Smaller predator-prey body size ratios in longer food chains.
Jennings, Simon; Warr, Karema J
2003-01-01
Maximum food-chain length has been correlated with resource availability, ecosystem size, environmental stability and colonization history. Some of these correlations may result from environmental effects on predator-prey body size ratios. We investigate relationships between maximum food-chain length, predator-prey mass ratios, primary production and environmental stability in marine food webs with a natural history of community assembly. Our analyses provide empirical evidence that smaller mean predator-prey body size ratios are characteristic of more stable environments and that food chains are longer when mean predator-prey body size ratios are small. We conclude that environmental effects on predator-prey body size ratios contribute to observed differences in maximum food-chain length. PMID:12965034
Dennerline, D.E.; Van Den Avyle, M.J.
2000-01-01
Striped bass Morone saxatilis and hybrid bass M. saxatilis x M. chrysops have been stocked to establish fisheries in many US reservoirs, but success has been limited by a poor understanding of relations between prey biomass and predator growth and survival. To define sizes of prey that are morphologically available, we developed predictive relationships between predator length, mouth dimensions, and expected maximum prey size; predictions were then validated using published data on sizes of clupeid prey (Dorosoma spp.) in five US reservoirs. Further, we compared the biomass of prey considered available to predators using two forms of a length-based consumption model - a previously published AP/P ratio and a revised model based on our results. Predictions of maximum prey size using predator GW were consistent with observed prey sizes in US reservoirs. Length of consumed Dorosoma was significantly, but weakly, correlated with predator length in four of the five reservoirs (r2 = 0.006-0.336, P 150 mm TL) were abundant. (C) 2000 Elsevier Science B.V.
A morphological and functional basis for maximum prey size in piscivorous fishes
Bellwood, David R.
2017-01-01
Fish predation is important in shaping populations and community structure in aquatic systems. These predator-prey interactions can be influenced by environmental, behavioural and morphological factors. Morphological constraints influence the feeding performance of species, and interspecific differences can thus affect patterns of resource use. For piscivorous fishes that swallow prey whole, feeding performance has traditionally been linked to three key morphological constraints: oral gape, pharyngeal gape, and the cleithral gape. However, other constraints may be important. We therefore examine 18 potential morphological constraints related to prey capture and processing, on four predatory species (Cephalopholis urodeta, Paracirrhites forsteri, Pterois volitans, Lates calcarifer). Aquarium-based experiments were then carried out to determine capture and processing behaviour and maximum prey size in two focal species, C. urodeta and P. forsteri. All four species showed a progressive decrease in gape measurements from anterior to posterior with oral gape ≥ buccal ≥ pharyngeal ≥ pectoral girdle ≥ esophagus ≥ stomach. C. urodeta was able to process prey with a maximum depth of 27% of the predators’ standard length; for P. forsteri it was 20%. C. urodeta captured prey head-first in 79% of successful strikes. In P. forsteri head-first was 16.6%, mid-body 44.4%, and tail-first 38.8%. Regardless of capture mode, prey were almost always swallowed head first and horizontally in both focal species. Most internal measurements appeared too small for prey to pass through. This may reflect the compressibility of prey, i.e. their ability to be dorsoventrally compressed during swallowing movements. Despite examining all known potential morphological constraints on prey size, horizontal maxillary oral gape in a mechanically stretched position appears to be the main morphological variable that is likely to affect maximum prey size and resource use by these predatory species. PMID:28886161
Impact of marine reserve on maximum sustainable yield in a traditional prey-predator system
NASA Astrophysics Data System (ADS)
Paul, Prosenjit; Kar, T. K.; Ghorai, Abhijit
2018-01-01
Multispecies fisheries management requires managers to consider the impact of fishing activities on several species as fishing impacts both targeted and non-targeted species directly or indirectly in several ways. The intended goal of traditional fisheries management is to achieve maximum sustainable yield (MSY) from the targeted species, which on many occasions affect the targeted species as well as the entire ecosystem. Marine reserves are often acclaimed as the marine ecosystem management tool. Few attempts have been made to generalize the ecological effects of marine reserve on MSY policy. We examine here how MSY and population level in a prey-predator system are affected by the low, medium and high reserve size under different possible scenarios. Our simulation works shows that low reserve area, the value of MSY for prey exploitation is maximum when both prey and predator species have fast movement rate. For medium reserve size, our analysis revealed that the maximum value of MSY for prey exploitation is obtained when prey population has fast movement rate and predator population has slow movement rate. For high reserve area, the maximum value of MSY for prey's exploitation is very low compared to the maximum value of MSY for prey's exploitation in case of low and medium reserve. On the other hand, for low and medium reserve area, MSY for predator exploitation is maximum when both the species have fast movement rate.
Ribeiro, Flavio F; Qin, Jian G
2013-01-01
This study quantified size-dependent cannibalism in barramundi Lates calcarifer through coupling a range of prey-predator pairs in a different range of fish sizes. Predictive models were developed using morphological traits with the alterative assumption of cannibalistic polyphenism. Predictive models were validated with the data from trials where cannibals were challenged with progressing increments of prey sizes. The experimental observations showed that cannibals of 25-131 mm total length could ingest the conspecific prey of 78-72% cannibal length. In the validation test, all predictive models underestimate the maximum ingestible prey size for cannibals of a similar size range. However, the model based on the maximal mouth width at opening closely matched the empirical observations, suggesting a certain degree of phenotypic plasticity of mouth size among cannibalistic individuals. Mouth size showed allometric growth comparing with body depth, resulting in a decreasing trend on the maximum size of ingestible prey as cannibals grow larger, which in parts explains why cannibalism in barramundi is frequently observed in the early developmental stage. Any barramundi has the potential to become a cannibal when the initial prey size was <50% of the cannibal body length, but fish could never become a cannibal when prey were >58% of their size, suggesting that 50% of size difference can be the threshold to initiate intracohort cannibalism in a barramundi population. Cannibalistic polyphenism was likely to occur in barramundi that had a cannibalistic history. An experienced cannibal would have a greater ability to stretch its mouth size to capture a much larger prey than the models predict. The awareness of cannibalistic polyphenism has important application in fish farming management to reduce cannibalism.
Ribeiro, Flavio F.; Qin, Jian G.
2013-01-01
This study quantified size-dependent cannibalism in barramundi Lates calcarifer through coupling a range of prey-predator pairs in a different range of fish sizes. Predictive models were developed using morphological traits with the alterative assumption of cannibalistic polyphenism. Predictive models were validated with the data from trials where cannibals were challenged with progressing increments of prey sizes. The experimental observations showed that cannibals of 25–131 mm total length could ingest the conspecific prey of 78–72% cannibal length. In the validation test, all predictive models underestimate the maximum ingestible prey size for cannibals of a similar size range. However, the model based on the maximal mouth width at opening closely matched the empirical observations, suggesting a certain degree of phenotypic plasticity of mouth size among cannibalistic individuals. Mouth size showed allometric growth comparing with body depth, resulting in a decreasing trend on the maximum size of ingestible prey as cannibals grow larger, which in parts explains why cannibalism in barramundi is frequently observed in the early developmental stage. Any barramundi has the potential to become a cannibal when the initial prey size was <50% of the cannibal body length, but fish could never become a cannibal when prey were >58% of their size, suggesting that 50% of size difference can be the threshold to initiate intracohort cannibalism in a barramundi population. Cannibalistic polyphenism was likely to occur in barramundi that had a cannibalistic history. An experienced cannibal would have a greater ability to stretch its mouth size to capture a much larger prey than the models predict. The awareness of cannibalistic polyphenism has important application in fish farming management to reduce cannibalism. PMID:24349295
Hill, Jeffrey E.; Nico, Leo G.; Cichra, Charles E.; Gilbert, Carter R.
2005-01-01
The interaction of prey fish body depth and predator gape size may produce prey assemblages dominated by invulnerable prey and excessive prey-to-predator biomass ratios. Peacock cichlids (Cichla ocellaris) were stocked into southeast Florida canals to consume excess prey fish biomass, particularly spotted tilapia (Tilapia mariae). The ecomorphologically similar largemouth bass (Micropterus salmoides) was already present in the canals. We present relations of length-specific gape size for peacock cichlids and largemouth bass. Both predators have broadly overlapping gape size, but largemouth bass ?126 mm total length have slightly larger gape sizes than peacock cichlids of the same length. Also, we experimentally tested the predictions of maximum prey size for peacock cichlids and determined that a simple method of measuring gape size used for largemouth bass also is appropriate for peacock cichlids. Lastly, we determined relations of body depth and length of prey species to investigate relative vulnerability. Using a simple predator-prey model and length frequencies of predators and bluegill (Lepomis macrochirus), redear sunfish (Lepomis microlophus), and spotted tilapia prey, we documented that much of the prey biomass in southeast Florida canals is unavailable for largemouth bass and peacock cichlid predation.
Body size, swimming speed, or thermal sensitivity? Predator-imposed selection on amphibian larvae.
Gvoždík, Lumír; Smolinský, Radovan
2015-11-02
Many animals rely on their escape performance during predator encounters. Because of its dependence on body size and temperature, escape velocity is fully characterized by three measures, absolute value, size-corrected value, and its response to temperature (thermal sensitivity). The primary target of the selection imposed by predators is poorly understood. We examined predator (dragonfly larva)-imposed selection on prey (newt larvae) body size and characteristics of escape velocity using replicated and controlled predation experiments under seminatural conditions. Specifically, because these species experience a wide range of temperatures throughout their larval phases, we predict that larvae achieving high swimming velocities across temperatures will have a selective advantage over more thermally sensitive individuals. Nonzero selection differentials indicated that predators selected for prey body size and both absolute and size-corrected maximum swimming velocity. Comparison of selection differentials with control confirmed selection only on body size, i.e., dragonfly larvae preferably preyed on small newt larvae. Maximum swimming velocity and its thermal sensitivity showed low group repeatability, which contributed to non-detectable selection on both characteristics of escape performance. In the newt-dragonfly larvae interaction, body size plays a more important role than maximum values and thermal sensitivity of swimming velocity during predator escape. This corroborates the general importance of body size in predator-prey interactions. The absence of an appropriate control in predation experiments may lead to potentially misleading conclusions about the primary target of predator-imposed selection. Insights from predation experiments contribute to our understanding of the link between performance and fitness, and further improve mechanistic models of predator-prey interactions and food web dynamics.
