Nanoscale pinning effect evaluated from deformed nanobubbles.
Teshima, Hideaki; Nishiyama, Takashi; Takahashi, Koji
2017-01-07
Classical thermodynamics theory predicts that nanosized bubbles should disappear in a few hundred microseconds. The surprisingly long lifetime and stability of nanobubbles are therefore interesting research subjects. It has been proposed that the stability of nanobubbles arises through pinning of the three-phase contact line, which results from intrinsic nanoscale geometrical and chemical heterogeneities of the substrate. However, a definitive explanation of nanobubble stability is still lacking. In this work, we examined the stability mechanism by introducing a "pinning force." We investigated nanobubbles at a highly ordered pyrolytic graphite/pure water interface by peak force quantitative nano-mechanical mapping and estimated the pinning force and determined its maximum value. We then observed the shape of shrinking nanobubbles. Because the diameter of the shrinking nanobubbles was pinned, the height decreased and the contact angle increased. This phenomenon implies that the stability results from the pinning force, which flattens the bubble through the pinned three-phase contact line and prevents the Laplace pressure from increasing. The pinning force can also explain the metastability of coalesced nanobubbles, which have two semispherical parts that are joined to form a dumbbell-like shape. The pinning force of the semispherical parts was stronger than that of the joint region. This result demonstrates that the contact line of the semispherical parts is pinned strongly to keep the dumbbell-like shape. Furthermore, we proposed a nanobubble generation mechanism for the solvent-exchange method and explained why the pinning force of large nanobubbles was not initially at its maximum value, as it was for small nanobubbles.
Nanoscale pinning effect evaluated from deformed nanobubbles
NASA Astrophysics Data System (ADS)
Teshima, Hideaki; Nishiyama, Takashi; Takahashi, Koji
2017-01-01
Classical thermodynamics theory predicts that nanosized bubbles should disappear in a few hundred microseconds. The surprisingly long lifetime and stability of nanobubbles are therefore interesting research subjects. It has been proposed that the stability of nanobubbles arises through pinning of the three-phase contact line, which results from intrinsic nanoscale geometrical and chemical heterogeneities of the substrate. However, a definitive explanation of nanobubble stability is still lacking. In this work, we examined the stability mechanism by introducing a "pinning force." We investigated nanobubbles at a highly ordered pyrolytic graphite/pure water interface by peak force quantitative nano-mechanical mapping and estimated the pinning force and determined its maximum value. We then observed the shape of shrinking nanobubbles. Because the diameter of the shrinking nanobubbles was pinned, the height decreased and the contact angle increased. This phenomenon implies that the stability results from the pinning force, which flattens the bubble through the pinned three-phase contact line and prevents the Laplace pressure from increasing. The pinning force can also explain the metastability of coalesced nanobubbles, which have two semispherical parts that are joined to form a dumbbell-like shape. The pinning force of the semispherical parts was stronger than that of the joint region. This result demonstrates that the contact line of the semispherical parts is pinned strongly to keep the dumbbell-like shape. Furthermore, we proposed a nanobubble generation mechanism for the solvent-exchange method and explained why the pinning force of large nanobubbles was not initially at its maximum value, as it was for small nanobubbles.
Resolving the Pinning Force of Nanobubbles with Optical Microscopy
NASA Astrophysics Data System (ADS)
Tan, Beng Hau; An, Hongjie; Ohl, Claus-Dieter
2017-02-01
Many of the remarkable properties of surface nanobubbles, such as unusually small contact angles and long lifetimes, are related to the force that pins them onto their substrates. This pinning force is yet to be quantified experimentally. Here, surface-attached nanobubbles are pulled with an atomic force microscope tip while their mechanical responses are observed with total internal reflection fluorescence microscopy. We estimate that a pinning force on the order of 0.1 μ N is required to unpin a nanobubble from its substrate. The maximum force that the tip can exert on the nanobubble is limited by the stability of the neck pulled from the bubble and is enhanced by the hydrophobicity of the tip.
Manoogian, Sarah; Lee, Adam K; Widmaier, James C
2017-08-01
No studies have assessed the effects of parameters associated with insertion temperature in modern self-drilling external fixation pins. The current study assessed how varying the presence of irrigation, insertion speed, and force impacted the insertion temperatures of 2 types of standard and self-drilling external fixation half pins. Seventy tests were conducted with 10 trials for 4 conditions on self-drilling pins, and 3 conditions for standard pins. Each test used a thermocouple inside the pin to measure temperature rise during insertion. Adding irrigation to the standard pin insertion significantly lowered the maximum temperature (P <0.001). Lowering the applied force for the standard pin did not have a significant change in temperature rise. Applying irrigation during the self-drilling pin tests dropped average rise in temperature from 151.3 ± 21.6°C to 124.1 ± 15.3°C (P = 0.005). When the self-drilling pin insertion was decreased considerably from 360 to 60 rpm, the temperature decreased significantly from 151.3 ± 21.6°C to 109.6 ± 14.0°C (P <0.001). When the force applied increased significantly, the corresponding self-drilling pin temperature increase was not significant. The standard pin had lower peak temperatures than the self-drilling pin for all conditions. Moreover, slowing down the insertion speed and adding irrigation helped mitigate the temperature increase of both pin types during insertion.
Sternick, Marcelo Back; Dallacosta, Darlan; Bento, Daniela Águida; do Reis, Marcelo Lemos
2015-01-01
Objective: To analyze the rigidity of a platform-type external fixator assembly, according to different numbers of pins on each clamp. Methods: Computer simulation on a large-sized Cromus dynamic external fixator (Baumer SA) was performed using a finite element method, in accordance with the standard ASTM F1541. The models were generated with approximately 450,000 quadratic tetrahedral elements. Assemblies with two, three and four Schanz pins of 5.5 mm in diameter in each clamp were compared. Every model was subjected to a maximum force of 200 N, divided into 10 sub-steps. For the components, the behavior of the material was assumed to be linear, elastic, isotropic and homogeneous. For each model, the rigidity of the assembly and the Von Mises stress distribution were evaluated. Results: The rigidity of the system was 307.6 N/mm for two pins, 369.0 N/mm for three and 437.9 N/mm for four. Conclusion: The results showed that four Schanz pins in each clamp promoted rigidity that was 19% greater than in the configuration with three pins and 42% greater than with two pins. Higher tension occurred in configurations with fewer pins. In the models analyzed, the maximum tension occurred on the surface of the pin, close to the fixation area. PMID:27047879
NASA Astrophysics Data System (ADS)
Sundar, Shyam; Mosqueira, J.; Alvarenga, A. D.; Sóñora, D.; Sefat, A. S.; Salem-Sugui, S., Jr.
2017-12-01
Isothermal magnetic field dependence of magnetization and magnetic relaxation measurements were performed for the H\\parallel {{c}} axis on a single crystal of Ba(Fe0.935 Co0.065)2As2 pnictide superconductor having T c = 21.7 K. The second magnetization peak (SMP) for each isothermal M(H) was observed in a wide temperature range from T c to the lowest temperature of measurement (2 K). The magnetic field dependence of relaxation rate R(H), showed a peak (H spt) between H on (onset of SMP in M(H)) and H p (peak field of SMP in M(H)), which is likely to be related to a vortex-lattice structural phase transition, as suggested in the literature for a similar sample. In addition, the magnetic relaxation measured for magnetic fields near H spt showed some noise, which might be the signature of the structural phase transition of the vortex lattice. Analysis of the magnetic relaxation data using Maley’s criterion and the collective pinning theory suggested that the SMP in the sample was due to the collective (elastic) to plastic creep crossover, which was also accompanied by a rhombic to square vortex lattice phase transition. Analysis of the pinning force density suggested a single dominating pinning mechanism in the sample, which did not showing the usual δ {l} and δ {T}{{c}} nature of pinning. The critical current density (J c), estimated using the Bean critical state model, was found to be 5 × 105 A cm- 2 at 2 K in the zero magnetic field limit. Surprisingly, the maximum of the pinning force density was not responsible for the maximum value of the critical current density in the sample.
Evidence of new pinning centers in irradiated MgB2
NASA Astrophysics Data System (ADS)
Tarantini, C.; Martinelli, A.; Manfrinetti, P.; Palenzona, A.; Pallecchi, I.; Putti, M.; Ferdeghini, C.; Cimberle, M. R.
2008-03-01
It has been shown that C or SiC addictions can strongly enhance upper critical field of MgB2, leading to an in-field increase of critical current, but without introducing pinning centers other than grain boundaries. On the contrary neutron irradiation introduces new pinning centers, as highlighted by a significant shift of the maximum of pinning force and by a strong improvement of Jc at high field. This effect can be correlated to the defects that neutron irradiation produces. In fact TEM images show the presence of nanometric amorphous regions whose sizes are compatible with the coherence length and such as to act as pinning centers through two different mechanisms. The influence that neutron irradiation induces on MgB2 is also confirmed by magnetization decays that, differently by doped samples, show an important enhancement of pinning energies at high field. These measurements highlight as the increase of pinning energy with irradiation fluence is strongly correlated with Jc improvement.
Critical current density and mechanism of vortex pinning in K xFe 2-ySe₂ doped with S
Lei, Hechang; Petrovic, C.
2011-08-15
We report the critical current density J c in K xFe 2-ySe 2-zS z crystals. The J c can be enhanced significantly with optimal S doping (z=0.99). For K 0.70(7)Fe 1.55(7)Se 1.01(2)S 0.99(2), the weak fishtail effect is found for H II c. The normalized vortex pinning forces follow the scaling law with a maximum position at 0.41 of the reduced magnetic field. These results demonstrate that the small size normal point defects dominate the vortex pinning mechanism.
Muffly, Matthew; Winegar, Corbett; Miller, Mark Carl; Altman, Gregory
2018-05-03
Using fluoroptic thermography, temperature was measured during pin site drilling of intact cortical human cadaver bone with a combination of one-step drilling, graduated drilling, and one-step drilling with irrigation of 5.0 mm Schanz pins. A 1440 rpm constant force drilling was used to on tibial diaphyses while a sensor probe placed 0.5 mm adjacent to the drill hole measured temperature. Four drilling techniques on each of the tibial segments were performed: 3.5mm drill bit, 5.0mm Schanz pin, 5.0 mm Schanz pin in 3.5 mm pre-drilled entry site, 5.0 mm Schanz pin utilizing irrigation. One-step drilling using a 5.0 mm Schanz pin without irrigation produced a temperature that exceeded the threshold temperature for heat-induced injury in 5 of the 8 trials. With the other three drilling techniques, only one in24 trials produced a temperature that would result in thermal injury. This difference was found to be statistically significant (p = 0.003). The use of irrigation significantly reduced the maximum bone tissue temperature in one-step drilling of a 5.0 mm Schanz pin (p = 0.02). One-step drilling with a 3.5 mm drill bit achieved maximum temperature significantly faster than graduated drilling and drilling with irrigation using a 5.0 mm Schanz pin (p <0.01). One-step drilling with a 5.0 mm Schanz pin into cortical bone can produce temperatures that can lead to heat-induced injury. Irrigation alone can reduce the temperatures sufficiently to avoid damage. Pre-drilling can increase temperatures significantly but the extent of any injury should be small.
Molecular origin of contact line stick-slip motion during droplet evaporation
Wang, FengChao; Wu, HengAn
2015-01-01
Understanding and controlling the motion of the contact line is of critical importance for surface science studies as well as many industrial engineering applications. In this work, we elucidate the molecular origin of contact line stick-slip motion during the evaporation of liquid droplets on flexible nano-pillared surfaces using molecular dynamics simulations. We demonstrate that the evaporation-induced stick-slip motion of the contact line is a consequence of competition between pinning and depinning forces. Furthermore, the tangential force exerted by the pillared substrate on the contact line was observed to have a sawtooth-like oscillation. Our analysis also establishes that variations in the pinning force are accomplished through the self-adaptation of solid-liquid intermolecular distances, especially for liquid molecules sitting directly on top of the solid pillar. Consistent with our theoretical analysis, molecular dynamics simulations also show that the maximum pinning force is quantitatively related to both solid-liquid adhesion strength and liquid-vapor surface tension. These observations provide a fundamental understanding of contact line stick-slip motion on pillared substrates and also give insight into the microscopic interpretations of contact angle hysteresis, wetting transitions and dynamic spreading. PMID:26628084
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Hechang; Petrovic, C.
We report the critical current density J c in K xFe 2-ySe 2-zS z crystals. The J c can be enhanced significantly with optimal S doping (z=0.99). For K 0.70(7)Fe 1.55(7)Se 1.01(2)S 0.99(2), the weak fishtail effect is found for H II c. The normalized vortex pinning forces follow the scaling law with a maximum position at 0.41 of the reduced magnetic field. These results demonstrate that the small size normal point defects dominate the vortex pinning mechanism.
Effects of neutron irradiation on pinning force scaling in state-of-the-art Nb3Sn wires
NASA Astrophysics Data System (ADS)
Baumgartner, T.; Eisterer, M.; Weber, H. W.; Flükiger, R.; Scheuerlein, C.; Bottura, L.
2014-01-01
We present an extensive irradiation study involving five state-of-the-art Nb3Sn wires which were subjected to sequential neutron irradiation up to a fast neutron fluence of 1.6 × 1022 m-2 (E > 0.1 MeV). The volume pinning force of short wire samples was assessed in the temperature range from 4.2 to 15 K in applied fields of up to 7 T by means of SQUID magnetometry in the unirradiated state and after each irradiation step. Pinning force scaling computations revealed that the exponents in the pinning force function differ significantly from those expected for pure grain boundary pinning, and that fast neutron irradiation causes a substantial change in the functional dependence of the volume pinning force. A model is presented, which describes the pinning force function of irradiated wires using a two-component ansatz involving a point-pinning contribution stemming from radiation induced pinning centers. The dependence of this point-pinning contribution on fast neutron fluence appears to be a universal function for all examined wire types.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingham, J.G.
Maximum cladding temperatures occur when the IDENT 1578 fuel pin shipping container is installed in the T-3 Cask. The maximum allowable cladding temperature of 800/sup 0/F is reached when the rate of energy deposited in the 19-pin basket reaches 400 watts. Since 45% of the energy which is generated in the fuel escapes the 19-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 400/.55 = 727 watts. Similarly, the maximum allowable cladding temperature of 800/sup 0/F is reached when the rate of energy deposited in the 40-pin basket reaches 465 watts. Since 33%more » of the energy which is generated in the fuel escapes the 40-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 465/.66 = 704 watts. The IDENT 1578 fuel pin shipping container therefore meets its thermal design criteria. IDENT 1578 can handle fuel pins with a decay heat load of 600 watts while maintaining the maximum fuel pin cladding temperature below 800/sup 0/F. The emissivities which were determined from the test results for the basket tubes and container are relatively low and correspond to new, shiny conditions. As the IDENT 1578 container is exposed to high temperatures for extended periods of time during the transportation of fuel pins, the emissivities will probably increase. This will result in reduced temperatures.« less
Molybdenum-UO2 cermet irradiation at 1145 K.
NASA Technical Reports Server (NTRS)
Mcdonald, G.
1971-01-01
Two molybdenum-uranium dioxide cermet fuel pins with molybdenum clad were fission-heated in a forced-convection helium coolant for sufficient time to achieve 5.3% burnup. The cermet core contained 20 wt % of 93.2% enriched uranium dioxide. The results were as follows: there was no visible change in the appearance of the molybdenum clad during irradiation; the maximum increase in diameter of the fuel pins was 0.8%; there was no migration of uranium dioxide along grain boundaries and no evident interaction between molybdenum and uranium dioxide; and, finally, approximately 12% of the fission gas formed was released from the cermet core into the gas plenum.
NASA Astrophysics Data System (ADS)
Vizarim, Nicolas P.; Carlone, Maicon; Verga, Lucas G.; Venegas, Pablo A.
2017-09-01
Using molecular dynamics simulations, we find the commensurability force peaks in a two-dimensional superconducting thin-film with a Kagomé pinning array. A transport force is applied in two mutually perpendicular directions, and the magnetic field is increased up to the first matching field. Usually the condition to have pronounced force peaks in systems with periodic pinning is associated to the rate between the applied magnetic field and the first matching field, it must be an integer or a rational fraction. Here, we show that another condition must be satisfied, the vortex ground state must be ordered. Our calculations show that the pinning size and strength may dramatically change the vortex ground state. Small pinning radius and high values of pinning strength may lead to disordered vortex configurations, which fade the critical force peaks. The critical forces show anisotropic behavior, but the same dependence on pinning strength and radius is observed for both driven force directions. Different to cases where the applied magnetic field is higher than the first matching field, here the depinning process begins with vortices weakly trapped on top of a pinning site and not with interstitial vortices. Our results are in good agreement with recent experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thieme, C.L.H.; Kim, J.B.; Takayasu, M.
Critical current densities of multi-filamentary Nb{sub 3}Al wire made with the Jelly-Roll process (JR) and mono-core powder metallurgy process (PM) wire were measured as a function of temperature and magnetic field. The temperature dependence of the resistive critical field B{sub c2} was measured in PM wires. There is a significant difference between these resistive B{sub c2} values and the ones determined by Kramer plots. The field dependence of the critical current depends on the manufacturing method. In general, it follows a relationship that falls between pure Kramer and one where the pinning force is inversely proportional with B{sup 2}. Inmore » contrast with Nb{sub 3}Sn no maximum in the bulk pinning force is observed down to 3 T (0.15MxB{sub c2}).« less
Vortex dynamics in type-II superconductors under strong pinning conditions
NASA Astrophysics Data System (ADS)
Thomann, A. U.; Geshkenbein, V. B.; Blatter, G.
2017-10-01
We study effects of pinning on the dynamics of a vortex lattice in a type-II superconductor in the strong-pinning situation and determine the force-velocity (or current-voltage) characteristic combining analytical and numerical methods. Our analysis deals with a small density np of defects that act with a large force fp on the vortices, thereby inducing bistable configurations that are a characteristic feature of strong pinning theory. We determine the velocity-dependent average pinning-force density 〈Fp(v ) 〉 and find that it changes on the velocity scale vp˜fp/η a03 , where η is the viscosity of vortex motion and a0 the distance between vortices. In the small pin-density limit, this velocity is much larger than the typical flow velocity vc˜Fc/η of the free vortex system at drives near the critical force density Fc=〈Fp(v =0 ) 〉 ∝npfp . As a result, we find a generic excess-force characteristic, a nearly linear force-velocity characteristic shifted by the critical force density Fc; the linear flux-flow regime is approached only at large drives. Our analysis provides a derivation of Coulomb's law of dry friction for the case of strong vortex pinning.
Measurement strategy and analytic model to determine firing pin force
NASA Astrophysics Data System (ADS)
Lesenciuc, Ioan; Suciu, Cornel
2016-12-01
As illustrated in literature, ballistics is a branch of theoretical mechanics, which studies the construction and working principles of firearms and ammunition, their effects, as well as the motions of projectiles and bullets1. Criminalistics identification, as part of judiciary identification represents an activity aimed at finding common traits of different objects, objectives, phenomena and beings, but more importantly, traits that differentiate each of them from similar ones2-4. In judicial ballistics, in the case of rifled firearms it is relatively simple for experts to identify the used weapon from traces left on the projectile, as the rifling of the barrel leaves imprints on the bullet, which remain approximately identical even after the respective weapon is fired 100 times with the same barrel. However, in the case of smoothbore firearms, their identification becomes much more complicated. As the firing cap suffers alterations from being hit by the firing pin, determination of the force generated during impact creates the premises for determining the type of firearm used to shoot the respective cartridge. The present paper proposes a simple impact model that can be used to evaluate the force generated by the firing pin during its impact with the firing cap. The present research clearly showed that each rifle, by the combination of the three investigated parameters (impact force maximum value, its variation diagram, and impact time) leave a unique trace. Application of such a method in ballistics can create the perspectives for formulating clear conclusions that eliminate possible judicial errors in this field.
NASA Astrophysics Data System (ADS)
Khalkhali, Abolfazl; Ebrahimi-Nejad, Salman; Geran Malek, Nima
2018-06-01
Friction stir welding (FSW) process overcomes many difficulties arising in conventional fusion welding processes of aluminum alloys. The current paper presents a comprehensive investigation on the effects of rotational speed, traverse speed, tool tilt angle and tool pin profile on the longitudinal force, axial force, maximum temperature, tensile strength, percent elongation, grain size, micro-hardness of welded zone and welded zone thickness of AA1100 aluminum alloy sheets. Design of experiments (DOE) was applied using the Taguchi approach and subsequently, effects of the input parameter on process outputs were investigated using analysis of variance (ANOVA). A perceptron neural network model was developed to find a correlation between the inputs and outputs. Multi-objective optimization using modified NSGA-II was implemented followed by NIP and TOPSIS approaches to propose optimum points for each of the square, pentagon, hexagon, and circular pin profiles. Results indicate that the optimization process can reach horizontal and vertical forces as low as 1452 N and 2913 N, respectively and a grain size as low as 2 μm. This results in hardness values of up to 57.2 and tensile strength, elongation and joint thickness of 2126 N, 5.9% and 3.7 mm, respectively. The maximum operating temperature can also reach a sufficiently high value of 374 °C to provide adequate material flow.
Thermomechanical conditions and stresses on the friction stir welding tool
NASA Astrophysics Data System (ADS)
Atthipalli, Gowtam
Friction stir welding has been commercially used as a joining process for aluminum and other soft materials. However, the use of this process in joining of hard alloys is still developing primarily because of the lack of cost effective, long lasting tools. Here I have developed numerical models to understand the thermo mechanical conditions experienced by the FSW tool and to improve its reusability. A heat transfer and visco-plastic flow model is used to calculate the torque, and traverse force on the tool during FSW. The computed values of torque and traverse force are validated using the experimental results for FSW of AA7075, AA2524, AA6061 and Ti-6Al-4V alloys. The computed torque components are used to determine the optimum tool shoulder diameter based on the maximum use of torque and maximum grip of the tool on the plasticized workpiece material. The estimation of the optimum tool shoulder diameter for FSW of AA6061 and AA7075 was verified with experimental results. The computed values of traverse force and torque are used to calculate the maximum shear stress on the tool pin to determine the load bearing ability of the tool pin. The load bearing ability calculations are used to explain the failure of H13 steel tool during welding of AA7075 and commercially pure tungsten during welding of L80 steel. Artificial neural network (ANN) models are developed to predict the important FSW output parameters as function of selected input parameters. These ANN consider tool shoulder radius, pin radius, pin length, welding velocity, tool rotational speed and axial pressure as input parameters. The total torque, sliding torque, sticking torque, peak temperature, traverse force, maximum shear stress and bending stress are considered as the output for ANN models. These output parameters are selected since they define the thermomechanical conditions around the tool during FSW. The developed ANN models are used to understand the effect of various input parameters on the total torque and traverse force during FSW of AA7075 and 1018 mild steel. The ANN models are also used to determine tool safety factor for wide range of input parameters. A numerical model is developed to calculate the strain and strain rates along the streamlines during FSW. The strain and strain rate values are calculated for FSW of AA2524. Three simplified models are also developed for quick estimation of output parameters such as material velocity field, torque and peak temperature. The material velocity fields are computed by adopting an analytical method of calculating velocities for flow of non-compressible fluid between two discs where one is rotating and other is stationary. The peak temperature is estimated based on a non-dimensional correlation with dimensionless heat input. The dimensionless heat input is computed using known welding parameters and material properties. The torque is computed using an analytical function based on shear strength of the workpiece material. These simplified models are shown to be able to predict these output parameters successfully.
A strong pinning model for the coercivity of die-upset Pr-Fe-B magnets
NASA Astrophysics Data System (ADS)
Pinkerton, F. E.; fürst, C. D.
1991-04-01
We have measured the temperature dependence of the intrinsic coercivity Hci(T) between 5 and 565 K in a die-upset Pr-Fe-B magnet. Over a very wide temperature range up to 477 K, Hci(T) is in excellent agreement with a model for strong domain-wall pinning by a random array of pinning sites proposed by Gaunt [P. Gaunt, Philos. Mag. B 48, 261 (1983)]. The model includes both the temperature dependence of the intrinsic magnetic properties of the Pr2Fe14B phase and the effects of thermal activation of domain walls over the pinning barrier. The pinning sites are modeled as nonmagnetic planar inhomogeneities at the boundaries between platelet-shaped Pr2Fe14B grains. We develop an expression for the maximum pinning force per site, f, and derive the model prediction that (Hci/γHA)1/2 varies linearly with (T/γ)2/3, where HA and γ are the magnetocrystalline anisotropy field and the domain-wall energy per unit area of the Pr2Fe14B phase, respectively. Significant deviations from the model are observed only at high temperature, suggesting that the strong pinning model is no longer valid very close to the Curie temperature (565 K). The present result agrees with the model fit obtained for a die-upset Nd-Fe-B magnet.
Kang, Lu; Galvin, Alison L.; Brown, Thomas D.; Jin, Zhongmin; Fisher, John
2008-01-01
A computational model has been developed to quantify the degree of cross-shear of a polyethylene pin articulating against a metallic plate, based on the direct simulation of a multidirectional pin-on-plate wear machine. The principal molecular orientation (PMO) was determined for each polymer site. The frictional work in the direction perpendicular to the PMO was assumed to produce the greatest orientation softening (Wang et al., 1997). The cross-shear ratio (CS) was defined as the frictional work perpendicular to the PMO direction, divided by the total frictional work. Cross-shear on the pin contact surface was location-specific, and of continuously changing magnitude because the direction of frictional force continuously changed due to pin rotation. The polymer pin motion was varied from a purely linear track (CS=0) up to a maximum rotation of ±55° (CS=0.254). The relationship between wear factors (K) measured experimentally and theoretically predicted CS was defined using logarithmic functions for both conventional and highly cross-linked UHMWPE. Cross-shear increased the apparent wear factor for both polyethylenes by more than 5-fold compared to unidirectional wear. PMID:17936763
System for Controlling the Stirring Pin of a Friction Stir Welding Apparatus
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey (Inventor); Romine, Peter L. (Inventor); Oelgoetz, Peter A. (Inventor)
2002-01-01
A control is provided for a friction stir welding apparatus comprising a pin tool which includes a shoulder and a rotating pin extending outwardly from the shoulder of the pin tool and which, in use, is plunged into a workpiece formed contacting workpiece members to stir weld the members together. The control system controls the penetration of the pin tool into the workpiece members which are mounted on a support anvil. The control system includes a pin length controller for controlling pin length relative to the shoulder and for producing a corresponding pin length signal. A pin force sensor senses the force being exerted on the pin during welding and produces a corresponding actual pin force signal. A probe controller controls a probe extending outwardly from the pin, senses a parameter related to the distance between the probe and the supporting anvil and produces a corresponding probe signal. A workpiece standoff sensor senses the standoff distance between the workpiece and the standoff sensor and produces a corresponding standoff signal. A control unit receives the various signals, together with a weld schedule, and, based on these signals and the weld schedule, controls the pin length controller so as to control pin penetration into the workpiece.
Chen, Bin; Fan, Jinghong; Gou, Jihua; Lin, Shiyun
2014-12-01
Observations of the cuticle of the Boston Spiny Lobster using scanning electron microscope (SEM) show that it is a natural biocomposite consisting of chitin fibers and sclerotic-protein matrix with hierarchical and helicoidal structure. The SEM images also indicate that there is a hole-pin joining structure in the cuticle. In this joining structure, the chitin fibers in the neighborhood of the joining holes continuously round the holes to form a fiber-round-hole distribution. The maximum pullout force of the fibers in the fiber-round-hole distribution, which is closely related to the fracture toughness of the cuticle, is investigated and compared with that of the fibers in non-fiber-round-hole distribution based on their representative models. It is revealed that the maximum pullout force of the fibers in the fiber-round-hole distribution is significantly larger than that of the fibers in the non-fiber-round-hole distribution, and that a larger diameter of the hole results in a larger difference in the maximum pullout forces of the fibers between the two kinds of the fiber distributions. Inspired by the fiber-round-hole distribution found in the cuticle, composite specimens with the fiber-round-hole distribution were fabricated with a special mold and process to mirror the fiber-round-hole distribution. The fracture toughness of the biomimetic composite specimens is tested and compared with that of the conventional composite specimens with the non-fiber-round-hole distribution. It is demonstrated that the fracture toughness of the biomimetic composite specimens with the fiber-round-hole distribution is significantly larger than that of the conventional composite specimens with the non-fiber-round-hole distribution. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dong, Huan; Mukinay, Tatiana; Li, Maojun; Hood, Richard; Soo, Sein Leung; Cockshott, Simon; Sammons, Rachel; Li, Xiaoying
2017-01-01
In this study, an advanced ceramic conversion surface engineering technology has been applied for the first time to self-drilling Ti6Al4V external fixation pins to improve their performance in terms of biomechanical, bio-tribological and antibacterial properties. Systematic characterisation of the ceramic conversion treated Ti pins was carried out using Scanning electron microscope, X-ray diffraction, Glow-discharge optical emission spectroscopy, nano- and micro-indentation and scratching; the biomechanical and bio-tribological properties of the surface engineered Ti pins were evaluated by insertion into high density bone simulation material; and the antibacterial behaviour was assessed with Staphylococcus aureus NCTC 6571. The experimental results have demonstrated that the surfaces of Ti6Al4V external fixation pins were successfully converted into a TiO 2 rutile layer (~2 μm in thickness) supported by an oxygen hardened case (~15 μm in thickness) with very good bonding due to the in-situ conversion nature. The maximum insertion force and temperature were reduced from 192N and 31.2 °C when using the untreated pins to 182N and 26.1 °C when the ceramic conversion treated pins were tested. This is mainly due to the significantly increased hardness (more than three times) and the effectively enhanced wear resistance of the cutting edge of the self-drilling Ti pins following the ceramic conversion treatment. The antibacterial tests also revealed that there was a significantly reduced number of bacteria isolated from the ceramic conversion treated pins compared to the untreated pins of around 50 % after 20 h incubation, P < 0.01 (0.0024). The results reported are encouraging and could pave the way towards high-performance anti-bacterial titanium external fixation pins with reduced pin-track infection and pin loosing.
Effects of thread interruptions on tool pins in friction stir welding of AA6061
Reza-E-Rabby, Md.; Tang, Wei; Reynolds, Anthony P.
2017-06-21
In this paper, effects of pin thread and thread interruptions (flats) on weld quality and process response parameters during friction stir welding (FSW) of 6061 aluminium alloy were quantified. Otherwise, identical smooth and threaded pins with zero to four flats were adopted for FSW. Weldability and process response variables were examined. Results showed that threads with flats significantly improved weld quality and reduced in-plane forces. A three-flat threaded pin led to production of defect-free welds under all examined welding conditions. Spectral analyses of in-plane forces and weld cross-sectional analysis were performed to establish correlation among pin flats, force dynamics andmore » defect formation. Finally, the lowest in-plane force spectra amplitudes were consistently observed for defect-free welds.« less
Effects of thread interruptions on tool pins in friction stir welding of AA6061
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reza-E-Rabby, Md.; Tang, Wei; Reynolds, Anthony P.
In this paper, effects of pin thread and thread interruptions (flats) on weld quality and process response parameters during friction stir welding (FSW) of 6061 aluminium alloy were quantified. Otherwise, identical smooth and threaded pins with zero to four flats were adopted for FSW. Weldability and process response variables were examined. Results showed that threads with flats significantly improved weld quality and reduced in-plane forces. A three-flat threaded pin led to production of defect-free welds under all examined welding conditions. Spectral analyses of in-plane forces and weld cross-sectional analysis were performed to establish correlation among pin flats, force dynamics andmore » defect formation. Finally, the lowest in-plane force spectra amplitudes were consistently observed for defect-free welds.« less
Coercivity of die upset NdFeB magnets: A strong pinning model
NASA Astrophysics Data System (ADS)
Pinkerton, F. E.; Fuerst, C. D.
1990-09-01
We show that the temperature dependence of the intrinsic coercivity Hci( T) between 5 and 600 K in a die-upset NdFeB magnet is in good agreement with a model for strong domain wall pinning by a random array of pinning sites proposed by Gaunt [P. Gaunt, Phil. Mag. B48 (1983) 261]. The model includes both the temperature dependence of the intrinsic magnetic properties of the Nd 2Fe 14B phase and the effects of thermal activation of domain walls over the pinning barrier. The pinning sites are modeled as nonmagnetic planar inhomogeneities at the boundaries aetween platelet-shaped Nd 2Fe 14B grains. We develop an expression for the maximum pinning force per site, f, and derive the model prediction that (H ci/γH A) {1}/{2} varies linearly with (T/γ) {2}/{3}, where HA and γ are the magnetocrystalline anisotropy and the domain wall energy per unit area of the Nd 2Fe 14B phase, respectively. The model is in good agreement with the observed Hci values over a broad temperature range from 200 to 477 K. Deviations from the model below 200 K are an artifact of the axial-to-conical spin reorientation in Nd 2Fe 14B at low temperature. Deviations at high temperature most likely occur because the strong pinning model is no longer valid close to the Curie temperature (585 K).
How pinning and contact angle hysteresis govern quasi-static liquid drop transfer.
Chen, H; Tang, T; Zhao, H; Law, K-Y; Amirfazli, A
2016-02-21
This paper presents both experimental and numerical simulations of liquid transfer between two solid surfaces with contact angle hysteresis (CAH). Systematic studies on the role of the advancing contact angle (θa), receding contact angle (θr) and CAH in determining the transfer ratio (volume of the liquid transferred onto the acceptor surface over the total liquid volume) and the maximum adhesion force (Fmax) were performed. The transfer ratio was found to be governed by contact line pinning at the end of the transfer process caused by CAH of surfaces. A map based on θr of the two surfaces was generated to identify the three regimes for liquid transfer: (I) contact line pinning occurs only on the donor surface, (II) contact line pinning occurs on both surfaces, and (III) contact line pinning occurs only on the acceptor surface. With this map, an empirical equation is provided which is able to estimate the transfer ratio by only knowing θr of the two surfaces. The value of Fmax is found to be strongly influenced by the contact line pinning in the early stretching stage. For symmetric liquid bridges between two identical surfaces, Fmax may be determined only by θa, only by θr, or by both θa and θr, depending on the magnitude of the contact angles. For asymmetric bridges, Fmax is found to be affected by the period when contact lines are pinned on both surfaces.
A physico-genetic module for the polarisation of auxin efflux carriers PIN-FORMED (PIN)
NASA Astrophysics Data System (ADS)
Hernández-Hernández, Valeria; Barrio, Rafael A.; Benítez, Mariana; Nakayama, Naomi; Romero-Arias, José Roberto; Villarreal, Carlos
2018-05-01
Intracellular polarisation of auxin efflux carriers is crucial for understanding how auxin gradients form in plants. The polarisation dynamics of auxin efflux carriers PIN-FORMED (PIN) depends on both biomechanical forces as well as chemical, molecular and genetic factors. Biomechanical forces have shown to affect the localisation of PIN transporters to the plasma membrane. We propose a physico-genetic module of PIN polarisation that integrates biomechanical, molecular, and cellular processes as well as their non-linear interactions. The module was implemented as a discrete Boolean model and then approximated to a continuous dynamic system, in order to explore the relative contribution of the factors mediating PIN polarisation at the scale of single cell. Our models recovered qualitative behaviours that have been experimentally observed and enable us to predict that, in the context of PIN polarisation, the effects of the mechanical forces can predominate over the activity of molecular factors such as the GTPase ROP6 and the ROP-INTERACTIVE CRIB MOTIF-CONTAINING PROTEIN RIC1.
Evaluation of Forces on the Welding Probe of the Automated Retractable Pin-Tool (RPT)
NASA Technical Reports Server (NTRS)
Ding, R. J.
2001-01-01
The NASA invention entitled 'The Hydraulic Controlled Auto-Adjustable Pin Tool for Friction Stir Welding' (US Patent 5,893,507), better known as the Retractable Pin-Tool (RPT), has been instrumented with a load-detecting device allowing the forces placed on the welding probe to be measured. As the welding probe is plunged into the material, the forces placed on the probe can now be characterized. Of particular interest are those forces experienced as the welding probe comes within close proximity to the back-up anvil. For a given material, it is believed that unique forces are generated relative to the distance between the welding probe and the anvil. The forces have been measured and characterized for several materials, and correlations have been made between these forces and the pin's position relative to the backside of the weld material.
Calculation of a fluctuating entropic force by phase space sampling.
Waters, James T; Kim, Harold D
2015-07-01
A polymer chain pinned in space exerts a fluctuating force on the pin point in thermal equilibrium. The average of such fluctuating force is well understood from statistical mechanics as an entropic force, but little is known about the underlying force distribution. Here, we introduce two phase space sampling methods that can produce the equilibrium distribution of instantaneous forces exerted by a terminally pinned polymer. In these methods, both the positions and momenta of mass points representing a freely jointed chain are perturbed in accordance with the spatial constraints and the Boltzmann distribution of total energy. The constraint force for each conformation and momentum is calculated using Lagrangian dynamics. Using terminally pinned chains in space and on a surface, we show that the force distribution is highly asymmetric with both tensile and compressive forces. Most importantly, the mean of the distribution, which is equal to the entropic force, is not the most probable force even for long chains. Our work provides insights into the mechanistic origin of entropic forces, and an efficient computational tool for unbiased sampling of the phase space of a constrained system.
[Dynamic forces of Mitkovic self-dinamysible trochanteric Internal fixators (SIF)].
Mitković, Milan M; Manić, Miodrag T; Petković, Dusan Lj; Milenković, Sasa S; Mitković, Milorad B
2013-01-01
Dynamic trochanteric fractures implants allow fracture fragments to be compressed. Dynamisation can be realized if the axial pin force overcome friction force between pin and body of the implant. Examination of sliding iniciation forces in Mitkovic Selfdinamysible Trochanteric Internal Fixator (SIF). SIF was attached for angle block in the position with vertical orientation of pins. The transversal load of 5 kg was connected to pins by a rope. A dynamometer was used to measure force during the movement of angle block in up direction. Regression coefficients were a1 = 4,052 i b1 = 0,623 for SIF with 2 sliding screws with diameter of 7mm and a2 = 4,534 i b2 = 0,422 for SIF with 1 screw with diameter of 10 mm. Coefficients of determination were: r12 = 0,470 and r22 = 0,123. Sliding of SIF pins can be achieved for each analysed body weight of patient (50-130 kg). Early bearing of operated leg is significant for sliding initiation of SIF sliding screws.
The effect of temperature on pinning mechanisms in HTS composites
NASA Astrophysics Data System (ADS)
Sotnikova, A. P.; Rudnev, I. A.
2016-09-01
Pinning mechanism in samples of second generation tapes (2G) of high-temperature superconductors (HTS) was studied The critical current and the pinning force were calculated from the magnetization curves measured in the temperature range of 4.2 - 77 K in magnetic fields up to 14 Tesla using vibration sample magnetometer. To determine the pinning mechanism the dependences of pinning force on magnetic field were constructed according to the Dew-Hughes model and Kramer's rule. The obtained dependences revealed a significant influence of the temperature on effectiveness of different types of pinning. At low temperatures the 2G HTS tapes of different manufacturers demonstrated an equal efficiency of the pinning centers but with temperature increase the differences in pinning mechanisms as well as in properties and effectiveness of the pinning centers become obvious. The influence of the pinning mechanism on the energy losses in HTS tapes was shown.
Wettability of AFM tip influences the profile of interfacial nanobubbles
NASA Astrophysics Data System (ADS)
Teshima, Hideaki; Takahashi, Koji; Takata, Yasuyuki; Nishiyama, Takashi
2018-02-01
To accurately characterize the shape of interfacial nanobubbles using atomic force microscopy (AFM), we investigated the effect of wettability of the AFM tip while operating in the peak force tapping (PFT) mode. The AFM tips were made hydrophobic and hydrophilic by Teflon AF coating and oxygen plasma treatment, respectively. It was found that the measured base radius of nanobubbles differed between AFM height images and adhesion images, and that this difference depended on the tip wettability. The force curves obtained during the measurements were also different depending on the wettability, especially in the range of the tip/nanobubble interaction and in the magnitude of the maximum attractive force in the retraction period. The difference suggests that hydrophobic tips penetrate the gas/liquid interface of the nanobubbles, with the three phase contact line being pinned on the tip surface; hydrophilic tips on the other hand do not penetrate the interface. We then quantitatively estimated the pinning position and recalculated the true profiles of the nanobubbles by comparing the height images and adhesion images. As the AFM tip was made more hydrophilic, the penetration depth decreased and eventually approached zero. This result suggests that the PFT measurement using a hydrophilic tip is vital for the acquisition of reliable nanobubble profiles.
Pinning effects from substrate and AFM tip surfaces on interfacial nanobubbles
NASA Astrophysics Data System (ADS)
Teshima, Hideaki; Takahashi, Koji; Takata, Yasuyuki; Nishiyama, Takashi
2017-11-01
Measurement accuracy of atomic force microscopy (AFM) is vital to understand the mechanism of interfacial nanobubbles. In this study, we report the influence of pinning derived from both substrate and AFM tip surfaces on the measured shape of interfacial nanobubbles in peak force tapping mode. First, we pushed the nanobubbles using the AFM tip with high peak force setpoint. As a result, the deformed nanobubbles kept their flat shape for several tens of minutes. We quantitatively discuss the pinning force from substrate surface, which retains the flat shape enhancing the stability of nanobubbles. Next, we prepared three AFM tips with different wettability and measured the nanobubbles with an identical setpoint. By comparing the force curves obtained during the measurements, it seems that the (middle-)hydrophobic tips penetrated the liquid/gas interface and received repulsive force resulting from positive meniscus formed by pinning at the tip surface. In contrast, hydrophilic tip didn't penetrate the interface and received the force from the deformation of the interface of the nanobubbles. In addition, the measurements using the (middle-)hydrophobic tips led to the underestimation of the nanobubbles profile corresponding to the pinning position at the tip surfaces.
Retrievable fuel pin end member for a nuclear reactor
Rosa, Jerry M.
1982-01-01
A bottom end member (17b) on a retrievable fuel pin (13b) secures the pin (13b) within a nuclear reactor (12) by engaging on a transverse attachment rail (18) with a spring clip type of action. Removal and reinstallation if facilitated as only axial movement of the fuel pin (13b) is required for either operation. A pair of resilient axially extending blades (31) are spaced apart to define a slot (24) having a seat region (34) which receives the rail (18) and having a land region (37), closer to the tips (39) of the blades (31) which is normally of less width than the rail (18). Thus an axially directed force sufficient to wedge the resilient blades (31) apart is required to emplace or release the fuel pin (13b) such force being greater than the axial forces on the fuel pins (13b) which occur during operation of the reactor (12).
CAM/LIFTER forces and friction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabbey, D.J.; Lee, J.; Patterson, D.J.
1992-02-01
This report details the procedures used to measure the cam/lifter forces and friction. The present effort employed a Cummins LTA-10, and focuses on measurements and dynamic modeling of the injector train. The program was sponsored by the US Department of Energy in support of advanced diesel engine technology. The injector train was instrumented to record the instantaneous roller speed, roller pin friction torque, pushrod force, injector link force and cam speed. These measurements, together with lift profiles for pushrod and injector link displacement, enabled the friction work loss in the injector train to be determined. Other significant design criteria suchmore » as camshaft roller follower slippage and maximum loads on components were also determined. Future efforts will concentrate on the dynamic model, with tests run as required for correlation.« less
NASA Astrophysics Data System (ADS)
Chen, Zhijun; Kametani, Fumitake; Gurevich, Alex; Larbalestier, David
2009-12-01
YBa 2Cu 3O 7-x (Y123) films with quantitatively controlled artificial nanoprecipitate pinning centers were grown by pulsed laser deposition (PLD) and characterized by transport over wide temperature ( T) and magnetic field ( H) ranges and by transmission electron microscopy (TEM). The critical current density J c was found to be determined by the interplay of strong vortex pinning and thermally activated depinning (TAD), which together produced a non-monotonic dependence of J c on c-axis pin spacing d c. At low T and H, J c increased with decreasing d c, reaching the very high J c ∼ 48 MA/cm 2 ∼20% of the depairing current density J d at 10 K, self-field and d c ∼ 10 nm, but at higher T and H when TAD effects become significant, J c was optimized at larger d c because longer vortex segments confined between nanoprecipitates are less prone to thermal fluctuations. We conclude that precipitates should extend at least several coherence lengths along vortices in order to produce irreversibility fields H irr(77 K) greater than 7 T and maximum bulk pinning forces F p,max(77 K) greater than 7-8 GN/m 3 (values appropriate for H parallel to the c-axis). Our results show that there is no universal pin array that optimizes J c at all T and H.
Anvil for Flaring PCB Guide Pins
NASA Technical Reports Server (NTRS)
Winn, E.; Turner, R.
1985-01-01
Spring-loaded anvil results in fewer fractured pins. New anvil for flaring guide pins in printed-circuit boards absorbs approximately 80 percent of press force. As result fewer pins damaged, and work output of flaring press greatly increased.
Integrated electrical connector
Benett, William J.; Ackler, Harold D.
2005-05-24
An electrical connector is formed from a sheet of electrically conductive material that lies in between the two layers of nonconducting material that comprise the casing of an electrical chip. The connector is electrically connected to an electrical element embedded within the chip. An opening in the sheet is concentrically aligned with a pair of larger holes respectively bored through the nonconducting layers. The opening is also smaller than the diameter of an electrically conductive contact pin. However, the sheet is composed flexible material so that the opening adapts to the diameter of the pin when the pin is inserted therethrough. The periphery of the opening applies force to the sides of the pin when the pin is inserted, and thus holds the pin within the opening and in contact with the sheet, by friction. The pin can be withdrawn from the connector by applying sufficient axial force.
NASA Astrophysics Data System (ADS)
Mohammadian, Shahabeddin K.; Zhang, Yuwen
2015-01-01
Three dimensional transient thermal analysis of an air-cooled module that contains prismatic Li-ion cells next to a special kind of aluminum pin fin heat sink whose heights of pin fins increase linearly through the width of the channel in air flow direction was studied for thermal management of Lithium-ion battery pack. The effects of pin fins arrangements, discharge rates, inlet air flow velocities, and inlet air temperatures on the battery were investigated. The results showed that despite of heat sinks with uniform pin fin heights that increase the standard deviation of the temperature field, using this kind of pin fin heat sink compare to the heat sink without pin fins not only decreases the bulk temperature inside the battery, but also decreases the standard deviation of the temperature field inside the battery as well. Increasing the inlet air temperature leads to decreasing the standard deviation of the temperature field while increases the maximum temperature of the battery. Furthermore, increasing the inlet air velocity first increases the standard deviation of the temperature field till reaches to the maximum point, and after that decreases. Also, increasing the inlet air velocity leads to decrease in the maximum temperature of the battery.
CAM/LIFTER forces and friction. Final report, September 15, 1988--November 30, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabbey, D.J.; Lee, J.; Patterson, D.J.
1992-02-01
This report details the procedures used to measure the cam/lifter forces and friction. The present effort employed a Cummins LTA-10, and focuses on measurements and dynamic modeling of the injector train. The program was sponsored by the US Department of Energy in support of advanced diesel engine technology. The injector train was instrumented to record the instantaneous roller speed, roller pin friction torque, pushrod force, injector link force and cam speed. These measurements, together with lift profiles for pushrod and injector link displacement, enabled the friction work loss in the injector train to be determined. Other significant design criteria suchmore » as camshaft roller follower slippage and maximum loads on components were also determined. Future efforts will concentrate on the dynamic model, with tests run as required for correlation.« less
NASA Astrophysics Data System (ADS)
Hossain, M. S. A.; Motaman, A.; Çiçek, Ö.; Ağıl, H.; Ertekin, E.; Gencer, A.; Wang, X. L.; Dou, S. X.
2012-12-01
The effects of sintering temperature on the lattice parameters, full width at half maximum (FWHM), strain, critical temperature (Tc), critical current density (Jc), irreversibility field (Hirr), upper critical field (Hc2), and resistivity (ρ) of 10 wt.% silicone oil doped MgB2 bulk and wire samples are investigated in state of the art by this article. The a-lattice parameter of the silicone oil doped samples which were sintered at different temperatures was drastically reduced from 3.0864 Å to 3.0745 Å, compared to the un-doped samples, which indicates the substitution of the carbon (C) into the boron sites. It was found that sintered samples at the low temperature of 600 °C shows more lattice distortion by more C-substitution and higher strain, lower Tc, higher impurity scattering, and enhancement of both magnetic Jc and Hc2, compared to those sintered samples at high temperatures. The flux pinning mechanism has been analyzed based on the extended normalized pinning force density fp = Fp/Fp,max scaled with b = B/Bmax. Results show that surface pinning is the dominant pinning mechanism for the doped sample sintered at the low temperature of 600 °C, while point pinning is dominant for the un-doped sample. The powder in tube (PIT) MgB2 wire was also fabricated by using of this liquid doping and found that both transport Jc and n-factor increased which proves this cheap and abundant silicone oil doping can be a good candidate for industrial application.
Glassy phases and driven response of the phase-field-crystal model with random pinning.
Granato, E; Ramos, J A P; Achim, C V; Lehikoinen, J; Ying, S C; Ala-Nissila, T; Elder, K R
2011-09-01
We study the structural correlations and the nonlinear response to a driving force of a two-dimensional phase-field-crystal model with random pinning. The model provides an effective continuous description of lattice systems in the presence of disordered external pinning centers, allowing for both elastic and plastic deformations. We find that the phase-field crystal with disorder assumes an amorphous glassy ground state, with only short-ranged positional and orientational correlations, even in the limit of weak disorder. Under increasing driving force, the pinned amorphous-glass phase evolves into a moving plastic-flow phase and then, finally, a moving smectic phase. The transverse response of the moving smectic phase shows a vanishing transverse critical force for increasing system sizes.
Testing of uranium nitride fuel in T-111 cladding at 1200 K cladding temperature
NASA Technical Reports Server (NTRS)
Rohal, R. G.; Tambling, T. N.; Smith, R. L.
1973-01-01
Two groups of six fuel pins each were assembled, encapsulated, and irradiated in the Plum Brook Reactor. The fuel pins employed uranium mononitride (UN) in a tantalum alloy clad. The first group of fuel pins was irradiated for 1500 hours to a maximum burnup of 0.7-atom-percent uranium. The second group of fuel pins was irradiated for about 3000 hours to a maximum burnup of 1.0-atom-percent uranium. The average clad surface temperature during irradiation of both groups of fuel pins was approximately 1200 K. The postirradiation examination revealed the following: no clad failures or fuel swelling occurred; less than 1 percent of the fission gases escaped from the fuel; and the clad of the first group of fuel pins experienced clad embrittlement whereas the second group, which had modified assembly and fabrication procedures to minimize contamination, had a ductile clad after irradiation.
One-dimensional pinning behavior in Co-doped BaFe2As2 thin films
NASA Astrophysics Data System (ADS)
Mishev, V.; Seeböck, W.; Eisterer, M.; Iida, K.; Kurth, F.; Hänisch, J.; Reich, E.; Holzapfel, B.
2013-12-01
Angle-resolved transport measurements revealed that planar defects dominate flux pinning in the investigated Co-doped BaFe2As2 thin film. For any given field and temperature, the critical current depends only on the angle between the crystallographic c-axis and the applied magnetic field but not on the angle between the current and the field. The critical current is therefore limited only by the in-plane component of the Lorentz force but independent of the out-of-plane component, which is entirely balanced by the pinning force exerted by the planar defects. This one-dimensional pinning behavior shows similarities and differences to intrinsic pinning in layered superconductors.
Increasing FSW join strength by optimizing feed rate, rotating speed and pin angle
NASA Astrophysics Data System (ADS)
Darmadi, Djarot B.; Purnowidodo, Anindito; Siswanto, Eko
2017-10-01
Principally the join in Friction Stir Welding (FSW) is formed due to mechanical bonding. At least there are two factors determines the quality of this join, first is the temperature in the area around the interface and secondly the intense of mixing forces in nugget zone to create the mechanical bonding. The adequate temperature creates good flowability of the nugget zone and an intensive mixing force produces homogeneous strong bonding. Based on those two factors in this research the effects of feed rate, rotating speed and pin angle of the FSW process to the tensile strength of resulted join are studied. The true experimental method was used. Feed rate was varied at 24, 42, 55 and 74 mm/minutes and from the experimental results, it can be concluded that the higher feed rate decreases the tensile strength of weld join and it is believed due to the lower heat embedded in the material. Inversely, the higher rotating speed increases the join’s tensile strength as a result of higher heat embedded in base metal and higher mixing force in the nugget zone. The rotating speed were 1842, 2257 and 2904 RPMs. The pin angle determines the direction of mixing force. With variation of pin angle: 0°, 4°, 8° and 12° the higher pin angle generally increases the tensile strength because of more intensive mixing force. For 12° pin angle the lower tensile strength is found since the force tends to push out the nugget area from the joint gap.
A pin-assisted retention technique for resin-bonded restorations.
Miara, P; Touati, B
1992-09-01
The value of pins for auxiliary retention has been demonstrated many times. The use of pins with resin-bonded restorations allows for improved aesthetics and less tooth reduction while increasing resistance to dislodging forces. Clinical and technical procedures for resin-bonded bridges with pin-assisted retention are presented.
The connection characteristics of flux pinned docking interface
NASA Astrophysics Data System (ADS)
Zhang, Mingliang; Han, Yanjun; Guo, Xing; Zhao, Cunbao; Deng, Feiyue
2017-03-01
This paper presents the mechanism and potential advantages of flux pinned docking interface mainly composed of a high temperature superconductor and an electromagnet. In order to readily assess the connection characteristics of flux pinned docking interface, the force between a high temperature superconductor and an electromagnet needs to be investigated. Based on the magnetic dipole method and the Ampere law method, the force between two current coils can be compared, which shows that the Ampere law method has the higher calculated accuracy. Based on the improved frozen image model and the Ampere law method, the force between high temperature superconductor bulk and permanent magnet can be calculated, which is validated experimentally. Moreover, the force between high temperature superconductor and electromagnet applied to flux pinned docking interface is able to be predicted and analyzed. The connection stiffness between high temperature superconductor and permanent magnet can be calculated based on the improved frozen image model and Hooke's law. The relationship between the connection stiffness and field cooling height is analyzed. Furthermore, the connection stiffness of the flux pinned docking interface is predicted and optimized, and its effective working range is defined and analyzed in case of some different parameters.
Selective pinning control of the average disease transmissibility in an HIV contact network
NASA Astrophysics Data System (ADS)
du Toit, E. F.; Craig, I. K.
2015-07-01
Medication is applied to the HIV-infected nodes of high-risk contact networks with the aim of controlling the spread of disease to a predetermined maximum level. This intervention, known as pinning control, is performed both selectively and randomly in the network. These strategies are applied to 300 independent realizations per reference level of incidence on connected undirectional networks without isolated components and varying in size from 100 to 10 000 nodes per network. It is shown that a selective on-off pinning control strategy can control the networks studied with limited steady-state error and, comparing the medians of the doses from both strategies, uses 51.3% less medication than random pinning of all infected nodes. Selective pinning could possibly be used by public health specialists to identify the maximum level of HIV incidence in a population that can be achieved in a constrained funding environment.
Experimental Investigation on Heat Transfer Characteristics of Different Metallic Fin Arrays
NASA Astrophysics Data System (ADS)
Sangewar, Ravi Kumar
2018-04-01
The reliability of electronic equipment depends on the reliability of the system. For small applications natural convection cooling is sufficient, but for the electronic equipment having number of heat generating components, forced convection cooling is essential. In number of cases, pin fin arrangement is preferred for augmentation of heat transfer. Here, the performance of pin fin array of copper and aluminum material with in-line, as well as staggered arrangement over a flat plate is studied. Constant heat input was given to the inline, staggered arrangement of copper as well as aluminium pin fin arrays. In the present experimental study, heat input and airflow rates are the variables. It was found that the heat transfer coefficient for staggered array is 15% more than that of the in-line array, at the same time pressure drop across the staggered array is more by 10% than the in-line array. The pressure drop was observed to be increasing with increase in flow rate as expected. Endeavor of the present work is to find the optimum spacing between the fins in an array for maximum heat transfer rate, by investigating the heat transfer characteristics.
Development of strong vortex pinning and very high Jc in iron based superconductors
NASA Astrophysics Data System (ADS)
Tarantini, Chiara
2015-03-01
Ba(Fe1-xCox)2 As2 (Ba122) is the most tunable of the Fe-based superconductors (FBS) in terms of its acceptance of high densities of secondary phases capable of acting as effective pinning centers without depressing the properties of the superconducting matrix. It has been demonstrated that self-assembled nanorods made of Ba-Fe-O generate a strong correlated pinning along the c-axis, enhancing the critical current density, Jc, in this direction and reducing the Jc anisotropy. However, when 20% of secondary phases are introduced, the reduction of the cross-section becomes significant, decreasing the low field performance. In order to overcome this issue, artificially introduced pinning centers can be added by multilayer deposition producing an almost isotropic increase of Jc. Moreover, FBS are very sensitive to strain, allowing an important enhancement in the critical temperature, Tc, of the material. It will be shown that strain induced by the substrate can further improve Jc of both single and multilayer films by more than expected because of the Tc increase. The multilayer deposition of Ba122 on CaF2 increases the pinning force density, Fp, by more than 60% compared to a single layer film, reaching a maximum of 84 GN/m3 at 22.5T and 4.2 K, the highest value ever reported in any 122 phase. This work shows that the in-field performance of Ba122 widely exceeds that of Nb3Sn above 10T, attracting attention for possible applications.
Flux pinning forces in irradiated a-axis oriented EuBa{sub 2}Cu{sub 3}O{sub 7} films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, J. I.; Gonzalez, E. M.; Kwok, W.-K
1999-10-12
{alpha}-axis oriented EuBa{sub 2}Cu{sub 3}O{sub 7} films have been irradiated with high energy heavy ions in different configurations to study the possible pinning role of the artificial defects in this kind of samples. The original pinning limiting mechanism of the samples is not essentially altered what the irradiation is parallel to the CuO{sub 2} planes. However, when it is deviated from this direction, an increase in critical current density and a change in pinning force are observed when the magnetic field is parallel to the columnar defects at values around the matching field.
Effects of low-modulus coatings on pin-bone contact stresses in external fixation.
Manley, M T; Hurst, L; Hindes, R; Dee, R; Chiang, F P
1984-01-01
The intent of this study was to investigate the stress distribution in cortical bone around fracture fixation pins and around pins coated with various polymeric and elastomeric materials. Since these interface stresses cannot be measured directly, a photoelastic technique was employed and stresses were measured in two-dimensional bone models fabricated from sheets of epoxy resin. Our results showed that when a fixation pin was loaded in compression, the compressive stress measured in the model was greatest at the pin-model interface. The magnitude of the compressive stress was found to diminish steeply away from the hole in a log decrement distribution which was asymptotic to the value of the average stress in the model. When polymeric and elastomeric materials were applied as pin coatings and the performance of the coated pins was compared to that of uncoated pins of the same overall diameter, a reduction of the maximum stress in the bone model was demonstrated. Among the coatings tested, we found that of the polymeric materials ultrahigh molecular weight polyethylene (UHMWPE) was most effective at reducing the peak cortical stress magnitude. The most effective coating material overall was found to be silicon elastomer. Computation of stress values in models loaded through stainless-steel pins and through pins coated with 1-mm silicon elastomer showed that the presence of the elastomer layer caused a reduction of about 50% in the maximum compressive stress in the model.
Enhancement of the forced convective heat transfer on mini pin fin heat sinks with micro spiral fins
NASA Astrophysics Data System (ADS)
Khonsue, Osot
2018-02-01
This research is an experimental study on the characteristics of heat transfer and pressure drop in mini heat sinks using air as the working fluid. The experiments were performed under a constant heat flux ranging from 9.132-13.698 kW/m2 and the air Reynolds number range 322-1982. Three different types of mini heat sinks were rectangle pin fins, cylindrical pin fins, and spiral pin fins with 36x28x9 mm and 5 mm fins high. There were 63 fins altogether and all were made of aluminum. The results showed that the characteristics of the temperature of heat sink of spiral pin fins was the least. Meanwhile the average heat transfer coefficient and Nusselt number of spiral pin fins were the most . Regarding the pressure drop, the rectangular pin fins was the least. The results of this study can be used to guide the design and development of electronic devices cooling system with forced convective heat transfer for higher performance in the future.
Driving force of stacking-fault formation in SiC p-i-n diodes.
Ha, S; Skowronski, M; Sumakeris, J J; Paisley, M J; Das, M K
2004-04-30
The driving force of stacking-fault expansion in SiC p-i-n diodes was investigated using optical emission microscopy and transmission electron microscopy. The stacking-fault expansion and properties of the partial dislocations were inconsistent with any stress as the driving force. A thermodynamic free energy difference between the perfect and a faulted structure is suggested as a plausible driving force in the tested diodes, indicating that hexagonal polytypes of silicon carbide are metastable at room temperature.
NASA Astrophysics Data System (ADS)
Sumariyah; Kusminart; Hermanto, A.; Nuswantoro, P.
2016-11-01
EHD flow or ionic wind yield corona discharge is a stream coming from the ionized gas. EHD is generated by a strong electric field and its direction follows the electric field lines. In this study, the efficiency of the EHD flow generators utilizing pin-multi concentric rings electrodes (P-MRE) and the EHD pin-single ring electrode (P-SRE) have been measured. The comparison of efficiencies two types of the generator has been done. EHD flow was generated by using a high-voltage DC 0-10 KV on the electrode pin with a positive polarity and electrode ring/ multi-concentric rings of negative polarity. The efficiency was calculated by comparison between the mechanical power of flow to the electrical power that consumed. We obtained that the maximum efficiency of EHD flow generator utilizing pin-multi concentric rings electrodes was 0.54% and the maximum efficiency of EHD flow generator utilizing a pin-single ring electrode was 0.23%. Efficiency of EHD with P-MRE 2.34 times Efficiency of EHD with P-SRE
Topological dynamics and current-induced motion in a skyrmion lattice
NASA Astrophysics Data System (ADS)
Martinez, J. C.; Jalil, M. B. A.
2016-03-01
We study the Thiele equation for current-induced motion in a skyrmion lattice through two soluble models of the pinning potential. Comprised by a Magnus term, a dissipative term and a pinning force, Thiele’s equation resembles Newton’s law but in virtue of the topological character to the first, it differs significantly from Newtonian mechanics and because the Magnus force is dominant, unlike its mechanical counterpart—the Coriolis force—skyrmion trajectories do not necessarily have mechanical counterparts. This is important if we are to understand skyrmion dynamics and tap into its potential for data-storage technology. We identify a pinning threshold velocity for the one-dimensional pinning potential and for a two-dimensional attractive potential we find a pinning point and the skyrmion trajectories toward that point are spirals whose frequency (compare Kepler’s second law) and amplitude-decay depend only on the Gilbert constant and potential at the pinning point. Other scenarios, e.g. other choices of initial spin velocity, a repulsive potential, etc are also investigated.
NASA Astrophysics Data System (ADS)
Liu, Yawei; Zhang, Xianren
2016-12-01
In this work, we focus on investigating how nanobubbles mediate long-range interaction between neighboring solid substrates in the presence of the contact line pinning effect caused by surface heterogeneities. Using the constrained lattice density functional theory (LDFT), we prove that the nanobubbles, which take the form of vapor bridges here, are stabilized by the pinning effect if the separation between two substrates is less than a critical distance. The critical distance strongly depends on the chemical potential (i.e., the degree of saturation) and could become extremely long at a special chemical potential. Moreover, under the pinning effect, the substrate chemistry only determines the stability of the vapor bridges and the range of the capillary force, but has less influences on the magnitude of the capillary force, indicating that the substrate chemistry or the apparent contact angle for droplets or bubbles on the substrates is no longer a direct parameter to determine the magnitude of capillary force. A qualitative analysis for the two dimensional vapor bridges by considering the feedback mechanism can explain the results from the LDFT calculations.
NASA Technical Reports Server (NTRS)
Green, Chris; Greenwell, Chris; Brusse, jay; Krus, Dennis; Leidecker, Henning
2009-01-01
During system level testing intermittent and permanent open circuit failures of mated, crimp removable, electrical contact pairs were experienced. The root cause of the failures was determined to be low (but not zero) contact forces applied by the socket contact tines against the engaging pin. The low contact force reduces the effectiveness of the wiping action of the socket tines against the pin. The observed failure mode may be produced when insufficient wiping during mate, demate and small relative movement in use allows for the accumulation of debris or insulating films that electrically separate the contact pair. The investigation identified at least three manufacturing process control problems associated with the socket contacts that enabled shipment of contacts susceptible to developing low contact forces: (1) Improper heat treatment of the socket tines resulting in plastic rather than elastic behavior; (2) Overly thinned socket tines at their base resulting in reduced pin retention forces; (3) insufficient screening tests to identify parts susceptible to the aforementioned failure mechanisms. The results from an extensive screening program of socket contacts utilizing the industry standard contact separation force test procedures are described herein. The investigation shows this method to be capable of identifying initially weak sockets. However, sockets whose contact retention forces may degrade during use may not be screened out by pin retention testing alone. Further investigations are required to correlate low contact retention forces with increased electrical contact resistance in the presence of insulating films that may accumulate in the use environment.
NASA Technical Reports Server (NTRS)
Ding, Jeff
2015-01-01
The completed Center Innovation Fund (CIF) project used the upgraded Ultrasonic Stir Weld (USW) Prototype System (built in 2013/2014) to begin characterizing the weld process using 2219 aluminum (fig. 1). This work is being done in Bldg. 4755 at NASA Marshall Space Flight Center (MSFC). The capabilities of the USW system provides the means to precisely control and document individual welding parameters. The current upgraded system has the following capabilities: (1) Ability to 'pulse' ultrasonic (US) energy on and off and adjust parameters real-time (travel speed, spindle rpm, US amplitude, X and Z axis positions, and plunge and pin axis force; (2) Means to measure draw force; (3) Ability to record US power versus time; (4) Increasing stiffness of Z axis drive and reduce head deflection using laser technology; (5) Adding linear encoder to better control tool penetration setting; (6) Ultrasonic energy integrated into stir rod and containment plate; (7) Maximum 600 rpm; (8) Maximum Z force 15,000 lb; (9) Real-time data acquisition and logging capabilities at a minimum frequency of 10 Hz; and (10) Two separate transducer power supplies operating at 4.5 kW power.
Preliminary analysis of hot spot factors in an advanced reactor for space electric power systems
NASA Technical Reports Server (NTRS)
Lustig, P. H.; Holms, A. G.; Davison, H. W.
1973-01-01
The maximum fuel pin temperature for nominal operation in an advanced power reactor is 1370 K. Because of possible nitrogen embrittlement of the clad, the fuel temperature was limited to 1622 K. Assuming simultaneous occurrence of the most adverse conditions a deterministic analysis gave a maximum fuel temperature of 1610 K. A statistical analysis, using a synthesized estimate of the standard deviation for the highest fuel pin temperature, showed probabilities of 0.015 of that pin exceeding the temperature limit by the distribution free Chebyshev inequality and virtually nil assuming a normal distribution. The latter assumption gives a 1463 K maximum temperature at 3 standard deviations, the usually assumed cutoff. Further, the distribution and standard deviation of the fuel-clad gap are the most significant contributions to the uncertainty in the fuel temperature.
Experimental and numerical study of Bondura® 6.6 PIN joints
NASA Astrophysics Data System (ADS)
Berkani, I.; Karlsen, Ø.; Lemu, H. G.
2017-12-01
Pin joints are widely used in heavy-duty machinery such as aircrafts, cranes and offshore drilling equipment to transfer multi-dimensional shear forces. Their strength and service life depend on the clamping force in the contact region that is provided by interference fits. Though the interference fits provide full contact at the pin-hole interface under pretension loads, the contact interface reduces when the pin is subjected to an external load and hence a smaller contact surface leads to dramatic increase of the contact stress. The PIN joint of Bondura® Technology, investigated in this study, is an innovative solution intended to reduce the slack at the contact surface of the pin joint of heavy-duty machinery by using tapered sleeves on each end of the PIN. The study is aimed to better understand the contact pressure build-up and stress distribution in the supporting contact surface under pre-loading of the joint and the influence of temperature difference between part assembly and operation conditions. Numerical simulation using finite element method and diverse experimental tests were conducted. The numerical simulation and the test results, particularly the tests conducted with lubricated joints, show good conformance.
Irradiation of TZM: Uranium dioxide fuel pin at 1700 K
NASA Technical Reports Server (NTRS)
Mcdonald, G. E.
1973-01-01
A fuel pin clad with TZM and containing solid pellets of uranium dioxide was fission heated in a static helium-cooled capsule at a maximum surface temperature of 1700 K for approximately 1000 hr and to a total burnup of 2.0 percent of the uranium-235. The results of the postirradiation examination indicated: (1) A transverse, intergranular failure of the fuel pin occurred when the fuel pin reached 2.0-percent burnup. This corresponds to 1330 kW-hr/cu cm, where the volume is the sum of the fuel, clad, and void volumes in the fuel region. (2) The maximum swelling of the fuel pin was less than 1.5 percent on the fuel-pin diameter. (3) There was no visible interaction between the TZM clad and the UO2. (4) Irradiation at 1700 K produced a course-grained structure, with an average grain diameter of 0.02 centimeter and with some of the grains extending one-half of the thickness of the clad. (5) Below approximately 1500 K, the irradiation of the clad produced a moderately fine-grained structure, with an average grain diameter of 0.004 centimeter.
The Plunge Phase of Friction Stir Welding
NASA Technical Reports Server (NTRS)
Nunes, Arthur; McClure, John; Avila, Ricardo
2005-01-01
Torque and plunge force during the initial plunge phase in Friction Stir Welding were measured for a 0.5 inch diameter pin entering a 2219 aluminum alloy plate. Weld structures were preserved for metallographic observation by making emergency stops at various plunge depths. The plunging pin tool is seen to be surrounded by a very fine grained layer of recrystallized metal extending substantially below the bottom of the pin, implying a shear interface in the metal below and not at the tool-metal interface. Torque and plunge force during the initial plunge phase in Friction Stir Welding are calculated from a straight forward model based on a concept to plastic flow in the vicinity of the plunging tool compatible with structural observations. The concept: a disk of weld metal seized to and rotating with the bottom of the pin is squeezed out laterally by the plunge force and extruded upwards in a hollow cylinder around the tool. As the shear surface separating rotating disk from stationary weld metal engulfs fresh metal, the fresh metal is subjected to severe shear deformation, which results in its recrystallization. Encouraging agreement between computations and measured torque and plunge force is obtained.
