in freezing rain and drizzle were substantial, but well within the operational capabilities of the airship. In order to estimate the potential operational significance of icing in freezing rain, theoretical calculations were used to estimate: (1) the rate of icing as a function of temperature and rainfall intensity, (2) the climatological probability of occurrence of various combinations of these variables, and (3) the significance of the warming influence of the ocean in alleviating freezing-rain conditions. The results of these calculations suggest that, although very heavy icing rates are possible in combinations of low temperature and high rainfall rate, the occurrence of such conditions is very infrequent in coastal areas and virtually impossible 200 or 300 miles offshore.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwin A. Harvego; Michael G. McKellar
2011-05-01
There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550°C and 750°C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550°C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as eithermore » a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550°C versus 850°C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO2 Brayton Recompression Cycle for different reactor outlet temperatures. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550°C and 750°C. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the critical point. The UniSim model was then optimized to maximize the power cycle thermal efficiency at the different maximum power cycle operating temperatures. The results of the analyses showed that power cycle thermal efficiencies in the range of 40 to 50% can be achieved.« less
2009 Continued Testing of the Orion Atmosphere Revitalization Technology
NASA Technical Reports Server (NTRS)
Button, Amy B.; Swerterlitsch, Jeffrey J.
2010-01-01
An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In three previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology in a sea-level pressure environment, with simulated and real human metabolic loads, in both open and closed-loop configurations. The test article design was iterated a third time before the latest series of such tests, which was performed in the first half of 2009. The new design incorporates a canister configuration modification for overall unit compactness and reduced pressure drop, as well as a new process flow control valve that incorporates both compressed gas purge and dual-end vacuum desorption capabilities. This newest test article is very similar to the flight article designs. Baseline tests of the new unit were performed to compare its performance to that of the previous test articles. Testing of compressed gas purge operations helped refine launchpad operating condition recommendations developed in earlier testing. Operating conditions used in flight program computer models were tested to validate the model projections. Specific operating conditions that were recommended by the JSC test team based on past test results were also tested for validation. The effects of vacuum regeneration line pressure on resulting cabin conditions was studied for high metabolic load periods, and a maximum pressure is recommended
2009 Continued Testing of the Orion Atmosphere Revitalization Technology
NASA Technical Reports Server (NTRS)
Button, Amy Lin; Sweterlitsch, Jeffrey
2009-01-01
An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In three previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology in a sea-level pressure environment with simulated and real human metabolic loads in both open and closed-loop configurations. The test article design was iterated a third time before the latest series of such tests, which was performed in the first half of 2009. The new design incorporates a canister configuration modification for overall unit compactness and reduced pressure drop, as well as a new process flow control valve that incorporates both compressed gas purge and dual-end vacuum desorption capabilities. This newest test article is very similar to the flight article designs. Baseline tests of the new unit were performed to compare its performance to that of the previous test articles. Testing of compressed gas purge operations helped refine launchpad operating condition recommendations developed in earlier testing. Operating conditions used in flight program computer models were tested to validate the model projections. Specific operating conditions that were recommended by the JSC test team based on past test results were also tested for validation. The effects of vacuum regeneration line pressure on resulting cabin conditions was studied for high metabolic load periods, and a maximum pressure is recommended.
Quantum engine efficiency bound beyond the second law of thermodynamics.
Niedenzu, Wolfgang; Mukherjee, Victor; Ghosh, Arnab; Kofman, Abraham G; Kurizki, Gershon
2018-01-11
According to the second law, the efficiency of cyclic heat engines is limited by the Carnot bound that is attained by engines that operate between two thermal baths under the reversibility condition whereby the total entropy does not increase. Quantum engines operating between a thermal and a squeezed-thermal bath have been shown to surpass this bound. Yet, their maximum efficiency cannot be determined by the reversibility condition, which may yield an unachievable efficiency bound above unity. Here we identify the fraction of the exchanged energy between a quantum system and a bath that necessarily causes an entropy change and derive an inequality for this change. This inequality reveals an efficiency bound for quantum engines energised by a non-thermal bath. This bound does not imply reversibility, unless the two baths are thermal. It cannot be solely deduced from the laws of thermodynamics.
Balloon launched decelerator test program: Post-test test report
NASA Technical Reports Server (NTRS)
Dickinson, D.; Schlemmer, J.; Hicks, F.; Michel, F.; Moog, R. D.
1972-01-01
Balloon Launched Decelerator Test (BLDT) flights were conducted during the summer of 1972 over the White Sands Missile Range. The purpose of these tests was to qualify the Viking disk-gap band parachute system behind a full-scale simulator of the Viking Entry Vehicle over the maximum range of entry conditions anticipated in the Viking '75 soft landing on Mars. Test concerns centered on the ability of a minimum weight parachute system to operate without structural damage in the turbulent wake of the blunt-body entry vehicle (140 deg, 11.5 diameter cone). This is the first known instance of parachute operation at supersonic speeds in the wake of such a large blunt body. The flight tests utilized the largest successful balloon-payload weight combination known to get to high altitude (120kft) where rocket engines were employed to boost the test vehicle to supersonic speeds and dynamic pressures simulating the range of conditions on Mars.
Effects of surface chemistry on hot corrosion life
NASA Technical Reports Server (NTRS)
Fryxell, R. E.
1984-01-01
Baseline burner rig hot corrosion with Udimet 700, Rene' 80; uncoated and with RT21, Codep, or NiCoCrAlY coatings were tested. Test conditions are: 900C, hourly thermal cycling, 0.5 ppm sodium as NaCl in the gas stream, velocity 0.3 Mach. The uncoated alloys exhibited substantial typical sulfidation in the range of 140 to 170 hours. The aluminide coatings show initial visual evidence of hot corrosion at about 400 hours, however, there is no such visual evidence for the NiCoCrAlY coatings. The turbine components show sulfidation. The extent of this distress appeared to be inversely related to the average length of mission which may, reflect greater percentage of operating time near ground level or greater percentage of operation time at takeoff conditions (higher temperatures). In some cases, however, the location of maximum distress did not exhibit the structural features of hot corrosion.
NASA Astrophysics Data System (ADS)
Abouzari-lotf, Ebrahim; Jacob, Mohan V.; Ghassemi, Hossein; Ahmad, Arshad; Nasef, Mohamed Mahmoud; Zakeri, Masoumeh; Mehdipour-Ataei, Shahram
2016-09-01
Polyoxometalate immobilized nanofiber was used to fabricate low gas permeable layer for composite membranes designed for proton exchange membrane fuel cell (PEMFC) operating at low relative humidity (RH). The composite membranes revealed enhanced proton conductivity in dry conditions compared with state-of-the-art pristine membrane (Nafion 112, N112). This was coupled with a low fuel crossover inheriting the composite membranes about 100 mV higher OCV than N112 when tested in PEMFC at 60 °C and 40% RH. A maximum power density of up to 930 mW cm-2 was also achieved which is substantially higher than the N112 under similar conditions (577 mW cm-2). Such remarkable performance enhancement along with undetectable leaching of immobilized polyoxometalate, high dimensional stability and low water uptake of the composite membranes suggest a strong potential for PEMFC under low RH operation.
Regression analysis of traction characteristics of traction fluids
NASA Technical Reports Server (NTRS)
Loewenthal, S. H.; Rohn, D. A.
1983-01-01
Traction data for Santotrac 50 and TDF-88 over a wide range of operating conditions were analyzed. An eight term correlation equation to predict the maximum traction coefficient and a six term correlation equation to predict the initial slope of the traction curve were developed. The slope correlation was corrected for size effect considering the compliance of the disks. The effects of different operating conditions on the traction performance of each traction fluid were studied. Both fluids exhibited a loss in traction with increases in spin, but the losses with the TDF-88 fluid were not as severe as those with Santotrac 50. Overall, both fluids exhibited similar performance, showing an increase in traction with contact pressure up to about 2.0 GPa, and a reduction in traction with higher surface speeds up to about 100 m/sec. The apparent stiffness of the traction contact, that is, film disk combination, increases with contact pressure and decreases with speed.
Emergency strategy optimization for the environmental control system in manned spacecraft
NASA Astrophysics Data System (ADS)
Li, Guoxiang; Pang, Liping; Liu, Meng; Fang, Yufeng; Zhang, Helin
2018-02-01
It is very important for a manned environmental control system (ECS) to be able to reconfigure its operation strategy in emergency conditions. In this article, a multi-objective optimization is established to design the optimal emergency strategy for an ECS in an insufficient power supply condition. The maximum ECS lifetime and the minimum power consumption are chosen as the optimization objectives. Some adjustable key variables are chosen as the optimization variables, which finally represent the reconfigured emergency strategy. The non-dominated sorting genetic algorithm-II is adopted to solve this multi-objective optimization problem. Optimization processes are conducted at four different carbon dioxide partial pressure control levels. The study results show that the Pareto-optimal frontiers obtained from this multi-objective optimization can represent the relationship between the lifetime and the power consumption of the ECS. Hence, the preferred emergency operation strategy can be recommended for situations when there is suddenly insufficient power.
Accelerated life tests of specimen heat pipe from Communication Technology Satellite (CTS) project
NASA Technical Reports Server (NTRS)
Tower, L. K.; Kaufman, W. B.
1977-01-01
A gas-loaded variable conductance heat pipe of stainless steel with methanol working fluid identical to one now on the CTS satellite was life tested in the laboratory at accelerated conditions for 14 200 hours, equivalent to about 70 000 hours at flight conditions. The noncondensible gas inventory increased about 20 percent over the original charge. The observed gas increase is estimated to increase operating temperature by about 2.2 C, insufficient to harm the electronic gear cooled by the heat pipes in the satellite. Tests of maximum heat input against evaporator elevation agree well with the manufacturer's predictions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... distribution systems. (a) No person may operate a low-pressure distribution system at a pressure high enough to...) No person may operate a low pressure distribution system at a pressure lower than the minimum... 49 Transportation 3 2012-10-01 2012-10-01 false Maximum and minimum allowable operating pressure...
Code of Federal Regulations, 2011 CFR
2011-10-01
... distribution systems. (a) No person may operate a low-pressure distribution system at a pressure high enough to...) No person may operate a low pressure distribution system at a pressure lower than the minimum... 49 Transportation 3 2011-10-01 2011-10-01 false Maximum and minimum allowable operating pressure...
Code of Federal Regulations, 2013 CFR
2013-10-01
... distribution systems. (a) No person may operate a low-pressure distribution system at a pressure high enough to...) No person may operate a low pressure distribution system at a pressure lower than the minimum... 49 Transportation 3 2013-10-01 2013-10-01 false Maximum and minimum allowable operating pressure...
Code of Federal Regulations, 2014 CFR
2014-10-01
... distribution systems. (a) No person may operate a low-pressure distribution system at a pressure high enough to...) No person may operate a low pressure distribution system at a pressure lower than the minimum... 49 Transportation 3 2014-10-01 2014-10-01 false Maximum and minimum allowable operating pressure...
Code of Federal Regulations, 2010 CFR
2010-10-01
... distribution systems. (a) No person may operate a low-pressure distribution system at a pressure high enough to...) No person may operate a low pressure distribution system at a pressure lower than the minimum... 49 Transportation 3 2010-10-01 2010-10-01 false Maximum and minimum allowable operating pressure...
NASA Technical Reports Server (NTRS)
Childs, Dara; Hale, Keith
1994-01-01
A facility and apparatus are described which determine stiffness, damping, and added-mass rotordynamic coefficients plus steady-state operating characteristics of high speed hydrostatic journal bearings. The apparatus has a current top speed of 29,800 rpm with a bearing diameter of 7.62 cm (3 in.). Purified warm water, 55 C (130 F), is used as a test fluid to achieve elevated Reynolds numbers during operation. The test-fluid pump yields a bearing maximum inlet pressure of 6.9 Mpa (1000 psi). Static load on the bearing is independently controlled and measured. Orthogonally mounted external shakers are used to excite the test stator in the direction of, and perpendicular to, the static load. The apparatus can independently calculate all rotordynamic coefficients at a given operating condition.
An approach to the parametric design of ion thrusters
NASA Technical Reports Server (NTRS)
Wilbur, Paul J.; Beattie, John R.; Hyman, Jay, Jr.
1988-01-01
A methodology that can be used to determine which of several physical constraints can limit ion thruster power and thrust, under various design and operating conditions, is presented. The methodology is exercised to demonstrate typical limitations imposed by grid system span-to-gap ratio, intragrid electric field, discharge chamber power per unit beam area, screen grid lifetime, and accelerator grid lifetime constraints. Limitations on power and thrust for a thruster defined by typical discharge chamber and grid system parameters when it is operated at maximum thrust-to-power are discussed. It is pointed out that other operational objectives such as optimization of payload fraction or mission duration can be substituted for the thrust-to-power objective and that the methodology can be used as a tool for mission analysis.
Bourne, Sarah K; Walcott, Brian P; Sheth, Sameer A; Coumans, Jean-Valery C E
2013-03-01
Performing neurological surgery is an inherently demanding task on the human body, both physically and mentally. Neurosurgeons routinely perform "high stakes" operations in the setting of mental and physical fatigue. These conditions may be not only the result of demanding operations, but also influential to their outcome. Similar to other performance-based endurance activities, training is paramount to successful outcomes. The inflection point, where training reaches the point of diminishing returns, is intensely debated. For the neurosurgeon, this point must be exploited to the maximum, as patients require both the best-trained and best-performing surgeon. In this review, we explore the delicate balance of training and performance, as well as some routinely used adjuncts to improve human performance. Copyright © 2012 Elsevier Ltd. All rights reserved.
Simultaneous triple 914 nm, 1084 nm, and 1086 nm operation of a diode-pumped Nd:YVO4 laser
NASA Astrophysics Data System (ADS)
Lü, Yanfei; Xia, Jing; Liu, Huilong; Pu, Xiaoyun
2014-10-01
We report a diode-pumped continuous-wave (cw) triple-wavelength Nd:YVO4 laser operating at 914, 1084, and 1086 nm. A theoretical analysis has been introduced to determine the threshold conditions for simultaneous triple-wavelength laser. Using a T-shaped cavity, we realized an efficient triple-wavelength operation at 4F3/2→4I9/2 and 4F3/2→4I11/2 transitions for Nd:YVO4 crystal, simultaneously. At an absorbed pump power of 16 W (or 25 W of incident pump power), the maximum output power was 2.3 W, which included 914 nm, 1084 nm, and 1086 nm three wavelengths, and the optical conversion efficiency with respect to the absorbed pump power was 14.4%.
Critical analysis of submerged membrane sequencing batch reactor operating conditions.
McAdam, Ewan; Judd, Simon J; Gildemeister, René; Drews, Anja; Kraume, Matthias
2005-10-01
To evaluate the Submerged Membrane Sequencing Batch Reactor process, several short-term studies were conducted to define critical flux, membrane aeration and intermittent filtration operation. Critical flux trials indicated that as mixed liquor suspended solids increased in concentration so would the propensity for membrane fouling. Consequently in order to characterise the impact of biomass concentration increase (that develops during permeate withdrawal) upon submerged microfiltration operation, two longer term studies were conducted, one with a falling hydraulic head and another with a continuous hydraulic head (as in membrane bio-reactors). Trans membrane pressure data was used to predict the maximum possible operating periods at 10 and 62 days for the falling hydraulic head and continuous hydraulic head respectively. Further analysis revealed that falling hydraulic head operation would require 21% more aeration to maintain a consistent crossflow velocity than continuous operation and would rely on pumping for full permeate withdrawal 80% earlier. This study concluded that further optimisation would be required to make this technology technically and economically viable.
Can chilling tolerance of C 4 photosynthesis in Miscanthus be transferred to sugarcane?
Glowacka, Katarzyna; Ahmed, Aasifuddin; Sharma, Shailendra; ...
2015-07-29
Our goal is to investigate whether chilling tolerance of C 4 photosynthesis in Miscanthus can be transferred to sugarcane by hybridization. Net leaf CO 2 uptake (A sat) and we measured the maximum operating efficiency of photosystem II (Ф PSII) in warm conditions (25 °C/20 °C), and then during and following a chilling treatment of 10 °C/5 °C for 11 day in controlled environment chambers.
The Characterisation of a PEM Fuel-Cell System with a Focus on UAS Applications
2014-01-01
consumption at rated output Approximately 580 ml/min (at normal conditions) Maximum permissible cell temperature Operation: 50 °C; starting: 45 °C...serves to control the temperature of the stack as well as to provide oxygen for the reaction. Fur- thermore, the theoretically computed airflow rate is...The stack temperature has a significant effect on the performance of a fuel cell. Therefore, an understanding of how a fuel cell functions across a
NASA Astrophysics Data System (ADS)
Sun, Kai; Wu, Hongfei; Cai, Yan; Xing, Yan
2014-06-01
A thermoelectric generator (TEG) is a very important kind of power supply for spacecraft, especially for deep-space missions, due to its long lifetime and high reliability. To develop a practical TEG power supply for spacecraft, a power conditioning stage is indispensable, being employed to convert the varying output voltage of the TEG modules to a definite voltage for feeding batteries or loads. To enhance the system reliability, a power conditioning stage based on analog-circuit maximum-power-point tracking (MPPT) control and a superbuck converter is proposed in this paper. The input of this power conditioning stage is connected to the output of the TEG modules, and the output of this stage is connected to the battery and loads. The superbuck converter is employed as the main circuit, featuring low input current ripples and high conversion efficiency. Since for spacecraft power systems reliable operation is the key target for control circuits, a reset-set flip-flop-based analog circuit is used as the basic control circuit to implement MPPT, being much simpler than digital control circuits and offering higher reliability. Experiments have verified the feasibility and effectiveness of the proposed power conditioning stage. The results show the advantages of the proposed stage, such as maximum utilization of TEG power, small input ripples, and good stability.
NASA Astrophysics Data System (ADS)
Gohari, Iman; Korobenko, Artem; Yan, Jinhui; Bazilevs, Yuri; Sarkar, Sutanu
2016-11-01
Wind is a renewable energy resource that offers several advantages including low pollutant emission and inexpensive construction. Wind turbines operate in conditions dictated by the Atmospheric Boundary Layer (ABL) and that motivates the study of coupling ABL simulations with wind turbine dynamics. The ABL simulations can be used for realistic modeling of the environment which, with the use of fluid-structure interaction, can give realistic predictions of extracted power, rotor loading, and blade structural response. The ABL simulations provide inflow boundary conditions to the wind-turbine simulator which uses arbitrary Lagrangian-Eulerian variational multiscale formulation. In the present work, ABL simulations are performed to examine two different scenarios: (i) A neutral ABL with zero heat-flux and inversion layer at 350m, in which the wind turbine experiences maximum mean shear; (2) A shallow ABL with the surface cooling-rate of -1 K/hr, in which the wind turbine experiences maximum mean velocity at the low-level-jet nose height. We will discuss differences in the unsteady flow between the two different ABL conditions and their impact on the performance of the wind turbine cluster in the coupled ABL-wind turbine simulations.
NASA Astrophysics Data System (ADS)
Ren, Lijiao; Ahn, Yongtae; Hou, Huijie; Zhang, Fang; Logan, Bruce E.
2014-07-01
Power production of four hydraulically connected microbial fuel cells (MFCs) was compared with the reactors operated using individual electrical circuits (individual), and when four anodes were wired together and connected to four cathodes all wired together (combined), in fed-batch or continuous flow conditions. Power production under these different conditions could not be made based on a single resistance, but instead required polarization tests to assess individual performance relative to the combined MFCs. Based on the power curves, power produced by the combined MFCs (2.12 ± 0.03 mW, 200 Ω) was the same as the summed power (2.13 mW, 50 Ω) produced by the four individual reactors in fed-batch mode. With continuous flow through the four MFCs, the maximum power (0.59 ± 0.01 mW) produced by the combined MFCs was slightly lower than the summed maximum power of the four individual reactors (0.68 ± 0.02 mW). There was a small parasitic current flow from adjacent anodes and cathodes, but overall performance was relatively unaffected. These findings demonstrate that optimal power production by reactors hydraulically and electrically connected can be predicted from performance by individual reactors.
Smale, Andrew; Tsouras, Theo
2017-01-01
We present a standardized test methodology and results for our evaluation of the Carefusion Alaris PC infusion pump, comprising the model 8015 PC Unit and the model 8100 Large Volume Pump (LVP) module. The evaluation consisted of basic suitability testing, internal component inspection, surface temperature measurement of selected internal components, and critical performance testing (infusion rate accuracy and occlusion alarm pressure) during conditions of typical hyperbaric oxygen (HBO₂) treatment in our facility's class A multiplace chamber. We have found that the pumps pose no enhanced risk as an ignition source, and that the pumps operate within manufacturer's specifications for flow rate and occlusion alarms at all stages of HBO₂ treatments, up to 4.0 ATA and pressurization and depressurization rates up to 180 kPa/minute. The pumps do not require purging with air or nitrogen and can be used unmodified, subject to the following conditions: pumps are undamaged, clean, fully charged, and absent from alcohol cleaning residue; pumps are powered from the internal NiMH battery only; maximum pressure exposure 4.0 ATA; maximum pressurization and depressurization rate of 180 kPa/minute; LVP modules locked in place with retaining screws. Copyright© Undersea and Hyperbaric Medical Society.
Fracture control method for composite tanks with load sharing liners
NASA Technical Reports Server (NTRS)
Bixler, W. D.
1975-01-01
The experimental program was based on the premise that the plastic sizing cycle, which each pressure vessel is subjected to prior to operation, acts as an effective proof test of the liner, screening out all flaws or cracks larger than a critical size. In doing so, flaw growth potential is available for cyclic operation at pressures less than the sizing pressure. Static fracture and cyclic life tests, involving laboratory type specimens and filament overwrapped tanks, were conducted on three liner materials: (1) 2219-T62 aluminum, (2) Inconel X750 STA, and (3) cryoformed 301 stainless steel. Variables included material condition, thickness, flaw size, flaw shape, temperature, sizing stress level, operating stress level and minimum-to-maximum operating stress ratio. From the empirical data base obtained, a procedure was established by which the service life of composite tanks with load sharing liners could be guaranteed with a high degree of confidence.
NTREES Testing and Operations Status
NASA Technical Reports Server (NTRS)
Emrich, Bill
2007-01-01
Nuclear Thermal Rockets or NTR's have been suggested as a propulsion system option for vehicles traveling to the moon or Mars. These engines are capable of providing high thrust at specific impulses at least twice that of today's best chemical engines. The performance constraints on these engines are mainly the result of temperature limitations on the fuel coupled with a limited ability to withstand chemical attack by the hot hydrogen propellant. To operate at maximum efficiency, fuel forms are desired which can withstand the extremely hot, hostile environment characteristic of NTR operation for at least several hours. The simulation of such an environment would require an experimental device which could simultaneously approximate the power, flow, and temperature conditions which a nuclear fuel element (or partial element) would encounter during NTR operation. Such a simulation would allow detailed studies of the fuel behavior and hydrogen flow characteristics under reactor like conditions to be performed. Currently, the construction of such a simulator has been completed at the Marshall Space Flight Center, and will be used in the future to evaluate a wide variety of fuel element designs and the materials of which they are fabricated. This present work addresses the operational status of the Nuclear Thermal Rocket Element Environmental Simulator or NTREES and some of the design considerations which were considered prior to and during its construction.
49 CFR 192.620 - Alternative maximum allowable operating pressure for certain steel pipelines.
Code of Federal Regulations, 2014 CFR
2014-10-01
... for certain steel pipelines. 192.620 Section 192.620 Transportation Other Regulations Relating to... STANDARDS Operations § 192.620 Alternative maximum allowable operating pressure for certain steel pipelines..., 2, or 3 location; (2) The pipeline segment is constructed of steel pipe meeting the additional...
49 CFR 192.620 - Alternative maximum allowable operating pressure for certain steel pipelines.
Code of Federal Regulations, 2011 CFR
2011-10-01
... of a maximum allowable operating pressure based on higher stress levels in the following areas: Take... pipeline at the increased stress level under this section with conventional operation; and (ii) Describe... targeted audience; and (B) Include information about the integrity management activities performed under...
49 CFR 192.620 - Alternative maximum allowable operating pressure for certain steel pipelines.
Code of Federal Regulations, 2013 CFR
2013-10-01
... of a maximum allowable operating pressure based on higher stress levels in the following areas: Take... pipeline at the increased stress level under this section with conventional operation; and (ii) Describe... targeted audience; and (B) Include information about the integrity management activities performed under...
49 CFR 192.620 - Alternative maximum allowable operating pressure for certain steel pipelines.
Code of Federal Regulations, 2012 CFR
2012-10-01
... of a maximum allowable operating pressure based on higher stress levels in the following areas: Take... pipeline at the increased stress level under this section with conventional operation; and (ii) Describe... targeted audience; and (B) Include information about the integrity management activities performed under...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-10
... profile that is dependent upon the pipelines attributes, its geographical location, design, operating... type of threats posed by the pipeline segment, including consideration of the age, design, pipe... calculation. There are several methods available for establishing MAOP or MOP. A hydrostatic pressure test...
Operating characteristics of a new ion source for KSTAR neutral beam injection system.
Kim, Tae-Seong; Jeong, Seung Ho; Chang, Doo-Hee; Lee, Kwang Won; In, Sang-Ryul
2014-02-01
A new positive ion source for the Korea Superconducting Tokamak Advanced Research neutral beam injection (KSTAR NBI-1) system was designed, fabricated, and assembled in 2011. The characteristics of the arc discharge and beam extraction were investigated using hydrogen and helium gas to find the optimum operating parameters of the arc power, filament voltage, gas pressure, extracting voltage, accelerating voltage, and decelerating voltage at the neutral beam test stand at the Korea Atomic Energy Research Institute in 2012. Based on the optimum operating condition, the new ion source was then conditioned, and performance tests were primarily finished. The accelerator system with enlarged apertures can extract a maximum 65 A ion beam with a beam energy of 100 keV. The arc efficiency and optimum beam perveance, at which the beam divergence is at a minimum, are estimated to be 1.0 A/kW and 2.5 uP, respectively. The beam extraction tests show that the design goal of delivering a 2 MW deuterium neutral beam into the KSTAR Tokamak plasma is achievable.