Dodrill, Michael J.; Yackulic, Charles B.; Kennedy, Theodore A.; Haye, John W
2016-01-01
The cold and clear water conditions present below many large dams create ideal conditions for the development of economically important salmonid fisheries. Many of these tailwater fisheries have experienced declines in the abundance and condition of large trout species, yet the causes of these declines remain uncertain. Here, we develop, assess, and apply a drift-foraging bioenergetics model to identify the factors limiting rainbow trout (Oncorhynchus mykiss) growth in a large tailwater. We explored the relative importance of temperature, prey quantity, and prey size by constructing scenarios where these variables, both singly and in combination, were altered. Predicted growth matched empirical mass-at-age estimates, particularly for younger ages, demonstrating that the model accurately describes how current temperature and prey conditions interact to determine rainbow trout growth. Modeling scenarios that artificially inflated prey size and abundance demonstrate that rainbow trout growth is limited by the scarcity of large prey items and overall prey availability. For example, shifting 10% of the prey biomass to the 13 mm (large) length class, without increasing overall prey biomass, increased lifetime maximum mass of rainbow trout by 88%. Additionally, warmer temperatures resulted in lower predicted growth at current and lower levels of prey availability; however, growth was similar across all temperatures at higher levels of prey availability. Climate change will likely alter flow and temperature regimes in large rivers with corresponding changes to invertebrate prey resources used by fish. Broader application of drift-foraging bioenergetics models to build a mechanistic understanding of how changes to habitat conditions and prey resources affect growth of salmonids will benefit management of tailwater fisheries.
Ahrenstorff, Tyler D.; Diana, James S.; Fetzer, William W.; Jones, Thomas S.; Lawson, Zach J.; McInerny, Michael C.; Santucci, Victor J.; Vander Zanden, M. Jake
2018-01-01
Body size governs predator-prey interactions, which in turn structure populations, communities, and food webs. Understanding predator-prey size relationships is valuable from a theoretical perspective, in basic research, and for management applications. However, predator-prey size data are limited and costly to acquire. We quantified predator-prey total length and mass relationships for several freshwater piscivorous taxa: crappie (Pomoxis spp.), largemouth bass (Micropterus salmoides), muskellunge (Esox masquinongy), northern pike (Esox lucius), rock bass (Ambloplites rupestris), smallmouth bass (Micropterus dolomieu), and walleye (Sander vitreus). The range of prey total lengths increased with predator total length. The median and maximum ingested prey total length varied with predator taxon and length, but generally ranged from 10–20% and 32–46% of predator total length, respectively. Predators tended to consume larger fusiform prey than laterally compressed prey. With the exception of large muskellunge, predators most commonly consumed prey between 16 and 73 mm. A sensitivity analysis indicated estimates can be very accurate at sample sizes greater than 1,000 diet items and fairly accurate at sample sizes greater than 100. However, sample sizes less than 50 should be evaluated with caution. Furthermore, median log10 predator-prey body mass ratios ranged from 1.9–2.5, nearly 50% lower than values previously reported for freshwater fishes. Managers, researchers, and modelers could use our findings as a tool for numerous predator-prey evaluations from stocking size optimization to individual-based bioenergetics analyses identifying prey size structure. To this end, we have developed a web-based user interface to maximize the utility of our models that can be found at www.LakeEcologyLab.org/pred_prey. PMID:29543856
Gaeta, Jereme W; Ahrenstorff, Tyler D; Diana, James S; Fetzer, William W; Jones, Thomas S; Lawson, Zach J; McInerny, Michael C; Santucci, Victor J; Vander Zanden, M Jake
2018-01-01
Body size governs predator-prey interactions, which in turn structure populations, communities, and food webs. Understanding predator-prey size relationships is valuable from a theoretical perspective, in basic research, and for management applications. However, predator-prey size data are limited and costly to acquire. We quantified predator-prey total length and mass relationships for several freshwater piscivorous taxa: crappie (Pomoxis spp.), largemouth bass (Micropterus salmoides), muskellunge (Esox masquinongy), northern pike (Esox lucius), rock bass (Ambloplites rupestris), smallmouth bass (Micropterus dolomieu), and walleye (Sander vitreus). The range of prey total lengths increased with predator total length. The median and maximum ingested prey total length varied with predator taxon and length, but generally ranged from 10-20% and 32-46% of predator total length, respectively. Predators tended to consume larger fusiform prey than laterally compressed prey. With the exception of large muskellunge, predators most commonly consumed prey between 16 and 73 mm. A sensitivity analysis indicated estimates can be very accurate at sample sizes greater than 1,000 diet items and fairly accurate at sample sizes greater than 100. However, sample sizes less than 50 should be evaluated with caution. Furthermore, median log10 predator-prey body mass ratios ranged from 1.9-2.5, nearly 50% lower than values previously reported for freshwater fishes. Managers, researchers, and modelers could use our findings as a tool for numerous predator-prey evaluations from stocking size optimization to individual-based bioenergetics analyses identifying prey size structure. To this end, we have developed a web-based user interface to maximize the utility of our models that can be found at www.LakeEcologyLab.org/pred_prey.
Prey life-history and bioenergetic responses across a predation gradient.
Rennie, M D; Purchase, C F; Shuter, B J; Collins, N C; Abrams, P A; Morgan, G E
2010-10-01
To evaluate the importance of non-consumptive effects of predators on prey life histories under natural conditions, an index of predator abundance was developed for naturally occurring populations of a common prey fish, the yellow perch Perca flavescens, and compared to life-history variables and rates of prey energy acquisition and allocation as estimated from mass balance models. The predation index was positively related to maximum size and size at maturity in both male and female P. flavescens, but not with life span or reproductive investment. The predation index was positively related to size-adjusted specific growth rates and growth efficiencies but negatively related to model estimates of size-adjusted specific consumption and activity rates in both vulnerable (small) and invulnerable (large) size classes of P. flavescens. These observations suggest a trade-off between growth and activity rates, mediated by reduced activity in response to increasing predator densities. Lower growth rates and growth efficiencies in populations with fewer predators, despite increased consumption suggests either 1) a reduction in prey resources at lower predator densities or 2) an intrinsic cost of rapid prey growth that makes it unfavourable unless offset by a perceived threat of predation. This study provides evidence of trade-offs between growth and activity rates induced by predation risk in natural prey fish populations and illustrates how behavioural modification induced through predation can shape the life histories of prey fish species. © 2010 The Authors. Journal compilation © 2010 The Fisheries Society of the British Isles.
Examining the Prey Mass of Terrestrial and Aquatic Carnivorous Mammals: Minimum, Maximum and Range
Tucker, Marlee A.; Rogers, Tracey L.
2014-01-01
Predator-prey body mass relationships are a vital part of food webs across ecosystems and provide key information for predicting the susceptibility of carnivore populations to extinction. Despite this, there has been limited research on the minimum and maximum prey size of mammalian carnivores. Without information on large-scale patterns of prey mass, we limit our understanding of predation pressure, trophic cascades and susceptibility of carnivores to decreasing prey populations. The majority of studies that examine predator-prey body mass relationships focus on either a single or a subset of mammalian species, which limits the strength of our models as well as their broader application. We examine the relationship between predator body mass and the minimum, maximum and range of their prey's body mass across 108 mammalian carnivores, from weasels to baleen whales (Carnivora and Cetacea). We test whether mammals show a positive relationship between prey and predator body mass, as in reptiles and birds, as well as examine how environment (aquatic and terrestrial) and phylogenetic relatedness play a role in this relationship. We found that phylogenetic relatedness is a strong driver of predator-prey mass patterns in carnivorous mammals and accounts for a higher proportion of variance compared with the biological drivers of body mass and environment. We show a positive predator-prey body mass pattern for terrestrial mammals as found in reptiles and birds, but no relationship for aquatic mammals. Our results will benefit our understanding of trophic interactions, the susceptibility of carnivores to population declines and the role of carnivores within ecosystems. PMID:25162695
Examining the prey mass of terrestrial and aquatic carnivorous mammals: minimum, maximum and range.
Tucker, Marlee A; Rogers, Tracey L
2014-01-01
Predator-prey body mass relationships are a vital part of food webs across ecosystems and provide key information for predicting the susceptibility of carnivore populations to extinction. Despite this, there has been limited research on the minimum and maximum prey size of mammalian carnivores. Without information on large-scale patterns of prey mass, we limit our understanding of predation pressure, trophic cascades and susceptibility of carnivores to decreasing prey populations. The majority of studies that examine predator-prey body mass relationships focus on either a single or a subset of mammalian species, which limits the strength of our models as well as their broader application. We examine the relationship between predator body mass and the minimum, maximum and range of their prey's body mass across 108 mammalian carnivores, from weasels to baleen whales (Carnivora and Cetacea). We test whether mammals show a positive relationship between prey and predator body mass, as in reptiles and birds, as well as examine how environment (aquatic and terrestrial) and phylogenetic relatedness play a role in this relationship. We found that phylogenetic relatedness is a strong driver of predator-prey mass patterns in carnivorous mammals and accounts for a higher proportion of variance compared with the biological drivers of body mass and environment. We show a positive predator-prey body mass pattern for terrestrial mammals as found in reptiles and birds, but no relationship for aquatic mammals. Our results will benefit our understanding of trophic interactions, the susceptibility of carnivores to population declines and the role of carnivores within ecosystems.