NASA Astrophysics Data System (ADS)
Chopra, Manoj
High temperature superconductors (HTS) have many potential applications e.g. magnetically levitated trains, power transmission, mechanical energy storage, dent pullers, Nuclear Magnetic Resonance (N.M.R), magnetic resonance imaging (M.R.I) etc. However, one of the most daunting tasks for the applicability of HTS is the enhancement of critical current density (Jc) and flux-pinning at liquid nitrogen temperatures by microstructure design. The addition of Ysb2BaCuOsb5 (211) particles to large grain melt textured YBasb2Cusb3Osb{7-delta} (Y123) have significantly improved the transport and magnetic properties of this material. Here, a systematic quantitative analysis on the effects of the 211 addition was performed on a microscopic scale with a systematic variation in the initial volume percentage of 211. From the correlation between critical current measurements and quantitative microscopy of both (001) and (110) sections, a maximum value of Jc was observed corresponding to a measured Y123 volume percent of 20% ± 3%. Accounting for the loss of liquid phase for the present processing, the corresponding optimum initial volume of 211 for the highest measured Jc was 40%. Further comparison between the weighted Jc and the true flux pinning force (Fp) also showed a maximum pinning force for an initial 211 addition of 40%. Although, the weighted Jc starts to decrease with an initial 211 volume of above 40%, the pinning efficiency at higher magnetic fields (2-4T) of the superconducting Y123 matrix was actually improved with an increasing 211 addition to at least 50%. Though an increasing addition of 211 was effective in producing efficient flux pinning sites in the Y123 matrix, percolation paths in the Y123 matrix became limited for supercurrent flow. Hence, a measured 211 volume corresponding to 80% 211 was shown to have the best possible critical current density. Furthermore, crack opening and crack spacing of the superficial cracks were found to decrease with an increasing 211 addition and with a decreasing 211 interparticle spacing. The penetration and surface length of each of these superficial cracks were hence reduced, which led to better electrical connectivity in the Y123 matrix. In addition, the effect of additives such as platinum and cerium oxide and their effect on the defect microstructure was quantitatively determined. Average twin spacing observed experimentally, suggested that the twin boundary energy (gammasb{tw}) was 28.9mJ/msp2 normally, while it decreased to 11.35mJ/msp2 for the 0.5wt% PtOsb2 doping and 23.6 mJ/msp2 for the case of 1 wt% CeOsb2 addition. The resultant twin morphology was also found to be substantially finer with PtOsb2 doping. Twin boundary energies were independently determined from twin shape analysis. Closer observation of the twins around a 211/Y123 interface showed a {1/ Rsp2} functional dependence of the local twin spacing at the 211/Y123 interface. The present study has also led to the identification of certain novel twin structures that have been shown to he efficient flux pinning sites. A study of this structure and its relationship with 211 particle shape, dispersion and proximity to its neighbors and its consequent effect on flux pinning was shown.
NASA Astrophysics Data System (ADS)
Zhou, Weizhou; Shi, Baiou; Webb, Edmund
2017-11-01
Recently, there are many experimental and theoretical studies to understand and control the dynamic spreading of nano-suspension droplets on solid surfaces. However, fundamental understanding of driving forces dictating the kinetics of nano-suspension wetting and spreading, especially capillary forces that manifest during the process, is lacking. Here, we present results from atomic scale simulations that were used to compute forces between suspended particles and advancing liquid fronts. The role of nano-particle size, particle loading, and interaction strength on forces computed from simulations will be discussed. Results demonstrate that increasing the particle size dramatically changes observed wetting behavior from depinning to pinning. From simulations on varying particle size, a relationship between computed forces and particle size is advanced and compared to existing expressions in the literature. High particle loading significantly slowed spreading kinetics, by introducing tortuous transport paths for liquid delivery to the advancing contact line. Lastly, we show how weakening the interaction between the particle and the underlying substrate can change a system from exhibiting pinning behavior to de-pinning.
Motowidlo, Leszek R.; Lee, P. J.; Tarantini, C.; ...
2017-11-28
We report on the development of multifilamentary Nb 3Sn superconductors by a versatile powder-in-tube technique (PIT) that demonstrates a simple pathway to a strand with a higher density of flux-pinning sites that has the potential to increase critical current density beyond present levels. The approach uses internal oxidation of Zr-alloyed Nb tubes to produce Zr oxide particles within the Nb 3Sn layer that act as a dispersion of artificial pinning centres (APCs). In this design, SnO 2 powder is mixed with Cu 5Sn 4 powder within the PIT core that supplies the Sn for the A15 reaction with Nb1Zr filamentmore » tubes. Initial results show an average grain size of ~38 nm in the A15 layer, compared to the 90–130 nm of typical APC-free high-J c strands made by conventional PIT or Internal Sn processing. Furthermore, there is a shift in the peak of the pinning force curve from H/H irr of ~0.2 to ~0.3 and the pinning force curves can be deconvoluted into grain boundary and point-pinning components, the point-pinning contribution dominating for the APC Nb-1wt%Zr strands.« less
NASA Astrophysics Data System (ADS)
Motowidlo, L. R.; Lee, P. J.; Tarantini, C.; Balachandran, S.; Ghosh, A. K.; Larbalestier, D. C.
2018-01-01
We report on the development of multifilamentary Nb3Sn superconductors by a versatile powder-in-tube technique (PIT) that demonstrates a simple pathway to a strand with a higher density of flux-pinning sites that has the potential to increase critical current density beyond present levels. The approach uses internal oxidation of Zr-alloyed Nb tubes to produce Zr oxide particles within the Nb3Sn layer that act as a dispersion of artificial pinning centres (APCs). In this design, SnO2 powder is mixed with Cu5Sn4 powder within the PIT core that supplies the Sn for the A15 reaction with Nb1Zr filament tubes. Initial results show an average grain size of ˜38 nm in the A15 layer, compared to the 90-130 nm of typical APC-free high-J c strands made by conventional PIT or Internal Sn processing. There is a shift in the peak of the pinning force curve from H/H irr of ˜0.2 to ˜0.3 and the pinning force curves can be deconvoluted into grain boundary and point-pinning components, the point-pinning contribution dominating for the APC Nb-1wt%Zr strands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motowidlo, Leszek R.; Lee, P. J.; Tarantini, C.
We report on the development of multifilamentary Nb 3Sn superconductors by a versatile powder-in-tube technique (PIT) that demonstrates a simple pathway to a strand with a higher density of flux-pinning sites that has the potential to increase critical current density beyond present levels. The approach uses internal oxidation of Zr-alloyed Nb tubes to produce Zr oxide particles within the Nb 3Sn layer that act as a dispersion of artificial pinning centres (APCs). In this design, SnO 2 powder is mixed with Cu 5Sn 4 powder within the PIT core that supplies the Sn for the A15 reaction with Nb1Zr filamentmore » tubes. Initial results show an average grain size of ~38 nm in the A15 layer, compared to the 90–130 nm of typical APC-free high-J c strands made by conventional PIT or Internal Sn processing. Furthermore, there is a shift in the peak of the pinning force curve from H/H irr of ~0.2 to ~0.3 and the pinning force curves can be deconvoluted into grain boundary and point-pinning components, the point-pinning contribution dominating for the APC Nb-1wt%Zr strands.« less
Characteristics of dust voids in a strongly coupled laboratory dusty plasma
NASA Astrophysics Data System (ADS)
Bailung, Yoshiko; Deka, T.; Boruah, A.; Sharma, S. K.; Pal, A. R.; Chutia, Joyanti; Bailung, H.
2018-05-01
A void is produced in a strongly coupled dusty plasma by inserting a cylindrical pin (˜0.1 mm diameter) into a radiofrequency discharge argon plasma. The pin is biased externally below the plasma potential to generate the dust void. The Debye sheath model is used to obtain the sheath potential profile and hence to estimate the electric field around the pin. The electric field force and the ion drag force on the dust particles are estimated and their balance accounts well for the maintenance of the size of the void. The effects of neutral density as well as dust density on the void size are studied.
NASA Technical Reports Server (NTRS)
Slaby, J. G.; Siegel, B. L.
1973-01-01
The examination of 27 fuel pins irradiated for up to 13,000 hours at 990 C is described. The fuel pin clad was a tantalum alloy with uranium nitride as the nuclear fuel. Two nominal fuel pin diameters were tested with a maximum burnup of 2.34 atom percent. Twenty-two fuel pins were tested for fission gas leaks; thirteen pins leaked. Clad ductility tests indicated clad embrittlement. The embrittlement is attributed to hydrogen from an n,p reaction in the fuel. Fuel swelling was burnup dependent, and the amount of fission gas release was low, generally less than 0.5 percent. No incompatibilities between fuel, liner, and clad were in evidence.
Pinning in BSCCO above the ordinary irreversibility line
NASA Astrophysics Data System (ADS)
Indenbom, M. V.; van der Beek, C. J.; Berseth, V.; Konczykowski, M.; Motohira, N.; Berger, H.; Benoit, W.
1996-12-01
Frequency-dependent observations of magnetic flux structures are used to show that pinning plays a principal role in the whole mixed state in Bi2Sr2CaCu2O8 (BSCCO) single crystals. We speculate that the random pinning force on the moving vortices may dominate over thermal fluctuations and considerably modify the position of the vortex lattice phase transition.
Flux pinning mechanism in codoped-MgB2 with Al2O3 and SiC
NASA Astrophysics Data System (ADS)
Kiafiroozkoohi, Narjess Sadat; Ghorbani, Shaban Reza; Arabi, Hadi
2018-05-01
MgB2 superconductor samples, co-doped with 0.02 wt of Al2O3 and 0.02 wt SiC, have been examined by M-H loop measurements and calculation of the critical current density based on the Bean model. Normalized volume pinning force, f = F/Fmax, as a function of the reduced magnetic field, h = H/Hmax has been obtained at each temperature. Hughochi flux pinning model, which was included the normal point pinning, the normal surface pinning, and the pinning based on spatial variation in the Ginzburg-Landau parameter, was used to study the flux pinning mechanisms. It was found that the Δκ effect and the normal point pinning mechanisms play the main role in the flux pinning at the magnetic field lower than Hmax and the contribution of the Δκ mechanism increases with the increasing temperature, while the contribution of normal point pinning mechanism decreases. At magnetic field larger than Hmax, the only mechanism that acts as the flux pinning was the normal surface pinning mechanism.
Fixation of the Achilles tendon insertion using suture button technology.
Fanter, Nathan J; Davis, Edward W; Baker, Champ L
2012-09-01
In the operative treatment of Achilles insertional tendinopathy, no guidelines exist concerning which form of fixation of the Achilles tendon insertion is superior. Transcalcaneal drill pin passage does not place any major plantar structures at risk, and the addition of a Krackow stitch and suture button to the fixation technique provides a significant increase in ultimate load to failure in Achilles tendon insertional repairs. Controlled laboratory study. The Achilles tendon insertions in 6 fresh-frozen cadaveric ankles were detached, and transcalcaneal drill pins were passed. Plantar dissection took place to evaluate the drill pin relationship to the plantar fascia, lateral plantar nerve and artery, flexor digitorum longus tendon, and master knot of Henry. The Achilles tendons were then repaired with a double-row suture anchor construct alone or with a suture button and Krackow stitch added to the double-row suture anchor construct. The repairs were then tested to maximum load to failure at 20 mm/min. The mode of failure was recorded, and the mean maximum load to failure was assessed using the Student t test for distributions with equal variance. Transcalcaneal drill pin passage did not place any selected anatomic structures at risk. The mean maximum load to failure for the suture bridge group was 239.2 N; it was 391.4 N for the group with the suture button (P = .014). The lateral plantar artery was the structure placed at greatest risk from drill pin placement, with a mean distance of 22.7 mm (range, 16.5-29.2 mm) between the pin and artery. In this laboratory study, transcalcaneal drill pin passage appeared to be anatomically safe, and the use of suture button technology with a Krackow stitch for Achilles tendon insertional repair significantly increased repair strength. Achilles tendon insertional repair with suture button fixation and a Krackow stitch may facilitate the earlier institution of postoperative rehabilitation and improve clinical outcomes.
Periodic synchronization and chimera in conformist and contrarian oscillators
NASA Astrophysics Data System (ADS)
Hong, Hyunsuk
2014-06-01
We consider a system of phase oscillators that couple with both attractive and repulsive interaction under a pinning force and explore collective behavior of the system. The oscillators can be divided into two subpopulations of "conformist" oscillators with attractive interaction and "contrarian" ones with repulsive interaction. We find that the interplay between the pinning force and the opposite relationship of the conformist and contrarian oscillators induce peculiar dynamic states: periodic synchronization, breathing chimera, and fully pinned state depending on the fraction of the conformists. Using the Watanabe-Strogatz transformation, we reduce the dynamics into a low-dimensional one and find that the above dynamic states are generated from the reduced dynamics.
Kim, Sung Jae; Kim, Sung Hwan; Kim, Young Hwan; Chun, Yong Min
2015-01-01
The authors have observed a failure to achieve secure fixation in elderly patients when inserting a half-pin at the anteromedial surface of the tibia. The purpose of this study was to compare two methods for inserting a half-pin at tibia diaphysis in elderly patients. Twenty cadaveric tibias were divided into Group C or V. A half-pin was inserted into the tibias of Group C via the conventional method, from the anteromedial surface to the interosseous border of the tibia diaphysis, and into the tibias of Group V via the vertical method, from the anterior border to the posterior surface at the same level. The maximum insertion torque was measured during the bicortical insertion with a torque driver. The thickness of the cortex was measured by micro-computed tomography. The relationship between the thickness of the cortex engaged and the insertion torque was investigated. The maximum insertion torque and the thickness of the cortex were significantly higher in Group V than Group C. Both groups exhibited a statistically significant linear correlation between torque and thickness by Spearman's rank correlation analysis. Half-pins inserted by the vertical method achieved purchase of more cortex than those inserted by the conventional method. Considering that cortical thickness and insertion torque in Group V were significantly greater than those in Group C, we suggest that the vertical method of half-pin insertion may be an alternative to the conventional method in elderly patients.
Single-vortex pinning and penetration depth in superconducting NdFeAsO 1-xF x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jessie T.; Kim, Jeehoon; Huefner, Magdalena
2015-10-12
We use a magnetic force microscope (MFM) to investigate single vortex pinning and penetration depth in NdFeAsO 1-xF x, one of the highest-T c iron-based superconductors. In fields up to 20 Gauss, we observe a disordered vortex arrangement, implying that the pinning forces are stronger than the vortex-vortex interactions. We measure the typical force to depin a single vortex, F depin ≃ 4.5 pN, corresponding to a critical current up to J c ≃ 7×10 5 A/cm 2. As a result, our MFM measurements allow the first local and absolute determination of the superconducting in-plane penetration depth in NdFeAsO 1-xFmore » x, λ ab = 320 ± 60 nm, which is larger than previous bulk measurements.« less
Phantu, Metinee; Sutthiopad, Malee; Luengviriya, Jiraporn; Müller, Stefan C; Luengviriya, Chaiya
2017-04-01
We present an investigation on the breakup of free and pinned spiral waves under an applied electrical current in the Belousov-Zhabotinsky reaction. Spiral fronts propagating towards the negative electrode are decelerated. A breakup of the spiral waves occurs when some segments of the fronts are stopped by a sufficiently strong electrical current. In the absence of obstacles (i.e., free spiral waves), the critical value of the electrical current for the wave breakup increases with the excitability of the medium. For spiral waves pinned to circular obstacles, the critical electrical current increases with the obstacle diameter. Analysis of spiral dynamics shows that the enhancement of the robustness against the breakup of both free and pinned spiral waves is originated by the increment of wave speed when either the excitability is strengthened or the obstacle size is enlarged. The experimental findings are reproduced by numerical simulations using the Oregonator model. In addition, the simulations reveal that the robustness against the forced breakup increases with the activator level in both cases of free and pinned spiral waves.
Calculation and analysis of shear resistance of segment ring joint with shear pin
NASA Astrophysics Data System (ADS)
Wu, Shengzhi; Huang, Haibin; Wang, Mingnian; Xiao, Shihui; Liu, Dagang
2018-03-01
In order to get the effect of shear pins between segments on the shear resistance of segment girth joints. Take the Maliuzhou traffic tunnel project of Zhuhai which with super large diameter and Marine Composite strata as the research object, the longitudinal shear stiffness of tunnel shear considering the shear rigidity of shear pins was obtained through the finite element shear experiment of segment ring. By comparing the calculation results of shear pin and non shear pin between segment ring connections, the conclusion that shear pin setting can effectively decompose and transfer shear force and control the dislocation between segment ring blocks is obtained. The study can be used as reference for the design and construction of shield tunnel.
Flux pinning characteristics and irreversibility line in high temperature superconductors
NASA Technical Reports Server (NTRS)
Matsushita, T.; Ihara, N.; Kiuchi, M.
1995-01-01
The flux pinning properties in high temperature superconductors are strongly influenced by thermally activated flux motion. The scaling relation of the pinning force density and the irreversibility line in various high temperature superconductors are numerically analyzed in terms of the flux creep model. The effect of two factors, i.e., the flux pinning strength and the dimensionality of the material, on these properties are investigated. It is speculated that the irreversibility line in Bi-2212 superconductors is one order of magnitude smaller than that in Y-123, even if the flux pinning strength in Bi-2212 is improved up to the level of Y-123. It is concluded that these two factors are equally important in determination of the flux pinning characteristics at high temperatures.
Brief: Field measurements of casing tension forces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quigley, M.S.; Lewis, D.B.; Boswell, R.S.
1995-02-01
Tension forces acting on individual casing joints were accurately measured during installation of 10,158 ft of 9 5/8-in. {times} 47-lbm/ft casing and 11,960 ft of 11 7/8-in. {times} 71.8-lbm/ft casing. A unique casing load table (CLT) weighed the casing string after the addition of each casing joint. Strain gauges attached inside the pin ends of instrumented casing joints (ICJ`s) directly measured tension force on those joints. A high-speed computer data-acquisition system (DAS) automatically recorded data from all the sensors. Several casing joints were intentionally subjected to extreme deceleration to determine upper limits for dynamic tension forces. Data from these testsmore » clearly show effects of wellbore friction and casing handling conditions. In every case, tension forces in the casing during maximum deceleration were considerably less than expected. In some cases, the highest tension forces occurred when the casing lifted out of the slips. Peak tension forces caused by setting the casing slips were typically no more than 5% greater than tension forces in the casing at rest. This dynamic amplification was far less than the 60% value used in the previous casing design method. Reducing the safety factor for installation loads has permitted use of lighter, less-expensive casing than dictated by older design criteria.« less
Bending of an Aspirated Pin During Rigid Bronchoscopy: Safeguards and Pitfalls.
Elsayed, Abdelrahman A A; Mansour, Albaraa A; Amin, Ahmed A A; Ahmed, Mohsen S M
2018-04-13
Pin aspiration is a common problem in Muslim countries, where many women wear veils (hijab). This condition is usually treated using either a rigid or a flexible bronchoscope, and yet occasionally requires surgical approach. Pin bending may be necessary to extract impacted pins during the therapeutic rigid bronchoscopy. Medical records of patients who had pins extracted with a bending technique during the period from January 2012 to December 2016 in 1 institution were analyzed. Information on intraoperative and postoperative complications was collected. Between 2012 and 2016, 315 rigid bronchoscopies were performed for pin extraction; in 38 cases, bending of the pin was required for the extraction because they were in a position that did not allow simple extraction. The procedure was successful in cases and there were no major complications. The extraction of visible, distally located or impacted pins can be safely performed by experienced bronchoscopists using the bending technique. Some safeguards and pitfalls must be noted to ensure maximum safety.
Pinning transition in shrinking nanobubbles
NASA Astrophysics Data System (ADS)
Tan, Beng Hau; An, Hongjie; Ohl, Claus-Dieter
Surface nanobubbles are unusually long-lived gaseous domains that form on immersed substrates. Although liquid droplets are known to grow or shrink in either an unpinned (constant contact angle) or a pinned (constant footprint radius) mode, surface nanobubbles have only ever been observed in the pinned state. Theory suggests that, provided the nanobubbles are sustained by supersaturated liquid, they are indefinitely stable in the pinned mode, but rapidly dissolve into bulk liquid if not. Yet many basic aspects of the line pinning are not yet clarified, such as its magnitude or the conditions in which it becomes dominant. In this talk we present experiments with total internal fluorescence microscopy in which nanobubbles nucleated with a temperature difference method initially shrink in an unpinned mode, before transitioning to a pinned state. Using a simple energy balance we recover an estimate for the pinning force on each nanobubble.
Development of very high J c in Ba(Fe 1-xCo x) 2As 2 thin films grown on CaF 2
Tarantini, C.; Kametani, F.; Lee, S.; ...
2014-12-03
Ba(Fe 1-xCo x) 2As 2 is the most tunable of the Fe-based superconductors (FBS) in terms of acceptance of high densities of self-assembled and artificially introduced pinning centres which are effective in significantly increasing the critical current density, J c. Moreover, FBS are very sensitive to strain, which induces an important enhancement in critical temperature,T c, of the material. In this study we demonstrate that strain induced by the substrate can further improve J c of both single and multilayer films by more than that expected simply due to the increase in T c. The multilayer deposition of Ba(Fe 1-xComore » x) 2As 2 on CaF 2 increases the pinning force density (F p=J c x μ₀H) by more than 60% compared to a single layer film, reaching a maximum of 84 GN/m 3 at 22.5 T and 4.2 K, the highest value ever reported in any 122 phase.« less
NASA Astrophysics Data System (ADS)
Shan, Hangying; Xiao, Jun; Chu, Qiyi
2018-05-01
The Z-Pin interfacial bond properties play an important role in the structural performance of X-Cor® sandwich structures. This paper presents an experimental investigation on bond-slip behavior of Z-Pin interfaces using Z-Pin pull-out test. Based on the experimental data the whole Z-Pin pull-out process consists of three stages: initial bonding, debonding and frictional sliding. Comparative experimental study on the influence of design parameters on bond-slip behavior of Z-Pin interfaces has also been performed. Numerical analyses were conducted with the ABAQUS finite element (FE) program to simulate the Z-Pins bond-slip response of the pull-out test. The Z-Pins interfacial bond-slip behavior was implemented using nonlinear spring elements characterized with the constitutive relation from experimental results. Numerical results were validated by comparison with experimental data, and reasonably good agreement was achieved between experimental and analytical pull-out force-slip curves.
Masoud, Ahmed I; Tsay, T Peter; BeGole, Ellen; Bedran-Russo, Ana K
2014-11-01
To compare the following over a period of 8 weeks: (1) force decay between thermoplastic (TP) and thermoset (TS) elastomeric chains; (2) force decay between light (200-g) and heavy (350-g) initial forces; and (3) force decay between direct chains and chain loops (stretched from one pin around the second pin and back to the first pin). TP and TS chains were obtained from American Orthodontics™ (AOTP, AOTS) and ORMCO™ (OrTP, OrTS). Each of the four chain groups was subdivided into four subgroups with 10 specimens per subgroup: (1) direct chains light force, (2) direct chains heavy force, (3) chain loops light force, and (4) chain loops heavy force. The experiment was performed in artificial saliva (pH of 6.75) at 37°C. A significant difference was found between TP and TS chains, with an average mean difference of around 20% more force decay found in the TP chains (P < .001, α = .05). There was no significant difference between direct chains and chain loops except in OrTP, in which direct chains showed more force decay. There was also no significant difference in force decay identified when using light vs heavy forces. TS chains decayed less than TP chains, and chain loop retraction was beneficial only when using OrTP chains. Contrary to the interchangeable use of TP and TS chains in the published literature and in clinical practice, this study demonstrates that they perform differently under stress and that a clear distinction should be made between the two.
Kautzner, J; Držík, M; Handl, M; Povýšil, C; Kos, P; Trč, T; Havlas, V
2017-01-01
PURPOSE OF THE STUDY Hamstring grafts are commonly used for ACL reconstruction. The purpose of our study is to determine the effects of the suspension fixation compared to graft cross-pinning transfixation, and the effect(s) of structural damage during the preparation of the graft on biomechanical properties of the graft. MATERIAL AND METHODS The design of the study is a cadaveric biomechanical laboratory study. 38 fresh-frozen human hamstring specimens from 19 cadaveric donors were used. The grafts were tested for their loading properties. One half of each specimen was suspended over a 3.3mm pin, the other half was cross-pinned by a 3.3mm pin to simulate the graft cross-pinning technique. Single impact testing was performed and the failure force, elongation and acceleration/deceleration of each graft was recorded and the loading force vs. elongation of the graft specimens was calculated. Results for suspended and cross-pinned grafts were analysed using ANOVA method, comparing the grafts from each donor. RESULTS The ultimate strength of a double-strand gracilis graft was 1287 ± 134 N when suspended over a pin, the strength of a cross-pinned graft was 833 ± 111 N. For double-strand semitendinosus grafts the strengths were 1883 ± 198 and 997 ± 234 N, respectively. Thus, the failure load for the cross-pinning method is only 64.7% or 52.9% for the suspension method. DISCUSSION Structural damage to the graft significantly reduces the graft strength. Also, extensive suturing during preparation of the graft reduces its strength. CONCLUSIONS Fixation methods that do not interfere with the graft's structure should be used to reduce the risk of graft failure. Key words: ACL reconstruction, hamstring graft, biomechanical testing.
NASA Astrophysics Data System (ADS)
Zhang, Xiangyang; Li, Yong; Van Hoa, Suong; Xiao, Jun; Chu, Qiyi
2018-02-01
Skin/stiffener debonding has been a longstanding concern for the users of stiffened composite panels in long-term service. Z-pinning technology is an emerging solution to reinforce the composite assembly joints. This work experimentally characterizes the progressive debonding of Z-pinned skin/stiffener interface with the skin under static bend loading. The three-stage failure process is identified as: flange edge debonding, pin/laminate debonding, and ultimate structural failure. Three different distribution patterns were compared in terms of the static debonding properties revealed the affirmative fact that locating pins in high normal stress regions, that is close to the flange edges in skin/stiffener structures, is more beneficial to utilize the full potential of Z-pinning reinforcement. The unit strip FE model was developed and demonstrated effective to analysis the effect of Z-pin distribution on the ultimate debond load. On the other hand, the evolution of fatigue cracks at Z-pinned skin/flange interface was investigated with a series of displacement-controlled fatigue bending tests and microscopic observations. Results show that Z-pinning postpones crack initiations at low displacement levels, and the remarkable crack-arresting function of pins enables the structure a prolonged fatigue life. However, pins become less effective when the maximum displacement exceeds the crack initiation level due to gradually pullout of pins.
Effect of α-particle irradiation on a NdFeAs(O,F) thin film
NASA Astrophysics Data System (ADS)
Tarantini, C.; Iida, K.; Sumiya, N.; Chihara, M.; Hatano, T.; Ikuta, H.; Singh, R. K.; Newman, N.; Larbalestier, D. C.
2018-07-01
The effect of α-particle irradiation on a NdFeAs(O,F) thin film has been investigated to determine how the introduction of defects affects basic superconducting properties, including the critical temperature T c and the upper critical field H c2, and properties more of interest for applications, like the critical current density J c and the related pinning landscape. The irradiation-induced suppression of the film T c is significantly smaller than on a similarly damaged single crystal. Moreover H c2 behaves differently, depending on the field orientation: for H//c the H c2 slope monotonically increases with increasing disorder, whereas for H//ab it remains constant at low dose and it increases only when the sample is highly disordered. This suggests that a much higher damage level is necessary to drive the NdFeAs(O,F) thin film into the dirty limit. Despite the increase in the low temperature H c2, the effects on the J c(H//c) performances are moderate in the measured temperature and field ranges, with a shifting of the pinning force maximum from 4.5 to 6 T after an irradiation of 2 × 1015 cm-2. On the contrary, J c(H//ab) is always suppressed. The analysis demonstrates that irradiation does introduce point defects (PD) acting as pinning centres proportionally to the irradiation fluence but also suppresses the effectiveness of c-axis correlated pinning present in the pristine sample. We estimate that significant performance improvements may be possible at high field or at temperatures below 10 K. The suppression of the J c(H//ab) performance is not related to a decrease of the J c anisotropy as found in other superconductors. Instead it is due to the presence of PD that decrease the efficiency of the ab-plane intrinsic pinning typical of materials with a layered structure.
Enhanced pinning in superconducting thin films with graded pinning landscapes
NASA Astrophysics Data System (ADS)
Motta, M.; Colauto, F.; Ortiz, W. A.; Fritzsche, J.; Cuppens, J.; Gillijns, W.; Moshchalkov, V. V.; Johansen, T. H.; Sanchez, A.; Silhanek, A. V.
2013-05-01
A graded distribution of antidots in superconducting a-Mo79Ge21 thin films has been investigated by magnetization and magneto-optical imaging measurements. The pinning landscape has maximum density at the sample border, decreasing linearly towards the center. Its overall performance is noticeably superior than that for a sample with uniformly distributed antidots: For high temperatures and low fields, the critical current is enhanced, whereas the region of thermomagnetic instabilities in the field-temperature diagram is significantly suppressed. These findings confirm the relevance of graded landscapes on the enhancement of pinning efficiency, as recently predicted by Misko and Nori [Phys. Rev. B 85, 184506 (2012)].
Rigid levitation, flux pinning, thermal depinning and fluctuation in high-Tc superconductors
NASA Technical Reports Server (NTRS)
Brandt, E. H.
1991-01-01
Here, the author shows that the strong velocity-independent frictional force on a levitating superconductor and on any type-II superconductor moving in a homogeneous magnetic field is caused by pinning and depinning of the magnetic flux lines in its interior. Levitation may thus be used to investigate the pinning properties of a superconductor, and friction in a superconductor bearing may be minimized by choosing appropriate materials and geometries.
NASA Astrophysics Data System (ADS)
Junginger, T.; Abidi, S. H.; Maffett, R. D.; Buck, T.; Dehn, M. H.; Gheidi, S.; Kiefl, R.; Kolb, P.; Storey, D.; Thoeng, E.; Wasserman, W.; Laxdal, R. E.
2018-03-01
The performance of superconducting radiofrequency (SRF) cavities used for particle accelerators depends on two characteristic material parameters: field of first flux entry Hentry and pinning strength. The former sets the limit for the maximum achievable accelerating gradient, while the latter determines how efficiently flux can be expelled related to the maximum achievable quality factor. In this paper, a method based on muon spin rotation (μ SR ) is developed to probe these parameters on samples. It combines measurements from two different spectrometers, one being specifically built for these studies and samples of different geometries. It is found that annealing at 1400 °C virtually eliminates all pinning. Such an annealed substrate is ideally suited to measure Hentry of layered superconductors, which might enable accelerating gradients beyond bulk niobium technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Hechang; Petrovic, C.
The critical current density Jabc of K xFe 2-ySe₂ single crystals can be enhanced by more than one order of magnitude, up to ~2.1×10⁴ A/cm² by the post annealing and quenching technique. A scaling analysis reveals the universal behavior of the normalized pinning force as a function of the reduced field for all temperatures, indicating the presence of a single vortex pinning mechanism. The main pinning sources are three-dimensional (3D) point-like normal cores. The dominant vortex interaction with pinning centers is via spatial variations in critical temperature T c (“δT c pinning”).
Sequential vortex hopping in an array of artificial pinning centers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keay, J. C.
2010-02-24
We use low-temperature magnetic force microscopy (MFM) to study the hopping motion of vortices in an array of artificial pinning centers (APCs). The array consists of nanoscale holes etched in a niobium thin film by Ar-ion sputtering through an anodic aluminum-oxide template. Variable-temperature magnetometry shows a transition temperature of 7.1 K and an enhancement of the magnetization up to the third matching field at 5 K. Using MFM with attractive and repulsive tip-vortex interaction, we measure the vortex-pinning strength and investigate the motion of individual vortices in the APC array. The depinning force for individual vortices at low field rangedmore » from 0.7 to 1.2 pN. The motion of individual vortices was found to be reproducible and consistent with movement between adjacent holes in the film. The movements are repeatable but the sequence of hops depends on the scan direction. This asymmetry in the motion indicates nonuniform local pinning, a consequence of array disorder and hole-size variation.« less
Lee, Wei-Shiun; Linz, Shang-Chih; Shih, Kao-Shang; Chao, Ching-Kong; Chen, Yeung-Jen; Fan, Chang-Yuan
2012-10-01
Stiffness and contracture of the periarticular tissues are common complications of a post-traumatic elbow. Arthrodiatasis is a surgical technique that uses an external fixator for initial immobilization and subsequent distraction. The two prerequisites for an ideal arthrodiatasis are concentric distraction (avoiding bony contact) and hinge alignment (reducing internal stress). This study used the finite element (FE) method to clarify the relationship between these two prerequisites and the initial conditions (pin placement, elbow angle, and distraction mode). A total of 12 variations of the initial conditions were symmetrically arranged to evaluate their biomechanical influence on concentric distraction and hinge alignment. The humeroulnar surface was hypothesized to be ideally distracted orthogonal to the line joining the tips of the olecranon and the coronoid. The eccentric separation of the humeroulnar surfaces is a response to the non-orthogonality of the distracting force and joining line. Pin placement significantly affects the effective moment arm of the fixing pins to distract the bridged elbow. Both elbow angle and distraction mode directly alter the direction of the distracting force at the elbow center. In general, the hinges misalignment occurs in a direction opposite to the distraction-activated site. After joint distraction, the elastic deflection of the fixing pins inevitably makes both elbow and fixator hinges to misalign. This indicates that both joint distraction and hinge alignment are the interactive mechanisms. The humeroulnar separation is more concentric in the situation of the 120 degrees humeral distraction by using stiffer pins with convergent placement. Even so, the eccentric displacement of the elbow hinge is a crucial consideration in the initial placement of the guiding pin to compensate for hinge misalignment.
NASA Technical Reports Server (NTRS)
Primus, H. C.
1986-01-01
Touch sensor for robot hands provides information about shape of grasped object and force exerted by gripper on object. Pins projecting from sensor create electrical signals when pressed. When grasped object depresses pin, it contacts electrode under it, connecting electrode to common electrode. Sensor indicates where, and how firmly, gripper has touched object.
The Role of Contact Line (Pinning) Forces on Bubble Blockage in Microchannels.
Mohammadi, Mahshid; Sharp, Kendra V
2015-03-01
This paper highlights the influence of contact line (pinning) forces on the mobility of dry bubbles in microchannels. Bubbles moving at velocities less than the dewetting velocity of liquid on the surface are essentially dry, meaning that there is no thin liquid film around the bubbles. For these "dry" bubbles, contact line forces and a possible capillary pressure gradient induced by pinning act on the bubbles and resist motion. Without sufficient driving force (e.g., external pressure), a dry bubble is brought to stagnation. For the first time, a bipartite theoretical model that estimates the required pressure difference across the length of stagnant bubbles with concave and convex back interfaces to overcome the contact line forces and stimulate motion is proposed. To validate our theory, the pressure required to move a single dry bubble in square microchannels exhibiting contact angle hysteresis has been measured. The working fluid was deionized water. The experiments have been conducted on coated glass channels with different surface hydrophilicities that resulted in concave and convex back interfaces for the bubbles. The experimental results were in agreement with the model's predictions for square channels. The predictions of the concave and convex back models were within 19% and 27% of the experimental measurements, respectively.
Junginger, Tobias; Abidi, S. H.; Maffett, R. D.; ...
2018-03-16
Here, the performance of superconducting radiofrequency (SRF) cavities used for particle accelerators depends on two characteristic material parameters: field of first flux entry H entry and pinning strength. The former sets the limit for the maximum achievable accelerating gradient, while the latter determines how efficiently flux can be expelled related to the maximum achievable quality factor. In this paper, a method based on muon spin rotation (μSR) is developed to probe these parameters on samples. It combines measurements from two different spectrometers, one being specifically built for these studies and samples of different geometries. It is found that annealing atmore » 1400°C virtually eliminates all pinning. Such an annealed substrate is ideally suited to measure H entry of layered superconductors, which might enable accelerating gradients beyond bulk niobium technology.« less
Connection stiffness and dynamical docking process of flux pinned spacecraft modules
NASA Astrophysics Data System (ADS)
Lu, Yong; Zhang, Mingliang; Gao, Dong
2014-02-01
This paper describes a novel kind of potential flux pinned docking system that consists of guidance navigation and control system, the traditional extrusion type propulsion system, and a flux pinned docking interface. Because of characteristics of passive stability of flux pinning, the docking control strategy of flux pinned docking system only needs a series of sequential control rather than necessary active feedback control, as well as avoidance of hazardous collision accident. The flux pinned force between YBaCuO (YBCO) high temperature superconductor bulk and permanent magnet is able to be given vent based on the identical current loop model and improved image dipole model, which can be validated experimentally. Thus, the connection stiffness between two flux pinned spacecraft modules can be calculated based on Hooke's law. This connection stiffness matrix at the equilibrium position has the positive definite performance, which can validate the passively stable connection of two flux pinned spacecraft modules theoretically. Furthermore, the relative orbital dynamical equation of two flux pinned spacecraft modules can be established based on Clohessy-Wiltshire's equations and improved image dipole model. The dynamical docking process between two flux pinned spacecraft modules can be obtained by way of numerical simulation, which suggests the feasibility of flux pinned docking system.
Connection stiffness and dynamical docking process of flux pinned spacecraft modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Yong; Zhang, Mingliang, E-mail: niudun12@126.com; Gao, Dong
2014-02-14
This paper describes a novel kind of potential flux pinned docking system that consists of guidance navigation and control system, the traditional extrusion type propulsion system, and a flux pinned docking interface. Because of characteristics of passive stability of flux pinning, the docking control strategy of flux pinned docking system only needs a series of sequential control rather than necessary active feedback control, as well as avoidance of hazardous collision accident. The flux pinned force between YBaCuO (YBCO) high temperature superconductor bulk and permanent magnet is able to be given vent based on the identical current loop model and improvedmore » image dipole model, which can be validated experimentally. Thus, the connection stiffness between two flux pinned spacecraft modules can be calculated based on Hooke's law. This connection stiffness matrix at the equilibrium position has the positive definite performance, which can validate the passively stable connection of two flux pinned spacecraft modules theoretically. Furthermore, the relative orbital dynamical equation of two flux pinned spacecraft modules can be established based on Clohessy-Wiltshire's equations and improved image dipole model. The dynamical docking process between two flux pinned spacecraft modules can be obtained by way of numerical simulation, which suggests the feasibility of flux pinned docking system.« less
Tribological characterization of TiN coatings prepared by magnetron sputtering
NASA Astrophysics Data System (ADS)
Makwana, Nishant S.; Chauhan, Kamlesh V.; Sonera, Akshay L.; Chauhan, Dharmesh B.; Dave, Divyeshkumar P.; Rawal, Sushant K.
2018-05-01
Titanium nitride (TiN) coating deposited on aluminium and brass pin substrates using RF reactive magnetron sputtering. The structural properties and surface morphology were characterized by X-ray diffraction (XRD), atomic force microscope (AFM) and field emission scanning electron microscope (FE-SEM). There was formation of (101) Ti2N, (110) TiN2 and (102) TiN0.30 peaks at 3.5Pa, 2Pa and 1.25Pa sputtering pressure respectively. The tribological properties of coating were inspected using pin on disc tribometer equipment. It was observed that TiN coated aluminium and brass pins demonstrated improved wear resistance than uncoated aluminium and brass pins.
NASA Astrophysics Data System (ADS)
Hu, Yanying; Liu, Huijie; Du, Shuaishuai
2018-06-01
The aim of the present article is to offer insight into the effects of pin profiles on interface defects, tensile shear properties, microstructures, and the material flow of friction stir lap welded joints. The results indicate that, compared to the lap joints welded by the single threaded plane pin, the three-plane threaded pin, and the triangle threaded pin, the lap joint obtained by the conventional conical threaded pin is characterized by the minimum interface defect. The alternate threads and planes on the pin provide periodical stress, leading to pulsatile material flow patterns. Under the effect of pulsatile revolutions, an asymmetrical flow field is formed around the tool. The threads on the pin force the surrounding material to flow downward. The planes cannot only promote the horizontal flow of the material by scraping, but also provide extra space for the material vertical flow. A heuristic model is established to describe the material flow mechanism during friction stir lap welding under the effect of pulsatile revolutions.
Kronberg, James W.
1990-08-07
A device for bending and trimming the pins of a dual-inline-package component and the like for surface mounting rather than through mounting to a circuit board comprises, in a first part, in pin cutter astride a holder having a recess for holding the component, a first spring therebetween, and, in a second part, two flat members pivotally interconnected by a hinge and urged to an upward peaked position from a downward peaked position by a second spring. As a downward force is applied to the pin cutter it urges the holder downward, assisted by the first spring and a pair of ridges riding on shoulders of the holder, to carry the component against the upward peaked flat members which guide the pins outwardly. As the holder continues downwardly, the flat members pivot to the downward peaked position bending the pins upwardly against the sides of the holder. When the downward movement is met with sufficient resistance, the ridges of the pin cutter ride over the holder's shoulders to continue downward to cut any excess length of pin.
Electrical contact tool set station
Byers, M.E.
1988-02-22
An apparatus is provided for the precise setting to zero of electrically conductive cutting tools used in the machining of work pieces. An electrically conductive cylindrical pin, tapered at one end to a small flat, rests in a vee-shaped channel in a base so that its longitudinal axis is parallel to the longitudinal axis of the machine's spindle. Electronic apparatus is connected between the cylindrical pin and the electrically conductive cutting tool to produce a detectable signal when contact between tool and pin is made. The axes of the machine are set to zero by contact between the cutting tool and the sides, end or top of the cylindrical pin. Upon contact, an electrical circuit is completed, and the detectable signal is produced. The tool can then be set to zero for that axis. Should the tool contact the cylindrical pin with too much force, the cylindrical pin would be harmlessly dislodged from the vee-shaped channel, preventing damage either to the cutting tool or the cylindrical pin. 5 figs.
Analysis of Full-Test tools and their limitations as applied to terminal junction blocks
NASA Technical Reports Server (NTRS)
Smith, J. L.
1983-01-01
Discovery of unlocked contacts in Deutsch Block terminal junctions in Solid Rocket Booster flight hardware prompted an investigation into pull test techniques to help insure against possible failures. Internal frictional forces between socket and pin and between wire and grommet were examined. Pull test force must be greater than internal friction yet less than the crimp strength of the pin or socket. For this reason, a 100 percent accurate test is impossible. Test tools were evaluated. Available tools are adequate for pull testing.
2015-08-01
Forced Convective Heat Transfer Across a Pin Fin Micro Heat Sink”, International Journal of Heat and Mass Transfer 48 (2005) 3615-3627. 3. Cao...from Pin Fins Situated in an Oncoming Longitudinal Flow Which Turns to Crossflow”, International Journal of Heat and Mass Transfer, Vol. 25 No. 5...Flow Forced Convection”, International Journal of Heat and Mass Transfer, Vol. 39, No. 2, pp. 311-317, 1996. 11. Khan, W., Culham, J., and Yovanovich
Auto-Adjustable Tool for Self-Reacting and Conventional Friction Stir Welding
NASA Technical Reports Server (NTRS)
Carter, Robert W. (Inventor)
2002-01-01
A friction stir welding dcvice that is configured to perform convention friction stir welding as well as self-reacting friction stir welding is described. A pin passes hrough an upper shoulder and can selectively attach 10 and detach from a lower shoulder in a preferred embodiment. A controller maintains thc discrete position of, and/or force applied by, the upper and lower shoulders during self-reacting friction stir welding, or maintains the pin at a desired depth and/or applied force during conventional friction stir welding.
Design and construction of a novel tribometer with online topography and wear measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korres, Spyridon; Dienwiebel, Martin
2010-06-15
We present a novel experimental platform that links topographical and material changes with the friction and wear behavior of oil-lubricated metal surfaces. This concept combines state-of-the-art methods for the analysis of the surface topography on the micro- and nanoscale with the online measurement of wear. At the same time, it allows for frictional and lateral force detection. Information on the topography of one of the two surfaces is gathered in situ with a three-dimensional (3D) holography microscope at a maximum frequency of 15 frames/s and higher resolution images are provided at defined time intervals by an atomic force microscope. Themore » wear measurement is conducted online by means of radio nuclide technique. The quantitative measurement of the lateral and frictional forces is conducted with a custom-built 3D force sensor. The surfaces can be lubricated with an optically transparent oil or water. The stability and precision of the setup have been tested in a model experiment. The results show that the exact same position can be relocated and examined after each load cycle. Wear and topography measurements were performed with a radioactive labeled iron pin sliding against an iron plate.« less
Campbell response in type-II superconductors under strong pinning conditions
Willa, R.; Geshkenbein, V. B.; Prozorov, R.; ...
2015-11-11
Measuring the ac magnetic response of a type II superconductor provides valuable information on the pinning landscape (pinscape) of the material. We use strong pinning theory to derive a microscopic expression for the Campbell length λC, the penetration depth of the ac signal. We show that λ C is determined by the jump in the pinning force, in contrast to the critical current j c, which involves the jump in pinning energy. We demonstrate that the Campbell lengths generically differ for zero-field-cooled and field-cooled samples and predict that hysteretic behavior can appear in the latter situation. As a result, wemore » compare our findings with new experimental data and show the potential of this technique in providing information on the material’s pinscape.« less
Campbell response in type-II superconductors under strong pinning conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willa, R.; Geshkenbein, V. B.; Prozorov, R.
Measuring the ac magnetic response of a type II superconductor provides valuable information on the pinning landscape (pinscape) of the material. We use strong pinning theory to derive a microscopic expression for the Campbell length λC, the penetration depth of the ac signal. We show that λ C is determined by the jump in the pinning force, in contrast to the critical current j c, which involves the jump in pinning energy. We demonstrate that the Campbell lengths generically differ for zero-field-cooled and field-cooled samples and predict that hysteretic behavior can appear in the latter situation. As a result, wemore » compare our findings with new experimental data and show the potential of this technique in providing information on the material’s pinscape.« less
Canham, Colin D; Schreck, Michael J; Maqsoodi, Noorullah; Doolittle, Madison; Olles, Mark; Elfar, John C
2015-06-01
To develop a nondestructive method of measuring distal radioulnar joint (DRUJ) joint reaction force (JRF) that preserves all periarticular soft tissues and more accurately reflects in vivo conditions. Eight fresh-frozen human cadaveric limbs were obtained. A threaded Steinmann pin was placed in the middle of the lateral side of the distal radius transverse to the DRUJ. A second pin was placed into the middle of the medial side of the distal ulna colinear to the distal radial pin. Specimens were mounted onto a tensile testing machine using a custom fixture. A uniaxial distracting force was applied across the DRUJ while force and displacement were simultaneously measured. Force-displacement curves were generated and a best-fit polynomial was solved to determine JRF. All force-displacement curves demonstrated an initial high slope where relatively large forces were required to distract the joint. This ended with an inflection point followed by a linear area with a low slope, where small increases in force generated larger amounts of distraction. Each sample was measured 3 times and there was high reproducibility between repeated measurements. The average baseline DRUJ JRF was 7.5 N (n = 8). This study describes a reproducible method of measuring DRUJ reaction forces that preserves all periarticular stabilizing structures. This technique of JRF measurement may also be suited for applications in the small joints of the wrist and hand. Changes in JRF can alter native joint mechanics and lead to pathology. Reliable methods of measuring these forces are important for determining how pathology and surgical interventions affect joint biomechanics. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhavale Ashavai, Pashupati Dhakal, Anatolii A Polyanskii, Gianluigi Ciovati
We present the results of from DC magnetization and penetration depth measurements of cylindrical bulk large-grain (LG) and fine-grain (FG) niobium samples used for the fabrication of superconducting radio frequency (SRF) cavities. The surface treatment consisted of electropolishing and low temperature baking as they are typically applied to SRF cavities. The magnetization data were fitted using a modified critical state model. The critical current density Jc and pinning force Fp are calculated from the magnetization data and their temperature dependence and field dependence are presented. The LG samples have lower critical current density and pinning force density compared to FGmore » samples which implies a lower flux trapping efficiency. This effect may explain the lower values of residual resistance often observed in LG cavities than FG cavities.« less
Design of Friction Stir Welding Tool for Avoiding Root Flaws
Ji, Shude; Xing, Jingwei; Yue, Yumei; Ma, Yinan; Zhang, Liguo; Gao, Shuangsheng
2013-01-01
In order to improve material flow behavior during friction stir welding and avoid root flaws of weld, a tool with a half-screw pin and a tool with a tapered-flute pin are suggested. The effect of flute geometry in tool pins on material flow velocity is investigated by the software ANSYS FLUENT. Numerical simulation results show that high material flow velocity appears near the rotational tool and material flow velocity rapidly decreases with the increase of distance away from the axis of the tool. Maximum material flow velocity by the tool with the tapered-flute pin appears at the beginning position of flute and the velocity decreases with the increase of flow length in flute. From the view of increasing the flow velocity of material near the bottom of the workpiece or in the middle of workpiece, the tool with the half-screw pin and the tool with the tapered-flute pin are both better than the conventional tool. PMID:28788426
Design of Friction Stir Welding Tool for Avoiding Root Flaws.
Ji, Shude; Xing, Jingwei; Yue, Yumei; Ma, Yinan; Zhang, Liguo; Gao, Shuangsheng
2013-12-12
In order to improve material flow behavior during friction stir welding and avoid root flaws of weld, a tool with a half-screw pin and a tool with a tapered-flute pin are suggested. The effect of flute geometry in tool pins on material flow velocity is investigated by the software ANSYS FLUENT. Numerical simulation results show that high material flow velocity appears near the rotational tool and material flow velocity rapidly decreases with the increase of distance away from the axis of the tool. Maximum material flow velocity by the tool with the tapered-flute pin appears at the beginning position of flute and the velocity decreases with the increase of flow length in flute. From the view of increasing the flow velocity of material near the bottom of the workpiece or in the middle of workpiece, the tool with the half-screw pin and the tool with the tapered-flute pin are both better than the conventional tool.
NASA Astrophysics Data System (ADS)
Liu, Zhenlei; Ji, Shude; Meng, Xiangchen
2018-03-01
Friction stir welding (FSW), as a solid-state welding technology invented by TWI in 1991, has potential to join dissimilar Al/Mg alloys. In this study, the pin adhesion phenomenon affecting joint quality during FSW of 6061-T6 aluminum and AZ31B magnesium alloys was investigated. The adhesion phenomenon induced by higher heat input easily transformed the tapered-and-screwed pin into a tapered pin, which greatly reduced the tool's ability to drive the plasticized materials and further deteriorated joint formation. Under the condition without the pin adhesion, the complex intercalated interlayer at the bottom of stir zone was beneficial to mechanical interlocking of Al/Mg alloys, improving tensile properties. However, the formation of intermetallic compounds was still the main reason of the joint fracture, significantly deteriorating tensile properties. Under the welding speed of 60 mm/min without the pin adhesion phenomenon, the maximum tensile strength of 107 MPa and elongation of 1.2% were achieved.
Self-Reacting Friction Stir Welding for Aluminum Alloy Circumferential Weld Applications
NASA Technical Reports Server (NTRS)
Bjorkman, Gerry; Cantrell, Mark; Carter, Robert
2003-01-01
Friction stir welding is an innovative weld process that continues to grow in use, in the commercial, defense, and space sectors. It produces high quality and high strength welds in aluminum alloys. The process consists of a rotating weld pin tool that plasticizes material through friction. The plasticized material is welded by applying a high weld forge force through the weld pin tool against the material during pin tool rotation. The high weld forge force is reacted against an anvil and a stout tool structure. A variation of friction stir welding currently being evaluated is self-reacting friction stir welding. Self-reacting friction stir welding incorporates two opposing shoulders on the crown and root sides of the weld joint. In self-reacting friction stir welding, the weld forge force is reacted against the crown shoulder portion of the weld pin tool by the root shoulder. This eliminates the need for a stout tooling structure to react the high weld forge force required in the typical friction stir weld process. Therefore, the self-reacting feature reduces tooling requirements and, therefore, process implementation costs. This makes the process attractive for aluminum alloy circumferential weld applications. To evaluate the application of self-reacting friction stir welding for aluminum alloy circumferential welding, a feasibility study was performed. The study consisted of performing a fourteen-foot diameter aluminum alloy circumferential demonstration weld using typical fusion weld tooling. To accomplish the demonstration weld, weld and tack weld development were performed and fourteen-foot diameter rings were fabricated. Weld development consisted of weld pin tool selection and the generation of a process map and envelope. Tack weld development evaluated gas tungsten arc welding and friction stir welding for tack welding rings together for circumferential welding. As a result of the study, a successful circumferential demonstration weld was produced leading the way for future circumferential weld implementation.
Molybdenum-UO2 cerment irradiation at 1145 K
NASA Technical Reports Server (NTRS)
Mcdonald, G.
1971-01-01
Two molybdenum-UO2 cermet fuel pins were fission heated in a helium-cooled loop at a temperature of 1145 K and to a total burnup of 5.3 % of the U-235. After irradiation the fuel pins were measured to check dimensional stability, punctured at the plenums to determine fission gas release, and examined metallographically to determine the effect of irradiation. Burnup was determined in several sections of the fuel pin. The results of the postirradiation examination indicated: (1) There was no visible change in the fuel pins on irradiation under the above conditions. (2) The maximum swelling of the fuel pins was less than 1%. (3) There was no migration of UO2 and no visible interaction between the molybdenum and the UO2. (4) Approximately 12% of the fission gas formed was released from the cermet cone into the gas plenum.
Dual capacity reciprocating compressor
Wolfe, Robert W.
1984-01-01
A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.
Dual capacity reciprocating compressor
Wolfe, R.W.
1984-10-30
A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.
Giant increase in critical current density of K xFe 2-ySe₂ single crystals
Lei, Hechang; Petrovic, C.
2011-12-28
The critical current density Jabc of K xFe 2-ySe₂ single crystals can be enhanced by more than one order of magnitude, up to ~2.1×10⁴ A/cm² by the post annealing and quenching technique. A scaling analysis reveals the universal behavior of the normalized pinning force as a function of the reduced field for all temperatures, indicating the presence of a single vortex pinning mechanism. The main pinning sources are three-dimensional (3D) point-like normal cores. The dominant vortex interaction with pinning centers is via spatial variations in critical temperature T c (“δT c pinning”).
Effect of magnetic field on the flux pinning mechanisms in Al and SiC co-doped MgB2 superconductor
NASA Astrophysics Data System (ADS)
Kia, N. S.; Ghorbani, S. R.; Arabi, H.; Hossain, M. S. A.
2018-07-01
MgB2 superconductor samples co-doped with 0.02 wt. Al2O3 and 0-0.05 wt. SiC were studied by magnetization - magnetic field (M-H) loop measurements at different temperatures. The critical current density has been calculated by the Bean model, and the irreversibility field, Hirr, has been obtained by the Kramer method. The pinning mechanism of the co-doped sample with 2% Al and 5% SiC was investigated in particular due to its having the highest Hirr. The normalized volume pinning force f = F/Fmax as a function of reduced magnetic field h = H/Hirr has been obtained, and the pinning mechanism was studied by the Dew-Houghes model. It was found that the normal point pinning (NPP), the normal surface pinning (NSP), and the normal volume pinning (NVP) mechanisms play the main roles. The magnetic field and temperature dependence of contributions of the NPP, NSP, and NVP pinning mechanisms were obtained. The results show that the contributions of the pinning mechanisms depend on the temperature and magnetic field. From the temperature dependence of the critical current density within the collective pinning theory, it was found that both the δl pinning due to spatial fluctuations of the charge-carrier mean free path and the δTc pinning due to randomly distributed spatial variations in the transition temperature coexist at zero magnetic field in co-doped samples. Yet, the charge-carrier mean-free-path fluctuation pinning (δl) is the only important pinning mechanism at non-zero magnetic fields.
Critical current density and vortex pinning in tetragonal FeS 1 ₋ x Se x ( x = 0 , 0.06 )
Wang, Aifeng; Wu, Lijun; Ivanovski, V. N.; ...
2016-09-07
Here we report critical current density (J c) in tetragonal FeS single crystals, similar to iron-based superconductors with much higher superconducting critical temperatures (T c). The J c is enhanced three times by 6% Se doping. We observe scaling of the normalized vortex pinning force as a function of reduced field at all temperatures. Vortex pinning in FeS and FeS 0.94Se 0.06 shows contribution of core-normal surfacelike pinning. Lastly, reduced temperature dependence of J c indicates that dominant interaction of vortex cores and pinning centers is via scattering of charge carriers with reduced mean free path (δl), in contrast tomore » K xFe 2₋ySe 2 where spatial variations in T c (δT c) prevails.« less
High-Powered, Ultrasonically Assisted Thermal Stir Welding
NASA Technical Reports Server (NTRS)
Ding, Robert
2013-01-01
This method is a solid-state weld process capable of joining metallic alloys without melting. The weld workpieces to be joined by thermal stir welding (TSW) are drawn, by heavy forces, between containment plates past the TSW stir tool that then causes joining of the weld workpiece. TSW is similar to friction stir welding (FSW) in that material is heated into a plastic state (not melted) and stirred using a stir rod. The FSW pin tool is an integrated geometrical structure consisting of a large-diameter shoulder, and a smaller-diameter stir pin protruding from the shoulder. When the pin is plunged into a weld workpiece, the shoulder spins on the surface of the weld workpiece, thus inducing frictional heat into the part. The pin stirs the fraying surfaces of the weld joint, thus joining the weld workpiece into one structure. The shoulder and stir pin of the FSW pin tool must rotate together at a desired rotational speed. The induced frictional energy control and stir pin control of the pin tool cannot be de-coupled. The two work as one integrated unit. TSW, on the other hand, de-couples the heating and stirring of FSW, and allows for independent control of each process element. A uniquely designed induction coil heats the weld workpiece to a desired temperature, and once heated, the part moves into a stir rod whose RPM is also independently controlled. As the weld workpiece moves into the stir rod, the piece is positioned, or sandwiched, between upper and lower containment plates. The plate squeezes together, thus compressing the upper and lower surfaces of the weld workpiece. This compressive force, also called consolidation force, consolidates the plastic material within the weld nugget material as it is being stirred by the stir rod. The stir rod is positioned through the center of the top containment plate and protrudes midway through the opposite lower containment plate where it is mechanically captured. The upper and lower containment plates are separated by a distance equal to the thickness of the material being welded. The TSW process can be significantly improved by reducing the draw forces. This can be achieved by reducing the friction forces between the weld workpieces and the containment plates. High-power ultrasonic (HPU) vibrations of the containment plates achieve friction reduction in the TSW process. Furthermore, integration of the HPU energy into the TSW stir rod can increase tool life of the stir rod, and can reduce shear forces to which the stir rod is subjected during the welding process. TSW has been used to successfully join 0.500-in (˜13-mm) thick commercially pure (CP) titanium, titanium 6AL- 4V, and titanium 6AL-4V ELI in weld joint lengths up to 9 ft (˜2.75-m) long. In addition, the TSW process was used to fabricate a sub-scale hexagonally shaped gun turret component for the U.S. Navy. The turret is comprised of six 0.5000-in (˜13-mm) thick angled welds. Each angled weld joint was prepared by machining the mating surfaces to 120deg. The angled weld joint was then fixtured using an upper and lower containment plate of the same geometry of the angled weld joint. The weld joint was then stirred by the stir rod as it and the upper and lower containment plates traverse through the angled joint prep.
Pretest predictions for degraded shutdown heat-removal tests in THORS-SHRS Assembly 1. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, S.D.; Carbajo, J.J.
The recent modification of the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility at ORNL will allow testing of parallel simulated fuel assemblies under natural-convection and low-flow forced-convection conditions similar to those that might occur during a partial failure of the Shutdown Heat Removal System (SHRS) of an LMFBR. An extensive test program has been prepared and testing will be started in September 1983. THORS-SHRS Assembly 1 consists of two 19-pin bundles in parallel with a third leg serving as a bypass line and containing a sodium-to-sodium intermediate heat exchanger. Testing at low powers wil help indicate the maximum amount of heat thatmore » can be removed from the reactor core during conditions of degraded shutdown heat removal. The thermal-hydraulic behavior of the test bundles will be characterized for single-phase and two-phase conditions up to dryout. The influence of interassembly flow redistribution including transients from forced- to natural-convection conditions will be investigated during testing.« less
Lindholm, G.T.
1981-02-27
The disclosure relates to pliers and more particularly to pliers for crimping two or more pieces of copper tubing together prior to their being permanently joined by brazing, soldering or the like. A die containing spring-loaded pins rotates within a cammed ring in the head of the pliers. As the die rotates, the pins force a crimp on tubing held within the pliers.
Magnetically Operated Holding Plate And Ball-Lock Pin
NASA Technical Reports Server (NTRS)
Monford, Leo G., Jr.
1992-01-01
Magnetically operated holding plate and ball-locking-pin mechanism part of object attached to, or detached from second object. Mechanism includes tubular housing inserted in hole in second object. Plunger moves inside tube forcing balls to protrude from sides. Balls prevent tube from sliding out of second object. Simpler, less expensive than motorized latches; suitable for robotics applications.
Gapud, A. A.; Greenwood, N. T.; Alexander, J. A.; ...
2015-07-01
Effects of low dose irradiation on the electrical transport current properties of commercially available high-temperature superconducting, coated-conductor tapes were investigated, in view of potential applications in the irradiative environment of fusion reactors. Three different tapes, each with unique as-grown flux-pinning structures, were irradiated with Au and Ni ions at energies that provide a range of damage effects, with accumulated damage levels near that expected for conductors in a fusion reactor environment. Measurements using transport current determined the pre- and post-irradiation resistivity, critical current density, and pinning force density, yielding critical temperatures, irreversibility lines, and inferred vortex creep rates. Results showmore » that at the irradiation damage levels tested, any detriment to as-grown pre-irradiation properties is modest; indeed in one case already-superior pinning forces are enhanced, leading to higher critical currents.« less
Spatial Localization in Dissipative Systems
NASA Astrophysics Data System (ADS)
Knobloch, E.
2015-03-01
Spatial localization is a common feature of physical systems, occurring in both conservative and dissipative systems. This article reviews the theoretical foundations of our understanding of spatial localization in forced dissipative systems, from both a mathematical point of view and a physics perspective. It explains the origin of the large multiplicity of simultaneously stable spatially localized states present in a parameter region called the pinning region and its relation to the notion of homoclinic snaking. The localized states are described as bound states of fronts, and the notions of front pinning, self-pinning, and depinning are emphasized. Both one-dimensional and two-dimensional systems are discussed, and the reasons behind the differences in behavior between dissipative systems with conserved and nonconserved dynamics are explained. The insights gained are specific to forced dissipative systems and are illustrated here using examples drawn from fluid mechanics (convection and shear flows) and a simple model of crystallization.
Electronic door locking mechanism
Williams, Gary Lin; Kirby, Patrick Gerald
1997-01-01
The invention is a motorized linkage for engaging a thumb piece in a door mechanism. The device has an exterior lock assembly with a small battery cell and combination lock. Proper entry by a user of a security code allows the battery to operate a small motor within the exterior lock assembly. The small motor manipulates a cam-plunger which moves an actuator pin into a thumb piece. The user applies a force on to the thumb piece. This force is transmitted by the thumb piece to a latch engagement mechanism by the actuator pin. The latch engagement mechanism operates the door latch.
Electronic door locking mechanism
Williams, G.L.; Kirby, P.G.
1997-10-21
The invention is a motorized linkage for engaging a thumb piece in a door mechanism. The device has an exterior lock assembly with a small battery cell and combination lock. Proper entry by a user of a security code allows the battery to operate a small motor within the exterior lock assembly. The small motor manipulates a cam-plunger which moves an actuator pin into a thumb piece. The user applies a force on to the thumb piece. This force is transmitted by the thumb piece to a latch engagement mechanism by the actuator pin. The latch engagement mechanism operates the door latch. 6 figs.
A Serial Bus Architecture for Parallel Processing Systems
1986-09-01
pins are needed to effect the data transfer. As Integrated Circuits grow in computational power, more communication capacity is needed, pushing...chip. The wider the communication path the more pins are needed to effect the data transfer. As Integrated Circuits grow in computational power, more...13 2. A Suitable Architecture Sought 14 II. OPTIMUM ARCHITECTURE OF LARGE INTEGRATED A. PARTIONING SILICON FOR MAXIMUM 1? 1. Transistor
Mechanics of advancing pin-loaded contacts with friction
NASA Astrophysics Data System (ADS)
Sundaram, Narayan; Farris, T. N.
2010-11-01
This paper considers finite friction contact problems involving an elastic pin and an infinite elastic plate with a circular hole. Using a suitable class of Green's functions, the singular integral equations governing a very general class of conforming contact problems are formulated. In particular, remote plate stresses, pin loads, moments and distributed loading of the pin by conservative body forces are considered. Numerical solutions are presented for different partial slip load cases. In monotonic loading, the dependence of the tractions on the coefficient of friction is strongest when the contact is highly conforming. For less conforming contacts, the tractions are insensitive to an increase in the value of the friction coefficient above a certain threshold. The contact size and peak pressure in monotonic loading are only weakly dependent on the pin load distribution, with center loads leading to slightly higher peak pressure and lower peak shear than distributed loads. In contrast to half-plane cylinder fretting contacts, fretting behavior is quite different depending on whether or not the pin is allowed to rotate freely. If pin rotation is disallowed, the fretting tractions resemble half-plane fretting tractions in the weakly conforming regime but the contact resists sliding in the strongly conforming regime. If pin rotation is allowed, the shear traction behavior resembles planar rolling contacts in that one slip zone is dominant and the peak shear occurs at its edge. In this case, the effects of material dissimilarity in the strongly conforming regime are only secondary and the contact never goes into sliding. Fretting tractions in the forward and reversed load states show shape asymmetry, which persists with continued load cycling. Finally, the governing integro-differential equation for full sliding is derived; in the limiting case of no friction, the same equation governs contacts with center loading and uniform body force loading, resulting in identical pressures when their resultants are equal.
Gimballed Shoulders for Friction Stir Welding
NASA Technical Reports Server (NTRS)
Carter, Robert; Lawless, Kirby
2008-01-01
In a proposed improvement of tooling for friction stir welding, gimballed shoulders would supplant shoulders that, heretofore, have been fixedly aligned with pins. The proposal is especially relevant to self-reacting friction stir welding. Some definitions of terms, recapitulated from related prior NASA Tech Briefs articles, are prerequisite to a meaningful description of the proposed improvement. In friction stir welding, one uses a tool that includes (1) a rotating shoulder on top (or front) of the workpiece and (2) a pin that rotates with the shoulder and protrudes from the shoulder into the depth of the workpiece. In conventional friction stir welding, the main axial force exerted by the tool on the workpiece is reacted through a ridged backing anvil under (behind) the workpiece. When conventional friction stir welding is augmented with an auto-adjustable pin-tool (APT) capability, the depth of penetration of the pin into the workpiece is varied in real time by a position- or forcecontrol system that extends or retracts the pin as needed to obtain the desired effect. In self-reacting (also known as self-reacted) friction stir welding as practiced heretofore, there are two shoulders: one on top (or front) and one on the bottom (or back) of the workpiece. In this case, a threaded shaft protrudes from the tip of the pin to beyond the back surface of the workpiece. The back shoulder is held axially in place against tension by a nut on the threaded shaft. Both shoulders rotate with the pin and remain aligned coaxially with the pin. The main axial force exerted on the workpiece by the tool and front shoulder is reacted through the back shoulder and the threaded shaft into the friction-stir-welding machine head, so that a backing anvil is no longer needed. A key transmits torque between the bottom shoulder and the threaded shaft, so that the bottom shoulder rotates with the shaft. This concludes the prerequisite definitions of terms.
Closed-Loop Control System for Friction Stir Welding Retractable Pin Tool
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey; Romine, Peter L.; Munafo, Paul M. (Technical Monitor)
2001-01-01
NASA invention disclosure, NASA Case No. MFS-31413, entitled "System for Controlling the Stirring Pin of a Friction Stir Welding Apparatus", (Patent Pending) authored by Jeff Ding, Dr Peter Romine and Pete Oelgoetz, addresses the precision control of the friction stir welding process. The closed-loop control system automatically adjusts the spinning welding pin, real-time, to maintain a precise penetration ligament (i.e., distance between pin-tip and weld panel backside surface). A specific pin length can be maintained while welding constant thickness or tapered material thickness weld panels. The closed-loop control system provides operator data and information relative to the exact position of the welding pin inside the weld joint. This paper presents the closed-loop RPT control system that operates using the auto-feedback of force signals sensed by the tip and shoulder of the welding pin. Significance: The FSW process can be successfully used in a production environment only if there is a method or technique that informs the FSW operator the precise location of the welding pin inside the weld joint. This is essential for applications in aerospace, automotive, pressure vessel, commercial aircraft and other industries.
Counterrotating-Shoulder Mechanism for Friction Stir Welding
NASA Technical Reports Server (NTRS)
Nunes, Arthur C., Jr.
