Challenges in Defining Tsunami Wave Height
NASA Astrophysics Data System (ADS)
Stroker, K. J.; Dunbar, P. K.; Mungov, G.; Sweeney, A.; Arcos, N. P.
2017-12-01
The NOAA National Centers for Environmental Information (NCEI) and co-located World Data Service for Geophysics maintain the global tsunami archive consisting of the historical tsunami database, imagery, and raw and processed water level data. The historical tsunami database incorporates, where available, maximum wave heights for each coastal tide gauge and deep-ocean buoy that recorded a tsunami signal. These data are important because they are used for tsunami hazard assessment, model calibration, validation, and forecast and warning. There have been ongoing discussions in the tsunami community about the correct way to measure and report these wave heights. It is important to understand how these measurements might vary depending on how the data were processed and the definition of maximum wave height. On September 16, 2015, an 8.3 Mw earthquake located 48 km west of Illapel, Chile generated a tsunami that was observed all over the Pacific region. We processed the time-series water level data for 57 tide gauges that recorded this tsunami and compared the maximum wave heights determined from different definitions. We also compared the maximum wave heights from the NCEI-processed data with the heights reported by the NOAA Tsunami Warning Centers. We found that in the near field different methods of determining the maximum tsunami wave heights could result in large differences due to possible instrumental clipping. We also found that the maximum peak is usually larger than the maximum amplitude (½ peak-to-trough), but the differences for the majority of the stations were <20 cm. For this event, the maximum tsunami wave heights determined by either definition (maximum peak or amplitude) would have validated the forecasts issued by the NOAA Tsunami Warning Centers. Since there is currently only one field in the NCEI historical tsunami database to store the maximum tsunami wave height, NCEI will consider adding an additional field for the maximum peak measurement.
Challenges in Defining Tsunami Wave Heights
NASA Astrophysics Data System (ADS)
Dunbar, Paula; Mungov, George; Sweeney, Aaron; Stroker, Kelly; Arcos, Nicolas
2017-08-01
The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) and co-located World Data Service for Geophysics maintain the global tsunami archive consisting of the historical tsunami database, imagery, and raw and processed water level data. The historical tsunami database incorporates, where available, maximum wave heights for each coastal tide gauge and deep-ocean buoy that recorded a tsunami signal. These data are important because they are used for tsunami hazard assessment, model calibration, validation, and forecast and warning. There have been ongoing discussions in the tsunami community about the correct way to measure and report these wave heights. It is important to understand how these measurements might vary depending on how the data were processed and the definition of maximum wave height. On September 16, 2015, an 8.3 M w earthquake located 48 km west of Illapel, Chile generated a tsunami that was observed all over the Pacific region. We processed the time-series water level data for 57 coastal tide gauges that recorded this tsunami and compared the maximum wave heights determined from different definitions. We also compared the maximum wave heights from the NCEI-processed data with the heights reported by the NOAA Tsunami Warning Centers. We found that in the near field different methods of determining the maximum tsunami wave heights could result in large differences due to possible instrumental clipping. We also found that the maximum peak is usually larger than the maximum amplitude (½ peak-to-trough), but the differences for the majority of the stations were <20 cm. For this event, the maximum tsunami wave heights determined by either definition (maximum peak or amplitude) would have validated the forecasts issued by the NOAA Tsunami Warning Centers. Since there is currently only one field in the NCEI historical tsunami database to store the maximum tsunami wave height for each tide gauge and deep-ocean buoy, NCEI will consider adding an additional field for the maximum peak measurement.
Chuo, Yu-Jung
2014-01-01
Scale height is an important parameter in characterizing the shape of the ionosphere and its physical processes. In this study, we attempt to examine and discuss the variation of scale height, H m, around the F-layer peak height during high solar activity at the northern crest of the equatorial ionization anomaly (EIA) region. H m exhibits day-to-day variation and seasonal variation, with a greater average daily variation during daytime in summer. Furthermore, the diurnal variation of H m exhibits an abnormal peak at presunrise during all the seasons, particularly in winter. This increase is also observed in the F2-layer peak height for the same duration with an upward movement associated with thermospheric wind toward the equator; this upward movement increases the N2/O ratio and H m, but it causes a decrease in the F2-layer maximum critical frequency during the presunrise period. PMID:25162048
Gajewski, Jan; Michalski, Radosław; Buśko, Krzysztof; Mazur-Różycka, Joanna; Staniak, Zbigniew
2018-01-01
The aim of this study was to identify the determinants of peak power achieved during vertical jumps in order to clarify relationship between the height of jump and the ability to exert maximum power. One hundred young (16.8±1.8 years) sportsmen participated in the study (body height 1.861 ± 0.109 m, body weight 80.3 ± 9.2 kg). Each participant performed three jump tests: countermovement jump (CMJ), akimbo countermovement jump (ACMJ), and spike jump (SPJ). A force plate was used to measure ground reaction force and to determine peak power output. The following explanatory variables were included in the model: jump height, body mass, and the lowering of the centre of mass before launch (countermovement depth). A model was created using multiple regression analysis and allometric scaling. The model was used to calculate the expected power value for each participant, which correlated strongly with real values. The value of the coefficient of determination R2 equalled 0.89, 0.90 and 0.98, respectively, for the CMJ, ACMJ, and SPJ jumps. The countermovement depth proved to be a variable strongly affecting the maximum power of jump. If the countermovement depth remains constant, the relative peak power is a simple function of jump height. The results suggest that the jump height of an individual is an exact indicator of their ability to produce maximum power. The presented model has a potential to be utilized under field condition for estimating the maximum power output of vertical jumps.
Perinetti, Giuseppe; Contardo, Luca; Castaldo, Attilio; McNamara, James A; Franchi, Lorenzo
2016-07-01
To evaluate the capability of both cervical vertebral maturation (CVM) stages 3 and 4 (CS3-4 interval) and the peak in standing height to identify the mandibular growth spurt throughout diagnostic reliability analysis. A previous longitudinal data set derived from 24 untreated growing subjects (15 females and nine males,) detailed elsewhere were reanalyzed. Mandibular growth was defined as annual increments in Condylion (Co)-Gnathion (Gn) (total mandibular length) and Co-Gonion Intersection (Goi) (ramus height) and their arithmetic mean (mean mandibular growth [mMG]). Subsequently, individual annual increments in standing height, Co-Gn, Co-Goi, and mMG were arranged according to annual age intervals, with the first and last intervals defined as 7-8 years and 15-16 years, respectively. An analysis was performed to establish the diagnostic reliability of the CS3-4 interval or the peak in standing height in the identification of the maximum individual increments of each Co-Gn, Co-Goi, and mMG measurement at each annual age interval. CS3-4 and standing height peak show similar but variable accuracy across annual age intervals, registering values between 0.61 (standing height peak, Co-Gn) and 0.95 (standing height peak and CS3-4, mMG). Generally, satisfactory diagnostic reliability was seen when the mandibular growth spurt was identified on the basis of the Co-Goi and mMG increments. Both CVM interval CS3-4 and peak in standing height may be used in routine clinical practice to enhance efficiency of treatments requiring identification of the mandibular growth spurt.
NASA Astrophysics Data System (ADS)
Yi, Wen; Xue, Xianghui; Reid, Iain M.; Younger, Joel P.; Chen, Jinsong; Chen, Tingdi; Li, Na
2018-04-01
Neutral mesospheric densities at a low latitude have been derived during April 2011 to December 2014 using data from the Kunming meteor radar in China (25.6°N, 103.8°E). The daily mean density at 90 km was estimated using the ambipolar diffusion coefficients from the meteor radar and temperatures from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument. The seasonal variations of the meteor radar-derived density are consistent with the density from the Mass Spectrometer and Incoherent Scatter (MSIS) model, show a dominant annual variation, with a maximum during winter, and a minimum during summer. A simple linear model was used to separate the effects of atmospheric density and the meteor velocity on the meteor radar peak detection height. We find that a 1 km/s difference in the vertical meteor velocity yields a change of approximately 0.42 km in peak height. The strong correlation between the meteor radar density and the velocity-corrected peak height indicates that the meteor radar density estimates accurately reflect changes in neutral atmospheric density and that meteor peak detection heights, when adjusted for meteoroid velocity, can serve as a convenient tool for measuring density variations around the mesopause. A comparison of the ambipolar diffusion coefficient and peak height observed simultaneously by two co-located meteor radars indicates that the relative errors of the daily mean ambipolar diffusion coefficient and peak height should be less than 5% and 6%, respectively, and that the absolute error of the peak height is less than 0.2 km.
Thomas, Christopher; Jones, Paul A; Rothwell, James; Chiang, Chieh Y; Comfort, Paul
2015-08-01
Research has demonstrated a clear relationship between dynamic strength and vertical jump (VJ) performance; however, the relationship of isometric strength and VJ performance has been studied less extensively. The aim of this study was to determine the relationship between isometric strength and performance during the squat jump (SJ) and countermovement jump (CMJ). Twenty-two male collegiate athletes (mean ± SD; age = 21.3 ± 2.9 years; height = 175.63 ± 8.23 cm; body mass = 78.06 ± 10.77 kg) performed isometric midthigh pulls (IMTPs) to assess isometric peak force (IPF), maximum rate of force development, and impulse (IMP) (I100, I200, and I300). Force-time data, collected during the VJs, were used to calculate peak velocity, peak force (PF), peak power (PP), and jump height. Absolute IMTP measures of IMP showed the strongest correlations with VJ PF (r = 0.43-0.64; p ≤ 0.05) and VJ PP (r = 0.38-0.60; p ≤ 0.05). No statistical difference was observed in CMJ height (0.33 ± 0.05 m vs. 0.36 ± 0.05 m; p = 0.19; ES = -0.29) and SJ height performance (0.29 ± 0.06 m vs. 0.33 ± 0.05 m; p = 0.14; ES = -0.34) when comparing stronger to weaker athletes. The results of this study illustrate that absolute IPF and IMP are related to VJ PF and PP but not VJ height. Because stronger athletes did not jump higher than weaker athletes, dynamic strength tests may be more practical methods of assessing the relationships between relative strength levels and dynamic performance in collegiate athletes.
NASA Astrophysics Data System (ADS)
Gulyaeva, Tamara; Poustovalova, Ljubov
The International Reference Ionosphere model extended to the plasmasphere, IRI-Plas, has been recently updated for assimilation of total electron content, TEC, derived from observations with Global Navigation Satellite System, GNSS. The ionosonde products of the F2 layer peak density (NmF2) and height (hmF2) ensure true electron density maximum at the F2 peak. The daily solar and magnetic indices used by IRI-Plas code are compiled in data files including the 3-hour ap and kp magnetic index from 1958 onward, 12-monthly smoothed sunspot number R12 and Global Electron Content GEC12, daily solar radio flux F10.7 and daily sunspot number Ri. The 3-h ap-index is available in Real Time, RT, mode from GFZ, Potsdam, Germany, daily update of F10.7 is provided by Space Weather Canada service, and daily estimated international sunspot number Ri is provided by Solar Influences Data Analysis Center, SIDC, Belgium. For IRI-Plas-RT operation in regime of the daily update and prediction of the F2 layer peak parameters, the proxy kp and ap forecast for 3 to 24 hours ahead based on data for preceding 12 hours is applied online at http://www.izmiran.ru/services/iweather/. The topside electron density profile of IRI-Plas code is expressed with complementary half-peak density anchor height above hmF2 which corresponds to transition O+/H+ height. The present investigation is focused on reconstruction of topside ionosphere scale height using vertical total electron content (TEC) data derived from the Global Positioning System GPS observations and the ionosonde derived F2 layer peak parameters from 25 observatories ingested into IRI-Plas model. GPS-TEC and ionosonde measurements at solar maximum (September, 2002, and October, 2003) for quiet, positively disturbed, and negatively disturbed days of the month are used to obtain the topside scale height, Htop, representing the range of altitudes from hmF2 to the height where NmF2 decay by e times occurs. Mapping of the F2 layer peak parameters and TEC allows interpolate these parameters at coordinated grid sites from independent GPS receivers and ionosondes data. Exponential scale height Htop exceeds scale height HT of the α-Chapman layer by 3 times - the latter refers to a narrow altitude range from hmF2 to the height of 1.2 times decay of NmF2. While typical quiet daytime value of the topside scale height is around 200 km, it can be enhanced by 2-3 times during the negative phase of the ionospheric storm as it is captured by IRI-Plas-RT model ingesting the F2 peak and TEC data. This study is supported by the joint grant of RFBR 13-02-91370-CT_a and TUBITAK 112E568.
Antarctic meteor observations using the Davis MST and meteor radars
NASA Astrophysics Data System (ADS)
Holdsworth, David A.; Murphy, Damian J.; Reid, Iain M.; Morris, Ray J.
2008-07-01
This paper presents the meteor observations obtained using two radars installed at Davis (68.6°S, 78.0°E), Antarctica. The Davis MST radar was installed primarily for observation of polar mesosphere summer echoes, with additional transmit and receive antennas installed to allow all-sky interferometric meteor radar observations. The Davis meteor radar performs dedicated all-sky interferometric meteor radar observations. The annual count rate variation for both radars peaks in mid-summer and minimizes in early Spring. The height distribution shows significant annual variation, with minimum (maximum) peak heights and maximum (minimum) height widths in early Spring (mid-summer). Although the meteor radar count rate and height distribution variations are consistent with a similar frequency meteor radar operating at Andenes (69.3°N), the peak heights show a much larger variation than at Andenes, while the count rate maximum-to-minimum ratios show a much smaller variation. Investigation of the effects of the temporal sampling parameters suggests that these differences are consistent with the different temporal sampling strategies used by the Davis and Andenes meteor radars. The new radiant mapping procedure of [Jones, J., Jones, W., Meteor radiant activity mapping using single-station radar observations, Mon. Not. R. Astron. Soc., 367(3), 1050-1056, doi: 10.1111/j.1365-2966.2006.10025.x, 2006] is investigated. The technique is used to detect the Southern delta-Aquarid meteor shower, and a previously unknown weak shower. Meteoroid speeds obtained using the Fresnel transform are presented. The diurnal, annual, and height variation of meteoroid speeds are presented, with the results found to be consistent with those obtained using specular meteor radars. Meteoroid speed estimates for echoes identified as Southern delta-Aquarid and Sextantid meteor candidates show good agreement with the theoretical pre-atmospheric speeds of these showers (41 km s -1 and 32 km s -1, respectively). The meteoroid speeds estimated for these showers show decreasing speed with decreasing height, consistent with the effects of meteoroid deceleration. Finally, we illustrate how the new radiant mapping and meteoroid speed techniques can be combined for unambiguous meteor shower detection, and use these techniques to detect a previously unknown weak shower.
Vibrational dynamics and boson peak in a supercooled polydisperse liquid.
Abraham, Sneha Elizabeth; Bagchi, Biman
2010-03-01
Vibrational density of states (VDOS) in a supercooled polydisperse liquid is computed by diagonalizing the Hessian matrix evaluated at the potential energy minima for systems with different values of polydispersity. An increase in polydispersity leads to an increase in the relative population of localized high-frequency modes. At low frequencies, the density of states shows an excess compared to the Debye squared-frequency law, which has been identified with the boson peak. The height of the boson peak increases with polydispersity and shows a rather narrow sensitivity to changes in temperature. While the modes comprising the boson peak appear to be largely delocalized, there is a sharp drop in the participation ratio of the modes that exist just below the boson peak indicative of the quasilocalized nature of the low-frequency vibrations. Study of the difference spectrum at two different polydispersity reveals that the increase in the height of boson peak is due to a population shift from modes with frequencies above the maximum in the VDOS to that below the maximum, indicating an increase in the fraction of the unstable modes in the system. The latter is further supported by the facilitation of the observed dynamics by polydispersity. Since the strength of the liquid increases with polydispersity, the present result provides an evidence that the intensity of boson peak correlates positively with the strength of the liquid, as observed earlier in many experimental systems.
Moore, Wayne V; Dana, Ken; Frane, James; Lippe, Barbara
2008-09-01
In children with idiopathic short stature (ISS), growth hormone (GH) response to a provocative test will be inversely related to the first year response to hGH and be a variable accounting for a degree of responsiveness. Because high levels of GH are a characteristic of GH insensitivity, such as in Laron syndrome, it is possible that a high stimulated GH is associated with a lower first year height velocity among children diagnosed as having ISS. We examined the relationship between the peak stimulated GH levels in 3 ISS groups; GH >10 -<25, 25-40, and >40 ng/mL and the first year growth response to rhGH therapy. We also looked at 8 other predictor variables (age, sex, height SDS, height age, body mass index (BMI), bone age, dose, and SDS deficit from target parental height. Multiple regression analysis with the first year height as the dependent variable and peak stimulated GH was the primary endpoint. The predictive value of adding each of the other variables was then assessed. Mean change in height velocity was similar among the three groups, with a maximum difference among the groups of 0.6 cm/yr. There was a small but statistically significant correlation (r=-0.12) between the stimulated GH and first year height velocity. The small correlation between first year growth response and peak GH is not clinically relevant in defining GH resistance. No cut off level by peak GH could be determined to enhance the usefulness of this measure to predict response. Baseline age was the only clinically significant predictor, R-squared, 6.4%. All other variables contributed less than an additional 2% to the R-squared.
Barker, Leland A; Harry, John R; Mercer, John A
2018-01-01
Barker, LA, Harry, JR, and Mercer, JA. Relationships between countermovement jump ground reaction forces and jump height, reactive strength index, and jump time. J Strength Cond Res 32(1): 248-254, 2018-The purpose of this study was to determine the relationship between ground reaction force (GRF) variables to jump height, jump time, and the reactive strength index (RSI). Twenty-six, Division-I, male, soccer players performed 3 maximum effort countermovement jumps (CMJs) on a dual-force platform system that measured 3-dimensional kinetic data. The trial producing peak jump height was used for analysis. Vertical GRF (Fz) variables were divided into unloading, eccentric, amortization, and concentric phases and correlated with jump height, RSI (RSI = jump height/jump time), and jump time (from start to takeoff). Significant correlations were observed between jump height and RSI, concentric kinetic energy, peak power, concentric work, and concentric displacement. Significant correlations were observed between RSI and jump time, peak power, unload Fz, eccentric work, eccentric rate of force development (RFD), amortization Fz, amortization time, second Fz peak, average concentric Fz, and concentric displacement. Significant correlations were observed between jump time and unload Fz, eccentric work, eccentric RFD, amortization Fz, amortization time, average concentric Fz, and concentric work. In conclusion, jump height correlated with variables derived from the concentric phase only (work, power, and displacement), whereas Fz variables from the unloading, eccentric, amortization, and concentric phases correlated highly with RSI and jump time. These observations demonstrate the importance of countermovement Fz characteristics for time-sensitive CMJ performance measures. Researchers and practitioners should include RSI and jump time with jump height to improve their assessment of jump performance.
Jump Shrug Height and Landing Forces Across Various Loads.
Suchomel, Timothy J; Taber, Christopher B; Wright, Glenn A
2016-01-01
The purpose of this study was to examine the effect that load has on the mechanics of the jump shrug. Fifteen track and field and club/intramural athletes (age 21.7 ± 1.3 y, height 180.9 ± 6.6 cm, body mass 84.7 ± 13.2 kg, 1-repetition-maximum (1RM) hang power clean 109.1 ± 17.2 kg) performed repetitions of the jump shrug at 30%, 45%, 65%, and 80% of their 1RM hang power clean. Jump height, peak landing force, and potential energy of the system at jump-shrug apex were compared between loads using a series of 1-way repeated-measures ANOVAs. Statistical differences in jump height (P < .001), peak landing force (P = .012), and potential energy of the system (P < .001) existed; however, there were no statistically significant pairwise comparisons in peak landing force between loads (P > .05). The greatest magnitudes of jump height, peak landing force, and potential energy of the system at the apex of the jump shrug occurred at 30% 1RM hang power clean and decreased as the external load increased from 45% to 80% 1RM hang power clean. Relationships between peak landing force and potential energy of the system at jump-shrug apex indicate that the landing forces produced during the jump shrug may be due to the landing strategy used by the athletes, especially at lighter loads. Practitioners may prescribe heavier loads during the jump-shrug exercise without viewing landing force as a potential limitation.
Acute effects of heavy-load squats on consecutive squat jump performance.
Weber, Kurt R; Brown, Lee E; Coburn, Jared W; Zinder, Steven M
2008-05-01
Postactivation potentiation (PAP) and complex training have generated interest within the strength and conditioning community in recent years, but much of the research to date has produced confounding results. The purpose of this study was to observe the acute effects of a heavy-load back squat [85% 1 repetition maximum (1RM)] condition on consecutive squat jump performance. Twelve in-season Division I male track-and-field athletes participated in two randomized testing conditions: a five-repetition back squat at 85% 1RM (BS) and a five-repetition squat jump (SJ). The BS condition consisted of seven consecutive squat jumps (BS-PRE), followed by five repetitions of the BS at 85% 1RM, followed by another set of seven consecutive squat jumps (BS-POST). The SJ condition was exactly the same as the BS condition except that five consecutive SJs replaced the five BSs, with 3 minutes' rest between each set. BS-PRE, BS-POST, SJ-PRE, and SJ-POST were analyzed and compared for mean and peak jump height, as well as mean and peak ground reaction force (GRF). The BS condition's mean and peak jump height and peak GRF increased 5.8% +/- 4.8%, 4.7% +/- 4.8%, and 4.6% +/- 7.4%, respectively, whereas the SJ condition's mean and peak jump height and peak GRF decreased 2.7% +/- 5.0%, 4.0% +/- 4.9%, and 1.3% +/- 7.5%, respectively. The results indicate that performing a heavy-load back squat before a set of consecutive SJs may enhance acute performance in average and peak jump height, as well as peak GRF.
Power and impulse applied during push press exercise.
Lake, Jason P; Mundy, Peter D; Comfort, Paul
2014-09-01
The aim of this study was to quantify the load, which maximized peak and mean power, and impulse applied to these loads, during the push press and to compare them to equivalent jump squat data. Resistance-trained men performed 2 push press (n = 17; age: 25.4 ± 7.4 years; height: 183.4 ± 5 cm; body mass: 87 ± 15.6 kg) and jump squat (n = 8 of original 17; age: 28.7 ± 8.1 years; height: 184.3 ± 5.5 cm; mass: 98 ± 5.3 kg) singles with 10-90% of their push press and back squat 1 repetition maximum (1RM), respectively, in 10% 1RM increments while standing on a force platform. Push press peak and mean power was maximized with 75.3 ± 16.4 and 64.7 ± 20% 1RM, respectively, and impulses applied to these loads were 243 ± 29 N·s and 231 ± 36 N·s. Increasing and decreasing load, from the load that maximized peak and mean power, by 10 and 20% 1RM reduced peak and mean power by 6-15% (p ≤ 0.05). Push press and jump squat maximum peak power (7%, p = 0.08) and the impulse that was applied to the load that maximized peak (8%, p = 0.17) and mean (13%, p = 0.91) power were not significantly different, but push press maximum mean power was significantly greater than the jump squat equivalent (∼9.5%, p = 0.03). The mechanical demand of the push press is comparable with the jump squat and could provide a time-efficient combination of lower-body power and upper-body and trunk strength training.
Ensemble method for dengue prediction.
Buczak, Anna L; Baugher, Benjamin; Moniz, Linda J; Bagley, Thomas; Babin, Steven M; Guven, Erhan
2018-01-01
In the 2015 NOAA Dengue Challenge, participants made three dengue target predictions for two locations (Iquitos, Peru, and San Juan, Puerto Rico) during four dengue seasons: 1) peak height (i.e., maximum weekly number of cases during a transmission season; 2) peak week (i.e., week in which the maximum weekly number of cases occurred); and 3) total number of cases reported during a transmission season. A dengue transmission season is the 12-month period commencing with the location-specific, historical week with the lowest number of cases. At the beginning of the Dengue Challenge, participants were provided with the same input data for developing the models, with the prediction testing data provided at a later date. Our approach used ensemble models created by combining three disparate types of component models: 1) two-dimensional Method of Analogues models incorporating both dengue and climate data; 2) additive seasonal Holt-Winters models with and without wavelet smoothing; and 3) simple historical models. Of the individual component models created, those with the best performance on the prior four years of data were incorporated into the ensemble models. There were separate ensembles for predicting each of the three targets at each of the two locations. Our ensemble models scored higher for peak height and total dengue case counts reported in a transmission season for Iquitos than all other models submitted to the Dengue Challenge. However, the ensemble models did not do nearly as well when predicting the peak week. The Dengue Challenge organizers scored the dengue predictions of the Challenge participant groups. Our ensemble approach was the best in predicting the total number of dengue cases reported for transmission season and peak height for Iquitos, Peru.
Infrared focal plane performance in the South Atlantic anomaly
NASA Technical Reports Server (NTRS)
Junga, Frank A.
1989-01-01
Proton-induced pulse height distributions (PHD's) in Si:XX detectors were studied analytically and experimentally. In addition, a preliminary design for a flight experiment to characterize the response of Si:XX detectors to the trapped proton environment and verify PHD models was developed. PHD's were computed for two orbit altitudes for a variety of shielding configurations. Most of the proton-induced pulses have amplitudes less that about 3.5 x 10(exp 5) e-h pairs. Shielding has a small effect on the shape of the PHD's. The primary effect of shielding is to reduce the total number of pulses produced. Proton-induced PHD's in a Si:Sb focal plane array bombarded by a unidirectional 67-MeV beam were measured. The maximum pulse height recorded was 6 x 10(exp 5) pairs. The distribution had two peaks: the larger peak corresponded to 3.8 x 10(exp 5) pairs and the smaller peak to 1.2 x 10(exp 5) pairs. The maximum pulse height and the larger peak are within a factor of two of predicted values. The low-energy peak was not expected, but is believed to be an artifact of inefficient charge collection in the detector. The planned flight experiment will be conducted on a Space Shuttle flight. Lockheed's helium extended life dewar (HELD) will be used to provide the required cryogenic environment for the detector. Two bulk Si:Sb arrays and two Si:As impurity band conduction arrays will be tested. The tests will be conducted while the Space Shuttle passes through the South Atlantic Anomaly. PHD's will be recorded and responsivity changes tracked. This experiment will provide a new database on proton-induced PHD's, compare two infrared detector technologies in a space environment, and provide the data necessary to validate PHD modeling.
Ensemble method for dengue prediction
Baugher, Benjamin; Moniz, Linda J.; Bagley, Thomas; Babin, Steven M.; Guven, Erhan
2018-01-01
Background In the 2015 NOAA Dengue Challenge, participants made three dengue target predictions for two locations (Iquitos, Peru, and San Juan, Puerto Rico) during four dengue seasons: 1) peak height (i.e., maximum weekly number of cases during a transmission season; 2) peak week (i.e., week in which the maximum weekly number of cases occurred); and 3) total number of cases reported during a transmission season. A dengue transmission season is the 12-month period commencing with the location-specific, historical week with the lowest number of cases. At the beginning of the Dengue Challenge, participants were provided with the same input data for developing the models, with the prediction testing data provided at a later date. Methods Our approach used ensemble models created by combining three disparate types of component models: 1) two-dimensional Method of Analogues models incorporating both dengue and climate data; 2) additive seasonal Holt-Winters models with and without wavelet smoothing; and 3) simple historical models. Of the individual component models created, those with the best performance on the prior four years of data were incorporated into the ensemble models. There were separate ensembles for predicting each of the three targets at each of the two locations. Principal findings Our ensemble models scored higher for peak height and total dengue case counts reported in a transmission season for Iquitos than all other models submitted to the Dengue Challenge. However, the ensemble models did not do nearly as well when predicting the peak week. Conclusions The Dengue Challenge organizers scored the dengue predictions of the Challenge participant groups. Our ensemble approach was the best in predicting the total number of dengue cases reported for transmission season and peak height for Iquitos, Peru. PMID:29298320
A Biomechanical Analysis of the Effects of Bouncing the Barbell in the Conventional Deadlift.
Krajewski, Kellen; LeFavi, Robert; Riemann, Bryan
2018-02-27
The purpose of this study is to analyze biomechanical differences between the bounce and pause styles of deadlifting. Twenty physically active males performed deadlifts at their 75% one repetition maximum testing utilizing both pause and bounce techniques in a within-subjects randomized study design. The average peak height the barbell attained from the three bounce style repetitions was used to compute a compatible phase for analysis of the pause style repetitions. Net joint moment impulse (NJMI), work, average vertical ground reaction force (vGRF), vGRF impulse and phase time were computed for two phases, lift off to peak barbell height and the entire ascent. Additionally, the ankle, knee, hip, and trunk angles at the location of peak barbell height. During the lift off to peak barbell height phase, although each of the joints demonstrated significantly less NJMI and work during the bounce style, the hip joint was impacted the most. The average vGRF was greater for the bounce however the vGRF impulse was greater for the pause. The NJMI results for the ascent phase were similar to the lift off to peak barbell height phase, while work was significantly less for the bounce condition compared to the pause condition across all three joints. Strength and conditioning specialists utilizing the deadlift should be aware that the bounce technique does not allow the athlete to develop maximal force production in the early portion of the lift. Further analyses should focus on joint angles and potential vulnerability to injury when the barbell momentum generated from the bounce is lost.
Kinetics of phase transformations in glass forming systems
NASA Technical Reports Server (NTRS)
Ray, Chandra S.
1993-01-01
In crystallization measurements of nonisothermal nucleation for Li2O.2SiO2 (LS2) glass, using DTA, the glass sample is scanned at different constant heating rates until it is crystallized. This means that the temperature range where nucleation can occur for the glass is scanned also at different rates which allows the glass to be nucleated for different time prior to crystallization. Consequently, the concentration of nuclei developed in the glass may be different for different heating rates and the DTA peak height which has shown to be sensitive to the number of nuclei present in the sample, is expected to change with heating rate. DTA peak height depends strongly on the overlap between the nucleation rate and growth rate curves, assuming the peak height is directly proportional to the total number of nuclei present in the glass sample under investigation, which, in turn, should be proportional to the volume or weight of the sample. To verify this assumption, DTA measurements were made using a LS2 glass to determine the peak height as a function of the sample weight. Using the DTA peak height technique, a nucleation rate like curve was determined for the BaO.2SiO2 (BS2) glass which showed that the temperature for nucleation ranged from 650 to 750 C for this glass and the temperature for maximum nucleation was approximately 705 C. These values are in excellent agreement with those determined by the conventional technique. There was international collaboration with Japan and Germany on this project.
Water level observations in mangrove swamps during two hurricanes in Florida
Krauss, K.W.; Doyle, T.W.; Doyle, T.J.; Swarzenski, C.M.; From, A.S.; Day, Richard H.; Conner, W.H.
2009-01-01
Little is known about the effectiveness of mangroves in suppressing water level heights during landfall of tropical storms and hurricanes. Recent hurricane strikes along the Gulf Coast of the United States have impacted wetland integrity in some areas and hastened the need to understand how and to what degree coastal forested wetlands confer protection by reducing the height of peak water level. In recent years, U.S. Geological Survey Gulf Coast research projects in Florida have instrumented mangrove sites with continuous water level recorders. Our ad hoc network of water level recorders documented the rise, peak, and fall of water levels (?? 0.5 hr) from two hurricane events in 2004 and 2005. Reduction of peak water level heights from relatively in-line gages associated with one storm surge event indicated that mangrove wetlands can reduce water level height by as much as 9.4 cm/km inland over intact, relatively unchannelized expanses. During the other event, reductions were slightly less for mangroves along a river corridor. Estimates of water level attenuation were within the range reported in the literature but erred on the conservative side. These synoptic data from single storm events indicate that intact mangroves may support a protective role in reducing maximum water level height associated with surge.
Antagonist muscle co-contraction during a double-leg landing maneuver at two heights.
Mokhtarzadeh, Hossein; Yeow, Chen Hua; Goh, James Cho Hong; Oetomo, Denny; Ewing, Katie; Lee, Peter Vee Sin
2017-10-01
Knee injuries are common during landing activities. Greater landing height increases peak ground reaction forces (GRFs) and loading at the knee joint. As major muscles to stabilize the knee joint, Quadriceps and Hamstring muscles provide internal forces to attenuate the excessive GRF. Despite the number of investigations on the importance of muscle function during landing, the role of landing height on these muscles forces using modeling during landing is not fully investigated. Participant-specific musculoskeletal models were developed using experimental motion analysis data consisting of anatomic joint motions and GRF from eight male participants performing double-leg drop landing from 30 and 60 cm. Muscle forces were calculated in OpenSim and their differences were analyzed at the instances of high risk during landing i.e. peak GRF for both heights. The maximum knee flexion angle and moments were found significantly higher from a double-leg landing at 60 cm compared to 30 cm. The results showed elevated GRF, and mean muscle forces during landing. At peak GRF, only quadriceps showed significantly greater forces at 60 cm. Hamstring muscle forces did not significantly change at 60 cm compared to 30 cm. Quadriceps and hamstring muscle forces changed at different heights. Since hamstring forces were similar in both landing heights, this could lead to an imbalance between the antagonist muscles, potentially placing the knee at risk of injury if combined with small flexion angles that was not observed at peak GRF in our study. Thus, enhanced neuromuscular training programs strengthening the hamstrings may be required to address this imbalance. These findings may contribute to enhance neuromuscular training programs to prevent knee injuries during landing.
Chang, Eunwook; Norcross, Marc F; Johnson, Sam T; Kitagawa, Taichi; Hoffman, Mark
2015-02-01
The purpose of this study was to examine the relationships between maximum vertical jump height and (a) rate of torque development (RTD) calculated during 2 time intervals, 0-50 milliseconds (RTD50) and 0-200 milliseconds (RTD200) after torque onset and (b) peak torque (PT) for each of the triple extensor muscle groups. Thirty recreationally active individuals performed maximal isometric voluntary contractions (MVIC) of the hip, knee and ankle extensors, and a countermovement vertical jump. Rate of torque development was calculated from 0 to 50 (RTD50) and 0 to 200 (RTD200) milliseconds after the onset of joint torque. Peak torque was identified and defined as the maximum torque value during each MVIC trial. Greater vertical jump height was associated with greater knee and ankle extension RTD50, RTD200, and PT (p ≤ 0.05). However, hip extension RTD50, RTD200, and PT were not significantly related to maximal vertical jump height (p > 0.05). The results indicate that 47.6 and 32.5% of the variability in vertical jump height was explained by knee and ankle extensor RTD50, respectively. Knee and ankle extensor RTD50 also seemed to be more closely related to vertical jump performance than RTD200 (knee extensor: 28.1% and ankle extensor: 28.1%) and PT (knee extensor: 31.4% and ankle extensor: 13.7%). Overall, these results suggest that training specifically targeted to improve knee and ankle extension RTD, especially during the early phases of muscle contraction, may be effective for increasing maximal vertical jump performance.
Effect of dopants on the TL response of the new LiF:Mg,Cu,Ag material
NASA Astrophysics Data System (ADS)
Yahyaabadi, A.; Torkzadeh, F.; Rezaei-Ochbelagh, D.; Hosseini Pooya, M.
2018-07-01
The new TL LiF:Mg,Cu,Ag material was prepared and investigated in this study. The TL intensity of LiF:Mg,Cu,Ag is strongly dependent on the concentration of dopants and the preparation procedure. Any small change in these factors can cause alterations in TL response. In this study, the influence of Cu and Ag concentrations on the response of the LiF:Mg,Cu,Ag sample was investigated and showed that the height of the low, main and high temperature peaks changes with Ag concentration. Their intensities increased with increasing Ag concentration to a maximum value and decreased with higher Ag concentration. It was also found that Cu concentration less than 0.05 mol% influences the maximum peak height and TL intensity. The optimum Cu and Ag concentrations were found to be 0.05 and 0.1 mol% at 1005 °C QT, respectively. The role of dopants in LiF:Mg,Cu,Ag material was also investigated. The results showed that presence of three dopants is important for having material with sensitivity higher than LiF:Mg,Ti. The Mg dopant plays a crucial role in the formation of the trapping center and the position of the main dosimetric peak.
Step-induced deconstruction and step-height evolution of the Au(110) surface
NASA Astrophysics Data System (ADS)
Romahn, U.; von Blanckenhagen, P.; Kroll, C.; Göpel, W.
1993-05-01
We use temperature-dependent high-resolution low-energy electron diffraction and spot-profile analysis low-energy electron diffraction to study the Au(110) surface at room temperature up to 786 K. The experimental data were analyzed within the framework of the kinematic theory. Oscillations were determined of the positions of half order and fundamental Bragg peaks as well as of the full width at half maximum of the specular peak as a function of perpendicular momentum transfer. Evidence of mono- atomic steps occurring in the [001] direction was found below and around the (2×1)-->(1×1) transition at Tc. Above Tc, the surface gets smoother in the [001] direction; at the roughening temperature, TR, the evolution of multiple-height steps starts in both symmetry directions.
Comparison of Coastal Inundation in the Outer Banks during Three Recent Hurricanes
NASA Astrophysics Data System (ADS)
Liu, T.; Sheng, Y.
2012-12-01
Coastal inundation in the Outer Banks and Chesapeake Bay during several recent hurricanes - Isabel, Earl and Irene, in 2005, 2010 and 2011, respectively, have been successfully simulated using the storm surge modeling system, CH3D-SSMS, which includes coupled coastal and basin-scale storm surge and wave models. Hurricane Isabel, which made landfall at the Outer Banks area in 2005, generated high waves up to 20 m offshore and 2.5 m inside the Chesapeake Bay which significantly affected the peak surge, with wave induced set-up contributing up to about 20% of the peak surge. During Isabel, the observed wave height at Duck station (1 km offshore) reached over 6 meters at landfall time, while Earl and Irene generated relatively moderate waves, with peak wave height around 4 meters at that station but a much lower wave height before landfall. Simulations show that during Earl and Irene, wave induced set-up did not contribute as much as that during Isabel. At Duck Pier, wave effects accounted for ~36 cm or 20% of the peak surge of 1.71 m during Isabel, while waves contributed ~10 cm (10%) toward the peak surge of 1 m during Irene and even less during Earl. The maximum surge during Irene was largely caused by the strong wind, as confirmed by the model using H* wind. Inundation maps have been generated and compared based on the simulations of Isabel, Earl and Irene.
NASA Astrophysics Data System (ADS)
Wang, Kaihua; Chen, Hua; Jiang, Weiping; Li, Zhao; Ma, Yifang; Deng, Liansheng
2018-04-01
There are apparent seasonal variations in GPS height time series, and thermal expansion is considered to be one of the potential geophysical contributors. The displacements introduced by thermal expansion are usually derived without considering the annex height and underground part of the monument (e.g. located on roof or top of the buildings), which may bias the geophysical explanation of the seasonal oscillation. In this paper, the improved vertical displacements are derived by a refined thermal expansion model where the annex height and underground depth of the monument are taken into account, and then 560 IGS stations are adopted to validate the modeled thermal expansion (MTE) displacements. In order to evaluate the impact of thermal expansion on GPS heights, the MTE displacements of 80 IGS stations with less data discontinuities are selected to compare with their observed GPS vertical (OGV) displacements with the modeled surface loading (MSL) displacements removed in advance. Quantitative analysis results show the maximum annual and semiannual amplitudes of the MTE are 6.65 mm (NOVJ) and 0.51 mm (IISC), respectively, and the maximum peak-to-peak oscillation of the MTE displacements can be 19.4 mm. The average annual amplitude reductions are 0.75 mm and 1.05 mm respectively after removing the MTE and MSL displacements from the OGV, indicating the seasonal oscillation induced by thermal expansion is equivalent to >75% of the impact of surface loadings. However, there are rarely significant reductions for the semiannual amplitude. Given the result in this study that thermal expansion can explain 17.3% of the annual amplitude in GPS heights on average, it must be precisely modeled both in GPS precise data processing and GPS time series analysis, especially for those stations located in the middle and high latitudes with larger annual temperature oscillation, or stations with higher monument.
Bleka, Øyvind; Storvik, Geir; Gill, Peter
2016-03-01
We have released a software named EuroForMix to analyze STR DNA profiles in a user-friendly graphical user interface. The software implements a model to explain the allelic peak height on a continuous scale in order to carry out weight-of-evidence calculations for profiles which could be from a mixture of contributors. Through a properly parameterized model we are able to do inference on mixture proportions, the peak height properties, stutter proportion and degradation. In addition, EuroForMix includes models for allele drop-out, allele drop-in and sub-population structure. EuroForMix supports two inference approaches for likelihood ratio calculations. The first approach uses maximum likelihood estimation of the unknown parameters. The second approach is Bayesian based which requires prior distributions to be specified for the parameters involved. The user may specify any number of known and unknown contributors in the model, however we find that there is a practical computing time limit which restricts the model to a maximum of four unknown contributors. EuroForMix is the first freely open source, continuous model (accommodating peak height, stutter, drop-in, drop-out, population substructure and degradation), to be reported in the literature. It therefore serves an important purpose to act as an unrestricted platform to compare different solutions that are available. The implementation of the continuous model used in the software showed close to identical results to the R-package DNAmixtures, which requires a HUGIN Expert license to be used. An additional feature in EuroForMix is the ability for the user to adapt the Bayesian inference framework by incorporating their own prior information. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Moore, Talia Y; Rivera, Alberto M; Biewener, Andrew A
2017-01-01
Numerous historical descriptions of the Lesser Egyptian jerboa, Jaculus jaculus , a small bipedal mammal with elongate hindlimbs, make special note of their extraordinary leaping ability. We observed jerboa locomotion in a laboratory setting and performed inverse dynamics analysis to understand how this small rodent generates such impressive leaps. We combined kinematic data from video, kinetic data from a force platform, and morphometric data from dissections to calculate the relative contributions of each hindlimb muscle and tendon to the total movement. Jerboas leapt in excess of 10 times their hip height. At the maximum recorded leap height (not the maximum observed leap height), peak moments for metatarso-phalangeal, ankle, knee, and hip joints were 13.1, 58.4, 65.1, and 66.9 Nmm, respectively. Muscles acting at the ankle joint contributed the most work (mean 231.6 mJ / kg Body Mass) to produce the energy of vertical leaping, while muscles acting at the metatarso-phalangeal joint produced the most stress (peak 317.1 kPa). The plantaris, digital flexors, and gastrocnemius tendons encountered peak stresses of 25.6, 19.1, and 6.0 MPa, respectively, transmitting the forces of their corresponding muscles (peak force 3.3, 2.0, and 3.8 N, respectively). Notably, we found that the mean elastic energy recovered in the primary tendons of both hindlimbs comprised on average only 4.4% of the energy of the associated leap. The limited use of tendon elastic energy storage in the jerboa parallels the morphologically similar heteromyid kangaroo rat, Dipodomys spectabilis . When compared to larger saltatory kangaroos and wallabies that sustain hopping over longer periods of time, these small saltatory rodents store and recover less elastic strain energy in their tendons. The large contribution of muscle work, rather than elastic strain energy, to the vertical leap suggests that the fitness benefit of rapid acceleration for predator avoidance dominated over the need to enhance locomotor economy in the evolutionary history of jerboas.
SU-E-I-44: Some Preliminary Analysis of Angular Distribution of X-Ray Scattered On Soft Tissues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganezer, K; Krmar, M; Cvejic, Z
2015-06-15
Purpose: The angular distribution of x-radiation scattered at small angles (up to 16 degrees) from several different animal soft tissue (skin, fat, muscle, retina, etc) were measured using standard equipment devoted to study of crystal structure which provides excellent geometry conditions of measurements. showed measurable differences for different tissues. In the simplest possible case when measured samples do not differ in structure (different concentration solutions) it can be seen that intensity of scattered radiation is decreasing function of the concentration and the peak of the maximum of scattering distribution depends on the concentration as well. Methods: An x-ray scattering profilemore » usually consists of sharp diffraction peak; however some properties of the spatial profiles of scattered radiation as intensity, the peak position, height, area, FWHM, the ratio of peak heights, etc. Results: The data contained measurable differences for different tissues. In the simplest possible case when measured samples do not differ in structure (different concentration solutions) it can be seen that intensity of scattered radiation is decreasing function of the concentration and the peak of the maximum of scattering distribution depends on the concentration as well. Measurements of different samples in the very preliminary phase showed that simple biological material used in study showed slightly different scattering pattern, especially at higher angles (around 10degrees). Intensity of radiation scattered from same tissue type is very dependent on water content and several more parameters. Conclusion: This preliminary study using animal soft tissues on the angular distributions of scattered x-rays suggests that angular distributions of X-rays scattered off of soft tissues might be useful in distinguishing healthy tissue from malignant soft tissue.« less
Wahab, M Farooq; Patel, Darshan C; Armstrong, Daniel W
2017-08-04
Most peak shapes obtained in separation science depart from linearity for various reasons such as thermodynamic, kinetic, or flow based effects. An indication of the nature of asymmetry often helps in problem solving e.g. in column overloading, slurry packing, buffer mismatch, and extra-column band broadening. However, existing tests for symmetry/asymmetry only indicate the skewness in excess (tail or front) and not the presence of both. Two simple graphical approaches are presented to analyze peak shapes typically observed in gas, liquid, and supercritical fluid chromatography as well as capillary electrophoresis. The derivative test relies on the symmetry of the inflection points and the maximum and minimum values of the derivative. The Gaussian test is a constrained curve fitting approach and determines the residuals. The residual pattern graphically allows the user to assess the problematic regions in a given peak, e.g., concurrent tailing or fronting, something which cannot be easily done with other current methods. The template provided in MS Excel automates this process. The total peak shape analysis extracts the peak parameters from the upper sections (>80% height) of the peak rather than the half height as is done conventionally. A number of situations are presented and the utility of this approach in solving practical problems is demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.
Temperature dependence of Coulomb oscillations in a few-layer two-dimensional WS2 quantum dot.
Song, Xiang-Xiang; Zhang, Zhuo-Zhi; You, Jie; Liu, Di; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guo-Ping
2015-11-05
Standard semiconductor fabrication techniques are used to fabricate a quantum dot (QD) made of WS2, where Coulomb oscillations were found. The full-width-at-half-maximum of the Coulomb peaks increases linearly with temperature while the height of the peaks remains almost independent of temperature, which is consistent with standard semiconductor QD theory. Unlike graphene etched QDs, where Coulomb peaks belonging to the same QD can have different temperature dependences, these results indicate the absence of the disordered confining potential. This difference in the potential-forming mechanism between graphene etched QDs and WS2 QDs may be the reason for the larger potential fluctuation found in graphene QDs.
Temperature dependence of Coulomb oscillations in a few-layer two-dimensional WS2 quantum dot
Song, Xiang-Xiang; Zhang, Zhuo-Zhi; You, Jie; Liu, Di; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guo-Ping
2015-01-01
Standard semiconductor fabrication techniques are used to fabricate a quantum dot (QD) made of WS2, where Coulomb oscillations were found. The full-width-at-half-maximum of the Coulomb peaks increases linearly with temperature while the height of the peaks remains almost independent of temperature, which is consistent with standard semiconductor QD theory. Unlike graphene etched QDs, where Coulomb peaks belonging to the same QD can have different temperature dependences, these results indicate the absence of the disordered confining potential. This difference in the potential-forming mechanism between graphene etched QDs and WS2 QDs may be the reason for the larger potential fluctuation found in graphene QDs. PMID:26538164
Kozieł, Sławomir M; Malina, Robert M
2018-01-01
Predicted maturity offset and age at peak height velocity are increasingly used with youth athletes, although validation studies of the equations indicated major limitations. The equations have since been modified and simplified. The objective of this study was to validate the new maturity offset prediction equations in independent longitudinal samples of boys and girls. Two new equations for boys with chronological age and sitting height and chronological age and stature as predictors, and one equation for girls with chronological age and stature as predictors were evaluated in serial data from the Wrocław Growth Study, 193 boys (aged 8-18 years) and 198 girls (aged 8-16 years). Observed age at peak height velocity for each youth was estimated with the Preece-Baines Model 1. The original prediction equations were included for comparison. Predicted age at peak height velocity was the difference between chronological age at prediction and maturity offset. Predicted ages at peak height velocity with the new equations approximated observed ages at peak height velocity in average maturing boys near the time of peak height velocity; a corresponding window for average maturing girls was not apparent. Compared with observed age at peak height velocity, predicted ages at peak height velocity with the new and original equations were consistently later in early maturing youth and earlier in late maturing youth of both sexes. Predicted ages at peak height velocity with the new equations had reduced variation compared with the original equations and especially observed ages at peak height velocity. Intra-individual variation in predicted ages at peak height velocity with all equations was considerable. The new equations are useful for average maturing boys close to the time of peak height velocity; there does not appear to be a clear window for average maturing girls. The new and original equations have major limitations with early and late maturing boys and girls.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-15
...) to be located in the Tehachapi Mountains south of Tehachapi, Kern County, California. The sole... upper dam with a height of 50 feet, a crest length of 7,128 feet, and with a reservoir having a total storage capacity of 5,500 acre-feet at a normal maximum operating elevation of 7,860 feet mean sea level...
Seaworthiness Predictions for Two Preliminary CSGN Designs
1976-09-01
desired significant wave height in feet. The modal wave period represents the period corresponding to the maximum energy or peak of the wave energy ...SPEED 1S *F8.2. ’.H KTS "lR.?7MSIGNIFICANT WAVE HElION ! I S .FS.2.3" FT// I TI. IHWAE PERI O. 31.2mS T FS. 1 9110.1) 808 PORMAT (F 15.?.4110, 609
Allen, Charles R; Fu, Yang-Chieh; Cazas-Moreno, Vanessa; Valliant, Melinda W; Gdovin, Jacob R; Williams, Charles C; Garner, John C
2018-01-01
Allen, CR, Fu, Y-C, Cazas-Moreno, V, Valliant, MW, Gdovin, JR, Williams, CC, and Garner, JC. Effects of jaw clenching and jaw alignment mouthpiece use on force production during vertical jump and isometric clean pull. J Strength Cond Res 32(1): 237-243, 2018-This study examined the effects of jaw clenching, a self-adapted, jaw-repositioning mouthpiece on force production during maximum countermovement vertical jump and maximum isometric midthigh clean pull assessments in an attempt to determine any ergogenic effect attributable to clenching, jaw-repositioning mouthpiece use, or the combination of both. Thirty-six male subjects performed vertical jump and isometric clean pull assessments from a force platform under various mouthpiece and clench conditions. A 3 × 2 (mouthpiece × clench) repeated-measures analysis of variance was conducted to analyze each of the following force production variables for both assessments: peak force, normalized peak force, and rate of force development. In addition, jump height was analyzed for the vertical jump. Results revealed improvements in peak force (F1,35 = 15.84, p ≤ 0.001, (Equation is included in full-text article.)= 0.31), normalized peak force (F1,35 = 16.28, p ≤ 0.001, (Equation is included in full-text article.)= 0.32), and rate of force development (F1,35 = 12.89, p = 0.001, (Equation is included in full-text article.)= 0.27) during the isometric clean pull assessment when participants maximally clenched their jaw, regardless of mouthpiece condition. There were no statistically significant differences in jump height, peak force, normalized peak force, or rate of force development during the vertical jump for any treatment condition. This study supports previous research demonstrating that the implementation of remote voluntary contractions such as jaw clenching can lead to concurrent activation potentiation and a resulting ergogenic effect during activities involving and requiring high-force production.
Topside Ionospheric Response to Solar EUV Variability
NASA Astrophysics Data System (ADS)
Anderson, P. C.; Hawkins, J.
2015-12-01
We present an analysis of 23 years of thermal plasma measurements in the topside ionosphere from several DMSP spacecraft at ~800 km. The solar cycle variations of the daily averaged densities, temperatures, and H+/O+ ratios show a strong relationship to the solar EUV as described by the E10.7 solar EUV proxy with cross-correlation coefficients (CCCs) with the density greater than 0.85. The H+/O+ varies dramatically from solar maximum when it is O+ dominated to solar minimum when it is H+ dominated. These ionospheric parameters also vary strongly with season, particularly at latitudes well away from the equator where the solar zenith angle (SZA) varies greatly with season. There are strong 27-day solar rotation periodicities in the density, associated with the periodicities in the solar EUV as measured by the TIMED SEE and SDO EVE instruments, with CCCs at times greater than 0.9 at selected wavelengths. Empirical Orthogonal Function (EOF) analysis captures over 95% of the variation in the density over the 23 years in the first two principle components. The first principle component (PC1) is clearly associated with the solar EUV showing a 0.91 CCC with the E10.7 proxy while the PC1 EOFs remain relatively constant with latitude indicating that the solar EUV effects are relatively independent of latitude. The second principle component (PC2) is clearly associated with the SZA variation, showing strong correlations with the SZA and the concomitant density variations at latitudes away from the equator and with the PC2 EOFs having magnitudes near zero at the equator and maximum at high latitude. The magnitude of the variation of the response of the topside ionosphere to solar EUV variability is shown to be closely related to the composition. This is interpreted as the result of the effect of composition on the scale height in the topside ionosphere and the "pivot effect" in which the variation in density near the F2 peak is expected to be amplified by a factor of e at an altitude a scale height above the F2 peak. When the topside ionosphere is H+ dominated, DMSP may be much less than a scale height above the F2 peak while when it is O+ dominated, DMSP may be several scale heights above the F2 peak.
Modulation of the electronic property of phosphorene by wrinkle and vertical electric field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yan; Wei, Zhongming, E-mail: zmwei@semi.ac.cn; Li, Jingbo, E-mail: jbli@semi.ac.cn
2015-09-14
The electronic properties of wrinkled phosphorene and its response to charge injection and external vertical electric field have been studied using first-principles calculations. It is found that small-size wrinkle systems have lower energy than wrinkle-free monolayer, suggesting that free-standing phosphorene spontaneously forms small protrusion on its nanosheet. The ratio of wrinkle height to curvature radius increases with enlarging height, indicating a promotion of field enhancement factor. Furthermore, the injected charges mostly distribute at peak and valley. Direct-to-indirect band-gap transition has been found for zigzag wrinkle with height of 14.81 Å. The band gaps of wrinkled nanosheets decrease almost linearly with increasingmore » field, which is caused by charge separation of valence band maximum and conduction band minimum.« less
Biomechanical and clinical factors related to stage I posterior tibial tendon dysfunction.
Rabbito, Melissa; Pohl, Michael B; Humble, Neil; Ferber, Reed
2011-10-01
Case control. To investigate differences in arch height, ankle muscle strength, and biomechanical factors in individuals with stage I posterior tibial tendon dysfunction (PTTD) in comparison to healthy individuals. PTTD is a progressive condition, so early recognition and treatment are essential to help delay or reverse the progression. However, no previous studies have investigated stage I PTTD, and no single study has measured static anatomical structure, muscle strength, and gait mechanics in this population. Twelve individuals with stage I PTTD and 12 healthy, age- and gender-matched control subjects, who were engaged in running-related activities, participated in this study. Measurements of arch height index, maximum voluntary ankle invertor muscle strength, and 3-dimensional rearfoot and medial longitudinal arch kinematics during walking were obtained. The runners with PTTD demonstrated significantly lower seated arch height index (P = .02) and greater (P = .03) and prolonged (P = .05) peak rearfoot eversion angle during gait, compared to the healthy runners. No differences were found in standing arch height index values (P = .28), arch rigidity index (P = .06), ankle invertor strength (P = .49), or peak medial longitudinal arch values (P = .49) between groups. The increased foot pronation is hypothesized to place greater strain on the posterior tibialis muscle, which may partially explain the progressive nature of this condition.
Two types of rate-determining step in chemical and biochemical processes.
Yagisawa, S
1989-01-01
Close examination of the concept of the rate-determining step (RDS) shows that there are two types of RDS depending on the definition of 'rate'. One is represented by the highest peak of the free-energy diagram of consecutive reactions and holds true where the rate is defined in terms of the concentration of the first reactant. The other is represented by the peak showing the maximum free-energy difference, where the free-energy difference is the height of a peak measured from the bottom of any preceding troughs, where the definition of the rate is in terms of the total reactant concentration including intermediates. There are no criteria a priori for selecting one of them. PMID:2597141
The U.S. Geological Survey Peak-Flow File Data Verification Project, 2008–16
Ryberg, Karen R.; Goree, Burl B.; Williams-Sether, Tara; Mason, Robert R.
2017-11-21
Annual peak streamflow (peak flow) at a streamgage is defined as the maximum instantaneous flow in a water year. A water year begins on October 1 and continues through September 30 of the following year; for example, water year 2015 extends from October 1, 2014, through September 30, 2015. The accuracy, characterization, and completeness of the peak streamflow data are critical in determining flood-frequency estimates that are used daily to design water and transportation infrastructure, delineate flood-plain boundaries, and regulate development and utilization of lands throughout the United States and are essential to understanding the implications of climate and land-use change on flooding and high-flow conditions.As of November 14, 2016, peak-flow data existed for 27,240 unique streamgages in the United States and its territories. The data, collectively referred to as the “peak-flow file,” are available as part of the U.S. Geological Survey (USGS) public web interface, the National Water Information System, at https://nwis.waterdata.usgs.gov/usa/nwis/peak. Although the data have been routinely subjected to periodic review by the USGS Office of Surface Water and screening at the USGS Water Science Center level, these data were not reviewed in a national, systematic manner until 2008 when automated scripts were developed and applied to detect potential errors in peak-flow values and their associated dates, gage heights, and peak-flow qualification codes, as well as qualification codes associated with the gage heights. USGS scientists and hydrographers studied the resulting output, accessed basic records and field notes, and corrected observed errors or, more commonly, confirmed existing data as correct.This report summarizes the changes in peak-flow file data at a national level, illustrates their nature and causation, and identifies the streamgages affected by these changes. Specifically, the peak-flow data were compared for streamgages with peak flow measured as of November 19, 2008 (before the automated scripts were widely applied) and on November 14, 2016 (after several rounds of corrections). There were 659,332 peak-flow values in the 2008 dataset and 731,965 peak-flow values in the 2016 dataset. When compared to the 2016 dataset, 5,179 (0.79 percent) peak-flow values had changed; 36,506 (5.54 percent) of the peak-flow qualification codes had changed; 1,938 (0.29 percent) peak-flow dates had changed; 18,599 (2.82 percent) of the peak-flow gage heights had changed; and 20,683 (3.14 percent) of the gage-height qualification codes had changed—most as a direct result of the peak-flow file data verification effort led by USGS personnel. The various types of changes are summarized and mapped in this report. In addition to this report, a corresponding USGS data release is provided to identify changes in peak flows at individual streamgages. The data release and the procedures to access the data release are described in this report.
D.R. Woodruff; F.C. Meinzer; B. Lachenbruch
2008-01-01
Growth and aboveground biomass accumulation follow a common pattern as tree size increases, with productivity peaking when leaf area reaches its maximum and then declining as tree age and size increase. Age- and size-related declines in forest productivity are major considerations in setting the rotational age of commercial forests, and relate to issues of carbon...
Large Footprint LiDAR Data Processing for Ground Detection and Biomass Estimation
NASA Astrophysics Data System (ADS)
Zhuang, Wei
Ground detection in large footprint waveform Light Detection And Ranging (LiDAR) data is important in calculating and estimating downstream products, especially in forestry applications. For example, tree heights are calculated as the difference between the ground peak and first returned signal in a waveform. Forest attributes, such as aboveground biomass, are estimated based on the tree heights. This dissertation investigated new metrics and algorithms for estimating aboveground biomass and extracting ground peak location in large footprint waveform LiDAR data. In the first manuscript, an accurate and computationally efficient algorithm, named Filtering and Clustering Algorithm (FICA), was developed based on a set of multiscale second derivative filters for automatically detecting the ground peak in an waveform from Land, Vegetation and Ice Sensor. Compared to existing ground peak identification algorithms, FICA was tested in different land cover type plots and showed improved accuracy in ground detections of the vegetation plots and similar accuracy in developed area plots. Also, FICA adopted a peak identification strategy rather than following a curve-fitting process, and therefore, exhibited improved efficiency. In the second manuscript, an algorithm was developed specifically for shrub waveforms. The algorithm only partially fitted the shrub canopy reflection and detected the ground peak by investigating the residual signal, which was generated by deducting a Gaussian fitting function from the raw waveform. After the deduction, the overlapping ground peak was identified as the local maximum of the residual signal. In addition, an applicability model was built for determining waveforms where the proposed PCF algorithm should be applied. In the third manuscript, a new set of metrics was developed to increase accuracy in biomass estimation models. The metrics were based on the results of Gaussian decomposition. They incorporated both waveform intensity represented by the area covered by a Gaussian function and its associated heights, which was the centroid of the Gaussian function. By considering signal reflection of different vegetation layers, the developed metrics obtained better estimation accuracy in aboveground biomass when compared to existing metrics. In addition, the new developed metrics showed strong correlation with other forest structural attributes, such as mean Diameter at Breast Height (DBH) and stem density. In sum, the dissertation investigated the various techniques for large footprint waveform LiDAR processing for detecting the ground peak and estimating biomass. The novel techniques developed in this dissertation showed better performance than existing methods or metrics.
Pelvic kinematic method for determining vertical jump height.
Chiu, Loren Z F; Salem, George J
2010-11-01
Sacral marker and pelvis reconstruction methods have been proposed to approximate total body center of mass during relatively low intensity gait and hopping tasks, but not during a maximum effort vertical jumping task. In this study, center of mass displacement was calculated using the pelvic kinematic method and compared with center of mass displacement using the ground-reaction force-impulse method, in experienced athletes (n = 13) performing restricted countermovement vertical jumps. Maximal vertical jumps were performed in a biomechanics laboratory, with data collected using an 8-camera motion analysis system and two force platforms. The pelvis center of mass was reconstructed from retro-reflective markers placed on the pelvis. Jump height was determined from the peak height of the pelvis center of mass minus the standing height. Strong linear relationships were observed between the pelvic kinematic and impulse methods (R² = .86; p < .01). The pelvic kinematic method underestimated jump height versus the impulse method, however, the difference was small (CV = 4.34%). This investigation demonstrates concurrent validity for the pelvic kinematic method to determine vertical jump height.
Alterations of Vertical Jump Mechanics after a Half-Marathon Mountain Running Race
Rousanoglou, Elissavet N.; Noutsos, Konstantinos; Pappas, Achilleas; Bogdanis, Gregory; Vagenas, Georgios; Bayios, Ioannis A.; Boudolos, Konstantinos D.
2016-01-01
The fatiguing effect of long-distance running has been examined in the context of a variety of parameters. However, there is scarcity of data regarding its effect on the vertical jump mechanics. The purpose of this study was to investigate the alterations of countermovement jump (CMJ) mechanics after a half-marathon mountain race. Twenty-seven runners performed CMJs before the race (Pre), immediately after the race (Post 1) and five minutes after Post 1 (Post 2). Instantaneous and ensemble-average analysis focused on jump height and, the maximum peaks and time-to-maximum peaks of: Displacement, vertical force (Fz), anterior-posterior force (Fx), Velocity and Power, in the eccentric (tECC) and concentric (tCON) phase of the jump, respectively. Repeated measures ANOVAs were used for statistical analysis (p ≤ 0.05). The jump height decrease was significant in Post 2 (-7.9%) but not in Post 1 (-4.1%). Fx and Velocity decreased significantly in both Post 1 (only in tECC) and Post 2 (both tECC and tCON). Α timing shift of the Fz peaks (earlier during tECC and later during tCON) and altered relative peak times (only in tECC) were also observed. Ensemble-average analysis revealed several time intervals of significant post-race alterations and a timing shift in the Fz-Velocity loop. An overall trend of lowered post-race jump output and mechanics was characterised by altered jump timing, restricted anterior-posterior movement and altered force-velocity relations. The specificity of mountain running fatigue to eccentric muscle work, appears to be reflected in the different time order of the post-race reductions, with the eccentric phase reductions preceding those of the concentric one. Thus, those who engage in mountain running should particularly consider downhill training to optimise eccentric muscular action. Key points The 4.1% reduction of jump height immediately after the race is not statistically significant The eccentric phase alterations of jump mechanics precede those of the concentric ones. Force-velocity alterations present a timing shift rather than a change in force or velocity magnitude. PMID:27274665
Alterations of Vertical Jump Mechanics after a Half-Marathon Mountain Running Race.
Rousanoglou, Elissavet N; Noutsos, Konstantinos; Pappas, Achilleas; Bogdanis, Gregory; Vagenas, Georgios; Bayios, Ioannis A; Boudolos, Konstantinos D
2016-06-01
The fatiguing effect of long-distance running has been examined in the context of a variety of parameters. However, there is scarcity of data regarding its effect on the vertical jump mechanics. The purpose of this study was to investigate the alterations of countermovement jump (CMJ) mechanics after a half-marathon mountain race. Twenty-seven runners performed CMJs before the race (Pre), immediately after the race (Post 1) and five minutes after Post 1 (Post 2). Instantaneous and ensemble-average analysis focused on jump height and, the maximum peaks and time-to-maximum peaks of: Displacement, vertical force (Fz), anterior-posterior force (Fx), Velocity and Power, in the eccentric (tECC) and concentric (tCON) phase of the jump, respectively. Repeated measures ANOVAs were used for statistical analysis (p ≤ 0.05). The jump height decrease was significant in Post 2 (-7.9%) but not in Post 1 (-4.1%). Fx and Velocity decreased significantly in both Post 1 (only in tECC) and Post 2 (both tECC and tCON). Α timing shift of the Fz peaks (earlier during tECC and later during tCON) and altered relative peak times (only in tECC) were also observed. Ensemble-average analysis revealed several time intervals of significant post-race alterations and a timing shift in the Fz-Velocity loop. An overall trend of lowered post-race jump output and mechanics was characterised by altered jump timing, restricted anterior-posterior movement and altered force-velocity relations. The specificity of mountain running fatigue to eccentric muscle work, appears to be reflected in the different time order of the post-race reductions, with the eccentric phase reductions preceding those of the concentric one. Thus, those who engage in mountain running should particularly consider downhill training to optimise eccentric muscular action. Key pointsThe 4.1% reduction of jump height immediately after the race is not statistically significantThe eccentric phase alterations of jump mechanics precede those of the concentric ones.Force-velocity alterations present a timing shift rather than a change in force or velocity magnitude.
McGrory, Brian J; Ruterbories, James M; Pawar, Vivek D; Thomas, Reginald K; Salehi, Abraham B
2012-01-01
Nitrogen ion implantation of CoCr is reported to produce increased surface hardness and a lower friction surface. Femoral heads with and without ion implantation retrieved from 1997 to 2003 were evaluated for surface roughness (average surface roughness [Ra], mean peak height [Rpm], and maximum distance from peak to valley [Rmax]), nanohardness, and the ion-treated layer thickness. The difference in average Rmax (P = .033) and average Rpm (P = .008) was statistically significant, but there was no correlation between the average or maximum roughness parameters (average surface roughness, Rmax, and Rpm) and time in vivo (P > .05). Overall, nanohardness was greater for the low-friction ion-treated heads (P < .001); and it decreased with increasing time in vivo (P = .01). Ion treatment produces an increased surface hardness, but the advantage of this increased hardness appears to dissipate over time in vivo. Copyright © 2012 Elsevier Inc. All rights reserved.
Dowse, Rebecca A; McGuigan, Mike R; Harrison, Craig
2017-11-01
Dowse, RA, McGuigan, MR, and Harrison, C. Effects of a resistance training intervention on strength, power, and performance in adolescent dancers. J Strength Cond Res XX(X): 000-000, 2017-The aim of this study was to determine whether a 9-week resistance training program could have a significant effect on maximum lower-body strength and power, dynamic balance, and dance performance in adolescent dancers. Twelve competitive adolescent female dancers trained in jazz, ballet, and contemporary were recruited from local dance schools and assigned to a resistance training group (dance experience 9.2 ± 2.4 years; age 14.2 ± 1.9 years; height 155.6 ± 9.1 cm; and mass 48.9 ± 13.8 kg). Anthropometry (height, seated height, mass, and skinfolds), subjective dancing performance, dynamic balance (eyes open [EO] and eyes closed), maximum lower-body strength (isometric midthigh pull), and power (vertical countermovement jump, squat jump, and single-leg countermovement jump) were assessed before and after the 9-week intervention period. Posttesting identified a significant improvement EO overall stability (p = 0.003; effect size [ES] = 0.88), EO anterior-posterior stability (p = 0.003; ES = 0.92), peak force (p < 0.001; ES = 0.61), peak power (p = 0.021; ES = 0.22), and subjective dancing performance (p = 0.008; ES = 0.76). These results were accompanied by a trivial but significant change in mass (p = 0.023; ES = 0.09) that was attributed to growth and no significant change in body fat or the sum of skinfolds. This study demonstrated that resistance training can have a significant effect on dynamic balance, maximum lower-body strength, and power without adversely affecting artistic or esthetic components. The results suggest that incorporating resistance training may enhance strength and power adaptations and manage growth-related changes in adolescent dancers.
Optimization of OT-MACH Filter Generation for Target Recognition
NASA Technical Reports Server (NTRS)
Johnson, Oliver C.; Edens, Weston; Lu, Thomas T.; Chao, Tien-Hsin
2009-01-01
An automatic Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter generator for use in a gray-scale optical correlator (GOC) has been developed for improved target detection at JPL. While the OT-MACH filter has been shown to be an optimal filter for target detection, actually solving for the optimum is too computationally intensive for multiple targets. Instead, an adaptive step gradient descent method was tested to iteratively optimize the three OT-MACH parameters, alpha, beta, and gamma. The feedback for the gradient descent method was a composite of the performance measures, correlation peak height and peak to side lobe ratio. The automated method generated and tested multiple filters in order to approach the optimal filter quicker and more reliably than the current manual method. Initial usage and testing has shown preliminary success at finding an approximation of the optimal filter, in terms of alpha, beta, gamma values. This corresponded to a substantial improvement in detection performance where the true positive rate increased for the same average false positives per image.
NASA Astrophysics Data System (ADS)
Ram Sudarsanam, Tulasi; Su, Shin-Yi; Liu, C. H.; Reinisch, Bodo
In this study, we propose the assimilation of topside in situ electron density data from ROCSAT-1 satellite along with the ionosonde measurements for accurate determination of topside iono-spheric effective scale heights (HT) using -Chapman function. The reconstructed topside elec-tron density profiles using these scale heights exhibit an excellent similitude with Jicamarca Incoherent Scatter Radar (ISR) profiles, and are much better representations than the existing methods of Reinisch-Huang method and/or the empirical IRI-2007 model. The main advan-tage with this method is that it allows the precise determination of the effective scale height (HT) and the topside electron density profiles at a dense network of ionosonde/digisonde sta-tions where no ISR facilities are available. The demonstration of the method is applied by investigating the diurnal, seasonal and solar activity variations of HT over the dip-equatorial station Jicamarca and the mid-latitude station Grahamstown. The diurnal variation of scale heights over Jicamarca consistently exhibits a morning time descent followed by a minimum around 0700-0800 LT and a pronounced maximum at noon during all the seasons of both high and moderate solar activity periods. Further, the scale heights exhibit a secondary maximum during the post-sunset hours of equinoctial and summer months, whereas the post-sunset peak is absent during the winter months. These typical features are further investigated using the topside ion properties obtained by ROCSAT-1 as well as SAMI2 model simulations. The re-sults consistently indicate that the diurnal variation of the effective scale height (HT) does not closely follow the plasma temperature variation and at equatorial latitudes is largely controlled by the vertical ExB drift.
NASA Astrophysics Data System (ADS)
Yu, Tao; Zuo, Xiaomin; Xia, Chunliang; Li, Mingyuan; Huang, Cong; Mao, Tian; Zhang, Xiaoxin; Zhao, Biqiang; Liu, Libo
2017-04-01
A new method for estimating daily averaged peak height of the OH airglow layer from a ground-based meteor radar (MR) and a Fabry-Perot interferometer (FPI) is presented. The first results are derived from 4 year simultaneous measurements of winds by a MR and a FPI at two adjacent stations over center China and are compared with observations from the Thermosphere Ionosphere Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument. The OH airglow peak heights, which are derived by using correlation analysis between winds of the FPI and MR, are found to generally peak at an altitude of 87 km and frequently varied between 80 km and 90 km day to day. In comparison with SABER OH 1.6 μm observations, reasonable similarity of airglow peak heights is found, and rapid day-to-day variations are also pronounced. Lomb-Scargle analysis is used to determine cycles of temporal variations of airglow peak heights, and there are obvious periodic variations both in our airglow peak heights and in the satellite observations. In addition to the annual, semiannual, monthly, and three monthly variations, the shorter time variations, e.g., day-to-day and several days' variations, are also conspicuous. The day-to-day variations of airglow height obviously could reduce observation accuracy and lead to some deviations in FPI measurements. These FPI wind deviations arising from airglow height variations are also estimated to be about 3-5 m/s from 2011 to 2015, with strong positive correlation with airglow peak height variation. More attention should be paid to the wind deviations associated with airglow height variation when using and interpreting winds measured by FPI.
Bazyler, Caleb D; Mizuguchi, Satoshi; Kavanaugh, Ashley A; McMahon, John J; Comfort, Paul; Stone, Michael H
2018-06-21
To determine if jumping-performance changes during a peaking phase differed among returners and new players on a female collegiate volleyball team and to determine which variables best explained the variation in performance changes. Fourteen volleyball players were divided into 2 groups-returners (n = 7) and new players (n = 7)-who completed a 5-wk peaking phase prior to conference championships. Players were tested at baseline before the preseason on measures of the vastus lateralis cross-sectional area using ultrasonography, estimated back-squat 1-repetition maximum, countermovement jump height (JH), and relative peak power on a force platform. Jumping performance, rating of perceived exertion training load, and sets played were recorded weekly during the peaking phase. There were moderate to very large (P < .01, Glass Δ = 1.74) and trivial to very large (P = .07, Δ = 1.09) differences in JH and relative peak power changes in favor of returners over new players, respectively, during the peaking phase. Irrespective of group, 7 of 14 players achieved peak JH 2 wk after the initial overreach. The number of sets played (r = .78, P < .01) and the athlete's preseason relative 1-repetition maximum (r = .54, P = .05) were the strongest correlates of JH changes during the peaking phase. Returners achieved greater improvements in jumping performance during the peaking phase compared with new players, which may be explained by the returners' greater relative maximal strength, time spent competing, and training experience. Thus, volleyball and strength coaches should consider these factors when prescribing training during a peaking phase to ensure their players are prepared for important competitions.
Cossio-Bolaños, Marco; Lee-Andruske, Cynthia; de Arruda, Miguel; Luarte-Rocha, Cristian; Almonacid-Fierro, Alejandro; Gómez-Campos, Rossana
2018-03-02
Maintaining and building healthy bones during the lifetime requires a complicated interaction between a number of physiological and lifestyle factors. Our goal of this study was to analyze the association between hand grip strength and the maximum peak expiratory flow with bone mineral density and content in adolescent students. The research team studied 1427 adolescent students of both sexes (750 males and 677 females) between the ages of 11.0 and 18.9 years in the Maule Region of Talca (Chile). Weight, standing height, sitting height, hand grip strength (HGS), and maximum peak expiratory flow (PEF) were measured. Furthermore, bone mineral density (BMD) and total body bone mineral content (BMC) were determined by using the Dual-Energy X-Ray Absorptiometry (DXA). Hand grip strength and PEF were categorized in tertiles (lowest, middle, and highest). Linear regression was performed in steps to analyze the relationship between the variables. Differences between categories were determined through ANOVA. In males, the hand grip strength explained 18-19% of the BMD and 20-23% of the BMC. For the females, the percentage of variation occurred between 12 and 13% of the BMD and 17-18% of the BMC. The variation of PEF for the males was observed as 33% of the BMD and 36% of the BMC. For the females, both the BMD and BMC showed a variation of 19%. The HGS and PEF were divided into three categories (lowest, middle, and highest). In both cases, significant differences occurred in bone density health between the three categories. In conclusion, the HGS and the PEF related positively to the bone density health of both sexes of adolescent students. The adolescents with poor values for hand grip strength and expiratory flow showed reduced values of BMD and BMC for the total body. Furthermore, the PEF had a greater influence on bone density health with respect to the HGS of the adolescents of both sexes.
NASA Technical Reports Server (NTRS)
Burrage, M. D.; Abreu, V. J.; Fesen, C. G.
1990-01-01
Atmosphere Explorer E (AE-E) measurements of the O(1D) 6300-A emission in the nighttime equatorial thermosphere are used to infer the height of the F2 layer peak as a function of latitude and local time. The investigation is conducted both for northern hemisphere winter solstice and for spring equinox, under solar maximum conditions. The layer heights are used to derive magnetic meridional components of the transequatorial neutral wind, in conjunction with the MSIS-86 model and previous Jicamarca incoherent scatter measurements of the zonal electric field. The AE-E wind estimates indicate a predominant summer to winter flow for the winter solstice case. Comparisons are made with the empirical horizontal wind model HWM87 and with winds generated by the thermospheric general circulation model. The model predictions and experimental results are generally in good agreement, confirming the applicability of visible airglow data to studies of the global neutral wind pattern.