Shine, Richard; Thomas, Jai
2005-07-01
Adaptations of snakes to overpower and ingest relatively large prey have attracted considerable research, whereas lizards generally are regarded as unable to subdue or ingest such large prey items. Our data challenge this assumption. On morphological grounds, most lizards lack the highly kinetic skulls that facilitate prey ingestion in macrostomate snakes, but (1) are capable of reducing large items into ingestible-sized pieces, and (2) have much larger heads relative to body length than do snakes. Thus, maximum ingestible prey size might be as high in some lizards as in snakes. Also, the willingness of lizards to tackle very large prey items may have been underestimated. Captive hatchling scincid lizards (Bassiana duperreyi) offered crickets of a range of relative prey masses (RPMs) attacked (and sometimes consumed parts of) crickets as large as or larger than their own body mass. RPM affected foraging responses: larger crickets were less likely to be attacked (especially on the abdomen), more likely to be avoided, and less likely to provide significant nutritional benefit to the predator. Nonetheless, lizards successfully attacked and consumed most crickets < or =35% of the predator's own body mass, representing RPM as high as for most prey taken by snakes. Thus, although lizards lack the impressive cranial kinesis or prey-subduction adaptations of snakes, at least some lizards are capable of overpowering and ingesting prey items as large as those consumed by snakes of similar body sizes.
Predator bioenergetics and the prey size spectrum: do foraging costs determine fish production?
Giacomini, Henrique C; Shuter, Brian J; Lester, Nigel P
2013-09-07
Most models of fish growth and predation dynamics assume that food ingestion rate is the major component of the energy budget affected by prey availability, while active metabolism is invariant (here called constant activity hypothesis). However, increasing empirical evidence supports an opposing view: fish tend to adjust their foraging activity to maintain reasonably constant ingestion levels in the face of varying prey density and/or quality (the constant satiation hypothesis). In this paper, we use a simple but flexible model of fish bioenergetics to show that constant satiation is likely to occur in fish that optimize both net production rate and life history. The model includes swimming speed as an explicit measure of foraging activity leading to both energy gains (through prey ingestion) and losses (through active metabolism). The fish is assumed to be a particulate feeder that has to swim between consecutive individual prey captures, and that shifts its diet ontogenetically from smaller to larger prey. The prey community is represented by a negative power-law size spectrum. From these rules, we derive the net production of fish as a function of the size spectrum, and this in turn establishes a formal link between the optimal life history (i.e. maximum body size) and prey community structure. In most cases with realistic parameter values, optimization of life history ensures that: (i) a constantly satiated fish preying on a steep size spectrum will stop growing and invest all its surplus energy in reproduction before satiation becomes too costly; (ii) conversely, a fish preying on a shallow size spectrum will grow large enough for satiation to be present throughout most of its ontogeny. These results provide a mechanistic basis for previous empirical findings, and call for the inclusion of active metabolism as a major factor limiting growth potential and the numerical response of predators in theoretical studies of food webs. Copyright © 2013 Elsevier Ltd. All rights reserved.
Potvin, Jean; Goldbogen, Jeremy A; Shadwick, Robert E
2012-01-01
Bulk-filter feeding is an energetically efficient strategy for resource acquisition and assimilation, and facilitates the maintenance of extreme body size as exemplified by baleen whales (Mysticeti) and multiple lineages of bony and cartilaginous fishes. Among mysticetes, rorqual whales (Balaenopteridae) exhibit an intermittent ram filter feeding mode, lunge feeding, which requires the abandonment of body-streamlining in favor of a high-drag, mouth-open configuration aimed at engulfing a very large amount of prey-laden water. Particularly while lunge feeding on krill (the most widespread prey preference among rorquals), the effort required during engulfment involve short bouts of high-intensity muscle activity that demand high metabolic output. We used computational modeling together with morphological and kinematic data on humpback (Megaptera noveaangliae), fin (Balaenoptera physalus), blue (Balaenoptera musculus) and minke (Balaenoptera acutorostrata) whales to estimate engulfment power output in comparison with standard metrics of metabolic rate. The simulations reveal that engulfment metabolism increases across the full body size of the larger rorqual species to nearly 50 times the basal metabolic rate of terrestrial mammals of the same body mass. Moreover, they suggest that the metabolism of the largest body sizes runs with significant oxygen deficits during mouth opening, namely, 20% over maximum VO2 at the size of the largest blue whales, thus requiring significant contributions from anaerobic catabolism during a lunge and significant recovery after a lunge. Our analyses show that engulfment metabolism is also significantly lower for smaller adults, typically one-tenth to one-half VO2|max. These results not only point to a physiological limit on maximum body size in this lineage, but also have major implications for the ontogeny of extant rorquals as well as the evolutionary pathways used by ancestral toothed whales to transition from hunting individual prey items to filter feeding on prey aggregations.
Potvin, Jean; Goldbogen, Jeremy A.; Shadwick, Robert E.
2012-01-01
Bulk-filter feeding is an energetically efficient strategy for resource acquisition and assimilation, and facilitates the maintenance of extreme body size as exemplified by baleen whales (Mysticeti) and multiple lineages of bony and cartilaginous fishes. Among mysticetes, rorqual whales (Balaenopteridae) exhibit an intermittent ram filter feeding mode, lunge feeding, which requires the abandonment of body-streamlining in favor of a high-drag, mouth-open configuration aimed at engulfing a very large amount of prey-laden water. Particularly while lunge feeding on krill (the most widespread prey preference among rorquals), the effort required during engulfment involve short bouts of high-intensity muscle activity that demand high metabolic output. We used computational modeling together with morphological and kinematic data on humpback (Megaptera noveaangliae), fin (Balaenoptera physalus), blue (Balaenoptera musculus) and minke (Balaenoptera acutorostrata) whales to estimate engulfment power output in comparison with standard metrics of metabolic rate. The simulations reveal that engulfment metabolism increases across the full body size of the larger rorqual species to nearly 50 times the basal metabolic rate of terrestrial mammals of the same body mass. Moreover, they suggest that the metabolism of the largest body sizes runs with significant oxygen deficits during mouth opening, namely, 20% over maximum at the size of the largest blue whales, thus requiring significant contributions from anaerobic catabolism during a lunge and significant recovery after a lunge. Our analyses show that engulfment metabolism is also significantly lower for smaller adults, typically one-tenth to one-half . These results not only point to a physiological limit on maximum body size in this lineage, but also have major implications for the ontogeny of extant rorquals as well as the evolutionary pathways used by ancestral toothed whales to transition from hunting individual prey items to filter feeding on prey aggregations. PMID:23024769
Valeix, Marion; Loveridge, Andrew J; MacDonald, David W
2012-11-01
Empirical tests of the resource dispersion hypothesis (RDH), a theory to explain group living based on resource heterogeneity, have been complicated by the fact that resource patch dispersion and richness have proved difficult to define and measure in natural systems. Here, we studied the ecology of African lions Panthera leo in Hwange National Park, Zimbabwe, where waterholes are prey hotspots, and where dispersion of water sources and abundance of prey at these water sources are quantifiable. We combined a 10-year data set from GPS-collared lions for which information of group composition was available concurrently with data for herbivore abundance at waterholes. The distance between two neighboring waterholes was a strong determinant of lion home range size, which provides strong support for the RDH prediction that territory size increases as resource patches are more dispersed in the landscape. The mean number of herbivore herds using a waterhole, a good proxy of patch richness, determined the maximum lion group biomass an area can support. This finding suggests that patch richness sets a maximum ceiling on lion group size. This study demonstrates that landscape ecology is a major driver of ranging behavior and suggests that aspects of resource dispersion limit group sizes.
Winne, Christopher T; Willson, John D; Whitfield Gibbons, J
2010-04-01
The causes and consequences of body size and sexual size dimorphism (SSD) have been central questions in evolutionary ecology. Two, often opposing selective forces are suspected to act on body size in animals: survival selection and reproductive (fecundity and sexual) selection. We have recently identified a system where a small aquatic snake species (Seminatrix pygaea) is capable of surviving severe droughts by aestivating within dried, isolated wetlands. We tested the hypothesis that the lack of aquatic prey during severe droughts would impose significant survivorship pressures on S. pygaea, and that the largest individuals, particularly females, would be most adversely affected by resource limitation. Our findings suggest that both sexes experience selection against large body size during severe drought when prey resources are limited, as nearly all S. pygaea are absent from the largest size classes and maximum body size and SSD are dramatically reduced following drought. Conversely, strong positive correlations between maternal body size and reproductive success in S. pygaea suggest that females experience fecundity selection for large size during non-drought years. Collectively, our study emphasizes the dynamic interplay between selection pressures that act on body size and supports theoretical predictions about the relationship between body size and survivorship in ectotherms under conditions of resource limitation.
NASA Astrophysics Data System (ADS)
Zhu, Tingbing; Zhang, Lihong; Zhang, Tanglin; Wang, Yaping; Hu, Wei; Olsen, Rolf Eric; Zhu, Zuoyan
2017-10-01
The present study preliminarily examined the differences in maximum handling size, prey size and species selectivity of growth hormone transgenic and non-transgenic common carp Cyprinus carpio when foraging on four gastropods species (Bellamya aeruginosa, Radix auricularia, Parafossarulus sinensis and Alocinma longicornis) under laboratory conditions. In the maximum handling size trial, five fish from each age group (1-year-old and 2-year-old) and each genotype (transgenic and non-transgenic) of common carp were individually allowed to feed on B. aeruginosa with wide shell height range. The results showed that maximum handling size increased linearly with fish length, and there was no significant difference in maximum handling size between the two genotypes. In the size selection trial, three pairs of 2-year-old transgenic and non-transgenic carp were individually allowed to feed on three size groups of B. aeruginosa. The results show that the two genotypes of C. carpio favored the small-sized group over the large-sized group. In the species selection trial, three pairs of 2-year-old transgenic and non-transgenic carp were individually allowed to feed on thin-shelled B. aeruginosa and thick-shelled R. auricularia, and five pairs of 2-year-old transgenic and non-transgenic carp were individually allowed to feed on two gastropods species (P. sinensis and A. longicornis) with similar size and shell strength. The results showed that both genotypes preferred thin-shelled Radix auricularia rather than thick-shelled B. aeruginosa, but there were no significant difference in selectivity between the two genotypes when fed on P. sinensis and A. longicornis. The present study indicates that transgenic and non-transgenic C. carpio show similar selectivity of predation on the size- and species-limited gastropods. While this information may be useful for assessing the environmental risk of transgenic carp, it does not necessarily demonstrate that transgenic common carp might have lesser environmental impacts than non-transgenic carp.