2007-01-01
A counterrotating-shoulder mechanism has been proposed as an alternative to the mechanism and fixtures used in conventional friction stir welding. The mechanism would internally react most or all of the forces and torques exerted on the workpiece, making it unnecessary to react the forces and torques through massive external fixtures. In conventional friction stir welding, a rotating pin tool is inserted into, and moved along, a weld seam. As the pin tool moves, it stirs together material from the opposite sides of the seam to form the weld. A large axial plunge force must be exerted upon the workpiece through and by the pin tool and a shoulder attached above the pin tool in order to maintain the pressure necessary for the process. The workpiece is secured on top of an anvil, which supports the workpiece against the axial plunge force and against the torque exerted by the pin tool and shoulder. The anvil and associated fixtures must be made heavy (and, therefore, are expensive) to keep the workpiece stationary. In addition, workpiece geometries must be limited to those that can be accommodated by the fixtures. The predecessor of the proposed counterrotating-shoulder mechanism is a second-generation, self-reacting tool, resembling a bobbin, that makes it possible to dispense with the heavy anvil. This tool consists essentially of a rotating pin tool with opposing shoulders. Although the opposing shoulders maintain the necessary pressure without need to externally apply or react a large plunge force, the torque exerted on the workpiece remains unreacted in the absence of a substantial external fixture. Depending on the RPM and the thickness of the workpiece, the torque can be large. The proposed mechanism (see figure) would include a spindle attached to a pin tool with a lower shoulder. The spindle would be coupled via splines to the upper one of three bevel gears in a differential drive. The middle bevel gear would be the power-input gear and would be coupled to the upper and lower bevel gears. The lower bevel gear would be attached to the upper shoulder and would slide and rotate freely over the spindle. The spindle would be fastened by its threaded upper end to an external submechanism that would exert axial tension on the spindle to load the workpiece in compression between the shoulders. By reducing or eliminating (relative to the use of a self reacting tool) the torque that must be reacted externally, the use of the proposed tool would reduce the tendency toward distortion or slippage of the workpiece. To begin a weld, the spindle would be inserted through a hole in the workpiece or run-on tab at the beginning of the seam and fastened to the loading submechanism. Rotation and axial loading would be increased gradually from zero and, after a time to be determined by trial and error, translation along the weld seam would be increased gradually from zero to a steady weld speed. The weld would be ended by running the mechanism off the workpiece or, if the lower shoulder were detachable, by detaching the lower shoulder from the spindle and pulling the pin tool out.
Self-designed femoral neck guide pin locator for femoral neck fractures.
Xia, Shengli; Wang, Ziping; Wang, Minghui; Wu, Zuming; Wang, Xiuhui
2014-01-01
Closed reduction and fixation with 3 cannulated screws is a widely accepted surgery for the treatment of femoral neck fractures. However, how to obtain optimal screw placement remains unclear. In the current study, the authors designed a guide pin positioning system for femoral neck fracture cannulated screw fixation and examined its application value by comparing it with freehand guide needle positioning and with general guide pin locator positioning provided by equipment manufacturers. The screw reset rate, screw parallelism, triangle area formed by the link line of the entry point of 3 guide pins, and maximum vertical load bearing of the femoral neck after internal fixation were recorded. As expected, the triangle area was largest in the self-designed positioning group, followed by the general positioning group and the freehand positioning group. The difference among the 3 groups was statistically significant (P<.05). Anteroposterior and lateral radiographs showed that the screws were more parallel in the self-designed positioning group and general positioning group compared with the freehand positioning group (P<.05). The screw reset rate in the self-designed positioning group was significantly lower than that in the general positioning group and the freehand positioning group (P<.05). Maximum bearing load among the 3 groups was equivalent, showing no statistically significant difference (P>.05). The authors’ self-designed guide pin positioning system has the potential to accurately insert cannulated screws in femoral neck fractures and may reduce bone loss and unnecessary radiation.
NASA Astrophysics Data System (ADS)
Fischer, D. X.; Prokopec, R.; Emhofer, J.; Eisterer, M.
2018-04-01
Superconductors are essential components of future fusion power plants. The magnet coils responsible for producing the field required for confining the fusion plasma are exposed to considerable neutron radiation. This makes irradiation studies necessary for understanding the radiation response of the superconductor. High temperature superconductors are promising candidates as magnet coil materials. YBCO and GdBCO tapes of several manufacturers were irradiated to fast neutron fluences of up to 3.9 × 1022 m-2 in the research reactor at the Atominstitut. Low energy neutrons contribute to the fission reactor spectrum but not to the expected spectrum at the fusion magnets. Low energy neutrons have to be shielded in irradiation experiments to avoid their substantial effect on the superconducting properties of tapes containing gadolinium. The critical current (I c) of the tapes in this study was examined at fields of up to 15 T and down to a temperature of 30 K. I c first increases upon irradiation and reaches a maximum at a certain fluence, which depends highly on temperature, being highest at low temperature. I c declines at high fluences and eventually degrades with respect to its initial value. Tapes with artificial pinning centers (APCs) degrade at lower fluences than tapes without them. The n-values decrease in all types of tapes after irradiation even when the critical currents are increased. The field dependence of the volume pinning force differs in pristine tapes with and without APCs but shows the same behavior after irradiation.
Bearing-Load Modeling and Analysis Study for Mechanically Connected Structures
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.
2006-01-01
Bearing-load response for a pin-loaded hole is studied within the context of two-dimensional finite element analyses. Pin-loaded-hole configurations are representative of mechanically connected structures, such as a stiffener fastened to a rib of an isogrid panel, that are idealized as part of a larger structural component. Within this context, the larger structural component may be idealized as a two-dimensional shell finite element model to identify load paths and high stress regions. Finite element modeling and analysis aspects of a pin-loaded hole are considered in the present paper including the use of linear and nonlinear springs to simulate the pin-bearing contact condition. Simulating pin-connected structures within a two-dimensional finite element analysis model using nonlinear spring or gap elements provides an effective way for accurate prediction of the local effective stress state and peak forces.
Differential pressure pin discharge apparatus
Oakley, David J.
1987-02-03
Disclosed is a discharge assembly for allowing elongate pins to be discharged from an area of relatively low pressure to an area of relatively greater pressure. The discharge assembly includes a duck valve having a lip piece made of flexible material. The flexible lip piece responds to a fluctuating pressure created downstream by an aspirator. The aspirator reduces the downstream pressure sensed by the duck valve when the discharge assembly is in the open position. This allows elongate pins to be moved through the duck valve with no backflow because the aspirator pressure is less than the pressure in the low pressure area from which the pins originate. Closure of the assembly causes the aspirator static pressure to force the flexible duck valve lip piece into a tightly sealed position also preventing backflow. The discharge assembly can be easily controlled using a single control valve which blocks the flow of aspirator gas and closes the pin passageway extending through the assembly.
Differential pressure pin discharge apparatus
Oakley, D.J.
1984-05-30
Disclosed is a discharge assembly for allowing elongate pins to be discharged from an area of relatively low pressure to an area of relatively greater pressure. The discharge assembly includes a duck valve having a lip piece made of flexible material. The flexible lip piece responds to a fluctuating pressure created downstream by an aspirator. The aspirator reduces the downstream pressure sensed by the duck valve when the discharge assembly is in the open position. This allows elongate pins to be moved through the duck valve with no backflow because the aspirator pressure is less than the pressure in the low pressure area from which the pins originate. Closure of the assembly causes the aspirator static pressure to force the flexible duck valve lip piece into a tightly sealed position also preventing backflow. The discharge assembly can be easily controlled using a single control valve which blocks the flow of aspirator gas and closes the pins passageway extending through the assembly.
Differential pressure pin discharge apparatus
Oakley, David J.
1987-01-01
Disclosed is a discharge assembly for allowing elongate pins to be discharged from an area of relatively low pressure to an area of relatively greater pressure. The discharge assembly includes a duck valve having a lip piece made of flexible material. The flexible lip piece responds to a fluctuating pressure created downstream by an aspirator. The aspirator reduces the downstream pressure sensed by the duck valve when the discharge assembly is in the open position. This allows elongate pins to be moved through the duck valve with no backflow because the aspirator pressure is less than the pressure in the low pressure area from which the pins originate. Closure of the assembly causes the aspirator static pressure to force the flexible duck valve lip piece into a tightly sealed position also preventing backflow. The discharge assembly can be easily controlled using a single control valve which blocks the flow of aspirator gas and closes the pin passageway extending through the assembly.
Performance tests of a single-cylinder compression-ignition engine with a displacer piston
NASA Technical Reports Server (NTRS)
Moore, C S; Foster, H H
1935-01-01
Engine performance was investigated using a rectangular displacer on the piston crown to cause a forced air flow in a vertical-disk combustion chamber of a single-cylinder, 4-stroke-cycle compression-ignition engine. The optimum air-flow area was determined first with the area concentrated at one end of the displacer and then with the area equally divided between two passages, one at each end of the displacer. Best performance was obtained with the two-passage air flow arranged to give a calculated maximum air-flow speed of 8 times the linear crank-pin speed. With the same fuel-spray formation as used without the air flow, the maximum clear exhaust brake mean effective pressure at 1,500 r.p.m. was increased from 90 to 115 pounds per square inch and the corresponding fuel consumption reduced from 0.46 to 0.43 pound per brake horsepower-hour. At 1,200 r.p.m., a maximum clear exhaust brake mean effective pressure of 120 pounds per square inch was obtained at a fuel consumption of 0.42 pound per brake horsepower-hour. At higher specific fuel consumption the brake mean effective pressure was still increasing rapidly.
Atomic and electronic structures of BaHfO3-doped TFA-MOD-derived YBa2Cu3O7-δ thin films
NASA Astrophysics Data System (ADS)
Molina-Luna, Leopoldo; Duerrschnabel, Michael; Turner, Stuart; Erbe, Manuela; Martinez, Gerardo T.; Van Aert, Sandra; Holzapfel, Bernhard; Van Tendeloo, Gustaaf
2015-11-01
Tailoring the properties of oxide-based nanocomposites is of great importance for a wide range of materials relevant for energy technology. YBa2Cu3O7-δ (YBCO) superconducting thin films containing nanosized BaHfO3 (BHO) particles yield a significant improvement of the magnetic flux pinning properties and a reduced anisotropy of the critical current density. These films were prepared by chemical solution deposition (CSD) on (100) SrTiO3 (STO) substrates yielding critical current densities up to 3.6 MA cm-2 at 77 K and self-field. Transport in-field J c measurements demonstrated a high pinning force maximum of around 6 GN/m3 for a sample annealed at T = 760 °C that has a doping of 12 mol% of BHO. This sample was investigated by scanning transmission electron microscopy (STEM) in combination with electron energy-loss spectroscopy (EELS) yielding strain and spectral maps. Spherical BHO nanoparticles of 15 nm in size were found in the matrix, whereas the particles at the interface were flat. A 2 nm diffusion layer containing Ti was found at the YBCO (BHO)/STO interface. Local lattice deformation mapping at the atomic scale revealed crystal defects induced by the presence of both sorts of BHO nanoparticles, which can act as pinning centers for magnetic flux lines. Two types of local lattice defects were identified and imaged: (i) misfit edge dislocations and (ii) Ba-Cu-Cu-Ba stacking faults (Y-248 intergrowths). The local electronic structure and charge transfer were probed by high energy resolution monochromated electron energy-loss spectroscopy. This technique made it possible to distinguish superconducting from non-superconducting areas in nanocomposite samples with atomic resolution in real space, allowing the identification of local pinning sites on the order of the coherence length of YBCO (˜1.5 nm) and the determination of 0.25 nm dislocation cores.
Tool for Two Types of Friction Stir Welding
NASA Technical Reports Server (NTRS)
Carter, Robert
2006-01-01
A tool that would be useable in both conventional and self-reacting friction stir welding (FSW) has been proposed. The tool would embody both a prior tooling concept for self-reacting FSW and an auto-adjustable pin-tool (APT) capability developed previously as an augmentation for conventional FSW. Some definitions of terms are prerequisite to a meaningful description of the proposed tool. In conventional FSW, depicted in Figure 1, one uses a tool that includes (1) a rotating shoulder on top (or front) of the workpiece and (2) a rotating pin that protrudes from the shoulder into the depth of the workpiece. The main axial force exerted by the tool on the workpiece is reacted through a ridged backing anvil under (behind) the workpiece. When conventional FSW is augmented with an APT capability, the depth of penetration of the pin into the workpiece is varied in real time by a position- or force-control system that extends or retracts the pin as needed to obtain the desired effect. In self-reacting (also known as self-reacted) friction stir welding (SR-FSW), there are two rotating shoulders: one on top (or front) and one on the bottom (or back) of the workpiece. In this case, a threaded shaft protrudes from the tip of the pin to beyond the back surface of the workpiece. The back shoulder is held axially in place against tension by a nut on the threaded shaft. The main axial force exerted on the workpiece by the tool and front shoulder is reacted through the back shoulder and the threaded shaft, back into the FSW machine head, so that a backing anvil is no longer needed. A key transmits torque between the bottom shoulder and the threaded shaft, so that the bottom shoulder rotates with the shaft. A tool for SRFSW embodying this concept was reported in "Mechanism for Self-Reacted Friction Stir Welding" (MFS-31914), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 53. In its outward appearance, the proposed tool (see Figure 2) would fit the above description of an SR-FSW tool. In this case, the FSW machine would have an APT capability and the pin would be modified to accept a bottom shoulder. The APT capability could be used to vary the distance between the front and back shoulders in real time to accommodate process and workpiece-thickness variations. The tool could readily be converted to a conventional FSW tool, with or without APT capability, by simply replacing the modified pin with a conventional FSW pin.
Austenite grain growth kinetics in Al-killed plain carbon steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Militzer, M.; Giumelli, A.; Hawbolt, E.B.
1996-11-01
Austenite grain growth kinetics have been investigated in three Al-killed plain carbon steels. Experimental results have been validated using the statistical grain growth model by Abbruzzese and Luecke, which takes pinning by second-phase particles into account. It is shown that the pinning force is a function of the pre-heat-treatment schedule. Extrapolation to the conditions of a hot-strip mill indicates that grain growth occurs without pinning during conventional processing. Analytical relations are proposed to simulate austenite grain growth for Al-killed plain carbon steels for any thermal path in a hot-strip mill.
Performance of direct-driven flapping-wing actuator with piezoelectric single-crystal PIN-PMN-PT
NASA Astrophysics Data System (ADS)
Ozaki, Takashi; Hamaguchi, Kanae
2018-02-01
We present a prototype flapping-wing actuator with a direct-driven mechanism to generate lift in micro- and nano-aerial vehicles. This mechanism has an advantage of simplicity because it has no transmission system between the actuator and wing. We fabricated the piezoelectric unimorph actuator from single-crystal PIN-PMN-PT, which achieved a lift force up to 1.45 mN, a value about 1.9 times larger than the mass of the actuator itself. This is the first reported demonstration of an insect-scale actuator with a direct-driven mechanism that can generate a lift force greater than its own weight.
Effect of Fuel Temperature Profile on Eigenvalue Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greifenkamp, Tom E; Clarno, Kevin T; Gehin, Jess C
2008-01-01
Use of an average fuel temperature is a current practice when modeling fuel for eigenvalue (k-inf) calculations. This is an approximation, as it is known from Heat-transfer methods that a fuel pin having linear power q', will have a temperature that varies radially and has a maximum temperature at the center line [1]. This paper describes an investigation into the effects on k-inf and isotopic concentrations of modeling a fuel pin using a single average temperature versus a radially varying fuel temperature profile. The axial variation is not discussed in this paper. A single fuel pin was modeled having 1,more » 3, 5, 8, or 10 regions of equal volumes (areas). Fig. 1 shows a model of a 10-ring fuel pin surrounded by a gap and then cladding.« less
Vortex pinning in artificially layered Ba(Fe,Co)2As2 film
NASA Astrophysics Data System (ADS)
Oh, M. J.; Lee, Jongmin; Seo, Sehun; Yoon, Sejun; Seo, M. S.; Park, S. Y.; Kim, Ho-Sup; Ha, Dong-Woo; Lee, Sanghan; Jo, Youn Jung
2018-06-01
Static high critical current densities (Jc) > 1 MA/cm2 with magnetic field parallel or perpendicular to c-axis were realized in Co-doped/undoped multilayerd BaFe2As2 films. We made a current bridge by FIB to allow precise measurements, and confirmed that the boundary quality using FIB was considerably better than the quality achieved using a laser. The presence of a high in-plane Jc suggested the existence of c-axis correlated vortex pinning centers. To clarify the relationship between the Jc performance and superstructures, we investigated the magnetic flux pinning mechanism using scaling theory of the volume pinning force Fp(H). The Jc(H) curves, Fp/Fp,max vs. h = H/Hirr curves, and parameters p and q depended on the characteristics of the flux pinning mechanism. It was found that the dominant pinning mechanism of Co-doped/undoped multilayerd BaFe2As2 films was Δl-pinning and the inserted undoped BaFe2As2 layers remained non-superconducting. The dominant pin geometry varied when the magnetic field direction changed. It was concluded that the artificially layered BaFe2As2 film is a 3-D superconductor due to its long correlation length compared to the thickness of the non-superconducting layer.
Microstructural Evolution in Friction Stir Welding of Ti-6Al-4V
NASA Technical Reports Server (NTRS)
Rubisoff, H.; Querin, J.; Magee, D.; Schneider, J.
2008-01-01
Friction stir welding (FSW) is a thermo-mechanical process that utilizes a nonconsumable rotating pin tool to consolidate a weld joint. In the conventional FSW process, the pin tool is responsible for generating both the heat required to soften the material and the forces necessary to deform and combine the weld seam. As such, the geometry of the pin tool is important to the quality of the weld and the process parameters required to produce the weld. Because the geometry of the pin tool is limitless, a reduced set of pin tools was formed to systematically study their effect on the weldment with respect to mechanical properties and resultant microstructure. In this study 0deg, 15deg, 30deg, 45deg, and 60deg tapered, microwave sintered, tungsten carbide (WC) pin tools were used to FSW Ti-6Al-4V. Transverse sections of the weld were used to test for mechanical properties and to document the microstructure using optical microscopy. X-ray diffraction (XRD) was also used to characterize the microstructure in the welds. FSW results for the 45deg and 60deg pin tools are reported in this paper.
Experimental and analytical investigation of the thermal necrosis in high-speed drilling of bone.
Shakouri, Ehsan; Sadeghi, Mohammad H; Maerefat, Mehdi; Shajari, Shaghayegh
2014-04-01
Bone loss due to thermo necrosis may weaken the purchase of surgically placed screws and pins, causing them to loosen postoperatively. The heat generated during the bone drilling is proportional to cutting speed and force and may be partially dissipated by the blood and tissue fluids, and somehow carried away by the chips formed. Increasing cutting speed will reduce cutting force and machining time. Therefore, it is of interest to study the effects of the increasing cutting speed on bone drilling characteristics. In this article, the effects of the increasing cutting speed ranging from 500 up to 18,000 r/min on the thrust force and the temperature rise are studied for bovine femur bone. The results of this study reveal that the high-speed drilling of 6000-7000 r/min may effectively reduce the two parameters of maximum cortical temperature and duration of exposure at temperatures above the allowable levels, which in turn reduce the probability of thermal necrosis in the drill site. This is due to the reduction of the cutting force and the increase in the chip disposal speed. However, more increases in the drill bit rotational speed result in an increase in the amount of temperature elevation, not because of sensible change in drilling force but a considerable increase in friction among the chips, drill bit and the hole walls.
NASA Astrophysics Data System (ADS)
Hamzaban, Mohammad-Taghi; Memarian, Hossein; Rostami, Jamal
2014-03-01
Evaluation of rock abrasivity is important when utilizing mechanized excavation in various mining and civil projects in hard rock. This is due to the need for proper selection of the rock cutting tools, estimation of the tool wear, machine downtime for cutter change, and costs. The Cerchar Abrasion Index (CAI) test is one of the simplest and most widely used methods for evaluating rock abrasivity. In this study, a new device for the determination of frictional forces and depth of pin penetration into the rock surface during a Cerchar test is discussed. The measured parameters were used to develop an analytical model for calculation of the size of the wear flat (and hence a continuous measure of CAI as the pin moves over the sample) and pin tip penetration into the rock during the test. Based on this model, continuous curves of CAI changes and pin tip penetration into the rock were plotted. Results of the model were used for introduction of a new parameter describing rock-pin interaction and classification of rock abrasion.
Effect of grain-boundary flux pinning in MgB 2 with columnar structure
NASA Astrophysics Data System (ADS)
Kim, D. H.; Hwang, T. J.; Cha, Y. J.; Seong, W. K.; Kang, W. N.
2009-10-01
We studied the flux pinning properties by grain boundaries in MgB 2 films prepared by using a hybrid physical chemical vapor deposition method on the c-axis oriented sapphire substrates. All the films we report here had the columnar grains with the growth direction perpendicular to the substrates and the grain sizes in the range of a few hundred nanometers. At very low magnetic fields, no discernable grain-boundary (GB) pinning effect was observed in all measuring temperatures, but above those fields, the effect of GB flux pinning was observed as enhanced critical current densities ( Jcs) and reduced resistances when an external magnetic field ( B) was aligned parallel to the c-axis. We interpret the B dependence of Jc in the terms of flux line lattice shear inside the columnar grains activated by dislocations of Frank-Read source while the flux lines pinned by GB act as anchors for dislocations. Magnetic field dependence of flux pinning force density for B parallel to the c-axis was reasonably explained by the above model.
NASA Astrophysics Data System (ADS)
Opherden, Lars; Sieger, Max; Pahlke, Patrick; Hühne, Ruben; Schultz, Ludwig; Meledin, Alexander; van Tendeloo, Gustaaf; Nast, Rainer; Holzapfel, Bernhard; Bianchetti, Marco; MacManus-Driscoll, Judith L.; Hänisch, Jens
2016-02-01
The addition of mixed double perovskite Ba2Y(Nb/Ta)O6 (BYNTO) to YBa2Cu3O7-δ (YBCO) thin films leads to a large improvement of the in-field current carrying capability. For low deposition rates, BYNTO grows as well-oriented, densely distributed nanocolumns. We achieved a pinning force density of 25 GN/m3 at 77 K at a matching field of 2.3 T, which is among the highest values reported for YBCO. The anisotropy of the critical current density shows a complex behavior whereby additional maxima are developed at field dependent angles. This is caused by a matching effect of the magnetic fields c-axis component. The exponent N of the current-voltage characteristics (inversely proportional to the creep rate S) allows the depinning mechanism to be determined. It changes from a double-kink excitation below the matching field to pinning-potential-determined creep above it.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickerman, C. E.; Sowa, E. S.; Okrent, D.
1961-08-01
Meltdown tests on single metallic unirradiated fuel elements in TREAT are described. The fuel elements (EBRII Mark I fuel pins, EBR-II fuel pins with retractory Nb or Ta cladding, and Fermi-I fuel pins) are tested in an inert atmosphere, with no coolant. The fuel elements are exposed to reactor power bursts of 200 msec to 25 sec duration, under conditions simulating fast reactor operations. For these tests, the type of power burst, the integrated power, the fuel enrichment, the maximum cladding temperature, and the effects of the test on the fuel element are recorded. ( T.F.H.)
A Flux-Pinning Mechanism for Segment Assembly and Alignment
NASA Technical Reports Server (NTRS)
Gersh-Range, Jessica A.; Arnold, William R.; Peck, Mason A.; Stahl, H. Philip
2011-01-01
Currently, the most compelling astrophysics questions include how planets and the first stars formed and whether there are protostellar disks that contain large organic molecules. Although answering these questions requires space telescopes with apertures of at least 10 meters, such large primaries are challenging to construct by scaling up previous designs; the limited capacity of a launch vehicle bounds the maximum diameter of a monolithic primary, and beyond a certain size, deployable telescopes cannot fit in current launch vehicle fairings. One potential solution is connecting the primary mirror segments edgewise using flux-pinning mechanisms, which are analogous to non-contacting damped springs. In the baseline design, a flux-pinning mechanism consists of a magnet and a superconductor separated by a predetermined gap, with the damping adjusted by placing aluminum near the interface. Since flux pinning is possible only when the superconductor is cooled below a critical temperature, flux-pinning mechanisms are uniquely suited for cryogenic space telescopes. By placing these mechanisms along the edges of the mirror segments, a primary can be built up over time. Since flux pinning requires no mechanical deployments, the assembly process could be robotic or use some other non-contacting scheme. Advantages of this approach include scalability and passive stability.
NASA Astrophysics Data System (ADS)
Hua, Junye; Duan, Yuanyuan; Li, Gui; Xu, Qiong; Li, Dong; Wu, Wei; Zhao, Xiaobao; Qiu, Delai
2018-02-01
The experimental studies on heat transfer and flow resistance characteristics of ellipse-shape micro pin fin have been conducted which is drafted with hydrophobic material, holding the various contact angles fulfilled by adjusting the amount of Nano particle. The results show that with the increases of contact angle(83°,99.5°, 119.5°and 151.5°), the bottom wall temperature rises under the same flow rate. Under a certain heating condition with heating power as 100 W, the average convective heat transfer coefficient decreases with the increase of contact angle with the same Re. The value of Nu for ellipse-shape micro pin fin increases with a higher Re, with the maximum value under experimental condition of Nu as 25. Besides, the friction coefficient of micro pin fin experimental section drafted hydrophobicity treatment significantly decreases, compared with the smooth micro pin fin experimental section (θ = 83°). While the higher contact angle has obvious positive influences on friction coefficient under the same Re. Generally, the flow resistance performance of ellipse-shape micro pin fin drafted with hydrophobic material is better than that without any treatment.
Löfke, Christian; Zwiewka, Marta; Heilmann, Ingo; Van Montagu, Marc C E; Teichmann, Thomas; Friml, Jirí
2013-02-26
Gravitropic bending of plant organs is mediated by an asymmetric signaling of the plant hormone auxin between the upper and lower side of the respective organ. Here, we show that also another plant hormone, gibberellic acid (GA), shows asymmetric action during gravitropic responses. Immunodetection using an antibody against GA and monitoring GA signaling output by downstream degradation of DELLA proteins revealed an asymmetric GA distribution and response with the maximum at the lower side of gravistimulated roots. Genetic or pharmacological manipulation of GA levels or response affects gravity-mediated auxin redistribution and root bending response. The higher GA levels at the lower side of the root correlate with increased amounts of PIN-FORMED2 (PIN2) auxin transporter at the plasma membrane. The observed increase in PIN2 stability is caused by a specific GA effect on trafficking of PIN proteins to lytic vacuoles that presumably occurs downstream of brefeldin A-sensitive endosomes. Our results suggest that asymmetric auxin distribution instructive for gravity-induced differential growth is consolidated by the asymmetric action of GA that stabilizes the PIN-dependent auxin stream along the lower side of gravistimulated roots.
Spin-torque diode frequency tuning via soft exchange pinning of both magnetic layers
NASA Astrophysics Data System (ADS)
Khudorozhkov, A. A.; Skirdkov, P. N.; Zvezdin, K. A.; Vetoshko, P. M.; Popkov, A. F.
2017-12-01
A spin-torque diode, which is a magnetic tunnel junction with magnetic layers softly pinned at some tilt to each other, is proposed. The resonance operating frequency of such a dual exchange-pinned spin-torque diode can be significantly higher (up to 9.5 GHz) than that of a traditional free layer spin-torque diode, and, at the same time, the sensitivity remains rather high. Using micromagnetic modeling we show that the maximum microwave sensitivity of the considered diode is reached at the bias current densities slightly below the self-sustained oscillations initiating. The dependence of the resonance frequency and the sensitivity on the angle between pinning exchange fields is presented. Thus, a way of designing spin-torque diode with a given resonance response frequency in the microwave region in the absence of an external magnetic field is proposed.
Clogging and transport of driven particles in asymmetric funnel arrays
NASA Astrophysics Data System (ADS)
Reichhardt, C. J. O.; Reichhardt, C.
2018-06-01
We numerically examine the flow and clogging of particles driven through asymmetric funnel arrays when the commensurability ratio of the number of particles per plaquette is varied. The particle–particle interactions are modeled with a soft repulsive potential that could represent vortex flow in type-II superconductors or driven charged colloids. The velocity-force curves for driving in the easy flow direction of the funnels exhibit a single depinning threshold; however, for driving in the hard flow direction, we find that there can be both negative mobility where the velocity decreases with increasing driving force as well as a reentrant pinning effect in which the particles flow at low drives but become pinned at intermediate drives. This reentrant pinning is associated with a transition from smooth 1D flow at low drives to a clogged state at higher drives that occurs when the particles cluster in a small number of plaquettes and block the flow. When the drive is further increased, particle rearrangements occur that cause the clog to break apart. We map out the regimes in which the pinned, flowing, and clogged states appear as a function of plaquette filling and drive. The clogged states remain robust at finite temperatures but develop intermittent bursts of flow in which a clog temporarily breaks apart but quickly reforms.
Creating Joint Leaders Today for a Successful Air Force Tomorrow (1REV)
2016-04-01
armed force in the same grade and competitive category who are serving on, or have served on, the HQ staff of their armed force; and 2. Officers in the...period from the release of the promotion results and the pin-on date. 5 Department of the Air Force, HQ Air Force Personnel Center, Demographics and...2009), Section 619a. 9 ibid, Section 619a. 10 Department of the Air Force, HQ Air Force Personnel Center, A-1 Manpower Division. 11 Phone
Rabby, Reza; Tang, Wei; Reynolds, A. P.
2015-05-13
In this article, the effect of pin features and orientation/placement of the materials on advancing side were investigated for friction stir welding (FSW) of dissimilar aluminum alloys AA2050 and AA6061. Pins for FSW were produced with a 2.12 mm pitch thread having three flats/flutes. Three sets of rotational speed/welding speed were used to perform a series of welds in a butt joint arrangement. The results show that, joint quality, process response variables and welding temperature are highly affected by pin features and material orientation in FSW. Defect free joints with effective material transportation in the weld nugget zone were obtainedmore » when welding was performed with AA2050 on the advancing side. The tool also encounters less in-plane reaction force for welding with 2050 on the advancing side. Pin with thread+3 flats produces quality welds at low rotational and travel speed regardless of the location of alloys on advancing or retreating side.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabby, Reza; Tang, Wei; Reynolds, A. P.
In this article, the effect of pin features and orientation/placement of the materials on advancing side were investigated for friction stir welding (FSW) of dissimilar aluminum alloys AA2050 and AA6061. Pins for FSW were produced with a 2.12 mm pitch thread having three flats/flutes. Three sets of rotational speed/welding speed were used to perform a series of welds in a butt joint arrangement. The results show that, joint quality, process response variables and welding temperature are highly affected by pin features and material orientation in FSW. Defect free joints with effective material transportation in the weld nugget zone were obtainedmore » when welding was performed with AA2050 on the advancing side. The tool also encounters less in-plane reaction force for welding with 2050 on the advancing side. Pin with thread+3 flats produces quality welds at low rotational and travel speed regardless of the location of alloys on advancing or retreating side.« less
Differential pressure pin discharge apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oakley, D.J.
Disclosed is a discharge assembly for allowing elongate pins to be discharged from an area of relatively low pressure to an area of relatively greater pressure. The discharge assembly includes a duck valve having a lip piece made of flexible material. The flexible lip piece responds to a fluctuating pressure created downstream by an aspirator. The aspirator reduces the downstream pressure sensed by the duck valve when the discharge assembly is in the open position. This allows elongate pins to be moved through the duck valve with no backflow because the aspirator pressure is less than the pressure in themore » low pressure area from which the pins originate. Closure of the assembly causes the aspirator static pressure to force the flexible duck valve lip piece into a tightly sealed position also preventing backflow. The discharge assembly can be easily controlled using a single control valve which blocks the flow of aspirator gas and closes the pins passageway extending through the assembly.« less
Inscuteable Regulates the Pins-Mud Spindle Orientation Pathway
Mauser, Jonathon F.; Prehoda, Kenneth E.
2012-01-01
During asymmetric cell division, alignment of the mitotic spindle with the cell polarity axis ensures that the cleavage furrow separates fate determinants into distinct daughter cells. The protein Inscuteable (Insc) is thought to link cell polarity and spindle positioning in diverse systems by binding the polarity protein Bazooka (Baz; aka Par-3) and the spindle orienting protein Partner of Inscuteable (Pins; mPins or LGN in mammals). Here we investigate the mechanism of spindle orientation by the Insc-Pins complex. Previously, we defined two Pins spindle orientation pathways: a complex with Mushroom body defect (Mud; NuMA in mammals) is required for full activity, whereas binding to Discs large (Dlg) is sufficient for partial activity. In the current study, we have examined the role of Inscuteable in mediating downstream Pins-mediated spindle orientation pathways. We find that the Insc-Pins complex requires Gαi for partial activity and that the complex specifically recruits Dlg but not Mud. In vitro competition experiments revealed that Insc and Mud compete for binding to the Pins TPR motifs, while Dlg can form a ternary complex with Insc-Pins. Our results suggest that Insc does not passively couple polarity and spindle orientation but preferentially inhibits the Mud pathway, while allowing the Dlg pathway to remain active. Insc-regulated complex assembly may ensure that the spindle is attached to the cortex (via Dlg) before activation of spindle pulling forces by Dynein/Dynactin (via Mud). PMID:22253744
Controlling Force and Depth in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Adams, Glynn; Loftus, Zachary; McCormac, Nathan; Venable, Richard
2005-01-01
Feedback control of the penetration force applied to a pin tool in friction stir welding has been found to be a robust and reliable means for controlling the depth of penetration of the tool. This discovery has made it possible to simplify depth control and to weld with greater repeatability, even on workpieces with long weld joints. Prior to this discovery, depths of penetration in friction stir welding were controlled by hard-tooled roller assemblies or by depth actuators controlled by feedback from such external sensors as linear variable-differential transformers or laser-based devices. These means of control are limited: A hard-tooled roller assembly confines a pin tool to a preset depth that cannot be changed easily during the welding process. A measurement by an external sensor is only an indirect indicative of the depth of penetration, and computations to correlate such a measurement with a depth of penetration are vulnerable to error. The present force-feedback approach exploits the proportionality between the depth and the force of penetration Unlike a depth measurement taken by an external sensor, a force measurement can be direct because it can be taken by a sensor coupled directly to the pin tool. The reading can be processed through a modern electronic servo control system to control an actuator to keep the applied penetration force at the desired level. In comparison with the older depth-control methods described above, this method offers greater sensitivity to plasticizing of the workpiece metal and is less sensitive to process noise, resulting in a more consistent process. In an experiment, a tapered panel was friction stir welded while controlling the force of penetration according to this method. The figure is a plot of measurements taken during the experiment, showing that force was controlled with a variation of 200 lb (890 N), resulting in control of the depth of penetration with a variation of 0.004 in. (0.1 mm).
A new mechatronic set-up and technique for investigation of firearms
NASA Astrophysics Data System (ADS)
Lesenciuc, Ioan; Suciu, Cornel
2016-12-01
Since ancient times, mankind has manifested interest in the development and improvement of weapons, either for military or hunting purposes. Today, in competition with these legal practices, the number of those who commit crimes by non-compliance with the regime of weapons and ammunition has increased exponentially. This is why the technology and methods employed in the area of judicial ballistics, requires constant research and continuous learning. The present paper advances a new experimental set-up and its corresponding methodology, meant to measure the force deployed by the firing pin. The new experimental set-up and procedure consists of a mechatronic structure, based on a piezoelectric force transducer, which allows to measure, in-situ, the force produced by the firing pin when it is deployed. The obtained information can further be used to establish a correspondence between this force and the imprint left on the firing cap. This correspondence furthers the possibility of elaborating a model that would permit ballistic experts to correctly identify a smoothbore weapon.
Mittal, Jeetain; Best, Robert B
2010-08-04
The ability to fold proteins on a computer has highlighted the fact that existing force fields tend to be biased toward a particular type of secondary structure. Consequently, force fields for folding simulations are often chosen according to the native structure, implying that they are not truly "transferable." Here we show that, while the AMBER ff03 potential is known to favor helical structures, a simple correction to the backbone potential (ff03( *)) results in an unbiased energy function. We take as examples the 35-residue alpha-helical Villin HP35 and 37 residue beta-sheet Pin WW domains, which had not previously been folded with the same force field. Starting from unfolded configurations, simulations of both proteins in Amber ff03( *) in explicit solvent fold to within 2.0 A RMSD of the experimental structures. This demonstrates that a simple backbone correction results in a more transferable force field, an important requirement if simulations are to be used to interpret folding mechanism. 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Da Silva, L. B. S.; Rodrigues, C. A.; Oliveira, N. F., Jr.; Bormio-Nunes, C.; Rodrigues, D., Jr.
2010-11-01
Since the discovery of Nb3Sn superconductors many efforts have been expended to improve the transport properties in these materials. In this work, the heat treatment profiles for Nb3Sn superconductor wires with Cu(Sn) artificial pinning centers (APCs) with nanometric-scale sizes were analyzed in an attempt to improve the critical current densities and upper critical magnetic field. The methodology to optimize the heat treatment profiles in respect to the diffusion, reaction and formation of the superconducting phases is described. Microstructural characterization, transport and magnetic measurements were performed in an attempt to relate the microstructure to the pinning mechanisms acting in the samples. It was concluded that the maximum current densities occur due to normal phases (APCs) that act as the main pinning centers in the global behavior of the Nb3Sn superconducting wire. The APC technique was shown to be very powerful because it permitted mixing of the pinning mechanism. This achievement was not possible in other studies in Nb3Sn wires reported up to now.
Three Dimensional Vibration Characteristics of the Permanent Magnet-HTSC Magnetic Bearing
NASA Astrophysics Data System (ADS)
Ohashi, Shunsuke
The three dimensional vibration of the rotor in a HTSC-permanent magnet bearing system is studied. We have developed the magnetic bearing system which can revolve up to 12,000rpm, and three dimensional vibration of the rotor is measured with laser displacement sensors. To consider the rotor vibration under the mechanical resonance state, static lateral and vertical pinning force of the magnetic bearing is measured. From the results, resonance frequency is given. There are two factors of mechanical resonance caused by the magnetic bearing. One is lateral equivalent spring and the other is vertical one. Influence of the resonance caused by the lateral spring is large, and that by the vertical one is small. Three dimensional vibration of the rotor position around the mechanical resonance frequency is measured. Because revolution of the rotor increases lateral force to the center, resonance frequency given from the free revolution experiment becomes larger than that from pinning force measurement.
Modeling the Interaction between AFM Tips and Pinned Surface Nanobubbles.
Guo, Zhenjiang; Liu, Yawei; Xiao, Qianxiang; Schönherr, Holger; Zhang, Xianren
2016-01-26
Although the morphology of surface nanobubbles has been studied widely with different AFM modes, AFM images may not reflect the real shapes of the nanobubbles due to AFM tip-nanobubble interactions. In addition, the interplay between surface nanobubble deformation and induced capillary force has not been well understood in this context. In our work we used constraint lattice density functional theory to investigate the interaction between AFM tips and pinned surface nanobubbles systematically, especially concentrating on the effects of tip hydrophilicity and shape. For a hydrophilic tip contacting a nanobubble, its hydrophilic nature facilitates its departure from the bubble surface, displaying a weak and intermediate-range attraction. However, when the tip squeezes the nanobubble during the approach process, the nanobubble shows an elastic effect that prevents the tip from penetrating the bubble, leading to a strong nanobubble deformation and repulsive interactions. On the contrary, a hydrophobic tip can easily pierce the vapor-liquid interface of the nanobubble during the approach process, leading to the disappearance of the repulsive force. In the retraction process, however, the adhesion between the tip and the nanobubble leads to a much stronger lengthening effect on nanobubble deformation and a strong long-range attractive force. The trends of force evolution from our simulations agree qualitatively well with recent experimental AFM observations. This favorable agreement demonstrates that our model catches the main intergradient of tip-nanobubble interactions for pinned surface nanobubbles and may therefore provide important insight into how to design minimally invasive AFM experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junginger, Tobias; Abidi, S. H.; Maffett, R. D.
Here, the performance of superconducting radiofrequency (SRF) cavities used for particle accelerators depends on two characteristic material parameters: field of first flux entry H entry and pinning strength. The former sets the limit for the maximum achievable accelerating gradient, while the latter determines how efficiently flux can be expelled related to the maximum achievable quality factor. In this paper, a method based on muon spin rotation (μSR) is developed to probe these parameters on samples. It combines measurements from two different spectrometers, one being specifically built for these studies and samples of different geometries. It is found that annealing atmore » 1400°C virtually eliminates all pinning. Such an annealed substrate is ideally suited to measure H entry of layered superconductors, which might enable accelerating gradients beyond bulk niobium technology.« less
3D Finite Element Analysis of Spider Non-isothermal Forging Process
NASA Astrophysics Data System (ADS)
Niu, Ling; Wei, Wei; Wei, Kun Xia; Alexandrov, Igor V.; Hu, Jing
2016-06-01
The differences of effective stress, effective strain, velocity field, and the load-time curves between the spider isothermal and non-isothermal forging processes are investigated by making full use of 3D FEA, and verified by the production experiment of spider forging. Effective stress is mainly concentrated on the pin, and becomes lower closer to the front of the pin. The maximum effective strain in the non-isothermal forging is lower than that in the isothermal. The great majority of strain in the non-isothermal forging process is 1.76, which is larger than the strain of 1.31 in the isothermal forging. The maximum load required in the isothermal forging is higher than that in the non-isothermal. The maximum experimental load and deformation temperature in the spider production are in good agreement with those in the non-isothermal FEA. The results indicate that the non-isothermal 3D FEA results can guide the design of the spider forging process.
NASA Astrophysics Data System (ADS)
Albrecht, Joachim; Brück, Sebastian; Stahl, Claudia; Ruoß, Stephen
2016-11-01
We use quantitative magneto-optical microscopy to investigate the influence of finite temperatures on the critical state of thin YBCO films. In particular, temperature and time dependence of supercurrents in inhomogeneous and anisotropic films are analyzed to extract the role of temperature on the supercurrents themselves and the influence of thermally activated relaxation. We find that inhomogeneities and anisotropies of the current density distribution correspond to a different temperature dependence of local supercurrents. In addition, the thermally activated decay of supercurrents can be used to extract local vortex pinning energies. With these results the modification of vortex pinning introduced by substrate structures is studied. In summary the local investigation of supercurrent densities allows the full description of the vortex pinning landscape with respect to pinning forces and energies in superconducting films with complex properties under the influence of finite temperatures.
Statistics of dislocation pinning at localized obstacles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, A.; Bhattacharya, M., E-mail: mishreyee@vecc.gov.in; Barat, P.
2014-10-14
Pinning of dislocations at nanosized obstacles like precipitates, voids, and bubbles is a crucial mechanism in the context of phenomena like hardening and creep. The interaction between such an obstacle and a dislocation is often studied at fundamental level by means of analytical tools, atomistic simulations, and finite element methods. Nevertheless, the information extracted from such studies cannot be utilized to its maximum extent on account of insufficient information about the underlying statistics of this process comprising a large number of dislocations and obstacles in a system. Here, we propose a new statistical approach, where the statistics of pinning ofmore » dislocations by idealized spherical obstacles is explored by taking into account the generalized size-distribution of the obstacles along with the dislocation density within a three-dimensional framework. Starting with a minimal set of material parameters, the framework employs the method of geometrical statistics with a few simple assumptions compatible with the real physical scenario. The application of this approach, in combination with the knowledge of fundamental dislocation-obstacle interactions, has successfully been demonstrated for dislocation pinning at nanovoids in neutron irradiated type 316-stainless steel in regard to the non-conservative motion of dislocations. An interesting phenomenon of transition from rare pinning to multiple pinning regimes with increasing irradiation temperature is revealed.« less
Wang, Zhen; Mao, Jie-Li; Zhao, Ying-Jun; Li, Chuan-You; Xiang, Cheng-Bin
2015-02-01
L-Cysteine plays a prominent role in sulfur metabolism of plants. However, its role in root development is largely unknown. Here, we report that L-cysteine reduces primary root growth in a dosage-dependent manner. Elevating cellular L-cysteine level by exposing Arabidopsis thaliana seedlings to high L-cysteine, buthionine sulphoximine, or O-acetylserine leads to altered auxin maximum in root tips, the expression of quiescent center cell marker as well as the decrease of the auxin carriers PIN1, PIN2, PIN3, and PIN7 of primary roots. We also show that high L-cysteine significantly reduces the protein level of two sets of stem cell specific transcription factors PLETHORA1/2 and SCR/SHR. However, L-cysteine does not downregulate the transcript level of PINs, PLTs, or SCR/SHR, suggesting that an uncharacterized post-transcriptional mechanism may regulate the accumulation of PIN, PLT, and SCR/SHR proteins and auxin transport in the root tips. These results suggest that endogenous L-cysteine level acts to maintain root stem cell niche by regulating basal- and auxin-induced expression of PLT1/2 and SCR/SHR. L-Cysteine may serve as a link between sulfate assimilation and auxin in regulating root growth. © 2014 Institute of Botany, Chinese Academy of Sciences.
Opherden, Lars; Sieger, Max; Pahlke, Patrick; Hühne, Ruben; Schultz, Ludwig; Meledin, Alexander; Van Tendeloo, Gustaaf; Nast, Rainer; Holzapfel, Bernhard; Bianchetti, Marco; MacManus-Driscoll, Judith L.; Hänisch, Jens
2016-01-01
The addition of mixed double perovskite Ba2Y(Nb/Ta)O6 (BYNTO) to YBa2Cu3O7−δ (YBCO) thin films leads to a large improvement of the in-field current carrying capability. For low deposition rates, BYNTO grows as well-oriented, densely distributed nanocolumns. We achieved a pinning force density of 25 GN/m3 at 77 K at a matching field of 2.3 T, which is among the highest values reported for YBCO. The anisotropy of the critical current density shows a complex behavior whereby additional maxima are developed at field dependent angles. This is caused by a matching effect of the magnetic fields c-axis component. The exponent N of the current-voltage characteristics (inversely proportional to the creep rate S) allows the depinning mechanism to be determined. It changes from a double-kink excitation below the matching field to pinning-potential-determined creep above it. PMID:26887291
Clogging and transport of driven particles in asymmetric funnel arrays
Olson Reichhardt, Cynthia J.; Reichhardt, Charles
2018-05-03
In this paper, we numerically examine the flow and clogging of particles driven through asymmetric funnel arrays when the commensurability ratio of the number of particles per plaquette is varied. The particle-particle interactions are modeled with a soft repulsive potential that could represent vortex flow in type-II superconductors or driven charged colloids. The velocity-force curves for driving in the easy flow direction of the funnels exhibit a single depinning threshold; however, for driving in the hard flow direction, we find that there can be both negative mobility where the velocity decreases with increasing driving force as well as a reentrantmore » pinning effect in which the particles flow at low drives but become pinned at intermediate drives. This reentrant pinning is associated with a transition from smooth one-dimensional flow at low drives to a clogged state at higher drives that occurs when the particles cluster in a small number of plaquettes and block the flow. When the drive is further increased, particle rearrangements occur that cause the clog to break apart. We map out the regimes in which the pinned, flowing, and clogged states appear as a function of plaquette filling and drive. Finally, the clogged states remain robust at finite temperatures but develop intermittent bursts of flow in which a clog temporarily breaks apart but quickly reforms.« less
Clogging and transport of driven particles in asymmetric funnel arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson Reichhardt, Cynthia J.; Reichhardt, Charles
In this paper, we numerically examine the flow and clogging of particles driven through asymmetric funnel arrays when the commensurability ratio of the number of particles per plaquette is varied. The particle-particle interactions are modeled with a soft repulsive potential that could represent vortex flow in type-II superconductors or driven charged colloids. The velocity-force curves for driving in the easy flow direction of the funnels exhibit a single depinning threshold; however, for driving in the hard flow direction, we find that there can be both negative mobility where the velocity decreases with increasing driving force as well as a reentrantmore » pinning effect in which the particles flow at low drives but become pinned at intermediate drives. This reentrant pinning is associated with a transition from smooth one-dimensional flow at low drives to a clogged state at higher drives that occurs when the particles cluster in a small number of plaquettes and block the flow. When the drive is further increased, particle rearrangements occur that cause the clog to break apart. We map out the regimes in which the pinned, flowing, and clogged states appear as a function of plaquette filling and drive. Finally, the clogged states remain robust at finite temperatures but develop intermittent bursts of flow in which a clog temporarily breaks apart but quickly reforms.« less
NASA Astrophysics Data System (ADS)
Zeng, X. H.; Xue, P.; Wang, D.; Ni, D. R.; Xiao, B. L.; Ma, Z. Y.
2018-07-01
The effect of processing parameters on material flow and defect formation during friction stir welding (FSW) was investigated on 6.0-mm-thick 2014Al-T6 rolled plates with an artificially thickened oxide layer on the butt surface as the marker material. It was found that the "S" line in the stir zone (SZ) rotated with the pin and stayed on the retreating side (RS) and advancing side (AS) at low and high heat inputs, respectively. When the tool rotation rate was extremely low, the oxide layer under the pin moved to the RS first and then to the AS perpendicular to the welding direction, rather than rotating with the pin. The material flow was driven by the shear stresses produced by the forces at the pin-workpiece interface. With increases of the rotation rate, the depth of the shoulder-affected zone (SAZ) first decreased and then increased due to the decreasing shoulder friction force and increasing heat input. Insufficient material flow appeared in the whole of the SZ at low rotation rates and in the bottom of the SZ at high rotation rates, resulting in the formation of the "S" line. The extremely inadequate material flow is the reason for the lack of penetration and the kissing bonds in the bottom of the SZ at extremely low and low rotation rates, respectively.
NASA Astrophysics Data System (ADS)
Zeng, X. H.; Xue, P.; Wang, D.; Ni, D. R.; Xiao, B. L.; Ma, Z. Y.
2018-04-01
The effect of processing parameters on material flow and defect formation during friction stir welding (FSW) was investigated on 6.0-mm-thick 2014Al-T6 rolled plates with an artificially thickened oxide layer on the butt surface as the marker material. It was found that the "S" line in the stir zone (SZ) rotated with the pin and stayed on the retreating side (RS) and advancing side (AS) at low and high heat inputs, respectively. When the tool rotation rate was extremely low, the oxide layer under the pin moved to the RS first and then to the AS perpendicular to the welding direction, rather than rotating with the pin. The material flow was driven by the shear stresses produced by the forces at the pin-workpiece interface. With increases of the rotation rate, the depth of the shoulder-affected zone (SAZ) first decreased and then increased due to the decreasing shoulder friction force and increasing heat input. Insufficient material flow appeared in the whole of the SZ at low rotation rates and in the bottom of the SZ at high rotation rates, resulting in the formation of the "S" line. The extremely inadequate material flow is the reason for the lack of penetration and the kissing bonds in the bottom of the SZ at extremely low and low rotation rates, respectively.
NASA Astrophysics Data System (ADS)
Hu, Shouxiang
In bulk high-T_{rm c } superconductors, weak links at the grain boundaries and weak flux pinning are the two major causes of low critical current density (J_{ rm c}) at 77 K. In the present study, various processes designed and developed to address these problems are discussed. The novel pressurized-partial -melt-growth process, which leads to a relatively large improvement in the microstructure as well as in the superconducting properties of bulk Y-Ba-Cu-O superconductors, is described. The effects of introducing foreign elements to serve as pinning centers are reported, and the associated anomalous superconducting phenomena are explained on the basis of a detailed study of basic pinning mechanisms related to the presence of small defects. It is demonstrated that in certain cases the pinning force induced by the compression of the vortex line may be comparable to, or even larger than, the usually recognized pinning force due to the condensation energy. Studies of the pinning mechanism corresponding to large boundary defects show that boundary defects associated with certain non-superconducting inclusions and isolated weak links have a very positive role in the enhancement of both the critical current density and the effective activation energy for flux creep. However, even optimized theoretical estimates show that it will be difficult to reach J_ {rm c} values of 5 times 10^5 A/cm^2 at 77 K and H = 1 T by increasing the number of Y_2BaCuO inclusions alone. Although even higher J_{rm c} values may be achieved by introducing other types of defects using alternative approaches such as irradiation, and, probably, chemical doping, the presence of large amount of boundary defects is very important in causing a large increase in the effective activation energy for flux creep. Also studied are the anisotropic electromagnetic features of the grain-aligned YBa_2Cu _3O_{rm x} bulk superconductors. The development of novel processing methods guided by improved understanding of the basic mechanisms involved opens the way for the preparation of high-quality bulk high-T_{rm c} superconducting materials for a wide variety of applications.
Pressure-Aware Control Layer Optimization for Flow-Based Microfluidic Biochips.
Wang, Qin; Xu, Yue; Zuo, Shiliang; Yao, Hailong; Ho, Tsung-Yi; Li, Bing; Schlichtmann, Ulf; Cai, Yici
2017-12-01
Flow-based microfluidic biochips are attracting increasing attention with successful biomedical applications. One critical issue with flow-based microfluidic biochips is the large number of microvalves that require peripheral control pins. Even using the broadcasting addressing scheme, i.e., one control pin controls multiple microvalves simultaneously, thousands of microvalves would still require hundreds of control prins, which is unrealistic. To address this critical challenge in control scalability, the control-layer multiplexer is introduced to effectively reduce the number of control pins into log scale of the number of microvalves. There are two practical design issues with the control-layer multiplexer: (1) the reliability issue caused by the frequent control-valve switching, and (2) the pressure degradation problem caused by the control-valve switching without pressure refreshing from the pressure source. This paper addresses these two design issues by the proposed Hamming-distance-based switching sequence optimization method and the XOR-based pressure refreshing method. Simulation results demonstrate the effectiveness and efficiency of the proposed methods with an average 77.2% (maximum 89.6%) improvement in total pressure refreshing cost, and an average 88.5% (maximum 90.0%) improvement in pressure deviation.
Coupling device with improved thermal interface
NASA Astrophysics Data System (ADS)
Milam, Malcolm Bruce
1992-04-01
The primary object of the present invention is to provide a simple, reliable, and lightweight coupling that will also have an efficient thermal interface. A further object of the invention is to provide a coupling that is capable of blind mating with little or no insertion forces. Another object of the invention is to provide a coupling that acts as a thermal regulator to maintain a constant temperature on one side of the coupling. Another object of the invention is to increase the available surface area of a coupling thus providing a larger area for the conduction of heat across the thermal interface. Another object of the invention is to provide a fluidic coupling that has no fluid passing across the interface, thus reducing the likelihood of leaks and contamination. The foregoing objects are achieved by utilizing, as in the prior art, a hot area (at an elevated temperature as compared to a cold area) with a need to remove excess heat from the hot area to a cold area. In this device, the thermal interface will occur not on a planar horizontal surface, but along a non-planar vertical surface, which will reduce the reaction forces and increase the thermal conductivity of the device. One non-planar surface is a surface on a cold pin extending from the cold area and the other non-planar surface is a surface on a hot pin extending from the hot area. The cold pin is fixed and does not move while the hot pin is a flexible member and its movement towards the cold pin will bring the two non-planar surfaces together forming the thermal interface. The actuating member for the device is a shape-memory actuation wire which is attached through an aperture to the hot pin and through another aperture to an actuation wire retainer. By properly programming the actuation wire, heat from the hot area will cause the actuation wire to bend the hot wire. Heat from the hot area will cause the actuation wire to bend the hot pin towards the cold pin forming the coupling and the desired thermal interface. The shape-memory actuation wire is made of a shape-memory-effect alloy such as Nitinol.
NASA Astrophysics Data System (ADS)
Zhu, Zhifu; Zhang, Heqiu; Liang, Hongwei; Tang, Bin; Peng, Xincun; Liu, Jianxun; Yang, Chao; Xia, Xiaochuan; Tao, Pengcheng; Shen, Rensheng; Zou, Jijun; Du, Guotong
2018-06-01
The temperature-dependent radiation-detection performance of an alpha-particle detector that was based on a gallium-nitride (GaN)-based pin structure was studied from 290 K to 450 K. Current-voltage-temperature measurements (I-V-T) of the reverse bias show the exponential dependence of leakage currents on the voltage and temperature. The current transport mechanism of the GaN-based pin diode from the reverse bias I-V fitting was analyzed. The temperature-dependent pulse-height spectra of the detectors were studied using an 241 Am alpha-particle source at a reverse bias of 10 V, and the peak positions shifted from 534 keV at 290 K to 490 keV at 450 K. The variation of full width at half maximum (FWHM) from 282 keV at 290 K to 292 keV at 450 K is almost negligible. The GaN-based pin detectors are highly promising for high-temperature environments up to 450 K.
Application of largest Lyapunov exponent analysis on the studies of dynamics under external forces
NASA Astrophysics Data System (ADS)
Odavić, Jovan; Mali, Petar; Tekić, Jasmina; Pantić, Milan; Pavkov-Hrvojević, Milica
2017-06-01
Dynamics of driven dissipative Frenkel-Kontorova model is examined by using largest Lyapunov exponent computational technique. Obtained results show that besides the usual way where behavior of the system in the presence of external forces is studied by analyzing its dynamical response function, the largest Lyapunov exponent analysis can represent a very convenient tool to examine system dynamics. In the dc driven systems, the critical depinning force for particular structure could be estimated by computing the largest Lyapunov exponent. In the dc+ac driven systems, if the substrate potential is the standard sinusoidal one, calculation of the largest Lyapunov exponent offers a more sensitive way to detect the presence of Shapiro steps. When the amplitude of the ac force is varied the behavior of the largest Lyapunov exponent in the pinned regime completely reflects the behavior of Shapiro steps and the critical depinning force, in particular, it represents the mirror image of the amplitude dependence of critical depinning force. This points out an advantage of this technique since by calculating the largest Lyapunov exponent in the pinned regime we can get an insight into the dynamics of the system when driving forces are applied. Additionally, the system is shown to be not chaotic even in the case of incommensurate structures and large amplitudes of external force, which is a consequence of overdampness of the model and the Middleton's no passing rule.
Influence of excitability on unpinning and termination of spiral waves.
Luengviriya, Jiraporn; Sutthiopad, Malee; Phantu, Metinee; Porjai, Porramain; Kanchanawarin, Jarin; Müller, Stefan C; Luengviriya, Chaiya
2014-11-01
Application of electrical forcing to release pinned spiral waves from unexcitable obstacles and to terminate the rotation of free spiral waves at the boundary of excitable media has been investigated in thin layers of the Belousov-Zhabotinsky (BZ) reaction, prepared with different initial concentrations of H_{2}SO_{4}. Increasing [H_{2}SO_{4}] raises the excitability of the reaction and reduces the core diameter of free spiral waves as well as the wave period. An electric current with density stronger than a critical value Junpin causes a pinned spiral wave to drift away from the obstacle. For a given obstacle size, Junpin increases with [H_{2}SO_{4}]. Under an applied electrical current, the rotation center of a free spiral wave drifts along a straight path to the boundary. When the current density is stronger than a critical value Jterm, the spiral tip is forced to hit the boundary, where the spiral wave is terminated. Similar to Junpin for releasing a pinned spiral wave, Jterm also increases with [H_{2}SO_{4}]. These experimental findings were confirmed by numerical simulations using the Oregonator model, in which the excitability was adjusted via the ratio of the excitation rate to the recovery rate of the BZ reaction. Therefore, our investigation shows that decreasing the excitability can facilitate elimination of spiral waves by electrical forcing, either in the presence of obstacles or not.
A simple derivation of Lorentz self-force
NASA Astrophysics Data System (ADS)
Haque, Asrarul
2014-09-01
We derive the Lorentz self-force for a charged particle in arbitrary non-relativistic motion by averaging the retarded fields. The derivation is simple and at the same time pedagogically accessible. We obtain the radiation reaction for a charged particle moving in a circle. We pin down the underlying concept of mass renormalization.
ERIC Educational Resources Information Center
Geddes, John B.; Black, Kelly
2008-01-01
We examine an experimental apparatus that is used to motivate the connections between the basic properties of vectors, potential functions, systems of nonlinear equations, and Newton's method for nonlinear systems of equations. The apparatus is an adaptation of a force table where we remove the center-pin and allow the center-ring to move freely.…
Xie, Qingguang; Harting, Jens
2018-05-08
The deposition of particles on a substrate by drying a colloidal suspension droplet is at the core of applications ranging from traditional printing on paper to printable electronics or photovoltaic devices. The self-pinning induced by the accumulation of particles at the contact line plays an important role in the formation of a deposit. In this article, we investigate, both numerically and theoretically, the effect of friction between the particles and the substrate on the deposition pattern. Without friction, the contact line shows a stick-slip behavior and a dotlike deposit is left after the droplet is evaporated. By increasing the friction force, we observe a transition from a dotlike to a ringlike deposit. We propose a theoretical model to predict the effective radius of the particle deposit as a function of the friction force. Our theoretical model predicts a critical friction force when self-pinning happens and the effective radius of deposit increases with increasing friction force, confirmed by our simulation results. Our results can find implications for developing active control strategies for the deposition of drying droplets.
Thrust Vector Control of an Overexpanded Supersonic Nozzle Using Pin Insertion and Rotating Airfoils
1991-12-01
12 THRUST VECTOR CONTROL OP AN OVEREXPANDED 3UPfRSONIC NOZZLE USING PIN INSERTION AND ROTATINO AIRFOILS THESIS Presented to the Faculty of the School...gather data that would aid in the evaluation of thrust vector control mechanisms for nozzle applications. I would like to thank my thesis advisor, Dr... Control Nozzle. MS Thesis . Air Force Institute of Technology (AU), Wright- Patterson AFB OH, December 1988. 4. Herup, Eric J. Confined Jet Thrust Vector
Drill string transmission line
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Bradford, Kline; Fox, Joe
2006-03-28
A transmission line assembly for transmitting information along a downhole tool comprising a pin end, a box end, and a central bore traveling between the pin end and the box end, is disclosed in one embodiment of the invention as including a protective conduit. A transmission line is routed through the protective conduit. The protective conduit is routed through the central bore and the ends of the protective conduit are routed through channels formed in the pin end and box end of the downhole tool. The protective conduit is elastically forced into a spiral or other non-linear path along the interior surface of the central bore by compressing the protective conduit to a length within the downhole tool shorter than the protective conduit.
H, Neumann; A P, Schulz; S, Breer; A, Unger; B, Kienast
2015-01-01
Osteochondral injuries, if not treated appropriately, often lead to severe osteoarthritis of the affected joint. Without refixation of the osteochondral fragment, human cartilage only repairs these defects imperfectly. All existing refixation systems for chondral defects have disadvantages, for instance bad MRI quality in the postoperative follow-up or low anchoring forces. To address the problem of reduced stability in resorbable implants, ultrasound-activated pins were developed. By ultrasound-activated melting of the tip of these implants a higher anchoring is assumed. Aim of the study was to investigate, if ultrasound-activated pins can provide a secure refixation of osteochondral fractures comparing to conventional screw and conventional, resorbable pin osteosynthesis. CT scans and scanning electron microscopy should proovegood refixation results with no further tissue damage by the melting of the ultrasound-activated pins in comparison to conventional osteosynthesis. Femoral osteochondral fragments in sheep were refixated with ultrasound-activated pins (SonicPin™), Ethipins(®) and screws (Asnis™). The quality of the refixated fragments was examined after three month of full weight bearing by CT scans and scanning electron microscopy of the cartilage surface. The CT examination found almost no statistically significant difference in the quality of refixation between the three different implants used. Concerning the CT morphology, ultrasound-activated pins demonstrated at least the same quality in refixation of osteochondral fragments as conventional resorbable pins or screws. The scanning electron microscopy showed no major surface damage by the three implants, especially any postulated cartilage damage induced by the heat of the ultrasound-activated pin. The screws protruded above the cartilage surface, which may affect the opposingtibial surface. Using CT scans and scanning electron microscopy, the SonicPin™, the Ethipin(®) and screws were at least equivalent in refixation quality of osteochondral fragments.
Theory of activated glassy dynamics in randomly pinned fluids.
Phan, Anh D; Schweizer, Kenneth S
2018-02-07
We generalize the force-level, microscopic, Nonlinear Langevin Equation (NLE) theory and its elastically collective generalization [elastically collective nonlinear Langevin equation (ECNLE) theory] of activated dynamics in bulk spherical particle liquids to address the influence of random particle pinning on structural relaxation. The simplest neutral confinement model is analyzed for hard spheres where there is no change of the equilibrium pair structure upon particle pinning. As the pinned fraction grows, cage scale dynamical constraints are intensified in a manner that increases with density. This results in the mobile particles becoming more transiently localized, with increases of the jump distance, cage scale barrier, and NLE theory mean hopping time; subtle changes of the dynamic shear modulus are predicted. The results are contrasted with recent simulations. Similarities in relaxation behavior are identified in the dynamic precursor regime, including a roughly exponential, or weakly supra-exponential, growth of the alpha time with pinning fraction and a reduction of dynamic fragility. However, the increase of the alpha time with pinning predicted by the local NLE theory is too small and severely so at very high volume fractions. The strong deviations are argued to be due to the longer range collective elasticity aspect of the problem which is expected to be modified by random pinning in a complex manner. A qualitative physical scenario is offered for how the three distinct aspects that quantify the elastic barrier may change with pinning. ECNLE theory calculations of the alpha time are then presented based on the simplest effective-medium-like treatment for how random pinning modifies the elastic barrier. The results appear to be consistent with most, but not all, trends seen in recent simulations. Key open problems are discussed with regard to both theory and simulation.
NASA Astrophysics Data System (ADS)
Tsuchiya, Yuji; Miura, Shun; Awaji, Satoshi; Ichino, Yusuke; Matsumoto, Kaname; Izumi, Teruo; Watanabe, Kazuo; Yoshida, Yutaka
2017-10-01
REBa2Cu3O y superconducting tapes are appropriate for high field magnet applications at low temperatures (i.e. below liquid nitrogen temperature). To clarify the morphology and the volume of the effective pinning center at low temperatures, we used a low-temperature growth technique to fabricate SmBa2Cu3O y (SmBCO) films with various amounts of BaHfO3 (BHO) nanorods onto MgO-buffered metal substrates produced by ion-beam-assisted deposition; we investigated their flux pinning properties using a 25 T cryogen-free superconducting magnet that was recently developed at Tohoku University. According to the microstructural analysis using transmission electron microscopy, the BHO nanorods have a content-dependent morphology and are aligned for the higher content. The inclined and discontinuous BHO nanorods were observed in SmBCO films with BHO contents up to 3.8 vol%; they show an excellent flux pinning force density (1.5 TN m-3 at 21 T and 4.2 K) even when the magnetic field is perpendicular to the films. Based on the effective mass model for the flux pinning, the random pinning centers are dominant at low temperatures. The correlated flux pinning is stronger for aligned nanorods; however, the random pinning center becomes weaker in the 4.5 vol% BHO-doped films. Therefore, the optimal BHO doping level is approximately 3.8 vol% in terms of the amplitude of the critical current density and the anisotropy from 4.2 K to 20 K because this provides the best mixture of correlated and random flux pinning centers.
Theory of activated glassy dynamics in randomly pinned fluids
NASA Astrophysics Data System (ADS)
Phan, Anh D.; Schweizer, Kenneth S.
2018-02-01
We generalize the force-level, microscopic, Nonlinear Langevin Equation (NLE) theory and its elastically collective generalization [elastically collective nonlinear Langevin equation (ECNLE) theory] of activated dynamics in bulk spherical particle liquids to address the influence of random particle pinning on structural relaxation. The simplest neutral confinement model is analyzed for hard spheres where there is no change of the equilibrium pair structure upon particle pinning. As the pinned fraction grows, cage scale dynamical constraints are intensified in a manner that increases with density. This results in the mobile particles becoming more transiently localized, with increases of the jump distance, cage scale barrier, and NLE theory mean hopping time; subtle changes of the dynamic shear modulus are predicted. The results are contrasted with recent simulations. Similarities in relaxation behavior are identified in the dynamic precursor regime, including a roughly exponential, or weakly supra-exponential, growth of the alpha time with pinning fraction and a reduction of dynamic fragility. However, the increase of the alpha time with pinning predicted by the local NLE theory is too small and severely so at very high volume fractions. The strong deviations are argued to be due to the longer range collective elasticity aspect of the problem which is expected to be modified by random pinning in a complex manner. A qualitative physical scenario is offered for how the three distinct aspects that quantify the elastic barrier may change with pinning. ECNLE theory calculations of the alpha time are then presented based on the simplest effective-medium-like treatment for how random pinning modifies the elastic barrier. The results appear to be consistent with most, but not all, trends seen in recent simulations. Key open problems are discussed with regard to both theory and simulation.
Friction Stir Welding of Tapered Thickness Welds Using an Adjustable Pin Tool
NASA Technical Reports Server (NTRS)
Adams, Glynn; Venable, Richard; Lawless, Kirby
2003-01-01
Friction stir welding (FSW) can be used for joining weld lands that vary in thickness along the length of the weld. An adjustable pin tool mechanism can be used to accomplish this in a single-pass, full-penetration weld by providing for precise changes in the pin length relative to the shoulder face during the weld process. The difficulty with this approach is in accurately adjusting the pin length to provide a consistent penetration ligament throughout the weld. The weld technique, control system, and instrumentation must account for mechanical and thermal compliances of the tooling system to conduct tapered welds successfully. In this study, a combination of static and in-situ measurements, as well as active control, is used to locate the pin accurately and maintain the desired penetration ligament. Frictional forces at the pin/shoulder interface were a source of error that affected accurate pin position. A traditional FSW pin tool design that requires a lead angle was used to join butt weld configurations that included both constant thickness and tapered sections. The pitch axis of the tooling was fixed throughout the weld; therefore, the effective lead angle in the tapered sections was restricted to within the tolerances allowed by the pin tool design. The sensitivity of the FSW process to factors such as thickness offset, joint gap, centerline offset, and taper transition offset were also studied. The joint gap and the thickness offset demonstrated the most adverse affects on the weld quality. Two separate tooling configurations were used to conduct tapered thickness welds successfully. The weld configurations included sections in which the thickness decreased along the weld, as well as sections in which the thickness increased along the weld. The data presented here include weld metallography, strength data, and process load data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mingtao; Zhang, Jincang, E-mail: jczhang@staff.shu.edu.cn; Materials Genome Institute, Shanghai University, Shanghai 200444
2014-11-10
We report a comparative study of the critical current density (J{sub c}) and vortex pinning among pure and Mn doped K{sub x}Fe{sub 2−y}Se{sub 2} single crystals. It is found that the J{sub c} values can be greatly improved by Mn doping and post-quenching treatment when comparing to pristine pure sample. In contrast to pure samples, an anomalous second magnetization peak (SMP) effect is observed in both 1% and 2% Mn doped samples at T = 3 K for H∥ab but not for H∥c. Referring to Dew-Hughes and Kramer's model, we performed scaling analyses of the vortex pinning force density vs magnetic field inmore » 1% Mn doped and quenched pristine crystals. The results show that the normal point defects are the dominant pinning sources, which probably originate from the variations of intercalated K atoms. We propose that the large nonsuperconducting K-Mn-Se inclusions may contribute to the partial normal surface pinning and give rise to the anomalous SMP effect for H∥ab in Mn doped crystals. These results may facilitate further understanding of the superconductivity and vortex pinning in intercalated iron-selenides superconductors.« less
de la Llave-Rincón, Ana Isabel; Fernández-de-Las-Peñas, César; Pérez-de-Heredia-Torres, Marta; Martínez-Perez, Almudena; Valenza, Marie Carmen; Pareja, Juan A
2011-06-01
: The aim of this study was to analyze the differences in deficits in fine motor control and pinch grip force between patients with minimal, moderate/mild, or severe carpal tunnel syndrome (CTS) and healthy age- and hand dominance-matched controls. : A case-control study was conducted. The subtests of the Purdue Pegboard Test (one-hand and bilateral pin placements and assemblies) and pinch grip force between the thumb and the remaining four fingers of the hand were bilaterally evaluated in 66 women with minimal (n = 16), moderate (n = 16), or severe (n = 34) CTS and in 20 age- and hand-matched healthy women. The differences among the groups were analyzed using different mixed models of analysis of variance. : A two-way mixed analysis of variance revealed significant differences between groups, not depending on the presence of unilateral or bilateral symptoms (side), for the one-hand pin placement subtest: patients showed bilateral lower scores compared with controls (P < 0.001), without differences among those with minimal, moderate, or severe CTS (P = 0.946). The patients also exhibited lower scores in bilateral pin placement (P < 0.001) and assembly (P < 0.001) subtests, without differences among them. The three-way analysis of variance revealed significant differences among groups (P < 0.001) and fingers (P < 0.001), not depending on the presence of unilateral/bilateral symptoms (P = 0.684), for pinch grip force: patients showed bilateral lower pinch grip force in all fingers compared with healthy controls, without differences among those with minimal, moderate, or severe CTS. : The current study revealed similar bilateral deficits in fine motor control and pinch grip force in patients with minimal, moderate, or severe CTS, supporting that fine motor control deficits are a common feature of CTS not associated with electrodiagnostic findings.