NASA Technical Reports Server (NTRS)
Grimes, Craig A. (Inventor); Ong, Keat Ghee (Inventor)
2003-01-01
A temperature sensing apparatus including a sensor element made of a magnetically soft material operatively arranged within a first and second time-varying interrogation magnetic field, the first time-varying magnetic field being generated at a frequency higher than that for the second magnetic field. A receiver, remote from the sensor element, is engaged to measure intensity of electromagnetic emissions from the sensor element to identify a relative maximum amplitude value for each of a plurality of higher-order harmonic frequency amplitudes so measured. A unit then determines a value for temperature (or other parameter of interst) using the relative maximum harmonic amplitude values identified. In other aspects of the invention, the focus is on an apparatus and technique for determining a value for of stress condition of a solid analyte and for determining a value for corrosion, using the relative maximum harmonic amplitude values identified. A magnetically hard element supporting a biasing field adjacent the magnetically soft sensor element can be included.
NASA Technical Reports Server (NTRS)
Graham, Robert C.; Hartmann, Melvin J.
1949-01-01
An investigation was conducted to determine the performance characteristics of the axial-flow supersonic compressor of the XJ55-FF-1 turbojet engine. An analysis of the performance of the rotor was made based on detailed flow measurements behind the rotor. The compressor apparently did not obtain the design normal-shock configuration in this investigation. A large redistribution of mass occurred toward the root of the rotor over the entire speed range; this condition was so acute at design speed that the tip sections were completely inoperative. The passage pressure recovery at maximum pressure ratio at 1614 feet per second varied from a maximum of 0.81 near the root to 0.53 near the tip, which indicated very poor efficiency of the flow process through the rotor. The results, however, indicated that the desired supersonic operation may be obtained by decreasing the effective contraction ratio of the rotor blade passage.
An Efficient Modulation Strategy for Cascaded Photovoltaic Systems Suffering From Module Mismatch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Cheng; Zhang, Kai; Xiong, Jian
Modular multilevel cascaded converter (MMCC) is a promising technique for medium/high-voltage high-power photovoltaic systems due to its modularity, scalability, and capability of distributed maximum power point tracking (MPPT) etc. However, distributed MPPT under module-mismatch might polarize the distribution of ac output voltages as well as the dc-link voltages among the modules, distort grid currents, and even cause system instability. For the better acceptance in practical applications, such issues need to be well addressed. Based on mismatch degree that is defined to consider both active power distribution and maximum modulation index, this paper presents an efficient modulation strategy for a cascaded-H-bridge-basedmore » MMCC under module mismatch. It can operate in loss-reducing mode or range-extending mode. By properly switching between the two modes, performance indices such as system efficiency, grid current quality, and balance of dc voltages, can be well coordinated. In this way, the MMCC system can maintain high-performance over a wide range of operating conditions. As a result, effectiveness of the proposed modulation strategy is proved with experiments.« less
Han, Wei; Wang, Bing; Zhou, Yan; Wang, De-Xin; Wang, Yan; Yue, Li-Ran; Li, Yong-Feng; Ren, Nan-Qi
2012-04-01
A novel continuous mixed immobilized sludge reactor (CMISR) containing activated carbon as support carrier was used for fermentative hydrogen production from molasses wastewater. When the CMISR system operated at the conditions of influent COD of 2000-6000mg/L, hydraulic retention time (HRT) of 6h and temperature of 35°C, stable ethanol type fermentation was formed after 40days operation. The H(2) content in biogas and chemical oxygen demand (COD) removal were estimated to be 46.6% and 13%, respectively. The effects of organic loading rates (OLRs) on the CMISR hydrogen production system were also investigated. It was found that the maximum hydrogen production rate of 12.51mmol/hL was obtained at OLR of 32kg/m(3)d and the maximum hydrogen yield by substrate consumed of 130.57mmol/mol happened at OLR of 16kg/m(3)d. Therefore, the continuous mixed immobilized sludge reactor (CMISR) could be a promising immobilized system for fermentative hydrogen production. Copyright © 2012 Elsevier Ltd. All rights reserved.
A direct ascorbate fuel cell with an anion exchange membrane
NASA Astrophysics Data System (ADS)
Muneeb, Omar; Do, Emily; Tran, Timothy; Boyd, Desiree; Huynh, Michelle; Ghosn, Gregory; Haan, John L.
2017-05-01
Ascorbic Acid (Vitamin C) is investigated as a renewable alternative fuel for alkaline direct liquid fuel cells (DLFCs). The environmentally- and biologically-friendly compound, L-ascorbic acid (AA) has been modeled and studied experimentally under acidic fuel cell conditions. In this work, we demonstrate that ascorbic acid is a more efficient fuel in alkaline media than in acidic media. An operating direct ascorbate fuel cell is constructed with the combination of L-ascorbic acid and KOH as the anode fuel, air or oxygen as the oxidant, a polymer anion exchange membrane, metal or carbon black anode materials and metal cathode catalyst. Operation of the fuel cell at 60 °C using 1 M AA and 1 M KOH as the anode fuel and electrolyte, respectively, and oxygen gas at the cathode, produces a maximum power density of 73 mW cm-2, maximum current density of 497 mA cm-2 and an open circuit voltage of 0.90 V. This performance is significantly greater than that of an ascorbic acid fuel cell with a cation exchange membrane, and it is competitive with alkaline DLFCs fueled by alcohols.
An Efficient Modulation Strategy for Cascaded Photovoltaic Systems Suffering From Module Mismatch
Wang, Cheng; Zhang, Kai; Xiong, Jian; ...
2017-09-26
Modular multilevel cascaded converter (MMCC) is a promising technique for medium/high-voltage high-power photovoltaic systems due to its modularity, scalability, and capability of distributed maximum power point tracking (MPPT) etc. However, distributed MPPT under module-mismatch might polarize the distribution of ac output voltages as well as the dc-link voltages among the modules, distort grid currents, and even cause system instability. For the better acceptance in practical applications, such issues need to be well addressed. Based on mismatch degree that is defined to consider both active power distribution and maximum modulation index, this paper presents an efficient modulation strategy for a cascaded-H-bridge-basedmore » MMCC under module mismatch. It can operate in loss-reducing mode or range-extending mode. By properly switching between the two modes, performance indices such as system efficiency, grid current quality, and balance of dc voltages, can be well coordinated. In this way, the MMCC system can maintain high-performance over a wide range of operating conditions. As a result, effectiveness of the proposed modulation strategy is proved with experiments.« less
Preethi, V; Kanmani, S
2016-10-01
Hydrogen production by gas-phase photocatalytic splitting of Hydrogen Sulphide (H2S) was investigated on four semiconductor photocatalysts including CuGa1.6Fe0.4O2, ZnFe2O3, (CdS + ZnS)/Fe2O3 and Ce/TiO2. The CdS and ZnS coated core shell particles (CdS + ZnS)/Fe2O3 shows the highest rate of hydrogen (H2) production under optimized conditions. Packed bed tubular reactor was used to study the performance of prepared photocatalysts. Selection of the best packing material is a key for maximum removal efficiency. Cheap, lightweight and easily adsorbing vermiculate materials were used as a novel packing material and were found to be effective in splitting H2S. Effect of various operating parameters like flow rate, sulphide concentration, catalyst dosage, light irradiation were tested and optimized for maximum H2 conversion of 92% from industrial waste H2S. Copyright © 2016 Elsevier Ltd. All rights reserved.
Flexible Cryogenic Heat Pipe Development Program
NASA Technical Reports Server (NTRS)
1976-01-01
A heat pipe was designed for operation in the 100 - 200 K temperature range with maximum heat transport as a primary design goal; another designed for operation in the 15 - 100 K temperature range with maximum flexibility as a design goal. Optimum geometry and materials for the container and wicking systems were determined. The high power (100 - 200 K) heat pipe was tested with methane at 100 - 140 K, and test data indicated only partial priming with a performance limit of less than 50 percent of theoretical. A series of tests were conducted with ammonia at approximately 280 K to determine the performance under varying fluid charge and test conditions. The low temperature heat pipe was tested with oxygen at 85 - 95 K and with methanol at 295 - 315 K. Performance of the low temperature heat pipe was below theoretical predictions. Results of the completed testing are presented and possible performance limitation mechanisms are discussed. The lower-than-expected performance was felt to be due to small traces of non-condensible gases which prevented the composite wick from priming.
Devi, Rani; Alemayehu, Esayas; Singh, Vijender; Kumar, Ashok; Mengistie, Embialle
2008-05-01
An attempt was made to investigate the removal of fluoride, arsenic and coliform bacteria from drinking water using modified homemade filter media. Batch mode experimental study was conducted to test the efficiency of modified homemade filter for reduction of impurities under the operating condition of treatment time. The physico-chemical and biological analysis of water samples had been done before and after the treatment with filter media, using standard methods. Optimum operating treatment time was determined for maximum removal of these impurities by running the experiment for 2, 4, 6, 8, 10 and 12h, respectively. The maximum reduction of fluoride, arsenic and coliform bacteria in percentage was 85.60%, 93.07% and 100% and their residual values were 0.72 mg/l, 0.009 mg/l and 0 coliform cells/100ml, respectively after a treatment time of 10h. These residual values were under the permissible limits prescribed by WHO. Hence this could be a cheap, easy and an efficient technique for removal of fluoride, arsenic and coliform bacteria from drinking water.
NASA Astrophysics Data System (ADS)
Douvartzides, S.; Karmalis, I.
2016-11-01
A detailed method is presented on the thermal design of a natural gas - diesel dual fuel internal combustion engine. An 18 cylinder four stroke turbocharged engine is considered to operate at a maximum speed of 500 rpm for marine and power plant applications. Thermodynamic, heat transfer and fluid flow phenomena are mathematically analyzed to provide a real cycle analysis together with a complete set of calculated operation conditions, power characteristics and engine efficiencies. The method is found to provide results in close agreement to published data for the actual performance of similar engines such as V18 MAN 51/60DF.
Introduction to Voigt's wind power plant. [energy conversion efficiency
NASA Technical Reports Server (NTRS)
Tompkin, J.
1973-01-01
The design and operation of a 100 kilowatt wind driven generator are reported. Its high speed three-bladed turbine operates at a height of 50 meters. Blades are rigidly connected to the hub and turbine revolutions change linearly with wind velocity, maintaining a constant speed ratio of blade tip velocity to wind velocity over the full predetermined wind range. Three generators installed in the gondola generate either dc or ac current. Based on local wind conditions, the device has a maximum output of 720 kilowatts at a wind velocity of 16 meters per second. Total electrical capacity is 750 kilowatts, and power output per year is 2,135,000 kilowatt/hours.
49 CFR 174.86 - Maximum allowable operating speed.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Handling of Placarded Rail Cars, Transport Vehicles and Freight Containers § 174.86 Maximum allowable operating speed. (a) For molten metals and molten glass shipped in packagings other than those prescribed in...
49 CFR 174.86 - Maximum allowable operating speed.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Handling of Placarded Rail Cars, Transport Vehicles and Freight Containers § 174.86 Maximum allowable operating speed. (a) For molten metals and molten glass shipped in packagings other than those prescribed in...
49 CFR 174.86 - Maximum allowable operating speed.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Handling of Placarded Rail Cars, Transport Vehicles and Freight Containers § 174.86 Maximum allowable operating speed. (a) For molten metals and molten glass shipped in packagings other than those prescribed in...
Dynamic analysis of concentrated solar supercritical CO2-based power generation closed-loop cycle
Osorio, Julian D.; Hovsapian, Rob; Ordonez, Juan C.
2016-01-01
Here, the dynamic behavior of a concentrated solar power (CSP) supercritical CO 2 cycle is studied under different seasonal conditions. The system analyzed is composed of a central receiver, hot and cold thermal energy storage units, a heat exchanger, a recuperator, and multi-stage compression-expansion subsystems with intercoolers and reheaters between compressors and turbines respectively. Energy models for each component of the system are developed in order to optimize operating and design parameters such as mass flow rate, intermediate pressures and the effective area of the recuperator to lead to maximum efficiency. Our results show that the parametric optimization leads themore » system to a process efficiency of about 21 % and a maximum power output close to 1.5 MW. The thermal energy storage allows the system to operate for several hours after sunset. This operating time is approximately increased from 220 to 480 minutes after optimization. The hot and cold thermal energy storage also lessens the temperature fluctuations by providing smooth changes of temperatures at the turbines and compressors inlets. Our results indicate that concentrated solar systems using supercritical CO 2 could be a viable alternative to satisfying energy needs in desert areas with scarce water and fossil fuel resources.« less
Effects of suspension of air-conditioning on airtight-type racks.
Kanzaki, M; Fujieda, M; Furukawa, T
2001-10-01
Although isolation racks are superior to open-type racks in terms of securing breeding conditions for laboratory animals, the contingency-proofing capability of the former has yet to be determined. Therefore, from the view of risk management, we studied the environmental change in isolation racks by forcibly suspending ventilation and air-conditioning and confirming the maximal time length for complete recovery to the original condition after restarting their operations. The isolation racks were placed in a room that was equipped with an independent air-conditioning system. When the inside condition of the racks reached 22-24 degrees C and 59-64% of relative humidity, the air-conditioning and ventilation were forcibly suspended and the subsequent temperature, relative humidity, ammonium and CO2 concentrations in the racks were measured over time. We found that after suspending the air-conditioning and ventilation, it took 40-60 min for temperature, and about 10 min for relative humidity to exceed the maximum values (temperature and relative humidity) referred to in the Showa 58 Nenban Guideline Jikken Doubutsu Shisetsu no Kenchiku oyobi Setsubi (Guidelines of buildings and facilities for experimental animals in Japan; Year 1983 edition). After 17 hr 25 min of the suspension of air-conditioning and ventilation, two rats were found dead. Then, the air-conditioning and ventilation were restarted. It took about 2 hr for temperature, and 50 min for relative humidity to regain the guideline values. The ammonium concentration stayed within the guideline value with a maximum concentration of 2 ppm in the experimental period, whereas the CO2 concentration was found to exceed 9% at the time of animal death.
Photonic efficiency of the photodegradation of paracetamol in water by the photo-Fenton process.
Yamal-Turbay, E; Ortega, E; Conte, L O; Graells, M; Mansilla, H D; Alfano, O M; Pérez-Moya, M
2015-01-01
An experimental study of the homogeneous Fenton and photo-Fenton degradation of 4-amidophenol (paracetamol, PCT) is presented. For all the operation conditions evaluated, PCT degradation is efficiently attained by both Fenton and photo-Fenton processes. Also, photonic efficiencies of PCT degradation and mineralization are determined under different experimental conditions, characterizing the influence of hydrogen peroxide (H2O2) and Fe(II) on both contaminant degradation and sample mineralization. The maximum photonic degradation efficiencies for 5 and 10 mg L(-1) Fe(II) were 3.9 (H2O2 = 189 mg L(-1)) and 5 (H2O2 = 378 mg L(-1)), respectively. For higher concentrations of oxidant, H2O2 acts as a "scavenger" radical, competing in pollutant degradation and reducing the reaction rate. Moreover, in order to quantify the consumption of the oxidizing agent, the specific consumption of the hydrogen peroxide was also evaluated. For all operating conditions of both hydrogen peroxide and Fe(II) concentration, the consumption values obtained for Fenton process were always higher than the corresponding values observed for photo-Fenton. This implies a less efficient use of the oxidizing agent for dark conditions.
Microprocessor-controlled step-down maximum-power-point tracker for photovoltaic systems
NASA Astrophysics Data System (ADS)
Mazmuder, R. K.; Haidar, S.
1992-12-01
An efficient maximum power point tracker (MPPT) has been developed and can be used with a photovoltaic (PV) array and a load which requires lower voltage than the PV array voltage to be operated. The MPPT makes the PV array to operate at maximum power point (MPP) under all insolation and temperature, which ensures the maximum amount of available PV power to be delivered to the load. The performance of the MPPT has been studied under different insolation levels.
Code of Federal Regulations, 2010 CFR
2010-07-01
... rural HMIWI HMIWI a with dry scrubber followed by fabric filter HMIWI a with wet scrubber HMIWI a with dry scrubber followed by fabric filter and wet scrubber Maximum operating parameters: Maximum charge rate Once per charge Once per charge ✔ ✔ ✔ ✔ Maximum fabric filter inlet temperature Continuous Once...
Loukriz, Abdelhamid; Haddadi, Mourad; Messalti, Sabir
2016-05-01
Improvement of the efficiency of photovoltaic system based on new maximum power point tracking (MPPT) algorithms is the most promising solution due to its low cost and its easy implementation without equipment updating. Many MPPT methods with fixed step size have been developed. However, when atmospheric conditions change rapidly , the performance of conventional algorithms is reduced. In this paper, a new variable step size Incremental Conductance IC MPPT algorithm has been proposed. Modeling and simulation of different operational conditions of conventional Incremental Conductance IC and proposed methods are presented. The proposed method was developed and tested successfully on a photovoltaic system based on Flyback converter and control circuit using dsPIC30F4011. Both, simulation and experimental design are provided in several aspects. A comparative study between the proposed variable step size and fixed step size IC MPPT method under similar operating conditions is presented. The obtained results demonstrate the efficiency of the proposed MPPT algorithm in terms of speed in MPP tracking and accuracy. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Syngas production by high temperature steam/CO2 coelectrolysis using solid oxide electrolysis cells.
Chen, Xinbing; Guan, Chengzhi; Xiao, Guoping; Du, Xianlong; Wang, Jian-Qiang
2015-01-01
High temperature (HT) steam/CO2 coelectrolysis with solid oxide electrolysis cells (SOECs) using the electricity and heat generated from clean energies is an important alternative for syngas production without fossil fuel consumption and greenhouse gas emissions. Herein, reaction characteristics and the outlet syngas composition of HT steam/CO2 coelectrolysis under different operating conditions, including distinct inlet gas compositions and electrolysis current densities, are systematically studied at 800 °C using commercially available SOECs. The HT coelectrolysis process, which has comparable performance to HT steam electrolysis, is more active than the HT CO2 electrolysis process, indicating the important contribution of the reverse water-gas shift reaction in the formation of CO. The outlet syngas composition from HT steam/CO2 coelectrolysis is very sensitive to the operating conditions, indicating the feasibility of controlling the syngas composition by varying these conditions. Maximum steam and CO2 utilizations of 77% and 76% are achieved at 1.0 A cm(-2) with an inlet gas composition of 20% H2/40% steam/40% CO2.
Results of a XIPS(copyrighted) 25-cm Thruster Discharge Cathode Wear Test
NASA Technical Reports Server (NTRS)
Polk, James E.; Goebel, Dan M.; Tighe, William
2009-01-01
The Xenon Ion Propulsion System (XIPS(c)) 25-cm thruster produced by L-3 Communications Electron Technologies, Inc. offers a number of potential benefits for planetary missions, including high efficiency and high Isp over a large power throttling range and availability from an active product line. The thruster is qualified for use on commercial communications satellites, which have requirements differing from those for typical planetary missions. In particular, deep space missions require longer service life over a broad range of throttling conditions. A XIPS (c) discharge cathode assembly was subjected to a long duration test to extend operating experience at the maximum power point and at throttled conditions unique to planetary mission applications. A total of 16079 hours were accumulated at conditions corresponding to the full power engine operating point at 4.2 kWe, an intermediate power point at 2.76 kWe and the minimum power point at 0.49 kWe. Minor performance losses and cathode keeper erosion were observed at the full power point, but there were no changes in performance and negligible erosion at the intermediate and minimum power points.
Ongoing Wear Test of a XIPS(c) 25-Centimeter Thruster Discharge Cathode
NASA Technical Reports Server (NTRS)
Polk, James E.; Goebel, Dan M.; Tighe, William
2008-01-01
The Xenon Ion Propulsion System (XIPS(c)) 25-cm thruster produced by L-3 Communications Electron Technologies, Inc. offers a number of potential benefits for planetary missions, including high efficiency and high Isp over a large power throttling range and availability from an active product line. The thruster is qualified for use on commercial communications satellites, which have requirements differing from those for typical planetary missions. In particular, deep space missions require longer service life over a broad range of throttling conditions. A XIPS(c) discharge cathode assembly is currently undergoing a long duration test to extend operating experience at the maximum power point and at throttled conditions unique to planetary mission applications. A total of 11080 hours have been accumulated at conditions corresponding to the full power engine operating point at 4.2 kWe and an intermediate power point at 2.76 kWe. Minor performance losses and cathode keeper erosion were observed at the full power point, but there were no changes in performance and negligible erosion at the intermediate power point.
Three color laser fluorometer for studies of phytoplankton fluorescence
NASA Technical Reports Server (NTRS)
Phinney, David A.; Yentsch, C. S.; Rohrer, J.
1988-01-01
A three-color laser fluorometer has been developed for field work operations. Using two tunable dye lasers (excitation wavelengths at 440 nm and 530 nm), broadband wavelength optical filters were selected to obtain maximum fluorescence sensitivity at wavelengths greater than 675 nm (chlorophyll) and 575 + or - 15 nm (phycoerythrin). The laser fluorometer permits the measurement of phytoplankton pigments under static or flowing conditions and more closely resembles the time scales (ns) and energy levels (mW) of other laser-induced fluorescence instruments.
Simulation and performance of brushless dc motor actuators
NASA Astrophysics Data System (ADS)
Gerba, A., Jr.
1985-12-01
The simulation model for a Brushless D.C. Motor and the associated commutation power conditioner transistor model are presented. The necessary conditions for maximum power output while operating at steady-state speed and sinusoidally distributed air-gap flux are developed. Comparison of simulated model with the measured performance of a typical motor are done both on time response waveforms and on average performance characteristics. These preliminary results indicate good agreement. Plans for model improvement and testing of a motor-driven positioning device for model evaluation are outlined.
Treatment of pulp and paper industry bleaching effluent by electrocoagulant process.
Sridhar, R; Sivakumar, V; Prince Immanuel, V; Prakash Maran, J
2011-02-28
The experiments were carried out in an electrocoagulation reactor with aluminum as sacrificial electrodes. The influence of electrolysis time, current density, pH, NaCl concentration, rotational speed of the stirrer and electrode distance on reduction of color, COD and BOD were studied in detail. From the experimental results, 15 mA/cm(2) current density, pH of 7, 1 g/l NaCl, 100 rpm, 28°C temperature and 3 cm electrode distance were found to be optimum for maximum reduction of color, COD and BOD. The reduction of color, COD and BOD under the optimum condition were found to be 94%, 90% and 87% respectively. The electrode energy consumption was calculated and found to be varied from 10.1 to 12.9 kWh/m(3) depending on the operating conditions. Under optimal operating condition such as 15 mA/cm(2) current density, pH of 7, 1 g/l NaCl, 100 rpm, 28°C temperature and 3 cm electrode distance, the operating cost was found to be 1.56 US $/m(3). The experimental results proved that the electrocoagulation is a suitable method for treating bleaching plant effluents for reuse. Copyright © 2010 Elsevier B.V. All rights reserved.
del Agua, Isabel; Usack, Joseph G; Angenent, Largus T
2015-01-01
The objective of this work was to compare two different high-rate anaerobic bioreactor configurations--the anaerobic sequencing batch reactor (ASBR) and the upflow anaerobic solid removal (UASR) reactor--for the treatment of a solid-rich organic wastewater with a high strength. The two, 4.5-L reactors were operated in parallel for close to 100 days under mesophilic conditions (37°C) with non-granular biomass by feeding a pumpkin wastewater with ∼4% solids. The organic loading rate of pumpkin wastewater was increased periodically to a maximum of 8 g COD L(-1) d(-1) by shortening the hydraulic retention time to 5.3 days. Compositional analysis of pumpkin wastewater revealed deficiencies in the trace metal cobalt and alkalinity. With supplementation, the ASBR outperformed the UASR reactor with total chemical oxygen demand (COD) removal efficiencies of 64% and 53%, respectively, achieving a methane yield of 0.27 and 0.20 L CH4 g(-1) COD fed to the ASBR and UASR, respectively. The better performance realized with the ASBR and this specific wastewater was attributed to its semi-batch, dynamic operating conditions rather than the continuous operating conditions of the UASR reactor.
Start-up of thermophilic-dry anaerobic digestion of OFMSW using adapted modified SEBAC inoculum.
Fdéz-Güelfo, L A; Alvarez-Gallego, C; Sales Márquez, D; Romero García, L I
2010-12-01
The work presented here concerns the start-up and stabilization stages of a Continuous Stirred Tank Reactor (CSTR) semicontinuously fed for the treatment of the Organic Fraction of Municipal Solid Waste (OFMSW) through anaerobic digestion at thermophilic temperature range (55 degrees C) and dry conditions (30% Total Solids). The procedure reported involves two novel aspects with respect to other start-up and stabilization protocols reported in the literature. The novel aspects concern the adaptation of the inoculum to both the operating conditions (thermophilic and dry) and to the type of waste by employing a modified SEBAC (Sequential Batch Anaerobic Composting) system and, secondly, the direct start-up of the process in a thermophilic temperature regime and feeding of the system from the first day of operation. In this way a significant reduction in the start-up time and stabilization is achieved i.e. 110 days in comparison to 250 days for the processes reported by other authors for the same type of waste and digester. The system presents suitable operational conditions to stabilize the reactor at SRT of 35 days, with a maximum biogas production of 1.944 LR/L.d with a CH(4) and CO(2) percentage of 25.27% and 68.15%, respectively. 2010 Elsevier Ltd. All rights reserved.
Lv, Zheng-Hui; Wang, Jing; Yang, Guang-Feng; Feng, Li-Juan; Mu, Jun; Zhu, Liang; Xu, Xiang-Yang
2018-02-01
In order to evaluate the enhancement mechanisms of enhanced startup performance in biofilm systems for polluted source water pretreatment, three lab-scale reactors with elastic stereo media (ESM) were operated under different enhanced sediment and hydraulic agitation conditions. It is interesting to found the previously underestimated or overlooked effects of sediment on the enhancement of pollutants removal performance and enrichment of functional bacteria in biofilm systems. The maximum NH 4 + -N removal rate of 0.35 mg L -1 h -1 in sediment enhanced condition was 2.19 times of that in control reactor. Sediment contributed to 42.0-56.5% of NH 4 + -N removal and 15.4-41.2% of total nitrogen removal in different reactors under different operation conditions. The enhanced hydraulic agitation with sediment further improved the operation performance and accumulation of functional bacteria. Generally, Proteobacteria (48.9-52.1%), Bacteroidetes (18.9-20.8%) and Actinobacteria (15.7-18.5%) were dominant in both sediment and ESM bioiflm at phylum level. The potentially functional bacteria found in sediment and ESM biofilm samples with some functional bacteria mainly presented in sediment samples only (e.g., Genera Bacillus and Lactococcus of Firmicutes phylum) may commonly contribute to the removal of nitrogen and organics.
NASA Astrophysics Data System (ADS)
Rathod, Maureen L.