Size structuring and allometric scaling relationships in coral reef fishes.
Dunic, Jillian C; Baum, Julia K
2017-05-01
Temperate marine fish communities are often size-structured, with predators consuming increasingly larger prey and feeding at higher trophic levels as they grow. Gape limitation and ontogenetic diet shifts are key mechanisms by which size structuring arises in these communities. Little is known, however, about size structuring in coral reef fishes. Here, we aimed to advance understanding of size structuring in coral reef food webs by examining the evidence for these mechanisms in two groups of reef predators. Given the diversity of feeding modes amongst coral reef fishes, we also compared gape size-body size allometric relationships across functional groups to determine whether they are reliable indicators of size structuring. We used gut content analysis and quantile regressions of predator size-prey size relationships to test for evidence of gape limitation and ontogenetic niche shifts in reef piscivores (n = 13 species) and benthic invertivores (n = 3 species). We then estimated gape size-body size allometric scaling coefficients for 21 different species from four functional groups, including herbivores/detritivores, which are not expected to be gape-limited. We found evidence of both mechanisms for size structuring in coral reef piscivores, with maximum prey size scaling positively with predator body size, and ontogenetic diet shifts including prey type and expansion of prey size. There was, however, little evidence of size structuring in benthic invertivores. Across species and functional groups, absolute and relative gape sizes were largest in piscivores as expected, but gape size-body size scaling relationships were not indicative of size structuring. Instead, relative gape sizes and mouth morphologies may be better indicators. Our results provide evidence that coral reef piscivores are size-structured and that gape limitation and ontogenetic niche shifts are the mechanisms from which this structure arises. Although gape allometry was not indicative of size structuring, it may have implications for ecosystem function: positively allometric gape size-body size scaling relationships in herbivores/detritivores suggests that loss of large-bodied individuals of these species will have a disproportionately negative impact on reef grazing pressure. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Population limitation in a non-cyclic arctic fox population in a changing climate.
Pálsson, Snæbjörn; Hersteinsson, Páll; Unnsteinsdóttir, Ester R; Nielsen, Ólafur K
2016-04-01
Arctic foxes Vulpes lagopus (L.) display a sharp 3- to 5-year fluctuation in population size where lemmings are their main prey. In areas devoid of lemmings, such as Iceland, they do not experience short-term fluctuations. This study focusses on the population dynamics of the arctic fox in Iceland and how it is shaped by its main prey populations. Hunting statistics from 1958-2003 show that the population size of the arctic fox was at a maximum in the 1950s, declined to a minimum in the 1970s, and increased steadily until 2003. Analysis of the arctic fox population size and their prey populations suggests that fox numbers were limited by rock ptarmigan numbers during the decline period. The recovery of the arctic fox population was traced mostly to an increase in goose populations, and favourable climatic conditions as reflected by the Subpolar Gyre. These results underscore the flexibility of a generalist predator and its responses to shifting food resources and climate changes.
Energetic constraints, size gradients, and size limits in benthic marine invertebrates.
Sebens, Kenneth P
2002-08-01
Populations of marine benthic organisms occupy habitats with a range of physical and biological characteristics. In the intertidal zone, energetic costs increase with temperature and aerial exposure, and prey intake increases with immersion time, generating size gradients with small individuals often found at upper limits of distribution. Wave action can have similar effects, limiting feeding time or success, although certain species benefit from wave dislodgment of their prey; this also results in gradients of size and morphology. The difference between energy intake and metabolic (and/or behavioral) costs can be used to determine an energetic optimal size for individuals in such populations. Comparisons of the energetic optimal size to the maximum predicted size based on mechanical constraints, and the ensuing mortality schedule, provides a mechanism to study and explain organism size gradients in intertidal and subtidal habitats. For species where the energetic optimal size is well below the maximum size that could persist under a certain set of wave/flow conditions, it is probable that energetic constraints dominate. When the opposite is true, populations of small individuals can dominate habitats with strong dislodgment or damage probability. When the maximum size of individuals is far below either energetic optima or mechanical limits, other sources of mortality (e.g., predation) may favor energy allocation to early reproduction rather than to continued growth. Predictions based on optimal size models have been tested for a variety of intertidal and subtidal invertebrates including sea anemones, corals, and octocorals. This paper provides a review of the optimal size concept, and employs a combination of the optimal energetic size model and life history modeling approach to explore energy allocation to growth or reproduction as the optimal size is approached.
The impact of large terrestrial carnivores on Pleistocene ecosystems
Van Valkenburgh, Blaire; Ripple, William J.; Meloro, Carlo; Roth, V. Louise
2016-01-01
Large mammalian terrestrial herbivores, such as elephants, have dramatic effects on the ecosystems they inhabit and at high population densities their environmental impacts can be devastating. Pleistocene terrestrial ecosystems included a much greater diversity of megaherbivores (e.g., mammoths, mastodons, giant ground sloths) and thus a greater potential for widespread habitat degradation if population sizes were not limited. Nevertheless, based on modern observations, it is generally believed that populations of megaherbivores (>800 kg) are largely immune to the effects of predation and this perception has been extended into the Pleistocene. However, as shown here, the species richness of big carnivores was greater in the Pleistocene and many of them were significantly larger than their modern counterparts. Fossil evidence suggests that interspecific competition among carnivores was relatively intense and reveals that some individuals specialized in consuming megaherbivores. To estimate the potential impact of Pleistocene large carnivores, we use both historic and modern data on predator–prey body mass relationships to predict size ranges of their typical and maximum prey when hunting as individuals and in groups. These prey size ranges are then compared with estimates of juvenile and subadult proboscidean body sizes derived from extant elephant growth data. Young proboscideans at their most vulnerable age fall within the predicted prey size ranges of many of the Pleistocene carnivores. Predation on juveniles can have a greater impact on megaherbivores because of their long interbirth intervals, and consequently, we argue that Pleistocene carnivores had the capacity to, and likely did, limit megaherbivore population sizes. PMID:26504224
Cheetahs, Acinonyx jubatus, balance turn capacity with pace when chasing prey
Wilson, John W.; Mills, Michael G. L.; Wilson, Rory P.; Peters, Gerrit; Mills, Margaret E. J.; Speakman, John R.; Durant, Sarah M.; Bennett, Nigel C.; Marks, Nikki J.; Scantlebury, Michael
2013-01-01
Predator–prey interactions are fundamental in the evolution and structure of ecological communities. Our understanding, however, of the strategies used in pursuit and evasion remains limited. Here, we report on the hunting dynamics of the world's fastest land animal, the cheetah, Acinonyx jubatus. Using miniaturized data loggers, we recorded fine-scale movement, speed and acceleration of free-ranging cheetahs to measure how hunting dynamics relate to chasing different sized prey. Cheetahs attained hunting speeds of up to 18.94 m s−1 and accelerated up to 7.5 m s−2 with greatest angular velocities achieved during the terminal phase of the hunt. The interplay between forward and lateral acceleration during chases showed that the total forces involved in speed changes and turning were approximately constant over time but varied with prey type. Thus, rather than a simple maximum speed chase, cheetahs first accelerate to decrease the distance to their prey, before reducing speed 5–8 s from the end of the hunt, so as to facilitate rapid turns to match prey escape tactics, varying the precise strategy according to prey species. Predator and prey thus pit a fine balance of speed against manoeuvring capability in a race for survival. PMID:24004493
Cheetahs, Acinonyx jubatus, balance turn capacity with pace when chasing prey.
Wilson, John W; Mills, Michael G L; Wilson, Rory P; Peters, Gerrit; Mills, Margaret E J; Speakman, John R; Durant, Sarah M; Bennett, Nigel C; Marks, Nikki J; Scantlebury, Michael
2013-10-23
Predator-prey interactions are fundamental in the evolution and structure of ecological communities. Our understanding, however, of the strategies used in pursuit and evasion remains limited. Here, we report on the hunting dynamics of the world's fastest land animal, the cheetah, Acinonyx jubatus. Using miniaturized data loggers, we recorded fine-scale movement, speed and acceleration of free-ranging cheetahs to measure how hunting dynamics relate to chasing different sized prey. Cheetahs attained hunting speeds of up to 18.94 m s(-1) and accelerated up to 7.5 m s(-2) with greatest angular velocities achieved during the terminal phase of the hunt. The interplay between forward and lateral acceleration during chases showed that the total forces involved in speed changes and turning were approximately constant over time but varied with prey type. Thus, rather than a simple maximum speed chase, cheetahs first accelerate to decrease the distance to their prey, before reducing speed 5-8 s from the end of the hunt, so as to facilitate rapid turns to match prey escape tactics, varying the precise strategy according to prey species. Predator and prey thus pit a fine balance of speed against manoeuvring capability in a race for survival.
Ross, Robert M.; Johnson, James H.; Adams, Connie M.
2005-01-01
To provide a method for estimating fish size from fish otoliths for forensic applications or other predictive uses, morphometric measurements were obtained from three centrarchid fishes (pumpkinseed [Lepomis gibbosus], rock bass [Ambloplites rupestris], and smallmouth bass [Micropterus dolomieu]), two percids (yellow perch [Perca flavescens] and walleye [Stizostedion vitreum]), and one clupeid (alewife [Alosa pseudoharengus]) from the eastern basin of Lake Ontario. These species are the principal or economically important prey of Double-crested Cormorants (Phalacrocorax auritus), whose diet can be determined from regurgitated digestive pellets containing fish otoliths. A fuller understanding of the ecosystem roles of cormorants requires estimation of prey-fish size, obtainable from regressions of otolith length on fish length. Up to 100 fish of each species were collected from eastern Lake Ontario and measured for total length and otolith length. Least-squares regressions of otolith length on fish length were calculated for all species, covering life-stage ranges of immature fish to large adults near maximum known size. The regressions with 95% confidence intervals may be applicable outside the Lake Ontario ecosystem if used with caution.