Ex situ investigation of the step bunching on crystal surfaces by atomic force microscopy
NASA Astrophysics Data System (ADS)
Krasinski, Mariusz J.
1997-07-01
We are describing ex situ observation of step bunching on the surfaces of solution grown potassium dihydrogen phosphate (KDP) and sodium chlorate monocrystals. The measurements have been done with the use of atomic force microscope. The use of this equipment allowed us to see directly the structure of macrosteps. Observation confirmed the existence of step pinning which is one of the proposed mechanisms of step bunching. Despite the very high resolution of AFM it was not possible to determine the nature of pinning point. The monatomic steps on KDP and sodium chlorate crystal surfaces are mainly one unit cell high what seems to be the result of the steps pairing. The origin of observed step pattern is discussed in frames of existing theories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Tayeb, A., E-mail: ahmed.khalil@ejust.edu.eg; El-Shazly, A. H.; Elkady, M. F.
In this article, a dual pin-to-plate high-voltage corona discharge system is introduced to study experimentally the gap distance, the contact time, the effect of pin and plate materials, the thickness of ground plate and the conductivity on the amount of Acid Blue 25 dye color removal efficiency from polluted water. A study for the optimum air gap distance between dual pin and surface of Acid Blue 25 dye solution is carried out using 3D-EM simulator to find maximum electric field intensity at the tip of both pins. The outcomes display that the best gap for corona discharge is approximately 5more » mm for 15-kV source. This separation is constant during the study of other factors. In addition, an investigation of the essential reactive species responsible for oxidation of the dye organic compounds (O{sub 3} in air discharge, O{sub 3} in water, and H{sub 2}O{sub 2}) during the experimental time is conducted. Three various materials such as: stainless steel, copper and aluminum are used for pins and plate. The maximum color removal efficiencies of Acid Blue 25 dyes are 99.03, 82.04, and 90.78% after treatment time 15 min for stainless steel, copper, and aluminum, respectively. Measurement results for the impact of thickness of an aluminum ground plate on color removal competence show color removal efficiencies of 86.3, 90.78, and 98.06% after treatment time 15 min for thicknesses of 2, 0.5, and 0.1 mm, respectively. The increasing of the solution conductivity leads to the reduction of decolorization efficiency. A kinetic model is used to define the performance of corona discharge system. The models of pseudo-zero-order, pseudo-first-order, and pseudo-second-order reaction kinetics are utilized to investigate the decolorization of Acid Blue 25 dye. The rate of degradation of Acid Blue 25 dye follows the pseudo-first-order kinetics in the dye concentration.« less
NASA Technical Reports Server (NTRS)
Ratcliffe, James G.; Krueger, Ronald
2006-01-01
One particular concern of polymer matrix composite laminates is the relatively low resistance to delamination cracking, in particular when the dominant type of failure is mode I opening. One method proposed for alleviating this problem involves the insertion pultruded carbon pins through the laminate thickness. The pins, known as z-pins, are inserted into the prepreg laminate using an ultrasonic hammer prior to the curing process, resulting in a field of pins embedded normal to the laminate plane as illustrated in Figure. 1. Pin diameters range between 0.28-mm to 0.5-mm and standard areal densities range from 0.5% to 4%. The z-pins are provided by the manufacturer, Aztex(Registered TradeMark) , in a low-density foam preform, which acts to stabilize orientation of the pins during the insertion process [1-3]. Typical pin materials include boron and carbon fibers embedded in a polymer matrix. A number of methods have been developed for predicting delamination growth in laminates reinforced with z-pins. During a study on the effect of z-pin reinforcement on mode I delamination resistance, finite element analyses of z-pin reinforced double cantilever beam (DCB) specimens were performed by Cartie and Partridge [4]. The z-pin bridging stresses were modeled by applying equivalent forces at the pin locations. Single z-pin pull-out tests were performed to characterize the traction law of the pins under mode I loading conditions. Analytical solutions for delamination growth in z-pin reinforced DCB specimens were independently derived by Robinson and Das [5] and Ratcliffe and O'Brien [6]. In the former case, pin bridging stresses were modeled using a distributed load and in the latter example the bridging stresses were discretely modeled by way of grounded springs. Additionally, Robinson and Das developed a data reduction strategy for calculating mode I fracture toughness, G(sub Ic), from a z-pin reinforced DCB specimen test [5]. In both cases a traction law similar to that adopted by Cartie and Partridge was used to represent z-pin failure under mode I loading conditions. In the current work spring elements available in most commercial finite element codes were used to model z-pins. The traction law used in previous analyses [4-6] was employed to represent z-pin damage. This method is intended for and is limited to simulating z-pins in composite laminate structure containing mode I-dominated delamination cracking. The current technique differs from previous analyses in that spring finite elements (available in commercial codes) are employed for simulating zpins, reducing the complexity of the analysis construction process. Furthermore, the analysis method can be applied to general structure that experiences mode I-dominated delamination cracking, in contrast to existing analytical solutions that are only applicable to coupon DCB specimens.
Sliding states of a soft-colloid cluster crystal: Cluster versus single-particle hopping
NASA Astrophysics Data System (ADS)
Rossini, Mirko; Consonni, Lorenzo; Stenco, Andrea; Reatto, Luciano; Manini, Nicola
2018-05-01
We study a two-dimensional model for interacting colloidal particles which displays spontaneous clustering. Within this model we investigate the competition between the pinning to a periodic corrugation potential and a sideways constant pulling force which would promote a sliding state. For a few sample particle densities and amplitudes of the periodic corrugation potential we investigate the depinning from the statically pinned to the dynamically sliding regime. This sliding state exhibits the competition between a dynamics where entire clusters are pulled from a minimum to the next and a dynamics where single colloids or smaller groups leave a cluster and move across the corrugation energy barrier to join the next cluster downstream in the force direction. Both kinds of sliding states can occur either coherently across the entire sample or asynchronously: the two regimes result in different average mobilities. Finite temperature tends to destroy separate sliding regimes, generating a smoother dependence of the mobility on the driving force.
A Quadruped Micro-Robot Based on Piezoelectric Driving
Su, Qi; Quan, Qiquan; Deng, Jie; Yu, Hongpeng
2018-01-01
Inspired by a way of rowing, a new piezoelectric driving quadruped micro-robot operating in bending-bending hybrid vibration modes was proposed and tested in this work. The robot consisted of a steel base, four steel connecting pins and four similar driving legs, and all legs were bonded by four piezoelectric ceramic plates. The driving principle is discussed, which is based on the hybrid of first order vertical bending and first order horizontal bending vibrations. The bending-bending hybrid vibration modes motivated the driving foot to form an elliptical trajectory in space. The vibrations of four legs were used to provide the driving forces for robot motion. The proposed robot was fabricated and tested according to driving principle. The vibration characteristics and elliptical movements of the driving feet were simulated by FEM method. Experimental tests of vibration characteristics and mechanical output abilities were carried out. The tested resonance frequencies and vibration amplitudes agreed well with the FEM calculated results. The size of robot is 36 mm × 98 mm × 14 mm, its weight is only 49.8 g, but its maximum load capacity achieves 200 g. Furthermore, the robot can achieve a maximum speed of 33.45 mm/s. PMID:29518964
A Quadruped Micro-Robot Based on Piezoelectric Driving.
Su, Qi; Quan, Qiquan; Deng, Jie; Yu, Hongpeng
2018-03-07
Inspired by a way of rowing, a new piezoelectric driving quadruped micro-robot operating in bending-bending hybrid vibration modes was proposed and tested in this work. The robot consisted of a steel base, four steel connecting pins and four similar driving legs, and all legs were bonded by four piezoelectric ceramic plates. The driving principle is discussed, which is based on the hybrid of first order vertical bending and first order horizontal bending vibrations. The bending-bending hybrid vibration modes motivated the driving foot to form an elliptical trajectory in space. The vibrations of four legs were used to provide the driving forces for robot motion. The proposed robot was fabricated and tested according to driving principle. The vibration characteristics and elliptical movements of the driving feet were simulated by FEM method. Experimental tests of vibration characteristics and mechanical output abilities were carried out. The tested resonance frequencies and vibration amplitudes agreed well with the FEM calculated results. The size of robot is 36 mm × 98 mm × 14 mm, its weight is only 49.8 g, but its maximum load capacity achieves 200 g. Furthermore, the robot can achieve a maximum speed of 33.45 mm/s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Y; Gardner, S; Huang, Y
Purpose: To evaluate the performance of a commercial plastic scintillator detector (PSD) for small-field stereotactic patient-specific quality assurance using flattening-filter-free (FFF) beams. Methods: A total of ten spherical targets (volume range:[0.03cc–2cc]) were planned using Dynamic Conformal Arc(DCA-10 plans) and Volumetric Modulated Arc Therapy(VMAT-10 plans) techniques in Eclipse(AAA v.11, 1mm dose calculation grid size). Additionally, 15 previously-treated cranial and spine SRS plans were evaluated (6 DCA, 9 VMAT, volume range:[0.04cc–119.02cc]). All measurements were acquired using Varian Edge equipped with HDMLC. Three detectors were used: PinPoint ion chamber (PTW;active volume 0.015cc), Exradin W1 PSD (Standard Imaging;active volume 0.002cc), and Gafchromic EBT3 filmmore » (Ashland). PinPoint and PSD were positioned perpendicular to beam axis in a Lucy phantom (Standard Imaging). Films were placed at isocenter in solid water. Calibration films were delivered for absolute dose analysis. Results: For large spherical targets(>1.5cc) with DCA, all detectors agreed within 1% of AAA calculations. As target volume decreased, PSD measured higher doses than AAA (maximum difference: 3.3% at 0.03cc target), while PinPoint chamber measured lower doses (maximum difference:-3.8% at 0.03cc target). Inter-detector differences between pinpoint and PSD increased with decreasing target size; differences>5% were observed for targets<0.09cc. Similar trends for inter-detector behavior were observed for clinical plans. For target sizes<0.08cc, PSD measured>5% higher dose than PinPoint chamber (maximum difference: 9.25% at 0.04cc target). Film demonstrated agreement of −0.19±1.47% with PSD for all spherical targets, and agreement within −0.98±2.25% for all 15 clinical targets. Unlike DCA, VMAT plans did not show improved AAA-to-detector agreements for large targets. Conclusion: For all targets, the PSD measurements agreed with film within 1.0%, on average. For small volume targets (<0.10cc), PSD agreed with film but measured significantly higher doses (>5%) compared with the pin point ion chamber. The plastic scintillator detector appears to be suitable for accurate measurements of small SRS targets.« less
Brantley, Justin; Majumdar, Aditi; Jobe, J Taylor; Kallur, Antony; Salas, Christina
2016-01-01
Percutaneous pin fixation is often used in conjunction with closed-reduction and cast immobilization to treat pediatric distal tibia fractures. The goal of this procedure is to maintain reduction and provide improved stabilization, in effort to facilitate a more anatomic union. We conducted a biomechanical study of the torsional and bending stability of three commonly used pin configurations in distal tibia fracture fixation. A transverse fracture was simulated at the metaphyseal/diaphyseal junction in 15 synthetic tibias. Each fracture was reduced and fixed with two Kirschner wires, arranged in one of three pin configurations: parallel, retrograde, medial to lateral pins entering at the medial malleolus distal to the fracture (group A); parallel, antegrade, medial to lateral pins entering at the medial diaphysis proximal to the fracture (group B); or a cross-pin configuration with one retrograde, medial to lateral pin entering the medial malleolus distal to the fracture and the second an antegrade, medial to lateral pin entering at the medial diaphysis proximal to the fracture (group C). Stability of each construct was assessed by resistance to torsion and bending. Resistance to external rotation stress was significantly higher in group A than group B (P = 0.044). Resistance to internal rotation stress was significantly higher in group C than group B (P = 0.003). There was no significant difference in torsional stiffness when comparing group A with group C. Under a medial-directed load, group B and C specimens were significantly stiffer than those in group A (28 N/mm and 24 N/mm vs. 14 N/mm for A; P = 0.001 and P = 0.009, respectively). None of the three pin configurations produced superior results with respect to all variables studied. Group A configuration provided the highest resistance to external rotation forces, which is the most clinically relevant variable under short-cast immobilization. Parallel, retrograde, medial to lateral pins entering at the medial malleolus provide the greatest resistance to external rotation of the foot while minimizing the potential for iatrogenic injury to soft tissue structures.
NASA Astrophysics Data System (ADS)
Deepak, G. Divya; Joshi, N. K.; Prakash, Ram
2018-05-01
In this study, both model analysis and electrical characterization of a dielectric barrier discharge based argon plasma jet have been carried at atmospheric pressure in a pin electrode configuration. The plasma and fluid dynamics modules of COMSOL multi-physics code have been used for the modeling of the plasma jet. The plasma parameters, such as, electron density, electron temperature and electrical potential have been analyzed with respect to the electrical parameters, i.e., supply voltage and supply frequency with and without the flow of gas. In all the experiments, gas flow rate has been kept constant at 1 liter per minute. This electrode configuration is subjected to a range of supply frequencies (10-25 kHz) and supply voltages (3.5-6.5 kV). The power consumed by the device has been estimated at different applied combinations (supply voltage & frequency) for optimum power consumption at maximum jet length. The maximum power consumed by the device in this configuration for maximum jet length of ˜26 mm is just ˜1 W.
Broad Temperature Pinning Study of 15 mol.% Zr-Added (Gd, Y)-Ba-Cu-O MOCVD Coated Conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, AX; Khatri, N; Liu, YH
BaZrO3 (BZO) nanocolumns have long been shown to be very effective for raising the pinning force F-p of REBa2Cu3Ox (REBCO, where RE = rare earth) films at high temperatures and recently at low temperatures too. We have successfully incorporated a high density of BZO nanorods into metal organic chemical vapor deposited (MOCVD) REBCO coated conductors via Zr addition. We found that, compared to the 7.5% Zr-added coated conductor, dense BZO nanorod arrays in the 15% Zr-added conductor are effective over the whole temperature range from 77 K down to 4.2 K. We attribute the substantially enhanced J(c) at 30 Kmore » to the weak uncorrelated pinning as well as the strong correlated pinning. Meanwhile, by tripling the REBCO layer thickness to similar to 2.8 mu m, the engineering critical current density J(e) at 30 K exceeds J(e) of optimized Nb-Ti wires at 4.2 K.« less
Static vs dynamic loads as an influence on bone remodelling.
Lanyon, L E; Rubin, C T
1984-01-01
Remodelling activity in the avian ulna was assessed under conditions of disuse alone, disuse with a superimposed continuous compressive load, and disuse interrupted by a short daily period of intermittent loading. The ulnar preparation consisted of the 110mm section of the bone shaft between two submetaphyseal osteotomies. Each end of the preparation was transfixed by a stainless steel pin and the shaft either protected from normal functional loading with the pins joined by external fixators, loaded continuously in compression by joining the pins with springs, or loaded intermittently in compression for a single 100s period per day by engaging the pins in an Instron machine. Similar loads (525 N) were used in both static and dynamic cases. The strains engendered were determined by strain gauges, and at their maximum around the bone's midshaft were -0.002. The intermittent load was applied at a frequency of 1 Hz as a ramped square wave, with a rate of change of strain during the ramp of 0.01 s-1. Peak strain at the midshaft of the ulna during wing flapping in the intact bone was recorded from bone bonded strain gauges in vivo as -0.0033 with a maximum rate of change of strain of 0.056 s-1. Examination of bone sections from the midpoint of the preparation after an 8 week period indicated that in both non-loaded and statically loaded bones there was an increase in both endosteal diameter and intra cortical porosity. These changes produced a decrease in cross sectional area which was similar in the two groups (-13%).(ABSTRACT TRUNCATED AT 250 WORDS)
Medvedev’s Plan: Giving Russia a Voice But Not a Veto in a New European Security System
2009-12-01
Iran “will thank the United States for its thoughtlessness and continue their nuc- lear programs.”51 There is no evidence that China or Russia would...regional king -pins, with a weak central government and without any national military-security forces. Russian military forces will be permanently
NASA Astrophysics Data System (ADS)
Plaut, R. H.
2006-01-01
Fluid-conveying pipes with supported ends buckle when the fluid velocity reaches a critical value. For higher velocities, the postbuckled equilibrium shape can be directly related to that for a column under a follower end load. However, the corresponding vibration frequencies are different due to the Coriolis force associated with the fluid flow. Clamped-clamped, pinned-pinned, and clamped-pinned pipes are considered first. Axial sliding is permitted at the downstream end. The pipe is modeled as an inextensible elastica. The equilibrium shape may have large displacements, and small motions about that shape are analyzed. The behavior is conservative in the prebuckling range and nonconservative in the postbuckling range (during which the Coriolis force does work and the motions decay). Next, related columns are studied, first with a concentrated follower load at the axially sliding end, and then with a distributed follower load. In all cases, a shooting method is used to solve the nonlinear boundary-value problem for the equilibrium configuration, and to solve the linear boundary-value problem for the first four vibration frequencies. The results for the three different types of loading are compared.
NASA Technical Reports Server (NTRS)
Murakami, Masato; Gotoh, Satoshi; Fujimoto, Hiroyuki; Koshizuka, Naoki; Tanaka, Shoji
1991-01-01
In the Y-Ba-Cu-O system, YBa2Cu3O(x) phase is produced by the following peritectic reaction: Y2BaCuO5 + liquid yields 2YBa2Cu3O(x). Through the control of processing conditions and starting compositions, it becomes possible to fabricate large crystals containing fine Y2BaCuO5(211) inclusions. Such crystals exhibit Jc values exceeding 10000 A/sq cm at 77 K and 1T. Recently, researchers developed a novel process which can control the volume fraction of 211 inclusions. Elimination of 211 inclusions is also possible. In this study, researchers prepared YBaCuO crystals with and without 211 inclusions using the novel process, and compared flux pinning, flux creep and critical currents. Magnetic field dependence of Jc for YBaCuO crystals with and with 211 inclusions is shown. It is clear that fine 211 inclusions can contribute to flux pinning. It was also found that flux creep rate could be reduced by increasing flux pinning force. Critical current density estimates based on the conventional flux pinning theory were in good agreement with experimental results.
Fluid-cooled heat sink with improved fin areas and efficiencies for use in cooling various devices
Bharathan, Desikan; Bennion, Kevin; Kelly, Kenneth; Narumanchi, Sreekant
2015-04-21
The disclosure provides a fluid-cooled heat sink having a heat transfer base and a plurality of heat transfer fins in thermal communication with the heat transfer base, where the heat transfer base and the heat transfer fins form a central fluid channel through which a forced or free cooling fluid may flow. The heat transfer pins are arranged around the central fluid channel with a flow space provided between adjacent pins, allowing for some portion of the central fluid channel flow to divert through the flow space. The arrangement reduces the pressure drop of the flow through the fins, optimizes average heat transfer coefficients, reduces contact and fin-pin resistances, and reduces the physical footprint of the heat sink in an operating environment.
Development of robots and application to industrial processes
NASA Technical Reports Server (NTRS)
Palm, W. J.; Liscano, R.
1984-01-01
An algorithm is presented for using a robot system with a single camera to position in three-dimensional space a slender object for insertion into a hole; for example, an electrical pin-type termination into a connector hole. The algorithm relies on a control-configured end effector to achieve the required horizontal translations and rotational motion, and it does not require camera calibration. A force sensor in each fingertip is integrated with the vision system to allow the robot to teach itself new reference points when different connectors and pins are used. Variability in the grasped orientation and position of the pin can be accomodated with the sensor system. Performance tests show that the system is feasible. More work is needed to determine more precisely the effects of lighting levels and lighting direction.
Impact of Cubic Pin Finned Surface Structure Geometry upon Spray Cooling Heat Transfer
NASA Technical Reports Server (NTRS)
Silk, Eric A.; Kim, Jungho; Kiger, Ken
2005-01-01
Experiments were conducted to study the effects of enhanced surface structures on heat flux using spray cooling. The surface enhancements consisted of cubic pin fins machined on the top surface of copper heater blocks. The structure height, pitch, and width were parametrically vaned. Each copper block had a projected cross-sectional area of 2.0 sq cm. Measurements were also obtained on a heater block with a flat surface for baseline comparison purposes. A 2 x 2 nozzle array was used with PF-5060 as the working fluid. Thermal performance data were obtained under nominally degassed (chamber pressure of 41.4 kPa) and gassy conditions (chamber with N2 gas at 100.7 kPa) with a bulk fluid temperature of 20.5 C. Results for both the degassed and gassy cases show that structure width and separation distance have a dominant effect upon the heat transfer for the size ranges used. Cubic pin fin height had little impact upon heat flux. The maximum critical heat flux (CHF) attained for any of the surfaces was 121 W/sq cm, giving an enhancement of 51% relative to the flat surface case under nominally degassed conditions. The gassy case had a maximum CHF of 149 W/sq cm, giving an enhancement of 38% relative to the flat surface case.
Design and analysis of the Gemini chain system in dual clutch transmission of automobile
NASA Astrophysics Data System (ADS)
Cheng, Yabing; Guo, Haitao; Fu, Zhenming; Wan, Nen; Li, Lei; Wang, Yang
2015-01-01
Chain drive system is widely used in the conditions of high-speed, overload, variable speed and load. Many studies are focused on the meshing theory and wear characteristics of chain drive system, but system design, analysis, and noise characteristics of the chain drive system are weak. System design and noise characteristic are studied for a new type Gemini chain of dual-clutch automatic transmission. Based on the meshing theory of silent chain, the design parameters of the Gemini chain system are calculated and the mathematical models and dynamic analysis models of the Gemini chain system are established. Dynamic characteristics of the Gemini chain system is simulated and the contact force of plate and pin, plate and sprockets, the chain tension forces, the transmission error and the stress of plates and pins are analyzed. According to the simulation results of the Gemini chain system, the noise experiment about system is carried out. The noise values are tested at different speed and load and spectral characteristics are analyzed. The results of simulation and experimental show that the contact forces of plate and pin, plate and sprockets are smaller than the allowable stress values, the chain tension force is less than ultimate tension and transmission error is limited in 1.2%. The noise values can meet the requirements of industrial design, and it is proved that the design and analysis method of the Gemini chain system is scientific and feasible. The design and test system is built from analysis to test of Gemini chain system. This research presented will provide a corresponding theoretical guidance for the design and dynamic characteristics and noise characteristics of chain drive system.
Cutting a Drop of Water Pinned by Wire Loops Using a Superhydrophobic Surface and Knife
Yanashima, Ryan; García, Antonio A.; Aldridge, James; Weiss, Noah; Hayes, Mark A.; Andrews, James H.
2012-01-01
A water drop on a superhydrophobic surface that is pinned by wire loops can be reproducibly cut without formation of satellite droplets. Drops placed on low-density polyethylene surfaces and Teflon-coated glass slides were cut with superhydrophobic knives of low-density polyethylene and treated copper or zinc sheets, respectively. Distortion of drop shape by the superhydrophobic knife enables a clean break. The driving force for droplet formation arises from the lower surface free energy for two separate drops, and it is modeled as a 2-D system. An estimate of the free energy change serves to guide when droplets will form based on the variation of drop volume, loop spacing and knife depth. Combining the cutting process with an electrofocusing driving force could enable a reproducible biomolecular separation without troubling satellite drop formation. PMID:23029297
Transport properties and pinning analysis for Co-doped BaFe2As2 thin films on metal tapes
NASA Astrophysics Data System (ADS)
Xu, Zhongtang; Yuan, Pusheng; Fan, Fan; Chen, Yimin; Ma, Yanwei
2018-05-01
We report on the transport properties and pinning analysis of BaFe1.84Co0.16As2 (Ba122:Co) thin films on metal tapes by pulsed laser deposition. The thin films exhibit a large in-plane misorientation of 5.6°, close to that of the buffer layer SrTiO3 (5.9°). Activation energy U 0(H) analysis reveals a power law relationship with field, having three different exponents at different field regions, indicative of variation from single-vortex pinning to a collective flux creep regime. The Ba122:Co coated conductors present {{T}{{c}}}{{onset}} = 20.2 K and {{T}{{c}}}{{zero}} = 19.0 K along with a self-field J c of 1.14 MA cm‑2 and an in-field J c as high as 0.98 and 0.86 MA cm‑2 up to 9 T at 4.2 K for both major crystallographic directions of the applied field, promising for high field applications. Pinning force analysis indicates a significant enhancement compared with similar Ba122:Co coated conductors. By using the anisotropic scaling approach, intrinsic pinning associated with coupling between superconducting blocks can be identified as the pinning source in the vicinity of H//ab, while for H//c random point defects are likely to play a role but correlated defects start to be active at high temperatures.
The Effect of Tool Profiles on Mechanical Properties of Friction Stir Welded Al5052 T-Joints.
Kim, Byeong-Jin; Bang, Hee-Seon; Bang, Han-Sur
2018-03-01
Al5052 T butt joints with two skins (5 mm) and one stringer (3 mm) has been successfully welded by friction stir welding (FSW). Notably, this paper has been investigated the effect of tool shape on welded formation mechanism and mechanical properties. The used shapes of tool pin are two types which are cylinder (type 1) and frustum (type 2). Dimension on two types of tool pin shape is respectively pin length of 4.7 mm and pin diameter of frustum type of top (5 mm) and bottom (3 mm). The results of experiment show that inner defects in FSWed T-joints increase significantly in accordance with traverse speed. The maximum tensile strength of welded joint fabricated using type 1 is equivalent to 85% that of the base metal, which is approximately 10% higher than that of type 2. Because welded joint of type 1 has more smoothly plastic flow in comparison with type 2. Consequently, the results show that type 1 is better appropriate for friction stir welded Al5052 T butt joints than type 2.
Origins of Fermi-level pinning on GaN and InN polar and nonpolar surfaces
NASA Astrophysics Data System (ADS)
Segev, D.; Van de Walle, C. G.
2006-10-01
Using band structure and total energy methods, we study the atomic and electronic structures of the polar (+c and - c plane) and nonpolar (a and m plane) surfaces of GaN and InN. We identify two distinct microscopic origins for Fermi-level pinning on GaN and InN, depending on surface stoichiometry and surface polarity. At moderate Ga/N ratios unoccupied gallium dangling bonds pin the Fermi level on n-type GaN at 0.5 0.7 eV below the conduction-band minimum. Under highly Ga-rich conditions metallic Ga adlayers lead to Fermi-level pinning at 1.8 eV above the valence-band maximum. We also explain the source of the intrinsic electron accumulation that has been universally observed on polar InN surfaces. It is caused by In-In bonds leading to occupied surface states above the conduction-band minimum. We predict that such a charge accumulation will be absent on the nonpolar surfaces of InN, when prepared under specific conditions.
Vortex creep and the internal temperature of neutron stars. I - General theory
NASA Technical Reports Server (NTRS)
Alpar, M. A.; Pines, D.; Anderson, P. W.; Shaham, J.
1984-01-01
The theory of a neutron star superfluid coupled to normal matter via thermal creep against pinning forces is developed in some detail. General equations of motion for a pinned rotating superfluid and their form for vortex creep are given. Steady state creep and the way in which the system approaches the steady state are discussed. The developed formalism is applied to the postglitch relaxation of a pulsar, and detailed models are developed which permit explicit calculation of the postglitch response. The energy dissipation associated with creep and glitches is considered.
Rock, H.R.
1963-12-24
A composite control rod for use in controlling a nuclear reactor is described. The control rod is of sandwich construction in which finned dowel pins are utilized to hold together sheets of the neutron absorbing material and nonabsorbing structural material thereby eliminating the need for being dependent on the absorbing material for structural support. The dowel pins perform the function of absorbing the forces due to differential thermal expansion, seating further with the fins into the sheets of material and crushing before damage is done either to the absorbing or non-absorbing material. (AEC)
Assessment on the methods of measuring the tyre-road contact patch stresses
NASA Astrophysics Data System (ADS)
Anghelache, G.; Moisescu, A.-R.; Buretea, D.
2017-08-01
The paper reviews established and modern methods for investigating tri-axial stress distributions in the tyre-road contact patch. The authors used three methods of measuring stress distributions: strain gauge method; force sensing technique; acceleration measurements. Four prototypes of instrumented pins transducers involving mentioned measuring methods were developed. Data acquisitions of the contact patch stresses distributions were performed using each transducer with instrumented pin. The results are analysed and compared, underlining the advantages and drawbacks of each method. The experimental results indicate that the three methods are valuable.
Fluid Flow, Newton's Second Law and River Rescue
ERIC Educational Resources Information Center
O'Shea, Michael J.
2006-01-01
We consider the situation of a boat pinned or wrapped against a rock by moving water in a river. The force exerted by moving water is calculated and the force required to extricate the boat is estimated. Rafts, canoes and kayaks are each considered. A rope system commonly employed by river runners to extricate a boat is analysed. This system…
High-sensitive computed tomography system using a silicon-PIN x-ray diode
NASA Astrophysics Data System (ADS)
Sato, Eiichi; Sato, Yuich; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2012-10-01
A low-dose-rate X-ray computed tomography (CT) system is useful for reducing absorbed dose for patients. The CT system with a tube current of 1.91 mA was developed using a silicon-PIN X-ray diode (Si-PIN-XD). The Si-PIN-XD is a selected high-sensitive Si-PIN photodiode (PD) for detecting X-ray photons. X-ray photons are detected directly using the Si-PIN-XD without a scintillator, and the photocurrent from the diode is amplified using current-voltage and voltage-voltage amplifiers. The output voltage is converted into logical pulses using a voltage-frequency converter with maximum frequency of 500 kHz, and the frequency is proportional to the voltage. The pulses from the converter are sent to differentiator with a time constant of 1 μs to generate short positive pulses for counting, and the pulses are counted using a counter card. Tomography is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan. The exposure time for obtaining a tomogram was 5 min at a scan step of 0.5 mm and a rotation step of 3.0°. The tube current and voltage were 1.91 mA and 100 kV, respectively, and gadolinium K-edge CT was carried out using filtered X-ray spectra with a peak energy of 52 keV.
2016-05-26
York, NY: Ballantine Books, 1991), 27-58. Examples include Sun Tzu , Genghis Kahn, Napoleon, the post WWI Soviet military, and the WWII-era German...it to a position of advantage.26 In simple terms, maneuver warfare is summed up by the idea of a force dichotomy, explained by Sun Tzu as separate...ordinary” and “extraordinary” forces within the army. Sun Tzu said that in battle, the ordinary force should seek to pin down the enemy’s front line
Self-induced pinning of vortices in the presence of ac driving force in magnetic superconductors
NASA Astrophysics Data System (ADS)
Bulaevskii, Lev N.; Lin, Shi-Zeng
2012-12-01
We derive the response of the magnetic superconductors in the vortex state to the ac Lorentz force, FL(t)=Facsin(ωt), taking into account the interaction of vortices with the magnetic moments described by the relaxation dynamics (polaronic effect). At low amplitudes of the driving force Fac the dissipation in the system is suppressed due to the enhancement of the effective viscosity at low frequencies and due to formation of the magnetic pinning at high frequencies ω. In the adiabatic limit with low frequencies ω and high amplitude of the driving force Fac, the vortex and magnetic polarization form a vortex polaron when FL(t) is small. When FL increases, the vortex polaron accelerates and at a threshold driving force, the vortex polaron dissociates and the motion of vortex and the relaxation of magnetization are decoupled. When FL decreases, the vortex is retrapped by the background of remnant magnetization and they again form vortex polaron. This process repeats when FL(t) increases in the opposite direction. Remarkably, after dissociation, decoupled vortices move in the periodic potential induced by magnetization which remains for some periods of time due to retardation after the decoupling. At this stage vortices oscillate with high frequencies determined by the Lorentz force at the moment of dissociation. We derive also the creep rate of vortices and show that magnetic moments suppress creep rate.
Distribution of blocking temperatures in nano-oxide layers of specular spin valves
NASA Astrophysics Data System (ADS)
Ventura, J.; Araujo, J. P.; Sousa, J. B.; Veloso, A.; Freitas, P. P.
2007-06-01
Specular spin valves show enhanced giant magnetoresistive (GMR) ratio when compared to other, simpler, spin valve structures. The enhancement of GMR results from specular reflection in nano-oxide layers (NOLs) formed by the partial oxidation of the pinned and free layer. These oxides forming the NOL order antiferromagnetically (AFM) below a temperature T ˜175 K. Here, we study the effects of the pinned layer magnetization and its domain structure on the AFM ordering of the NOL by performing field cooling measurements with different cooling fields (H0). We observe enhanced (reduced) exchange field and magnetoresistive ratio for H0>0(<0), i.e., parallel (antiparallel) to the pinned magnetization. These measurements allowed us to confirm the existence of a wide distribution of blocking temperatures (TB) in the NOL of specular spin valves, having a maximum at T ≈175 K, and extending to NOL regions with TB as low as 15 K.
H, Neumann; A.P, Schulz; S, Breer; A, Unger; B, Kienast
2015-01-01
Background: Osteochondral injuries, if not treated appropriately, often lead to severe osteoarthritis of the affected joint. Without refixation of the osteochondral fragment, human cartilage only repairs these defects imperfectly. All existing refixation systems for chondral defects have disadvantages, for instance bad MRI quality in the postoperative follow-up or low anchoring forces. To address the problem of reduced stability in resorbable implants, ultrasound-activated pins were developed. By ultrasound-activated melting of the tip of these implants a higher anchoring is assumed. Aim of the study was to investigate, if ultrasound-activated pins can provide a secure refixation of osteochondral fractures comparing to conventional screw and conventional, resorbable pin osteosynthesis. CT scans and scanning electron microscopy should proovegood refixation results with no further tissue damage by the melting of the ultrasound-activated pins in comparison to conventional osteosynthesis. Methods: Femoral osteochondral fragments in sheep were refixated with ultrasound-activated pins (SonicPin™), Ethipins® and screws (Asnis™). The quality of the refixated fragments was examined after three month of full weight bearing by CT scans and scanning electron microscopy of the cartilage surface. Results: The CT examination found almost no statistically significant difference in the quality of refixation between the three different implants used. Concerning the CT morphology, ultrasound-activated pins demonstrated at least the same quality in refixation of osteochondral fragments as conventional resorbable pins or screws. The scanning electron microscopy showed no major surface damage by the three implants, especially any postulated cartilage damage induced by the heat of the ultrasound-activated pin. The screws protruded above the cartilage surface, which may affect the opposingtibial surface. Conclusion: Using CT scans and scanning electron microscopy, the SonicPin™, the Ethipin® and screws were at least equivalent in refixation quality of osteochondral fragments. PMID:25674184
NASA Astrophysics Data System (ADS)
Cayado, Pablo; Erbe, Manuela; Kauffmann-Weiss, Sandra; Bühler, Carl; Jung, Alexandra; Hänisch, Jens; Holzapfel, Bernhard
2017-09-01
GdBa2Cu3O7-x -BaHfO3 (GdBCO-BHO) nanocomposite (NC) films containing 12 mol% BHO nanoparticles were prepared by chemical solution deposition (CSD) following the TFA route on SrTiO3 (STO) single crystals and buffered metallic tapes supplied by two different companies: Deutsche Nanoschicht GmbH and SuperOx. We optimized the preparation of our GdBCO-BHO solutions with acetylacetone making the film synthesis very robust and reproducible, and obtained 220 nm films with excellent superconducting properties. We show the structural, morphological and superconducting properties of the films after a careful optimization of the processing parameters (growth temperature, oxygen partial pressure and heating ramp). The films reach critical temperatures (T c) of ˜94 K, self-field critical current densities (J c) of >7 MA cm- 2 and maximum pinning force densities (F p) of ˜16 GN m- 3 at 77 K on STO and T c of ˜94.5 K and J c > 1.5 MA cm- 2 on buffered metallic tapes. The transport properties under applied magnetic fields are significantly improved with respect to the pristine GdBCO films. The GdBCO-BHO NC films on STO present epitaxial c-axis orientation with excellent out-of-plane and in-plane texture. The films are, in general, very dense with a low amount of pores and only superficial indentations. On the other hand, we present, for the first time, a systematic study of CSD-grown GdBCO-BHO NC films on buffered metallic tapes. We have used the optimized growth conditions for STO as a reference and identified some limitations on the film synthesis that should be overcome for further improvement of the films’ superconducting properties.
NASA Astrophysics Data System (ADS)
Tripathi, D.; Dey, T. K.
2018-05-01
The effect of nanoscale aluminum nitride (n-AlN) and carbon (n-C) co-doping on superconducting properties of polycrystalline bulk MgB2 superconductor has been investigated. Polycrystalline pellets of MgB2, MgB2 + 0.5 wt% AlN (nano), MgB_{1.99}C_{0.01} and MgB_{1.99}C_{0.01} + 0.5 wt% AlN (nano) have been synthesized by a solid reaction process under inert atmosphere. The transition temperature (TC) estimated from resistivity measurement indicates only a small decrease for C (nano) and co-doped MgB2 samples. The magnetic field response of investigated samples has been measured at 4, 10, and 20 K in the field range ± 6 T. MgB2 pellets co-doped with 0.5 wt% n-AlN and 1 wt% n-C display appreciable enhancement in critical current density (J_C) of MgB2 in both low (≥ 3 times), as well as, high-field region (≥ 15 times). J_C versus H behavior of both pristine and doped MgB2 pellets is well explained in the light of the collective pinning model. Further, the normalized pinning force density f_p(= F_p/F_{pmax}) displays a fair correspondence with the scaling procedure proposed by Eisterer et al. Moreover, the scaled data of the pinning force density (i.e., f_p{-}h data) of the investigated pellets at different temperature are well interpreted by a modified Dew-Hughes expression reported by Sandu and Chee.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Bing, E-mail: qibing@szu.edu.cn; Pan, Lizhu; Zhou, Qiujiao
2014-12-15
The measurements of the ion densities in the atmospheric AC barrier corona argon discharge are carried out by receiving and analyzing the frequencies of the electromagnetic radiation emitted from the plasma. An auxiliary excitation source composed of a pin-to-pin discharge system is introduced to excite the oscillations of the main discharge. To analyze the resonance mechanism, a complemented model based on a one-dimensional description of forced vibrations is given. Calculations indicate that Ar{sub 2}{sup +} is the dominant ion (∼89% in number density). By analyzing resonance frequencies, the ion densities of Ar{sub 2}{sup +} are in the order of 10{supmore » 19}∼10{sup 20}m{sup −3} and increase slowly as the applied voltage increases.« less
Fluid-cooled heat sink for use in cooling various devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bharathan, Desikan; Bennion, Kevin; Kelly, Kenneth
The disclosure provides a fluid-cooled heat sink having a heat transfer base, a shroud, and a plurality of heat transfer fins in thermal communication with the heat transfer base and the shroud, where the heat transfer base, heat transfer fins, and the shroud form a central fluid channel through which a forced or free cooling fluid may flow. The heat transfer pins are arranged around the central fluid channel with a flow space provided between adjacent pins, allowing for some portion of the central fluid channel flow to divert through the flow space. The arrangement reduces the pressure drop ofmore » the flow through the fins, optimizes average heat transfer coefficients, reduces contact and fin-pin resistances, and reduces the physical footprint of the heat sink in an operating environment.« less
Critical current and flux dynamics in Ag-doped FeSe superconductor
NASA Astrophysics Data System (ADS)
Galluzzi, A.; Polichetti, M.; Buchkov, K.; Nazarova, E.; Mancusi, D.; Pace, S.
2017-02-01
The measurements of DC magnetization as a function of the temperature M(T), magnetic field M(H), and time M(t) have been performed in order to compare the superconducting and pinning properties of an undoped FeSe0.94 sample and a silver doped FeSe0.94 + 6 wt% Ag sample. The M(T) curves indicate an improvement of the superconducting critical temperature and a reduction of the non-superconducting phase Fe7Se8 due to the silver doping. This is confirmed by the field and temperature dependent critical current density Jc(H,T) extracted from the superconducting hysteresis loops at different temperatures within the Bean critical state model. Moreover, the combined analysis of the Jc(T) and of the pinning force Fp(H/Hirr) indicate that the pinning mechanisms in both samples can be described in the framework of the collective pinning theory. The U*(T, J) curves show a pinning crossover from an elastic creep regime of intermediate size flux bundles, for low temperatures, to a plastic creep regime at higher temperatures for both the samples. Finally, the vortex hopping attempt time has been evaluated for both samples and the results are comparable with the values reported in the literature for high Tc materials.
NASA Technical Reports Server (NTRS)
Merry, Josh; Takeshita, Jennifer; Tweedy, Bryan; Burford, Dwight
2006-01-01
In this presentation, the results of a recent study on the effect of pin tool design for friction stir welding thin sheets (0.040") of aluminum alloys 2024 and 7075 are provided. The objective of this study was to investigate and document the effect of tool shoulder and pin diameter, as well as the presence of pin flutes, on the resultant microstructure and mechanical properties at both room temperature and cryogenic temperature. Specifically, the comparison between three tools will include: FSW process load analysis (tool forces required to fabricate the welds), Static Mechanical Properties (ultimate tensile strength, yield strength, and elongation), and Process window documenting the range of parameters that can be used with the three pin tools investigated. All samples were naturally aged for a period greater than 10 days. Prior research has shown 7075 may require post weld heat treatment. Therefore, an additional pair of room temperature and cryogenic temperature samples was post-weld aged to the 7075-T7 condition prior to mechanical testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krutki, M.; Olender, K.; Sedlaczek, J.
1981-03-24
The invention solves the problem of eliminating the transfer of the combine weight onto a conveyor through a chain instead of through a railing, in the combines which are advanced by means of a link chain meshing with a rack fixed alongside of the conveyor. To this end the slide skid (7) forcing the chain (1) to mesh with the rack (8) is provided with a tubular slipper (10). The tubular slipper (10) encloses a railing (11) situated in the gates of the conveyor (9) close to the rack (8). The tubular slipper (10) is mounted on a cranked axlemore » (12). The cranked axle (12) has - on the end of the pin embedded in the slide skid (7) a splined tip (16) embedded in a grooved hole (17) which has a common geometrical axis (15) with the pin of the cranked axle (12), the said pin being embedded in the slide skid (7). The tubular slipper (10) mounted on the pin (14) of the cranked axle (12) is protected against slipping off into the tubular slipper (10).« less
Mechanism for Self-Reacted Friction Stir Welding
NASA Technical Reports Server (NTRS)
Venable, Richard; Bucher, Joseph
2004-01-01
A mechanism has been designed to apply the loads (the stirring and the resection forces and torques) in self-reacted friction stir welding. This mechanism differs somewhat from mechanisms used in conventional friction stir welding, as described below. The tooling needed to apply the large reaction loads in conventional friction stir welding can be complex. Self-reacted friction stir welding has become popular in the solid-state welding community as a means of reducing the complexity of tooling and to reduce costs. The main problems inherent in self-reacted friction stir welding originate in the high stresses encountered by the pin-and-shoulder assembly that produces the weld. The design of the present mechanism solves the problems. The mechanism includes a redesigned pin-and-shoulder assembly. The welding torque is transmitted into the welding pin by a square pin that fits into a square bushing with set-screws. The opposite or back shoulder is held in place by a Woodruff key and high-strength nut on a threaded shaft. The Woodruff key reacts the torque, while the nut reacts the tensile load on the shaft.
Fuel Pin Behavior Under the Slow Power Ramp Transients in the CABRI-2 Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charpenel, Jean; Lemoine, Francette; Sato, Ikken
Slow ramp-type transient-overpower tests were performed within the framework of the international CABRI-2 experimental program. The implemented power transients of {approx}1% nominal power/s correspond to a control rod withdrawal-type accident in a liquid-metal-cooled fast breeder reactor (FBR). The analysis of the tests includes the information elements derived from the hodoscope signals, which were assessed quantitatively and supported by destructive and nondestructive posttest examinations. These tests, performed with fuels of various geometries, demonstrated the high margin to failure of such FBR fuel pins within the expected power level before the emergency reactor shutdown. At the same time, these tests performed withmore » high- and low-smear-density industrial pins led to clarification of the influence of pellet design on fuel pin behavior under high overpower condition. With the high-smear-density solid fuel pellet pin of high burnup level, the retained gaseous fission products played an important role in the solid fuel swelling, leading to clad deformation and failure at a maximum heating rate of 81 kW.m{sup -1}, which is much greater than the end-of-life (EOL) linear rating of the pin. With the low smear-density annular pellet pin, an important fuel swelling takes place, leading to degradation of the fuel thermal conductivity. This effect was detected at the power level around 73 kW.m{sup -1}, which is also much higher than the EOL value of the pin. Furthermore, the absence of clad deformation, and consequently of failure even at the power level going up to 134.7 kW.m{sup -1}, confirmed the very high margin to failure. In consequence, it was clarified that gaseous fission products have significant effects on failure threshold as well as on thermal performance during overpower condition, and such effects are significantly dependent on fuel design and power operation conditions.« less
Constraints on pulsar masses from the maximum observed glitch
NASA Astrophysics Data System (ADS)
Pizzochero, P. M.; Antonelli, M.; Haskell, B.; Seveso, S.
2017-07-01
Neutron stars are unique cosmic laboratories in which fundamental physics can be probed in extreme conditions not accessible to terrestrial experiments. In particular, the precise timing of rotating magnetized neutron stars (pulsars) reveals sudden jumps in rotational frequency in these otherwise steadily spinning-down objects. These 'glitches' are thought to be due to the presence of a superfluid component in the star, and offer a unique glimpse into the interior physics of neutron stars. In this paper we propose an innovative method to constrain the mass of glitching pulsars, using observations of the maximum glitch observed in a star, together with state-of-the-art microphysical models of the pinning interaction between superfluid vortices and ions in the crust. We study the properties of a physically consistent angular momentum reservoir of pinned vorticity, and we find a general inverse relation between the size of the maximum glitch and the pulsar mass. We are then able to estimate the mass of all the observed glitchers that have displayed at least two large events. Our procedure will allow current and future observations of glitching pulsars to constrain not only the physics of glitch models but also the superfluid properties of dense hadronic matter in neutron star interiors.
NASA Astrophysics Data System (ADS)
Liu, Y. F.; Cai, J. W.; Lai, W. Y.; Yu, G. H.
2008-05-01
The Ir-Mn bottom-pinned spin valves with nano-oxide layers (NOLs), Ta /Ni81Fe19/Ir-Mn/Co90Fe10/NOL/Co90Fe10/Cu/Co90Fe10/NOL/Ta, were fabricated by dc magnetron sputtering. The magnetoresistance (MR), magnetization, and exchange bias have been studied as a function of Ir-Mn composition and annealing temperature. It was observed that the spin valves with the Ir-Mn layer containing relatively low Mn content (58.9-72.4at.% Mn) show the best thermal endurance. For these samples, the Mn diffusion is effectively hampered by the NOL with a large MR value of about 12.5% even after annealing at 300°C. On the other hand, the exchange bias field of the pinned CoFe layer shows a maximum at Mn content of about 72.4at.%, which is different from the widely adopted composition, Ir-80at.% Mn, optimized from the top-pinned NiFe /Ir-Mn system. Moreover, the blocking temperature of the Ir -Mn/CoFe system with 72.4at.% Mn is higher than that with 80.6at.% Mn. The present results suggest that the Ir -Mn/CoFe pinning system with Mn content at about 72% renders the most favorable exchange bias and the best thermal stability for the bottom-pinned specular spin valves.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROCEDURES GOVERNING BANKS, CREDIT UNIONS AND OTHER FINANCIAL INSTITUTIONS ON DOD INSTALLATIONS Guidelines... identification number (PIN). Typically, when the cardholder's account is with a financial institution other than... Forces Financial Network (AFFN), Cirrus, or PLUS) that processes the transaction. (b) Banking institution...
Detecting pin diversion from pressurized water reactors spent fuel assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ham, Young S.; Sitaraman, Shivakumar
Detecting diversion of spent fuel from Pressurized Water Reactors (PWR) by determining possible diversion including the steps of providing a detector cluster containing gamma ray and neutron detectors, inserting the detector cluster containing the gamma ray and neutron detectors into the spent fuel assembly through the guide tube holes in the spent fuel assembly, measuring gamma ray and neutron radiation responses of the gamma ray and neutron detectors in the guide tube holes, processing the gamma ray and neutron radiation responses at the guide tube locations by normalizing them to the maximum value among each set of responses and takingmore » the ratio of the gamma ray and neutron responses at the guide tube locations and normalizing the ratios to the maximum value among them and producing three signatures, gamma, neutron, and gamma-neutron ratio, based on these normalized values, and producing an output that consists of these signatures that can indicate possible diversion of the pins from the spent fuel assembly.« less
Stoppers in RED II distraction device: is it possible to prevent pin migration?
Mavili, Mehmet Emin; Vargel, Ibrahim; Tunçbilek, Gökhan
2004-05-01
Distraction osteogenesis has become popular for the treatment of hypoplastic congenital craniomaxillofacial anomalies. Rigid external distraction (RED II) after Le Fort III osteotomy was shown to be a highly effective treatment for the management of midface hypoplasia. This device is used with a halo vest, which is placed at the cranial equator. Intracranial penetration of the fixation pins of the halo is one of the complications of an external distraction device. To prevent pin penetration in rigid external distraction, the authors designed polylactic acid/polyglycolic acid (PLA/PGA) plates that were circular; the plates were 0.8 cm in diameter and had 1.5-mm holes in the center, through which the tip of the pins would pass. To quantify the applied torque by manual tightening of the screws of the distraction device and to measure intraosseous cone depth created by the penetration of the conical part of the screws with and without the PLA/PGA composite stopper, first an in vitro experiment was undertaken on cadaver. Then these PLA/PGA plaques, or stoppers, were placed over the bone surfaces of the cranium of the patients where the tip of the pins press. PLA/PGA stoppers are malleable and adapt their shape to the interactive forces between bone and the pins. They act as a second barrier, and spread the pressure of the screws to larger surfaces, thus securing better stabilization. The penetration of wider portions of the screw into scalp is reduced, minimizing the scalp damage caused by the screws. Biodegradable and biocompatible PLA/PGA stoppers avoid intracranial migration of the fixation pins, especially in children.
NASA Astrophysics Data System (ADS)
Miura, S.; Tsuchiya, Y.; Yoshida, Y.; Ichino, Y.; Awaji, S.; Matsumoto, K.; Ibi, A.; Izumi, T.
2017-08-01
In order to apply REBa2Cu3O y (REBCO, RE = rare earth elements or Y) coated conductors in high magnetic field, coil-based applications, the isotropic improvement of their critical current performance with respect to the directions of the magnetic field under these operating conditions is required. Most applications operate at temperatures lower than 50 K and magnetic fields over 2 T. In this study, the improvement of critical current density (J c) performance for various applied magnetic field directions was achieved by controlling the nanostructure of the BaHfO3 (BHO)-doped SmBa2Cu3O y (SmBCO) films on metallic substrates. The corresponding minimum J c value of the films at 40 K under an applied 3 T field was 5.2 MA cm-2, which is over ten times higher than that of a fully optimized Nb-Ti wire at 4.2 K. At 4.2 K, under a 17.5 T field, a flux pinning force density of 1.4 TN m-3 for B//c was realized; this value is among the highest values reported for REBCO films to date. More importantly, the F p for B//c corresponds to the minimum value for various applied magnetic field directions. We investigated the dominant flux pinning centers of films at 4.2 K using the anisotropic scaling approach based on the effective mass model. The dominant flux pinning centers are random pinning centers at 4.2 K, i.e., a high pinning performance was achieved by the high number density of random pins in the matrix of the BHO-doped SmBCO films.
Correction for Thermal EMFs in Thermocouple Feedthroughs
NASA Technical Reports Server (NTRS)
Ziemke, Robert A.
2006-01-01
A straightforward measurement technique provides for correction of thermal-electromotive-force (thermal-EMF) errors introduced by temperature gradients along the pins of non-thermocouple-alloy hermetic feedthrough connectors for thermocouple extension wires that must pass through bulkheads. This technique is an alternative to the traditional technique in which the thermal-EMF errors are eliminated by use of custom-made multipin hermetic feedthrough connectors that contain pins made of the same alloys as those of the thermocouple extension wires. One disadvantage of the traditional technique is that it is expensive and time-consuming to fabricate multipin custom thermocouple connectors. In addition, the thermocouple-alloy pins in these connectors tend to corrode easily and/or tend to be less rugged compared to the non-thermocouple-alloy pins of ordinary connectors. As the number of thermocouples (and thus pins) is increased in a given setup, the magnitude of these disadvantages increases accordingly. The present technique is implemented by means of a little additional hardware and software, the cost of which is more than offset by the savings incurred through the use of ordinary instead of thermocouple connectors. The figure schematically depicts a typical measurement setup to which the technique is applied. The additional hardware includes an isothermal block (made of copper) instrumented with a reference thermocouple and a compensation thermocouple. The reference thermocouple is connected to an external data-acquisition system (DAS) through a two-pin thermocouple-alloy hermetic feedthrough connector, but this is the only such connector in the apparatus. The compensation thermocouple is connected to the DAS through two pins of the same ordinary multipin connector that connects the measurement thermocouples to the DAS.
Dosimetric characteristics of a PIN diode for radiotherapy application.
Kumar, R; Sharma, S D; Philomina, A; Topkar, A
2014-08-01
The PIN diode developed by Bhabha Atomic Research Centre (BARC) was modified for its use as a dosimeter in radiation therapy. For this purpose the diode was mounted on a printed circuit board (PCB) and provided with necessary connections so that its response against irradiation can be recorded by a standard radiotherapy electrometer. The dosimetric characteristics of the diode were studied in Co-60 gamma rays as well as high energy X-rays. The measured sensitivity of this PIN diode is 4 nC/cGy which is about ten times higher than some commercial diode dosimeters. The leakage current from the diode is 0.04 nA. The response of the PIN diode is linear in the range of 20-1000 cGy which covers the full range of radiation dose encountered in radiotherapy treatments. The non-linearity of the diode response is 3.5% at 20 cGy and it is less than 1.5% at higher dose values. Its repeatability is within 0.5%. The angular response variation is about 5.6% within 6608 with respect to normal beam incidence. The response of the PIN diode at 6 and 18 MV X-rays varies within 2% with respect to its response at Co-60 gamma rays. The source to surface distance (SSD) dependence of the PIN diode was studied for Co-60 beam. It was found that the response of the diode decreases almost linearly relative to given dose for beams with constant collimator setting but increasing SSD (decreasing dose-rate). Within this study the diode response varied by about 2.5% between the maximum and minimum SSD. The dose-rate dependence of the PIN diode for 6 and 15 MV-rays was studied. The variation in response of diode for both energies in the studied dose range is less than 1%. The field size dependence of the PIN diode response is within 1% with respect to the response of ionisation chamber. These studies indicate that the characteristics of the PIN diode are suitable for use in radiotherapy dosimetry.
Full-length U-xPu-10Zr (x = 0, 8, 19 wt.%) fast reactor fuel test in FFTF
NASA Astrophysics Data System (ADS)
Porter, D. L.; Tsai, Hanchung
2012-08-01
The Integral Fast Reactor-1 (IFR-1) experiment performed in the Fast Flux Test Facility (FFTF) was the only U-Pu-10Zr (Pu-0, 8 and 19 wt.%) metallic fast reactor test with commercial-length (91.4-cm active fuel-column length) conducted to date. With few remaining test reactors, there is little opportunity for performing another test with a long active fuel column. The assembly was irradiated to the goal burnup of 10 at.%. The beginning-of-life (BOL) peak cladding temperature of the hottest pin was 608 °C, cooling to 522 °C at end-of-life (EOL). Selected fuel pins were examined non-destructively using neutron radiography, precision axial gamma scanning, and both laser and spiral contact cladding profilometry. Destructive exams included plenum gas pressure, volume, and gas composition determinations on a number of pins followed by optical metallography, electron probe microanalysis (EPMA), and alpha and beta-gamma autoradiography on a single U-19Pu-10Zr pin. The post-irradiation examinations (PIEs) showed very few differences compared to the short-pin (34.3-cm fuel column) testing performed on fuels of similar composition in Experimental Breeder Reactor-II (EBR-II). The fuel column grew axially slightly less than observed in the short pins, but with the same pattern of decreasing growth with increasing Pu content. There was a difference in the fuel-cladding chemical interaction (FCCI) in that the maximum cladding penetration by interdiffusion with fuel/fission products did not occur at the top of the fuel column where the cladding temperature is highest, as observed in EBR-II tests. Instead, the more exaggerated fission-rate profile of the FFTF pins resulted in a peak FCCI at ˜0.7 X/L axial location along the fuel column. This resulted from a higher production of rare-earth fission products at this location and a higher ΔT between fuel center and cladding than at core center, together providing more rare earths at the cladding and more FCCI. This behavior could actually help extend the life of a fuel pin in a "long pin" reactor design to a higher peak fuel burnup.
Chiu, Haw-Yen; Hsu, Hsiu-Yun; Su, Fong-Chin; Jou, I-Ming; Lin, Cheng-Feng; Kuo, Li-Chieh
2013-02-01
Biofeedback training is widely used for rehabilitative intervention in patients with central or peripheral nervous impairment to train correct movement patterns; however, no biofeedback apparatus is currently available to correct pinch force ratios for patients with sensory deficiencies. A cross-sectional and longitudinal design was used in an observational measurement study for establishing a prototype and to determine the effects of biofeedback intervention, respectively. This study aimed to develop a computerized evaluation and re-education biofeedback (CERB) prototype for application in clinical settings. A CERB prototype was developed integrating pinch apparatus hardware, a biofeedback user-controlled interface, and a data processing/analysis interface to detect momentary pinch performances in 79 people with normal hand sensation. Nine patients with hand sensory impairments were recruited to investigate the effects of training hand function with the CERB prototype. Hand dominance, pinch pattern, and age significantly affected the peak pinch force and force ratio for lifting a 480-g object with a steel surface. In the case of the 79 volunteers with normal hand sensation, hand dominance affected the time lag between peak pinch force and maximum load; however, it was unaffected by pinch pattern or age. Training with the CERB prototype produced significant improvements in force ratio and better performance in the pin insertion subtests, although the results for both 2-point discriminative and Semmes-Weinstein monofilament tests did not change significantly. The intervention findings are preliminary. This study developed a conjunct system suited for evaluating and restoring sensorimotor function for patients with impaired hand sensibility. The results from the participants with normal hand sensation could serve as a reference database for comparison with patients with nerve injuries.
Siphon flows in isolated magnetic flux tubes. 3: The equilibrium path of the flux tube arch
NASA Technical Reports Server (NTRS)
Thomas, John H.; Montesinis, Benjamin
1989-01-01
The arched equilibrium path of a thin magnetic flux tube in a plane-stratified, nonmagnetic atmosphere is calculated for cases in which the flux tube contains a steady siphon flow. The large scale mechanical equilibrium of the flux tube involves a balance among the magnetic buoyancy force, the net magnetic tension force due to the curvature of the flux tube axis, and the inertial (centrifugal) force due to the siphon flow along curved streamlines. The ends of the flux tube are assumed to be pinned down by some other external force. Both isothermal and adiabatic siphon flows are considered for flux tubes in an isothermal external atmosphere. For the isothermal case, in the absence of a siphon flow the equilibrium path reduces to the static arch calculated by Parker (1975, 1979). The presence of a siphon flow causes the flux tube arch to bend more sharply, so that magnetic tension can overcome the additional straightening effect of the inertial force, and reduces the maximum width of the arch. The curvature of the arch increases as the siphon flow speed increases. For a critical siphon flow, with supercritical flow in the downstream leg, the arch is asymmetric, with greater curvature in the downstream leg of the arch. Adiabatic flow have qualitatively similar effects, except that adiabatic cooling reduces the buoyancy of the flux tube and thus leads to significantly wider arches. In some cases the cooling is strong enough to create negative buoyancy along sections of the flux tube, requiring upward curvature of the flux tube path along these sections and sometimes leading to unusual equilibrium paths of periodic, sinusoidal form.
NASA Astrophysics Data System (ADS)
Agnoli, Andrea; Bernacki, Marc; Logé, Roland; Franchet, Jean-Michel; Laigo, Johanne; Bozzolo, Nathalie
2015-09-01
The microstructure stability during δ sub-solvus annealing in Inconel 718 was investigated, focusing on the conditions that may lead to the development of very large grains (about 100 μm) in a recrystallized fine grained matrix (4 to 5 μm) despite the presence of second-phase particles. Microstructure evolution was analyzed by EBSD (grain size, intragranular misorientation) and SEM ( δ phase particles). Results confirm that, in the absence of stored energy, the grain structure is controlled by the δ phase particles, as predicted by the Smith-Zener equation. If the initial microstructure is strained ( ɛ < 0.1) before annealing, then low stored energy grains grow to a large extent, despite the Zener pinning forces exerted by the second-phase particles on the grain boundaries. Those selectively growing grains could be those of the initial microstructure that were the least deformed, or they could result from a nucleation process. The balance of three forces acting on boundary migration controls the growth process: if the sum of capillarity and stored energy driving forces exceeds the Zener pinning force, then selective grain growth occurs. Such phenomenon could be simulated, using a level set approach in a finite element context, by taking into account the three forces acting on boundary migration and by considering a realistic strain energy distribution (estimated from EBSD measurements).
NASA Astrophysics Data System (ADS)
Yang, W. M.; Yuan, X. C.; Guo, Y. X.
2017-10-01
Single domain YBCO bulk superconductors with different additions of ZnO have been successfully fabricated by RE+011 TSIG process with a new solid phase of [(100-x)(Y2O3 + 1.2BaCuO2)+xZnO] and a new liquid phase of (Y2O3+6CuO+10BaCuO2). The effects of ZnO additions on the growth morphology, microstructure, critical temperature (Tc), the levitation force and trapped field of the YBCO bulks have been investigated. It is found that within the range of ZnO additions x=0-1.0 wt.%, all the samples are of the typical characteristic of single-domain YBCO bulk; the Tc of the samples decreases from 92 K to 80 K when the ZnO addition x increases from x=0 wt.% to x=1.0 wt.%; the levitation force and trapped field of the samples firstly increase and then decrease with increase of ZnO additions after going through a maximum, which is closely related with the ZnO addition and the resulting flux pinning force caused by lattice distortion due to the substitution of Zn2+ for Cu2+ site in the YBCO crystal; the largest levitation force 36.8 N (77 K, 0.5 T) and trapped field 0.416 T (77 K, 0.5 T) of the samples are obtained when x=0.1 wt.%, respectively. This result is significantly important and helpful for us to improve the properties of YBCO bulk superconductors.
Flux-pinning and inhomogeneity in MgB 2 /Fe wires
NASA Astrophysics Data System (ADS)
Husnjak, O.; Babić, E.; Kušević, I.; Wang, X. L.; Soltanian, S.; Dou, S. X.
2007-08-01
Transport critical current densities Jc and irreversibility fields B of undoped and nanoparticle doped (10 wt% SiC) Fe-sheathed MgB 2 wires were measured from 2 to 40 K in magnetic field B≤16 T. For the best segments of wires (≤1 cm) both the magnitude and field variations of Jc and the pinning force density Fp=JcB depend only on the magnitude of B, hence the strength of flux-pinning. B of doped wire for T≤30 K is ˜1.4 times larger than that of undoped and reaches that of NbTi (10 T at 4.2 K) already at 20 K. Accordingly, its high-field Jcs and Fps are large, typically three times larger than the best literature results, and are limited by the porosity and inhomogeneity of the superconducting cores in present-day MgB 2 wires.
Flux pinning in nanoparticle doped MgB 2/Cu tapes
NASA Astrophysics Data System (ADS)
Babić, E.; Kušević, I.; Husnjak, O.; Soltanian, S.; Wang, X. L.; Dou, S. X.
2007-09-01
The irreversibility fields Birr and critical current densities Jc of undoped and Si and SiC nanoparticle doped (5, 10 and 20 wt%) MgB2 tapes were measured in the temperature (T) range 2-38 K and in magnetic fields B ⩽ 16 T. Whereas Birr of undoped tapes varies smoothly with T, those of doped tapes show a change in slope around a crossover field Bcr which increases with nanoparticle content and also depends on their type. This indicates matching effect in vortex pinning, probably associated with Mg2Si nanoprecipitates formed during heat treatment. Indeed, Birr of doped tapes was enhanced in respect to that of undoped one with the highest enhancement for Birr ≈ Bcr, but the enhancement remained high ≈1.4 even for Birr ≫ Bcr (low temperatures). The variations of Jc and the pinning force density Fp = JcB with B and T support the above findings.
Bumči, Igor; Vlahović, Tomislav; Jurić, Filip; Žganjer, Mirko; Miličić, Gordana; Wolf, Hinko; Antabak, Anko
2015-11-01
Paediatric ankle fractures comprise approximately 4% of all paediatric fractures and 30% of all epiphyseal fractures. Integrity of the ankle "mortise", which consists of tibial and fibular malleoli, is significant for stability and function of the ankle joint. Tibial malleolar fractures are classified as SH III or SH IV intra-articular fractures and, in cases where the fragments are displaced, anatomic reposition and fixation is mandatory. Type SH III-IV fractures of the tibial malleolus are usually treated with open reduction and fixation with cannulated screws that are parallel to the physis. Two K-wires are used for temporary stabilisation of fragments during reduction. A third "guide wire" for the screw is then placed parallel with the physis. Considering the rules of mechanics, it is assumed that the two temporary pins with the additional third pin placed parallel to the physis create a strong triangle and thus provide strong fracture fixation. To prove this hypothesis, an experiment was conducted on the artificial models of the lower end of the tibia from the company "Sawbones". Each model had been sawn in a way that imitates the fracture of medial malleoli and then reattached with 1.8mm pins in various combinations. Prepared models were then tested for tensile and pressure forces. The least stable model was that in which the fractured pieces were attached with only two parallel pins. The most stable model comprised three pins, where two crossed pins were inserted in the opposite compact bone and the third pin was inserted through the epiphysis parallel with and below the growth plate. A potential method of choice for fixation of tibial malleolar fractures comprises three K-wires, where two crossed pins are placed in the opposite compact bone and one is parallel with the growth plate. The benefits associated with this method include shorter operating times and avoidance of a second operation for screw removal. Copyright © 2015 Elsevier Ltd. All rights reserved.
Multi level optimization of burnable poison utilization for advanced PWR fuel management
NASA Astrophysics Data System (ADS)
Yilmaz, Serkan
The objective of this study was to develop an unique methodology and a practical tool for designing burnable poison (BP) pattern for a given PWR core. Two techniques were studied in developing this tool. First, the deterministic technique called Modified Power Shape Forced Diffusion (MPSFD) method followed by a fine tuning algorithm, based on some heuristic rules, was developed to achieve this goal. Second, an efficient and a practical genetic algorithm (GA) tool was developed and applied successfully to Burnable Poisons (BPs) placement optimization problem for a reference Three Mile Island-1 (TMI-1) core. This thesis presents the step by step progress in developing such a tool. The developed deterministic method appeared to perform as expected. The GA technique produced excellent BP designs. It was discovered that the Beginning of Cycle (BOC) Kinf of a BP fuel assembly (FA) design is a good filter to eliminate invalid BP designs created during the optimization process. By eliminating all BP designs having BOC Kinf above a set limit, the computational time was greatly reduced since the evaluation process with reactor physics calculations for an invalid solution is canceled. Moreover, the GA was applied to develop the BP loading pattern to minimize the total Gadolinium (Gd) amount in the core together with the residual binding at End-of-Cycle (EOC) and to keep the maximum peak pin power during core depletion and Soluble boron concentration at BOC both less than their limit values. The number of UO2/Gd2O3 pins and Gd 2O3 concentrations for each fresh fuel location in the core are the decision variables and the total amount of the Gd in the core and maximum peak pin power during core depletion are in the fitness functions. The use of different fitness function definition and forcing the solution movement towards to desired region in the solution space accelerated the GA runs. Special emphasize is given to minimizing the residual binding to increase core lifetime as well as minimizing the total Gd amount in the core. The GA code developed many good solutions that satisfy all of the design constraints. For these solutions, the EOC soluble boron concentration changes from 68.9 to 97.2 ppm. It is important to note that the difference of 28.3 ppm between the best and the worst solution in the good solutions region represent the potential of 12.5 Effective-Full-Power-Day (EPFD) savings in cycle length. As a comparison, the best BP loading design has 97.2 ppm soluble boron concentration at EOC while the BP loading with available vendors' U/Gd FA designs has 94.4 ppm SOB at EOC. It was estimated that the difference of 2.8 ppm reflected the potential savings of 1.25 EFPD in cycle length. Moreover, the total Gd amount was reduced by 6.89% in mass that provided extra savings in fuel cost compared to the BP loading pattern with available vendor's U/Gd FA designs. (Abstract shortened by UMI.)
Cuspal reinforcement in endodontically treated molars.