Status of the Topside Vary-Chap Ionospheric Model
NASA Astrophysics Data System (ADS)
Reinisch, Bodo; Nsumei, Patrick; Huang, Xueqin; Bilitza, Dieter
Status of the Topside Vary-Chap Ionospheric Model The general alpha-Chapman function for a multi-constituent gas which includes a continuously varying scale height and was therefore dubbed the Vary-Chap function, can present the topside electron density profiles in analytical form. The Vary-Chap profile is defined by the scale height function H(h) and the height and density of the F2 layer peak. By expressing 80,000 ISIS-2 measured topside density profiles as Vary-Chap functions we derived 80,000 scale height functions, which form the basis for the topside density profile modeling. The normalized scale height profiles Hn = H(h)/Hm were grouped according to season, MLAT, and MLT for each 50 km height bin from 200 km to 1400 km, and the median, lower, and upper quartiles for each bin were calculated. Hm is the scale height at the F2 layer peak. The resulting Hn functions are modeled in terms of hyperbolic tangent functions using 5 parameters that are determined by multivariate least squares, including the transition height hT where the scale height gradient has a maximum. These normalized scale height functions, representing the model of the topside electron density profiles from hmF2 to 1,400 km altitude, are independent of hmF2 and NmF2 and can therefore be directly used for the topside Ne profile in IRI. Similarly, this model can extend measured bottomside profiles to the topside, replacing the simple alpha-Chapman function with constant scale height that is currently used for construction of the topside profile in the Digisondes / ARTIST of the Global Ionospheric Radio Observatory (GIRO). It turns out that Hm(top) calculated from the topside profiles is generally several times larger than Hm(bot) derived from the bottomside profiles. This follows necessarily from the difference in the definition of the scale height functions for the topside and bottomside profiles. The diurnal variations of the ratio Hm(top) / Hm(bot) has been determined for different latitudes which makes it now possible to specify the topside profile for any given bottomside profile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Jesse D.; Chang, Grace; Jones, Craig
The numerical model, SWAN (Simulating WAves Nearshore) , was used to simulate wave conditions in Kaneohe Bay, HI in order to determine the effects of wave energy converter ( WEC ) devices on the propagation of waves into shore. A nested SWAN model was validated then used to evaluate a range of initial wave conditions: significant wave heights (H s ) , peak periods (T p ) , and mean wave directions ( MWD) . Differences between wave height s in the presence and absence of WEC device s were assessed at locations in shore of the WEC array. Themore » maximum decrease in wave height due to the WEC s was predicted to be approximately 6% at 5 m and 10 m water depths. Th is occurred for model initiation parameters of H s = 3 m (for 5 m water depth) or 4 m (10 m water depth) , T p = 10 s, and MWD = 330deg . Subsequently, bottom orbital velocities were found to decrease by about 6%.« less
NASA Astrophysics Data System (ADS)
Hernández-Pajares, Manuel; Garcia-Fernández, Miquel; Rius, Antonio; Notarpietro, Riccardo; von Engeln, Axel; Olivares-Pulido, Germán.; Aragón-Àngel, Àngela; García-Rigo, Alberto
2017-08-01
The new radio-occultation (RO) instrument on board the future EUMETSAT Polar System-Second Generation (EPS-SG) satellites, flying at a height of 820 km, is primarily focusing on neutral atmospheric profiling. It will also provide an opportunity for RO ionospheric sounding, but only below impact heights of 500 km, in order to guarantee a full data gathering of the neutral part. This will leave a gap of 320 km, which impedes the application of the direct inversion techniques to retrieve the electron density profile. To overcome this challenge, we have looked for new ways (accurate and simple) of extrapolating the electron density (also applicable to other low-Earth orbiting, LEO, missions like CHAMP): a new Vary-Chap Extrapolation Technique (VCET). VCET is based on the scale height behavior, linearly dependent on the altitude above hmF2. This allows extrapolating the electron density profile for impact heights above its peak height (this is the case for EPS-SG), up to the satellite orbital height. VCET has been assessed with more than 3700 complete electron density profiles obtained in four representative scenarios of the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) in the United States and the Formosa Satellite Mission 3 (FORMOSAT-3) in Taiwan, in solar maximum and minimum conditions, and geomagnetically disturbed conditions, by applying an updated Improved Abel Transform Inversion technique to dual-frequency GPS measurements. It is shown that VCET performs much better than other classical Chapman models, with 60% of occultations showing relative extrapolation errors below 20%, in contrast with conventional Chapman model extrapolation approaches with 10% or less of the profiles with relative error below 20%.
Biomechanical analysis of the jump shot in basketball.
Struzik, Artur; Pietraszewski, Bogdan; Zawadzki, Jerzy
2014-09-29
Basketball players usually score points during the game using the jump shot. For this reason, the jump shot is considered to be the most important element of technique in basketball and requires a high level of performance. The aim of this study was to compare the biomechanical characteristics of the lower limbs during a jump shot without the ball and a countermovement jump without an arm swing. The differences between variables provide information about the potential that an athlete can utilise during a game when performing a jump shot. The study was conducted among 20 second-league basketball players by means of a Kistler force plate and the BTS SMART system for motion analysis. The variables measured included the take-off time, mean power, peak power, relative mean power, jump height, maximum landing force and calculated impact ratio. Surprisingly, more advantageous variables were found for the jump shot. This finding suggests a very high performance level in the jump shot in the studied group and a maximum utilisation of their motor abilities. Both types of jumps were characterised by high mean and peak power values and average heights. The high forces at landing, which result in considerable impact ratios, may have prompted the studied group to land softly. Use of the countermovement jump without an arm swing is recommended to assess and predict the progression of player's jumping ability.
NASA Astrophysics Data System (ADS)
Cheriton, O. M.; Storlazzi, C. D.; Rosenberger, K. J.
2016-02-01
Low-lying, reef-fringed islands are susceptible to sea-level rise and often subjected to overwash and flooding during large wave events. To quantify wave dynamics and wave-driven water levels on fringing coral reefs, wave gauges and a current meter were deployed for 5 months across two shore-normal transects on Roi-Namur, an atoll island in the Republic of the Marshall Islands. These observations captured two large wave events that had maximum wave heights greater than 6 m and peak periods of 16 s over the fore reef. The larger event coincided with a peak spring tide, leading to energetic, highly-skewed infragravity (0.04-0.004 Hz) and very low frequency (0.004-0.001 Hz) waves at the shoreline, which reached heights of 1.0 and 0.7 m, respectively. Water surface elevations, combined with wave runup, exceeded 3.7 m at the innermost reef flat adjacent to the toe of the beach, resulting in flooding of inland areas. This overwash occurred during a 3-hr time window that coincided with high tide and maximum low-frequency reef flat wave heights. The relatively low-relief characteristics of this narrow reef flat may further drive shoreline amplification of low-frequency waves due to resonance modes. These results demonstrate how the coupling of high offshore water levels with low-frequency reef flat wave energetics can lead to large impacts along atoll and fringing reef-lined shorelines, such as island overwash. These observations lend support to the hypothesis that predicted higher sea levels will lead to more frequent occurrences of both extreme shoreline runup and island overwash, threatening the sustainability of these islands.
NASA Astrophysics Data System (ADS)
Cheriton, Olivia M.; Storlazzi, Curt D.; Rosenberger, Kurt J.
2016-05-01
Many low-lying tropical islands are susceptible to sea level rise and often subjected to overwash and flooding during large wave events. To quantify wave dynamics and wave-driven water levels on fringing coral reefs, a 5 month deployment of wave gauges and a current meter was conducted across two shore-normal transects on Roi-Namur Island in the Republic of the Marshall Islands. These observations captured two large wave events that had waves with maximum heights greater than 6 m with peak periods of 16 s over the fore reef. The larger event coincided with a peak spring tide, leading to energetic, highly skewed infragravity (0.04-0.004 Hz) and very low frequency (0.004-0.001 Hz) waves at the shoreline, which reached heights of 1.0 and 0.7 m, respectively. Water surface elevations, combined with wave runup, reached 3.7 m above the reef bed at the innermost reef flat adjacent to the toe of the beach, resulting in flooding of inland areas. This overwash occurred during a 3 h time window that coincided with high tide and maximum low-frequency reef flat wave heights. The relatively low-relief characteristics of this narrow reef flat may further drive shoreline amplification of low-frequency waves due to resonance modes. These results (1) demonstrate how the coupling of high offshore water levels with low-frequency reef flat wave energetics can lead to large impacts along fringing reef-lined shorelines, such as island overwash, and (2) lend support to the hypothesis that predicted higher sea levels will lead to more frequent occurrences of these extreme events, negatively impacting coastal resources and infrastructure.
Cheriton, Olivia; Storlazzi, Curt; Rosenberger, Kurt
2016-01-01
Many low-lying tropical islands are susceptible to sea level rise and often subjected to overwash and flooding during large wave events. To quantify wave dynamics and wave-driven water levels on fringing coral reefs, a 5 month deployment of wave gauges and a current meter was conducted across two shore-normal transects on Roi-Namur Island in the Republic of the Marshall Islands. These observations captured two large wave events that had waves with maximum heights greater than 6 m with peak periods of 16 s over the fore reef. The larger event coincided with a peak spring tide, leading to energetic, highly skewed infragravity (0.04–0.004 Hz) and very low frequency (0.004–0.001 Hz) waves at the shoreline, which reached heights of 1.0 and 0.7 m, respectively. Water surface elevations, combined with wave runup, reached 3.7 m above the reef bed at the innermost reef flat adjacent to the toe of the beach, resulting in flooding of inland areas. This overwash occurred during a 3 h time window that coincided with high tide and maximum low-frequency reef flat wave heights. The relatively low-relief characteristics of this narrow reef flat may further drive shoreline amplification of low-frequency waves due to resonance modes. These results (1) demonstrate how the coupling of high offshore water levels with low-frequency reef flat wave energetics can lead to large impacts along fringing reef-lined shorelines, such as island overwash, and (2) lend support to the hypothesis that predicted higher sea levels will lead to more frequent occurrences of these extreme events, negatively impacting coastal resources and infrastructure.
NASA Astrophysics Data System (ADS)
Iwasaki, Yuma; Kusne, A. Gilad; Takeuchi, Ichiro
2017-12-01
Machine learning techniques have proven invaluable to manage the ever growing volume of materials research data produced as developments continue in high-throughput materials simulation, fabrication, and characterization. In particular, machine learning techniques have been demonstrated for their utility in rapidly and automatically identifying potential composition-phase maps from structural data characterization of composition spread libraries, enabling rapid materials fabrication-structure-property analysis and functional materials discovery. A key issue in development of an automated phase-diagram determination method is the choice of dissimilarity measure, or kernel function. The desired measure reduces the impact of confounding structural data issues on analysis performance. The issues include peak height changes and peak shifting due to lattice constant change as a function of composition. In this work, we investigate the choice of dissimilarity measure in X-ray diffraction-based structure analysis and the choice of measure's performance impact on automatic composition-phase map determination. Nine dissimilarity measures are investigated for their impact in analyzing X-ray diffraction patterns for a Fe-Co-Ni ternary alloy composition spread. The cosine, Pearson correlation coefficient, and Jensen-Shannon divergence measures are shown to provide the best performance in the presence of peak height change and peak shifting (due to lattice constant change) when the magnitude of peak shifting is unknown. With prior knowledge of the maximum peak shifting, dynamic time warping in a normalized constrained mode provides the best performance. This work also serves to demonstrate a strategy for rapid analysis of a large number of X-ray diffraction patterns in general beyond data from combinatorial libraries.
NASA Astrophysics Data System (ADS)
Figueiredo, Cosme Alexandre O. B.; Buriti, Ricardo A.; Paulino, Igo; Meriwether, John W.; Makela, Jonathan J.; Batista, Inez S.; Barros, Diego; Medeiros, Amauri F.
2017-08-01
The midnight temperature maximum (MTM) has been observed in the lower thermosphere by two Fabry-Pérot interferometers (FPIs) at São João do Cariri (7.4° S, 36.5° W) and Cajazeiras (6.9° S, 38.6° W) during 2011, when the solar activity was moderate and the solar flux was between 90 and 155 SFU (1 SFU = 10-22 W m-2 Hz-1). The MTM is studied in detail using measurements of neutral temperature, wind and airglow relative intensity of OI630.0 nm (referred to as OI6300), and ionospheric parameters, such as virtual height (h'F), the peak height of the F2 region (hmF2), and critical frequency of the F region (foF2), which were measured by a Digisonde instrument (DPS) at Eusébio (3.9° S, 38.4° W; geomagnetic coordinates 7.31° S, 32.40° E for 2011). The MTM peak was observed mostly along the year, except in May, June, and August. The amplitudes of the MTM varied from 64 ± 46 K in April up to 144 ± 48 K in October. The monthly temperature average showed a phase shift in the MTM peak around 0.25 h in September to 2.5 h in December before midnight. On the other hand, in February, March, and April the MTM peak occurred around midnight. International Reference Ionosphere 2012 (IRI-2012) model was compared to the neutral temperature observations and the IRI-2012 model failed in reproducing the MTM peaks. The zonal component of neutral wind flowed eastward the whole night; regardless of the month and the magnitude of the zonal wind, it was typically within the range of 50 to 150 m s-1 during the early evening. The meridional component of the neutral wind changed its direction over the months: from November to February, the meridional wind in the early evening flowed equatorward with a magnitude between 25 and 100 m s-1; in contrast, during the winter months, the meridional wind flowed to the pole within the range of 0 to -50 m s-1. Our results indicate that the reversal (changes in equator to poleward flow) or abatement of the meridional winds is an important factor in the MTM generation. From February to April and from September to December, the h'F and the hmF2 showed an increase around 18:00-20:00 LT within a range between 300 and 550 km and reached a minimal height of about 200-300 km close to midnight; then the layer rose again by about 40 km or, sometimes, remained at constant height. Furthermore, during the winter months, the h'F and hmF2 showed a different behavior; the signature of the pre-reversal enhancement did not appear as in other months and the heights did not exceed 260 and 350 km. Our observation indicated that the midnight collapse of the F region was a consequence of the MTM in the meridional wind that was reflected in the height of the F region. Lastly, the behavior of the OI6300 showed, from February to April and from September to December, an increase in intensity around midnight or 1 h before, which was associated with the MTM, whereas, from May to August, the relative intensity was more intense in the early evening and decayed during the night.
Qu, Guohui; Wen, Mingzhang; Guo, Jixun
2003-05-01
The calorific value of plants is dependent on their biological characteristics and energy-containing materials. The allocation of calorific value in different organs of Aneurolepidium chinese, Calamagrostic epigejos, Puccinellia tenuiflora and Chloris virgata was inflorescence > leaf > stem > dead standing. The seasonal dynamics of standing crop energy of aboveground part of four plant populations showed single-peak curve, and the energy production was Aneurolepidium chinense > Calamagrostic epigejos > Chloris virgata > Puccinellia tenuiflora. Energy increasing rate showed double-peak curve, with the first peak at heading stage and the second peak at maturing stage of seeds. Energy increasing rate was negative at the final stage of growth. The horizontal distribution of energy of aboveground part was that the allocation ratio of different organs at different growth stages was different. There existed a similar trend for vertical distribution of energy among four plant populations, i.e., was the vertical distribution of energy of aboveground part showed a tower shape, with the maximum value in 10-30 cm height. The vertical distribution of energy of underground part showed an inverted tower shape from soil surface to deeper layer, with the maximum value in 0-10 cm depth. The standing crop energy of underground part was about 3-4 times than that of aboveground part.
First-principles study on electron transport properties of carbon-silicon mixed chains
NASA Astrophysics Data System (ADS)
Hu, Wei; Zhou, Qinghua; Liang, Yan; Liu, Wenhua; Wang, Tao; Wan, Haiqing
2018-03-01
In this paper, the transport properties of carbon-silicon mixed chains are studied by using the first-principles. We studied five atomic chain models. In these studies, we found that the equilibrium conductances of atomic chains appear to oscillate, the maximum conductance and the minimum conductance are more than twice the difference. Their I-V curves are linear and show the behavior of metal resistance, M5 system and M2 system current ratio is the largest in 0.9 V, which is 3.3, showing a good molecular switch behavior. In the case of bias, while the bias voltage increases, the transmission peaks move from the Fermi level. The resonance transmission peak height is reduced near the Fermi level. In the higher energy range, a large resonance transmission peak reappears, there is still no energy cut-off range.
NASA Technical Reports Server (NTRS)
Koschny, D.; Gritsevich, M.; Barentsen, G.
2011-01-01
Different authors have produced models for the physical properties of meteoroids based on the shape of a meteor's light curve, typically from short observing campaigns. We here analyze the height profiles and light curves of approx.200 double-station meteors from the Leonids and Perseids using data from the Virtual Meteor Observatory, to demonstrate that with this web-based meteor database it is possible to analyze very large datasets from different authors in a consistent way. We compute the average heights for begin point, maximum luminosity, and end heights for Perseids and Leonids. We also compute the skew of the light curve, usually called the F-parameter. The results compare well with other author's data. We display the average light curve in a novel way to assess the light curve shape in addition to using the F-parameter. While the Perseids show a peaked light curve, the average Leonid light curve has a more flat peak. This indicates that the particle distribution of Leonid meteors can be described by a Gaussian distribution; the Perseids can be described with a power law. The skew for Leonids is smaller than for Perseids, indicating that the Leonids are more fragile than the Perseids.
NASA Astrophysics Data System (ADS)
Visheratin, K. N.
2016-01-01
We present the results of the analysis of the phase relationships between the quasi-decadal variations (QDVs) (in the range from 8 to 13 years) in the total ozone content (TOC) at the Arosa station for 1932-2012 and a number of meteorological parameters: monthly mean values of temperature, meridional and zonal components of wind velocity, and geopotential heights for isobaric surfaces in the layer of 10-925 hPa over the Arosa station using the Fourier methods and composite and cross-wavelet analysis. It has been shown that the phase relationships of the QDVs in the TOC and meteorological parameters with an 11-year cycle of solar activity change in time and height; starting with cycle 24 of solar activity (2008-2010), the variations in the TOC and a number of meteorological parameters occur in almost counter phase with the variations in solar activity. The periods of the maximum growth rate of the temperature at isobaric surfaces 50-100 hPa nearly correspond to the TOC's maximum periods, and the periods of the maximum temperature correspond the periods of the decrease of the peak TOC rate. The highest correlation coefficients between the meridional wind velocity and temperature are observed at 50 hPa at positive and negative delays of ~27 months. The times of the maxima (minima) of the QDVs in the meridional wind velocity nearly correspond to the periods of the maximum amplification (attenuation) rate of the temperature of the QDVs. The QDVs in the geopotential heights of isobaric surfaces fall behind the variations in the TOC by an average of 1.5 years everywhere except in the lower troposphere. In general, the periods of variations in the TOC and meteorological parameters in the range of 8-13 years are smaller than the period of variations in the level of solar activity.
Quadricep and hamstring activation during drop jumps with changes in drop height.
Peng, Hsien-Te; Kernozek, Thomas W; Song, Chen-Yi
2011-08-01
Compare the muscle activation patterns of the quadricep-hamstring during drop jumps with increasing demands of drop heights. Observational. University biomechanics laboratory. Fifteen male and eight female college physical education students. Electromyographic activity of the rectus femoris (RF) and biceps femoris (BF) during the landing and takeoff phase of drop jumps from 20 to 60-cm heights. The ground contact time, vertical ground reaction force (vGRF), knee flexion angle during ground contact, and jump height after takeoff were also analyzed. The activation of RF was higher in the drop jump from 60-cm than that from 20- and 30-cm (comparing 107.0 ± 45.9 to 82.3 ± 30.8 and 88.9 ± 38.9 %MVIC, P<.05) during the landing phase. Activation of BF remained similar across all drop heights. Drop jump from 60-cm resulted in greater contact time during takeoff phase and peak vGRF, and resulted in greater maximum knee flexion but straighter knee at ground contact than from lower drop heights. At drop height of 60-cm, the altered knee muscular activation and movement patterns may diminish the effectiveness of plyometric training and increase the potential injury risk of knee. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ren, Luchuan
2015-04-01
A Global Sensitivity Analysis Method on Maximum Tsunami Wave Heights to Potential Seismic Source Parameters Luchuan Ren, Jianwei Tian, Mingli Hong Institute of Disaster Prevention, Sanhe, Heibei Province, 065201, P.R. China It is obvious that the uncertainties of the maximum tsunami wave heights in offshore area are partly from uncertainties of the potential seismic tsunami source parameters. A global sensitivity analysis method on the maximum tsunami wave heights to the potential seismic source parameters is put forward in this paper. The tsunami wave heights are calculated by COMCOT ( the Cornell Multi-grid Coupled Tsunami Model), on the assumption that an earthquake with magnitude MW8.0 occurred at the northern fault segment along the Manila Trench and triggered a tsunami in the South China Sea. We select the simulated results of maximum tsunami wave heights at specific sites in offshore area to verify the validity of the method proposed in this paper. For ranking importance order of the uncertainties of potential seismic source parameters (the earthquake's magnitude, the focal depth, the strike angle, dip angle and slip angle etc..) in generating uncertainties of the maximum tsunami wave heights, we chose Morris method to analyze the sensitivity of the maximum tsunami wave heights to the aforementioned parameters, and give several qualitative descriptions of nonlinear or linear effects of them on the maximum tsunami wave heights. We quantitatively analyze the sensitivity of the maximum tsunami wave heights to these parameters and the interaction effects among these parameters on the maximum tsunami wave heights by means of the extended FAST method afterward. The results shows that the maximum tsunami wave heights are very sensitive to the earthquake magnitude, followed successively by the epicenter location, the strike angle and dip angle, the interactions effect between the sensitive parameters are very obvious at specific site in offshore area, and there exist differences in importance order in generating uncertainties of the maximum tsunami wave heights for same group parameters at different specific sites in offshore area. These results are helpful to deeply understand the relationship between the tsunami wave heights and the seismic tsunami source parameters. Keywords: Global sensitivity analysis; Tsunami wave height; Potential seismic tsunami source parameter; Morris method; Extended FAST method
Davis, Joe M
2011-10-28
General equations are derived for the distribution of minimum resolution between two chromatographic peaks, when peak heights in a multi-component chromatogram follow a continuous statistical distribution. The derivation draws on published theory by relating the area under the distribution of minimum resolution to the area under the distribution of the ratio of peak heights, which in turn is derived from the peak-height distribution. Two procedures are proposed for the equations' numerical solution. The procedures are applied to the log-normal distribution, which recently was reported to describe the distribution of component concentrations in three complex natural mixtures. For published statistical parameters of these mixtures, the distribution of minimum resolution is similar to that for the commonly assumed exponential distribution of peak heights used in statistical-overlap theory. However, these two distributions of minimum resolution can differ markedly, depending on the scale parameter of the log-normal distribution. Theory for the computation of the distribution of minimum resolution is extended to other cases of interest. With the log-normal distribution of peak heights as an example, the distribution of minimum resolution is computed when small peaks are lost due to noise or detection limits, and when the height of at least one peak is less than an upper limit. The distribution of minimum resolution shifts slightly to lower resolution values in the first case and to markedly larger resolution values in the second one. The theory and numerical procedure are confirmed by Monte Carlo simulation. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rosenfeld, D.; Hu, J.; Zhang, P.; Snyder, J.; Orville, R. E.; Ryzhkov, A.; Zrnic, D.; Williams, E.; Zhang, R.
2017-12-01
A methodology to track the evolution of the hydrometeors and electrification of convective cells is presented and applied to various convective clouds from warm showers to super-cells. The input radar data are obtained from the polarimetric NEXRAD weather radars, The information on cloud electrification is obtained from Lightning Mapping Arrays (LMA). The development time and height of the hydrometeors and electrification requires tracking the evolution and lifecycle of convective cells. A new methodology for Multi-Cell Identification and Tracking (MCIT) is presented in this study. This new algorithm is applied to time series of radar volume scans. A cell is defined as a local maximum in the Vertical Integrated Liquid (VIL), and the echo area is divided between cells using a watershed algorithm. The tracking of the cells between radar volume scans is done by identifying the two cells in consecutive radar scans that have maximum common VIL. The vertical profile of the polarimetric radar properties are used for constructing the time-height cross section of the cell properties around the peak reflectivity as a function of height. The LMA sources that occur within the cell area are integrated as a function of height as well for each time step, as determined by the radar volume scans. The result of the tracking can provide insights to the evolution of storms, hydrometer types, precipitation initiation and cloud electrification under different thermodynamic, aerosol and geographic conditions. The details of the MCIT algorithm, its products and their performance for different types of storm are described in this poster.
On the maximum-entropy/autoregressive modeling of time series
NASA Technical Reports Server (NTRS)
Chao, B. F.
1984-01-01
The autoregressive (AR) model of a random process is interpreted in the light of the Prony's relation which relates a complex conjugate pair of poles of the AR process in the z-plane (or the z domain) on the one hand, to the complex frequency of one complex harmonic function in the time domain on the other. Thus the AR model of a time series is one that models the time series as a linear combination of complex harmonic functions, which include pure sinusoids and real exponentials as special cases. An AR model is completely determined by its z-domain pole configuration. The maximum-entropy/autogressive (ME/AR) spectrum, defined on the unit circle of the z-plane (or the frequency domain), is nothing but a convenient, but ambiguous visual representation. It is asserted that the position and shape of a spectral peak is determined by the corresponding complex frequency, and the height of the spectral peak contains little information about the complex amplitude of the complex harmonic functions.
Latitude character and evolution of Gnevyshev gap
NASA Astrophysics Data System (ADS)
Pandey, K. K.; Hiremath, K. M.; Yellaiah, G.
2017-06-01
The time interval, between two highest peaks of the sunspot maximum, during which activity energy substantially absorbed is called Gnevyshev gap. In this study we focus on mysterious evolution of the Gnevyshev gap by analyzing and comparing the integrated (over the whole Sun) characteristics of magnetic field strength of sunspot groups, soft x-ray flares, filaments or prominences and polar faculae. The time latitude distribution of these solar activities from photosphere to coronal height, for the low (≤50°) and high (≥50°) latitudes, shows the way Gnevyshev gap is evolved. The presence of double peak structure is noticed in high latitude (≥50°) activity. During activity maximum the depression (or valley) appearing, in different activity processes, probably due to shifting, spreading, and transfer of energy from higher to lower latitudes with the progress of solar cycle. The morphology of successive lower latitude zones, considering it as a wave pulse, appears to be modified/scattered, by certain degree due to shifting of magnetic energy to empower higher or lower latitudes.
NASA Astrophysics Data System (ADS)
Siahpolo, Navid; Gerami, Mohsen; Vahdani, Reza
2016-09-01
Evaluating the capability of elastic Load Patterns (LPs) including seismic codes and modified LPs such as Method of Modal Combination (MMC) and Upper Bound Pushover Analysis (UBPA) in estimating inelastic demands of non deteriorating steel moment frames is the main objective of this study. The Static Nonlinear Procedure (NSP) is implemented and the results of NSP are compared with Nonlinear Time History Analysis (NTHA). The focus is on the effects of near-fault pulselike ground motions. The primary demands of interest are the maximum floor displacement, the maximum story drift angle over the height, the maximum global ductility, the maximum inter-story ductility and the capacity curves. Five types of LPs are selected and the inelastic demands are calculated under four levels of inter-story target ductility ( μ t) using OpenSees software. The results show that the increase in μ t coincides with the migration of the peak demands over the height from the top to the bottom stories. Therefore, all LPs estimate the story lateral displacement accurately at the lower stories. The results are almost independent of the number of stories. While, the inter-story drift angle (IDR) obtained from MMC method has the most appropriate accuracy among the other LPs. Although, the accuracy of this method decreases with increasing μ t so that with increasing number of stories, IDR is smaller or greater than the values resulted from NTHA depending on the position of captured results. In addition, increasing μ t decreases the accuracy of all LPs in determination of critical story position. In this case, the MMC method has the best coincidence with distribution of inter-story ductility over the height.
Effect of Surface Roughness on Characteristics of Spherical Shock Waves
NASA Technical Reports Server (NTRS)
Huber, Paul W.; McFarland, Donald R.
1959-01-01
Measurements of peak overpressure and Mach stem height were made at four burst heights. Data were obtained with instrumentation capable of directly observing the variation of shock wave movement with time. Good similarity of free air shock peak overpressure with larger scale data was found to exist. The net effect of surface roughness on shock peak overpressures slightly. Surface roughness delayed the Mach stem formation at the greatest charge height and lowered the growth at all burst heights. A similarity parameter was found which approximately correlates the triple point path at different burst heights.
NASA Technical Reports Server (NTRS)
Liskovich, Diana; Simard, Marc
2011-01-01
Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.
Sugiura, Yoshito; Hatanaka, Yasuhiko; Arai, Tomoaki; Sakurai, Hiroaki; Kanada, Yoshikiyo
2016-04-01
We aimed to investigate whether a linear regression formula based on the relationship between joint torque and angular velocity measured using a high-speed video camera and image measurement software is effective for estimating 1 repetition maximum (1RM) and isometric peak torque in knee extension. Subjects comprised 20 healthy men (mean ± SD; age, 27.4 ± 4.9 years; height, 170.3 ± 4.4 cm; and body weight, 66.1 ± 10.9 kg). The exercise load ranged from 40% to 150% 1RM. Peak angular velocity (PAV) and peak torque were used to estimate 1RM and isometric peak torque. To elucidate the relationship between force and velocity in knee extension, the relationship between the relative proportion of 1RM (% 1RM) and PAV was examined using simple regression analysis. The concordance rate between the estimated value and actual measurement of 1RM and isometric peak torque was examined using intraclass correlation coefficients (ICCs). Reliability of the regression line of PAV and % 1RM was 0.95. The concordance rate between the actual measurement and estimated value of 1RM resulted in an ICC(2,1) of 0.93 and that of isometric peak torque had an ICC(2,1) of 0.87 and 0.86 for 6 and 3 levels of load, respectively. Our method for estimating 1RM was effective for decreasing the measurement time and reducing patients' burden. Additionally, isometric peak torque can be estimated using 3 levels of load, as we obtained the same results as those reported previously. We plan to expand the range of subjects and examine the generalizability of our results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter, Justin R; May, Peter T; Potts, Rodney J
Statistics of radar-retrievals of precipitation are presented. A K-means clustering algorithm is applied to an historical record of radiosonde measurements which identified three major synoptic regimes; a dry, stable regime with mainly westerly winds prevalent during winter, a moist south easterly trade wind regime and a moist northerly regime both prevalent during summer. These are referred to as westerly, trade wind and northerly regimes, respectively. Cell statistics are calculated using an objective cell identification and tracking methodology on data obtained from a nearby S-band radar. Cell statistics are investigated for the entire radar observational period and also during sub-periods correspondingmore » to the three major synoptic regimes. The statistics investigated are cell initiation location, area, rainrate, volume, height, height of the maximum reflectivity, volume greater than 40 dBZ and storm speed and direction. Cells are found predominantly along the elevated topography. The cell statistics reveal that storms which form in the dry, stable westerly regime are of comparable size to the deep cells which form in the northerly regime, larger than those in the trade regime and, furthermore, have the largest rainrate. However, they occur less frequently and have shorter lifetimes than cells in the other regimes. Diurnal statistics of precipitation area and rainrate exhibit early morning and mid afternoon peaks, although the areal coverage lags the rainrate by several hours indicative of a transition from convective to stratiform precipitation. The probability distributions of cell area, rainrate, volume, height and height of the maximum re ectivity are found to follow lognormal distributions.« less
The Acute Effects of Heavy Deadlifts on Vertical Jump Performance in Men
Arias, Jerry C.; Coburn, Jared W.; Brown, Lee E.; Galpin, Andrew J.
2016-01-01
The purpose of this study was to investigate the effects of deadlifts as a postactivation potentiation stimulus on vertical jump performance. Fifteen men (age, 23.9 ± 4.2 years; height, 176.3 ± 8.6 cm; mass, 76.1 ± 16.3 kg) participated in the study. Participants visited the lab for three sessions, each separated by at least 48 h. One repetition maximum (1RM) in the deadlift was measured during the first visit. For Visit 2, participants performed one of two experimental sessions: a deadlift session or a control session. Participants performed a single maximal vertical jump (VJ; counter movement jump without an arm swing), then either performed five repetitions of the deadlift using 85% 1RM (deadlift session) or were told to stand still for ten seconds (control). Following either condition, participants performed single VJ at 15 s, 2, 4, 6, 8, 10, 12, 14, and 16 min post condition. Peak VJ height and peak ground reaction forces (pGRF) were measured using a force plate. For Visit 3, whatever condition was not administered at Visit 2 was performed. The results showed that VJ height was significantly lower 15 s following deadlifting (36.9 ± 5.1 cm) compared to the control condition (40.1 ± 4.6 cm). In addition, VJ height 15 s after the deadlift was lower than VJ height measured at minutes 2–16 following the deadlift. Performance of five repetitions of deadlifting did not affect pGRF. These results suggest that performing five repetitions of the deadlift exercise at 85% 1RM does not induce a postactivation potentiation (PAP) effect, and may in fact cause an acute reduction in VJ performance.
NASA Astrophysics Data System (ADS)
Pitarch, Jaime; Ruiz-Verdú, Antonio; Sendra, María. D.; Santoleri, Rosalia
2017-02-01
We studied the performance of the MERIS maximum peak height (MPH) algorithm in the retrieval of chlorophyll-a concentration (CHL), using a matchup data set of Bottom-of-Rayleigh Reflectances (BRR) and CHL from a hypertrophic lake (Albufera de Valencia). The MPH algorithm produced a slight underestimation of CHL in the pixels classified as cyanobacteria (83% of the total) and a strong overestimation in those classified as eukaryotic phytoplankton (17%). In situ biomass data showed that the binary classification of MPH was not appropriate for mixed phytoplankton populations, producing also unrealistic discontinuities in the CHL maps. We recalibrated MPH using our matchup data set and found that a single calibration curve of third degree fitted equally well to all matchups regardless of how they were classified. As a modification to the former approach, we incorporated the Phycocyanin Index (PCI) in the formula, thus taking into account the gradient of phytoplankton composition, which reduced the CHL retrieval errors. By using in situ biomass data, we also proved that PCI was indeed an indicator of cyanobacterial dominance. We applied our recalibration of the MPH algorithm to the whole MERIS data set (2002-2012). Results highlight the usefulness of the MPH algorithm as a tool to monitor eutrophication. The relevance of this fact is higher since MPH does not require a complete atmospheric correction, which often fails over such waters. An adequate flagging or correction of sun glint is advisable though, since the MPH algorithm was sensitive to sun glint.
NASA Astrophysics Data System (ADS)
Myers, J.; Cummins, K. L.; Hutchinson, M.; Nag, A.
2012-12-01
Lightning attachment to tall objects has been studied for decades. The attachment of lightning to electric power transmission towers in elevated terrain has driven much of the quantitative assessment of lightning characteristics in the 1970's and 80's. This has led to the understanding that in flat terrain, the probability of upward-initiated lightning is negligible for tower heights less than 100 m. For tower heights greater than 100, the probability increases roughly linearly with the log of height, reaching 100% at a height of 400 m. Additionally, the probability of upward initiation increases when the object resides on locally-elevated terrain. Over the last decade, there has been renewed interest in the study of lightning attachment to tall objects in general, and wind turbines in particular, following the establishment of large "wind farms" in lightning-prone regions. In this study, we present video observations, radiation magnetic field, and in-situ peak current measurements of lightning from an ongoing field program in a large wind farm in north-central Kansas, located in the U.S. Central Great Plains. The terrain variations within the wind farm are small rolling hills with peak variations on the order of 25 m. All turbines had a turbine hub height of 80 m, and a blade tip maximum height of 125 m. Two digital video camera systems (60 fields-per-second) were configured to self-trigger 2-second video sequences using a sequential-field-subtraction scene analysis (ufo-Capture). The two cameras had a common field of view that included 8 of the wind turbines. Nearby NLDN sensors were configured to record information that allows reconstruction of magnetic field waveforms within the bandwidth of the NLDN sensors. Some of the turbines were equipped with semi-quantitative in-situ peak current measuring devices. To date, more than 100 cloud-to-ground (CG) flashes have terminated within the perimeter of the wind farm. Video observations of flashes that attached to turbines (all to turbine blades) include five natural (downward leader) flashes and two "upward flashes" (fully developed upward leaders lasting 10's of milliseconds). Both upward flashes appear to have been triggered by nearby positive CG flashes, resulting in upward (presumably positive) leaders. Selected video observations in conjunction with NLDN data and waveform measurements, and in situ current measurements obtained during this campaign, will be presented and discussed in the context of storm characteristics. Differences with previous findings for fixed towers (no rotating blades) will also be discussed.
NASA Astrophysics Data System (ADS)
Sonwalkar, V. S.; Reddy, A.
2017-12-01
Variation in field-aligned electron and ion densities as a function of geomagnetic activity are important parameters in the physics of the thermosphere-ionosphere-magnetosphere coupling. Using whistler mode sounding from IMAGE, we report variations in field-aligned electron density and O+/H+ transition height (HT) during two periods (16-23 Aug 2005; 24 Sep-06 Oct 2005) when geomagnetic conditions were quiet (maximum Kp in the past 24 hours, Kpmax,24 ≤ 2) to moderately active (2 < Kpmax,24 <4). The measurements were obtained in the L=1.7 to 3.3 range (90- 4000 km, 13 or 15 MLT). Our results show that, under similar geomagnetic activity, at similar L-shells but with different geographic longitudes and MLTs, the O+/H+ transition height varied within ±12% of 1100 km at L 2 and within ±8% of 1350 km at L 3. The electron densities along flux tubes varied within 30% and 20%, respectively, below (including F2 peak) and above HT. With increasing L shell: (a) O+/H+ transition height increased; (b) electron density variations below HT including F2 peak showed no trend; (c) electron density above HT decreased. For flux tubes at similar longitudes, L-shells, and MLT's, relative to quiet time, during moderate geomagnetic activity: (1) O+/H+ transition height was roughly same; (2) electron density variations below HT showed no trend; (3) electron density above HT increased ( 10-40 %). The measured electron density is in agreement with in situ measurements from CHAMP (350 km) and DMSP (850 km) and past space borne (e. g., ISIS) measurements but the F2 peak density is a factor of 2 lower relative to that measured by ground ionosondes and that predicted by IRI-2012 empirical model. The measured transition height is consistent with OGO 4, Explorer 31, and C/NOFS measurements but is lower than that from IRI-2012. The observed variations in electron density at F2 peak are consistent with past work and are attributed to solar, geomagnetic, and meteorological causes [e. g. Risibeth and Mendillo, 2001; Forbes et al., 2000]. To the best of our knowledge, variations in field-aligned electron density above transition height at mid-latitudes during quiet to moderately active periods have not been reported in the past. Further investigation using physics based models (e. g., SAMI3) is required to explain the observed variations.
47 CFR 90.377 - Frequencies available; maximum EIRP and antenna height, and priority communications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Frequencies available; maximum EIRP and antenna...; maximum EIRP and antenna height, and priority communications. (a) Licensees shall transmit only the power... maximum EIRP permitted for an RSU with an antenna height not exceeding 8 meters above the roadway bed...
47 CFR 90.377 - Frequencies available; maximum EIRP and antenna height, and priority communications.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false Frequencies available; maximum EIRP and antenna...; maximum EIRP and antenna height, and priority communications. (a) Licensees shall transmit only the power... maximum EIRP permitted for an RSU with an antenna height not exceeding 8 meters above the roadway bed...
47 CFR 90.377 - Frequencies available; maximum EIRP and antenna height, and priority communications.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 5 2013-10-01 2013-10-01 false Frequencies available; maximum EIRP and antenna...; maximum EIRP and antenna height, and priority communications. (a) Licensees shall transmit only the power... maximum EIRP permitted for an RSU with an antenna height not exceeding 8 meters above the roadway bed...
47 CFR 90.377 - Frequencies available; maximum EIRP and antenna height, and priority communications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Frequencies available; maximum EIRP and antenna...; maximum EIRP and antenna height, and priority communications. (a) Licensees shall transmit only the power... maximum EIRP permitted for an RSU with an antenna height not exceeding 8 meters above the roadway bed...
Turner, Thomas S; Tobin, Daniel P; Delahunt, Eamonn
2015-05-01
Recent research suggests that jump squats with a loaded hexagonal barbell are superior for peak power production to comparable loads in a traditional barbell loaded jump squat. The aim of this study was to investigate the relationship between relative peak power output during performance of the hexagonal barbell jump squat (HBJS), countermovement jump (CMJ) height, and linear acceleration speed in rugby union players. Seventeen professional rugby union players performed 10- and 20-m sprints, followed by a set of 3 unloaded CMJs and a set of 3 HBJS at a previously determined optimal load corresponding with peak power output. The relationship between HBJS relative peak power output, 10- and 20-m sprint time, and CMJ height was investigated using correlation analysis. The contribution of HBJS relative peak power output and CMJ height to 10- and 20-m sprint time was investigated using standard multiple regression. Strong, significant, inverse correlations were observed between HBJS relative peak power output, 10-m sprint time (r = -0.70, p < 0.01), and 20-m sprint time (r = -0.75, p < 0.01). A strong, significant, positive correlation was observed between HBJS relative peak power output and CMJ height (r = 0.80, p < 0.01). Together, HBJS relative peak power output and CMJ height explained 46% of the variance in 10-m sprint time while explaining 59% of the variance in 20-m sprint time. The findings of the current study demonstrate a significant relationship between relative peak power in the HBJS and athletic performance as quantified by CMJ height and 10- and 20-m sprint time.
Effect of root planing on surface topography: an in-vivo randomized experimental trial.
Rosales-Leal, J I; Flores, A B; Contreras, T; Bravo, M; Cabrerizo-Vílchez, M A; Mesa, F
2015-04-01
The root surface topography exerts a major influence on clinical attachment and bacterial recolonization after root planing. In-vitro topographic studies have yielded variable results, and clinical studies are necessary to compare root surface topography after planing with current ultrasonic devices and with traditional manual instrumentation. The aim of this study was to compare the topography of untreated single-rooted teeth planed in vivo with a curette, a piezoelectric ultrasonic (PU) scraper or a vertically oscillating ultrasonic (VOU) scraper. In a randomized experimental trial of 19 patients, 44 single-rooted teeth were randomly assigned to one of four groups for: no treatment; manual root planing with a curette; root planing with a PU scraper; or root planing with a VOU scraper. Post-treatment, the teeth were extracted and their topography was analyzed in 124 observations with white-light confocal microscopy, measuring the roughness parameters arithmetic average height, root-mean-square roughness, maximum height of peaks, maximum depth of valleys, absolute height, skewness and kurtosis. The roughness values arithmetic average height and root-mean-square roughness were similar after each treatment and lower than after no treatment ( p < 0.05). Absolute height was lower in the VOU group than in the untreated ( p = 0.0026) and PU (p = 0.045) groups. Surface morphology was similar after the three treatments and was less irregular than in the untreated group. Values for the remaining roughness parameters were similar among all treatment groups ( p > 0.05). Both ultrasonic devices reduce the roughness, producing a similar topography to that observed after manual instrumentation with a curette, to which they appear to represent a valid alternative. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Prophylactic Ankle Braces and the Kinematics and Kinetics of Half-Squat Parachute Landing.
Wu, Di; Zheng, Chao; Wu, Ji; Hu, Tan; Huang, Rongrong; Wang, Lizhen; Fan, Yubo
2018-02-01
The objective of the study was to investigate the effects of dropping heights and prophylactic ankle braces on ankle joint biomechanics during half-squat parachute landing from two different heights. There were 30 male elite paratroopers with formal parachute landing training and more than 2 yr of parachute jumping experience who were recruited for this study. The subjects tested three different ankle brace conditions (no-brace, elastic brace, semirigid brace). Each subject was instructed to jump off a platform from two different heights of 0.4 m and 0.8 m, and land on a force plate in a half-squat posture. The Vicon 3D motion capture system and force plate were used to record and calculate kinematic and kinetic data. Dropping height had a significant effect on peak vertical ground reaction force (vGRF), maximum ankle angular displacement, and time to vGRF. As compared with the no-brace group, use of an elastic ankle brace significantly reduced peak vGRF by 18.57% and both braces significantly reduced the maximal angular displacements of dorsiflexion. The semirigid brace provided greater restriction against maximal angular displacement of inversion. The elastic and semirigid ankle braces both effectively restricted motion stability of the ankle joint in the sagittal plane, and the semirigid ankle brace prevented excessive inversion, although the comfort of this device should be improved overall.Wu D, Zheng C, Wu J, Hu T, Huang R, Wang L, Fan Y. Prophylactic ankle braces and the kinematics and kinetics of half-squat parachute landing. Aerosp Med Hum Perform. 2018; 89(2):141-146.
Ionospheric scale height from the refraction of satellite signals.
NASA Technical Reports Server (NTRS)
Heron, M. L.; Titheridge, J. E.
1972-01-01
Accurate observations of the elevation angle of arrival of 20 MHz signals from the polar orbiting satellite Beacon-B for a 20 month period have provided transmission ionograms which may be reduced to give Hp the scale height at the peak of the ionosphere. Noon seasonal averages of Hp are 1.35 (in winter) to 1.55 (in summer) times greater than the scale height obtained from bottom-side ionograms. A comparison of scale height at the peak with routine measurements of total content and peak electron density indicates that the O+/H+ transition level is above 1000 km during the day but comes down to about 630 km on winter nights. A predawn peak in the overall scale height is caused by a lowering of the layer to a region of increased recombination and is magnified in winter by low O+/H+ transition levels.
Wagenbrenner, Natalie S.; Germino, Matthew J.; Lamb, Brian K.; Robichaud, Peter R.; Foltz, Randy B.
2013-01-01
above the soil surface, had a maximum PM10 vertical flux of 100 mg m-2 s-1, and generated a large dust plume that was visible in satellite imagery. The peak PM10 concentration measured on-site at a height of 2 m in the downwind portion of the burned area was 690 mg m-3. Our results indicate that wildfire can convert a relatively stable landscape into one that is a major dust source.
Ion composition during the formation of a midlatitude E sub S layer
NASA Technical Reports Server (NTRS)
Aikin, A. C.; Goldberg, R. A.; Azcarraga, A.
1973-01-01
The positive ion composition within a midlatitude sporadic E layer has been measured with the aid of a rocket-borne ion mass spectrometer launched from El Arenosillo, Spain on July 3, 1972 at 0743 LMT. Ionograms taken before and during the rocket flight showed a developing sporadic E layer near 114 km. Rocket data showed peaks in electron density and metallic ions at this same height. Both the maximum and total content of the metals are observed to be greater on the downleg than the upleg measurement.
Correlation between toe flexor strength and ankle dorsiflexion ROM during the countermovement jump.
Yun, Sung Joon; Kim, Moon-Hwan; Weon, Jong-Hyuck; Kim, Young; Jung, Sung-Hoon; Kwon, Oh-Yun
2016-08-01
[Purpose] This study assessed the relationships between peak toe flexor muscle strength, ankle dorsiflexion range of motion, and countermovement jump height. [Subjects and Methods] Eighteen healthy volunteers participated in the study. Each participant completed tests for peak toe flexor muscle strength, ankle dorsiflexion range of motion, and countermovement jump height. [Results] The results showed (1) a moderate correlation between ankle dorsiflexion range of motion and countermovement jump height and (2) a high correlation between peak first toe flexor muscle strength and countermovement jump height. Peak first toe flexor muscle strength and ankle dorsiflexion range of motion are the main contributors to countermovement jump performance. [Conclusion] These findings indicate that the measurement of peak first toe flexor muscle strength and ankle dorsiflexion range of motion may be useful in clinical practice for improving jump performance in athletes training for sports such as volleyball and basketball.
A spectrophotometric determination of cyanate using reaction with 2-aminobenzoic acid.
Guilloton, M; Karst, F
1985-09-01
A specific method has been devised for the assay of cyanate, based on the reaction with 2-aminobenzoic acid. Cyclization of the product in 6 N HCl results in the formation of 2,4(1H,3H)-quinazolinedione. Cyanate content of the samples can be measured by their absorbances at 310 nm. Alternatively, the second derivatives of the spectra can be recorded; the peak-to-peak height between the first maximum (330 nm) and the first minimum (317 nm) was shown to be proportional to the cyanate content. This method is suitable for the estimation of cyanate in aqueous solutions in the concentration range 0.01 to 2 mM. When added to blood plasma, cyanate could be detected down to 0.1 mM.
NASA Technical Reports Server (NTRS)
Ham, Seung-Hee; Sohn, Byung-Ju; Kato, Seiji; Satoh, Masaki
2013-01-01
The shape of the vertical profile of ice cloud layers is examined using 4 months of CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) global measurements taken on January, April, July, and October 2007. Ice clouds are selected using temperature profiles when the cloud base is located above the 253K temperature level. The obtained ice water content (IWC), effective radius, or extinction coefficient profiles are normalized by their layer mean values and are expressed in the normalized vertical coordinate, which is defined as 0 and 1 at the cloud base and top heights, respectively. Both CloudSat and CALIPSO observations show that the maximum in the IWC and extinction profiles shifts toward the cloud bottom, as the cloud depth increases. In addition, clouds with a base reaching the surface in a high-latitude region show that the maximum peak of the IWC and extinction profiles occurs near the surface, which is presumably due to snow precipitation. CloudSat measurements show that the seasonal difference in normalized cloud vertical profiles is not significant, whereas the normalized cloud vertical profile significantly varies depending on the cloud type and the presence of precipitation. It is further examined if the 7 day Nonhydrostatic Icosahedral Atmospheric Model (NICAM) simulation results from 25 December 2006 to 1 January 2007 generate similar cloud profile shapes. NICAM IWC profiles also show maximum peaks near the cloud bottom for thick cloud layers and maximum peaks at the cloud bottom for low-level clouds near the surface. It is inferred that oversized snow particles in the NICAM cloud scheme produce a more vertically inhomogeneous IWC profile than observations due to quick sedimentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garriott, O K
1960-04-01
The results of observations of the radio transmissions from Sputnik III (1958 δ 2) in an 8-month period are presented. The measurements of integrated electron density are made in two ways, described in part 1. The measurements reveal the diurnal variation of the total ionospheric electron content; and the ratio of the total content to the content of the lower ionosphere below the height of maximum density in the F layer is obtained. An estimate of the average electron-density profile above the F-layer peak is made possible by the slow variation in the height of the satellite due to rotationmore » of the perigee position. The gross effects of large magnetic storms on the electron content and distribution are found.« less
Ramírez-Vélez, Robinson; Correa-Bautista, Jorge E; Lobelo, Felipe; Cadore, Eduardo L; Alonso-Martinez, Alicia M; Izquierdo, Mikel
2017-04-01
Ramírez-Vélez, R, Correa-Bautista, JE, Lobelo, F, Cadore, EL, Alonso-Martinez, AM, and Izquierdo, M. Vertical jump and leg power normative data for Colombian schoolchildren aged 9-17.9 years: the FUPRECOL study. J Strength Cond Res 31(4): 990-998, 2017-The aims of the present study were to generate normative vertical jump height and predicted peak power (Ppeak) data for 9- to 17.9-year-olds and to investigate between-sex and age group differences in these measures. This was a cross-sectional study of 7,614 healthy schoolchildren (boys n = 3,258 and girls n = 4,356, mean [SD] age 12.8 [2.3] years). Each participant performed 2 countermovement jumps; jump height was calculated using a Takei 5414 Jump-DF Digital Vertical (Takei Scientific Instruments Co., Ltd.). The highest jump was used for analysis and in the calculation of predicted Ppeak. Centile smoothed curves, percentiles, and tables for the 3rd, 10th, 25th, 50th, 75th, 90th, and 97th percentiles were calculated using Cole's LMS (L [curve Box-Cox], M [curve median], and S [curve coefficient of variation]) method. The 2-way analysis of variance tests showed that maximum jump height (in centimeters) and predicted Ppeak (in watts) were higher in boys than in girls (p < 0.01). Post hoc analyses within sexes showed yearly increases in jump height and Ppeak in all ages. In boys, the maximum jump height and predicted Ppeak 50th percentile ranged from 24.0 to 38.0 cm and from 845.5 to 3061.6 W, respectively. In girls, the 50th percentile for jump height ranged from 22.3 to 27.0 cm, and the predicted Ppeak was 710.1-2036.4 W. For girls, jump height increased yearly from 9 to 17.9 years old. Our results provide, for the first time, sex- and age-specific vertical jump height and predicted Ppeak reference standards for Colombian schoolchildren aged 9-17.9 years.
Beutler, Anthony I.; Cooper, Leslie W.; Kirkendall, Don T.; Garrett, William E.
2002-01-01
Objective: Many knee rehabilitation studies have examined open and closed kinetic chain exercises. However, most studies focus on 2-legged, closed chain exercise. The purpose of our study was to characterize 1-legged, closed chain exercise in young, healthy subjects. Subjects: Eighteen normal subjects (11 men, 7 women; age, 24.6 ± 1.6 years) performed unsupported, 1-legged squats and step-ups to approximately tibial height. Measurements: Knee angle data and surface electromyographic activity from the thigh muscles were recorded. Results: The maximum angle of knee flexion was 111 ± 23° for squats and 101 ± 16° for step-ups. The peak quadriceps activation was 201 ± 66% maximum voluntary isometric contraction, occurring at an angle of 96 ± 16° for squats. Peak quadriceps activation was 207 ± 50% maximum voluntary isometric contraction and occurred at 83 ± 12° for step-ups. Conclusions: The high and sustained levels of quadriceps activation indicate that 1-legged squats and step-ups would be effective in muscle rehabilitation. As functional, closed chain activities, they may also be protective of anterior cruciate ligament grafts. Because these exercises involve no weights or training equipment, they may prove more cost effective than traditional modes of rehabilitation. PMID:12937438
Effects of Beetroot Juice Supplementation on a 30-s High-Intensity Inertial Cycle Ergometer Test
Domínguez, Raul; Garnacho-Castaño, Manuel Vicente; Cuenca, Eduardo; García-Fernández, Pablo; Muñoz-González, Arturo; de Jesús, Fernando; Lozano-Estevan, María Del Carmen; Veiga-Herreros, Pablo
2017-01-01
Background: Beetroot juice (BJ) is rich in inorganic nitrates and has proved effective at increasing blood nitric oxide (NO) levels. When used as a supplement BJ has shown an ergogenic effect on cardiorespiratory resistance exercise modalities, yet few studies have examined its impact on high intensity efforts. Objective: To assess the effects of BJ intake on anaerobic performance in a Wingate test. Methods: Fifteen trained men (age 21.46 ± 1.72 years, height 1.78 ± 0.07 cm and weight 76.90 ± 8.67 kg) undertook a 30-s maximum intensity test on an inertial cycle ergometer after drinking 70 mL of BJ (5.6 mmol NO3−) or placebo. Results: Despite no impacts of BJ on the mean power recorded during the test, improvements were produced in peak power (6%) (p = 0.034), average power 0–15 s (6.7%) (p = 0.048) and final blood lactate levels (82.6%) (p < 0.001), and there was a trend towards a shorter time taken to attain peak power (−8.4%) (p = 0.055). Conclusions: Supplementation with BJ has an ergonomic effect on maximum power output and on average power during the first 15 s of a 30-s maximum intensity inertial cycle ergometer test. PMID:29244746
NASA Technical Reports Server (NTRS)
Bougher, Stephen W.; Engel, S.; Hinson, D. P.; Murphy, J. R.
2003-01-01
Martian electron density profiles provided by the Mars Global Surveyor (MGS) Radio Science (RS) experiment over the 95-200 km altitude range indicate that the height of the electron peak and the longitudinal structure of the peak height are sensitive indicators of the physical state of the Mars lower atmosphere. The present analysis is carried out on five sets of occultation profiles, all at high solar zenith angles (SZA). Variations spanning 2-Martian years are investigated near aphelion conditions at high Northern latitudes (64.7-77.6N). A mean ionospheric peak height of 133.5-135 km was obtained for all aphelion profiles near SZA = 78-82; a corresponding mean peak density of 7.3-8.5 x 10(exp 4)/cu cm was also measured, reflecting solar moderate conditions. Strong wave 2-3 oscillations in peak heights were observed as a function of longitude over both Martian seasons. The Mars Thermospheric General Circulation Model (MTGCM) is exercised for Mars aphelion conditions. The measured interannual variations in the mean and longitude structure of the peak heights are small (consistent with MTGCM simulations), signifying the repeatability of the Mars atmosphere during aphelion conditions. A non-migrating (semi-diurnal period, wave#l eastward propagating) tidal mode is likely responsible for the wave#3 longitude features identified. The height of this photochemically driven peak can be observed to provide an ongoing monitor of the changing state of the Mars lower atmosphere. The magnitudes of these same peaks may reflect more than changing solar EUV fluxes when they are located in the vicinity of Mars crustal magnetic field centers.
Sebestyen, Stephen D.; Norby, Richard J.; Hanson, Paul J.; ...
2017-04-18
Sphagnum mosses are the keystone species of peatland ecosystems. With rapid rates of climate change occurring in high latitudes, vast reservoirs of carbon accumulated over millennia in peatland ecosystems are potentially vulnerable to rising temperature and changing precipitation. We investigate the seasonal drivers of Sphagnum gross primary production (GPP)—the entry point of carbon into wetland ecosystems. Continuous flux measurements and flux partitioning show a seasonal cycle of Sphagnum GPP that peaked in the late summer, well after the peak in photosynthetically active radiation. Wavelet analysis showed that water table height was the key driver of weekly variation in Sphagnum GPPmore » in the early summer and that temperature was the primary driver of GPP in the late summer and autumn. Flux partitioning and a process-based model of Sphagnum photosynthesis demonstrated the likelihood of seasonally dynamic maximum rates of photosynthesis and a logistic relationship between the water table and photosynthesizing tissue area when the water table was at the Sphagnum surface. Here, the model also suggested that variability in internal resistance to CO 2 transport, a function of Sphagnum water content, had minimal effect on GPP. To accurately model Sphagnum GPP, we recommend the following: (1) understanding seasonal photosynthetic trait variation and its triggers in Sphagnum; (2) characterizing the interaction of Sphagnum photosynthesizing tissue area with water table height; (3) modeling Sphagnum as a “soil” layer for consistent simulation of water dynamics; and (4) measurement of Sphagnum “canopy” properties: extinction coefficient (k), clumping (Ω), and maximum stem area index (SAI).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sebestyen, Stephen D.; Norby, Richard J.; Hanson, Paul J.
Sphagnum mosses are the keystone species of peatland ecosystems. With rapid rates of climate change occurring in high latitudes, vast reservoirs of carbon accumulated over millennia in peatland ecosystems are potentially vulnerable to rising temperature and changing precipitation. We investigate the seasonal drivers of Sphagnum gross primary production (GPP)—the entry point of carbon into wetland ecosystems. Continuous flux measurements and flux partitioning show a seasonal cycle of Sphagnum GPP that peaked in the late summer, well after the peak in photosynthetically active radiation. Wavelet analysis showed that water table height was the key driver of weekly variation in Sphagnum GPPmore » in the early summer and that temperature was the primary driver of GPP in the late summer and autumn. Flux partitioning and a process-based model of Sphagnum photosynthesis demonstrated the likelihood of seasonally dynamic maximum rates of photosynthesis and a logistic relationship between the water table and photosynthesizing tissue area when the water table was at the Sphagnum surface. Here, the model also suggested that variability in internal resistance to CO 2 transport, a function of Sphagnum water content, had minimal effect on GPP. To accurately model Sphagnum GPP, we recommend the following: (1) understanding seasonal photosynthetic trait variation and its triggers in Sphagnum; (2) characterizing the interaction of Sphagnum photosynthesizing tissue area with water table height; (3) modeling Sphagnum as a “soil” layer for consistent simulation of water dynamics; and (4) measurement of Sphagnum “canopy” properties: extinction coefficient (k), clumping (Ω), and maximum stem area index (SAI).« less
NASA Astrophysics Data System (ADS)
Walker, Anthony P.; Carter, Kelsey R.; Gu, Lianhong; Hanson, Paul J.; Malhotra, Avni; Norby, Richard J.; Sebestyen, Stephen D.; Wullschleger, Stan D.; Weston, David J.
2017-05-01
Sphagnum mosses are the keystone species of peatland ecosystems. With rapid rates of climate change occurring in high latitudes, vast reservoirs of carbon accumulated over millennia in peatland ecosystems are potentially vulnerable to rising temperature and changing precipitation. We investigate the seasonal drivers of Sphagnum gross primary production (GPP)—the entry point of carbon into wetland ecosystems. Continuous flux measurements and flux partitioning show a seasonal cycle of Sphagnum GPP that peaked in the late summer, well after the peak in photosynthetically active radiation. Wavelet analysis showed that water table height was the key driver of weekly variation in Sphagnum GPP in the early summer and that temperature was the primary driver of GPP in the late summer and autumn. Flux partitioning and a process-based model of Sphagnum photosynthesis demonstrated the likelihood of seasonally dynamic maximum rates of photosynthesis and a logistic relationship between the water table and photosynthesizing tissue area when the water table was at the Sphagnum surface. The model also suggested that variability in internal resistance to CO2 transport, a function of Sphagnum water content, had minimal effect on GPP. To accurately model Sphagnum GPP, we recommend the following: (1) understanding seasonal photosynthetic trait variation and its triggers in Sphagnum; (2) characterizing the interaction of Sphagnum photosynthesizing tissue area with water table height; (3) modeling Sphagnum as a "soil" layer for consistent simulation of water dynamics; and (4) measurement of Sphagnum "canopy" properties: extinction coefficient (k), clumping (Ω), and maximum stem area index (SAI).
Body Size of Male Youth Soccer Players: 1978-2015.
Malina, Robert M; Figueiredo, António J; Coelho-E-Silva, Manuel J
2017-10-01
Studies of the body size and proportions of athletes have a long history. Comparisons of athletes within specific sports across time, though not extensive, indicate both positive and negative trends. To evaluate secular variation in heights and weights of male youth soccer players reported in studies between 1978 and 2015. Reported mean ages, heights, and weights of male soccer players 9-18 years of age were extracted from the literature and grouped into two intervals: 1978-99 and 2000-15. A third-order polynomial was fitted to the mean heights and weights across the age range for each interval, while the Preece-Baines model 1 was fitted to the grand means of mean heights and mean weights within each chronological year to estimate ages at peak height velocity and peak weight velocity for each time interval. Third-order polynomials applied to all data points and estimates based on the Preece-Baines model applied to grand means for each age group provided similar fits. Both indicated secular changes in body size between the two intervals. Secular increases in height and weight between 1978-99 and 2000-15 were especially apparent between 13 and 16 years of age, but estimated ages at peak height velocity (13.01 and 12.91 years) and peak weight velocity (13.86 and 13.77 years) did not differ between the time intervals. Although the body size of youth soccer players increased between 1978-99 and 2000-15, estimated ages at peak height velocity and peak weight velocity did not change. The increase in height and weight likely reflected improved health and nutritional conditions, in addition to the selectivity of soccer reflected in systematic selection and retention of players advanced in maturity status, and exclusion of late maturing players beginning at about 12-13 years of age. Enhanced training programs aimed at the development of strength and power are probably an additional factor contributing to secular increases in body weight.
Measurement of Cough Aerodynamics in Healthy Adults.
Feinstein, Aaron J; Zhang, Zhaoyan; Chhetri, Dinesh K; Long, Jennifer
2017-05-01
Cough is a critical human reflex and also among the most frequent symptoms in medicine. Despite the prevalence of disordered cough in laryngeal pathologies, comprehensive and quantitative evaluation of cough in these patients is lacking. Herein we seek to establish normative values for cough aerodynamics to provide a population standard for reference in future studies. Healthy subjects were recruited from an outpatient clinic to perform voluntary cough. Subjects were instructed on the technique for maximal voluntary cough production with measurements recorded on pneumotachograph. Fifty-two subjects were studied, including 29 women and 23 men with a mean age of 51.6 and 52.3 years, respectively. Main Outcomes and Measures: Cough peak airflow, peak pressure, and expiratory rise time. Results were stratified by age, gender, and height. Peak airflow demonstrated significant differences across age, gender, and height, with flow increasing according to increasing height. Peak cough pressure also increased with height and was significantly greater in males versus females. Expiratory rise time, the time from glottal opening to peak airflow, did not vary with age or height but was statistically significantly longer in women. Cough aerodynamics can be readily measured objectively in the outpatient setting. Expiratory rise time, peak flow, and peak pressure are important aspects of each cough epoch. Normative data provided herein can be used for future studies of patients with laryngotracheal disorders, and these cough parameters may prove to be simple, accessible, and repeatable outcome measures.
Tropical Cyclone Diurnal Cycle as Observed by TRMM
Leppert, Kenneth D.; Cecil, Daniel J.
2018-01-01
Previous work has indicated a clear, consistent diurnal cycle in rainfall and cold cloudiness coverage around tropical cyclones. This cycle may have important implications for structure and intensity changes of these storms and the forecasting of such changes. The goal of this paper is to use passive and active microwave measurements from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR), respectively, to better understand the tropical cyclone diurnal cycle throughout a deep layer of a tropical cyclone’s clouds. The composite coverage by PR reflectivity ≥20 dBZ at various heights as a function of local standard time (LST) and radius suggests the presence of a diurnal signal for radii <500 km through a deep layer (2–10 km height) of the troposphere using 1998–2011 Atlantic tropical cyclones of at least tropical storm strength. The area covered by reflectivity ≥20 dBZ at radii 100–500 km peaks in the morning (0130–1030 LST) and reaches a minimum 1030–1930 LST. Radii between 300–500 km tend to reach a minimum in coverage closer to 1200 LST before reaching another peak at 2100 LST. The inner core (0–100 km) appears to be associated with a single-peaked diurnal cycle only at upper levels (8–10 km) with a maximum at 2230−0430 LST. The TMI rainfall composites suggest a clear diurnal cycle at all radii between 200 and 1000 km with peak rainfall coverage and rain rate occurring in the morning (0130−0730 LST). PMID:29371745
NASA Astrophysics Data System (ADS)
Tsuji, Y.; Takahashi, T.; Imai, K.
2010-12-01
The tsunami of the Chilean Earthquake (Mw8.8) of February 27, 2010 was detected also on the coasts of the Japanese Islands about 23 hours after the occurrence of the main shock. It caused no human damage. There was slight house damage manly in Miyagi prefecture, south part of Sanriku coast; six and fifty one houses were flooded above and below the floor, respectively. It caused remarkable fishery loss of 75 Million US$ mainly due to breaking of cultivation rafts. The tsunami of the 1960 Chilean Earthquake(Mw9.5) also hit the Japanese coasts more severely. It caused more immense damage than the 2010 tsunami; 142 people were killed, 1,581 houses were entirely destroyed, and 1,256 houses were swept away. Most of damage occurred in the districts of Sanriku coast, where inundation heights exceeded six meters at several points. We made field survey along the Japanese coast, visited offices of fishermen’s cooperatives at over 300 fishery ports, gathered eyewitnesses counts, and obtained information of the inundation limit, arrival time, and building and fishery damage. On the basis of the information of inundation, we measured tsunami heights. We obtained data of tsunami height at more than two hundred points (Tsuji et al., 2010). The distributions of the two tsunamis of the 1960 and the 2010 Chilean earthquakes on the coasts along the Japanese Islands are shown as Fig. 1. The maximum height of 2.2 meters was recorded at Kesennuma City, Miyagi Prefecture. The heights of the 2010 tsunami were generally one third of those of the 1960 tsunami. An eminent peak appears at Sanriku coast commonly for both tsunamis. In addition smaller peaks also appear commonly at the coasts of the east part of Hokkaido, near the top of Boso peninsula, near the top of Izu Peninsula, the east coast of Kii Peninsula, Tokushima prefecture, eastern part of Shikoku, and near the Cape Ashizuri in western part of Shikoku. Fig. 1 Trace height distributions of the tsunamis of the 1960(red) and the 2010(blue) Chilean Earthquakes along the coasts of the Japanese Islands
Nieć, Dawid; Kunicki, Paweł K
2015-10-01
Measurements of plasma concentrations of free normetanephrine (NMN), metanephrine (MN) and methoxytyramine (MTY) constitute the most diagnostically accurate screening test for pheochromocytomas and paragangliomas. The aim of this article is to present the results from a validation of an analytical method utilizing high performance liquid chromatography with coulometric detection (HPLC-CD) for quantifying plasma free NMN, MN and MTY. Additionally, peak integration by height and area and the use of one calibration curve for all batches or individual calibration curve for each batch of samples was explored as to determine the optimal approach with regard to accuracy and precision. The method was validated using charcoal stripped plasma spiked with solutions of NMN, MN, MTY and internal standard (4-hydroxy-3-methoxybenzylamine) with the exception of selectivity which was evaluated by analysis of real plasma samples. Calibration curve performance, accuracy, precision and recovery were determined following both peak-area and peak-height measurements and the obtained results were compared. The most accurate and precise method of calibration was evaluated by analyzing quality control samples at three concentration levels in 30 analytical runs. The detector response was linear over the entire tested concentration range from 10 to 2000pg/mL with R(2)≥0.9988. The LLOQ was 10pg/mL for each analyte of interest. To improve accuracy for measurements at low concentrations, a weighted (1/amount) linear regression model was employed, which resulted in inaccuracies of -2.48 to 9.78% and 0.22 to 7.81% following peak-area and peak-height integration, respectively. The imprecisions ranged from 1.07 to 15.45% and from 0.70 to 11.65% for peak-area and peak-height measurements, respectively. The optimal approach to calibration was the one utilizing an individual calibration curve for each batch of samples and peak-height measurements. It was characterized by inaccuracies ranging from -3.39 to +3.27% and imprecisions from 2.17 to 13.57%. The established HPLC-CD method enables accurate and precise measurements of plasma free NMN, MN and MTY with reasonable selectivity. Preparing calibration curve based on peak-height measurements for each batch of samples yields optimal accuracy and precision. Copyright © 2015. Published by Elsevier B.V.
Pickup Ion Velocity Distributions at Titan: Effects of Spatial Gradients
NASA Technical Reports Server (NTRS)
Hartle, R. E.; Sittler, E. C.
2004-01-01
The principle source of pickup ions at Titan is its neutral exosphere, extending well above the ionopause into the magnetosphere of Saturn or the solar wind, depending on the moon's orbital position. Thermal and nonthermal processes in the thermosphere generate the distribution of neutral atoms and molecules in the exosphere. The combination of these processes and the range of mass numbers, 1 to over 28, contribute to an exospheric source structure that produces pickup ions with gyroradii that are much larger or smaller than the corresponding scale heights of their neutral sources. The resulting phase space distributions are dependent on the spatial structure of the exosphere as well as that of the magnetic field and background plasma. When the pickup ion gyroradius is less than the source gas scale height, the pickup ion velocity distribution is characterized by a sharp cutoff near the maximum speed, which is twice that of the ambient plasma times the sine of the angle between the magnetic field and the flow velocity. This was the case for pickup H(sup +) ions identified during the Voyager 1 flyby. In contrast, as the gyroradius becomes much larger than the scale height, the peak of the velocity distribution in the source region recedes from the maximum speed. Iri addition, the amplitude of the distribution near the maximum speed decreases. These more beam like distributions of heavy ions were not observed from Voyager 1 , but should be observable by more sensitive instruments on future spacecraft, including Cassini. The finite gyroradius effects in the pickup ion velocity distributions are studied by including in the analysis the possible range of spatial structures in the neutral exosphere and background plasma.
Reflex effects on components of synchronized renal sympathetic nerve activity.
DiBona, G F; Jones, S Y
1998-09-01
The effects of peripheral thermal receptor stimulation (tail in hot water, n = 8, anesthetized) and cardiac baroreceptor stimulation (volume loading, n = 8, conscious) on components of synchronized renal sympathetic nerve activity (RSNA) were examined in rats. The peak height and peak frequency of synchronized RSNA were determined. The renal sympathoexcitatory response to peripheral thermal receptor stimulation was associated with an increase in the peak height. The renal sympathoinhibitory response to cardiac baroreceptor stimulation was associated with a decrease in the peak height. Although heart rate was significantly increased with peripheral thermal receptor stimulation and significantly decreased with cardiac baroreceptor stimulation, peak frequency was unchanged. As peak height reflects the number of active fibers, reflex increases and decreases in synchronized RSNA are mediated by parallel increases and decreases in the number of active renal nerve fibers rather than changes in the centrally based rhythm or peak frequency. The increase in the number of active renal nerve fibers produced by peripheral thermal receptor stimulation reflects the engagement of a unique group of silent renal sympathetic nerve fibers with a characteristic response pattern to stimulation of arterial baroreceptors, peripheral and central chemoreceptors, and peripheral thermal receptors.
Analysis of single band and dual band graphene based patch antenna for terahertz region
NASA Astrophysics Data System (ADS)
George, Jemima Nissiyah; Madhan, M. Ganesh
2017-10-01
A microstrip patch antenna is designed using a very thin layer of graphene as the radiating patch, which is fed by a microstrip transmission line. The graphene based patch is designed on a silicon substrate having a dielectric constant of 11.9, to radiate at a single frequency of 2.6 THz. Further, this antenna is made to resonate at dual frequencies of 2.48 THz and 3.35 THz, by changing the substrate height, which is reported for the first time. Various antenna parameters such as return loss, VSWR, gain, efficiency and bandwidth are also determined for the single and dual band operation. For the single band operation, a bandwidth of 145.4 GHz and an efficiency of 92% was achieved. For dual band operation, a maximum bandwidth of 140.5 GHz was obtained at 3.35 THz and an efficiency of 87.3% was obtained at the first resonant frequency of 2.48 THz. The absorption cross section of the antenna is also analysed for various substrate heights and has maximum peaks at the corresponding resonating frequencies. The simulation has been carried out by using a full wave electromagnetic simulator based on FDTD method.
Wang, S C; Ding, M M; Wei, X L; Zhang, T; Yao, F
2016-06-01
To recognize the possibility of Y fragment deletion of Amelogenin gene intuitively and simply according to the genotyping graphs. By calculating the ratio of total peak height of genotyping graphs, the statistics of equilibrium distribution between Amelogenin and D3S1358 loci, Amelogenin X-gene and Amelogenin Y-gene, and different alleles of D3S1358 loci from 1 968 individuals was analyzed after amplified by PowerPlex ® 21 detection kit. Sum of peak height of Amelogenin X allele was not less than 60% that of D3S1358 loci alleles in 90.8% female samples, and sum of peak height of Amelogenin X allele was not higher than 70% that of D3S1358 loci alleles in 94.9% male samples. The result of genotyping after amplified by PowerPlex ® 21 detection kit shows that the possibility of Y fragment deletion should be considered when only Amelogenin X-gene of Amelogenin is detected and the peak height of Amelogenin X-gene is not higher than 70% of the total peak height of D3S1358 loci. Copyright© by the Editorial Department of Journal of Forensic Medicine
Malina, Robert M; Coelho E Silva, Manuel J; Figueiredo, António J; Carling, Christopher; Beunen, Gaston P
2012-01-01
The relationships among indicators of biological maturation were evaluated and concordance between classifications of maturity status in two age groups of youth soccer players examined (11-12 years, n = 87; 13-14 years, n = 93). Data included chronological age (CA), skeletal age (SA, Fels method), stage of pubic hair, predicted age at peak height velocity, and percent of predicted adult height. Players were classified as on time, late or early in maturation using the SA-CA difference, predicted age at peak height velocity, and percent of predicted mature height. Factor analyses indicated two factors in players aged 11-12 years (maturity status: percent of predicted mature height, stage of pubic hair, 59% of variance; maturity timing: SA/CA ratio, predicted age at peak height velocity, 26% of variance), and one factor in players aged 13-14 years (68% of variance). Kappa coefficients were low (0.02-0.23) and indicated poor agreement between maturity classifications. Spearman rank-order correlations between categories were low to moderate (0.16-0.50). Although the indicators were related, concordance of maturity classifications between skeletal age and predicted age at peak height velocity and percent predicted mature height was poor. Talent development programmes call for the classification of youth as early, average, and late maturing for the purpose of designing training and competition programmes. Non-invasive indicators of maturity status have limitations for this purpose.
NASA Technical Reports Server (NTRS)
Bougher, S. W.; Engel, S.; Hinson, D. P.; Murphy, J. R.
2004-01-01
Martian electron density profiles provided by the Mars Global Surveyor (MGS) Radio Science (RS) experiment over the 95-200 km altitude range indicate what the height of the electron peak and the longitudinal structure of the peak height are sensitive indicators of the physical state of the Mars lower and upper atmospheres. The present analysis is carried out on five sets of occultation profiles, all at high solar zenith angles (SZA). Variations spanning 2 Martian years are investigated near aphelion conditions at high northern latitudes (64.7 - 77.6 N) making use of four of these data sets. A mean ionospheric peak height of 133.5 - 135 km is obtained near SZA = 78 - 82 deg.; a corresponding mean peak density of 7.3 - 8.5 x l0(exp 4)/ qu cm is also measured during solar moderate conditions at Mars. Strong wave number 2 - 3 oscillations in peak heights are consistently observed as a function of longitude over the 2 Martian years. These observed ionospheric features are remarkably similar during aphelion conditions 1 Martian year apart. This year-to-year repeatability in the thermosphere-ionosphere structure is consistent with that observed in multiyear aphelion temperature data of the Mars lower atmosphere. Coupled Mars general circulation model (MGCM) and Mars thermospheric general circulation model (MTGCM) codes are run for Mars aphelion conditions, yielding mean and longitude variable ionospheric peak heights that reasonably match RS observations. A tidal decomposition of MTGCM thermospheric densities shows that observed ionospheric wave number 3 features are linked to a non-migrating tidal mode with semidiurnal period (sigma = 2) and zonal wave number 1 (s = -1) characteristics. The height of this photochemically determined ionospheric peak should be monitored regularly.