Prey size selection and cannibalistic behaviour of juvenile barramundi Lates calcarifer.
Ribeiro, F F; Qin, J G
2015-05-01
This study assessed the cannibalistic behaviour of juvenile barramundi Lates calcarifer and examined the relationship between prey size selection and energy gain of cannibals. Prey handling time and capture success by cannibals were used to estimate the ratio of energy gain to energy cost in prey selection. Cannibals selected smaller prey despite its capability of ingesting larger prey individuals. In behavioural analysis, prey handling time significantly increased with prey size, but it was not significantly affected by cannibal size. Conversely, capture success significantly decreased with the increase of both prey and cannibal sizes. The profitability indices showed that the smaller prey provides the most energy return for cannibals of all size classes. These results indicate that L. calcarifer cannibals select smaller prey for more profitable return. The behavioural analysis, however, indicates that L. calcarifer cannibals attack prey of all size at a similar rate but ingest smaller prey more often, suggesting that prey size selection is passively orientated rather than at the predator's choice. The increase of prey escape ability and morphological constraint contribute to the reduction of intracohort cannibalism as fish grow larger. This study contributes to the understanding of intracohort cannibalism and development of strategies to reduce fish cannibalistic mortalities. © 2015 The Fisheries Society of the British Isles.
Hampton, Paul M
2018-02-01
As body size increases, some predators eliminate small prey from their diet exhibiting an ontogenetic shift toward larger prey. In contrast, some predators show a telescoping pattern of prey size in which both large and small prey are consumed with increasing predator size. To explore a functional explanation for the two feeding patterns, I examined feeding effort as both handling time and number of upper jaw movements during ingestion of fish of consistent size. I used a range of body sizes from two snake species that exhibit ontogenetic shifts in prey size (Nerodia fasciata and N. rhombifer) and a species that exhibits telescoping prey size with increased body size (Thamnophis proximus). For the two Nerodia species, individuals with small or large heads exhibited greater difficulty in feeding effort compared to snakes of intermediate size. However, for T. proximus measures of feeding effort were negatively correlated with head length and snout-vent length (SVL). These data indicate that ontogenetic shifters of prey size develop trophic morphology large enough that feeding effort increases for disproportionately small prey. I also compared changes in body size among the two diet strategies for active foraging snake species using data gleaned from the literature to determine if increased change in body size and thereby feeding morphology is observable in snakes regardless of prey type or foraging habitat. Of the 30 species sampled from literature, snakes that exhibit ontogenetic shifts in prey size have a greater magnitude of change in SVL than species that have telescoping prey size patterns. Based upon the results of the two data sets above, I conclude that ontogenetic shifts away from small prey occur in snakes due, in part, to growth of body size and feeding structures beyond what is efficient for handling small prey. Copyright © 2017. Published by Elsevier GmbH.
Rapid and repeated origin of insular gigantism and dwarfism in Australian tiger snakes.
Keogh, J Scott; Scott, Ian A W; Hayes, Christine
2005-01-01
It is a well-known phenomenon that islands can support populations of gigantic or dwarf forms of mainland conspecifics, but the variety of explanatory hypotheses for this phenomenon have been difficult to disentangle. The highly venomous Australian tiger snakes (genus Notechis) represent a well-known and extreme example of insular body size variation. They are of special interest because there are multiple populations of dwarfs and giants and the age of the islands and thus the age of the tiger snake populations are known from detailed sea level studies. Most are 5000-7000 years old and all are less than 10,000 years old. Here we discriminate between two competing hypotheses with a molecular phylogeography dataset comprising approximately 4800 bp of mtDNA and demonstrate that populations of island dwarfs and giants have evolved five times independently. In each case the closest relatives of the giant or dwarf populations are mainland tiger snakes, and in four of the five cases, the closest relatives are also the most geographically proximate mainland tiger snakes. Moreover, these body size shifts have evolved extremely rapidly and this is reflected in the genetic divergence between island body size variants and mainland snakes. Within south eastern Australia, where populations of island giants, populations of island dwarfs, and mainland tiger snakes all occur, the maximum genetic divergence is only 0.38%. Dwarf tiger snakes are restricted to prey items that are much smaller than the prey items of mainland tiger snakes and giant tiger snakes are restricted to seasonally available prey items that are up three times larger than the prey items of mainland tiger snakes. We support the hypotheses that these body size shifts are due to strong selection imposed by the size of available prey items, rather than shared evolutionary history, and our results are consistent with the notion that adaptive plasticity also has played an important role in body size shifts. We suggest that plasticity displayed early on in the occupation of these new islands provided the flexibility necessary as the island's available prey items became more depauperate, but once the size range of available prey items was reduced, strong natural selection followed by genetic assimilation worked to optimize snake body size. The rate of body size divergence in haldanes is similar for dwarfs (h(g) = 0.0010) and giants (h(g) = 0.0020-0.0025) and is in line with other studies of rapid evolution. Our data provide strong evidence for rapid and repeated morphological divergence in the wild due to similar selective pressures acting in different directions.
Carbone, Chris; Teacher, Amber; Rowcliffe, J. Marcus
2007-01-01
Mammalian carnivores fall into two broad dietary groups: smaller carnivores (<20 kg) that feed on very small prey (invertebrates and small vertebrates) and larger carnivores (>20 kg) that specialize in feeding on large vertebrates. We develop a model that predicts the mass-related energy budgets and limits of carnivore size within these groups. We show that the transition from small to large prey can be predicted by the maximization of net energy gain; larger carnivores achieve a higher net gain rate by concentrating on large prey. However, because it requires more energy to pursue and subdue large prey, this leads to a 2-fold step increase in energy expenditure, as well as increased intake. Across all species, energy expenditure and intake both follow a three-fourths scaling with body mass. However, when each dietary group is considered individually they both display a shallower scaling. This suggests that carnivores at the upper limits of each group are constrained by intake and adopt energy conserving strategies to counter this. Given predictions of expenditure and estimates of intake, we predict a maximum carnivore mass of approximately a ton, consistent with the largest extinct species. Our approach provides a framework for understanding carnivore energetics, size, and extinction dynamics. PMID:17227145
Simkins, Richard M; Belk, Mark C
2017-08-01
Predator density, refuge availability, and body size of prey can all affect the mortality rate of prey. We assume that more predators will lead to an increase in prey mortality rate, but behavioral interactions between predators and prey, and availability of refuge, may lead to nonlinear effects of increased number of predators on prey mortality rates. We tested for nonlinear effects in prey mortality rates in a mesocosm experiment with different size classes of western mosquitofish ( Gambusia affinis ) as the prey, different numbers of green sunfish ( Lepomis cyanellus ) as the predators, and different levels of refuge. Predator number and size class of prey, but not refuge availability, had significant effects on the mortality rate of prey. Change in mortality rate of prey was linear and equal across the range of predator numbers. Each new predator increased the mortality rate by about 10% overall, and mortality rates were higher for smaller size classes. Predator-prey interactions at the individual level may not scale up to create nonlinearity in prey mortality rates with increasing predator density at the population level.
Ruthrauff, Daniel R.; Dekinga, Anne; Gill, Robert E.; van Gils, Jan A.; Piersma, Theunis
2015-01-01
At what phenotypic level do closely related subspecies that live in different environments differ with respect to food detection, ingestion, and processing? This question motivated an experimental study on rock sandpipers (Calidris ptilocnemis). The species' nonbreeding range spans 20 degrees of latitude, the extremes of which are inhabited by two subspecies: Calidris p. ptilocnemis that winters primarily in upper Cook Inlet, Alaska (61°N), and C. p. tschuktschorum that overlaps slightly with C. p. ptilocnemis but whose range extends much farther south (~40°N). In view of the strongly contrasting energetic demands of their distinct nonbreeding distributions, we conducted experiments to assess the behavioural, physiological, and sensory aspects of foraging, and we used the bivalve Macoma balthica for all trials. Ptilocnemis consumed a wider range of prey sizes, had higher maximum rates of energy intake, processed shell waste at higher maximum rates, and handled prey more quickly. Notably, however, the two subspecies did not differ in their abilities to find buried prey. The subspecies were similar in size and had equally sized gizzards, but the more northern ptilocnemis individuals were 10-14% heavier than their same-sex tschuktschorum counterparts. The higher body mass in ptilocnemis likely resulted from hypertrophy of digestive organs (e.g. intestine, liver) related to digestion and nutrient assimilation. Given the previously established equality of the two subspecies' metabolic capacities, we propose that the high-latitude nonbreeding range of ptilocnemis rock sandpipers is primarily facilitated by digestive (i.e. physiological) aspects of their foraging ecology rather than behavioural or sensory aspects.
A Day in the Life of Fish Larvae: Modeling Foraging and Growth Using Quirks
Huebert, Klaus B.; Peck, Myron A.