Uyehara, M Y; Davis, R D; Overton, J D
1999-01-01
This in vitro study compared the ability of horizontal pins and a dental adhesive to reinforce the facial cusps of endodontically treated mandibular molars. Seventy-two mandibular molars were divided into six groups and mounted in acrylic blocks (n = 12). In Groups 1-5 standardized endodontic access and instrumentation in the coronal one-third of each root canal were completed. In Groups 1-4 the lingual cusps were reduced, leaving the buccal cusps intact. The facial cusps of the teeth in each group received one of the following modes of reinforcement: Group 1--no reinforcement; Group 2--dentin adhesive (Amalgambond Plus); Group 3--two horizontal TMS Minim pins; Group 4--two horizontal TMS Minim pins and Amalgambond Plus. Teeth in Group 5 were prepared for and restored with a complete cuspal coverage amalgam restoration using four vertical TMS Minim pins. Group 6 consisted of intact natural teeth. Using an Instron Universal Testing Machine, the lingual slope of the facial cusp of each specimen was loaded to failure using a compressive force applied at an angle 60 degrees to the long axis of the tooth. The mean fracture strengths for all groups were analyzed using a one-way ANOVA and Student-Newman-Keuls multiple range test (alpha = 0.05). Fracture patterns and modes of failure were also evaluated. The intact teeth (Group 6) were significantly more fracture resistant than all other groups, with the exception of Group 4 (combination of pins and adhesive). Group 1 (non-reinforced teeth) was significantly weaker than all other groups. Groups 2-4 (specimens with reinforced cusps) were not significantly different from each other. The use of horizontal pins or a combination of horizontal pins plus dentin adhesive for cuspal reinforcement resulted in significantly more teeth demonstrating favorable fracture patterns than did the use of adhesives alone. The buccal cusps of endodontically treated mandibular molars reinforced with a combination of horizontal pins and dentin adhesive were not significantly weaker than intact teeth. Of the restored teeth, those which had buccal cusps reinforced with horizontal pins and those treated with complete cuspal coverage amalgam restorations exhibited the most favorable restorative prognosis following cusp fracture.
Superconducting characteristics in purified tantalum-foils
NASA Astrophysics Data System (ADS)
Hu, Qinghua; Wang, Zhihe
2018-07-01
We have conducted extensive investigations on the electrical transport and magnetization on a purified tantalum foil with extremely sharp resistive transition (transition width ΔTc < 0.02 K) at 0 T and residual resistivity ratio ρ290K/ρ5K= 16.75. Many effects, such as anisotropic field-induced resistive broadening and second peak of the magnetization-hysteresis loop, are observed in the sample. The maximum upper critical field determined by criteria of R/Rn = 0.9 is about 1.08 T rather weak compared to that in cuprate and/or iron-based superconductors. Although the value of upper critical field Hc2(0) and the field dependence of effective pinning energy U show that the flux pinning potential is weaker, the critical current density Jc(2 K, 0 T) = 1.145 × 105 A/cm2 and the effect of second peak indicate that there should be higher collective vortex pinning potential in the tantalum foil. The carriers are dominated by holes with the density n = 6.6 × 1022/cm3.
Tool Forces Developed During Friction Stir Welding
NASA Technical Reports Server (NTRS)
Melendez, M.; Tang, W.; Schmidt, C.; McClure, J. C.; Nunes, A. C.; Murr, L. E.
2003-01-01
This paper will describe a technique for measuring the various forces and the torque that exist on the Friction Stir Welding pin tool. Results for various plunge depths, weld speeds, rotational speed, and tool configurations will be presented. Welds made on 6061 aluminum with typical welding conditions require a downward force of 2800 lbs. (12.5 kN) a longitudinal force in the direction of motion of 300 lbs (1.33 kN), a transverse force in the omega x v direction of 30 lbs (135 N). Aluminum 2195 under typical weld conditions requires a downward force of 3100 lbs. (1.38 kN), a longitudinal force of 920 lbs. (4.1 kN), and a transverse force of 45 lbs. (200 N) in the omega x v direction.
Hazing in the U.S. Armed Forces: Recommendations for Hazing Prevention Policy and Practice
2015-01-01
playing abusive tricks; threatening or oering violence or bodily harm to another; striking; branding; tattooing; shav- ing; greasing; painting...or bodily harm to another; striking; branding; tattooing; shav- ing; greasing; painting; “pinning,” “tacking on,” “blood wings”; or forcing or...particular issue for hazing denitions that address psychological, mental, or emotional harm. Specically, as one of the most thorough previous reviews of
Probing dynamics and pinning of single vortices in superconductors at nanometer scales.
Embon, L; Anahory, Y; Suhov, A; Halbertal, D; Cuppens, J; Yakovenko, A; Uri, A; Myasoedov, Y; Rappaport, M L; Huber, M E; Gurevich, A; Zeldov, E
2015-01-07
The dynamics of quantized magnetic vortices and their pinning by materials defects determine electromagnetic properties of superconductors, particularly their ability to carry non-dissipative currents. Despite recent advances in the understanding of the complex physics of vortex matter, the behavior of vortices driven by current through a multi-scale potential of the actual materials defects is still not well understood, mostly due to the scarcity of appropriate experimental tools capable of tracing vortex trajectories on nanometer scales. Using a novel scanning superconducting quantum interference microscope we report here an investigation of controlled dynamics of vortices in lead films with sub-Angstrom spatial resolution and unprecedented sensitivity. We measured, for the first time, the fundamental dependence of the elementary pinning force of multiple defects on the vortex displacement, revealing a far more complex behavior than has previously been recognized, including striking spring softening and broken-spring depinning, as well as spontaneous hysteretic switching between cellular vortex trajectories. Our results indicate the importance of thermal fluctuations even at 4.2 K and of the vital role of ripples in the pinning potential, giving new insights into the mechanisms of magnetic relaxation and electromagnetic response of superconductors.
Probing dynamics and pinning of single vortices in superconductors at nanometer scales
NASA Astrophysics Data System (ADS)
Embon, L.; Anahory, Y.; Suhov, A.; Halbertal, D.; Cuppens, J.; Yakovenko, A.; Uri, A.; Myasoedov, Y.; Rappaport, M. L.; Huber, M. E.; Gurevich, A.; Zeldov, E.
2015-01-01
The dynamics of quantized magnetic vortices and their pinning by materials defects determine electromagnetic properties of superconductors, particularly their ability to carry non-dissipative currents. Despite recent advances in the understanding of the complex physics of vortex matter, the behavior of vortices driven by current through a multi-scale potential of the actual materials defects is still not well understood, mostly due to the scarcity of appropriate experimental tools capable of tracing vortex trajectories on nanometer scales. Using a novel scanning superconducting quantum interference microscope we report here an investigation of controlled dynamics of vortices in lead films with sub-Angstrom spatial resolution and unprecedented sensitivity. We measured, for the first time, the fundamental dependence of the elementary pinning force of multiple defects on the vortex displacement, revealing a far more complex behavior than has previously been recognized, including striking spring softening and broken-spring depinning, as well as spontaneous hysteretic switching between cellular vortex trajectories. Our results indicate the importance of thermal fluctuations even at 4.2 K and of the vital role of ripples in the pinning potential, giving new insights into the mechanisms of magnetic relaxation and electromagnetic response of superconductors.
NASA Astrophysics Data System (ADS)
Al-Mohsin, R. A.; Al-Otaibi, A. L.; Almessiere, M. A.; Al-badairy, H.; Slimani, Y.; Ben Azzouz, F.
2018-07-01
Here we compare the microstructure and flux pinning properties of polycrystalline YBa2Cu3O7-d (Y-123 or YBCO) containing either Al2O3 or Zn0.95Mn0.05O nanoparticles. Samples were prepared using a standard solid-state reaction process, and nanoparticles were added up to a concentration of 0.1 wt%. The crystal structure, microstructure, electrical and magnetic properties were analyzed using X-ray diffraction, scanning electron microscopy and transmission electron microscopy (TEM), and electrical resistivity and DC magnetization measurements, respectively. TEM observations showed that the addition of Zn0.95Mn0.05O resulted in a high density of fine twins and a variety of interacting microstructures, while Al2O3 addition resulted in a high density of Al-rich nanoscale inhomogeneities embedded in the Y-123 matrix. Flux pinning forces were determined, and predominant pinning mechanisms in the prepared samples were proposed. We evaluated the superconducting properties of YBCO considering the effects of adding insulating or magnetic nanoparticles.
NASA Astrophysics Data System (ADS)
Al-Mohsin, R. A.; Al-Otaibi, A. L.; Almessiere, M. A.; Al-badairy, H.; Slimani, Y.; Ben Azzouz, F.
2018-03-01
Here we compare the microstructure and flux pinning properties of polycrystalline YBa2Cu3O7-d (Y-123 or YBCO) containing either Al2O3 or Zn0.95Mn0.05O nanoparticles. Samples were prepared using a standard solid-state reaction process, and nanoparticles were added up to a concentration of 0.1 wt%. The crystal structure, microstructure, electrical and magnetic properties were analyzed using X-ray diffraction, scanning electron microscopy and transmission electron microscopy (TEM), and electrical resistivity and DC magnetization measurements, respectively. TEM observations showed that the addition of Zn0.95Mn0.05O resulted in a high density of fine twins and a variety of interacting microstructures, while Al2O3 addition resulted in a high density of Al-rich nanoscale inhomogeneities embedded in the Y-123 matrix. Flux pinning forces were determined, and predominant pinning mechanisms in the prepared samples were proposed. We evaluated the superconducting properties of YBCO considering the effects of adding insulating or magnetic nanoparticles.
Linkage design effect on the reliability of surface-micromachined microengines driving a load
NASA Astrophysics Data System (ADS)
Tanner, Danelle M.; Peterson, Kenneth A.; Irwin, Lloyd W.; Tangyunyong, Paiboon; Miller, William M.; Eaton, William P.; Smith, Norman F.; Rodgers, M. Steven
1998-09-01
The reliability of microengines is a function of the design of the mechanical linkage used to connect the electrostatic actuator to the drive. We have completed a series of reliability stress tests on surface micromachined microengines driving an inertial load. In these experiments, we used microengines that had pin mechanisms with guides connecting the drive arms to the electrostatic actuators. Comparing this data to previous results using flexure linkages revealed that the pin linkage design was less reliable. The devices were stressed to failure at eight frequencies, both above and below the measured resonance frequency of the microengine. Significant amounts of wear debris were observed both around the hub and pin joint of the drive gear. Additionally, wear tracks were observed in the area where the moving shuttle rubbed against the guides of the pin linkage. At each frequency, we analyzed the statistical data yielding a lifetime (t50) for median cycles to failure and (sigma) , the shape parameter of the distribution. A model was developed to describe the failure data based on fundamental wear mechanisms and forces exhibited in mechanical resonant systems. The comparison to the model will be discussed.
Curvature capillary migration of microspheres.
Sharifi-Mood, Nima; Liu, Iris B; Stebe, Kathleen J
2015-09-14
We address the question: how does capillarity propel microspheres along curvature gradients? For a particle on a fluid interface, there are two conditions that can apply at the three phase contact line: either the contact line adopts an equilibrium contact angle, or it can be pinned by kinetic trapping, e.g. at chemical heterogeneities, asperities, or other pinning sites on the particle surface. We formulate the curvature capillary energy for both scenarios for particles smaller than the capillary length and far from any pinning boundaries. The scale and range of the distortion made by the particle are set by the particle radius; we use singular perturbation methods to find the distortions and to rigorously evaluate the associated capillary energies. For particles with equilibrium contact angles, contrary to the literature, we find that the capillary energy is negligible, with the first contribution bounded to fourth order in the product of the particle radius and the deviatoric curvature of the host interface. For pinned contact lines, we find curvature capillary energies that are finite, with a functional form investigated previously by us for disks and microcylinders on curved interfaces. In experiments, we show microspheres migrate along deterministic trajectories toward regions of maximum deviatoric curvature with curvature capillary energies ranging from 6 × 10(3)-5 × 10(4)kBT. These data agree with the curvature capillary energy for the case of pinned contact lines. The underlying physics of this migration is a coupling of the interface deviatoric curvature with the quadrupolar mode of nanometric disturbances in the interface owing to the particle's contact line undulations. This work is an example of the major implications of nanometric roughness and contact line pinning for colloidal dynamics.
RARE/Turbo Spin Echo Imaging with Simultaneous MultiSlice Wave-CAIPI
Eichner, Cornelius; Bhat, Himanshu; Grant, P. Ellen; Wald, Lawrence L.; Setsompop, Kawin
2014-01-01
Purpose To enable highly accelerated RARE/Turbo Spin Echo (TSE) imaging using Simultaneous MultiSlice (SMS) Wave-CAIPI acquisition with reduced g-factor penalty. Methods SMS Wave-CAIPI incurs slice shifts across simultaneously excited slices while playing sinusoidal gradient waveforms during the readout of each encoding line. This results in an efficient k-space coverage that spreads aliasing in all three dimensions to fully harness the encoding power of coil sensitivities. The novel MultiPINS radiofrequency (RF) pulses dramatically reduce the power deposition of multiband (MB) refocusing pulse, thus allowing high MB factors within the Specific Absorption Rate (SAR) limit. Results Wave-CAIPI acquisition with MultiPINS permits whole brain coverage with 1 mm isotropic resolution in 70 seconds at effective MB factor 13, with maximum and average g-factor penalties of gmax=1.34 and gavg=1.12, and without √R penalty. With blipped-CAIPI, the g-factor performance was degraded to gmax=3.24 and gavg=1.42; a 2.4-fold increase in gmax relative to Wave-CAIPI. At this MB factor, the SAR of the MultiBand and PINS pulses are 4.2 and 1.9 times that of the MultiPINS pulse, while the peak RF power are 19.4 and 3.9 times higher. Conclusion Combination of the two technologies, Wave-CAIPI and MultiPINS pulse, enables highly accelerated RARE/TSE imaging with low SNR penalty at reduced SAR. PMID:25640187
Song, Xian-Dong; Song, Xian-Xu; Liu, Gui-Bo; Ren, Chun-Hui; Sun, Yuan-Bo; Liu, Ke-Xin; Liu, Bo; Liang, Shuang; Zhu, Zhu
2018-03-01
The traditional methods of identifying biomarkers in rheumatoid arthritis (RA) have focussed on the differentially expressed pathways or individual pathways, which however, neglect the interactions between pathways. To better understand the pathogenesis of RA, we aimed to identify dysregulated pathway sets using a pathway interaction network (PIN), which considered interactions among pathways. Firstly, RA-related gene expression profile data, protein-protein interactions (PPI) data and pathway data were taken up from the corresponding databases. Secondly, principal component analysis method was used to calculate the pathway activity of each of the pathway, and then a seed pathway was identified using data gleaned from the pathway activity. A PIN was then constructed based on the gene expression profile, pathway data, and PPI information. Finally, the dysregulated pathways were extracted from the PIN based on the seed pathway using the method of support vector machines and an area under the curve (AUC) index. The PIN comprised of a total of 854 pathways and 1064 pathway interactions. The greatest change in the activity score between RA and control samples was observed in the pathway of epigenetic regulation of gene expression, which was extracted and regarded as the seed pathway. Starting with this seed pathway, one maximum pathway set containing 10 dysregulated pathways was extracted from the PIN, having an AUC of 0.8249, and the result indicated that this pathway set could distinguish RA from the controls. These 10 dysregulated pathways might be potential biomarkers for RA diagnosis and treatment in the future.
NASA Astrophysics Data System (ADS)
Liu, Yong; Zhou, Lin; Sun, Kewei; Straszheim, Warren E.; Tanatar, Makariy A.; Prozorov, Ruslan; Lograsso, Thomas A.
2018-02-01
We present a thorough study of doping dependent magnetic hysteresis and relaxation characteristics in single crystals of (B a1 -xKx ) F e2A s2 (0.18 ≤x ≤1 ). The critical current density Jc reaches maximum in the underdoped sample x =0.26 and then decreases in the optimally doped and overdoped samples. Meanwhile, the magnetic relaxation rate S rapidly increases and the flux creep activation barrier U0 sharply decreases in the overdoped sample x =0.70 . These results suggest that vortex pinning is very strong in the underdoped regime, but it is greatly reduced in the optimally doped and overdoped regime. Transmission electron microscope (TEM) measurements reveal the existence of dislocations and inclusions in all three studied samples x =0.38 , 0.46, and 0.65. An investigation of the paramagnetic Meissner effect (PME) suggests that spatial variations in Tc become small in the samples x =0.43 and 0.46, slightly above the optimal doping levels. Our results support that two types of pinning sources dominate the (B a1 -xKx ) F e2A s2 crystals: (i) strong δl pinning, which results from the fluctuations in the mean free path l and δ Tc pinning from the spatial variations in Tc in the underdoped regime, and (ii) weak δ Tc pinning in the optimally doped and overdoped regime.
Liu, Yong; Zhou, Lin; Sun, Kewei; ...
2018-02-16
Here, we present a thorough study of doping dependent magnetic hysteresis and relaxation characteristics in single crystals of (Ba 1-xK x) Fe 2As 2 (0.18 ≤ x ≤ 1). The critical current density J c reaches maximum in the underdoped sample x = 0.26 and then decreases in the optimally doped and overdoped samples. Meanwhile, the magnetic relaxation rate S rapidly increases and the flux creep activation barrier U 0 sharply decreases in the overdoped sample x = 0.70. These results suggest that vortex pinning is very strong in the underdoped regime, but it is greatly reduced in the optimallymore » doped and overdoped regime. Transmission electron microscope (TEM) measurements reveal the existence of dislocations and inclusions in all three studied samples x = 0.38, 0.46, and 0.65. An investigation of the paramagnetic Meissner effect (PME) suggests that spatial variations in T c become small in the samples x = 0.43 and 0.46, slightly above the optimal doping levels. Our results support that two types of pinning sources dominate the (Ba 1-xK x) Fe 2As 2 crystals: (i) strong δl pinning, which results from the fluctuations in the mean free path l and δT c pinning from the spatial variations in T c in the underdoped regime, and (ii) weak δT c pinning in the optimally doped and overdoped regime.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yong; Zhou, Lin; Sun, Kewei
Here, we present a thorough study of doping dependent magnetic hysteresis and relaxation characteristics in single crystals of (Ba 1-xK x) Fe 2As 2 (0.18 ≤ x ≤ 1). The critical current density J c reaches maximum in the underdoped sample x = 0.26 and then decreases in the optimally doped and overdoped samples. Meanwhile, the magnetic relaxation rate S rapidly increases and the flux creep activation barrier U 0 sharply decreases in the overdoped sample x = 0.70. These results suggest that vortex pinning is very strong in the underdoped regime, but it is greatly reduced in the optimallymore » doped and overdoped regime. Transmission electron microscope (TEM) measurements reveal the existence of dislocations and inclusions in all three studied samples x = 0.38, 0.46, and 0.65. An investigation of the paramagnetic Meissner effect (PME) suggests that spatial variations in T c become small in the samples x = 0.43 and 0.46, slightly above the optimal doping levels. Our results support that two types of pinning sources dominate the (Ba 1-xK x) Fe 2As 2 crystals: (i) strong δl pinning, which results from the fluctuations in the mean free path l and δT c pinning from the spatial variations in T c in the underdoped regime, and (ii) weak δT c pinning in the optimally doped and overdoped regime.« less
Graphene nanoribbons on gold: understanding superlubricity and edge effects
NASA Astrophysics Data System (ADS)
Gigli, L.; Manini, N.; Benassi, A.; Tosatti, E.; Vanossi, A.; Guerra, R.
2017-12-01
We address the atomistic nature of the longitudinal static friction against sliding of graphene nanoribbons (GNRs) deposited on gold, a system whose structural and mechanical properties have been recently the subject of intense experimental investigation. By means of numerical simulations and modeling we show that the GNR interior is structurally lubric (‘superlubric’) so that the static friction is dominated by the front/tail regions of the GNR, where the residual uncompensated lateral forces arising from the interaction with the underneath gold surface opposes the free sliding. As a result of this edge pinning the static friction does not grow with the GNR length, but oscillates around a fairly constant mean value. These friction oscillations are explained in terms of the GNR-Au(111) lattice mismatch: at certain GNR lengths close to an integer number of the beat (or moiré) length there is good force compensation and superlubric sliding; whereas close to half odd-integer periods there is significant pinning of the edge with larger friction. These results make qualitative contact with recent state-of-the-art atomic force microscopy experiment, as well as with the sliding of other different incommensurate systems.
Force-controlled automatic microassembly of tissue engineering scaffolds
NASA Astrophysics Data System (ADS)
Zhao, Guoyong; Teo, Chee Leong; Hutmacher, Dietmar Werner; Burdet, Etienne
2010-03-01
This paper presents an automated system for 3D assembly of tissue engineering (TE) scaffolds made from biocompatible microscopic building blocks with relatively large fabrication error. It focuses on the pin-into-hole force control developed for this demanding microassembly task. A beam-like gripper with integrated force sensing at a 3 mN resolution with a 500 mN measuring range is designed, and is used to implement an admittance force-controlled insertion using commercial precision stages. Visual-based alignment followed by an insertion is complemented by a haptic exploration strategy using force and position information. The system demonstrates fully automated construction of TE scaffolds with 50 microparts whose dimension error is larger than 5%.
Traffic flow behavior at a single-lane urban roundabout
NASA Astrophysics Data System (ADS)
Lakouari, N.; Oubram, O.; Ez-Zahraouy, H.; Cisneros-Villalobos, L.; Velásquez-Aguilar, J. G.
In this paper, we propose a stochastic cellular automata model to study the traffic behavior at a single-lane roundabout. Vehicles can enter the interior lane or exit from it via N intersecting lane, the boundary conditions are stochastic. The traffic is controlled by a self-organized scheme. It has turned out that depending on the rules of insertion to the roundabout, five distinct traffic phases can appear, namely, free flow, congestion, maximum current, jammed and gridlock. The transition between the free flow and the gridlock is forbidden. The density profiles are used to study the traffic pattern at the interior lane of the roundabout. In order to quantify the interactions between vehicles in the interior lane of the roundabout, the velocity correlation coefficient (VCC) is also studied. Besides, the spatiotemporal diagrams corresponding to the entry/exit lanes are derived numerically. Furthermore, we have investigated the effect of displaying signal (PIn), as the PIn decreases, the maximum current increases at the expense of the free flow and the jamming phase. Finally, we have investigated the effect of the braking probability P on the interior lane of the roundabout. We have found that the increase of P raises the spontaneous jam formation on the ring. Thus, enlarges the maximum current and the jamming phase while the free flow phase decreases.
Benchmarking pathway interaction network for colorectal cancer to identify dysregulated pathways.
Wang, Q; Shi, C-J; Lv, S-H
2017-03-30
Different pathways act synergistically to participate in many biological processes. Thus, the purpose of our study was to extract dysregulated pathways to investigate the pathogenesis of colorectal cancer (CRC) based on the functional dependency among pathways. Protein-protein interaction (PPI) information and pathway data were retrieved from STRING and Reactome databases, respectively. After genes were aligned to the pathways, each pathway activity was calculated using the principal component analysis (PCA) method, and the seed pathway was discovered. Subsequently, we constructed the pathway interaction network (PIN), where each node represented a biological pathway based on gene expression profile, PPI data, as well as pathways. Dysregulated pathways were then selected from the PIN according to classification performance and seed pathway. A PIN including 11,960 interactions was constructed to identify dysregulated pathways. Interestingly, the interaction of mRNA splicing and mRNA splicing-major pathway had the highest score of 719.8167. Maximum change of the activity score between CRC and normal samples appeared in the pathway of DNA replication, which was selected as the seed pathway. Starting with this seed pathway, a pathway set containing 30 dysregulated pathways was obtained with an area under the curve score of 0.8598. The pathway of mRNA splicing, mRNA splicing-major pathway, and RNA polymerase I had the maximum genes of 107. Moreover, we found that these 30 pathways had crosstalks with each other. The results suggest that these dysregulated pathways might be used as biomarkers to diagnose CRC.
Fundamental Study of Material Flow in Friction Stir Welds
NASA Technical Reports Server (NTRS)
Reynolds, Anthony P.
1999-01-01
The presented research project consists of two major parts. First, the material flow in solid-state, friction stir, butt-welds as been investigated using a marker insert technique. Changes in material flow due to welding parameter as well as tool geometry variations have been examined for different materials. The method provides a semi-quantitative, three-dimensional view of the material transport in the welded zone. Second, a FSW process model has been developed. The fully coupled model is based on fluid mechanics; the solid-state material transport during welding is treated as a laminar, viscous flow of a non-Newtonian fluid past a rotating circular cylinder. The heat necessary for the material softening is generated by deformation of the material. As a first step, a two-dimensional model, which contains only the pin of the FSW tool, has been created to test the suitability of the modeling approach and to perform parametric studies of the boundary conditions. The material flow visualization experiments agree very well with the predicted flow field. Accordingly, material within the pin diameter is transported only in the rotation direction around the pin. Due to the simplifying assumptions inherent in the 2-D model, other experimental data such as forces on the pin, torque, and weld energy cannot be directly used for validation. However, the 2-D model predicts the same trends as shown in the experiments. The model also predicts a deviation from the "normal" material flow at certain combinations of welding parameters, suggesting a possible mechanism for the occurrence of some typical FSW defects. The next step has been the development of a three-dimensional process model. The simplified FSW tool has been designed as a flat shoulder rotating on the top of the workpiece and a rotating, cylindrical pin, which extends throughout the total height of the flow domain. The thermal boundary conditions at the tool and at the contact area to the backing plate have been varied to fit experimental data such as temperature profiles, torque and tool forces. General aspects of the experimentally visualized material flow pattern are confirmed by the 3-D model.
NASA Astrophysics Data System (ADS)
Wang, Jun; Guo, Jin; Xie, Feng; Wang, Guosheng; Wu, Haoran; Song, Man; Yi, Yuanyuan
2016-10-01
This paper presents the comparative analysis of influence of doping level and doping profile of the active region on zero bias photoresponse characteristics of GaN-based p-i-n ultraviolet (UV) photodetectors operating at front- and back-illuminated. A two dimensional physically-based computer simulation of GaN-based p-i-n UV photodetectors is presented. We implemented GaN material properties and physical models taken from the literature. It is shown that absorption layer doping profile has notable impacts on the photoresponse of the device. Especially, the effect of doping concentration and distribution of the absorption layer on photoresponse is discussed in detail. In the case of front illumination, comparative to uniform n-type doping, the device with n-type Gaussian doping profiles at absorption layer has higher responsivity. Comparative to front illumination, back illuminated detector with p-type doping profiles at absorption layer has higher maximum photoresponse, while the Gaussian doping profiles have a weaker ability to enhance the device responsivity. It is demonstrated that electric field distribution, mobility degradation, and recombinations are jointly responsible for the variance of photoresponse. Our work enriches the understanding and utilization of GaN based p-i-n UV photodetectors.
ERIC Educational Resources Information Center
School Science Review, 1981
1981-01-01
Presents a variety of laboratory procedures, discussions, and demonstrations including centripedal force apparatus, model ear drum, hot air balloons, air as a real substance, centering a ball, simple test tube rack, demonstration fire extinguisher, pin-hole camera, and guidelines for early primary science education (5-10 years) concepts and lesson…
A Comparison of 2 Current-Issue Army Boots.
2000-01-01
at 3.5 mph, mean (SD) 32 21 .Maximum heel- strike vertical force (N) while walking at 3.5 mph, mean (SD) 33 22 Maximum heel- strike braking force...while running at 6.5 mph, mean (SD) 38 34 Maximum force on the hip (N) while running at 6.5 mph, mean (SD) 38 35 Maximum vertical heel- strike force (N...during 6.5 mph running, mean (SD) 39 36. Maximum heel- strike braking force (N) while running at 6.5 mph, mean (SD) 39 37. Maximum vertical push
Niobium-germanium superconducting tapes for high-field magnet applications
NASA Technical Reports Server (NTRS)
Braginski, A. I.; Roland, G. W.; Daniel, M. R.; Woolam, J. A.
1977-01-01
A process of fabricating superconducting Nb3Ge tapes by chemical vapor deposition (CVD) has been developed and tapes up to 10 meters long fabricated. The typical properties achieved were: critical temperature T sub c = 20 K, upper critical field H sub c2 = 29 tesla at 4.2 K, and J sub c = 3 to 4 x 10 to the 8th power A m(-2) at 4.2 K, 18 tesla. The relative depression of T sub c and H sub c2 compared with the best thin film samples sputtered on sapphire was due to the presence of Nb5Ge3 second-phase particles used as flux pinning centers and to strains induced by thermal mixmatch with Hastelloy B tape substrates. A peculiar field dependence of flux pinning force that was observed in both CVD and sputtered Nb3Ge indicated a premature pin-breaking mechanism or a phase inhomogeneity. Directions of further optimization work were defined.
NASA Astrophysics Data System (ADS)
Bondarenko, J. A.; Fedorenko, M. A.; Pogonin, A. A.
2018-03-01
The loading and unloading units and grinding mills of raw devices have internal cone type or pipe screw perceive load of incoming and outgoing material. The main part of the support assembly is a pin. Mounting seats for the pipe screws cone have traces of deformation and work hardening, while they themselves have wear of pins and deformation of the inner and outer cylindrical working surface. In the mill body, there are constantly acting dynamic forces causing vibration, which are transmitted to the stud and inner accelerating elements. Under the influence of stress and vibration, the housing spigot is in the stress-compressed state and stretched vertically and horizontally. As a result, the insertion element is deformed and weakened in the fixture. A moving element appears in the gap leading to the fact that it drops lfeedstock and under the influence of variable loads it is destroyed, as well as the seating surfaces of the insert pin member.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dearing, J F; Nelson, W R; Rose, S D
Computational thermal-hydraulic models of a 19-pin, electrically heated, wire-wrap liquid-metal fast breeder reactor test bundle were developed using two well-known subchannel analysis codes, COBRA III-C and SABRE-1 (wire-wrap version). These two codes use similar subchannel control volumes for the finite difference conservation equations but vary markedly in solution strategy and modeling capability. In particular, the empirical wire-wrap-forced diversion crossflow models are different. Surprisingly, however, crossflow velocity predictions of the two codes are very similar. Both codes show generally good agreement with experimental temperature data from a test in which a large radial temperature gradient was imposed. Differences between data andmore » code results are probably caused by experimental pin bowing, which is presently the limiting factor in validating coded empirical models.« less
Wetting hysteresis induced by nanodefects
Giacomello, Alberto; Schimmele, Lothar; Dietrich, Siegfried
2016-01-01
Wetting of actual surfaces involves diverse hysteretic phenomena stemming from ever-present imperfections. Here, we clarify the origin of wetting hysteresis for a liquid front advancing or receding across an isolated defect of nanometric size. Various kinds of chemical and topographical nanodefects, which represent salient features of actual heterogeneous surfaces, are investigated. The most probable wetting path across surface heterogeneities is identified by combining, within an innovative approach, microscopic classical density functional theory and the string method devised for the study of rare events. The computed rugged free-energy landscape demonstrates that hysteresis emerges as a consequence of metastable pinning of the liquid front at the defects; the barriers for thermally activated defect crossing, the pinning force, and hysteresis are quantified and related to the geometry and chemistry of the defects allowing for the occurrence of nanoscopic effects. The main result of our calculations is that even weak nanoscale defects, which are difficult to characterize in generic microfluidic experiments, can be the source of a plethora of hysteretical phenomena, including the pinning of nanobubbles. PMID:26721395
Low-friction nanojoint prototype
NASA Astrophysics Data System (ADS)
Vlassov, Sergei; Oras, Sven; Antsov, Mikk; Butikova, Jelena; Lõhmus, Rünno; Polyakov, Boris
2018-05-01
High surface energy of individual nanostructures leads to high adhesion and static friction that can completely hinder the operation of nanoscale systems with movable parts. For instance, silver or gold nanowires cannot be moved on silicon substrate without plastic deformation. In this paper, we experimentally demonstrate an operational prototype of a low-friction nanojoint. The movable part of the prototype is made either from a gold or silver nano-pin produced by laser-induced partial melting of silver and gold nanowires resulting in the formation of rounded bulbs on their ends. The nano-pin is then manipulated into the inverted pyramid (i-pyramids) specially etched in a Si wafer. Due to the small contact area, the nano-pin can be repeatedly tilted inside an i-pyramid as a rigid object without noticeable deformation. At the same time in the absence of external force the nanojoint is stable and preserves its position and tilt angle. Experiments are performed inside a scanning electron microscope and are supported by finite element method simulations.
NASA Astrophysics Data System (ADS)
Pavan Kumar Naik, S.; Bai, V. Seshu
2017-02-01
In the present work, with the aim of improving the local flux pinning at the unit cell level in the YBa2Cu3O7-δ (YBCO) bulk superconductors, 20 wt% of nanoscale Sm2O3 and micron sized (Nd, Sm, Gd)2BaCuO5 secondary phase particles were added to YBCO and processed in oxygen controlled preform optimized infiltration growth process. Nano Dispersive Sol Casting method is employed to homogeneously distribute the nano Sm2O3 particles of 30-50 nm without any agglomeration in the precursor powder. Microstructural investigations on doped samples show the chemical fluctuations as annuli cores in the 211 phase particles. The introduction of mixed rare earth elements at Y-site resulted in compositional fluctuations in the superconducting matrix. The associated lattice mismatch defects have provided flux pinning up to large magnetic fields. Magnetic field dependence of current density (Jc(H)) at different temperatures revealed that the dominant pinning mechanism is caused by spatial variations of critical temperatures, due to the spatial fluctuations in the matrix composition. As the number of rare earth elements increased in the YBCO, the peak field position in the scaling of the normalized pinning force density (Fp/Fp max) significantly gets shifted towards the higher fields. The curves of Jc(H) and Fp/Fp max at different temperatures clearly indicate the LRE substitution for LRE' or Ba-sites for δTc pinning.
NASA Astrophysics Data System (ADS)
Kim, S. I.; Gurevich, A.; Song, X.; Li, X.; Zhang, W.; Kodenkandath, T.; Rupich, M. W.; Holesinger, T. G.; Larbalestier, D. C.
2006-09-01
We report on the thickness dependence of the superconducting characteristics including critical current Ic, critical current density Jc, transition temperature Tc, irreversibility field Hirr, bulk pinning force plot Fp(H), and normal state resistivity curve ρ(T) measured after successive ion milling of ~1 µm thick high-Ic YBa2Cu3O7-x films made by an ex situ metal-organic deposition process on Ni-W rolling-assisted biaxially textured substrates (RABiTSTM). In contrast to many recent data, mostly on in situ pulsed laser deposition (PLD) films, which show strong depression of Jc with increasing film thickness t, our films exhibit only a weak dependence of Jc on t. The two better textured samples had full cross-section average Jc,avg (77 K, 0 T) ~4 MA cm-2 near the buffer layer interface and ~3 MA cm-2 at full thickness, despite significant current blocking due to ~30% porosity in the film. Taking account of the thickness dependence of the porosity, we estimate that the local, vortex-pinning current density is essentially independent of thickness, while accounting for the additional current-blocking effects of grain boundaries leads to local, vortex-pinning Jc values well above 5 MA cm-2. Such high local Jc values are produced by strong three-dimensional vortex pinning which subdivides vortex lines into weakly coupled segments much shorter than the film thickness.
Rotordynamic Characterization of a Hybrid Superconductor Magnet Bearing
NASA Technical Reports Server (NTRS)
Ma, Ki B.; Xia, Zule H.; Cooley, Rodger; Fowler, Clay; Chu, Wei-Kan
1996-01-01
A hybrid superconductor magnet bearing uses magnetic forces between permanent magnets to provide lift and the flux pinning force between permanent magnets and superconductors to stabilize against instabilities intrinsic to the magnetic force between magnets. We have constructed a prototype kinetic energy storage system, using a hybrid superconductor magnet bearing to support a 42 lb. flywheel at the center. With five sensors on the periphery of the flywheel, we have monitored the position and attitude of the flywheel during its spin down. The results indicate low values of stiffnesses for the bearing. The implications of this and other consequences will be discussed.
Identification of Nonlinear Micron-Level Mechanics for a Precision Deployable Joint
NASA Technical Reports Server (NTRS)
Bullock, S. J.; Peterson, L. D.
1994-01-01
The experimental identification of micron-level nonlinear joint mechanics and dynamics for a pin-clevis joint used in a precision, adaptive, deployable space structure are investigated. The force-state mapping method is used to identify the behavior of the joint under a preload. The results of applying a single tension-compression cycle to the joint under a tensile preload are presented. The observed micron-level behavior is highly nonlinear and involves all six rigid body motion degrees-of-freedom of the joint. it is also suggests that at micron levels of motion modelling of the joint mechanics and dynamics must include the interactions between all internal components, such as the pin, bushings, and the joint node.
Complexity in Cultural Identity
ERIC Educational Resources Information Center
Holliday, Adrian
2010-01-01
Despite their diverse national backgrounds, 28 interviewees speak similarly about the complexity of the cultural realities with which they live, and refuse to be pinned down to specific cultural types. While nation is of great importance, unless personally inspiring, it tends to be an external force which is in conflict with a wide variety of…
Enhanced spin transfer torque effect for transverse domain walls in cylindrical nanowires
NASA Astrophysics Data System (ADS)
Franchin, Matteo; Knittel, Andreas; Albert, Maximilian; Chernyshenko, Dmitri S.; Fischbacher, Thomas; Prabhakar, Anil; Fangohr, Hans
2011-09-01
Recent studies have predicted extraordinary properties for transverse domain walls in cylindrical nanowires: zero depinning current, the absence of the Walker breakdown, and applications as domain wall oscillators. In order to reliably control the domain wall motion, it is important to understand how they interact with pinning centers, which may be engineered, for example, through modulations in the nanowire geometry (such as notches or extrusions) or in the magnetic properties of the material. In this paper we study the motion and depinning of transverse domain walls through pinning centers in ferromagnetic cylindrical nanowires. We use (i) magnetic fields and (ii) spin-polarized currents to drive the domain walls along the wire. The pinning centers are modelled as a section of the nanowire which exhibits a uniaxial crystal anisotropy where the anisotropy easy axis and the wire axis enclose a variable angle θP. Using (i) magnetic fields, we find that the minimum and the maximum fields required to push the domain wall through the pinning center differ by 30%. On the contrary, using (ii) spin-polarized currents, we find variations of a factor 130 between the minimum value of the depinning current density (observed for θP=0∘, i.e., anisotropy axis pointing parallel to the wire axis) and the maximum value (for θP=90∘, i.e., anisotropy axis perpendicular to the wire axis). We study the depinning current density as a function of the height of the energy barrier of the pinning center using numerical and analytical methods. We find that for an industry standard energy barrier of 40kBT, a depinning current of about 5μA (corresponding to a current density of 6×1010A/m2 in a nanowire of 10nm diameter) is sufficient to depin the domain wall. We reveal and explain the mechanism that leads to these unusually low depinning currents. One requirement for this depinning mechanism is for the domain wall to be able to rotate around its own axis. With the right barrier design, the spin torque transfer term is acting exactly against the damping in the micromagnetic system, and thus the low current density is sufficient to accumulate enough energy quickly. These key insights may be crucial in furthering the development of novel memory technologies, such as the racetrack memory, that can be controlled through low current densities.
Domain wall motion in sub-100 nm magnetic wire
NASA Astrophysics Data System (ADS)
Siddiqui, Saima; Dutta, Sumit; Currivan, Jean Anne; Ross, Caroline; Baldo, Marc
2015-03-01
Nonvolatile memory devices such as racetrack memory rely on the manipulation of domain wall (DW) in magnetic nanowires, and scaling of these devices requires an understanding of domain wall behavior as a function of the wire width. Due to the increased importance of edge roughness and magnetostatic interaction, DW pinning increases dramatically as the wire dimensions decrease and stochastic behavior is expected depending on the distribution of pinning sites. We report on the field driven DW statistics in sub-100 nm wide nanowires made from Co films with very small edge roughness. The nanowires were patterned in the form of a set of concentric rings of 10 μm diameter. Two different width nanowires with two different spacings have been studied. The rings were first saturated in plane to produce onion states and then the DWs were translated in the wires using an orthogonal in-plane field. The position of the DWs in the nanowires was determined with magnetic force microscopy. From the positions of the DWs in the nanowires, the strength of the extrinsic pinning sites was identified and they follow two different distributions in two different types of nanowire rings. For the closely spaced wires, magnetostatic interactions led to correlated movement of DWs in neighboring wires. The implications of DW pinning and interaction in nanoscale DW devices will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salem-Sugui, S.; Moseley, D.; Stuard, S. J.
We study the effect of proton irradiation on Ba(Fe 0.96Co 0.04) 2As 2 superconducting single crystals from combined magnetisation and magnetoresistivity measurements. The study allows the extraction of the values of the apparent pinning energy U 0 of the samples prior to and after irradiation, as well as comparison of the values of U 0 obtained from the flux-flow reversible region with those from the flux-creep irreversible region. Irradiation reduces T c modestly, but significantly reduces U 0 in both regimes: the critical current density J c is modified, most strikingly by the disappearance of the second magnetisation peak aftermore » irradiation. Analysis of the functional form of the pinning force and of the temperature dependence of J c for zero field, indicates that proton irradiation in this case has not changed the pinning regime, but has introduced a high density of shallow point-like defects. Lastly, by considering a model that takes into account the effect of disorder on the irreversibility line, the data suggests that irradiation produced a considerable reduction in the average effective disorder overall, consistent with the changes observed in U 0 and J c.« less
Salem-Sugui, S.; Moseley, D.; Stuard, S. J.; ...
2016-10-13
We study the effect of proton irradiation on Ba(Fe 0.96Co 0.04) 2As 2 superconducting single crystals from combined magnetisation and magnetoresistivity measurements. The study allows the extraction of the values of the apparent pinning energy U 0 of the samples prior to and after irradiation, as well as comparison of the values of U 0 obtained from the flux-flow reversible region with those from the flux-creep irreversible region. Irradiation reduces T c modestly, but significantly reduces U 0 in both regimes: the critical current density J c is modified, most strikingly by the disappearance of the second magnetisation peak aftermore » irradiation. Analysis of the functional form of the pinning force and of the temperature dependence of J c for zero field, indicates that proton irradiation in this case has not changed the pinning regime, but has introduced a high density of shallow point-like defects. Lastly, by considering a model that takes into account the effect of disorder on the irreversibility line, the data suggests that irradiation produced a considerable reduction in the average effective disorder overall, consistent with the changes observed in U 0 and J c.« less
Jacking mechanism for upper internals structure of a liquid metal nuclear reactor
Gillett, James E.; Wineman, Arthur L.
1984-01-01
A jacking mechanism for raising the upper internals structure of a liquid metal nuclear reactor which jacking mechanism uses a system of gears and drive shafts to transmit force from a single motor to four mechanically synchronized ball jacks to raise and lower support columns which support the upper internals structure. The support columns have a pin structure which rides up and down in a slot in a housing fixed to the reactor head. The pin has two locking plates which can be rotated around the pin to bring bolt holes through the locking plates into alignment with a set of bolt holes in the housing, there being a set of such housing bolt holes corresponding to both a raised and a lowered position of the support column. When the locking plate is so aligned, a surface of the locking plate mates with a surface in the housing such that the support column is then supported by the locking plate and not by the ball jacks. Since the locking plates are to be installed and bolted to the housing during periods of reactor operation, the ball jacks need not be sized to react the large forces which occur or potentially could occur on the upper internals structure of the reactor during operation. The locking plates react these loads. The ball jacks, used only during refueling, can be smaller, which enable conventionally available equipment to fulfill the precision requirements for the task within available space.
Weakening Pin Bone Attachment in Fish Fillets Using High-Intensity Focused Ultrasound.
Skjelvareid, Martin H; Stormo, Svein Kristian; Þórarinsdóttir, Kristín Anna; Heia, Karsten
2017-09-18
High Intensity Focused Ultrasound (HIFU) can be used for the localized heating of biological tissue through the conversion of sound waves into heat. Although originally developed for human medicine, HIFU may also be used to weaken the attachment of pin bones in fish fillets to enable easier removal of such bones. This was shown in the present study, where a series of experiments were performed on HIFU phantoms and fillets of cod and salmon. In thin objects such as fish fillets, the heat is mainly dissipated at the surfaces. However, bones inside the fillet absorb ultrasound energy more efficiently than the surrounding tissue, resulting in a "self-focusing" heating of the bones. Salmon skin was found to effectively block the ultrasound, resulting in a significantly lower heating effect in fillets with skin. Cod skin partly blocked the ultrasound, but only to a small degree, enabling HIFU treatment through the skin. The treatment of fillets to reduce the pin bone attachment yielded an average reduction in the required pulling force by 50% in cod fillets with skin, with little muscle denaturation, and 72% in skinned fillets, with significant muscle denaturation. Salmon fillets were treated from the muscle side of the fillet to circumvent the need for penetration through skin. The treatment resulted in a 30% reduction in the peak pulling force and 10% reduction in the total pulling work, with a slight denaturation of the fillet surface.
Weakening Pin Bone Attachment in Fish Fillets Using High-Intensity Focused Ultrasound
Stormo, Svein Kristian; Þórarinsdóttir, Kristín Anna; Heia, Karsten
2017-01-01
High Intensity Focused Ultrasound (HIFU) can be used for the localized heating of biological tissue through the conversion of sound waves into heat. Although originally developed for human medicine, HIFU may also be used to weaken the attachment of pin bones in fish fillets to enable easier removal of such bones. This was shown in the present study, where a series of experiments were performed on HIFU phantoms and fillets of cod and salmon. In thin objects such as fish fillets, the heat is mainly dissipated at the surfaces. However, bones inside the fillet absorb ultrasound energy more efficiently than the surrounding tissue, resulting in a “self-focusing” heating of the bones. Salmon skin was found to effectively block the ultrasound, resulting in a significantly lower heating effect in fillets with skin. Cod skin partly blocked the ultrasound, but only to a small degree, enabling HIFU treatment through the skin. The treatment of fillets to reduce the pin bone attachment yielded an average reduction in the required pulling force by 50% in cod fillets with skin, with little muscle denaturation, and 72% in skinned fillets, with significant muscle denaturation. Salmon fillets were treated from the muscle side of the fillet to circumvent the need for penetration through skin. The treatment resulted in a 30% reduction in the peak pulling force and 10% reduction in the total pulling work, with a slight denaturation of the fillet surface. PMID:28926968
Nitrogen fractionation of certain conventional- and lesser-known by-products for ruminants.
Mahesh, M S; Thakur, Sudarshan S; Kumar, Rohit; Malik, Tariq A; Gami, Rajkumar
2017-06-01
Dietary proteins for ruminants are fractionated according to solubility, degradability and digestibility. In the present experiment, 11 vegetable protein meals and cakes used in ruminant nutrition were included with a main focus on determining various nitrogen (N) fractions in vitro . Total N (N × 6.25) content varied from 22.98% (mahua cake) to 65.16% (maize gluten meal), respectively. Guar meal korma contained the lowest and rice gluten meal had the highest acid detergent insoluble nitrogen (ADIN; N × 6.25). Borate-phosphate insoluble N (BIN, N × 6.25) and Streptomyces griseus protease insoluble N (PIN; N × 6.25) were higher ( P < 0.01) in maize gluten meal than in other feeds, whereas groundnut cake and sunflower cake had lower ( P < 0.01) BIN, and PIN, respectively. Available N, calculated with the assumption that ADIN is indigestible, was maximum in guar meal korma and minimum in rice gluten meal. Furthermore, rapid and slowly degradable N (N × 6.25) was found to be higher ( P < 0.01) in groundnut cake and coconut cake, respectively. Intestinal digestion of rumen undegradable protein, expressed as percent of PIN, was maximum in guar meal korma and minimum in rice gluten meal. It was concluded that vegetable protein meals differed considerably in N fractions, and therefore, a selective inclusion of particular ingredient is needed to achieve desired level of N fractions to aid precision N rationing for an improved production performance of ruminants.
What Controls the Limit of Supercooling and Superheating of Pinned Ice Surfaces?
Naullage, Pavithra M; Qiu, Yuqing; Molinero, Valeria
2018-04-05
Cold-adapted organisms produce antifreeze proteins and glycoproteins to control the growth, melting and recrystallization of ice. It has been proposed that these molecules pin the crystal surface, creating a curvature that arrests the growth and melting of the crystal. Here we use thermodynamic modeling and molecular simulations to demonstrate that the curvature of the superheated or supercooled surface depends on the temperature and distances between ice-binding molecules, but not the details of their interactions with ice. We perform simulations of ice pinned with the antifreeze protein TmAFP, polyvinyl alcohol with different degrees of polymerization, and model ice-binding molecules to determine the thermal hystereses on melting and freezing, i.e. the maximum curvature that can be attained before, respectively, ice melts or grows irreversibly over the ice-binding molecules. We find that the thermal hysteresis is controlled by the bulkiness of the ice-binding molecules and their footprint at the ice surface. We elucidate the origin of the asymmetry between freezing and melting hysteresis found in experiments and propose guidelines to design synthetic antifreeze molecules with potent thermal hysteresis activity.
Friction stir lap joining of automotive aluminium alloy and carbon-fiber-reinforced plastic
NASA Astrophysics Data System (ADS)
Bang, H. S.; Das, A.; Lee, S.; Bang, H. S.
2018-05-01
Multi-material combination such as aluminium alloys and carbon-fiber-reinforced plastics (CFRP) are increasingly used in the aircraft and automobile industries to enhance strength-to-weight ratio of the respective parts and components. Various processes such as adhesive bonding, mechanical fasteners and laser beam joining were employed to join metal alloy and CFRP sheets. However, long processing time of adhesive bonding, extra weight induced by mechanical fasteners and high operating cost of the laser is major limitations of these processes. Therefore, friction stir welding is an alternative choice to overcome those limitations in joining of CFRP and aluminium alloys. In the present work, an attempt is undertaken to join AA5052 alloy and polyamide 66 CFRP sheets by friction stir lap joining technique using pinned and pin-less tools. The joint qualities are investigated extensively at different joining conditions using two different types of tools and surface ground aluminium sheets. The results show that pin-less tool and surface ground aluminium alloy can provide the suitable joint with maximum joint strength around 8 MPa.
Tool For Friction Stir Tack Welding of Aluminum Alloys
NASA Technical Reports Server (NTRS)
Bjorkman, Gerald W.; Dingler, Johnny W.; Loftus, Zachary
2003-01-01
A small friction-stir-welding tool has been developed for use in tack welding of aluminum-alloy workpieces. It is necessary to tack-weld the workpieces in order to hold them together during friction stir welding because (1) in operation, a full-size friction-stir-welding tool exerts a large force that tends to separate the workpieces and (2) clamping the workpieces is not sufficient to resist this force. It is possible to tack the pieces together by gas tungsten arc welding, but the process can be awkward and time-consuming and can cause sufficient damage to necessitate rework. Friction stir tack welding does not entail these disadvantages. In addition, friction stir tack welding can be accomplished by use of the same automated equipment (except for the welding tool) used in subsequent full friction stir welding. The tool for friction stir tack welding resembles the tool for full friction stir welding, but has a narrower shoulder and a shorter pin. The shorter pin generates a smaller workpiece-separating force so that clamping suffices to keep the workpieces together. This tool produces a continuous or intermittent partial-penetration tack weld. The tack weld is subsequently consumed by action of the larger tool used in full friction stir welding tool.
Dong, Sheng; Dapino, Marcelo
2015-01-01
Friction and wear are detrimental to engineered systems. Ultrasonic lubrication is achieved when the interface between two sliding surfaces is vibrated at a frequency above the acoustic range (20 kHz). As a solid-state technology, ultrasonic lubrication can be used where conventional lubricants are unfeasible or undesirable. Further, ultrasonic lubrication allows for electrical modulation of the effective friction coefficient between two sliding surfaces. This property enables adaptive systems that modify their frictional state and associated dynamic response as the operating conditions change. Surface wear can also be reduced through ultrasonic lubrication. We developed a protocol to investigate the dependence of friction force reduction and wear reduction on the linear sliding velocity between ultrasonically lubricated surfaces. A pin-on-disc tribometer was built which differs from commercial units in that a piezoelectric stack is used to vibrate the pin at 22 kHz normal to the rotating disc surface. Friction and wear metrics including effective friction force, volume loss, and surface roughness are measured without and with ultrasonic vibrations at a constant pressure of 1 to 4 MPa and three different sliding velocities: 20.3, 40.6, and 87 mm/sec. An optical profilometer is utilized to characterize the wear surfaces. The effective friction force is reduced by 62% at 20.3 mm/sec. Consistently with existing theories for ultrasonic lubrication, the percent reduction in friction force diminishes with increasing speed, down to 29% friction force reduction at 87 mm/sec. Wear reduction remains essentially constant (49%) at the three speeds considered. PMID:26436691
Comparison of stability of different types of external fixation.
Grubor, Predrag; Grubor, Milan; Asotic, Mithat
2011-01-01
Stabilization of fractures by external fixator is based on the mechanical connecting of the pins, screwed into the proximal and distal bone fragment. Site of fracture is left without any foreign materials, which is essential for prevention of infections. Aim of this work is to compare stability of constructs bone model-external fixators of different types (Ortofix, Mitković, Charneley and Ilizarov). Stability is estimated under compression and bending (vertical and horizontal forces of 100 kg magnitudes, with distances between pins of4 cm). The mathematical-computer software (Tower, Planet and Planet Pro) was used in the laboratory for accurate measurements of MDP "Jelsingrad" company, Banjaluka. Interfragmental motions in millimeters at the appliance of vertical and horizontal forces were 2.80/2.56 at Ortofix (uniplanar fixator), 1.57/1.56 and fixator by Mitković-M20 (uniplanar fixator with convergent oriented pins), 0.16/0.28 at Charnely's external fixator (biplanar fixator), and 4.49/0.114 mm at Ilizarov's external fixator (fixator with two proximal and two distal rings, each attached on the 6 Kirschner wires). It has confirmed that uniplanar fixation is easier and provides sufficient biomechanics circumstances in the site of fracture for bone healing, especially if the pins are oriented convergently. Ilizarov's fixator is multiplanar fixator, but its stability is dependent of tightness of wires, and provides adequate stability only in transversal plane. By other words, each fixator has its indications; selection of the fixator should be based on theirs mechanic characteristics, fracture geometry, and potential of bone healing, with permanent simplification of treatment, which has to be safe and acceptable for the patient. The main advantage of this study is Sits nature-the comparison of four most used external fixators, by the only one possible way-on the bone model. Each other way of comparison would result with much more questions than answers, due to unacceptable high bias of other parameters, which significantly influences on the results of the study.
Analysis of force profile during a maximum voluntary isometric contraction task.
Househam, Elizabeth; McAuley, John; Charles, Thompson; Lightfoot, Timothy; Swash, Michael
2004-03-01
This study analyses maximum voluntary isometric contraction (MVIC) and its measurement by recording the force profile during maximal-effort, 7-s hand-grip contractions. Six healthy subjects each performed three trials repeated at short intervals to study variation from fatigue. These three trials were performed during three separate sessions at daily intervals to look at random variation. A pattern of force development during a trial was identified. An initiation phase, with or without an initiation peak, was followed by a maintenance phase, sometimes with secondary pulses and an underlying decline in force. Of these three MVIC parameters, maximum force during the maintenance phase showed less random variability compared to intertrial fatigue variability than did maximum force during the initiation phase or absolute maximum force. Analysis of MVIC as a task, rather than a single, maximal value reveals deeper levels of motor control in its generation. Thus, force parameters other than the absolute maximum force may be better suited to quantification of muscle performance in health and disease.
Recrystallization and grain growth phenomena in a particle-reinforced aluminum composite
NASA Astrophysics Data System (ADS)
van Aken, D. C.; Krajewski, P. E.; Vyletel, G. M.; Allison, J. E.; Jones, J. W.
1995-06-01
Recrystallization and grain growth in a 2219/TiC/15p composite were investigated as functions of the amount of deformation and deformation temperature. Both cold and hot deformed samples were annealed at the normal solution treatment temperature of 535 °C. It was shown that large recrystallized grain diameters, relative to the interparticle spacing, could be produced in a narrow range of deformation for samples cold-worked and those hot-worked below 450 °C. For cold-worked samples, between 4 to 6 pct deformation, the recrystallized grain diameters varied from 530 to 66 μm as the amount of deformation increased. Subsequent grain growth was not observed in these recrystallized materials and noncompact grain shapes were observed. For deformations greater than 15 pct, recrystallized grain diameters less than the interparticle spacing were observed and subsequent grain growth produced a pinned grain diameter of 27 μm. The pinned grain diameter agreed well with an empirical model based on three dimensional (3-D) Monte Carlo simulations of grain growth and particle pinning in a two-phase material. Tensile properties were determined as a function of grain size, and it was shown that grain size had a weak influence on yield strength. A maximum in the yield strength was observed at a grain size larger than the normal grain growth and particle-pinned diameter.
Lateral restoring force on a magnet levitated above a superconductor
NASA Technical Reports Server (NTRS)
Davis, L. C.
1990-01-01
The lateral restoring force on a magnet levitated above a superconductor is calculated as a function of displacement from its original position at rest using Bean's critical-state model to describe flux pinning. The force is linear for small displacements and saturates at large displacements. In the absence of edge effects the force always attracts the magnet to its original position. Thus it is a restoring force that contributes to the stability of the levitated magnet. In the case of a thick superconductor slab, the origin of the force is a magnetic dipole layer consisting of positive and negative supercurrents induced on the trailing side of the magnet. The qualitative behavior is consistent with experiments reported to date. Effects due to the finite thickness of the superconductor slab and the granular nature of high-Tc materials are also considered.
Crashworthy Troop Seat Testing Program
1977-11-01
19 ’rest 4 . . . . . . . . . .. . 29 | Detail Design’Finalization. .... 29 Vertical Wire - Bending Energy Attenuator 32 Toggle Latch...Strut Wire - Bending Attenuator Force Deflection. . . . ................... 28 15 Notched Wire and Pin Anchorage Test Specimen . 30 16 Quick-Disconnect...and Hold-Down Cable ......... 31 17 Failed Hold-Down Cable ...... . . . . 31 18 Wire - Bending Tension/Compression Energy Attenuator
6. View of DR 3 antenna typical backstay concrete stanchion ...
6. View of DR 3 antenna typical back-stay concrete stanchion showing embedded anchors and structural steel leg with pin attachment. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK
Universal current-velocity relation of skyrmion motion in chiral magnets
NASA Astrophysics Data System (ADS)
Iwasaki, Junichi; Mochizuki, Masahito; Nagaosa, Naoto
2013-03-01
Current-driven motion of the magnetic domain wall requires large critical current density jc ~109 -1012 A/m2, at which the joule heating is a serious problem. The skyrmions recently discovered in chiral magnets, on the other hand, have much smaller critical current of jc ~105 -106 A/m2. We present a numerical simulation of the Landau-Lifshitz-Gilbert equation, which reveals a remarkably robust and universal current-velocity relation of the slyrmion motion driven by the spin transfer torque unaffected by either impurities or nonadiabatic effect in sharp contrast to the case of domain wall or spin helix (HL). Simulation results are analyzed using a theory based on Thiele's equation, and it is concluded that this surprising behavior is due to the Magnus force and flexible shape-deformation of individual skyrmions and skyrmion crystal (SkX), which enable them to avoid pinning centers and then weaken the net pinning force. Dynamical deformation of SkX leads to the fluctuation of Bragg peak with large amplitude, which can be detected by the recent neutron-scattering experiment.
NASA Astrophysics Data System (ADS)
Yang, W. M.; Wang, Miao
2013-10-01
Single domain YBCO superconductors with different additions of Bi2O3 have been fabricated by top seeded infiltration and growth process (TSIG). The effect of Bi2O3 additions on the growth morphology, microstructure and levitation force of the YBCO bulk superconductor has been investigated. The results indicate that single domain YBCO superconductors can be fabricated with the additions of Bi2O3 less than 2 wt%; Bi2O3 can be reacted with Y2BaCuO5 and liquid phase and finally form Y2Ba4CuBiOx(YBi2411) nanoscale particles; the size of the YBi2411 particles is about 100 nm, which can act as effective flux pinning centers. It is also found that the levitation force of single domain YBCO bulks is increasing from 13 N to 34 N and decreasing to 11 N with the increasing of Bi2O3 addition from 0.1 wt% to 0.7 wt% and 2 wt%. This result is helpful for us to improve the physical properties of REBCO bulk superconductors.
Measuring spatial variability in soil characteristics
Hoskinson, Reed L.; Svoboda, John M.; Sawyer, J. Wayne; Hess, John R.; Hess, J. Richard
2002-01-01
The present invention provides systems and methods for measuring a load force associated with pulling a farm implement through soil that is used to generate a spatially variable map that represents the spatial variability of the physical characteristics of the soil. An instrumented hitch pin configured to measure a load force is provided that measures the load force generated by a farm implement when the farm implement is connected with a tractor and pulled through or across soil. Each time a load force is measured, a global positioning system identifies the location of the measurement. This data is stored and analyzed to generate a spatially variable map of the soil. This map is representative of the physical characteristics of the soil, which are inferred from the magnitude of the load force.
Huber, Daniel R; Eason, Thomas G; Hueter, Robert E; Motta, Philip J
2005-09-01
Three-dimensional static equilibrium analysis of the forces generated by the jaw musculature of the horn shark Heterodontus francisci was used to theoretically estimate the maximum force distributions and loadings on its jaws and suspensorium during biting. Theoretical maximum bite force was then compared with bite forces measured (1) voluntarily in situ, (2) in restrained animals and (3) during electrical stimulation of the jaw adductor musculature of anesthetized sharks. Maximum theoretical bite force ranged from 128 N at the anteriormost cuspidate teeth to 338 N at the posteriormost molariform teeth. The hyomandibula, which connects the posterior margin of the jaws to the base of the chondrocranium, is loaded in tension during biting. Conversely, the ethmoidal articulation between the palatal region of the upper jaw and the chondrocranium is loaded in compression, even during upper jaw protrusion, because H. francisci's upper jaw does not disarticulate from the chondrocranium during prey capture. Maximum in situ bite force averaged 95 N for free-swimming H. francisci, with a maximum of 133 N. Time to maximum force averaged 322 ms and was significantly longer than time away from maximum force (212 ms). Bite force measurements from restrained individuals (187 N) were significantly greater than those from free-swimming individuals (95 N) but were equivalent to those from both theoretical (128 N) and electrically stimulated measurements (132 N). The mean mass-specific bite of H. francisci was greater than that of many other vertebrates and second highest of the cartilaginous fishes that have been studied. Measuring bite force on restrained sharks appears to be the best indicator of maximum bite force. The large bite forces and robust molariform dentition of H. francisci correspond to its consumption of hard prey.
Elsayed, Hany H.; Mostafa, Ahmed M.; Soliman, Saleh; El-Bawab, Hatem Y.; Moharram, Adel A.; El-Nori, Ahmed A.
2016-01-01
OBJECTIVES Airway metal pins are one of the most commonly inhaled foreign bodies in Eastern societies in young females wearing headscarves. We innovated a modified bronchoscopic technique to extract tracheobronchial headscarf pins by the insertion of a magnet to allow an easy and non-traumatic extraction of the pins. The aim of this study was to assess the feasibility and safety of our new technique and compare it with our large previous experience with the classic bronchoscopic method of extraction of tracheobronchial headscarf pins. METHODS We performed a study comparing our retrospective experience of classic bronchoscopic extraction from February 2004 to January 2014 and prospective experience with our modified technique using the magnet from January 2014 to June 2015. An institutional review board and new device approval were obtained. RESULTS Three hundred and twenty-six procedures on 315 patients were performed during our initial 10-year experience. Of them, 304 patients were females. The median age of our group was 13 (0–62). The median time from inhalation to procedure was 1 day (0–1022). After introducing our modified new technique using the magnet, 20 procedures were performed. Nineteen were females. The median time of the procedure and the need to forcefully bend the pin for extraction were in favour of the new technique in comparison with our classic approach (2 vs 6 min; P < 0.001) (2 patients = 20% vs 192 = 58%; P < 0.001). The conversion rate to surgery was also in favour of the modified technique but did not reach statistical significance (0 = 0% vs 15 = 4.8%; P = 0.32). All patients who underwent the modified technique were discharged home on the same day of the procedure. No procedural complications were recorded. All remain well on a follow-up period of up to 14 months. CONCLUSIONS Bronchoscopic extraction of tracheobronchial inhaled headscarf pins using a novel technique using homemade magnets was safer and simpler in comparison with our large experience with the classic approach. We advise the use of this device (or concept) in selected patients in centres dealing with this problem. PMID:26850113
A Water Droplet Pinning and Heat Transfer Characteristics on an Inclined Hydrophobic Surface.
Al-Sharafi, Abdullah; Yilbas, Bekir Sami; Ali, Haider; AlAqeeli, N
2018-02-15
A water droplet pinning on inclined hydrophobic surface is considered and the droplet heat transfer characteristics are examined. Solution crystallization of polycarbonate is carried out to create hydrophobic characteristics on the surface. The pinning state of the water droplet on the extreme inclined hydrophobic surface (0° ≤ δ ≤ 180°, δ being the inclination angle) is assessed. Heat transfer from inclined hydrophobic surface to droplet is simulated for various droplet volumes and inclination angles in line with the experimental conditions. The findings revealed that the hydrophobic surface give rise to large amount of air being trapped within texture, which generates Magdeburg like forces between the droplet meniscus and the textured surface while contributing to droplet pinning at extreme inclination angles. Two counter rotating cells are developed for inclination angle in the range of 0° < δ < 20° and 135° < δ < 180°; however, a single circulation cell is formed inside the droplet for inclination angle of 25° ≤ δ ≤ 135°. The Nusselt number remains high for the range of inclination angle of 45° ≤ δ ≤ 135°. Convection and conduction heat transfer enhances when a single and large circulation cell is formed inside the droplet.
Magnetic skyrmion bubble motion driven by surface acoustic waves
Nepal, Rabindra; Güngördü, Utkan; Kovalev, Alexey A.
2018-03-12
Here, we study the dynamical control of a magnetic skyrmion bubble by using counter-propagating surface acoustic waves (SAWs) in a ferromagnet. First, we determine the bubble mass and derive the force due to SAWs acting on a magnetic bubble using Thiele’s method. The force that pushes the bubble is proportional to the strain gradient for the major strain component. We then study the dynamical pinning and motion of magnetic bubbles by SAWs in a nanowire. In a disk geometry, we propose a SAWs-driven skyrmion bubble oscillator with two resonant frequencies.
Stray field signatures of Néel textured skyrmions in Ir/Fe/Co/Pt multilayer films
NASA Astrophysics Data System (ADS)
Yagil, A.; Almoalem, A.; Soumyanarayanan, Anjan; Tan, Anthony K. C.; Raju, M.; Panagopoulos, C.; Auslaender, O. M.
2018-05-01
Skyrmions are nanoscale spin configurations with topological properties that hold great promise for spintronic devices. Here, we establish their Néel texture, helicity, and size in Ir/Fe/Co/Pt multilayer films by constructing a multipole expansion to model their stray field signatures and applying it to magnetic force microscopy images. Furthermore, the demonstrated sensitivity to inhomogeneity in skyrmion properties, coupled with a unique capability to estimate the pinning force governing dynamics, portend broad applicability in the burgeoning field of topological spin textures.
Magnetic skyrmion bubble motion driven by surface acoustic waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nepal, Rabindra; Güngördü, Utkan; Kovalev, Alexey A.
Here, we study the dynamical control of a magnetic skyrmion bubble by using counter-propagating surface acoustic waves (SAWs) in a ferromagnet. First, we determine the bubble mass and derive the force due to SAWs acting on a magnetic bubble using Thiele’s method. The force that pushes the bubble is proportional to the strain gradient for the major strain component. We then study the dynamical pinning and motion of magnetic bubbles by SAWs in a nanowire. In a disk geometry, we propose a SAWs-driven skyrmion bubble oscillator with two resonant frequencies.
Debuisson, Damien; Merlen, Alain; Senez, Vincent; Arscott, Steve
2016-03-22
We present an experimental study of stick-jump (SJ) evaporation of strongly pinned nanoliter volume sessile water droplets drying on micropatterned surfaces. The evaporation is studied on surfaces composed of photolithographically micropatterned negative photoresist (SU-8). The micropatterning of the SU-8 enables circular, smooth, trough-like features to be formed which causes a very strong pinning of the three phase (liquid-vapor-solid) contact line of an evaporating droplet. This is ideal for studying SJ evaporation as it contains sequential constant contact radius (CCR) evaporation phases during droplet evaporation. The evaporation was studied in nonconfined conditions, and forced convection was not used. Micropatterned concentric circles were defined having an initial radius of 1000 μm decreasing by a spacing ranging from 500 to 50 μm. The droplet evaporates, successively pinning and depinning from circle to circle. For each pinning radius, the droplet contact angle and volume are observed to decrease quasi-linearly with time. The experimental average evaporation rates were found to decrease with decreasing pining radii. In contrast, the experimental average evaporation flux is found to increase with decreasing droplet radii. The data also demonstrate the influence of the initial contact angle on evaporation rate and flux. The data indicate that the total evaporation time of a droplet depends on the specific micropattern spacing and that the total evaporation time on micropatterned surfaces is always less than on flat, homogeneous surfaces. Although the surface patterning is observed to have little effect on the average droplet flux-indicating that the underlying evaporation physics is not significantly changed by the patterning-the total evaporation time is considerably modified by patterning, up to a factor or almost 2 compared to evaporation on a flat, homogeneous surface. The closely spaced concentric circle pinning maintains a large droplet radius and small contact angle from jump to jump; the result is a large evaporation rate leading to faster evaporation.
[The VB system: a new modular osteosynthesis material involving both screws and wires].