NASA Astrophysics Data System (ADS)
Somu, Vijaya Bhaskar
Apparent ionospheric reflection heights estimated using the zero-to-zero and peak-to-peak methods to measure skywave delay relative to the groundwave were compared for 108 first and 124 subsequent strokes observed at LOG in 2009. For either metric there was a considerable decrease in average re ection height for subsequent strokes relative to first strokes. Median uncertainties in daytime re ection heights did not exceed 0.7 km. The standard errors in mean re ection heights were less than 3% of the mean value. Apparent changes in re ection height (estimated using the peak-to-peak method) within individual ashes for 54 daytime and 11 nighttime events at distances ranging from 50 km to 330 km were compared. For daytime conditions, the majority of the ashes showed a monotonic decrease in re ection height. For nighttime ashes, the monotonic decrease was found to be considerably less frequent. The apparent ionospheric re ection height tends to increase with return-stroke peak current. In order to increase the sample size for nighttime conditions, additional data for 43 nighttime flashes observed at LOG in 2014 were analyzed. The "fast-break-point" method of measuring skywave delay (McDonald et al., 1979) was additionally used. The 2014 results for return strokes are generally consistent with the 2009 results. The 2014 data were also used for estimating ionospheric re ection heights for elevated sources (6 CIDs and 3 PB pulses) using the double-skywave feature. The results were compared with re ection heights estimated for corresponding return strokes (if any), and fairly good agreement was generally found. It has been shown, using two different FDTD simulation codes, that the observed differences in re ection height cannot be explained by the difference in the frequency content of first and subsequent return-stroke currents. FDTD simulations showed that within 200 km the re ection heights estimated using the peak-to-peak method are close to the hOE parameter of the ionospheric profile for both daytime and nighttime conditions and for both first and second skywaves. The TL model was used to estimate the radial extent of elves produced by the interaction of LEMP with the ionosphere as a function of return-stroke peak current. For a peak current of 100 kA and the speed equal to one-half of the speed of light, the expected radius of elves is 157 km. Skywaves associated with 24 return strokes in 6 lightning ashes triggered at CB in 2015 and recorded at LOG (at a distance of 45 km from CB) were not found for any of the strokes recorded. In contrast, natural-lightning strokes do produce skywaves at comparable distances. One possible reason is the difference in the higher-frequency content (field waveforms for triggered lightning are more narrow than for natural lightning).
Does Shoe Collar Height Influence Ankle Joint Kinematics and Kinetics in Sagittal Plane Maneuvers?
Yang, Yang; Fang, Ying; Zhang, Xini; He, Junliang; Fu, Weijie
2017-01-01
The Objective of the study is to investigate the effects of basketball shoes with different collar heights on ankle kinematics and kinetics and athletic performance in different sagittal plane maneuvers. Twelve participants who wore high-top and low-top basketball shoes (hereafter, HS and LS, respectively) performed a weight-bearing dorsiflexion (WB-DF) maneuver, drop jumps (DJs), and lay-up jumps (LJs). Their sagittal plane kinematics and ground reaction forces were recorded using the Vicon motion capture system and Kistler force plates simultaneously. Moreover, ankle dorsiflexion and plantarflexion angles, moment, power, stiffness, and jump height were calculated. In the WB-DF test, the peak ankle dorsiflexion angle (p = 0.041) was significantly smaller in HS than in LS. Additionally, the peak ankle plantarflexion moment (p = 0.028) and power (p = 0.022) were significantly lower in HS than in LS during LJs but not during DJs. In both jumping maneuvers, no significant differences were found in the jump height or ankle kinematics between the two shoe types. According to the WB-DF test, increasing shoe collar height can effectively reduce the ankle range of motion in the sagittal plane. Although the HS did not restrict the flexion–extension performance of the ankle joint during two jumping maneuvers, an increased shoe collar height can reduce peak ankle plantarflexion moment and peak power during the push-off phase in LJs. Therefore, a higher shoe collar height should be used to circumvent effects on the partial kinetics of the ankle joint in the sagittal plane. Key points An increased shoe collar height effectively reduced ankle joint ROM in the sagittal plane in weight-bearing dorsiflexion maneuver. Shoe collar height did not affect sagittal plane ankle kinematics and had no effect on performance during realistic jumping. Shoe collar height can affect the ankle plantarflexion torque and peak power during the push-off phase in lay-up jump. PMID:29238255
NASA Astrophysics Data System (ADS)
Blanch, E.; Altadill, D.
2009-04-01
Geomagnetic storms disturb the quiet behaviour of the ionosphere, its electron density and the electron density peak height, hmF2. Many works have been done to predict the variations of the electron density but few efforts have been dedicated to predict the variations the hmF2 under disturbed helio-geomagnetic conditions. We present the results of the analyses of the F2 layer peak height disturbances occurred during intense geomagnetic storms for one solar cycle. The results systematically show a significant peak height increase about 2 hours after the beginning of the main phase of the geomagnetic storm, independently of both the local time position of the station at the onset of the storm and the intensity of the storm. An additional uplift is observed in the post sunset sector. The duration of the uplift and the height increase are dependent of the intensity of the geomagnetic storm, the season and the local time position of the station at the onset of the storm. An empirical model has been developed to predict the electron density peak height disturbances in response to solar wind conditions and local time which can be used for nowcasting and forecasting the hmF2 disturbances for the middle latitude ionosphere. This being an important output for EURIPOS project operational purposes.
Feasibility of ballistic strengthening exercises in neurologic rehabilitation.
Williams, Gavin; Clark, Ross A; Hansson, Jessica; Paterson, Kade
2014-09-01
Conventional methods for strength training in neurologic rehabilitation are not task specific for walking. Ballistic strength training was developed to improve the functional transfer of strength training; however, no research has investigated this in neurologic populations. The aim of this pilot study was to evaluate the feasibility of applying ballistic principles to conventional leg strengthening exercises in individuals with mobility limitations as a result of neurologic injuries. Eleven individuals with neurologic injuries completed seated and reclined leg press using conventional and ballistic techniques. A 2 × 2 repeated-measures analysis of variance was used to compare power measures (peak movement height and peak velocity) between exercises and conditions. Peak jump velocity and peak jump height were greater when using the ballistic jump technique rather than the conventional concentric technique (P < 0.01). These findings suggest that when compared with conventional strengthening exercises, the incorporation of ballistic principles was associated with increased peak height and peak velocities.
Fatigue effects upon sticking region and electromyography in a six-repetition maximum bench press.
van den Tillaar, Roland; Saeterbakken, Atle Hole
2013-01-01
The aim of the study was to examine the sticking region and concomitant neuromuscular activation of the prime movers during six-repetition maximum (RM) bench pressing. We hypothesised that both peak velocities would decrease and that the electromyography (EMG) of the prime movers (deltoid, major pectoralis and triceps) would increase during the pre-sticking and sticking region during the six repetitions due to fatigue. Thirteen resistance-trained males (age 22.8 ± 2.2 years, stature 1.82 ± 0.06 m, body mass 83.4 ± 7.6 kg) performed 6-RM bench presses. Barbell kinematics and EMG activity of pectoralis major, deltoid anterior, and triceps brachii during the pre-, sticking and post-sticking region of each repetition in a 6-RM bench press were analysed. For both the sticking as the post-sticking region, the time increased significantly from the first to the sixth repetition. Vertical barbell height at the start of sticking region was lower, while the height at the end of the sticking region and post-sticking region did not change during the six repetitions. It was concluded that in 6-RM bench pressing performance, the sticking region is a poor mechanical force region due to the unchanged barbell height at the end of the sticking region. Furthermore, when fatigue occurs, the pectoralis and the deltoid muscles are responsible for surpassing the sticking region as indicated by their increased activity during the pre- and sticking region during the six-repetitions bench press.
Variation in light intensity with height and time from subsequent lightning return strokes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, D.M.; Uman, M.A.
1983-08-20
Relative light intensity has been measured photographically as a function of height and time for seven subsequent return strokes in two lightning flashes at ranges of 7.8 and 8.7 km. The film used was Kodak 5474 Shellburst, which has a roughly constant spectral response between 300 and 670 nm. The time resolution was about 1.0 ..mu..s, and the spatial resolution was about 4 m. The observed light signals consisted of a fast rise to peak, followed by a slower decrease to a relatively constant value. The amplitude of the initial light peak decreases exponentially with height with a decay constantmore » of about 0.6 to 0.8 km. The 20% to 80% rise time of the initial light signal is between 1 and 4 ..mu..s near ground and increases by an additional 1 to 2 ..mu..s by the time the return stroke reaches the cloud base, a height between 1 and 2 km. The light intensity 30 ..mu..s after the initial peak is relatively constant with height and has an amplitude that is 15% to 30% of the initial peak near the ground and 50% to 100% of the initial peak at cloud base. The logarithm of the peak light intensity near the ground is roughly proportional to the initial peak electric field intensity, and this in turn implies that the current decrease with height may be much slower than the light decrease. The absolute light intensity has been estimated by integrating the photographic signals from individual channel segments to simulate the calibrated all-sky photoelectric data of Guo and Krider (1982). Using this method, the authors find that the mean peak radiance near the ground is 8.3 x 10/sup 5/ W/m, with a total range from 1.4 x 10/sup 5/ to 3.8 x 10/sup 6/ W/m. 16 references, 11 figures.« less
Remote sensing of the ionospheric F layer by use of O I 6300-A and O I 1356-A observations
NASA Technical Reports Server (NTRS)
Chandra, S.; Reed, E. I.; Meier, R. R.; Opal, C. B.; Hicks, G. T.
1975-01-01
The possibility of using airglow techniques for estimating the electron density and height of the F layer is studied on the basis of a simple relationship between the height of the F2 peak and the column emission rates of the O I 6300 A and O I 1356 A lines. The feasibility of this approach is confirmed by a numerical calculation of F2 peak heights and electron densities from simultaneous measurements of O I 6300 A and O I 1356 A obtained with earth-facing photometers carried by the Ogo 4 satellite. Good agreement is established with the F2 peak heights estimates from top-side and bottom-side ionospheric sounding.
Pubertal Gynecomastia Coincides with Peak Height Velocity
Limony, Yehuda; Friger, Michael; Hochberg, Ze’ev
2013-01-01
Objective: Pubertal gynecomastia (PG) occurs in up to 65% of adolescent boys. In this study, we investigated the relationship between the ages at which PG and peak height velocity occur in pubertal boys. Methods: This was a prospective study that was designed to detect PG within three months of its emergence. We examined one hundred and six boys who were followed for short stature and/or delayed puberty at three month intervals, and gynecomastia was observed in 43 of these boys (40.5%). Results: PG occurred in the 43 boys within a year of their peak height velocity, and most of these boys were at Tanner stage 3 for pubic hair and had testicular volumes between 8-10 mL. Conclusion: It is recommended that evaluation of height growth be included in the diagnostic approach to PG in boys with short stature and/or delayed puberty. The coincidence of age of peak height velocity and PG suggests a causal relationship between the two events and a role of insulin-like growth factor-1. Conflict of interest:None declared. PMID:24072080
Low-latitude zonal and vertical ion drifts seen by DE 2
NASA Technical Reports Server (NTRS)
Coley, W. R.; Heelis, R. A.
1989-01-01
Horizontal and vertical ion drift data from the DE 2 spacecraft have been used to determine average zonal and vertical plasma flow (electric field) characteristics in the +/- 26-deg dip latitude region during a time of high solar activity. The 'average data' local time profile for an apex height bin centered at 400 km indicates westward plasma flow from 0600 to 1900 solar local time ((SLT) with a maximum westward velocity of 80 m/s in the early afternoon. There is a sharp change to eastward flow at approximately 1900 hours with an early evening peak of 170 m/s. A secondary nighttime maximum exists at 0430 SLT preceeding the reversal to westward flow. This profile is in good agreement with Jicamarca, Peru, radar measurements made under similar solar maximum conditions. Haramonic analysis indicates a net superrotation which is strongest at lower apex altitudes. The diurnal term is dominant, but higher order terms through the quatradiurnal are significant.
Estimation of the optical errors on the luminescence imaging of water for proton beam
NASA Astrophysics Data System (ADS)
Yabe, Takuya; Komori, Masataka; Horita, Ryo; Toshito, Toshiyuki; Yamamoto, Seiichi
2018-04-01
Although luminescence imaging of water during proton-beam irradiation can be applied to range estimation, the height of the Bragg peak of the luminescence image was smaller than that measured with an ionization chamber. We hypothesized that the reasons of the difference were attributed to the optical phenomena; parallax errors of the optical system and the reflection of the luminescence from the water phantom. We estimated the errors cause by these optical phenomena affecting the luminescence image of water. To estimate the parallax error on the luminescence images, we measured the luminescence images during proton-beam irradiation using a cooled charge-coupled camera by changing the heights of the optical axis of the camera from those of the Bragg peak. When the heights of the optical axis matched to the depths of the Bragg peak, the Bragg peak heights in the depth profiles were the highest. The reflection of the luminescence of water with a black wall phantom was slightly smaller than that with a transparent phantom and changed the shapes of the depth profiles. We conclude that the parallax error significantly affects the heights of the Bragg peak and the reflection of the phantom affects the shapes of depth profiles of the luminescence images of water.
A simple parameterization for the height of maximum ozone heating rate
NASA Astrophysics Data System (ADS)
Zhang, Feng; Hou, Can; Li, Jiangnan; Liu, Renqiang; Liu, Cuiping
2017-12-01
It is well-known that the height of the maximum ozone heating rate is much higher than the height of the maximum ozone concentration in the stratosphere. However, it lacks an analytical expression to explain it. A simple theoretical model has been proposed to calculate the height of maximum ozone heating rate and further understand this phenomenon. Strong absorption of ozone causes the incoming solar flux to be largely attenuated before reaching the location of the maximum ozone concentration. By comparing with the exact radiative transfer calculations, the heights of the maximum ozone heating rate produced by the theoretical model are generally very close to the true values. When the cosine of solar zenith angle μ0 = 1.0 , in US Standard atmosphere, the heights of the maximum ozone heating rate by the theoretical model are 41.4 km in the band 0.204-0.233 μm, 47.9 km in the band 0.233-0.270 μm, 44.5 km in the band 0.270-0.286 μm, 37.1 km in the band 0.286-0.303 μm, and 30.2 km in the band 0.303-0.323 μm, respectively. The location of the maximum ozone heating rate is sensitive to the solar spectral range. In band 1, the heights of the maximum ozone heating rate by the theoretical model are 52.3 km for μ0 = 0.1 , 47.1 km for μ0 = 0.3 , 44.6 km for μ0 = 0.5 , 43.1 km for μ0 = 0.7 , 41.9 km for μ0 = 0.9 , 41.4 km for μ0 = 1.0 in US Standard atmosphere, respectively. This model also illustrates that the location of the maximum ozone heating rate is sensitive to the solar zenith angle.
Kim, Yang-Hyun; Ahn, Kyung-Sik; Cho, Kyung-Hwan; Kang, Chang Ho; Cho, Sung Bum; Han, Kyungdo; Rho, Yong-Kyun; Park, Yong-Gyu
2017-08-01
This study aimed to examine average height loss and the relationship between height loss and socioeconomic status (SES) among the elderly in South Korea.Data were obtained from the Korean National Health and Nutrition Examination Survey 2008-2010. A total of 5265 subjects (2818 men and 2447 women) were included. Height loss was calculated as the difference between the subject's self-reported maximum adult height and their measured current height. The height loss values were divided into quartiles (Q1-Q4) for men and women. SES was determined using a self-reported questionnaire for education level, family income, and occupation.Height loss was associated with SES in all age groups, and mean height loss increased with age. In the relationship between education level and maximum height loss (Q4), men with ≤6, 7-9, or 10-12 years of education had higher odds ratios for the prevalence of height loss (Q4) than men with the highest education level (≥13 years). With regard to the relationship between the income level and height loss (Q4), the subjects with the lowest income had an increased prevalence of maximum height loss (Q4) than the subjects with the highest income (odds ratios = 2.03 in men and 1.94 in women). Maximum height loss (Q4) was more prevalent in men and women with a low SES and less prevalent in men with a high SES than in men with a middle SES.Height loss (Q4) was associated with education level in men and with income level (especially low income) in men and women. Height loss was also associated with a low SES in men and women.
Maximum height in a conifer is associated with conflicting requirements for xylem design
Jean-Chrisophe Domec; Barbara Lachenbruch; Frederick Meinzer; David R. Woodruff; Jeffrey M. Warren; Katherine A. McCulloh
2008-01-01
Despite renewed interest in the nature of limitations on maximum tree height, the mechanisms governing ultimate and species-specific height limits are not yet understood, but they likely involve water transport dynamics. Tall trees experience increased risk of xylem embolism from air-seeding because tension in their water column increases with height owing to path-...
McCulloh, Katherine A; Johnson, Daniel M; Petitmermet, Joshua; McNellis, Brandon; Meinzer, Frederick C; Lachenbruch, Barbara
2015-07-01
The physiological mechanisms underlying the short maximum height of shrubs are not understood. One possible explanation is that differences in the hydraulic architecture of shrubs compared with co-occurring taller trees prevent the shrubs from growing taller. To explore this hypothesis, we examined various hydraulic parameters, including vessel lumen diameter, hydraulic conductivity and vulnerability to drought-induced embolism, of three co-occurring species that differed in their maximum potential height. We examined one species of shrub, one short-statured tree and one taller tree. We worked with individuals that were approximately the same age and height, which was near the maximum for the shrub species. A number of variables correlated with the maximum potential height of the species. For example, vessel diameter and vulnerability to embolism both increased while wood density declined with maximum potential height. The difference between the pressure causing 50% reduction in hydraulic conductance in the leaves and the midday leaf water potential (the leaf's hydraulic safety margin) was much larger in the shrub than the other two species. In general, trends were consistent with understory shrubs having a more conservative life history strategy than co-occurring taller species. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Das, Barshapriya; Chatterjee, Indranil; Kumar, Suman
2013-01-01
Lack of proper auditory feedback in hearing-impaired subjects results in functional voice disorder. It is directly related to discoordination of intrinsic and extrinsic laryngeal muscles and disturbed contraction and relaxation of antagonistic muscles. A total of twenty children in the age range of 5-10 years were considered for the study. They were divided into two groups: normal hearing children and hearing aid user children. Results showed a significant difference in the vital capacity, maximum sustained phonation, and fast adduction abduction rate having equal variance for normal and hearing aid user children, respectively, but no significant difference was found in the peak flow value with being statistically significant. A reduced vital capacity in hearing aid user children suggests a limited use of the lung volume for speech production. It may be inferred from the study that the hearing aid user children have poor vocal proficiency which is reflected in their voice. The use of voicing component in hearing impaired subjects is seen due to improper auditory feedback. It was found that there was a significant difference in the vital capacity, maximum sustained phonation (MSP), and fast adduction abduction rate and no significant difference in the peak flow.
Explaining a Consistent Morning NOx Maximum in the Clean Air Forest Boundary Layer
NASA Astrophysics Data System (ADS)
Shepson, P. B.; Alaghmand, M.; Bertman, S. B.; Carroll, M.; Edburg, S. L.; Jobson, B. T.; Keutsch, F. N.; Lamb, B. K.; Starn, T.; Stevens, P. S.; Wallace, W.; Zhou, X.
2010-12-01
Measurements of nitrogen oxides (NOx) at continental surface sites have frequently revealed the presence of an early morning maximum in the NOx concentration. While this observation has most often been interpreted as the result of downward mixing associated with breakup of the nocturnal inversion, the morning NOx peak often occurs earlier than the NBL breakup. Given the importance of NOx to boundary layer photochemistry near forested environments, it is essential that this phenomenon be well understood. Here we examine a variety of measurements, including NOx measurements at various heights, during the 1998, 2001, 2008, and 2009 (CABINEX) summer intensives of the Program for Research on Oxidants: PHotochemistry, Emissions and Transport (PROPHET), at the University of Michigan Biological Station in Northern Michigan. We will discuss the results, in terms of the extent to which the observations support/refute each of the potential drivers of the morning NOx peak: 1) downward mixing, 2) photochemistry on the various surfaces present, 3) soil emissions, and 4) local and long range transport of anthropogenic NOx, and we will report on our conclusions as to the predominant/likely explanation(s) for this phenomenon.
Finite Gyroradius Effects Observed in Pickup Oxygen Ions at Venus
NASA Technical Reports Server (NTRS)
Hartle, Richard E.; Intriligator, Devrie; Grebowsky, Joseph M.; Einaudi, Franco (Technical Monitor)
2000-01-01
On the dayside of Venus, the hot oxygen corona extending above the ionopause is the principal source of pickup oxygen ions. The ions are born here and picked up by the ionosheath plasma as it is deflected around the planet. These pickup ions have been observed by the Orbiter Plasma Analyzer (OPA) throughout the Pioneer Venus Orbiter (PVO) mission. They were observed over a region extending from their dayside source to great distances downstream (about 10 Venus radii), in the solar wind wake, as PVO passed through apoapsis. Finite gyroradius effects in the velocity distribution of the oxygen pickup ions are expected in the source region because the gyroradius is several times larger than the scale height of the hot oxygen source. Such effects are also expected in those regions of the ionosheath where the scale lengths of the magnetic field and the ambient plasma velocity field are less than the pickup ion gyroradius. While explicitly accounting for the spatial distribution of the hot oxygen source, an analytic expression for the pickup oxygen ion velocity distribution is developed to study how it is affected by finite gyroradii. The analysis demonstrates that as the gyroradius increases by factors of three to six above the hot oxygen scale height, the peak of the pickup oxygen ion flux distribution decreases 25 to 50% below the maximum allowed speed, which is twice the speed of the ambient plasma times the sine of the angle between the magnetic field and the flow velocity. The pickup oxygen ion flux distribution observed by OPA is shown to follow this behavior in the source region. It is also shown that this result is consistent with the pickup ion distributions observed in the wake, downstream of the source, where the flux peaks are usually well below the maximum allowed speed.
Adhesive behavior of micro/nano-textured surfaces
NASA Astrophysics Data System (ADS)
Zhang, Yuyan; Wang, Xiaoli; Li, Hanqing; Wang, Ben
2015-02-01
A numerical model of the adhesive contact between a rigid smooth sphere and an elastic textured surface based on the Lennard-Jones interatomic potential law and the Hamaker summation method is established. Textures are considered by introducing the texture height distribution into the gap equation. Simulation results show that the pull-off force on textured surfaces decreases compared to that on smooth surfaces. Furthermore, effects of sphere-shaped textures on reducing adhesion are more obvious than cylinder-shaped or cube-shaped textures when the coverage area ratio, maximum height and interval of textures are fixed. For surfaces with sphere-shaped textures, variation trends of the mean pull-off force with texture density are not monotonous, and there exists a certain range of texture densities in which the mean pull-off force is small and its variation is insignificant. In addition, the pull-off force depends also on the maximum height and radius of textures. On one hand, if the texture radius is fixed, larger maximum height results in smaller pull-off force, and if the maximum height is fixed, the pull-off force tends to increase almost linearly with increases in texture radius. On the other hand, if the height-diameter ratio of textures is fixed, the pull-off force reaches a minimum at an optimum texture radius or maximum height.
Kune, Christopher; Far, Johann; De Pauw, Edwin
2016-12-06
Ion mobility spectrometry (IMS) is a gas phase separation technique, which relies on differences in collision cross section (CCS) of ions. Ionic clouds of unresolved conformers overlap if the CCS difference is below the instrumental resolution expressed as CCS/ΔCCS. The experimental arrival time distribution (ATD) peak is then a superimposition of the various contributions weighted by their relative intensities. This paper introduces a strategy for accurate drift time determination using traveling wave ion mobility spectrometry (TWIMS) of poorly resolved or unresolved conformers. This method implements through a calibration procedure the link between the peak full width at half-maximum (fwhm) and the drift time of model compounds for wide range of settings for wave heights and velocities. We modified a Gaussian equation, which achieves the deconvolution of ATD peaks where the fwhm is fixed according to our calibration procedure. The new fitting Gaussian equation only depends on two parameters: The apex of the peak (A) and the mean drift time value (μ). The standard deviation parameter (correlated to fwhm) becomes a function of the drift time. This correlation function between μ and fwhm is obtained using the TWIMS calibration procedure which determines the maximum instrumental ion beam diffusion under limited and controlled space charge effect using ionic compounds which are detected as single conformers in the gas phase. This deconvolution process has been used to highlight the presence of poorly resolved conformers of crown ether complexes and peptides leading to more accurate CCS determinations in better agreement with quantum chemistry predictions.
Effects of altering heel wedge properties on gait with the Intrepid Dynamic Exoskeletal Orthosis.
Ikeda, Andrea J; Fergason, John R; Wilken, Jason M
2018-06-01
The Intrepid Dynamic Exoskeletal Orthosis is a custom-made dynamic response carbon fiber device. A heel wedge, which sits in the shoe, is an integral part of the orthosis-heel wedge-shoe system. Because the device restricts ankle movement, the system must compensate to simulate plantarflexion and allow smooth forward progression during gait. To determine the influence of wedge height and durometer on the walking gait of individuals using the Intrepid Dynamic Exoskeletal Orthosis. Repeated measures. Twelve individuals walked over level ground with their Intrepid Dynamic Exoskeletal Orthosis and six different heel wedges of soft or firm durometer and 1, 2, or 3 cm height. Center of pressure velocity, joint moments, and roll-over shape were calculated for each wedge. Height and durometer significantly affected time to peak center of pressure velocity, time to peak internal dorsiflexion and knee extension moments, time to ankle moment zero crossing, and roll-over shape center of curvature anterior-posterior position. Wedge height had a significant influence on peak center of pressure velocity, peak dorsiflexion moment, time to peak knee extension moment, and roll-over shape radius and vertical center of curvature. Changes in wedge height and durometer systematically affected foot loading. Participants preferred wedges which produced ankle moment zero crossing timing, peak internal knee extension moment timing, and roll-over shape center of curvature anterior-posterior position close to that of able-bodied individuals. Clinical relevance Adjusting the heel wedge is a simple, straightforward way to adjust the orthosis-heel wedge-shoe system. Changing wedge height and durometer significantly alters loading of the foot and has great potential to improve an individual's gait.
Relative net vertical impulse determines jumping performance.
Kirby, Tyler J; McBride, Jeffrey M; Haines, Tracie L; Dayne, Andrea M
2011-08-01
The purpose of this investigation was to determine the relationship between relative net vertical impulse and jump height in a countermovement jump and static jump performed to varying squat depths. Ten college-aged males with 2 years of jumping experience participated in this investigation (age: 23.3 ± 1.5 years; height: 176.7 ± 4.5 cm; body mass: 84.4 ± 10.1 kg). Subjects performed a series of static jumps and countermovement jumps in a randomized fashion to a depth of 0.15, 0.30, 0.45, 0.60, and 0.75 m and a self-selected depth (static jump depth = 0.38 ± 0.08 m, countermovement jump depth = 0.49 ± 0.06 m). During the concentric phase of each jump, peak force, peak velocity, peak power, jump height, and net vertical impulse were recorded and analyzed. Net vertical impulse was divided by body mass to produce relative net vertical impulse. Increasing squat depth corresponded to a decrease in peak force and an increase in jump height and relative net vertical impulse for both static jump and countermovement jump. Across all depths, relative net vertical impulse was statistically significantly correlated to jump height in the static jump (r = .9337, p < .0001, power = 1.000) and countermovement jump (r = .925, p < .0001, power = 1.000). Across all depths, peak force was negatively correlated to jump height in the static jump (r = -0.3947, p = .0018, power = 0.8831) and countermovement jump (r = -0.4080, p = .0012, power = 0.9050). These results indicate that relative net vertical impulse can be used to assess vertical jump performance, regardless of initial squat depth, and that peak force may not be the best measure to assess vertical jump performance.
Determination of the maximum MGS mounting height : phase II detailed analysis with LS-DYNA.
DOT National Transportation Integrated Search
2012-12-01
Determination of the maximum Midwest Guardrail System (MGS) mounting height was performed in two phases. : Phase I concentrated on crash testing: two full-scale crash tests were performed on the MGS with top-rail mounting heights : of 34 in. (864 mm)...
Judgments of visually perceived eye level (VPEL) in outdoor scenes: effects of slope and height.
O'Shea, Robert P; Ross, Helen E
2007-01-01
When one looks up a hill from below, its peak appears lower than it is; when one looks at a hill across a valley from another peak, the peak of that hill appears higher than it is. These illusions have sometimes been explained by assuming that the subjective horizontal is assimilated to the nearby slope: when looking up a slope, the subjective horizontal is raised, diminishing the height of the peak above the subjective horizontal, and making the peak appear lower than it is. When looking down a slope towards another hill, the subjective horizontal is lowered, increasing the height of that hill above the subjective horizontal, and making its peak appear higher than it is. To determine subjective horizontals we measured visually perceived eye levels (VPELs) in 21 real-world scenes on a range of slopes. We found that VPEL indeed assimilates by about 40% to slopes between 7 degrees downhill and 7 degrees uphill. For larger uphill slopes up to 23 degrees, VPEL asymptotes at about 4.5 degrees. For larger downhill slopes, the assimilation of VPEL diminishes, and at 23 degrees is raised by about 1 degree. These results are consistent with the assimilation explanation of the illusions if we assume that steep downhill slopes lose their effectiveness by being out of view. We also found that VPEL was raised when viewing from a height, in comparison with ground-level views, perhaps because the perceived slope increases with viewing height.
Numerical Calculation of the Peaking Factor of a Water-Cooled W/Cu Monoblock for a Divertor
NASA Astrophysics Data System (ADS)
Han, Le; Chang, Haiping; Zhang, Jingyang; Xu, Tiejun
2015-09-01
In order to accurately predict the incident critical heat flux (ICHF, the heat flux at the heated surface when CHF occurs) of a water-cooled W/Cu monoblock for a divertor, the exact knowledge of its peaking factors (fp) under one-sided heating conditions with different design parameters is a key issue. In this paper, the heat conduction in the solid domain of a water-cooled W/Cu monoblock is calculated numerically by assuming the local heat transfer coefficients (HTC) of the cooling wall to be functions of the local wall temperature, so as to obtain fp. The reliability of the calculation method is validated by an experimental example result, with the maximum error of 2.1% only. The effects of geometric and flow parameters on the fp of a water-cooled W/Cu monoblock are investigated. Within the scope of this study, it is shown that the fp increases with increasing dimensionless W/Cu monoblock width and armour thickness (the shortest distance between the heated surface and Cu layer), and the maximum increases are 43.8% and 22.4% respectively. The dimensionless W/Cu monoblock height and Cu thickness have little effect on fp. The increase of Reynolds number and Jakob number causes the increase of fp, and the maximum increases are 6.8% and 9.6% respectively. Based on the calculated results, an empirical correlation on peaking factor is obtained via regression. These results provide a valuable reference for the thermal-hydraulic design of water-cooled divertors. supported by National Magnetic Confinement Fusion Science Program of China (No. 2010GB104005) and Funding of Jiangsu Innovation Program for Graduate Education, China (CXLX12_0170), the Fundamental Research Funds for the Central Universities of China
Liu, Chengyu; Zhao, Lina; Liu, Changchun
2014-01-01
An early return of the reflected component in the arterial pulse has been recognized as an important indicator of cardiovascular risk. This study aimed to determine the effects of blood pressure and sex factor on the change of wave reflection using Gaussian fitting method. One hundred and ninety subjects were enrolled. They were classified into four blood pressure categories based on the systolic blood pressures (i.e., ≤ 110, 111-120, 121-130 and ≥ 131 mmHg). Each blood pressure category was also stratified for sex factor. Electrocardiogram (ECG) and radial artery pressure waveforms (RAPW) signals were recorded for each subject. Ten consecutive pulse episodes from the RAPW signal were extracted and normalized. Each normalized pulse episode was fitted by three Gaussian functions. Both the peak position and peak height of the first and second Gaussian functions, as well as the peak position interval and peak height ratio, were used as the evaluation indices of wave reflection. Two-way ANOVA results showed that with the increased blood pressure, the peak position of the second Gaussian significantly shorten (P < 0.01), the peak height of the first Gaussian significantly decreased (P < 0.01) and the peak height of the second Gaussian significantly increased (P < 0.01), inducing the significantly decreased peak position interval and significantly increased peak height ratio (both P < 0.01). Sex factor had no significant effect on all evaluation indices (all P > 0.05). Moreover, the interaction between sex and blood pressure factors also had no significant effect on all evaluation indices (all P > 0.05). These results showed that blood pressure has significant effect on the change of wave reflection when using the recently developed Gaussian fitting method, whereas sex has no significant effect. The results also suggested that the Gaussian fitting method could be used as a new approach for assessing the arterial wave reflection.
2015 Southern Taurid fireballs and asteroids 2005 UR and 2005 TF50
NASA Astrophysics Data System (ADS)
Olech, A.; Żołądek, P.; Wiśniewski, M.; Rudawska, R.; Bęben, M.; Krzyżanowski, T.; Myszkiewicz, M.; Stolarz, M.; Gawroński, M.; Gozdalski, M.; Suchodolski, T.; Węgrzyk, W.; Tymiński, Z.
2016-09-01
On the night of October 31, 2015 two bright Southern Taurid fireballs occurred over Poland, being one of the most spectacular bolides of this shower in recent years. The first fireball - PF311015a Okonek - was detected by six video stations of Polish Fireball Network (PFN) and photographed by several bystanders, allowing for precise determination of the trajectory and orbit of the event. The PF311015a Okonek entered Earth's atmosphere with the velocity of 33.2 ± 0.1 km s-1 and started to shine at height of 117.88 ± 0.05 km. The maximum brightness of -16.0 ± 0.4 mag was reached at height of 82.5 ± 0.1 km. The trajectory of the fireball ended at height of 60.2 ± 0.2 km with terminal velocity of 30.2 ± 1.0 km s-1. The second fireball - PF311015b Ostrowite - was detected by six video stations of PFN. It started with velocity of 33.2 ± 0.1 km s-1 at height of 108.05 ± 0.02 km. The peak brightness of -14.8 ± 0.5 mag was recorded at height of 82.2 ± 0.1 km. The terminal velocity was 31.8 ± 0.5 km s-1 and was observed at height of 57.86 ± 0.03 km. The orbits of both fireballs are similar not only to orbits of Southern Taurids and comet 2P/Encke, but even closer resemblance was noticed for orbits of 2005 UR and 2005 TF50 asteroids. Especially the former object is interesting because of its close flyby during spectacular Taurid maximum in 2005. We carried out a further search to investigate the possible genetic relationship of Okonek and Ostrowite fireballs with both asteroids, that are considered to be associated with Taurid complex. Although, we could not have confirmed unequivocally the relation between fireballs and these objects, we showed that both asteroids could be associated, having the same origin in a disruption process that separates them.
Antireflective surface structures in glass by self-assembly of SiO2 nanoparticles and wet etching.
Maier, Thomas; Bach, David; Müllner, Paul; Hainberger, Rainer; Brückl, Hubert
2013-08-26
We describe the fabrication of an antireflective surface structure with sub-wavelength dimensions on a glass surface using scalable low-cost techniques involving sol-gel coating, thermal annealing, and wet chemical etching. The glass surface structure consists of sand dune like protrusions with 250 nm periodicity and a maximum peak-to-valley height of 120 nm. The antireflective structure increases the transmission of the glass up to 0.9% at 700 nm, and the transmission remains enhanced over a wide spectral range and for a wide range of incident angles. Our measurements reveal a strong polarization dependence of the transmission change.
Conrads, Paul; Feaster, Toby D.; Harrelson, Larry G.
2008-01-01
The Congaree National Park was established '... to preserve and protect for the education, inspiration, and enjoyment of present and future generations an outstanding example of a near-virgin, southern hardwood forest situated in the Congaree River flood plain in Richland County, South Carolina' (Public Law 94-545). The resource managers at Congaree National Park are concerned about the timing, frequency, magnitude, and duration of flood-plain inundation of the Congaree River. The dynamics of the Congaree River directly affect ground-water levels in the flood plain, and the delivery of sediments and nutrients is constrained by the duration, extent, and frequency of flooding from the Congaree River. The Congaree River is the southern boundary of the Congaree National Park and is formed by the convergence of the Saluda and Broad Rivers 24 river miles upstream from the park. The streamflow of the Saluda River has been regulated since 1929 by the operation of the Saluda Dam at Lake Murray. The U.S. Geological Survey, in cooperation with the National Park Service, Congaree National Park, studied the interaction between surface water in the Congaree River and ground water in the flood plain to determine the effect Saluda Dam operations have on water levels in the Congaree National Park flood plain. Analysis of peak flows showed the reduction in peak flows after the construction of Lake Murray was more a result of climate variability and the absence of large floods after 1930 than the operation of the Lake Murray dam. Dam operations reduced the recurrence interval of the 2-year to 100-year peak flows by 6.1 to 17.6 percent, respectively. Analysis of the daily gage height of the Congaree River showed that the dam has had the effect of lowering high gage heights (95th percentile) in the first half of the year (December to May) and raising low gage heights (5th percentile) in the second half of the year (June to November). The dam has also had the effect of increasing the 1-, 3-, 7-, 30-, and 90-day minimum gage heights by as much as 23.9 percent and decreasing the 1-, 3-, 7-, 30-, and 90-day maximum gage heights by as much as 7.2 percent. Analysis of the ground-water elevations in the Congaree National Park flood plain shows similar results as the gage-height analysis--the dam has had the effect of lowering high ground-water elevations and increasing low ground-water elevations. Overall, the operation of the dam has had a greater effect on the gage heights within the river banks than gage heights in the flood plain. This result may have a greater effect on the subsurface water levels of the surficial flood-plain aquifer than the frequency and magnitude of inundation of the flood plain.
Manifestations of Proprioception During Vertical Jumps to Specific Heights
Struzik, Artur; Pietraszewski, Bogdan; Winiarski, Sławomir; Juras, Grzegorz; Rokita, Andrzej
2017-01-01
Abstract Artur, S, Bogdan, P, Kawczyński, A, Winiarski, S, Grzegorz, J, and Andrzej, R. Manifestations of proprioception during vertical jumps to specific heights. J Strength Cond Res 31(6): 1694–1701, 2017—Jumping and proprioception are important abilities in many sports. The efficiency of the proprioceptive system is indirectly related to jumps performed at specified heights. Therefore, this study recorded the ability of young athletes who play team sports to jump to a specific height compared with their maximum ability. A total of 154 male (age: 14.8 ± 0.9 years, body height: 181.8 ± 8.9 cm, body weight: 69.8 ± 11.8 kg, training experience: 3.8 ± 1.7 years) and 151 female (age: 14.1 ± 0.8 years, body height: 170.5 ± 6.5 cm, body weight: 60.3 ± 9.4 kg, training experience: 3.7 ± 1.4 years) team games players were recruited for this study. Each participant performed 2 countermovement jumps with arm swing to 25, 50, 75, and 100% of the maximum height. Measurements were performed using a force plate. Jump height and its accuracy with respect to a specified height were calculated. The results revealed no significant differences in jump height and its accuracy to the specified heights between the groups (stratified by age, sex, and sport). Individuals with a higher jumping accuracy also exhibited greater maximum jump heights. Jumps to 25% of the maximum height were approximately 2 times higher than the target height. The decreased jump accuracy to a specific height when attempting to jump to lower heights should be reduced with training, particularly among athletes who play team sports. These findings provide useful information regarding the proprioceptive system for team sport coaches and may shape guidelines for training routines by working with submaximal loads. PMID:28538322
Foot Type Biomechanics Part 2: are structure and anthropometrics related to function?
Mootanah, Rajshree; Song, Jinsup; Lenhoff, Mark W; Hafer, Jocelyn F; Backus, Sherry I; Gagnon, David; Deland, Jonathan T; Hillstrom, Howard J
2013-03-01
Many foot pathologies are associated with specific foot types. If foot structure and function are related, measurement of either could assist with differential diagnosis of pedal pathologies. Biomechanical measures of foot structure and function are related in asymptomatic healthy individuals. Sixty-one healthy subjects' left feet were stratified into cavus (n=12), rectus (n=27) and planus (n=22) foot types. Foot structure was assessed by malleolar valgus index, arch height index, and arch height flexibility. Anthropometrics (height and weight), age, and walking speed were measured. Foot function was assessed by center of pressure excursion index, peak plantar pressure, maximum force, and gait pattern parameters. Foot structure and anthropometric variables were entered into stepwise linear regression models to identify predictors of function. Measures of foot structure and anthropometrics explained 10-37% of the model variance (adjusted R(2)) for gait pattern parameters. When walking speed was included, the adjusted R(2) increased to 45-77% but foot structure was no longer a factor. Foot structure and anthropometrics predicted 7-47% of the model variance for plantar pressure and 16-64% for maximum force parameters. All multivariate models were significant (p<0.05), supporting acceptance of the hypothesis. Foot structure and function are related in asymptomatic healthy individuals. The structural parameters employed are basic measurements that do not require ionizing radiation and could be used in a clinical setting. Further research is needed to identify additional predictive parameters (plantar soft tissue characteristics, skeletal alignment, and neuromuscular control) and to include individuals with pathology. Copyright © 2012. Published by Elsevier B.V.
Foot Type Biomechanics Part 2: Are structure and anthropometrics related to function?
Mootanah, Rajshree; Song, Jinsup; Lenhoff, Mark W.; Hafer, Jocelyn F.; Backus, Sherry I.; Gagnon, David; Deland, Jonathan T.; Hillstrom, Howard J.
2013-01-01
Background Many foot pathologies are associated with specific foot types. If foot structure and function are related, measurement of either could assist with differential diagnosis of pedal pathologies. Hypothesis Biomechanical measures of foot structure and function are related in asymptomatic healthy individuals. Methods Sixty-one healthy subjects' left feet were stratified into cavus (n = 12), rectus (n = 27) and planus (n = 22) foot types. Foot structure was assessed by malleolar valgus index, arch height index, and arch height flexibility. Anthropometrics (height and weight), age, and walking speed were measured. Foot function was assessed by center of pressure excursion index, peak plantar pressure, maximum force, and gait pattern parameters. Foot structure and anthropometric variables were entered into stepwise linear regression models to identify predictors of function. Results Measures of foot structure and anthropometrics explained 10–37% of the model variance (adjusted R2) for gait pattern parameters. When walking speed was included, the adjusted R2 increased to 45–77% but foot structure was no longer a factor. Foot structure and anthropometrics predicted 7–47% of the model variance for plantar pressure and 16–64% for maximum force parameters. All multivariate models were significant (p < 0.05), supporting acceptance of the hypothesis. Discussion and conclusion Foot structure and function are related in asymptomatic healthy individuals. The structural parameters employed are basic measurements that do not require ionizing radiation and could be used in a clinical setting. Further research is needed to identify additional predictive parameters (plantar soft tissue characteristics, skeletal alignment, and neuromuscular control) and to include individuals with pathology. PMID:23107624
Minetti, A E; Ardigò, L P; Susta, D; Cotelli, F
1998-12-01
The use of muscles as power dissipators is investigated in this study, both from the modellistic and the experimental points of view. Theoretical predictions of the drop landing manoeuvre for a range of initial conditions have been obtained by accounting for the mechanical characteristics of knee extensor muscles, the limb geometry and assuming maximum neural activation. Resulting dynamics have been represented in the phase plane (vertical displacement versus speed) to better classify the damping performance. Predictions of safe landing in sedentary subjects were associated to dropping from a maximum (feet) height of 1.6-2.0 m (about 11 m on the moon). Athletes can extend up to 2.6-3.0 m, while for obese males (m = 100 kg, standard stature) the limit should reduce to 0.9-1.3 m. These results have been calculated by including in the model the estimated stiffness of the 'global elastic elements' acting below the squat position. Experimental landings from a height of 0.4, 0.7, 1.1 m (sedentary males (SM) and male (AM) and female (AF) athletes from the alpine ski national team) showed dynamics similar to the model predictions. While the peak power (for a drop height of about 0.7 m) was similar in SM and AF (AM shows a +40% increase, about 33 W/kg), AF stopped the downward movement after a time interval (0.219 +/- 0.030 s) from touch-down 20% significantly shorter than SM. Landing strategy and the effect of anatomical constraints are discussed in the paper.
Kang, Huibin; Ji, Wenjun; Qian, Zenghui; Li, Youxiang; Jiang, Chuhan; Wu, Zhongxue; Wen, Xiaolong; Xu, Wenjuan; Liu, Aihua
2015-01-01
This study analyzed the rupture risk of intracranial aneurysms (IAs) according to aneurysm characteristics by comparing the differences between two aneurysms in different locations within the same patient. We utilized this self-controlled model to exclude potential interference from all demographic factors to study the risk factors related to IA rupture. A total of 103 patients were diagnosed with IAs between January 2011 and April 2015 and were enrolled in this study. All enrolled patients had two IAs. One IA (the case) was ruptured, and the other (the control) was unruptured. Aneurysm characteristics, including the presence of a daughter sac, the aneurysm neck, the parent artery diameter, the maximum aneurysm height, the maximum aneurysm width, the location, the aspect ratio (AR, maximum perpendicular height/average neck diameter), the size ratio (SR, maximum aneurysm height/average parent diameter) and the width/height ratio (WH ratio, maximum aneurysm width/maximum aneurysm height), were collected and analyzed to evaluate the rupture risks of the two IAs within each patient and to identify the independent risk factors associated with IA rupture. Multivariate, conditional, backward, stepwise logistic regression analysis was performed to identify the independent risk factors associated with IA rupture. The multivariate analysis identified the presence of a daughter sac (odds ratio [OR], 13.80; 95% confidence interval [CI], 1.65-115.87), a maximum aneurysm height ≥7 mm (OR, 4.80; 95% CI, 1.21-18.98), location on the posterior communicating artery (PCOM) or anterior communicating artery (ACOM; OR, 3.09; 95% CI, 1.34-7.11) and SR (OR, 2.13; 95% CI, 1.16-3.91) as factors that were significantly associated with IA rupture. The presence of a daughter sac, the maximum aneurysm height, PCOM or ACOM locations and SR (>1.5±0.7) of unruptured IAs were significantly associated with IA rupture.
NASA Astrophysics Data System (ADS)
Schmidt, T.; Cammas, J.-P.; Smit, H. G. J.; Heise, S.; Wickert, J.; Haser, A.
2010-12-01
In this study we discuss characteristics of the Northern Hemisphere (NH) midlatitude (40°N-60°N) tropopause inversion layer (TIL) based on two data sets. First, temperature measurements from GPS radio occultation data (CHAMP and GRACE) for the time interval 2001-2009 are used to exhibit seasonal properties of the TIL bottom height defined here as the height of the squared buoyancy frequency minimum N2 below the thermal tropopause, the TIL maximum height as the height of the N2 maximum above the tropopause, and the TIL top height as the height of the temperature maximum above the tropopause. Mean values of the TIL bottom, TIL maximum, and TIL top heights relative to the thermal tropopause for the NH midlatitudes are (-2.08 ± 0.35) km, (0.52 ± 0.10) km and (2.10 ± 0.23) km, respectively. A seasonal cycle of the TIL bottom and TIL top height is observed with values closer to the thermal tropopause during summer. Secondly, high-resolution temperature and trace gas profile measurements on board commercial aircrafts (Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) program) from 2001-2008 for the NH midlatitude (40°N-60°N) region are used to characterize the TIL as a mixing layer around the tropopause. Mean TIL bottom, TIL maximum, and TIL top heights based on the MOZAIC temperature (N2) measurements confirm the results from the GPS data, even though most of the MOZAIC profiles used here are available under cyclonic situations. Further, we demonstrate that the mixing ratio gradients of ozone (O3) and carbon monoxide (CO) are suitable parameters for characterizing the TIL structure.
Investigation of secondary flows in turbulent pipe flows with three-dimensional sinusoidal walls
NASA Astrophysics Data System (ADS)
Chan, Leon; MacDonald, Michael; Chung, Daniel; Hutchins, Nicholas; Ooi, Andrew
2017-11-01
The occurrence of secondary flows is systematically investigated via Direct Numerical Simulations (DNS) of turbulent flow in a rough wall pipe at friction Reynolds numbers of 540. In this study, the peak-to-trough height of the roughness elements, which consist of three-dimensional sinusoidal roughness, is fixed at 120 viscous units while the wavelength of the roughness elements is varied. The solidity or effective slope (ES) of the roughness ranges from the sparse regime (ES = 0.18) to the closely packed roughness/dense regime (ES = 0.72). The time-independent dispersive stresses, which arise due to the stationary features of the flow, are analysed and are found to increase with increasing roughness wavelength. These dispersive stresses are related to the occurrence of secondary flows and are maximum within the roughness canopy. Above the crest of the roughness elements, the dispersive stresses reduce to zero at wall-normal heights greater than half of the roughness wavelength. This study has found that the size and wall-normal extent of the secondary flows scales with the roughness wavelength and can reach wall-normal heights of almost half of the pipe radius.
Ebadian, Behnaz; Farzin, Mahmoud; Talebi, Saeid; Khodaeian, Niloufar
2012-01-01
Background: Available restorative space and bar height is an important factor in stress distribution of implant-supported overdentures. The purpose of this study was to evaluate the effect of different vertical restorative spaces and different bar heights on the stress distribution around implants by 3D finite element analysis. Materials and Methods: 3D finite element models were developed from mandibular overdentures with two implants in the interforaminal region. In these models, four different bar heights from gingival crest (0.5, 1, 1.5, 2 mm) with 15 mm occlusal plane height and three different occlusal plane heights from gingival crest (9, 12, 15 mm) with 2 mm bar height were analyzed. A vertical unilateral and a bilateral load of 150 N were applied to the central occlusal fossa of the first molar and the stress of bone around implant was analyzed by finite element analysis. Results: By increasing vertical restorative space, the maximum stress values around implants were found to be decreased in unilateral loading models but slightly increased in bilateral loading cases. By increasing bar height from gingival crest, the maximum stress values around implants were found to be increased in unilateral loading models but slightly decreased in bilateral loading cases. In unilateral loading models, maximum stress was found in a model with 9 mm occlusal plane height and 1.5 mm bar height (6.254 MPa), but in bilateral loading cases, maximum stress was found in a model with 15 mm occlusal plane height and 0.5 mm bar height (3.482 MPa). Conclusion: The reduction of bar height and increase in the thickness of acrylic resin base in implant-supported overdentures are biomechanically favorable and may result in less stress in periimplant bone. PMID:23559952
Knee Joint Kinematics and Kinetics During a Lateral False-Step Maneuver
Golden, Grace M.; Pavol, Michael J.; Hoffman, Mark A.
2009-01-01
Abstract Context: Cutting maneuvers have been implicated as a mechanism of noncontact anterior cruciate ligament (ACL) injuries in collegiate female basketball players. Objective: To investigate knee kinematics and kinetics during running when the width of a single step, relative to the path of travel, was manipulated, a lateral false-step maneuver. Design: Crossover design. Setting: University biomechanics laboratory. Patients or Other Participants: Thirteen female collegiate basketball athletes (age = 19.7 ± 1.1 years, height = 172.3 ± 8.3 cm, mass = 71.8 ± 8.7 kg). Intervention(s): Three conditions: normal straight-ahead running, lateral false step of width 20% of body height, and lateral false step of width 35% of body height. Main Outcome Measure(s): Peak angles and internal moments for knee flexion, extension, abduction, adduction, internal rotation, and external rotation. Results: Differences were noted among conditions in peak knee angles (flexion [P < .01], extension [P = .02], abduction [P < .01], and internal rotation [P < .01]) and peak internal knee moments (abduction [P < .01], adduction [P < .01], and internal rotation [P = .03]). The lateral false step of width 35% of body height was associated with larger peak flexion, abduction, and internal rotation angles and larger peak abduction, adduction, and internal rotation moments than normal running. Peak flexion and internal rotation angles were also larger for the lateral false step of width 20% of body height than for normal running, whereas peak extension angle was smaller. Peak internal rotation angle increased progressively with increasing step width. Conclusions: Performing a lateral false-step maneuver resulted in changes in knee kinematics and kinetics compared with normal running. The differences observed for lateral false steps were consistent with proposed mechanisms of ACL loading, suggesting that lateral false steps represent a hitherto neglected mechanism of noncontact ACL injury. PMID:19771289
A Unified Theory for the Great Plains Nocturnal Low-Level Jet
NASA Astrophysics Data System (ADS)
Shapiro, A.; Fedorovich, E.; Rahimi, S.
2014-12-01
The nocturnal low-level jet (LLJ) is a warm-season atmospheric boundary layer phenomenon common to the Great Plains of the United States and other places worldwide, typically in regions east of mountain ranges. Low-level jets develop around sunset in fair weather conditions conducive to strong radiational cooling, reach peak intensity in the pre-dawn hours, and then dissipate with the onset of daytime convective mixing. In this study we consider the LLJ as a diurnal oscillation of a stably stratified atmosphere overlying a planar slope on the rotating Earth. The oscillations arise from diurnal cycles in both the heating of the slope (mechanism proposed by Holton in 1967) and the turbulent mixing (mechanism proposed by Blackadar in 1957). The governing equations are the equations of motion, incompressibility condition, and thermal energy in the Boussinesq approximation, with turbulent heat and momentum exchange parameterized through spatially constant but diurnally varying turbulent diffusion coefficients (diffusivities). Analytical solutions are obtained for diffusivities with piecewise constant waveforms (step-changes at sunrise and sunset) and slope temperatures/buoyancies with piecewise linear waveforms (saw-tooth function with minimum at sunrise and maximum before sunset). The jet characteristics are governed by eleven parameters: slope angle, Coriolis parameter, environmental buoyancy frequency, geostrophic wind strength, daytime and nighttime diffusivities, maximum (daytime) and minimum (nighttime) slope buoyancies, duration of daylight, lag time between peak slope buoyancy and sunset, and a Newtonian cooling time scale. An exploration of the parameter space yields results that are broadly consistent with findings particular to the Holton and Blackadar theories, and agree with climatological observations, for example, that stronger jets tend to occur over slopes of 0.15-0.25 degrees characteristic of the Great Plains. The solutions also yield intriguing predictions that peak jet strength increases with attenuation of the minimum surface buoyancy, and that the single most important parameter determining jet height is the nighttime diffusivity, with weaker nightime diffusion associated with smaller jet heights. These and other highlights will be discussed in the presentation.
Variation in light intensity with height and time from subsequent lightning return strokes
NASA Technical Reports Server (NTRS)
Jordan, D. M.; Uman, M. A.
1983-01-01
Photographic measurements of relative light intensity as a function of height and time have been conducted for seven return strokes in two lightning flashes at 7.8 and 8.7 km ranges, using film which possesses an approximately constant spectral response in the 300-670 nm range. The amplitude of the initial light peak is noted to decrease exponentially with height, with a decay constant of 0.6-0.8 km. The logarithm of the peak light intensity near the ground is found to be approximately proportional to the initial peak electric field intensity, implying that the current decrease with height may be much slower than the light decrease. Absolute light intensity is presently estimated through the integration of the photographic signals from individual channel segments, in order to simulate the calibrated, all-sky photoelectric data of Guo and Krider (1982).
Lee, Sae Yong; Hertel, Jay; Lee, Sung Cheol
2010-01-01
Rearfoot eversion motion and arch height are believed to contribute to increased tension on the plantar fascia and arch collapse during gait but the specifics of these relationships are not clear. To examine the relationships among static arch height, rearfoot eversion, dynamic arch height, and plantar fascia tension. 28 healthy males participated. After static arch height was measured, the subjects were asked to run at 4.5m/s while frontal plane rearfoot motion, dynamic arch height, and ground reaction forces were collected. The relationships among variables were examined with bivariate correlations and path analysis. The results indicated a high correlation between dynamic arch height and static arch height (r=0.642), plantar fascia tension (r=-0.797), and maximum rearfoot eversion motion during gait (r=-0.518). The path analysis model without the direct rearfoot eversion effect explained 81.2% of the variance in plantar fascia tension, while the model with the direct rearfoot eversion effect explained 82.1% of the variance in plantar fascia tension. Including the indirect effect of maximum rearfoot eversion motion on plantar fascia tension through control of dynamic arch height is the model that best explains the interrelationships of these foot characteristics. The amount of maximum rearfoot eversion motion itself is not a good predictor of plantar fascia tension, however, together with the arch height, maximum rearfoot eversion motion is a good predictor because it has a pronounced indirect effect on plantar fascia tension. Copyright 2010. Published by Elsevier Ltd.
High Reynolds number rough wall turbulent boundary layer experiments using Braille surfaces
NASA Astrophysics Data System (ADS)
Harris, Michael; Monty, Jason; Nova, Todd; Allen, James; Chong, Min
2007-11-01
This paper details smooth, transitional and fully rough turbulent boundary layer experiments in the New Mexico State high Reynolds number rough wall wind tunnel. The initial surface tested was generated with a Braille printer and consisted of an uniform array of Braille points. The average point height being 0.5mm, the spacing between the points in the span was 0.5mm and the surface consisted of span wise rows separated by 4mm. The wavelength to peak ratio was 8:1. The boundary layer thickness at the measurement location was 190mm giving a large separation of roughness height to layer thickness. The maximum friction velocity was uτ=1.5m/s at Rex=3.8 x10^7. Results for the skin friction co-efficient show that this surface follows a Nikuradse type inflectional curve and that Townsends outer layer similarity hypothesis is valid for rough wall flows with a large separation of scales. Mean flow and turbulence statistics will be presented.
Choice of optimum heights for registration of ionospheric response onto earthquakes
NASA Astrophysics Data System (ADS)
Krasnov, Valerii; Gotur, Ivan; Kuleshov, Yurii; Cherny, Sergei
2017-10-01
To investigate the dependence of ionospheric disturbances on height we used model calculations, and the data of seismic and ionospheric observations during the Tohoku-Oki earthquake. High-altitude dependences of "portraits" of ionospheric disturbances are calculated for a case of influence of a seismic P-wave onto the ionosphere. We compared the "portraits" of ionospheric disturbances with the "portraits" of the seismic recording. The correlation coefficient of the recordings for the height of 100 km was about 0.81, for 130 km - 0.85, for 160 km - 0.77, for 180 km - 0.76, for 200 km - 0.7, for 230 km -0.54 and for 250 km - 0.41. At the same time the maximum of F2-layer was at the height about 250 km. Thus, the height of a maximum of F2-layer was not optimum for registration of ionospheric disturbances due to the earthquake. It was preferable to carry out measurements of the ionospheric disturbances at the heights below 200 km. The profile of amplitude of the ionospheric disturbance had no sharply expressed maximum at the height of a maximum of F2-layer. Therefore it is problematic to use the approach of the thin layer for interpretation of TEC disturbances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venezian, G.; Bretschneider, C.L.
1980-08-01
This volume details a new methodology to analyze statistically the forces experienced by a structure at sea. Conventionally a wave climate is defined using a spectral function. The wave climate is described using a joint distribution of wave heights and periods (wave lengths), characterizing actual sea conditions through some measured or estimated parameters like the significant wave height, maximum spectral density, etc. Random wave heights and periods satisfying the joint distribution are then generated. Wave kinetics are obtained using linear or non-linear theory. In the case of currents a linear wave-current interaction theory of Venezian (1979) is used. The peakmore » force experienced by the structure for each individual wave is identified. Finally, the probability of exceedance of any given peak force on the structure may be obtained. A three-parameter Longuet-Higgins type joint distribution of wave heights and periods is discussed in detail. This joint distribution was used to model sea conditions at four potential OTEC locations. A uniform cylindrical pipe of 3 m diameter, extending to a depth of 550 m was used as a sample structure. Wave-current interactions were included and forces computed using Morison's equation. The drag and virtual mass coefficients were interpolated from published data. A Fortran program CUFOR was written to execute the above procedure. Tabulated and graphic results of peak forces experienced by the structure, for each location, are presented. A listing of CUFOR is included. Considerable flexibility of structural definition has been incorporated. The program can easily be modified in the case of an alternative joint distribution or for inclusion of effects like non-linearity of waves, transverse forces and diffraction.« less
Predictions and Observations of Munitions Burial Under Intense Storm Waves at Duck, NC
NASA Astrophysics Data System (ADS)
Calantoni, J.; Klammer, H.; Sheremet, A.
2017-12-01
The fate of munitions or unexploded ordnance (UXO) resting on a submarine sediment bed is a critical safety concern. Munitions may remain in place or completely disappear for significant but unknown periods, after becoming buried in the sediment bed. Clearly, burial of munitions drastically complicates the detection and removal of potential threats. Here, we present field data of wave height and surrogate munitions burial depths near the 8-m isobath at the U.S. Army Corps of Engineers, Field Research Facility, Duck, North Carolina, observed between January and March 2015. The experiment captured a remarkable sequence of storms that included at least 10 events, of which 6 were characterized by wave fields of significant heights exceeding 2 m and with peak periods of approximately 10 s. During the strongest storm, waves of 14 s period and heights exceeding 2 m were recorded for more than 3 days; significant wave height reached 5 m at the peak of activity. At the end of the experiment, divers measured munition burial depths of up to 60 cm below the seabed level. However, the local bathymetry showed less than 5 cm variation between the before and after-storm states, suggesting the local net sediment accumulation / loss was negligible. The lack of bathymetric variability strongly suggests that the munitions sank into the bed, which would suggest an extreme state of sand agitation during the storm. We explore existing analytical solutions for the dynamic interaction between waves and sediment to predict munitions burial depths. Measured time series of wave pressure near the sediment bed were converted into wave-induced changes in pore pressures and the effective stress states of the sediment. Different sediment failure criteria based on minimum normal and maximum shear stresses were then applied to evaluate the appropriateness of individual failure criteria to predict observed burial depths. Results are subjected to a sensitivity analysis with respect to uncertain sediment parameters and summarized by representing cumulative failure times as a function of depth.
Wind-influenced projectile motion
NASA Astrophysics Data System (ADS)
Bernardo, Reginald Christian; Perico Esguerra, Jose; Day Vallejos, Jazmine; Jerard Canda, Jeff
2015-03-01
We solved the wind-influenced projectile motion problem with the same initial and final heights and obtained exact analytical expressions for the shape of the trajectory, range, maximum height, time of flight, time of ascent, and time of descent with the help of the Lambert W function. It turns out that the range and maximum horizontal displacement are not always equal. When launched at a critical angle, the projectile will return to its starting position. It turns out that a launch angle of 90° maximizes the time of flight, time of ascent, time of descent, and maximum height and that the launch angle corresponding to maximum range can be obtained by solving a transcendental equation. Finally, we expressed in a parametric equation the locus of points corresponding to maximum heights for projectiles launched from the ground with the same initial speed in all directions. We used the results to estimate how much a moderate wind can modify a golf ball’s range and suggested other possible applications.
The Uniform Pattern of Growth and Skeletal Maturation during the Human Adolescent Growth Spurt.
Sanders, James O; Qiu, Xing; Lu, Xiang; Duren, Dana L; Liu, Raymond W; Dang, Debbie; Menendez, Mariano E; Hans, Sarah D; Weber, David R; Cooperman, Daniel R
2017-12-01
Humans are one of the few species undergoing an adolescent growth spurt. Because children enter the spurt at different ages making age a poor maturity measure, longitudinal studies are necessary to identify the growth patterns and identify commonalities in adolescent growth. The standard maturity determinant, peak height velocity (PHV) timing, is difficult to estimate in individuals due to diurnal, postural, and measurement variation. Using prospective longitudinal populations of healthy children from two North American populations, we compared the timing of the adolescent growth spurt's peak height velocity to normalized heights and hand skeletal maturity radiographs. We found that in healthy children, the adolescent growth spurt is standardized at 90% of final height with similar patterns for children of both sexes beginning at the initiation of the growth spurt. Once children enter the growth spurt, their growth pattern is consistent between children with peak growth at 90% of final height and skeletal maturity closely reflecting growth remaining. This ability to use 90% of final height as easily identified important maturity standard with its close relationship to skeletal maturity represents a significant advance allowing accurate prediction of future growth for individual children and accurate maturity comparisons for future studies of children's growth.
Measured close lightning leader-step electric-field-derivative waveforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, Doug M.; Hill, Dustin; Biagi, Christopher J.
2010-12-01
We characterize the measured electric field-derivative (dE/dt) waveforms of lightning stepped-leader steps from three negative lightning flashes at distances of tens to hundreds of meters. Electromagnetic signatures of leader steps at such close distances have rarely been documented in previous literature. Individual leader-step three-dimensional locations are determined by a dE/dt TOA system. The leader-step field derivative is typically a bipolar pulse with a sharp initial half-cycle of the same polarity as that of the return stroke, followed by an opposite polarity overshoot that decays relatively slowly to background level. This overshoot increases in amplitude relative to the initial peak andmore » becomes dominant as range decreases. The initial peak is often preceded by a 'slow front,' similar to the slow front that precedes the fast transition to peak in first return stroke dE/dt and E waveforms. The overall step-field waveform duration is typically less than 1 {micro}s. The mean initial peak of dE/dt, range-normalized to 100 km, is 7.4 V m{sup -1} {micro}s{sup -1} (standard deviation (S.D.), 3.7 V m{sup -1} {micro}s{sup -1}, N = 103), the mean half-peak width is 33.5 ns (S.D., 11.9 ns, N = 69), and the mean 10-to-90% risetime is 43.6 ns (S.D., 24.2 ns, N = 69). From modeling, we determine the properties of the leader step currents which produced two typical measured field derivatives, and we use one of these currents to calculate predicted leader step E and dE/dt as a function of source range and height, the results being in good agreement with our observations. The two modeled current waveforms had maximum rates of current rise-to-peak near 100 kA {micro}s{sup -1}, peak currents in the 5-7 kA range, current half-peak widths of about 300 ns, and charge transfers of {approx}3 mC. As part of the modeling, those currents were propagated upward at 1.5 x 10{sup 8} m s{sup -1}, with their amplitudes decaying exponentially with a decay height constant of 25 m.« less
Theoretical Study of Molecular Transport Through a Permeabilized Cell Membrane in a Microchannel.
Mahboubi, Masoumeh; Movahed, Saeid; Hosseini Abardeh, Reza; Hoshyargar, Vahid
2017-06-01
A two-dimensional model is developed to study the molecular transport into an immersed cell in a microchannel and to investigate the effects of finite boundary (a cell is suspended in a microchannel), amplitude of electric pulse, and geometrical parameter (microchannel height and size of electrodes) on cell uptake. Embedded electrodes on the walls of the microchannel generate the required electric pulse to permeabilize the cell membrane, pass the ions through the membrane, and transport them into the cell. The shape of electric pulses is square with the time span of 6 ms; their intensities are in the range of 2.2, 2.4, 2.6, 3 V. Numerical simulations have been performed to comprehensively investigate the molecular uptake into the cell. The obtained results of the current study demonstrate that calcium ions enter the cell from the anodic side (the side near positive electrode); after a while, the cell faces depletion of the calcium ions on a positive electrode-facing side within the microchannel; the duration of depletion depends on the amplitude of electric pulse and geometry that lasts from microseconds to milliseconds. By keeping geometrical parameters and time span constant, increment of a pulse intensity enhances molecular uptake and rate of propagation inside the cell. If a ratio of electrode size to cell diameter is larger than 1, the transported amount of Ca 2+ into the cell, as well as the rate of propagation, will be significantly increased. By increasing the height of the microchannel, the rate of uptake is decreased. In an infinite domain, the peak concentration becomes constant after reaching the maximum value; this value depends on the intra-extracellular conductivity and diffusion coefficient of interior and exterior domains of the cell. In comparison, the maximum concentration is changed by geometrical parameters in the microchannel. After reaching the maximum value, the peak concentration reduces due to the depletion of Ca 2+ ions within the microchannel. Electrophoretic velocity has a significant effect on the cell uptake.
The reliability of vertical jump tests between the Vertec and My Jump phone application.
Yingling, Vanessa R; Castro, Dimitri A; Duong, Justin T; Malpartida, Fiorella J; Usher, Justin R; O, Jenny
2018-01-01
The vertical jump is used to estimate sports performance capabilities and physical fitness in children, elderly, non-athletic and injured individuals. Different jump techniques and measurement tools are available to assess vertical jump height and peak power; however, their use is limited by access to laboratory settings, excessive cost and/or time constraints thus making these tools oftentimes unsuitable for field assessment. A popular field test uses the Vertec and the Sargent vertical jump with countermovement; however, new low cost, easy to use tools are becoming available, including the My Jump iOS mobile application (app). The purpose of this study was to assess the reliability of the My Jump relative to values obtained by the Vertec for the Sargent stand and reach vertical jump (VJ) test. One hundred and thirty-five healthy participants aged 18-39 years (94 males, 41 females) completed three maximal Sargent VJ with countermovement that were simultaneously measured using the Vertec and the My Jump . Jump heights were quantified for each jump and peak power was calculated using the Sayers equation. Four separate ICC estimates and their 95% confidence intervals were used to assess reliability. Two analyses (with jump height and calculated peak power as the dependent variables, respectively) were based on a single rater, consistency, two-way mixed-effects model, while two others (with jump height and calculated peak power as the dependent variables, respectively) were based on a single rater, absolute agreement, two-way mixed-effects model. Moderate to excellent reliability relative to the degree of consistency between the Vertec and My Jump values was found for jump height (ICC = 0.813; 95% CI [0.747-0.863]) and calculated peak power (ICC = 0.926; 95% CI [0.897-0.947]). However, poor to good reliability relative to absolute agreement for VJ height (ICC = 0.665; 95% CI [0.050-0.859]) and poor to excellent reliability relative to absolute agreement for peak power (ICC = 0.851; 95% CI [0.272-0.946]) between the Vertec and My Jump values were found; Vertec VJ height, and thus, Vertec calculated peak power values, were significantly higher than those calculated from My Jump values ( p < 0.0001). The My Jump app may provide a reliable measure of vertical jump height and calculated peak power in multiple field and laboratory settings without the need of costly equipment such as force plates or Vertec. The reliability relative to degree of consistency between the Vertec and My Jump app was moderate to excellent. However, the reliability relative to absolute agreement between Vertec and My Jump values contained significant variation (based on CI values), thus, it is recommended that either the My Jump or the Vertec be used to assess VJ height in repeated measures within subjects' designs; these measurement tools should not be considered interchangeable within subjects or in group measurement designs.
The reliability of vertical jump tests between the Vertec and My Jump phone application
Castro, Dimitri A.; Duong, Justin T.; Malpartida, Fiorella J.; Usher, Justin R.; O, Jenny
2018-01-01
Background The vertical jump is used to estimate sports performance capabilities and physical fitness in children, elderly, non-athletic and injured individuals. Different jump techniques and measurement tools are available to assess vertical jump height and peak power; however, their use is limited by access to laboratory settings, excessive cost and/or time constraints thus making these tools oftentimes unsuitable for field assessment. A popular field test uses the Vertec and the Sargent vertical jump with countermovement; however, new low cost, easy to use tools are becoming available, including the My Jump iOS mobile application (app). The purpose of this study was to assess the reliability of the My Jump relative to values obtained by the Vertec for the Sargent stand and reach vertical jump (VJ) test. Methods One hundred and thirty-five healthy participants aged 18–39 years (94 males, 41 females) completed three maximal Sargent VJ with countermovement that were simultaneously measured using the Vertec and the My Jump. Jump heights were quantified for each jump and peak power was calculated using the Sayers equation. Four separate ICC estimates and their 95% confidence intervals were used to assess reliability. Two analyses (with jump height and calculated peak power as the dependent variables, respectively) were based on a single rater, consistency, two-way mixed-effects model, while two others (with jump height and calculated peak power as the dependent variables, respectively) were based on a single rater, absolute agreement, two-way mixed-effects model. Results Moderate to excellent reliability relative to the degree of consistency between the Vertec and My Jump values was found for jump height (ICC = 0.813; 95% CI [0.747–0.863]) and calculated peak power (ICC = 0.926; 95% CI [0.897–0.947]). However, poor to good reliability relative to absolute agreement for VJ height (ICC = 0.665; 95% CI [0.050–0.859]) and poor to excellent reliability relative to absolute agreement for peak power (ICC = 0.851; 95% CI [0.272–0.946]) between the Vertec and My Jump values were found; Vertec VJ height, and thus, Vertec calculated peak power values, were significantly higher than those calculated from My Jump values (p < 0.0001). Discussion The My Jump app may provide a reliable measure of vertical jump height and calculated peak power in multiple field and laboratory settings without the need of costly equipment such as force plates or Vertec. The reliability relative to degree of consistency between the Vertec and My Jump app was moderate to excellent. However, the reliability relative to absolute agreement between Vertec and My Jump values contained significant variation (based on CI values), thus, it is recommended that either the My Jump or the Vertec be used to assess VJ height in repeated measures within subjects’ designs; these measurement tools should not be considered interchangeable within subjects or in group measurement designs. PMID:29692955
Krüger, Antonio; Baroud, Gamal; Noriega, David; Figiel, Jens; Dorschel, Christine; Ruchholtz, Steffen; Oberkircher, Ludwig
2013-08-01
Two different procedures, used for percutaneous augmentation of vertebral compression fractures were compared, with respect to height restoration and maintenance after cyclic loading. Additionally the impact of the cement volume used was investigated. Wedge compression fractures were created in 36 human cadavaric vertebrae (T10-L3). Twenty-seven vertebrae were treated with the SpineJack® with different cement volumes (maximum, intermediate, and no cement), and 9 vertebrae were treated with Balloon Kyphoplasty. Vertebral heights were measured pre- and postfracture as well as after treatment and loading. Cyclic loading was performed with 10,000cycles (1Hz, 100-600N). The average anterior height after restoration was 85.56% for Kyphoplasty; 96.20% for SpineJack® no cement; 93.44% for SpineJack® maximum and 96% for the SpineJack® intermediate group. The average central height after restoration was 93.89% for Kyphoplasty; 100.20% for SpineJack® no cement; 99.56% for SpineJack® maximum and 101.13% for the SpineJack® intermediate group. The average anterior height after cyclic loading was 85.33 % for Kyphoplasty; 87.30% in the SpineJack® no cement, 92% in the SpineJack® maximum and 87% in the SpineJack® intermediate group. The average central height after cyclic loading was 92% for Kyphoplasty; 93.80% in the SpineJack® no cement; 98.56% in the SpineJack® maximum and 94.25% in the SpineJack® intermediate group. Height restoration was significantly better for the SpineJack® group compared to Kyphoplasty. Height maintenance was dependent on the cement volume used. The group with the SpineJack® without cement nevertheless showed better results in height maintenance, yet the statistical significance could not be demonstrated. Copyright © 2013 Elsevier Ltd. All rights reserved.
Simulation of Groundwater Mounding Beneath Hypothetical Stormwater Infiltration Basins
Carleton, Glen B.
2010-01-01
Groundwater mounding occurs beneath stormwater management structures designed to infiltrate stormwater runoff. Concentrating recharge in a small area can cause groundwater mounding that affects the basements of nearby homes and other structures. Methods for quantitatively predicting the height and extent of groundwater mounding beneath and near stormwater Finite-difference groundwater-flow simulations of infiltration from hypothetical stormwater infiltration structures (which are typically constructed as basins or dry wells) were done for 10-acre and 1-acre developments. Aquifer and stormwater-runoff characteristics in the model were changed to determine which factors are most likely to have the greatest effect on simulating the maximum height and maximum extent of groundwater mounding. Aquifer characteristics that were changed include soil permeability, aquifer thickness, and specific yield. Stormwater-runoff variables that were changed include magnitude of design storm, percentage of impervious area, infiltration-structure depth (maximum depth of standing water), and infiltration-basin shape. Values used for all variables are representative of typical physical conditions and stormwater management designs in New Jersey but do not include all possible values. Results are considered to be a representative, but not all-inclusive, subset of likely results. Maximum heights of simulated groundwater mounds beneath stormwater infiltration structures are the most sensitive to (show the greatest change with changes to) soil permeability. The maximum height of the groundwater mound is higher when values of soil permeability, aquifer thickness, or specific yield are decreased or when basin depth is increased or the basin shape is square (and values of other variables are held constant). Changing soil permeability, aquifer thickness, specific yield, infiltration-structure depth, or infiltration-structure shape does not change the volume of water infiltrated, it changes the shape or height of the groundwater mound resulting from the infiltration. An aquifer with a greater soil permeability or aquifer thickness has an increased ability to transmit water away from the source of infiltration than aquifers with lower soil permeability; therefore, the maximum height of the groundwater mound will be lower, and the areal extent of mounding will be larger. The maximum height of groundwater mounding is higher when values of design storm magnitude or percentage of impervious cover (from which runoff is captured) are increased (and other variables are held constant) because the total volume of water to be infiltrated is larger. The larger the volume of infiltrated water the higher the head required to move that water away from the source of recharge if the physical characteristics of the aquifer are unchanged. The areal extent of groundwater mounding increases when soil permeability, aquifer thickness, design-storm magnitude, or percentage of impervious cover are increased (and values of other variables are held constant). For 10-acre sites, the maximum heights of the simulated groundwater mound range from 0.1 to 18.5 feet (ft). The median of the maximum-height distribution from 576 simulations is 1.8 ft. The maximum areal extent (measured from the edge of the infiltration basins) of groundwater mounding of 0.25-ft ranges from 0 to 300 ft with a median of 51 ft for 576 simulations. Stormwater infiltration at a 1-acre development was simulated, incorporating the assumption that the hypothetical infiltration structure would be a pre-cast concrete dry well having side openings and an open bottom. The maximum heights of the simulated groundwater-mounds range from 0.01 to 14.0 ft. The median of the maximum-height distribution from 432 simulations is 1.0 ft. The maximum areal extent of groundwater mounding of 0.25-ft ranges from 0 to 100 ft with a median of 10 ft for 432 simulations. Simulated height and extent of groundwater mounding associ
Extreme waves under Hurricane Ivan.