2014-01-01
This article introduces “Quirks,” a generic, individual-based model synthesizing over 40 years of empirical and theoretical insights into the foraging behavior and growth physiology of marine fish larvae. In Quirks, different types of larvae are defined by a short list of their biological traits, and all foraging and growth processes (including the effects of key environmental factors) are modeled following one unified set of mechanistic rules. This approach facilitates ecologically meaningful comparisons between different species and environments. We applied Quirks to model young exogenously feeding larvae of four species: 5.5-mm European anchovy (Engraulis encrasicolus), 7-mm Atlantic cod (Gadus morhua), 13-mm Atlantic herring (Clupea harengus), and 7-mm European sprat (Sprattus sprattus). Modeled growth estimates explained the majority of variability among 53 published empirical growth estimates, and displayed very little bias: 0.65%±1.2% d−1 (mean ± standard error). Prey organisms of ∼67% the maximum ingestible prey length were optimal for all larval types, in terms of the expected ingestion per encounter. Nevertheless, the foraging rate integrated over all favorable prey sizes was highest when smaller organisms made up >95% of the prey biomass under the assumption of constant normalized size spectrum slopes. The overall effect of turbulence was consistently negative, because its detrimental influence on prey pursuit success exceeded its beneficial influence on prey encounter rate. Model sensitivity to endogenous traits and exogenous environmental factors was measured and is discussed in depth. Quirks is free software and open source code is provided. PMID:24901937
ten Brink, Hanna; Mazumdar, Abul Kalam Azad; Huddart, Joseph; Persson, Lennart; Cameron, Tom C
2015-03-01
Coexistence of predators that share the same prey is common. This is still the case in size-structured predator communities where predators consume prey species of different sizes (interspecific prey responses) or consume different size classes of the same species of prey (intraspecific prey responses). A mechanism has recently been proposed to explain coexistence between predators that differ in size but share the same prey species, emergent facilitation, which is dependent on strong intraspecific responses from one or more prey species. Under emergent facilitation, predators can depend on each other for invasion, persistence or success in a size-structured prey community. Experimental evidence for intraspecific size-structured responses in prey populations remains rare, and further questions remain about direct interactions between predators that could prevent or limit any positive effects between predators [e.g. intraguild predation (IGP)]. Here, we provide a community-wide experiment on emergent facilitation including natural predators. We investigate both the direct interactions between two predators that differ in body size (fish vs. invertebrate predator), and the indirect interaction between them via their shared prey community (zooplankton). Our evidence supports the most likely expectation of interactions between differently sized predators that IGP rates are high, and interspecific interactions in the shared prey community dominate the response to predation (i.e. predator-mediated competition). The question of whether emergent facilitation occurs frequently in nature requires more empirical and theoretical attention, specifically to address the likelihood that its pre-conditions may co-occur with high rates of IGP. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Temperature alters food web body-size structure.
Gibert, Jean P; DeLong, John P
2014-08-01
The increased temperature associated with climate change may have important effects on body size and predator-prey interactions. The consequences of these effects for food web structure are unclear because the relationships between temperature and aspects of food web structure such as predator-prey body-size relationships are unknown. Here, we use the largest reported dataset for marine predator-prey interactions to assess how temperature affects predator-prey body-size relationships among different habitats ranging from the tropics to the poles. We found that prey size selection depends on predator body size, temperature and the interaction between the two. Our results indicate that (i) predator-prey body-size ratios decrease with predator size at below-average temperatures and increase with predator size at above-average temperatures, and (ii) that the effect of temperature on predator-prey body-size structure will be stronger at small and large body sizes and relatively weak at intermediate sizes. This systematic interaction may help to simplify forecasting the potentially complex consequences of warming on interaction strengths and food web stability. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Gape-limitation, foraging tactics and prey size selectivity of two microcarnivorous species of fish.
Schmitt, Russell J; Holbrook, Sally J
1984-07-01
Patterns of prey size selectivity were quantified in the field for two species of marine microcarnivorous fish, Embiotoca jacksoni and Embiotoca lateralis (Embiotocidae) to test Scott and Murdoch's (1983) size spectrum hypothesis. Two mechanisms accounted for observed selectivity: the relative size of a fish in relation to its prey, and the type of foraging behavior used. Juvenile E. jacksoni were gape limited and newborn individuals achieved highest selectivity for the smallest prey size by using a visual picking foraging strategy. As young E. jacksoni grew, highest preference shifted to the next larger prey sizes. When E. jacksoni reached adulthood, the principal mode of foraging changed from visual picking to relatively indiscriminant winnowing behavior. The shift in foraging behavior by adults was accompanied by a decline in overall preference for prey size; sizes were taken nearly in proportion to their relative abundance. Adult E. lateralis retained a visual picking strategy and achieved highest selectivity for the largest class of prey. These differences in selectivity patterns by adult fish were not explained by gape-limination since adults of both species could ingest the largest prey items available to them. These results support Scott and Murdoch's (1983) hypothesis that the qualitative pattern of size selectivity depends largely on the range of available prey sizes relative to that a predator can effectively harvest.
Rodríguez, Rafael L; Briceño, R D; Briceño-Aguilar, Eduardo; Höbel, Gerlinde
2015-01-01
Nephila clavipes golden orb-web spiders accumulate prey larders on their webs and search for them if they are removed from their web. Spiders that lose larger larders (i.e., spiders that lose larders consisting of more prey items) search for longer intervals, indicating that the spiders form memories of the size of the prey larders they have accumulated, and use those memories to regulate recovery efforts when the larders are pilfered. Here, we ask whether the spiders represent prey counts (i.e., numerosity) or a continuous integration of prey quantity (mass) in their memories. We manipulated larder sizes in treatments that varied in either prey size or prey numbers but were equivalent in total prey quantity (mass). We then removed the larders to elicit searching and used the spiders' searching behavior as an assay of their representations in memory. Searching increased with prey quantity (larder size) and did so more steeply with higher prey counts than with single prey of larger sizes. Thus, Nephila spiders seem to track prey quantity in two ways, but to attend more to prey numerosity. We discuss alternatives for continuous accumulator mechanisms that remain to be tested against the numerosity hypothesis, and the evolutionary and adaptive significance of evidence suggestive of numerosity in a sit-and-wait invertebrate predator.
Ruthrauff, Daniel R.; Dekinga, Anne; Gill, Robert E.; van Gils, Jan A.; Piersma, Theunis
2015-01-01
At what phenotypic level do closely related subspecies that live in different environments differ with respect to food detection, ingestion and processing? This question motivated an experimental study on rock sandpipers (Calidris ptilocnemis). The species' nonbreeding range spans 20 deg of latitude, the extremes of which are inhabited by two subspecies: C. p. ptilocnemis that winters primarily in upper Cook Inlet, Alaska (61°N) and C. p. tschuktschorum that overlaps slightly with C. p. ptilocnemis but whose range extends much farther south (∼40°N). In view of the strongly contrasting energetic demands of their distinct nonbreeding distributions, we conducted experiments to assess the behavioral, physiological and sensory aspects of foraging and we used the bivalve Macoma balthica for all trials. C. p. ptilocnemis consumed a wider range of prey sizes, had higher maximum rates of energy intake, processed shell waste at higher maximum rates and handled prey more quickly. Notably, however, the two subspecies did not differ in their abilities to find buried prey. The subspecies were similar in size and had equally sized gizzards, but the more northern ptilocnemis individuals were 10–14% heavier than their same-sex tschuktschorum counterparts. The higher body mass in ptilocnemis probably resulted from hypertrophy of digestive organs (e.g. intestine, liver) related to digestion and nutrient assimilation. Given the previously established equality of the metabolic capacities of the two subspecies, we propose that the high-latitude nonbreeding range of ptilocnemis rock sandpipers is primarily facilitated by digestive (i.e. physiological) aspects of their foraging ecology rather than behavioral or sensory aspects.
NASA Astrophysics Data System (ADS)
Gregory Lough, R.; Mountain, David G.
A set of vertically stratified MOCNESS tows made on the southern flank of Georges Bank in spring 1981 and 1983 was analyzed to examine the relationship between larval cod and haddock feeding success and turbulent dissipation in a stratified water column. Observed feeding ratios (mean no. prey larval gut -1) for three size classes of larvae were compared with estimated ingestion rates using the Rothschild and Osborn ( Journal of Plankton Research, 10, 1988, 465-474) predator-prey encounter rate model. Simulation of contact rates requires parameter estimates of larval fish and their prey cruising speeds, density of prey, and turbulent velocity of the water column. Turbulent dissipation was estimated from a formulation by James ( Estuarine and Coastal Marine Science, 5, 1977, 339-353) incorporating both a wind a tidal component. Larval ingestion rates were based on swallowing probabilities derived from calm-water laboratory observations. Model-predicted turbulence profiles generally showed that dissipation rates were low to moderate (10 -11-10 -7 W kg -1). Turbulence was minimal at or below the pycnocline (≈ 25 m) with higher values(1-2 orders of magnitude) near the surface due to wind mixing and at depth due to shear in the tidal current near bottom. In a stratified water column during the day, first-feeding larvae (5-6 mm) were located mostly within or above the pycnocline coincident with their copepod prey (nauplii and copepodites). The 7-8 mm larvae were most abundant within the pycnocline, whereas the 9-10 mm larvae were found within and below the pycnocline. Feeding ratios were relatively low in early morning following darkness when the wind speed was low, but increased by a factor of 2-13 by noon and evening when the wind speed doubled. Comparison of depth-specific feeding ratios with estimated ingestion rates, derived from turbulence-affected contact rates, generally were reasonable after allowing for an average gut evacuation time (4 h), and in many cases the observed and estimated values had similar profiles. However, differences in vertical profiles may be attributed to differential digestion time, pursuit behavior affected by high turbulence, vertical migration of the larger larvae, an optimum light level for feeding, smaller-scale prey patchiness, and the gross estimates of turbulence. Response-surface estimation of averaged feeding ratios as a function of averaged prey density (0-50 m) with a minimum water-column turbulence value predicted that 5-6 mm larvae have a maximum feeding response at the highest prey densities (> 30 prey 1 -1) and lower turbulence estimates (<10 -10 W kg -1). The 7-8 mm and 9-10 mm larvae also have a maximum feeding response at high prey densities and low turbulence, but it extends to lower prey densities (> 10 prey 1 -1) as turbulence increases to intermidiate levels, clearly showing an interaction effect. In general, maximum feeding ratios occur at low to intermediate levels of turbulence where average prey density is greater than 10-20 prey 1 -1.
Mass enhances speed but diminishes turn capacity in terrestrial pursuit predators.
Wilson, Rory P; Griffiths, Iwan W; Mills, Michael G L; Carbone, Chris; Wilson, John W; Scantlebury, David M
2015-08-07
The dynamics of predator-prey pursuit appears complex, making the development of a framework explaining predator and prey strategies problematic. We develop a model for terrestrial, cursorial predators to examine how animal mass modulates predator and prey trajectories and affects best strategies for both parties. We incorporated the maximum speed-mass relationship with an explanation of why larger animals should have greater turn radii; the forces needed to turn scale linearly with mass whereas the maximum forces an animal can exert scale to a 2/3 power law. This clarifies why in a meta-analysis, we found a preponderance of predator/prey mass ratios that minimized the turn radii of predators compared to their prey. It also explained why acceleration data from wild cheetahs pursuing different prey showed different cornering behaviour with prey type. The outcome of predator prey pursuits thus depends critically on mass effects and the ability of animals to time turns precisely.