Initially 3D FEM simulation of a simplified mixer was used to examine the effect of mixer configuration and operating conditions on dispersive mixing of a non-Newtonian fluid. Horizontal and vertical velocity magnitudes increased with increasing mixer speed, while maximum axial velocity and shear rate were greater with staggered paddles. In contrast, parallel paddles produced an area of efficient dispersive mixing between the center of the paddle and the barrel wall. This study was expanded to encompass the complete nine-paddle mixing section using power-law and Bird-Carreau fluid models. In the center of the mixer, simple shear flow was seen, corresponding with high [special character omitted]. Efficient dispersive mixing appeared near the barrel wall at all flow rates and near the barrel center with parallel paddles. Areas of backflow, improving fluid retention time, occurred with staggered paddles. The Bird-Carreau fluid showed greater influence of paddle motion under the same operating conditions due to the inelastic nature of the fluid. Shear-thinning behavior also resulted in greater maximum shear rate as shearing became easier with decreasing fluid viscosity. Shear rate distributions are frequently calculated, but extension rate calculations have not been made in a complex geometry since Debbaut and Crochet (1988) defined extension rate as the ratio of the third to the second invariant of the strain rate tensor. Extension rate was assumed to be negligible in most studies, but here extension rate is shown to be significant. It is possible to calculate maximum stable bubble diameter from capillary number if shear and extension rates in a flow field are known. Extension rate distributions were calculated for Newtonian and non-Newtonian fluids. High extension and shear rates were found in the intermeshing region. Extension is the major influence on critical capillary number and maximum stable bubble diameter, but when extension rate values are low shear rate has a larger impact. Examination of maximum stable bubble diameter through the mixer predicted areas of higher bubble dispersion based on flow type. This research has advanced simulation of non-Newtonian fluid and shown that direct calculation of extension rate is possible, demonstrating the effect of extension rate on bubble break-up.
Ackland, David C; Robinson, Dale; Redhead, Michael; Lee, Peter Vee Sin; Moskaljuk, Adrian; Dimitroulis, George
2017-05-01
Personalized prosthetic joint replacements have important applications in cases of complex bone and joint conditions where the shape and size of off-the-shelf components may not be adequate. The objective of this study was to design, test and fabricate a personalized 3D-printed prosthesis for a patient requiring total joint replacement surgery of the temporomandibular joint (TMJ). The new 'Melbourne' prosthetic TMJ design featured a condylar component sized specifically to the patient and fixation screw positions that avoid potential intra-operative damage to the mandibular nerve. The Melbourne prosthetic TMJ was developed for a 58-year-old female recipient with end-stage osteoarthritis of the TMJ. The load response of the prosthesis during chewing and a maximum-force bite was quantified using a personalized musculoskeletal model of the patient's masticatory system developed using medical images. The simulations were then repeated after implantation of the Biomet Microfixation prosthetic TMJ, an established stock device. The maximum condylar stresses, screw stress and mandibular stress at the screw-bone interface were lower in the Melbourne prosthetic TMJ (259.6MPa, 312.9MPa and 198.4MPa, respectively) than those in the Biomet Microfixation device (284.0MPa, 416.0MPa and 262.2MPa, respectively) during the maximum-force bite, with similar trends also observed during the chewing bite. After trialing surgical placement and evaluating prosthetic TMJ stability using cadaveric specimens, the prosthesis was fabricated using 3D printing, sterilized, and implanted into the female recipient. Six months post-operatively, the prosthesis recipient had a normal jaw opening distance (40.0 mm), with no complications identified. The new design features and immediate load response of the Melbourne prosthetic TMJ suggests that it may provide improved clinical and biomechanical joint function compared to a commonly used stock device, and reduce risk of intra-operative nerve damage during placement. The framework presented may be useful for designing and testing customized devices for the treatment of debilitating bone and joint conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
A field demonstration of the microbial treatment of sour produced water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sublette, K.L.; Morse, D.; Raterman, K.
1995-12-31
The potential for detoxification and deodorization of sulfide-laden water (sour water) by microbial treatment was evaluated at a petroleum production site under field conditions. A sulfide-tolerant strain of the chemautotroph and facultative anaerobe, Thiobacillus denitrificans, was introduced into an oil-skimming pit of the Amoco Production Company LACT 10 Unit of the Salt Creek Field, Wyoming. Field-produced water enters this pit from the oil/water separation treatment train at an average flowrate of 5,000 bbl/D (795 m{sup 3}/D) with a potential maximum of 98,000 bbl/D (15,580 m{sup 3}/D). Water conditions at the pit inlet are 4,800 mg/l TDS, 100 mg/l sulfide, pHmore » 7.8, and 107{degrees}F. To this water an aqueous solution of ammonium nitrate and diphosphorous pentoxide was added to provide required nutrients for the bacteria. The first 20% of the pit was aerated to a maximum depth of 5 ft (1.5 m) to facilitate the aerobic oxidation of sulfide. No provisions for pH control or biomass recovery and recycle were made. Pilot operations were initiated in October 1992 with the inoculation of the 19,000 bbl (3,020 m{sup 3}) pit with 40 lb (18.1 kg) of dry weight biomass. After a brief acclimation period, a nearly constant mass flux of 175 lb/D (80 kg/D) sulfide was established to the pit. Bio-oxidation of sulfide to elemental sulfur and sulfate was immediate and complete. Subsequent pilot operations focused upon process optimization and process sensitivity to system upsets. The process appeared most sensitive to large variations in sulfide loading due to maximum water discharge events. However, recoveries from such events could be accomplished within hours. This paper details all pertinent aspects of pilot operation, performance, and economics. Based on this body of evidence, it is suggested that the oxidation of inorganic sulfides by T denitrificans represents a viable concept for the treatment of sour water coproduced with oil and gas.« less
Degradation of 2,4-dichlorophenol using combined approach based on ultrasound, ozone and catalyst.
Barik, Arati J; Gogate, Parag R
2017-05-01
The present work investigates the application of ultrasound and ozone operated individually and in combination with catalyst (ZnO and CuO) for establishing the possible synergistic effects for the degradation of 2,4-dichlorophenol. The dependency of extent of degradation on the operating parameters like temperature (over the range of 30-36°C), initial pH (3-9), catalyst as ZnO (loading of 0.025-0.15g/L) and CuO (loading of 0.02-0.1g/L) and initial concentration of 2,4-DCP (20-50ppm) has been established to maximize the efficacy of ultrasound (US) induced degradation. Using only US, the maximum degradation of 2,4-DCP obtained was 28.85% under optimized conditions of initial concentration as 20ppm, pH of 5 and temperature of 34°C. Study of effect of ozone flow rate for approach of only ozone revealed that maximum degradation was obtained at 400mg/h ozone flow rate. The combined approaches such as US+O 3 , US+ZnO, US+CuO, O 3 +ZnO, O 3 +CuO, US+O 3 +ZnO and US+O 3 +CuO have been subsequently investigated under optimized conditions and observed to be more efficient as compared to individual approaches. The maximum extent of degradation for the combined operation of US+O 3 (400mg/h)+ZnO (0.1g/L) and US+O 3 (400mg/h)+CuO (0.08g/L) has been obtained as 95.66% and 97.03% respectively. The degradation products of 2,4-DCP have been identified using GC-MS analysis and the toxicity analysis has also been performed based on the anti-microbial activity test (agar-well diffusion method) for the different treatment strategies. The present work has conclusively established that the combined approach of US+O 3 +CuO was the most efficient treatment scheme resulting in near complete degradation of 2,4-DCP with production of less toxic intermediates. Copyright © 2016 Elsevier B.V. All rights reserved.
Comprehensive assessment of the L-lysine production process from fermentation of sugarcane molasses.
Anaya-Reza, Omar; Lopez-Arenas, Teresa
2017-07-01
L-Lysine is an essential amino acid that can be produced by chemical processes from fossil raw materials, as well as by microbial fermentation, the latter being a more efficient and environmentally friendly procedure. In this work, the production process of L-lysine-HCl is studied using a systematic approach based on modeling and simulation, which supports decision making in the early stage of process design. The study considers two analysis stages: first, the dynamic analysis of the fermentation reactor, where the conversion of sugars from sugarcane molasses to L-lysine with a strain of Corynebacterium glutamicum is carried out. In this stage, the operation mode (either batch or fed batch) and operating conditions of the fermentation reactor are defined to reach the maximum technical criteria. Afterwards, the second analysis stage relates to the industrial production process of L-lysine-HCl, where the fermentation reactor, upstream processing, and downstream processing are included. In this stage, the influence of key parameters on the overall process performance is scrutinized through the evaluation of several technical, economic, and environmental criteria, to determine a profitable and sustainable design of the L-lysine production process. The main results show how the operating conditions, process design, and selection of evaluation criteria can influence in the conceptual design. The best plant design shows maximum product yield (0.31 g L-lysine/g glucose) and productivity (1.99 g/L/h), achieving 26.5% return on investment (ROI) with a payback period (PBP) of 3.8 years, decreasing water and energy consumption, and with a low potential environmental impact (PEI) index.
Studies in High Current Density Ion Sources for Heavy Ion Fusion Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacon-Golcher, Edwin
This dissertation develops diverse research on small (diameter ~ few mm), high current density (J ~ several tens of mA/cm 2) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield (
40 CFR 420.134 - New source performance standards (NSPS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... Source Performance Standards (NSPS) Pollutant Maximum daily 1 Maximum monthly avg. 1 TSS 0.00998 0.00465... operations. Subpart M—New Source Performance Standards (NSPS) Pollutant Maximum daily 1 Maximum monthly avg...
40 CFR 420.134 - New source performance standards (NSPS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... Source Performance Standards (NSPS) Pollutant Maximum daily 1 Maximum monthly avg. 1 TSS 0.00998 0.00465... operations. Subpart M—New Source Performance Standards (NSPS) Pollutant Maximum daily 1 Maximum monthly avg...
NASA Astrophysics Data System (ADS)
Kochedykov, S. S.; Noev, A. N.; Dushkin, A. V.; Gubin, I. A.
2018-05-01
On the basis of the mathematical graph theory, the method of optimum switching of infocommunication networks in the conditions of cyber attacks is developed. The idea of representation of a set of possible ways on the graph in the form of the multilevel tree ordered by rules of algebra of a logic theory is the cornerstone of a method. As a criterion of optimization, the maximum of network transmission capacity to which assessment Ford- Falkerson's theorem is applied is used. The method is realized in the form of a numerical algorithm, which can be used not only for design, but also for operational management of infocommunication networks in conditions of violation of the functioning of their switching centers.
NASA Astrophysics Data System (ADS)
Ginsburg, B. R.
The design criteria, materials, and initial test results of composite flywheels produced under DOE/Sandia contract are reported. The flywheels were required to store from 1-5 kWh with a total energy density of 80 W-h/kg at the maximum operational speed. The maximum diameter was set at 0.6 m, coupled to a maximum thickness of 0.2 m. A maximum running time at full speed of 1000 hr, in addition to a 10,000 cycle lifetime was mandated, together with a radial overlap in the material. The unit selected was a circumferentially wound composite rim made of graphite/epoxy mounted on an aluminum mandrel ring connected to an aluminum hub consisting of two constant stress disks. A tangentially wound graphite/epoxy overlap covered the rings. All conditions, i.e., rotation at 22,000 rpm and a measured storage of 1.94 kWh were verified in the first test series, although a second flywheel failed in subsequent tests when the temperature was inadvertantly allowed to rise from 15 F to over 200 F. Retest of the first flywheel again satisfied design goals. The units are considered as ideal for coupling with solar energy and wind turbine systems.
System for adding sulfur to a fuel cell stack system for improved fuel cell stability
Mukerjee, Subhasish; Haltiner, Jr., Karl J; Weissman, Jeffrey G
2013-08-13
A system for adding sulfur to a reformate stream feeding a fuel cell stack, having a sulfur source for providing sulfur to the reformate stream and a metering device in fluid connection with the sulfur source and the reformate stream. The metering device injects sulfur from the sulfur source to the reformate stream at a predetermined rate, thereby providing a conditioned reformate stream to the fuel cell stack. The system provides a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.
A passivity criterion for sampled-data bilateral teleoperation systems.
Jazayeri, Ali; Tavakoli, Mahdi
2013-01-01
A teleoperation system consists of a teleoperator, a human operator, and a remote environment. Conditions involving system and controller parameters that ensure the teleoperator passivity can serve as control design guidelines to attain maximum teleoperation transparency while maintaining system stability. In this paper, sufficient conditions for teleoperator passivity are derived for when position error-based controllers are implemented in discrete-time. This new analysis is necessary because discretization causes energy leaks and does not necessarily preserve the passivity of the system. The proposed criterion for sampled-data teleoperator passivity imposes lower bounds on the teleoperator's robots dampings, an upper bound on the sampling time, and bounds on the control gains. The criterion is verified through simulations and experiments.
Cell voltage versus electrode potential range in aqueous supercapacitors
Dai, Zengxin; Peng, Chuang; Chae, Jung Hoon; Ng, Kok Chiang; Chen, George Z.
2015-01-01
Supercapacitors with aqueous electrolytes and nanostructured composite electrodes are attractive because of their high charging-discharging speed, long cycle life, low environmental impact and wide commercial affordability. However, the energy capacity of aqueous supercapacitors is limited by the electrochemical window of water. In this paper, a recently reported engineering strategy is further developed and demonstrated to correlate the maximum charging voltage of a supercapacitor with the capacitive potential ranges and the capacitance ratio of the two electrodes. Beyond the maximum charging voltage, a supercapacitor may still operate, but at the expense of a reduced cycle life. In addition, it is shown that the supercapacitor performance is strongly affected by the initial and zero charge potentials of the electrodes. Further, the differences are highlighted and elaborated between freshly prepared, aged under open circuit conditions, and cycled electrodes of composites of conducting polymers and carbon nanotubes. The first voltammetric charging-discharging cycle has an electrode conditioning effect to change the electrodes from their initial potentials to the potential of zero voltage, and reduce the irreversibility. PMID:25897670
Damage in Monolithic Thin-Film Photovoltaic Modules Due to Partial Shade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silverman, Timothy J.; Mansfield, Lorelle; Repins, Ingrid
2016-09-01
The typical configuration of monolithic thin-film photovoltaic modules makes it possible for partial shade to place one or more cells in such a module in reverse bias. Reverse bias operation leads to high voltage, current density, and power density conditions, which can act as driving forces for failure. We showed that a brief outdoor shadow event can cause a 7% permanent loss in power. We applied an indoor partial shade durability test that moves beyond the standard hot spot endurance test by using more realistic mask and bias conditions and by carefully quantifying the permanent change in performance due tomore » the stress. With the addition of a pass criterion based on change in maximum power, this procedure will soon be proposed as a part of the module-type qualification test. All six commercial copper indium gallium diselenide and cadmium telluride modules we tested experienced permanent damage due to the indoor partial shade test, ranging from 4% to 14% loss in maximum power. We conclude by summarizing ways to mitigate partial shade stress at the cell, module, and system levels.« less
[Hygienic evaluation of direct heating of the air delivered to the shaft].
Velichkovskiĭ, B T; Malikov, Iu K; Troitskaia, N A; Belen'kaia, M A; Sergeeva, N V; Shirokova, O V; Kashanskiĭ, S V; Slyshkina, T V; Simonova, O V; Zykova, V A
2011-01-01
The paper gives the results of exploring a test pre-heating system for the air (APHS) delivered to the shaft. The system has been first used in the Urals. The supply air is heated by burning natural gas in the air current. The APHS system with a RG air heater (000 "Gas-Engineering") is equipped in addition to the existing heaters to enhance heat supply reliability in northern conditions. The data of the studies show that in all periods of the heating season (interseason, moderate frosts, the coldest month), the concentrations of hazardous substances, such as nitric oxides, nitric dioxide, sulfur dioxide, carbon dioxide, benz(a)pyrene, solid aerosol in the shaft-delivered air, do not exceed those given in the existing regulation provided that the design operating conditions are met. With the maximum gas consumption, the coldest month only was marked by the nitric dioxide content being greater than the standard values, causing the maximum projected natural gas consumption to be lower in the APHS system. The air level of nitric dioxide proved to be a major hygiene indicator while using this air heater.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-04
... project. The normal daily operation cycle involves pumping water from the lower reservoir to the upper... acre upper reservoir with 1,087 acre-feet of usable storage between the maximum operating elevation of... lower reservoir with 1,221 acre-feet of usable storage between the maximum operating elevation of 10,002...
Changes of turbidity during the phenol oxidation by photo-Fenton treatment.
Villota, Natalia; Camarero, Luis M; Lomas, Jose M; Perez, Jonatan
2014-11-01
Turbidity presented by phenol solutions oxidized with Fenton reagent shows the tendency of a first order intermediate kinetics. Thus, turbidity can be considered a representative parameter of the presence of intermediate oxidation species, which are generated along the decomposition of toxic and reluctant contaminants, such as phenol. Moreover, that parameter presents a linear dependence with the catalyst dosage, but is also determined by the initial contaminant load. When analyzing the oxidation mechanism of phenol, it is found that the maximum turbidity occurs when the treatment is carried out at oxidant to phenol molar ratios R = 4.0. These oxidation conditions correspond to the presence of a reaction mixture mainly composed of dihydroxylated rings, precursors of the muconic acid formation. The oxidation via "para" comprises the formation reactions of charge transfer complexes (quinhydrone), between the para-dihydroxylated intermediates (hydroquinone) and the para-substituted quinones (p-benzoquinone), which are quite unstable and reactive species, quickly decomposed into hydroxyhydroquinones. Working with oxidant ratios up to R = 6.0, the maximum observed value of turbidity in the oxidized solutions is kept almost constant. It is found that, in these conditions, the pyrogallol formation is maximal, what is generated through the degradation of ortho-species (catechol and ortho-benzoquinone) and meta-substituted (resorcinol). Operating with ratios over R = 6.0, these intermediates are decomposed into biodegradable acids, generating lower turbidity in the solution. Then, the residual turbidity is a function of the molar ratio of the ferrous ions vs. moles of oxidant utilized in the essays, that lets to estimate the stoichiometric dosage of catalyst as 20 mg/L at pH = 3.0, whereas operating in stoichiometric conditions, R = 14.0, the residual turbidity of water results almost null.
Thermal distribution of microwave antenna for atrial fibrillation catheter ablation.
Zhang, Huijuan; Nan, Qun; Liu, Youjun
2013-09-01
The aim of this study is to investigate the effects of ablation parameters on thermal distribution during microwave atrial fibrillation catheter ablation, such as ablation time, ablation power, blood condition and antenna placement, and give proper ablative parameters to realise transmural ablation. In this paper, simplified 3D antenna-myocardium-blood finite element method models were built to simulate the endocardial ablation operation. Thermal distribution was obtained based on the coupled electromagnetic-thermal analysis. Under different antenna placement conditions and different microwave power inputs within 60 s, the lesion dimensions (maximum depth, maximum width) of the ablation zones were analysed. The ablation width and depth increased with the ablation time. The increase rate significantly slowed down after 10 s. The maximum temperature was located in 1 mm under the antenna tip when perpendicular to the endocardium, while 1.5 mm away from the antenna axis and 26 mm along the antenna (with antenna length about 30 mm) in the myocardium when parallel to the endocardium. The maximum temperature in the ablated area decreased and the effective ablation area (with the temperature raised to 50°C) shifted deeper into the myocardium due to the blood cooling. The research validated that the microwave antenna can provide continuous long and linear lesions for the treatment of atrial fibrillation. The dimensions of the created lesion widths were all larger than those of the depths. It is easy for the microwave antenna to produce transmural lesions for an atrial wall thickness of 2-6 mm by adjusting the applied power and ablation time.
Valenzuela-Reyes, Edgardo; Casas-Flores, Sergio; Isordia-Jasso, Isabel; Arriaga, Sonia
2014-09-01
In this work, several conditions of pH and inlet load (IL) were applied to a scale laboratory biofilter treating n-hexane vapors during 143 days. During the first 79 days of operation (period 1, P1), the system was fed with neutral pH mineral medium (MM) and the IL was progressively decreased from 177 to 16 g m(-3) h(-1). A maximum elimination capacity (EC) of 30 g m(-3) h(-1) was obtained at an IL of 176.9 ± 9.8 g m(-3) h(-1). During the following 64 days (period 2, P2), acidic conditions were induced by feeding the biofilter with acidic buffer solution and pH 4 MM in order to evaluate the effect of bacterial community changes on EC. Within the acidic period, a maximum EC of 54 g m(-3) h(-1) (IL 132.3 ± 13 g m(-3) h(-1)) was achieved. Sequence analysis of 16S rDNA genes amplified from the consortium revealed the presence of Sphingobacteria, Actinobacteria, and α-, β- and γ-Proteobacteria. An Actinobacteria of the Mycobacterium genus had presence throughout the whole experiment of biofiltration showing resistance to fluctuating pH and IL conditions. Batch tests confirm the bacterial predominance and a negligible contribution of fungi in the degradation of n-hexane.
Multicriteria ranking of workplaces regarding working conditions in a mining company.
Bogdanović, Dejan; Stanković, Vladimir; Urošević, Snežana; Stojanović, Miloš
2016-12-01
Ranking of workplaces with respect to working conditions is very significant for each company. It indicates the positions where employees are most exposed to adverse effects resulting from the working environment, which endangers their health. This article presents the results obtained for 12 different production workplaces in the copper mining and smelting complex RTB Bor - 'Veliki Krivelj' open pit, based on six parameters measured regularly which defined the following working environment conditions: air temperature, light, noise, dustiness, chemical hazards and vibrations. The ranking of workplaces has been performed by PROMETHEE/GAIA. Additional optimization of workplaces is done by PROMETHEE V with the given limits related to maximum permitted values for working environment parameters. The obtained results indicate that the most difficult workplace is on the excavation location (excavator operator). This method can be successfully used for solving similar kinds of problems, in order to improve working conditions.
Modeling of the adsorptive removal of arsenic(III) using plant biomass: a bioremedial approach
NASA Astrophysics Data System (ADS)
Roy, Palas; Dey, Uttiya; Chattoraj, Soumya; Mukhopadhyay, Debasis; Mondal, Naba Kumar
2017-06-01
In the present work, the possibility of using a non-conventional finely ground (250 μm) Azadirachta indica (neem) bark powder [AiBP] has been tested as a low-cost biosorbent for the removal of arsenic(III) from water. The removal of As(III) was studied by performing a series of biosorption experiments (batch and column). The biosorption behavior of As(III) for batch and column operations were examined in the concentration ranges of 50-500 µg L-1 and 500.0-2000.0 µg L-1, respectively. Under optimized batch conditions, the AiBP could remove up to 89.96 % of As(III) in water system. The artificial neural network (ANN) model was developed from batch experimental data sets which provided reasonable predictive performance ( R 2 = 0.961; 0.954) of As(III) biosorption. In batch operation, the initial As(III) concentration had the most significant impact on the biosorption process. For column operation, central composite design (CCD) was applied to investigate the influence on the breakthrough time for optimization of As(III) biosorption process and evaluation of interacting effects of different operating variables. The optimized result of CCD revealed that the AiBP was an effective and economically feasible biosorbent with maximum breakthrough time of 653.9 min, when the independent variables were retained at 2.0 g AiBP dose, 2000.0 µg L-1 initial As(III) concentrations, and 3.0 mL min-1 flow rate, at maximum desirability value of 0.969.
Grimbergen, T W M; Wiegman, M M
2007-01-01
In order to arrive at recommendations for guidelines on maximum allowable quantities of radioactive material in laboratories, a proposed mathematical model was used for the calculation of transfer fractions for the air pathway. A set of incident scenarios was defined, including spilling, leakage and failure of the fume hood. For these 'common incidents', dose constraints of 1 mSv and 0.1 mSv are proposed in case the operations are being performed in a controlled area and supervised area, respectively. In addition, a dose constraint of 1 microSv is proposed for each operation under regular working conditions. Combining these dose constraints and the transfer fractions calculated with the proposed model, maximum allowable quantities were calculated for different laboratory operations and situations. Provided that the calculated transfer fractions can be experimentally validated and the dose constraints are acceptable, it can be concluded from the results that the dose constraint for incidents is the most restrictive one. For non-volatile materials this approach leads to quantities much larger than commonly accepted. In those cases, the results of the calculations in this study suggest that limitation of the quantity of radioactive material, which can be handled safely, should be based on other considerations than the inhalation risks. Examples of such considerations might be the level of external exposure, uncontrolled spread of radioactive material by surface contamination, emissions in the environment and severe accidents like fire.
NASA Astrophysics Data System (ADS)
Man, E. A.; Sera, D.; Mathe, L.; Schaltz, E.; Rosendahl, L.
2016-03-01
Characterization of thermoelectric generators (TEG) is widely discussed and equipment has been built that can perform such analysis. One method is often used to perform such characterization: constant temperature with variable thermal power input. Maximum power point tracking (MPPT) methods for TEG systems are mostly tested under steady-state conditions for different constant input temperatures. However, for most TEG applications, the input temperature gradient changes, exposing the MPPT to variable tracking conditions. An example is the exhaust pipe on hybrid vehicles, for which, because of the intermittent operation of the internal combustion engine, the TEG and its MPPT controller are exposed to a cyclic temperature profile. Furthermore, there are no guidelines on how fast the MPPT must be under such dynamic conditions. In the work discussed in this paper, temperature gradients for TEG integrated in several applications were evaluated; the results showed temperature variation up to 5°C/s for TEG systems. Electrical characterization of a calcium-manganese oxide TEG was performed at steady-state for different input temperatures and a maximum temperature of 401°C. By using electrical data from characterization of the oxide module, a solar array simulator was emulated to perform as a TEG. A trapezoidal temperature profile with different gradients was used on the TEG simulator to evaluate the dynamic MPPT efficiency. It is known that the perturb and observe (P&O) algorithm may have difficulty accurately tracking under rapidly changing conditions. To solve this problem, a compromise must be found between the magnitude of the increment and the sampling frequency of the control algorithm. The standard P&O performance was evaluated experimentally by using different temperature gradients for different MPPT sampling frequencies, and efficiency values are provided for all cases. The results showed that a tracking speed of 2.5 Hz can be successfully implemented on a TEG system to provide ˜95% MPPT efficiency when the input temperature is changing at 5°C/s.