Wang, David W; Mitchell, Douglas A; Teague, William J; Jarosz, Ewa; Hulbert, Mark S
2005-08-05
Hurricane Ivan, a category 4 storm, passed directly over six wave-tide gauges deployed by the Naval Research Laboratory on the outer continental shelf in the northeastern Gulf of Mexico. Waves were observed with significant wave heights reaching 17.9 meters and maximum crest-to-trough individual wave heights of 27.7 meters (91 feet). Analysis suggests that significant wave heights likely surpassed 21 meters (69 feet) and that maximum crest-to-trough individual wave heights exceeded 40 meters (132 feet) near the eyewall.
Muscular fatigue in response to different modalities of CrossFit sessions
Maté-Muñoz, José Luis; Lougedo, Juan H.; Barba, Manuel; García-Fernández, Pablo
2017-01-01
Background CrossFit is a new strength and conditioning regimen involving short intense daily workouts called workouts of the day (WOD). This study assesses muscular fatigue levels induced by the three modalities of CrossFit WOD; gymnastics (G), metabolic conditioning (M) and weightlifting (W). Material and methods 34 healthy subjects undertook three WOD (one per week): a G WOD consisting of completing the highest number of sets of 5 pull-ups, 10 push-ups and 15 air squats in 20 min; an M WOD, in which the maximum number of double skipping rope jumps was executed in 8 sets (20 s), resting (10 s) between sets; and finally, a W WOD in which the maximum number of power cleans was executed in 5 min, lifting a load equivalent to 40% of the individual's 1RM. Before and after each WOD, blood lactate concentrations were measured. Also, before, during, and after each WOD, muscular fatigue was assessed in a countermovement jump test (CMJ). Results Significant reductions were produced in the mechanical variables jump height, average power and maximum velocity in response to G; and in jump height, mean and peak power, maximum velocity and maximum force in response to W (P<0.01). However, in M, significant reductions in mechanical variables were observed between pre- and mid session (after sets 2, 4, 6 and 8), but not between pre- and post session. Conclusions Muscular fatigue, reflected by reduced CMJ variables, was produced following the G and W sessions, while recovery of this fatigue was observed at the end of M, likely attributable to rest intervals allowing for the recovery of phosphocreatine stores. Our findings also suggest that the high intensity and volume of exercise in G and W WODs could lead to reduced muscular-tendon stiffness causing a loss of jump ability, related here to a longer isometric phase during the CMJ. PMID:28753624
Muscular fatigue in response to different modalities of CrossFit sessions.
Maté-Muñoz, José Luis; Lougedo, Juan H; Barba, Manuel; García-Fernández, Pablo; Garnacho-Castaño, Manuel V; Domínguez, Raúl
2017-01-01
CrossFit is a new strength and conditioning regimen involving short intense daily workouts called workouts of the day (WOD). This study assesses muscular fatigue levels induced by the three modalities of CrossFit WOD; gymnastics (G), metabolic conditioning (M) and weightlifting (W). 34 healthy subjects undertook three WOD (one per week): a G WOD consisting of completing the highest number of sets of 5 pull-ups, 10 push-ups and 15 air squats in 20 min; an M WOD, in which the maximum number of double skipping rope jumps was executed in 8 sets (20 s), resting (10 s) between sets; and finally, a W WOD in which the maximum number of power cleans was executed in 5 min, lifting a load equivalent to 40% of the individual's 1RM. Before and after each WOD, blood lactate concentrations were measured. Also, before, during, and after each WOD, muscular fatigue was assessed in a countermovement jump test (CMJ). Significant reductions were produced in the mechanical variables jump height, average power and maximum velocity in response to G; and in jump height, mean and peak power, maximum velocity and maximum force in response to W (P<0.01). However, in M, significant reductions in mechanical variables were observed between pre- and mid session (after sets 2, 4, 6 and 8), but not between pre- and post session. Muscular fatigue, reflected by reduced CMJ variables, was produced following the G and W sessions, while recovery of this fatigue was observed at the end of M, likely attributable to rest intervals allowing for the recovery of phosphocreatine stores. Our findings also suggest that the high intensity and volume of exercise in G and W WODs could lead to reduced muscular-tendon stiffness causing a loss of jump ability, related here to a longer isometric phase during the CMJ.
Satellite altimetry in sea ice regions - detecting open water for estimating sea surface heights
NASA Astrophysics Data System (ADS)
Müller, Felix L.; Dettmering, Denise; Bosch, Wolfgang
2017-04-01
The Greenland Sea and the Farm Strait are transporting sea ice from the central Arctic ocean southwards. They are covered by a dynamic changing sea ice layer with significant influences on the Earth climate system. Between the sea ice there exist various sized open water areas known as leads, straight lined open water areas, and polynyas exhibiting a circular shape. Identifying these leads by satellite altimetry enables the extraction of sea surface height information. Analyzing the radar echoes, also called waveforms, provides information on the surface backscatter characteristics. For example waveforms reflected by calm water have a very narrow and single-peaked shape. Waveforms reflected by sea ice show more variability due to diffuse scattering. Here we analyze altimeter waveforms from different conventional pulse-limited satellite altimeters to separate open water and sea ice waveforms. An unsupervised classification approach employing partitional clustering algorithms such as K-medoids and memory-based classification methods such as K-nearest neighbor is used. The classification is based on six parameters derived from the waveform's shape, for example the maximum power or the peak's width. The open-water detection is quantitatively compared to SAR images processed while accounting for sea ice motion. The classification results are used to derive information about the temporal evolution of sea ice extent and sea surface heights. They allow to provide evidence on climate change relevant influences as for example Arctic sea level rise due to enhanced melting rates of Greenland's glaciers and an increasing fresh water influx into the Arctic ocean. Additionally, the sea ice cover extent analyzed over a long-time period provides an important indicator for a globally changing climate system.
Lehmann, A; Scheffler, Ch; Hermanussen, M
2010-02-01
Recent progress in modelling individual growth has been achieved by combining the principal component analysis and the maximum likelihood principle. This combination models growth even in incomplete sets of data and in data obtained at irregular intervals. We re-analysed late 18th century longitudinal growth of German boys from the boarding school Carlsschule in Stuttgart. The boys, aged 6-23 years, were measured at irregular 3-12 monthly intervals during the period 1771-1793. At the age of 18 years, mean height was 1652 mm, but height variation was large. The shortest boy reached 1474 mm, the tallest 1826 mm. Measured height closely paralleled modelled height, with mean difference of 4 mm, SD 7 mm. Seasonal height variation was found. Low growth rates occurred in spring and high growth rates in summer and autumn. The present study demonstrates that combining the principal component analysis and the maximum likelihood principle enables growth modelling in historic height data also. Copyright (c) 2009 Elsevier GmbH. All rights reserved.
Khandha, Ashutosh; Manal, Kurt; Wellsandt, Elizabeth; Capin, Jacob; Snyder-Mackler, Lynn; Buchanan, Thomas S.
2016-01-01
The objective of the study was to evaluate differences in gait mechanics 5 years after unilateral anterior cruciate ligament reconstruction surgery, for non-osteoarthritic (n = 24) versus osteoarthritic (n = 9) subjects. For the involved knee, the osteoarthritic group demonstrated significantly lower peak knee flexion angles (non-osteoarthritic = 24.3 ± 4.6°, osteoarthritic = 19.1 ± 2.9°, p = 0.01) and peak knee flexion moments (non-osteoarthritic = 5.3 ± 1.2% Body Weight × Height, osteoarthritic = 4.4 ± 1.2% Body Weight × Height, p = 0.05). Differences in peak knee adduction moment approached significance, with a higher magnitude for the osteoarthritic group (non-osteoarthritic = 2.4 ±0.8% Body Weight × Height, osteoarthritic = 2.9 ± 0.5% Body Weight × Height, p = 0.09). Peak medial compartment joint load was evaluated using electromyography-informed neuromusculoskeletal modeling. Peak medial compartment joint load in the involved knee for the two groups was not different (non-osteoarthritic = 2.4 ± 0.4 Body Weight, osteoarthritic = 2.3 ± 0.6 Body Weight). The results suggest that subjects with dissimilar peak knee moments can have similar peak medial compartment joint load magnitudes. There was no evidence of inter-limb asymmetry for either group. Given the presence of inter-group differences (non-osteoarthritic vs. osteoarthritic) for the involved knee, but an absence of inter-limb asymmetry in either group, it may be necessary to evaluate how symmetry is achieved, over time, and to differentiate between good versus bad inter-limb symmetry, when evaluating knee gait parameters. PMID:27082166
Peak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA
Fenton, C.R.; Webb, R.H.; Cerling, T.E.
2006-01-01
The failure of a lava dam 165,000 yr ago produced the largest known flood on the Colorado River in Grand Canyon. The Hyaloclastite Dam was up to 366 m high, and geochemical evidence linked this structure to outburst-flood deposits that occurred for 32 km downstream. Using the Hyaloclastite outburst-flood deposits as paleostage indicators, we used dam-failure and unsteady flow modeling to estimate a peak discharge and flow hydrograph. Failure of the Hyaloclastite Dam released a maximum 11 ?? 109 m3 of water in 31 h. Peak discharges, estimated from uncertainty in channel geometry, dam height, and hydraulic characteristics, ranged from 2.3 to 5.3 ?? 105 m3 s-1 for the Hyaloclastite outburst flood. This discharge is an order of magnitude greater than the largest known discharge on the Colorado River (1.4 ?? 104 m3 s-1) and the largest peak discharge resulting from failure of a constructed dam in the USA (6.5 ?? 104 m3 s-1). Moreover, the Hyaloclastite outburst flood is the oldest documented Quaternary flood and one of the largest to have occurred in the continental USA. The peak discharge for this flood ranks in the top 30 floods (>105 m3 s-1) known worldwide and in the top ten largest floods in North America. ?? 2005 University of Washington. All rights reserved.
Peak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA
NASA Astrophysics Data System (ADS)
Fenton, Cassandra R.; Webb, Robert H.; Cerling, Thure E.
2006-03-01
The failure of a lava dam 165,000 yr ago produced the largest known flood on the Colorado River in Grand Canyon. The Hyaloclastite Dam was up to 366 m high, and geochemical evidence linked this structure to outburst-flood deposits that occurred for 32 km downstream. Using the Hyaloclastite outburst-flood deposits as paleostage indicators, we used dam-failure and unsteady flow modeling to estimate a peak discharge and flow hydrograph. Failure of the Hyaloclastite Dam released a maximum 11 × 10 9 m 3 of water in 31 h. Peak discharges, estimated from uncertainty in channel geometry, dam height, and hydraulic characteristics, ranged from 2.3 to 5.3 × 10 5 m 3 s -1 for the Hyaloclastite outburst flood. This discharge is an order of magnitude greater than the largest known discharge on the Colorado River (1.4 × 10 4 m 3 s -1) and the largest peak discharge resulting from failure of a constructed dam in the USA (6.5 × 10 4 m 3 s -1). Moreover, the Hyaloclastite outburst flood is the oldest documented Quaternary flood and one of the largest to have occurred in the continental USA. The peak discharge for this flood ranks in the top 30 floods (>10 5 m 3 s -1) known worldwide and in the top ten largest floods in North America.
Quantification of carbamylated albumin in serum based on capillary electrophoresis.
Delanghe, Sigurd; Moerman, Alena; Pletinck, Anneleen; Schepers, Eva; Glorieux, Griet; Van Biesen, Wim; Delanghe, Joris R; Speeckaert, Marijn M
2017-09-01
Protein carbamylation, a nonenzymatic posttranslational modification promoted during uremia, is linked to a poor prognosis. In the present study, carbamylation of serum albumin was assayed using the symmetry factor on a capillary electrophoresis instrument (Helena V8). The symmetry factor has been defined as the distance from the center line of the peak to the back slope, divided by the distance from the center line of the peak to the front slope, with all measurements made at 10% of the maximum peak height. Serum albumin, creatinine, and urea concentrations were assayed using routine methods, whereas uremic toxins were determined using HPLC. In vitro carbamylation induced a marked albumin peak asymmetry. Reference values for the albumin symmetry factor were 0.69-0.92. In kidney patients, albumin peak asymmetry corresponded to the chronic kidney disease stage (p < 0.0001). The symmetry factor correlated well with serum urea (r = -0.5595, p < 0.0001) and creatinine (r = -0.5986, p < 0.0001) concentrations. Several protein-bound uremic toxins showed a significant negative correlation with the symmetry factor. Morphology of the albumin fraction was not affected by presence of glycated albumin and protein-bound antibiotics. In conclusion, the presented method provides a simple, practical way for monitoring protein carbamylation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Velocity and bottom-stress measurements in the bottom boundary layer, outer Norton Sound, Alaska.
Cacchione, D.A.; Drake, D.E.; Wiberg, P.
1982-01-01
We have used long-term measurements of near-bottom velocities at four heights above the sea floor in Norton Sound, Alaska, to compute hourly values of shear velocity u., roughness and bottom-drag coefficient. Maximum sediment resuspension and transport, predicted for periods when the computed value of u. exceeds a critical level, occur during peak tidal currents associated with spring tides. The fortnightly variation in u. is correlated with a distinct nepheloid layer that intensifies and thickens during spring tides and diminishes and thins during neap tides. The passage of a storm near the end of the experiment caused significantly higher u. values than those found during fair weather.-from Authros
30 CFR 817.67 - Use of explosives: Control of adverse effects.
Code of Federal Regulations, 2014 CFR
2014-07-01
... either the maximum peak-particle-velocity limits of paragraph (d)(2), the scaled-distance equation of... authority before the initiation of blasting. (2) Maximum peak-particle velocity. (i) The maximum ground... site, in feet Maximum allowable peak particle velocity (V max) for ground vibration, in inches/second 1...
30 CFR 817.67 - Use of explosives: Control of adverse effects.
Code of Federal Regulations, 2013 CFR
2013-07-01
... either the maximum peak-particle-velocity limits of paragraph (d)(2), the scaled-distance equation of... authority before the initiation of blasting. (2) Maximum peak-particle velocity. (i) The maximum ground... site, in feet Maximum allowable peak particle velocity (V max) for ground vibration, in inches/second 1...
30 CFR 817.67 - Use of explosives: Control of adverse effects.
Code of Federal Regulations, 2012 CFR
2012-07-01
... either the maximum peak-particle-velocity limits of paragraph (d)(2), the scaled-distance equation of... authority before the initiation of blasting. (2) Maximum peak-particle velocity. (i) The maximum ground... site, in feet Maximum allowable peak particle velocity (V max) for ground vibration, in inches/second 1...
30 CFR 817.67 - Use of explosives: Control of adverse effects.
Code of Federal Regulations, 2010 CFR
2010-07-01
... either the maximum peak-particle-velocity limits of paragraph (d)(2), the scaled-distance equation of... authority before the initiation of blasting. (2) Maximum peak-particle velocity. (i) The maximum ground... site, in feet Maximum allowable peak particle velocity (V max) for ground vibration, in inches/second 1...
30 CFR 817.67 - Use of explosives: Control of adverse effects.
Code of Federal Regulations, 2011 CFR
2011-07-01
... either the maximum peak-particle-velocity limits of paragraph (d)(2), the scaled-distance equation of... authority before the initiation of blasting. (2) Maximum peak-particle velocity. (i) The maximum ground... site, in feet Maximum allowable peak particle velocity (V max) for ground vibration, in inches/second 1...
Optical evolution of Nova Ophiuchi 2007 = V2615 Oph
NASA Astrophysics Data System (ADS)
Munari, U.; Henden, A.; Valentini, M.; Siviero, A.; Dallaporta, S.; Ochner, P.; Tomasoni, S.
2008-06-01
The moderately fast Nova Oph 2007 reached maximum brightness on 2007 March 28 at V= 8.52, B-V=+1.12, V-RC=+0.76, V-IC=+1.59 and RC-IC=+0.83, after fast initial rise and a pre-maximum halt lasting a week. Decline times were tV2= 26.5, tB2= 30, tV3= 48.5 and tB3= 56.5 d. The distance to the nova is d= 3.7 ± 0.2 kpc, the height above the Galactic plane is z= 215 pc, the reddening is E(B-V) = 0.90 and the absolute magnitude at maximum is MmaxV=-7.2 and MmaxB=-7.0. The spectrum four days before maximum resembled a F6 supergiant, in an agreement with broad-band colours. It later developed into that of a standard `Fe ii'-class nova. Nine days past maximum, the expansion velocity estimated from the width of Hα emission component was ˜730 km s-1, and the displacement from it of the principal and diffuse-enhanced absorption systems was ˜650 and 1380 km s-1, respectively. Dust probably formed and disappeared during the period from 82 to 100 d past maximum, causing (at peak dust concentration) an extinction of ΔB= 1.8 mag and an extra ΔE(B-V) = 0.44 reddening.
NASA Astrophysics Data System (ADS)
Li, Xibing; Feng, Fan; Li, Diyuan; Du, Kun; Ranjith, P. G.; Rostami, Jamal
2018-05-01
The failure modes and peak unloading strength of a typical hard rock, Miluo granite, with particular attention to the sample height-to-width ratio (between 2 and 0.5), and the intermediate principal stress was investigated using a true-triaxial test system. The experimental results indicate that both sample height-to-width ratios and intermediate principal stress have an impact on the failure modes, peak strength and severity of rockburst in hard rock under true-triaxial unloading conditions. For longer rectangular specimens, the transition of failure mode from shear to slabbing requires higher intermediate principal stress. With the decrease in sample height-to-width ratios, slabbing failure is more likely to occur under the condition of lower intermediate principal stress. For same intermediate principal stress, the peak unloading strength monotonically increases with the decrease in sample height-to-width. However, the peak unloading strength as functions of intermediate principal stress for different types of rock samples (with sample height-to-width ratio of 2, 1 and 0.5) all present the pattern of initial increase, followed by a subsequent decrease. The curves fitted to octahedral shear stress as a function of mean effective stress also validate the applicability of the Mogi-Coulomb failure criterion for all considered rock sizes under true-triaxial unloading conditions, and the corresponding cohesion C and internal friction angle φ are calculated. The severity of strainburst of granite depends on the sample height-to-width ratios and intermediate principal stress. Therefore, different supporting strategies are recommended in deep tunneling projects and mining activities. Moreover, the comparison of test results of different σ 2/ σ 3 also reveals the little influence of minimum principal stress on failure characteristics of granite during the true-triaxial unloading process.
The effect of a braking device in reducing the ground impact forces inherent in plyometric training.
Humphries, B J; Newton, R U; Wilson, G J
1995-02-01
As a consequence of performing plyometric type exercises, such as depth jumps, impact forces placed on the musculoskeletal system during landing can lead to a potential for injury. A reduction of impact forces upon landing could therefore contribute to reduce the risk of injury. Twenty subjects performed a series of loaded jumps for maximal height, with and without a brake mechanism designed to reduce impact force during landing. The braked jumps were performed on the Plyometric Power System (PPS) with its braking mechanism set at 75% of body weight during the downward phase. The non-braked condition involved jumps with no braking. Vertical ground reaction force data, sampled for 5.5 s at 550 Hz from a Kistler forceplate, were collected for each jump condition. The following parameters were then calculated: peak vertical force, time to peak force, passive impact impulse and maximum concentric force. The brake served to significantly (p < 0.01) reduce peak impact force by 155% and passive impact impulse by 200%. No significant differences were found for peak concentric force production. The braking mechanism of the PPS significantly reduced ground impact forces without impeding concentric force production. The reduction in eccentric loading, using the braking mechanism, may reduce the incidence of injury associated with landings from high intensity plyometric exercises.
NASA Astrophysics Data System (ADS)
Li, Xinzhu; Hu, Huimin; Liao, Su
2018-03-01
A proper sleeping pillow can relax the neck muscles during sleep, yet does not impose stress on the spine or other tissues. By analyzing the different body pressure and subjective comfort evaluation of quinquagenarian women with different pillow heights (3cm, 7cm, 11cm and 15cm), this paper found that as the pillow height increased, the neck contact pressure, contact area and force increased at the same time, as well as the peak force and peak contact pressure gradually shifted from the head to the hip area. It was shown that the pillow with a height of 7cm was the most comfortable for supine positions.
NASA Astrophysics Data System (ADS)
Schmidt, T.; Cammas, J.; Heise, S.; Wickert, J.; Haser, A.
2010-12-01
In this study we discuss characteristics of the northern hemisphere (NH) midlatitude (40°N-60°N) tropopause inversion layer (TIL) based on two datasets. First, temperature measurements from GPS radio occultation data (CHAMP and GRACE) for the time interval 2001-2009 are used to exhibit seasonal properties of the TIL bottom height defined here as the height of the squared buoyancy frequency minimum N2 below the thermal tropopause, the TIL maximum height as the height of the N2 maximum above the tropopause and the TIL top height as the height of the temperature maximum above the tropopause. Mean values of the TIL bottom, TIL maximum and TIL top heights relative to the thermal tropopause for the NH midlatitudes are (-2.08±0.35) km, (0.52±0.10) km and (2.10±0.23) km, respectively. A seasonal cycle of the TIL bottom and TIL top height is observed with values closer to the thermal tropopause during summer. Secondly, high-resolution temperature and trace gas profile measurements onboard commercial aircrafts (MOZAIC program) from 2001-2008 for the NH midlatitude (40°N-60°N) region are used to characterize the TIL as a mixing layer around the tropopause. Mean TIL bottom, TIL maximum and TIL top heights based on the MOZAIC temperature (N2) measurements confirm the results from the GPS data, even though most of the MOZAIC profiles used here are available under cyclonic situations. Further, we demonstrate that the mixing ratio gradients of ozone (O3) and carbon monoxide (CO) are suitable parameters for characterizing the TIL structure. Using O3-CO correlations we also show that on average the highest mixing occurs in a layer less than 1 km above the thermal tropopause, i.e., within the TIL.
NASA Astrophysics Data System (ADS)
Lukianova, Renata; Kozlovsky, Alexander; Lester, Mark
2018-06-01
The inter-annual variability, climatological mean wind and tide fields in the northern polar mesosphere/lower thermosphere region of 82-98 km height are studied using observations by the meteor radar which has operated continuously during solar cycle 24 (from December 2008 onward) at the Sodankylä Geophysical Observatory (67N, 26E). Summer mean zonal winds are characterized by westward flow, up to 25 m/s, at lower heights and eastward flow, up to 30 m/s, at upper heights. In the winter an eastward flow, up to 10 m/s, dominates at all heights. The meridional winds are characterized by a relatively weak poleward flow (few m/s) in the winter and equatorward flow in the summer, with a jet core (∼15 m/s) located slightly below 90 km. These systematically varying winds are dominated by the semidiurnal tides. The largest amplitudes, up to 30 m/s, are observed at higher altitudes in winter and a secondary maximum is seen in August-September. The diurnal tides are almost a factor of two weaker and peak in summer. The variability of individual years is dominated by the winter perturbations. During the period of observations major sudden stratospheric warmings (SSW) occurred in January 2009 and 2013. During these events the wind fields were strongly modified. The lowest altitude eastward winds maximized up to 25 m/s, that is by more twice that of the non-SSW years. The poleward flow considerably increases (up 10 m/s) and extends from the lower heights throughout the whole altitude range. The annual pattern in temperature at ∼90 km height over Sodankyla consists of warm winters (up to 200 K) and cold summers (∼120 K).
Titan dune heights retrieval by using Cassini Radar Altimeter
NASA Astrophysics Data System (ADS)
Mastrogiuseppe, M.; Poggiali, V.; Seu, R.; Martufi, R.; Notarnicola, C.
2014-02-01
The Cassini Radar is a Ku band multimode instrument capable of providing topographic and mapping information. During several of the 93 Titan fly-bys performed by Cassini, the radar collected a large amount of data observing many dune fields in multiple modes such as SAR, Altimeter, Scatterometer and Radiometer. Understanding dune characteristics, such as shape and height, will reveal important clues on Titan's climatic and geological history providing a better understanding of aeolian processes on Earth. Dunes are believed to be sculpted by the action of the wind, weak at the surface but still able to activate the process of sand-sized particle transport. This work aims to estimate dunes height by modeling the shape of the real Cassini Radar Altimeter echoes. Joint processing of SAR/Altimeter data has been adopted to localize the altimeter footprints overlapping dune fields excluding non-dune features. The height of the dunes was estimated by applying Maximum Likelihood Estimation along with a non-coherent electromagnetic (EM) echo model, thus comparing the real averaged waveform with the theoretical curves. Such analysis has been performed over the Fensal dune field observed during the T30 flyby (May 2007). As a result we found that the estimated dunes' peak to trough heights difference was in the order of 60-120 m. Estimation accuracy and robustness of the MLE for different complex scenarios was assessed via radar simulations and Monte-Carlo approach. We simulated dunes-interdunes different composition and roughness for a large set of values verifying that, in the range of possible Titan environment conditions, these two surface parameters have weak effects on our estimates of standard dune heights deviation. Results presented here are the first part of a study that will cover all Titan's sand seas.
Zoellner, Hans; Paknejad, Navid; Manova, Katia; Moore, Malcolm
2016-01-01
Differing stimuli affect cell-stiffness while cancer metastasis further relates to cell-stiffness. Cell-stiffness determined by atomic Force Microscopy (AFM) has been limited by measurement over nuclei to avoid spurious substratum effects in thin cytoplasmic domains, and we sought to develop a more complete approach including cytoplasmic areas. 90 μm square fields were recorded from 10 sites of cultured Human Dermal Fibroblasts (HDF), and 3 sites each for melanoma (MM39, WM175, MeIRMu), osteosarcoma (SAOS-2, U2OS), and ovarian carcinoma (COLO316, PEO4) cell lines, each site providing 1,024 measurements as 32x32 square grids. Stiffness recorded below 0.8 μm height was occasionally influenced by substratum, so only stiffness recorded above 0.8 μm was analyzed, but all sites were included for height and volume analysis. COLO316 had the lowest cell height and volume, followed by HDF (p<0.0001), and then PEO4, SAOS-2, MeIRMu, WM175, U2OS, and MM39. HDF were more stiff than all other cells (p < 0.0001), while in descending order of stiffness were PEO4, COLO316, WM175, SAOS-2, U2OS, MM39, and MeIRMu (p < 0.02). Stiffness-fingerprints comprised scattergrams of stiffness values plotted against the height at which each stiffness value was recorded, and appeared unique for each cell type studied, although in most cases the overall form of fingerprints was similar, with maximum stiffness at low height measurements and a second lower peak occurring at high height levels. We suggest our stiffness-fingerprint analytical method provides a more nuanced description than previously reported, and will facilitate study of the stiffness response to cell stimulation. PMID:26357955
Predicting durations of online collective actions based on Peaks' heights
NASA Astrophysics Data System (ADS)
Lu, Peng; Nie, Shizhao; Wang, Zheng; Jing, Ziwei; Yang, Jianwu; Qi, Zhongxiang; Pujia, Wangmo
2018-02-01
Capturing the whole process of collective actions, the peak model contains four stages, including Prepare, Outbreak, Peak, and Vanish. Based on the peak model, one of the key variables, factors and parameters are further investigated in this paper, which is the rate between peaks and spans. Although the durations or spans and peaks' heights are highly diversified, it seems that the ratio between them is quite stable. If the rate's regularity is discovered, we can predict how long the collective action lasts and when it ends based on the peak's height. In this work, we combined mathematical simulations and empirical big data of 148 cases to explore the regularity of ratio's distribution. It is indicated by results of simulations that the rate has some regularities of distribution, which is not normal distribution. The big data has been collected from the 148 online collective actions and the whole processes of participation are recorded. The outcomes of empirical big data indicate that the rate seems to be closer to being log-normally distributed. This rule holds true for both the total cases and subgroups of 148 online collective actions. The Q-Q plot is applied to check the normal distribution of the rate's logarithm, and the rate's logarithm does follow the normal distribution.
View northnortheast of drydock no. 2 and its portal cranes. ...
View north-northeast of drydock no. 2 and its portal cranes. Main crane, 50 long tons capacity/maximum height 118 "2", is at left; whip crane, 53 long tons capacity maximum height 173 "8" is at center; auxiliary crane, 15 long tons capacity/maximum height 161 "0" is at right. Building at left is the turret shed. The vessel at the lower right of the photograph is a receiving ship formerly used for processing and temporary housing of naval personnel. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Drydock No. 2, League Island, Philadelphia, Philadelphia County, PA
NASA Astrophysics Data System (ADS)
Leslie, S.; Mann, P.
2015-12-01
The Colombian Caribbean margin provides an ideal setting for the formation of large mass transport deposits (MTDs): 1) the Caribbean Plate is slowly subducting at rates of 20 mm/yr with infrequent large thrust earthquakes and a complete lack of subduction events in the 400-year-long historical record; 2) the margin is a broad zone of active faults including a ~50 km-wide accretionary prism and strike-slip faults landward of the prism; 3) the active margin is draped by the Magdalena delta and submarine fan fed by the Magdalena River, the 26th largest in the world; and 4) the margin is over-steepened to slopes of up to 7° from the combination of tectonic activity and rapid rates of deltaic progradation. Using seismic data we have identified three late Miocene-Pliocene MTDs, the largest of which is between 4500 and 6000 km3, comparable in size to the well-studied Storegga slide of Norway. The tsunamigenic potential of future, analog MTD events are modeled using GeoWave tsunami modeling software. The largest and youngest of these MTDs, the Santa Marta slide, is used as an analog to infer the location and input parameters for the tsunami model. The event is modeled as a translational slide ~46 km long and ~37 km wide with the center of the slide located ~57 km W/NW from the mouth of the present day Magdalena River in water depths of 1500 m. The volume for the initial failure is conservatively estimated at ~680 km3 of material. The resulting tsunami wave from such an event has an initial maximum trough amplitude of -65.8 m and a peak amplitude of 19.2 m. The impact of such a tsunami would include: 1) Kingston, Jamaica (population 938K), tsunami height 7.5 m, peak arrival at 60 min.; 2) Santo Domingo, Dominican Republic (population 965K, height 6 m, peak arrival at 80 min.); and 3) Cartagena, Colombia (population 845K, height 21 m, peak arrival at 34 min.). A number of parameters to the model are varied to analyze sensitivity of modeling results to changes in slide depth, angle of failure, slide volume, and slide density.
A new physical performance classification system for elite handball players: cluster analysis
Chirosa, Ignacio J.; Robinson, Joseph E.; van der Tillaar, Roland; Chirosa, Luis J.; Martín, Isidoro Martínez
2016-01-01
Abstract The aim of the present study was to identify different cluster groups of handball players according to their physical performance level assessed in a series of physical assessments, which could then be used to design a training program based on individual strengths and weaknesses, and to determine which of these variables best identified elite performance in a group of under-19 [U19] national level handball players. Players of the U19 National Handball team (n=16) performed a set of tests to determine: 10 m (ST10) and 20 m (ST20) sprint time, ball release velocity (BRv), countermovement jump (CMJ) height and squat jump (SJ) height. All players also performed an incremental-load bench press test to determine the 1 repetition maximum (1RMest), the load corresponding to maximum mean power (LoadMP), the mean propulsive phase power at LoadMP (PMPPMP) and the peak power at LoadMP (PPEAKMP). Cluster analyses of the test results generated four groupings of players. The variables best able to discriminate physical performance were BRv, ST20, 1RMest, PPEAKMP and PMPPMP. These variables could help coaches identify talent or monitor the physical performance of athletes in their team. Each cluster of players has a particular weakness related to physical performance and therefore, the cluster results can be applied to a specific training programmed based on individual needs. PMID:28149376
Is vacuum ultraviolet detector a concentration or a mass dependent detector?
Liu, Huian; Raffin, Guy; Trutt, Guillaume; Randon, Jérôme
2017-12-29
The vacuum ultraviolet detector (VUV) is a very effective tool for chromatogram deconvolution and peak identification, and can also be used for quantification. To avoid quantitative issues in relation to time drift, such as variation of peak area or peak height, the detector response type has to be well defined. Due to the make-up flow and pressure regulation of make-up, the detector response (height of the peak) and peak area appeared to be dependent on experimental conditions such as inlet pressure and make-up pressure. Even if for some experimental conditions, VUV looks like mass-flow sensitive detector, it has been demonstrated that VUV is a concentration sensitive detector. Copyright © 2017 Elsevier B.V. All rights reserved.
Numerical Modeling of Infragravity Wave Runup on Steep and Mildly Sloping Natural Beaches
NASA Astrophysics Data System (ADS)
Fiedler, J. W.; Smit, P.; Brodie, K. L.; McNinch, J.; Guza, R. T.; Gallien, T.
2016-12-01
We present ongoing work which aims to validate the non-hydrostatic model SWASH for wave runup and infragravity waves generated by a range of different incident wave spectra at the offshore boundary, including the effect of finite directional spread. Flume studies of wave runup are limited to normally incident (1D) sea and infragravity waves, but natural waves are directionally spread (2D), with substantially different dynamics from 1D. For example, refractive trapping (edge waves) is only possible with 2D waves, and the bound infragravity wave response to short wave groups is highly amplified for the special case of normal incidence. Selected case studies are modeled at Agate Beach, Oregon, a low slope (1:80) beach with maximum offshore wave heights greater than 7m, and Cardiff, California, a steep (1:8) beach with maximum wave heights of 2m. Peak periods ranged between 5-20 s at both sites. On both beaches, waves were measured on a transect from approximately 10m depth to the runup, using pressure sensors, current meters, and a scanning lidar. Bulk short wave quantities, wave runup, infragravity frequency spectra and energy fluxes are compared with SWASH. On the low slope beach with energetic incident waves, the observed horizontal runup excursions reach 140m ( 100s periods). Swash front velocities reached up to several m/s, causing short waves to stack up during runup drawdown. On reversal of the infragravity phase, the stacked short waves are swept onshore with the long wave front, effectively enhancing runup by phase coupling long and short waves. Statistical variability and nonlinearity in swash generation lead to time-varying runup heights. Here, we test these observations with 2D SWASH, as well as the sensitivity of modeled runup to the parameterization of bottom friction.
Corrosion Analysis of an Experimental Noble Alloy on Commercially Pure Titanium Dental Implants
Bortagaray, Manuel Alberto; Ibañez, Claudio Arturo Antonio; Ibañez, Maria Constanza; Ibañez, Juan Carlos
2016-01-01
Objective: To determine whether the Noble Bond® Argen® alloy was electrochemically suitable for the manufacturing of prosthetic superstructures over commercially pure titanium (c.p. Ti) implants. Also, the electrolytic corrosion effects over three types of materials used on prosthetic suprastructures that were coupled with titanium implants were analysed: Noble Bond® (Argen®), Argelite 76sf +® (Argen®), and commercially pure titanium. Materials and Methods: 15 samples were studied, consisting in 1 abutment and one c.p. titanium implant each. They were divided into three groups, namely: Control group: five c.p Titanium abutments (B&W®), Test group 1: five Noble Bond® (Argen®) cast abutments and, Test group 2: five Argelite 76sf +® (Argen®) abutments. In order to observe the corrosion effects, the surface topography was imaged using a confocal microscope. Thus, three metric parameters (Sa: Arithmetical mean height of the surface. Sp: Maximum height of peaks. Sv: Maximum height of valleys.), were measured at three different areas: abutment neck, implant neck and implant body. The samples were immersed in artificial saliva for 3 months, after which the procedure was repeated. The metric parameters were compared by statistical analysis. Results: The analysis of the Sa at the level of the implant neck, abutment neck and implant body, showed no statistically significant differences on combining c.p. Ti implants with the three studied alloys. The Sp showed no statistically significant differences between the three alloys. The Sv showed no statistically significant differences between the three alloys. Conclusion: The effects of electrogalvanic corrosion on each of the materials used when they were in contact with c.p. Ti showed no statistically significant differences. PMID:27733875
Smith, Tiaki Brett; Hébert-Losier, Kim; McClymont, Doug
2018-05-01
The goal of an offensive Rugby Union lineout is to throw the ball in a manner that allows your team to maintain possession. Typically, the player catching the ball jumps and is lifted upwards by two teammates, reaching above the opposing player who is competing for the ball also. Despite various beliefs regarding the importance of the jumper's mass and attempted jump height, and lifters' magnitude and point of force application, there is negligible published data on the topic. The squeeze technique is one lifting method commonly employed by New Zealand teams during lineout plays, whereby the jumper initiates the jump quickly and the lifters provide assistance only once the jumper reaches 20-30 cm. While this strategy may reduce cues to the opposition, it might also constrain the jumper and lifters. We developed a model to explore how changes in the jumper's body mass and attempted jump height, and lifters' magnitude and point of force application influence the time to reach peak catch height. The magnitude of the lift force impacted the time-to-reach peak catch height the most; followed by the jumper's (attempted) jump height and body mass; and lastly, the point of lift force application.
Effects of different set configurations on barbell velocity and displacement during a clean pull.
Haff, G Gregory; Whitley, Adrian; McCoy, Lora B; O'Bryant, Harold S; Kilgore, J Lon; Haff, Erin E; Pierce, Kyle; Stone, Michael H
2003-02-01
The effects of 3 types of set configurations (cluster, traditional, and undulating) on barbell kinematics were investigated in the present study. Thirteen men (track and field = 8; Olympic weightlifters = 5) (mean +/- SEM age, 23.4 +/- 1.1 years; height, 181.3 +/- 2.1 cm; body mass, 89.8 +/- 4.2 kg) performed 1 set of 5 repetitions in a cluster, traditional, and undulating fashion at 90 and 120% of their 1 repetition maximum (1RM) power clean (119.0 +/- 4.3 kg). All data were collected at 50 Hz and analyzed with a V-Scope Weightlifting Analysis System. Peak velocity (PV) and peak displacement (PD) were analyzed for each repetition and averaged for each set type. Results indicated that a significantly (p < 0.016) higher PV occurred during the cluster set when compared with the traditional sets at both intensities. PD was significantly higher than traditional sets at the 120% intensity. The present study suggests set configuration can affect PV and PD during clean pulls.
Effects of a Low-Load Gluteal Warm-Up on Explosive Jump Performance
Comyns, Thomas; Kenny, Ian; Scales, Gerard
2015-01-01
The purpose of this study was to investigate the effects of a low-load gluteal warm-up protocol on countermovement and squat jump performance. Research by Crow et al. (2012) found that a low-load gluteal warm-up could be effective in enhancing peak power output during a countermovement jump. Eleven subjects performed countermovement and squat jumps before and after the gluteal warm-up protocol. Both jumps were examined in separate testing sessions and performed 30 seconds, and 2, 4, 6 & 8 minutes post warm-up. Height jumped and peak ground reaction force were the dependent variables examined in both jumps, with 6 additional variables related to fast force production being examined in the squat jump only. All jumps were performed on a force platform (AMTI OR6-5). Repeated measures analysis of variance found a number of significant differences (p ≤ 0.05) between baseline and post warm-up scores. Height jumped decreased significantly in both jumps at all rest intervals excluding 8 minutes. Improvement was seen in 7 of the 8 recorded SJ variables at the 8 minute interval. Five of these improvements were deemed statistically significant, namely time to peak GRF (43.0%), and time to the maximum rate of force development (65.7%) significantly decreased, while starting strength (63.4%), change of force in first 100 ms of contraction (49.1%) and speed strength (43.6%) significantly increased. The results indicate that a gluteal warm-up can enhance force production in squat jumps performed after 8 minutes recovery. Future research in this area should include additional warm-up intervention groups for comparative reasons. PMID:26240661
Nimphius, Sophia; McGuigan, Michael R; Newton, Robert U
2010-04-01
The purpose of this study was to investigate (a) the cross-sectional relationship of strength, power, and performance variables in trained female athletes and (b) determine if the relationship between these variables changes over the course of a season. Ten female softball players (age = 18.1 +/- 1.6 years, height = 166.5 +/- 8.9 cm, and weight = 72.4 +/- 10.8 kg) from a state Australian Institute of Sport softball team were tested for maximal lower body strength (one repetition maximum [1RM]), peak force (PF), peak velocity (PV), and peak power (PP) during jump squats unloaded and loaded, unloaded countermovement vertical jump height (VJH) 1 base and 2 base sprint performance and change of direction performance on dominant and nondominant sides. The testing sessions occurred pre, mid, and post a 20-week training period. Relationship between body weight (BW), relative strength (1RM/BW), VJH, relative PP, relative PF, PV, speed, and change of direction variables were assessed by Pearson product-moment correlation coefficient at each testing session. Significant relationships were found across all time points with BW, speed, and change of direction measures (r = 0.70-0.93) and relative strength and measures of speed and change of direction ability (r = -0.73-0.85). There were no significant relationships between VJH and any measure of performance at any time point. In conclusion, BW and relative strength have strong to very strong correlations with speed and change of direction ability, and these correlations remain consistent over the course of the season. However, it seems as if many relationships vary with time, and their relationships should therefore be investigated longitudinally to better determine if these cross-sectional relationships truly reflect a deterministic relationship.
NASA Astrophysics Data System (ADS)
Preisler, Yakir; Tatarinov, Fyodor; Rohatyn, Shani; Rotenberg, Eyal; Grünzweig, José M.; Klein, Tamir; Yakir, Dan
2015-04-01
Adjustments and adaptations of trees to drought vary across different biomes, species and habitats, with important implications for tree mortality and forest dieback associated with global climate change. The aim of this study was to investigate possible links between the patterns of variations in water flux dynamics and drought resistance in Aleppo pine (Pinus halepensis) trees in a semi-arid stand (Yatir forest, Israel). We measured sap flow (SF) and variations in stem diameter, complemented with short-term campaigns of leaf-scale measurements of water vapour and CO2 gas exchange, branch water potential and hydraulic conductivity, as well as eddy flux measurements of evapotranspiration (ET) from a permanent flux tower at the site. SF rates were well synchronized with ET, reaching maximum rates during midday in all trees during the rainy season (Dec-Apr). However, during the dry season (May-Nov), the daily trend in the rates of SF greatly varied among trees, allowing classification into three tree classes: 1) trees with SF maximum rate constantly occurring in mid-day (12:00-13:00); 2)trees showing a shift to an early morning SF peak (04:00-06:00); and 3) trees shifting their daily SF peak to the evening (16:00-18:00). This classification did not change during the four years study period, between 2010 and 2014. Checking for correlation of tree parameters as DBH, tree height, crown size, and competition indices with rates of SF, indicated that timing of maximum SF in summer was mainly related to tree size (DBH), when large trees tended to have a later SF maximum. Dendrometer measurements indicated that large trees (high DBH) had maximum daily diameter in the morning during summer and winter, while small trees typically had maximum daily diameter during midday and afternoon in winter and summer, respectively. Leaf-scale transpiration (T) measurements showed typical morning peak in all trees, and another peak in the afternoon in large trees only. Different diurnal curves observed during the dry season, indicated that water potential and hydraulic conductivity values in larger trees restored from midday depression earlier than in smaller ones. The results demonstrate large heterogeneity in the behaviour related to tree water relations among trees of the same species and in the same stand. The combination of diurnal leaf-scale measurements, SF and changes in DBH demonstrated the different strategies of individual trees of different sizes. Large trees with sufficient internal water storage can more freely manipulate their water storage capacity, with reduced dependence on environmental conditions (e.g., morning and afternoon peaks of T). On the other hand, during the dry summer small trees with insufficient internal water storage are strongly restricted by low soil water availability and extreme environmental conditions, which is expressed in only one peak of T, midday to afternoon shift of diurnal DBH maximum, and shift in SF to predawn when soil water potential is highest. Refilling of internal water storage seems to be in the afternoon/evening since T becomes smaller than SF and DBH increases. Reliance on external water availability in small trees might be insufficient during long drought episodes when soil water content decreases below threshold required for extraction by the trees, leading to increased tree mortality in small DBH trees.
Tidblad, Anders; Gustafsson, Jan; Marcus, Claude; Ritzén, Martin; Ekström, Klas
2017-06-01
Severe growth hormone deficiency (GHD) leads to several metabolic effects in the body ranging from abnormal body composition to biochemical disturbances. However, less is known regarding these parameters in short children with GH peak levels in the lower normal range during provocation tests. Our aim was to study the metabolic profile of this group and compare it with that of healthy children of normal height. Thirty-five pre-pubertal short children (<-2.5 SDS) aged between 7 and 10years, with peak levels of GH between 7 and 14μg/L in an arginine insulin tolerance test (AITT), were compared with twelve age- and sex-matched children of normal height. The metabolic profile of the subjects was analysed by blood samples, DEXA, frequently sampled intravenous glucose tolerance test, microdialysis and stable isotope examinations of rates of glucose production and lipolysis. There were no overall significant metabolic differences between the groups. However, in the subgroup analysis, the short children with GH peaks <10μg/L had significantly lower fasting insulin levels which also correlated to other metabolic parameters. The short pre-pubertal children with GH peak levels between 7 and 14μg/L did not differ significantly from healthy children of normal height but subpopulations within this group show significant metabolic differences. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Tai-Yin
2018-06-01
Variations of airglow intensity, Volume Emission Rate (VER), and VER peak height induced by the CO2 increase, and by the F10.7 solar cycle variation and geomagnetic activity were investigated to quantitatively assess their influences on airglow. This study is an extension of a previous study by Huang (2016) covering a time period of 55 years from 1960 to 2015 and includes geomagnetic variability. Two airglow models, OHCD-90 and MACD-90, are used to simulate the induced variations of O(1S) greenline, O2(0,1) atmospheric band, and OH(8,3) airglow for this study. Overall, our results demonstrate that airglow intensity and the peak VER variations of the three airglow emissions are strongly correlated, and in phase, with the F10.7 solar cycle variation. In addition, there is a linear trend, be it increasing or decreasing, existing in the airglow intensities and VERs due to the CO2 increase. On other hand, airglow VER peak heights are strongly correlated, and out of phase, with the Ap index variation of geomagnetic activity. The CO2 increase acts to lower the VER peak heights of OH(8,3) airglow and O(1S) greenline by 0.2 km in 55 years and it has no effect on the VER peak height of O2(0,1) atmospheric band.
Maximum height in a conifer is associated with conflicting requirements for xylem design.
Domec, Jean-Christophe; Lachenbruch, Barbara; Meinzer, Frederick C; Woodruff, David R; Warren, Jeffrey M; McCulloh, Katherine A
2008-08-19
Despite renewed interest in the nature of limitations on maximum tree height, the mechanisms governing ultimate and species-specific height limits are not yet understood, but they likely involve water transport dynamics. Tall trees experience increased risk of xylem embolism from air-seeding because tension in their water column increases with height because of path-length resistance and gravity. We used morphological measurements to estimate the hydraulic properties of the bordered pits between tracheids in Douglas-fir trees along a height gradient of 85 m. With increasing height, the xylem structural modifications that satisfied hydraulic requirements for avoidance of runaway embolism imposed increasing constraints on water transport efficiency. In the branches and trunks, the pit aperture diameter of tracheids decreases steadily with height, whereas torus diameter remains relatively constant. The resulting increase in the ratio of torus to pit aperture diameter allows the pits to withstand higher tensions before air-seeding but at the cost of reduced pit aperture conductance. Extrapolations of vertical trends for trunks and branches show that water transport across pits will approach zero at a heights of 109 m and 138 m, respectively, which is consistent with historic height records of 100-127 m for this species. Likewise, the twig water potential corresponding to the threshold for runaway embolism would be attained at a height of approximately 107 m. Our results suggest that the maximum height of Douglas-fir trees may be limited in part by the conflicting requirements for water transport and water column safety.
NASA Technical Reports Server (NTRS)
Swenson, G. R.; Mende, S. B.; Llewellyn, E. J.
1989-01-01
The lower thermospheric nightglow in the Southern Hemisphere was observed with the Atmospheric Emissions Photometric Imager during the Spacelab 1 mission in December, 1983. Observations of emission from O(1S) at 2972 and 5577A, O2 at 7620 A, OH near 6300 A, and the combined emission from the three upper states of O2 which lead to the Herzberg I and II and Chamberlain band emissions in B and near UV are discussed. The altitudes of peak emission heights are determined, showing that the peak heights are not constant with latitude. It is found that airglow heights varied with latitude by as much as 8 km. The observed airglow height pattern near the equator is similar to that of Wasser and Donahue (1979).
Maximum plant height and the biophysical factors that limit it.
Niklas, Karl J
2007-03-01
Basic engineering theory and empirically determined allometric relationships for the biomass partitioning patterns of extant tree-sized plants show that the mechanical requirements for vertical growth do not impose intrinsic limits on the maximum heights that can be reached by species with woody, self-supporting stems. This implies that maximum tree height is constrained by other factors, among which hydraulic constraints are plausible. A review of the available information on scaling relationships observed for large tree-sized plants, nevertheless, indicates that mechanical and hydraulic requirements impose dual restraints on plant height and thus, may play equally (but differentially) important roles during the growth of arborescent, large-sized species. It may be the case that adaptations to mechanical and hydraulic phenomena have optimized growth, survival and reproductive success rather than longevity and mature size.
47 CFR 101.1333 - Interference protection criteria.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Maximum EIRP Watts dBW Maximum ERP 1 Watts dBW Master 941.0-941.5 1000 30 600 27.8 Fixed Remote and Master 932.0-932.5 50 17 30 14.8 1 Where ERP = EIRP/1.64.> (ii) Maximum antenna height above average terrain... Reduction Table Antenna height above average terrain (meters) EIRP Watts dBW ERP Watts dBW Above 305 200 23...
The value of shoe size for prediction of the timing of the pubertal growth spurt
2011-01-01
Background Knowing the timing of the pubertal growth spurt of the spine, represented by sitting height, is essential for the prognosis and therapy of adolescent idiopathic scoliosis. There are several indicators that reflect growth or remaining growth of the patient. For example, distal body parts have their growth spurt earlier in adolescence, and therefore the growth of the foot can be an early indicator for the growth spurt of sitting height. Shoe size is a good alternative for foot length, since patients can remember when they bought new shoes and what size these shoes were. Therefore the clinician already has access to some longitudinal data at the first visit of the patient to the outpatient clinic. The aim of this study was to describe the increase in shoe size during adolescence and to determine whether the timing of the peak increase could be an early indicator for the timing of the peak growth velocity of sitting height. Methods Data concerning shoe sizes of girls and boys were acquired from two large shoe shops from 1991 to 2008. The longitudinal series of 242 girls and 104 boys were analysed for the age of the "peak increase" in shoe size, as well as the age of cessation of foot growth based on shoe size. Results The average peak increase in shoe size occurred at 10.4 years (SD 1.1) in girls and 11.5 years (SD 1.5) in boys. This was on average 1.3 years earlier than the average peak growth velocity of sitting height in girls, and 2.5 years earlier in boys. The increase in shoe size diminishes when the average peak growth velocity of sitting height takes place at respectively 12.0 (SD 0.8) years in girls, and 13.7 (SD 1.0) years in boys. Conclusions Present data suggest that the course of the shoe size of children visiting the outpatient clinic can be a useful first tool for predicting the timing of the pubertal growth spurt of sitting height, as a representative for spinal length. This claim needs verification by direct comparison of individual shoe size and sitting height data and than a step forward can be made in clinical decision making regarding adolescent idiopathic scoliosis. PMID:21251310
NASA Astrophysics Data System (ADS)
Kar, Siddhartha; Chakraborty, Sujoy; Dey, Vidyut; Ghosh, Subrata Kumar
2017-10-01
This paper investigates the application of Taguchi method with fuzzy logic for multi objective optimization of roughness parameters in electro discharge coating process of Al-6351 alloy with powder metallurgical compacted SiC/Cu tool. A Taguchi L16 orthogonal array was employed to investigate the roughness parameters by varying tool parameters like composition and compaction load and electro discharge machining parameters like pulse-on time and peak current. Crucial roughness parameters like Centre line average roughness, Average maximum height of the profile and Mean spacing of local peaks of the profile were measured on the coated specimen. The signal to noise ratios were fuzzified to optimize the roughness parameters through a single comprehensive output measure (COM). Best COM obtained with lower values of compaction load, pulse-on time and current and 30:70 (SiC:Cu) composition of tool. Analysis of variance is carried out and a significant COM model is observed with peak current yielding highest contribution followed by pulse-on time, compaction load and composition. The deposited layer is characterised by X-Ray Diffraction analysis which confirmed the presence of tool materials on the work piece surface.
Power Peaking Effect of OTTO Fuel Scheme Pebble Bed Reactor
NASA Astrophysics Data System (ADS)
Setiadipura, T.; Suwoto; Zuhair; Bakhri, S.; Sunaryo, G. R.
2018-02-01
Pebble Bed Reactor (PBR) type of Hight Temperature Gas-cooled Reactor (HTGR) is a very interesting nuclear reactor design to fulfill the growing electricity and heat demand with a superior passive safety features. Effort to introduce the PBR design to the market can be strengthen by simplifying its system with the Once-through-then-out (OTTO) cycle PBR in which the pebble fuel only pass the core once. Important challenge in the OTTO fuel scheme is the power peaking effect which limit the maximum nominal power or burnup of the design. Parametric survey is perform in this study to investigate the contribution of different design parameters to power peaking effect of OTTO cycle PBR. PEBBED code is utilized in this study to perform the equilibrium PBR core analysis for different design parameter and fuel scheme. The parameters include its core diameter, height-per-diameter (H/D), power density, and core nominal power. Results of this study show that diameter and H/D effectsare stronger compare to the power density and nominal core power. Results of this study might become an importance guidance for design optimization of OTTO fuel scheme PBR.
Magnus, Maria C.; Stigum, Hein; Håberg, Siri E.; Nafstad, Per; London, Stephanie J.; Nystad, Wenche
2015-01-01
Background The immediate postnatal period is the period of the fastest growth in the entire life span and a critical period for lung development. Therefore, it is interesting to examine the association between growth during this period and childhood respiratory disorders. Methods We examined the association of peak weight and height velocity to age 36 months with maternal report of current asthma at 36 months (n = 50,311), recurrent lower respiratory tract infections (LRTIs) by 36 months (n = 47,905) and current asthma at 7 years (n = 24,827) in the Norwegian Mother and Child Cohort Study. Peak weight and height velocity was calculated using the Reed1 model through multilevel mixed-effects linear regression. Multivariable log-binomial regression was used to calculate adjusted relative risks (adj.RR) and 95% confidence intervals (CI). We also conducted a sibling pair analysis using conditional logistic regression. Results Peak weight velocity was positively associated with current asthma at 36 months [adj.RR 1.22 (95%CI: 1.18, 1.26) per standard deviation (SD) increase], recurrent LRTIs by 36 months [adj.RR 1.14 (1.10, 1.19) per SD increase] and current asthma at 7 years [adj.RR 1.13 (95%CI: 1.07, 1.19) per SD increase]. Peak height velocity was not associated with any of the respiratory disorders. The positive association of peak weight velocity and asthma at 36 months remained in the sibling pair analysis. Conclusions Higher peak weight velocity, achieved during the immediate postnatal period, increased the risk of respiratory disorders. This might be explained by an influence on neonatal lung development, shared genetic/epigenetic mechanisms and/or environmental factors. PMID:25635872
Strength Determinants of Jump Height in the Jump Throw Movement in Women Handball Players.
McGhie, David; Østerås, Sindre; Ettema, Gertjan; Paulsen, Gøran; Sandbakk, Øyvind
2018-06-08
McGhie, D, Østerås, S, Ettema, G, Paulsen, G, and Sandbakk, Ø. Strength determinants of jump height in the jump throw movement in women handball players. J Strength Cond Res XX(X): 000-000, 2018-The purpose of the study was to improve the understanding of the strength demands of a handball-specific jump through examining the associations between jump height in a jump throw jump (JTJ) and measures of lower-body maximum strength and impulse in handball players. For comparison, whether the associations between jump height and strength differed between the JTJ and the customarily used countermovement jump (CMJ) was also examined. Twenty women handball players from a Norwegian top division club participated in the study. Jump height was measured in the JTJ and in unilateral and bilateral CMJ. Lower-body strength (maximum isometric force, one-repetition maximum [1RM], impulse at ∼60% and ∼35% 1RM) was measured in seated leg press. The associations between jump height and strength were assessed with correlation analyses and t-tests of dependent r's were performed to determine if correlations differed between jump tests. Only impulse at ∼35% 1RM correlated significantly with JTJ height (p < 0.05), whereas all strength measures correlated significantly with CMJ heights (p < 0.001). The associations between jump height and strength were significantly weaker in the JTJ than in both CMJ tests for all strength measures (p = 0.001-0.044) except one. Maximum strength and impulse at ∼60% 1RM did not seem to sufficiently capture the capabilities associated with JTJ height, highlighting the importance of employing tests targeting performance-relevant neuromuscular characteristics when assessing jump-related strength in handball players. Further, CMJ height seemed to represent a wider range of strength capabilities and care should be taken when using it as a proxy for handball-specific movements.
Methane distributions and transports in the nocturnal boundary layer at a rural station
NASA Astrophysics Data System (ADS)
Schäfer, Klaus; Zeeman, Matthias; Brosy, Caroline; Münkel, Christoph; Fersch, Benjamin; Mauder, Matthias; Emeis, Stefan
2016-10-01
To investigate the methane distributions and transports, the role of related atmospheric processes by determination of vertical profiles of wind, turbulence, temperature and humidity as well as nocturnal boundary layer (NBL) height and the quantification of methane emissions at local and plot scale the so-called ScaleX-campaign was performed in a pre-alpine observatory in Southern Germany from 01 June until 31 July 2015. The following measurements from the ground up to the free troposphere were performed: layering of the atmosphere by a ceilometer (Vaisala CL51); temperature, wind, turbulence profiles from 50 m up to 500 m by a Radio-Acoustic Sounding System (RASS, Metek GmbH); temperature, humidity profiles in situ by a hexacopter; methane farm emissions by two open-path laser spectrometers (Boreal GasFinder2); methane concentrations in situ (Los Gatos DLT-100) with tubes in 0.3 m agl and 5 sampling heads; and methane soil emissions by a big chamber (10 m length, 2.60 m width, up to 0.61 m height) with a plastic cover. The methane concentrations near the surface show a daily variation with a maximum and a frequent double-peak structure during night-time. Analysis of the variation of the nocturnal methane concentration together with the hexacopter and RASS data indicates that the first peak in the nocturnal methane concentration is probably due to local cooling and stabilization which keeps the methane emissions from the soil near the ground. The second peak seems to be due to advection of methane-enriched air which had formed in the environment of the nearby farm yards. These dairy farm emissions were determined by up-wind and down-wind open-path concentration measurements, turbulence data from an EC station nearby and Backward Lagrangian Simulation (WindTrax software). The methane fluxes at plot scale (big chamber) are characterized by emissions at water saturated grassland patches, by an exponential decrease of these emissions during grassland drying, and by an uptake of methane at dry grassland. Highest methane concentrations are found with lowest NBL heights which were determined from the ceilometer monitoring (correlation coefficient 0.56).
The Lumbar Lordosis in Males and Females, Revisited.
Hay, Ori; Dar, Gali; Abbas, Janan; Stein, Dan; May, Hila; Masharawi, Youssef; Peled, Nathan; Hershkovitz, Israel
2015-01-01
Whether differences exist in male and female lumbar lordosis has been debated by researchers who are divided as to the nature of variations in the spinal curve, their origin, reasoning, and implications from a morphological, functional and evolutionary perspective. Evaluation of the spinal curvature is constructive in understanding the evolution of the spine, as well as its pathology, planning of surgical procedures, monitoring its progression and treatment of spinal deformities. The aim of the current study was to revisit the nature of lumbar curve in males and females. Our new automated method uses CT imaging of the spine to measure lumbar curvature in males and females. The curves extracted from 158 individuals were based on the spinal canal, thus avoiding traditional pitfalls of using bone features for curve estimation. The model analysis was carried out on the entire curve, whereby both local and global descriptors were examined in a single framework. Six parameters were calculated: segment length, curve length, curvedness, lordosis peak location, lordosis cranial peak height, and lordosis caudal peak height. Compared to males, the female spine manifested a statistically significant greater curvature, a caudally located lordotic peak, and greater cranial peak height. As caudal peak height is similar for males and females, the illusion of deeper lordosis among females is due partially to the fact that the upper part of the female lumbar curve is positioned more dorsally (more backwardly inclined). Males and females manifest different lumbar curve shape, yet similar amount of inward curving (lordosis). The morphological characteristics of the female spine were probably developed to reduce stress on the vertebral elements during pregnancy and nursing.
The visible extinction peaks of Ag nanohelixes: A periodic effective dipole model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z.-Y.; Zhao, Y.-P.
2011-02-21
Using the discrete dipole approximation method, two visible extinction peaks are found for Ag nanohelixes. Both of them redshift periodically in an approximate half pitch with the helix height and redshift linearly with the helix diameter and pitch height. At the two absorbance peaks, an integer number of E-field maxima occur along the helix. These field maxima could be treated as results of collective electron oscillations by periodic effective dipoles within a half pitch along the helix. The wavelengths of the absorbance peaks are found to scale with the effective dipole length, which is consistent with the periodic structure ofmore » the helix.« less
Kinetics of phase transformations in glass forming systems
NASA Technical Reports Server (NTRS)
Ray, Chandra S.
1994-01-01
A nucleation rate like curve for a glass can be determined from the functional dependence of the maximum height of its DTA crystallization peak, (delta T)(sub p), on the nucleation temperature, T(sub n). This nucleation rate curve provides information for the temperature range where nucleation for the glass can occur and the temperature where the nucleation rate is a maximum. However, this curve does not provide information for the nucleation rate, I, for the glass at different temperatures. A method for estimating I at different temperatures from (delta T)(sub p) was developed using a Li2O.2SiO2 (LS2) glass. Also, the dielectric constant (epsilon) and the loss factor (tan delta) of a glass-ceramic depend, in part, upon the amount of crystallinity which, in turn, depends upon the nucleation density in the starting glass. It is therefore expected that epsilon and tan delta should have a relationship with nucleation density and hence on the nucleation rate.
Micromechanical and Electrical Properties of Monolithic Aluminum Nitride at High Temperatures
NASA Technical Reports Server (NTRS)
Goldsby, Jon C.
2000-01-01
Micromechanical spectroscopy of aluminum nitride reveals it to possess extremely low background internal friction at less than 1x10(exp-4) logarithmic decrement (log dec) from 20 to 1200 T. Two mechanical loss peaks were observed, the first at 350 C approximating a single Debye peak with a peak height of 60x10(exp-4) log dec. The second peak was seen at 950 'C with a peak height of 20x 10' log dec and extended from 200 to over 1200 C. These micromechanical observations manifested themselves in the electrical behavior of these materials. Electrical conduction processes were predominately intrinsic. Both mechanical and electrical relaxations appear to be thermally activated processes, with activation energies of 0.78 and 1.32 eV respectively.
Micromechanical and Electrical Properties of Monolithic Aluminum Nitride at High Temperatures
NASA Technical Reports Server (NTRS)
Goldsby, Jon C.
2001-01-01
Micromechanical spectroscopy of aluminum nitride reveals it to possess extremely low background internal friction at less than 1 x 10 (exp -4) logarithmic decrement (log dec.) from 20 to 1200 C. Two mechanical loss peaks were observed, the first at 350 C approximating a single Debye peak with a peak height of 60 x 10 (exp -4) log dec. The second peak was seen at 950 C with a peak height of 20 x 10 (exp -4) log dec. and extended from 200 to over 1200 C. These micromechanical observations manifested themselves in the electrical behavior of these materials. Electrical conduction processes were predominately intrinsic. Both mechanical and electrical relaxations appear to be thermally activated processes, with activation energies of 0.78 and 1.32 eV respectively.
Koch, George W; Sillett, Stephen C; Jennings, Gregory M; Davis, Stephen D
2004-04-22
Trees grow tall where resources are abundant, stresses are minor, and competition for light places a premium on height growth. The height to which trees can grow and the biophysical determinants of maximum height are poorly understood. Some models predict heights of up to 120 m in the absence of mechanical damage, but there are historical accounts of taller trees. Current hypotheses of height limitation focus on increasing water transport constraints in taller trees and the resulting reductions in leaf photosynthesis. We studied redwoods (Sequoia sempervirens), including the tallest known tree on Earth (112.7 m), in wet temperate forests of northern California. Our regression analyses of height gradients in leaf functional characteristics estimate a maximum tree height of 122-130 m barring mechanical damage, similar to the tallest recorded trees of the past. As trees grow taller, increasing leaf water stress due to gravity and path length resistance may ultimately limit leaf expansion and photosynthesis for further height growth, even with ample soil moisture.
Peak power, force, and velocity during jump squats in professional rugby players.
Turner, Anthony P; Unholz, Cedric N; Potts, Neill; Coleman, Simon G S
2012-06-01
Training at the optimal load for peak power output (PPO) has been proposed as a method for enhancing power output, although others argue that the force, velocity, and PPO are of interest across the full range of loads. The aim of this study was to examine the influence of load on PPO, peak barbell velocity (BV), and peak vertical ground reaction force (VGRF) during the jump squat (JS) in a group of professional rugby players. Eleven male professional rugby players (age, 26 ± 3 years; height, 1.83 ± 6.12 m; mass, 97.3 ± 11.6 kg) performed loaded JS at loads of 20-100% of 1 repetition maximum (1RM) JS. A force plate and linear position transducer, with a mechanical braking unit, were used to measure PPO, VGRF, and BV. Load had very large significant effects on PPO (p < 0.001, partial η² = 0.915); peak VGRF (p < 0.001, partial η² = 0.854); and peak BV (p < 0.001, partial η² = 0.973). The PPO and peak BV were the highest at 20% 1RM, though PPO was not significantly greater than that at 30% 1RM. The peak VGRF was significantly greater at 1RM than all other loads, with no significant difference between 20 and 60% 1RM. In resistance trained professional rugby players, the optimal load for eliciting PPO during the loaded JS in the range measured occurs at 20% 1RM JS, with decreases in PPO and BV, and increases in VGRF, as the load is increased, although greater PPO likely occurs without any additional load.
Control of trunk motion following sudden stop perturbations during cart pushing.
Lee, Yun-Ju; Hoozemans, Marco J M; van Dieën, Jaap H
2011-01-04
External perturbations during pushing tasks have been suggested to be a risk factor for low-back symptoms. An experiment was designed to investigate whether self-induced and externally induced sudden stops while pushing a high inertia cart influence trunk motions, and how flexor and extensor muscles counteract these perturbations. Twelve healthy male participants pushed a 200 kg cart at shoulder height and hip height. Pushing while walking was compared to situations in which participants had to stop the cart suddenly (self-induced stop) or in which the wheels of the cart were unexpectedly blocked (externally induced stop). For the perturbed conditions, the peak values and the maximum changes from the reference condition (pushing while walking) of the external moment at L5/S1, trunk inclination and electromyographic amplitudes of trunk muscles were determined. In the self-induced stop, a voluntary trunk extension occurred. Initial responses in both stops consisted of flexor and extensor muscle cocontraction. In self-induced stops this was followed by sustained extensor activity. In the externally induced stops, an external extension moment caused a decrease in trunk inclination. The opposite directions of the internal moment and trunk motion in the externally induced stop while pushing at shoulder height may indicate insufficient active control of trunk posture. Consequently, sudden blocking of the wheels in pushing at shoulder height may put the low back at risk of mechanical injury. Copyright © 2010 Elsevier Ltd. All rights reserved.
Tallness versus shrinkage: do women shrink with age or grow taller with recent birth date?
Davies, K M; Recker, R R; Stegman, M R; Heaney, R P
1991-10-01
This paper presents evidence that much of the high rate of age-related height loss in women reported in cross-sectional studies is actually a cohort effect rather than an aging effect. Data from a large cross-sectional study of healthy, white American women indicate that there has been a gain in peak adult height of 1.0 cm per decade for several decades from 1900 through 1965. Data from the HES, HANES I, and HANES II studies concur on this point. By contrast, data from a longitudinal study of 191 healthy white U.S. women show only a trivial rate of decline from peak adult height in the fifth and sixth decades of life. In an unselected population, some apparent height loss with age is probably due to disease processes, such as vertebral collapse. Caution is needed in using aging to interpret differences in height and in height-dependent variables, such as bone density, in cross-sectional studies.
Bouti, Khalid; Benamor, Jouda; Bourkadi, Jamal Eddine
2017-08-01
Peak Expiratory Flow (PEF) has never been characterised among healthy Moroccan school children. To study the relationship between PEF and anthropometric parameters (sex, age, height and weight) in healthy Moroccan school children, to establish predictive equations of PEF; and to compare flowmetric and spirometric PEF with Forced Expiratory Volume in 1 second (FEV1). This cross-sectional study was conducted between April, 2016 and May, 2016. It involved 222 (122 boys and 100 girls) healthy school children living in Ksar el-Kebir, Morocco. We used mobile equipments for realisation of spirometry and peak expiratory flow measurements. SPSS (Version 22.0) was used to calculate Student's t-test, Pearson's correlation coefficient and linear regression. Significant linear correlation was seen between PEF, age and height in boys and girls. The equation for prediction of flowmetric PEF in boys was calculated as 'F-PEF = -187+ 24.4 Age + 1.61 Height' (p-value<0.001, r=0.86), and for girls as 'F-PEF = -151 + 17Age + 1.59Height' (p-value<0.001, r=0.86). The equation for prediction of spirometric PEF in boys was calculated as 'S-PEF = -199+ 9.8Age + 2.67Height' (p-value<0.05, r=0.77), and for girls as 'S-PEF = -181 + 8.5Age + 2.5Height' (p-value<0.001, r=0.83). The boys had higher values than the girls. The performance of the Mini Wright Peak Flow Meter was lower than that of a spirometer. Our study established PEF predictive equations in Moroccan children. Our results appeared to be reliable, as evident by the high correlation coefficient in this sample. PEF can be an alternative of FEV1 in centers without spirometry.
Niebuhr, Oliver
2007-01-01
Based on the phonology of the Kiel Intonation Model (KIM), a tripartite opposition of German intonation is investigated: early, medial, and late peaks. These intonation categories, which can be projected onto H + L*, H*, and L* + H in the AM framework, are described in the KIM as rising-falling F(0) peak patterns differentiated by their synchronization with the accented-vowel onset. Perception experiments were carried out, showing that the function-based identification of the peak categories is not only influenced by peak synchronization, but also by peak shape and height. While the complete spectrum of findings is not covered by the current phonological modelling, the findings corroborate the existence of all three categories in German intonation and support the idea that the timing of the peak movements with regard to the accented vowel is important for their perceptual differentiation.
Final height and gonad function after total body irradiation during childhood.
Couto-Silva, A-C; Trivin, C; Esperou, H; Michon, J; Baruchel, A; Lemaire, P; Brauner, R
2006-09-01
Short stature and gonad failure can be a side effect of total body irradiation (TBI). The purpose of the study was to evaluate the factors influencing final height and gonad function after TBI. Fifty young adults given TBI during childhood were included. Twenty-seven had been treated with growth hormone (GH). Those given single 10 Grays (Gy) or fractionated 12 Gy TBI had similar characteristics, GH peaks, final heights and gonad function. After the end of GH treatment, 11/20 patients evaluated had GH peak >10 microg/l. Final height was <-2s.d. in 29 (58%). The height loss between TBI and final height (2.4+/-1.1 s.d.) was greater in those who were younger when irradiated (P<0.0001). When the GH-treated and -untreated patients were analyzed separately, this loss was correlated with the age at TBI at 4-8 years for the GH-treated and at 6-8 years for the untreated. Boys showed negative correlations between testicular volume and plasma follicle-stimulating hormone (FSH, P=0.0008) and between plasma FSH and inhibin B (P=0.005) concentrations. We concluded that the indications for GH treatment should be mainly based on the age at irradiation, taking into account the GH peak. The plasma FSH and inhibin B concentrations may predict sperm function. Published online 31 July 2006.
DOT National Transportation Integrated Search
2011-05-01
The objectives of this proposed research are to: 1. Develop a 100-year design. a. maximum water surface elevation and associated wave height, b. maximum wave height and associated water elevation atlases for South Louisiana coastal waters. 2. Obtain ...
Brolly, Matthew; Woodhouse, Iain H.; Niklas, Karl J.; Hammond, Sean T.
2012-01-01
Individual trees have been shown to exhibit strong relationships between DBH, height and volume. Often such studies are cited as justification for forest volume or standing biomass estimation through remote sensing. With resolution of common satellite remote sensing systems generally too low to resolve individuals, and a need for larger coverage, these systems rely on descriptive heights, which account for tree collections in forests. For remote sensing and allometric applications, this height is not entirely understood in terms of its location. Here, a forest growth model (SERA) analyzes forest canopy height relationships with forest wood volume. Maximum height, mean, H100, and Lorey's height are examined for variability under plant number density, resource and species. Our findings, shown to be allometrically consistent with empirical measurements for forested communities world-wide, are analyzed for implications to forest remote sensing techniques such as LiDAR and RADAR. Traditional forestry measures of maximum height, and to a lesser extent H100 and Lorey's, exhibit little consistent correlation with forest volume across modeled conditions. The implication is that using forest height to infer volume or biomass from remote sensing requires species and community behavioral information to infer accurate estimates using height alone. SERA predicts mean height to provide the most consistent relationship with volume of the height classifications studied and overall across forest variations. This prediction agrees with empirical data collected from conifer and angiosperm forests with plant densities ranging between 102–106 plants/hectare and heights 6–49 m. Height classifications investigated are potentially linked to radar scattering centers with implications for allometry. These findings may be used to advance forest biomass estimation accuracy through remote sensing. Furthermore, Lorey's height with its specific relationship to remote sensing physics is recommended as a more universal indicator of volume when using remote sensing than achieved using either maximum height or H100. PMID:22457800
Brolly, Matthew; Woodhouse, Iain H; Niklas, Karl J; Hammond, Sean T
2012-01-01
Individual trees have been shown to exhibit strong relationships between DBH, height and volume. Often such studies are cited as justification for forest volume or standing biomass estimation through remote sensing. With resolution of common satellite remote sensing systems generally too low to resolve individuals, and a need for larger coverage, these systems rely on descriptive heights, which account for tree collections in forests. For remote sensing and allometric applications, this height is not entirely understood in terms of its location. Here, a forest growth model (SERA) analyzes forest canopy height relationships with forest wood volume. Maximum height, mean, H₁₀₀, and Lorey's height are examined for variability under plant number density, resource and species. Our findings, shown to be allometrically consistent with empirical measurements for forested communities world-wide, are analyzed for implications to forest remote sensing techniques such as LiDAR and RADAR. Traditional forestry measures of maximum height, and to a lesser extent H₁₀₀ and Lorey's, exhibit little consistent correlation with forest volume across modeled conditions. The implication is that using forest height to infer volume or biomass from remote sensing requires species and community behavioral information to infer accurate estimates using height alone. SERA predicts mean height to provide the most consistent relationship with volume of the height classifications studied and overall across forest variations. This prediction agrees with empirical data collected from conifer and angiosperm forests with plant densities ranging between 10²-10⁶ plants/hectare and heights 6-49 m. Height classifications investigated are potentially linked to radar scattering centers with implications for allometry. These findings may be used to advance forest biomass estimation accuracy through remote sensing. Furthermore, Lorey's height with its specific relationship to remote sensing physics is recommended as a more universal indicator of volume when using remote sensing than achieved using either maximum height or H₁₀₀.
Lu, Juan; Shin, Yongyun; Yen, Miao-Shan; Sun, Shumei S.
2014-01-01
The literature has not reached a consensus on the age when peak bone mass is achieved. This study examines growth patterns of TBMC and TBMD, peak bone mass, effect of concurrent anthropometry measures and physical activity on growth patterns in a sample of 312 white males and 343 females aged eight to 30 years. We analyzed data from participants enrolled in Fels Longitudinal Study. Descriptive analysis was used to ascertain characteristics of participants and growth patterns of TBMC and TBMD. Mixed effects models were applied to predict ages at attainment of peak TBMC and TBMD and assess effects of height, weight, BMI and habitual physical activity on the attainment. Significant differences between sexes were observed for measures of TBMC and TBMD, and differences varied with age. For females, predicted median ages at peak TBMC and TBMD attainments are 21.96 (IQR: 21.81–22.21) and 22.31 (IQR: 21.95–22.59) years, respectively. For males, predicted median ages are 23.34 (IQR: 24.34–26.19) and 26.86 (IQR: 25.14–27.98) respectively. For females, height, weight and BMI, but not physical activity, had significant influences on attainment of TBMC and TBMD (P <0.01). For males, weight and BMI, but not height and physical activity, exerted significant influence on attainment of TBMC and TBMD (P<0.01), and also modified correlations between age and peak TBMC and TBMD. Our results suggest that (1) for both sexes, trajectories of TBMC and TBMD follow a curvilinear pattern between ages eight and 30 years; (2) predicted ages at peak TBMC and TBMD are from early to late 20s for both white males and females, with females reaching their peaks significantly earlier than males; and (3) concurrent height, weight and BMI, but not habitual physical activity, exert significant effects on trajectories of TBMC and TBMD. PMID:25440183
30 CFR 816.67 - Use of explosives: Control of adverse effects.
Code of Federal Regulations, 2013 CFR
2013-07-01
... established in accordance with either the maximum peak-particle-velocity limits of paragraph (d)(2), the... in the blasting plan and approved by the regulatory authority. (2) Maximum peak particle velocity. (i... (D), from the blasting site, in feet Maximum allowable peak particle velocity (V max) for ground...
30 CFR 816.67 - Use of explosives: Control of adverse effects.
Code of Federal Regulations, 2014 CFR
2014-07-01
... established in accordance with either the maximum peak-particle-velocity limits of paragraph (d)(2), the... in the blasting plan and approved by the regulatory authority. (2) Maximum peak particle velocity. (i... (D), from the blasting site, in feet Maximum allowable peak particle velocity (V max) for ground...