Comparative investigations into the feeding ecology of six Mantodea species.
Reitze, Margit; Nentwig, Wolfgang
1991-05-01
Six mantid species (Sphodromantis viridis, Polyspilota aeruginosa, Hierodula unimaculata, Parasphendale agrionia, Mantis religiosa and Empusa pennata) were studied in laboratory feeding experiments. Mantids stalk their prey and pounce on it, grasping it with their forelegs. Only living prey is selected and it is consumed directly after the catch. The predator orients itself optically, and therefore only takes notice of moving prey. The maximum size of prey which mantids can overwhelm is species-specific and depends on the prey type. On average mantids eat crickets of 50% their own body-weight while cockroaches can weigh up to 110%. Feeding experiments with 101 species of potential prey of 21 invertebrate orders showed an average feeding rate of 70% and marked differences among the predators. Polyspilota proved to be the least specialized mantid and Empusa caught the smallest amount of prey. Most of the defence mechanisms which arthropods have developed against their enemies proved to be ineffective against mantids. Neither a hard chitinous exoskeleton nor poisonous substances prevented the mantids from attacking their prey successfully. The protective secretion of the cotton stainer Dysdercus intermedius proved to be effective at least in a few instances. Even though these bugs were killed, the mantids usually refused to eat the abdomen, where the glands that produce the protective secretion are to be found. Thanatosis, as exhibited by the chrysomelid Cassida viridis and by the phasmid Carausius morosus, proved to be the best protection against mantids.
How Baleen Whales Feed: The Biomechanics of Engulfment and Filtration
NASA Astrophysics Data System (ADS)
Goldbogen, J. A.; Cade, D. E.; Calambokidis, J.; Friedlaender, A. S.; Potvin, J.; Segre, P. S.; Werth, A. J.
2017-01-01
Baleen whales are gigantic obligate filter feeders that exploit aggregations of small-bodied prey in littoral, epipelagic, and mesopelagic ecosystems. At the extreme of maximum body size observed among mammals, baleen whales exhibit a unique combination of high overall energetic demands and low mass-specific metabolic rates. As a result, most baleen whale species have evolved filter-feeding mechanisms and foraging strategies that take advantage of seasonally abundant yet patchily and ephemerally distributed prey resources. New methodologies consisting of multi-sensor tags, active acoustic prey mapping, and hydrodynamic modeling have revolutionized our ability to study the physiology and ecology of baleen whale feeding mechanisms. Here, we review the current state of the field by exploring several hypotheses that aim to explain how baleen whales feed. Despite significant advances, major questions remain about the processes that underlie these extreme feeding mechanisms, which enabled the evolution of the largest animals of all time.
How Baleen Whales Feed: The Biomechanics of Engulfment and Filtration.
Goldbogen, J A; Cade, D E; Calambokidis, J; Friedlaender, A S; Potvin, J; Segre, P S; Werth, A J
2017-01-03
Baleen whales are gigantic obligate filter feeders that exploit aggregations of small-bodied prey in littoral, epipelagic, and mesopelagic ecosystems. At the extreme of maximum body size observed among mammals, baleen whales exhibit a unique combination of high overall energetic demands and low mass-specific metabolic rates. As a result, most baleen whale species have evolved filter-feeding mechanisms and foraging strategies that take advantage of seasonally abundant yet patchily and ephemerally distributed prey resources. New methodologies consisting of multi-sensor tags, active acoustic prey mapping, and hydrodynamic modeling have revolutionized our ability to study the physiology and ecology of baleen whale feeding mechanisms. Here, we review the current state of the field by exploring several hypotheses that aim to explain how baleen whales feed. Despite significant advances, major questions remain about the processes that underlie these extreme feeding mechanisms, which enabled the evolution of the largest animals of all time.
Predator size divergence depends on community context.
Okuzaki, Yutaka; Sota, Teiji
2018-05-09
Body size is a multi-functional trait related to various fitness components, but the relative importance of different selection pressures is seldom resolved. In Carabus japonicus beetles, of which the larvae exclusively prey on earthworms, adult body size is related to the presence/absence of a larger congener and habitat temperature. In sympatry, C. japonicus consistently exhibits smaller body size which is effective for avoiding interspecific mating, but in allopatry, it shows size variation unrelated to temperature. Here, we show that this predator-size variation is attributed to prey-size variation, associated with high phylogenetic diversity in earthworm communities. In allopatry, the predator size was larger where larger prey occurred. Larger adult size may have been selected because larger females produce larger larvae, which can subdue larger prey. Thus, in the absence of a larger congener, variation in prey body size had a pronounced effect on geographic body size divergence in C. japonicus. © 2018 John Wiley & Sons Ltd/CNRS.
Howeth, Jennifer G; Leibold, Mathew A
2010-09-01
1. Recent studies indicate that large-scale spatial processes can alter local community structuring mechanisms to determine local and regional assemblages of predators and their prey. In metacommunities, this may occur when the functional diversity represented in the regional predator species pool interacts with the rate of prey dispersal among local communities to affect prey species diversity and trait composition at multiple scales. 2. Here, we test for effects of prey dispersal rate and spatially and temporally heterogeneous predation from functionally dissimilar predators on prey structure in pond mesocosm metacommunities. An experimental metacommunity consisted of three pond mesocosm communities supporting two differentially size-selective invertebrate predators and their zooplankton prey. In each metacommunity, two communities maintained constant predation and supported either Gyrinus sp. (Coleoptera) or Notonecta ungulata (Hemiptera) predators generating a spatial prey refuge while the third community supported alternating predation from Gyrinus sp. and N. ungulata generating a temporal prey refuge. Mesocosm metacommunities were connected at either low (0.7% day(-1)) or high (10% day(-1)) planktonic prey dispersal. The diversity, composition and body size of zooplankton prey were measured at local and regional (metacommunity) scales. 3. Metacommunities experiencing the low prey dispersal rate supported the greatest regional prey species diversity (H') and evenness (J'). Neither dispersal rate nor predation regime affected local prey diversity or evenness. The spatial prey refuge at low dispersal maintained the largest difference in species composition and body size diversity between communities under Gyrinus and Notonecta predation, suggesting that species sorting was operating at the low dispersal rate. There was no effect of dispersal rate on species diversity or body size distribution in the temporal prey refuge. 4. The frequency distribution, but not the range, of prey body sizes within communities depended upon prey dispersal rate and predator identity. Taken together, these results demonstrate that prey dispersal rate can moderate the strength of predation to influence prey species diversity and the local frequency distribution of prey traits in metacommunities supporting ecologically different predators.
García-Comas, Carmen; Sastri, Akash R.; Ye, Lin; Chang, Chun-Yi; Lin, Fan-Sian; Su, Min-Sian; Gong, Gwo-Ching; Hsieh, Chih-hao
2016-01-01
Body size exerts multiple effects on plankton food-web interactions. However, the influence of size structure on trophic transfer remains poorly quantified in the field. Here, we examine how the size diversity of prey (nano-microplankton) and predators (mesozooplankton) influence trophic transfer efficiency (using biomass ratio as a proxy) in natural marine ecosystems. Our results support previous studies on single trophic levels: transfer efficiency decreases with increasing prey size diversity and is enhanced with greater predator size diversity. We further show that communities with low nano-microplankton size diversity and high mesozooplankton size diversity tend to occur in warmer environments with low nutrient concentrations, thus promoting trophic transfer to higher trophic levels in those conditions. Moreover, we reveal an interactive effect of predator and prey size diversities: the positive effect of predator size diversity becomes influential when prey size diversity is high. Mechanistically, the negative effect of prey size diversity on trophic transfer may be explained by unicellular size-based metabolic constraints as well as trade-offs between growth and predation avoidance with size, whereas increasing predator size diversity may enhance diet niche partitioning and thus promote trophic transfer. These findings provide insights into size-based theories of ecosystem functioning, with implications for ecosystem predictive models. PMID:26865298
Mass enhances speed but diminishes turn capacity in terrestrial pursuit predators
Wilson, Rory P; Griffiths, Iwan W; Mills, Michael GL; Carbone, Chris; Wilson, John W; Scantlebury, David M
2015-01-01
The dynamics of predator-prey pursuit appears complex, making the development of a framework explaining predator and prey strategies problematic. We develop a model for terrestrial, cursorial predators to examine how animal mass modulates predator and prey trajectories and affects best strategies for both parties. We incorporated the maximum speed-mass relationship with an explanation of why larger animals should have greater turn radii; the forces needed to turn scale linearly with mass whereas the maximum forces an animal can exert scale to a 2/3 power law. This clarifies why in a meta-analysis, we found a preponderance of predator/prey mass ratios that minimized the turn radii of predators compared to their prey. It also explained why acceleration data from wild cheetahs pursuing different prey showed different cornering behaviour with prey type. The outcome of predator prey pursuits thus depends critically on mass effects and the ability of animals to time turns precisely. DOI: http://dx.doi.org/10.7554/eLife.06487.001 PMID:26252515
Borcherding, Jost; Beeck, Peter; DeAngelis, Donald L.; Scharf, Werner R.