Alam, Md Zahangir; Kabbashi, Nassereldeen A; Hussin, S Nahdatul I S
2009-06-01
The purpose of this study was to evaluate the feasibility of producing bioethanol from palm-oil mill effluent generated by the oil-palm industries through direct bioconversion process. The bioethanol production was carried out through the treatment of compatible mixed cultures such as Thrichoderma harzianum, Phanerochaete chrysosporium, Mucor hiemalis, and yeast, Saccharomyces cerevisiae. Simultaneous inoculation of T. harzianum and S. cerevisiae was found to be the mixed culture that yielded the highest ethanol production (4% v/v or 31.6 g/l). Statistical optimization was carried out to determine the operating conditions of the stirred-tank bioreactor for maximum bioethanol production by a two-level fractional factorial design with a single central point. The factors involved were oxygen saturation level (pO(2)%), temperature, and pH. A polynomial regression model was developed using the experimental data including the linear, quadratic, and interaction effects. Statistical analysis showed that the maximum ethanol production of 4.6% (v/v) or 36.3 g/l was achieved at a temperature of 32 degrees C, pH of 6, and pO(2) of 30%. The results of the model validation test under the developed optimum process conditions indicated that the maximum production was increased from 4.6% (v/v) to 6.5% (v/v) or 51.3 g/l with 89.1% chemical-oxygen-demand removal.
Wang, Liangzhu; Emmerich, Steven J; Persily, Andrew K
2010-12-01
On the basis of currently available data, approximately 97% of generator-related carbon monoxide (CO) fatalities are caused by operating currently marketed, carbureted spark-ignited gasoline-powered generators (not equipped with emission controls) in enclosed spaces. To better understand and to reduce the occurrence of these fatalities, research is needed to quantify CO generation rates, develop and test CO emission control devices, and evaluate CO transport and exposure when operating a generator in an enclosed space. As a first step in these efforts, this paper presents measured CO generation rates from a generator without any emission control devices operating in an enclosed space under real weather conditions. This study expands on previously published information from the U.S. Consumer Product Safety Commission. Thirteen separate tests were conducted under different weather conditions at half and full generator load settings. It was found that the CO level in the shed reached a maximum value of 29,300 +/- 580 mg/m3, whereas the oxygen (O2) was depleted to a minimum level of 16.2 +/- 0.02% by volume. For the test conditions of real weather and generator operation, the CO generation and the O2 consumption could be expressed as time-averaged generation/consumption rates. It was also found that the CO generation and O2 consumption rates can be correlated to the O2 levels in the space and the actual load output from the generator. These correlations are shown to agree well with the measurements.
Sandhwar, Vishal Kumar; Prasad, Basheshwar
2017-12-01
In this work, comparative study between electrochemical processes such as electrocoagulation (EC), peroxi-coagulation (PC) and peroxi-electrocoagulation (PEC) was performed for the removal of phthalic acid (PA) and chemical oxygen demand (COD) from aqueous medium. Initially, acid treatment was studied at various pH (1-3) and temperature (10-55 °C). Subsequently, the supernatant was re-treated by electrochemical processes such as EC, PC and PEC separately. Independent parameters viz. pH, current density (CD), electrolyte concentration (m), electrode gap (g), H 2 O 2 concentration and electrolysis time (t) were optimized by Central Composite Design (CCD) for these electrochemical processes. All three processes were compared based on removal, energy consumption, kinetic analysis, operating cost and sludge characteristics. In this study, PEC process was found more efficient among EC, PC and PEC processes in order to get maximum removal, minimum energy consumption and minimum operating cost. Maximum removal of PA- 68.21%, 74.36%, 82.25% & COD- 64.79%, 68.15%, 75.21% with energy consumption - 120.95, 97.51, 65.68 (kWh/kg COD removed) were attained through EC, PC and PEC processes respectively at their corresponding optimum conditions. Results indicated that PA and COD removals are in order of PEC > PC > EC under optimum conditions. First order kinetic model was found able to describe the degradation kinetics and provided best correlation for the removal rate within the acceptable error range. Copyright © 2017 Elsevier Ltd. All rights reserved.
Extreme Spacecraft Charging in Polar Low Earth Orbit
NASA Technical Reports Server (NTRS)
Colson, Andrew D.; Minow, Joseph I.; NeergaardParker, Linda
2012-01-01
Spacecraft in low altitude, high inclination (including sun-synchronous) orbits are widely used for remote sensing of the Earth's land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems episodically charge to frame potentials in the kilovolt range when exposed to space weather environments characterized by a high flux of energetic (10 s kilovolt) electrons in regions of low background plasma density which is similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. We first review the physics of space environment interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments. Finally, a set of extreme DMSP charging events are described varying in maximum negative frame potential from 0.6 kV to 2 kV, focusing on the characteristics of the charging events that are of importance both to the space system designer and to spacecraft operators. The goal of the presentation is to bridge the gap between scientific studies of auroral charging and the need for engineering teams to understand how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.
NASA Astrophysics Data System (ADS)
Ro, Kyoungsoo
The study started with the requirement that a photovoltaic (PV) power source should be integrated with other supplementary power sources whether it operates in a stand-alone or grid-connected mode. First, fuel cells for a backup of varying PV power were compared in detail with batteries and were found to have more operational benefits. Next, maximizing performance of a grid-connected PV-fuel cell hybrid system by use of a two-loop controller was discussed. One loop is a neural network controller for maximum power point tracking, which extracts maximum available solar power from PV arrays under varying conditions of insolation, temperature, and system load. A real/reactive power controller (RRPC) is the other loop. The RRPC meets the system's requirement for real and reactive powers by controlling incoming fuel to fuel cell stacks as well as switching control signals to a power conditioning subsystem. The RRPC is able to achieve more versatile control of real/reactive powers than the conventional power sources since the hybrid power plant does not contain any rotating mass. Results of time-domain simulations prove not only effectiveness of the proposed computer models of the two-loop controller, but also their applicability for use in transient stability analysis of the hybrid power plant. Finally, environmental evaluation of the proposed hybrid plant was made in terms of plant's land requirement and lifetime COsb2 emissions, and then compared with that of the conventional fossil-fuel power generating forms.
NASA Astrophysics Data System (ADS)
Watanabe, Takashi; Yoshida, Toshiya; Ohniwa, Katsumi
This paper discusses a new control strategy for photovoltaic power generation systems with consideration of dynamic characteristics of the photovoltaic cells. The controller estimates internal currents of an equivalent circuit for the cells. This estimated, or the virtual current and the actual voltage of the cells are fed to a conventional Maximum-Power-Point-Tracking (MPPT) controller. Consequently, this MPPT controller still tracks the optimum point even though it is so designed that the seeking speed of the operating point is extremely high. This system may suit for applications, which are installed in rapidly changeable insolation and temperature-conditions e.g. automobiles, trains, and airplanes. The proposed method is verified by experiment with a combination of this estimating function and the modified Boehringer's MPPT algorithm.
Electron Attenuation Measurement using Cosmic Ray Muons at the MicroBooNE LArTPC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meddage, Varuna
2017-10-01
The MicroBooNE experiment at Fermilab uses liquid argon time projection chamber (LArTPC) technology to study neutrino interactions in argon. A fundamental requirement for LArTPCs is to achieve and maintain a low level of electronegative contaminants in the liquid to minimize the capture of drifting ionization electrons. The attenuation time for the drifting electrons should be long compared to the maximum drift time, so that the signals from particle tracks that generate ionization electrons with long drift paths can be detected efficiently. In this talk we present MicroBooNE measurement of electron attenuation using cosmic ray muons. The result yields a minimummore » electron 1/e lifetime of 18 ms under typical operating conditions, which is long compared to the maximum drift time of 2.3 ms.« less
A comparison of the environmental impact of different AOPs: risk indexes.
Giménez, Jaime; Bayarri, Bernardí; González, Óscar; Malato, Sixto; Peral, José; Esplugas, Santiago
2014-12-31
Today, environmental impact associated with pollution treatment is a matter of great concern. A method is proposed for evaluating environmental risk associated with Advanced Oxidation Processes (AOPs) applied to wastewater treatment. The method is based on the type of pollution (wastewater, solids, air or soil) and on materials and energy consumption. An Environmental Risk Index (E), constructed from numerical criteria provided, is presented for environmental comparison of processes and/or operations. The Operation Environmental Risk Index (EOi) for each of the unit operations involved in the process and the Aspects Environmental Risk Index (EAj) for process conditions were also estimated. Relative indexes were calculated to evaluate the risk of each operation (E/NOP) or aspect (E/NAS) involved in the process, and the percentage of the maximum achievable for each operation and aspect was found. A practical application of the method is presented for two AOPs: photo-Fenton and heterogeneous photocatalysis with suspended TiO2 in Solarbox. The results report the environmental risks associated with each process, so that AOPs tested and the operations involved with them can be compared.
NASA Astrophysics Data System (ADS)
Zhang, Enren; Wang, Feng; Yu, Qingling; Scott, Keith; Wang, Xu; Diao, Guowang
2017-08-01
The performance of activated carbon catalyst in air-cathodes in microbial fuel cells was investigated over one year. A maximum power of 1722 mW m-2 was produced within the initial one-month microbial fuel cell operation. The air-cathodes produced a maximum power >1200 mW m-2 within six months, but gradually became a limiting factor for the power output in prolonged microbial fuel cell operation. The maximum power decreased by 55% when microbial fuel cells were operated over one year due to deterioration in activated carbon air-cathodes. While salt/biofilm removal from cathodes experiencing one-year operation increased a limiting performance enhancement in cathodes, a washing-drying-pressing procedure could restore the cathode performance to its original levels, although the performance restoration was temporary. Durable cathodes could be regenerated by re-pressing activated carbon catalyst, recovered from one year deteriorated air-cathodes, with new gas diffusion layer, resulting in ∼1800 mW m-2 of maximum power production. The present study indicated that activated carbon was an effective catalyst in microbial fuel cell cathodes, and could be recovered for reuse in long-term operated microbial fuel cells by simple methods.
NASA Astrophysics Data System (ADS)
Carrillo-Rivera, J. J.; Cardona, A.; Edmunds, W. M.
2002-04-01
Significant amounts of fluoride are found in the abstracted groundwater of San Luis Potosí. This groundwater withdrawal induces a cold, low-fluoride flow as well as deeper thermal fluoride-rich flow in various proportions. Flow mixing takes place depending on the abstraction regime, local hydrogeology, and borehole construction design and operation. Fluoride concentrations (≈3.7 mg l -1) could become higher still, in time and space, if the input of regional fluoride-rich water to the abstraction boreholes is enhanced. It is suggested that by controlling the abstraction well-head water temperature at 28-30 °C, a pumped water mixture with a fluoride content close to the maximum drinking water standard of 1.5 mg l -1 will be produced. Further, new boreholes and those already operating could take advantage of fluoride solubility controls to reduce the F concentration in the abstracted water by considering lithology and borehole construction design in order to regulate groundwater flow conditions.
Gonçalves, Márcia Monteiro Machado; de Oliveira Mello, Luiz Antonio; da Costa, Antonio Carlos Augusto
2008-03-01
When wetlands reach maximum treatment capacity to remove heavy metals, removal can still take place through precipitation as sulfide because of the biological reduction of sulfate. To achieve this goal, anaerobic conditions must be attained, a sulfate source must exist, and an adequate substrate for sulfate-reducing bacteria (SRB) is also required. In the present work, two ligneous-cellulosic materials, a brown seaweed and sugarcane bagasse, have been selected as substrates for SRB growth. Experiments were simultaneously conducted in continuous operation in two columns (0.57 L each), one containing the ligneous-cellulosic material plus inoculum and another containing only the ligneous-cellulosic material. In this work, the removal of cadmium and zinc was studied because of their presence in effluents from mining/metallurgy operations. Results obtained indicated that the inoculated reactor was able to treat the effluent more efficiently than the noninoculated reactor considering the time course of the tests.
Design study for a high reliability five-year spacecraft tape transport
NASA Technical Reports Server (NTRS)
Benn, G. S. L.; Eshleman, R. L.
1971-01-01
Following the establishment of the overall transport concept, a study of all of the life limiting constraints associated with the transport were analyzed using modeling techniques. These design techniques included: (1) a response analysis from which the performance of the transport could be determined under operating conditions for a variety of conceptual variations both in a new and aged condition; (2) an analysis of a double cone guidance technique which yielded an optimum design for maximum guidance with minimum tape degradation; (3) an analysis of the tape pack design to eliminate spoking caused by negative tangential stress within the pack; (4) an evaluation of the stress levels experienced by the magnetic tape throughout the system; (5) a general review of the bearing and lubrication technology as applied to satellite recorders and hence the recommendation for using standard load carrying antifriction ball bearings; and (6) a kinetic analysis to determine the change in kinetic properties of the transport during operation.
Creation of Power Reserves Under the Market Economy Conditions
NASA Astrophysics Data System (ADS)
Mahnitko, A.; Gerhards, J.; Lomane, T.; Ribakov, S.
2008-09-01
The main task of the control over an electric power system (EPS) is to ensure reliable power supply at the least cost. In this case, requirements to the electric power quality, power supply reliability and cost limitations on the energy resources must be observed. The available power reserve in an EPS is the necessary condition to keep it in operation with maintenance of normal operating variables (frequency, node voltage, power flows via the transmission lines, etc.). The authors examine possibilities to create power reserves that could be offered for sale by the electric power producer. They consider a procedure of price formation for the power reserves and propose a relevant mathematical model for a united EPS, the initial data being the fuel-cost functions for individual systems, technological limitations on the active power generation and consumers' load. As the criterion of optimization the maximum profit for the producer is taken. The model is exemplified by a concentrated EPS. The computations have been performed using the MATLAB program.
Numerical Modeling and Optimization of Warm-water Heat Sinks
NASA Astrophysics Data System (ADS)
Hadad, Yaser; Chiarot, Paul
2015-11-01
For cooling in large data-centers and supercomputers, water is increasingly replacing air as the working fluid in heat sinks. Utilizing water provides unique capabilities; for example: higher heat capacity, Prandtl number, and convection heat transfer coefficient. The use of warm, rather than chilled, water has the potential to provide increased energy efficiency. The geometric and operating parameters of the heat sink govern its performance. Numerical modeling is used to examine the influence of geometry and operating conditions on key metrics such as thermal and flow resistance. This model also facilitates studies on cooling of electronic chip hot spots and failure scenarios. We report on the optimal parameters for a warm-water heat sink to achieve maximum cooling performance.
Ram-Jet off Design Performances
NASA Astrophysics Data System (ADS)
Andriani, Roberto; Ghezzi, Umberto
2002-01-01
In this work it is intended to study the off-design performances of a ram jet engine. To this purpouse it has been analyzed in a first time the behaviour of an ideal engine, that means to not consider the losses in the various components, or, under a thermodynamic point of view, to consider the fluid transformation through the air intake and exhaust nozzle, remembering that in a ram jet there are not rotating components as compressor and turbine, isentropic. Referring to the ram-jet scheme of fig.1. we can say, neglecting the fuel introduced, that the air mass flow rate throughout the engine is constant. If we consider the two control sections 4 and 8, respectively the throat section of the converging-diverging supersonic inlet and the throat section of the discharge nozzle, the condition of constant mass flow leads to the relation: m4 =f (M 4 ) m8 = m 4 = m8 We can imaging that the throat section # 4 is always choked for any value of the flight Mach number M0. This means that the throat section 4 is adjusted at any value of M0 so that the flow Mach number in 4 is equal to unity. In this it follows: R. Andriani, U. Ghezzi1 Since in an ideal case T t8 The relation [1] allows to determine the T8 temperature, that represent the maximum cycle temperature, for different operating conditions, as flight Mach number and altitude. We then have two cases: the first is A8 (nozzle throat section) fixed, and the second is A8 variable. In the first case the maximum temperature T8 is univocally determined by the operating condition. In the second case A8 can be varied so to maintain T8 at a chosen value. The graphic of fig.2 shows the first case. In particular it has been considered as design point an altitude of 15000 meters and a flight Mach number equal to 2. In this condition it has been evaluated the section A8 for unity mass flow rate. At the same altitude, varying the flight Mach number, with the section A4 always choked, the graphic shows the variation of the maximum cycle temperature according to the equation *. We notice as the temperature raises to unacceptable levels as we accelerate from the design point. For instance we can see as if we move to flight Mach number 2.2 the maximum temperature raises from 1800 Kelvin degrees (design point) to more than 2900 [K], a value practically unreachable. This shows as the ramjet with fixed discharge nozzle allows very little variation of the operating conditions around the design point. If we consider instead the possibility to vary the nozzle section A8 we can imagine to adjust it so to maintain constant the temperature T8, according to the relation *. The graphics of fig.3 show the area variation required to the section A8 to maintain constant the temperature T8 at the same altitude for different values of the flight Mach number. Considering a circular section, on the same R. Andriani, U. Ghezzi2 picture is reported the corresponding variation of the diameter. On the Y-axis it is reported the ratio between the entity (section and diameter) at the considered condition and at the design point. For the case of A8 section variable it has also been evaluated the behavior of the specific fuel consumption, the mass flow rate and the thrust. In fig.4 they are reported the behavior TSFC and Fuel/air ratio at different flight Mach numbers, and the ratio between them and the design value. In fig .5 it is reported the ratio between the thrust and mass flow rate at different flight conditions and their value at design point. R. Andriani, U. Ghezzi3
NASA Astrophysics Data System (ADS)
Siouane, Saima; Jovanović, Slaviša; Poure, Philippe
2017-01-01
The Seebeck effect is used in thermoelectric generators (TEGs) to supply electronic circuits by converting the waste thermal into electrical energy. This generated electrical power is directly proportional to the temperature difference between the TEG module's hot and cold sides. Depending on the applications, TEGs can be used either under constant temperature gradient between heat reservoirs or constant heat flow conditions. Moreover, the generated electrical power of a TEG depends not only on these operating conditions, but also on the contact thermal resistance. The influence of the contact thermal resistance on the generated electrical power have already been extensively reported in the literature. However, as reported in Park et al. (Energy Convers Manag 86:233, 2014) and Montecucco and Knox (IEEE Trans Power Electron 30:828, 2015), while designing TEG-powered circuit and systems, a TEG module is mostly modeled with a Thévenin equivalent circuit whose resistance is constant and voltage proportional to the temperature gradient applied to the TEG's terminals. This widely used simplified electrical TEG model is inaccurate and not suitable under constant heat flow conditions or when the contact thermal resistance is considered. Moreover, it does not provide realistic behaviour corresponding to the physical phenomena taking place in a TEG. Therefore, from the circuit designer's point of view, faithful and fully electrical TEG models under different operating conditions are needed. Such models are mainly necessary to design and evaluate the power conditioning electronic stages and the maximum power point tracking algorithms of a TEG power supply. In this study, these fully electrical models with the contact thermal resistance taken into account are presented and the analytical expressions of the Thévenin equivalent circuit parameters are provided.
Defense Science Board Summer Study on Autonomy
2016-06-01
hours, at a maximum velocity of 40 mph, with a maximum payload of 9 kg (20 lbs); a maximum range of 160 km (100 miles); and can operate in wind /gust...existing mine disposal platform, such as Seafox, with contact reacquisition and neutralization capability. Seafox is a wire -guided mine neutralizer...functions, will retain operator control of neutralization and will remove the need for personnel to enter the minefield to execute fly- by- wire
CFD Modelling of Bore Erosion in Two-Stage Light Gas Guns
NASA Technical Reports Server (NTRS)
Bogdanoff, D. W.
1998-01-01
A well-validated quasi-one-dimensional computational fluid dynamics (CFD) code for the analysis of the internal ballistics of two-stage light gas guns is modified to explicitly calculate the ablation of steel from the gun bore and the incorporation of the ablated wall material into the hydrogen working cas. The modified code is used to model 45 shots made with the NASA Ames 0.5 inch light gas gun over an extremely wide variety of gun operating conditions. Good agreement is found between the experimental and theoretical piston velocities (maximum errors of +/-2% to +/-6%) and maximum powder pressures (maximum errors of +/-10% with good igniters). Overall, the agreement between the experimental and numerically calculated gun erosion values (within a factor of 2) was judged to be reasonably good, considering the complexity of the processes modelled. Experimental muzzle velocities agree very well (maximum errors of 0.5-0.7 km/sec) with theoretical muzzle velocities calculated with loading of the hydrogen gas with the ablated barrel wall material. Comparison of results for pump tube volumes of 100%, 60% and 40% of an initial benchmark value show that, at the higher muzzle velocities, operation at 40% pump tube volume produces much lower hydrogen loading and gun erosion and substantially lower maximum pressures in the gun. Large muzzle velocity gains (2.4-5.4 km/sec) are predicted upon driving the gun harder (that is, upon using, higher powder loads and/or lower hydrogen fill pressures) when hydrogen loading is neglected; much smaller muzzle velocity gains (1.1-2.2 km/sec) are predicted when hydrogen loading is taken into account. These smaller predicted velocity gains agree well with those achieved in practice. CFD snapshots of the hydrogen mass fraction, density and pressure of the in-bore medium are presented for a very erosive shot.
NASA Astrophysics Data System (ADS)
Gómez, I.; Estrela, M.
2009-09-01
Extreme temperature events have a great impact on human society. Knowledge of summer maximum temperatures is very useful for both the general public and organisations whose workers have to operate in the open, e.g. railways, roadways, tourism, etc. Moreover, summer maximum daily temperatures are considered a parameter of interest and concern since persistent heat-waves can affect areas as diverse as public health, energy consumption, etc. Thus, an accurate forecasting of these temperatures could help to predict heat-wave conditions and permit the implementation of strategies aimed at minimizing the negative effects that high temperatures have on human health. The aim of this work is to evaluate the skill of the RAMS model in determining daily maximum temperatures during summer over the Valencia Region. For this, we have used the real-time configuration of this model currently running at the CEAM Foundation. To carry out the model verification process, we have analysed not only the global behaviour of the model for the whole Valencia Region, but also its behaviour for the individual stations distributed within this area. The study has been performed for the summer forecast period of 1 June - 30 September, 2007. The results obtained are encouraging and indicate a good agreement between the observed and simulated maximum temperatures. Moreover, the model captures quite well the temperatures in the extreme heat episodes. Acknowledgement. This work was supported by "GRACCIE" (CSD2007-00067, Programa Consolider-Ingenio 2010), by the Spanish Ministerio de Educación y Ciencia, contract number CGL2005-03386/CLI, and by the Regional Government of Valencia Conselleria de Sanitat, contract "Simulación de las olas de calor e invasiones de frío y su regionalización en la Comunidad Valenciana" ("Heat wave and cold invasion simulation and their regionalization at Valencia Region"). The CEAM Foundation is supported by the Generalitat Valenciana and BANCAIXA (Valencia, Spain).
A Hybrid Maximum Power Point Tracking Method for Automobile Exhaust Thermoelectric Generator
NASA Astrophysics Data System (ADS)
Quan, Rui; Zhou, Wei; Yang, Guangyou; Quan, Shuhai
2017-05-01
To make full use of the maximum output power of automobile exhaust thermoelectric generator (AETEG) based on Bi2Te3 thermoelectric modules (TEMs), taking into account the advantages and disadvantages of existing maximum power point tracking methods, and according to the output characteristics of TEMs, a hybrid maximum power point tracking method combining perturb and observe (P&O) algorithm, quadratic interpolation and constant voltage tracking method was put forward in this paper. Firstly, it searched the maximum power point with P&O algorithms and a quadratic interpolation method, then, it forced the AETEG to work at its maximum power point with constant voltage tracking. A synchronous buck converter and controller were implemented in the electric bus of the AETEG applied in a military sports utility vehicle, and the whole system was modeled and simulated with a MATLAB/Simulink environment. Simulation results demonstrate that the maximum output power of the AETEG based on the proposed hybrid method is increased by about 3.0% and 3.7% compared with that using only the P&O algorithm and the quadratic interpolation method, respectively. The shorter tracking time is only 1.4 s, which is reduced by half compared with that of the P&O algorithm and quadratic interpolation method, respectively. The experimental results demonstrate that the tracked maximum power is approximately equal to the real value using the proposed hybrid method,and it can preferentially deal with the voltage fluctuation of the AETEG with only P&O algorithm, and resolve the issue that its working point can barely be adjusted only with constant voltage tracking when the operation conditions change.
Research on simulation of supercritical steam turbine system in large thermal power station
NASA Astrophysics Data System (ADS)
Zhou, Qiongyang
2018-04-01
In order to improve the stability and safety of supercritical steam turbine system operation in large thermal power station, the body of the steam turbine is modeled in this paper. And in accordance with the hierarchical modeling idea, the steam turbine body model, condensing system model, deaeration system model and regenerative system model are combined to build a simulation model of steam turbine system according to the connection relationship of each subsystem of steam turbine. Finally, the correctness of the model is verified by design and operation data of the 600MW supercritical unit. The results show that the maximum simulation error of the model is 2.15%, which meets the requirements of the engineering. This research provides a platform for the research on the variable operating conditions of the turbine system, and lays a foundation for the construction of the whole plant model of the thermal power plant.
NASA Technical Reports Server (NTRS)
Edie, P. C.
1981-01-01
Performance data on the Prestolite MTC-4001 series wound dc motor and General Electric EV-1 Chopper Controller is supplied for the electric vehicle manufacturer. Data are provided for both straight and chopped dc input to the motor, at 2 motor temperature levels. Testing was done at 6 voltage increments to the motor, and 2 voltage increments to the controller. Data results are presented in both tabular and graphical forms. Tabular information includes motor voltage and current input data, motor speed and torque output data, power data and temperature data. Graphical information includes torque-speed, motor power output-speed, torque-current, and efficiency-speed plots under the various operating conditions. The data resulting from this testing show the speed-torque plots to have the most variance with operating temperature. The maximum motor efficiency is between 76% and 82%, regardless of temperature or mode of operation.
Cell chip temperature measurements in different operation regimes of HCPV modules
NASA Astrophysics Data System (ADS)
Rumyantsev, V. D.; Chekalin, A. V.; Davidyuk, N. Yu.; Malevskiy, D. A.; Pokrovskiy, P. V.; Sadchikov, N. A.; Pan'chak, A. N.
2013-09-01
A new method has been developed for accurate measurements of the solar cell temperature in maximum power point (MPP) operation regime in comparison with that in open circuit (OC) regime (TMPP and TOC). For this, an electronic circuit has been elaborated for fast variation of the cell load conditions and for voltage measurements, so that VOC values could serve as an indicator of TMPP at the first moment after the load disconnection. The method was verified in indoor investigations of the single-junction AlGaAs/GaAs cells under CW laser irradiation, where different modifications of the heat spreaders were involved. PV modules of the "SMALFOC" design (Small-size concentrators; Multijunction cells; "All-glass" structure; Lamination technology; Fresnel Optics for Concentration) with triple-junction InGaP/GaAs/Ge cells were examined outdoors to evaluate temperature regimes of their operation.