30 CFR 816.67 - Use of explosives: Control of adverse effects.
Code of Federal Regulations, 2010 CFR
2010-07-01
... established in accordance with either the maximum peak-particle-velocity limits of paragraph (d)(2), the... in the blasting plan and approved by the regulatory authority. (2) Maximum peak particle velocity. (i... (D), from the blasting site, in feet Maximum allowable peak particle velocity (V max) for ground...
30 CFR 816.67 - Use of explosives: Control of adverse effects.
Code of Federal Regulations, 2012 CFR
2012-07-01
... established in accordance with either the maximum peak-particle-velocity limits of paragraph (d)(2), the... in the blasting plan and approved by the regulatory authority. (2) Maximum peak particle velocity. (i... (D), from the blasting site, in feet Maximum allowable peak particle velocity (V max) for ground...
30 CFR 816.67 - Use of explosives: Control of adverse effects.
Code of Federal Regulations, 2011 CFR
2011-07-01
... established in accordance with either the maximum peak-particle-velocity limits of paragraph (d)(2), the... in the blasting plan and approved by the regulatory authority. (2) Maximum peak particle velocity. (i... (D), from the blasting site, in feet Maximum allowable peak particle velocity (V max) for ground...
47 CFR 90.635 - Limitations on power and antenna height.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false Limitations on power and antenna height. 90.635... and antenna height. (a) The effective radiated power and antenna height for base stations may not... justify power levels and antenna heights requested. (b) The maximum output power of the transmitter for...
47 CFR 90.635 - Limitations on power and antenna height.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Limitations on power and antenna height. 90.635... and antenna height. (a) The effective radiated power and antenna height for base stations may not... justify power levels and antenna heights requested. (b) The maximum output power of the transmitter for...
47 CFR 90.635 - Limitations on power and antenna height.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Limitations on power and antenna height. 90.635... and antenna height. (a) The effective radiated power and antenna height for base stations may not... justify power levels and antenna heights requested. (b) The maximum output power of the transmitter for...
47 CFR 90.635 - Limitations on power and antenna height.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Limitations on power and antenna height. 90.635... and antenna height. (a) The effective radiated power and antenna height for base stations may not... justify power levels and antenna heights requested. (b) The maximum output power of the transmitter for...
47 CFR 90.635 - Limitations on power and antenna height.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 5 2013-10-01 2013-10-01 false Limitations on power and antenna height. 90.635... and antenna height. (a) The effective radiated power and antenna height for base stations may not... justify power levels and antenna heights requested. (b) The maximum output power of the transmitter for...
NASA Technical Reports Server (NTRS)
Jain, A. (Inventor)
1978-01-01
Significant height information of ocean waves, or peaks of rough terrain is obtained by compressing the radar signal over different widths of the available chirp or Doppler bandwidths, and cross-correlating one of these images with each of the others. Upon plotting a fixed (e.g., zero) component of the cross-correlation values as the spacing is increased over some empirically determined range, the system is calibrated. To measure height with the system, a spacing value is selected and a cross-correlation value is determined between two intensity images at a selected frequency spacing. The measured height is the slope of the cross-correlation value used. Both electronic and optical radar signal data compressors and cross-correlations are disclosed for implementation of the system.
Lidar measurements of mesospheric temperature inversion at a low latitude
NASA Astrophysics Data System (ADS)
Siva Kumar, V.; Bhavani Kumar, Y.; Raghunath, K.; Rao, P. B.; Krishnaiah, M.; Mizutani, K.; Aoki, T.; Yasui, M.; Itabe, T.
2001-08-01
The Rayleigh lidar data collected on 119 nights from March 1998 to February 2000 were used to study the statistical characteristics of the low latitude mesospheric temperature inversion observed over Gadanki (13.5° N, 79.2° E), India. The occurrence frequency of the inversion showed semiannual variation with maxima in the equinoxes and minima in the summer and winter, which was quite different from that reported for the mid-latitudes. The peak of the inversion layer was found to be confined to the height range of 73 to 79 km with the maximum occurrence centered around 76 km, with a weak seasonal dependence that fits well to an annual cycle with a maximum in June and a minimum in December. The magnitude of the temperature deviation associated with the inversion was found to be as high as 32 K, with the most probable value occurring at about 20 K. Its seasonal dependence seems to follow an annual cycle with a maximum in April and a minimum in October. The observed characteristics of the inversion layer are compared with that of the mid-latitudes and discussed in light of the current understanding of the source mechanisms.
Song, Ci; Pei, Tao; Yao, Ling
2015-01-01
Fine particulate matter (PM2.5) has been recognized as a serious hazard linked to deleterious health effects. In this study, all PM2.5 Pollution Episodes (PPEs) in Beijing during 2013 were investigated with hourly PM2.5 observations from the Olympic Sport Center site, and then their characteristics and evolution modes analysed. Results show that 80 PPEs, covering 209 days, occurred in Beijing during 2013. Average PM2.5 concentrations during PPEs were almost twice (1.86) the annual mean value, although the PPEs showed significant seasonal variations. The most hazardous PPEs tended to occur in winter, whereas PPEs with long duration occurred in autumn. The PPEs could be divided into six clusters based on their compositions of different pollution levels, which were strongly related to meteorological factors. We used series peaks of PM2.5 concentrations to analyse the evolution modes of PPEs and found that the more peaks there were within the evolution mode, the longer the duration, and the higher the average and maximum PM2.5 concentrations. Each peak within a PPE can be identified by “rise” and “fall” patterns. The “rise” patterns are widely related to relative humidity, whereas the “fall” patterns are affected principally by wind speed for one-peak PPEs and boundary layer height for multi-peak PPEs. The peak patterns cannot be explained fully by meteorological factors; however, they might also be closely related to complex and diversified human activities. PMID:25648172
Oceanic-wave-measurement system
NASA Technical Reports Server (NTRS)
Holmes, J. F.; Miles, R. T.
1980-01-01
Barometer mounted on bouy senses wave heights. As wave motion raises and lowers barometer, pressure differential is proportional to wave height. Monitoring circuit samples barometer output every half cycle of wave motion and adds magnitudes of adjacent positive and negative peaks. Resulting output signals, proportional to wave height, are transmitted to central monitoring station.
Krishnan, Ananthanarayan; Suresh, Chandan H.; Gandour, Jackson T.
2017-01-01
Language experience shapes encoding of pitch-relevant information at both brainstem and cortical levels of processing. Pitch height is a salient dimension that orders pitch from low to high. Herein we investigate the effects of language experience (Chinese, English) in the brainstem and cortex on i) neural responses to variations in pitch height, ii) presence of asymmetry in cortical pitch representation, and iii) patterns of relative changes in magnitude of pitch height between these two levels of brain structure. Stimuli were three nonspeech homologs of Mandarin Tone 2 varying in pitch height only. The frequency-following response (FFR) and the cortical pitch-specific response (CPR) were recorded concurrently. At the Fz-linked T7/T8 site, peak latency of Na, Pb, and Nb decreased with increasing pitch height for both groups. Peak-to-peak amplitude of Na–Pb and Pb–Nb increased with increasing pitch height across groups. A language-dependent effect was restricted to Na-Pb; the Chinese had larger amplitude than the English group. At temporal sites (T7/T8), the Chinese group had larger amplitude, as compared to English, across stimuli, but also limited to the Na-Pb component and right temporal site. In the brainstem, F0 magnitude decreased with increasing pitch height; Chinese had larger magnitude across stimuli. A comparison of CPR and FFR responses revealed distinct patterns of relative changes in magnitude common to both groups. CPR amplitude increased and FFR amplitude decreased with increasing pitch height. Experience-dependent effects on CPR components vary as a function of neural sensitivity to pitch height within a particular temporal window (Na–Pb). Differences between the auditory brainstem and cortex imply distinct neural mechanisms for pitch extraction at both levels of brain structure. PMID:28108254
Krishnan, Ananthanarayan; Suresh, Chandan H; Gandour, Jackson T
2017-03-27
Language experience shapes encoding of pitch-relevant information at both brainstem and cortical levels of processing. Pitch height is a salient dimension that orders pitch from low to high. Herein we investigate the effects of language experience (Chinese, English) in the brainstem and cortex on (i) neural responses to variations in pitch height, (ii) presence of asymmetry in cortical pitch representation, and (iii) patterns of relative changes in magnitude of pitch height between these two levels of brain structure. Stimuli were three nonspeech homologs of Mandarin Tone 2 varying in pitch height only. The frequency-following response (FFR) and the cortical pitch-specific response (CPR) were recorded concurrently. At the Fz-linked T7/T8 site, peak latency of Na, Pb, and Nb decreased with increasing pitch height for both groups. Peak-to-peak amplitude of Na-Pb and Pb-Nb increased with increasing pitch height across groups. A language-dependent effect was restricted to Na-Pb; the Chinese had larger amplitude than the English group. At temporal sites (T7/T8), the Chinese group had larger amplitude, as compared to English, across stimuli, but also limited to the Na-Pb component and right temporal site. In the brainstem, F0 magnitude decreased with increasing pitch height; Chinese had larger magnitude across stimuli. A comparison of CPR and FFR responses revealed distinct patterns of relative changes in magnitude common to both groups. CPR amplitude increased and FFR amplitude decreased with increasing pitch height. Experience-dependent effects on CPR components vary as a function of neural sensitivity to pitch height within a particular temporal window (Na-Pb). Differences between the auditory brainstem and cortex imply distinct neural mechanisms for pitch extraction at both levels of brain structure. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, K.; Imada, S.; Moon, Y.; Lee, J.
2013-12-01
We investigate spectral properties of a cool loop and a dark lane over a limb active region on 2007 March 14 by the Hinode/EUV Imaging Spectrometer. The cool loop is clearly seen in the spectral lines formed at the transition region temperature. The dark lane is characterized by an elongated faint structure in coronal spectral lines and rooted on a bright point. We determine their electron densities, Doppler velocities, and non-thermal velocities with height over the limb. We derived electron densities using the density sensitive line pairs of Mg VII, Si X, Fe XII, Fe XIII and Fe XIV spectra. Under the hydrostatic equilibrium and isothermal assumption, we determine their temperatures from the density scale height. Comparing the scale height temperatures to the peak formation temperatures of the spectral lines, we note that the scale height temperature of the cool loop is consistent with a peak formation temperature of the Fe XII and the scale height temperatures of the dark lane from each spectral lines are much lower than their peak formation temperatures. The non-thermal velocity in the cool loop slightly decreases along the loop while that in the dark lane sharply falls off with height. The variation of non-thermal velocity with height in the cool loop and the dark lane is contrast to that in off-limb polar coronal holes which are considered as source of the solar wind. Such a decrease in the non-thermal velocity may be explained by wave damping near the solar surface or turbulence due to magnetic reconnection near the bright point.
The Lumbar Lordosis in Males and Females, Revisited
Hay, Ori; Dar, Gali; Abbas, Janan; Stein, Dan; May, Hila; Masharawi, Youssef; Peled, Nathan; Hershkovitz, Israel
2015-01-01
Background Whether differences exist in male and female lumbar lordosis has been debated by researchers who are divided as to the nature of variations in the spinal curve, their origin, reasoning, and implications from a morphological, functional and evolutionary perspective. Evaluation of the spinal curvature is constructive in understanding the evolution of the spine, as well as its pathology, planning of surgical procedures, monitoring its progression and treatment of spinal deformities. The aim of the current study was to revisit the nature of lumbar curve in males and females. Methods Our new automated method uses CT imaging of the spine to measure lumbar curvature in males and females. The curves extracted from 158 individuals were based on the spinal canal, thus avoiding traditional pitfalls of using bone features for curve estimation. The model analysis was carried out on the entire curve, whereby both local and global descriptors were examined in a single framework. Six parameters were calculated: segment length, curve length, curvedness, lordosis peak location, lordosis cranial peak height, and lordosis caudal peak height. Principal Findings Compared to males, the female spine manifested a statistically significant greater curvature, a caudally located lordotic peak, and greater cranial peak height. As caudal peak height is similar for males and females, the illusion of deeper lordosis among females is due partially to the fact that the upper part of the female lumbar curve is positioned more dorsally (more backwardly inclined). Conclusions Males and females manifest different lumbar curve shape, yet similar amount of inward curving (lordosis). The morphological characteristics of the female spine were probably developed to reduce stress on the vertebral elements during pregnancy and nursing. PMID:26301782
Ali, Nicholas; Rouhi, Gholamreza; Robertson, Gordon
2013-01-01
There is a lack of studies investigating gender differences in whole-body kinematics during single-leg landings from increasing vertical heights and horizontal distances. This study determined the main effects and interactions of gender, vertical height, and horizontal distance on whole-body joint kinematics during single-leg landings, and established whether these findings could explain the gender disparity in non-contact anterior cruciate ligament (ACL) injury rate. Recreationally active males (n=6) and females (n=6) performed single-leg landings from a takeoff deck of vertical height of 20, 40, and 60 cm placed at a horizontal distance of 30, 50 and 70 cm from the edge of a force platform, while 3D kinematics and kinetics were simultaneously measured. It was determined that peak vertical ground reaction force (VGRF) and the ankle flexion angle exhibited significant gender differences (p=0.028, partial η(2)=0.40 and p=0.035, partial η(2)=0.37, respectively). Peak VGRF was significantly correlated to the ankle flexion angle (r= -0.59, p=0.04), hip flexion angle (r= -0.74, p=0.006), and trunk flexion angle (r= -0.59, p=0.045). Peak posterior ground reaction force (PGRF) was significantly correlated to the ankle flexion angle (r= -0.56, p=0.035), while peak knee abduction moment was significantly correlated to the knee flexion angle (r= -0.64, p=0.03). Rearfoot landings may explain the higher ACL injury rate among females. Higher plantar-flexed ankle, hip, and trunk flexion angles were associated with lower peak ground reaction forces, while higher knee flexion angle was associated with lower peak knee abduction moment, and these kinematics implicate reduced risk of non-contact ACL injury.
The pattern of facial skeletal growth and its relationship to various common indexes of maturation.
Mellion, Zachary J; Behrents, Rolf G; Johnston, Lysle E
2013-06-01
Sequential stages in the development of the hand, wrist, and cervical vertebrae commonly are used to assess maturation and predict the timing of the adolescent growth spurt. This approach is predicated on the idea that forecasts based on skeletal age must, of necessity, be superior to those based on chronologic age. This study was undertaken to test this reasonable, albeit largely unproved, assumption in a large, longitudinal sample. Serial records of 100 children (50 girls, 50 boys) were chosen from the files of the Bolton-Brush Growth Study Center in Cleveland, Ohio. The 100 series were 6 to 11 years in length, a span that was designed to encompass the onset and the peak of the adolescent facial growth spurt in each subject. Five linear cephalometric measurements (S-Na, Na-Me, PNS-A, S-Go, Go-Pog) were summed to characterize general facial size; a sixth (Co-Gn) was used to assess mandibular length. In all, 864 cephalograms were traced and analyzed. For most years, chronologic age, height, and hand-wrist films were available, thereby permitting various alternative methods of maturational assessment and prediction to be tested. The hand-wrist and the cervical vertebrae films for each time point were staged. Yearly increments of growth for stature, face, and mandible were calculated and plotted against chronologic age. For each subject, the actual age at onset and peak for stature and facial and mandibular size served as the gold standards against which key ages inferred from other methods could be compared. On average, the onset of the pubertal growth spurts in height, facial size, and mandibular length occurred in girls at 9.3, 9.8, and 9.5 years, respectively. The difference in timing between height and facial size growth spurts was statistically significant. In boys, the onset for height, facial size, and mandibular length occurred more or less simultaneously at 11.9, 12.0, and 11.9 years, respectively. In girls, the peak of the growth spurt in height, facial size, and mandibular length occurred at 10.9, 11.5, and 11.5 years. Height peaked significantly earlier than both facial size and mandibular length. In boys, the peak in height occurred slightly (but statistically significantly) earlier than did the peaks in the face and mandible: 14.0, 14.4, and 14.3 years. Based on rankings, the hand-wrist stages provided the best indication (lowest root mean squared error) that maturation had advanced to the peak velocity stage. Chronologic age, however, was nearly as good, whereas the vertebral stages were consistently the worst. Errors from the use of statural onset to predict the peak of the pubertal growth spurt in height, facial size, and mandibular length were uniformly lower than for predictions based on the cervical vertebrae. Chronologic age, especially in boys, was a close second. The common assumption that onset and peak occur at ages 12 and 14 years in boys and 10 and 12 years in girls seems correct for boys, but it is 6 months to 1 year late for girls. As an index of maturation, hand-wrist skeletal ages appear to offer the best indication that peak growth velocity has been reached. Of the methods tested here for the prediction of the timing of peak velocity, statural onset had the lowest errors. Although mean chronologic ages were nearly as good, stature can be measured repeatedly and thus might lead to improved prediction of the timing of the adolescent growth spurt. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Prediction and observation of munitions burial in energetic storms
NASA Astrophysics Data System (ADS)
Klammler, Harald; Sheremet, Alexandru; Calantoni, Joseph
2017-04-01
The fate of munitions or unexploded ordnance (UXO) resting on a submarine sediment bed is a critical safety concern. Munitions may be transported in uncontrolled ways to create potentially dangerous situations at places like beaches or ports. Alternatively, they may remain in place or completely disappear for significant but unknown periods, after becoming buried in the sediment bed. Clearly, burial of munitions drastically complicates the detection and removal of potential threats. Here, we present field data of wave height and (surrogate) munitions burial depths near the 8-m isobath at the U.S. Army Corps of Engineers, Field Research Facility, Duck, North Carolina, observed between January and March 2015. The experiment captured a remarkable sequence of storms that included at least 10 events, of which 6 were characterized by wave fields of significant heights exceeding 2 m and with peak periods of approximately 10 s. During the strongest storm, waves of 14 s period and heights exceeding 2 m were recorded for more than 3 days; significant wave height reached 5 m at the peak of activity. At the end of the experiment, divers measured munition burial depths of up to 60 cm below the seabed level. However, the local bathymetry showed less than 5 cm variation between the before and after-storm states, suggesting the local net sediment accumulation / loss was negligible. The lack of bathymetric variability excludes the possibility of burial by a migrating bed form or by sediment deposition, and strongly indicates that the munitions sank into the bed. The depth of burial also suggest an extreme state of sand agitation during the storm. For predicting munitions burial depths, we explore existing analytical solutions for the dynamic interaction between waves and sediment. Measured time series of wave pressure near the sediment bed were converted into wave-induced changes in pore pressures and the effective stress states of the sediment. Different sediment failure criteria based on minimum normal and maximum shear stresses are then applied to evaluate the appropriateness of individual failure criteria to predict observed burial depths. Results are subjected to a sensitivity analysis with respect to uncertain sediment parameters and summarized by representing cumulative failure times as a function of depth.
47 CFR 73.614 - Power and antenna height requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Power and antenna height requirements. 73.614... RADIO BROADCAST SERVICES Television Broadcast Stations § 73.614 Power and antenna height requirements.... No minimum antenna height above average terrain is specified. (b) Maximum power. Applications will...
47 CFR 73.614 - Power and antenna height requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Power and antenna height requirements. 73.614... RADIO BROADCAST SERVICES Television Broadcast Stations § 73.614 Power and antenna height requirements.... No minimum antenna height above average terrain is specified. (b) Maximum power. Applications will...
47 CFR 73.614 - Power and antenna height requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Power and antenna height requirements. 73.614... RADIO BROADCAST SERVICES Television Broadcast Stations § 73.614 Power and antenna height requirements.... No minimum antenna height above average terrain is specified. (b) Maximum power. Applications will...
47 CFR 73.614 - Power and antenna height requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Power and antenna height requirements. 73.614... RADIO BROADCAST SERVICES Television Broadcast Stations § 73.614 Power and antenna height requirements.... No minimum antenna height above average terrain is specified. (b) Maximum power. Applications will...
47 CFR 73.614 - Power and antenna height requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Power and antenna height requirements. 73.614... RADIO BROADCAST SERVICES Television Broadcast Stations § 73.614 Power and antenna height requirements.... No minimum antenna height above average terrain is specified. (b) Maximum power. Applications will...
Bilateral contact ground reaction forces and contact times during plyometric drop jumping.
Ball, Nick B; Stock, Christopher G; Scurr, Joanna C
2010-10-01
Drop jumping (DJ) is used in training programs aimed to improve lower extremity explosive power. When performing double-leg drop jumps, it is important to provide an equal stimulus to both legs to ensure balanced development of the lower legs. The aim of this study was to bilaterally analyze the ground reactions forces and temporal components of drop jumping from 3 heights. Ten recreationally active male subjects completed 3 bounce-drop jumps from 3 starting heights (0.2, 0.4, and 0.6 m). Two linked force platforms were used to record left- and right-leg peak vertical force, time to peak force, average force, ground contact time, impulse and time differential. Between-height and between-leg comparisons for each variable were made using a multivariate analysis of variance with post hoc Wilcoxon tests (p < 0.05). Results indicated that force and time variables increased as drop jump height increased (p < 0.0001). Post hoc analyses showed that at 0.2- and 0.4-m bilateral differences were present in the time to peak force, average force, and impulse. No bilateral differences for any variables were shown at 0.6-m starting height. The contact time for all jumps was <0.26 seconds. At 0.2 m, only 63% of the subjects had a starting time differential of <0.01 seconds, rising to 96.3% at 0.6 m. The results indicated that 0.6 m is the suggested drop jump height to ensure that no bilateral differences in vertical forces and temporal components occur; however, shorter contact times were found at the lower heights.
Lahar hazard zones for eruption-generated lahars in the Lassen Volcanic Center, California
Robinson, Joel E.; Clynne, Michael A.
2012-01-01
Lahar deposits are found in drainages that head on or near Lassen Peak in northern California, demonstrating that these valleys are susceptible to future lahars. In general, lahars are uncommon in the Lassen region. Lassen Peak's lack of large perennial snowfields and glaciers limits its potential for lahar development, with the winter snowpack being the largest source of water for lahar generation. The most extensive lahar deposits are related to the May 1915 eruption of Lassen Peak, and evidence for pre-1915 lahars is sparse and spatially limited. The May 1915 eruption of Lassen Peak was a small-volume eruption that generated a snow and hot-rock avalanche, a pyroclastic flow, and two large and four smaller lahars. The two large lahars were generated on May 19 and 22 and inundated sections of Lost and Hat Creeks. We use 80 years of snow depth measurements from Lassen Peak to calculate average and maximum liquid water depths, 2.02 meters (m) and 3.90 m respectively, for the month of May as estimates of the 1915 lahars. These depths are multiplied by the areal extents of the eruptive deposits to calculate a water volume range, 7.05-13.6x106 cubic meters (m3). We assume the lahars were a 50/50 mix of water and sediment and double the water volumes to provide an estimate of the 1915 lahars, 13.2-19.8x106 m3. We use a representative volume of 15x106 m3 in the software program LAHARZ to calculate cross-sectional and planimetric areas for the 1915 lahars. The resultant lahar inundation zone reasonably portrays both of the May 1915 lahars. We use this same technique to calculate the potential for future lahars in basins that head on or near Lassen Peak. LAHARZ assumes that the total lahar volume does not change after leaving the potential energy, H/L, cone (the height of the edifice, H, down to the approximate break in slope at its base, L); therefore, all water available to initiate a lahar is contained inside this cone. Because snow is the primary source of water for lahar generation, we assume that the maximum historical water equivalent, 3.90 m, covers the entire basin area inside the H/L cone. The product of planimetric area of each basin inside the H/L and the maximum historical water equivalent yields the maximum water volume available to generate a lahar. We then double the water volumes to approximate maximum lahar volumes. The maximum lahar volumes and an understanding of the statistical uncertainties inherent to the LAHARZ calculations guided our selection of six hypothetical volumes, 1, 3, 10, 30, 60, and 90x106 m3, to delineate concentric lahar inundation zones. The lahar inundation zones extend, in general, tens of kilometers away from Lassen Peak. The small, more-frequent lahar inundation zones (1 and 3x106 m3) are, on average, 10 km long. The exceptions are the zones in Warner Creek and Mill Creek, which extend much further. All but one of the small, more-frequent lahar inundation zones reach outside of the Lassen Volcanic National Park boundary, and the zone in Mill Creek extends well past the park boundary. All of the medium, moderately frequent lahar inundation zones (10 and 30x106 m3) extend past the park boundary and could potentially impact the communities of Viola and Old Station and State Highways 36 and 44, both north and west of Lassen Peak. The approximately 27-km-long on average, large, less-frequent lahar inundation zones (60 and 90x106 m3) represent worst-case lahar scenarios that are unlikely to occur. Flood hazards continue downstream from the toes of the lahars, potentially affecting communities in the Sacramento River Valley.
Variable coupling between sap-flow and transpiration in pine trees under drought conditions
NASA Astrophysics Data System (ADS)
Preisler, Yakir; Tatarinov, Fyodor; Rohatyn, Shani; Rotenberg, Eyal; Grunzweig, Jose M.; Yakir, Dan
2016-04-01
Changes in diurnal patterns in water transport and physiological activities in response to changes in environmental conditions are important adjustments of trees to drought. The rate of sap flow (SF) in trees is expected to be in agreement with the rate of tree-scale transpiration (T) and provides a powerful measure of water transport in the soil-plant-atmosphere system. The aim of this five-years study was to investigate the temporal links between SF and T in Pinus halepensis exposed to extreme seasonal drought in the Yatir forest in Israel. We continuously measured SF (20 trees), the daily variations in stem diameter (ΔDBH, determined with high precision dendrometers; 8 trees), and ecosystem evapotranspiration (ET; eddy covariance), which were complemented with short-term campaigns of leaf-scale measurements of H2O and CO2 gas exchange, water potentials, and hydraulic conductivity. During the rainy season, tree SF was well synchronized with ecosystem ET, reaching maximum rates during midday in all trees. However, during the dry season, the daily SF trends greatly varied among trees, allowing a classification of trees into three classes: 1) Trees that remain with SF maximum at midday, 2) trees that advanced their SF peak to early morning, and 3) trees that delayed their SF peak to late afternoon hours. This classification remained valid for the entire study period (2010-2015), and strongly correlated with tree height and DBH, and to a lower degree with crown size and competition index. In the dry season, class 3 trees (large) tended to delay the timing of SF maximum to the afternoon, and to advance their maximum diurnal DBH to early morning, while class 2 trees (smaller) advanced their SF maximum to early morning and had maximum daily DBH during midday and afternoon. Leaf-scale transpiration (T), measurements showed a typical morning peak in all trees, irrespective of classification, and a secondary peak in the afternoon in large trees only. Water potential and hydraulic conductivity in larger trees recovered faster from midday depression than in smaller ones. We concluded that the observed changes in the patterns of water flow into and out of the trees reflected differences in the utilization of external and internal 'water storage'. Large trees appear to rely on sufficient internal water storage that filled up in the morning (max DBH) and supported transpiration both in the morning and the afternoon, while SF increased throughout the day to compensate for the depletion in water storage (SF maximum in the afternoon). In contrast, small trees with insufficient internal water storage must rely on soil water availability and maximize SF in the morning to support concurrent tree transpiration, achieving some internal storage only in the afternoon, when T declines and maximum daily DBH is observed. The results indicated also that trees with insufficient internal storage, as can be detected by the simultaneous SF and DBH patterns, are likely to be more vulnerable to drought-related mortality since soil water availability may not be sufficient to support transpiration and stomata opening.
Rutten, Gemma; Ensslin, Andreas; Hemp, Andreas; Fischer, Markus
2015-01-01
In most habitats, vegetation provides the main structure of the environment. This complexity can facilitate biodiversity and ecosystem services. Therefore, measures of vegetation structure can serve as indicators in ecosystem management. However, many structural measures are laborious and require expert knowledge. Here, we used consistent and convenient measures to assess vegetation structure over an exceptionally broad elevation gradient of 866-4550 m above sea level at Mount Kilimanjaro, Tanzania. Additionally, we compared (human)-modified habitats, including maize fields, traditionally managed home gardens, grasslands, commercial coffee farms and logged and burned forests with natural habitats along this elevation gradient. We distinguished vertical and horizontal vegetation structure to account for habitat complexity and heterogeneity. Vertical vegetation structure (assessed as number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) displayed a unimodal elevation pattern, peaking at intermediate elevations in montane forests, whereas horizontal structure (assessed as coefficient of variation of number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) was lowest at intermediate altitudes. Overall, vertical structure was consistently lower in modified than in natural habitat types, whereas horizontal structure was inconsistently different in modified than in natural habitat types, depending on the specific structural measure and habitat type. Our study shows how vertical and horizontal vegetation structure can be assessed efficiently in various habitat types in tropical mountain regions, and we suggest to apply this as a tool for informing future biodiversity and ecosystem service studies.
Jacobson, Bert H; Conchola, Eric C; Smith, Doug B; Akehi, Kazuma; Glass, Rob G
2016-08-01
Jacobson, BH, Conchola, EC, Smith, DB, Akehi, K, and Glass, RG. Relationship between selected strength and power assessments to peak and average velocity of the drive block in offensive line play. J Strength Cond Res 30(8): 2202-2205, 2016-Typical strength training for football includes the squat and power clean (PC) and routinely measured variables include 1 repetition maximum (1RM) squat and 1RM PC along with the vertical jump (VJ) for power. However, little research exists regarding the association between the strength exercises and velocity of an actual on-the-field performance. The purpose of this study was to investigate the relationship of peak velocity (PV) and average velocity (AV) of the offensive line drive block to 1RM squat, 1RM PC, the VJ, body mass (BM), and body composition. One repetition maximum assessments for the squat and PC were recorded along with VJ height, BM, and percent body fat. These data were correlated with PV and AV while performing the drive block. Peal velocity and AV were assessed using a Tendo Power and Speed Analyzer as the linemen fired, from a 3-point stance into a stationary blocking dummy. Pearson product analysis yielded significant (p ≤ 0.05) correlations between PV and AV and the VJ, the squat, and the PC. A significant inverse association was found for both PV and AV and body fat. These data help to confirm that the typical exercises recommended for American football linemen is positively associated with both PV and AV needed for the drive block effectiveness. It is recommended that these exercises remain the focus of a weight room protocol and that ancillary exercises be built around these exercises. Additionally, efforts to reduce body fat are recommended.
Atkins, Lee T; James, C Roger; Yang, Hyung Suk; Sizer, Phillip S; Brismée, Jean-Michel; Sawyer, Steven F; Powers, Christopher M
2018-03-01
Although a relationship between elevated patellofemoral forces and pain has been proposed, it is unknown which joint loading variable (magnitude, rate) is best associated with pain changes. The purpose of this study was to examine associations among patellofemoral joint loading variables and changes in patellofemoral pain across repeated single limb landings. Thirty-one females (age: 23.5(2.8) year; height: 166.8(5.8) cm; mass: 59.6(8.1) kg) with PFP performed 5 landing trials from 0.25 m. The dependent variable was rate of change in pain obtained from self-reported pain scores following each trial. Independent variables included 5-trial averages of peak, time-integral, and average and maximum development rates of the patellofemoral joint reaction force obtained using a previously described model. Pearson correlation coefficients were calculated to evaluate individual associations between rate of change in pain and each independent variable (α = 0.05). Stepwise linear multiple regression (α enter = 0.05; α exit = 0.10) was used to identify the best predictor of rate of change in pain. Subjects reported an average increase of 0.38 pain points with each landing trial. Although, rate of change in pain was positively correlated with peak force (r = 0.44, p = 0.01), and average (r = 0.41, p = 0.02) and maximum force development rates (r = 0.39, p = 0.03), only the peak force entered the predictive model explaining 19% of variance in rate of change in pain (r 2 = 0.19, p = 0.01). Peak patellofemoral joint reaction force was the best predictor of the rate of change in pain following repetitive singe limb landings. The current study supports the theory that patellofemoral joint loading contributes to changes in patellofemoral pain. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mohammed, H. A.; Al-aswadi, A. A.; Yusoff, M. Z.; Saidur, R.
2012-03-01
Laminar mixed convective buoyancy assisting flow through a two-dimensional vertical duct with a backward-facing step using nanofluids as a medium is numerically simulated using finite volume technique. Different types of nanoparticles such as Au, Ag, Al2O3, Cu, CuO, diamond, SiO2 and TiO2 with 5 % volume fraction are used. The wall downstream of the step was maintained at a uniform wall temperature, while the straight wall that forms the other side of the duct was maintained at constant temperature equivalent to the inlet fluid temperature. The walls upstream of the step and the backward-facing step were considered as adiabatic surfaces. The duct has a step height of 4.9 mm and an expansion ratio of 1.942, while the total length in the downstream of the step is 0.5 m. The downstream wall was fixed at uniform wall temperature 0 ≤ Δ T≤ 30 °C, which was higher than the inlet flow temperature. The Reynolds number in the range of 75 ≤ Re ≤ 225 was considered. It is found that a recirculation region was developed straight behind the backward-facing step which appeared between the edge of the step and few millimeters before the corner which connect the step and the downstream wall. In the few millimeters gap between the recirculation region and the downstream wall, a U-turn flow was developed opposite to the recirculation flow which mixed with the unrecirculated flow and traveled along the channel. Two maximum and one minimum peaks in Nusselt number were developed along the heated downstream wall. It is inferred that Au nanofluid has the highest maximum peaks while diamond nanofluid has the highest minimum peak. Nanofluids with a higher Prandtl number have a higher peak of Nusselt numbers after the separation and the recirculation flow disappeared.
Effect of respiratory and cardiac gating on the major diffusion-imaging metrics
Hamaguchi, Hiroyuki; Sugimori, Hiroyuki; Nakanishi, Mitsuhiro; Nakagawa, Shin; Fujiwara, Taro; Yoshida, Hirokazu; Takamori, Sayaka; Shirato, Hiroki
2016-01-01
The effect of respiratory gating on the major diffusion-imaging metrics and that of cardiac gating on mean kurtosis (MK) are not known. For evaluation of whether the major diffusion-imaging metrics—MK, fractional anisotropy (FA), and mean diffusivity (MD) of the brain—varied between gated and non-gated acquisitions, respiratory-gated, cardiac-gated, and non-gated diffusion-imaging of the brain were performed in 10 healthy volunteers. MK, FA, and MD maps were constructed for all acquisitions, and the histograms were constructed. The normalized peak height and location of the histograms were compared among the acquisitions by use of Friedman and post hoc Wilcoxon tests. The effect of the repetition time (TR) on the diffusion-imaging metrics was also tested, and we corrected for its variation among acquisitions, if necessary. The results showed a shift in the peak location of the MK and MD histograms to the right with an increase in TR (p ≤ 0.01). The corrected peak location of the MK histograms, the normalized peak height of the FA histograms, the normalized peak height and the corrected peak location of the MD histograms varied significantly between the gated and non-gated acquisitions (p < 0.05). These results imply an influence of respiration and cardiac pulsation on the major diffusion-imaging metrics. The gating conditions must be kept identical if reproducible results are to be achieved. PMID:27073115
The height of electron content changes in the ionosphere from ATS 6 beacon data
NASA Technical Reports Server (NTRS)
Davies, K.; Heron, M. L.
1984-01-01
A technique is described which uses relative changes in Faraday rotation and modulation phase of satellite radio signals to determine the median height of the enhancement (or depletion) in the electron density of the ionosphere. During the post sunrise formation of the F layer the incremental layers have a median height of around 210 km (+ or - 40) and in the afternoon the decremental median is above the peak at 340 km (+ or - 40) on a winter day. A winter nighttime enhancement just after midnight appears as a thick layer extending upwards from the peak, with a median height at about 730 km. The method applies to large scale irregularities but not to small, dense, scintillation-causing irregularities for which Faraday and modulation phases do not represent the total electron content.
1983-01-01
concentration, poten- tial sweep rate, rotation speed, deposition potential and other parameters -on the shape and height of the stripping peaks have...concentration, potential sweep rate, rotation speed, deposition potential and other parameters on the shape and height of the stripping peaks have been...of the greater surface area of a solid electrode compared to a dropping mercury electrode. Cathodic stripping voltametry at a rotating silver disk
Peak fitting and integration uncertainties for the Aerodyne Aerosol Mass Spectrometer
NASA Astrophysics Data System (ADS)
Corbin, J. C.; Othman, A.; Haskins, J. D.; Allan, J. D.; Sierau, B.; Worsnop, D. R.; Lohmann, U.; Mensah, A. A.
2015-04-01
The errors inherent in the fitting and integration of the pseudo-Gaussian ion peaks in Aerodyne High-Resolution Aerosol Mass Spectrometers (HR-AMS's) have not been previously addressed as a source of imprecision for these instruments. This manuscript evaluates the significance of these uncertainties and proposes a method for their estimation in routine data analysis. Peak-fitting uncertainties, the most complex source of integration uncertainties, are found to be dominated by errors in m/z calibration. These calibration errors comprise significant amounts of both imprecision and bias, and vary in magnitude from ion to ion. The magnitude of these m/z calibration errors is estimated for an exemplary data set, and used to construct a Monte Carlo model which reproduced well the observed trends in fits to the real data. The empirically-constrained model is used to show that the imprecision in the fitted height of isolated peaks scales linearly with the peak height (i.e., as n1), thus contributing a constant-relative-imprecision term to the overall uncertainty. This constant relative imprecision term dominates the Poisson counting imprecision term (which scales as n0.5) at high signals. The previous HR-AMS uncertainty model therefore underestimates the overall fitting imprecision. The constant relative imprecision in fitted peak height for isolated peaks in the exemplary data set was estimated as ~4% and the overall peak-integration imprecision was approximately 5%. We illustrate the importance of this constant relative imprecision term by performing Positive Matrix Factorization (PMF) on a~synthetic HR-AMS data set with and without its inclusion. Finally, the ability of an empirically-constrained Monte Carlo approach to estimate the fitting imprecision for an arbitrary number of known overlapping peaks is demonstrated. Software is available upon request to estimate these error terms in new data sets.
Katherine A. McCulloh; Daniel M. Johnson; Joshua Petitmermet; Brandon McNellis; Frederick C. Meinzer; Barbara Lachenbruch; Nathan Phillips
2015-01-01
The physiological mechanisms underlying the short maximum height of shrubs are not understood. One possible explanation is that differences in the hydraulic architecture of shrubs compared with co-occurring taller trees prevent the shrubs from growing taller. To explore this hypothesis, we examined various hydraulic parameters, including vessel lumen diameter,...
Unravelling the limits to tree height: a major role for water and nutrient trade-offs.
Cramer, Michael D
2012-05-01
Competition for light has driven forest trees to grow exceedingly tall, but the lack of a single universal limit to tree height indicates multiple interacting environmental limitations. Because soil nutrient availability is determined by both nutrient concentrations and soil water, water and nutrient availabilities may interact in determining realised nutrient availability and consequently tree height. In SW Australia, which is characterised by nutrient impoverished soils that support some of the world's tallest forests, total [P] and water availability were independently correlated with tree height (r = 0.42 and 0.39, respectively). However, interactions between water availability and each of total [P], pH and [Mg] contributed to a multiple linear regression model of tree height (r = 0.72). A boosted regression tree model showed that maximum tree height was correlated with water availability (24%), followed by soil properties including total P (11%), Mg (10%) and total N (9%), amongst others, and that there was an interaction between water availability and total [P] in determining maximum tree height. These interactions indicated a trade-off between water and P availability in determining maximum tree height in SW Australia. This is enabled by a species assemblage capable of growing tall and surviving (some) disturbances. The mechanism for this trade-off is suggested to be through water enabling mass-flow and diffusive mobility of P, particularly of relatively mobile organic P, although water interactions with microbial activity could also play a role.
Collar height and heel counter-stiffness for ankle stability and athletic performance in basketball.
Liu, Hui; Wu, Zitian; Lam, Wing-Kai
2017-01-01
This study examined the effects of collar height and heel counter-stiffness of basketball shoes on ankle stability during sidestep cutting and athletic performance. 15 university basketball players wore customized shoes with different collar heights (high and low) and heel counter-stiffness (regular, stiffer and stiffest) for this study. Ankle stability was evaluated in sidestep cutting while athletic performance evaluated in jumping and agility tasks. All variables were analysed using two-way repeated ANOVA. Results showed shorter time to peak ankle inversion for both high collar and stiff heel counter conditions (P < 0.05), while smaller initial ankle inversion angle, peak inversion velocity and total range of inversion for wearing high collar shoes (P < 0.05). No shoe differences were found for performance variables. These findings imply that the collar height might play a larger role in lateral stability than heel counter-stiffness, while both collar height and counter-stiffness have no effect on athletic performance.
QCD phase transition with chiral quarks and physical quark masses.
Bhattacharya, Tanmoy; Buchoff, Michael I; Christ, Norman H; Ding, H-T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao
2014-08-22
We report on the first lattice calculation of the QCD phase transition using chiral fermions with physical quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm)(3) and (11 fm)(3) and temperatures between 139 and 196 MeV. Each temperature is calculated at a single lattice spacing corresponding to a temporal Euclidean extent of N(t) = 8. The disconnected chiral susceptibility, χ(disc) shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability near the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD "phase transition" is not first order but a continuous crossover for m(π) = 135 MeV. The peak location determines a pseudocritical temperature T(c) = 155(1)(8) MeV, in agreement with earlier staggered fermion results. However, the peak height is 50% greater than that suggested by previous staggered results. Chiral SU(2)(L) × SU(2)(R) symmetry is fully restored above 164 MeV, but anomalous U(1)(A) symmetry breaking is nonzero above T(c) and vanishes as T is increased to 196 MeV.
Kuijer, P P F M; van Oostrom, S H; Duijzer, K; van Dieën, J H
2012-01-01
It is unclear whether the maximum acceptable weight of lift (MAWL), a common psychophysical method, reflects joint kinetics when different lifting techniques are employed. In a within-participants study (n = 12), participants performed three lifting techniques--free style, stoop and squat lifting from knee to waist level--using the same dynamic functional capacity evaluation lifting test to assess MAWL and to calculate low back and knee kinetics. We assessed which knee and back kinetic parameters increased with the load mass lifted, and whether the magnitudes of the kinetic parameters were consistent across techniques when lifting MAWL. MAWL was significantly different between techniques (p = 0.03). The peak lumbosacral extension moment met both criteria: it had the highest association with the load masses lifted (r > 0.9) and was most consistent between the three techniques when lifting MAWL (ICC = 0.87). In conclusion, MAWL reflects the lumbosacral extension moment across free style, stoop and squat lifting in healthy young males, but the relation between the load mass lifted and lumbosacral extension moment is different between techniques. Tests of maximum acceptable weight of lift (MAWL) from knee to waist height are used to assess work capacity of individuals with low-back disorders. This article shows that the MAWL reflects the lumbosacral extension moment across free style, stoop and squat lifting in healthy young males, but the relation between the load mass lifted and lumbosacral extension moment is different between techniques. This suggests that standardisation of lifting technique used in tests of the MAWL would be indicated if the aim is to assess the capacity of the low back.
NASA Astrophysics Data System (ADS)
Hayashi, Kazuhiro; Hachimori, Wataru; Kaneda, Shogo; Tamura, Shuji; Saito, Taiki
2017-10-01
In case of earthquake damage to buildings, the damage to a superstructure is visible, but the damage to a foundation structure, e.g. the underground pile, is difficult to detect. In this study, the authors aim to develop a monitoring technique for pile damage due to earthquakes. The world's biggest shaking table, E-Defense, was used to reproduce damage to RC pile models embedded in the soil inside a large scale shear box (8m in diameter and 6.5m in height). The diameter of the RC pile model was 154mm. It consisted of mortar (27.2N/mm2 in compressive strength), 6 main reinforcements (6.35mm in diameter) and shear reinforcement hard steel wire (2mm in diameter at intervals of 20mm). The natural period of the superstructure above the pile models is around 0.12sec. The soil consisted of 2 layers. The lower layer is Albany sand of 80% relative density while the upper layer is only 2m from the surface ground and is Kaketsu sand of 60% relative density. Primary four excitations were scaled from JMA Kobe waves in notification at different amplitudes. The maximum acceleration of each wave is 31gal, 67gal, 304gal, and 458gal, respectively. In the test result, reinforcing steels at the pile head of the RC model yielded when the maximum acceleration was 304gal. After that, mortar of the pile head peeled off and a bending shear failure occurred when the maximum acceleration was 458gal. The peak frequency of rotational spectrum on the foundation did not change in elastic range in the piles. However, the peak frequency fell after the plastic hinge occurred.
Giatsis, George; Panoutsakopoulos, Vassilios; Kollias, Iraklis A
2018-05-01
The purpose of this study was to investigate the possible arm swing effect on the biomechanical parameters of vertical counter movement jump due to differences of the compliance of the take-off surface. Fifteen elite male beach-volleyball players (26.2 ± 5.9 years; 1.87 ± 0.05 m; 83.4 ± 6.0 kg; mean ± standard deviation, respectively) performed counter movement jumps on sand and on a rigid surface with and without an arm swing. Results showed significant (p < .05) surface effects on the jump height, the ankle joint angle at the lowest height of the body center of mass and the ankle angular velocity. Also, significant arm swing effects were found on jump height, maximum power output, temporal parameters, range of motion and angular velocity of the hip. These findings could be attributed to the instability of the sand, which resulted in reduced peak power output due to the differences of body configuration at the lowest body position and lower limb joints' range of motion. The combined effect of the backward arm swing and the recoil of the sand that resulted in decreased resistance at ankle plantar flexion should be controlled at the preparation of selected jumping tasks in beach-volleyball.
NASA Astrophysics Data System (ADS)
Chen, Liang-Chia; Chen, Yi-Shiuan; Chang, Yi-Wei; Lin, Shyh-Tsong; Yeh, Sheng Lih
2013-01-01
In this research, new nano-scale measurement methodology based on spectrally-resolved chromatic confocal interferometry (SRCCI) was successfully developed by employing integration of chromatic confocal sectioning and spectrally-resolve white light interferometry (SRWLI) for microscopic three dimensional surface profilometry. The proposed chromatic confocal method (CCM) using a broad band while light in combination with a specially designed chromatic dispersion objective is capable of simultaneously acquiring multiple images at a large range of object depths to perform surface 3-D reconstruction by single image shot without vertical scanning and correspondingly achieving a high measurement depth range up to hundreds of micrometers. A Linnik-type interferometric configuration based on spectrally resolved white light interferometry is developed and integrated with the CCM to simultaneously achieve nanoscale axis resolution for the detection point. The white-light interferograms acquired at the exit plane of the spectrometer possess a continuous variation of wavelength along the chromaticity axis, in which the light intensity reaches to its peak when the optical path difference equals to zero between two optical arms. To examine the measurement accuracy of the developed system, a pre-calibrated accurate step height target with a total step height of 10.10 μm was measured. The experimental result shows that the maximum measurement error was verified to be less than 0.3% of the overall measuring height.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Qing; Berg, Larry K.; Pekour, Mikhail
The WRF model version 3.3 is used to simulate near hub-height winds and power ramps utilizing three commonly used planetary boundary-layer (PBL) schemes: Mellor-Yamada-Janjic (MYJ), University of Washington (UW), and Yonsei University (YSU). The predicted winds have small mean biases compared with observations. Power ramps and step changes (changes within an hour) consistently show that the UW scheme performed better in predicting up ramps under stable conditions with higher prediction accuracy and capture rates. Both YSU and UW scheme show good performance predicting up- and down- ramps under unstable conditions with YSU being slightly better for ramp durations longer thanmore » an hour. MYJ is the most successful simulating down-ramps under stable conditions. The high wind speed and large shear associated with low-level jets are frequently associated with power ramps, and the biases in predicted low-level jet explain some of the shown differences in ramp predictions among different PBL schemes. Low-level jets were observed as low as ~200 m in altitude over the Columbia Basin Wind Energy Study (CBWES) site, located in an area of complex terrain. The shear, low-level peak wind speeds, as well as the height of maximum wind speed are not well predicted. Model simulations with 3 PBL schemes show the largest variability among them under stable conditions.« less
Graded nanowell arrays: a fine plasmonic "library" with an adjustable spectral range.
Xue, Peihong; Ye, Shunsheng; Su, Hongyang; Wang, Shuli; Nan, Jingjie; Chen, Xingchi; Ruan, Weidong; Zhang, Junhu; Cui, Zhanchen; Yang, Bai
2017-05-25
We present an effective approach for fabricating graded plasmonic arrays based on ordered micro-/nanostructures with a geometric gradient. Ag nanowell arrays with graded geometric parameters were fabricated and systematically investigated. The order of the graded plasmonic arrays is generated by colloidal lithography, while the geometric gradient is the result of inclined reactive ion etching. The surface plasmon resonance (SPR) peaks were measured at different positions, which move gradually along the Ag nanowell arrays with a geometric gradient. Such micro-/nanostructure arrays with graded and integrated SPR peaks can work as a fine plasmonic "library" (FPL), and the spectral range can be controlled using a "coarse adjustment knob" (lattice constant) and a "fine adjustment knob" (pore diameter). Additionally, the spectral resolution of the FPL is high, which benefits from the high value of the full height/full width at half-maximum and the small step size of the wavelength shift (0.5 nm). Meanwhile, the FPL could be effectively applied as a well-defined model to verify the plasmonic enhancement in surface enhanced Raman scattering. As the FPL is an integrated optical material with graded individual SPR peaks, it can not only be a theoretical model for fundamental research, but also has great potential in high-throughput screening of optical materials, multiplex sensors, etc.
Ren, Shanxiang; Nie, Yuxiang; Wang, Aihong
2016-01-01
The effects of recombinant human growth hormone (rhGH) in the treatment of dwarfism and the relationship between insulin-like growth factor (IGF)-1, IGF-binding protein (IGFBP)-3 and thyroid hormone were examined in the present study. For this purpose, 66 patients diagnosed with dwarfism were selected retrospectively, with 36 cases of growth hormone deficiency (GHD) and 30 cases of idiopathic short stature (ISS). The therapeutic dose of GHD 0.10 IU/kg·day and ISS 0.15 IU/kg·day were injected subcutaneously every night before sleep until adulthood. The average follow-up was 5 years, and the results were evaluated and measured every 3 months, including height, BA, secondary test of growth hormone (GH peak), IGF-1, IGFBP-3 and thyroid hormone (FT3, FT4 and TSH). After treatment, the height, BA, GH peak, IGF-A and IGFBP-3 of the GHD group were all increased, and the differences were statistically significant (P<0.05), while FT3, FT4 and TSH had no significant change (P<0.05). The height and BA increased and the differences were statistically significant (P<0.05). The indexes of the ISS group were not statistically significant (P>0.05). The results of the Pearson-related analysis suggested that GH peak of the GHD group, IGF-1 and IGFBP-3 were positively associated with height (P<0.05), and had no relationship with BA (P<0.05). None of the above indexes of the ISS group had an obvious correlation with height and BA (P>0.05). rhGH was effective for GHD and ISS, with the GHD effect being positively associated with the GH peak, IGF-1 and IGFBP-3. ISS had no obvious relationship with GH peak, IGF-1 and IGFBP-3 although other influencing factors may be involved. PMID:28105090
Ren, Shanxiang; Nie, Yuxiang; Wang, Aihong
2016-12-01
The effects of recombinant human growth hormone (rhGH) in the treatment of dwarfism and the relationship between insulin-like growth factor (IGF)-1, IGF-binding protein (IGFBP)-3 and thyroid hormone were examined in the present study. For this purpose, 66 patients diagnosed with dwarfism were selected retrospectively, with 36 cases of growth hormone deficiency (GHD) and 30 cases of idiopathic short stature (ISS). The therapeutic dose of GHD 0.10 IU/kg·day and ISS 0.15 IU/kg·day were injected subcutaneously every night before sleep until adulthood. The average follow-up was 5 years, and the results were evaluated and measured every 3 months, including height, BA, secondary test of growth hormone (GH peak), IGF-1, IGFBP-3 and thyroid hormone (FT3, FT4 and TSH). After treatment, the height, BA, GH peak, IGF-A and IGFBP-3 of the GHD group were all increased, and the differences were statistically significant (P<0.05), while FT3, FT4 and TSH had no significant change (P<0.05). The height and BA increased and the differences were statistically significant (P<0.05). The indexes of the ISS group were not statistically significant (P>0.05). The results of the Pearson-related analysis suggested that GH peak of the GHD group, IGF-1 and IGFBP-3 were positively associated with height (P<0.05), and had no relationship with BA (P<0.05). None of the above indexes of the ISS group had an obvious correlation with height and BA (P>0.05). rhGH was effective for GHD and ISS, with the GHD effect being positively associated with the GH peak, IGF-1 and IGFBP-3. ISS had no obvious relationship with GH peak, IGF-1 and IGFBP-3 although other influencing factors may be involved.
Measures of functional performance and their association with hip and thigh strength.
Kollock, Roger; Van Lunen, Bonnie L; Ringleb, Stacie I; Oñate, James A
2015-01-01
Insufficient hip and thigh strength may increase an athlete's susceptibility to injury. However, screening for strength deficits using isometric and isokinetic instrumentation may not be practical in all clinical scenarios. To determine if functional performance tests are valid indicators of hip and thigh strength. Descriptive laboratory study. Research laboratory. Sixty-two recreationally athletic men (n = 30, age = 21.07 years, height = 173.84 cm, mass = 81.47 kg) and women (n = 32, age = 21.03 years, height = 168.77 cm, mass = 68.22 kg) participants were recruited. During session 1, we measured isometric peak force and rate of force development for 8 lower extremity muscle groups, followed by an isometric endurance test. During session 2, participants performed functional performance tests. Peak force, rate of force development, fatigue index, hop distance (or height), work (joules), and number of hops performed during the 30-second lateral-hop test were assessed. The r values were squared to calculate r (2). We used Pearson correlations to evaluate the associations between functional performance and strength. In men, the strongest relationship was observed between triple-hop work and hip-adductor peak force (r(2) = 50, P ≤ .001). Triple-hop work also was related to hip-adductor (r(2) = 38, P ≤ .01) and hip-flexor (r(2) = 37, P ≤ .01) rate of force development. For women, the strongest relationships were between single-legged vertical-jump work and knee-flexor peak force (r(2) = 0.44, P ≤ .01) and single-legged vertical-jump height and knee-flexor peak force (r(2) = 0.42, P ≤ .01). Single-legged vertical-jump height also was related to knee-flexor rate of force development (r(2) = 0.49, P ≤ .001). The 30-second lateral-hop test did not account for a significant portion of the variance in strength endurance. Hop tests alone did not provide clinicians with enough information to make evidence-based decisions about lower extremity strength in isolated muscle groups.
M Dwarfs from Hubble Space Telescope Star Counts. IV.
NASA Astrophysics Data System (ADS)
Zheng, Zheng; Flynn, Chris; Gould, Andrew; Bahcall, John N.; Salim, Samir
2001-07-01
We study a sample of about 1400 disk M dwarfs that are found in 148 fields observed with the Wide Field Camera 2 (WFC2) on the Hubble Space Telescope and 162 fields observed with pre-repair Planetary Camera 1 (PC1), of which 95 of the WFC2 fields are newly analyzed. The method of maximum likelihood is applied to derive the luminosity function and the Galactic disk parameters. At first, we use a local color-magnitude relation and a locally determined mass-luminosity relation in our analysis. The results are consistent with those of previous work but with considerably reduced statistical errors. These small statistical errors motivate us to investigate the systematic uncertainties. Considering the metallicity gradient above the Galactic plane, we introduce a modified color-magnitude relation that is a function of Galactic height. The resultant M dwarf luminosity function has a shape similar to that derived using the local color-magnitude relation but with a higher peak value. The peak occurs at MV~12, and the luminosity function drops sharply toward MV~14. We then apply a height-dependent mass-luminosity function interpolated from theoretical models with different metallicities to calculate the mass function. Unlike the mass function obtained using local relations, which has a power-law index α=0.47, the one derived from the height-dependent relations tends to be flat (α=-0.10). The resultant local surface density of disk M dwarfs (12.2+/-1.6 Msolar pc-2) is somewhat smaller than the one obtained using local relations (14.3+/-1.3 Msolar pc-2). Our measurement favors a short disk scale length, H=2.75+/-0.16 (statistical)+/-0.25 (systematic) kpc. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.
49 CFR 231.31 - Drawbars for freight cars; standard height.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Drawbars for freight cars; standard height. 231.31... cars; standard height. (a) Except on cars specified in paragraph (b) of this section— (1) On standard gage (561/2-inch gage) railroads, the maximum height of drawbars for freight cars (measured...
49 CFR 231.31 - Drawbars for freight cars; standard height.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Drawbars for freight cars; standard height. 231.31... cars; standard height. (a) Except on cars specified in paragraph (b) of this section— (1) On standard gage (561/2-inch gage) railroads, the maximum height of drawbars for freight cars (measured...
49 CFR 231.31 - Drawbars for freight cars; standard height.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Drawbars for freight cars; standard height. 231.31... cars; standard height. (a) Except on cars specified in paragraph (b) of this section— (1) On standard gage (561/2-inch gage) railroads, the maximum height of drawbars for freight cars (measured...
49 CFR 231.31 - Drawbars for freight cars; standard height.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Drawbars for freight cars; standard height. 231.31... cars; standard height. (a) Except on cars specified in paragraph (b) of this section— (1) On standard gage (561/2-inch gage) railroads, the maximum height of drawbars for freight cars (measured...
49 CFR 231.31 - Drawbars for freight cars; standard height.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Drawbars for freight cars; standard height. 231.31... cars; standard height. (a) Except on cars specified in paragraph (b) of this section— (1) On standard gage (561/2-inch gage) railroads, the maximum height of drawbars for freight cars (measured...
Use of radiochromic film as a high-spatial resolution dosimeter by Raman spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirza, Jamal Ahmad; Park, Hyeonsuk
Purpose: Due to increasing demand for high-spatial resolution dosimetry, radiochromic films have been investigated as potential candidates but are often limited by the scanning system, e.g., flatbed optical scanner. In this study, Raman spectroscopy in conjunction with a microscope was selected as an alternative method for high-spatial resolution dosimetry of radiochromic film. Methods: Unlaminated Gafchromic™ EBT3 films were irradiated with doses between 0 and 50 Gy using 6 MV x-rays of a clinical linear accelerator. Depth profiling from the surface of unlaminated film was performed to acquire the maximum Raman intensity peaks of C≡C and C=C stretching bands of diacetylenemore » polymer. The Raman mapping technique for a region of interest (200 × 200, 30 × 30 μm{sup 2}) was developed to reduce a large variation in a Raman spectrum produced with a sampling resolution of a few μm. The preprocessing of Raman spectra was carried out to determine a dosimetric relationship with the amount of diacetylene polymerization. Results: Due to partial diacetylene polymerization upon irradiation, two Raman peaks of C=C and C≡C stretching bands were observed around 1447 and 2060 cm{sup −1}, respectively. The maximum intensities of the two peaks were obtained by positioning a focused laser spot on the surface of unlaminated film. For the dose range of 0–50 Gy, the band heights of both C≡C and C=C peaks increase asymptotically with increasing doses and can be fit with an exponential function of two components. The relative standard deviation in Raman mapping was found to be less than ±5%. By using this technique, dose uniformity was found to be within ±2%. Conclusions: The Raman intensity for C=C and C≡C peaks increases with an increase in the amount of diacetylene polymerization due to an increase in dose. This study shows the potential of Raman spectroscopy as an alternative for absolute dosimetry verifications with a high-spatial resolution of a few μm, but these findings need to be further validated for the purpose of microdosimetry.« less
Shoepe, Todd C; Ramirez, David A; Rovetti, Robert J; Kohler, David R; Almstedt, Hawley C
2011-09-01
The purpose of this investigation was to assess the effectiveness of variable resistance as provided through elastic plus free weight techniques in college aged males and females. Twenty novice lifters were randomly assigned to a traditional free weight only (6 males and 5 females) or elastic band plus free weight group (5 males and 5 females) and 9 more normally active controls (5 males and 4 females), were recruited to maintain normal activity for the duration of the study. No differences existed between control, free weight and elastic band at baseline for age, body height, body mass, body mass index, and body fat percentage. One-repetition maximums were performed for squat and bench press while both strength and power were assessed using isokinetic dynamometry. Elastic groups and free-weight groups completed 24 weeks of whole body, periodized, high intensity resistance (65-95% of one-repetition maximum) training three times/week. Training programs were identical except that the elastic group trained the barbell squat, bench press and stiff-legged deadlift with 20-35% of their total prescribed training loads coming from band resistance (assessed at the top of the range of motion) with the remainder from free weight resistance. A mixed-model analysis revealed that peak torque, average power and one-repetition maximums for squat were significantly greater after training for the elastic group compared to the control (p<0.05). In addition, the free weight group also showed significantly greater improvements over the control in peak torque and one-repetition maximums for squat and bench press. No significant differences were observed between the elastic band and free weight groups. Combined variable elastic band plus free weight exercises are effective at increasing strength and power similar to free-weights alone in novice college aged males and females. However, due to complexity in set-up and load assignment elastic adoption by novice lifters in an unsupervised situation is not advised.
Structure and dynamics of coronal plasmas
NASA Technical Reports Server (NTRS)
Golub, Leon
1995-01-01
The Normal Incidence X-ray Telescope (NIXT) obtained a unique set of high resolution full disk solar images which were exposed simultaneously by X-rays in a passband at 63.5 A and by visible light. The perfect alignment of a photospheric visible light image with a coronal X-ray image enables us to present observations of X-ray intensity vs an accurately determined height above the visible limb. The height at which the observed X-ray intensity peak varies from 4000 km in active regions to 9000 km in quiet regions of the sun. The interpretation of the observations stems from the previously established fact that, for the coronal loops, emission in the NIXT bandpass peaks sharply just above the footpoints. Because there is not a sharp peak in the observed X-ray intensity vs off limb height, we conclude that the loop footpoints, when viewed at the limb, are obscured by absorption in chromospheric material along the line of sight. We calculate the X-ray intensity vs height predicted by a number of different idealizations of the solar atmosphere, and we compare these calculations with the observed X-ray intensity vs height. The calculations use existing coronal and chromospheric models. In order for the calculations to reproduce the observed off limb X-ray intensities, we are forced to assume an atmosphere in which the footpoints of coronal loops are interspersed along the line of sight with cooler chromospheric material extending to heights well above the loop footpoints. We argue that the absorption coefficient for NIXT X-rays by chromospheric material is roughly proportional to the neutral hydrogen density, and we estimate an average neutral hydrogen density and scale height implied by the data.
The Effects of Caffeine on Vertical Jump Height and Execution in Collegiate Athletes.
Bloms, Lucas P; Fitzgerald, John S; Short, Martin W; Whitehead, James R
2016-07-01
Bloms, LP, Fitzgerald, JS, Short, MW, and Whitehead, JR. The effects of caffeine on vertical jump height and execution in collegiate athletes. J Strength Cond Res 30(7): 1855-1861, 2016-Caffeine ingestion elicits a variety of physiological effects that may be beneficial to maximal-intensity exercise performance, although its effectiveness and physical mechanism of action enhancing ballistic task performance are unclear. The purpose of this study was to examine the effects of caffeine ingestion on vertical jump height and jump execution in Division I collegiate athletes. The study used a single-blind, randomized, crossover design. Athletes (n = 25) consumed either caffeine (5 mg·kg) or placebo. After a 60-minute waiting period, athletes performed 3 squat jumps (SJ) and 3 countermovement jumps (CMJ) while standing on a force platform. Jump height and execution variables were calculated from mechanography data. In comparison with placebo, caffeine increased SJ height (32.8 ± 6.2 vs. 34.5 ± 6.7 cm; p = 0.001) and CMJ height (36.4 ± 6.9 vs. 37.9 ± 7.4 cm; p = 0.001). Peak force (p = 0.032) and average rate of force development (p = 0.037) were increased during the CMJ in the caffeine trail compared with the control. Time to half peak force was the only execution variable improved with caffeine (p = 0.019) during the SJ. It seems that caffeine affects both height and execution of jumping. Our data indicate that the physical mechanism of jump enhancement is increased peak force production or rate of force development during jumping depending on technique. The physical mechanism of jump enhancement suggests that the ergogenic effects of caffeine may transfer to other ballistic tasks involving the lower-body musculature in collegiate athletes.
Current responsive devices for synchronous generators
Karlicek, Robert F.
1983-01-01
A device for detecting current imbalance between phases of a polyphase alternating current generator. A detector responds to the maximum peak current in the generator, and detecting means generates an output for each phase proportional to the peak current of each phase. Comparing means generates an output when the maximum peak current exceeds the phase peak current.
New dye-labeled terminators for improved DNA sequencing patterns.
Rosenblum, B B; Lee, L G; Spurgeon, S L; Khan, S H; Menchen, S M; Heiner, C R; Chen, S M
1997-01-01
We have used two new dye sets for automated dye-labeled terminator DNA sequencing. One set consists of four, 4,7-dichlororhodamine dyes (d-rhodamines). The second set consists of energy-transfer dyes that use the 5-carboxy-d-rhodamine dyes as acceptor dyes and the 5- or 6-carboxy isomers of 4'-aminomethylfluorescein as the donor dye. Both dye sets utilize a new linker between the dye and the nucleotide, and both provide more even peak heights in terminator sequencing than the dye-terminators consisting of unsubstituted rhodamine dyes. The unsubstituted rhodamine terminators produced electropherograms in which weak G peaks are observed after A peaks and occasionally C peaks. The number of weak G peaks has been reduced or eliminated with the new dye terminators. The general improvement in peak evenness improves accuracy for the automated base-calling software. The improved signal-to-noise ratio of the energy-transfer dye-labeled terminators combined with more even peak heights results in successful sequencing of high molecular weight DNA templates such as bacterial artificial chromosome DNA. PMID:9358158
Active stabilization of a diode laser injection lock.
Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep
2016-06-01
We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.
Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goto, Takumi; Nakamori, Hiroki; Sano, Yasuhisa
2015-04-15
An adaptive Kirkpatrick–Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (Vmore » × H) was achieved at an X-ray energy of 10 keV.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep
We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser’s transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399more » nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.« less
The influence of heel height on utilized coefficient of friction during walking.
Blanchette, Mark G; Brault, John R; Powers, Christopher M
2011-05-01
Wearing high heel shoes has been associated with an increased potential for slips and falls. The association between wearing high heels and the increased potential for slipping suggests that the friction demand while wearing high heels may be greater when compared to wearing low heel shoes. The purpose of this study was to determine if heel height affects utilized friction (uCOF) during walking. A secondary purpose of this study was to compare kinematics at the ankle, knee, and hip that may explain uCOF differences among shoes with varied heel heights. Fifteen healthy women (mean age 24.5±2.5yrs) participated. Subjects walked at self-selected velocity under 3 different shoe conditions that varied in heel height (low: 1.27cm, medium: 6.35cm, and high: 9.53cm). Ground reaction forces (GRFs) were recorded using a force platform (1560Hz). Kinematic data were obtained using an 8 camera motion analysis system (120Hz). Utilized friction was calculated as the ratio of resultant shear force to vertical force. One-way repeated measures ANOVAs were performed to test for differences in peak uCOF, GRFs at peak uCOF and lower extremity joint angles at peak uCOF. On average, peak uCOF was found to increase with heel height. The increased uCOF observed in high heel shoes was related to an increase in the resultant shear force and decrease in the vertical force. Our results signify the need for proper public education and increased footwear industry awareness of how high heel shoes affect slip risk. Copyright © 2011 Elsevier B.V. All rights reserved.
Atmospheric Science Data Center
2018-06-07
... in ongoing eruptions using parallax. View the MISR Active Aerosol Plume-Height (AAP) Project paper to see peak altitude and settling ... R. Kahn/NASA GSFC Access Project Paper: MISR Active Aerosol Plume-Height (AAP) Project Access and Order MISR Data and ...
Code of Federal Regulations, 2011 CFR
2011-10-01
... midsagittal plane is vertical. EC01AU91.162 (4) Drop the head from the specified height by means that ensure... dropped from a height of 14.8 inches in accordance with paragraph (c) of this section, the peak resultant...
Code of Federal Regulations, 2013 CFR
2013-10-01
... midsagittal plane is vertical. EC01AU91.162 (4) Drop the head from the specified height by means that ensure... dropped from a height of 14.8 inches in accordance with paragraph (c) of this section, the peak resultant...
Ajibola, E S; Adebayo, A O; Thomas, F C; Rahman, S A; Gbadebo, A M; Odunbaku, T A
2009-12-01
The study was designed to investigate the nature of the cholinoceptors at the sciatic nerve-gastrocnemius muscle junction of the common African toad (Bufo regularis). Using myographic technique, the twitch properties of the sciatic-gastrocnemius muscle preparation of the common African toad was studied. Both the twitch height and peak tetanic height were measured as a percentage of control. Hexamethonium at a concentration of 0.1 mM significantly [P<0.05] reduced the mean twitch height from 2.62 cm to 1.0 cm and mean peak tetanic height from 5.38 cm to 4.32 cm. Hexamethonium, however does not produce tetanic fade at the same concentration. We hypothesized that the cholinoceptors of the neuromuscular junction of the common African toad (Bufo regularis) resemble the developing synapse of African clawed toad (Xenopus laevis) and may contain muscarinic M1 autoreceptors at the pre juntional membrane.
Fino, Peter; Lockhart, Thurmon E
2014-04-11
This study investigated the relationship of required coefficient of friction to gait speed, obstacle height, and turning strategy as participants walked around obstacles of various heights. Ten healthy, young adults performed 90° turns around corner pylons of four different heights at their self selected normal, slow, and fast walking speeds using both step and spin turning strategies. Kinetic data was captured using force plates. Results showed peak required coefficient of friction (RCOF) at push off increased with increased speed (slow μ=0.38, normal μ=0.45, and fast μ=0.54). Obstacle height had no effect on RCOF values. The average peak RCOF for fast turning exceeded the OSHA safety guideline for static COF of μ>0.50, suggesting further research is needed into the minimum static COF to prevent slips and falls, especially around corners. Copyright © 2014 Elsevier Ltd. All rights reserved.
ZT Optimization: An Application Focus
Tuley, Richard; Simpson, Kevin
2017-01-01
Significant research has been performed on the challenge of improving thermoelectric materials, with maximum peak figure of merit, ZT, the most common target. We use an approximate thermoelectric material model, matched to real materials, to demonstrate that when an application is known, average ZT is a significantly better optimization target. We quantify this difference with some examples, with one scenario showing that changing the doping to increase peak ZT by 19% can lead to a performance drop of 16%. The importance of average ZT means that the temperature at which the ZT peak occurs should be given similar weight to the value of the peak. An ideal material for an application operates across the maximum peak ZT, otherwise maximum performance occurs when the peak value is reduced in order to improve the peak position. PMID:28772668
Simultaneous multielement atomic absorption spectrometry with graphite furnace atomization
NASA Astrophysics Data System (ADS)
Harnly, James M.; Miller-Ihli, Nancy J.; O'Haver, Thomas C.
The extended analytical range capability of a simultaneous multielement atomic absorption continuum source spectrometer (SIMAAC) was tested for furnace atomization with respect to the signal measurement mode (peak height and area), the atomization mode (from the wall or from a platform), and the temperature program mode (stepped or ramped atomization). These parameters were evaluated with respect to the shapes of the analytical curves, the detection limits, carry-over contamination and accuracy. Peak area measurements gave more linear calibration curves. Methods for slowing the atomization step heating rate, the use of a ramped temperature program or a platform, produced similar calibration curves and longer linear ranges than atomization with a stepped temperature program. Peak height detection limits were best using stepped atomization from the wall. Peak area detection limits for all atomization modes were similar. Carry-over contamination was worse for peak area than peak height, worse for ramped atomization than stepped atomization, and worse for atomization from a platform than from the wall. Accurate determinations (100 ± 12% for Ca, Cu, Fe, Mn, and Zn in National Bureau of Standards' Standard Reference Materials Bovine Liver 1577 and Rice Flour 1568 were obtained using peak area measurements with ramped atomization from the wall and stepped atomization from a platform. Only stepped atomization from a platform gave accurate recoveries for K. Accurate recoveries, 100 ± 10%, with precisions ranging from 1 to 36 % (standard deviation), were obtained for the determination of Al, Co, Cr, Fe, Mn, Mo, Ni. Pb, V and Zn in Acidified Waters (NBS SRM 1643 and 1643a) using stepped atomization from a platform.
Zemková, Erika; Kyselovičová, Oľga; Jeleň, Michal; Kováčiková, Zuzana; Ollé, Gábor; Štefániková, Gabriela; Vilman, Tomáš; Baláž, Miroslav; Kurdiová, Timea; Ukropec, Jozef; Ukropcová, Barbara
2016-01-01
This study evaluates the effect of 3 months resistance and aerobic training on muscle strength and power in 17 male overweight and obese men. Subjects underwent either a resistance or aerobic training for a period of 3 months (three sessions per week). Peak isometric force, rate of force development, peak power and height of countermovement and squat jumps, reactive strength index, and mean power in the concentric phase of bench presses were all assessed prior to and after completing the training program. Results identified a significant increase of mean power during both countermovement bench presses at 30 kg (18.6%, p = .021), 40 kg (14.6%, p = .033), and 50 kg (13.1%, p = .042) and concentric-only bench presses at 30 kg (19.6%, p = .017) and 40 kg (13.9%, p = .037) after the resistance training. There was also a significant increase in the height of the jump (12.8%, p = .013), peak power (10.1%, p = .026), and peak velocity (9.7%, p = .037) during the countermovement jump and height of the jump (11.8%, p = .019), peak power (9.6%, p = .032), and peak velocity (9.5%, p = .040) during the squat jump. There were no significant changes in the reactive strength index, peak force, and the rate of force development after the resistance training. The aerobic group failed to show any significant improvements in these parameters. It may be concluded that 3 months of resistance training without caloric restriction enhances upper and lower body muscle power in overweight and obese men. PMID:27530821
Analysis of Wien filter spectra from Hall thruster plumes.
Huang, Wensheng; Shastry, Rohit
2015-07-01
A method for analyzing the Wien filter spectra obtained from the plumes of Hall thrusters is derived and presented. The new method extends upon prior work by deriving the integration equations for the current and species fractions. Wien filter spectra from the plume of the NASA-300M Hall thruster are analyzed with the presented method and the results are used to examine key trends. The new integration method is found to produce results slightly different from the traditional area-under-the-curve method. The use of different velocity distribution forms when performing curve-fits to the peaks in the spectra is compared. Additional comparison is made with the scenario where the current fractions are assumed to be proportional to the heights of peaks. The comparison suggests that the calculated current fractions are not sensitive to the choice of form as long as both the height and width of the peaks are accounted for. Conversely, forms that only account for the height of the peaks produce inaccurate results. Also presented are the equations for estimating the uncertainty associated with applying curve fits and charge-exchange corrections. These uncertainty equations can be used to plan the geometry of the experimental setup.
Khan, Shahbaz; Anwar, Sumera; Kuai, Jie; Ullah, Sana; Fahad, Shah; Zhou, Guangsheng
2017-01-01
Yield and lodging related traits are essential for improving rapeseed production. The objective of the present study was to investigate the influence of plant density (D) and nitrogen (N) rates on morphological and physiological traits related to yield and lodging in rapeseed. We evaluated Huayouza 9 for two consecutive growing seasons (2014–2016) under three plant densities (LD, 10 plants m−2; MD, 30 plants m−2; HD, 60 plants m−2) and four N rates (0, 60, 120, and 180 kg ha−1). Experiment was laid out in split plot design using density as a main factor and N as sub-plot factor with three replications each. Seed yield was increased by increasing density and N rate, reaching a peak at HD with 180 kg N ha−1. The effect of N rate was consistently positive in increasing the plant height, pod area index, 1,000 seed weight, shoot and root dry weights, and root neck diameter, reaching a peak at 180 kg N ha−1. Plant height was decreased by increasing D, whereas the maximum radiation interception (~80%) and net photosynthetic rate were recorded at MD at highest N. Lodging resistance and nitrogen use efficiency significantly increased with increasing D from 10 to 30 plants m−2, and N rate up to 120 kg ha−1, further increase of D and N decreased lodging resistance and NUE. Hence, our study implies that planting density 30 plants m−2 can improve yield, nitrogen use efficiency, and enhance lodging resistance by improving crop canopy. PMID:28536581
Yan, Xiao-Jun; Wang, Li-Li; Jiang, Yu; Deng, Ai-Xing; Tian, Yun-Lu; Zhang, Wei-Jian
2013-09-01
A pot experiment was conducted to study the CH4 emission features of fourteen leading super-rice varieties (six Japonica rice varieties and eight Indica hybrid rice varieties) and their relationships with the varieties growth characteristics in Yangtze Delta. Two distinct peaks of CH4 emission were detected during the entire growth period of the varieties, one peak occurred at full-tillering stage, and the other appeared at booting stage. The average total CH4 emission of Japonica rice varieties was 37.6% higher than that of the Indica hybrid rice varieties (P<0.01), and the differences in the CH4 emission between rice types occurred at the post-anthesis phase. For all the varieties, there was a significant positive correlation between the total CH4 emission and the maximum leaf area, but the correlations between the CH4 emission and the other growth characteristics varied with variety type. The total CH4 emission of Japonica rice varieties had a significant positive correlation with plant height, while the correlations between the total CH4 emission of Indica hybrid rice varieties and their plant height were not significant. The total CH4 emission of Indica hybrid rice varieties had significant negative correlations with the total aboveground biomass, grain yield, and harvest index, but the correlations were not significant for Japonica rice varieties. The lower CH4 emission of Indica hybrid rice varieties was likely due to their significantly higher root biomass, as compared with Japonica rice varieties.
14 CFR 77.17 - Obstruction standards.
Code of Federal Regulations, 2013 CFR
2013-01-01
... proportion of 100 feet for each additional nautical mile from the airport up to a maximum of 499 feet. (3) A... greater height than any of the following heights or surfaces: (1) A height of 499 feet AGL at the site of the object. (2) A height that is 200 feet AGL, or above the established airport elevation, whichever...