Dubert, T; Valenti, P; Dinh, A; Osman, N
2002-01-01
VB is an osteosynthesis system for the stabilisation of small fragments, which combines the benefits of both wires and screws. It is a modular system comprising a threaded pin and a ring. The threaded pin is first positioned. Then a ring is grasped and opened by the progressive angulation of a screwdriver. Still anchored on the screwdriver, the ring slides easily on the pin. It is clamped on the pin by simply removing the screwdriver and the pin is then cut. This modular system includes 1.8 and 1.1 mm pins and different types of rings (threaded or non threaded, with or without collars). The system is easy to handle and can be introduced using an open or percutaneous technique, allowing compression or distraction. Our preliminary series, performed in accordance with National clinical trial protocol (Huriet) consisted of 50 cases in 24 patients (five women and 19 men) with an average age of 48 years, and a follow-up of more than six months. Fourteen cases of fractures (28 implants) were treated as emergencies (two radial heads, one capitellum, one trochlea of the humerus, seven distal radius fractures, one trapezium, two metacarpals) and 12 cases (22 implants) were elective cases: arthrodesis (one trapezo-metacarpal, one intermetacarpal, two interphalangeal, two carpal), non-union (six scaphoids, one phalangeal) and one phalangeal malunion. Hardware removal was performed in 16 cases. No implant failure has been detected. One case, a DIP arthrodesis, had a suspicion of sepsis which led to the removal of the implants at six weeks. The results of this study have convinced us of the merits of the system, which combines the advantages of both wires and screws. The system allows the user to perform either distraction or compression, and to adjust the force by hand. Compared to the fixed amount of compression produced by lag screws, this feature seems to be a real step forward.
Kim, K; Lee, S K; Kim, Y H
2010-10-01
The weakening of trunk muscles is known to be related to a reduction of the stabilization function provided by the muscles to the lumbar spine; therefore, strengthening deep muscles might reduce the possibility of injury and pain in the lumbar spine. In this study, the effect of variation in maximum forces of trunk muscles on the joint forces and moments in the lumbar spine was investigated. Accordingly, a three-dimensional finite element model of the lumbar spine that included the trunk muscles was used in this study. The variation in maximum forces of specific muscle groups was then modelled, and joint compressive and shear forces, as well as resultant joint moments, which were presumed to be related to spinal stabilization from a mechanical viewpoint, were analysed. The increase in resultant joint moments occurred owing to decrease in maximum forces of the multifidus, interspinales, intertransversarii, rotatores, iliocostalis, longissimus, psoas, and quadratus lumborum. In addition, joint shear forces and resultant joint moments were reduced as the maximum forces of deep muscles were increased. These results from finite element analysis indicate that the variation in maximum forces exerted by trunk muscles could affect the joint forces and joint moments in the lumbar spine.
Vibration analyses of an inclined flat plate subjected to moving loads
NASA Astrophysics Data System (ADS)
Wu, Jia-Jang
2007-01-01
The object of this paper is to present a moving mass element so that one may easily perform the dynamic analysis of an inclined plate subjected to moving loads with the effects of inertia force, Coriolis force and centrifugal force considered. To this end, the mass, damping and stiffness matrices of the moving mass element, with respect to the local coordinate system, are derived first by using the principle of superposition and the definition of shape functions. Next, the last property matrices of the moving mass element are transformed into the global coordinate system and combined with the property matrices of the inclined plate itself to determine the effective overall property matrices and the instantaneous equations of motion of the entire vibrating system. Because the property matrices of the moving mass element have something to do with the instantaneous position of the moving load, both the property matrices of the moving mass element and the effective overall ones of the entire vibrating system are time-dependent. At any instant of time, solving the instantaneous equations of motion yields the instantaneous dynamic responses of the inclined plate. For validation, the presented technique is used to determine the dynamic responses of a horizontal pinned-pinned plate subjected to a moving load and a satisfactory agreement with the existing literature is achieved. Furthermore, extensive studies on the inclined plate subjected to moving loads reveal that the influences of moving-load speed, inclined angle of the plate and total number of the moving loads on the dynamic responses of the inclined plate are significant in most cases, and the effects of Coriolis force and centrifugal force are perceptible only in the case of higher moving-load speed.
Neutronics Investigations for the Lower Part of a Westinghouse SVEA-96+ Assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, M.F.; Luethi, A.; Seiler, R.
2002-05-15
Accurate critical experiments have been performed for the validation of total fission (F{sub tot}) and {sup 238}U-capture (C{sub 8}) reaction rate distributions obtained with CASMO-4, HELIOS, BOXER, and MCNP4B for the lower axial region of a real Westinghouse SVEA-96+ fuel assembly. The assembly comprised fresh fuel with an average {sup 235}U enrichment of 4.02 wt%, a maximum enrichment of 4.74 wt%, 14 burnable-absorber fuel pins, and full-density water moderation. The experimental configuration investigated was core 1A of the LWR-PROTEUS Phase I project, where 61 different fuel pins, representing {approx}64% of the assembly, were gamma-scanned individually. Calculated (C) and measured (E)more » values have been compared in terms of C/E distributions. For F{sub tot}, the standard deviations are 1.2% for HELIOS, 0.9% for CASMO-4, 0.8% for MCNP4B, and 1.7% for BOXER. Standard deviations of 1.1% for HELIOS, CASMO-4, and MCNP4B and 1.2% for BOXER were obtained in the case of C{sub 8}. Despite the high degree of accuracy observed on the average, it was found that the five burnable-absorber fuel pins investigated showed a noticeable underprediction of F{sub tot}, quite systematically, for the deterministic codes evaluated (average C/E for the burnable-absorber fuel pins in the range 0.974 to 0.988, depending on the code)« less
NASA Astrophysics Data System (ADS)
Cai, Zhi-Jiang; Zhang, Qin; Song, Xian-You
2016-09-01
Polyindole/carbon nanotubes (PIN/CNTs) composite was prepared by an in-situ chemical oxidative polymerization of indole monomer with CNTs using ammonium persulfate as oxidant. The obtained composite material was characterized by SEM, TEM, FT-IR, Raman spectroscopy, XPS, XRD and BET surface areas measurements. It was found that the CNTs were incorporated into the PIN matrix and nanoporous structure was formed. Spectroscopy results showed that interfacial interaction bonds might be formed between the polyindole chains and CNTs during the in-situ polymerization. PIN/CNTs composite was evaluated by electrochemical impedance spectroscopy, cyclic voltammetry and charge/discharge tests to determine electrode performances in relation to supercapacitors properties in both aqueous and non-aqueous system. A maximum specific capacitance and specific volumetric capacitance of 555.6 F/g and 222.2 F/cm3 can be achieved at 0.5 A/g in non-aqueous system. It also displayed good rate performance and cycling stability. The specific capacitance retention is over 60% at 10 A/g and 91.3% after 5000 cycles at 2 A/g, respectively. These characteristics point to its promising applications in the electrode material for supercapacitors.
[New biodegradable polylactide implants (Polypin-C) in therapy for radial head fractures].
Prokop, A; Jubel, A; Helling, H J; Udomkaewkanjana, C; Brochhagen, H G; Rehm, K E
2002-10-01
Dislocated radial head fractures of the type Mason II are usually treated with screws and buttress plates. The implants are generally removed at a later date. Biodegradable implants can be applied successfully for the reduction of small radial head fractures subject to shearing forces and slight loads. The implants are completely absorbed once the fracture has healed, making a second operation for the removal of the implant unnecessary. The Polypin C-Pin is made of poly(L, DL-lactide) mixed with 10% beta-tricalcium phosphate to ensure controlled, slow degradation with no significant side effects. This new Polypin C fixation pin was clinically tested on 35 patients with radial head fractures (CCF 21B2.1 and 21B2.2) from 31.10.1996 until 1.4.2002. A total of 34 of the patients (97.1%) underwent a clinical and conventional radiological follow-up examination after an average of 38.2 months. In 29 cases a CT was also carried out. Between 18 and 24 months, two cases of grade 1 osteolysis were observed around the pin head. No trace of osteolysis was observed at the final examination in either case. According to the Broberg score, an average of 96 out of a possible 100 points were attained at the final examination (31 excellent, 2 good, 1 unsatisfactory). After a period of 24 months, the pins were no longer visible on a conventional x-ray. A CT evaluation showed a density similar to that of spongioid bone in the original pin cavities after 3 years. These excellent clinical results prove that the Polypin C is a good method to treat dislocated radial head fractures.
Vortex Matter in Highly Strained Nb_{75}Zr_{25}: Analogy with Viscous Flow of Disordered Solids
NASA Astrophysics Data System (ADS)
Chandra, Jagdish; Manekar, Meghmalhar; Sharma, V. K.; Mondal, Puspen; Tiwari, Pragya; Roy, S. B.
2017-01-01
We present the results of magnetization and magneto-transport measurements in the superconducting state of an as-cast Nb_{75}Zr_{25} alloy. We also report the microstructure of our sample at various length scales by using optical, scanning electron and transmission electron microscopies. The information of microstructure is used to understand the flux pinning properties in the superconducting state within the framework of collective pinning. The magneto-transport measurements show a non-Arrhenius behaviour of the temperature- and field-dependent resistivity across the resistive transition and is understood in terms of a model for viscous flow of disordered solids which is popularly known as the `shoving model'. The activation energy for flux flow is assumed to be mainly the elastic energy stored in the flux-line lattice. The scaling of pinning force density indicates the presence of two pinning mechanisms of different origins. The elastic constants of the flux-line lattice are used to estimate the length scale of vortex lattice movement, or the volume displaced by the flux-line lattice. It appears that the vortex lattice displacement estimated from elastic energy considerations is of the same order of magnitude as that of the flux bundle hopping length during flux flow. Our results could provide possible directions for establishing a framework where vortex matter and glass-forming liquids or amorphous solids can be treated in a similar manner for understanding the phenomenon of viscous flow in disordered solids or more generally the pinning and depinning properties of elastic manifolds in random media. It is likely that the vortex molasses scenario is more suited to explain the vortex dynamics in conventional low-T_C superconductors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansdah, J. S.; Sarun, P. M., E-mail: sarun.res@gmail.com
2015-03-21
The effect on crystal structure, critical temperature (T{sub C}), and critical current density (J{sub C}) of bulk MgB{sub 2} doped with nano-Ho{sub 2}O{sub 3} and naphthalene was studied. Among all the samples studied, the sample doped with 2.5 wt. % nano-Ho{sub 2}O{sub 3} have shown the best field dependent critical current density [J{sub C}(H)], i.e., 0.77 × 10{sup 5 }A/cm{sup 2} at 2 T and 10 K. While naphthalene doped MgB{sub 2} sample has shown the least J{sub C}(H) characteristics. The improved J{sub C}(H) characteristics in the nano-Ho{sub 2}O{sub 3} doped MgB{sub 2} samples are attributed to improved flux pinning properties due to the formation ofmore » HoB{sub 4} and in naphthalene doped MgB{sub 2} samples. The slight lower T{sub C} value (37.01 K) in naphthalene doped samples is attributed to the occurrence of lattice defect by the substitution of carbon at boron site of MgB{sub 2} superconductor. Lower ΔT{sub C} value implies the lesser anisotropy in all the synthesized samples. The flux pinning force density (F{sub P}/F{sub Pmax}) curves are theoretically analyzed using Dew-Hughes model. The result revealed that point pinning is the dominant pinning mechanism for nano-Ho{sub 2}O{sub 3} doped MgB{sub 2} samples, while, surface and grain boundary pinning become dominant with increasing naphthalene addition in nano-Ho{sub 2}O{sub 3} doped MgB{sub 2} samples.« less
Depinning of an anisotropic interface in random media: The tilt effect
NASA Astrophysics Data System (ADS)
Goh, K.-I.; Jeong, H.; Kahng, B.; Kim, D.
2000-08-01
We study the tilt dependence of the pinning-depinning transition for an interface described by the anisotropic quenched Kardar-Parisi-Zhang equation in 2+1 dimensions, where the two signs of the nonlinear terms are different from each other. When the substrate is tilted by m along the positive sign direction, the critical force Fc(m) depends on m as Fc(m)-Fc(0)~-\\|m\\|1.9(1). The interface velocity v near the critical force follows the scaling form v~\\|f\\|θΨ+/-(m2/\\|f\\|θ+φ) with θ=0.9(1) and φ=0.2(1), where f≡F-Fc(0) and F is the driving force.
Flux lattice imaging of a patterned niobium thin film
NASA Astrophysics Data System (ADS)
Roseman, M.; Grütter, P.; Badía, A.; Metlushko, V.
2001-06-01
Using our cryogenic magnetic force microscope, we have investigated a superconducting Nb thin film, 100 nm in thickness with Tc˜6.5 K. The film is patterned with a square array (1 μm×1 μm) of antidots, which serve as artificial pinning centers for magnetic flux. We have observed flux lattice matching as a function of applied magnetic field and temperature, for field strengths up to the third matching field, with evidence of flux dragging by the tip around the antidots. Force gradient distance curves acquired at temperatures about Tc clearly demonstrate an observable Meissner force between tip and sample, and allow for an estimation of the magnetic screening penetration depth.
Feng, Dong-Xia; Nguyen, Anh V
2017-10-01
The floatability of solid particles on the water surface governs many natural phenomena and industrial processes including film flotation and froth flotation separation of coal and valuable minerals. For many years, the contact angle (CA) has been postulated as the key factor in determining the particle floatability. Indeed, the maximum force (tenacity) supporting the flotation of fine spheres was conjectured to occur when the apical angle of the contact circle is equal to the contact angle. In this paper, the model predictions are reviewed and compared with experimental results. It is shown that CA can be affected by many physical and chemical factors such as surface roughness and chemical heterogeneity and can have a range of values known as the CA hysteresis. This multiple-valued CA invalidates the available theories on the floatability of spheres. Even the intuitive replacement of CA by the advancing (maximum) CA in the classical theories can be wrong. A few new examples are also reviewed and analyzed to demonstrate the significance of CA variation in controlling the particle floatability. They include the pinning of the contact line at the sharp edge, known as the Gibbs inequality condition, and the nearby interaction among floating particles, known as lateral inter-particle interaction. It is concluded that our quantitative understanding of the floatability of real particles being irregular and heterogeneous both morphologically and chemically is still far from being satisfactory. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ni, Qiao; Luo, Yangyang; Li, Mingwu; Yan, Hao
2017-09-01
Structural model for a slender and uniform pipe conveying fluid, with axially moving supports on both ends, immersed in an incompressible fluid, is formulated. Free vibration and stability of the system are studied through numerical calculation. First, the equations of motion of the system are derived in an absolute coordinate system. An "axial added mass coefficient" is adopted to amend the forces caused by the external fluid. Boundary conditions are fixed by using coordinated conversion. Then, numerical results of the natural frequency are obtained via the Galerkin method, both for pinned-pinned and clamped-clamped supports. The critical speeds of supports and several instability types are discussed. Last, the effects of the system parameters on the dynamics and instability of the system are investigated.
Nonmonotonic fluctuation spectra of membranes pinned or tethered discretely to a substrate.
Merath, Rolf-Jürgen; Seifert, Udo
2006-01-01
The thermal fluctuation spectrum of a fluid membrane coupled harmonically to a solid support by an array of tethers is calculated. For strong tethers, this spectrum exhibits nonmonotonic, anisotropic behavior with a relative maximum at a wavelength about twice the tether distance. The root-mean-square displacement is evaluated to estimate typical membrane displacements. Possible applications cover pillar-supported or polymer-tethered membranes.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., Standard Method for Analysis of Treated Wood and Treating Solutions by X-Ray Spectroscopy. (viii) A11-83...) C1-91, All Timber Products—Preservative Treatment by Pressure Processes. (x) C4-91, Poles... spaced. (x) Knots which have a maximum of 5/8 inch (1.59 cm) diameter may intersect pin holes in the...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., Standard Method for Analysis of Treated Wood and Treating Solutions by X-Ray Spectroscopy. (viii) A11-83...) C1-91, All Timber Products—Preservative Treatment by Pressure Processes. (x) C4-91, Poles... spaced. (x) Knots which have a maximum of 5/8 inch (1.59 cm) diameter may intersect pin holes in the...
NASA Astrophysics Data System (ADS)
Suwardi; Setiawan, J.; Susilo, J.
2017-01-01
The first short fuel pin containing natural UO2 pellet in Zry4 cladding has been prepared and planned to be tested in power ramp irradiation. An irradiation test should be designed to allow an experiment can be performed safely and giving maximum results of many performance aspects of design and manufacturing. Performance analysis to the fuel specimen shows that the specimen is not match to be used for power ramp testing. Enlargement by 0.20 mm of pellet diameter has been proposed. The present work is evaluation of modified design for important aspect of isotopic Pu distribution during irradiation test, because generated Pu isotopes in natural UO2 fuel, contribute more power relative to the contribution by enriched UO2 fuel. The axial profile of neutrons flux have been chosen from both experimental measurement and model calculation. The parameters of ramp power has been obtained from statistical experiment data. A simplified and typical base-load commercial PHWR profile of LHR history has been chosen, to determine the minimum irradiation time before ramp test can be performed. The data design and Mat pro XI materials properties models have been chosen. The axial profile of neutrons flux has been accommodated by 5 slices of discrete pin. The Pu distribution of slice-4 with highest power rate has been chosen to be evaluated. The radial discretion of pellet and cladding and numerical parameter have been used the default best practice of TU. The results shows that Pu 239 increased rapidly. The maximum burn up of slice 4 at upper the median slice, it reached nearly 90% of maximum value at about 6000 h with peak of 0.8%a Pu/HM at 22000 h, which is higher than initial U 235. Each 240, 241 and 240 Pu grows slower and ends up to 0.4, 0.2 and 0.18 % respectively. This results can be used for verification of other aspect of fuel behavior in the modeling results and also can be used as guide and comparison to the future post irradiation examination for Pu isotopes distribution.
Microstructural control and superconducting properties of YBCO melt textured single crystals
NASA Astrophysics Data System (ADS)
Jongprateep, Oratai
The high temperature superconductor has great potential for practical applications such as superconducting energy storage systems. Since the levitation force, required specifically for these applications, largely depends on the critical current density and loop size of the superconducting current, large-sized single crystals with high critical current density are desired. To achieve the goal in fabricating YBa2Cu3O 7-delta (Y123) samples suitable for the applications, detailed and systematic studies are required to gain further understanding of the crystal growth and flux pinning mechanisms. This research is aimed at constituting a contribution to the knowledge base for the Y123 high temperature superconductor field by extending the study of processing conditions involved in controlling the microstructure of the Y123 superconductors for the enhancement of crystal growth and superconductor properties. Relations among processing parameters, microstructure, crystal growth, and critical current density of Y123 superconductors have been established. The experimental results reveal that low heating rate and short holding time can lead to refinement of Y2BaCuO5 (Y211) particles, which is strongly favorable to enhancement of the crystal growth and electrical properties of the Y123 superconductors. It was observed that relatively large Y123 crystals (17-22 mm in size) can be obtained with fine needle-shaped Y211 particles, processed with low heating rate and short holding time at the maximum temperatures. Additionally, the research also formulated a technique to fabricate Y123 superconductors with improved electrical properties required for the practical applications. By incorporating additives such as BaCeO3, BaSnO 3, Pt and Nd2O3 into Y123 superconductors, refinement of Y211 particles occurs. In addition, secondary phase particles with sizes in sub-micrometer and nanometer range can be formed in the Y123 superconductors. The interfaces between the Y123 matrix and these Y211 or secondary phase particles are believed to act as flux pinning sites and to enhance the critical current density (Jc) in the superconductor. The results showed that formation of secondary phase inclusions in Y123 by doping with BaCeO3, BaSnO 3, Pt or Nd2O3 result in enhancement of J c due to the effective flux pinning.
Quantized transport for a skyrmion moving on a two-dimensional periodic substrate
NASA Astrophysics Data System (ADS)
Reichhardt, C.; Ray, D.; Reichhardt, C. J. Olson
2015-03-01
We examine the dynamics of a skyrmion moving over a two-dimensional periodic substrate utilizing simulations of a particle-based skyrmion model. We specifically examine the role of the nondissipative Magnus term on the driven motion and the resulting skyrmion velocity-force curves. In the overdamped limit, there is a depinning transition into a sliding state in which the skyrmion moves in the same direction as the external drive. When there is a finite Magnus component in the equation of motion, a skyrmion in the absence of a substrate moves at an angle with respect to the direction of the external driving force. When a periodic substrate is added, the direction of motion or Hall angle of the skyrmion is dependent on the amplitude of the external drive, only approaching the substrate-free limit for higher drives. Due to the underlying symmetry of the substrate the direction of skyrmion motion does not change continuously as a function of drive, but rather forms a series of discrete steps corresponding to integer or rational ratios of the velocity components perpendicular (
Magnetic force microscopy studies in bulk polycrystalline iron
NASA Astrophysics Data System (ADS)
Abuthahir, J.; Kumar, Anish
2018-02-01
The paper presents magnetic force microscopy (MFM) studies on the effect of crystallographic orientation and external magnetic field on magnetic microstructure in a bulk polycrystalline iron specimen. The magneto crystalline anisotropic effect on the domain structure is characterized with the support of electron backscatter diffraction study. The distinct variations in magnetic domain structure are observed based on the crystallographic orientation of the grain surface normal with respect to the cube axis i.e. the easy axis of magnetization. Further, the local magnetization behavior is studied in-situ by MFM in presence of external magnetic field in the range of -2000 to 2000 Oe. Various micro-magnetization phenomena such as reversible and irreversible domain wall movements, expansion and contraction of domains, Barkhausen jump, bowing of a pinned domain wall and nucleation of a spike domain are visualized. The respective changes in the magnetic microstructure are compared with the bulk magnetization obtained using vibrating sample magnetometer. Bowing of a domain wall, pinned at two points, upon application of magnetic field is used to estimate the domain wall energy density. The MFM studies in presence of external field applied in two perpendicular directions are used to reveal the influence of the crystalline anisotropy on the local micro-magnetization.
Effect of Weld Tool Geometry on Friction Stir Welded Ti-6Al-4V
NASA Technical Reports Server (NTRS)
Querin, Joseph A.; Schneider, Judy A.
2008-01-01
In this study, flat 0.250" thick Ti-6Al-4V panels were friction stir welded (FSWed) using weld tools with tapered pins. The five different pin geometries of the weld tools included: 0 degree (straight cylinder), 15 degree, 30 degree, 45 degree, and 60 degree angles on the frustum. All weld tools had a smooth 7 degree concave shoulder and were made from microwave sintered tungsten carbide. For each weld tool geometry, the FSW process parameters were optimized to eliminate internal defects. All the welds were produced in position control with a 2.5 degree lead angle using a butt joint configuration for the panels. The process parameters of spindle rpm and travel speed were varied, altering the hot working conditions imparted to the workpiece. Load cells on the FSWing machine allowed for the torque, the plunge force, and the plow force to be recorded during welding. Resulting mechanical properties were evaluated from tensile tests results of the FSWjoints. Variations in the material flow were investigated by use of microstructural analysis including optical microscopy (OM), scanning electron microscopy (SEM), and orientation image mapping (aIM).
Controllable surface haptics via particle jamming and pneumatics.
Stanley, Andrew A; Okamura, Allison M
2015-01-01
The combination of particle jamming and pneumatics allows the simultaneous control of shape and mechanical properties in a tactile display. A hollow silicone membrane is molded into an array of thin cells, each filled with coffee grounds such that adjusting the vacuum level in any individual cell rapidly switches it between flexible and rigid states. The array clamps over a pressure-regulated air chamber with internal mechanisms designed to pin the nodes between cells at any given height. Various sequences of cell vacuuming, node pinning, and chamber pressurization allow the surface to balloon into a variety of shapes. Experiments were performed to expand existing physical models of jamming at the inter-particle level to define the rheological characteristics of jammed systems from a macroscopic perspective, relevant to force-displacement interactions that would be experienced by human users. Force-displacement data show that a jammed cell in compression fits a Maxwell model and a cell deflected in the center while supported only at the edges fits a Zener model, each with stiffness and damping parameters that increase at higher levels of applied vacuum. This provides framework to tune and control the mechanical properties of a jamming haptic interface.
Improving magnetic properties of MgB2 bulk superconductors by synthetic engine oil treatment
NASA Astrophysics Data System (ADS)
Taylan Koparan, E.; Savaskan, B.; Yanmaz, E.
2016-08-01
The present study focuses on the effects of standby time of the MgB2 samples immersed in synthetic engine oil on the critical current density (Jc(H)), magnetic field dependence of the pinning force density fp(b) and Tc performances of MgB2 bulk superconductors. Synthetic engine oil was used as a product which is cheap and a rich carbon source. Manufactured MgB2 pellet samples were immersed at different standby time of 30 min, 120 min, 300 min and 1440 min in synthetic engine oil after the first heating process. Finally, MgB2 samples immersed in synthetic engine oil were sintered at 1000 °C and kept for 15 min in Ar atmosphere. The critical current density of all of MgB2 samples immersed at different standby time in engine oil in whole field range was better than that of the pure MgB2 sample because of the number of the pinning centers. The MgB2 sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. The Jc value for the pure sample is 2.0 × 103 A/cm2, whereas for the MgB2 sample immersed at 300 min standby time in engine oil the Jc is enhanced to 4.8 × 103A/cm2 at 5 K and 3 T. The superconducting transition temperature (Tc) did not change with the increasing standby time of the samples in synthetic engine oil at all. The best diamagnetic property was obtained from the sample which kept in synthetic engine oil for 300 min. Synthetic engine oil treatment results in remarkable improvement of the critical current density and pinning force performances of MgB2 superconductors. It was found that all MgB2 samples have a different pinning property at different measuring temperatures. Using synthetic engine oil as a product which is cheap and a rich carbon source in MgB2 bulk superconductors makes MgB2 samples immersed in synthetic engine oil a good candidate for industrial applications.
Xu, Yichi; Meng, Haoye; Yin, Heyong; Sun, Zhen; Peng, Jiang; Xu, Xiaolong; Guo, Quanyi; Xu, Wenjing; Yu, Xiaoming; Yuan, Zhiguo; Xiao, Bo; Wang, Cheng; Wang, Yu; Liu, Shuyun; Lu, Shibi; Wang, Zhaoxu; Wang, Aiyuan
2018-01-01
Degradation limits the application of magnesium alloys, and evaluation methods for non-traumatic in vivo quantification of implant degradation and bone formation are imperfect. In the present study, a micro-arc-oxidized AZ31 magnesium alloy was used to evaluate the degradation of implants and new bone formation in 60 male New Zealand white rabbits. Degradation was monitored by weighing the implants prior to and following implantation, and by performing micro-computed tomography (CT) scans and histological analysis after 1, 4, 12, 24, 36, and 48 weeks of implantation. The results indicated that the implants underwent slow degradation in the first 4 weeks, with negligible degradation in the first week, followed by significantly increased degradation during weeks 12–24 (P<0.05), and continued degradation until the end of the 48-week experimental period. The magnesium content decreased as the implant degraded (P<0.05); however, the density of the material exhibited almost no change. Micro-CT results also demonstrated that pin volume, pin mineral density, mean ‘pin thickness’, bone surface/bone volume and trabecular separation decreased over time (P<0.05), and that the pin surface area/pin volume, bone volume fraction, trabecular thickness, trabecular number and tissue mineral density increased over time (P<0.05), indicating that the number of bones and density of new bone increased as magnesium degraded. These results support the positive effect of magnesium on osteogenesis. However, from the maximum inner diameter of the new bone loop and diameter of the pin in the same position, the magnesium alloy was not capable of creating sufficient bridges between the bones and biomaterials when there were preexisting gaps. Histological analyses indicated that there were no inflammatory responses around the implants. The results of the present study indicate that a micro-arc-oxidized AZ31 magnesium alloy is safe in vivo and efficiently degraded. Furthermore, the novel bone formation increased as the implant degraded. The findings concluded that micro-CT, which is useful for providing non-traumatic, in vivo, quantitative and precise data, has great value for exploring the degradation of implants and novel bone formation. PMID:29375677
Tool for Inspecting Alignment of Twinaxial Connectors
NASA Technical Reports Server (NTRS)
Smith, Christopher R.
2008-01-01
A proposed tool would be used to inspect alignments of mating twinaxial-connector assemblies on interconnecting wiring harnesses. More specifically, the tool would be used to inspect the alignment of each contact pin of each connector on one assembly with the corresponding socket in the corresponding connector on the other assembly. It is necessary to inspect the alignment because if mating of the assemblies is attempted when any pin/socket pair is misaligned beyond tolerance, the connection will not be completed and the dielectric material in the socket will be damaged (see Figure 1). Although the basic principle of the tool is applicable to almost any type of mating connector assemblies, the specific geometry of the tool must match the pin-and-socket geometry of the specific mating assemblies to be inspected. In the original application for which the tool was conceived, each of the mating assemblies contains eight twinaxial connectors; the pin diameter is 0.014 in. (.0.35 mm), and the maximum allowable pin/socket misalignment is 0.007 in. (.0.18 mm). Incomplete connections can result in loss of flight data within the functional path to the space shuttle crew cockpit displays. The tool (see Figure 2) would consist mainly of a transparent disk with alignment clocking tabs that can be fitted onto either connector assembly. Sets of circles or equivalent reference markings are affixed to the face of the tool, located at the desired positions of the mating contact pairs. An inspector would simply fit the tool onto a connector assembly, engaging the clocking tabs until the tool fits tightly. The inspector would then align one set of circles positioning a line of sight perpendicular to one contact within the connector assembly. Mis alignments would be evidenced by the tip of a pin contact straying past the inner edge of the circle. Socket contact misalignments would be evidenced by a crescent-shaped portion of the white dielectric appearing within the circle. The tool could include a variable magnifier plus an illuminator that could be configured so as not to cast shadows.
Dynamics of Contact Line Pinning and Depinning of Droplets Evaporating on Microribs.
Mazloomi Moqaddam, Ali; Derome, Dominique; Carmeliet, Jan
2018-05-15
The contact line dynamics of evaporating droplets deposited on a set of parallel microribs is analyzed with the use of a recently developed entropic lattice Boltzmann model for two-phase flow. Upon deposition, part of the droplet penetrates into the space between ribs because of capillary action, whereas the remaining liquid of the droplet remains pinned on top of the microribs. In the first stage, evaporation continues until the droplet undergoes a series of pinning-depinning events, showing alternatively the constant contact radius and constant contact angle modes. While the droplet is pinned, evaporation results in a contact angle reduction, whereas the contact radius remains constant. At a critical contact angle, the contact line depins, the contact radius reduces, and the droplet rearranges to a larger apparent contact angle. This pinning-depinning behavior goes on until the liquid above the microribs is evaporated. By computing the Gibbs free energy taking into account the interfacial energy, pressure terms, and viscous dissipation due to drop internal flow, we found that the mechanism that causes the unpinning of the contact line results from an excess in Gibbs free energy. The spacing distance and the rib height play an important role in controlling the pinning-depinning cycling, the critical contact angle, and the excess Gibbs free energy. However, we found that neither the critical contact angle nor the maximum excess Gibbs free energy depends on the rib width. We show that the different terms, that is, pressure term, viscous dissipation, and interfacial energy, contributing to the excess Gibbs free energy, can be varied differently by varying different geometrical properties of the microribs. It is demonstrated that, by varying the spacing distance between the ribs, the energy barrier is controlled by the interfacial energy while the contribution of the viscous dissipation is dominant if either rib height or width is changed. Main finding of this is study is that, for microrib patterned surfaces, the energy barrier required for the contact line to depin can be enlarged by increasing the spacing or the rib height, which can be important for practical applications.
Xu, Yichi; Meng, Haoye; Yin, Heyong; Sun, Zhen; Peng, Jiang; Xu, Xiaolong; Guo, Quanyi; Xu, Wenjing; Yu, Xiaoming; Yuan, Zhiguo; Xiao, Bo; Wang, Cheng; Wang, Yu; Liu, Shuyun; Lu, Shibi; Wang, Zhaoxu; Wang, Aiyuan
2018-01-01
Degradation limits the application of magnesium alloys, and evaluation methods for non-traumatic in vivo quantification of implant degradation and bone formation are imperfect. In the present study, a micro-arc-oxidized AZ31 magnesium alloy was used to evaluate the degradation of implants and new bone formation in 60 male New Zealand white rabbits. Degradation was monitored by weighing the implants prior to and following implantation, and by performing micro-computed tomography (CT) scans and histological analysis after 1, 4, 12, 24, 36, and 48 weeks of implantation. The results indicated that the implants underwent slow degradation in the first 4 weeks, with negligible degradation in the first week, followed by significantly increased degradation during weeks 12-24 (P<0.05), and continued degradation until the end of the 48-week experimental period. The magnesium content decreased as the implant degraded (P<0.05); however, the density of the material exhibited almost no change. Micro-CT results also demonstrated that pin volume, pin mineral density, mean 'pin thickness', bone surface/bone volume and trabecular separation decreased over time (P<0.05), and that the pin surface area/pin volume, bone volume fraction, trabecular thickness, trabecular number and tissue mineral density increased over time (P<0.05), indicating that the number of bones and density of new bone increased as magnesium degraded. These results support the positive effect of magnesium on osteogenesis. However, from the maximum inner diameter of the new bone loop and diameter of the pin in the same position, the magnesium alloy was not capable of creating sufficient bridges between the bones and biomaterials when there were preexisting gaps. Histological analyses indicated that there were no inflammatory responses around the implants. The results of the present study indicate that a micro-arc-oxidized AZ31 magnesium alloy is safe in vivo and efficiently degraded. Furthermore, the novel bone formation increased as the implant degraded. The findings concluded that micro-CT, which is useful for providing non-traumatic, in vivo , quantitative and precise data, has great value for exploring the degradation of implants and novel bone formation.
Diminution of contact angle hysteresis under the influence of an oscillating force.
Manor, Ofer
2014-06-17
We suggest a simple quantitative model for the diminution of contact angle hysteresis under the influence of an oscillatory force invoked by thermal fluctuations, substrate vibrations, acoustic waves, or oscillating electric fields. Employing force balance rather than the usual description of contact angle hysteresis in terms of Gibbs energy, we highlight that a wetting system, such as a sessile drop or a bubble adhered to a solid substrate, appears at long times to be partially or fully independent of contact angle hysteresis and thus independent of static friction forces, as a result of contact line pinning. We verify this theory by studying several well-known experimental observations such as the approach of an arbitrary contact angle toward the Young contact angle and the apparent decrease (or increase) in an advancing (or a receding) contact angle under the influence of an external oscillating force.
Ichikawa, Kei; Tanaka, Yoshiki; Kato, Yukihito; Horai, Rie; Tamaoki, Akeno; Ichikawa, Kazuo
2017-01-01
The current study reports comparing the postoperative mechanical properties of the anterior capsule between femtosecond laser capsulotomy (FLC) and continuous curvilinear capsulorhexis (CCC) of variable size and shape in porcine eyes. All CCCs were created using capsule forceps. Irregular or eccentric CCCs were also created to simulate real cataract surgery. For FLC, capsulotomies 5.3 mm in diameter were created using the LenSx® (Alcon) platform. Fresh porcine eyes were used in all experiments. The edges of the capsule openings were pulled at a constant speed using two L-shaped jigs. Stretch force and distance were recorded over time, and the maximum values in this regard were defined as those that were recorded when the capsule broke. There was no difference in maximum stretch force between CCC and FLC. There were no differences in circularity between FLC and same-sized CCC. However, same-sized CCC did show significantly higher maximum stretch forces than FLC. Teardrop-shaped CCC showed lower maximum stretch forces than same-sized CCC and FLC. Heart-shaped CCC showed lower maximum stretch forces than same-sized CCC. Conclusively, while capsule edge strength after CCC varied depending on size or irregularities, FLC had the advantage of stable maximum stretch forces. PMID:28210504
Takagi, Mari; Kojima, Takashi; Ichikawa, Kei; Tanaka, Yoshiki; Kato, Yukihito; Horai, Rie; Tamaoki, Akeno; Ichikawa, Kazuo
2017-01-01
The current study reports comparing the postoperative mechanical properties of the anterior capsule between femtosecond laser capsulotomy (FLC) and continuous curvilinear capsulorhexis (CCC) of variable size and shape in porcine eyes. All CCCs were created using capsule forceps. Irregular or eccentric CCCs were also created to simulate real cataract surgery. For FLC, capsulotomies 5.3 mm in diameter were created using the LenSx® (Alcon) platform. Fresh porcine eyes were used in all experiments. The edges of the capsule openings were pulled at a constant speed using two L-shaped jigs. Stretch force and distance were recorded over time, and the maximum values in this regard were defined as those that were recorded when the capsule broke. There was no difference in maximum stretch force between CCC and FLC. There were no differences in circularity between FLC and same-sized CCC. However, same-sized CCC did show significantly higher maximum stretch forces than FLC. Teardrop-shaped CCC showed lower maximum stretch forces than same-sized CCC and FLC. Heart-shaped CCC showed lower maximum stretch forces than same-sized CCC. Conclusively, while capsule edge strength after CCC varied depending on size or irregularities, FLC had the advantage of stable maximum stretch forces.
NASA Astrophysics Data System (ADS)
Gajos, Katarzyna; Budkowski, Andrzej; Tsialla, Zoi; Petrou, Panagiota; Awsiuk, Kamil; Dąbczyński, Paweł; Bernasik, Andrzej; Rysz, Jakub; Misiakos, Konstantinos; Raptis, Ioannis; Kakabakos, Sotirios
2017-07-01
Mass fabrication of integrated biosensors on silicon chips is facilitated by contact pin-printing, applied for biofunctionalization of individual Si3N4-based transducers at wafer-scale. To optimize the biofunctionalization for immunochemical (competitive) detection of fungicide thiabendazole (TBZ), Si3N4 surfaces are modified with (3-aminopropyl)triethoxysilane and examined after: immobilization of BSA-TBZ conjugate (probe) from solutions with different concentration, blocking with bovine serum albumin (BSA), and immunoreaction with a mouse monoclonal antibody against TBZ. Nanostructure, surface density, probe composition and coverage uniformity of protein layers are evaluated with Atomic Force Microscopy, Spectroscopic Ellipsometry, Time-of-Flight Secondary Ion Mass Spectrometry and X-ray Photoelectron Spectroscopy. Contact pin-printing of overlapping probe spots is compared with hand spotted areas. Contact pin-printing resulted in two-fold increase of immobilized probe surface density as compared to hand spotting. Regarding BSA-TBZ immobilization, an incomplete monolayer develops into a bilayer as the concentration of BSA-TBZ molecules in the printing solution increases from 25 to 100 μg/mL. Upon blocking, however, a complete protein monolayer is formed for all the BSA-TBZ concentrations used. Free surface sites are filled with BSA for low surface coverage with BSA-TBZ, whereas loosely bound BSA-TBZ molecules are removed from the BSA-TBZ bilayer. As a consequence immunoreaction efficiency increases with the printing probe concentration.
Maiwald, Christian; Arndt, Anton; Nester, Chris; Jones, Richard; Lundberg, Arne; Wolf, Peter
2017-02-01
Bone anchored markers using intracortical bone pins are one of the few available methods for analyzing skeletal motion during human gait in-vivo without errors induced by soft tissue artifacts. However, bone anchored markers require local anesthesia and may alter the motor control and motor output during gait. The purpose of this study was to examine the effect of local anesthesia and the use of bone anchored markers on typical gait analysis variables. Five subjects were analyzed in two different gait analysis sessions. In the first session, a protocol with skin markers was used. In the second session, bone anchored markers were added after local anesthesia was applied. For both sessions, three dimensional infrared kinematics of the calcaneus and tibia segments, ground reaction forces, and plantar pressure data were collected. 95% confidence intervals and boxplots were used to compare protocols and assess the data distribution and data variability for each subject. Although considerable variation was found between subjects, within-subject comparison of the two protocols revealed non-systematic effects on the target variables. Two of the five subjects walked at reduced gait speed during the bone pin session, which explained the between-session differences found in kinetic and kinematic variables. The remaining three subjects did not systematically alter their gait pattern between the two sessions. Results support the hypothesis that local anesthesia and the presence of bone pins still allow a valid gait pattern to be analyzed. Copyright © 2016 Elsevier B.V. All rights reserved.
Wear behavior of carbide tool coated with Yttria-stabilized zirconia nano particles.
NASA Astrophysics Data System (ADS)
Jadhav, Pavandatta M.; Reddy, Narala Suresh Kumar
2018-04-01
Wear mechanism takes predominant role in reducing the tool life during machining of Titanium alloy. Challenges of wear mechanisms such as variation in chip, high pressure loads and spring back are responsible for tool wear. In addition, many tool materials are inapt for machining due to low thermal conductivity and volume specific heat of these materials results in high cutting temperature during machining. To confront this issue Electrostatic Spray Coating (ESC) coating technique is utilized to enhance the tool life to an acceptable level. The Yttria Stabilized Zirconia (YSZ) acts as a thermal barrier coating having high thermal expansion coefficient and thermal shock resistance. This investigation focuses on the influence of YSZ nanocoating on the tungsten carbide tool material and improve the machinability of Ti-6Al-4V alloy. YSZ nano powder was coated on the tungsten carbide pin by using ESC technique. The coatings have been tested for wear and friction behavior by using a pin-on-disc tribological tester. The dry sliding wear test was performed on Titanium alloy (Ti-6Al-4V) disc and YSZ coated tungsten carbide (pin) at ambient atmosphere. The performance parameters like wear rate and temperature rise were considered upon performing the dry sliding test on Ti-6Al-4V alloy disc. The performance parameters were calculated by using coefficient of friction and frictional force values which were obtained from the pin on disc test. Substantial resistance to wear was achieved by the coating.
Analysis of Piston Slap Motion
NASA Astrophysics Data System (ADS)
Narayan, S.
2015-05-01
Piston slap is the major force contibuting towards noise levels in combustion engines.This type of noise depends upon a number of factors such as the piston-liner gap, type of lubricant used, number of piston pins as well as geometry of the piston. In this work the lateral and rotary motion of the piston in the gap between the cylinder liner and piston has been analyzed. A model that can predict the forces and response of the engine block due to slap has been dicussed. The parameters such as mass, spring and damping constant have been predicted using a vibrational mobility model.
Dynamic phases of active matter systems with quenched disorder
Sandor, Csand; Libal, Andras; Reichhardt, Charles; ...
2017-03-16
Depinning and nonequilibrium transitions within sliding states in systems driven over quenched disorder arise across a wide spectrum of size scales ranging from atomic friction at the nanoscale, flux motion in type II superconductors at the mesoscale, colloidal motion in disordered media at the microscale, and plate tectonics at geological length scales. Here we show that active matter or self-propelled particles interacting with quenched disorder under an external drive represents a class of system that can also exhibit pinning-depinning phenomena, plastic flow phases, and nonequilibrium sliding transitions that are correlated with distinct morphologies and velocity-force curve signatures. When interactions withmore » the substrate are strong, a homogeneous pinned liquid phase forms that depins plastically into a uniform disordered phase and then dynamically transitions first into a moving stripe coexisting with a pinned liquid and then into a moving phase-separated state at higher drives. We numerically map the resulting dynamical phase diagrams as a function of external drive, substrate interaction strength, and self-propulsion correlation length. These phases can be observed for active matter moving through random disorder. Lastly, our results indicate that intrinsically nonequilibrium systems can exhibit additional nonequilibrium transitions when subjected to an external drive.« less
Dynamic phases of active matter systems with quenched disorder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandor, Csand; Libal, Andras; Reichhardt, Charles
Depinning and nonequilibrium transitions within sliding states in systems driven over quenched disorder arise across a wide spectrum of size scales ranging from atomic friction at the nanoscale, flux motion in type II superconductors at the mesoscale, colloidal motion in disordered media at the microscale, and plate tectonics at geological length scales. Here we show that active matter or self-propelled particles interacting with quenched disorder under an external drive represents a class of system that can also exhibit pinning-depinning phenomena, plastic flow phases, and nonequilibrium sliding transitions that are correlated with distinct morphologies and velocity-force curve signatures. When interactions withmore » the substrate are strong, a homogeneous pinned liquid phase forms that depins plastically into a uniform disordered phase and then dynamically transitions first into a moving stripe coexisting with a pinned liquid and then into a moving phase-separated state at higher drives. We numerically map the resulting dynamical phase diagrams as a function of external drive, substrate interaction strength, and self-propulsion correlation length. These phases can be observed for active matter moving through random disorder. Lastly, our results indicate that intrinsically nonequilibrium systems can exhibit additional nonequilibrium transitions when subjected to an external drive.« less
Shape and site dependent in vivo degradation of Mg-Zn pins in rabbit femoral condyle.
Han, Pei; Tan, Moyan; Zhang, Shaoxiang; Ji, Weiping; Li, Jianan; Zhang, Xiaonong; Zhao, Changli; Zheng, Yufeng; Chai, Yimin
2014-02-20
A type of specially designed pin model of Mg-Zn alloy was implanted into the full thickness of lesions of New Zealand rabbits' femoral condyles. The recovery progress, outer surface healing and in vivo degradation were characterized by various methods including radiographs, Micro-CT scan with surface rendering, SEM (scanning electron microscope) with EDX (Energy Dispersive X-ray analysis) and so on. The in vivo results suggested that a few but not sufficient bridges for holding force were formed between the bone and the implant if there was a preexisting gap between them. The rapid degradation of the implantation in the condyle would result in the appearance of cavities. Morphological evaluation of the specially designed pins indicated that the cusp was the most vulnerable part during degradation. Furthermore, different implantation sites with distinct components and biological functions can lead to different degradation rates of Mg-Zn alloy. The rate of Mg-Zn alloy decreases in the following order: implantation into soft tissue, less trabecular bone, more trabecular bone, and cortical bone. Because of the complexities of in vivo degradation, it is necessary for the design of biomedical Mg-Zn devices to take into consideration the implantation sites used in clinics.
Kinetics of the head-neck complex in low-speed rear impact.
Stemper, Brian D; Yoganandan, Naryan; Pintar, Frank A
2003-01-01
A comprehensive characterization of the biomechanics of the cervical spine in rear impact will lead to an understanding of the mechanisms of whiplash injury. Cervical kinematics have been experimentally described using human volunteers, full-body cadaver specimens, and isolated and intact head-neck specimens. However, forces and moments at the cervico-thoracic junction have not been clearly delineated. An experimental investigation was performed using ten intact head-neck complexes to delineate the loading at the base of the cervical spine and angular acceleration of the head in whiplash. A pendulum-minisled apparatus was used to simulate whiplash acceleration of the thorax at four impact severities. Lower neck loads were measured using a six-axis load cell attached between the minisled and head-neck specimens, and head angular motion was measured with an angular rate sensor attached to the lateral side of the head. Shear and axial force, extension moment, and head angular acceleration increased with impact severity. Shear force was significantly larger than axial force (p < 0.0001). Shear force reached its maximum value at 46 msec. Maximum extension moment occurred between 7 and 22 msec after maximum shear force. Maximum angular acceleration of the head occurred 2 to 18 msec later. Maximum axial force occurred last (106 msec). All four kinetic components reached maximum values during cervical S-curvature, with maximum shear force and extension moment occurring before the attainment of maximum S-curvature. Results of the present investigation indicate that shear force and extension moment at the cervico-thoracic junction drive the non-physiologic cervical S-curvature responsible for whiplash injury and underscore the importance of understanding cervical kinematics and the underlying kinetics.
NASA Astrophysics Data System (ADS)
Romero-Arias, J. Roberto; Hernández-Hernández, Valeria; Benítez, Mariana; Alvarez-Buylla, Elena R.; Barrio, Rafael A.
2017-03-01
Stem cells are identical in many scales, they share the same molecular composition, DNA, genes, and genetic networks, yet they should acquire different properties to form a functional tissue. Therefore, they must interact and get some external information from their environment, either spatial (dynamical fields) or temporal (lineage). In this paper we test to what extent coupled chemical and physical fields can underlie the cell's positional information during development. We choose the root apical meristem of Arabidopsis thaliana to model the emergence of cellular patterns. We built a model to study the dynamics and interactions between the cell divisions, the local auxin concentration, and physical elastic fields. Our model recovers important aspects of the self-organized and resilient behavior of the observed cellular patterns in the Arabidopsis root, in particular, the reverse fountain pattern observed in the auxin transport, the PIN-FORMED (protein family of auxin transporters) polarization pattern and the accumulation of auxin near the region of maximum curvature in a bent root. Our model may be extended to predict altered cellular patterns that are expected under various applied auxin treatments or modified physical growth conditions.
Does combined strength training and local vibration improve isometric maximum force? A pilot study.
Goebel, Ruben; Haddad, Monoem; Kleinöder, Heinz; Yue, Zengyuan; Heinen, Thomas; Mester, Joachim
2017-01-01
The aim of the study was to determine whether a combination of strength training (ST) and local vibration (LV) improved the isometric maximum force of arm flexor muscles. ST was applied to the left arm of the subjects; LV was applied to the right arm of the same subjects. The main aim was to examine the effect of LV during a dumbbell biceps curl (Scott Curl) on isometric maximum force of the opposite muscle among the same subjects. It is hypothesized, that the intervention with LV produces a greater gain in isometric force of the arm flexors than ST. Twenty-seven collegiate students participated in the study. The training load was 70% of the individual 1 RM. Four sets with 12 repetitions were performed three times per week during four weeks. The right arm of all subjects represented the vibration trained body side (VS) and the left arm served as the traditional trained body side (TTS). A significant increase of isometric maximum force in both body sides (Arms) occurred. VS, however, significantly increased isometric maximum force about 43% in contrast to 22% of the TTS. The combined intervention of ST and LC improves isometric maximum force of arm flexor muscles. III.
NASA Astrophysics Data System (ADS)
Veloso, A.; Freitas, P. P.; Wei, P.; Barradas, N. P.; Soares, J. C.; Almeida, B.; Sousa, J. B.
2000-08-01
Bottom-pinned Mn83Ir17 spin valves with enhanced specular scattering were fabricated, showing magnetoresistance (MR) values up to 13.6%, lower sheet resistance R□ and higher ΔR□. Two nano-oxide layers (NOL) are grown on both sides of the CoFe/Cu/CoFe spin valve structure by natural oxidation or remote plasma oxidation of the starting CoFe layer. Maximum MR enhancement is obtained after just 1 min plasma oxidation. Rutherford backscattering analysis shows that a 15±2 Å oxide layer grows at the expense of the initial (prior to oxidation) CoFe layer, with ˜12% reduction of the initial 40 Å CoFe thickness. X-ray reflectometry indicates that Kiessig fringes become better defined after NOL growth, indicating smoother inner interfaces, in agreement with the observed decrease of the spin valve ferromagnetic Néel coupling.
Elsayed, Hany H; Mostafa, Ahmed M; Soliman, Saleh; El-Bawab, Hatem Y; Moharram, Adel A; El-Nori, Ahmed A
2016-05-01
Airway metal pins are one of the most commonly inhaled foreign bodies in Eastern societies in young females wearing headscarves. We innovated a modified bronchoscopic technique to extract tracheobronchial headscarf pins by the insertion of a magnet to allow an easy and non-traumatic extraction of the pins. The aim of this study was to assess the feasibility and safety of our new technique and compare it with our large previous experience with the classic bronchoscopic method of extraction of tracheobronchial headscarf pins. We performed a study comparing our retrospective experience of classic bronchoscopic extraction from February 2004 to January 2014 and prospective experience with our modified technique using the magnet from January 2014 to June 2015. An institutional review board and new device approval were obtained. Three hundred and twenty-six procedures on 315 patients were performed during our initial 10-year experience. Of them, 304 patients were females. The median age of our group was 13 (0-62). The median time from inhalation to procedure was 1 day (0-1022). After introducing our modified new technique using the magnet, 20 procedures were performed. Nineteen were females. The median time of the procedure and the need to forcefully bend the pin for extraction were in favour of the new technique in comparison with our classic approach (2 vs 6 min; P < 0.001) (2 patients = 20% vs 192 = 58%; P < 0.001). The conversion rate to surgery was also in favour of the modified technique but did not reach statistical significance (0 = 0% vs 15 = 4.8%; P = 0.32). All patients who underwent the modified technique were discharged home on the same day of the procedure. No procedural complications were recorded. All remain well on a follow-up period of up to 14 months. Bronchoscopic extraction of tracheobronchial inhaled headscarf pins using a novel technique using homemade magnets was safer and simpler in comparison with our large experience with the classic approach. We advise the use of this device (or concept) in selected patients in centres dealing with this problem. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Muscle Force-Velocity Relationships Observed in Four Different Functional Tests.
Zivkovic, Milena Z; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan
2017-02-01
The aims of the present study were to investigate the shape and strength of the force-velocity relationships observed in different functional movement tests and explore the parameters depicting force, velocity and power producing capacities of the tested muscles. Twelve subjects were tested on maximum performance in vertical jumps, cycling, bench press throws, and bench pulls performed against different loads. Thereafter, both the averaged and maximum force and velocity variables recorded from individual trials were used for force-velocity relationship modeling. The observed individual force-velocity relationships were exceptionally strong (median correlation coefficients ranged from r = 0.930 to r = 0.995) and approximately linear independently of the test and variable type. Most of the relationship parameters observed from the averaged and maximum force and velocity variable types were strongly related in all tests (r = 0.789-0.991), except for those in vertical jumps (r = 0.485-0.930). However, the generalizability of the force-velocity relationship parameters depicting maximum force, velocity and power of the tested muscles across different tests was inconsistent and on average moderate. We concluded that the linear force-velocity relationship model based on either maximum or averaged force-velocity data could provide the outcomes depicting force, velocity and power generating capacity of the tested muscles, although such outcomes can only be partially generalized across different muscles.
An engineered anisotropic nanofilm with unidirectional wetting properties.
Malvadkar, Niranjan A; Hancock, Matthew J; Sekeroglu, Koray; Dressick, Walter J; Demirel, Melik C
2010-12-01
Anisotropic textured surfaces allow water striders to walk on water, butterflies to shed water from their wings and plants to trap insects and pollen. Capturing these natural features in biomimetic surfaces is an active area of research. Here, we report an engineered nanofilm, composed of an array of poly(p-xylylene) nanorods, which demonstrates anisotropic wetting behaviour by means of a pin-release droplet ratchet mechanism. Droplet retention forces in the pin and release directions differ by up to 80 μN, which is over ten times greater than the values reported for other engineered anisotropic surfaces. The nanofilm provides a microscale smooth surface on which to transport microlitre droplets, and is also relatively easy to synthesize by a bottom-up vapour-phase technique. An accompanying comprehensive model successfully describes the film's anisotropic wetting behaviour as a function of measurable film morphology parameters.
A two degrees-of-freedom piezoelectric single-crystal micromotor
NASA Astrophysics Data System (ADS)
Chen, Zhijiang; Li, Xiaotian; Liu, Guoxi; Dong, Shuxiang
2014-12-01
A two degrees-of-freedom (DOF) ultrasonic micromotor made of piezoelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystal square-bar (dimensions 2 × 2 × 9 mm3) was developed. The PIN-PMN-PT square-bar stator can generate standing wave elliptical motions in two orthogonal vertical planes by combining the first longitudinal and second bending vibration modes, enabling it to drive a slider in two orthogonal directions. The relatively large driving forces of 0.25 N and motion speed of 35 mm/s were obtained under a voltage of 80 Vpp at its resonance frequency of 87.5 kHz. The proposed micromotor has potential for applications in micro robots, cell manipulators, and digital cameras as a two-DOF actuator.
Contact Geometry and Distribution of Plasma Generated in the Vicinity of Sliding Contact
NASA Astrophysics Data System (ADS)
Nakayama, Keiji
2007-09-01
The effect of the geometry of the smaller sliding partner on plasma (triboplasma) generation has been investigated as a function of the tip radius of a diamond pin, which slides against a single crystal sapphire disk under atmospheric dry air pressure. It was found that the diameter and the total intensity of the circular triboplasma increase parabolically with an increase in the tip radius of the pin under constant normal force and sliding velocity. The plasma is most intense at the crossing point of the plasma ring and the frictional track in the plasma circle. The gap distance at the crossing point is independent of the tip radius. The ring diameter increases with an increase in the tip radius, keeping the gap distance constant and obeying Paschen’s law of gas discharge.
Correlated vortex pinning in Si-nanoparticle doped MgB 2
NASA Astrophysics Data System (ADS)
Kušević, I.; Babić, E.; Husnjak, O.; Soltanian, S.; Wang, X. L.; Dou, S. X.
2004-12-01
The magnetoresistivity and critical current density of well characterized Si-nanoparticle doped and undoped Cu-sheathed MgB 2 tapes have been measured at temperatures T≥28 K in magnetic fields B≤0.9 T. The irreversibility line Birr( T) for doped tape shows a stepwise variation with a kink around 0.3 T. Such Birr( T) variation is typical for high-temperature superconductors with columnar defects (a kink occurs near the matching field Bϕ) and is very different from a smooth Birr( T) variation in undoped MgB 2 samples. The microstructure studies of nanoparticle doped MgB 2 samples show uniformly dispersed nanoprecipitates, which probably act as a correlated disorder. The observed difference between the field variations of the critical current density and pinning force density of the doped and undoped tape supports the above findings.
NASA Astrophysics Data System (ADS)
Chen, Junbao; Xia, Wei; Wang, Ming
2017-06-01
Photodiodes that exhibit a two-photon absorption effect within the spectral communication band region can be useful for building an ultra-compact autocorrelator for the characteristic inspection of optical pulses. In this work, we develop an autocorrelator for measuring the temporal profile of pulses at 1550 nm from an erbium-doped fiber laser based on the two-photon photovoltaic (TPP) effect in a GaAs PIN photodiode. The temporal envelope of the autocorrelation function contains two symmetrical temporal side lobes due to the third order dispersion of the laser pulses. Moreover, the joint time-frequency distribution of the dispersive pulses and the dissimilar two-photon response spectrum of GaAs and Si result in different delays for the appearance of the temporal side lobes. Compared with Si, GaAs displays a greater sensitivity for pulse shape reconstruction at 1550 nm, benefiting from the higher signal-to-noise ratio of the side lobes and the more centralized waveform of the autocorrelation trace. We also measure the pulse width using the GaAs PIN photodiode, and the resolution of the measured full width at half maximum of the TPP autocorrelation trace is 0.89 fs, which is consistent with a conventional second-harmonic generation crystal autocorrelator. The GaAs PIN photodiode is shown to be highly suitable for real-time second-order autocorrelation measurements of femtosecond optical pulses. It is used both for the generation and detection of the autocorrelation signal, allowing the construction of a compact and inexpensive intensity autocorrelator.
Jain, Veena; Mathur, Vijay Prakash; Kumar, Abhishek
2013-01-01
The objective of the study was to investigate whether moderate-to-severe attrition is associated with maximum bite force in the first molar region. Maximum bite force in the first molar region was measured for a total of 60 subjects having moderate-to-severe attrition of occlusal surface (experimental group) using a specially-designed piezoelectric sensor based bite force measuring device. An equal number of age, gender, height and weight matched controls (control group) were also subjected to bite force measurement for comparison. The maximum bite force was found to be significantly lower (p < 0.05) in the experimental group [480.32 (153.40)] as compared to the controls [640.63 (148.90)]. While analyzing the possible etiology for occlusal wear mainly two reasons were elicited, i.e. history of parafunctional habits like use of known abrasive tooth powder (sub-group A) and Bruxism (sub-group B). However, there were many subjects in which no known definite etiological factors be attributed to occlusal wear (sub-group C). On analysing further with respect to the possibly correlated etiological factors with maximum bite force, no significant difference was found within the experimental sub-group. However, all three experimental sub-groups had significantly lower maximum bite force as compared to age, gender and BMI matched controls. A significantly lower maximum bite force was found to be associated with moderate-to-severe attrition as compared to subjects without attrition. However, no specific relation could be found between bite force and possible etiological factors like history of parafunctional habits, history of use of known abrasive tooth powder, etc.
A microstructural approach to cytoskeletal mechanics based on tensegrity
NASA Technical Reports Server (NTRS)
Stamenovic, D.; Fredberg, J. J.; Wang, N.; Butler, J. P.; Ingber, D. E.
1996-01-01
Mechanical properties of living cells are commonly described in terms of the laws of continuum mechanics. The purpose of this report is to consider the implications of an alternative approach that emphasizes the discrete nature of stress bearing elements in the cell and is based on the known structural properties of the cytoskeleton. We have noted previously that tensegrity architecture seems to capture essential qualitative features of cytoskeletal shape distortion in adherent cells (Ingber, 1993a; Wang et al., 1993). Here we extend those qualitative notions into a formal microstructural analysis. On the basis of that analysis we attempt to identify unifying principles that might underlie the shape stability of the cytoskeleton. For simplicity, we focus on a tensegrity structure containing six rigid struts interconnected by 24 linearly elastic cables. Cables carry initial tension ("prestress") counterbalanced by compression of struts. Two cases of interconnectedness between cables and struts are considered: one where they are connected by pin-joints, and the other where the cables run through frictionless loops at the junctions. At the molecular level, the pinned structure may represent the case in which different cytoskeletal filaments are cross-linked whereas the looped structure represents the case where they are free to slip past one another. The system is then subjected to uniaxial stretching. Using the principal of virtual work, stretching force vs. extension and structural stiffness vs. stretching force relationships are calculated for different prestresses. The stiffness is found to increase with increasing prestress and, at a given prestress, to increase approximately linearly with increasing stretching force. This behavior is consistent with observations in living endothelial cells exposed to shear stresses (Wang & Ingber, 1994). At a given prestress, the pinned structure is found to be stiffer than the looped one, a result consistent with data on mechanical behavior of isolated, cross-linked and uncross-linked actin networks (Wachsstock et al., 1993). On the basis of our analysis we concluded that architecture and the prestress of the cytoskeleton might be key features that underlie a cell's ability to regulate its shape.
NASA Astrophysics Data System (ADS)
Thøgersen, Kjetil; Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Malthe-Sørenssen, Anders; Scheibert, Julien
2014-05-01
To study how macroscopic friction phenomena originate from microscopic junction laws, we introduce a general statistical framework describing the collective behavior of a large number of individual microjunctions forming a macroscopic frictional interface. Each microjunction can switch in time between two states: a pinned state characterized by a displacement-dependent force and a slipping state characterized by a time-dependent force. Instead of tracking each microjunction individually, the state of the interface is described by two coupled distributions for (i) the stretching of pinned junctions and (ii) the time spent in the slipping state. This framework allows for a whole family of microjunction behavior laws, and we show how it represents an overarching structure for many existing models found in the friction literature. We then use this framework to pinpoint the effects of the time scale that controls the duration of the slipping state. First, we show that the model reproduces a series of friction phenomena already observed experimentally. The macroscopic steady-state friction force is velocity dependent, either monotonic (strengthening or weakening) or nonmonotonic (weakening-strengthening), depending on the microscopic behavior of individual junctions. In addition, slow slip, which has been reported in a wide variety of systems, spontaneously occurs in the model if the friction contribution from junctions in the slipping state is time weakening. Next, we show that the model predicts a nontrivial history dependence of the macroscopic static friction force. In particular, the static friction coefficient at the onset of sliding is shown to increase with increasing deceleration during the final phases of the preceding sliding event. We suggest that this form of history dependence of static friction should be investigated in experiments, and we provide the acceleration range in which this effect is expected to be experimentally observable.
Thøgersen, Kjetil; Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Malthe-Sørenssen, Anders; Scheibert, Julien
2014-05-01
To study how macroscopic friction phenomena originate from microscopic junction laws, we introduce a general statistical framework describing the collective behavior of a large number of individual microjunctions forming a macroscopic frictional interface. Each microjunction can switch in time between two states: a pinned state characterized by a displacement-dependent force and a slipping state characterized by a time-dependent force. Instead of tracking each microjunction individually, the state of the interface is described by two coupled distributions for (i) the stretching of pinned junctions and (ii) the time spent in the slipping state. This framework allows for a whole family of microjunction behavior laws, and we show how it represents an overarching structure for many existing models found in the friction literature. We then use this framework to pinpoint the effects of the time scale that controls the duration of the slipping state. First, we show that the model reproduces a series of friction phenomena already observed experimentally. The macroscopic steady-state friction force is velocity dependent, either monotonic (strengthening or weakening) or nonmonotonic (weakening-strengthening), depending on the microscopic behavior of individual junctions. In addition, slow slip, which has been reported in a wide variety of systems, spontaneously occurs in the model if the friction contribution from junctions in the slipping state is time weakening. Next, we show that the model predicts a nontrivial history dependence of the macroscopic static friction force. In particular, the static friction coefficient at the onset of sliding is shown to increase with increasing deceleration during the final phases of the preceding sliding event. We suggest that this form of history dependence of static friction should be investigated in experiments, and we provide the acceleration range in which this effect is expected to be experimentally observable.
Muscle Force-Velocity Relationships Observed in Four Different Functional Tests
Zivkovic, Milena Z.; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan
2017-01-01
Abstract The aims of the present study were to investigate the shape and strength of the force-velocity relationships observed in different functional movement tests and explore the parameters depicting force, velocity and power producing capacities of the tested muscles. Twelve subjects were tested on maximum performance in vertical jumps, cycling, bench press throws, and bench pulls performed against different loads. Thereafter, both the averaged and maximum force and velocity variables recorded from individual trials were used for force–velocity relationship modeling. The observed individual force-velocity relationships were exceptionally strong (median correlation coefficients ranged from r = 0.930 to r = 0.995) and approximately linear independently of the test and variable type. Most of the relationship parameters observed from the averaged and maximum force and velocity variable types were strongly related in all tests (r = 0.789-0.991), except for those in vertical jumps (r = 0.485-0.930). However, the generalizability of the force-velocity relationship parameters depicting maximum force, velocity and power of the tested muscles across different tests was inconsistent and on average moderate. We concluded that the linear force-velocity relationship model based on either maximum or averaged force-velocity data could provide the outcomes depicting force, velocity and power generating capacity of the tested muscles, although such outcomes can only be partially generalized across different muscles. PMID:28469742
Changes in maximum bite force related to extension of the head.
Hellsing, E; Hagberg, C
1990-05-01
The maximum bite force and position of the hyoid bone during natural and extended head posture were studied in 15 adults. All participants had normal occlusions and full dentitions. In addition, there were no signs or symptoms of craniomandibular disorders. The bite force was measured with a bite force sensor placed between the first molars. Six registrations of gradually increasing bite force up to a maximum were made with randomized natural and extended head postures. With one exception, the mean maximum bite force value was found to be higher for every subject with extended head posture compared to natural head posture. The sample mean was 271.6 Newton in natural head posture and 321.5 Newton with 20 degrees extension. With changed head posture, the cephalometric measurements pointed towards a changed position of the hyoid bone in relation to the mandible and pharyngeal airway. The cephalometric changes in the position of the hyoid bone could be due to a changed interplay between the elevator and depressor muscle groups. This was one factor which could have influenced the registered maximum bite force.
NASA Astrophysics Data System (ADS)
Kodama, Hajime; Watanabe, Manabu; Sato, Eiichi; Oda, Yasuyuki; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira
2013-07-01
X-ray photons are directly detected using a 100 MHz ready-made silicon P-intrinsic-N X-ray diode (Si-PIN-XD). The Si-PIN-XD is shielded using an aluminum case with a 25-µm-thick aluminum window and a BNC connector. The photocurrent from the Si-PIN-XD is amplified by charge sensitive and shaping amplifiers, and the event pulses are sent to a multichannel analyzer (MCA) to measure X-ray spectra. At a tube voltage of 90 kV, we observe K-series characteristic X-rays of tungsten. Photon-counting computed tomography (PC-CT) is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by linear scanning at a tube current of 2.0 mA. The exposure time for obtaining a tomogram is 10 min with scan steps of 0.5 mm and rotation steps of 1.0°. At a tube voltage of 90 kV, the maximum count rate is 150 kcps. We carry out PC-CT using gadolinium media and confirm the energy-dispersive effect with changes in the lower level voltage of the event pulse using a comparator.
Determination of calibration parameters of a VRX CT system using an “Amoeba” algorithm
Jordan, Lawrence M.; DiBianca, Frank A.; Melnyk, Roman; Choudhary, Apoorva; Shukla, Hemant; Laughter, Joseph; Gaber, M. Waleed
2008-01-01
Efforts to improve the spatial resolution of CT scanners have focused mainly on reducing the source and detector element sizes, ignoring losses from the size of the secondary-ionization charge “clouds” created by the detected x-ray photons, i.e., the “physics limit.” This paper focuses on implementing a technique called “projective compression.” which allows further reduction in effective cell size while overcoming the physics limit as well. Projective compression signifies detector geometries in which the apparent cell size is smaller than the physical cell size, allowing large resolution boosts. A realization of this technique has been developed with a dual-arm “variable-resolution x-ray” (VRX) detector. Accurate values of the geometrical parameters are needed to convert VRX outputs to formats ready for optimal image reconstruction by standard CT techniques. The required calibrating data are obtained by scanning a rotating pin and fitting a theoretical parametric curve (using a multi-parameter minimization algorithm) to the resulting pin sinogram. Excellent fits are obtained for both detector-arm sections with an average (maximum) fit deviation of ~0.05 (0.1) detector cell width. Fit convergence and sensitivity to starting conditions are considered. Pre- and post-optimization reconstructions of the alignment pin and a biological subject reconstruction after calibration are shown. PMID:19430581
Determination of calibration parameters of a VRX CT system using an "Amoeba" algorithm.
Jordan, Lawrence M; Dibianca, Frank A; Melnyk, Roman; Choudhary, Apoorva; Shukla, Hemant; Laughter, Joseph; Gaber, M Waleed
2004-01-01
Efforts to improve the spatial resolution of CT scanners have focused mainly on reducing the source and detector element sizes, ignoring losses from the size of the secondary-ionization charge "clouds" created by the detected x-ray photons, i.e., the "physics limit." This paper focuses on implementing a technique called "projective compression." which allows further reduction in effective cell size while overcoming the physics limit as well. Projective compression signifies detector geometries in which the apparent cell size is smaller than the physical cell size, allowing large resolution boosts. A realization of this technique has been developed with a dual-arm "variable-resolution x-ray" (VRX) detector. Accurate values of the geometrical parameters are needed to convert VRX outputs to formats ready for optimal image reconstruction by standard CT techniques. The required calibrating data are obtained by scanning a rotating pin and fitting a theoretical parametric curve (using a multi-parameter minimization algorithm) to the resulting pin sinogram. Excellent fits are obtained for both detector-arm sections with an average (maximum) fit deviation of ~0.05 (0.1) detector cell width. Fit convergence and sensitivity to starting conditions are considered. Pre- and post-optimization reconstructions of the alignment pin and a biological subject reconstruction after calibration are shown.