NASA Astrophysics Data System (ADS)
Fang, W.; Quan, S. H.; Xie, C. J.; Tang, X. F.; Wang, L. L.; Huang, L.
2016-03-01
In this study, a direct-current/direct-current (DC/DC) converter with maximum power point tracking (MPPT) is developed to down-convert the high voltage DC output from a thermoelectric generator to the lower voltage required to charge batteries. To improve the tracking accuracy and speed of the converter, a novel MPPT control scheme characterized by an aggregated dichotomy and gradient (ADG) method is proposed. In the first stage, the dichotomy algorithm is used as a fast search method to find the approximate region of the maximum power point. The gradient method is then applied for rapid and accurate tracking of the maximum power point. To validate the proposed MPPT method, a test bench composed of an automobile exhaust thermoelectric generator was constructed for harvesting the automotive exhaust heat energy. Steady-state and transient tracking experiments under five different load conditions were carried out using a DC/DC converter with the proposed ADG and with three traditional methods. The experimental results show that the ADG method can track the maximum power within 140 ms with a 1.1% error rate when the engine operates at 3300 rpm@71 NM, which is superior to the performance of the single dichotomy method, the single gradient method and the perturbation and observation method from the viewpoint of improved tracking accuracy and speed.
NASA Astrophysics Data System (ADS)
Wang, Lei; Li, Yanzhong; Zhang, Feini; Ma, Yuan
2015-12-01
Two finite difference computer models, aiming at the process predictions of no-vent fill in normal gravity and microgravity environments respectively, are developed to investigate the filling performance in a liquid hydrogen (LH2) tank. In the normal gravity case model, the tank/fluid system is divided into five control volume including ullage, bulk liquid, gas-liquid interface, ullage-adjacent wall, and liquid-adjacent wall. In the microgravity case model, vapor-liquid thermal equilibrium state is maintained throughout the process, and only two nodes representing fluid and wall regions are applied. To capture the liquid-wall heat transfer accurately, a series of heat transfer mechanisms are considered and modeled successively, including film boiling, transition boiling, nucleate boiling and liquid natural convection. The two models are validated by comparing their prediction with experimental data, which shows good agreement. Then the two models are used to investigate the performance of no-vent fill in different conditions and several conclusions are obtained. It shows that in the normal gravity environment the no-vent fill experiences a continuous pressure rise during the whole process and the maximum pressure occurs at the end of the operation, while the maximum pressure of the microgravity case occurs at the beginning stage of the process. Moreover, it seems that increasing inlet mass flux has an apparent influence on the pressure evolution of no-vent fill process in normal gravity but a little influence in microgravity. The larger initial wall temperature brings about more significant liquid evaporation during the filling operation, and then causes higher pressure evolution, no matter the filling process occurs under normal gravity or microgravity conditions. Reducing inlet liquid temperature can improve the filling performance in normal gravity, but cannot significantly reduce the maximum pressure in microgravity. The presented work benefits the understanding of the no-vent fill performance and may guide the design of on-orbit no-vent fill system.
14 CFR 23.1583 - Operating limitations.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) The maximum zero wing fuel weight, where relevant, as established in accordance with § 23.343. (d... passenger seating configuration. The maximum passenger seating configuration. (k) Allowable lateral fuel loading. The maximum allowable lateral fuel loading differential, if less than the maximum possible. (l...
14 CFR 23.1524 - Maximum passenger seating configuration.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Maximum passenger seating configuration. 23.1524 Section 23.1524 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operating Limitations and Information § 23.1524 Maximum passenger seating configuration. The maximum...
Flexible operation strategy for environment control system in abnormal supply power condition
NASA Astrophysics Data System (ADS)
Liping, Pang; Guoxiang, Li; Hongquan, Qu; Yufeng, Fang
2017-04-01
This paper establishes an optimization method that can be applied to the flexible operation of the environment control system in an abnormal supply power condition. A proposed conception of lifespan is used to evaluate the depletion time of the non-regenerative substance. The optimization objective function is to maximize the lifespans. The optimization variables are the allocated powers of subsystems. The improved Non-dominated Sorting Genetic Algorithm is adopted to obtain the pareto optimization frontier with the constraints of the cabin environmental parameters and the adjustable operating parameters of the subsystems. Based on the same importance of objective functions, the preferred power allocation of subsystems can be optimized. Then the corresponding running parameters of subsystems can be determined to ensure the maximum lifespans. A long-duration space station with three astronauts is used to show the implementation of the proposed optimization method. Three different CO2 partial pressure levels are taken into consideration in this study. The optimization results show that the proposed optimization method can obtain the preferred power allocation for the subsystems when the supply power is at a less-than-nominal value. The method can be applied to the autonomous control for the emergency response of the environment control system.
A Physics-Based Modeling Framework for Prognostic Studies
NASA Technical Reports Server (NTRS)
Kulkarni, Chetan S.
2014-01-01
Prognostics and Health Management (PHM) methodologies have emerged as one of the key enablers for achieving efficient system level maintenance as part of a busy operations schedule, and lowering overall life cycle costs. PHM is also emerging as a high-priority issue in critical applications, where the focus is on conducting fundamental research in the field of integrated systems health management. The term diagnostics relates to the ability to detect and isolate faults or failures in a system. Prognostics on the other hand is the process of predicting health condition and remaining useful life based on current state, previous conditions and future operating conditions. PHM methods combine sensing, data collection, interpretation of environmental, operational, and performance related parameters to indicate systems health under its actual application conditions. The development of prognostics methodologies for the electronics field has become more important as more electrical systems are being used to replace traditional systems in several applications in the aeronautics, maritime, and automotive fields. The development of prognostics methods for electronics presents several challenges due to the great variety of components used in a system, a continuous development of new electronics technologies, and a general lack of understanding of how electronics fail. Similarly with electric unmanned aerial vehicles, electrichybrid cars, and commercial passenger aircraft, we are witnessing a drastic increase in the usage of batteries to power vehicles. However, for battery-powered vehicles to operate at maximum efficiency and reliability, it becomes crucial to both monitor battery health and performance and to predict end of discharge (EOD) and end of useful life (EOL) events. We develop an electrochemistry-based model of Li-ion batteries that capture the significant electrochemical processes, are computationally efficient, capture the effects of aging, and are of suitable accuracy for reliable EOD prediction in a variety of usage profiles.
Secure uniform random-number extraction via incoherent strategies
NASA Astrophysics Data System (ADS)
Hayashi, Masahito; Zhu, Huangjun
2018-01-01
To guarantee the security of uniform random numbers generated by a quantum random-number generator, we study secure extraction of uniform random numbers when the environment of a given quantum state is controlled by the third party, the eavesdropper. Here we restrict our operations to incoherent strategies that are composed of the measurement on the computational basis and incoherent operations (or incoherence-preserving operations). We show that the maximum secure extraction rate is equal to the relative entropy of coherence. By contrast, the coherence of formation gives the extraction rate when a certain constraint is imposed on the eavesdropper's operations. The condition under which the two extraction rates coincide is then determined. Furthermore, we find that the exponential decreasing rate of the leaked information is characterized by Rényi relative entropies of coherence. These results clarify the power of incoherent strategies in random-number generation, and can be applied to guarantee the quality of random numbers generated by a quantum random-number generator.
The Cliff Reconnaissance Vehicle: a tool to improve astronaut exploration efficiency.
Souchier, Alain
2014-05-01
The close examination of cliff strata on Mars may reveal important information about conditions that existed in the past on that planet. To have access to such difficult-to-reach locations, the Association Planète Mars (France) has, since 2001, been experimenting with designs of manually operated, instrumented vehicles capable of being lowered down the faces of cliffs. The latest tests in the series in which the Cliff Reconnaissance Vehicle (CRV) or Cliffbot was used were conducted as part of the Austrian Space Forum's MARS2013 field analog project in Morocco in February 2013. Experimentation centered on vehicle configuration for maximum all-terrain capabilities; operational procedures, which included use while the operator was wearing an analog space suit; and imaging, mapping, and geological/biological feature detection capabilities. The exercise demonstrated that Cliffbot is capable of examining hard-to-reach rock strata in cliff faces but that it needs further mechanical modification to improve its ability to overcome some particular terrain obstacles and situational awareness by the operator.
NASA Astrophysics Data System (ADS)
Matsuoka, Ken; Esumi, Motoki; Ikeguchi, Ken Bryan; Kasahara, Jiro; Matsuo, Akiko; Funaki, Ikkoh
We developed a novel coaxial rotary valve for a multi-tube PDE. Since this single valve can supply three different gases (fuel, oxidizer and purge gas) into a combustor, the unification of the valve systems for three different gases is possible by using our newly designed valve. A PDRE system can be simple and lightweight by using this valve, and thus its thrust-weight ratio can be increased. We proposed the design of a multi-tube rotary-valved PDRE system by this rotary valve. Moreover, in preparation for a multi-tube rotary-valved PDRE, we carried out the multi-cycle operation experiment by the single-tube rotary-valved PDRE system. The combustion wave velocity was measured to confirm the operation of the PDRE system. Deflagration-to-detonation transition (DDT) was confirmed and DDT distance decreased under the condition of high operation frequency. In addition, a maximum operation frequency was 159 Hz.
Internal combustion engine controls for reduced exhausts contaminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, D.R. Jr.
1974-06-04
An electrochemical control system for achieving optimum efficiency in the catalytic conversion of hydrocarbon and carbon monoxide emissions from internal combustion engines is described. The system automatically maintains catalyst temperature at a point for maximum pollutant conversion by adjusting ignition timing and fuel/air ratio during warm-up and subsequent operation. Ignition timing is retarded during engine warm-up to bring the catalytic converter to an efficient operating temperature within a minimum period of time. After the converter reaches a predetermined minimum temperature, the spark is advanced to within its normal operating range. A needle-valve adjustment during warm-up is employed to enrich themore » fuel/air mixture by approximately 10 percent. Following warm-up and attainment of a predetermined catalyst temperature, the needle valve is moved automatically to its normal position (e.g., a fuel/air ratio of 16:1). Although the normal lean mixture causes increased amounts of nitrogen oxide emissions, present NO/sub x/ converters appear capable of handling the increased emissions under normal operating conditions.« less
Thermal analyses for initial operations of the soft x-ray spectrometer onboard the Hitomi satellite
NASA Astrophysics Data System (ADS)
Noda, Hirofumi; Mitsuda, Kazuhisa; Okamoto, Atsushi; Ezoe, Yuichiro; Ishikawa, Kumi; Fujimoto, Ryuichi; Yamasaki, Noriko; Takei, Yoh; Ohashi, Takaya; Ishisaki, Yoshitaka; Mitsuishi, Ikuyuki; Yoshida, Seiji; DiPirro, Michel; Shirron, Peter
2018-01-01
The soft x-ray spectrometer (SXS) onboard the Hitomi satellite achieved a high-energy resolution of ˜4.9 eV at 6 keV with an x-ray microcalorimeter array cooled to 50 mK. The cooling system utilizes liquid helium, confined in zero gravity by means of a porous plug (PP) phase separator. For the PP to function, the helium temperature must be kept lower than the λ point of 2.17 K in orbit. To determine the maximum allowable helium temperature at launch, taking into account the uncertainties in both the final ground operations and initial operation in orbit, we constructed a thermal mathematical model of the SXS dewar and PP vent and carried out time-series thermal simulations. Based on the results, the maximum allowable helium temperature at launch was set at 1.7 K. We also conducted a transient thermal calculation using the actual temperatures at launch as initial conditions to determine flow and cooling rates in orbit. From this, the equilibrium helium mass flow rate was estimated to be ˜34 to 42 μg/s, and the lifetime of the helium mode was predicted to be ˜3.9 to 4.7 years. This paper describes the thermal model and presents simulation results and comparisons with temperatures measured in the orbit.
A microprocessor tester for the treat upgrade reactor trip system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenkszus, F.R.; Bucher, R.G.
1985-02-01
The upgrading of the Transient Reactor Test (TREAT) Facility at ANL-Idaho has been designed to provide additional experimental capabilities for the study of core disruptive accident (CDA) phenomena. To improve the analytical extrapolation of test results to full-size assembly bundles, the facility upgrade will increase the maximum size of the test bundle from 7 to 37 fuel pins. By creating a core convertor zone around the test location, the neutron spectrum incident on the test assembly will be hardened and the maximum energy deposited in the sample will be increased. In addition, a programmable Automated Reactor Control System (ARCS) willmore » permit high-power transients up to 11,000 MW having a controlled reactor period of from 15 to 0.1 sec. These modifications to the core neutronics will improve simulation of LMFBR accident conditions. Finally, a sophisticated, multiply-redundant safety system, the Reactor Trip System (RTS), will provide safe operation for both steady state and transient production operating modes. To insure that this complex safety system is functioning properly, a Dedicated Microprocessor Tester (DMT) has been implemented to perform a thorough checkout of the RTS prior to all TREAT operations. A quantitative reliability analysis of the RTS shows that the unreliability, that is, the probability of failure, is acceptable for a 10 hour mission time or risk interval.« less
Vehicle Scheduling Schemes for Commercial and Emergency Logistics Integration
Li, Xiaohui; Tan, Qingmei
2013-01-01
In modern logistics operations, large-scale logistics companies, besides active participation in profit-seeking commercial business, also play an essential role during an emergency relief process by dispatching urgently-required materials to disaster-affected areas. Therefore, an issue has been widely addressed by logistics practitioners and caught researchers' more attention as to how the logistics companies achieve maximum commercial profit on condition that emergency tasks are effectively and performed satisfactorily. In this paper, two vehicle scheduling models are proposed to solve the problem. One is a prediction-related scheme, which predicts the amounts of disaster-relief materials and commercial business and then accepts the business that will generate maximum profits; the other is a priority-directed scheme, which, firstly groups commercial and emergency business according to priority grades and then schedules both types of business jointly and simultaneously by arriving at the maximum priority in total. Moreover, computer-based simulations are carried out to evaluate the performance of these two models by comparing them with two traditional disaster-relief tactics in China. The results testify the feasibility and effectiveness of the proposed models. PMID:24391724
Vehicle scheduling schemes for commercial and emergency logistics integration.
Li, Xiaohui; Tan, Qingmei
2013-01-01
In modern logistics operations, large-scale logistics companies, besides active participation in profit-seeking commercial business, also play an essential role during an emergency relief process by dispatching urgently-required materials to disaster-affected areas. Therefore, an issue has been widely addressed by logistics practitioners and caught researchers' more attention as to how the logistics companies achieve maximum commercial profit on condition that emergency tasks are effectively and performed satisfactorily. In this paper, two vehicle scheduling models are proposed to solve the problem. One is a prediction-related scheme, which predicts the amounts of disaster-relief materials and commercial business and then accepts the business that will generate maximum profits; the other is a priority-directed scheme, which, firstly groups commercial and emergency business according to priority grades and then schedules both types of business jointly and simultaneously by arriving at the maximum priority in total. Moreover, computer-based simulations are carried out to evaluate the performance of these two models by comparing them with two traditional disaster-relief tactics in China. The results testify the feasibility and effectiveness of the proposed models.
NASA Astrophysics Data System (ADS)
Higuita Cano, Mauricio; Mousli, Mohamed Islam Aniss; Kelouwani, Sousso; Agbossou, Kodjo; Hammoudi, Mhamed; Dubé, Yves
2017-03-01
This work investigates the design and validation of a fuel cell management system (FCMS) which can perform when the fuel cell is at water freezing temperature. This FCMS is based on a new tracking technique with intelligent prediction, which combined the Maximum Efficiency Point Tracking with variable perturbation-current step and the fuzzy logic technique (MEPT-FL). Unlike conventional fuel cell control systems, our proposed FCMS considers the cold-weather conditions, the reduction of fuel cell set-point oscillations. In addition, the FCMS is built to respond quickly and effectively to the variations of electric load. A temperature controller stage is designed in conjunction with the MEPT-FL in order to operate the FC at low-temperature values whilst tracking at the same time the maximum efficiency point. The simulation results have as well experimental validation suggest that propose approach is effective and can achieve an average efficiency improvement up to 8%. The MEPT-FL is validated using a Proton Exchange Membrane Fuel Cell (PEMFC) of 500 W.
Water-Pressure Distribution on Seaplane Float
NASA Technical Reports Server (NTRS)
Thompson, F L
1929-01-01
The investigation presented in this report was conducted for the purpose of determining the distribution and magnitude of water pressures likely to be experienced on seaplane hulls in service. It consisted of the development and construction of apparatus for recording water pressures lasting one one-hundredth second or longer and of flight tests to determine the water pressures on a UO-1 seaplane float under various conditions of taxiing, taking off, and landing. The apparatus developed was found to operate with satisfactory accuracy and is suitable for flight tests on other seaplanes. The tests on the UO-1 showed that maximum pressures of about 6.5 pounds per square inch occur at the step for the full width of the float bottom. Proceeding forward from the step the maximum pressures decrease in magnitude uniformly toward the bow, and the region of highest pressures narrows toward the keel. Immediately abaft the step the maximum pressures are very small, but increase in magnitude toward the stern and there once reached a value of about 5 pounds per square inch. (author)
Co-disposal of electronic waste with municipal solid waste in bioreactor landfills.
Visvanathan, C; Visvanthan, C; Yin, Nang Htay; Karthikeyan, Obuli P
2010-12-01
Three pilot scale lysimeters were adopted to evaluate the stability pattern and leaching potential of heavy metals from MSW landfills under the E-waste co-disposed condition. One lysimeter served as control and solely filled with MSW, whereas the other two lysimeters were provided with 10% and 25% of E-waste scraps (% by weight), respectively. The reactors were monitored over a period of 280 days at ambient settings with continuous leachate recirculation. Stabilization pattern of carbon appears to be more than 50% in all the three lysimeters with irrespective of their operating conditions. Iron and zinc concentrations were high in leachate during bioreactor landfill operation and correlating with the TCLP leachability test results. In contrast, Pb concentration was around <0.6 mg/L, but which showed maximum leaching potential under TCLP test conditions. But, no heavy metal accumulation was found with leachate recirculation practices in lysimeters. Mobility of the metal content from the E-waste was found to be amplified with the long term disposal or stabilization within landfills. The results showed that the TCLP test cannot be completely reliable tool for measuring long-term leachability of toxic substances under landfill condition; rather landfill lysimeter studies are necessary to get the real scenario. Copyright © 2010 Elsevier Ltd. All rights reserved.
Effects of air injection on a turbocharged Teledyne Continential Motors TSIO-360-C engine
NASA Technical Reports Server (NTRS)
Cosgrove, D. V.; Kempke, E. E.
1979-01-01
A turbocharged fuel injected aircraft engine was operated over a range of test conditions that included that EPA five-mode emissions cycle and fuel air ratio variations for individual modes while injecting air into the exhaust gas. Air injection resulted in a decrease of hydrocarbons and carbon monoxide while exceeding the maximum recommended turbine inlet temperature of 1650 F at the full rich mixture of the engine. Leanout tests indicated that the EPA standards could be met through the combined use of fuel management and air injection.
Performance assessment of an irreversible nano Brayton cycle operating with Maxwell-Boltzmann gas
NASA Astrophysics Data System (ADS)
Açıkkalp, Emin; Caner, Necmettin
2015-05-01
In the last decades, nano-technology has been developed very fast. According to this, nano-cycle thermodynamics should improve with a similar rate. In this paper, a nano-scale irreversible Brayton cycle working with helium is evaluated for different thermodynamic criteria. These are maximum work output, ecological function, ecological coefficient of performance, exergetic performance criteria and energy efficiency. Thermodynamic analysis was performed for these criteria and results were submitted numerically. In addition, these criteria are compared with each other and the most convenient methods for the optimum conditions are suggested.
Generation of a crowned pinion tooth surface by a surface of revolution
NASA Technical Reports Server (NTRS)
Litvin, F. L.; Zhang, J.; Handschuh, R. F.
1988-01-01
A method of generating crowned pinion tooth surfaces using a surface of revolution is developed. The crowned pinion meshes with a regular involute gear and has a prescribed parabolic type of transmission errors when the gears operate in the aligned mode. When the gears are misaligned the transmission error remains parabolic with the maximum level still remaining very small (less than 0.34 arc sec for the numerical examples). Tooth contact analysis (TCA) is used to simulate the conditions of meshing, determine the transmission error, and determine the bearing contact.
NanoSat Constellation Mission Design
NASA Technical Reports Server (NTRS)
Concha, Marco; DeFazio, Robert
1998-01-01
The NanoSat constellation concept mission proposes simultaneous operation of multiple swarms of as many as 22 identical 10 kg spacecraft per swarm. The various orbits in a NanoSat swarm vary from 3x12 to 3x42 R(sub e) in geometry. In this report the unique flight dynamics issues of this constellation satellite mission design are addressed. Studies include orbit design, orbit determination, and error analysis. A preliminary survey determined the orbital parameters that would limit the maximum shadow condition while providing adequate ground station access for three ground stations.
NASA Astrophysics Data System (ADS)
Zhao, Jing; Li, Peng
2017-05-01
In this paper, we propose a car-following model to explore the influences of V2V communication on the driving behavior at un-signalized intersections with two crossing streams and to explore how the speed guidance strategy affects the operation efficiency. The numerical results illustrate that the benefits of the guidance strategy could be enhanced by lengthening the guiding space range and increasing the maximum speed limitation, and that the guidance strategy is more suitable under low to medium traffic density and small safety interval condition.
Numerical flow analysis of axial flow compressor for steady and unsteady flow cases
NASA Astrophysics Data System (ADS)
Prabhudev, B. M.; Satish kumar, S.; Rajanna, D.
2017-07-01
Performance of jet engine is dependent on the performance of compressor. This paper gives numerical study of performance characteristics for axial compressor. The test rig is present at CSIR LAB Bangalore. Flow domains are meshed and fluid dynamic equations are solved using ANSYS package. Analysis is done for six different speeds and for operating conditions like choke, maximum efficiency & before stall point. Different plots are compared and results are discussed. Shock displacement, vortex flows, leakage patterns are presented along with unsteady FFT plot and time step plot.
High-repetition-rate short-pulse gas discharge.
Tulip, J; Seguin, H; Mace, P N
1979-09-01
A high-average-power short-pulse gas discharge is described. This consists of a volume-preionized transverse discharge of the type used in gas lasers driven by a Blumlein energy storage circuit. The Blumlein circuit is fabricated from coaxial cable, is pulse-charged from a high-repetition-rate Marx-bank generator, and is switched by a high-repetition-rate segmented rail gap. The operation of this discharge under conditions typical of rare-gas halide lasers is described. A maximum of 900 pps was obtained, giving a power flow into the discharge of 30 kW.
Introducing priority setting and resource allocation in home and community care programs.
Urquhart, Bonnie; Mitton, Craig; Peacock, Stuart
2008-01-01
To use evidence from research to identify and implement priority setting and resource allocation that incorporates both ethical practices and economic principles. Program budgeting and marginal analysis (PBMA) is based on two key economic principles: opportunity cost (i.e. doing one thing instead of another) and the margin (i.e. resource allocation should result in maximum benefit for available resources). An ethical framework for priority setting and resource allocation known as Accountability for Reasonableness (A4R) focuses on making sure that resource allocations are based on a fair decision-making process. It includes the following four conditions: publicity; relevance; appeals; and enforcement. More recent literature on the topic suggests that a fifth condition, that of empowerment, should be added to the Framework. The 2007-08 operating budget for Home and Community Care, excluding the residential sector, was developed using PBMA and incorporating the A4R conditions. Recommendations developed using PBMA were forwarded to the Executive Committee, approved and implemented for the 2007-08 fiscal year operating budget. In addition there were two projects approved for approximately $200,000. PBMA is an improvement over previous practice. Managers of Home and Community Care are committed to using the process for the 2008-09 fiscal year operating budget and expanding its use to include mental health and addictions services. In addition, managers of public health prevention and promotion services are considering using the process.
Aljuboury, Dheeaa Al Deen Atallah; Palaniandy, Puganeshwary; Abdul Aziz, Hamidi Bin; Feroz, Shaik; Abu Amr, Salem S
2016-09-01
The aim of this study is to investigate the performance of combined solar photo-catalyst of titanium oxide/zinc oxide (TiO 2 /ZnO) with aeration processes to treat petroleum wastewater. Central composite design with response surface methodology was used to evaluate the relationships between operating variables for TiO 2 dosage, ZnO dosage, air flow, pH, and reaction time to identify the optimum operating conditions. Quadratic models for chemical oxygen demand (COD) and total organic carbon (TOC) removals prove to be significant with low probabilities (<0.0001). The obtained optimum conditions included a reaction time of 170 min, TiO 2 dosage (0.5 g/L), ZnO dosage (0.54 g/L), air flow (4.3 L/min), and pH 6.8 COD and TOC removal rates of 99% and 74%, respectively. The TOC and COD removal rates correspond well with the predicted models. The maximum removal rate for TOC and COD was 99.3% and 76%, respectively at optimum operational conditions of TiO 2 dosage (0.5 g/L), ZnO dosage (0.54 g/L), air flow (4.3 L/min), reaction time (170 min) and pH (6.8). The new treatment process achieved higher degradation efficiencies for TOC and COD and reduced the treatment time comparing with other related processes.
Experimental results from a laboratory-scale molten salt thermocline storage
NASA Astrophysics Data System (ADS)
Seubert, Bernhard; Müller, Ralf; Willert, Daniel; Fluri, Thomas
2017-06-01
Single-tank storage presents a valid option for cost reduction in thermal energy storage systems. For low-temperature systems with water as storage medium this concept is widely implemented and tested. For high-temperature systems very limited experimental data are publicly available. To improve this situation a molten salt loop for experimental testing of a single-tank storage prototype was designed and built at Fraunhofer ISE. The storage tank has a volume of 0.4 m3 or a maximum capacity of 72 kWhth. The maximum charging and discharging power is 60 kW, however, a bypass flow control system enables to operate the system also at a very low power. The prototype was designed to withstand temperatures up to 550 °C. A cascaded insulation with embedded heating cables can be used to reduce the effect of heat loss on the storage which is susceptible to edge effects due to its small size. During the first tests the operating temperatures were adapted to the conditions in systems with thermal oil as heat transfer fluid and a smaller temperature difference. A good separation between cold and hot fluid was achieved with temperature gradients of 95 K within 16 cm.