33 CFR 177.07 - Other unsafe conditions.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) The wave height within the Regulated Boating Area is 4 feet or greater; or (2) The wave height within the Regulated Boating Area is equal to or greater than the wave height determined by the formula L/10... from the lowest point along the upper strake edge to the surface of the water. W=Maximum wave height in...
33 CFR 177.07 - Other unsafe conditions.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) The wave height within the Regulated Boating Area is 4 feet or greater; or (2) The wave height within the Regulated Boating Area is equal to or greater than the wave height determined by the formula L/10... from the lowest point along the upper strake edge to the surface of the water. W=Maximum wave height in...
33 CFR 177.07 - Other unsafe conditions.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) The wave height within the Regulated Boating Area is 4 feet or greater; or (2) The wave height within the Regulated Boating Area is equal to or greater than the wave height determined by the formula L/10... from the lowest point along the upper strake edge to the surface of the water. W=Maximum wave height in...
White, Peter A
2013-01-01
How accurate are explicit judgements about familiar forms of object motion, and how are they made? Participants judged the relations between force exerted in kicking a soccer ball and variables that define the trajectory of the ball: launch angle, maximum height attained, and maximum distance reached. Judgements tended to conform to a simple heuristic that judged force tends to increase as maximum height and maximum distance increase, with launch angle not being influential. Support was also found for the converse prediction, that judged maximum height and distance tend to increase as the amount of force described in the kick increases. The observed judgemental tendencies did not resemble the objective relations, in which force is a function of interactions between the trajectory variables. This adds to a body of research indicating that practical knowledge based on experiences of actions on objects is not available to the processes that generate judgements in higher cognition and that such judgements are generated by simple rules that do not capture the objective interactions between the physical variables.
Quantized Majorana conductance
NASA Astrophysics Data System (ADS)
Zhang, Hao; Liu, Chun-Xiao; Gazibegovic, Sasa; Xu, Di; Logan, John A.; Wang, Guanzhong; van Loo, Nick; Bommer, Jouri D. S.; de Moor, Michiel W. A.; Car, Diana; Op Het Veld, Roy L. M.; van Veldhoven, Petrus J.; Koelling, Sebastian; Verheijen, Marcel A.; Pendharkar, Mihir; Pennachio, Daniel J.; Shojaei, Borzoyeh; Lee, Joon Sue; Palmstrøm, Chris J.; Bakkers, Erik P. A. M.; Sarma, S. Das; Kouwenhoven, Leo P.
2018-04-01
Majorana zero-modes—a type of localized quasiparticle—hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differential conductance. The height of the Majorana zero-bias peak is predicted to be quantized at the universal conductance value of 2e2/h at zero temperature (where e is the charge of an electron and h is the Planck constant), as a direct consequence of the famous Majorana symmetry in which a particle is its own antiparticle. The Majorana symmetry protects the quantization against disorder, interactions and variations in the tunnel coupling. Previous experiments, however, have mostly shown zero-bias peaks much smaller than 2e2/h, with a recent observation of a peak height close to 2e2/h. Here we report a quantized conductance plateau at 2e2/h in the zero-bias conductance measured in indium antimonide semiconductor nanowires covered with an aluminium superconducting shell. The height of our zero-bias peak remains constant despite changing parameters such as the magnetic field and tunnel coupling, indicating that it is a quantized conductance plateau. We distinguish this quantized Majorana peak from possible non-Majorana origins by investigating its robustness to electric and magnetic fields as well as its temperature dependence. The observation of a quantized conductance plateau strongly supports the existence of Majorana zero-modes in the system, consequently paving the way for future braiding experiments that could lead to topological quantum computing.
Quantized Majorana conductance.
Zhang, Hao; Liu, Chun-Xiao; Gazibegovic, Sasa; Xu, Di; Logan, John A; Wang, Guanzhong; van Loo, Nick; Bommer, Jouri D S; de Moor, Michiel W A; Car, Diana; Op Het Veld, Roy L M; van Veldhoven, Petrus J; Koelling, Sebastian; Verheijen, Marcel A; Pendharkar, Mihir; Pennachio, Daniel J; Shojaei, Borzoyeh; Lee, Joon Sue; Palmstrøm, Chris J; Bakkers, Erik P A M; Sarma, S Das; Kouwenhoven, Leo P
2018-04-05
Majorana zero-modes-a type of localized quasiparticle-hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differential conductance. The height of the Majorana zero-bias peak is predicted to be quantized at the universal conductance value of 2e 2 /h at zero temperature (where e is the charge of an electron and h is the Planck constant), as a direct consequence of the famous Majorana symmetry in which a particle is its own antiparticle. The Majorana symmetry protects the quantization against disorder, interactions and variations in the tunnel coupling. Previous experiments, however, have mostly shown zero-bias peaks much smaller than 2e 2 /h, with a recent observation of a peak height close to 2e 2 /h. Here we report a quantized conductance plateau at 2e 2 /h in the zero-bias conductance measured in indium antimonide semiconductor nanowires covered with an aluminium superconducting shell. The height of our zero-bias peak remains constant despite changing parameters such as the magnetic field and tunnel coupling, indicating that it is a quantized conductance plateau. We distinguish this quantized Majorana peak from possible non-Majorana origins by investigating its robustness to electric and magnetic fields as well as its temperature dependence. The observation of a quantized conductance plateau strongly supports the existence of Majorana zero-modes in the system, consequently paving the way for future braiding experiments that could lead to topological quantum computing.
Effect of respiratory and cardiac gating on the major diffusion-imaging metrics.
Hamaguchi, Hiroyuki; Tha, Khin Khin; Sugimori, Hiroyuki; Nakanishi, Mitsuhiro; Nakagawa, Shin; Fujiwara, Taro; Yoshida, Hirokazu; Takamori, Sayaka; Shirato, Hiroki
2016-08-01
The effect of respiratory gating on the major diffusion-imaging metrics and that of cardiac gating on mean kurtosis (MK) are not known. For evaluation of whether the major diffusion-imaging metrics-MK, fractional anisotropy (FA), and mean diffusivity (MD) of the brain-varied between gated and non-gated acquisitions, respiratory-gated, cardiac-gated, and non-gated diffusion-imaging of the brain were performed in 10 healthy volunteers. MK, FA, and MD maps were constructed for all acquisitions, and the histograms were constructed. The normalized peak height and location of the histograms were compared among the acquisitions by use of Friedman and post hoc Wilcoxon tests. The effect of the repetition time (TR) on the diffusion-imaging metrics was also tested, and we corrected for its variation among acquisitions, if necessary. The results showed a shift in the peak location of the MK and MD histograms to the right with an increase in TR (p ≤ 0.01). The corrected peak location of the MK histograms, the normalized peak height of the FA histograms, the normalized peak height and the corrected peak location of the MD histograms varied significantly between the gated and non-gated acquisitions (p < 0.05). These results imply an influence of respiration and cardiac pulsation on the major diffusion-imaging metrics. The gating conditions must be kept identical if reproducible results are to be achieved. © The Author(s) 2016.
Bavle, Abhishek; Raj, Ashok; Kong, Maiying; Bertolone, Salvatore
2014-11-01
Children with sickle cell disease (SCD) lag in weight and height and have a delayed growth spurt compared to normal children. We studied the effect of long-term erythrocytapheresis (LTE) on the growth of children with SCD and the age at which they attained peak height velocity. A retrospective chart review was performed recording weight, height, and body mass index (BMI) measurements of 36 patients with SCD who received LTE every 3-5 weeks for an average duration of 5 years. The z-scores for weight, height, and BMI of these patients were compared with that of patients with SCD from the Cooperative Study of Sickle Cell Disease (CSSCD) and a sub-set of 64 controls matched for age, sex, and initial growth parameter z-scores at the start of LTE. The z-scores for all parameters improved significantly for our patients on LTE compared to match controls from CSSCD and the entire pediatric CSSCD cohort (P-value: <0.01). Peak height velocity was achieved 2 months earlier for females (P-value: 0.94) and 11 months earlier for males (P-value: 0.02), who started LTE before 14 years of age, compared to matched CSSCD controls. The study subjects who had not been on regular simple transfusions prior to starting LTE had a mean serum ferritin of 681 ng/ml after LTE for an average duration of 63 months. LTE improves the growth of children with SCD without the risk of iron overload. © 2014 Wiley Periodicals, Inc.
Current responsive devices for synchronous generators
Karlicek, R.F.
1983-09-27
A device for detecting current imbalance between phases of a polyphase alternating current generator. A detector responds to the maximum peak current in the generator, and detecting means generates an output for each phase proportional to the peak current of each phase. Comparing means generates an output when the maximum peak current exceeds the phase peak current. 11 figs.
NASA Technical Reports Server (NTRS)
Becker, Joseph F.; Valentin, Jose
1996-01-01
The maximum entropy technique was successfully applied to the deconvolution of overlapped chromatographic peaks. An algorithm was written in which the chromatogram was represented as a vector of sample concentrations multiplied by a peak shape matrix. Simulation results demonstrated that there is a trade off between the detector noise and peak resolution in the sense that an increase of the noise level reduced the peak separation that could be recovered by the maximum entropy method. Real data originated from a sample storage column was also deconvoluted using maximum entropy. Deconvolution is useful in this type of system because the conservation of time dependent profiles depends on the band spreading processes in the chromatographic column, which might smooth out the finer details in the concentration profile. The method was also applied to the deconvolution of previously interpretted Pioneer Venus chromatograms. It was found in this case that the correct choice of peak shape function was critical to the sensitivity of maximum entropy in the reconstruction of these chromatograms.
Velocity and pressure fields associated with near-wall turbulence structures
NASA Technical Reports Server (NTRS)
Johansson, Arne V.; Alfredsson, P. Henrik; Kim, John
1990-01-01
Computer generated databases containing velocity and pressure fields in three-dimensional space at a sequence of time-steps, were used for the investigation of near-wall turbulence structures, their space-time evolution, and their associated pressure fields. The main body of the results were obtained from simulation data for turbulent channel flow at a Reynolds number of 180 (based on half-channel height and friction velocity) with a grid of 128 x 129 x and 128 points. The flow was followed over a total time of 141 viscous time units. Spanwise centering of the detected structures was found to be essential in order to obtain a correct magnitude of the associated Reynolds stress contribution. A positive wall-pressure peak is found immediately beneath the center of the structure. The maximum amplitude of the pressure pattern was, however, found in the buffer region at the center of the shear-layer. It was also found that these flow structures often reach a maximum strength in connection with an asymmetric spanwise motion, which motivated the construction of a conditional sampling scheme that preserved this asymmetry.
Laser-saturated fluorescence measurements in laminar sooting diffusion flames
NASA Technical Reports Server (NTRS)
Wey, Changlie
1993-01-01
The hydroxyl radical is known to be one of the most important intermediate species in the combustion processes. The hydroxyl radical has also been considered a dominant oxidizer of soot particles in flames. In this investigation the hydroxyl concentration profiles in sooting diffusion flames were measured by the laser-saturated fluorescence (LSF) method. The temperature distributions in the flames were measured by the two-line LSF technique and by thermocouple. In the sooting region the OH fluorescence was too weak to make accurate temperature measurements. The hydroxyl fluorescence profiles for all four flames presented herein show that the OH fluorescence intensities peaked near the flame front. The OH fluorescence intensity dropped sharply toward the dark region of the flame and continued declining to the sooting region. The OH fluorescence profiles also indicate that the OH fluorescence decreased with increasing height in the flames for all flames investigated. Varying the oxidizer composition resulted in a corresponding variation in the maximum OH concentration and the flame temperature. Furthermore, it appears that the maximum OH concentration for each flame increased with increasing flame temperature.
Wang, Jianren; Xu, Junkai; Shull, Peter B
2018-03-01
Vertical jump height is widely used for assessing motor development, functional ability, and motor capacity. Traditional methods for estimating vertical jump height rely on force plates or optical marker-based motion capture systems limiting assessment to people with access to specialized laboratories. Current wearable designs need to be attached to the skin or strapped to an appendage which can potentially be uncomfortable and inconvenient to use. This paper presents a novel algorithm for estimating vertical jump height based on foot-worn inertial sensors. Twenty healthy subjects performed countermovement jumping trials and maximum jump height was determined via inertial sensors located above the toe and under the heel and was compared with the gold standard maximum jump height estimation via optical marker-based motion capture. Average vertical jump height estimation errors from inertial sensing at the toe and heel were -2.2±2.1 cm and -0.4±3.8 cm, respectively. Vertical jump height estimation with the presented algorithm via inertial sensing showed excellent reliability at the toe (ICC(2,1)=0.98) and heel (ICC(2,1)=0.97). There was no significant bias in the inertial sensing at the toe, but proportional bias (b=1.22) and fixed bias (a=-10.23cm) were detected in inertial sensing at the heel. These results indicate that the presented algorithm could be applied to foot-worn inertial sensors to estimate maximum jump height enabling assessment outside of traditional laboratory settings, and to avoid bias errors, the toe may be a more suitable location for inertial sensor placement than the heel.
Wang, Yafeng; Čufar, Katarina; Eckstein, Dieter; Liang, Eryuan
2012-01-01
Little is known about tree height and height growth (as annual shoot elongation of the apical part of vertical stems) of coniferous trees growing at various altitudes on the Tibetan Plateau, which provides a high-elevation natural platform for assessing tree growth performance in relation to future climate change. We here investigated the variation of maximum tree height and annual height increment of Smith fir (Abies georgei var. smithii) in seven forest plots (30 m×40 m) along two altitudinal transects between 3,800 m and 4,200/4,390 m above sea level (a.s.l.) in the Sygera Mountains, southeastern Tibetan Plateau. Four plots were located on north-facing slopes and three plots on southeast-facing slopes. At each site, annual shoot growth was obtained by measuring the distance between successive terminal bud scars along the main stem of 25 trees that were between 2 and 4 m high. Maximum/mean tree height and mean annual height increment of Smith fir decreased with increasing altitude up to the tree line, indicative of a stress gradient (the dominant temperature gradient) along the altitudinal transect. Above-average mean minimum summer (particularly July) temperatures affected height increment positively, whereas precipitation had no significant effect on shoot growth. The time series of annual height increments of Smith fir can be used for the reconstruction of past climate on the southeastern Tibetan Plateau. In addition, it can be expected that the rising summer temperatures observed in the recent past and anticipated for the future will enhance Smith fir's growth throughout its altitudinal distribution range.
Orbital and Physical Characteristics of Meter-sized Earth Impactors
NASA Astrophysics Data System (ADS)
Brown, Peter G.; Wiegert, Paul; Clark, David; Tagliaferri, Edward
2015-11-01
We have analysed the orbits and ablation characteristics in the atmosphere of more than 60 earth-impacting meteoroids of one meter in diameter or larger. Using heights at peak luminosity as a proxy for strength, we find that there is roughly an order of magnitude spread in the apparent strength of the population of meter-sized impactors at the Earth. The orbits and physical strength of these objects are consistent with the majority being asteroidal bodies originating from the inner main asteroid belt. We find ~10-15% of our objects have a probable cometary (Jupiter-Family comet and/or Halley-type comet) origin based on orbital characteristics alone. Only half this number, however, show evidence for the expected weaker than average structure compared to asteroidal bodies. Almost all impactors show peak brightness between 20-40 km altitude. Several events have exceptionally high (relative to the remainder of the population) heights of peak brightness. These are physically most consistent with high microporosity objects, though all were on asteroidal-type orbits. We also find three events, including the Oct 8, 2009 airburst near Sulawesi, Indonesia, which display comparatively low heights of peak brightness, consistent with strong monolithic stones or iron meteoroids. Based on orbital similarity, we find a probable connection among several NEOs in our population with the Taurid meteoroid complex. No other major meteoroid streams show linkages with the pre-atmospheric orbits of our meter-class impactors. Our events cover almost four orders of magnitude in mass, but no trend in height of peak brightness is evident, suggesting no strong trend in strength with size for small NEOs, a finding consistent with the results of Popova et al (2011).
Chelly, Mohamed Souhaiel; Hermassi, Souhail; Aouadi, Ridha; Shephard, Roy J
2014-05-01
We hypothesized that replacement of a part of the normal in-season regimen of top-level adolescent handball players by an 8-week biweekly course of lower and upper limb plyometric training would enhance characteristics important to competition, including peak power output (Wpeak), jump performance, muscle volume, and ball throwing velocity. Study participants (23 men, age: 17.4 ± 0.5 years, body mass: 79.9 ± 11.5 kg, height: 1.79 ± 6.19 m, body fat: 13.8 ± 2.1%) were randomly assigned between controls (C; n = 11) and an experimental group (E, n = 12). Measures preintervention and postintervention included force-velocity ergometer tests for upper (Wupper peak) and lower limbs (Wlower peak), force platform determinations of squat jump (SJ) and countermovement jump (CMJ) characteristics (jump height, maximal force, initial velocity, and average power), video filming of sprint velocities (first step [V1S], first 5 m [V5m], and 25-30 m [Vmax]), and anthropometric estimates of leg muscle volume. E showed gains relative to C in Wupper peak and Wlower peak (p < 0.01 and p < 0.001), SJ (height p < 0.01; force p ≤ 0.05), CMJ (height p < 0.01; force p < 0.01 and relative power p ≤ 0.05), and sprint velocities (p < 0.001 for V1S, V5m, and Vmax). E also showed increases in leg and thigh muscle volumes (p < 0.001), but arm muscle volumes did not differ from control. We conclude that introduction of biweekly plyometric training into the standard regimen improved components important to handball performance, particularly explosive actions, such as sprinting, jumping, and ball throwing velocity.
NASA Technical Reports Server (NTRS)
Merceret, Francis J.; Crawford, Winifred C.
2010-01-01
Knowledge of peak wind speeds is important to the safety of personnel and flight hardware at Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station (CCAFS), but they are more difficult to forecast than mean wind speeds. Development of a reliable model for the gust factor (GF) relating the peak to the mean wind speed motivated a previous study of GF in tropical storms. The same motivation inspired a climatological study of non-TS peak wind speed statistics without the use of GF. Both studies presented their respective statistics as functions of mean wind speed and height. The few comparisons of IS and non-TS GF in the literature suggest that the non-TS GF at a given height and mean wind speed are smaller than the corresponding TS GF. The investigation reported here converted the non-TS peak wind statistics mentioned above to the equivalent GF statistics and compared the results with the previous TS GF results. The advantage of this effort over all previously reported studies of its kind is that the TS and non-TS data are taken from the same towers in the same locations. That eliminates differing surface attributes, including roughness length and thermal properties, as a major source of variance in the comparison. The results are consistent with the literature, but include much more detailed, quantitative information on the nature of the relationship between TS and non-TS GF as a function of height and mean wind speed. In addition, the data suggest the possibility of providing an operational model for non-TS GF as a function of height and wind speed in a manner similar to the one previously developed for TS GF.
NASA Astrophysics Data System (ADS)
Yang, Changjun; Zhao, Biqiang; Zhu, Jie; Yue, Xinan; Wan, Weixing
2017-10-01
In this study we propose the combination of topside in-situ ion density data from the Communication/Navigation Outage Forecast System (C/NOFS) along with the electron density profile measurement from Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) satellites Radio Occultation (RO) for studying the spatial and temporal variations of the ionospheric upper transition height (hT) and the oxygen ion (O+) density scale height. The latitudinal, local time and seasonal distributions of upper transition height show more consistency between hT re-calculated by the profile of the O+ using an α-Chapman function with linearly variable scale height and that determined from direct in-situ ion composition measurements, than with constant scale height and only the COSMIC data. The discrepancy in the values of hT between the C/NOFS measurement and that derived by the combination of COSMIC and C/NOFS satellites observations with variable scale height turns larger as the solar activity decreases, which suggests that the photochemistry and the electrodynamics of the equatorial ionosphere during the extreme solar minimum period produce abnormal structures in the vertical plasma distribution. The diurnal variation of scale heights (Hm) exhibits a minimum after sunrise and a maximum around noon near the geomagnetic equator. Further, the values of Hm exhibit a maximum in the summer hemisphere during daytime, whereas in the winter hemisphere the maximum is during night. Those features of Hm consistently indicate the prominent role of the vertical electromagnetic (E × B) drift in the equatorial ionosphere.
NASA Astrophysics Data System (ADS)
Zhao, Biqiang
2017-04-01
In this study we propose the combination of topside in-situ ion density data from the Communication/Navigation Outage Forecast System (C/NOFS) along with the electron density profile measurement from Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) satellites Radio Occultation (RO) for studying the spatial and temporal variations of the ionospheric upper transition height (hT) and the oxygen ion (O+) density scale height. The latitudinal, local time and seasonal distributions of upper transition height show more consistency between hT re-calculated by the profile of the O+ using an a-Chapman function with linearly variable scale height and that determined from direct in-situ ion composition measurements, than with constant scale height and only the COSMIC data. The discrepancy in the values of hT between the C/NOFS measurement and that derived by the combination of COSMIC and C/NOFS satellites observations with variable scale height turns larger as the solar activity decreases, which suggests that the photochemistry and the electrodynamics of the equatorial ionosphere during the extreme solar minimum period produce abnormal structures in the vertical plasma distribution. The diurnal variation of scale heights (Hm) exhibits a minimum after sunrise and a maximum around noon near the geomagnetic equator. Further, the values of Hm exhibit a maximum in the summer hemisphere during daytime, whereas in the winter hemisphere the maximum is during night. Those features of Hm consistently indicate the prominent role of the vertical electromagnetic (E×B) drift in the equatorial ionosphere.
Calculating wave-generated bottom orbital velocities from surface-wave parameters
Wiberg, P.L.; Sherwood, C.R.
2008-01-01
Near-bed wave orbital velocities and shear stresses are important parameters in many sediment-transport and hydrodynamic models of the coastal ocean, estuaries, and lakes. Simple methods for estimating bottom orbital velocities from surface-wave statistics such as significant wave height and peak period often are inaccurate except in very shallow water. This paper briefly reviews approaches for estimating wave-generated bottom orbital velocities from near-bed velocity data, surface-wave spectra, and surface-wave parameters; MATLAB code for each approach is provided. Aspects of this problem have been discussed elsewhere. We add to this work by providing a method for using a general form of the parametric surface-wave spectrum to estimate bottom orbital velocity from significant wave height and peak period, investigating effects of spectral shape on bottom orbital velocity, comparing methods for calculating bottom orbital velocity against values determined from near-bed velocity measurements at two sites on the US east and west coasts, and considering the optimal representation of bottom orbital velocity for calculations of near-bed processes. Bottom orbital velocities calculated using near-bed velocity data, measured wave spectra, and parametric spectra for a site on the northern California shelf and one in the mid-Atlantic Bight compare quite well and are relatively insensitive to spectral shape except when bimodal waves are present with maximum energy at the higher-frequency peak. These conditions, which are most likely to occur at times when bottom orbital velocities are small, can be identified with our method as cases where the measured wave statistics are inconsistent with Donelan's modified form of the Joint North Sea Wave Project (JONSWAP) spectrum. We define the 'effective' forcing for wave-driven, near-bed processes as the product of the magnitude of forcing times its probability of occurrence, and conclude that different bottom orbital velocity statistics may be appropriate for different problems. ?? 2008 Elsevier Ltd.
Liquid inflow to initially empty cylindrical tanks in low gravity
NASA Technical Reports Server (NTRS)
Spuckler, C. M.
1972-01-01
An experimental investigation was performed to determine the characteristics of liquid inflow to initially empty cylindrical tanks in a low gravity environment. The acceleration was varied so that Bond numbers based on the inlet radius varied from 0.059 to 2.80. The liquid entered the tank as a jet that grew to a maximum height and then decreased in height with respect to the bottom of the tank, with the liquid from the jet collecting in the bottom of the tank. The maximum jet heights were correlated in terms of the Weber number and the Bond number.
Rail height effects on safety performance of Midwest Guardrail System.
Asadollahi Pajouh, Mojdeh; Julin, Ramen D; Stolle, Cody S; Reid, John D; Faller, Ronald K
2018-02-17
Guardrail heights play a crucial role in the way that errant vehicles interact with roadside barriers. Low rail heights increase the propensity of vehicle rollover and override, whereas excessively tall rails promote underride. Further, rail mounting heights and post embedment depths may be altered by variations in roadside terrain. An increased guardrail height may be desirable to accommodate construction tolerances, soil erosion, frost heave, and future roadway overlays. This study aimed to investigate and identify a maximum safe installation height for the Midwest Guardrail System that would be robust and remain crashworthy before and after pavement overlays. A research investigation was performed to evaluate the safety performance of increased mounting heights for the standard 787-mm (31-in.)-tall Midwest Guardrail System (MGS) through crash testing and computer simulation. Two full-scale crash tests with small passenger cars were performed on the MGS with top-rail mounting heights of 864 and 914 mm (34 and 36 in.). Test results were then used to calibrate computer simulation models. In the first test, a small car impacted the MGS with 864-mm (34-in.) rail height at 102 km/h (63.6 mph) and 25.0° and was successfully redirected. In the second test, another small car impacted the MGS with a 914-mm (36-in.) rail height at 103 km/h (64.1 mph) and 25.6° and was successful. Both system heights satisfied the Manual for Assessing Safety Hardware (MASH) Test Level 3 (TL-3) evaluation criteria. Test results were then used to calibrate computer simulation models. A mounting height of 36 in. was determined to be the maximum guardrail height that would safely contain and redirect small car vehicles. Simulations confirmed that taller guardrail heights (i.e., 37 in.) would likely result in small car underride. In addition, simulation results indicated that passenger vehicle models were successfully contained by the 34- and 36-in.-tall MGS installed on approach slopes as steep as 6:1. A mounting height of 914 mm (36 in.) was determined to be the maximum guardrail height that would safely contain and redirect 1100C vehicles and not allow underride or excessive vehicle snag on support posts. Recommendations were also provided regarding the safety performance of the MGS with increased height.
Bannink, E; Djurhuus, C B; Christensen, T; Jøns, K; Hokken-Koelega, A
2010-01-01
To estimate health-related quality of life (HRQoL) in non-growth hormone deficient (GHD) small for gestational age (SGA) children before and after growth hormone (GH) treatment to adult height (AH). This was a multicentre, two-arm trial. Following an initial 2-year double-blind study period, patients entered a 2-year extension period followed by treatment to AH. At baseline patients were randomised to GH (0.033 or 0.067 mg/kg/day) and continued treatment at that dose until AH. Height was assessed at baseline and 3-monthly intervals to AH (height velocity <2 cm/year). Height standard deviation score (SDS) before and after GH therapy was mapped onto estimated HRQoL scores up to AH. Of the 79 children randomised into the study 53 were non-GHD (defined as peak GH >20 mU/L [peak 24-h GH value and peak arginine tolerance test]). At baseline these children had a mean (mean [+/-SD]) height SDS of -3.2 (0.7), height velocity SDS -0.6 (1.2) and age, 8.1 (1.9) years. Estimated HRQoL scores were significantly (p < 0.001) increased from baseline at AH (ΔHRQoL, 95% CI) (0.033 mg/kg/day, 0.112 [0.092, 0.132]; 0.067 mg/kg/day, 0.115 [0.094, 0.136]). HRQoL was not different between treatment groups. A significant gain in AH, relative to an SGA reference population, was reported in GH-treated patients. Mean (95% CI) ΔAH SDS (0.033 mg/kg/day, +1.4 [1.1, 1.6]. 0.067 mg/kg/day, +1.7[1.4, 2.0]). The analysis assumes HRQoL can be mapped onto height SDS. GH treatment in short children born SGA without signs of persistent catch-up growth was associated with significant improvement in HRQoL and normalisation of AH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costin, G.
1988-08-01
Spontaneous growth hormone (GH) secretory dynamics and hypothalamic-pituitary function were studied in 16 long-term survivors of acute lymphoblastic leukemia who were aged 9 to 15 1/2 years and had been treated with prophylactic central nervous system radiation and combined chemotherapy. At the time of study, the mean height was -1.5 SD score below the mean, less than genetic potential, and significantly less than the mean pretreatment height of -0.25 SD score. Height velocity was subnormal for age and sexual stage in all patients. Two patients had compensated hypothyroidism, and four had evidence of gonadal failure. In 11 patients, the peakmore » GH level after two provocative tests was below 10 micrograms/L, which was consistent with GH deficiency. In ten of 13 patients tested, spontaneous GH secretion determined by a 24-hour GH concentration (GHC), GH pulse amplitude, frequency of GH pulses greater than or equal to 5 micrograms/L, and GH peak during wake and sleep hours was significantly less than in normal height controls. Although in three pubertal patients the 24-hour GHC was within normal limits, the GHC during sleep hours, GH pulse amplitude during 24 hours and sleep hours, and peak GH during wake hours were significantly less than in normal height controls. In all pubertal and in two of the prepubertal patients, the somatomedin C (SmC) level was significantly less than in controls. The 24-hour GHC correlated well with the GHC during sleep, peak-stimulated GH level, gonadal steroid level, and the SmC level, but not with height velocity, dose of radiation, or age at radiation. A significant increase in height velocity and the SmC level was noted in all patients treated with GH. These results indicate that GH deficiency occurs after 18 to 24 Gy of cranial radiation and that the puberty-associated growth spurt may mask the decline in height velocity owing to GH deficiency.« less
Running stride peak forces inversely determine running economy in elite runners.
Støren, Øyvind; Helgerud, Jan; Hoff, Jan
2011-01-01
The present study investigated the relationship between running economy (RE) at 15 km/h(-1) , 3.000-m race time, maximal strength, and a number of physiological, anthropometrical, and mechanical variables. The variables measured included RE, maximal oxygen consumption, heart rate, step length and frequency, contact time, and the peak horizontal and vertical forces of each step. Maximal strength was measured as the 1 repetition maximum (1RM) half-squat using a leg press machine. Eleven male elite endurance athletes with a V(O2)max of 75.8 ± 6.2 mL/kg(-1)/min(-1) participated in this study. After the anthropometric data were collected, they were tested for RE, running characteristics, and force measures on a level treadmill at 15 km/h(-1). The athletes wore contact soles, and the treadmill was placed on a force platform. Maximal oxygen consumption and 1RM were tested after the RE measurements. The sum of horizontal and vertical peak forces revealed a significant inverse correlation (p < 0.05) both with 3,000-m performance (R = 0.71) and RE (R = 0.66). Inverse correlations were also found (p < 0.05) between RE and body height (R = 0.61) and between RE and body fat percentage (R = 0.62). In conclusion, the sum of horizontal and vertical peak forces was found to be negatively correlated to running economy and 3,000-m running performance, indicating that avoiding vertical movements and high horizontal braking force is crucial for a positive development of RE.
Semiannual and annual variations in the height of the ionospheric F2-peak
NASA Astrophysics Data System (ADS)
Rishbeth, H.; Sedgemore-Schulthess, K. J. F.; Ulich, T.
2000-03-01
Ionosonde data from sixteen stations are used to study the semiannual and annual variations in the height of the ionospheric F2-peak, hmF2. The semiannual variation, which peaks shortly after equinox, has an amplitude of about 8 km at an average level of solar activity (10.7 cm flux = 140 units), both at noon and midnight. The annual variation has an amplitude of about 11 km at northern midlatitudes, peaking in early summer; and is larger at southern stations, where it peaks in late summer. Both annual and semiannual amplitudes increase with increasing solar activity by day, but not at night. The semiannual variation in hmF2 is unrelated to the semiannual variation of the peak electron density NmF2, and is not reproduced by the CTIP and TIME-GCM computational models of the quiet-day thermosphere and ionosphere. The semiannual variation in hmF2 is approximately isobaric , in that its amplitude corresponds quite well to the semiannual variation in the height of fixed pressure-levels in the thermosphere, as represented by the MSIS empirical model. The annual variation is not isobaric . The annual mean of hmF2 increases with solar 10.7 cm flux, both by night and by day, on average by about 0.45 km/flux unit, rather smaller than the corresponding increase of height of constant pressure-levels in the MSIS model. The discrepancy may be due to solar-cycle variations of thermospheric winds. Although geomagnetic activity, which affects thermospheric density and temperature and therefore hmF2 also, is greatest at the equinoxes, this seems to account for less than half the semiannual variation of hmF2. The rest may be due to a semiannual variation of tidal and wave energy transmitted to the thermosphere from lower levels in the atmosphere.
An investigation of airborne allergenic pollen at different heights.
Xiao, Xiaojun; Fu, Aixiang; Xie, Xiongjie; Kang, Minxiong; Hu, Dongsheng; Yang, Pingchang; Liu, Zhigang
2013-01-01
Airborne pollen is an important source of allergens in a number of allergic diseases. Data on the concentrations of pollen at different heights in the air are scarce. The aim of the present study was to investigate different types and numbers of airborne pollen and their seasonal variation at different heights in the urban area of Shenzhen (China) and their associations with meteorological factors. The concentration of airborne pollen at different heights was monitored with Burkard traps from July 1, 2006, to June 30, 2007, in Shenzhen; the results were analyzed with SAS 9.13 software. In total, 1,095 films (at 3 heights, 365 films at each height) were exposed throughout the year, and 48 families and 85 genera of pollen taxa were identified. The total pollen count was 55,830 grains (25,204 grains at 1.5 m; 16,218 grains at 35 m, and 14,408 grains at 70 m); pollen grains were present in the atmosphere throughout the year, with two peaks of airborne pollen: one peak in February to April and the other in September to November. On the basis of our local investigations, the pollen concentrations and the pollen types in the air decrease gradually with increasing height. The distribution and concentrations of airborne pollen at different heights in the atmosphere were influenced by composite factors such as the season and meteorological factors. Copyright © 2012 S. Karger AG, Basel.
Kenzo, Tanaka; Ichie, Tomoaki; Watanabe, Yoko; Yoneda, Reiji; Ninomiya, Ikuo; Koike, Takayoshi
2006-07-01
Variations in leaf photosynthetic, morphological and biochemical properties with increasing plant height from seedlings to emergent trees were investigated in five dipterocarp species in a Malaysian tropical rain forest. Canopy openness increased significantly with tree height. Photosynthetic properties, such as photosynthetic capacity at light saturation, light compensation point, maximum rate of carboxylation and maximum rate of photosynthetic electron transport, all increased significantly with tree height. Leaf morphological and biochemical traits, such as leaf mass per area, palisade layer thickness, nitrogen concentration per unit area, chlorophyll concentration per unit dry mass and chlorophyll to nitrogen ratio, also changed significantly with tree height. Leaf properties had simple and significant relationships with tree height, with few intra- and interspecies differences. Our results therefore suggest that the photosynthetic capacity of dipterocarp trees depends on tree height, and that the trees adapt to the light environment by adjusting their leaf morphological and biochemical properties. These results should aid in developing models that can accurately estimate carbon dioxide flux and biomass production in tropical rain forests.
Roland, Mark A.; Stuckey, Marla H.
2007-01-01
The Delaware and North Branch Susquehanna River Basins in Pennsylvania experienced severe flooding as a result of intense rainfall during June 2006. The height of the flood waters on the rivers and tributaries approached or exceeded the peak of record at many locations. Updated flood-magnitude and flood-frequency data for streamflow-gaging stations on tributaries in the Delaware and North Branch Susquehanna River Basins were analyzed using data through the 2006 water year to determine if there were any major differences in the flood-discharge data. Flood frequencies for return intervals of 2, 5, 10, 50, 100, and 500 years (Q2, Q5, Q10, Q50, Q100, and Q500) were determined from annual maximum series (AMS) data from continuous-record gaging stations (stations) and were compared to flood discharges obtained from previously published Flood Insurance Studies (FIS) and to flood frequencies using partial-duration series (PDS) data. A Wilcoxon signed-rank test was performed to determine any statistically significant differences between flood frequencies computed from updated AMS station data and those obtained from FIS. Percentage differences between flood frequencies computed from updated AMS station data and those obtained from FIS also were determined for the 10, 50, 100, and 500 return intervals. A Mann-Kendall trend test was performed to determine statistically significant trends in the updated AMS peak-flow data for the period of record at the 41 stations. In addition to AMS station data, PDS data were used to determine flood-frequency discharges. The AMS and PDS flood-frequency data were compared to determine any differences between the two data sets. An analysis also was performed on AMS-derived flood frequencies for four stations to evaluate the possible effects of flood-control reservoirs on peak flows. Additionally, flood frequencies for three stations were evaluated to determine possible effects of urbanization on peak flows. The results of the Wilcoxon signed-rank test showed a significant difference at the 95-percent confidence level between the Q100 computed from AMS station data and the Q100 determined from previously published FIS for 97 sites. The flood-frequency discharges computed from AMS station data were consistently larger than the flood discharges from the FIS; mean percentage difference between the two data sets ranged from 14 percent for the Q100 to 20 percent for the Q50. The results of the Mann-Kendall test showed that 8 stations exhibited a positive trend (i.e., increasing annual maximum peaks over time) over their respective periods of record at the 95-percent confidence level, and an additional 7 stations indicated a positive trend, for a total of 15 stations, at a confidence level of greater than or equal to 90 percent. The Q2, Q5, Q10, Q50, and Q100 determined from AMS and PDS data for each station were compared by percentage. The flood magnitudes for the 2-year return period were 16 percent higher when partial-duration peaks were incorporated into the analyses, as opposed to using only the annual maximum peaks. The discharges then tended to converge around the 5-year return period, with a mean collective difference of only 1 percent. At the 10-, 50-, and 100-year return periods, the flood magnitudes based on annual maximum peaks were, on average, 6 percent higher compared to corresponding flood magnitudes based on partial-duration peaks. Possible effects on flood peaks from flood-control reservoirs and urban development within the basin also were examined. Annual maximum peak-flow data from four stations were divided into pre- and post-regulation periods. Comparisons were made between the Q100 determined from AMS station data for the periods of record pre- and post-regulation. Two stations showed a nearly 60- and 20-percent reduction in the 100-year discharges; the other two stations showed negligible differences in discharges. Three stations within urban basins were compared to 38 stations
An investigation of rugby scrimmaging posture and individual maximum pushing force.
Wu, Wen-Lan; Chang, Jyh-Jong; Wu, Jia-Hroung; Guo, Lan-Yuen
2007-02-01
Although rugby is a popular contact sport and the isokinetic muscle torque assessment has recently found widespread application in the field of sports medicine, little research has examined the factors associated with the performance of game-specific skills directly by using the isokinetic-type rugby scrimmaging machine. This study is designed to (a) measure and observe the differences in the maximum individual pushing forward force produced by scrimmaging in different body postures (3 body heights x 2 foot positions) with a self-developed rugby scrimmaging machine and (b) observe the variations in hip, knee, and ankle angles at different body postures and explore the relationship between these angle values and the individual maximum pushing force. Ten national rugby players were invited to participate in the examination. The experimental equipment included a self-developed rugby scrimmaging machine and a 3-dimensional motion analysis system. Our results showed that the foot positions (parallel and nonparallel foot positions) do not affect the maximum pushing force; however, the maximum pushing force was significantly lower in posture I (36% body height) than in posture II (38%) and posture III (40%). The maximum forward force in posture III (40% body height) was also slightly greater than for the scrum in posture II (38% body height). In addition, it was determined that hip, knee, and ankle angles under parallel feet positioning are factors that are closely negatively related in terms of affecting maximum pushing force in scrimmaging. In cross-feet postures, there was a positive correlation between individual forward force and hip angle of the rear leg. From our results, we can conclude that if the player stands in an appropriate starting position at the early stage of scrimmaging, it will benefit the forward force production.
Yang, Hui; Zhou, Yan; Lin, Jin
2016-01-01
Background While appropriate pillow height is crucial to maintaining the quality of sleep and overall health, there are no universal, evidence-based guidelines for pillow design or selection. We aimed to evaluate the effect of pillow height on cranio-cervical pressure and cervical spine alignment. Methods Ten healthy subjects (five males) aged 26 ± 3.6 years were recruited. The average height, weight, and neck length were 167 ± 9.3 cm, 59.6 ± 11.9 kg, and 12.9 ± 1.2 cm respectively. The subjects lay on pillows of four different heights (H0, 110 mm; H1, 130 mm; H2, 150 mm; and H3, 170 mm). The cranio-cervical pressure distribution over the pillow was recorded; the peak and average pressures for each pillow height were compared by one-way ANOVA with repeated measures. Cervical spine alignment was studied using a finite element model constructed based on data from the Visible Human Project. The coordinate of the center of each cervical vertebra were predicted for each pillow height. Three spine alignment parameters (cervical angle, lordosis distance and kyphosis distance) were identified. Results The average cranial pressure at pillow height H3 was approximately 30% higher than that at H0, and significantly different from those at H1 and H2 (p < 0.05). The average cervical pressure at pillow height H0 was 65% lower than that at H3, and significantly different from those at H1 and H2 (p < 0.05). The peak cervical pressures at pillow heights H2 and H3 were significantly different from that at H0 (p < 0.05). With respect to cervical spine alignment, raising pillow height from H0 to H3 caused an increase of 66.4% and 25.1% in cervical angle and lordosis distance, respectively, and a reduction of 43.4% in kyphosis distance. Discussion Pillow height elevation significantly increased the average and peak pressures of the cranial and cervical regions, and increased the extension and lordosis of the cervical spine. The cranio-cervical pressures and cervical spine alignment were height-specific, and they were believed to reflect quality of sleep. Our results provide a quantitative and objective evaluation of the effect of pillow height on the biomechanics of the head-neck complex, and have application in pillow design and selection. PMID:27635354
The 4-Day Wave as Observed from the Upper Atmosphere Research Satellite Microwave Limb Sounder
NASA Technical Reports Server (NTRS)
Allen, D. R.; Stanford, J. L.; Elson, L. S.; Fishbein, E. F.; Froidevaux, L.; Waters, J. W.
1997-01-01
The "4-day wave" is an eastward moving quasi-nondispersive feature with period near 4 days occurring near the winter polar stratopause. This paper presents evidence of the 4-day feature in Microwave Limb Sounder (MLS) temperature, geopotential height, and ozone data from the late southern winters of 1992 and 1993. Space-time spectral analyses reveal a double-peaked temperature structure consisting of one peak near the stratopause and another in the lower mesosphere, with an out-of-phase relationship between the two peaks. This double- peaked structure is reminiscent of recent three-dimensional barotropic/baroclinic instability model predictions and is observed here for the first time. The height variation of the 4-day ozone signal is shown to compare well with a linear advective-photochemical tracer model. Negative regions of quasigeostrophic potential vorticity (PV) gradient and positive Eliassen-Palm flux divergence are shown to occur, consistent with instability dynamics playing a role in wave forcing. Spectral analyses of PV derived from MLS geopotential height fields reveal a 4-day signal peaking near the polar stratopause. The three-dimensional structure of the 4-day wave resembles the potential vorticity "charge" concept, wherein a PV anomaly in the atmosphere (analogous to an electrical charge in a dielectric material) induces a geopotential field, a vertically oriented temperature dipole, and circulation about the vertical axis.
Backwater Flooding in San Marcos, TX from the Blanco River
NASA Technical Reports Server (NTRS)
Earl, Richard; Gaenzle, Kyle G.; Hollier, Andi B.
2016-01-01
Large sections of San Marcos, TX were flooded in Oct. 1998, May 2015, and Oct. 2015. Much of the flooding in Oct. 1998 and Oct. 2015 was produced by overbank flooding of San Marcos River and its tributaries by spills from upstream dams. The May 2015 flooding was almost entirely produced by backwater flooding from the Blanco River whose confluence is approximately 2.2 miles southeast of downtown. We use the stage height of the Blanco River to generate maps of the areas of San Marcos that are lower than the flood peaks and compare those results with data for the observed extent of flooding in San Marcos. Our preliminary results suggest that the flooding occurred at locations more than 20 feet lower than the maximum stage height of the Blanco River at San Marcos gage (08171350). This suggest that the datum for either gage 08171350 or 08170500 (San Marcos River at San Marcos) or both are incorrect. There are plans for the U.S. Army Corps of Engineers to construct a Blanco River bypass that will divert Blanco River floodwaters approximately 2 miles farther downstream, but the $60 million price makes its implementation problematic.
Fully- and weakly-nonlinear biperiodic traveling waves in shallow water
NASA Astrophysics Data System (ADS)
Hirakawa, Tomoaki; Okamura, Makoto
2018-04-01
We directly calculate fully nonlinear traveling waves that are periodic in two independent horizontal directions (biperiodic) in shallow water. Based on the Riemann theta function, we also calculate exact periodic solutions to the Kadomtsev-Petviashvili (KP) equation, which can be obtained by assuming weakly-nonlinear, weakly-dispersive, weakly-two-dimensional waves. To clarify how the accuracy of the biperiodic KP solution is affected when some of the KP approximations are not satisfied, we compare the fully- and weakly-nonlinear periodic traveling waves of various wave amplitudes, wave depths, and interaction angles. As the interaction angle θ decreases, the wave frequency and the maximum wave height of the biperiodic KP solution both increase, and the central peak sharpens and grows beyond the height of the corresponding direct numerical solutions, indicating that the biperiodic KP solution cannot qualitatively model direct numerical solutions for θ ≲ 45^\\circ . To remedy the weak two-dimensionality approximation, we apply the correction of Yeh et al (2010 Eur. Phys. J. Spec. Top. 185 97-111) to the biperiodic KP solution, which substantially improves the solution accuracy and results in wave profiles that are indistinguishable from most other cases.
Effects of electric field on micro-scale flame properties of biobutanol fuel
Xu, Tao; Chen, Qinglin; Zhang, Bingjian; Lu, Shushen; Mo, Dongchuan; Zhang, Zhengguo; Gao, Xuenong
2016-01-01
With the increasing need of smaller power sources for satellites, energy systems and engine equipment, microcombustion pose a potential as alternative power source to conventional batteries. As the substitute fuel source for gasoline, biobutanol shows more promising characteristics than ethanol. In this study, the diffusion microflame of liquid biobutanol under electric field have been examined through in-lab experiment and numerical simulation. It is found that traditional gas jet diffusion flame theory shows significant inconsistency with the experimental results of micro scale flame in electric field. The results suggest that with the increase of electric field intensity, the quenching flow rate decrease first and increase after it reach its minimum, while the flame height and highest flame temperature increase first and drop after its peak value. In addition, it was also observed that the flame height and highest temperature for smaller tube can reach its maximum faster. Therefore, the interaction between microscale effect and electric field plays a significant role on understanding the microcombustion of liquid fuel. Therefore, FLUENT simulation was adopted to understand and measure the impacts of microflame characteristic parameters. The final numerical results are consistent with the experimental data and show a high reliability. PMID:27609428
The slab thickness of the mid-latitude ionosphere.
NASA Technical Reports Server (NTRS)
Titheridge, J. E.
1973-01-01
The thickness of the peak of the ionosphere depends primarily on the temperature T sub n of the neutral gas, and corresponds approximately to an alpha-Chapman layer at a temperature of 0.87T sub n. The overall slab thickness, as given by Faraday rotation measurements, is then tau = 0.22T sub n + 7 km. Expansion of the topside ionosphere, and changes in the E- and F1-regions increase tau by about 20 km during the day in summer. Near solar minimum, tau is increased by a lowering of the O(+)/H(+) transition height; if the neutral temperature T sub n is estimated, this height can be obtained from observed values of tau. Hourly values of slab thickness were determined over a period of 6 yr at 34 and 42 S. Near solar maximum the nighttime values were about 260 km in all seasons. The corresponding neutral temperatures agree with satellite drag values; they show a semiannual variation of 14% and a seasonal change of 5%. Daytime values of tau were about 230 km in winter and 320 km in summer, implying a seasonal change of 30% in T sub n.
ERIC Educational Resources Information Center
Ramenzoni, Veronica; Riley, Michael A.; Davis, Tehran; Shockley, Kevin; Armstrong, Rachel
2008-01-01
Three experiments investigated the ability to perceive the maximum height to which another actor could jump to reach an object. Experiment 1 determined the accuracy of estimates for another actor's maximal reach-with-jump height and compared these estimates to estimates of the actor's standing maximal reaching height and to estimates of the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurer, K. D.; Bohrer, G.; Kenny, W. T.
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.« less
NASA Astrophysics Data System (ADS)
Teraoka, Iwao; Yao, Haibei; Huiyi Luo, Natalie
2017-06-01
We employed a recently developed whispering gallery mode (WGM) dip sensor made of silica to obtain spectra for many resonance peaks in water and solutions of sucrose at different concentrations and thus having different refractive indices (RI). The apparent Q factor was estimated by fitting each peak profile in the busy resonance spectrum by a Lorentzian or a sum of Lorentzians. A plot of the Q factor as a function the peak height for all the peaks analyzed indicates a straight line with a negative slope as the upper limit, for each of water and the solutions. A coupling model for a resonator and a pair of fiber tapers to feed and pick up light, developed here, supports the presence of the upper limit. We also found that the round-trip attenuation of WGM was greater than the one estimated from light absorption by water, and the difference increased with the concentration of sucrose.
Rutten, Gemma; Ensslin, Andreas; Hemp, Andreas; Fischer, Markus
2015-01-01
In most habitats, vegetation provides the main structure of the environment. This complexity can facilitate biodiversity and ecosystem services. Therefore, measures of vegetation structure can serve as indicators in ecosystem management. However, many structural measures are laborious and require expert knowledge. Here, we used consistent and convenient measures to assess vegetation structure over an exceptionally broad elevation gradient of 866–4550m above sea level at Mount Kilimanjaro, Tanzania. Additionally, we compared (human)-modified habitats, including maize fields, traditionally managed home gardens, grasslands, commercial coffee farms and logged and burned forests with natural habitats along this elevation gradient. We distinguished vertical and horizontal vegetation structure to account for habitat complexity and heterogeneity. Vertical vegetation structure (assessed as number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) displayed a unimodal elevation pattern, peaking at intermediate elevations in montane forests, whereas horizontal structure (assessed as coefficient of variation of number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) was lowest at intermediate altitudes. Overall, vertical structure was consistently lower in modified than in natural habitat types, whereas horizontal structure was inconsistently different in modified than in natural habitat types, depending on the specific structural measure and habitat type. Our study shows how vertical and horizontal vegetation structure can be assessed efficiently in various habitat types in tropical mountain regions, and we suggest to apply this as a tool for informing future biodiversity and ecosystem service studies. PMID:26406985
Global model of the F2 layer peak height for low solar activity based on GPS radio-occultation data
NASA Astrophysics Data System (ADS)
Shubin, V. N.; Karpachev, A. T.; Tsybulya, K. G.
2013-11-01
We propose a global median model SMF2 (Satellite Model of the F2 layer) of the ionospheric F2-layer height maximum (hmF2), based on GPS radio-occultation data for low solar activity periods (F10.7A<80). The model utilizes data provided by GPS receivers onboard satellites CHAMP (~100,000 hmF2 values), GRACE (~70,000) and COSMIC (~2,000,000). The data were preprocessed to remove cases where the absolute maximum of the electron density lies outside the F2 region. Ground-based ionospheric sounding data were used for comparison and validation. Spatial dependence of hmF2 is modeled by a Legendre-function expansion. Temporal dependence, as a function of Universal Time (UT), is described by a Fourier expansion. Inputs of the model are: geographical coordinates, month and F10.7A solar activity index. The model is designed for quiet geomagnetic conditions (Kр=1-2), typical for low solar activity. SMF2 agrees well with the International Reference Ionosphere model (IRI) in those regions, where the ground-based ionosonde network is dense. Maximal difference between the models is found in the equatorial belt, over the oceans and the polar caps. Standard deviations of the radio-occultation and Digisonde data from the predicted SMF2 median are 10-16 km for all seasons, against 13-29 km for IRI-2012. Average relative deviations are 3-4 times less than for IRI, 3-4% against 9-12%. Therefore, the proposed hmF2 model is more accurate than IRI-2012.
Air pollution potential: Regional study in Argentina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gassmann, M.I.; Mazzeo, N.A.
2000-04-01
Air pollution potential is a measure of the atmospheric conditions that are unable to transport and dilute pollutants into the air, independently of the existence of sources. This potential can be determined from two atmospheric parameters; mixing height and transport wind. In this paper a statistical analysis of the mixing height and transport wind, in order to determine the areas with high or poor atmospheric ventilation in Argentina, is presented. In order to achieve this, meteorological data registered during 1979--1982 at eight meteorological stations were used. Daily values of the maximum mixing height were calculated from observations of daily temperaturesmore » at different heights and maximum surface temperature. At the same time as the maximum mixing height, the values of the transport wind were determined from the surface windspeed and the characteristics of the ground in the surroundings of each meteorological station. The mean seasonal values for both parameters were obtained. Isopleths of the mean seasonal of the maximum mixing heights were drawn. The percentage of seasonal frequencies of poor ventilation conditions were calculated and the frequency isopleths were also drawn to determine areas with minor and major relative frequencies. It was found that the northeastern and central-eastern regions of Argentina had a high air pollution potential during the whole year. Unfavorable atmospheric ventilation conditions were also found in the central-western side of the country during the cold seasons (37.5% in autumn and 56.9% in winter). The region with the greatest atmospheric ventilation is located south of 40{degree}S, where the frequency of poor ventilation varies between 8.0% in summer and 10.8% in winter.« less
A climatology of extreme wave height events impacting eastern Lake Ontario shorelines
NASA Astrophysics Data System (ADS)
Grieco, Matthew B.; DeGaetano, Arthur T.
2018-05-01
Model-derived wave height data for points along the eastern Lake Ontario shoreline provide the basis for a 36-year climatology of extreme wave heights. The most extreme wave heights exceed 6 m at all locations, except for those along the extreme northeastern shoreline of the Lake. Typically extreme wave events are a regional phenomenon, affecting multiple locations along the eastern and southeastern shoreline. A pronounced seasonal cycle in wave event occurrence is characterized by peaks in autumn and spring, with an absence of 99.9th percentile wave heights during summer. Less extreme (90th percentile heights) occur in all months with a peak in winter. Extreme wave events are most often associated with a low pressure center tracking to the north of Lake Ontario from the Ohio Valley. This track produces the strong winds > 10 ms-1 and predominantly west-to-east wind fetch that characterize high wave height events. The seasonal frequency of the wave events exceeding the historical 95th percentile has shown a statistically significant increase at most locations since 1979. This has been partially offset by declines in the frequency of events with wave heights between the 90 and 95th percentile. Seasonal extreme wave height frequency is also found to be related to the occurrence of El Niño. During El Niño winters, there are significantly fewer events with wave heights exceeding 2.5 m than would be expected by chance. A corresponding relationship to La Niña occurrence is not evident.
Eberl, D.D.; Velde, B.
1989-01-01
The value of peak width at half-height for the illite 001 XRD reflection is known as the Kubler index or the illite 'crystallinity' index. This measurement, which has been related to the degree of metamorphism of very low-grade, pelitic rocks, is a function of at least two crystal-chemical factors: (1) illite X-ray scattering domain size; and (2) illite structural distortions (especially swelling). Reynolds' NEWMOD computer program is used to construct a grid with which these two contributions to illite peak width can be determined independently from measurements of the 001 peak width at half-height and the Srodofi intensity ratio. This method yields more information about changes undergone by illite during metamorphism than application of the Kubler index method alone.
Visual and non-visual control of landing movements in humans
Santello, Marco; McDonagh, Martin J N; Challis, John H
2001-01-01
The role of vision in controlling leg muscle activation in landing from a drop was investigated. Subjects (n = 8) performed 10 drops from four heights (0.2, 0.4, 0.6 and 0.8 m) with and without vision. Drop height was maintained constant throughout each block of trials to allow adaptation. The aim of the study was to assess the extent to which proprioceptive and vestibular information could substitute for the lack of vision in adapting landing movements to different heights. At the final stages of the movement, subjects experienced similar peak centre of body mass (CM) displacements and joint rotations, regardless of the availability of vision. This implies that subjects were able to adapt the control of landing to different heights. The amplitude and timing of electromyographic signals from the leg muscles scaled to drop height in a similar fashion with and without vision. However, variables measured throughout the execution of the movement indicated important differences. Without vision, landings were characterised by 10 % larger ground reaction forces, 10 % smaller knee joint rotations, different time lags between peak joint rotations, and more variable ground reaction forces and times to peak CM displacement. We conclude that non-visual sensory information (a) could not fully compensate for the lack of continuous visual feedback and (b) this non-visual information was used to reorganise the motor output. These results suggest that vision is important for the very accurate timing of muscle activity onset and the kinematics of landing. PMID:11711583
Vertical Jump Height is more Strongly Associated with Velocity and Work Performed Prior to Take-off
NASA Technical Reports Server (NTRS)
Bentley, J. R.; Loehr, J. A.; DeWitt, J. K.; Lee, S. M. C.; English, K. L.; Nash, R. E.; Leach, M. A.; Hagan, R. D.
2008-01-01
Vertical jump (VJ) height is commonly used as a measure of athletic capability in strength and power sports. Although VJ has been shown to be a predictor of athletic performance, it is not clear which kinetic ground reaction force (GRF) variables, such as peak force (PF), peak power (PP), peak velocity (PV), total work (TW) or impulse (Imp) are the best correlates. To determine which kinetic variables (PF, PP, PV, TW, and Imp) best correlate with VJ height. Twenty subjects (14 males, 6 females) performed three maximal countermovement VJs on a force platform (Advanced Mechanical Technology, Inc., Watertown, MA, USA). VJ jump height was calculated as the difference between standing reach and the highest reach point measured using a Vertec. PF, PP, PV, TW, and Imp were calculated using the vertical GRF data sampled at 1000 Hz from the lowest point in the countermovement through the concentric portion until take-off. GRF data were normalized to body mass measured using a standard scale (Detecto, Webb City, MO, USA). Correlation coefficients were computed between each GRF variable and VJ height using a Pearson correlation. VJ height (43.4 plus or minus 9.1 cm) was significantly correlated (p less than 0.001) with PF (998 plus or minus 321 N; r=0.51), PP (1997 plus or minus 772 W; r=0.69), PV (2.66 plus or minus 0.40 m (raised dot) s(sup -1); r=0.85), TW (259 plus or minus 93.0 kJ; r=0.82), and Imp (204 plus or minus 51.1 N(raised dot)s; r=0.67). Although all variables were correlated to VJ height, PV and TW were more strongly correlated to VJ height than PF, PP, and Imp. Therefore, since TW is equal to force times displacement, the relative displacement of the center of mass along with the forces applied during the upward movement of the jump are critical determinants of VJ height. PV and TW are key determinants of VJ height, and therefore successful training programs to increase VJ height should focus on rapid movement (PV) and TW by increasing power over time rather than focusing on PF alone.
NASA Astrophysics Data System (ADS)
Laborda, Francisco; Medrano, Jesús; Cortés, José I.; Mir, José M.; Castillo, Juan R.
1999-02-01
Zirconium treated graphite tubes were investigated and compared with non-treated and palladium coated ones for in situ trapping of selenium hydride generated in a flow injection system. Selenium was effectively trapped on zirconium treated tubes at trapping temperatures of 300-600°C, similar to those observed for palladium, whereas trapping temperatures higher than 600°C had to be used with non-treated tubes. Zirconium treated tubes used in this work showed good stability up to 300 trapping/atomization cycles, with precision better than 5%, characteristic masses of 42 (peak height) and 133 pg (peak area) of selenium were obtained. Sensitivity of zirconium and palladium treatments were similar, but zirconium offered the advantage of a single application per tube. Detection limits were 0.11 (peak height) and 0.23 ng (peak area) for a 1 ml sample volume.
Seasonal variation of seismic ambient noise level at King Sejong Station, Antarctica
NASA Astrophysics Data System (ADS)
Lee, W.; Sheen, D.; Seo, K.; Yun, S.
2009-12-01
The generation of the secondary- or double-frequency (DF) microseisms with dominant frequencies between 0.1 and 0.5 Hz has been explained by nonlinear second-order pressure perturbations on the ocean bottom due to the interference of two ocean waves of equal wavelengths traveling in opposite directions. Korea Polar Research Institute (KOPRI) has been operating a broadband seismic station (KSJ1) at King George Island (KGI), Antarctica, since 2001. Examining the ambient seismic noise level for the period from 2006 to 2008 at KSJ1, we found a significant seasonal variation in the frequency range 0.1-0.5 Hz. Correlation of the DF peaks with significant ocean wave height and peak wave period models indicates that the oceanic infragravity waves in the Drake Passage is a possible source to excite the DF microseisms at KGI. Location of King Sejong Station, Antarctica Seasonal variations of DF peak, significant wave height, and peak wave period
Optimum Drop Jump Height in Division III Athletes: Under 75% of Vertical Jump Height.
Peng, Hsien-Te; Khuat, Cong Toai; Kernozek, Thomas W; Wallace, Brian J; Lo, Shin-Liang; Song, Chen-Yi
2017-10-01
Our purpose was to evaluate the vertical ground reaction force, impulse, moments and powers of hip, knee and ankle joints, contact time, and jump height when performing a drop jump from different drop heights based on the percentage of a performer's maximum vertical jump height (MVJH). Fifteen male Division III athletes participated voluntarily. Eleven synchronized cameras and two force platforms were used to collect data. One-way repeated-measures analysis of variance tests were used to examine the differences between drop heights. The maximum hip, knee and ankle power absorption during 125%MVJH and 150%MVJH were greater than those during 75%MVJH. The impulse during landing at 100%MVJH, 125%MVJH and 150%MVJH were greater than 75%MVJH. The vertical ground reaction force during 150%MVJH was greater than 50%MVJH, 75%MVJH and 100%MVJH. Drop height below 75%MVJH had the most merits for increasing joint power output while having a lower impact force, impulse and joint power absorption. Drop height of 150%MVJH may not be desirable as a high-intensity stimulus due to the much greater impact force, increasing the risk of injury, without increasing jump height performance. © Georg Thieme Verlag KG Stuttgart · New York.
The behavior of the radar parameters of cumulonimbus clouds during cloud seeding with AgI
NASA Astrophysics Data System (ADS)
Vujović, D.; Protić, M.
2017-06-01
Deep convection yielding severe weather phenomena (hail, flash floods, thunder) is frequent in Serbia during the warmer part of the year, i.e. April to September. As an effort to mitigate any potential damage to material goods, agricultural crops and vegetation from larger hailstones, cloud seeding is performed. In this paper, we analyzed 29 severe hailstorms seeded by silver iodide. From these, we chose five intense summer thunderstorm cells to analyze in detail the influence of silver-iodide cloud seeding on the radar parameters. Four of them were seeded and one was not. We also used data from firing stations (hail fall occurrence, the size of the hailstones). The most sensitive radar parameter in seeding was the height where maximum reflectivity in the cloud was observed. Its cascade appeared in every case of seeding, but was absent from the non-seeded case. In the case of the supercell, increase and decrease of the height where maximum reflectivity in the cloud was observed occurred in almost regular intervals, 12 to 15 min. The most inert parameter in seeding was maximum radar reflectivity. It changed one to two dBz during one cycle. The height of the top of the cloud and the height of the zone exhibiting enhanced radar echo both had similar behavior. It seems that both increased after seeding due to a dynamic effect: upward currents increasing due to the release of latent heat during the freezing of supercooled droplets. Mean values of the height where maximum reflectivity in the cloud was observed, the height of the top of the cloud and the height of the zone exhibiting enhanced radar echo during seeded period were greater than during unseeded period in 75.9%, 72.4% and 79.3% cases, respectively. This is because the values of the chosen storm parameters were higher when the seeding started, and then those values decreased after the seeded was conducted.
NASA Astrophysics Data System (ADS)
Zhao, Ren-Yang; Magun, Andreas; Schanda, Erwin
1990-12-01
Results are reported from a correlation analysis for 57 microwave impulsive bursts observed at six frequencies. A regression line between the peak frequency and the corresponding rise time of microwave impulsive bursts is obtained, with a correlation coefficient of -0.43. This can be explained in the frame of a thermal model. The magnetic field decrease with height has to be much slower than in a dipole field in order to explain the weak dependence of f(p) on t(r). This decrease of magnetic field with height in burst sources is based on the relationship between f(p) and t(r) found by assuming a thermal flare model with a collisionless conduction front.
2006-07-01
peaks located half of the spectral bandwidth away from the fat peak and the water peak , respectively. We picked the peak with the largest magnitude...cancer. This was described in a published paper (Fan et al, MRM , 2001). SOW4. We demonstrated quantitatively that HiSS provides improved fat...contrast agent. Images of water signal peak height in non-metastatic tumors were smoother in the tumor interior than images of metastatic tumors (p
Exospheric temperature and composition from satellite beacon measurements
NASA Technical Reports Server (NTRS)
Titheridge, J. E.
1974-01-01
Routine measurements of the slab thickness of the ionosphere, from 1965 to 1971, are used to infer the changes in neutral temperature and ion composition at a mean latitude of 40 S. Values of neutral temperature at solar maximum are 5 to 10% above Northern Hemisphere backscatter results. The diurnal and seasonal changes agree closely with satellite drag and backscatter measurements, except that the maximum temperature occurs after sunset in winter. Winter night-time values of the O(+)/H(+) transition height were 500 km in 1965-1966, 800 km in 1968-1969, and 700 km in 1971. Changes in the transition height lag about six months behind the changes in solar flux. Diurnal variations have a minimum just before sunrise and a maximum 1 to 3 hr after noon. On winter nights the transition height descends to the level set by chemical equilibrium. On summer nights the transition height is always above this level, giving a continual production of H(+) which serves as an additional source for maintaining the night-time ionosphere in the winter hemisphere.
Modeling Caribbean tree stem diameters from tree height and crown width measurements
Thomas Brandeis; KaDonna Randolph; Mike Strub
2009-01-01
Regression models to predict diameter at breast height (DBH) as a function of tree height and maximum crown radius were developed for Caribbean forests based on data collected by the U.S. Forest Service in the Commonwealth of Puerto Rico and Territory of the U.S. Virgin Islands. The model predicting DBH from tree height fit reasonably well (R2 = 0.7110), with...
1978-08-01
dam is a concrete gravity dam with earth abutments. It is 730 ft. long and the maximum height of it is 54 ft. The dam is assessed to be in poor...concrete gravity dam with earth abutments constructed in 1920. Overall length is 730 feet and maximum height is 54 feet. The Spicket River flows 5...the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region ( greatest reasonably possible storm runoff), or fractions
Measures of Functional Performance and Their Association With Hip and Thigh Strength
Kollock, Roger; Van Lunen, Bonnie L.; Ringleb, Stacie I.; Oñate, James A.
2015-01-01
Context: Insufficient hip and thigh strength may increase an athlete's susceptibility to injury. However, screening for strength deficits using isometric and isokinetic instrumentation may not be practical in all clinical scenarios. Objective: To determine if functional performance tests are valid indicators of hip and thigh strength. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: Sixty-two recreationally athletic men (n = 30, age = 21.07 years, height = 173.84 cm, mass = 81.47 kg) and women (n = 32, age = 21.03 years, height = 168.77 cm, mass = 68.22 kg) participants were recruited. Intervention(s): During session 1, we measured isometric peak force and rate of force development for 8 lower extremity muscle groups, followed by an isometric endurance test. During session 2, participants performed functional performance tests. Main Outcome Measure(s): Peak force, rate of force development, fatigue index, hop distance (or height), work (joules), and number of hops performed during the 30-second lateral-hop test were assessed. The r values were squared to calculate r 2. We used Pearson correlations to evaluate the associations between functional performance and strength. Results: In men, the strongest relationship was observed between triple-hop work and hip-adductor peak force (r2 = 50, P ≤ .001). Triple-hop work also was related to hip-adductor (r2 = 38, P ≤ .01) and hip-flexor (r2 = 37, P ≤ .01) rate of force development. For women, the strongest relationships were between single-legged vertical-jump work and knee-flexor peak force (r2 = 0.44, P ≤ .01) and single-legged vertical-jump height and knee-flexor peak force (r2 = 0.42, P ≤ .01). Single-legged vertical-jump height also was related to knee-flexor rate of force development (r2 = 0.49, P ≤ .001). The 30-second lateral-hop test did not account for a significant portion of the variance in strength endurance. Conclusions: Hop tests alone did not provide clinicians with enough information to make evidence-based decisions about lower extremity strength in isolated muscle groups. PMID:25347236
Orbital and physical characteristics of meter-scale impactors from airburst observations
NASA Astrophysics Data System (ADS)
Brown, P.; Wiegert, P.; Clark, D.; Tagliaferri, E.
2016-03-01
We have analyzed the orbits and ablation characteristics in the atmosphere of 59 Earth-impacting fireballs, produced by meteoroids 1 m in diameter or larger, described here as meter-scale. Using heights at peak luminosity as a proxy for strength, we determine that there is roughly an order of magnitude spread in strengths of the population of meter-scale impactors at the Earth. We use fireballs producing recovered meteorites and well documented fireballs from ground-based camera networks to calibrate our ablation model interpretation of the observed peak height of luminosity as a function of speed. The orbits and physical strength of these objects are consistent with the majority being asteroidal bodies originating from the inner main asteroid belt. This is in contrast to earlier suggestions by Ceplecha (Ceplecha, Z. [1994]. Astron. Astrophys. 286, 967-970) that the majority of meter-tens of meter sized meteoroids are ;… cometary bodies of the weakest known structure;. We find a lower limit of ∼10-15% of our objects have a possible cometary (Jupiter-Family comet and/or Halley-type comet) origin based on orbital characteristics alone. Only half this number, however, also show evidence for weaker than average structure. Two events, Sumava and USG 20131121, have exceptionally high (relative to the remainder of the population) heights of peak brightness. These are physically most consistent with high microporosity objects, though both were on asteroidal-type orbits. We also find three events, including the Oct 8, 2009 airburst near Sulawesi, Indonesia, which display comparatively low heights of peak brightness, consistent with strong monolithic stones or iron meteoroids. Based on orbital similarity, we find a probable connection among several events in our population with the Taurid meteoroid complex; no other major meteoroid streams show probable linkages to the orbits of our meter-scale population. Our impactors cover almost four orders of magnitude in mass, but no trend in height of peak brightness as a function of mass is evident, suggesting no strong trend in strength with size for meter-scale impactors consistent with the results of Popova et al. (Popova, O.P. et al. [2011]. Meteorit. Planet. Sci. 46, 1525-1550).
Kriström, Berit; Aronson, A Stefan; Dahlgren, Jovanna; Gustafsson, Jan; Halldin, Maria; Ivarsson, Sten A; Nilsson, Nils-Osten; Svensson, Johan; Tuvemo, Torsten; Albertsson-Wikland, Kerstin
2009-02-01
Weight-based GH dosing results in a wide variation in growth response in children with GH deficiency (GHD) or idiopathic short stature (ISS). The hypothesis tested was whether individualized GH doses, based on variation in GH responsiveness estimated by a prediction model, reduced variability in growth response around a set height target compared with a standardized weight-based dose. A total of 153 short prepubertal children diagnosed with isolated GHD or ISS (n = 43) and at least 1 SD score (SDS) below midparental height SDS (MPH(SDS)) were included in this 2-yr multicenter study. The children were randomized to either a standard (43 microg/kg.d) or individualized (17-100 microg/kg.d) GH dose. We measured the deviation of height(SDS) from individual MPH(SDS) (diffMPH(SDS)). The primary endpoint was the difference in the range of diffMPH(SDS) between the two groups. The diffMPH(SDS) range was reduced by 32% in the individualized-dose group relative to the standard-dose group (P < 0.003), whereas the mean diffMPH(SDS) was equal: -0.42 +/- 0.46 and -0.48 +/- 0.67, respectively. Gain in height(SDS) 0-2 yr was equal for the GH-deficient and ISS groups: 1.31 +/- 0.47 and 1.36 +/- 0.47, respectively, when ISS was classified on the basis of maximum GH peak on the arginine-insulin tolerance test or 24-h profile. Individualized GH doses during catch-up growth significantly reduce the proportion of unexpectedly good and poor responders around a predefined individual growth target and result in equal growth responses in children with GHD and ISS.
Pulse height tests of a large diameter fast LaBr₃:Ce scintillation detector.
Naqvi, A A; Khiari, F Z; Maslehuddin, M; Gondal, M A; Al-Amoudi, O S B; Ukashat, M S; Ilyas, A M; Liadi, F A; Isab, A A; Khateeb-ur Rehman; Raashid, M; Dastageer, M A
2015-10-01
The pulse height response of a large diameter fast 100 mm × 100 mm LaBr3:Ce detector was measured for 0.1-10 MeV gamma-rays. The detector has a claimed time resolution of 608 ps for 511 keV gamma rays, but has relatively poor energy resolution due to the characteristics of its fast photomultiplier. The detector pulse height response was measured for gamma rays from cobalt, cesium, and bismuth radioisotope sources as well as prompt gamma rays from thermal neutron capture in water samples contaminated with mercury (3.1 wt%), boron (2.5 wt%), cadmium (0.25 wt%), chromium (52 wt%), and nickel (22 wt%) compounds. The energy resolution of the detector was determined from full width at half maximum (FWHM) of element-characteristic gamma ray peaks in the pulse height spectrum associated with the element present in the contaminated water sample. The measured energy resolution of the 100 mm × 100 mm detector varies from 12.7±0.2% to 1.9±0.1% for 0.1 to 10 MeV gamma rays, respectively. The graph showing the energy resolution ΔE/E(%) versus 1/√Eγ was fitted with a linear function to study the detector light collection from the slope of the curve. The slope of the present 100 mm × 100 mm detector is almost twice as large as the slope of a similar curve of previously published data for a 89 mm × 203 mm LaBr3:Ce detector. This indicates almost two times poorer light collection in the 100 mm × 100 mm detector as compared to the other detector. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vertical structure of radar reflectivity in deep intense convective clouds over the tropics
NASA Astrophysics Data System (ADS)
Kumar, Shailendra; Bhat, G. S.
2015-04-01
This study is based on 10 years of radar reflectivity factor (Z) data derived from the TRMM Precipitation Radar (PR) measurements. We define two types of convective cells, namely, cumulonimbus towers (CbTs) and intense convective clouds (ICCs), essentially following the methodology used in deriving the vertical profiles of radar reflectivity (VPRR). CbT contains Z≥ 20 dBZ at 12 km height with its base height below 3 km. ICCs belong to the top 5% reflectivity population at 3 km and 8 km altitude. Regional differences in the vertical structure of convective cells have been explored for two periods, namely, JJAS (June, July, August and September) and JFM (January, February and March) months. Frequency of occurrences of CbTs and ICCs depend on the region. Africa and Latin America are the most productive regions for the CbTs while the foothills of Western Himalaya contain the most intense profiles. Among the oceanic areas, the Bay of Bengal has the strongest vertical profile, whereas Atlantic Ocean has the weakest profile during JJAS. During JFM months, maritime continent has the strongest vertical profile whereas western equatorial Indian Ocean has the weakest. Monsoon clouds lie between the continental and oceanic cases. The maximum heights of 30 and 40 dBZ reflectivities (denoted by MH30 and MH40, respectively) are also studied. MH40 shows a single mode and peaks around 5.5 km during both JJAS and JFM months. MH30 shows two modes, around 5 km and between 8 km and 10 km, respectively. It is also shown that certain conclusions such as the area/region with the most intense convective cells, depend of the reference height used in defining a convective cell.
NASA Astrophysics Data System (ADS)
Carleton, Andrew M.; Song, Yudong
1997-06-01
Satellite IR images for seven months in 1992 are interpreted for cold air mesoscale cyclones (mesocyclones) occurring in the Australasian sector (˜70°E-150°W) of the Southern Ocean. Time-averaged (monthly, seasonal) distributions of mesocyclogenesis, mesocyclolysis, and tracks of movement, along with statistical summaries of mesocyclone attributes (e.g., cloud vortex size, speeds of movement), are presented and discussed in the context of the larger-scale atmospheric circulation. Maximum frequencies of mesocyclones occurred in the transitional months of April and October 1992, with a secondary peak in July. Statistically significant differences in mesocyclone track length between months appear related dominantly to changes in speed of the background flow, associated with the semiannual oscillation (SAO) of tropospheric pressure/height. The associations of mesocyclone "outbreaks" with composite anomaly fields of pressure and height are identified for three subareas of the Australasian sector suggested by the analysis of mesocyclone spatial patterns. Outbreaks occur in the strong southerly geostrophic airflow located between pressure and height anomalies that are negative (positive) to the eastward (westward). When outbreaks occurred in the New Zealand subarea in 1992, a similarly strong couplet of pressure/height anomalies developed in the southern South America/Antarctic Peninsula sector but not when outbreaks occurred south of Australia. The mesocyclone remote association that is suggested is evaluated by using polar orbiter IR imagery for the southeastern Pacific region. Frequencies of mesocyclones increase (decrease) west of Chile but decrease (increase) through Drake Passage when mesocyclone outbreaks occur near New Zealand (south of Australia). These long distance associations of mesocyclone outbreaks are consistent with the connectivity of the baroclinic waves and might prove useful in the development of techniques to forecast mesocyclones over the Southern Ocean.
Magnitude and frequency of floods in Nebraska
Beckman, Emil W.
1976-01-01
Observed maximum flood peaks at 303 gaging stations with 13 or more years of record and significant peaks at 57 short-term stations and 31 miscellaneous sites are useful in designing flood-control works for maximum safety from flood damage. Comparison is made with maximum observed floods in the United States.
From MERIS To OLCI And Sentinel 2: Harmful Algal Bloom Applications & Modelling In South Africa
NASA Astrophysics Data System (ADS)
Robertson Lain, L.; Bernard, S.; Evers-King, H.; Matthews, M. W.; Smith, M.