NASA Astrophysics Data System (ADS)
Xing, Zhou; Li, Shu-Hui; Wu, Bao-Shan; Wang, Xin; Wang, Lu-Yao; Wang, Tan; Liu, Hao-Ran; Zhang, Mei-Lin; Yun, Da-Qin; Deng, Lin-Long; Xie, Su-Yuan; Huang, Rong-Bin; Zheng, Lan-Sun
2018-06-01
Interface engineering that involves in the metal cathodes and the electron transport layers (ETLs) facilitates the simultaneous improvement of device performances and stability in perovskite solar cells (PSCs). Herein, low-temperature solution-processed cerium oxide (CeOx) films are prepared by a facile sol-gel method and employed as the interface layers between [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) and an Ag back contact to form PC61BM/CeOx double ETLs. The introduction of CeOx enables electron extraction to the Ag electrode and protects the underlying perovskite layer and thus improves the device performance and stability of the p-i-n PSCs. The p-i-n PSCs with double PC61BM/CeOx ETLs demonstrate a maximum power conversion efficiency (PCE) of 17.35%, which is superior to those of the devices with either PC61BM or CeOx single ETLs. Moreover, PC61BM/CeOx devices exhibit excellent stability in light soaking, which is mainly due to the chemically stable CeOx interlayer. The results indicate that CeOx is a promising interface modification layer for stable high-efficiency PSCs.
Nicoll, Roxanna J; Sun, Albert; Haney, Stephan; Turkyilmaz, Ilser
2013-01-01
The fabrication of an accurately fitting implant-supported fixed prosthesis requires multiple steps, the first of which is assembling the impression coping on the implant. An imprecise fit of the impression coping on the implant will cause errors that will be magnified in subsequent steps of prosthesis fabrication. The purpose of this study was to characterize the 3-dimensional (3D) precision of fit between impression coping and implant replica pairs for 3 implant systems. The selected implant systems represent the 3 main joint types used in implant dentistry: external hexagonal, internal trilobe, and internal conical. Ten impression copings and 10 implant replicas from each of the 3 systems, B (Brånemark System), R (NobelReplace Select), and A (NobelActive) were paired. A standardized aluminum test body was luted to each impression coping, and the corresponding implant replica was embedded in a stone base. A coordinate measuring machine was used to quantify the maximum range of displacement in a vertical direction as a function of the tightening force applied to the guide pin. Maximum angular displacement in a horizontal plane was measured as a function of manual clockwise or counterclockwise rotation. Vertical and rotational positioning was analyzed by using 1-way analysis of variance (ANOVA). The Fisher protected least significant difference (PLSD) multiple comparisons test of the means was applied when the F-test in the ANOVA was significant (α=.05). The mean and standard deviation for change in the vertical positioning of impression copings was 4.3 ±2.1 μm for implant system B, 2.8 ±4.2 μm for implant system R, and 20.6 ±8.8 μm for implant system A. The mean and standard deviation for rotational positioning was 3.21 ±0.98 degrees for system B, 2.58 ±1.03 degrees for system R, and 5.30 ±0.79 degrees for system A. The P-value for vertical positioning between groups A and B and between groups A and R was <.001. No significant differences were found for vertical positioning between groups B and R. The P-value for rotational positioning between groups A and B and between groups A and R was <.001. No significant differences were found for rotational positioning between groups B and R. The results of the study confirmed that implant systems differ in precision of fit. Vertical precision between paired implant components is a function of joint type and the tightening force applied to the guide pin. The magnitude of vertical displacement with applied torque is greater for conical connections than for butt joint connections. The rotational freedom between paired components is unique to the implant system and is presumably related to the machining tolerances specified by the manufacturer. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Psychophysical basis for maximum pushing and pulling forces: A review and recommendations.
Garg, Arun; Waters, Thomas; Kapellusch, Jay; Karwowski, Waldemar
2014-03-01
The objective of this paper was to perform a comprehensive review of psychophysically determined maximum acceptable pushing and pulling forces. Factors affecting pushing and pulling forces are identified and discussed. Recent studies show a significant decrease (compared to previous studies) in maximum acceptable forces for males but not for females when pushing and pulling on a treadmill. A comparison of pushing and pulling forces measured using a high inertia cart with those measured on a treadmill shows that the pushing and pulling forces using high inertia cart are higher for males but are about the same for females. It is concluded that the recommendations of Snook and Ciriello (1991) for pushing and pulling forces are still valid and provide reasonable recommendations for ergonomics practitioners. Regression equations as a function of handle height, frequency of exertion and pushing/pulling distance are provided to estimate maximum initial and sustained forces for pushing and pulling acceptable to 75% male and female workers. At present it is not clear whether pushing or pulling should be favored. Similarly, it is not clear what handle heights would be optimal for pushing and pulling. Epidemiological studies are needed to determine relationships between psychophysically determined maximum acceptable pushing and pulling forces and risk of musculoskeletal injuries, in particular to low back and shoulders.
Psychophysical basis for maximum pushing and pulling forces: A review and recommendations
Garg, Arun; Waters, Thomas; Kapellusch, Jay; Karwowski, Waldemar
2015-01-01
The objective of this paper was to perform a comprehensive review of psychophysically determined maximum acceptable pushing and pulling forces. Factors affecting pushing and pulling forces are identified and discussed. Recent studies show a significant decrease (compared to previous studies) in maximum acceptable forces for males but not for females when pushing and pulling on a treadmill. A comparison of pushing and pulling forces measured using a high inertia cart with those measured on a treadmill shows that the pushing and pulling forces using high inertia cart are higher for males but are about the same for females. It is concluded that the recommendations of Snook and Ciriello (1991) for pushing and pulling forces are still valid and provide reasonable recommendations for ergonomics practitioners. Regression equations as a function of handle height, frequency of exertion and pushing/pulling distance are provided to estimate maximum initial and sustained forces for pushing and pulling acceptable to 75% male and female workers. At present it is not clear whether pushing or pulling should be favored. Similarly, it is not clear what handle heights would be optimal for pushing and pulling. Epidemiological studies are needed to determine relationships between psychophysically determined maximum acceptable pushing and pulling forces and risk of musculoskeletal injuries, in particular to low back and shoulders. PMID:26664045
Intramuscular fiber conduction velocity, isometric force and explosive performance.
Methenitis, Spyridon; Terzis, Gerasimos; Zaras, Nikolaos; Stasinaki, Angeliki-Nikoletta; Karandreas, Nikolaos
2016-06-01
Conduction of electrical signals along the surface of muscle fibers is acknowledged as an essential neuromuscular component which is linked with muscle force production. However, it remains unclear whether muscle fiber conduction velocity (MFCV) is also linked with explosive performance. The aim of the present study was to investigate the relationship between vastus lateralis MFCV and countermovement jumping performance, the rate of force development and maximum isometric force. Fifteen moderately-trained young females performed countermovement jumps as well as an isometric leg press test in order to determine the rate of force development and maximum isometric force. Vastus lateralis MFCV was measured with intramuscular microelectrodes at rest on a different occasion. Maximum MFCV was significantly correlated with maximum isometric force (r = 0.66, p < 0.01), nevertheless even closer with the leg press rate of force development at 100 ms, 150 ms, 200 ms, and 250 ms (r = 0.85, r = 0.89, r = 0.91, r = 0.92, respectively, p < 0.01). Similarly, mean MFCV and type II MFCV were better correlated with the rate of force development than with maximum isometric leg press force. Lower, but significant correlations were found between mean MFCV and countermovement jump power (r = 0.65, p < 0.01). These data suggest that muscle fiber conduction velocity is better linked with the rate of force development than with isometric force, perhaps because conduction velocity is higher in the larger and fastest muscle fibers which are recognized to contribute to explosive actions.
An investigation of rugby scrimmaging posture and individual maximum pushing force.
Wu, Wen-Lan; Chang, Jyh-Jong; Wu, Jia-Hroung; Guo, Lan-Yuen
2007-02-01
Although rugby is a popular contact sport and the isokinetic muscle torque assessment has recently found widespread application in the field of sports medicine, little research has examined the factors associated with the performance of game-specific skills directly by using the isokinetic-type rugby scrimmaging machine. This study is designed to (a) measure and observe the differences in the maximum individual pushing forward force produced by scrimmaging in different body postures (3 body heights x 2 foot positions) with a self-developed rugby scrimmaging machine and (b) observe the variations in hip, knee, and ankle angles at different body postures and explore the relationship between these angle values and the individual maximum pushing force. Ten national rugby players were invited to participate in the examination. The experimental equipment included a self-developed rugby scrimmaging machine and a 3-dimensional motion analysis system. Our results showed that the foot positions (parallel and nonparallel foot positions) do not affect the maximum pushing force; however, the maximum pushing force was significantly lower in posture I (36% body height) than in posture II (38%) and posture III (40%). The maximum forward force in posture III (40% body height) was also slightly greater than for the scrum in posture II (38% body height). In addition, it was determined that hip, knee, and ankle angles under parallel feet positioning are factors that are closely negatively related in terms of affecting maximum pushing force in scrimmaging. In cross-feet postures, there was a positive correlation between individual forward force and hip angle of the rear leg. From our results, we can conclude that if the player stands in an appropriate starting position at the early stage of scrimmaging, it will benefit the forward force production.
Ueki, Koichiro; Moroi, Akinori; Sotobori, Megumi; Ishihara, Yuri; Marukawa, Kohei; Iguchi, Ran; Kosaka, Akihiko; Ikawa, Hiroumi; Nakazawa, Ryuichi; Higuchi, Masatoshi
2014-10-01
The purpose of this study was to evaluate the relationship between lip closing force, occlusal contact area and occlusal force after orthognathic surgery in skeletal Class III patients. The subjects consisted of 54 patients (28 female and 26 male) diagnosed with mandibular prognathism who underwent sagittal split ramus osteotomy with and without Le Fort I osteotomy. Maximum and minimum lip closing forces, occlusal contact area and occlusal force were measured pre-operatively, 6 months and 1 year post-operative. Maximum and minimum lip closing forces, occlusal contact area and occlusal force increased with time after surgery, however a significant increase was not found in the occlusal contact area in women. In increased ratio (6 months/pre-operative and 1 year/pre-operative), the maximum lip closing force was significantly correlated with the occlusal contact area (P < 0.0001). This study suggested that orthognathic surgery could improve the occlusal force, contact area and lip closing force, and an increase ratio in maximum lip closing force was associated with an increased ratio in occlusal contact area. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Mericske-Stern, R
1998-01-01
The purpose of this in vivo study was to determine maximum and functional forces simultaneously in three dimensions on mandibular implants supporting overdentures. The anchorage system for overdenture connection was the ball-shaped retentive anchor. Five edentulous patients, each with two mandibular ITI implants, were selected as test subjects. A novel miniaturized piezo-electric force transducer was developed for specific use with ITI implants. Force magnitudes and directions were registered under various test conditions by means of electrostatic plotter records. The test modalities were maximum biting in centric occlusion, maximum biting on a bite plate, grinding, and chewing bread. Maximum forces measured in centric occlusion and on the ipsilateral implant when using a bite plate were slightly increased in vertical and backward-forward dimension (z-, y-axis) compared to the lateral-medial direction (x-axis). On the contralateral implant, equally low values were found in all three dimensions. This may be the effect of a nonsplinted anchorage device. With the use of a bite plate, force magnitudes on the ipsilateral implant were significantly higher on the z- and y-axis than mean maximum forces in centric occlusion (P < .001). Chewing and grinding resulted in lower forces compared to maximum biting, particularly in the vertical direction. The transverse force component in backward-forward direction, however, reached magnitudes that exceeded the vertical component by 100% to 300% during chewing function. This chewing pattern had not been observed in previous investigations with bars and telescopes, and therefore appears to be specific for retentive ball anchors. The prevalent or exclusive force direction registered on both implants in the vertical direction was downward under all test conditions. In the transverse direction during maximum biting the forward direction was more frequently registered, while no obvious prevalence of transverse force direction was observed during chewing and grinding.
Limitations to maximum running speed on flat curves.
Chang, Young-Hui; Kram, Rodger
2007-03-01
Why is maximal running speed reduced on curved paths? The leading explanation proposes that an increase in lateral ground reaction force necessitates a decrease in peak vertical ground reaction force, assuming that maximum leg extension force is the limiting factor. Yet, no studies have directly measured these forces or tested this critical assumption. We measured maximum sprint velocities and ground reaction forces for five male humans sprinting along a straight track and compared them to sprints along circular tracks of 1, 2, 3, 4 and 6 m radii. Circular track sprint trials were performed either with or without a tether that applied centripetal force to the center of mass. Sprinters generated significantly smaller peak resultant ground reaction forces during normal curve sprinting compared to straight sprinting. This provides direct evidence against the idea that maximum leg extension force is always achieved and is the limiting factor. Use of the tether increased sprint speed, but not to expected values. During curve sprinting, the inside leg consistently generated smaller peak forces compared to the outside leg. Several competing biomechanical constraints placed on the stance leg during curve sprinting likely make the inside leg particularly ineffective at generating the ground reaction forces necessary to attain maximum velocities comparable to straight path sprinting. The ability of quadrupeds to redistribute function across multiple stance legs and decouple these multiple constraints may provide a distinct advantage for turning performance.
NASA Astrophysics Data System (ADS)
Brown, Nicholas W. A.
Composite parts can be manufactured to near-net shape with minimum wastage of material; however, there is almost always a need for further machining. The most common post-manufacture machining operations for composite materials are to create holes for assembly. This thesis presents and discusses a thermally-assisted piercing process that can be used as a technique for introducing holes into thermoplastic composites. The thermally-assisted piercing process heats up, and locally melts, thermoplastic composites to allow material to be displaced around a hole, rather than cutting them out from the structure. This investigation was concerned with how the variation of piercing process parameters (such as the size of the heated area, the temperature of the laminate prior to piercing and the geometry of the piercing spike) changed the material microstructure within carbon fibre/Polyetheretherketone (PEEK) laminates. The variation of process parameters was found to significantly affect the formation of resin rich regions, voids and the fibre volume fraction in the material surrounding the hole. Mechanical testing (using open-hole tension, open-hole compression, plain-pin bearing and bolted bearing tests) showed that the microstructural features created during piercing were having significant influence over the resulting mechanical performance of specimens. By optimising the process parameters strength improvements of up to 11% and 21% were found for pierced specimens when compared with drilled specimens for open-hole tension and compression loading, respectively. For plain-pin and bolted bearing tests, maximum strengths of 77% and 85%, respectively, were achieved when compared with drilled holes. Improvements in first failure force (by 10%) and the stress at 4% hole elongation (by 18%), however, were measured for the bolted bearing tests when compared to drilled specimens. The overall performance of pierced specimens in an industrially relevant application ultimately depends on the properties required for that specific scenario. The results within this thesis show that the piercing technique could be used as a direct replacement to drilling depending on this application.
NASA Astrophysics Data System (ADS)
Islam, Mohammad; Khalid, Yasir; Ahmad, Iftikhar; Almajid, Abdulhakim A.; Achour, Amine; Dunn, Theresa J.; Akram, Aftab; Anwar, Saqib
2018-04-01
Silicon carbide (SiC) nanoparticles (NP) and/or graphene nanoplatelets (GNP) were incorporated into the aluminum matrix through colloidal dispersion and mixing of the powders, followed by consolidation using a high-frequency induction heat sintering process. All the nanocomposite samples exhibited high densification (> 96 pct) with a maximum increase in Vickers microhardness by 92 pct relative to that of pure aluminum. The tribological properties of the samples were determined at the normal frictional forces of 10 and 50 N. At relatively low load of 10 N, the adhesive wear was found to be the predominant wear mechanism, whereas in the case of a 50 N normal load, there was significant contribution from abrasive wear possibly by hard SiC NP. From wear tests, the values for the coefficient of friction (COF) and the normalized wear rate were determined. The improvement in hardness and wear resistance may be attributed to multiple factors, including high relative density, uniform SiC and GNP dispersion in the aluminum matrix, grain refinement through GNP pinning, as well as inhibition of dislocation movement by SiC NP. The nanocomposite sample containing 10 SiC and 0.5 GNP (by wt pct) yielded the maximum wear resistance at 10 N normal load. Microstructural characterization of the nanocomposite surfaces and wear debris was performed using scanning electron microscope (SEM) and transmission electron microscope (TEM). The synergistic effect of the GNP and SiC nanostructures accounts for superior wear resistance in the aluminum matrix nanocomposites.
NASA Astrophysics Data System (ADS)
Islam, Mohammad; Khalid, Yasir; Ahmad, Iftikhar; Almajid, Abdulhakim A.; Achour, Amine; Dunn, Theresa J.; Akram, Aftab; Anwar, Saqib
2018-07-01
Silicon carbide (SiC) nanoparticles (NP) and/or graphene nanoplatelets (GNP) were incorporated into the aluminum matrix through colloidal dispersion and mixing of the powders, followed by consolidation using a high-frequency induction heat sintering process. All the nanocomposite samples exhibited high densification (> 96 pct) with a maximum increase in Vickers microhardness by 92 pct relative to that of pure aluminum. The tribological properties of the samples were determined at the normal frictional forces of 10 and 50 N. At relatively low load of 10 N, the adhesive wear was found to be the predominant wear mechanism, whereas in the case of a 50 N normal load, there was significant contribution from abrasive wear possibly by hard SiC NP. From wear tests, the values for the coefficient of friction (COF) and the normalized wear rate were determined. The improvement in hardness and wear resistance may be attributed to multiple factors, including high relative density, uniform SiC and GNP dispersion in the aluminum matrix, grain refinement through GNP pinning, as well as inhibition of dislocation movement by SiC NP. The nanocomposite sample containing 10 SiC and 0.5 GNP (by wt pct) yielded the maximum wear resistance at 10 N normal load. Microstructural characterization of the nanocomposite surfaces and wear debris was performed using scanning electron microscope (SEM) and transmission electron microscope (TEM). The synergistic effect of the GNP and SiC nanostructures accounts for superior wear resistance in the aluminum matrix nanocomposites.
NASA Astrophysics Data System (ADS)
Zitzenbacher, G.; Liu, K.; Forsich, C.; Heim, D.
2015-05-01
Wear on the screw and barrel surface accompany polymer single screw plasticizing technology from the beginning. In general, wear on screws can be reduced by using nitrided steel surfaces, fused armour alloys on the screw flights and coatings. However, DLC-coatings (Diamond Like Carbon) comprise a number of interesting properties such as a high hardness, a low coefficient of friction and an excellent corrosion resistance due to their amorphous structure. The wear resistance of about 50 µm thick DLC-coatings against polyamide 6.6, polybutylene terephthalate and polypropylene is investigated in this paper. The tribology in the solids conveying zone of a single screw extruder until the beginning of melting is evaluated using a pin on disc tribometer and a so called screw tribometer. The polymeric pins are pressed against coated metal samples using the pin on disc tribometer and the tests are carried out at a defined normal force and sliding velocity. The screw tribometer is used to perform tribological experiments between polymer pellets and rotating coated metal shafts simulating the extruder screw. Long term experiments were performed to evaluate the wear resistance of the DLC-coating. A reduction of the coefficient of friction can be observed after a frictional distance of about 20 kilometers using glass fibre reinforced polymeric materials. This reduction is independent on the polymer and accompanied by a black layer on the wear surface of the polymeric pins. The DLC-coated metal samples show an up to 16 µm deep wear track after the 100 kilometer test period against the glass fiber filled materials only.
Evaluation of pliers' grip spans in the maximum gripping task and sub-maximum cutting task.
Kim, Dae-Min; Kong, Yong-Ku
2016-12-01
A total of 25 males participated to investigate the effects of the grip spans of pliers on the total grip force, individual finger forces and muscle activities in the maximum gripping task and wire-cutting tasks. In the maximum gripping task, results showed that the 50-mm grip span had significantly higher total grip strength than the other grip spans. In the cutting task, the 50-mm grip span also showed significantly higher grip strength than the 65-mm and 80-mm grip spans, whereas the muscle activities showed a higher value at 80-mm grip span. The ratios of cutting force to maximum grip strength were also investigated. Ratios of 30.3%, 31.3% and 41.3% were obtained by grip spans of 50-mm, 65-mm, and 80-mm, respectively. Thus, the 50-mm grip span for pliers might be recommended to provide maximum exertion in gripping tasks, as well as lower maximum-cutting force ratios in the cutting tasks.
Li, G Z; Susner, M A; Bohnenstiehl, S D; Sumption, M D; Collings, E W
2015-12-01
High quality, c -axis oriented, MgB 2 thin films were successfully grown on 6H-SiC substrates using pulsed laser deposition (PLD) with subsequent in situ annealing. To obtain high purity films free from oxygen contamination, a dense Mg-B target was specially made from a high temperature, high pressure reaction of Mg and B to form large-grained (10~50 µm) MgB 2 . Microstructural analysis via electron microscopy found that the resulting grains of the film were composed of ultrafine columnar grains of 19-30 nm. XRD analysis showed the MgB 2 films to be c -axis oriented; the a -axis and c -axis lattice parameters were determined to be 3.073 ± 0.005 Å and 3.528 ± 0.010 Å, respectively. The superconducting critical temperature, T c,onset , increased monotonically as the annealing temperature was increased, varying from 25.2 K to 33.7 K. The superconducting critical current density as determined from magnetic measurements, J cm , at 5 K, was 10 5 A/cm 2 at 7.8 T; at 20 K, 10 5 A/cm 2 was reached at 3.1 T. The transport and pinning properties of these films were compared to "powder-in-tube" (PIT) and "internal-infiltration" (AIMI) processed wires. Additionally, examination of the pinning mechanism showed that when scaled to the peak in the pinning curve, the films follow the grain boundary, or surface, pinning mechanism quite well, and are similar to the response seen for C doped PIT and AIMI strands, in contrast to the behavior seen in undoped PIT wires, in which deviations are seen at high b ( b = B/B c2 ). On the other hand, the magnitude of the pinning force was similar for the thin films and AIMI conductors, unlike the values from connectivity-suppressed PIT strands.
Oscillatory dependence of current driven domain wall motion on current pulse length
NASA Astrophysics Data System (ADS)
Thomas, Luc
2007-03-01
The motion of domain walls (DW) in magnetic nanowires driven by spin torque from spin-polarized current is of considerable interest. Most previous work has considered the effect of dc or ˜microsecond long current pulses. Here, we show that the dynamics of DWs driven by nanosecond-long current pulses is unexpectedly complex. In particular, we show that the current driven motion of a DW, confined to a pinning site in a permalloy nanowire, exhibits an oscillatory dependence on the current pulse length with a period of just a few nanoseconds [1]. This behavior can be understood within a surprisingly straightforward one dimensional analytical model of the DW's motion. When a current pulse is applied, the DW's position oscillates within the pinning potential out of phase with the DW's out-of-plane magnetization, where the latter acts like the DW's momentum. Thus, the current driven motion of the DW is akin to a harmonic oscillator, whose frequency is determined by the ``mass'' of the DW and where the restoring force is related to the slope of the pinning potential. Remarkably, when the current pulse is turned off during phases of the DW motion when it has enough momentum, the amplitude of the oscillations can be amplified such that the DW exits the pinning potential well after the pulse is turned off. This oscillatory depinning occurs for currents smaller than the dc threshold current, and, moreover, the DW moves against the electron flow, opposite to the propagation direction above the dc threshold. These effects can be further amplified by using trains of current pulses whose lengths and separations are matched to the DW's oscillation period. In this way, we have demonstrated a five fold reduction in the threshold current required to move a DW out of a pinning site, making this effect potentially important for technological applications. [1] L. Thomas, M. Hayashi, X. Jiang, R. Moriya, C. Rettner and S.S.P. Parkin, Nature 443, 197 (2006).
Plate-tectonic boundary formation by grain-damage and pinning
NASA Astrophysics Data System (ADS)
Bercovici, David
2015-04-01
Shear weakening in the lithosphere is an essential ingredient for understanding how and why plate tectonics is generated from mantle convection on terrestrial planets. I present continued work on a theoretical model for lithospheric shear-localization and plate generation through damage, grain evolution and Zener pinning in two-phase (polycrystalline) lithospheric rocks. Grain size evolves through the competition between coarsening, which drives grain-growth, with damage, which drives grain reduction. The interface between phases controls Zener pinning, which impedes grain growth. Damage to the interface enhances the Zener pinning effect, which then reduces grain-size, forcing the rheology into the grain-size-dependent diffusion creep regime. This process thus allows damage and rheological weakening to co-exist, providing a necessary shear-localizing feedback. Moreover, because pinning inhibits grain-growth it promotes shear-zone longevity and plate-boundary inheritance. This theory has been applied recently to the emergence of plate tectonics in the Archean by transient subduction and accumulation of plate boundaries over 1Gyr, as well as to rapid slab detachment and abrupt tectonic changes. New work explores the saturation of interface damage at low interface curvature (e.g., because it is associated with larger grains that take up more of the damage, and/or because interface area is reduced). This effect allows three possible equilibrium grain-sizes for a given stress; a small-grain-size high-shear state in diffusion creep, a large grain-size low shear state in dislocation creep, and an intermediate state (often near the deformation map phase-boundary). The low and high grain-size states are stable, while the intermediate one is unstable. This implies that a material deformed at a given stress can acquire two stable deformation regimes, a low- and high- shear state; these are indicative of plate-like flows, i.e, the coexistence of both slowly deforming plates and rapidly deforming plate boundaries.
el-Showk, Sedeer; Help-Rinta-Rahko, Hanna; Blomster, Tiina; Siligato, Riccardo; Marée, Athanasius F. M.; Mähönen, Ari Pekka; Grieneisen, Verônica A.
2015-01-01
An auxin maximum is positioned along the xylem axis of the Arabidopsis root tip. The pattern depends on mutual feedback between auxin and cytokinins mediated by the PIN class of auxin efflux transporters and AHP6, an inhibitor of cytokinin signalling. This interaction has been proposed to regulate the size and the position of the hormones’ respective signalling domains and specify distinct boundaries between them. To understand the dynamics of this regulatory network, we implemented a parsimonious computational model of auxin transport that considers hormonal regulation of the auxin transporters within a spatial context, explicitly taking into account cell shape and polarity and the presence of cell walls. Our analysis reveals that an informative spatial pattern in cytokinin levels generated by diffusion is a theoretically unlikely scenario. Furthermore, our model shows that such a pattern is not required for correct and robust auxin patterning. Instead, auxin-dependent modifications of cytokinin response, rather than variations in cytokinin levels, allow for the necessary feedbacks, which can amplify and stabilise the auxin maximum. Our simulations demonstrate the importance of hormonal regulation of auxin efflux for pattern robustness. While involvement of the PIN proteins in vascular patterning is well established, we predict and experimentally verify a role of AUX1 and LAX1/2 auxin influx transporters in this process. Furthermore, we show that polar localisation of PIN1 generates an auxin flux circuit that not only stabilises the accumulation of auxin within the xylem axis, but also provides a mechanism for auxin to accumulate specifically in the xylem-pole pericycle cells, an important early step in lateral root initiation. The model also revealed that pericycle cells on opposite xylem poles compete for auxin accumulation, consistent with the observation that lateral roots are not initiated opposite to each other. PMID:26505899
Friction behavior of members of the platinum metals group with gold
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1975-01-01
The adhesion and friction behavior of the platinum metals group was examined with clean surfaces and surfaces selectively contaminated with oxygen, vinyl chloride (C2H3Cl), and methyl mercaptan (CH3SH). A pin or disk specimen configuration was used with the pin being a single crystal of gold of the (111) orientation and with the platinum metal disks also being single crystals of the (111) or (0001) orientation. Loads applied ranged from 1 to 10 g and a sliding velocity of 0.7 mm/min was employed. Results indicate adhesion and transfer of gold to all of the platinum metals. Despite this observation friction differences existed among the metals in the group. These differences are related to surface chemical activity. Adsorption of various friction reducing species was selective. With some adsorbates present strong adhesive forces between metals were still observed.
Evidence of Self-Organized Criticality in Dry Sliding Friction
NASA Technical Reports Server (NTRS)
Zypman, Fredy R.; Ferrante, John; Jansen, Mark; Scanlon, Kathleen; Abel, Phillip
2003-01-01
This letter presents experimental results on unlubricated friction, which suggests that stick-slip is described by self-organized criticality (SOC). The data, obtained with a pin-on-disc tribometer examines the variation of the friction force as a function of time-or sliding distance. This is the first time that standard tribological equipment has been used to examine the possibility of SOC. The materials were matching pins and discs of aluminium loaded with 250, 500 and 1000 g masses, and matching M50 steel couples loaded with a 1000 g mass. An analysis of the data shows that the probability distribution of slip sizes follows a power law. We perform a careful analysis of all the properties, beyond the two just mentioned, which are required to imply the presence of SOC. Our data strongly support the existence of SOC for stick-slip in dry sliding friction.
Magnetic pinning in a superconducting film by a ferromagnetic layer with stripe domains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mancusi, D.; Di Giorgio, C.; Bobba, F.
2014-10-31
A magnetic study of superconductor/ferromagnet bilayers was performed by hysteresis loops and temperature-dependent magnetization measurements. The superconductor/ferromagnet bilayers consist of a Nb film deposited on a Py film with weak perpendicular magnetic anisotropy. By comparing the temperature-dependent magnetization data obtained on samples with different ferromagnetic layer thickness, a decrease of the magnetic pinning with increasing thickness of the ferromagnetic layer has been found. This is confirmed by the reduction of the Nb film critical current density at low fields extracted by using the magnetic irreversibility of the hysteresis loops. As the ferromagnetic layer exhibits a magnetic structure with stripe domains,more » whose width increases for increasing thickness as observed by magnetic force microscopy (MFM) measurements, we relate the reduction of the superconducting critical current in samples with thicker ferromagnetic layers to a weaker interaction between the vortices guided by the underlying magnetic template.« less
Unpinning of spiral waves from rectangular obstacles by stimulated wave trains
NASA Astrophysics Data System (ADS)
Ponboonjaroenchai, Benjamas; Srithamma, Panatda; Kumchaiseemak, Nakorn; Sutthiopad, Malee; Müller, Stefan C.; Luengviriya, Chaiya; Luengviriya, Jiraporn
2017-09-01
Pinned spiral waves are exhibited in many excitable media. In cardiology, lengthened tachycardia correspond to propagating action potential in forms of spiral waves pinned to anatomical obstacles including veins and scares. Thus, elimination such waves is important particularly in medical treatments. We present study of unpinning of a spiral wave by a wave train initiated by periodic stimuli at a given location. The spiral wave is forced to leave the rectangular obstacle when the period of the wave train is shorter than a threshold Tunpin. For small obstacles, Tunpin decreases when the obstacle size is increased. Furthermore, Tunpin depends on the obstacle orientation with respect to the wave train propagation. For large obstacles, Tunpin is independent to the obstacle size. It implies that the orientation of the obstacle plays an important role in the unpinning of the spiral wave, especially for small rectangular obstacles.
Green's functions for analysis of dynamic response of wheel/rail to vertical excitation
NASA Astrophysics Data System (ADS)
Mazilu, Traian
2007-09-01
An analytical model to simulate wheel/rail interaction using the Green's functions method is proposed in this paper. The model consists of a moving wheel on a discretely supported rail. Particularly for this model of rail, the bending and the longitudinal displacement are coupled due to the rail pad and a complex model of the rail pad is adopted. An efficient method for solving a time-domain analysis for wheel/rail interaction is presented. The method is based on the properties of the rail's Green functions and starting to these functions, a track's Green matrix is assembled for the numerical simulations of wheel/rail response due to three kinds of vertical excitations: the steady-state interaction, the rail corrugation and the wheel flat. The study points to influence of the worn rail—rigid contact—on variation in the wheel/rail contact force. The concept of pinned-pinned inhibitive rail pad is also presented.
Patterning of leaf vein networks by convergent auxin transport pathways.
Sawchuk, Megan G; Edgar, Alexander; Scarpella, Enrico
2013-01-01
The formation of leaf vein patterns has fascinated biologists for centuries. Transport of the plant signal auxin has long been implicated in vein patterning, but molecular details have remained unclear. Varied evidence suggests a central role for the plasma-membrane (PM)-localized PIN-FORMED1 (PIN1) intercellular auxin transporter of Arabidopsis thaliana in auxin-transport-dependent vein patterning. However, in contrast to the severe vein-pattern defects induced by auxin transport inhibitors, pin1 mutant leaves have only mild vein-pattern defects. These defects have been interpreted as evidence of redundancy between PIN1 and the other four PM-localized PIN proteins in vein patterning, redundancy that underlies many developmental processes. By contrast, we show here that vein patterning in the Arabidopsis leaf is controlled by two distinct and convergent auxin-transport pathways: intercellular auxin transport mediated by PM-localized PIN1 and intracellular auxin transport mediated by the evolutionarily older, endoplasmic-reticulum-localized PIN6, PIN8, and PIN5. PIN6 and PIN8 are expressed, as PIN1 and PIN5, at sites of vein formation. pin6 synthetically enhances pin1 vein-pattern defects, and pin8 quantitatively enhances pin1pin6 vein-pattern defects. Function of PIN6 is necessary, redundantly with that of PIN8, and sufficient to control auxin response levels, PIN1 expression, and vein network formation; and the vein pattern defects induced by ectopic PIN6 expression are mimicked by ectopic PIN8 expression. Finally, vein patterning functions of PIN6 and PIN8 are antagonized by PIN5 function. Our data define a new level of control of vein patterning, one with repercussions on other patterning processes in the plant, and suggest a mechanism to select cell files specialized for vascular function that predates evolution of PM-localized PIN proteins.
NASA Astrophysics Data System (ADS)
Guan, Dongshi; Wang, Yong Jian; Charlaix, Elisabeth; Tong, Penger
We report direct atomic-force-microscope measurements of capillary force hysteresis and relaxation of a circular moving contact line (CL) formed on a long micron-sized hydrophobic fiber intersecting a water-air interface. The measured capillary force hysteresis and CL relaxation show a strong asymmetric speed dependence in the advancing and receding directions. A unified model based on force-assisted barrier-crossing is utilized to find the underlying energy barrier Eb and size λ associated with the defects on the fiber surface. The experiment demonstrates that the pinning (relaxation) and depinning dynamics of the CL can be described by a common microscopic frame-work, and the advancing and receding CLs are influenced by two different sets of relatively wetting and non-wetting defects on the fiber surface. Work supported in part by the Research Grants Council of Hong Kong SAR.
NASA Technical Reports Server (NTRS)
Hertel, Heinrich
1930-01-01
This report is intended to furnish bases for load assumptions in the designing of airplane controls. The maximum control forces and quickness of operation are determined. The maximum forces for a strong pilot with normal arrangement of the controls is taken as 1.25 times the mean value obtained from tests with twelve persons. Tests with a number of persons were expected to show the maximum forces that a man of average strength can exert on the control stick in operating the elevator and ailerons and also on the rudder bar. The effect of fatigue, of duration and of the nature (static or dynamic) of the force, as also the condition of the test subject (with or without belt) were also considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motowidlo, L.R.; Ghosh, A.; Distin, J.
2011-08-03
We report the effect of titanium on the transport properties of multifilament PIT strand. In addition, the effect of second phase yttrium additions on the microstructure and the bulk pinning force are reported for PIT Nb{sub 3}Sn mono-core wires. High resolution SEM, EDS, magnetization, and transport measurements were utilized to evaluate the superconducting properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, Andrew J., E-mail: berger.156@osu.edu; Page, Michael R.; Bhallamudi, Vidya P.
2015-10-05
Using simultaneous magnetic force microscopy and transport measurements of a graphene spin valve, we correlate the non-local spin signal with the magnetization of the device electrodes. The imaged magnetization states corroborate the influence of each electrode within a one-dimensional spin transport model and provide evidence linking domain wall pinning to additional features in the transport signal.
Funnel for fuel pin loading system
Christiansen, D.W.; Steffen, J.M.; Brown, W.F.
1984-01-01
An enlarged funnel is described which is releasably mounted at the open end of a length of cladding by an encircling length of shrink tubing which securely engages outer surfaces of both the funnel and cladding. The shrink tubing overlaps an annular shoulder against which pulling force can be exerted to remove the tubing from the cladding. The shoulder can be provided on a separate collar or ring, or on the funnel itself.
Funnel for fuel pin loading system
Christiansen, David W.; Steffen, Jim M.; Brown, William F.
1985-01-01
An enlarged funnel is releasably mounted at the open end of a length of cladding by an encircling length of shrink tubing which securely engages outer surfaces of both the funnel and cladding. The shrink tubing overlaps an annular shoulder against which pulling force can be exerted to remove the tubing from the cladding. The shoulder can be provided on a separate collar or ring, or on the funnel itself.
Besse, Nadine; Rosset, Samuel; Zarate, Juan Jose; Ferrari, Elisabetta; Brayda, Luca; Shea, Herbert
2018-01-01
We present a fully latching and scalable 4 × 4 haptic display with 4 mm pitch, 5 s refresh time, 400 mN holding force, and 650 μm displacement per taxel. The display serves to convey dynamic graphical information to blind and visually impaired users. Combining significant holding force with high taxel density and large amplitude motion in a very compact overall form factor was made possible by exploiting the reversible, fast, hundred-fold change in the stiffness of a thin shape memory polymer (SMP) membrane when heated above its glass transition temperature. Local heating is produced using an addressable array of 3 mm in diameter stretchable microheaters patterned on the SMP. Each taxel is selectively and independently actuated by synchronizing the local Joule heating with a single pressure supply. Switching off the heating locks each taxel into its position (up or down), enabling holding any array configuration with zero power consumption. A 3D-printed pin array is mounted over the SMP membrane, providing the user with a smooth and room temperature array of movable pins to explore by touch. Perception tests were carried out with 24 blind users resulting in 70 percent correct pattern recognition over a 12-word tactile dictionary.
Micro-miniature gas chromatograph column disposed in silicon wafers
Yu, Conrad M.
2000-01-01
A micro-miniature gas chromatograph column is fabricated by forming matching halves of a circular cross-section spiral microcapillary in two silicon wafers and then bonding the two wafers together using visual or physical alignment methods. Heating wires are deposited on the outside surfaces of each wafer in a spiral or serpentine pattern large enough in area to cover the whole microcapillary area inside the joined wafers. The visual alignment method includes etching through an alignment window in one wafer and a precision-matching alignment target in the other wafer. The two wafers are then bonded together using the window and target. The physical alignment methods include etching through vertical alignment holes in both wafers and then using pins or posts through corresponding vertical alignment holes to force precision alignment during bonding. The pins or posts may be withdrawn after curing of the bond. Once the wafers are bonded together, a solid phase of very pure silicone is injected in a solution of very pure chloroform into one end of the microcapillary. The chloroform lowers the viscosity of the silicone enough that a high pressure hypodermic needle with a thumbscrew plunger can force the solution into the whole length of the spiral microcapillary. The chloroform is then evaporated out slowly to leave the silicone behind in a deposit.
Effect of bending stiffness on the peeling behavior of an elastic thin film on a rigid substrate.
Peng, Zhilong; Chen, Shaohua
2015-04-01
Inspired by the experimental observation that the maximum peeling force of elastic films on rigid substrates does not always emerge at the steady-state peeling stage, but sometimes at the initial one, a theoretical model is established in this paper, in which not only the effect of the film's bending stiffness on the peeling force is considered, but also the whole peeling process, from the initiation of debonding to the steady-state stage, is characterized. Typical peeling force-displacement curves and deformed profiles of the film reappear for the whole peeling process. For the case of a film with relatively large bending stiffness, the maximum peeling force is found arising at the initial peeling stage and the larger the stiffness of the film, the larger the maximum peeling force is. With the peeling distance increasing, the peeling force is reduced from the maximum to a constant at the steady-state stage. For the case of a film with relatively small stiffness, the peeling force increases monotonically at the initial stage and then achieves a constant as the maximum at the steady-state stage. Furthermore, the peeling forces in the steady-state stage are compared with those of the classical Kendall model. All the theoretical predictions agree well with the existing experimental and numerical observations, from which the maximum peeling force can be predicted precisely no matter what the stiffness of the film is. The results in this paper should be very helpful in the design and assessment of the film-substrate interface.
Cross-species functional diversity within the PIN auxin efflux protein family
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Connor, Devin Lee; Elton, Samuel; Ticchiarelli, Fabrizio
In Arabidopsis, development during flowering is coordinated by transport of the hormone auxin mediated by polar-localized PIN-FORMED1 (AtPIN1). However Arabidopsis has lost a PIN clade sister to AtPIN1, Sister-of-PIN1 (SoPIN1), which is conserved in flowering plants. Here, we previously proposed that the AtPIN1 organ initiation and vein patterning functions are split between the SoPIN1 and PIN1 clades in grasses. Here we show that in the grass Brachypodium sopin1 mutants have organ initiation defects similar to Arabidopsis atpin1, while loss of PIN1 function in Brachypodium has little effect on organ initiation but alters stem growth. Heterologous expression of Brachypodium SoPIN1 andmore » PIN1b in Arabidopsis provides further evidence of functional specificity. SoPIN1 but not PIN1b can mediate flower formation in null atpin1 mutants, although both can complement a missense allele. The behavior of SoPIN1 and PIN1b in Arabidopsis illustrates how membrane and tissue-level accumulation, transport activity, and interaction contribute to PIN functional specificity.« less
Cross-species functional diversity within the PIN auxin efflux protein family
O'Connor, Devin Lee; Elton, Samuel; Ticchiarelli, Fabrizio; ...
2017-10-24
In Arabidopsis, development during flowering is coordinated by transport of the hormone auxin mediated by polar-localized PIN-FORMED1 (AtPIN1). However Arabidopsis has lost a PIN clade sister to AtPIN1, Sister-of-PIN1 (SoPIN1), which is conserved in flowering plants. Here, we previously proposed that the AtPIN1 organ initiation and vein patterning functions are split between the SoPIN1 and PIN1 clades in grasses. Here we show that in the grass Brachypodium sopin1 mutants have organ initiation defects similar to Arabidopsis atpin1, while loss of PIN1 function in Brachypodium has little effect on organ initiation but alters stem growth. Heterologous expression of Brachypodium SoPIN1 andmore » PIN1b in Arabidopsis provides further evidence of functional specificity. SoPIN1 but not PIN1b can mediate flower formation in null atpin1 mutants, although both can complement a missense allele. The behavior of SoPIN1 and PIN1b in Arabidopsis illustrates how membrane and tissue-level accumulation, transport activity, and interaction contribute to PIN functional specificity.« less
Hackney, James M; Clay, Rachel L; James, Meredith
2016-10-01
We measured ground reaction force and lower extremity shortening in ten healthy, young adults in order to compare five trials of drop jumps to drop landings. Our dependent variable was the percentage of displacement (shortening) between the markers on the ASIS and second metatarsal heads on each LE, relative to the maximum shortening (100% displacement) for that trial at the point of greatest ground reaction force. We defined this as "percent displacement at maximum force" (%dFmax). The sample mean %dFmax was 0.73%±0.14% for the drop jumps, and 0.47%±0.09% for the drop landings. The mean within-subject difference score was 0.26%±0.20%. Two-tailed paired t test comparing %dFmax between the drop jump and drop landing yielded P=0.002. For all participants in this study, the %dFmax was greater in drop jumps than in drop landings. This indicates that in drop jumps, the point of maximum force and of maximum shortening was nearly simultaneous, compared to drop landings, where the point of maximum shortening followed that of maximum force by a greater proportion. This difference in force to displacement behavior is explained by linear spring behavior in drop jumps, and linear damping behavior in drop landings. Copyright © 2016 Elsevier B.V. All rights reserved.
Orenstein, Noah P; Bidra, Avinash S; Agar, John R; Taylor, Thomas D; Uribe, Flavio; Litt, Mark D; Little, Mark D
2015-01-01
To determine if there are objective changes in lower facial height and subjective changes in facial esthetics with incremental increases in occlusal vertical dimension in dentate subjects. Twenty subjects of four different races and both sexes with a Class I dental occlusion had custom diagnostic occlusal prostheses (mandibular overlays) fabricated on casts mounted on a semi-adjustable articulator. The overlays were fabricated at 2-mm, 3-mm, 4-mm, and 5-mm openings of the anterior guide pin of a semi-adjustable articulator. Direct facial measurements were made between pronasale and menton on each subject while wearing the four different overlays. Thereafter, two digital photographs (frontal and profile) were taken for each subject at maximum intercuspation (baseline) and wearing each of the four mandibular overlays. The photographs of eight subjects were standardized and displayed in a random order to 60 judges comprising 30 laypeople, 15 general dentists, and 15 prosthodontists. Using a visual analog scale, each judge was asked to rate the facial esthetics twice for each of the 80 images. For objective changes, although an anterior guide pin-lower facial height relationship of 1:0.63 mm was observed, the findings were not correlated (P>.20). For subjective changes, the visual analog scale ratings of judges were uncorrelated with increases in anterior guide pin opening up to 5 mm, irrespective of the judge's background status or the sexes of the judges or the subjects (P>.80). Incremental increases in anterior guide pin opening up to 5 mm did not correlate to similar increases in lower facial height. Additionally, it made no difference in a judge's evaluation of facial esthetics irrespective of the judge's background status (layperson, general dentist, or prosthodontist) or sex.
Shape and Site Dependent in Vivo Degradation of Mg-Zn Pins in Rabbit Femoral Condyle
Han, Pei; Tan, Moyan; Zhang, Shaoxiang; Ji, Weiping; Li, Jianan; Zhang, Xiaonong; Zhao, Changli; Zheng, Yufeng; Chai, Yimin
2014-01-01
A type of specially designed pin model of Mg-Zn alloy was implanted into the full thickness of lesions of New Zealand rabbits’ femoral condyles. The recovery progress, outer surface healing and in vivo degradation were characterized by various methods including radiographs, Micro-CT scan with surface rendering, SEM (scanning electron microscope) with EDX (Energy Dispersive X-ray analysis) and so on. The in vivo results suggested that a few but not sufficient bridges for holding force were formed between the bone and the implant if there was a preexisting gap between them. The rapid degradation of the implantation in the condyle would result in the appearance of cavities. Morphological evaluation of the specially designed pins indicated that the cusp was the most vulnerable part during degradation. Furthermore, different implantation sites with distinct components and biological functions can lead to different degradation rates of Mg-Zn alloy. The rate of Mg-Zn alloy decreases in the following order: implantation into soft tissue, less trabecular bone, more trabecular bone, and cortical bone. Because of the complexities of in vivo degradation, it is necessary for the design of biomedical Mg-Zn devices to take into consideration the implantation sites used in clinics. PMID:24566138
Characterization and tribology of PEG-like coatings on UHMWPE for total hip replacements.
Kane, Sheryl R; Ashby, Paul D; Pruitt, Lisa A
2010-03-15
A crosslinked hydrogel coating similar to poly(ethylene glycol) (PEG) was covalently bonded to the surface of ultrahigh molecular weight polyethylene (UHMWPE) to improve the lubricity and wear resistance of the UHWMPE for use in total joint replacements. The chemistry, hydrophilicity, and protein adsorption resistance of the coatings were determined, and the wear behavior of the PEG-like coating was examined by two methods: pin-on-disk tribometry to evaluate macroscale behavior, and atomic force microscopy (AFM) to simulate asperity wear. As expected, the coating was found to be highly PEG-like, with approximately 83% ether content by x-ray photoelectron spectroscopy and more hydrophilic and resistant to protein adsorption than uncoated UHMWPE. Pin-on-disk testing showed that the PEG-like coating could survive 3 MPa of contact pressure, comparable to that experienced by total hip replacements. AFM nanoscratching experiments uncovered three damage mechanisms for the coatings: adhesion/microfracture, pure adhesion, and delamination. The latter two mechanisms appear to correlate well with wear patterns induced by pin-on-disk testing and evaluated by attenuated total reflection Fourier transform infrared spectroscopy mapping. Understanding the mechanisms by which the PEG-like coatings wear is critical for improving the behavior of subsequent generations of wear-resistant hydrogel coatings. (c) 2009 Wiley Periodicals, Inc.
High Energy Density Aqueous Electrochemical Capacitors with a KI-KOH Electrolyte.
Wang, Xingfeng; Chandrabose, Raghu S; Chun, Sang-Eun; Zhang, Tianqi; Evanko, Brian; Jian, Zelang; Boettcher, Shannon W; Stucky, Galen D; Ji, Xiulei
2015-09-16
We report a new electrochemical capacitor with an aqueous KI-KOH electrolyte that exhibits a higher specific energy and power than the state-of-the-art nonaqueous electrochemical capacitors. In addition to electrical double layer capacitance, redox reactions in this device contribute to charge storage at both positive and negative electrodes via a catholyte of IOx-/I- couple and a redox couple of H2O/Had, respectively. Here, we, for the first time, report utilizing IOx-/I- redox couple for the positive electrode, which pins the positive electrode potential to be 0.4-0.5 V vs Ag/AgCl. With the positive electrode potential pinned, we can polarize the cell to 1.6 V without breaking down the aqueous electrolyte so that the negative electrode potential could reach -1.1 V vs Ag/AgCl in the basic electrolyte, greatly enhancing energy storage. Both mass spectroscopy and Raman spectrometry confirm the formation of IO3- ions (+5) from I- (-1) after charging. Based on the total mass of electrodes and electrolyte in a practically relevant cell configuration, the device exhibits a maximum specific energy of 7.1 Wh/kg, operates between -20 and 50 °C, provides a maximum specific power of 6222 W/kg, and has a stable cycling life with 93% retention of the peak specific energy after 14,000 cycles.
Gao, Kun; Chen, Fanjun; Yuan, Lixing; Mi, Guohua
2013-01-01
The inhibitory effect of ammonium on primary root growth has been well documented; however the underlying physiological and molecular mechanisms are still controversial. To avoid ammonium toxicity to shoot growth, we used a vertical two-layer split plate system, in which the upper layer contained nitrate and the lower layer contained ammonium. In this way, nitrogen status was maintained and only the apical part of the root system was exposed to ammonium. Using a kinematic approach, we show here that 1 mM ammonium reduces primary root growth, decreasing both elemental expansion and cell production. Ammonium inhibits the length of elongation zone and the maximum elemental expansion rate. Ammonium also decreases the apparent length of the meristem as well as the number of dividing cells without affecting cell division rate. Moreover, ammonium reduces the number of root cap cells but appears to affect neither the status of root stem cell niche nor the distal auxin maximum at the quiescent center. Ammonium also inhibits root gravitropism and concomitantly down-regulates the expression of two pivotal auxin transporters, AUX1 and PIN2. Insofar as ammonium inhibits root growth rate in AUX1 and PIN2 loss-of-function mutants almost as strongly as in wild type, we conclude that ammonium inhibits root growth and gravitropism by largely distinct pathways. PMID:23577185
Three dimensional force balance of asymmetric droplets
NASA Astrophysics Data System (ADS)
Kim, Yeseul; Lim, Su Jin; Cho, Kun; Weon, Byung Mook
2016-11-01
An equilibrium contact angle of a droplet is determined by a horizontal force balance among vapor, liquid, and solid, which is known as Young's law. Conventional wetting law is valid only for axis-symmetric droplets, whereas real droplets are often asymmetric. Here we show that three-dimensional geometry must be considered for a force balance for asymmetric droplets. By visualizing asymmetric droplets placed on a free-standing membrane in air with X-ray microscopy, we are able to identify that force balances in one side and in other side control pinning behaviors during evaporation of droplets. We find that X-ray microscopy is powerful for realizing the three-dimensional force balance, which would be essential in interpretation and manipulation of wetting, spreading, and drying dynamics for asymmetric droplets. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01007133).
Pin1At regulates PIN1 polar localization and root gravitropism.
Xi, Wanyan; Gong, Ximing; Yang, Qiaoyun; Yu, Hao; Liou, Yih-Cherng
2016-01-21
Root gravitropism allows plants to establish root systems and its regulation depends on polar auxin transport mediated by PIN-FORMED (PIN) auxin transporters. PINOID (PID) and PROTEIN PHOSPHATASE 2A (PP2A) act antagonistically on reversible phosphorylation of PINs. This regulates polar PIN distribution and auxin transport. Here we show that a peptidyl-prolyl cis/trans isomerase Pin1At regulates root gravitropism. Downregulation of Pin1At suppresses root agravitropic phenotypes of pp2aa and 35S:PID, while overexpression of Pin1At affects root gravitropic responses and enhances the pp2aa agravitropic phenotype. Pin1At also affects auxin transport and polar localization of PIN1 in stele cells, which is mediated by PID and PP2A. Furthermore, Pin1At catalyses the conformational change of the phosphorylated Ser/Thr-Pro motifs of PIN1. Thus, Pin1At mediates the conformational dynamics of PIN1 and affects PID- and PP2A-mediated regulation of PIN1 polar localization, which correlates with the regulation of root gravitropism.
Pin1At regulates PIN1 polar localization and root gravitropism
Xi, Wanyan; Gong, Ximing; Yang, Qiaoyun; Yu, Hao; Liou, Yih-Cherng
2016-01-01
Root gravitropism allows plants to establish root systems and its regulation depends on polar auxin transport mediated by PIN-FORMED (PIN) auxin transporters. PINOID (PID) and PROTEIN PHOSPHATASE 2A (PP2A) act antagonistically on reversible phosphorylation of PINs. This regulates polar PIN distribution and auxin transport. Here we show that a peptidyl-prolyl cis/trans isomerase Pin1At regulates root gravitropism. Downregulation of Pin1At suppresses root agravitropic phenotypes of pp2aa and 35S:PID, while overexpression of Pin1At affects root gravitropic responses and enhances the pp2aa agravitropic phenotype. Pin1At also affects auxin transport and polar localization of PIN1 in stele cells, which is mediated by PID and PP2A. Furthermore, Pin1At catalyses the conformational change of the phosphorylated Ser/Thr-Pro motifs of PIN1. Thus, Pin1At mediates the conformational dynamics of PIN1 and affects PID- and PP2A-mediated regulation of PIN1 polar localization, which correlates with the regulation of root gravitropism. PMID:26791759
Theory of Current-Driven Domain Wall Motion
NASA Astrophysics Data System (ADS)
Tatara, Gen
2004-03-01
Current-induced motion of a domain wall is studied starting from a microscopic Hamiltonian with an exchange interaction between conduction electrons and spins of the wall [1]. With a key observation that the position X and the angle φ0 the wall magnetization forms with the easy plane are the proper collective coordinates to describe its dynamics, it follows straightforwardly that the electric current affects the wall motion in two different ways, in agreement with Berger's pioneering observations[2]. The first is as a force, or momentum transfer, due to the reflection of conduction electrons. This force is proportional to the charge current j and wall resistivity ρ_w, and hence becomes important in thin walls. The other is as a spin torque or spin transfer[3], which is dominant for thick walls where the spin of conduction electron follows the magnetization adiabatically. The motion of a domain wall under a steady current is studied in two limiting cases. In the adiabatic case, we show that even without a pinning force, there is a threshold spin current, j_s^cr∝ K_⊥λ, below which the wall does not move (K_⊥ and λ being the hard-axis magnetic anisotropy and wall thickness, respectively). Below the threshold, the transferred angular momentum is used to shift φ0 and not to the wall motion. The pinning potential V0 affects j_s^cr only if it is very strong, V0 > K_⊥/α, where α is the damping parameter in the Landau-Lifshits-Gilbert equation. Therefore, the critical current for the adiabatic wall does not suffer very much from weak pinning, which is consistent with experimental observations[4]. The wall velocity after depinning is found to be
Myoelectric activation and kinetics of different plyometric push-up exercises.
García-Massó, Xavier; Colado, Juan C; González, Luis M; Salvá, Pau; Alves, Joao; Tella, Víctor; Triplett, N Travis
2011-07-01
The kinetic and myoelectric differences between 3 types of plyometric push-ups were investigated. Twenty-seven healthy, physically active men served as subjects and completed both familiarization and testing sessions. During these sessions, subjects performed 2 series of 3 plyometric push-up variations in a counterbalanced order according to the following techniques: Countermovement push-ups (CPUs) were push-ups performed with the maximum speed of movement; jump push-ups (JPUs) were similar to clapping push-ups; and fall push-ups (FPUs) required kneeling subjects to drop and then attempt to return to their initial position. Vertical ground reaction forces were determined by using a force plate. Myoelectric activity was recorded by means of electromyography. Impact force and impact rate of force development were significantly (p < 0.05) higher for FPUs than for JPUs. The maximum rate of force development was higher for CPUs (p < 0.05) than for JPUs, and the maximum force was higher for the CPUs than for the FPUs (p < 0.05). There were differences among exercises for the mean muscle activation of the pectoralis major (PM; p < 0.001), triceps brachii (p < 0.001), external oblique (p < 0.005) and anterior deltoid (p < 0.001), and in the maximum muscle activation of the PM (p < 0.001). Plyometric push-ups with countermovement achieved a higher maximum force and rate of force and did not cause impact forces. Thus, this type of push-up exercise may be regarded as the best for improving explosive force. The FPU exercise achieved higher levels of muscular activation in the agonist and synergist muscle groups, and greater impact forces and impact force development rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dejong, E. Schuyler; Deberardino, T. M.; Brooks, D. E.
Background: Pin tract infection is a common complication of external fixation. An antiinfective external fixator pin might help to reduce the incidence of pin tract infection and improve pin fixation. Methods: Stainless steel and titanium external fixator pins, with and without a lipid stabilized hydroxyapatite/chlorhexidine coating, were evaluated in a goat model. Two pins contaminated with an identifiable Staphylococcus aureus strain were inserted into each tibia of 12 goats. The pin sites were examined daily. On day 14, the animals were killed, and the pin tips cultured. Insertion and extraction torques were measured. Results: Infection developed in 100% of uncoatedmore » pins, whereas coated pins demonstrated 4.2% infected, 12.5% colonized, and the remainder, 83.3%, had no growth (p < 0.01). Pin coating decreased the percent loss of fixation torque over uncoated pins (p = 0.04). Conclusion: These results demonstrate that the lipid stabilized hydroxyapatite/chlorhexidine coating was successful in decreasing infection and improving fixation of external fixator pins.« less
Adhesive behavior of micro/nano-textured surfaces
NASA Astrophysics Data System (ADS)
Zhang, Yuyan; Wang, Xiaoli; Li, Hanqing; Wang, Ben
2015-02-01
A numerical model of the adhesive contact between a rigid smooth sphere and an elastic textured surface based on the Lennard-Jones interatomic potential law and the Hamaker summation method is established. Textures are considered by introducing the texture height distribution into the gap equation. Simulation results show that the pull-off force on textured surfaces decreases compared to that on smooth surfaces. Furthermore, effects of sphere-shaped textures on reducing adhesion are more obvious than cylinder-shaped or cube-shaped textures when the coverage area ratio, maximum height and interval of textures are fixed. For surfaces with sphere-shaped textures, variation trends of the mean pull-off force with texture density are not monotonous, and there exists a certain range of texture densities in which the mean pull-off force is small and its variation is insignificant. In addition, the pull-off force depends also on the maximum height and radius of textures. On one hand, if the texture radius is fixed, larger maximum height results in smaller pull-off force, and if the maximum height is fixed, the pull-off force tends to increase almost linearly with increases in texture radius. On the other hand, if the height-diameter ratio of textures is fixed, the pull-off force reaches a minimum at an optimum texture radius or maximum height.
1981-09-01
Figure 6, can be approximated by i) for the 00 orientation V1 :2t (T)[-2 -2(T)I/2 + t2 arctan T t2 d (2.67) * 29 f I u- oid -precipitate I V3 c) PV...cool by running tap water through a submersed glass coil. Eleven volts are applied between the specimen and two stainless-steel cathodes immersed in
A Clinically Realistic Large Animal Model of Intra-Articular Fracture
2012-10-01
articular bone intact. The distal impact face is anchored to the talus using three “tripod” pins, for direct (i.e., no soft tissue intervention) delivery of...pilon) fractures. In this technique, the porcine hock joint (human ankle analogue) is subjected to an injurious transarticular compressive force pulse...fracture, to create fractures morphologically similar to human ankle anterior malleolar fractures. This cut was made on the anterior distal tibial cortex
Direct Power Injection of Microcontrollers in PCB Environments (Postprint)
2012-09-01
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory 8. PERFORMING ORGANIZATION REPORT...and model development. The Atmel AT89LP2052, 8-bit microcontroller has been programmed to complete a binary count from 20 to 28. A 20 pin SOIC has...onto the custom board ( SOIC ). LabVIEW has been used to control the power level and timing of the RF source (MXG), and data acquisition using the
Applying extrusive orthodontic force without compromising the obturated canal space.
Keinan, David; Szwec, Jerard; Matas, Avital; Moshonov, Joshua; Yitschaky, Oded
2013-08-01
Complicated tooth fractures can be the unfortunate result of orofacial trauma and can offer a therapeutic challenge for the dentist. A conservative solution for gaining supragingival sound tooth structure often includes orthodontic forced eruption. Usually, this procedure is carried out by applying extrusive force after placing a provisional acrylic Richmond crown on the tooth. However, this long-lasting dental treatment may jeopardize the coronal seal of the root canal space, leading to microleakage and endodontic failure. Orthodontic forced eruption demands application of force to an attachment connected to the remaining short clinical crown. In this article, the authors describe a case in which they used a new technique for orthodontic forced eruption of a traumatized tooth, using an extracanal attachment to apply extrusion force, and discuss its possible advantages and limitations. An extracanal attachment approach for orthodontic forced eruption without compromising the obturated canal space can be a solution for posttraumatic crown fracture. Practical Implications. The described procedure for forced eruption by using an extracanal pin attachment is efficient and convenient and does not require the clinician to apply force directly to the provisional crown. Therefore, during the application of force, there is less risk of loosening the provisional crown, and the canal space is kept intact with either the final restoration or dressing material.
NASA Astrophysics Data System (ADS)
Moradi Faradonbeh, Alireza; Shamanian, Morteza; Edris, Hossein; Paidar, Moslem; Bozkurt, Yahya
2018-02-01
In this investigation, friction stir welding (FSW) of Al-B4C composite fabricated by 10 cycles accumulative roll bonding was conducted. In order to investigate the influences of pin geometry on microstructure and mechanical properties, four different pin geometries (cylindrical, square, triangular and hexagonal) were selected. It was found that FSW parameters had a major effect on the fragmentation and distribution of reinforcement particles in stir zone. When the tool travel speed was increased, the distribution of B4C particles was become gradually uniform in the aluminum matrix. The effect of tool rotational speed on the peak temperature was determined to be greater than the tool travel speed. The attained data of tensile properties and microhardness tests showed that the tool travel speed had bilateral effect on the tensile strength. The maximum tensile joint efficiency was obtained as 238% for FSWed of Al-2%B4C composite to annealed base Al sheet.
Khaled, A.-R. A.
2014-01-01
Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost. PMID:24719572
Khaled, A-R A
2014-01-01
Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost.
Kettlitz, Siegfried W; Valouch, Sebastian; Sittel, Wiebke; Lemmer, Uli
2012-01-07
Detection of fluorescence particles is a key method of flow cytometry. We evaluate the performance of a design for a microfluidic fluorescence particle detection device. Due to the planar design with low layer thicknesses, we avoid optical components such as lenses or dichroic mirrors and substitute them with a shadow mask and colored film filters. A commercially available LED is used as the light source and a PIN-photodiode as detector. This design approach reduces component cost and power consumption and enables supplying the device with power from a standard USB port. From evaluation of this design, we obtain a maximum particle detection frequency of up to 600 particles per second at a sensitivity of better than 4.7 × 10(5) MESF (molecules of equivalent soluble fluorochrome) measured with particles for FITC sensitivity calibration. Lowering the flow rate increases the instrument sensitivity by an order of magnitude enabling the detection of particles with 4.5 × 10(4) MESF.
Fukata, Kyohei; Sugimoto, Satoru; Kurokawa, Chie; Saito, Akito; Inoue, Tatsuya; Sasai, Keisuke
2018-06-01
The difficulty of measuring output factor (OPF) in a small field has been frequently discussed in recent publications. This study is aimed to determine the OPF in a small field using 10-MV photon beam and stereotactic conical collimator (cone). The OPF was measured by two diode detectors (SFD, EDGE detector) and one micro-ion chamber (PinPoint 3D chamber) in a water phantom. A Monte Carlo simulation using simplified detector model was performed to obtain the correction factor for the detector measurements. About 12% OPF difference was observed in the measurement at the smallest field (7.5 mm diameter) for EDGE detector and PinPoint 3D chamber. By applying the Monte Carlo-based correction factor to the measurement, the maximum discrepancy among the three detectors was reduced to within 3%. The results indicate that determination of OPF in a small field should be carefully performed. Especially, detector choice and appropriate correction factor application are very important in this regard.
A recoil-proton spectrometer based on a p-i-n diode implementing pulse-shape discrimination.
Agosteo, S; D'Angelo, G; Fazzi, A; Foglio Para, A; Pola, A; Ventura, L; Zotto, P
2004-01-01
A recoil-proton spectrometer was created by coupling a p-i-n diode with a polyethylene converter. The maximum detectable energy, imposed by the thickness of the totally depleted layer, is approximately 6 MeV. The minimum detectable energy is limited by the contribution of secondary electrons generated by photons in the detector assembly. This limit is approximately 1.5 MeV at full-depletion voltage and was decreased using pulse-shape discrimination. The diode was set up in the 'reverse-injection' configuration (i.e. with the N+ layer adjacent to the converter). This configuration provides longer collection times for the electron-hole pairs generated by the recoil-protons. The pulse-shape discrimination was based on the zero-crossing time of bipolar signals from a (CR)2-(RC)2 filter. The detector was characterised using monoenergetic neutrons generated in the Van De Graaff CN accelerator at the INFN-Laboratori Nazionali di Legnaro. The energy limit for discrimination proved to be approximately 900 keV.
Vortex Flux Pinning in Type-Ii Superconductors
NASA Astrophysics Data System (ADS)
Hasan, Mohammad-Khair A. M.
1995-01-01
Rotational magnetization vector measurements on polycrystalline samples of rm YBa_2Cu _3O_7 (YBCO) and (Ba, K)BiO _3 at various fixed fields (H) and temperatures (T) reveal that the vortex flux density (B) in a rotational state consists of a component B_{rm R}, which rotates rigidly with sample rotation, and a B_{rm F} component, which stays at a fixed frictional angle (theta _{rm F}) relative to H. Also, B_{rm R} decreases and ultimately vanishes with increasing H, while B _{rm F} grows monotonically, implying that the vortex pinning strength have a broad distribution. This has been confirmed by the measurements on YBCO of the remanent flux density B^ {rm rm} which can be decomposed analogously into B_{R} ^{} and B_ {F}^{} at angle theta_{F}^{} relative to H. The quantity Hsin theta_{rm F},, which at equilibrium equals tau_{rm p}/mu (the average pinning torque per vortex of moment mu) decreases with increasing high H. This result and the distribution in the strength of the pinning are shown to be consistent with the collective pinning process of vortex bundling. At fixed H, tau_{rm p} decreases rapidly with increasing T, varying approximately as T^{-0.8} for both samples. For polycrystalline YBCO at 4.2 K, B_ {rm R} and B_{ rm F} are found to relax differently with time. The negative creep sign of B_ {rm R} indicates that the number of rotational vortices decreases with time, whereas B _{rm F} shows a positive creep with a negative change in theta_ {rm F}, which indicates that more frictional vortices enter the sample with a tendency of alignment in the direction of H. For grain-oriented YBCO at 4.2 K, the vortex creep measurements of B along the c-axis at different fields showed that: whenever the hysteretic changes of H are reversed in sign, the vortex flux creep (dB/dlogt) decreases very rapidly to zero, where it lingers before changing sign. At the same turning values of H, (dB/dH) also goes to zero. These properties are attributable to the reversals of the vortex motion which occur at the turning values of H and cause a reversal of frictional pinning forces.
Zou, Jun-Jie; Zheng, Zhong-Yu; Xue, Shan; Li, Han-Hai; Wang, Yu-Ren; Le, Jie
2016-01-01
Gravitropism is vital for shaping directional plant growth in response to the forces of gravity. Signals perceived in the gravity-sensing cells can be converted into biochemical signals and transmitted. Sedimentation of amyloplasts in the columella cells triggers asymmetric auxin redistribution in root tips, leading to downward root growth. The actin cytoskeleton is thought to play an important role in root gravitropism, although the molecular mechanism has not been resolved. DISTORTED1 (DIS1) encodes the ARP3 subunit of the Arabidopsis Actin-Related Protein 2/3 (ARP2/3) complex, and the ARP3/DIS1 mutant dis1-1 showed delayed root curvature after gravity stimulation. Microrheological analysis revealed that the high apparent viscosity within dis1-1 central columella cells is closely associated with abnormal movement trajectories of amyloplasts. Analysis using a sensitive auxin input reporter DII-VENUS showed that asymmetric auxin redistribution was reduced in the root tips of dis1-1, and the actin-disrupting drug Latrunculin B increased the asymmetric auxin redistribution. An uptake assay using the membrane-selective dye FM4-64 indicated that endocytosis was decelerated in dis1-1 root epidermal cells. Treatment and wash-out with Brefeldin A, which inhibits protein transport from the endoplasmic reticulum to the Golgi apparatus, showed that cycling of the auxin-transporter PIN-FORMED (PIN) proteins to the plasma membrane was also suppressed in dis1-1 roots. The results reveal that ARP3/DIS1 acts in root gravitropism by affecting amyloplast sedimentation and PIN-mediated polar auxin transport through regulation of PIN protein trafficking. PMID:27473572
Zou, Jun-Jie; Zheng, Zhong-Yu; Xue, Shan; Li, Han-Hai; Wang, Yu-Ren; Le, Jie
2016-10-01
Gravitropism is vital for shaping directional plant growth in response to the forces of gravity. Signals perceived in the gravity-sensing cells can be converted into biochemical signals and transmitted. Sedimentation of amyloplasts in the columella cells triggers asymmetric auxin redistribution in root tips, leading to downward root growth. The actin cytoskeleton is thought to play an important role in root gravitropism, although the molecular mechanism has not been resolved. DISTORTED1 (DIS1) encodes the ARP3 subunit of the Arabidopsis Actin-Related Protein 2/3 (ARP2/3) complex, and the ARP3/DIS1 mutant dis1-1 showed delayed root curvature after gravity stimulation. Microrheological analysis revealed that the high apparent viscosity within dis1-1 central columella cells is closely associated with abnormal movement trajectories of amyloplasts. Analysis using a sensitive auxin input reporter DII-VENUS showed that asymmetric auxin redistribution was reduced in the root tips of dis1-1, and the actin-disrupting drug Latrunculin B increased the asymmetric auxin redistribution. An uptake assay using the membrane-selective dye FM4-64 indicated that endocytosis was decelerated in dis1-1 root epidermal cells. Treatment and wash-out with Brefeldin A, which inhibits protein transport from the endoplasmic reticulum to the Golgi apparatus, showed that cycling of the auxin-transporter PIN-FORMED (PIN) proteins to the plasma membrane was also suppressed in dis1-1 roots. The results reveal that ARP3/DIS1 acts in root gravitropism by affecting amyloplast sedimentation and PIN-mediated polar auxin transport through regulation of PIN protein trafficking. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
NASA Astrophysics Data System (ADS)
He, Wenhui; Carpenter, Michael A.; Lampronti, Giulio I.; Li, Qiang; Yan, Qingfeng
2017-10-01
Recently, Pb (In1/2Nb1/2 ) O3-PbZr O3-Pb (Mg1/3Nb2/3 ) O3-PbTiO3 (PIN-PZ-PMN-PT) relaxor single crystals were demonstrated to possess improved temperature-insensitive properties, which would be desirable for high-power device applications. The relaxor character associated with the development of local random fields (RFs) and a high rhombohedral-tetragonal (R-T) ferroelectric transition temperature (TR-T>120°C) would be critical for the excellent properties. A significant effect of the chemical substitution of In3+ and Zr4+ in PMN-PT to give PIN-PZ-PMN-PT is the development of local strain heterogeneity, which acts to suppress the development of macroscopic shear strains without suppressing the development of local ferroelectric moments and contribute substantially to the RFs in PIN-PZ-PMN-PT. Measurements of elastic and anelastic properties by resonant ultrasound spectroscopy show that PIN-PZ-PMN-PT crystal has a quite different form of elastic anomaly due to Vogel-Fulcher freezing, rather than the a discrete cubic-T transition seen in a single crystal of PMN-28PT. It also has high acoustic loss of the relaxor phase down to TR-T. Analysis of piezoresponse force microscopy phase images at different temperatures provides a quantitative insight into the extent to which the RFs influence the microdomain structure and the short-range order correlation length 〈ξ 〉 .