Magnetic force study for the helical afterburner for the European XFEL
NASA Astrophysics Data System (ADS)
Li, Peng; Wei, Tao; Li, Yuhui; Pflueger, Joachim
2017-05-01
At present the SASE3 undulator line at the European XFEL is using a planar undulator producing linear polarized soft Xray radiation only. In order to satisfy the demand for circular polarized radiation a helical undulator system, the so-called afterburner is in construction. It will be operated as a radiator using the pre-bunched beam of the SASE3 undulator system. Among several options for the magnetic structure the Apple-X geometry was chosen. This is a pure permanent magnet undulator using NdFeB material. Four magnet arrays are arranged symmetrically the beam axis. Polarization can be changed by adjusting the phase shift (PS) between the two orthogonal structures. The field strength can be adjusted either by gap adjustment or alternatively by the amplitude shift (AS) scheme. For an engineering design the maximum values of forces and torques on each of the components under worst case operational conditions are important. The superposition principle is used to reduce calculation time. It is found that the maximum forces Fx, Fy and Fz for a 2m long Apple-X undulator are 1.8*104N, 2.4*104N and 2.3*104N, respectively. More results are presented in this paper.
NASA Technical Reports Server (NTRS)
Hull, Gary; Ranade, Sanjay
1993-01-01
With over 5000 units sold, the Storage Tek Automated Cartridge System (ACS) 4400 tape library is currently the most popular large automated tape library. Based on 3480/90 tape technology, the library is used as the migration device ('nearline' storage) in high-performance mass storage systems. In its maximum configuration, one ACS 4400 tape library houses sixteen 3480/3490 tape drives and is capable of holding approximately 6000 cartridge tapes. The maximum storage capacity of one library using 3480 tapes is 1.2 TB and the advertised aggregate I/O rate is about 24 MB/s. This paper reports on an extensive set of tests designed to accurately assess the performance capabilities and operational characteristics of one STK ACS 4400 tape library holding approximately 5200 cartridge tapes and configured with eight 3480 tape drives. A Cray Y-MP EL2-256 was configured as its host machine. More than 40,000 tape jobs were run in a variety of conditions to gather data in the areas of channel speed characteristics, robotics motion, time taped mounts, and timed tape reads and writes.
Ottoni, Cristiane; Simões, Marta F; Fernandes, Sara; Santos, Cledir R; Lima, Nelson
2016-08-02
Textile effluents are highly polluting and have variable and complex compositions. They can be extremely complex, with high salt concentrations and alkaline pHs. A fixed-bed bioreactor was used in the present study to simulate a textile effluent treatment, where the white-rot fungus, Trametes versicolor, efficiently decolourised the azo dye Reactive Black 5 over 28 days. This occurred under high alkaline conditions, which is unusual, but advantageous, for successful decolourisation processes. Active dye decolourisation was maintained by operation in continuous culture. Colour was eliminated during the course of operation and maximum laccase (Lcc) activity (80.2 U∙L(-1)) was detected after glycerol addition to the bioreactor. Lcc2 gene expression was evaluated with different carbon sources and pH values based on reverse transcriptase-PCR (polymerase chain reaction). Glycerol was shown to promote the highest lcc2 expression at pH 5.5, followed by sucrose and then glucose. The highest levels of expression occurred between three and four days, which corroborate the maximum Lcc activity observed for sucrose and glycerol on the bioreactor. These results give new insights into the use of T. versicolor in textile dye wastewater treatment with high pHs.
The in-flight performance of the Solar Maximum Mission Electrical Power System
NASA Technical Reports Server (NTRS)
Broderick, R. J.
1981-01-01
Circuitry, power handling, and operational characteristics and anomalies of the Electrical Power System (EPS) of the Solar Maximum Mission are discussed. The EPS is designed as a standard unit to be a candidate for use on future space missions. Blown, improperly derated fuses in the Attitude Control System and the Signal Conditioning Assembly have led to switching to magnetrons for solar angle, with a loss of accuracy, and a loss of one-half of telemetry data, respectively. In addition, reasons for an 11-14% degradation of solar array output are uncertain due to the loss of precise attitude control. Current surges to peak at 76.5 A (down from 94.5 A) at sunrise, stays for four to five minutes, then resumes nominal output for the remainder of the 61-68 daytime period. Eclipse varies between 28 and 35 minutes, with corresponding depth of discharge of 14%. The batteries charge at 20 A, and although an overcharge mode has been continuously sensed, operation has been normal and temperature sensors have not indicated overcharge; cell failure has also not been sensed. The system has a two year design life and a desired life of four years.
2014-12-12
AFRL-RV-PS- AFRL-RV-PS- TR-2015-0005 TR-2015-0005 ESTIMATE OF SOLAR MAXIMUM USING THE 1–8 Å GEOSTATIONARY OPERATIONAL ENVIRONMENTAL SATELLITES X... Geostationary Operational Environmental Satellites X-Ray Measurements (Postprint) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F 6...of the solar cycle through an analysis of the solar X-ray background. Our results are based on the NOAA Geostationary Operational Environmental
SM-1 REACTOR VESSEL COVER AND FLANGE STRESS ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayre, M.F.
1962-02-19
The maximum stress calculated for the SMl-1 reactor vessel closure studs occurs during operation at full power. This value is 27,180 psi of which 19,800 psi is tension and 7380 psi bending. This stress does not include a stress concentration factor for effect of threads. It was eonservatively assumed the studs were initially tightened to a code allowable stress of 20,000 psi as specified in the ASME Code rather than the lesser stress obtained by the normal operating procedure. The maximum calculated stress occurs at the outside surface of the cover where the stress ranges from 318 psi in tensionmore » to 90,660 psi in compression. The alternating stress is 50,000 psi. According to the Navy Code for a stress range of 50,000 psi, the eover material ean safely undergo a maximum of 1600 cycles. It was estimated that the SM-1 will go through approximately 000 startup and shutdown cycles during a 20-yr life period, so the calculated stress is regarded as safe. For a transient eondition of 30 deg F/hr during heat-up, approximate temperature differences between the inside and outside surfaces of the cover were obtained. Temperature differentials between the inside and outside surfaces of the cover are increased by roughly 10%; above the steady state condition. More exact calculations of the transient stresses did not appear necessary siuce they would be not more than 10% greater than the steady state thermal stress. (auth)« less
40 CFR 464.25 - Pretreatment standards for existing sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Copper Casting... existing sources. (a) Casting Quench Operations. PSES Pollutant or pollutant property Maximum for any 1 day... monitoring) 1.2 0.399 (b) Direct Chill Casting Operations. PSES Pollutant or pollutant property Maximum for...
29 CFR 1918.85 - Containerized cargo operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Containerized cargo operations. (a) Container markings. Every intermodal container shall be legibly and permanently marked with: (1) The weight of the container when empty, in pounds; (2) The maximum cargo weight... maximum cargo weight, in pounds. (b) Container weight. No container shall be hoisted by any lifting...
29 CFR 1918.85 - Containerized cargo operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Containerized cargo operations. (a) Container markings. Every intermodal container shall be legibly and permanently marked with: (1) The weight of the container when empty, in pounds; (2) The maximum cargo weight... maximum cargo weight, in pounds. (b) Container weight. No container shall be hoisted by any lifting...
29 CFR 1918.85 - Containerized cargo operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Containerized cargo operations. (a) Container markings. Every intermodal container shall be legibly and permanently marked with: (1) The weight of the container when empty, in pounds; (2) The maximum cargo weight... maximum cargo weight, in pounds. (b) Container weight. No container shall be hoisted by any lifting...
29 CFR 1918.85 - Containerized cargo operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Containerized cargo operations. (a) Container markings. Every intermodal container shall be legibly and permanently marked with: (1) The weight of the container when empty, in pounds; (2) The maximum cargo weight... maximum cargo weight, in pounds. (b) Container weight. No container shall be hoisted by any lifting...
29 CFR 1918.85 - Containerized cargo operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Containerized cargo operations. (a) Container markings. Every intermodal container shall be legibly and permanently marked with: (1) The weight of the container when empty, in pounds; (2) The maximum cargo weight... maximum cargo weight, in pounds. (b) Container weight. No container shall be hoisted by any lifting...
30 CFR 56.19062 - Maximum acceleration and deceleration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maximum acceleration and deceleration. 56.19062 Section 56.19062 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoisting Procedures § 56.19062 Maximum acceleration and deceleration. Maximum normal operating...
30 CFR 57.19062 - Maximum acceleration and deceleration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maximum acceleration and deceleration. 57.19062 Section 57.19062 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoisting Procedures § 57.19062 Maximum acceleration and deceleration. Maximum normal operating...
Relationship between fatigue life in the creep-fatigue region and stress-strain response
NASA Technical Reports Server (NTRS)
Berkovits, A.; Nadiv, S.
1988-01-01
On the basis of mechanical tests and metallographic studies, strainrange partitioned lives were predicted by introducing stress-strain materials parameters into the Universal Slopes Equation. This was the result of correlating fatigue damage mechanisms and deformation mechanisms operating at elevated temperatures on the basis of observed mechanical and microstructural behavior. Correlation between high temperature fatigue and stress strain properties for nickel base superalloys and stainless steel substantiated the method. Parameters which must be evaluated for PP- and CC- life are the maximum stress achievable under entirely plastic and creep conditions respectively and corresponding inelastic strains, and the elastic modulus. For plasticity/creep interaction conditions (PC and CP) two more pairs of stress strain parameters must be ascertained.
Nitrogen nucleation in a cryogenic supersonic nozzle
NASA Astrophysics Data System (ADS)
Bhabhe, Ashutosh; Wyslouzil, Barbara
2011-12-01
We follow the vapor-liquid phase transition of N2 in a cryogenic supersonic nozzle apparatus using static pressure measurements. Under our operating conditions, condensation always occurs well below the triple point. Mean field kinetic nucleation theory (MKNT) does a better job of predicting the conditions corresponding to the estimated maximum nucleation rates, Jmax = 1017±1 cm-3 s-1, than two variants of classical nucleation theory. Combining the current results with the nucleation pulse chamber measurements of Iland et al. [J. Chem. Phys. 130, 114508-1 (2009)], we use nucleation theorems to estimate the critical cluster properties. Both the theories overestimate the size of the critical cluster, but MKNT does a good job of estimating the excess internal energy of the clusters.
Heat Pipe Vapor Dynamics. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Issacci, Farrokh
1990-01-01
The dynamic behavior of the vapor flow in heat pipes is investigated at startup and during operational transients. The vapor is modeled as two-dimensional, compressible viscous flow in an enclosure with inflow and outflow boundary conditions. For steady-state and operating transients, the SIMPLER method is used. In this method a control volume approach is employed on a staggered grid which makes the scheme very stable. It is shown that for relatively low input heat fluxes the compressibility of the vapor flow is low and the SIMPLER scheme is suitable for the study of transient vapor dynamics. When the input heat flux is high or the process under a startup operation starts at very low pressures and temperatures, the vapor is highly compressible and a shock wave is created in the evaporator. It is shown that for a wide range of input heat fluxes, the standard methods, including the SIMPLER scheme, are not suitable. A nonlinear filtering technique, along with the centered difference scheme, are then used for shock capturing as well as for the solution of the cell Reynolds-number problem. For high heat flux, the startup transient phase involves multiple shock reflections in the evaporator region. Each shock reflection causes a significant increase in the local pressure and a large pressure drop along the heat pipe. Furthermore, shock reflections cause flow reversal in the evaporation region and flow circulations in the adiabatic region. The maximum and maximum-averaged pressure drops in different sections of the heat pipe oscillate periodically with time because of multiple shock reflections. The pressure drop converges to a constant value at steady state. However, it is significantly higher than its steady-state value at the initiation of the startup transient. The time for the vapor core to reach steady-state condition depends on the input heat flux, the heat pipe geometry, the working fluid, and the condenser conditions. However, the vapor transient time, for an Na-filled heat pipe is on the order of seconds. Depending on the time constant for the overall system, the vapor transient time may be very short. Therefore, the vapor core may be assumed to be quasi-steady in the transient analysis of a heat pipe operation.
Factors influencing the QMF resolution for operation in stability zones 1 and 3.
Syed, Sarfaraz U A H; Hogan, Thomas; Gibson, John; Taylor, Stephen
2012-05-01
This study uses a computer model to simulate a quadrupole mass filter (QMF) instrument under different operating conditions for Mathieu stability zones 1 and 3. The investigation considers the factors that limit the maximum resolution (R(max)), which can be obtained for a given QMF for a particular value of scan line. Previously, QMF resolution (R) has been found to be dependent on number (N) of radio frequency (rf) cycles experienced by the ions in the mass filter, according to R = N(n)/K, where n and K are the constants. However, this expression does not predict the limit to QMF resolution observed in practice and is true only for the linear regions of the performance curve for QMF operation in zone 1 and zone 3 of the stability diagram. Here we model the saturated regions of the performance curve for QMF operation in zone 1 according to R = q(1 - 2c(N))/∆q, where c is a constant and ∆q is the width of the intersection of the operating scan line with the stability zone 1, measured at q-axis of the Mathieu stability diagram. Also by careful calculations of the detail of the stability tip of zone 1, the following relationship was established between R(max) and percentage U/V ratio: R(max) = q/(0.9330-0.00933U/V). For QMF operation in zone 3 the expression R = a - bc(N) simulates well the linear and saturated regions of the performance curve for a range of operational conditions, where a, b, and c are constants.
NASA Astrophysics Data System (ADS)
Arno, Matthew Gordon
Texas is investigating building a long-term waste storage facility, also known as an Assured Isolation Facility. This is an above-ground low-level radioactive waste storage facility that is actively maintained and from which waste may be retrieved. A preliminary, scoping-level analysis has been extended to consider more complex scenarios of radiation streaming and skyshine by using the computer code Monte Carlo N-Particle (MCNP) to model the facility in greater detail. Accidental release scenarios have been studied in more depth to better assess the potential dose to off-site individuals. Using bounding source term assumptions, the projected radiation doses and dose rates are estimated to exceed applicable limits by an order of magnitude. By altering the facility design to fill in the hollow cores of the prefabricated concrete slabs used in the roof over the "high-gamma rooms," where the waste with the highest concentration of gamma emitting radioactive material is stored, dose rates outside the facility decrease by an order of magnitude. With the modified design, the annual dose at the site fenceline is estimated at 86 mrem, below the 100 mrem annual limit for exposure of the public. Within the site perimeter, the dose rates are lowered sufficiently such that it is not necessary to categorize many workers and contractor personnel as radiation workers, saving on costs as well as being advisable under ALARA principles. A detailed analysis of bounding accidents incorporating information on the local meteorological conditions indicate that the maximum committed effective dose equivalent from the passage of a plume of material released in an accident at any of the cities near the facility is 59 :rem in the city of Eunice, NM based on the combined day and night meteorological conditions. Using the daytime meteorological conditions, the maximum dose at any city is 7 :rem, also in the city of Eunice. The maximum dose at the site boundary was determined to be 230 mrem using the combined day and night meteorological conditions and 33 mrem using the daytime conditions.
Application of Distributed DC/DC Electronics in Photovoltaic Systems
NASA Astrophysics Data System (ADS)
Kabala, Michael
In a typical residential, commercial or utility grade photovoltaic (PV) system, PV modules are connected in series and in parallel to form an array that is connected to a standard DC/AC inverter, which is then connected directly to the grid. This type of standard installation; however, does very little to maximize the energy output of the solar array if certain conditions exist. These conditions could include age, temperature, irradiance and other factors that can cause mismatch between PV modules in an array that severely cripple the output power of the system. Since PV modules are typically connected in series to form a string, the output of the entire string is limited by the efficiency of the weakest module. With PV module efficiencies already relatively low, it is critical to extract the maximum power out of each module in order to make solar energy an economically viable competitor to oil and gas. Module level DC/DC electronics with maximum power point (MPP) tracking solves this issue by decoupling each module from the string in order for the module to operate independently of the geometry and complexity of the surrounding system. This allows each PV module to work at its maximum power point by transferring the maximum power the module is able to deliver directly to the load by either boosting (stepping up) the voltage or bucking (stepping down) the voltage. The goal of this thesis is to discuss the development of a per-module DC/DC converter in order to maximize the energy output of a PV module and reduce the overall cost of the system by increasing the energy harvest.
Jaisson, Maxime; Lestriez, Philippe; Taiar, Redha; Debray, Karl
2011-01-01
The proposed biodynamic model of the articular disc joint has the ability to affect directly the complete chewing mechanism process and its related muscles defining its kinematics. When subjected to stresses from the mastication muscles, the disc absorbs one part and redistributes the other to become completely distorted. To develop a realistic model of this intricate joint a CT scan and MRI images from a patient were obtained to create sections (layers) and MRI images to create an anatomical joint CAD model, and its corresponding mesh element using a finite element method. The boundary conditions are described by the external forces applied to the joint model through a decomposition of the maximum muscular force developed by the same individual. In this study, the maximum force was operating at frequencies close to the actual chewing frequency measured through a cyclic loading condition. The reaction force at the glenoid fossa was found to be around 1035 N and is directly related to the frequency of indentation. It is also shown that over the years the areas of maximum stresses are located at the lateral portion of the disc and on its posterior rim. These forces can reach 13.2 MPa after a period of 32 seconds (s) at a frequency of 0.5 Hz. An important part of this study is to highlight resilience and the areas where stresses are at their maximum. This study provides a novel approach to improve the understanding of this complex joint, as well as to assess the different pathologies associated with the disc disease that would be difficult to study otherwise.
Analysis of the hydrological safety of dams combining two numerical tools: Iber and DualSPHysics
NASA Astrophysics Data System (ADS)
González-Cao, J.; García-Feal, O.; Domínguez, J. M.; Crespo, A. J. C.; Gómez-Gesteira, M.
2018-02-01
The upgrade of the hydrological safety of dams is a critical issue to avoid failures that can dramatically affect people and assets. This paper shows a numerical methodology to analyse the safety of the Belesar dam (NW, Spain) based on two different numerical codes. First, a mesh-based code named Iber, suited to deal with large 2-D domains, is used to simulate the impoundment. The initial conditions and the inlet provided to Iber correspond to the maximum water elevation and the maximum expected inflow to the impoundment defined in the technical specifications of the dam, which are associated to the more hazardous operation conditions of the dam. Iber provides information about the time needed for water to attain the crest of the dam when floodgates are closed. In addition, it also provides the velocity of discharge when gates are opened. Then, a mesh-free code named DualSPHysics, which is especially suited to deal with complex and violent 3-D flows, is used to reproduce the behaviour of one of the spillways of the dam starting from the results obtained with Iber, which are used as inlet conditions for DualSPHysics. The combined results of both model show that the left spillway can discharge the surplus of water associated to the maximum inflow to the reservoir if the gates of the spillways are opened before the overtopping of the dam was observed. In addition, water depth measured on the spillway is considerably lower than the lateral walls, preventing overtopping. Finally, velocities at different points of the spillway showed to be in good agreement with theoretical values.
Optimizing Wind And Hydropower Generation Within Realistic Reservoir Operating Policy
NASA Astrophysics Data System (ADS)
Magee, T. M.; Clement, M. A.; Zagona, E. A.
2012-12-01
Previous studies have evaluated the benefits of utilizing the flexibility of hydropower systems to balance the variability and uncertainty of wind generation. However, previous hydropower and wind coordination studies have simplified non-power constraints on reservoir systems. For example, some studies have only included hydropower constraints on minimum and maximum storage volumes and minimum and maximum plant discharges. The methodology presented here utilizes the pre-emptive linear goal programming optimization solver in RiverWare to model hydropower operations with a set of prioritized policy constraints and objectives based on realistic policies that govern the operation of actual hydropower systems, including licensing constraints, environmental constraints, water management and power objectives. This approach accounts for the fact that not all policy constraints are of equal importance. For example target environmental flow levels may not be satisfied if it would require violating license minimum or maximum storages (pool elevations), but environmental flow constraints will be satisfied before optimizing power generation. Additionally, this work not only models the economic value of energy from the combined hydropower and wind system, it also captures the economic value of ancillary services provided by the hydropower resources. It is recognized that the increased variability and uncertainty inherent with increased wind penetration levels requires an increase in ancillary services. In regions with liberalized markets for ancillary services, a significant portion of hydropower revenue can result from providing ancillary services. Thus, ancillary services should be accounted for when determining the total value of a hydropower system integrated with wind generation. This research shows that the end value of integrated hydropower and wind generation is dependent on a number of factors that can vary by location. Wind factors include wind penetration level, variability due to geographic distribution of wind resources, and forecast error. Electric power system factors include the mix of thermal generation resources, available transmission, demand patterns, and market structures. Hydropower factors include relative storage capacity, reservoir operating policies and hydrologic conditions. In addition, the wind, power system, and hydropower factors are often interrelated because stochastic weather patterns can simultaneously influence wind generation, power demand, and hydrologic inflows. One of the central findings is that the sensitivity of the model to changes cannot be performed one factor at a time because the impact of the factors is highly interdependent. For example, the net value of wind generation may be very sensitive to changes in transmission capacity under some hydrologic conditions, but not at all under others.
40 CFR 57.203 - Contents of the application.
Code of Federal Regulations, 2010 CFR
2010-07-01
... emission of sulfur dioxide; the characteristics of all gas streams emitted from the smelter's process...'s maximum daily production capacity (as defined in § 57.103(r)), the operational rate (in pounds of... smelter is operating at that capacity; and the smelter's average and maximum daily production rate for...
Maximum cycle work output optimization for generalized radiative law Otto cycle engines
NASA Astrophysics Data System (ADS)
Xia, Shaojun; Chen, Lingen; Sun, Fengrui
2016-11-01
An Otto cycle internal combustion engine which includes thermal and friction losses is investigated by finite-time thermodynamics, and the optimization objective is the maximum cycle work output. The thermal energy transfer from the working substance to the cylinder inner wall follows the generalized radiative law (q∝Δ (Tn)). Under the condition that all of the fuel consumption, the compression ratio and the cycle period are given, the optimal piston trajectories for both the examples with unlimited and limited accelerations on every stroke are determined, and the cycle-period distribution among all strokes is also optimized. Numerical calculation results for the case of radiative law are provided and compared with those obtained for the cases of Newtonian law and linear phenomenological law. The results indicate that the optimal piston trajectory on each stroke contains three sections, which consist of an original maximum-acceleration and a terminal maximum-deceleration parts; for the case of radiative law, optimizing the piston motion path can achieve an improvement of more than 20% in both the cycle-work output and the second-law efficiency of the Otto cycle compared with the conventional near-sinusoidal operation, and heat transfer mechanisms have both qualitative and quantitative influences on the optimal paths of piston movements.
Design of a Collapse-Mode CMUT With an Embossed Membrane for Improving Output Pressure.
Yu, Yuanyu; Pun, Sio Hang; Mak, Peng Un; Cheng, Ching-Hsiang; Wang, Jiujiang; Mak, Pui-In; Vai, Mang I
2016-06-01
Capacitive micromachined ultrasonic transducers (CMUTs) have emerged as a competitive alternative to piezoelectric ultrasonic transducers, especially in medical ultrasound imaging and therapeutic ultrasound applications, which require high output pressure. However, as compared with piezoelectric ultrasonic transducers, the output pressure capability of CMUTs remains to be improved. In this paper, a novel structure is proposed by forming an embossed vibrating membrane on a CMUT cell operating in the collapse mode to increase the maximum output pressure. By using a beam model in undamped conditions and finite-element analysis simulations, the proposed embossed structure showed improvement on the maximum output pressure of the CMUT cell when the embossed pattern was placed on the estimated location of the peak deflection. As compared with a uniform membrane CMUT cell worked in the collapse mode, the proposed CMUT cell can yield the maximum output pressure by 51.1% and 88.1% enhancement with a single embossed pattern made of Si3N4 and nickel, respectively. The maximum output pressures were improved by 34.9% (a single Si3N4 embossed pattern) and 46.7% (a single nickel embossed pattern) with the uniform membrane when the center frequencies of both original and embossed CMUT designs were similar.
NASA Astrophysics Data System (ADS)
Geete, Ankur; Dubey, Akash; Sharma, Ankush; Dubey, Anshul
2018-05-01
In this research work, compound parabolic solar collector (CPC) with evacuated tubes is fabricated. Main benefit of CPC is that there is no requirement of solar tracking system. With fabricated CPC; outlet temperatures of flowing fluid, instantaneous efficiencies, useful heat gain rates and inlet exergies (with and without considering Sun's cone angle) are experimentally found. Observations are taken at different time intervals (1200, 1230, 1300, 1330 and 1400 h), mass flow rates (1.15, 0.78, 0.76, 0.86 and 0.89 g/s), ambient temperatures and with various dimensions of solar collector. This research work is concluded as; maximum instantaneous efficiency is 69.87% which was obtained with 0.76 g/s flow rate of water at 1300 h and 42°C is the maximum temperature difference which was also found at same time. Maximum inlet exergies are 139.733 and 139.532 kW with and without considering Sun's cone angle at 1300 h, respectively. Best thermal performance from the fabricated CPC with evacuated tubes is found at 1300 h. Maximum inlet exergy is 141.365 kW which was found at 1300 h with 0.31 m aperture width and 1.72 m absorber pipe length.
NASA Astrophysics Data System (ADS)
Skolubovich, Yuriy; Skolubovich, Aleksandr; Voitov, Evgeniy; Soppa, Mikhail; Chirkunov, Yuriy
2017-10-01
The article considers the current questions of technological modeling and calculation of the new facility for cleaning natural waters, the clarifier reactor for the optimal operating mode, which was developed in Novosibirsk State University of Architecture and Civil Engineering (SibSTRIN). A calculation technique based on well-known dependences of hydraulics is presented. A calculation example of a structure on experimental data is considered. The maximum possible rate of ascending flow of purified water was determined, based on the 24 hour clarification cycle. The fractional composition of the contact mass was determined with minimal expansion of contact mass layer, which ensured the elimination of stagnant zones. The clarification cycle duration was clarified by the parameters of technological modeling by recalculating maximum possible upward flow rate of clarified water. The thickness of the contact mass layer was determined. Likewise, clarification reactors can be calculated for any other lightening conditions.
Carbon neutral electricity production by Synechocystis sp. PCC6803 in a microbial fuel cell.
Madiraju, Kartik S; Lyew, Darwin; Kok, Robert; Raghavan, Vijaya
2012-04-01
The aim of this work was to illustrate the use of photosynthetic microbes in a microbial fuel cell to produce electricity without the requirement of an external carbon source. This research here describes the use of a cyanobacterium Synechocystis PCC6803, to produce electricity without any net CO(2) production in a two-chambered MFC. Conditions for optimum electricity production were determined through standardizing operating parameters. A maximum power density of 6.7mWm(-3)(anode chamber volume) was achieved under high intensity lighting (10,000lux). Light intensity and wavelength directly affected electricity production, indicating the pivotal role played by photosynthesis. The maximum removal of CO(2) was 625mmolm(-3) over 20h under high intensity light. The results presented here will contribute to the understanding of how cyanobacteria can be exploited for the direct conversion of CO(2) to electric current. Copyright © 2012 Elsevier Ltd. All rights reserved.