2013-12-01
The Sentinel 2 and 3 missions offer new capabilities for Harmful Algal Bloom (HAB) observations in Southern Africa and further afield on the African continent where there is a great need for improved monitoring of water quality: both in freshwater resources where eutrophication is common, and in vulnerable coastal ecosystems. Two well validated algorithms - Equivalent Algal Populations (EAP) & Maximum Peak Height (MPH) - available for operational use on eutrophic waters are described. Spectral remote sensing reflectances (Rrs) and inherent optical properties (IOPs) are characterised via measurement and modelling of phytoplankton assemblages typical of high biomass algal blooms of the Southern Benguela and inland waters of South Africa. Sensitivity to phytoplankton functional types (PFTs) is investigated, with focus on optically significant biological characteristics e.g. particle size distribution and intracellular structure (including vacuoles).
Wake wash waves produced by High Speed Crafts:measurements vs prediction
NASA Astrophysics Data System (ADS)
Benassai, Guido
2010-05-01
The subject of this study refers to the wake wash waves generated by High Speed Crafts observed at some distance away (typically one or multiple of ship lengths) from the line of travel of the vessel. The ratio of the vessel speed divided by the maximum wave celerity in shallow water (depth-based Froude number) or to the square root of the gravity by the vessel length (length-based Froude number) is often used to classify the wash. In fact the wash waves produced by vessels that travel at sub-critical Froude numbers are different in patterns (and hence applicable theory) from that produced by vessels which operate at the critical Froude number of 1 or at supercritical Froude numbers. High Speed Crafts generally operate at Fr>1, even if in some cases for safety of navigation they operate at Fr<1. In the study supercritical speed conditions were considered. The predicted wake wash was a result of a desk-top study and relied on the subject matter presented in numerous technical papers and publications, while the measured wake wash is a result of the first field measurements of wake wash produced by HSC operating in the Bay of Naples. The measurements were operated by a pressure gauge in three critical points where the distance from the coastline was less than 700m. These measurements were taken in shallow water (depth ranging from 4 to 5 meters) in calm weather conditions. The output of the tests were wave-elevation time histories upon which the maximum wave height Hm from the wave record was extracted. The wave height reported was therefore the highest wave, peak to through, which occurred in a wave train. The wave period is defined as double the related half period for the defined maximum wave height. For each wake wash measurement the vessel route was monitored aboard the crossing HSC and exact speed, distance and water obtained depth was determined. The obtained values of the wake wash were compared with predictions of wake wash obtained by similar vessels in analogous speed and depth conditions. Finally some comments and conclusions were given about the accordance between the measurements and the predictions of wake wash waves.
Morphological response of coastal dunes to a group of three typhoons on Pingtan Island, China
NASA Astrophysics Data System (ADS)
Yang, Lin; Dong, Yuxiang; Huang, Dequan
2018-06-01
Pingtan Island (Fujian, China) was severely impacted by a group of three typhoons in a sequence of Nepartak, Meranti, and Megi during the summer of 2016. Field investigations were conducted on the island before and after the typhoons using high-precision RTK GPS technology and surveying methods, and we analyzed the morphological responses of three types of coastal dunes (coastal foredunes, climbing dunes, and coastal sand sheets) to the typhoon group. The maximum height decrease among coastal foredunes was 2.89 m after the typhoon group landed; dune volume increased by 0.9%, and the windward side showed a slight height increase, whereas that of the slope crest and leeward slope were slightly lower than the values before the typhoon group landed. The maximum height decrease among climbing dunes was 1.43 m, and dune volume decreased slightly by 0.1%; the height change among climbing dunes differed in magnitude between sites. Among coastal sand sheets, the maximum height increase was 0.75 m, and dune volume increased by 1.5%; the height of frontal coastal sand sheets increased markedly as result of storm surge washover deposits, whereas the heights barely changed at the middle and trailing edges. The above results suggest that the typhoon group imposed significant morphological changes on coastal dunes. However, the features of morphological responses differed between the three types of coastal dunes studied, and also among dunes of the same type based on local characteristics. Furthermore, coastal dunes showed no cumulative effects in their responses to the typhoon group, despite the individual typhoon impacts on coastal dune morphology.
Experimental investigation on the hydrodynamic performance of a wave energy converter
NASA Astrophysics Data System (ADS)
Zheng, Xiong-bo; Ma, Yong; Zhang, Liang; Jiang, Jin; Liu, Heng-xu
2017-06-01
Wave energy is an important type of marine renewable energy. A wave energy converter (WEC) moored with two floating bodies was developed in the present study. To analyze the dynamic performance of the WEC, an experimental device was designed and tested in a tank. The experiment focused on the factors which impact the motion and energy conversion performance of the WEC. Dynamic performance was evaluated by the relative displacements and velocities of the oscillator and carrier which served as the floating bodies of WEC. Four factors were tested, i.e. wave height, wave period, power take-off (PTO) damping, and mass ratio ( R M) of the oscillator and carrier. Experimental results show that these factors greatly affect the energy conversion performance, especially when the wave period matches R M and PTO damping. According to the results, we conclude that: (a) the maximization of the relative displacements and velocities leads to the maximization of the energy conversion efficiency; (b) the larger the wave height, the higher the energy conversion efficiency will be; (c) the relationships of energy conversion efficiency with wave period, PTO damping, and R M are nonlinear, but the maximum efficiency is obtained when these three factors are optimally matched. Experimental results demonstrated that the energy conversion efficiency reached the peak at 28.62% when the wave height was 120 mm, wave period was 1.0 s, R M was 0.21, and the PTO damping was corresponding to the resistance of 100 Ω.
COMPARISON OF CORONAL EXTRAPOLATION METHODS FOR CYCLE 24 USING HMI DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arden, William M.; Norton, Aimee A.; Sun, Xudong
2016-05-20
Two extrapolation models of the solar coronal magnetic field are compared using magnetogram data from the Solar Dynamics Observatory /Helioseismic and Magnetic Imager instrument. The two models, a horizontal current–current sheet–source surface (HCCSSS) model and a potential field–source surface (PFSS) model, differ in their treatment of coronal currents. Each model has its own critical variable, respectively, the radius of a cusp surface and a source surface, and it is found that adjusting these heights over the period studied allows for a better fit between the models and the solar open flux at 1 au as calculated from the Interplanetary Magneticmore » Field (IMF). The HCCSSS model provides the better fit for the overall period from 2010 November to 2015 May as well as for two subsets of the period: the minimum/rising part of the solar cycle and the recently identified peak in the IMF from mid-2014 to mid-2015 just after solar maximum. It is found that an HCCSSS cusp surface height of 1.7 R {sub ⊙} provides the best fit to the IMF for the overall period, while 1.7 and 1.9 R {sub ⊙} give the best fits for the two subsets. The corresponding values for the PFSS source surface height are 2.1, 2.2, and 2.0 R {sub ⊙} respectively. This means that the HCCSSS cusp surface rises as the solar cycle progresses while the PFSS source surface falls.« less
Stochastic sampling effects in STR typing: Implications for analysis and interpretation.
Timken, Mark D; Klein, Sonja B; Buoncristiani, Martin R
2014-07-01
The analysis and interpretation of forensic STR typing results can become more complicated when reduced template amounts are used for PCR amplification due to increased stochastic effects. These effects are typically observed as reduced heterozygous peak-height balance and increased frequency of undetected alleles (allelic "dropout"). To investigate the origins of these effects, a study was performed using the AmpFlSTR(®) Identifiler Plus(®) and MiniFiler(®) kits to amplify replicates from a dilution series of NIST Human DNA Quantitation Standard (SRM(®) 2372A). The resulting amplicons were resolved and detected on two different genetic analyzer platforms, the Applied Biosystems 3130xL and 3500 analyzers. Results from our study show that the four different STR/genetic analyzer combinations exhibited very similar peak-height ratio statistics when normalized for the amount of template DNA in the PCR. Peak-height ratio statistics were successfully modeled using the Poisson distribution to simulate pre-PCR stochastic sampling of the alleles, confirming earlier explanations that sampling is the primary source for peak-height imbalance in reduced template dilutions. In addition, template-based pre-PCR sampling simulations also successfully predicted allelic dropout frequencies, as modeled by logistic regression methods, for the low-template DNA dilutions. We discuss the possibility that an accurately quantified DNA template might be used to characterize the linear signal response for data collected using different STR kits or genetic analyzer platforms, so as to provide a standardized approach for comparing results obtained from different STR/CE combinations and to aid in validation studies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Field responses of Prunus serotina and Asclepias syriaca to ozone around southern Lake Michigan
Bennett, J.P.; Jepsen, E.A.; Roth, J.A.
2006-01-01
Higher ozone concentrations east of southern Lake Michigan compared to west of the lake were used to test hypotheses about injury and growth effects on two plant species. We measured approximately 1000 black cherry trees and over 3000 milkweed stems from 1999 to 2001 for this purpose. Black cherry branch elongation and milkweed growth and pod formation were significantly higher west of Lake Michigan while ozone injury was greater east of Lake Michigan. Using classification and regression tree (CART) analyses we determined that departures from normal precipitation, soil nitrogen and ozone exposure/peak hourly concentrations were the most important variables affecting cherry branch elongation, and milkweed stem height and pod formation. The effects of ozone were not consistently comparable with the effects of soil nutrients, weather, insect or disease injury, and depended on species. Ozone SUM06 exposures greater than 13 ppm-h decreased cherry branch elongation 18%; peak 1-h exposures greater than 93 ppb reduced milkweed stem height 13%; and peak 1-h concentrations greater than 98 ppb reduced pod formation 11% in milkweed. Decreased cherry branch elongation, milkweed stem height and pod production, and foliar injury on both species occurred at sites around southern Lake Michigan at ozone exposures of 13 SUM06 ppm-h and 93a??98 ppb peak hourly.
NASA Astrophysics Data System (ADS)
Nolan, M.; Deslauriers, K.
2015-12-01
Due to discrepancies on the USGS topographic maps made in the late 1950s, the height of the tallest peaks in the US Arctic has remained uncertain -- until now. The five tallest peaks here are located within 40 km of each other in the eastern Brooks Range of Alaska within the Arctic National Wildlife Refuge. The 1:250,000 scale map lists Mt Isto as tallest at 9050', but the 1:63,360 scale map lists it at 8975'. These values bracket the elevation of Mt Chamberlin, which is listed as 9020' on both maps, creating the primary uncertainty. We used fodar™, an airborne photogrammetric method utilizing Structure-from-Motion (SfM) algorithms, to measure the heights of these peaks and validated these measurements using survey-grade GPS and airborne lidar. The GPS and fodar measurements of Mt Isto and Mt Chamberlin agree to within centimeters, and show that both mountains are under 9000' and that one of them is actually the third tallest. We have mapped each of the five peaks between 4 and 6 times over the past 7 years using either lidar or fodar, with a final measurement uncertainty of less than +/- 30 cm, noting a gradual loss of elevation over time on most of them, caused by ablation of glacier-capped and snow-corniced peaks. When the USGS maps were made, it is therefore conceivable that one or more of these mountains were over 9000' but have since lowered due to ice loss. Analysis of the SfM data shows that all five peaks likely have less than 10 meters of ice remaining on them and, at current loss rates, rock may be exposed on some of them within the next 10 years. The difference in height between the 4th and 5th tallest peaks varied temporally between 1 and 3 m, suggesting that their order may yet change before rock is exposed there. The measured heights of these five peaks will be revealed in the presentation. Based on the correspondence between and within data sets, we also conclude that our SfM photogrammetry is as accurate and more precise than our lidar in the measurement of these mountains and offers many other advantages. In particular, the photogrammetric hardware is 10x less expensive than lidar of similar capability, and unlike lidar the SfM measurements also create a perfectly co-registered orthoimage which is useful in interpretation of topographic change. Figure. 3D visualization of Mt Isto fodar data with GPS validation data overlain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bretschneider, C.L.
1980-06-01
This volume is an extension of and consists of several modifications to the earlier report by Bretschneider (April 1979) on the subject of hurricane design wind, wave and current criteria for the four potential OTEC sites. The 100-year hurricane criteria for the design of OTEC plants is included. The criteria, in addition to the maximum conditions of winds, waves and surface current, include: hurricane fields for wind speed U/sub s/ and significant wave height H/sub s/; hurricane fields for modal wave period f/sub 0//sup -1/ and maximum energy density S/sub max/ of the wave spectrum; the corresponding Ekman wind-driven surfacemore » current V/sub s/; tabulated cross-sections for U/sub s/, H/sub s/, f/sub 0//sup -1/ and S/sub max/ through max U/sub s/ and through max H/sub s/ along traverses at right angles to and along traverses parallel to the forward movement of the hurricane; most probable maximum wave height and the expected corresponding wave period, based on statistical analysis of maximum wave heights from five hurricanes; design wave spectra for maximum U/sub s/ and also maximum H/sub s/, since maximum U/sub s/ and maximum H/sub s/ do not occur simultaneously; the envelope of wave spectra through maximum U/sub s/ and through maximum H/sub s/ along traverses parallel to the forward movement of the hurricane; the above same determinations for Hurricane Camille (1969) as for the four OTEC locations; and alternative methods (suggested) for obtaining design wave spectra from the joint probability distribution functions for wave height and period given by Longuet-Higgins (1975) and C.N.E.X.O. after Arhan, et al (1976).« less
NASA Astrophysics Data System (ADS)
Normandin, Cassandra; Frappart, Frédéric; Lubac, Bertrand; Bélanger, Simon; Marieu, Vincent; Blarel, Fabien; Robinet, Arthur; Guiastrennec-Faugas, Léa
2018-02-01
Quantification of surface water storage in extensive floodplains and their dynamics are crucial for a better understanding of global hydrological and biogeochemical cycles. In this study, we present estimates of both surface water extent and storage combining multi-mission remotely sensed observations and their temporal evolution over more than 15 years in the Mackenzie Delta. The Mackenzie Delta is located in the northwest of Canada and is the second largest delta in the Arctic Ocean. The delta is frozen from October to May and the recurrent ice break-up provokes an increase in the river's flows. Thus, this phenomenon causes intensive floods along the delta every year, with dramatic environmental impacts. In this study, the dynamics of surface water extent and volume are analysed from 2000 to 2015 by combining multi-satellite information from MODIS multispectral images at 500 m spatial resolution and river stages derived from ERS-2 (1995-2003), ENVISAT (2002-2010) and SARAL (since 2013) altimetry data. The surface water extent (permanent water and flooded area) peaked in June with an area of 9600 km2 (±200 km2) on average, representing approximately 70 % of the delta's total surface. Altimetry-based water levels exhibit annual amplitudes ranging from 4 m in the downstream part to more than 10 m in the upstream part of the Mackenzie Delta. A high overall correlation between the satellite-derived and in situ water heights (R > 0.84) is found for the three altimetry missions. Finally, using altimetry-based water levels and MODIS-derived surface water extents, maps of interpolated water heights over the surface water extents are produced. Results indicate a high variability of the water height magnitude that can reach 10 m compared to the lowest water height in the upstream part of the delta during the flood peak in June. Furthermore, the total surface water volume is estimated and shows an annual variation of approximately 8.5 km3 during the whole study period, with a maximum of 14.4 km3 observed in 2006. The good agreement between the total surface water volume retrievals and in situ river discharges (R = 0.66) allows for validation of this innovative multi-mission approach and highlights the high potential to study the surface water extent dynamics.
McBride, Jeffrey M; Haines, Tracie L; Kirby, Tyler J
2011-08-01
Nine males (age 24.7 ± 2.1 years, height 175.3 ± 5.5 cm, body mass 80.8 ± 7.2 kg, power clean 1-RM 97.1 ± 6.36 kg, squat 1-RM = 138.3 ± 20.9 kg) participated in this study. On day 1, the participants performed a one-repetition maximum (1-RM) in the power clean and the squat. On days 2, 3, and 4, participants performed the power clean, squat or jump squat. Loading for the power clean ranged from 30% to 90% of the participant's power clean 1-RM and loading for the squat and jump squat ranged from 0% to 90% of the participant's squat 1-RM, all at 10% increments. Peak force, velocity, and power were calculated for the bar, body, and system (bar + body) for all power clean, squat, and jump squat trials. Results indicate that peak power for the bar, body, and system is differentially affected by load and movement pattern. When using the power clean, squat or jump squat for training, the optimal load in each exercise may vary. Throwing athletes or weightlifters may be most concerned with bar power, but jumpers or sprinters may be more concerned with body or system power. Thus, the exercise type and load vary according to the desired stimulus.
Formation, distribution and variability in snow cover on the Asian territory of the USSR
NASA Technical Reports Server (NTRS)
Pupkov, V. N.
1985-01-01
A description is given of maps compiled for annual and average multiple-year water reserves. The annual and average multiple-year maximum snow cover height for winter, extreme values of maximum snow reserves, and the average height and snow reserves at the end of each decade are shown. These maps were made for the entire Asian territory of the USSR, excluding Central Asia, Kamchatka Peninsula, and the Sakhalin Islands.
Determination of contact angle from the maximum height of enlarged drops on solid surfaces
NASA Astrophysics Data System (ADS)
Behroozi, F.
2012-04-01
Measurement of the liquid/solid contact angle provides useful information on the wetting properties of fluids. In 1870, the German physicist Georg Hermann Quincke (1834-1924) published the functional relation between the maximum height of an enlarged drop and its contact angle. Quincke's relation offered an alternative to the direct measurement of contact angle, which in practice suffers from several experimental uncertainties. In this paper, we review Quincke's original derivation and show that it is based on a hidden assumption. We then present a new derivation that exposes this assumption and clarifies the conditions under which Quincke's relation is valid. To explore Quincke's relation experimentally, we measure the maximum height of enlarged water drops on several substrates and calculate the contact angle in each case. Our results are in good agreement with contact angles measured directly from droplet images.
NASA Astrophysics Data System (ADS)
Girault, F.; Carazzo, G.; Tait, S.; Kaminski, E.
2016-10-01
The maximum height of an explosive volcanic column, H, depends on the 1/4th power of the eruptive mass flux, Q, and on the 3/4th power of the stratification of the atmosphere, N. Expressed as scaling laws, this relationship has made H a widely used proxy to estimate Q. Two additional effects are usually included to produce more accurate and robust estimates of Q based on H: particle sedimentation from the volcanic column, which depends on the total grain-size distribution (TGSD) and the atmospheric crosswind. Both coarse TGSD and strong crosswind have been shown to decrease strongly the maximum column height, and TGSD, which also controls the effective gas content in the column, influences the stability of the column. However, the impact of TGSD and of crosswind on the dynamics of the volcanic column are commonly considered independently. We propose here a steady-state 1D model of an explosive volcanic column rising in a windy atmosphere that explicitly accounts for particle sedimentation and wind together. We consider three typical wind profiles: uniform, linear, and complex, with the same maximum wind velocity of 15 m s- 1. Subject to a uniform wind profile, the calculations show that the maximum height of the plume strongly decreases for any TGSD. The effect of TGSD on maximum height is smaller for uniform and complex wind profiles than for a linear profile or without wind. The largest differences of maximum heights arising from different wind profiles are observed for the largest source mass fluxes (> 107 kg s- 1) for a given TGSD. Compared to no wind conditions, the field of column collapse is reduced for any wind profile and TGSD at the vent, an effect that is the strongest for small mass fluxes and coarse TGSD. Provided that the maximum plume height and the wind profile are known from real-time observations, the model predicts the mass discharge rate feeding the eruption for a given TGSD. We apply our model to a set of eight historical volcanic eruptions for which all the required information is known. Taking into account the measured wind profile and the actual TGSD at the vent substantially improves (by ≈ 30%) the agreement between the mass discharge rate calculated from the model based on plume height and the field observation of deposit mass divided by eruption duration, relative to a model taking into account TGSD only. This study contributes to the improvement of the characterization of volcanic source term required as input to larger scale models of ash and aerosol dispersion.
Drop jumping. II. The influence of dropping height on the biomechanics of drop jumping.
Bobbert, M F; Huijing, P A; van Ingen Schenau, G J
1987-08-01
In the literature, athletes preparing for explosive activities are recommended to include drop jumping in their training programs. For the execution of drop jumps, different techniques and different dropping heights can be used. This study was designed to investigate for the performance of bounce drop jumps the influence of dropping height on the biomechanics of the jumps. Six subjects executed bounce drop jumps from heights of 20 cm (designated here as DJ20), 40 cm (designated here as DJ40), and 60 cm (designated here as DJ60). During jumping, they were filmed, and ground reaction forces were recorded. The results of a biomechanical analysis show no difference between DJ20 and DJ40 in mechanical output about the joints during the push-off phase. Peak values of moment and power output about the ankles during the push-off phase were found to be smaller in DJ60 than in DJ40 (DJ20 = DJ60). The amplitude of joint reaction forces increased with dropping height. During DJ60, the net joint reaction forces showed a sharp peak on the instant that the heels came down on the ground. Based on the results, researchers are advised to limit dropping height to 20 or 40 cm when investigating training effects of the execution of bounce drop jumps.
Chong, Helen C; Tennant, Liana M; Kingston, David C; Acker, Stacey M
2017-03-01
(1) Characterize knee joint moments and peak knee flexion moment timing during kneeling transitions, with the intent of identifying high-risk postures. (2) Determine whether safety footwear worn by kneeling workers (construction workers, tile setters, masons, roofers) alters high flexion kneeling mechanics. Fifteen males performed high flexion kneeling transitions. Kinetics and kinematics were analyzed for differences in ascent and descent in the lead and trail legs. Mean±standard deviation peak external knee adduction and flexion moments during transitions ranged from 1.01±0.31 to 2.04±0.66% body weight times height (BW∗Ht) and from 3.33 to 12.6% BW∗Ht respectively. The lead leg experienced significantly higher adduction moments compared to the trail leg during descent, when work boots were worn (interaction, p=0.005). There was a main effect of leg (higher lead vs. trail) on the internal rotation moment in both descent (p=0.0119) and ascent (p=0.0129) phases. Peak external knee adduction moments during transitions did not exceed those exhibited during level walking, thus increased knee adduction moment magnitude is likely not a main factor in the development of knee OA in occupational kneelers. Additionally, work boots only significantly increased the adduction moment in the lead leg during descent. In cases where one knee is painful, diseased, or injured, the unaffected knee should be used as the lead leg during asymmetric bilateral kneeling. Peak flexion moments occurred at flexion angles above the maximum flexion angle exhibited during walking (approximately 60°), supporting the theory that the loading of atypical surfaces may aid disease development or progression. Copyright © 2016 Elsevier B.V. All rights reserved.
47 CFR 73.811 - LPFM power and antenna height requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false LPFM power and antenna height requirements. 73... SERVICES RADIO BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.811 LPFM power and antenna... operate with maximum facilities of 100 watts effective radiated power (ERP) at 30 meters antenna height...
47 CFR 73.811 - LPFM power and antenna height requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false LPFM power and antenna height requirements. 73... SERVICES RADIO BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.811 LPFM power and antenna... operate with maximum facilities of 100 watts effective radiated power (ERP) at 30 meters antenna height...
47 CFR 90.205 - Power and antenna height limits.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false Power and antenna height limits. 90.205 Section... SERVICES PRIVATE LAND MOBILE RADIO SERVICES General Technical Standards § 90.205 Power and antenna height.... (d) 150-174 MHz. (1) The maximum allowable station ERP is dependent upon the station's antenna HAAT...
47 CFR 73.811 - LPFM power and antenna height requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false LPFM power and antenna height requirements. 73... SERVICES RADIO BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.811 LPFM power and antenna... operate with maximum facilities of 100 watts effective radiated power (ERP) at 30 meters antenna height...
47 CFR 90.205 - Power and antenna height limits.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Power and antenna height limits. 90.205 Section... SERVICES PRIVATE LAND MOBILE RADIO SERVICES General Technical Standards § 90.205 Power and antenna height.... (d) 150-174 MHz. (1) The maximum allowable station ERP is dependent upon the station's antenna HAAT...
47 CFR 90.205 - Power and antenna height limits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Power and antenna height limits. 90.205 Section... SERVICES PRIVATE LAND MOBILE RADIO SERVICES General Technical Standards § 90.205 Power and antenna height.... (d) 150-174 MHz. (1) The maximum allowable station ERP is dependent upon the station's antenna HAAT...
47 CFR 90.205 - Power and antenna height limits.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 5 2013-10-01 2013-10-01 false Power and antenna height limits. 90.205 Section... SERVICES PRIVATE LAND MOBILE RADIO SERVICES General Technical Standards § 90.205 Power and antenna height.... (d) 150-174 MHz. (1) The maximum allowable station ERP is dependent upon the station's antenna HAAT...
47 CFR 90.205 - Power and antenna height limits.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Power and antenna height limits. 90.205 Section... SERVICES PRIVATE LAND MOBILE RADIO SERVICES General Technical Standards § 90.205 Power and antenna height.... (d) 150-174 MHz. (1) The maximum allowable station ERP is dependent upon the station's antenna HAAT...
NASA Astrophysics Data System (ADS)
Drexler, J. Z.; Fuller, C.
2017-12-01
137Cesium is an anthropogenic radionuclide whose maximum fallout occurred in 1963/4 at the height of above-ground nuclear weapons testing. The presence of this fallout peak in core profiles has been used widely to estimate vertical accretion and carbon accumulation rates in wetlands. 137Cs dating has long been applied with little attention to uncertainty of peak position or measurement error. Initially, this caused few problems as activities were high and peaks were generally clear; however recently the clarity of peaks has deteriorated, raising questions of method efficacy. We quantified uncertainty in 137Cs dating in 52 wetland sediment/peat cores collected from 2005 - 2015 in Maine, California, Virginia, North Carolina, South Carolina, and Washington and compared the position of each peak to the date obtained with 210Pb. We found that the two dating methods matched within 5 years for only 20% of cores with a distinct 137Cs peak. We attribute this to a decline in 137Cs efficacy for three main reasons: (1) mobility of 137Cs resulting from diffusion independent of sediments, downwashing, and/or physical/biotic perturbation, (2) on-going decay of the original 137Cs in situ (half-life = 30.17 years), which manifests in lower signal to noise ratios, and (3) 137Cs inputs from watershed/tidal sources, which have confounded the 137Cs pattern in sediments. Such reduced efficacy is of concern because carbon accumulation rates determined with 137Cs are used for informing national-scale carbon assessments and for determining the carbon storage potential of wetlands restored as offsets for the carbon market. We conclude that 137Cs dating alone has sufficient uncertainty that it should be disallowed for carbon accounting and that any use of 137Cs should be accompanied by an uncertainty analysis of peak position. Our results suggest that soon the common practice of using 137Cs to corroborate 210Pb dating will likely be obsolete in much of North America.
Digital terrestrial photogrammetric methods for tree stem analysis
Neil A. Clark; Randolph H. Wynne; Daniel L. Schmoldt; Matt Winn
2000-01-01
A digital camera was used to measure diameters at various heights along the stem on 20 red oak trees. Diameter at breast height ranged from 16 to over 60 cm, and height to a 10-cm top ranged from 12 to 20 m. The chi-square maximum anticipated error of geometric mean diameter estimates at the 95 percent confidence level was within ±4 cm for all heights when...
Code of Federal Regulations, 2012 CFR
2012-01-01
... drop test height of 36 inches, or a drop test height that produces, upon impact, a velocity equal to the maximum vertical velocity determined in accordance with § 31.19, whichever is higher, must be used...
Code of Federal Regulations, 2013 CFR
2013-01-01
... drop test height of 36 inches, or a drop test height that produces, upon impact, a velocity equal to the maximum vertical velocity determined in accordance with § 31.19, whichever is higher, must be used...
Code of Federal Regulations, 2014 CFR
2014-01-01
... drop test height of 36 inches, or a drop test height that produces, upon impact, a velocity equal to the maximum vertical velocity determined in accordance with § 31.19, whichever is higher, must be used...
Long-term statistics of extreme tsunami height at Crescent City
NASA Astrophysics Data System (ADS)
Dong, Sheng; Zhai, Jinjin; Tao, Shanshan
2017-06-01
Historically, Crescent City is one of the most vulnerable communities impacted by tsunamis along the west coast of the United States, largely attributed to its offshore geography. Trans-ocean tsunamis usually produce large wave runup at Crescent Harbor resulting in catastrophic damages, property loss and human death. How to determine the return values of tsunami height using relatively short-term observation data is of great significance to assess the tsunami hazards and improve engineering design along the coast of Crescent City. In the present study, the extreme tsunami heights observed along the coast of Crescent City from 1938 to 2015 are fitted using six different probabilistic distributions, namely, the Gumbel distribution, the Weibull distribution, the maximum entropy distribution, the lognormal distribution, the generalized extreme value distribution and the generalized Pareto distribution. The maximum likelihood method is applied to estimate the parameters of all above distributions. Both Kolmogorov-Smirnov test and root mean square error method are utilized for goodness-of-fit test and the better fitting distribution is selected. Assuming that the occurrence frequency of tsunami in each year follows the Poisson distribution, the Poisson compound extreme value distribution can be used to fit the annual maximum tsunami amplitude, and then the point and interval estimations of return tsunami heights are calculated for structural design. The results show that the Poisson compound extreme value distribution fits tsunami heights very well and is suitable to determine the return tsunami heights for coastal disaster prevention.
NASA Astrophysics Data System (ADS)
Molnar, Peter; Bates, Robert H.; Burchfield, B. C.; Clinch, Nicholas B.; Minmin, Huang; K'uangyi, Liang; Schoening, Pete; Shuji, Wang; Ziyun, Zhao
By using a Magnavox Geoceiver to measure a base elevation of one temporary benchmark, a Cubic Precision Uniranger to measure distances between this and two other temporary benchmarks, and a Kern (Model T-2) theodolite to measure angles among these sites and peaks in the Ulugh Muztagh area, we measure the elevation of Ulugh Muztagh and three neighboring peaks. Our measured height of 6985 ±7 m (1 σ) is very different from the widely accepted value of 7723 m obtained by Littledale in 1895 but is similar to that of 6973 m listed on some Chinese maps. This revised elevation indicates that Ulugh Muztagh is not the highest mountain outside of the Himalaya-Karakorum chain and may not be the highest in the Kunlun chain.
Luk, Keith D K; Saw, Lim Beng; Grozman, Samuel; Cheung, Kenneth M C; Samartzis, Dino
2014-02-01
Assessment of skeletal maturity in patients with adolescent idiopathic scoliosis (AIS) is important to guide clinical management. Understanding growth peak and cessation is crucial to determine clinical observational intervals, timing to initiate or end bracing therapy, and when to instrument and fuse. The commonly used clinical or radiologic methods to assess skeletal maturity are still deficient in predicting the growth peak and cessation among adolescents, and bone age is too complicated to apply. To address these concerns, we describe a new distal radius and ulna (DRU) classification scheme to assess skeletal maturity. A prospective study. One hundred fifty young, female AIS patients with hand x-rays and no previous history of spine surgery from a single institute were assessed. Radius and ulna plain radiographs, and various anthropomorphic parameters were assessed. We identified various stages of radius and ulna epiphysis maturity, which were graded as R1-R11 for the radius and U1-U9 for the ulna. The bone age, development of sexual characteristics, standing height, sitting height, arm span, radius length, and tibia length were studied prospectively at each stage of these epiphysis changes. Standing height, sitting height, and arm span growth were at their peak during stages R7 (mean, 11.4 years old) and U5 (mean, 11.0 years old). The long bone growths also demonstrated a common peak at R7 and U5. Cessation of height and arm span growth was noted after stages R10 (mean, 15.6 years old) and U9 (mean, 17.3 years old). The new DRU classification is a practical and easy-to-use scheme that can provide skeletal maturation status. This classification scheme provides close relationship with adolescent growth spurt and cessation of growth. This classification may have a tremendous utility in improving clinical-decision making in the conservative and operative management of scoliosis patients. Copyright © 2014 Elsevier Inc. All rights reserved.
Aerenhouts, Dirk
2015-01-01
A recommended field method to assess body composition in adolescent sprint athletes is currently lacking. Existing methods developed for non-athletic adolescents were not longitudinally validated and do not take maturation status into account. This longitudinal study compared two field methods, i.e., a Bio Impedance Analysis (BIA) and a skinfold based equation, with underwater densitometry to track body fat percentage relative to years from age at peak height velocity in adolescent sprint athletes. In this study, adolescent sprint athletes (34 girls, 35 boys) were measured every 6 months during 3 years (age at start = 14.8 ± 1.5yrs in girls and 14.7 ± 1.9yrs in boys). Body fat percentage was estimated in 3 different ways: 1) using BIA with the TANITA TBF 410; 2) using a skinfold based equation; 3) using underwater densitometry which was considered as the reference method. Height for age since birth was used to estimate age at peak height velocity. Cross-sectional analyses were performed using repeated measures ANOVA and Pearson correlations between measurement methods at each occasion. Data were analyzed longitudinally using a multilevel cross-classified model with the PROC Mixed procedure. In boys, compared to underwater densitometry, the skinfold based formula revealed comparable values for body fatness during the study period whereas BIA showed a different pattern leading to an overestimation of body fatness starting from 4 years after age at peak height velocity. In girls, both the skinfold based formula and BIA overestimated body fatness across the whole range of years from peak height velocity. The skinfold based method appears to give an acceptable estimation of body composition during growth as compared to underwater densitometry in male adolescent sprinters. In girls, caution is warranted when interpreting estimations of body fatness by both BIA and a skinfold based formula since both methods tend to give an overestimation. PMID:26317426
Assessment of Governor Control Parameter Settings of a Submarine Diesel Engine
2013-03-01
on the mean back pressure. The amplitude was 6.25 kPa (corresponding to a significant wave height of 1.25 m ) and a period of 7.4 s . The peak-peak...was 30 kPa (corresponding to a significant wave height of 6 m ) and a period of 10.3 s . The results are shown in Figure 17 to Figure 20. Comparison of... a loss in the system. Hopka et al. [9] obtain the ‘indicated torque’ from an empirical relationship 1 2 3 4 5 ,find f cc eng out in in eng m b
Cowell, Robert G
2018-05-04
Current models for single source and mixture samples, and probabilistic genotyping software based on them used for analysing STR electropherogram data, assume simple probability distributions, such as the gamma distribution, to model the allelic peak height variability given the initial amount of DNA prior to PCR amplification. Here we illustrate how amplicon number distributions, for a model of the process of sample DNA collection and PCR amplification, may be efficiently computed by evaluating probability generating functions using discrete Fourier transforms. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Peralta, J.; Lee, Y. J.; Hueso, R.; Clancy, R. T.; Sandor, B. J.; Sánchez-Lavega, A.; Lellouch, E.; Rengel, M.; Machado, P.; Omino, M.; Piccialli, A.; Imamura, T.; Horinouchi, T.; Murakami, S.; Ogohara, K.; Luz, D.; Peach, D.
2017-04-01
Even though many missions have explored the Venus atmospheric circulation, its instantaneous state is poorly characterized. In situ measurements vertically sampling the atmosphere exist for limited locations and dates, while remote sensing observations provide only global averages of winds at altitudes of the clouds: 47, 60, and 70 km. We present a three-dimensional global view of Venus's atmospheric circulation from data obtained in June 2007 by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and Venus Express spacecrafts, together with ground-based observations. Winds and temperatures were measured for heights 47-110 km from multiwavelength images and spectra covering 40°N-80°S and local times 12 h-21 h. Dayside westward winds exhibit day-to-day changes, with maximum speeds ranging 97-143 m/s and peaking at variable altitudes within 75-90 km, while on the nightside these peak below cloud tops at ˜60 km. Our results support past reports of strong variability of the westward zonal superrotation in the transition region, and good agreement is found above the clouds with results from the Laboratoire de Météorologie Dynamique (LMD) Venus general circulation model.
A cMUT probe for ultrasound-guided focused ultrasound targeted therapy.
Gross, Dominique; Coutier, Caroline; Legros, Mathieu; Bouakaz, Ayache; Certon, Dominique
2015-06-01
Ultrasound-mediated targeted therapy represents a promising strategy in the arsenal of modern therapy. Capacitive micromachined ultrasonic transducer (cMUT) technology could overcome some difficulties encountered by traditional piezoelectric transducers. In this study, we report on the design, fabrication, and characterization of an ultrasound-guided focused ultrasound (USgFUS) cMUT probe dedicated to preclinical evaluation of targeted therapy (hyperthermia, thermosensitive liposomes activation, and sonoporation) at low frequency (1 MHz) with simultaneous ultrasonic imaging and guidance (15 to 20 MHz). The probe embeds two types of cMUT arrays to perform the modalities of targeted therapy and imaging respectively. The wafer-bonding process flow employed for the manufacturing of the cMUTs is reported. One of its main features is the possibility of implementing two different gap heights on the same wafer. All the design and characterization steps of the devices are described and discussed, starting from the array design up to the first in vitro measurements: optical (microscopy) and electrical (impedance) measurements, arrays' electroacoustic responses, focused pressure field mapping (maximum peak-to-peak pressure = 2.5 MPa), and the first B-scan image of a wire-target phantom.
Physicochemical properties and in vitro digestibility of starch from naturally air-dried chestnut.
Zhao, Jinkai; Zhang, Yuyang; Wu, Yanwen; Liu, Lingling; Ouyang, Jie
2018-06-08
Naturally air-dried chestnut is a type of traditionally processed chestnut in North China which has a pleasant flavor. After air drying at room temperature and low-air humidity for two wk, the moisture, total starch content and starch relative crystallinity decreased, while the content of water-soluble sugar and amylose increased because of the dehydration and the hydrolysis of endogenous amylase. The Fourier transform infrared (FTIR) spectroscopy ratio of 1047/1022 cm -1 and the relative area of the Raman spectrum peak at 480/865 cm -1 of air-dried chestnut starch decreased in the first two wk and then increased, while the full width at half-maximum height (FWHH) of the Raman spectrum peak at 480 cm -1 showed the opposite tendency. Crystallinity had a positive correlation with the springiness and chewiness, and was negatively correlated with the estimated glycemic index (eGI). The eGI of air-dried starch was lower than those of roasted or boiled starch, which indicated that naturally air-dried chestnut with low digestibility is a good alternative to thermally processed chestnut. Copyright © 2017. Published by Elsevier B.V.
Wave Forcing of Saturn's Equatorial Oscillation
NASA Technical Reports Server (NTRS)
Flasar, F. M.; Schlinder, P. J.; Guerlet, S.; Fouchet, T.
2011-01-01
Ground-based measurements and Cassini data from CIRS thermal-infrared spectra and radio-occultation soundings have characterized the spatial structure and temporal behavior of a 15-year equatorial oscillation in Saturn's stratosphere. The equatorial region displays a vertical pattern of alternating warm and cold anomalies and, concomitantly, easterly and westerly winds relative to the cloud-top winds, with a peak-to-peak amplitude of 200 m/s. Comparison of the Cassini data over a four-year period has established that the pattern of mean zonal winds and temperatures descends at a rate of roughly I scale height over 4 years. This behavior is reminiscent of the equatorial oscillations in Earth's middle atmosphere. Here the zonal-mean spatial structure and descending pattern are driven by the absorption of vertically propagating waves. The maximum excursions in the pattern of easterly and westerly winds is determined by the limits of the zonal phase velocities of the waves. Here we report on the characterization of the waves seen in the temperature profiles retrieved from the Cassini radio-occultation soundings. The equatorial profiles exhibit a complex pattern of wavelike structure with dimensions one pressure scale height and smaller. We combine a spectral decomposition with a WKBJ analysis, where the vertical wavelength is assumed to vary slowly with the ambient static stability and doppler-shifted phase velocity of the wave. Use of the temperature and zonal wind maps from CIRS makes this approach viable. On Earth, the wave forcing associated with the equatorial oscillations generates secondary meridional circulations that affect the mean flow and planetary wave ducting well away from the equator. This may relate to the triggering of the recently reported mid-latitude storms on Saturn.
Caldwell, Lydia K; DuPont, William H; Beeler, Matthew K; Post, Emily M; Barnhart, Emily C; Hardesty, Vincent H; Anders, John P; Borden, Emily C; Volek, Jeff S; Kraemer, William J
2018-03-01
The purpose of this double-blind, placebo-controlled investigation was to examine the effects of a Korean Ginseng (GINST15) on measures of perception and physical performance following an acute bout of resistance exercise. Ten women (age: 38.7 ± 7.8 years; height: 1.64 ± 0.05 m; body mass: 76.0 ± 11.6 kg) and nine men (age: 41.2. ± 9.7 years; height: 1.77 ± 0.05 m; body mass: 88.5 ± 5.0 kg) completed the investigation. Participants were randomized to a three-cycle testing scheme consisting of high dose ginseng (HIGH: 960 mg/day), low dose ginseng (LOW: 160 mg/day) and placebo (PBO: 0 mg/day). After 14 days of supplementation participants returned to the laboratory for an acute resistance exercise trial (5 sets of 12 repetitions of the leg press at 70% of one-repetition-maximum [1RM]). Ratings of perceived exertion (RPE) were assessed after each set. Muscle pain/soreness was assessed before exercise and 24 hours post exercise. Psychomotor performance and peak power were measured before exercise, immediately post exercise and 24 hours after exercise. Each treatment cycle was separated by a minimum one-week washout period. HIGH significantly reduced perceived exertion during exercise. HIGH and LOW significantly reduced change in muscle soreness at 24 hours post exercise. Analysis of peak power demonstrated the presence of responders (n = 13) and non-responders (n = 6). Responders showed a significant effect of HIGH GINST15 on maintenance of neuromuscular function. The appearance of responders and non-responders, could explain the mixed literature base on the ergogenic properties of ginseng.
Gritti, Fabrice; Guiochon, Georges
2011-08-05
The corrected heights equivalent to a theoretical plate (HETP) of three 4.6mm I.D. monolithic Onyx-C(18) columns (Onyx, Phenomenex, Torrance, CA) of different lengths (2.5, 5, and 10 cm) are reported for retained (toluene, naphthalene) and non-retained (uracil, caffeine) small molecules. The moments of the peak profiles were measured according to the accurate numerical integration method. Correction for the extra-column contributions was systematically applied. The peak parking method was used in order to measure the bulk diffusion coefficients of the sample molecules, their longitudinal diffusion terms, and the eddy diffusion term of the three monolithic columns. The experimental results demonstrate that the maximum efficiency was 60,000 plates/m for retained compounds. The column length has a large impact on the plate height of non-retained species. These observations were unambiguously explained by a large trans-column eddy diffusion term in the van Deemter HETP equation. This large trans-rod eddy diffusion term is due to the combination of a large trans-rod velocity bias (≃3%), a small radial dispersion coefficient in silica monolithic columns, and a poorly designed distribution and collection of the sample streamlets at the inlet and outlet of the monolithic rod. Improving the performance of large I.D. monolithic columns will require (1) a detailed knowledge of the actual flow distribution across and along these monolithic rod and (2) the design of appropriate inlet and outlet distributors designed to minimize the nefarious impact of the radial flow heterogeneity on band broadening. Copyright © 2011 Elsevier B.V. All rights reserved.
Short-Term Training Cessation as a Method of Tapering to Improve Maximal Strength.
Pritchard, Hayden J; Barnes, Matthew J; Stewart, Robin J C; Keogh, Justin W L; McGuigan, Michael R
2018-02-01
Pritchard, HJ, Barnes, MJ, Stewart, RJC, Keogh, JWL, and McGuigan, MR. Short-term training cessation as a method of tapering to improve maximal strength. J Strength Cond Res 32(2): 458-465, 2018-The aim of this study was to determine the effects of 2 different durations of training cessation on upper- and lower-body maximal strength performance and to investigate the mechanisms underlying performance changes following short-term training cessation. Eight resistance trained males (23.8 ± 5.4 years, 79.6 ± 10.2 kg, 1.80 ± 0.06 m, relative deadlift 1 repetition maximum of 1.90 ± 0.30 times bodyweight [BW]) each completed two 4-week strength training periods followed by either 3.5 days (3.68 ± 0.12 days) or 5.5 days (5.71 ± 0.13 days) of training cessation. Testing occurred pretraining (T1), on the final day of training (T2), and after each respective period of training cessation (T3). Participants were tested for salivary testosterone and cortisol, plasma creatine kinase, psychological profiles, and performance tests (countermovement jump [CMJ], isometric midthigh pull, and isometric bench press [IBP]) on a force plate. Participants' BW increased significantly over time (p = 0.022). The CMJ height and IBP peak force showed significant increases over time (p = 0.013, 0.048, and 0.004, respectively). Post hoc testing showed a significant increase between T1 and T3 for both CMJ height and IBP peak force (p = 0.022 and 0.008 with effect sizes of 0.30 and 0.21, respectively). No other significant differences were seen for any other measures. These results suggest that a short period of strength training cessation can have positive effects on maximal strength expression, perhaps because of decreases in neuromuscular fatigue.
Effect of Ankle Joint Contact Angle and Ground Contact Time on Depth Jump Performance.
Phillips, Joshua H; Flanagan, Sean P
2015-11-01
Athletes often need to both jump high and get off the ground quickly, but getting off the ground quickly can decrease the vertical ground reaction force (VGRF) impulse, impeding jump height. Energy stored in the muscle-tendon complex during the stretch-shortening cycle (SSC) may mitigate the effects of short ground contact times (GCTs). To take advantage of the SSC, several coaches recommend "attacking" the ground with the foot in a dorsiflexed (DF) position at contact. However, the efficacy of this technique has not been tested. This investigation tested the hypotheses that shorter GCTs would lead to smaller vertical depth jump heights (VDJH), and that this difference could be mitigated by instructing the athletes to land in a DF as opposed to a plantar flexed (PF) foot position. Eighteen healthy junior college athletes performed depth jumps from a 45-cm box onto force platforms under instruction to achieve one of the 2 objectives (maximum jump height [hmax] or minimal GCT [tmin]), with one of the 2 foot conditions (DF or PF). These variations created 4 distinct jump conditions: DF-hmax, DF-tmin, PF-hmax, and PF-tmin. For all variables examined, there were no significant interactions. For all 4 conditions, the ankle was PF during landing, but the DF condition was 28.87% less PF than the PF condition. The tmin conditions had a 23.48% shorter GCT than hmax. There were no significant main effects for jump height. The peak impact force for tmin was 22.14% greater than hmax and 19.11% greater for DF compared with PF conditions. A shorter GCT did not necessitate a smaller jump height, and a less PF foot did not lead to improvements in jump height or contact time during a depth jump from a 45-cm box. The same jump height was attained in less PF and shorter GCT conditions by larger impact forces. To decrease contact time while maintaining jump height, athletes should be instructed to "get off the ground as fast as possible." This cue seems to be more important than foot position. However, it should be acknowledged that this technique leads to larger impact forces, which should be considered when prescribing the number of foot contacts in a plyometrics program. The ability of athletes to truly land in a DF position during depth jumps is questioned and needs further investigation.
NASA Astrophysics Data System (ADS)
Ren-Yang, Zhao; Magun, Andreas; Schanda, Erwin
1990-12-01
In the present paper we report the results of a correlation analysis for 57 microwave impulsive bursts observed at six frequencies in which we have obtained a regression line between the peak frequency and the corresponding rise time of microwave impulsive bursts: {ie361-01} (with a correlation coefficient of - 0.43). This can be explained in the frame of a thermal model. The magnetic field decrease with height has to be much slower than in a dipole field in order to explain the weak dependence of f p on t r . This decrease of magnetic field with height in burst sources is based on the relationship between f p and t r found by assuming a thermal flare model with a collisionless conduction front.
Maurer, K. D.; Bohrer, G.; Kenny, W. T.; ...
2015-04-30
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.« less
NASA Astrophysics Data System (ADS)
Maurer, K. D.; Bohrer, G.; Kenny, W. T.; Ivanov, V. Y.
2015-04-01
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction. We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
X Liu; E Garboczi; m Grigoriu
Many parameters affect the cyclone efficiency, and these parameters can have different effects in different flow regimes. Therefore the maximum-efficiency cyclone length is a function of the specific geometry and operating conditions in use. In this study, we obtained a relationship describing the minimum particle diameter or maximum cyclone efficiency by using a theoretical approach based on cyclone geometry and fluid properties. We have compared the empirical predictions with corresponding literature data and observed good agreement. The results address the importance of fluid properties. Inlet and vortex finder cross-sections, cone-apex diameter, inlet Reynolds number and surface roughness are found tomore » be the other important parameters affecting cyclone height. The surface friction coefficient, on the other hand, is difficult to employ in the calculations.We developed a theoretical approach to find the maximum-efficiency heights for cyclones with tangential inlet and we suggested a relation for this height as a function of cyclone geometry and operating parameters. In order to generalize use of the relation, two dimensionless parameters, namely for geometric and operational variables, we defined and results were presented in graphical form such that one can calculate and enter the values of these dimensionless parameters and then can find the maximum efficiency height of his own specific cyclone.« less
Jung, Ji-Yong; Cha, Eun-Jong; Kim, Kyung-Ah; Won, Yonggwan; Bok, Soo-Kyung; Kim, Bong-Ok; Kim, Jung-Ja
2015-01-01
The effects of pelvic asymmetry and idiopathic scoliosis on postural balance during sitting were studied by measuring inclination angles, pressure distribution, and electromyography. Participants were classified into a control group, pelvic asymmetry group, scoliosis group, and scoliosis with pelvic asymmetry and then performed anterior, posterior, left, and right pelvic tilting while sitting on the unstable board for 5 seconds to assess their postural balance. Inclination and obliquity angles between the groups were measured by an accelerometer located on the unstable board. Pressure distribution (maximum force and peak pressure) was analyzed using a capacitive seat sensor. In addition, surface electrodes were attached to the abdominal and erector spinae muscles of each participant. Inclination and obliquity angles increased more asymmetrically in participants with both pelvic asymmetry and scoliosis than with pelvic asymmetry or scoliosis alone. Maximum forces and peak pressures of each group showed an asymmetrical pressure distribution caused by the difference in height between the left and right pelvis and curve type of the patients' spines when performing anterior, posterior, left, and right pelvic tilting while sitting. Muscle contraction patterns of external oblique, thoracic erector spinae, lumbar erector spinae, and lumbar multifidus muscles may be influenced by spine curve type and region of idiopathic scoliosis. Asymmetrical muscle activities were observed on the convex side of scoliotic patients and these muscle activity patterns were changed by the pelvic asymmetry. From these results, it was confirmed that pelvic asymmetry and idiopathic scoliosis cause postural asymmetry, unequal weight distribution, and muscular imbalance during sitting.
High-power CMUTs: design and experimental verification.
Yamaner, F Yalçin; Olçum, Selim; Oğuz, H Kağan; Bozkurt, Ayhan; Köymen, Hayrettin; Atalar, Abdullah
2012-06-01
Capacitive micromachined ultrasonic transducers (CMUTs) have great potential to compete with piezoelectric transducers in high-power applications. As the output pressures increase, nonlinearity of CMUT must be reconsidered and optimization is required to reduce harmonic distortions. In this paper, we describe a design approach in which uncollapsed CMUT array elements are sized so as to operate at the maximum radiation impedance and have gap heights such that the generated electrostatic force can sustain a plate displacement with full swing at the given drive amplitude. The proposed design enables high output pressures and low harmonic distortions at the output. An equivalent circuit model of the array is used that accurately simulates the uncollapsed mode of operation. The model facilities the design of CMUT parameters for high-pressure output, without the intensive need for computationally involved FEM tools. The optimized design requires a relatively thick plate compared with a conventional CMUT plate. Thus, we used a silicon wafer as the CMUT plate. The fabrication process involves an anodic bonding process for bonding the silicon plate with the glass substrate. To eliminate the bias voltage, which may cause charging problems, the CMUT array is driven with large continuous wave signals at half of the resonant frequency. The fabricated arrays are tested in an oil tank by applying a 125-V peak 5-cycle burst sinusoidal signal at 1.44 MHz. The applied voltage is increased until the plate is about to touch the bottom electrode to get the maximum peak displacement. The observed pressure is about 1.8 MPa with -28 dBc second harmonic at the surface of the array.
Fewtrell, Mary S; Williams, Jane E; Singhal, Atul; Murgatroyd, Peter R; Fuller, Nigel; Lucas, Alan
2009-07-01
Preterm infants are at risk of metabolic bone disease due to inadequate mineral intake with unknown consequences for later bone health. To test the hypotheses that (1) early diet programs peak bone mass and bone turnover; (2) human milk has a beneficial effect on these outcomes; (3) preterm subjects have reduced peak bone mass compared to population reference data. 20 year follow-up of 202 subjects (43% male; 24% of survivors) who were born preterm and randomized to: (i) preterm formula versus banked breast milk or (ii) preterm versus term formula; as sole diet or supplement to maternal milk. Outcome measures were (i) anthropometry; (ii) hip, lumbar spine (LS) and whole body (WB) bone mineral content (BMC) and bone area (BA) measured using DXA; (iii) bone turnover markers. Infant dietary randomization group did not influence peak bone mass or turnover. The proportion of human milk in the diet was significantly positively associated with WBBA and BMC. Subjects receiving >90% human milk had significantly higher WBBA (by 3.5%, p=0.01) and BMC (by 4.8%, p=0.03) than those receiving <10%. Compared to population data, subjects had significantly lower height SDS (-0.41 (SD 1.05)), higher BMI SDS (0.31 (1.33)) and lower LSBMD SDS (-0.29 (1.16)); height and bone mass deficits were greatest in those born SGA with birthweight <1250 g (height SDS -0.81 (0.95), LSBMD SDS -0.61 (1.3)). Infant dietary randomization group did not affect peak bone mass or turnover suggesting the observed reduced final height and LS bone mass, most marked in growth restricted subjects with the lowest birthweight, may not be related to sub-optimal early nutrition. The higher WB bone mass associated with human milk intake, despite its low nutrient content, may reflect non-nutritive factors in breast milk. These findings may have implications for later osteoporosis risk and require further investigation.
Tracking of aerobic fitness from adolescence to mid-adulthood.
Van Oort, C; Jackowski, S A; Eisenmann, J C; Sherar, L B; Bailey, D A; Mirwald, R; Baxter-Jones, A D G
2013-01-01
Although adults' aerobic fitness is known to be correlated with cardiovascular disease risk, the longitudinal relationship with adolescent aerobic fitness is poorly described. To longitudinally investigate the relationship between aerobic fitness during adolescence and adulthood. Participants (207 boys, 149 girls) aged 7-17 years performed annual measures of VO2peak. In adulthood (40 and 50 years), 78 individuals (59 males and 18 females) were reassessed. Serial height measurements were used to estimate age at peak height velocity (APHV). During adolescence, VO2peak was measured via a treadmill test to voluntary exhaustion; adult VO2peak was assessed using submaximal predictive tests. Correlations were tested using Spearman's rho. ANCOVA was used to assess adult VO2peak group differences based off APHV VO2peak groupings (low, average or high). When sexes were pooled, moderate tracking existed from 2 years prior to APHV to APHV and APHV to 2 years after APHV (0.46, p < 0.001 and 0.35, p < 0.01, respectively). Correlations between APHV and adult values were low when sexes were pooled (p < 0.05). Comparisons of aggregated sexes revealed the low adolescent VO2peak group had lower values in adulthood relative to other groups (p < 0.05). Aerobic fitness has a low tracking between APHV and adulthood.
Six-minute walking test in children with ESRD: discrimination validity and construct validity.
Takken, Tim; Engelbert, Raoul; van Bergen, Monique; Groothoff, Jaap; Nauta, Jeroen; van Hoeck, Koen; Lilien, Marc; Helders, Paul
2009-11-01
The six-minute walking test (6MWT) may be a practical test for the evaluation functional exercise capacity in children with end-stage renal disease (ESRD). The aim of this study was to investigate the 6MWT performance in children with ESRD compared to reference values obtained in healthy children and, secondly, to study the relationship between 6MWT performance with anthropometric variables, clinical parameters, aerobic capacity and muscle strength. Twenty patients (13 boys and seven girls; mean age 14.1 +/- 3.4 years) on dialysis participated in this study. Anthropometrics were taken in a standardized manner. The 6MWT was performed in a 20-m-long track in a straight hallway. Aerobic fitness was measured using a cycle ergometer test to determine peak oxygen uptake (V O(2peak)), peak rate (W(peak)) and ventilatory threshold (VT). Muscle strength was measured using hand-held myometry. Children with ESRD showed a reduced 6MWT performance (83% of predicted, p < 0.0001), irrespective of the reference values used. The strongest predictors of 6MWT performance were haematocrit and height. Regression models explained 59% (haematocrit and height) to 60% (haematocrit) of the variance in 6MWT performance. 6MWT performance was not associated with V O(2peak), strength, or other anthropometric variables, but it was significantly associated with haematocrit and height. Children with ESRD scored lower on the 6MWT than healthy children. Based on these results, the 6MWT may be a useful instrument for monitoring clinical status in children with ESRD, however it cannot substitute for other fitness tests, such as a progressive exercise test to measure V O(2peak) or muscle strength tests.
Physical Determinants of Interval Sprint Times in Youth Soccer Players
Amonette, William E.; Brown, Denham; Dupler, Terry L.; Xu, Junhai; Tufano, James J.; De Witt, John K.
2014-01-01
Relationships between sprinting speed, body mass, and vertical jump kinetics were assessed in 243 male soccer athletes ranging from 10–19 years. Participants ran a maximal 36.6 meter sprint; times at 9.1 (10 y) and 36.6 m (40 y) were determined using an electronic timing system. Body mass was measured by means of an electronic scale and body composition using a 3-site skinfold measurement completed by a skilled technician. Countermovement vertical jumps were performed on a force platform - from this test peak force was measured and peak power and vertical jump height were calculated. It was determined that age (r=−0.59; p<0.01), body mass (r=−0.52; p<0.01), lean mass (r=−0.61; p<0.01), vertical jump height (r=−0.67; p<0.01), peak power (r=−0.64; p<0.01), and peak force (r=−0.56; p<0.01) were correlated with time at 9.1 meters. Time-to-complete a 36.6 meter sprint was correlated with age (r=−0.71; p<0.01), body mass (r=−0.67; p<0.01), lean mass (r=−0.76; p<0.01), vertical jump height (r=−0.75; p<0.01), peak power (r=−0.78; p<0.01), and peak force (r=−0.69; p<0.01). These data indicate that soccer coaches desiring to improve speed in their athletes should devote substantive time to fitness programs that increase lean body mass and vertical force as well as power generating capabilities of their athletes. Additionally, vertical jump testing, with or without a force platform, may be a useful tool to screen soccer athletes for speed potential. PMID:25031679
14 CFR 77.23 - Standards for determining obstructions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... each additional nautical mile of distance from the airport up to a maximum of 500 feet. (3) A height... surfaces: (1) A height of 500 feet above ground level at the site of the object. (2) A height that is 200 feet above ground level or above the established airport elevation, whichever is higher, within 3...
14 CFR 77.23 - Standards for determining obstructions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... feet for each additional nautical mile of distance from the airport up to a maximum of 500 feet. (3) A... heights or surfaces: (1) A height of 500 feet above ground level at the site of the object. (2) A height that is 200 feet above ground level or above the established airport elevation, whichever is higher...
14 CFR 23.75 - Landing distance.
Code of Federal Regulations, 2012 CFR
2012-01-01
... to the 50 foot height and— (1) The steady approach must be at a gradient of descent not greater than 5.2 percent (3 degrees) down to the 50-foot height. (2) In addition, an applicant may demonstrate by tests that a maximum steady approach gradient steeper than 5.2 percent, down to the 50-foot height, is...
14 CFR 23.75 - Landing distance.
Code of Federal Regulations, 2014 CFR
2014-01-01
... to the 50 foot height and— (1) The steady approach must be at a gradient of descent not greater than 5.2 percent (3 degrees) down to the 50-foot height. (2) In addition, an applicant may demonstrate by tests that a maximum steady approach gradient steeper than 5.2 percent, down to the 50-foot height, is...
14 CFR 23.75 - Landing distance.
Code of Federal Regulations, 2013 CFR
2013-01-01
... to the 50 foot height and— (1) The steady approach must be at a gradient of descent not greater than 5.2 percent (3 degrees) down to the 50-foot height. (2) In addition, an applicant may demonstrate by tests that a maximum steady approach gradient steeper than 5.2 percent, down to the 50-foot height, is...
NASA Astrophysics Data System (ADS)
Fukao, Y.; Sugioka, H.; Ito, A.; Shiobara, H.; Sandanbata, O.; Watada, S.; Satake, K.
2016-12-01
An array of ocean bottom pressure gauges was deployed off east of Aogashima island of the Izu-Bonin arc from May 2014 to May 2015. The array consists of 10 ocean bottom pressure gauges using ParoScientific quartz resonators which can measure absolute water pressure at 7000m depth with nano-resolution. The array configures equilateral triangles with minimum and maximum lengths of 10 and 30km. This array recorded seismic and tsunami waves from the CLVD-type earthquake (M5.7) of May 02, 2015, that occurred near Torishima Island 100 km distant from the array. Comparison with records of ordinary thrust earthquakes with similar magnitudes at similar distances indicates that this event generated anomalously large tsunamis relative to seismic waves. We made an array analysis for the phase speed, propagating azimuth and travel time of tsunami wave in a frequency range 1-10 mHz, where the dispersion effect is significant. The results show excellent agreements with the frequency-dependent ray-tracing calculations. The tsunami trace apparently starts with positive onset (pressure increase) and reaches a maximum amplitude of about 200Pa (≈2cm in tsunami height). A closer inspection, however, shows a preceding negative small pulse (Fig. 1), suggesting that the seafloor deformation at the tsunami source consists of a central large uplift and a peripheral small depression. This mode of deformation is qualitatively consistent with a finite CLVD source uniformly shortened laterally and uniformly stretched vertically without volume change. The detection of weak initial motions is indebted to the array deployment of sensitive pressure gauges far away from coastal regions. The bandpass-filtered waveform is drastically different between the lower and higher frequency ranges. The waveform is single-peaked in the lower frequency range (<5 mHz) but is ringing in the higher frequency range (>5 mHz), corresponding to the tsunami spectrum that consists of the broad primary peak around 3.5 mHz and the sharp double peaks at around 6.5 and 9 mHz. We interpret the broad primary peak as due to the tsunami source associated with seafloor deformation and the sharp double peaks as due to wave resonance (seiche) inside the Smith Caldera.
NASA Astrophysics Data System (ADS)
Semenov, A.; Shefov, N.; Fadel, Kh.
The model of altitude distributions of atomic oxygen in the region of the mesopause and lower thermosphere (MLT) is constructed on the basis of empirical models of variations of the intensities, temperatures and altitudes of maximum of the layers of the emissions of atomic oxygen at 557.7 nm, hydroxyl and Atmospheric system of molecular oxygen. An altitude concentration distribution of neutral components is determined on the basis of systematization of the long-term data of temperature of the middle atmosphere from rocket, nightglow and ionospheric measurements at heights of 30-110 km in middle latitudes. They include dependence on a season, solar activity and a long-term trend. Examples of results of calculation for different months of year for conditions of the lower and higher solar activity are presented. With increasing of solar activity, the height of a layer of a maximum of atomic oxygen becomes lower, and the thickness of the layer increases. There is a high correlation between characteristics of a layer of atomic oxygen and a maximum of temperature at heights of the mesopause and lower thermosphere. This work is supported by grant of ISTC No. 2274.
The relationship between tree height and leaf area: sapwood area ratio.
McDowell, N; Barnard, H; Bond, B; Hinckley, T; Hubbard, R; Ishii, H; Köstner, B; Magnani, F; Marshall, J; Meinzer, F; Phillips, N; Ryan, M; Whitehead, D
2002-06-01
The leaf area to sapwood area ratio (A l :A s ) of trees has been hypothesized to decrease as trees become older and taller. Theory suggests that A l :A s must decrease to maintain leaf-specific hydraulic sufficiency as path length, gravity, and tortuosity constrain whole-plant hydraulic conductance. We tested the hypothesis that A l :A s declines with tree height. Whole-tree A l :A s was measured on 15 individuals of Douglas-fir (Pseudotsuga menziesii var. menziesii) ranging in height from 13 to 62 m (aged 20-450 years). A l :A s declined substantially as height increased (P=0.02). Our test of the hypothesis that A l :A s declines with tree height was extended using a combination of original and published data on nine species across a range of maximum heights and climates. Meta-analysis of 13 whole-tree studies revealed a consistent and significant reduction in A l :A s with increasing height (P<0.05). However, two species (Picea abies and Abies balsamea) exhibited an increase in A l :A s with height, although the reason for this is not clear. The slope of the relationship between A l :A s and tree height (ΔA l :A s /Δh) was unrelated to mean annual precipitation. Maximum potential height was positively correlated with ΔA l :A s /Δh. The decrease in A l :A s with increasing tree size that we observed in the majority of species may be a homeostatic mechanism that partially compensates for decreased hydraulic conductance as trees grow in height.
NASA Astrophysics Data System (ADS)
Mazurkiewicz, Karolina; Skotnicki, Marcin
2018-02-01
The paper presents the results of analysis of the influence of the maximum intensity (peak) location in the synthetic hyetograph and rainfall duration on the maximum outflow from urban catchment. For the calculation Chicago hyetographs with a duration from 15 minutes to 180 minutes and peak location between 20% and 50% of the total rainfall duration were design. Runoff simulation was performed using the SWMM5 program for three models of urban catchment with area from 0.9 km2 to 6.7 km2. It was found that the increase in the rainfall peak location causes the increase in the maximum outflow up to 17%. For a given catchment the greatest maximum outflow is generated by the rainfall, which time to peak corresponds to the flow time through the catchment. Presented results may be useful for choosing the rainfall parameters for storm sewer systems modeling.
NASA Astrophysics Data System (ADS)
Lee, Han Soo; Shimoyama, Tomohisa; Popinet, Stéphane
2015-10-01
The impacts of tides on extreme tsunami propagation due to potential Nankai Trough earthquakes in the Seto Inland Sea (SIS), Japan, are investigated through numerical experiments. Tsunami experiments are conducted based on five scenarios that consider tides at four different phases, such as flood, high, ebb, and low tides. The probes that were selected arbitrarily in the Bungo and Kii Channels show less significant effects of tides on tsunami heights and the arrival times of the first waves than those that experience large tidal ranges in inner basins and bays of the SIS. For instance, the maximum tsunami height and the arrival time at Toyomaesi differ by more than 0.5 m and nearly 1 h, respectively, depending on the tidal phase. The uncertainties defined in terms of calculated maximum tsunami heights due to tides illustrate that the calculated maximum tsunami heights in the inner SIS with standing tides have much larger uncertainties than those of two channels with propagating tides. Particularly in Harima Nada, the uncertainties due to the impacts of tides are greater than 50% of the tsunami heights without tidal interaction. The results recommend simulate tsunamis together with tides in shallow water environments to reduce the uncertainties involved with tsunami modeling and predictions for tsunami hazards preparedness. This article was corrected on 26 OCT 2015. See the end of the full text for details.
33 CFR 156.320 - Maximum operating conditions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... wave height is 3 meters (10 feet) or more. (b) Cargo transfer operations shall cease and transfer hoses shall be drained when— (1) The wind velocity exceeds 82 km/hr (44 knots); or (2) Wave heights exceed 5...
33 CFR 156.320 - Maximum operating conditions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... wave height is 3 meters (10 feet) or more. (b) Cargo transfer operations shall cease and transfer hoses shall be drained when— (1) The wind velocity exceeds 82 km/hr (44 knots); or (2) Wave heights exceed 5...
33 CFR 156.320 - Maximum operating conditions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... wave height is 3 meters (10 feet) or more. (b) Cargo transfer operations shall cease and transfer hoses shall be drained when— (1) The wind velocity exceeds 82 km/hr (44 knots); or (2) Wave heights exceed 5...
Lee, Jieun; Yoon, Juyoung; Kang, Min Jae; Lee, Young Ah; Lee, Seong Yong; Shin, Choong Ho; Yang, Sei Won
2013-09-01
Obesity and its related factors are known to suppress the secretion of growth hormone (GH). We aimed to evaluate the influence of body mass index (BMI) on the peak GH response to provocative testing in short children without GH deficiency. We conducted a retrospective review of medical records of 88 children (2-15 yr old) whose height was less than 3 percentile for one's age and sex, with normal results (peak GH level > 10 ng/mL) of GH provocative testing with clonidine and dopamine. Peak stimulated GH level, height, weight, pubertal status and serum IGF-1 level were measured. Univariate analysis showed that the BMI standard deviation score (SDS) correlated negatively with the natural log (ln) of the peak stimulated GH level (ln peak GH). BMI SDS did not correlate significantly with sex, age, pubertal status, or ln IGF-1 level. BMI SDS correlated negatively with ln peak GH level induced by clonidine but not by dopamine. In stepwise multivariate regression analysis, BMI SDS was the only significant predictor of ln peak GH level in the combination of tests and the clonidine test, but not in the dopamine test. In children without GH deficiency, BMI SDS correlates negatively with the peak GH level. BMI SDS should be included in the analysis of the results of GH provocation tests, especially tests with clonidine.
Zhang, Qi; Li, Wei; Lin, Da-Chao; He, Ning; Duan, Yun
2011-01-30
The aim of this paper is to provide new experimental data of the minimum ignition energy (MIE) of gaseous nitromethane/air mixtures to discuss the explosion pressure and the flame temperature as a function of nitromethane concentration. Observations on the influence of nitromethane concentration on combustion pressure and temperature through the pressure and temperature measure system show that peak temperature (the peak of combustion temperature wave) is always behind peak pressure (the peak of the combustion pressure wave) in arrival time, the peak combustion pressure of nitromethane increases in the range of its volume fraction 10-40% as the concentration of nitromethane increases, and it slightly decreases in the range of 40-50%. The maximum peak pressure is equal to 0.94 MPa and the minimum peak pressure 0.58 MPa. Somewhat similar to the peak pressure, the peak combustion temperature increases with the volume fraction of nitromethane in the range of 10-40%, and slightly decreases in 40-50%. The maximum peak temperature is 1340 °C and the minimum 860 °C. The combustion temperature rise rate increases with the concentration of nitromethane in 10-30%, while decreases in 30-50% and its maximum value of combustion temperature rise rate in 10-50% is 4200 °C/s at the volume fraction of 30%. Influence of the concentration of nitromethane on the combustion pressure rise rate is relatively complicated, and the maximum value of rise rate of combustion pressure wave in 10-50% is 11 MPa/s at the concentration 20%. Copyright © 2010 Elsevier B.V. All rights reserved.
Preliminary vulnerability evaluation by local tsunami and flood by Puerto Vallarta
NASA Astrophysics Data System (ADS)
Trejo-Gómez, E.; Nunez-Cornu, F. J.; Ortiz, M.; Escudero, C. R.; CA-UdG-276 Sisvoc
2013-05-01
Jalisco coast is susceptible to local tsunami due to the occurrence of large earthquakes. In 1932 occurred three by largest earthquakes. Evidence suggests that one of them caused by offshore subsidence of sediments deposited by Armeria River. For the tsunamis 1932 have not been studied the seismic source. On October 9, 1995, occurred a large earthquake (Mw= 8.0) producing a tsunami with run up height up ≤ 5 m. This event affected Tenacatita Bay and many small villages along the coast of Jalisco and Colima. Using seismic source parameters, we simulated 1995 tsunami and estimated the maximum wave height. We compared the our results with 20 field measures 20 taked during 1995 along the south cost of Jalisco State, from Chalacatepec to Barra de Navidad. Similar seismic source parameters used for tsunami 1995 simulation was used as reference for simulating a hypothetical seismic source front Puerto Vallarta. We assumed that the fracture occurs in the gap for the north cost of Jalisco. Ten sites were distributed to cover the Banderas Bay, as theoretical pressure sensors, were estimated the maximum wave height and time to arrived at cost. After we delimited zones hazard zones by floods on digital model terrain, a graphic scale 1:20,000. At the moment, we have already included information by hazard caused by hypothetical tsunami in Puerto Vallarta. The hazard zones by flood were the north of Puerto Vallarta, as Ameca, El Salado, El Pitillal and Camarones. The initial wave height could be ≤ 1 m, 15 minutes after earthquake, in Pitillal zone. We estimated for Puerto Vallarta the maximum flood area was in El Salado zone, ≤ 2 km, with the maximum wave height > 3 m to ≤ 4.8 m at 25 and 75 minutes. We estimated a previous vulnerability evaluation by local tsunami and flood; it was based on the spatial distribution of socio-economic data from INEGI. We estimated a low vulnerability in El Salado and height vulnerability for El Pitillal and Ameca.
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Attia, A. A.; Ali, H. A. M.; Salem, G. F.; Ismail, M. I.
2018-02-01
The structural characteristics of thermally deposited ZnIn2Se4 thin films were indexed utilizing x-ray diffraction as well as scanning electron microscopy techniques. Dielectric properties, electric modulus and AC electrical conductivity of ZnIn2Se4 thin films were examined in the frequency range from 42 Hz to 106 Hz. The capacitance, conductance and impedance were measured at different temperatures. The dielectric constant and dielectric loss decrease with an increase in frequency. The maximum barrier height was determined from the analysis of the dielectric loss depending on the Giuntini model. The real part of the electric modulus revealed a constant maximum value at higher frequencies and the imaginary part of the electric modulus was characterized by the appearance of dielectric relaxation peaks. The AC electrical conductivity obeyed the Jonscher universal power law. Correlated barrier hopping model was the appropriate mechanism for AC conduction in ZnIn2Se4 thin films. Estimation of the density of states at the Fermi level and activation energy, for AC conduction, was carried out based on the temperature dependence of AC electrical conductivity.
Floods of April 1979, Mississippi, Alabama, and Georgia
Edelen, G.W.; Wilson, K.V.; Harkins, J.R.; Miller, J.F.; Chin, E.H.
1986-01-01
A major storm April 11-13, 1979, following a series of storms in March and April, brought large amounts of rainfall over southeastern United States. Heaviest rain fell over north-central Mississippi and Alabama. A maximum of 21.5 inches was observed at Louisville, 14 SE, Mississippi. Floods in Mississippi and Alabama were the maximum of record at 60 streamflow gaging stations in the Coosa, Alabama, Tombigbee, Chickasawhay, Pearl, and Big Black River basins. On the Pearl River, peak discharges at main stem gaging stations generally approached or exceeded those of the great flood of 1874, and recurrence intervals generally were greater than 100 years. Nine lives were reported lost. Estimated damages totaled nearly $400 million. Seventeen thousand people were driven from their homes in Jackson, Mississippi. This report presents analyses of the meterological settings of the storms, summaries of flood stages and discharges at 221 streamflow gaging stations, stages and contents of 10 reservoirs, flood-crest stages and hydrograph data consisting of gage height, discharge, and accumulated runoff at selected times, at 46 gaging stations, groundwater fluctuations in 11 observation wells, and water salinity and temperature at 22 sites along the Intracoastal Waterway in Mobile Bay. (USGS)
South, Mark; Layne, Andrew; Stuart, Charles A.; Triplett, N. Travis; Ramsey, Michael; Howell, Mary; Sands, William; Mizuguchi, Satoshi; Hornsby, Guy; Kavanaugh, Ashley; Stone, Michael H.
2016-01-01
The effects of short-term resistance training on performance and health variables associated with prolonged sedentary lifestyle and metabolic syndrome were investigated. Resistance training may alter a number of health-related, physiological and performance variables. As a result, resistance training can be used as a valuable tool in ameliorating the effects of a sedentary lifestyle including those associated with metabolic syndrome. Nineteen previously sedentary subjects (10 metabolic syndrome, 9 non-metabolic syndrome) underwent 8 weeks of supervised resistance training. Maximum strength was measured using an isometric mid-thigh pull and resulting force-time curve. Vertical jump height and power were measured using a force plate. Muscle cross-sectional area (CSA) and type were examined using muscle biopsy and standard analysis techniques. Aerobic power was measured on a cycle ergometer using a ParvoMedics 2400 Metabolic system. Endurance was measured as time to exhaustion on a cycle ergometer. After training, maximum isometric strength, jump height, jump power and V̇O2 peak increased by approximately 10% (or more) in both the metabolic and non-metabolic syndrome groups (both male and female subjects). Over 8 weeks of training, body mass did not change statistically, but percent body fat decreased in subjects with the metabolic syndrome and in females, and lean body mass increased in all groups (p<0.05). Few alterations were noted in fiber type. Males had larger CSA’s compared to females and there was a fiber-specific trend toward hypertrophy over time. In summary eight weeks of semi-block free-weight resistance training improved several performance variables and some cardiovascular factors associated with metabolic syndrome. PMID:27465635
The kinematic and microphysical control of lightning rate, extent, and NOX production
NASA Astrophysics Data System (ADS)
Carey, Lawrence D.; Koshak, William; Peterson, Harold; Mecikalski, Retha M.
2016-07-01
This study investigates the kinematic and microphysical control of lightning properties, particularly those that may govern the production of nitrogen oxides (NOX = NO + NO2) via lightning (LNOX), such as flash rate, type, and extent. The NASA Lightning Nitrogen Oxides Model (LNOM) is applied to lightning observations following multicell thunderstorms through their lifecycle in a Lagrangian sense over Northern Alabama on 21 May 2012 during the Deep Convective Clouds and Chemistry (DC3) experiment. LNOM provides estimates of flash rate, type, channel length distributions, channel segment altitude distributions (SADs), and LNOX production profiles. The LNOM-derived lightning characteristics and LNOX production are compared to the evolution of radar-inferred updraft and precipitation properties. Intercloud, intracloud (IC) flash SAD comprises a significant fraction of the total (IC + cloud-to-ground [CG]) SAD, while increased CG flash SAD at altitudes >6 km occurs after the simultaneous peaks in several thunderstorm properties (i.e., total [IC + CG] and IC flash rate, graupel volume/mass, convective updraft volume, and maximum updraft speed). At heights <6 km, the CG LNOX production dominates the column-integrated total LNOX production. Unlike the SAD, total LNOX production consists of a more equal contribution from IC and CG flashes for heights >6 km. Graupel volume/mass, updraft volume, and maximum updraft speed are all well correlated to the total flash rate (correlation coefficient, ρ ≥ 0.8) but are less correlated to total flash extent (ρ ≥ 0.6) and total LNOX production (ρ ≥ 0.5). Although LNOM transforms lightning observations into LNOX production values, these values are estimates and are subject to further independent validation.