BaHfO3 artificial pinning centres in TFA-MOD-derived YBCO and GdBCO thin films
NASA Astrophysics Data System (ADS)
Erbe, M.; Hänisch, J.; Hühne, R.; Freudenberg, T.; Kirchner, A.; Molina-Luna, L.; Damm, C.; Van Tendeloo, G.; Kaskel, S.; Schultz, L.; Holzapfel, B.
2015-11-01
Chemical solution deposition (CSD) is a promising way to realize REBa2Cu3O7-x (REBCO; RE = rare earth (here Y, Gd))-coated conductors with high performance in applied magnetic fields. However, the preparation process contains numerous parameters which need to be tuned to achieve high-quality films. Therefore, we investigated the growth of REBCO thin films containing nanometre-scale BaHfO3 (BHO) particles as pinning centres for magnetic flux lines, with emphasis on the influence of crystallization temperature and substrate on the microstructure and superconductivity. Conductivity, microscopy and x-ray investigations show an enhanced performance of BHO nano-composites in comparison to pristine REBCO. Further, those measurements reveal the superiority of GdBCO to YBCO—e.g. by inductive critical current densities, J c, at self-field and 77 K. YBCO is outperformed by more than 1 MA cm-2 with J c values of up to 5.0 MA cm-2 for 265 nm thick layers of GdBCO(BHO) on lanthanum aluminate. Transport in-field J c measurements demonstrate high pinning force maxima of around 4 GN m-3 for YBCO(BHO) and GdBCO(BHO). However, the irreversibility fields are appreciably higher for GdBCO. The critical temperature was not significantly reduced upon BHO addition to both YBCO and GdBCO, indicating a low tendency for Hf diffusion into the REBCO matrix. Angular-dependent J c measurements show a reduction of the anisotropy in the same order of magnitude for both REBCO compounds. Theoretical models suggest that more than one sort of pinning centre is active in all CSD films.
Narchi, Paul; Alvarez, Jose; Chrétien, Pascal; Picardi, Gennaro; Cariou, Romain; Foldyna, Martin; Prod'homme, Patricia; Kleider, Jean-Paul; I Cabarrocas, Pere Roca
2016-12-01
Both surface photovoltage and photocurrent enable to assess the effect of visible light illumination on the electrical behavior of a solar cell. We report on photovoltage and photocurrent measurements with nanometer scale resolution performed on the cross section of an epitaxial crystalline silicon solar cell, using respectively Kelvin probe force microscopy and conducting probe atomic force microscopy. Even though two different setups are used, the scans were performed on locations within 100-μm distance in order to compare data from the same area and provide a consistent interpretation. In both measurements, modifications under illumination are observed in accordance with the theory of PIN junctions. Moreover, an unintentional doping during the deposition of the epitaxial silicon intrinsic layer in the solar cell is suggested from the comparison between photovoltage and photocurrent measurements.
1982-11-03
define the maximum count for the pattern defined by the first 3 bits. Since there are 11 bits involved it is possible to define patterns up to 2048 ...applied to the UUT directly through the driver for any count up to 2048 . Any one of the 7 clocks may be selected under program control and applied to any...one ievel for the driver ( VDI ), the logic zero level for the driver (VDO), the logic one level for the receiver (VRl), and the logic zero level for the
Failure Analysis of a CH-47 Horizontal Hinge Pin Assembly, P/N 114RS226
2006-12-01
and globular) dispersed in a matrix of tempered martensite observed in all the metallographic cross sections produced from the M50 steel rings and...ring, were shown to have met the requirements of AMS 6491 (1)—the specification for VIM- VAR M50 required by each roller- bearing set drawing (see table...2). Although the phosphorus content for each part was at or near the maximum level allowed by AMS 6491, literature on M50 steel and a conversation
Stagg, G W; Parker, N G; Barenghi, C F
2017-03-31
We model the superfluid flow of liquid helium over the rough surface of a wire (used to experimentally generate turbulence) profiled by atomic force microscopy. Numerical simulations of the Gross-Pitaevskii equation reveal that the sharpest features in the surface induce vortex nucleation both intrinsically (due to the raised local fluid velocity) and extrinsically (providing pinning sites to vortex lines aligned with the flow). Vortex interactions and reconnections contribute to form a dense turbulent layer of vortices with a nonclassical average velocity profile which continually sheds small vortex rings into the bulk. We characterize this layer for various imposed flows. As boundary layers conventionally arise from viscous forces, this result opens up new insight into the nature of superflows.
Discovery of novel selenium derivatives as Pin1 inhibitors by high-throughput screening
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subedi, Amit; Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570; Shimizu, Takeshi
2016-06-03
Peptidyl prolyl cis/trans isomerization by Pin1 regulates various oncogenic signals during cancer progression, and its inhibition through multiple approaches has established Pin1 as a therapeutic target. However, lack of simplified screening systems has limited the discovery of potent Pin1 inhibitors. We utilized phosphorylation-dependent binding of Pin1 to its specific substrate to develop a screening system for Pin1 inhibitors. Using this system, we screened a chemical library, and identified a novel selenium derivative as Pin1 inhibitor. Based on structure-activity guided chemical synthesis, we developed more potent Pin1 inhibitors that inhibited cancer cell proliferation. -- Highlights: •Novel screening for Pin1 inhibitors basedmore » on Pin1 binding is developed. •A novel selenium compound is discovered as Pin1 inhibitor. •Activity guided chemical synthesis of selenium derivatives resulted potent Pin1 inhibitors.« less
White, Peter A
2013-01-01
How accurate are explicit judgements about familiar forms of object motion, and how are they made? Participants judged the relations between force exerted in kicking a soccer ball and variables that define the trajectory of the ball: launch angle, maximum height attained, and maximum distance reached. Judgements tended to conform to a simple heuristic that judged force tends to increase as maximum height and maximum distance increase, with launch angle not being influential. Support was also found for the converse prediction, that judged maximum height and distance tend to increase as the amount of force described in the kick increases. The observed judgemental tendencies did not resemble the objective relations, in which force is a function of interactions between the trajectory variables. This adds to a body of research indicating that practical knowledge based on experiences of actions on objects is not available to the processes that generate judgements in higher cognition and that such judgements are generated by simple rules that do not capture the objective interactions between the physical variables.
Shim, Jae Kun; Karol, Sohit; Hsu, Jeffrey; de Oliveira, Marcio Alves
2008-04-01
The aim of this study was to investigate the contralateral motor overflow in children during single-finger and multi-finger maximum force production tasks. Forty-five right handed children, 5-11 years of age produced maximum isometric pressing force in flexion or extension with single fingers or all four fingers of their right hand. The forces produced by individual fingers of the right and left hands were recorded and analyzed in four-dimensional finger force vector space. The results showed that increases in task (right) hand finger forces were linearly associated with non-task (left) hand finger forces. The ratio of the non-task hand finger force magnitude to the corresponding task hand finger force magnitude, termed motor overflow magnitude (MOM), was greater in extension than flexion. The index finger flexion task showed the smallest MOM values. The similarity between the directions of task hand and non-task hand finger force vectors in four-dimensional finger force vector space, termed motor overflow direction (MOD), was the greatest for index and smallest for little finger tasks. MOM of a four-finger task was greater than the sum of MOMs of single-finger tasks, and this phenomenon was termed motor overflow surplus. Contrary to previous studies, no single-finger or four-finger tasks showed significant changes of MOM or MOD with the age of children. We conclude that the contralateral motor overflow in children during finger maximum force production tasks is dependent upon the task fingers and the magnitude and direction of task finger forces.
Evaluation of Bite Force After Open Reduction and Internal Fixation Using Microplates
Kumar, S Tharani; Saraf, Saurabh; Devi, S Prasanna
2013-01-01
The primary aim of this study is to determine maximum bite force in molar and incisor regions of healthy individuals, to evaluate the bite force after open reduction and internal fixation of mandibular fractures using micro plates, for a period of up to 6 weeks and to determine the rate of recovery of maximum bite force in an Indian population. PMID:24910656
Amorim, Amanda C.; Cacciari, Licia P.; Passaro, Anice C.; Silveira, Simone R. B.; Amorim, Cesar F.; Loss, Jefferson F.
2017-01-01
Pelvic floor muscle (PFM) force and coordination are related to urinary incontinence severity and to sexual satisfaction. Health professionals frequently combine classic PFM exercises with hip adduction/abduction contraction to treat these disorders, but the real benefits of this practice are still unknown. Based on a theoretical anatomy approach whereby the levator ani muscle is inserted into the obturator internus myofascia and in which force generated by hip movements should increase the contraction quality of PFMs, our aim was to investigate the effects of isometric hip adduction and abduction on PFM force generation. Twenty healthy, nulliparous women were evaluated using two strain-gauge dynamometers (one cylinder-like inside the vaginal cavity, and the other measuring hip adduction/abduction forces around both thighs) while performing three different tasks: (a) isolated PFM contraction; (b) PFM contraction combined with hip adduction (30% and 50% maximum hip force); and (c) PFM contraction combined with hip abduction (30% and 50% maximum hip force). Data were sampled at 100Hz and subtracted from the offset if existent. We calculated a gradient between the isolated PFM contraction and each hip condition (Δ Adduction and Δ Abduction) for all variables: Maximum force (N), instant of maximum-force occurrence (s), mean force in an 8-second window (N), and PFM force loss (N.s). We compared both conditions gradients in 30% and 50% by paired t-tests. All variables did not differ between hip conditions both in 30% and 50% of maximum hip force (p>.05). PFM contraction combined with isometric hip abduction did not increase vaginal force in healthy and nulliparous women compared to PFM contraction combined with isometric hip adduction. Therefore, so far, the use of hip adduction or abduction in PFM training and treatments are not justified for improving PFM strength and endurance. PMID:28542276
Amorim, Amanda C; Cacciari, Licia P; Passaro, Anice C; Silveira, Simone R B; Amorim, Cesar F; Loss, Jefferson F; Sacco, Isabel C N
2017-01-01
Pelvic floor muscle (PFM) force and coordination are related to urinary incontinence severity and to sexual satisfaction. Health professionals frequently combine classic PFM exercises with hip adduction/abduction contraction to treat these disorders, but the real benefits of this practice are still unknown. Based on a theoretical anatomy approach whereby the levator ani muscle is inserted into the obturator internus myofascia and in which force generated by hip movements should increase the contraction quality of PFMs, our aim was to investigate the effects of isometric hip adduction and abduction on PFM force generation. Twenty healthy, nulliparous women were evaluated using two strain-gauge dynamometers (one cylinder-like inside the vaginal cavity, and the other measuring hip adduction/abduction forces around both thighs) while performing three different tasks: (a) isolated PFM contraction; (b) PFM contraction combined with hip adduction (30% and 50% maximum hip force); and (c) PFM contraction combined with hip abduction (30% and 50% maximum hip force). Data were sampled at 100Hz and subtracted from the offset if existent. We calculated a gradient between the isolated PFM contraction and each hip condition (Δ Adduction and Δ Abduction) for all variables: Maximum force (N), instant of maximum-force occurrence (s), mean force in an 8-second window (N), and PFM force loss (N.s). We compared both conditions gradients in 30% and 50% by paired t-tests. All variables did not differ between hip conditions both in 30% and 50% of maximum hip force (p>.05). PFM contraction combined with isometric hip abduction did not increase vaginal force in healthy and nulliparous women compared to PFM contraction combined with isometric hip adduction. Therefore, so far, the use of hip adduction or abduction in PFM training and treatments are not justified for improving PFM strength and endurance.
Force-Velocity Relationship of Upper Body Muscles: Traditional Versus Ballistic Bench Press.
García-Ramos, Amador; Jaric, Slobodan; Padial, Paulino; Feriche, Belén
2016-04-01
This study aimed to (1) evaluate the linearity of the force-velocity relationship, as well as the reliability of maximum force (F0), maximum velocity (V0), slope (a), and maximum power (P0); (2) compare these parameters between the traditional and ballistic bench press (BP); and (3) determine the correlation of F0 with the directly measured BP 1-repetition maximum (1RM). Thirty-two men randomly performed 2 sessions of traditional BP and 2 sessions of ballistic BP during 2 consecutive weeks. Both the maximum and mean values of force and velocity were recorded when loaded by 20-70% of 1RM. All force-velocity relationships were strongly linear (r > .99). While F0 and P0 were highly reliable (ICC: 0.91-0.96, CV: 3.8-5.1%), lower reliability was observed for V0 and a (ICC: 0.49-0.81, CV: 6.6-11.8%). Trivial differences between exercises were found for F0 (ES: < 0.2), however the a was higher for the traditional BP (ES: 0.68-0.94), and V0 (ES: 1.04-1.48) and P0 (ES: 0.65-0.72) for the ballistic BP. The F0 strongly correlated with BP 1RM (r: 0.915-0.938). The force-velocity relationship is useful to assess the upper body maximal capabilities to generate force, velocity, and power.
NASA Astrophysics Data System (ADS)
Yang, W. M.; Chen, L. P.; Wang, X. J.
2016-02-01
High quality single domain YBCO bulk superconductors, 20 mm in diameter, have been fabricated using a new top seeded infiltration and growth method (called the RE + 011 TSIG method), with a new solid phase (Y2O3 + xBaCuO2) instead of the conventional Y2BaCuO5 solid phase, x = 0, 0.5, 1.0, 1.2, 1.5, 1.8, 2.0, 2.5, 3.0. The effects of different BaCuO2 contents x on the growth morphology, microstructure, and levitation force have been investigated. The results show that the levitation force of the YBCO bulks first increases and then decreases with increasing x, and reaches maximum levitation forces of about 49.2 N (77 K, 0.5 T, with the traditional liquid phase of YBa2Cu3O y + 3 BaCuO2 + 2 CuO) and 47 N (77.3 K, 0.5 T, with the new liquid phase of Y2O3 + 10 BaCuO2 + 6 CuO) when x = 1.2, which is much higher than that of the samples fabricated with the conventional solid phases (23 N). The average Y2BaCuO5 particle size is about 1 μm, which is much smaller than the 3.4 μm in the samples prepared with the conventional Y2BaCuO5 solid phase; this means that the flux pinning force of the sample can be improved by using the new solid phase. Based on this method, single domain YBCO bulks 40 mm, 59 mm, and 93 mm in diameter have also been fabricated using the TSIG process with the new solid phases (Y2O3 + 1.2BaCuO2). These results indicate that the new TSIG process developed by our lab is a very important and practical method for the fabrication of low cost, large size, and high quality single domain REBCO bulk superconductors.
NASA Technical Reports Server (NTRS)
Michalopoulos, C. D.
1974-01-01
Optimal control theory is applied to analyze the transient response of discrete linear systems to forcing functions with unknown time dependence but having known bounds. Particular attention is given to forcing functions which include: (1) maximum displacement of any given mass element, (2) maximum relative displacement of any two adjacent masses, and (3) maximum acceleration of a given mass. Linear mechanical systems with an arbitrary number of degrees of freedom and only one forcing function acting are considered. In the general case, the desired forcing function is found to be a function that switches from the upper-to-lower bound and vice-versa at certain moments of time. A general procedure for finding such switching times is set forth.
Glenn, Jordan M; Galey, Madeline; Edwards, Abigail; Rickert, Bradley; Washington, Tyrone A
2015-07-01
Ability to generate force from the core musculature is a critical factor for sports and general activities with insufficiencies predisposing individuals to injury. This study evaluated isometric force production as a valid and reliable method of assessing abdominal force using the abdominal test and evaluation systems tool (ABTEST). Secondary analysis estimated 1-repetition maximum on commercially available abdominal machine compared to maximum force and average power on ABTEST system. This study utilized test-retest reliability and comparative analysis for validity. Reliability was measured using test-retest design on ABTEST. Validity was measured via comparison to estimated 1-repetition maximum on a commercially available abdominal device. Participants applied isometric, abdominal force against a transducer and muscular activation was evaluated measuring normalized electromyographic activity at the rectus-abdominus, rectus-femoris, and erector-spinae. Test, re-test force production on ABTEST was significantly correlated (r=0.84; p<0.001). Mean electromyographic activity for the rectus-abdominus (72.93% and 75.66%), rectus-femoris (6.59% and 6.51%), and erector-spinae (6.82% and 5.48%) were observed for trial-1 and trial-2, respectively. Significant correlations for the estimated 1-repetition maximum were found for average power (r=0.70, p=0.002) and maximum force (r=0.72, p<0.001). Data indicate the ABTEST can accurately measure rectus-abdominus force isolated from hip-flexor involvement. Negligible activation of erector-spinae substantiates little subjective effort among participants in the lower back. Results suggest ABTEST is a valid and reliable method of evaluating abdominal force. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Johnson, D. R.
1984-01-01
The effects of the vorticity distribution are applied to study planetary boundary layer mass convergence beneath free tropospheric wind maximum. For given forcing by viscous and pressure gradient forces beneath a wind maximum, boundary layer cross stream mass transport is increased by anticyclonic vorticity on the right flank and decreased by cyclonic vorticity on the left flank. Such frictionally forced mass transport induces boundary layer mass convergence beneath the relative wind maximum. This result is related to the empirical rule that the most intense convection and severe weather frequently develop beneath the 500 mb zero relative vorticity isopleth.
Biaxial and Shear Testing Apparatus with Force Controls
2006-03-30
materials as the test specimen. (2) Description of the Prior Art [0004] It is known in the art that pressurized fabric tubes ; pressure-stabilized beams...apparatus is that these roller pins prevent any torsional load from reaching the test specimen. [0010] In Ward et al., (United States Patent No. 5,279,166...loading a specimen through pressurizing the inside surface of a cylinder is disclosed. A thin-wall tube specimen is biaxially tested for stress analysis
Mohammadi, Morteza; Tembely, Moussa; Dolatabadi, Ali
2017-02-28
Dynamical analysis of an impacting liquid drop on superhydrophobic surfaces is mostly carried out by evaluating the droplet contact time and maximum spreading diameter. In this study, we present a general transient model of the droplet spreading diameter developed from the previously defined mass-spring model for bouncing drops. The effect of viscosity was also considered in the model by definition of a dash-pot term extracted from experiments on various viscous liquid droplets on a superhydrophobic surface. Furthermore, the resultant shear force of the stagnation air flow was also considered with the help of the classical Homann flow approach. It was clearly shown that the proposed model predicts the maximum spreading diameter and droplet contact time very well. On the other hand, where stagnation air flow is present in contradiction to the theoretical model, the droplet contact time was reduced as a function of both droplet Weber numbers and incoming air velocities. Indeed, the reduction in the droplet contact time (e.g., 35% at a droplet Weber number of up to 140) was justified by the presence of a formed thin air layer underneath the impacting drop on the superhydrophobic surface (i.e., full slip condition). Finally, the droplet wetting model was also further developed to account for low temperature through the incorporation of classical nucleation theory. Homogeneous ice nucleation was integrated into the model through the concept of the reduction of the supercooled water drop surface tension as a function of the gas-liquid interface temperature, which was directly correlated with the Nusselt number of incoming air flow. It was shown that the experimental results was qualitatively predicted by the proposed model under all supercooling conditions (i.e., from -10 to -30 °C).
2013-01-01
Background Zirconia materials are known for their optimal aesthetics, but they are brittle, and concerns remain about whether their mechanical properties are sufficient for withstanding the forces exerted in the oral cavity. Therefore, this study compared the maximum deformation and failure forces of titanium implants between titanium-alloy and zirconia abutments under oblique compressive forces in the presence of two levels of marginal bone loss. Methods Twenty implants were divided into Groups A and B, with simulated bone losses of 3.0 and 1.5 mm, respectively. Groups A and B were also each divided into two subgroups with five implants each: (1) titanium implants connected to titanium-alloy abutments and (2) titanium implants connected to zirconia abutments. The maximum deformation and failure forces of each sample was determined using a universal testing machine. The data were analyzed using the nonparametric Mann–Whitney test. Results The mean maximum deformation and failure forces obtained the subgroups were as follows: A1 (simulated bone loss of 3.0 mm, titanium-alloy abutment) = 540.6 N and 656.9 N, respectively; A2 (simulated bone loss of 3.0 mm, zirconia abutment) = 531.8 N and 852.7 N; B1 (simulated bone loss of 1.5 mm, titanium-alloy abutment) = 1070.9 N and 1260.2 N; and B2 (simulated bone loss of 1.5 mm, zirconia abutment) = 907.3 N and 1182.8 N. The maximum deformation force differed significantly between Groups B1 and B2 but not between Groups A1 and A2. The failure force did not differ between Groups A1 and A2 or between Groups B1 and B2. The maximum deformation and failure forces differed significantly between Groups A1 and B1 and between Groups A2 and B2. Conclusions Based on this experimental study, the maximum deformation and failure forces are lower for implants with a marginal bone loss of 3.0 mm than of 1.5 mm. Zirconia abutments can withstand physiological occlusal forces applied in the anterior region. PMID:23688204
Self-locking double retention redundant pull pin release
NASA Technical Reports Server (NTRS)
Killgrove, Thomas O. (Inventor)
1987-01-01
A double-retention redundant pull pin release system is disclosed. The system responds to a single pull during an intentional release operation. A spiral-threaded main pin is seated in a mating bore in a housing, which main pin has a flange fastened thereon at the part of the main pin which is exterior to the housing. Accidental release tends to rotate the main pin. A secondary pin passes through a slightly oversized opening in the flange and is seated in a second bore in the housing. The pins counteract against one another to prevent accidental release. A frictional lock is shared between the main and secondary pins to enhance further locking of the system. The secondary pin, in response to a first pull, is fully retracted from its bore and flange hole. Thereafter the pull causes the main pin to rotate free of the housing to release, for example, a parachute mechanism.
CUSTODIO, William; GOMES, Simone Guimarães Farias; FAOT, Fernanda; GARCIA, Renata Cunha Matheus Rodrigues; DEL BEL CURY, Altair Antoninha
2011-01-01
Objective The aim of this study was to evaluate whether vertical facial patterns influence maximal occlusal force (MOF), masticatory muscle electromyographic (EMG) activity, and medial mandibular flexure (MMF). Material and Methods Seventy-eight dentate subjects were divided into 3 groups by Ricketts's analysis: brachyfacial, mesofacial and dolychofacial. Maximum occlusal force in the molar region was bilaterally measured with a force transducer. The electromyographic activities of the masseter and anterior temporal muscles were recorded during maximal voluntary clenching. Medial mandibular flexure was calculated by subtracting the intermolar distance of maximum opening or protrusion from the distance in the rest position. The data were analyzed using ANOVA followed by Tukey's HSD test. The significance level was set at 5%. Results Data on maximum occlusal force showed that shorter faces had higher occlusal forces (P<0.0001). Brachyfacial subjects presented higher levels of masseter electromyographic activity and medial mandibular flexure, followed by the mesofacial and dolychofacial groups. Additionally, dolychofacial subjects showed significantly lower electromyographic temporalis activities (P<0.05). Conclusion Within the limitations of the study, it may be concluded that maximum occlusal force, masticatory muscle activity and medial mandibular flexure were influenced by the vertical facial pattern. PMID:21655772
NASA Astrophysics Data System (ADS)
Camara, N.; Zekentes, K.; Zelenin, V. V.; Abramov, P. L.; Kirillov, A. V.; Romanov, L. P.; Boltovets, N. S.; Krivutsa, V. A.; Thuaire, A.; Bano, E.; Tsoi, E.; Lebedev, A. A.
2008-02-01
Sublimation epitaxy under vacuum (SEV) was investigated as a method for growing 4H-SiC epitaxial structures for p-i-n diode fabrication. The SEV-grown 4H-SiC material was investigated with scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction, photo-luminescence spectroscopy (PL), cathodo-luminescence (CL) spectroscopy, photocurrent method for carrier diffusion length determination, electro-luminescence microscopy (EL), deep level transient spectroscopy (DLTS), C-V profiling and Hall-effect measurements. When possible, the same investigation techniques were used in parallel with similar layers grown by chemical vapour deposition (CVD) epitaxy and the physical properties of the two kind of epitaxied layers were compared. p-i-n diodes were fabricated in parallel on SEV and CVD-grown layers and showed close electrical performances in dc mode in term of capacitance, resistance and transient time switching, despite the lower mobility and the diffusion length of the SEV-grown layers. X-band microwave switches based on the SEV-grown p-i-n diodes have been demonstrated with insertion loss lower than 4 dB and an isolation higher than 17 dB. These single-pole single-throw (SPST) switches were able to handle a pulsed power up to 1800 W in isolation mode, similar to the value obtained with switches incorporating diodes with CVD-grown layers.
Effect of cubic equiaxed grains and its Ti-stabilizing performance in Nb3Sn strands
NASA Astrophysics Data System (ADS)
Chaowu, Zhang; Lian, Zhou; Sulpice, Andre; Soubeyroux, Jean-Louis; Xiande, Tang; Verwaerde, Christophe; Hoang, Gia Ky
2009-06-01
Two kinds of multifilament internal-Sn Nb3Sn superconducting strands were fabricated through the RRP method, one with 2 wt% of Ti alloyed in an Sn core and the other just pure Sn. Four reaction temperatures of 650, 675, 700 and 725 °C and 128 h duration were applied for A15 phase formation heat treatment after a Cu-Sn alloying procedure of 210 °C/50 h+340 °C/25 h. Through the standard four-probe technique the heat-treated coil samples were examined for the transport non-Cu JC variation with applied field B which was then used to calculate the flux pinning force variation FP-B. The samples' phase microstructure were also observed by means of FESEM. The obtained results demonstrate that for fully reacted Nb3Sn superconductors the transport critical current density JC is more importantly affected by the cubic equiaxed morphology than by grain dimension, due to its much stronger flux pinning performance of the morphology. Ti addition in Sn stabilizes the cubic equiaxed grains at lower reaction temperature so that the HT temperature is effectively reduced, the flux pinning strength is largely reinforced and thus the transport non-Cu JC is substantially promoted. Funds: this research project was supported by the France-China Collaboration Research contract CNRS no. 722441 and the SUST doctoral foundation BJ07-07.
Establishing the need for an engineering standard for agricultural hitch pins.
Deboy, G R; Knapp, W M; Field, W E; Krutz, G W; Corum, C L
2012-04-01
Documented incidents have occurred in which failure or unintentional disengagement of agricultural hitch pins has contributed to property damage and personal injury. An examination of current hitch pin use on a convenience sample of farm operations in Indiana revealed a variety of non-standard, worn and damaged, and inappropriately sized hitch pins in use. Informal interviews with the farm operators confirmed that hitch pin misuse, failure, or disengagement is a relatively widespread problem that remains largely unaddressed. On-site observations also suggested a low use of hitch pin retaining devices or safety chains. A review of prior research revealed that little attention has been given to this problem, and currently no documentation allows for an estimate of the frequency or severity of losses associated with hitch pin misuse, failure, or disengagement. No specific engineering standards were found that directly applied to the design, appropriate selection, or loading capacity of agricultural hitch pins. Major suppliers of replacement hitch pins currently provide little or no information on matching hitch pin size to intended applications, and most replacement hitch pins examined were of foreign origin, with the overwhelming majority imported from China or India. These replacement hitch pins provided no specifications other than diameter, length, and, in some cases, labeling that indicated that the pins had been "heat treated. " Testing of a sample of 11 commercially available replacement hitch pins found variation along the length of the pin shaft and between individual pins in surface hardness, a potential predictor of pin failure. Examination of 17 commercially available replacement pins also revealed a variety of identifiers used to describe pin composition and fabrication methods, e.g., "heat treated." None of the pins examined provided any specifications on loading capacity. It was therefore concluded that there is a need to develop an agricultural hitch pin engineering standard that would reflect current agricultural applications and practices and that would be promoted to both original equipment manufacturers and manufacturers and suppliers of replacement hitch pins. The standard should address the design of composite pins, heat treating, surface hardening, loading capacity and labeling of such, incorporation of unintentional disengagement prevention devices, indicators of the need for replacement due to wear, and safety information that should be included in operator instructions. ASABE is the most appropriate organization to develop such a standard. It was also concluded that agricultural safety and health programs and professionals need to raise the awareness of farmers concerning the appropriate selection and use of agricultural hitch pins, including the need to replace non-standard pins with pins less likely to fail or disengage during use, the need to replace hitch pins with indications of potential failure, and the importance of using appropriate safety chains, especially during transport of equipment behind tractors and trucks on public roads.
Maximum Bite Force Analysis in Different Age Groups
Takaki, Patricia; Vieira, Marilena; Bommarito, Silvana
2014-01-01
Introduction Maximum bite force (MBF) is the maximum force performed by the subject on the fragmentation of food, directly related with the mastication and determined by many factors. Objective Analyze the MBF of subjects according to age groups. Methods One hundred individuals from the city of São Paulo were equally divided according to age groups and gender. Each individual submitted to a myotherapy evaluation composed of anthropometric measurements of height and weight to obtain body mass index (BMI), using a tape and a digital scale (Magna, G-life, São Paulo), and a dental condition and maximum bite force evaluation, using a digital dynamometer model DDK/M (Kratos, São Paulo, Brazil), on Newton scale. The dental and bite force evaluations were monitored by a professional from the area. Analysis of variance was used with MBF as a dependent variable, age group and gender as random factors, and BMI as a control variable. Results Till the end of adolescence, it was possible to observe a decrease in MBF in both sexes, with the male force greater than the female force. In young adults, the female force became greater the males, then decreased in adulthood. There was no correlation between MBF and BMI. Conclusion There are MBF variations that characterizes the human development stages, according to age groups. PMID:25992105
Pin-Retraction Mechanism On Quick-Release Cover
NASA Technical Reports Server (NTRS)
Macmartin, Malcolm
1994-01-01
Quick-release cover includes pin-retraction mechanism releasing cover quickly from lower of two sets of pin connections holding cover. Cover released at top by pulling lever as described in "Lever-Arm Pin Puller" (NPO-18788). Removal of cover begins when technician or robot pulls upper-pin-release lever. Cover swings downward until tabs on lower pins are pulled through slots in their receptacles. Lower pins are then free.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordienko, P. V., E-mail: gorpavel@vver.kiae.ru; Kotsarev, A. V.; Lizorkin, M. P.
2014-12-15
The procedure of recovery of pin-by-pin energy-release fields for the BIPR-8 code and the algorithm of the BIPR-8 code which is used in nodal computation of the reactor core and on which the recovery of pin-by-pin fields of energy release is based are briefly described. The description and results of the verification using the module of recovery of pin-by-pin energy-release fields and the TVS-M program are given.
Electrical Connector Mechanical Seating Sensor
NASA Technical Reports Server (NTRS)
Arens, Ellen; Captain, Janine; Youngquist, Robert
2011-01-01
A sensor provides a measurement of the degree of seating of an electrical connector. This sensor provides a number of discrete distances that a plug is inserted into a socket or receptacle. The number of measurements is equal to the number of pins available in the connector for sensing. On at least two occasions, the Shuttle Program has suffered serious time delays and incurred excessive costs simply because a plug was not seated well within a receptacle. Two methods were designed to address this problem: (1) the resistive pin technique and (2) the discrete length pins technique. In the resistive pin approach, a standard pin in a male connector is replaced with a pin that has a uniform resistivity along its length. This provides a variable resistance on that pin that is dependent on how far the pin is inserted into a socket. This is essentially a linear potentiometer. The discrete approach uses a pin (or a few pins) in the connector as a displacement indicator by truncating the pin length so it sits shorter in the connector than the other pins. A loss of signal on this pin would indicate a discrete amount of displacement of the connector. This approach would only give discrete values of connector displacement, and at least one pin would be needed for each displacement value that would be of interest.
Ganser, Antonia; Thompson, Rosemary E; Tami, Ivan; Neuhoff, Dirk; Steiner, Adrian; Ito, Keita
2007-02-01
To compare the clinical benefits of stainless steel (SS) to titanium (Ti) on reducing pin track irritation/infection and pin loosening during external fracture fixation. A tibial gap osteotomy was created in 17 sheep and stabilized with four Schanz screws of either SS or Ti and an external fixation frame. Over the 12 week observation period, pin loosening was assessed by grading the radiolucency around the pins and measuring the extraction torque on pin removal at sacrifice. Irritation/infection was assessed with weekly clinical pin track grading. A histological analysis of the tissue adjacent to the pin site was made to assess biocompatibility. A statistically non-significant trend for less bone resorption around Ti pins was found during the early observation period. However, at sacrifice, there was no difference between the two materials. Also, there was no difference in the extraction torque, and there was similar remodeling and apposition of the bone around the pins. A statistically non-significant trend for more infection about SS pins at sacrifice was found. Histology showed a slightly higher prevalence of reactionary cells in SS samples, but was otherwise not much different than around Ti pins. There is no clinically relevant substantial advantage in using either SS or Ti pins on reducing pin loosening or pin track irritation/infection.
Apparatus for inspecting fuel elements
Oakley, David J.; Groves, Oliver J.; Kaiser, Bruce J.
1986-01-01
Disclosed is an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.
Apparatus for inspecting fuel elements
Kaiser, B.J.; Oakley, D.J.; Groves, O.J.
1984-12-21
This disclosure describes an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.
MgB2 wire diameter reduction by hot isostatic pressing—a route for enhanced critical current density
NASA Astrophysics Data System (ADS)
Morawski, A.; Cetner, T.; Gajda, D.; Zaleski, A. J.; Häßler, W.; Nenkov, K.; Rindfleisch, M. A.; Tomsic, M.; Przysłupski, P.
2018-07-01
The effect of wire diameter reduction on the critical current density of pristine MgB2 wire was studied. Wires were treated by a hot isostatic pressing method at 570 °C and at pressures of up to 1.1 GPa. It was found that the wire diameter reduction induces an increase of up to 70% in the mass density of the superconducting cores. This feature leads to increases in critical current, critical current density, and pinning force density. The magnitude and field dependence of the critical current density are related to both grain connectivity and structural defects, which act as effective pinning centers. High field transport properties were obtained without doping of the MgB2 phase. A critical current density jc of 3500 A mm‑2 was reached at 4 K, 6 T for the best sample, which was a five-fold increase compared to MgB2 samples synthesized at ambient pressure.
Effects of repetitive bending on the magnetoresistance of a flexible spin-valve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, J.-H.; Kwak, W.-Y.; Cho, B. K., E-mail: chobk@gist.ac.kr
2015-05-07
A positive magnetostrictive single layer (CoFe) and top-pinned spin-valve structure with positive magnetostrictive free (NiFe) and pinned (CoFe) layers were deposited on flexible polyethylene terephthalate film to investigate the changes in the magnetic properties in flexible environments, especially with a repetitive bending process. It was found that the stress, applied by repetitive bending, changes significantly the magnetic anisotropy of both layers in a single and spin-valve structure depending on the direction of applied stress. The changes in magnetic anisotropy were understood in terms of the inverse magnetostriction effect (the Villari effect) and the elastic recovery force from the flexibility ofmore » the polymer substrate. Repetitive bending with tensile stress transverse (or parallel) to the magnetic easy axis was found to enhance (or reduce) the magnetic anisotropy and, consequently, the magnetoresistance ratio of a spin-valve. The observed effects of bending stress in this study should be considered for the practical applications of electro-magnetic devices, especially magneto-striction sensor.« less
Apparatus and method for mounting photovoltaic power generating systems on buildings
Russell, Miles Clayton [Lincoln, MA
2008-10-14
Rectangular PV modules (6) are mounted on a building roof (4) by mounting stands that are distributed in rows and columns. Each stand comprises a base plate (10) that rests on the building roof (4) and first and second brackets (12, 14) of different height attached to opposite ends of the base plate (10). Each bracket (12, 14) has dual members for supporting two different PV modules (6), and each PV module (6) has a mounting pin (84) adjacent to each of its four corners. Each module (6) is supported by attachment of two of its mounting pins (84) to different first brackets (12), whereby the modules (6) and their supporting stands are able to resist uplift forces resulting from high velocity winds without the base plates (10) being physically attached to the supporting roof structure (4). Preferably the second brackets (14) have a telescoping construction that permits their effective height to vary from less than to substantially the same as that of the first brackets (12).
NASA Technical Reports Server (NTRS)
Maddux, Gary A.
1998-01-01
During the time frame allocated by the delivery order, members of the UAH Applied Research Program, with the cooperation of representatives from NASA investigated and conducted stress analysis of the SEDSAT1 satellite. The main area of concern was with the design of the deployable 10 m antennas. The placement of the holes for the antenna door hinge pin was too close to the edge of the antenna canister. Because of the load placed on the hinge pin, the stress analysis of this area suggested that more space would be needed between the holes and the edge of the material. Due to other conflicts, SEDSATI was removed from flying on the space shuttle and moved to the Delta Launch Vehicle. This changed many of the design requirements for the mounting and deployment of the satellite that forced a new design for the satellite. Once this happened, the stress analysis became obsolete, and the task was concluded.
Mechanics of Individual, Isolated Vortices in a Cuprate Superconductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auslaender, M.
2010-05-25
Superconductors often contain quantized microscopic whirlpools of electrons, called vortices, that can be modeled as one-dimensional elastic objects. Vortices are a diverse playground for condensed matter because of the interplay between thermal fluctuations, vortex-vortex interactions, and the interaction of the vortex core with the three-dimensional disorder landscape. While vortex matter has been studied extensively, the static and dynamic properties of an individual vortex have not. Here we employ magnetic force microscopy (MFM) to image and manipulate individual vortices in detwinned, single crystal YBa{sub 2}Cu{sub 3}O{sub 6.991} (YBCO), directly measuring the interaction of a moving vortex with the local disorder potential.more » We find an unexpected and dramatic enhancement of the response of a vortex to pulling when we wiggle it transversely. In addition, we find enhanced vortex pinning anisotropy that suggests clustering of oxygen vacancies in our sample and demonstrates the power of MFM to probe vortex structure and microscopic defects that cause pinning.« less
Distributed support modelling for vertical track dynamic analysis
NASA Astrophysics Data System (ADS)
Blanco, B.; Alonso, A.; Kari, L.; Gil-Negrete, N.; Giménez, J. G.
2018-04-01
The finite length nature of rail-pad supports is characterised by a Timoshenko beam element formulation over an elastic foundation, giving rise to the distributed support element. The new element is integrated into a vertical track model, which is solved in frequency and time domain. The developed formulation is obtained by solving the governing equations of a Timoshenko beam for this particular case. The interaction between sleeper and rail via the elastic connection is considered in an analytical, compact and efficient way. The modelling technique results in realistic amplitudes of the 'pinned-pinned' vibration mode and, additionally, it leads to a smooth evolution of the contact force temporal response and to reduced amplitudes of the rail vertical oscillation, as compared to the results from concentrated support models. Simulations are performed for both parametric and sinusoidal roughness excitation. The model of support proposed here is compared with a previous finite length model developed by other authors, coming to the conclusion that the proposed model gives accurate results at a reduced computational cost.
Pin routability and pin access analysis on standard cells for layout optimization
NASA Astrophysics Data System (ADS)
Chen, Jian; Wang, Jun; Zhu, ChengYu; Xu, Wei; Li, Shuai; Lin, Eason; Ou, Odie; Lai, Ya-Chieh; Qu, Shengrui
2018-03-01
At advanced process nodes, especially at sub-28nm technology, pin accessibility and routability of standard cells has become one of the most challenging design issues due to the limited router tracks and the increased pin density. If this issue can't be found and resolved during the cell design stage, the pin access problem will be very difficult to be fixed in implementation stage and will make the low efficiency for routing. In this paper, we will introduce a holistic approach for the pin accessibility scoring and routability analysis. For accessibility, the systematic calculator which assigns score for each pin will search the available access points, consider the surrounded router layers, basic design rule and allowed via geometry. Based on the score, the "bad" pins can be found and modified. On pin routability analysis, critical pin points (placing via on this point would lead to failed via insertion) will be searched out for either layout optimization guide or set as OBS for via insertion blocking. By using this pin routability and pin access analysis flow, we are able to improve the library quality and performance.
NASA Technical Reports Server (NTRS)
Nelson, Herbert C; Cunningham, Herbert J
1956-01-01
A Rayleigh type analysis involving chosen modes of the panel as degrees of freedom is used to treat the flutter of a two-dimensional flat panel supported at its leading and trailing edges and subjected to a middle-plane tensile force. The panel has a supersonic stream passing over its upper surface and still air below. The aerodynamic forces due to the supersonic stream are obtained from the theory for linearized two-dimensional unsteady flow and the forces due to the still air are obtained from acoustical theory. In order to study the effect of increasing the number of modes in the analysis, two and then four modes are employed. The modes used are the first four natural modes of the panel in a vacuum with no tensile force acting. The analysis includes these variables: Mach number, structural damping, tensile force, density of the still air, and edge fixity (clamped and pinned). For certain combinations of these variables, stability boundaries are obtained which can be used to determine the panel thickness required to prevent flutter for any panel material and altitude.
Graphic kinematics, visual virtual work and elastographics
Konstantatou, Marina; Athanasopoulos, Georgios; Hannigan, Laura
2017-01-01
In this paper, recent progress in graphic statics is combined with Williot displacement diagrams to create a graphical description of both statics and kinematics for two- and three-dimensional pin-jointed trusses. We begin with reciprocal form and force diagrams. The force diagram is dissected into its component cells which are then translated relative to each other. This defines a displacement diagram which is topologically equivalent to the form diagram (the structure). The various contributions to the overall Virtual Work appear as parallelograms (for two-dimensional trusses) or parallelopipeds (for three-dimensional trusses) that separate the force and the displacement pieces. Structural mechanisms can be identified by translating the force cells such that their shared faces slide across each other without separating. Elastic solutions can be obtained by choosing parallelograms or parallelopipeds of the appropriate aspect ratio. Finally, a new type of ‘elastographic’ diagram—termed a deformed Maxwell–Williot diagram (two-dimensional) or a deformed Rankine–Williot diagram (three-dimensional)—is presented which combines the deflected structure with the forces carried by its members. PMID:28573030
Correlation of Descriptive Analysis and Instrumental Puncture Testing of Watermelon Cultivars.
Shiu, J W; Slaughter, D C; Boyden, L E; Barrett, D M
2016-06-01
The textural properties of 5 seedless watermelon cultivars were assessed by descriptive analysis and the standard puncture test using a hollow probe with increased shearing properties. The use of descriptive analysis methodology was an effective means of quantifying watermelon sensory texture profiles for characterizing specific cultivars' characteristics. Of the 10 cultivars screened, 71% of the variation in the sensory attributes was measured using the 1st 2 principal components. Pairwise correlation of the hollow puncture probe and sensory parameters determined that initial slope, maximum force, and work after maximum force measurements all correlated well to the sensory attributes crisp and firm. These findings confirm that maximum force correlates well with not only firmness in watermelon, but crispness as well. The initial slope parameter also captures the sensory crispness of watermelon, but is not as practical to measure in the field as maximum force. The work after maximum force parameter is thought to reflect cellular arrangement and membrane integrity that in turn impact sensory firmness and crispness. Watermelon cultivar types were correctly predicted by puncture test measurements in heart tissue 87% of the time, although descriptive analysis was correct 54% of the time. © 2016 Institute of Food Technologists®
ESD testing of the 8S actuator (u)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mchugh, Douglas C
2010-12-03
The 8S actuator is a hot-wire initiated explosive component used to drive the W76-1 2X Acorn 1V valve. It is known to be safe from human electrostatic discharge (ESD) pin-to-pin and all pin-to-cup stimuli as well as 1 amp/1 watt safe. However low impedance (furniture) ESD stimuli applied pin-to-pin has not been evaluated. Components were tested and the results analyzed. The 8S actuator has been shown to be immune to human and severe furniture ESD, whether applied pin-to-pin or pin-to-cup.
NASA Astrophysics Data System (ADS)
Tripathi, D.; Dey, T. K.
2014-12-01
A series of MgB2 pellets with and without addition of carbon from different sources (viz. starch, polystyrene and carbon nanotubes) have been synthesized by solid state reaction under argon atmosphere. XRD analysis indicates a decrease in lattice parameters of MgB2 with addition of starch, polystyrene (PS) and MWCNT and confirms substitution of carbon in boron sites. The presence of nanosized carbon inclusions between the grain boundaries in the present set of samples is evident in TEM photographs. Resistivity data confirms a decrease in superconducting transition temperature (Tc0) for MgB2 doped with starch/PS/MWCNT. The effect of different field cooling heights (HIFC) at 20 K on maximum levitation force (FMLF) and maximum attractive force (FMAF) of pure MgB2 and MgB2 doped with starch/PS/MWCNT have been investigated. Except for MWCNT, doping of starch and PS in MgB2 is found to improve FMLF and FMAF and the best result is obtained for MgB2 doped with 1 wt.% PS. Levitation force measured as a function of decreasing initial field cooling height indicates exponential dependence of both maximum levitation force (FMLF) and maximum attractive force (FMAF). However, the gap distance between PM and the sample (H0AF and HMAF) corresponding to maximum attractive force (FMAF) and zero attractive force (F0AF) varies linearly and their difference remains constant. This constancy in (HMAF - H0AF) is understood in terms of constant reduction rate of magnetic flux density between H0AF and HMAF.
Morouço, Pedro G; Marinho, Daniel A; Keskinen, Kari L; Badillo, Juan J; Marques, Mário C
2014-11-01
The purpose of this study was two-fold: (a) to compare stroke and the physiological responses between maximal tethered and free front crawl swimming and (b) to evaluate the contribution of force exertion for swimming performance over short distances. A total of 34 male swimmers, representing various levels of competitive performance, participated in this study. Each participant was tested in both a 30-second maximal tethered swimming test and a 50-m free swimming test. The tethered force parameters, the swimming speed, stroke (stroke rate [SR]), and the physiological responses (increase in blood lactate concentration [ΔBLa], heart rate, and rate of perceived exertion) were recorded and calculated. The results showed no differences in stroke and the physiological responses between tethered and free swimming, with a high level of agreement for the SR and ΔBLa. A strong correlation was obtained between the maximum impulse of force per stroke and the speed (r = 0.91; p < 0.001). Multiple regression analysis revealed that the maximum impulse and SR in the tethered condition explained 84% of the free swimming performance. The relationship between the swimming speed and maximum force tended to be nonlinear, whereas linear relationships were observed with the maximum impulse. This study demonstrates that tethered swimming does not significantly alter stroke and the physiological responses compared with free swimming, and that the maximum impulse per stroke should be used to evaluate the balance between force and the ability to effectively apply force during sprint swimming. Consequently, coaches can rely on tethered forces to identify strength deficits and improve swimming performance over short distances.
Park, Sangsoo; Spirduso, Waneen; Eakin, Tim; Abraham, Lawrence
2018-01-01
The authors investigated how varying the required low-level forces and the direction of force change affect accuracy and variability of force production in a cyclic isometric pinch force tracking task. Eighteen healthy right-handed adult volunteers performed the tracking task over 3 different force ranges. Root mean square error and coefficient of variation were higher at lower force levels and during minimum reversals compared with maximum reversals. Overall, the thumb showed greater root mean square error and coefficient of variation scores than did the index finger during maximum reversals, but not during minimum reversals. The observed impaired performance during minimum reversals might originate from history-dependent mechanisms of force production and highly coupled 2-digit performance.
An analytical fiber bundle model for pullout mechanics of root bundles
NASA Astrophysics Data System (ADS)
Cohen, D.; Schwarz, M.; Or, D.
2011-09-01
Roots in soil contribute to the mechanical stability of slopes. Estimation of root reinforcement is challenging because roots form complex biological networks whose geometrical and mechanical characteristics are difficult to characterize. Here we describe an analytical model that builds on simple root descriptors to estimate root reinforcement. Root bundles are modeled as bundles of heterogeneous fibers pulled along their long axes neglecting root-soil friction. Analytical expressions for the pullout force as a function of displacement are derived. The maximum pullout force and corresponding critical displacement are either derived analytically or computed numerically. Key model inputs are a root diameter distribution (uniform, Weibull, or lognormal) and three empirical power law relations describing tensile strength, elastic modulus, and length of roots as functions of root diameter. When a root bundle with root tips anchored in the soil matrix is pulled by a rigid plate, a unique parameter, ?, that depends only on the exponents of the power law relations, dictates the order in which roots of different diameters break. If ? < 1, small roots break first; if ? > 1, large roots break first. When ? = 1, all fibers break simultaneously, and the maximum tensile force is simply the roots' mean force times the number of roots in the bundle. Based on measurements of root geometry and mechanical properties, the value of ? is less than 1, usually ranging between 0 and 0.7. Thus, small roots always fail first. The model shows how geometrical and mechanical characteristics of roots and root diameter distribution affect the pullout force, its maximum and corresponding displacement. Comparing bundles of roots that have similar mean diameters, a bundle with a narrow variance in root diameter will result in a larger maximum force and a smaller displacement at maximum force than a bundle with a wide diameter distribution. Increasing the mean root diameter of a bundle without changing the distribution's shape increases both the maximum force and corresponding displacement. Estimates of the maximum pullout forces for bundles of 100 roots with identical diameter distribution for different species range from less than 1 kN for barley (Hordeum vulgare) to almost 16 kN for pistachio (Pistacia lentiscus). The model explains why a commonly used assumption that all roots break simultaneously overpredicts the maximum pullout force by a factor of about 1.6-2. This ratio may exceed 3 for diameter distributions that have a large number of small roots like the exponential distribution.
Genome-wide identification and evolution of the PIN-FORMED (PIN) gene family in Glycine max.
Liu, Yuan; Wei, Haichao
2017-07-01
Soybean (Glycine max) is one of the most important crop plants. Wild and cultivated soybean varieties have significant differences worth further investigation, such as plant morphology, seed size, and seed coat development; these characters may be related to auxin biology. The PIN gene family encodes essential transport proteins in cell-to-cell auxin transport, but little research on soybean PIN genes (GmPIN genes) has been done, especially with respect to the evolution and differences between wild and cultivated soybean. In this study, we retrieved 23 GmPIN genes from the latest updated G. max genome database; six GmPIN protein sequences were changed compared with the previous database. Based on the Plant Genome Duplication Database, 18 GmPIN genes have been involved in segment duplication. Three pairs of GmPIN genes arose after the second soybean genome duplication, and six occurred after the first genome duplication. The duplicated GmPIN genes retained similar expression patterns. All the duplicated GmPIN genes experienced purifying selection (K a /K s < 1) to prevent accumulation of non-synonymous mutations and thus remained more similar. In addition, we also focused on the artificial selection of the soybean PIN genes. Five artificially selected GmPIN genes were identified by comparing the genome sequence of 17 wild and 14 cultivated soybean varieties. Our research provides useful and comprehensive basic information for understanding GmPIN genes.
Reduction of halo pin site morbidity with a new pin care regimen.
Kazi, Hussain Anthony; de Matas, Marcus; Pillay, Robin
2013-06-01
A retrospective analysis of halo device associated morbidity over a 4-year period. To assess the impact of a new pin care regimen on halo pin site related morbidity. Halo orthosis treatment still has a role in cervical spine pathology, despite increasing possibilities of open surgical treatment. Published figures for pin site infection range from 12% to 22% with pin loosening from 7% to 50%. We assessed the outcome of a new pin care regimen on morbidity associated with halo spinal orthoses, using a retrospective cohort study from 2001 to 2004. In the last two years, our pin care regimen was changed. This involved pin site care using chlorhexidene & regular torque checking as part of a standard protocol. Previously, povidone iodine was used as skin preparation in theatre, followed by regular sterile saline cleansing when pin sites became encrusted with blood. There were 37 patients in the series, the median age was 49 (range, 22-83) and 20 patients were male. The overall infection rate prior to the new pin care protocol was 30% (n=6) and after the introduction, it dropped to 5.9% (n=1). This difference was statistically significant (p<0.05). Pin loosening occurred in one patient in the group prior to the formal pin care protocol (3%) and none thereafter. Reduced morbidity from halo use can be achieved with a modified pin cleansing and tightening regimen.
The prolyl isomerase Pin1 increases β-cell proliferation and enhances insulin secretion.
Nakatsu, Yusuke; Mori, Keiichi; Matsunaga, Yasuka; Yamamotoya, Takeshi; Ueda, Koji; Inoue, Yuki; Mitsuzaki-Miyoshi, Keiko; Sakoda, Hideyuki; Fujishiro, Midori; Yamaguchi, Suguru; Kushiyama, Akifumi; Ono, Hiraku; Ishihara, Hisamitsu; Asano, Tomoichiro
2017-07-14
The prolyl isomerase Pin1 binds to the phosphorylated Ser/Thr-Pro motif of target proteins and enhances their cis-trans conversion. This report is the first to show that Pin1 expression in pancreatic β cells is markedly elevated by high-fat diet feeding and in ob/ob mice. To elucidate the role of Pin1 in pancreatic β cells, we generated β-cell-specific Pin1 KO (βPin1 KO) mice. These mutant mice showed exacerbation of glucose intolerance but had normal insulin sensitivity. We identified two independent factors underlying impaired insulin secretion in the βPin1 KO mice. Pin1 enhanced pancreatic β-cell proliferation, as indicated by a reduced β-cell mass in βPin1 KO mice compared with control mice. Moreover, a diet high in fat and sucrose failed to increase pancreatic β-cell growth in the βPin1 KO mice, an observation to which up-regulation of the cell cycle protein cyclin D appeared to contribute. The other role of Pin1 was to activate the insulin-secretory step: Pin1 KO β cells showed impairments in glucose- and KCl-induced elevation of the intracellular Ca 2+ concentration and insulin secretion. We also identified salt-inducible kinase 2 (SIK2) as a Pin1-binding protein that affected the regulation of Ca 2+ influx and found Pin1 to enhance SIK2 kinase activity, resulting in a decrease in p35 protein, a negative regulator of Ca 2+ influx. Taken together, our observations demonstrate critical roles of Pin1 in pancreatic β cells and that Pin1 both promotes β-cell proliferation and activates insulin secretion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Ouaras, K.; Magne, L.; Pasquiers, S.; Tardiveau, P.; Jeanney, P.; Bournonville, B.
2018-04-01
The spatiotemporal distributions of the OH radical density are measured using planar laser induced fluorescence in the afterglow of a nanosecond diffuse discharge at atmospheric pressure in humid air. The diffuse discharge is generated between a pin and a grounded plate electrodes within a gap of 18 mm. The high voltage pulse applied to the pin ranges from 65 to 85 kV with a rise time of 2 ns. The specific electrical energy transferred to the gas ranges from 5 to 40 J l‑1. The influence of H2O concentration is studied from 0.5% to 1.5%. An absolute calibration of OH density is performed using a six-level transient rate equation model to simulate the dynamics of OH excitation by the laser, taking into account collisional processes during the optical pumping and the fluorescence. Rayleigh scattering measurements are used to achieve the geometrical part of the calibration. A local maximum of OH density is found in the pin area whatever the operating conditions. For 85 kV and 1% of H2O, this peak reaches a value of 2.0 × 1016 cm‑3 corresponding to 8% of H2O dissociation. The temporal decay of the spatially averaged OH density is found to be similar as in the afterglow of a homogeneous photo-triggered discharge for which a self-consistent modeling is done. These tools are then used to bring discussion elements on OH kinetics.
Pinning by rare defects and effective mobility for elastic interfaces in high dimensions
NASA Astrophysics Data System (ADS)
Cao, Xiangyu; Démery, Vincent; Rosso, Alberto
2018-06-01
The existence of a depinning transition for a high dimensional interface in a weakly disordered medium is controversial. Following Larkin arguments and a perturbative expansion, one expects a linear response with a renormalized mobility . In this paper, we compare these predictions with the exact solution of a fully connected model, which displays a finite critical force . At small disorder, we unveil an intermediary linear regime for characterized by the renormalized mobility . Our results suggest that in high dimension the critical force is always finite and determined by the effect of rare impurities that is missed by the perturbative expansion. However, the perturbative expansion correctly describes an intermediate regime that should be visible at small disorder.
Lewis, Richard A.
1980-01-01
A target for a proton beam which is capable of generating neutrons for absorption in a breeding blanket includes a plurality of solid pins formed of a neutron emissive target material disposed parallel to the path of the beam and which are arranged axially in a plurality of layers so that pins in each layer are offset with respect to pins in all other layers, enough layers being used so that each proton in the beam will strike at least one pin with means being provided to cool the pins. For a 300 mA, 1 GeV beam (300 MW), stainless steel pins, 12 inches long and 0.23 inches in diameter are arranged in triangular array in six layers with one sixth of the pins in each layer, the number of pins being such that the entire cross sectional area of the beam is covered by the pins with minimum overlap of pins.
Pin fin compliant heat sink with enhanced flexibility
Schultz, Mark D.
2018-04-10
Heat sinks and methods of using the same include a top and bottom plate, at least one of which has a plurality of pin contacts flexibly connected to one another, where the plurality of pin contacts have vertical and lateral flexibility with respect to one another; and pin slice layers, each having multiple pin slices, arranged vertically between the top and bottom plates such that the plurality of pin slices form substantially vertical pins connecting the top and bottom plates.
Self-organization of the magnetization in ferromagnetic nanowires
NASA Astrophysics Data System (ADS)
Ivanov, A. A.; Orlov, V. A.
2017-10-01
In this work we demonstrate the occurrence of the characteristic spatial scale in the distribution of magnetization unrelated to the domain wall or crystallite size with using computer simulation of magnetization in a polycrystalline ferromagnetic nanowire. This is the stochastic domain size. We show that this length is included in the spectral density of the pinning force of domain wall on inhomogeneities of the crystallographic anisotropy. The constant and distribution of easy axes directions of the effective anisotropy of stochastic domain, are analytically calculated.
Vehicle-Snow Interaction: Modeling, Testing and Validation
2009-10-12
Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...information if it does not display a currently valid OMB control number. 1 . REPORT DATE 12 OCT 2009 2. REPORT TYPE N/A 3. DATES COVERED - 4...surface – Snow temperature ~-6 C – Stored in a freezer ~-25 C • Microtribometer – – Temperature ~-10C – Pin sizes ( 1 /8”, 1 /4”, 3/8”, 1 /2”) – Force or
United States Air Force Health Care Provider Practices: Skin Testing for Mycobacterium Tuberculosis
1997-04-03
first, with 16 possible correct answers, was calculated using the formula: Total score = a + b + c + d + e + f +g + h + i + j-i-k + l + m + n + o + p...In The Literature 32 F . Gaps In Knowledge 34 Xlll CHAPTER THREE: METHODOLOGY A . Introduction 36 B. Research Design and Procedures 36 C . Research...The second, with 10 possible correct responses, was calculated using the formula: Total score = a + b + c + d + e + f +g + h + i+ j . The reasons for
Improving the Efficiency of Aviation Retention Bonuses Through the Use of Market Mechanisms
2014-06-01
contained a unique token to ensure that only the students who had been e-mailed could complete the survey and that no duplicate submissions could be...SWO Pin TAO SFTI / WTI Flag Aide GSA / IA Other: 39. Gender : Female Male 40. Marital Status: Single / Never...about diversity in the U.S. Armed Forces (pp. 505-540). Maxwell AFB, AL: Air University Press. Coughlan, P. J., Gates, W. R., & Myung, N. (2013, October
Pernisova, Marketa; Prat, Tomas; Grones, Peter; Harustiakova, Danka; Matonohova, Martina; Spichal, Lukas; Nodzynski, Tomasz; Friml, Jiri; Hejatko, Jan
2016-10-01
Redirection of intercellular auxin fluxes via relocalization of the PIN-FORMED 3 (PIN3) and PIN7 auxin efflux carriers has been suggested to be necessary for the root gravitropic response. Cytokinins have also been proposed to play a role in controlling root gravitropism, but conclusive evidence is lacking. We present a detailed study of the dynamics of root bending early after gravistimulation, which revealed a delayed gravitropic response in transgenic lines with depleted endogenous cytokinins (Pro35S:AtCKX) and cytokinin signaling mutants. Pro35S:AtCKX lines, as well as a cytokinin receptor mutant ahk3, showed aberrations in the auxin response distribution in columella cells consistent with defects in the auxin transport machinery. Using in vivo real-time imaging of PIN3-GFP and PIN7-GFP in AtCKX3 overexpression and ahk3 backgrounds, we observed wild-type-like relocalization of PIN proteins in the columella early after gravistimulation, with gravity-induced relocalization of PIN7 faster than that of PIN3. Nonetheless, the cellular distribution of PIN3 and PIN7 and expression of PIN7 and the auxin influx carrier AUX1 was affected in AtCKX overexpression lines. Based on the retained cytokinin sensitivity in pin3 pin4 pin7 mutant, we propose the AUX1-mediated auxin transport rather than columella-located PIN proteins as a target of endogenous cytokinins in the control of root gravitropism. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Eto, Maki; Miyauchi, Shinji
2018-05-09
Falls may cause serious health conditions among older population. Fall-related physical factors are thought to be associated with occlusal conditions. However, few studies examined the relationship between occlusal force and falls. To identify the association between occlusal force and falls among community-dwelling elderly individuals in Japan, public health nurses conducted a cross-sectional descriptive study. We performed extensive physical assessments of five items: maximum occlusal force, handgrip strength, maximal knee extensor strength, one-leg standing time with eyes open and body sway. We also conducted a questionnaire survey concerning the participants' demographic characteristics, health status and fall experience during the past year. Mean scores and standard deviations were calculated for age and the total points of the index of activities of daily living. Associations were examined using Mann-Whitney tests and logistic regression. We examined 159 community-dwelling people aged ≥65 years, who were independent and active, including 38 participants (24.5%) with experience of falls in the past year. Maximum occlusal force had significant correlation with handgrip strength, maximal knee extensor strength, and one-leg standing time and body sway (P < .05, respectively). We found weak associations between participants with and without a history of falls in terms of the five physical measurements. Logistic regression analysis showed that fall experience was significantly associated with maximum occlusal force (P = 0.004). This is the first study, led by public health nursing researchers, to examine the associations between maximum occlusal force and falls among community-dwelling elderly in Japan. The results showed that maximum occlusal force was significantly related to the other four extensive physical assessments, and might also suggest that maximum occlusal force assessment by public health nurses could contribute to more sophisticated and precise prediction of fall risks among the community-dwelling elderly. The latest occlusal force measurement device is non-invasive and easy to use. Public health nurses can introduce it at periodical community health checkup assembly events, which might contribute to raising awareness among community-dwelling elderly individuals and public health nurses about fall prevention and prediction.
Chang, Cheng-Hsun-Tony; Kuo, Wei-Hsu; Chang, Yu-Chieh; Tsay, Jyh-Shen; Yau, Shueh-Lin
2017-01-01
A combination of a solution process and the control of the electric potential for magnetism represents a new approach to operating spintronic devices with a highly controlled efficiency and lower power consumption with reduced production cost. As a paradigmatic example, we investigated Co/Pt(111) in the Bloch-wall regime. The depression in coercive force was detected by applying a negative electric potential in an electrolytic solution. The reversible control of coercive force by varying the electric potential within few hundred millivolts is demonstrated. By changing the electric potential in ferromagnetic layers with smaller thicknesses, the efficiency for controlling the tunable coercive force becomes higher. Assuming that the pinning domains are independent of the applied electric potential, an electric potential tuning-magnetic anisotropy energy model was derived and provided insights into our knowledge of the relation between the electric potential tuning coercive force and the thickness of the ferromagnetic layer. Based on the fact that the coercive force can be tuned by changing the electric potential using a solution process, we developed a novel concept of electric-potential-tuned magnetic recording, resulting in a stable recording media with a high degree of writing ability. PMID:28255160
3D-Structured Stretchable Strain Sensors for Out-of-Plane Force Detection.
Liu, Zhiyuan; Qi, Dianpeng; Leow, Wan Ru; Yu, Jiancan; Xiloyannnis, Michele; Cappello, Leonardo; Liu, Yaqing; Zhu, Bowen; Jiang, Ying; Chen, Geng; Masia, Lorenzo; Liedberg, Bo; Chen, Xiaodong
2018-05-17
Stretchable strain sensors, as the soft mechanical interface, provide the key mechanical information of the systems for healthcare monitoring, rehabilitation assistance, soft exoskeletal devices, and soft robotics. Stretchable strain sensors based on 2D flat film have been widely developed to monitor the in-plane force applied within the plane where the sensor is placed. However, to comprehensively obtain the mechanical feedback, the capability to detect the out-of-plane force, caused by the interaction outside of the plane where the senor is located, is needed. Herein, a 3D-structured stretchable strain sensor is reported to monitor the out-of-plane force by employing 3D printing in conjunction with out-of-plane capillary force-assisted self-pinning of carbon nanotubes. The 3D-structured sensor possesses large stretchability, multistrain detection, and strain-direction recognition by one single sensor. It is demonstrated that out-of-plane forces induced by the air/fluid flow are reliably monitored and intricate flow details are clearly recorded. The development opens up for the exploration of next-generation 3D stretchable sensors for electronic skin and soft robotics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Shengguang; Zhang, Hua; Zhu, Jianquan; Li, Chenguang; Zhu, Jinfang; Shi, Bowen; Zhang, Bin
2017-01-01
PinX1 has been identified as a suppressor of telomerase enzymatic activity. However, the tumour-suppressive roles of PinX1 in different types of human cancers are unclear. PinX1 expression status and its correlation with clinicopathological features in non-small-cell lung cancer (NSCLC) have not been investigated. Accordingly, in this study, we aimed to evaluate the roles of PinX1 in NSCLC. PinX1 expression status was examined by immunohistochemistry using tissue microarray from a total of 158 patients. Correlations among PinX1 expression, clinicopathological variables, and patient survival were analysed. Furthermore, we overexpressed PinX1 in NSCLC cells and tested telomerase activity using real-time quantitative telomeric repeat amplification protocol (qTRAP) assays. Proliferation and migration of NSCLC cells were examined using the MTS method, wound healing assays, and transwell assays, respectively. Our results showed that negative PinX1 expression was associated with a poor prognosis in NSCLC. Sex, smoking status, lymph gland status, subcarinal lymph node status, pathological stage, and PinX1 expression were related to survival. PinX1 was not an independent prognostic factor in NSCLC. PinX1 overexpression inhibited proliferation and migration in NSCLC cells by suppressing telomerase activity. Our findings suggested that PinX1 could be a potential tumour suppressor in NSCLC and that loss of PinX1 promoted NSCLC progression. PMID:28815183
NASA Astrophysics Data System (ADS)
Kamal Babu, Karupannan; Panneerselvam, Kavan; Sathiya, Paulraj; Noorul Haq, Abdul Haq; Sundarrajan, Srinivasan; Mastanaiah, Potta; Srinivasa Murthy, Chunduri Venkata
2018-02-01
Friction stir welding (FSW) process was conducted on cryorolled (CR) AA2219 plate using different tool pin profiles such as cylindrical pin, threaded cylindrical pin, square pin and hexagonal pin profiles. The FSW was carried out with pairs of 6 mm thick CR aluminium plates with different tool pin profiles. The different tool pin profile weld portions' behaviors like mechanical (tensile strength, impact and hardness) and metallurgical characteristics were analyzed. The results of the mechanical analysis revealed that the joint made by the hexagonal pin tool had good strength compared to other pin profiles. This was due to the pulsating action and material flow of the tool resulting in dynamic recrystallization in the weld zone. This was confirmed by the ultra fine grain structure formation in Weld Nugget (WN) of hexagonal pin tool joint with a higher percentage of precipitate dissolution. The fractograph of the hexagonal tool pin weld portion confirmed the finer dimple structure morphology without having any interior defect compared to other tool pin profiles. The lowest weld joint strength was obtained from cylindrical pin profile weld joint due to insufficient material flow during welding. The Transmission Electron Microscope and EDX analysis showed the dissolution of the metastable θ″, θ' (Al2Cu) partial precipitates in the WN and proved the influence of metastable precipitates on enhancement of mechanical behavior of weld. The XRD results also confirmed the Al2Cu precipitation dissolution in the weld zone.
Development of a Flight Instrument Package
1992-12-01
105 0 F 80 to 130°F 95 to 145-F Recommended Maximum Intermittent 180-F 180°F 180 F ISODAl P Velocity-Sensitive Compression ResistanceE-A-R ISODAMP C...PARnAMETER *Too". CONDIIONSo m 1W EAX ON ?" MAX UNIT* Input Iiaa6-iag al - 10 25 - 20 s0 iov vs-OPES ei sta fast Avoomii (NOW 1) - 0.2 - - 0.2 - b.V...to the supply pin is also importanft particularly over fast . contributing to the operational amplifier’s high temperature, since many types of