Design studies of continuously variable transmissions for electric vehicles
NASA Technical Reports Server (NTRS)
Parker, R. J.; Loewenthal, S. H.; Fischer, G. K.
1981-01-01
Preliminary design studies were performed on four continuously variable transmission (CVT) concepts for use with a flywheel equipped electric vehicle of 1700 kg gross weight. Requirements of the CVT's were a maximum torque of 450 N-m (330 lb-ft), a maximum output power of 75 kW (100 hp), and a flywheel speed range of 28,000 to 14,000 rpm. Efficiency, size, weight, cost, reliability, maintainability, and controls were evaluated for each of the four concepts which included a steel V-belt type, a flat rubber belt type, a toroidal traction type, and a cone roller traction type. All CVT's exhibited relatively high calculated efficiencies (68 percent to 97 percent) over a broad range of vehicle operating conditions. Estimated weight and size of these transmissions were comparable to or less than equivalent automatic transmission. The design of each concept was carried through the design layout stage.
Methods of computing steady-state voltage stability margins of power systems
Chow, Joe Hong; Ghiocel, Scott Gordon
2018-03-20
In steady-state voltage stability analysis, as load increases toward a maximum, conventional Newton-Raphson power flow Jacobian matrix becomes increasingly ill-conditioned so power flow fails to converge before reaching maximum loading. A method to directly eliminate this singularity reformulates the power flow problem by introducing an AQ bus with specified bus angle and reactive power consumption of a load bus. For steady-state voltage stability analysis, the angle separation between the swing bus and AQ bus can be varied to control power transfer to the load, rather than specifying the load power itself. For an AQ bus, the power flow formulation is only made up of a reactive power equation, thus reducing the size of the Jacobian matrix by one. This reduced Jacobian matrix is nonsingular at the critical voltage point, eliminating a major difficulty in voltage stability analysis for power system operations.
Corbella, Clara; Garfí, Marianna; Puigagut, Jaume
2014-02-01
Sediment microbial fuel cell (sMFC) represents a variation of the typical configuration of a MFC in which energy can be harvested via naturally occurring electropotential differences. Moreover, constructed wetlands show marked redox gradients along the depth which could be exploited for energy production via sMFC. In spite of the potential application of sMFC to constructed wetlands, there is almost no published work on the topic. The main objective of the present work was to define the best operational and design conditions of sub-surface flow constructed wetlands (SSF CWs) under which energy production with microbial fuel cells (MFCs) would be maximized. To this aim, a pilot plant based on SSF CW treating domestic sewage was operated during six months. Redox gradients along the depth of SSF CWs were determined as function of hydraulic regime (continuous vs discontinuous) and the presence of macrophytes in two sampling campaigns (after three and six months of plant operation). Redox potential (EH) within the wetlands was analysed at 5, 15 and 25 cm. Results obtained indicated that the maximum redox gradient was between the surface and the bottom of the bed for continuous planted wetlands (407.7 ± 73.8 mV) and, to a lesser extent, between the surface and the middle part of the wetland (356.5 ± 76.7 mV). Finally, the maximum redox gradients obtained for planted wetlands operated under continuous flow regime would lead to a power production of about 16 mW/m(2). © 2013.
High-Performance Bipropellant Engine
NASA Technical Reports Server (NTRS)
Biaglow, James A.; Schneider, Steven J.
1999-01-01
TRW, under contract to the NASA Lewis Research Center, has successfully completed over 10 000 sec of testing of a rhenium thrust chamber manufactured via a new-generation powder metallurgy. High performance was achieved for two different propellants, N2O4- N2H4 and N2O4 -MMH. TRW conducted 44 tests with N2O4-N2H4, accumulating 5230 sec of operating time with maximum burn times of 600 sec and a specific impulse Isp of 333 sec. Seventeen tests were conducted with N2O4-MMH for an additional 4789 sec and a maximum Isp of 324 sec, with a maximum firing duration of 700 sec. Together, the 61 tests totalled 10 019 sec of operating time, with the chamber remaining in excellent condition. Of these tests, 11 lasted 600 to 700 sec. The performance of radiation-cooled rocket engines is limited by their operating temperature. For the past two to three decades, the majority of radiation-cooled rockets were composed of a high-temperature niobium alloy (C103) with a disilicide oxide coating (R512) for oxidation resistance. The R512 coating practically limits the operating temperature to 1370 C. For the Earth-storable bipropellants commonly used in satellite and spacecraft propulsion systems, a significant amount of fuel film cooling is needed. The large film-cooling requirement extracts a large penalty in performance from incomplete mixing and combustion. A material system with a higher temperature capability has been matured to the point where engines are being readied for flight, particularly the 100-lb-thrust class engine. This system has powder rhenium (Re) as a substrate material with an iridium (Ir) oxidation-resistant coating. Again, the operating temperature is limited by the coating; however, Ir is capable of long-life operation at 2200 C. For Earth-storable bipropellants, this allows for the virtual elimination of fuel film cooling (some film cooling is used for thermal control of the head end). This has resulted in significant increases in specific impulse performance (15 to 20 sec). To determine the merits of a powder rhenium thrust chamber, Lewis On-Board Propulsion Branch directed TRW (under the Space Storable Rocket Technology Program and the High Pressure Earth Storable Rocket Technology Program) to design, fabricate, and test an engineering model to serve as a technology demonstrator.
Telemetry and control system for interplatform crude loading at the Statfjord field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malmin, P.C.; Lassa, P.
1988-04-01
A control system for crude loading to tankers at Statfjord field has been designed to allow tanker loading to the place at all times to prevent production shutdowns caused by loading-buoy problems. This paper discusses how the control system was designed to maximize the flexibility of loading operations and to meet all safety and regulatory requirements. The experience gained from more than 4 years of operation of the system is reviewed. The system has allowed maximum use of total field crude oil storage capacity while loading to 125,000-DWT (127 000-Mg) tankers nearly every day throughout the year. It has beenmore » possible to maintain a high production rate even through the periods of difficult weather conditions experienced in the northern North Sea.« less
The application of the statistical theory of extreme values to gust-load problems
NASA Technical Reports Server (NTRS)
Press, Harry
1950-01-01
An analysis is presented which indicates that the statistical theory of extreme values is applicable to the problems of predicting the frequency of encountering the larger gust loads and gust velocities for both specific test conditions as well as commercial transport operations. The extreme-value theory provides an analytic form for the distributions of maximum values of gust load and velocity. Methods of fitting the distribution are given along with a method of estimating the reliability of the predictions. The theory of extreme values is applied to available load data from commercial transport operations. The results indicate that the estimates of the frequency of encountering the larger loads are more consistent with the data and more reliable than those obtained in previous analyses. (author)
[Analysis of the effect of detector's operating temperature on SNR in space-based remote sensor].
Li, Zhan-feng; Wang, Shu-rong; Huang, Yu
2012-03-01
Limb viewing is a new viewing geometry for space-based atmospheric remote sensing, but the spectral radiance of atmosphere scattering reduces rapidly with limb height. So the signal-noise-ratio (SNR) is a key performance parameter of limb remote sensor. A SNR model varying with detector's temperature is proposed, based on analysis of spectral radiative transfer and noise' source in representative instruments. The SNR at limb height 70 km under space conditions was validated by simulation experiment on limb remote sensing spectrometer prototype. Theoretic analysis and experiment's results indicate congruously that when detector's temperature reduces to some extent, a maximum SNR will be reached. After considering the power consumption, thermal conductivity and other issues, optimal operating temperature of detector can be decided.
Wind Tunnel Testing on Crosswind Aerodynamic Forces Acting on Railway Vehicles
NASA Astrophysics Data System (ADS)
Kwon, Hyeok-Bin; Nam, Seong-Won; You, Won-Hee
This study is devoted to measure the aerodynamic forces acting on two railway trains, one of which is a high-speed train at 300km/h maximum operation speed, and the other is a conventional train at the operating speed 100km/h. The three-dimensional train shapes have been modeled as detailed as possible including the inter-car, the upper cavity for pantograph, and the bogie systems. The aerodynamic forces on each vehicle of the trains have been measured in the subsonic wind tunnel with 4m×3m test section of Korea Aerospace Research Institute at Daejeon, Korea. The aerodynamic forces and moments of the train models have been plotted for various yaw angles and the characteristics of the aerodynamic coefficients has been discussed relating to the experimental conditions.
Component and System Sensitivity Considerations for Design of a Lunar ISRU Oxygen Production Plant
NASA Technical Reports Server (NTRS)
Linne, Diane L.; Gokoglu, Suleyman; Hegde, Uday G.; Balasubramaniam, Ramaswamy; Santiago-Maldonado, Edgardo
2009-01-01
Component and system sensitivities of some design parameters of ISRU system components are analyzed. The differences between terrestrial and lunar excavation are discussed, and a qualitative comparison of large and small excavators is started. The effect of excavator size on the size of the ISRU plant's regolith hoppers is presented. Optimum operating conditions of both hydrogen and carbothermal reduction reactors are explored using recently developed analytical models. Design parameters such as batch size, conversion fraction, and maximum particle size are considered for a hydrogen reduction reactor while batch size, conversion fraction, number of melt zones, and methane flow rate are considered for a carbothermal reduction reactor. For both reactor types the effect of reactor operation on system energy and regolith delivery requirements is presented.
Meier, J F; Austermann-Haun, U; Fettig, J; Liebe, H; Wichern, M
2017-10-01
This experimental study investigates the anaerobic digestion of waste water from hydrothermal carbonisation of fine mulch (wood chips) in combination with a co-substrate for the first time. Two anaerobic reactors, an anaerobic filter (AF) and an anaerobic moving bed bioreactor (AnMBBR), were operated over a period of 131 days at mesophilic conditions. The organic loading rate was increased to a maximum of 8.5 g L -l d -1 in the AF and the AnMBBR. Both reactors achieved similarly efficient chemical oxygen demand removal rates of 80% approximately (approx.) and high methane production rates of approx. 2.7 L L -1 d -1 . Nevertheless, signs of an inhibition were observed during the experiments.
Comparative study of high power Tm:YLF and Tm:LLF slab lasers in continuous wave regime.
Berrou, Antoine; Collett, Oliver J P; Morris, Daniel; Esser, M J Daniel
2018-04-16
We report on Tm:YLF and Tm:LLF slab lasers (1.5 x 11 x 20 mm 3 ) end pumped from one end with a high-brightness 792 nm laser diode stack. These two lasers are compared under identical pump conditions in continuous-wave regime. A stronger negative thermal lens in Tm:LLF than in Tm:YLF is highlighted, making it more difficult to operate the Tm:LLF laser under stable lasing conditions. In a configuration where the high reflectivity cavity mirror has a radius of curvature of r = 150 mm, the Tm:YLF (Tm:LLF) laser produces a maximum output power of 150 W (143 W) for 428 W of incident pump power (respectively). For a second cavity configuration where the high reflectivity cavity mirror has a radius of curvature of r = 500 mm, the Tm:YLF laser produces a maximum output power of 164 W for 412 W of incident pump power and a 57% slope efficiency with respect to the absorbed pump power. The emitted wavelength of these two lasers are measured as a function of the output coupler reflectivity and it shows that Tm:LLF laser emits at a longer wavelength than Tm:YLF.
Performance Evaluation of an Actuator Dust Seal for Lunar Operation
NASA Technical Reports Server (NTRS)
Delgado, Irebert R.; Gaier, James R.; Handschuh, Michael; Panko, Scott; Sechkar, Ed
2013-01-01
Exploration of extraterrestrial surfaces (e.g. moon, Mars, asteroid) will require durable space mechanisms that will survive potentially dusty surface conditions in addition to the hard vacuum and extreme temperatures of space. Baseline tests with lunar simulant were recently completed at NASA GRC on a new Low-Temperature Mechanism (LTM) dust seal for space actuator application. Following are top-level findings of the tests completed to date in vacuum using NU-LHT-2M lunar-highlands simulant. A complete set of findings are found in the conclusions section.Tests were run at approximately 10-7 torr with unidirectional rotational speed of 39 RPM.Initial break-in runs were performed at atmospheric conditions with no simulant. During the break-in runs, the maximum torque observed was 16.7 lbf-in. while the maximum seal outer diameter temperature was 103F. Only 0.4 milligrams of NU-LHT-2M simulant passed through the sealshaft interface in the first 511,000 cycles while under vacuum despite a chip on the secondary sealing surface.Approximately 650,000 of a planned 1,000,000 cycles were completed in vacuum with NU-LHT-2M simulant.Upon test disassembly NU-LHT-2M was found on the secondary sealing surface.
NASA Astrophysics Data System (ADS)
Tan, Elcin
A new physically-based methodology for probable maximum precipitation (PMP) estimation is developed over the American River Watershed (ARW) using the Weather Research and Forecast (WRF-ARW) model. A persistent moisture flux convergence pattern, called Pineapple Express, is analyzed for 42 historical extreme precipitation events, and it is found that Pineapple Express causes extreme precipitation over the basin of interest. An average correlation between moisture flux convergence and maximum precipitation is estimated as 0.71 for 42 events. The performance of the WRF model is verified for precipitation by means of calibration and independent validation of the model. The calibration procedure is performed only for the first ranked flood event 1997 case, whereas the WRF model is validated for 42 historical cases. Three nested model domains are set up with horizontal resolutions of 27 km, 9 km, and 3 km over the basin of interest. As a result of Chi-square goodness-of-fit tests, the hypothesis that "the WRF model can be used in the determination of PMP over the ARW for both areal average and point estimates" is accepted at the 5% level of significance. The sensitivities of model physics options on precipitation are determined using 28 microphysics, atmospheric boundary layer, and cumulus parameterization schemes combinations. It is concluded that the best triplet option is Thompson microphysics, Grell 3D ensemble cumulus, and YSU boundary layer (TGY), based on 42 historical cases, and this TGY triplet is used for all analyses of this research. Four techniques are proposed to evaluate physically possible maximum precipitation using the WRF: 1. Perturbations of atmospheric conditions; 2. Shift in atmospheric conditions; 3. Replacement of atmospheric conditions among historical events; and 4. Thermodynamically possible worst-case scenario creation. Moreover, climate change effect on precipitation is discussed by emphasizing temperature increase in order to determine the physically possible upper limits of precipitation due to climate change. The simulation results indicate that the meridional shift in atmospheric conditions is the optimum method to determine maximum precipitation in consideration of cost and efficiency. Finally, exceedance probability analyses of the model results of 42 historical extreme precipitation events demonstrate that the 72-hr basin averaged probable maximum precipitation is 21.72 inches for the exceedance probability of 0.5 percent. On the other hand, the current operational PMP estimation for the American River Watershed is 28.57 inches as published in the hydrometeorological report no. 59 and a previous PMP value was 31.48 inches as published in the hydrometeorological report no. 36. According to the exceedance probability analyses of this proposed method, the exceedance probabilities of these two estimations correspond to 0.036 percent and 0.011 percent, respectively.
Maximizing water use efficiency in designing microirrigation unit (IrriLab Software)
NASA Astrophysics Data System (ADS)
Baiamonte, Giorgio
2016-04-01
As the year 2050 approaches, the world population will reach 9 billion - so does the challenge of doubling crop yields. To meet this crop yields demand, the associated dramatic improving of water productivity (WP) must necessarily be accompanied by maximization of water use efficiency (WUE) (Ragab 2011, UNEP 2014). In this work, a recently developed software (IrriLab, https://www.facebook.com/irrilab) moving in this direction is presented. IrriLab is a very simple toll allows to design microirrigation unit optimizing WUE, pressure energy and irrigation unit costs. Irrigation software available in commerce provide microirrigation system designs, by mainly looking at the maximum flow rate uniformity criteria. Thus, each emitter installed along the laterals operates with an operating pressure head occurring in between an established range of pressure head variability (Dh < Dhadm). However, the latter condition does not always corresponds to the cheapest and to the maximizing WUE solution; in fact, it is not assured if the entire range of the admitted pressure head is profited and used by the emitters. IrriLab allows this occurrence because, for the entire Irrigation Unit Area, IUA, each design solution assures that at least two emitters rigorously operates, one with the minimum admitted pressure head, and the other one with the maximum admitted (Dh = Dhadm), (Baiamonte et al., 2015; Baiamonte, 2016). The same extreme values of pressure head are those that in the common design criteria delimit the range of pressure head, but without assuring their achievement. Compared to the common design criteria, this condition i) for fixed laterals' length and inside diameter, allows reducing the inlet required pressure head whereas, ii) for fixed pressure head at the inlet, provides an increasing in laterals and manifold lengths and in the associated IUA. Based on analytical solutions, IrriLab follows a very simple rectangular sketch, any way oriented in the space, and defined by two slope values, one for the laterals and one for the manifold. By considering the possible combinations of i) horizontal, downward or upward sloped laterals and manifold, ii) the manifold position in respect to the laterals and iii) the inlet position in respect to the manifold, which can be equal to 0%, 24% or 50%, in respect to their lengths (Baiamonte, 2016), IrriLab accounts for 25 optimal irrigation unit layouts, for each of them providing maximum WUE.
Aeroacoustic Analysis of Fan Noise Reduction With Increased Bypass Nozzle Area
NASA Technical Reports Server (NTRS)
Woodward, Richard P.; Hughes, Christopher E.; Podboy, Gary G.
2005-01-01
An advanced model turbofan was tested in the NASA Glenn 9-by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) to explore far field acoustic effects of increased bypass nozzle area. This fan stage test was part of the NASA Glenn Fan Broadband Source Diagnostic Test, second entry (SDT2) which acquired aeroacoustic results over a range of test conditions. The baseline nozzle was sized to produce maximum stage performance at cruise condition. However, the wind tunnel testing is conducted near sea level condition. Therefore, in order to simulate and obtain performance at other operating conditions, two additional nozzles were designed and tested one with +5 percent increase in weight flow (+5.4 percent increase in nozzle area compared with the baseline nozzle), sized to simulate the performance at the stage design point (takeoff) condition, and the other with a +7.5 percent increase in weight flow (+10.9 percent increase in nozzle area) sized for maximum weight flow with a fixed nozzle at sea level condition. Measured acoustic benefits with increased nozzle area were very encouraging, showing overall sound power level (OAPWL) reductions of 2 or more dB while the stage thrust actually increased by 2 to 3 percent except for the most open nozzle at takeoff rotor speed where stage performance decreased. Effective perceived noise levels for a 1500 ft engine flyover and 3.35 scale factor showed a similar noise reduction of 2 or more EPNdB. Noise reductions, principally in the level of broadband noise, were observed everywhere in the far field. Laser Doppler Velocimetry measurements taken downstream of the rotor showed that the total turbulent velocity decreased with increasing nozzle flow, which may explain the reduced rotor broadband noise levels.
One-step preparing magnesium hydroxide particles from mother liquor of salt production
NASA Astrophysics Data System (ADS)
Guo, H.; Peng, C. S.; Ding, Z. W.; Yuan, H. T.; Yang, K.
2018-01-01
In this study, MH particles were prepared from mother liquor of salt production in one-step through employing ammonia gas as precipitant and stearic acid as dispersant respectively. Since adopting microporous plate to bubble ammonia gas, the percent conversion of magnesium was boosted obviously. The influence of operating condition of reacting temperature, stirring rate, ammonia flowrate and pore size of plate to magnesium percent conversion were investigated, the maximum is 88.1 % at optimum condition according to experimental results. The MH particle preparing from mother liquor in optimum condition was characterized by XRD, the result indicated the volume of brucite was reach to 99.7% within the composition of the product. In addition, the size distribution and crystal morphology was also detected, the median particle diameter d50 is 883 nm and possessing good dispersibility. From the thermogravimetric analysis of MH particles, the thermostability of product is suitable as flame-retardant composite materials.
Biofiltration of high loads of ethyl acetate in the presence of toluene.
Deshusses, M; Johnson, C T; Leson, G
1999-08-01
To date, biofilters have been used primarily to control dilute, usually odorous, off-gases with relatively low volatile organic compound (VOC) concentrations (< 1 g m-3) and VOC loads (< 50 g m-3 hr-1). Recently, however, U.S. industry has shown an interest in applying biofilters to higher concentrations of VOCs and hazardous air pollutants (HAPs). In this study, the behavior of biofilters under high loads of binary VOC mixtures was studied. Two bench-scale biofilters were operated using a commercially available medium and a mixture of wood chips and compost. Both were exposed to varying mixtures of ethyl acetate and toluene. Concentration profiles and the corresponding removal efficiencies as a function of VOC loading were determined through frequent grab-sampling and GC analysis. Biofilter response to two frequently encountered operating problems--media dry-out and operating temperatures exceeding 40 degrees C--was also evaluated under controlled conditions. Microbial populations were also monitored to confirm the presence of organisms capable of degrading both major off-gas constituents. The results demonstrated several characteristics of biofilters operating under high VOC load conditions. Maximum elimination capacities for ethyl acetate were typically in the range of 200 g m-3 hr-1. Despite the presence of toluene degraders, the removal of toluene was inhibited by high loads of ethyl acetate. Several byproducts, particularly ethanol, were formed. Short-term dry-out and temperature excursions resulted in reduced performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanislavskii, L.Ya.
Large turbogenerators with built-up rotor designs operating in U.S.S.R. power plants were studied to obtain data on reliability, failures, and performance characteristics for normal and abnormal operating conditions. Data for 23 turbogenerators manufactured by domestic and foreign firms were analyzed. The studies showed that the reliability factor of the joints of built-up rotors should be equal to approximately 6 to provide a monolithic built-up rotor. At lower built-up rotor joint reliability factors, weakening of the joints occurred during their operation, leading to extreme generator vibration, damage to the insulating sockets at the joint, burning of the joints and sometimes breakagemore » of the screws holding the joints. When it is necessary to restore the monolithic nature of the joints of a rotor its design should permit replacement of the tightening devices (tie rods, screws). If this is not possible the built-up rotor becomes unsuitable for operation. During abnormal conditions there are maximum temperatures in the joint of a built-up rotor about 50 percent greater than in the end part of the rotor. Thus special structural measures are necessary to improve the electrical contact in the joints of the built-up parts of the rotors of large turbogenerators. In all cases where they are not dictated by construction requirements (supercooled turbogenerators), the use of built-up rotors is unfavorable. (LCL)« less
Liquid Phase adsorption kinetics and equilibrium of toluene by novel modified-diatomite.
Sheshdeh, Reza Khalighi; Abbasizadeh, Saeed; Nikou, Mohammad Reza Khosravi; Badii, Khashayar; Sharafi, Mohammad Sadegh
2014-01-01
The adsorption equilibria of toluene from aqueous solutions on natural and modified diatomite were examined at different operation parameters such as pH, contact time, initial toluene concentration was evaluated and optimum experimental conditions were identified. The surface area and morphology of the nanoparticles were characterized by SEM, BET, XRD, FTIR and EDX analysis. It was found that in order to obtain the highest possible removal of toluene, the experiments can be carried out at pH 6, temperature 25°C, an agitation speed of 200 rpm, an initial toluene concentration of 150 mg/L, a centrifugal rate of 4000 rpm, adsorbent dosage = 0.1 g and a process time of 90 min. The results of this work show that the maximum percentage removal of toluene from aqueous solution in the optimum conditions for NONMD was 96.91% (145.36 mg/g). Furthermore, under same conditions, the maximum adsorption of natural diatomite was 71.45% (107.18 mg/g). Both adsorption kinetic and isotherm experiments were carried out. The experimental data showed that the adsorption follows the Langmuir model and Freundlich model on natural and modified diatomite respectively. The kinetics results were found to conform well to pseudo-second order kinetics model with good correlation. Thus, this study demonstrated that the modified diatomite could be used as potential adsorbent for removal of toluene from aqueous solution.
Takahashi, Goro; Yamada, Takeshi; Kan, Hayato; Koizumi, Michihiro; Shinji, Seiichi; Yokoyama, Yasuyuki; Iwai, Takuma; Uchida, Eiji
2015-10-01
Skeletal mass depletion has been reported to be a prognostic factor for cancer patients. However, special and expensive devices are required to measure skeletal mass, and this is a major reason why skeletal mass is not used extensively for prognostic marker in clinical settings. We developed a new method to measure skeletal mass for use as a prognostic marker using CT images without special and expensive devices. In this study, we evaluated the usefulness of skeletal mass as measured by this new method as a prognostic marker for gastrointestinal cancer patients. Patients who died from gastrointestinal cancer between March 2010 and October 2013 were included. We measured the right-sided maximum psoas muscle cross sectional area (MPCA) by using CT images before surgery and after the patients developed a terminal condition. The maximum psoas muscle cross sectional area ratio (MPCA-R) was defined as follows: MPCA-R=MPCA before surgery/MPCA after developing a terminal condition. We evaluated the correlation between MPCA-R and survival. Fifty-nine patients were included. The median survival was 44 days, and MPCA-R was significantly correlated with survival (p=0.001). On receiver operating characteristic (ROC) analysis, the area under the curve (AUC) to predict 30-day and 90-day survival was 0.710 and 0.748, respectively. MPCA-R is a new and novel prognostic marker for gastrointestinal cancer patients in terminal condition.
Information theoretic analysis of canny edge detection in visual communication
NASA Astrophysics Data System (ADS)
Jiang, Bo; Rahman, Zia-ur
2011-06-01
In general edge detection evaluation, the edge detectors are examined, analyzed, and compared either visually or with a metric for specific an application. This analysis is usually independent of the characteristics of the image-gathering, transmission and display processes that do impact the quality of the acquired image and thus, the resulting edge image. We propose a new information theoretic analysis of edge detection that unites the different components of the visual communication channel and assesses edge detection algorithms in an integrated manner based on Shannon's information theory. The edge detection algorithm here is considered to achieve high performance only if the information rate from the scene to the edge approaches the maximum possible. Thus, by setting initial conditions of the visual communication system as constant, different edge detection algorithms could be evaluated. This analysis is normally limited to linear shift-invariant filters so in order to examine the Canny edge operator in our proposed system, we need to estimate its "power spectral density" (PSD). Since the Canny operator is non-linear and shift variant, we perform the estimation for a set of different system environment conditions using simulations. In our paper we will first introduce the PSD of the Canny operator for a range of system parameters. Then, using the estimated PSD, we will assess the Canny operator using information theoretic analysis. The information-theoretic metric is also used to compare the performance of the Canny operator with other edge-detection operators. This also provides a simple tool for selecting appropriate edgedetection algorithms based on system parameters, and for adjusting their parameters to maximize information throughput.