Detection of protonated non-Watson-Crick base pairs using electrospray ionization mass spectrometry.
Ishida, Riyoko; Iwahashi, Hideo
2018-03-01
Many studies have shown that protonated nucleic acid base pairs are involved in a wide variety of nucleic acid structures. However, little information is available on relative stability of hemiprotonated self- and non-self-dimers at monomer level. We used electrospray ionization mass spectrometry (ESI-MS) to evaluate the relative stability under various concentrations of hydrogen ion. These enable conjecture of the formation of protonated non-Watson-Crick base pairs based on DNA and RNA base sequence. In the present study, we observed that ESI-MS peaks corresponded to respective self-dimers for all examined nucleosides except for adenosine. Peak heights depended on the concentration of hydrogen ion. The ESI-MS peak heights of the hemiprotonated cytidine dimers and the hemiprotonated thymidine dimer sharply increased with increased concentration of hydrogen ion, suggesting direct participation of hydrogen ion in dimer formations. In ESI-MS measurements of the solutions containing adenosine, cytidine, thymidine and guanosine, we observed protonated cytidine-guanosine dimer (CH+-G) and protonated cytidine-thymidine dimer (CH+-T) in addition to hemiprotonated cytidine-cytidine dimer (CH+-C) with following relative peak height, (CH+-C) > (CH+-G) ≈ (CH+-T) > (CH+-A). Additionally, in the ESI-MS measurements of solutions containing adenosine, thymidine and guanosine, we observed a considerable amount of protonated adenosine-guanosine (AH+-G) and protonated adenosine-thymidine (AH+-T).
Lindenberg, Kelly M; Carcia, Christopher R
2013-02-01
To determine if heel height alters vertical ground reaction forces (vGRF) when landing from a forward hop or drop landing. Increased vGRF during landing are theorized to increase ACL injury risk in female athletes. Fifty collegiate females performed two single-limb landing tasks while wearing heel lifts of three different sizes (0, 12 & 24 mm) attached to the bottom of a athletic shoe. Using a force plate, peak vGRF at landing was examined. Repeated measures ANOVAs were used to determine the influence of heel height on the dependent measures. Forward hop task- Peak vGRF (normalized for body mass) with 0 mm, 12 mm, and 24 mm lifts were 2.613±0.498, 2.616±0.497 and 2.495±0.518% BW, respectively. Significant differences were noted between 0 and 24 mm lift (p<.001) and 12 and 24 mm lifts (p=.004), but not between the 0 and 12 mm conditions (p=.927). Jump-landing task- No significant differences were found in peak vGRF (p=.192) between any of the heel lift conditions. The addition of a 24 mm heel lift to the bottom of a sneaker significantly alters peak vGRF upon landing from a unilateral forward hop but not from a jumping maneuver.
1993-03-01
statistical mathe- matics, began in the late 1800’s when Sir Francis Galton first attempted to use practical mathematical techniques to investigate the...randomly collected (sampled) many pairs of parent/child height mea- surements (data), Galton observed that for a given parent- height average, the...ty only Maximum Adjusted R2 will be discussed. However, Maximum Adjusted R’ and Minimum MSE test exactly the same 2.thing. Adjusted R is related to R
International Reference Ionosphere -2010
NASA Astrophysics Data System (ADS)
Bilitza, Dieter; Reinisch, Bodo
The International Reference Ionosphere 2010 includes several important improvements and ad-ditions. This presentation introduces these changes and discusses their benefits. The electron and ion density profiles for the bottomside ionosphere will be significantly improved by using more ionosonde data as well as photochemical considerations. As an additional lower iono-sphere parameter IRI-2010 will include the transition height from molecular to cluster ions. At the F2 peak Neural Net models for the peak density and the propagation factor M3000F2, which is related to the F2 peak height, are introduced as new options. At high latitudes the model will benefit from the introduction of auroral oval boundaries and their variation with magnetic activity. Regarding the electron temperature, IRI-2010 now models variations with solar activity. The homepage for the IRI project is at http://IRI.gsfc.nasa.gov/.
Physical Limits on Hmax, the Maximum Height of Glaciers and Ice Sheets
NASA Astrophysics Data System (ADS)
Lipovsky, B. P.
2017-12-01
The longest glaciers and ice sheets on Earth never achieve a topographic relief, or height, greater than about Hmax = 4 km. What laws govern this apparent maximum height to which a glacier or ice sheet may rise? Two types of answer appear possible: one relating to geological process and the other to ice dynamics. In the first type of answer, one might suppose that if Earth had 100 km tall mountains then there would be many 20 km tall glaciers. The counterpoint to this argument is that recent evidence suggests that glaciers themselves limit the maximum height of mountain ranges. We turn, then, to ice dynamical explanations for Hmax. The classical ice dynamical theory of Nye (1951), however, does not predict any break in scaling to give rise to a maximum height, Hmax. I present a simple model for the height of glaciers and ice sheets. The expression is derived from a simplified representation of a thermomechanically coupled ice sheet that experiences a basal shear stress governed by Coulomb friction (i.e., a stress proportional to the overburden pressure minus the water pressure). I compare this model to satellite-derived digital elevation map measurements of glacier surface height profiles for the 200,000 glaciers in the Randolph Glacier Inventory (Pfeffer et al., 2014) as well as flowlines from the Greenland and Antarctic Ice Sheets. The simplified model provides a surprisingly good fit to these global observations. Small glaciers less than 1 km in length are characterized by having negligible influence of basal melt water, cold ( -15C) beds, and high surface slopes ( 30 deg). Glaciers longer than a critical distance 30km are characterized by having an ice-bed interface that is weakened by the presence of meltwater and is therefore not capable of supporting steep surface slopes. The simplified model makes predictions of ice volume change as a function of surface temperature, accumulation rate, and geothermal heat flux. For this reason, it provides insights into both past and future global ice volume changes.
Veenhuis, Jack E.
2002-01-01
In June of 1977, the La Mesa wildfire burned 15,270 acres in and around Frijoles Canyon in Bandelier National Monument and the adjacent Santa Fe National Forest, New Mexico. The Dome wildfire in April of 1996 in Bandelier National Monument burned 16,516 acres in Capulin Canyon and the surrounding Dome Wilderness area. Both watersheds are characterized by abundant and extensive archeological sites that could be affected by increased runoff and accelerated rates of erosion, which typically occur after a wildfire. The U.S. Geological Survey in cooperation with the National Park Service monitored the wildfires' effects on streamflow in both canyons. The magnitude of large stormflows increased dramatically after these wildfires; peak flows at the most downstream streamflow-gaging station in Frijoles and Capulin Canyons increased to about 160 times the maximum recorded flood prior to the fire. Maximum peak flow was 3,030 cubic feet per second at the gaging station in Frijoles Canyon (drainage area equals 18.1 square miles) and 3,630 cubic feet per second at the most downstream crest-stage gage in Capulin Canyon (drainage area equals 14.1 square miles). The pre-fire maximum peak flow recorded in these two canyons was 19 and an estimated 25 cubic feet per second, respectively. As vegetation reestablished itself during the second year, the post-fire annual maximum peak flow decreased to about 10 to 15 times the pre-fire annual maximum peak flow. During the third year, maximum annual peak flows decreased to about three to five times the pre-fire maximum peak flow. In the 22 years since the La Mesa wildfire, flood magnitudes have not completely returned to pre-fire size. Post-fire flood magnitudes in Frijoles and Capulin Canyons do not exceed the maximum floods per drainage area for physiographic regions 5 and 6 in New Mexico. For a burned watershed, however, the peak flows that occur after a wildfire are several orders of magnitude larger than normal forested watershed peak flows. The frequency of larger stormflows also increased in response to the effects of the wildfires in both canyons. In Frijoles Canyon, the number of peak stormflows greater than the pre-fire maximum flow of 19 cubic feet per second was 15 in 1977, 9 in 1978, and 5 in 1979, which is about the magnitude of the maximum pre-fire peak flow in both canyons. Again the hydrologic effects of a wildfire seem to be more pronounced for the 3 years following the date of the fire. Likewise, larger peakflows occurred more frequently in Capulin Canyon for the first 3 years after the 1996 wildfire. Median suspended-sediment concentrations in samples collected in Frijoles Canyon in 1977 were 1,330 milligrams per liter; median concentrations were 16 milligrams per liter after the watershed stabilized in 1993-95. The annual load calculated from regression equations for load compared to flow for the first year after the wildfire was 220 times the annual load for the post-recovery period. To convey the increased frequency and magnitude of average flows in Capulin Canyon after the 1996 Dome wildfire, the stream channel in Capulin Canyon increased in flow capacity by widening and downcutting. As Capulin Canyon peak flows have decreased in both magnitude and frequency with vegetative recovery, the stream channel also has slowly begun to readjust. The channel at the most downstream crest-stage gage, which has the shallowest initial valley slope, is showing the first signs of aggradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Karisa M.; Wright, Bob W.; Synovec, Robert E.
2007-02-02
First, simulated chromatographic separations with declining retention time precision were used to study the performance of the piecewise retention time alignment algorithm and to demonstrate an unsupervised parameter optimization method. The average correlation coefficient between the first chromatogram and every other chromatogram in the data set was used to optimize the alignment parameters. This correlation method does not require a training set, so it is unsupervised and automated. This frees the user from needing to provide class information and makes the alignment algorithm more generally applicable to classifying completely unknown data sets. For a data set of simulated chromatograms wheremore » the average chromatographic peak was shifted past two neighboring peaks between runs, the average correlation coefficient of the raw data was 0.46 ± 0.25. After automated, optimized piecewise alignment, the average correlation coefficient was 0.93 ± 0.02. Additionally, a relative shift metric and principal component analysis (PCA) were used to independently quantify and categorize the alignment performance, respectively. The relative shift metric was defined as four times the standard deviation of a given peak’s retention time in all of the chromatograms, divided by the peak-width-at-base. The raw simulated data sets that were studied contained peaks with average relative shifts ranging between 0.3 and 3.0. Second, a “real” data set of gasoline separations was gathered using three different GC methods to induce severe retention time shifting. In these gasoline separations, retention time precision improved ~8 fold following alignment. Finally, piecewise alignment and the unsupervised correlation optimization method were applied to severely shifted GC separations of reformate distillation fractions. The effect of piecewise alignment on peak heights and peak areas is also reported. Piecewise alignment either did not change the peak height, or caused it to slightly decrease. The average relative difference in peak height after piecewise alignment was –0.20%. Piecewise alignment caused the peak areas to either stay the same, slightly increase, or slightly decrease. The average absolute relative difference in area after piecewise alignment was 0.15%.« less
Mandic, Radivoj; Knezevic, Olivera M; Mirkov, Dragan M; Jaric, Slobodan
2016-09-01
The aim of the present study was to explore the control strategy of maximum countermovement jumps regarding the preferred countermovement depth preceding the concentric jump phase. Elite basketball players and physically active non-athletes were tested on the jumps performed with and without an arm swing, while the countermovement depth was varied within the interval of almost 30 cm around its preferred value. The results consistently revealed 5.1-11.2 cm smaller countermovement depth than the optimum one, but the same difference was more prominent in non-athletes. In addition, although the same differences revealed a marked effect on the recorded force and power output, they reduced jump height for only 0.1-1.2 cm. Therefore, the studied control strategy may not be based solely on the countermovement depth that maximizes jump height. In addition, the comparison of the two groups does not support the concept of a dual-task strategy based on the trade-off between maximizing jump height and minimizing the jumping quickness that should be more prominent in the athletes that routinely need to jump quickly. Further research could explore whether the observed phenomenon is based on other optimization principles, such as the minimization of effort and energy expenditure. Nevertheless, future routine testing procedures should take into account that the control strategy of maximum countermovement jumps is not fully based on maximizing the jump height, while the countermovement depth markedly confound the relationship between the jump height and the assessed force and power output of leg muscles.
NASA Astrophysics Data System (ADS)
Tehsin, Sara; Rehman, Saad; Awan, Ahmad B.; Chaudry, Qaiser; Abbas, Muhammad; Young, Rupert; Asif, Afia
2016-04-01
Sensitivity to the variations in the reference image is a major concern when recognizing target objects. A combinational framework of correlation filters and logarithmic transformation has been previously reported to resolve this issue alongside catering for scale and rotation changes of the object in the presence of distortion and noise. In this paper, we have extended the work to include the influence of different logarithmic bases on the resultant correlation plane. The meaningful changes in correlation parameters along with contraction/expansion in the correlation plane peak have been identified under different scenarios. Based on our research, we propose some specific log bases to be used in logarithmically transformed correlation filters for achieving suitable tolerance to different variations. The study is based upon testing a range of logarithmic bases for different situations and finding an optimal logarithmic base for each particular set of distortions. Our results show improved correlation and target detection accuracies.
NASA Astrophysics Data System (ADS)
Lieou, Charles K. C.; Elbanna, Ahmed E.; Carlson, Jean M.
2013-07-01
Sacrificial bonds and hidden length in structural molecules account for the greatly increased fracture toughness of biological materials compared to synthetic materials without such structural features by providing a molecular-scale mechanism for energy dissipation. One example is in the polymeric glue connection between collagen fibrils in animal bone. In this paper we propose a simple kinetic model that describes the breakage of sacrificial bonds and the release of hidden length, based on Bell's theory. We postulate a master equation governing the rates of bond breakage and formation. This enables us to predict the mechanical behavior of a quasi-one-dimensional ensemble of polymers at different stretching rates. We find that both the rupture peak heights and maximum stretching distance increase with the stretching rate. In addition, our theory naturally permits the possibility of self-healing in such biological structures.
Ambrose, Anthony R; Sillett, Stephen C; Koch, George W; Van Pelt, Robert; Antoine, Marie E; Dawson, Todd E
2010-10-01
Treetops become increasingly constrained by gravity-induced water stress as they approach maximum height. Here we examine the effects of height on seasonal and diurnal sap flow dynamics at the tops of 12 unsuppressed Sequoia sempervirens (D. Don) Endl. (coast redwood) trees 68-113 m tall during one growing season. Average treetop sap velocity (V(S)), transpiration per unit leaf area (E(L)) and stomatal conductance per unit leaf area (G(S)) significantly decreased with increasing height. These differences in sap flow were associated with an unexpected decrease in treetop sapwood area-to-leaf area ratios (A(S):A(L)) in the tallest trees. Both E(L) and G(S) declined as soil moisture decreased and vapor pressure deficit (D) increased throughout the growing season with a greater decline in shorter trees. Under high soil moisture and light conditions, reference G(S) (G(Sref); G(S) at D = 1 kPa) and sensitivity of G(S) to D (-δ; dG(S)/dlnD) significantly decreased with increasing height. The close relationship we observed between G(Sref) and -δ is consistent with the role of stomata in regulating E(L) and leaf water potential (Ψ(L)). Our results confirm that increasing tree height reduces gas exchange of treetop foliage and thereby contributes to lower carbon assimilation and height growth rates as S. sempervirens approaches maximum height.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordon, P.W.; Nobel, P.S.
1982-01-01
In three populations of Ferocactus acanthodes and two of Carnegiea gigantea, multiple discrete peaks in the height distribution were observed, suggesting that seedling establishment was intermittent. To identify periods of establishment, we determined the relationship between stem height and age for each site, based on observed growth rates in the field, gas-exchange data, and weather records. The average yearly growth for the globular F. acanthodes was relatively constant at about 9 mm yr/sup -1/, but for the club-shaped C. gigantea, it increased with age from 2 mm yr/sup -1/ in the first year to 44 mm yr/sup -1/ at 13more » yr. In years suitable for establishment, seedlings grow to sufficient size that stored water is not depleted by cuticular transpiration during the ensuing drought. The pattern of such suitable years over the last 3 decades correlated with the measured height distributions when the relation between stem height and age was considered. At a Sonoran Desert site, major peaks in the height distribution were centered at 0.05 m and 0.19 m, which corresponded to suitable conditions for establishment in 1976 and 1959, respectively. Rainfall records from various weather stations indicated that both species occurred where at least 10% of the years are suitable for seedling establishment.« less
Effects of the rider on the linear kinematics of jumping horses.
Powers, Pippa; Harrison, Andrew
2002-07-01
This study examined the effects of the rider on the linear projectile kinematics of show-jumping horses. SVHS video recordings (50 Hz) of eight horses jumping a vertical fence 1 m high were used for the study. Horses jumped the fence under two conditions: loose (no rider or tack) and ridden. Recordings were digitised using Peak Motus. After digitising the sequences, each rider's digitised data were removed from the ridden horse data so that three conditions were examined: loose, ridden (including the rider's data) and riderless (rider's data removed). Repeated measures ANOVA revealed significant differences between ridden and loose conditions for CG height at take-off (p < 0.001), CG distance to the fence at take-off (p = 0.001), maximum CG during the suspension phase (p < 0.001), CG position over the centre of the fence (p < 0.001), CG height at landing (p < 0.001), and vertical velocity at take-off (p < 0.001). The results indicated that the rider's effect on jumping horses was primarily due to behavioural changes in the horses motion (resulting from the rider's instruction), rather than inertial effects (due to the positioning of the rider on the horse). These findings have implications for the coaching of riders and horses.
Constrained handgrip force decreases upper extremity muscle activation and arm strength.
Smets, Martin P H; Potvin, James R; Keir, Peter J
2009-09-01
Many industrial tasks require repetitive shoulder exertions to be performed with concurrent physical and mental demands. The highly mobile nature of the shoulder predisposes it to injury. The purpose of this study was to determine the effects of simultaneous gripping, at a specified magnitude, on muscle activity and maximal arm force in various directions. Ten female subjects performed maximal arm exertions at two different heights and five directions using both specified (30% maximum voluntary grip) and preferred (self-selected) grip forces. Electromyography was recorded from eight muscles of the right upper extremity. The preferred grip condition produced grip forces that were dependent on the combination of arm height and force direction and were significantly greater (arm force down), lower (to left, up and push forward), or similar to the specified grip condition. Regardless of the magnitude of the preferred grip force, specifying the grip resulted in decreased maximal arm strength (by 18-25%) and muscle activity (by 15-30%) in all conditions, indicating an interfering effect when the grip force was specified by visual target force-matching. Task constraints, such as specific gripping demands, may decrease peak force levels attainable and alter muscle activity. Depending on the nature of task, the amount of relative demand may differ, which should be considered when determining safety thresholds.
Wettability of AFM tip influences the profile of interfacial nanobubbles
NASA Astrophysics Data System (ADS)
Teshima, Hideaki; Takahashi, Koji; Takata, Yasuyuki; Nishiyama, Takashi
2018-02-01
To accurately characterize the shape of interfacial nanobubbles using atomic force microscopy (AFM), we investigated the effect of wettability of the AFM tip while operating in the peak force tapping (PFT) mode. The AFM tips were made hydrophobic and hydrophilic by Teflon AF coating and oxygen plasma treatment, respectively. It was found that the measured base radius of nanobubbles differed between AFM height images and adhesion images, and that this difference depended on the tip wettability. The force curves obtained during the measurements were also different depending on the wettability, especially in the range of the tip/nanobubble interaction and in the magnitude of the maximum attractive force in the retraction period. The difference suggests that hydrophobic tips penetrate the gas/liquid interface of the nanobubbles, with the three phase contact line being pinned on the tip surface; hydrophilic tips on the other hand do not penetrate the interface. We then quantitatively estimated the pinning position and recalculated the true profiles of the nanobubbles by comparing the height images and adhesion images. As the AFM tip was made more hydrophilic, the penetration depth decreased and eventually approached zero. This result suggests that the PFT measurement using a hydrophilic tip is vital for the acquisition of reliable nanobubble profiles.
Ground Reaction Forces of the Lead and Trail Limbs when Stepping Over an Obstacle
Bovonsunthonchai, Sunee; Khobkhun, Fuengfa; Vachalathiti, Roongtiwa
2015-01-01
Background Precise force generation and absorption during stepping over different obstacles need to be quantified for task accomplishment. This study aimed to quantify how the lead limb (LL) and trail limb (TL) generate and absorb forces while stepping over obstacle of various heights. Material/Methods Thirteen healthy young women participated in the study. Force data were collected from 2 force plates when participants stepped over obstacles. Two limbs (right LL and left TL) and 4 conditions of stepping (no obstacle, stepping over 5 cm, 20 cm, and 30 cm obstacle heights) were tested for main effect and interaction effect by 2-way ANOVA. Paired t-test and 1-way repeated-measure ANOVA were used to compare differences of variables between limbs and among stepping conditions, respectively. The main effects on the limb were found in first peak vertical force, minimum vertical force, propulsive peak force, and propulsive impulse. Results Significant main effects of condition were found in time to minimum force, time to the second peak force, time to propulsive peak force, first peak vertical force, braking peak force, propulsive peak force, vertical impulse, braking impulse, and propulsive impulse. Interaction effects of limb and condition were found in first peak vertical force, propulsive peak force, braking impulse, and propulsive impulse. Conclusions Adaptations of force generation in the LL and TL were found to involve adaptability to altered external environment during stepping in healthy young adults. PMID:26169293
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babic, Bakir, E-mail: bakir.babic@measurement.gov.au; Lawn, Malcolm A.; Coleman, Victoria A.
The results of systematic height measurements of polystyrene (PS) nanoparticles using intermittent contact amplitude modulation atomic force microscopy (IC-AM-AFM) are presented. The experimental findings demonstrate that PS nanoparticles deform during AFM imaging, as indicated by a reduction in the measured particle height. This deformation depends on the IC-AM-AFM imaging parameters, material composition, and dimensional properties of the nanoparticles. A model for nanoparticle deformation occurring during IC-AM-AFM imaging is developed as a function of the peak force which can be calculated for a particular set of experimental conditions. The undeformed nanoparticle height can be estimated from the model by extrapolation tomore » zero peak force. A procedure is proposed to quantify and minimise nanoparticle deformation during IC-AM-AFM imaging, based on appropriate adjustments of the experimental control parameters.« less
Estimation procedures for understory biomass and fuel loads in sagebrush steppe invaded by woodlands
Alicia L. Reiner; Robin J. Tausch; Roger F. Walker
2010-01-01
Regression equations were developed to predict biomass for 9 shrubs, 9 grasses, and 10 forbs that generally dominate sagebrush ecosystems in central Nevada. Independent variables included percent cover, average height, and plant volume. We explored 2 ellipsoid volumes: one with maximum plant height and 2 crown diameters and another with live crown height and 2 crown...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sehmel, G.A.
1978-01-01
Airborne plutonium-239 and americium-241 concentrations and fluxes were measured at six heights from 1.9 to 122 m on the Hanford meteorological tower. The data show that plutonium-239 was transported on nonrespirable and small particles at all heights. Airborne americium-241 concentrations on small particles were maximum at the 91 m height.
Determination of the maximum MGS mounting height : phase I crash testing.
DOT National Transportation Integrated Search
2012-03-09
Post-and-rail guardrail systems encounter environmental conditions, such as severe frost heave or erosion, which : may drastically affect the post embedment depth and rail mounting height. In addition, guardrail systems may be designed : to accommoda...
Stoggl, Thomas; Enqvist, Jonas; Muller, Erich; Holmberg, Hans-Christer
2010-01-01
In modern sprint cross-country skiing, strength and maximal speed are major determinants of performance. The aims of this study were to ascertain the anthropometric characteristics of world-class sprint skiers and to evaluate whether a specific body composition and/or body dimension characterizes a successful sprint skier. Our hypothesis was that body height and lean body mass are related to peak speed in double poling and diagonal stride. Fourteen male national and international elite skiers performed two peak speed tests in double poling and diagonal stride roller skiing on a treadmill and were analysed using dual-energy X-ray absorptiometry to determine body composition and body dimensions. Relative pole length was positively correlated with both techniques (double poling: r = 0.77, P < 0.01; diagonal stride: r = 0.60, P < 0.05) and was the only variable that was part of the multiple regression model for both double poling and diagonal stride peak speed. Body height was not correlated with any technique, whereas lean trunk mass (r = 0.75, P < 0.01), body mass index (r = 0.66, P < 0.01), total lean mass (r = 0.69, P < 0.01), and body mass (r = 0.57, P < 0.05) were positively related to double poling peak speed. Total lean mass (absolute: r = 0.58, P < 0.05; relative: r = 0.76, P < 0.001) and relative lean mass of the trunk, arms (both r = 0.72, P < 0.01), and legs (r = 0.54, P < 0.05) were positively related to diagonal stride peak speed. In conclusion, skiers should aim to achieve a body composition with a high percentage of lean mass and low fat mass. A focus on trunk mass through increased muscle mass appears to be important, especially for double poling. The use of longer poles (percent body height) seems to be advantageous for both double poling and diagonal stride peak speed, whereas body dimensions do not appear to be a predictive factor.
Hydrostatic constraints on morphological exploitation of light in tall Sequoia sempervirens trees.
Ishii, Hiroaki T; Jennings, Gregory M; Sillett, Stephen C; Koch, George W
2008-07-01
We studied changes in morphological and physiological characteristics of leaves and shoots along a height gradient in Sequoia sempervirens, the tallest tree species on Earth, to investigate whether morphological and physiological acclimation to the vertical light gradient was constrained by hydrostatic limitation in the upper crown. Bulk leaf water potential (Psi) decreased linearly and light availability increased exponentially with increasing height in the crown. During the wet season, Psi was lower in the outer than inner crown. C isotope composition of leaves (delta(13)C) increased with increasing height indicating greater photosynthetic water use efficiency in the upper crown. Leaf and shoot morphology changed continuously with height. In contrast, their relationships with light availability were discontinuous: morphological characteristics did not correspond to increasing light availability above 55-85 m. Mass-based chlorophyll concentration (chl) decreased with increasing height and increasing light availability. In contrast, area-based chl remained constant or increased with increasing height. Mass-based maximum rate of net photosynthesis (P (max)) decreased with increasing height, whereas area-based P (max) reached maximum at 78.4 m and decreased with increasing height thereafter. Mass-based P (max) increased with increasing shoot mass per area (SMA), whereas area-based P (max) was not correlated with SMA in the upper crown. Our results suggest that hydrostatic limitation of morphological development constrains exploitation of light in the upper crown and contributes to reduced photosynthetic rates and, ultimately, reduced height growth at the tops of tall S. sempervirens trees.
Murigneux, Valentine; Dufour, Anne-Béatrice; Lobry, Jean R; Pène, Laurent
2014-07-01
About 120,000 reference samples are analyzed each year in the Forensic Laboratory of Lyon. A total of 1640 positive control experiments used to validate and optimize the analytical method in the routine process were submitted to a multivariate exploratory data analysis approach with the aim of better understanding the underlying sources of variability. The peak heights of the 16 genetic markers targeted by the AmpFℓSTR(®) Identifiler(®) STR kit were used as variables of interest. Six different 3130xl genetic analyzers located in the same controlled environment were involved. Two major sources of variability were found: (i) the DNA load of the sample modulates all peak heights in a similar way so that the 16 markers are highly correlated, (ii) the genetic analyzer used with a locus-specific response for peak height and a better sensitivity for the most recently acquired. Three markers (FGA, D3S1358, and D13S317) were found to be of special interest to predict the success rate observed in the routine process. © 2014 American Academy of Forensic Sciences.
How tall can gelatin towers be? An introduction to elasticity and buckling
NASA Astrophysics Data System (ADS)
Taberlet, Nicolas; Ferrand, Jérémy; Camus, Élise; Lachaud, Léa; Plihon, Nicolas
2017-12-01
The stability of elastic towers is studied through simple hands-on experiments. Using gelatin-based stackable bricks, one can investigate the maximum height a simple structure can reach before collapsing. We show through experiments and by using the classical linear elastic theory that the main limitation to the height of such towers is the buckling of the elastic structures under their own weight. Moreover, the design and architecture of the towers can be optimized to greatly improve their resistance to self-buckling. To this aim, the maximum height of hollow and tapered towers is investigated. The experimental and theoretical developments presented in this paper can help students grasp the fundamental concepts in elasticity and mechanical stability.
The countermovement jump to monitor neuromuscular status: A meta-analysis.
Claudino, João Gustavo; Cronin, John; Mezêncio, Bruno; McMaster, Daniel Travis; McGuigan, Michael; Tricoli, Valmor; Amadio, Alberto Carlos; Serrão, Julio Cerca
2017-04-01
The primary objective of this meta-analysis was to compare countermovement jump (CMJ) performance in studies that reported the highest value as opposed to average value for the purposes of monitoring neuromuscular status (i.e., fatigue and supercompensation). The secondary aim was to determine the sensitivity of the dependent variables. Systematic review with meta-analysis. The meta-analysis was conducted on the highest or average of a number of CMJ variables. Multiple literature searches were undertaken in Pubmed, Scopus, and Web of Science to identify articles utilizing CMJ to monitor training status. Effect sizes (ES) with 95% confidence interval (95% CI) were calculated using the mean and standard deviation of the pre- and post-testing data. The coefficient of variation (CV) with 95% CI was also calculated to assess the level of instability of each variable. Heterogeneity was assessed using a random-effects model. 151 articles were included providing a total of 531 ESs for the meta-analyses; 85.4% of articles used highest CMJ height, 13.2% used average and 1.3% used both when reporting changes in CMJ performance. Based on the meta-analysis, average CMJ height was more sensitive than highest CMJ height in detecting CMJ fatigue and supercompensation. Furthermore, other CMJ variables such as peak power, mean power, peak velocity, peak force, mean impulse, and power were sensitive in tracking the supercompensation effects of training. The average CMJ height was more sensitive than highest CMJ height in monitoring neuromuscular status; however, further investigation is needed to determine the sensitivity of other CMJ performance variables. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Effects of Run-Up Velocity on Performance, Kinematics, and Energy Exchanges in The Pole Vault
Linthorne, Nicholas P.; Weetman, A. H. Gemma
2012-01-01
This study examined the effect of run-up velocity on the peak height achieved by the athlete in the pole vault and on the corresponding changes in the athlete's kinematics and energy exchanges. Seventeen jumps by an experienced male pole vaulter were video recorded in the sagittal plane and a wide range of run-up velocities (4.5-8.5 m/s) was obtained by setting the length of the athlete's run-up (2-16 steps). A selection of performance variables, kinematic variables, energy variables, and pole variables were calculated from the digitized video data. We found that the athlete's peak height increased linearly at a rate of 0.54 m per 1 m/s increase in run-up velocity and this increase was achieved through a combination of a greater grip height and a greater push height. At the athlete's competition run-up velocity (8.4 m/s) about one third of the rate of increase in peak height arose from an increase in grip height and about two thirds arose from an increase in push height. Across the range of run-up velocities examined here the athlete always performed the basic actions of running, planting, jumping, and inverting on the pole. However, he made minor systematic changes to his jumping kinematics, vaulting kinematics, and selection of pole characteristics as the run-up velocity increased. The increase in run-up velocity and changes in the athlete's vaulting kinematics resulted in substantial changes to the magnitudes of the energy exchanges during the vault. A faster run-up produced a greater loss of energy during the take-off, but this loss was not sufficient to negate the increase in run-up velocity and the increase in work done by the athlete during the pole support phase. The athlete therefore always had a net energy gain during the vault. However, the magnitude of this gain decreased slightly as run-up velocity increased. Key pointsIn the pole vault the optimum technique is to run-up as fast as possible.The athlete's vault height increases at a rate of about 0.5 m per 1 m/s increase in run-up velocity.The increase in vault height is achieved through a greater grip height and a greater push height. At the athlete's competition run-up velocity about one third of the rate of increase in vault height arises from an increase in grip height and two thirds arises from an increase in push height.The athlete has a net energy gain during the vault. A faster run-up velocity produces a greater loss of energy during the take-off but this loss of energy is not sufficient to negate the increase in run-up velocity and the increase in the work done by the athlete during the pole support phase. PMID:24149197
47 CFR 73.525 - TV Channel 6 protection.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... (4) The maximum permissible effective radiated power (ERP) and antenna height may be adjusted for..., the maximum permissible vertically polarized ERP will be the maximum horizontally polarized ERP... it does not. (ii) If the applicant chooses to use mixed polarity, the permissible ERP is as follows...
Trunk extensor and flexor strength capacity in healthy young elite athletes aged 11-15 years.
Mueller, Juliane; Mueller, Steffen; Stoll, Josefine; Baur, Heiner; Mayer, Frank
2014-05-01
Differences in trunk strength capacity because of gender and sports are well documented in adults. In contrast, data concerning young athletes are sparse. The purpose of this study was to assess the maximum trunk strength of adolescent athletes and to investigate differences between genders and age groups. A total of 520 young athletes were recruited. Finally, 377 (n = 233/144 M/F; 13 ± 1 years; 1.62 ± 0.11 m height; 51 ± 12 kg mass; training: 4.5 ± 2.6 years; training sessions/week: 4.3 ± 3.0; various sports) young athletes were included in the final data analysis. Furthermore, 5 age groups were differentiated (age groups: 11, 12, 13, 14, and 15 years; n = 90, 150, 42, 43, and 52, respectively). Maximum strength of trunk flexors (Flex) and extensors (Ext) was assessed in all subjects during isokinetic concentric measurements (60°·s(-1); 5 repetitions; range of motion: 55°). Maximum strength was characterized by absolute peak torque (Flexabs, Extabs; N·m), peak torque normalized to body weight (Flexnorm, Extnorm; N·m·kg(-1) BW), and Flexabs/Extabs ratio (RKquot). Descriptive data analysis (mean ± SD) was completed, followed by analysis of variance (α = 0.05; post hoc test [Tukey-Kramer]). Mean maximum strength for all athletes was 97 ± 34 N·m in Flexabs and 140 ± 50 N·m in Extabs (Flexnorm = 1.9 ± 0.3 N·m·kg(-1) BW, Extnorm = 2.8 ± 0.6 N·m·kg(-1) BW). Males showed statistically significant higher absolute and normalized values compared with females (p < 0.001). Flexabs and Extabs rose with increasing age almost 2-fold for males and females (Flexabs, Extabs: p < 0.001). Flexnorm and Extnorm increased with age for males (p < 0.001), however, not for females (Flexnorm: p = 0.26; Extnorm: p = 0.20). RKquot (mean ± SD: 0.71 ± 0.16) did not reveal any differences regarding age (p = 0.87) or gender (p = 0.43). In adolescent athletes, maximum trunk strength must be discussed in a gender- and age-specific context. The Flexabs/Extabs ratio revealed extensor dominance, which seems to be independent of age and gender. The values assessed may serve as a basis to evaluate and discuss trunk strength in athletes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, K. K.; Phanikumar, D. V.; Newsom, Rob K.
2014-03-01
A Doppler lidar was installed at Manora Peak, Nainital (29.4 N; 79.2 E, 1958 amsl) to estimate mixing layer height for the first time by using vertical velocity variance as basic measurement parameter for the period September-November 2011. Mixing layer height is found to be located ~0.57 +/- 0.1and 0.45 +/- 0.05km AGL during day and nighttime, respectively. The estimation of mixing layer height shows good correlation (R>0.8) between different instruments and with different methods. Our results show that wavelet co-variance transform is a robust method for mixing layer height estimation.
Savaş-Erdeve, Şenay; Çetinkaya, Semra; Abalı, Zehra Yavaş; Poyrazoğlu, Şükran; Baş, Firdevs; Berberoğlu, Merih; Sıklar, Zeynep; Korkmaz, Özlem; Buluş, Derya; Akbaş, Emine Demet; Güran, Tülay; Böber, Ece; Akın, Onur; Yılmaz, Gülay Can; Aycan, Zehra
2017-07-26
The clinical, laboratory, genetic properties and final height of a large cohort of patients with nonclassical 21-hydroxylase deficiency (NC21OHD) in Turkey were analyzed. This multicenter, nationwide web-based study collected data. The mean age was 9.79±4.35 years (229 girls, 29 boys). The most common symptoms were premature pubarche (54.6%) and hirsutism (28.6%). The peak cortisol was found below 18 μg/dL in three (15.45%) patients. A mutation was detected in the CYP21A2 gene of 182 (87.5%) patients. The most common mutation was V281L. Final height in female patients who were diagnosed and treated before attaining final height or near final height was found to be shorter than the final height in female patients who were diagnosed after attaining final height or near final height. The final height of the patients who were treated during childhood was found to be shorter than the final height of patients during the adolescent period.
NASA Technical Reports Server (NTRS)
Hamrick, Joseph T; Osborn, Walter M; Beede, William L
1953-01-01
A mixed-flow impeller was designed to give a prescribed blade-surface velocity distribution at mean blade height for a given hub-shroud profile. The blade shape at mean blade height, which was produced by the prescribed velocity distribution, was extended by means of radial lines to form the composite blade shape from hub to shroud. The resulting blade was relatively thick; therefore, it was necessary to retain the inverse blade taper which resulted from extension of the radial lines in order to prevent merging or near merging of the separate blades near the hub. For the first test version of the impeller, designated the MFI-2A, the blade height was arbitrarily made greater than that for the basic impeller (the MFI-2) to allow for viscous effects. At design equivalent speed of 1400 feet per second the peak pressure ratio and maximum adiabatic efficiency were 3.95 and 79 percent, respectively. The adiabatic efficiency of the MFI-2A is four points lower than that for impeller model MFI-1A, but because of the higher slip factor for the MFI-2A, the pressure ratios are approximately equal. The procedures followed in the design of the MFI-1A and MFI-2A were, in general, the same; and, although the prescribed initial condition resulted in geometrical configurations that were quite dissimilar, the resulting performance characteristics compare favorably with designs for which considerable development work has been necessary.
NASA Astrophysics Data System (ADS)
Rabinovich, A. B.; Titov, V. V.; Moore, C. W.; Eblé, M. C.
2017-10-01
The 2004 Sumatra tsunami was an unprecedented global disaster measured throughout the world oceans. The present study focused on a region of the southeastern Pacific Ocean where the "westward" circumferentially propagating tsunami branch converged with the "eastward" branch, based on data from fortuitously placed Chilean DART 32401 and tide gauges along the coast of South America. By comparison of the tsunami and background spectra, we suppressed the influence of topography and reconstructed coastal "spectral ratios" that were in close agreement with a ratio at DART 32401 and spectral ratios in other oceans. Findings indicate that even remote tsunami records carry spectral source signatures ("birth-marks"). The 2004 tsunami waves were found to occupy the broad frequency band of 0.25-10 cph with the prominent ratio peak at period of 40 min related to the southern fast-slip source domain. This rupture "hot-spot" of ˜350 km was responsible for the global impact of the 2004 tsunami. Data from DART 32401 provided validation of model results: the simulated maximum tsunami wave height of 2.25 cm was a conservative approximation to the measured height of 2.05 cm; the computed tsunami travel time of 25 h 35 min to DART 32401, although 20 min earlier than the actual travel time, provided a favorable result in comparison with 24 h 25 min estimated from classical kinematic theory. The numerical simulations consistently reproduced the wave height changes observed along the coast of South America, including local amplification of tsunami waves at the northern stations of Arica (72 cm) and Callao (67 cm).
Strength and power predictors of sports speed.
Cronin, John B; Hansen, Keir T
2005-05-01
For many sporting activities, initial speed rather than maximal speed would be considered of greater importance to successful performance. The purpose of this study was to identify the relationship between strength and power and measures of first-step quickness (5-m time), acceleration (10-m time), and maximal speed (30-m time). The maximal strength (3 repetition maximum [3RM]), power (30-kg jump squat, countermovement, and drop jumps), isokinetic strength measures (hamstring and quadriceps peak torques and ratios at 60 degrees .s(-1) and 300 degrees .s(-1)) and 5-m, 10-m, and 30-m sprint times of 26 part-time and full-time professional rugby league players (age 23.2 +/- 3.3 years) were measured. To examine the importance of the strength and power measures on sprint performance, a correlational approach and a comparison between means of the fastest and slowest players was used. The correlations between the 3RM, drop jump, isokinetic strength measures, and the 3 measures of sport speed were nonsignificant. Correlations between the jump squat (height and relative power output) and countermovement jump height and the 3 speed measures were significant (r = -0.43 to -0.66, p < 0.05). The squat and countermovement jump heights as well as squat jump relative power output were the only variables found to be significantly greater in the fast players. It was suggested that improving the power to weight ratio as well as plyometric training involving countermovement and loaded jump-squat training may be more effective for enhancing sport speed in elite players.
Water availability predicts forest canopy height at the global scale.
Klein, Tamir; Randin, Christophe; Körner, Christian
2015-12-01
The tendency of trees to grow taller with increasing water availability is common knowledge. Yet a robust, universal relationship between the spatial distribution of water availability and forest canopy height (H) is lacking. Here, we created a global water availability map by calculating an annual budget as the difference between precipitation (P) and potential evapotranspiration (PET) at a 1-km spatial resolution, and in turn correlated it with a global H map of the same resolution. Across forested areas over the globe, Hmean increased with P-PET, roughly: Hmean (m) = 19.3 + 0.077*(P-PET). Maximum forest canopy height also increased gradually from ~ 5 to ~ 50 m, saturating at ~ 45 m for P-PET > 500 mm. Forests were far from their maximum height potential in cold, boreal regions and in disturbed areas. The strong association between forest height and P-PET provides a useful tool when studying future forest dynamics under climate change, and in quantifying anthropogenic forest disturbance. © 2015 John Wiley & Sons Ltd/CNRS.
Moody, J.A.; Martin, D.A.
2001-01-01
Wildfire alters the hydrologic response of watersheds, including the peak discharges resulting from subsequent rainfall. Improving predictions of the magnitude of flooding that follows wildfire is needed because of the increase in human population at risk in the wildland-urban interface. Because this wildland-urban interface is typically in mountainous terrain, we investigated rainfall-runoff relations by measuring the maximum 30 min rainfall intensity and the unit-area peak discharge (peak discharge divided by the area burned) in three mountainous watersheds (17-26.8 km2) after a wildfire. We found rainfall-runoff relations that relate the unit-area peak discharges to the maximum 30 min rainfall intensities by a power law. These rainfall-runoff relations appear to have a threshold value for the maximum 30 min rainfall intensity (around 10 mm h-1) such that, above this threshold, the magnitude of the flood peaks increases more rapidly with increases in intensity. This rainfall intensity could be used to set threshold limits in rain gauges that are part of an early-warning flood system after wildfire. The maximum unit-area peak discharges from these three burned watersheds ranged from 3.2 to 50 m3 s-1 km-2. These values could provide initial estimates of the upper limits of runoff that can be used to predict floods after wildfires in mountainous terrain. Published in 2001 by John Wiley and Sons, Ltd.
Hébert-Losier, Kim; Jensen, Kurt; Holmberg, Hans-Christer
2014-11-01
Jumping and hopping are used to measure lower-body muscle power, stiffness, and stretch-shortening-cycle utilization in sports, with several studies reporting correlations between such measures and sprinting and/or running abilities in athletes. Neither jumping and hopping nor correlations with sprinting and/or running have been examined in orienteering athletes. The authors investigated squat jump (SJ), countermovement jump (CMJ), standing long jump (SLJ), and hopping performed by 8 elite and 8 amateur male foot-orienteering athletes (29 ± 7 y, 183 ± 5 cm, 73 ± 7 kg) and possible correlations to road, path, and forest running and sprinting performance, as well as running economy, velocity at anaerobic threshold, and peak oxygen uptake (VO(2peak)) from treadmill assessments. During SJs and CMJs, elites demonstrated superior relative peak forces, times to peak force, and prestretch augmentation, albeit lower SJ heights and peak powers. Between-groups differences were unclear for CMJ heights, hopping stiffness, and most SLJ parameters. Large pairwise correlations were observed between relative peak and time to peak forces and sprinting velocities; time to peak forces and running velocities; and prestretch augmentation and forest-running velocities. Prestretch augmentation and time to peak forces were moderately correlated to VO(2peak). Correlations between running economy and jumping or hopping were small or trivial. Overall, the elites exhibited superior stretch-shortening-cycle utilization and rapid generation of high relative maximal forces, especially vertically. These functional measures were more closely related to sprinting and/or running abilities, indicating benefits of lower-body training in orienteering.
Yamashita, Takehiro; Asaoka, Ryo; Kii, Yuya; Terasaki, Hiroto; Murata, Hiroshi; Sakamoto, Taiji
2017-01-01
The location of the peaks of the circumpapillary retinal nerve fiber layer (cpRNFL) thickness is affected by several ocular parameters. In this study, we have generated equations that can determine the peaks of the cpRNFL. This study was a prospective, observational, cross sectional study of 118 healthy right eyes. The axial length, optic disc tilt, superiortemporal (ST)- and inferiortemporal (IT)-peaks of the cpRNFL thickness, and angles of the ST and IT retinal arteries (RA) and veins (RV) were determined. The correlations between the location of the ST- and IT-peaks and ocular structural parameters and the sex, body height and weight were calculated. The best fit equations to generate the location of the ST/IT-peaks were determined using corrected-Akaike Information Criteria. The location of the ST-peak was 0.72+(0.40 x ST-RA)+(0.27 x ST-RV)+(0.14 x height)-(0.47 x papillo-macular-position)-(0.11 x disc tilt) with a coefficient of correlation of 0.61 (P<0.0001). The location of the IT-peak was 21.88+(0.53 x IT-RA)+(0.15 x IT-RV)+(0.041 x corneal thickness)-(1.00 x axial length) with a coefficient of correlation of 0.59 (P<0.0001). The location of ST/IT peaks is determined by different parameters of the ocular structure. These equations allow clinicians to obtain an accurate location of the peaks for a more accurate diagnosis of glaucoma.
Progression of growth in the external ear from birth to maturity: a 2-year follow-up study in India.
Purkait, Ruma
2013-06-01
This study aimed to follow the growth dynamics of auricular dimensions from birth to the age of 18 years. The norms of dimensions at different ages, the peak growth period and the maturity age of the dimensions are essential information to Physicians for early clinical diagnosis or for deciding the optimal time for surgery to correct abnormalities. For this study, 2,147 children belonging to central Indian population were measured in at least three sequential sessions. Eight dimensions including the physiognomic length and width of the ear and its morphologic width; conchal length, width, and depth; and lobular length and width were measured using anthropometric technique. Three new dimensions (tragal length and height and maximum width of the antihelix) were introduced in the study. Three indices (auricular, conchal, and lobular) also were derived. Most dimensions exhibited very rapid growth during the first 3-6 months of infancy and thereafter proceeded at a slow pace until adulthood. The smaller dimensions (conchal depth, tragal height, and maximum width of the antihelix) increased continuously throughout the growth period. At birth, most of the dimensions were 52-76 % of their adult size, while tragal length and height were less than half their adult size. Unlike the other dimensions, the lobule length was smaller in males, probably due to the higher frequency of hypoplastic and bow-shaped lobules among them. The width dimensions matured earlier, at 5.6-11 years, whereas the maturity age of lengths varied from 12 to 16 years. The data generated in the current study will be useful to Physicians as a guideline in correcting auricular deformity and in constructing age progression charts of the external ear. Knowledge concerning the maturation age of the ear will help law enforcement authorities in deciding when to use it for establishing personal identification. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Conditions and phase shift of fluid resonance in narrow gaps of bottom mounted caissons
NASA Astrophysics Data System (ADS)
Zhu, Da-tong; Wang, Xing-gang; Liu, Qing-jun
2017-12-01
This paper studies the viscid and inviscid fluid resonance in gaps of bottom mounted caissons on the basis of the plane wave hypothesis and full wave model. The theoretical analysis and the numerical results demonstrate that the condition for the appearance of fluid resonance in narrow gaps is kh=(2 n+1)π ( n=0, 1, 2, 3, …), rather than kh= nπ ( n=0, 1, 2, 3, …); the transmission peaks in viscid fluid are related to the resonance peaks in the gaps. k and h stand for the wave number and the gap length. The combination of the plane wave hypothesis or the full wave model with the local viscosity model can accurately determine the heights and the locations of the resonance peaks. The upper bound for the appearance of fluid resonance in gaps is 2 b/ L<1 (2 b, grating constant; L, wave length) and the lower bound is h/ b≤1. The main reason for the phase shift of the resonance peaks is the inductive factors. The number of resonance peaks in the spectrum curve is dependent on the ratio of the gap length to the grating constant. The heights and the positions of the resonance peaks predicted by the present models agree well with the experimental data.
NASA Astrophysics Data System (ADS)
Wiley, Megan Beth
Autonomous vehicles have had limited success in locating point sources of pollutants, chemicals, and other passive scalars. However, animals such as stomatopods, a mantis shrimp, track odor plumes easily for food, mates, and habitat. Laboratory experiments using Planar Laser Induced Fluorescence measured odor concentration downstream of a diffusive source with and without live stomatopods to investigate their source-tracking strategies in unidirectional and "wave-affected" (surface waves with a mean current) flows. Despite the dearth of signal, extreme temporal variation, and meandering plume centerline, the stomatopods were able to locate the source, especially in the wave-affected flow. Differences in the two plumes far from the source (>160 cm) appeared to help the animals in the wave-affected flow position themselves closer to the source (<70 cm) at times with relatively large amounts of odor and plume filaments of high concentration. At the height of the animals' antennules, the site of their primary chemosensors, the time-averaged Reynolds stresses in the two flows were approximately the same. The temporal variation in stresses over the wave cycle may be responsible for differences in the two plumes. The antennule height falls between a region of large peaks in Reynolds stress in phase with peaks in streamwise acceleration, and a lower region with a smaller Reynolds stress peak in phase with maximum shear during flow reversal. Six undergraduate students assisted with the research. We documented their daily activities and ideas on plume dispersion using open-ended interviews. Most of their time was spent on tasks that required no understanding of fluid mechanics, and there was little evidence of learning by participation in the RAship. One RA's conceptions of turbulence did change, but a group workshop seemed to support this learning more than the RAship. The documented conceptions could aid in curriculum design, since situating new information within current knowledge seems to deepen learning outcomes. The RAs' conceptions varied widely with some overlap of ideas. The interviews also showed that most RAs did not discuss molecular diffusion as part of the mixing process and some remembered information from course demonstrations, but applied them inappropriately to the interview questions.
Modeled future peak streamflows in four coastal Maine rivers
Hodgkins, Glenn A.; Dudley, Robert W.
2013-01-01
To safely and economically design bridges and culverts, it is necessary to compute the magnitude of peak streamflows that have specified annual exceedance probabilities (AEPs). Annual precipitation and air temperature in the northeastern United States are, in general, projected to increase during the 21st century. It is therefore important for engineers and resource managers to understand how peak flows may change in the future. This report, prepared in cooperation with the Maine Department of Transportation (MaineDOT), presents modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. To estimate future peak streamflows at the four basins in this study, historical values for climate (temperature and precipitation) in the basins were adjusted by different amounts and input to a hydrologic model of each study basin. To encompass the projected changes in climate in coastal Maine by the end of the 21st century, air temperatures were adjusted by four different amounts, from -3.6 degrees Fahrenheit (ºF) (-2 degrees Celsius (ºC)) to +10.8 ºF (+6 ºC) of observed temperatures. Precipitation was adjusted by three different percentage values from -15 percent to +30 percent of observed precipitation. The resulting 20 combinations of temperature and precipitation changes (includes the no-change scenarios) were input to Precipitation-Runoff Modeling System (PRMS) watershed models, and annual daily maximum peak flows were calculated for each combination. Modeled peak flows from the adjusted changes in temperature and precipitation were compared to unadjusted (historical) modeled peak flows. Annual daily maximum peak flows increase or decrease, depending on whether temperature or precipitation is adjusted; increases in air temperature (with no change in precipitation) lead to decreases in peak flows, whereas increases in precipitation (with no change in temperature) lead to increases in peak flows. As the magnitude of air temperatures increase in the four basins, peak flows decrease by larger amounts. If precipitation is held constant (no change from historical values), 17 to 26 percent decreases in peak flow occur at the four basins when temperature is increased by 7.2°F. If temperature is held constant, 26 to 38 percent increases in peak flow result from a 15-percent increase in precipitation. The largest decreases in peak flows at the four basins result from 15-percent decreases in precipitation combined with temperature increases of 10.8°F. The largest increases in peak flows generally result from 30-percent increases in precipitation combined with 3.6 °F decreases in temperatures. In many cases when temperature and precipitation both increase, small increases or decreases in annual daily maximum peak flows result. For likely changes projected for the northeastern United States for the middle of the 21st century (temperature increase of 3.6 °F and precipitation increases of 0 to 15 percent), peak-flow changes at the four coastal Maine basins in this study are modeled to be evenly distributed between increases and decreases of less than 25 percent. Peak flows with 50-percent and 1-percent AEPs (equivalent to 2-year and 100-year recurrence interval peak flows, respectively) were calculated for the four basins in the study using the PRMS-modeled annual daily maximum peak flows. Modeled peak flows with 50-percent and 1-percent AEPs with adjusted temperatures and precipitation were compared to unadjusted (historical) modeled values. Changes in peak flows with 50-percent AEPs are similar to changes in annual daily maximum peak flow; changes in peak flows with 1-percent AEPs are similar in pattern to changes in annual daily maximum peak flow, but some of the changes associated with increasing precipitation are much larger than changes in annual daily maximum peak flow. Substantial decreases in maximum annual winter snowpack water equivalent are modeled to occur with increasing air temperatures at the four basins in the study. (Snowpack is the snow on the ground that accumulates during a winter, and water equivalent is the amount of water in a snowpack if it were melted.) The decrease in modeled peak flows with increasing air temperature, given no change in precipitation amount, is likely caused by these decreases in winter snowpack and resulting decreases in snowmelt runoff. This Scientific Investigations Report, prepared in cooperation with the Maine Department of Transportation, presents a summary of modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. The full Fact Sheet (Hodgkins and Dudley, 2013) is available at http://pubs.usgs.gov/fs/2013/3021/.
Profiles of Ionospheric Storm-enhanced Density during the 17 March 2015 Great Storm
NASA Astrophysics Data System (ADS)
Liu, J.; Wang, W.; Burns, A. G.; Yue, X.; Zhang, S.; Zhang, Y.
2015-12-01
Ionospheric F2 region peak densities (NmF2) are expected to show a positive phase correlation with total electron content (TEC), and electron density is expected to have an anti-correlation with electron temperature near the ionospheric F2 peak. However, we show that, during the 17 March 2015 great storm, TEC and F2 region electron density peak height (hmF2) over Millstone Hill increased, but the F2 region electron density peak (NmF2) decreased significantly during the storm-enhanced density (SED) phase of the storm compared with the quiet-time ionosphere. This SED occurred where there was a negative ionospheric storm near the F2 peak and below it. The weak ionosphere below the F2 peak resulted in much reduced downward heat conduction for the electrons, trapping the heat in the topside. This, in turn, increased the topside scale height, so that, even though electron densities at the F2 peak were depleted, TEC increased in the SED. The depletion in NmF2 was probably caused by an increase in the density of the molecular neutrals, resulting in enhanced recombination. In addition, the storm-time topside ionospheric electron density profile was much closer to diffusive equilibrium than non-storm time profile because of less daytime plasma flow from the ionosphere to the plasmasphere.
NASA Astrophysics Data System (ADS)
Gonor, Alexander; Hooton, Irene
2006-07-01
Impact of a rigid projectile (impactor), against a metal target and a condensed explosive surface considered as the important process accompanying the normal entry of a rigid projectile into a target, was overlooked in the preceding studies. Within the framework of accurate shock wave theory, the flow-field, behind the shock wave attached to the perimeter of the adjoined surface, was defined. An important result is the peak pressure rises at points along the target surface away from the stagnation point. The maximum values of the peak pressure are 2.2 to 3.2 times higher for the metallic and soft targets (nitromethane, PBX 9502), than peak pressure values at the stagnation point. This effect changes the commonly held notion that the maximum peak pressure is reached at the projectile stagnation point. In the present study the interaction of a spherical decaying blast wave, caused by an underwater explosion, with a piece-wise plane target, having corner configurations, is investigated. The numerical calculation results in the determination of the vulnerable spots on the target, where the maximum peak overpressure surpassed that for the head-on shock wave reflection by a factor of 4.
The effects of some inhalation anaesthetics on the sodium current of the squid giant axon.
Haydon, D A; Urban, B W
1983-01-01
The effects of diethyl ether, methoxyflurane, halothane, dichloromethane and chloroform on the ionic currents and electrical capacity of the squid giant axon have been examined. The peak inward current in voltage-clamped axons was reduced reversibly by each substance. Sodium currents under voltage clamp were recorded in intracellularly perfused axons before, during, and sometimes after exposure to the test substances, and the records were fitted with equations similar to those proposed by Hodgkin & Huxley (1952). Shifts in the dependence of the steady-state activation and inactivation parameters (m infinity and h infinity) on membrane potential, reductions in the peak heights of the activation and inactivation time constants (tau m and tau h) and decreases in the maximum Na conductance (gNa) have been tabulated. For each of the anaesthetics the steady-state inactivation curve was shifted in the hyperpolarizing direction though less markedly than for the hydrocarbons. The steady-state activation curve was in each instance shifted in the depolarizing direction, as for the alcohols and other surface active substances. In common with both the hydrocarbons and the surface active substances the peak time constants were invariably reduced. The membrane capacity at 100 kHz was affected significantly only by methoxyflurane, where decreases of ca. 9% were observed for 3 mM solutions. The extent to which the results can be accounted for in terms of the perturbation of membrane lipid has been discussed. PMID:6312031
Schmitt, K; Haeusler, G; Blümel, P; Plöchl, E; Frisch, H
1997-01-01
In 41 girls with Turner syndrome, the growth hormone (GH) peak values during stimulation tests and parameters of spontaneous nocturnal GH secretion were studied and compared with respect to different karyotypes, short-term growth response to GH therapy, and final height. 22.0% of the girls tested had a subnormal (peak < 11 ng/ml) and 9.7% a pathological (< 7 ng/ml) GH response. The spontaneous GH secretion showed a good correlation with the data of the provocation tests, providing no further information regarding GH capacity. Short-term growth response to GH treatment could not be predicted by any of the investigated parameters. Although patients with isochromosomes had frequent subnormal GH tests, their growth response to GH treatment after 1 year was comparable to that of girls with XO karyotype and mosaicism. In 18 patients who had reached final height, the height gain during treatment (calculated as final height minus projected adult height) was not different among patients with normal, subnormal, or pathological GH tests. In contrast, final height minus projected adult height in 4 girls with isochromosomes was 15.7 +/- 5.1 versus 7.6 +/- 3.3 cm in 14 patients with other karyotypes (p < 0.01). These girls had a more pronounced bone age delay (3.3 +/- 0.3 vs. 1.8 +/- 1.2 years) at the start of therapy and thus a better growth potential. We conclude that short- and long-term growth responses to GH treatment in Turner syndrome could not be predicted by GH testing. Patients with isochromosomes might represent a subpopulation which is more frequently GH deficient and shows a marked bone age delay.
Greco-Otto, Persephone; Bond, Stephanie; Sides, Raymond; Kwong, Grace P S; Bayly, Warwick; Léguillette, Renaud
2017-11-28
Despite the use of water treadmills (WT) in conditioning horses, the intensity of WT exercise has not been well documented. The workload on a WT is a function of water height and treadmill speed. Therefore, the purpose of this study was to determine the effects of these factors on workload during WT exercise. Fifteen client-owned Quarter Horses were used in a randomized, controlled study. Three belt speeds and three water heights (mid cannon, carpus and stifle), along with the control condition (dry treadmill, all three speeds), were tested. Measured outcomes were oxygen consumption (V̇O 2 ), ventilation (respiratory frequency, tidal volume (V T )), heart rate (HR), and blood lactate. An ergospirometry system was used to measure V̇O 2 and ventilation. Linear mixed effects models were used to examine the effects of presence or absence of water, water height and speed (as fixed effects) on measured outcomes. Water height and its interaction with speed had a significant effect on V̇O 2 , V T and HR, all peaking at the highest water level and speed (stifle at 1.39 m/s, median V̇O 2 = 16.70 ml/(kg.min), V T = 6 L, HR = 69 bpm). Respiratory frequency peaked with water at the carpus at 1.39 m/s (median 49 breaths/min). For a given water height, the small increments in speed did not affect the measured outcomes. Post-exercise blood lactate concentration did not change. Varying water height and speed affects the workload associated with WT exercise. The conditions utilized in this study were associated with low intensity exercise. Water height had a greater impact on exercise intensity than speed.
Observations of neutral circulation at mid-latitudes during the Equinox Transition Study
NASA Technical Reports Server (NTRS)
Buonsanto, M. J.; Salah, J. E.; Miller, K. L.; Oliver, W. L.; Burnside, R. G.; Richards, P. G.
1988-01-01
Measurements of ion drift velocity made by the Millstone Hill incoherent scatter radar have been used to calculate the meridional neutral wind velocity during the Sept. 17 to 24, 1984 period. Strong daytime southward neutral surges were observed during the magnetically disturbed days of September 19 and 23, in contrast to the small daytime winds obtained as expected during the magnetically quiet days. The surge on September 19 was also seen at Arecibo. In addition, two approaches have been used to calculate the meridional wind component from the radar-derived height of the F-layer electron density peak. Results confirm the wind surge, particularly when the strong electric fields measured during the disturbed days are included in the calculations. The two approaches for the F-layer peak wind calculations are applied to the radar-derived electron density peak height as a function of latitude to study the variation of the southward daytime surges with latitude.
Prieske, Olaf; Maffiuletti, Nicola A; Granacher, Urs
2018-01-01
High-intensity muscle actions have the potential to temporarily improve muscle contractile properties (i.e., postactivation potentiation, PAP) thereby inducing acute performance enhancements. There is evidence that balance training can improve performance during strength exercises. Taking these findings together, the purpose of this study was to examine the acute effects of a combined balance and strength (B+S) exercise vs. a strength only (S) exercise on twitch contractile properties, maximum voluntary strength, and jump performance in young athletes. Female elite young soccer players ( N = 12) aged 14-15 years conducted three experimental conditions in randomized order: S included 3 sets of 8-10 dynamic leg extensions at 80% of the 1-repetition maximum, B+S consisted of 3 sets of 40 s double-leg stances on a balance board prior to leg extensions (same as S), and a resting control period. Before and 7 min after exercise, participants were tested for their electrically-evoked isometric twitches (i.e., twitch peak torque, twitch rate of torque development) and maximal voluntary contraction (MVC) torque of the plantar flexor muscles. Additionally, countermovement (CMJ) and drop jump (DJ) performances (i.e., CMJ/DJ height, DJ ground contact time) were assessed. Significant effects of condition on twitch contractile properties ( p < 0.05, d = 1.1) and jump performance outputs ( p < 0.05, 1.1 ≤ d ≤ 1.2) were found. Post-hoc tests revealed that S compared to control produced larger PAP for twitch peak torques by trend ( p = 0.07, d = 1.8, 33 vs. 21%) and significantly larger PAP for twitch rate of torque development ( p < 0.05, d = 2.4, 55 vs. 43%). Following B+S compared to control, significant improvements in CMJ height ( p < 0.01, d = 1.9, 3%) and DJ contact time were found ( p < 0.01, d = 2.0, 10%). This study revealed protocol-specific acute performance improvements. While S resulted in significant increases in twitch contractile properties, B+S produced significant enhancements in jump performance. It is concluded that PAP effects in the plantar flexors may not directly translate to improved jump performance in female elite young soccer players. Therefore, the observed gains in jump performance following B+S are most likely related to neuromuscular changes (e.g., intramuscular coordination) rather than improved contractile properties.
Prieske, Olaf; Maffiuletti, Nicola A.; Granacher, Urs
2018-01-01
High-intensity muscle actions have the potential to temporarily improve muscle contractile properties (i.e., postactivation potentiation, PAP) thereby inducing acute performance enhancements. There is evidence that balance training can improve performance during strength exercises. Taking these findings together, the purpose of this study was to examine the acute effects of a combined balance and strength (B+S) exercise vs. a strength only (S) exercise on twitch contractile properties, maximum voluntary strength, and jump performance in young athletes. Female elite young soccer players (N = 12) aged 14–15 years conducted three experimental conditions in randomized order: S included 3 sets of 8–10 dynamic leg extensions at 80% of the 1-repetition maximum, B+S consisted of 3 sets of 40 s double-leg stances on a balance board prior to leg extensions (same as S), and a resting control period. Before and 7 min after exercise, participants were tested for their electrically-evoked isometric twitches (i.e., twitch peak torque, twitch rate of torque development) and maximal voluntary contraction (MVC) torque of the plantar flexor muscles. Additionally, countermovement (CMJ) and drop jump (DJ) performances (i.e., CMJ/DJ height, DJ ground contact time) were assessed. Significant effects of condition on twitch contractile properties (p < 0.05, d = 1.1) and jump performance outputs (p < 0.05, 1.1 ≤ d ≤ 1.2) were found. Post-hoc tests revealed that S compared to control produced larger PAP for twitch peak torques by trend (p = 0.07, d = 1.8, 33 vs. 21%) and significantly larger PAP for twitch rate of torque development (p < 0.05, d = 2.4, 55 vs. 43%). Following B+S compared to control, significant improvements in CMJ height (p < 0.01, d = 1.9, 3%) and DJ contact time were found (p < 0.01, d = 2.0, 10%). This study revealed protocol-specific acute performance improvements. While S resulted in significant increases in twitch contractile properties, B+S produced significant enhancements in jump performance. It is concluded that PAP effects in the plantar flexors may not directly translate to improved jump performance in female elite young soccer players. Therefore, the observed gains in jump performance following B+S are most likely related to neuromuscular changes (e.g., intramuscular coordination) rather than improved contractile properties. PMID:29628898
Mardirosoff, C; Dumont, L; Deyaert, M; Leconte, M
2001-07-01
No studies have evaluated the relationship between duration of time sitting and spinal needle type on the maximal spread of local anaesthetics. The few trials available have studied the influence of time spent sitting on the spread of anaesthesia without standardising spinal needle types, and have not found any effect. In this randomised, blinded study, 60 patients scheduled for elective orthopaedic surgery of the lower limbs were divided into 4 groups. With the patient sitting erect, 15 mg hyperbaric bupivacaine were injected in a standard manner through a 24G Sprotte or a 27G Whitacre needle and patients were placed supine after 1 min (24G/1 group and 27G/1 group) or 4 min (24G/4 group and 27G/4 group). Time to achieve maximum block height after injection was similar in all groups. Block height levels were significantly lower at all time points for the 24G/4 group. Maximum block heights were Th4 in the 24G/1, 27G/1 and 27G/4 groups, and Th6 in the 24G/4 group (P<0.0001). In a standard spinal anaesthesia procedure, when different lengths of time spent sitting are compared, spinal needle characteristics influence the maximum spread of hyperbaric bupivacaine. However, within the limits of our study, a two-segment difference in block height is too small to consider using spinal needles as valuable tools to control block height during spinal anaesthesia in our daily practice.
Maximum height and minimum time vertical jumping.
Domire, Zachary J; Challis, John H
2015-08-20
The performance criterion in maximum vertical jumping has typically been assumed to simply raise the center of mass as high as possible. In many sporting activities minimizing movement time during the jump is likely also critical to successful performance. The purpose of this study was to examine maximum height jumps performed while minimizing jump time. A direct dynamics model was used to examine squat jump performance, with dual performance criteria: maximize jump height and minimize jump time. The muscle model had activation dynamics, force-length, force-velocity properties, and a series of elastic component representing the tendon. The simulations were run in two modes. In Mode 1 the model was placed in a fixed initial position. In Mode 2 the simulation model selected the initial squat configuration as well as the sequence of muscle activations. The inclusion of time as a factor in Mode 1 simulations resulted in a small decrease in jump height and moderate time savings. The improvement in time was mostly accomplished by taking off from a less extended position. In Mode 2 simulations, more substantial time savings could be achieved by beginning the jump in a more upright posture. However, when time was weighted more heavily in these simulations, there was a more substantial reduction in jump height. Future work is needed to examine the implications for countermovement jumping and to examine the possibility of minimizing movement time as part of the control scheme even when the task is to jump maximally. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Brodie, K. L.; McNinch, J. E.
2009-12-01
Accurate predictions of beach change during storms are contingent upon a correct understanding of wave-driven sediment exchange between the beach and nearshore during high energy conditions. Conventional storm data sets use “pre” (often weeks to months prior) and “post” (often many days after the storm in calm conditions) collections of beach topography and nearshore bathymetry to characterize the effects of the storm. These data have led to a common theory for wave-driven event response of the nearshore system, wherein bars and shorelines are smoothed and straightened by strong alongshore currents into two-dimensional, linear forms. Post-storm, the shoreline accretes, bars migrate onshore, and three-dimensional shapes begin to build as low-energy swell returns. Unfortunately, these approaches have left us with a knowledge gap of the extent and timing of erosion and accretion during storms, arguably the most important information both for scientists trying to model storm damage or inundation, and homeowners trying to manage their properties. This work presents the first spatially extensive (10 km alongshore) and temporally high-resolution (dt = 12 hours) quantitative data set of beach volume and nearshore bathymetry evolution during a Nor’easter on North Carolina’s Outer Banks. During the Nor’easter, significant wave height peaked at 3.4 m, and was greater than 2 m for 37 hours, as measured by the Duck FRF 8 m array. Data were collected using CLARIS: Coastal Lidar and Radar Imaging System, a mobile system that couples simultaneous observations of beach topography from a Riegl laser scanner and nearshore bathymetry (out to ~1 km offshore) from X-Band radar-derived celerity measurements (BASIR). The merging of foreshore lidar elevations with 6-min averages of radar-derived swash runup also enables mapping of maximum-runup elevations alongshore during the surveys. Results show that during the storm, neither the shoreline nor nearshore bathymetry returned to a linear system, as shoreline megacusps/embayments and nearshore shore-oblique bars/troughs both persisted and remained aligned throughout the storm. Analysis of beach volume change above the MHW line showed that all of the erosion occurred during the first 24 hours of the storm, as the 8-m significant wave height grew from 1 to 3.5 m at the peak of the storm and wave period increased from 6 to 14 s. In the 12 hours immediately following the storm peak, as long-period swell fell only 1 m, at least 50% of the eroded upper-beach volume returned along the entire study site, with 100% and greater returning along half the study site. This erosion and accretion would be completely unobserved using traditional pre- and post-storm data sets. Maximum runup varied by as much as 2 m alongshore, showing a weak positive correlation with foreshore slope. Maximum runup is the sum of regional tide and surge (pressure and wind-driven) water levels as well as localized wave-driven setup and swash, and thus may have complex alongshore variations where irregular nearshore bathymetry significantly influences shoreline wave-setup.
Changes in biomechanical properties during drop jumps of incremental height.
Peng, Hsien-Te
2011-09-01
The purpose of this study was to investigate changing biomechanical properties with increasing drop jump height. Sixteen physically active college students participated in this study and performed drop jumps from heights of 20, 30, 40, 50, and 60 cm (DJ20-DJ60). Kinematic and kinetic data were collected using 11 Eagle cameras and 2 force platforms. Data pertaining to the dominant leg for each of 3 trials for each drop height were recorded and analyzed. Statistical comparisons of vertical ground reaction force (vGRF), impulse, moment, power, work, and stiffness were made between different drop jump heights. The peak vGRF of the dominant leg exceeded 3 times the body weight during DJ50 and DJ60; these values were significantly greater than those for DJ20, DJ30, and DJ40 (all p < 0.004). The height jumped during DJ60 was significantly less than that during DJ20 and DJ30 (both p = 0.010). Both the landing impulse and total impulse during the contact phase were significantly different between each drop height (all p < 0.036) and significantly increased with drop height. There were no significant differences in the takeoff impulse. Peak and mean power absorption and negative work at the knee and ankle joints during DJ40, DJ50, and DJ60 were significantly greater than those during DJ20 and DJ30 (all p < 0.049). Leg, knee, and ankle stiffness during DJ60 were significantly less than during DJ20, DJ30, and DJ40 (all p < 0.037). The results demonstrated that drop jumps from heights >40 cm offered no advantages in terms of mechanical efficiency (SSC power output) and stiffness. Drop jumps from heights in excess of 60 cm are not recommended because of the lack of biomechanical efficiency and the potentially increased risk of injury.
Dispersion-convolution model for simulating peaks in a flow injection system.
Pai, Su-Cheng; Lai, Yee-Hwong; Chiao, Ling-Yun; Yu, Tiing
2007-01-12
A dispersion-convolution model is proposed for simulating peak shapes in a single-line flow injection system. It is based on the assumption that an injected sample plug is expanded due to a "bulk" dispersion mechanism along the length coordinate, and that after traveling over a distance or a period of time, the sample zone will develop into a Gaussian-like distribution. This spatial pattern is further transformed to a temporal coordinate by a convolution process, and finally a temporal peak image is generated. The feasibility of the proposed model has been examined by experiments with various coil lengths, sample sizes and pumping rates. An empirical dispersion coefficient (D*) can be estimated by using the observed peak position, height and area (tp*, h* and At*) from a recorder. An empirical temporal shift (Phi*) can be further approximated by Phi*=D*/u2, which becomes an important parameter in the restoration of experimental peaks. Also, the dispersion coefficient can be expressed as a second-order polynomial function of the pumping rate Q, for which D*(Q)=delta0+delta1Q+delta2Q2. The optimal dispersion occurs at a pumping rate of Qopt=sqrt[delta0/delta2]. This explains the interesting "Nike-swoosh" relationship between the peak height and pumping rate. The excellent coherence of theoretical and experimental peak shapes confirms that the temporal distortion effect is the dominating reason to explain the peak asymmetry in flow injection analysis.
Flood frequency analysis for nonstationary annual peak records in an urban drainage basin
Villarini, G.; Smith, J.A.; Serinaldi, F.; Bales, J.; Bates, P.D.; Krajewski, W.F.
2009-01-01
Flood frequency analysis in urban watersheds is complicated by nonstationarities of annual peak records associated with land use change and evolving urban stormwater infrastructure. In this study, a framework for flood frequency analysis is developed based on the Generalized Additive Models for Location, Scale and Shape parameters (GAMLSS), a tool for modeling time series under nonstationary conditions. GAMLSS is applied to annual maximum peak discharge records for Little Sugar Creek, a highly urbanized watershed which drains the urban core of Charlotte, North Carolina. It is shown that GAMLSS is able to describe the variability in the mean and variance of the annual maximum peak discharge by modeling the parameters of the selected parametric distribution as a smooth function of time via cubic splines. Flood frequency analyses for Little Sugar Creek (at a drainage area of 110 km2) show that the maximum flow with a 0.01-annual probability (corresponding to 100-year flood peak under stationary conditions) over the 83-year record has ranged from a minimum unit discharge of 2.1 m3 s- 1 km- 2 to a maximum of 5.1 m3 s- 1 km- 2. An alternative characterization can be made by examining the estimated return interval of the peak discharge that would have an annual exceedance probability of 0.01 under the assumption of stationarity (3.2 m3 s- 1 km- 2). Under nonstationary conditions, alternative definitions of return period should be adapted. Under the GAMLSS model, the return interval of an annual peak discharge of 3.2 m3 s- 1 km- 2 ranges from a maximum value of more than 5000 years in 1957 to a minimum value of almost 8 years for the present time (2007). The GAMLSS framework is also used to examine the links between population trends and flood frequency, as well as trends in annual maximum rainfall. These analyses are used to examine evolving flood frequency over future decades. ?? 2009 Elsevier Ltd.
Remote Sensing of Multiple Cloud Layer Heights Using Multi-Angular Measurements
NASA Technical Reports Server (NTRS)
Sinclair, Kenneth; Van Diedenhoven, Bastiaan; Cairns, Brian; Yorks, John; Wasilewski, Andrzej; Mcgill, Matthew
2017-01-01
Cloud top height (CTH) affects the radiative properties of clouds. Improved CTH observations will allow for improved parameterizations in large-scale models and accurate information on CTH is also important when studying variations in freezing point and cloud microphysics. NASAs airborne Research Scanning Polarimeter (RSP) is able to measure cloud top height using a novel multi-angular contrast approach. For the determination of CTH, a set of consecutive nadir reflectances is selected and the cross-correlations between this set and co-located sets at other viewing angles are calculated for a range of assumed cloud top heights, yielding a correlation profile. Under the assumption that cloud reflectances are isotropic, local peaks in the correlation profile indicate cloud layers. This technique can be applied to every RSP footprint and we demonstrate that detection of multiple peaks in the correlation profile allow retrieval of heights of multiple cloud layers within single RSP footprints. This paper provides an in-depth description of the architecture and performance of the RSPs CTH retrieval technique using data obtained during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC(exp. 4)RS) campaign. RSP retrieved cloud heights are evaluated using collocated data from the Cloud Physics Lidar (CPL). The method's accuracy associated with the magnitude of correlation, optical thickness, cloud thickness and cloud height are explored. The technique is applied to measurements at a wavelength of 670 nm and 1880 nm and their combination. The 1880-nm band is virtually insensitive to the lower troposphere due to strong water vapor absorption.
47 CFR 90.693 - Grandfathering provisions for incumbent licensees.
Code of Federal Regulations, 2010 CFR
2010-10-01
... shall be calculated using the maximum ERP and the actual height of the antenna above average terrain... using the maximum ERP and the actual HAAT along each radial. Incumbent licensees seeking to utilize an...