NASA Astrophysics Data System (ADS)
Komori, Masaharu; Kubo, Aizoh; Suzuki, Yoshitomo
The alignment condition of automotive gears changes considerably during operation due to the deformation of shafts, bearings, and gear box by transmission of load. Under such conditions, the gears are required to satisfy not only reliability in strength and durability under maximum loading conditions, but also low vibrational characteristics under light loading conditions during the cruising of a car. In this report, the characteristics of the optimum tooth flank form of gears in terms of both vibration and load carrying capacity are clarified. The local optimum tooth flank form appears in each excitation valley, where the vibrational excitation is low and the actual contact ratio takes a specific value. The influence of the choice of different local optimum solutions on the vibrational performance of the optimized gears is investigated. The practical design algorithm for the optimum tooth flank form of a gear set in terms of both vibration and load carrying capacity is then proposed and its result is evaluated by field experience.
Space Launch System Base Heating Test: Experimental Operations & Results
NASA Technical Reports Server (NTRS)
Dufrene, Aaron; Mehta, Manish; MacLean, Matthew; Seaford, Mark; Holden, Michael
2016-01-01
NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Test methodology and conditions are presented, and base heating results from 76 runs are reported in non-dimensional form. Regions of high heating are identified and comparisons of various configuration and conditions are highlighted. Base pressure and radiometer results are also reported.
Microengineered open tubular columns for GC analysis
NASA Astrophysics Data System (ADS)
Wiranto, Goib; Haskard, Malcolm R.; Mulcahy, Dennis E.; Davey, David E.; Dawes, Ernest F.
1999-09-01
Microengineered open tubular (MOT) columns with semi rectangular cross-sections have been designed and fabricated using microengineering techniques. The creation of 100-micrometers wide, 20-micrometers deep, and 125-cm long columns employed isotropic etching on (100) silicon and anodic bonding with a Pyrex 7740 glass cover plate. Column geometry has been optimized to achieve maximum efficiency and allow extreme operating conditions. The walls of the microcolumns were coated with a non-polar liquid stationary phase. Performances of the MOT columns have been demonstrated by their ability to completely separate a series of hydrocarbon mixture in less than 1.25 min under isothermal condition of 150 degrees C. The achievable column efficiencies as measured in terms of theoretical plate height ranged from 0.57 to 1.45 mm, which agreed well with theoretical predictions.
NASA Astrophysics Data System (ADS)
Tien, Hai M.; Le, Kien A.; Tran, An T.; Le, Phung K.
2016-06-01
In this work, a series of batch tests were conducted to investigate the effect of pH, temperature, fermentation time, and inoculums ratio to hydrogen production using cassava starch as a substrate. The statistical analysis of the experiment indicated that the significant effects for the fermentation yield were the main effect of temperature, pH and inoculums ratio. It was fouund that the suitable fermentation conditions of biohydrogen production should be at temperature 40 ° C; pH 6.5, inoculums to medium ratio 10 % and COD operation at 4800 g/mL. The maximum value of hydrogen volume produced was 76.22 mL. These affected has been evaluated and the result can be used as an reference for the pilot or industrial biohydrogen production.
NASA Technical Reports Server (NTRS)
Atwell, Matthew J.; Hurlbert, Eric A.; Melcher, J. C.; Morehead, Robert L.
2017-01-01
An integrated cryogenic liquid oxygen, liquid methane (LOX/LCH4) reaction control system (RCS) was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. The RCS is a subsystem of the Integrated Cryogenic Propulsion Test Article (ICPTA), a pressure-fed LOX/LCH4 propulsion system composed of a single 2,800 lbf main engine, two 28 lbf RCS engines, and two 7 lbf RCS engines. Propellants are stored in four 48 inch diameter 5083 aluminum tanks that feed both the main engine and RCS engines in parallel. Helium stored cryogenically in a composite overwrapped pressure vessel (COPV) flows through a heat exchanger on the main engine before being used to pressurize the propellant tanks to a design operating pressure of 325 psi. The ICPTA is capable of simultaneous main engine and RCS operation. The RCS engines utilize a coil-on-plug (COP) ignition system designed for operation in a vacuum environment, eliminating corona discharge issues associated with a high voltage lead. There are two RCS pods on the ICPTA, with two engines on each pod. One of these two engines is a heritage flight engine from Project Morpheus. Its sea level nozzle was removed and replaced by an 85:1 nozzle machined using Inconel 718, resulting in a maximum thrust of 28 lbf under altitude conditions. The other engine is a scaled down version of the 28 lbf engine, designed to match the core and overall mixture ratios as well as other injector characteristics. This engine can produce a maximum thrust of 7 lbf with an 85:1 nozzle that was additively manufactured using Inconel 718. Both engines are film-cooled and capable of limited duration gas-gas and gas-liquid operation, as well as steady-state liquid-liquid operation. Each pod contains one of each version, such that two engines of the same thrust level can be fired as a couple on opposite pods. The RCS feed system is composed of symmetrical 3/8 inch lines that tap off of the main propellant manifold to send LOX and LCH4 outboard to the RCS pods. A Thermodynamic Vent System (TVS) is used to condition propellants at each pod by venting through an orifice and then routing the cold expansion products back through tubing that is welded along a large portion of the main RCS feed lines. Prior to final installation on the ICPTA, the RCS engines were tested in a small vacuum chamber at the Johnson Space Center (JSC) Energy Systems Test Area (ESTA) to verify functionality of the new COP ignition system and check out operation of the vacuum nozzles. After engine-level testing, the RCS engines were installed on the vehicle and a series of integrated hot-fire tests were performed at JSC consisting of various pulsing and steady-state firings as well as integrated main engine/RCS operation. The ICPTA was then integrated into the Plum Brook B-2 facility for vacuum and thermal/vacuum testing. Testing in the B-2 facility was composed of multiple thermal and pressure environments. The first set of tests were performed under ambient temperature and altitude pressure conditions. These tests consisted of a range of minimum impulse bit (MIB) pulsing sequences with low duty cycle, analogous to a coast phase in which the RCS is primarily used for station keeping. The primary goal of this sequence is to understand how propellant conditions were effected without an active TVS. In this scenario, consistent gas-gas operation is desirable since it results in a smaller MIB and more efficient propellant consumption. Multiple skin thermocouples are mounted on the feedlines, in addition to a submerged thermocouple on each commodity, in order to gather thermal data on the system. Higher duty cycle pulsing tests were then performed, analogous to an ascent or landing mission phase. The primary goal of this sequence was to examine how well the engines self-conditioned without active TVS when starting from a quiescent state. The TVS was then activated during some tests to demonstrate the capability to quickly condition the engines for higher pulsing demand scenarios. A thermocouple at the TVS outlet allows for the calculation of energy absorbed by the vented propellant. Lastly, tests with longer pulses and multiple engines firing either in sequence or simultaneously were run in order to gather transient system response data on waterhammer. Six total high-speed pressure transducers are installed on the RCS system, one sensor at the end of each propellant manifold line on the pods, and one at the tap-off location for each commodity. This will allow for the accurate characterization of waterhammer in the system under various propellant conditions and firing sequences. Other instrumentation for this test series includes nozzle throat thermocouples, chamber pressure measurement, heat soakback measurement, and tank wall plume impingement temperature measurement. The next set of tests were performed to demonstrate simultaneous main engine and RCS operation. Data from this test will be used to examine if there is any change to nominal operation of the RCS as a result of feed system interaction or other phenomenon. Some of these tests began under high vacuum conditions (target ambient pressure less than 1x10(exp -3) torr) and others began at altitude conditions. The last set of tests were performed with the B-2 cold wall active. Under these tests, many of the same low duty cycle MIB tests were repeated in order to characterize how propellant conditions changed with the lower heat leak. In this scenario the RCS manifold experiences much less heat leak, resulting in a change to how well the engines self-condition. As a result, an increase in maximum waterhammer pressures and a change in natural frequency of the system was expected due to higher density propellants. The lower heat leak should also result in a change to the MIB pulse profile, and data will be examined to understand how MIB repeatability is affected in the different operating environments. Parallel to the test efforts, a set of transient model development efforts were made to predict RCS performance. The primary effort was aimed at producing a SINDA/FLUINT model to predict propellant conditioning up to the engine inlet as a function of different environmental and operating parameters, with the goal of predicting chamber pressure, TVS performance, and propellant consumption over time. Preliminary results for this effort will be presented in comparison with test data. Additional modeling efforts were made using SINDA/FLUINT to predict waterhammer in the system since the software is capable of handling multiphase transient fluid dynamics. These results will be compared with the high-speed pressure transducer test data for validation purposes.
Functional and taxonomic dynamics of an electricity-consuming methane-producing microbial community.
Bretschger, Orianna; Carpenter, Kayla; Phan, Tony; Suzuki, Shino; Ishii, Shun'ichi; Grossi-Soyster, Elysse; Flynn, Michael; Hogan, John
2015-11-01
The functional and taxonomic microbial dynamics of duplicate electricity-consuming methanogenic communities were observed over a 6 months period to characterize the reproducibility, stability and recovery of electromethanogenic consortia. The highest rate of methanogenesis was 0.72 mg-CH4/L/day, which occurred during the third month of enrichment when multiple methanogenic phylotypes and associated Desulfovibrionaceae phylotypes were present in the electrode-associated microbial community. Results also suggest that electromethanogenic microbial communities are very sensitive to electron donor-limiting open-circuit conditions. A 45 min exposure to open-circuit conditions induced an 87% drop in volumetric methane production rates. Methanogenic performance recovered after 4 months to a maximum value of 0.30 mg-CH4/L/day under set potential operation (-700 mV vs Ag/AgCl); however, current consumption and biomass production was variable over time. Long-term functional and taxonomic analyses from experimental replicates provide new knowledge toward understanding how to enrich electromethanogenic communities and operate bioelectrochemical systems for stable and reproducible performance. Copyright © 2015 Elsevier Ltd. All rights reserved.
Terahertz isolator based on nonreciprocal magneto-metasurface.
Chen, Sai; Fan, Fei; Wang, Xianghui; Wu, Pengfei; Zhang, Hui; Chang, Shengjiang
2015-01-26
A magneto-metasurface with nonreciprocal terahertz (THz) transmission has been proposed to form a THz isolator. Importantly, we have discussed the two necessary conditions for THz nonreciprocal transmission in the metasurface: (1) There should be magneto-optical responses for THz waves in the metasurface; (2) The transmission system of the metasurface needs to be asymmetric for forward and backward waves. These two conditions lead to the time reversal symmetry breaking of system, and the magnetoplasmon mode splitting and nonreciprocal resonance enhancement can be observed in the asymmetry magneto-metasurface. Moreover, the isolation dependences and tunability on the external magnetic field and temperature have also been investigated, which shows that the best operating state with a high isolation can be designed. The numerical simulations show a maximum isolation of 43 dB and a 10 dB operating bandwidth of 20 GHz under an external magnetic field of 0.3 T, and the insertion loss is smaller than 1.79 dB. This low-loss, high isolation, easy coupling THz isolator has broadly potentials for THz application systems.
Evaluation of the PV energy production after 12-years of operating
NASA Astrophysics Data System (ADS)
Bouchakour, Salim; Arab, Amar Hadj; Abdeladim, Kamel; Boulahchiche, Saliha; Amrouche, Said Ould; Razagui, Abdelhak
2018-05-01
This paper presents a simple way to approximately evaluate the photovoltaic (PV) array performance degradation, the studied PV arrays are connected to the local electric grid at the Centre de Developpement des Energies Renouvelables (CDER) in Algiers, Algeria, since June 2004. The used PV module model takes in consideration the module temperature and the effective solar radiance, the electrical characteristics provided by the manufacturer data sheet and the evaluation of the performance coefficient. For the dynamic behavior we use the Linear Reoriented Coordinates Method (LRCM) to estimate the maximum power point (MPP). The performance coefficient is evaluated on the one hand under STC conditions to estimate the dc energy according to the manufacturer data. On the other hand, under real conditions using both the monitored data and the LM optimization algorithm, allowing a good degree of accuracy of estimated dc energy. The application of the developed modeling procedure to the analysis of the monitored data is expected to improve understanding and assessment of the PV performance degradation of the PV arrays after 12 years of operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Min; Muljadi, Eduard; Jang, Gilsoo
This paper proposes a disturbance-adaptive short-term frequency support scheme of a doubly fed induction generator (DFIG) that can improve the frequency-supporting capability while ensuring stable operation. In the proposed scheme, the output of the additional control loop is determined as the product of the frequency deviation and adaptive gain, which is modified depending on the rate of change of frequency (ROCOF) and rotor speed. To achieve these objectives, the adaptive gain is set to be high during the early stage of a disturbance, when the ROCOF and rotor speed are high. Until the frequency nadir (FN), the gain decreases withmore » the ROCOF and rotor speed. After the FN, the gain decreases only with the rotor speed. The simulation results demonstrate that the proposed scheme improves the FN and maximum ROCOF while ensuring the stable operation of a DFIG under various wind conditions irrespective of the disturbance conditions by adaptively changing the control gain with the ROCOF and rotor speed, even if the wind speed decreases and a consecutive disturbance occurs.« less
NASA Astrophysics Data System (ADS)
Jayalakshmi, N. S.; Gaonkar, D. N.
2016-08-01
The output power obtained from solar-wind hybrid system fluctuates with changes in weather conditions. These power fluctuations cause adverse effects on the voltage, frequency and transient stability of the utility grid. In this paper, a control method is presented for power smoothing of grid integrated PV/wind hybrid system using ultracapacitors in a DC coupled structure. The power fluctuations of hybrid system are mitigated and smoothed power is supplied to the utility grid. In this work both photovoltaic (PV) panels and the wind generator are controlled to operate at their maximum power point. The grid side inverter control strategy presented in this paper maintains DC link voltage constant while injecting power to the grid at unity power factor considering different operating conditions. Actual solar irradiation and wind speed data are used in this study to evaluate the performance of the developed system using MATLAB/Simulink software. The simulation results show that output power fluctuations of solar-wind hybrid system can be significantly mitigated using the ultracapacitor based storage system.
Thermal Modeling and Management of Solid Oxide Fuel Cells Operating with Internally Reformed Methane
NASA Astrophysics Data System (ADS)
Wu, Yiyang; Shi, Yixiang; Cai, Ningsheng; Ni, Meng
2018-06-01
A detailed three-dimensional mechanistic model of a large-scale solid oxide fuel cell (SOFC) unit running on partially pre-reformed methane is developed. The model considers the coupling effects of chemical and electrochemical reactions, mass transport, momentum and heat transfer in the SOFC unit. After model validation, parametric simulations are conducted to investigate how the methane pre-reforming ratio affects the transport and electrochemistry of the SOFC unit. It is found that the methane steam reforming reaction has a "smoothing effect", which can achieve more uniform distributions of gas compositions, current density and temperature among the cell plane. In the case of 1500 W/m2 power density output, adding 20% methane absorbs 50% of internal heat production inside the cell, reduces the maximum temperature difference inside the cell from 70 K to 22 K and reduces the cathode air supply by 75%, compared to the condition of completely pre-reforming of methane. Under specific operating conditions, the pre-reforming ratio of methane has an optimal range for obtaining a good temperature distribution and good cell performance.
Quantum dynamical framework for Brownian heat engines
NASA Astrophysics Data System (ADS)
Agarwal, G. S.; Chaturvedi, S.
2013-07-01
We present a self-contained formalism modeled after the Brownian motion of a quantum harmonic oscillator for describing the performance of microscopic Brownian heat engines such as Carnot, Stirling, and Otto engines. Our theory, besides reproducing the standard thermodynamics results in the steady state, enables us to study the role dissipation plays in determining the efficiency of Brownian heat engines under actual laboratory conditions. In particular, we analyze in detail the dynamics associated with decoupling a system in equilibrium with one bath and recoupling it to another bath and obtain exact analytical results, which are shown to have significant ramifications on the efficiencies of engines involving such a step. We also develop a simple yet powerful technique for computing corrections to the steady state results arising from finite operation time and use it to arrive at the thermodynamic complementarity relations for various operating conditions and also to compute the efficiencies of the three engines cited above at maximum power. Some of the methods and exactly solvable models presented here are interesting in their own right and could find useful applications in other contexts as well.
Arbeláez, Paula; Granados, Judith; Borrull, Francesc; Marcé, Rosa Maria; Pocurull, Eva
2014-12-01
This paper describes a method for the determination of eight sedative hypnotics (benzodiazepines and barbiturates) in sewage sludge using pressurized liquid extraction and liquid chromatography with tandem mass spectrometry. Pressurized liquid extraction operating conditions were optimized and maximum recoveries were reached using methanol under the following operational conditions: 100ºC, 1500 psi, extraction time of 5 min, one extraction cycle, flush volume of 60% and purge time of 120 s. Pressurized liquid extraction recoveries were higher than 88% for all the compounds except for carbamazepine (55%). The repeatability and reproducibility between days, expressed as relative standard deviation (n = 5), were lower than 6 and 10%, respectively. The detection limits for all compounds were lower than 12.5 μg/kg of dry weight. The method was applied to determine benzodiazepines and barbiturates in sewage sludge from urban sewage treatment plants, and carbamazepine showed the highest concentration (7.9-18.9 μg/kg dry weight). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
López, Alejandro; Coll, Andrea; Lescano, Maia; Zalazar, Cristina
2017-05-05
In this work, the suitability of the UV/H 2 O 2 process for commercial herbicides mixture degradation was studied. Glyphosate, the herbicide most widely used in the world, was mixed with other herbicides that have residual activity as 2,4-D and atrazine. Modeling of the process response related to specific operating conditions like initial pH and initial H 2 O 2 to total organic carbon molar ratio was assessed by the response surface methodology (RSM). Results have shown that second-order polynomial regression model could well describe and predict the system behavior within the tested experimental region. It also correctly explained the variability in the experimental data. Experimental values were in good agreement with the modeled ones confirming the significance of the model and highlighting the success of RSM for UV/H 2 O 2 process modeling. Phytotoxicity evolution throughout the photolytic degradation process was checked through germination tests indicating that the phytotoxicity of the herbicides mixture was significantly reduced after the treatment. The end point for the treatment at the operating conditions for maximum TOC conversion was also identified.
Bagal, Manisha V; Gogate, Parag R
2014-05-01
Diclofenac sodium, a widely detected pharmaceutical drug in wastewater samples, has been selected as a model pollutant for degradation using novel combined approach of hydrodynamic cavitation and heterogeneous photocatalysis. A slit venturi has been used as cavitating device in the hydrodynamic cavitation reactor. The effect of various operating parameters such as inlet fluid pressure (2-4 bar) and initial pH of the solution (4-7.5) on the extent of degradation have been studied. The maximum extent of degradation of diclofenac sodium was obtained at inlet fluid pressure of 3 bar and initial pH as 4 using hydrodynamic cavitation alone. The loadings of TiO2 and H2O2 have been optimised to maximise the extent of degradation of diclofenac sodium. Kinetic study revealed that the degradation of diclofenac sodium fitted first order kinetics over the selected range of operating protocols. It has been observed that combination of hydrodynamic cavitation with UV, UV/TiO2 and UV/TiO2/H2O2 results in enhanced extents of degradation as compared to the individual schemes. The maximum extent of degradation as 95% with 76% reduction in TOC has been observed using hydrodynamic cavitation in conjunction with UV/TiO2/H2O2 under the optimised operating conditions. The diclofenac sodium degradation byproducts have been identified using LC/MS analysis. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Perez-Diaz, Jose Luis; Diez-Jimenez, Efren; Valiente-Blanco, Ignacio; Cristache, Cristian; Alvarez-Valenzuela, Marco-Antonio; Sanchez-Garcia-Casarrubios, Juan
2015-09-01
Harmonic Drives are widely used in space mainly because of their compactness, large reduction ratio ad zero backlash. However, their use in extreme environments like in cryogenic temperatures is still a challenge. Lubrication, lifetime and fatigue are still issues under these conditions.The MAGDRIVE project, funded by the EU Space FP7 was devoted to test a new concept of harmonic drive reducer. By using the magnetic distance force interactions of magnets and ferromagnetic materials, all the conventional mechanical elements of a Harmonic Drives (teeth, flexspline and ball bearings) are substituted by contactless mechanical components (magnetic gear and superconducting magnetic bearings). The absence of contact between any moving parts prevents wear, lubricants are no longer required and the operational life time is greatly increased. As the magnetic transmission is continuous there is no backlash in the reduction. MAG SOAR Company is already providing contactless mechanical components for space applications able to operate in a wide range of temperatures.In this paper the tests results of a -1:20 ratio MAGDRIVE prototype are reported. In these tests successful operation at 40 K and 10-3 Pa was demonstrated for more than 1.5 million input cycles. A maximum torque of 3 Nm and efficiency higher than 75% at 3000 rpm were demonstrated. The maximum tested input speed was 3000 rpm -six times the previous existing record for harmonic drives at cryogenic temperature.
Saleh, B
2016-09-01
The potential use of many common hydrofluorocarbons and hydrocarbons as well as new hydrofluoroolefins, i.e. R1234yf and R1234ze(E) working fluids for a combined organic Rankine cycle and vapor compression refrigeration (ORC-VCR) system activated by low-grade thermal energy is evaluated. The basic ORC operates between 80 and 40 °C typical for low-grade thermal energy power plants while the basic VCR cycle operates between 5 and 40 °C. The system performance is characterized by the overall system coefficient of performance (COPS) and the total mass flow rate of the working fluid for each kW cooling capacity ([Formula: see text]). The effects of different working parameters such as the evaporator, condenser, and boiler temperatures on the system performance are examined. The results illustrate that the maximum COPS values are attained using the highest boiling candidates with overhanging T-s diagram, i.e. R245fa and R600, while R600 has the lowest [Formula: see text] under the considered operating conditions. Among the proposed candidates, R600 is the best candidate for the ORC-VCR system from the perspectives of environmental issues and system performance. Nevertheless, its flammability should attract enough attention. The maximum COPS using R600 is found to reach up to 0.718 at a condenser temperature of 30 °C and the basic values for the remaining parameters.
NASA Astrophysics Data System (ADS)
Höbel, M.; Haffner, K.
1999-05-01
Instrumentation that allows the behaviour of a hydro-generator thrust bearing to be monitored during operation is described. The measurement system was developed at the Asea Brown Boveri corporate research centre in Switzerland and was tested under realistic operating conditions at the Harbin Electric Machinery Company bearing-testing facility in the People's Republic of China. Newly developed fibre-optical proximity probes were used for the on-line monitoring of the thin oil film between the static and rotating parts of the bearing. These sensors are based on a back-reflection technique and can be used for various target materials such as Babbitt and Teflon. The monitoring system comprises about 120 temperature sensors, four pressure sensors and five optical oil-film thickness sensors. Temperature sensors are installed at specific static locations, whereas pressure and oil-film sensors are positioned in the runner and generate data during rotation. A special feature of the monitoring equipment is its on-line processing capability. Digital signal processors operating in parallel handle pressure and oil-film thickness data. Important measurement parameters such as the maximum pressure, maximum temperature and minimum oil-film thickness are displayed on-line. Detailed three-dimensional temperature information on one of the load segments can be obtained from subsequent off-line data analysis. The system also calculates two-dimensional plots of the oil-film thickness and pressure for most of the 12 load segments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winter, L. M.; Balasubramaniam, K. S., E-mail: lwinter@aer.com
We present an alternate method of determining the progression of the solar cycle through an analysis of the solar X-ray background. Our results are based on the NOAA Geostationary Operational Environmental Satellites (GOES) X-ray data in the 1-8 Å band from 1986 to the present, covering solar cycles 22, 23, and 24. The X-ray background level tracks the progression of the solar cycle through its maximum and minimum. Using the X-ray data, we can therefore make estimates of the solar cycle progression and the date of solar maximum. Based upon our analysis, we conclude that the Sun reached its hemisphere-averagedmore » maximum in solar cycle 24 in late 2013. This is within six months of the NOAA prediction of a maximum in spring 2013.« less
An accurate solution of the gas lubricated, flat sector thrust bearing
NASA Technical Reports Server (NTRS)
Etsion, I.; Fleming, D. P.
1976-01-01
A flat sector shaped pad geometry for gas lubricated thrust bearings is analyzed considering both pitch and roll angles of the pad and the true film thickness distribution. Maximum load capacity is achieved when the pad is tilted so as to create a uniform minimum film thickness along the pad trailing edge. Performance characteristics for various geometries and operating conditions of gas thrust bearings are presented in the form of design curves. A comparison is made with the rectangular slider approximation. It is found that this approximation is unsafe for practical design, since it always overestimates load capacity.
Analysis of the gas-lubricated flat-sector-pad thrust bearing
NASA Technical Reports Server (NTRS)
Etsion, I.
1976-01-01
A flat sector-shaped pad geometry for a gas-lubricated thrust bearing is analyzed considering both the pitch and roll of the pad. It is shown that maximum load capacity is achieved when the pad is tilted so as to create uniform minimum film thickness along the pad trailing edge. Performance characteristics for various geometries and operating conditions of gas thrust bearings are presented in the form of design curves, and a comparison is made with the rectangular slider approximation. It is found that this approximation is unsafe for practical design, since it always overestimates load capacity.
Sensitivity study of the monogroove with screen heat pipe design
NASA Technical Reports Server (NTRS)
Evans, Austin L.; Joyce, Martin
1988-01-01
The present sensitivity study of design variable effects on the performance of a monogroove-with-screen heat pipe obtains performance curves for maximum heat-transfer rates vs. operating temperatures by means of a computer code; performance projections for both 1-g and zero-g conditions are obtainable. The variables in question were liquid and vapor channel design, wall groove design, and the number of feed lines in the evaporator and condenser. The effect on performance of three different working fluids, namely ammonia, methanol, and water, were also determined. Greatest sensitivity was to changes in liquid and vapor channel diameters.
Research on the unsteady hydrodynamic characteristics of vertical axis tidal turbine
NASA Astrophysics Data System (ADS)
Zhang, Xue-wei; Zhang, Liang; Wang, Feng; Zhao, Dong-ya; Pang, Cheng-yan
2014-03-01
The unsteady hydrodynamic characteristics of vertical axis tidal turbine are investigated by numerical simulation based on viscous CFD method. The starting mechanism of the turbine is revealed through analyzing the interaction of its motion and dynamics during starting process. The operating hydrodynamic characteristics of the turbine in wave-current condition are also explored by combining with the linear wave theory. According to possible magnification of the cyclic loads in the maximum power tracking control of vertical axis turbine, a novel torque control strategy is put forward, which can improve the structural characteristics significantly without effecting energy efficiency.