2010-01-01
Summary 1. In gape-limited predators, body size asymmetries determine the outcome of predator-prey interactions. Due to ontogenetic changes in body size, the intensity of intra- and interspecific interactions may change rapidly between the match situation of a predator-prey system and the mismatch situation in which competition, including competition with the prey, dominates. 2. Based on a physiologically structured population model using the European perch (Perca fluviatilis), analysis was performed on how prey density (bream, Abramis brama), initial size differences in the young-of-the-year (YOY) age cohort of the predator, and phenology (time-gap in hatching of predator and prey) influence the size structure of the predator cohort. 3. In relation to the seasonality of reproduction, the match situation of the predator-prey system occurred when perch hatched earlier than bream and when no gape-size limitations existed, leading to decreased size divergence in the predator age cohort. Decreased size divergence was also found when bream hatched much earlier than perch, preventing perch predation on bream occurring, which, in turn, increased the competitive interaction of the perch with bream for the common prey, zooplankton; i.e. the mismatch situation in which also the mean size of the age cohort of the predator decreased. 4. In between the total match and the mismatch, however, only the largest individuals of the perch age cohort were able to prey on the bream, while smaller conspecifics got trapped in competition with each other and with bream for zooplankton, leading to enlarged differences in growth that increased size divergence. 5. The modelling results were combined with 7 years of field data in a lake, where large differences in the length-frequency distribution of YOY perch were observed after their first summer. These field data corroborate that phenology and prey density per predator are important mechanisms in determining size differences within the YOY age cohort of the predator. 6. The results demonstrate that the switch between competitive interactions and a predator-prey relationship depended on phenology. This resulted in pronounced size differences in the YOY age cohort, which had far-reaching consequences for the entire predator population.
Helenius, Laura K; Saiz, Enric
2017-01-01
Laboratory feeding experiments were conducted to study the functional response and prey size spectrum of the young naupliar stages of the calanoid copepod Paracartia grani Sars. Experiments were conducted on a range of microalgal prey of varying sizes and motility patterns. Significant feeding was found in all prey of a size range of 4.5-19.8 μm, with Holling type III functional responses observed for most prey types. The highest clearance rates occurred when nauplii fed on the dinoflagellate Heterocapsa sp. and the diatom Thalassiosira weissflogii (respectively, 0.61 and 0.70 mL ind-1 d-1), suggesting an optimal prey:predator ratio of 0.09. Additional experiments were conducted to examine the effects of the presence of alternative prey (either Heterocapsa sp. or Gymnodinium litoralis) on the functional response to the haptophyte Isochrysis galbana. In the bialgal mixtures, clearance and ingestion rates of I. galbana along the range of the functional response were significantly reduced as a result of selectivity towards the larger, alternative prey. Paradoxically, relatively large prey trigger a perception response in the nauplii, but most likely such prey cannot be completely ingested and a certain degree of sloppy feeding may occur. Our results are further evidence of the complex prey-specific feeding interactions that are likely to occur in natural assemblages with several available prey types.
Adding constraints to predation through allometric relation of scats to consumption.
Chakrabarti, Stotra; Jhala, Yadvendradev V; Dutta, Sutirtha; Qureshi, Qamar; Kadivar, Riaz F; Rana, Vishwadipsinh J
2016-05-01
A thorough understanding of mechanisms of prey consumption by carnivores and the constraints on predation help us in evaluating the role of carnivores in an ecosystem. This is crucial in developing appropriate management strategies for their conservation and mitigating human-carnivore conflict. Current models on optimal foraging suggest that mammalian carnivores would profit most from killing the largest prey that they can subdue with minimal risk of injury to themselves. Wild carnivore diets are primarily estimated through analysis of their scats. Using extensive feeding experiments (n = 68) on a wide size range (4·5-130 kg) of obligate carnivores - lion, leopard, jungle cat and domestic cat, we parameterize biomass models that best relate consumption to scat production. We evaluate additional constraints of gut fill, prey digestibility and carcass utilization on carnivory that were hereto not considered in optimal foraging studies. Our results show that patterns of consumption to scat production against prey size are similar and asymptotic, contrary to established linear models, across these carnivores after accounting for the effect of carnivore size. This asymptotic, allometric relationship allowed us to develop a generalized model: biomass consumed per collectable scat/predator weight = 0·033-0·025exp(-4·284(prey weight/predator weight)) , which is applicable to all obligate carnivores to compute prey biomass consumed from scats. Our results also depict a relationship for prey digestibility which saturates at about 90% for prey larger than predator size. Carcass utilization declines exponentially with prey size. These mechanisms result in digestible biomass saturating at prey weights approximately equal to predator weight. Published literature on consumption by tropical carnivores that has relied on linear biomass models is substantially biased. We demonstrate the nature of these biases by correcting diets of tiger, lion and leopard in recent publications. Our analysis suggests that consumption of medium-sized prey was significantly underestimated, while large prey consumption was grossly overestimated in large carnivore diets to date. We highlight that additional constraints of prey digestibility and utilization combined with escalating handling time and risks of killing large prey make prey larger than the predator size unprofitable for obligate carnivores. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Large orb-webs adapted to maximise total biomass not rare, large prey
Harmer, Aaron M. T.; Clausen, Philip D.; Wroe, Stephen; Madin, Joshua S.
2015-01-01
Spider orb-webs are the ultimate anti-ballistic devices, capable of dissipating the relatively massive kinetic energy of flying prey. Increased web size and prey stopping capacity have co-evolved in a number orb-web taxa, but the selective forces driving web size and performance increases are under debate. The rare, large prey hypothesis maintains that the energetic benefits of rare, very large prey are so much greater than the gains from smaller, more common prey that smaller prey are irrelevant for reproduction. Here, we integrate biophysical and ecological data and models to test a major prediction of the rare, large prey hypothesis, that selection should favour webs with increased stopping capacity and that large prey should comprise a significant proportion of prey stopped by a web. We find that larger webs indeed have a greater capacity to stop large prey. However, based on prey ecology, we also find that these large prey make up a tiny fraction of the total biomass (=energy) potentially captured. We conclude that large webs are adapted to stop more total biomass, and that the capacity to stop rare, but very large, prey is an incidental consequence of the longer radial silks that scale with web size. PMID:26374379
The behavioral response of prey fish to predators: the role of predator size.
Tang, Zhong-Hua; Huang, Qing; Wu, Hui; Kuang, Lu; Fu, Shi-Jian
2017-01-01
Predation is one of the key factors governing patterns in natural systems, and adjustments of prey behaviors in response to a predator stimulus can have important ecological implications for wild fish. To investigate the effects of predators on the behavior of prey fish and to test whether the possible effects varied with predator size, black carp (Mylopharyngodon piceus) and snakehead (Channa argus) (a size-matched predator treatment with a similar body size to prey fish and a larger predator treatment with approximately 2.7 times of the body mass of prey fish) were selected to function as prey and predator, respectively. Their spontaneous activities were videorecorded in a central circular arena surrounded by a ring holding the stimulus fish. The distance between prey and predator fish was approximately 200% of the distance between two prey fish, which suggested that black carp can distinguish their conspecifics from heterospecifics and probably recognize the snakehead as a potential predator. The prey fish spent substantially less time moving and exhibited an overall shorter total distance of movement after the size-matched or large predator was introduced, which possibly occurred due to increased vigilance or efforts to reduce the possibility of detection by potential predators. However, there was no significant difference in either distance or spontaneous activities between two predator treatments. These findings suggested that (1) an anti-predator strategy in black carp might involve maintaining a safe distance, decreasing activity and possibly increased vigilance and that (2) the behaviors of prey response to predators were not influenced by their relative size difference.
Resource depletion through primate stone technology
Tan, Amanda; Haslam, Michael; Kulik, Lars; Proffitt, Tomos; Malaivijitnond, Suchinda; Gumert, Michael
2017-01-01
Tool use has allowed humans to become one of the most successful species. However, tool-assisted foraging has also pushed many of our prey species to extinction or endangerment, a technology-driven process thought to be uniquely human. Here, we demonstrate that tool-assisted foraging on shellfish by long-tailed macaques (Macaca fascicularis) in Khao Sam Roi Yot National Park, Thailand, reduces prey size and prey abundance, with more pronounced effects where the macaque population size is larger. We compared availability, sizes and maturation stages of shellfish between two adjacent islands inhabited by different-sized macaque populations and demonstrate potential effects on the prey reproductive biology. We provide evidence that once technological macaques reach a large enough group size, they enter a feedback loop – driving shellfish prey size down with attendant changes in the tool sizes used by the monkeys. If this pattern continues, prey populations could be reduced to a point where tool-assisted foraging is no longer beneficial to the macaques, which in return may lessen or extinguish the remarkable foraging technology employed by these primates. PMID:28884681
Maximum sustainable yield and species extinction in a prey-predator system: some new results.
Ghosh, Bapan; Kar, T K
2013-06-01
Though the maximum sustainable yield (MSY) approach has been legally adopted for the management of world fisheries, it does not provide any guarantee against from species extinction in multispecies communities. In the present article, we describe the appropriateness of the MSY policy in a Holling-Tanner prey-predator system with different types of functional responses. It is observed that for both type I and type II functional responses, harvesting of either prey or predator species at the MSY level is a sustainable fishing policy. In the case of combined harvesting, both the species coexist at the maximum sustainable total yield (MSTY) level if the biotic potential of the prey species is greater than a threshold value. Further, increase of the biotic potential beyond the threshold value affects the persistence of the system.
Robinson, Nathan J.
2018-01-01
Olivid gastropods of the genus Agaronia are dominant predators within invertebrate communities on sandy beaches throughout Pacific Central America. At Playa Grande, on the Pacific Coast of Costa Rica, we observed 327 natural predation events by Agaronia propatula. For each predation event, we documented prey taxa and body size of both predator and prey. The relationship between predator and prey size differed for each of the four main prey taxa: bivalves, crustaceans, heterospecific gastropods, and conspecific gastropods (representing cannibalism). For bivalve prey, there was increased variance in prey size with increasing predator size. Crustaceans were likely subdued only if injured or otherwise incapacitated. Heterospecific gastropods (mostly Olivella semistriata) constituted half of all prey items, but were only captured by small and intermediately sized A. propatula. Large O. semistriata appeared capable of avoiding predation by A. propatula. Cannibalism was more prevalent among large A. propatula than previously estimated. Our findings suggested ontogenetic niche shifts in A. propatula and a significant role of cannibalism in its population dynamics. Also indicated were size-dependent defensive behavior in some prey taxa and a dynamic, fine-scale zonation of the beach. The unexpected complexity of the trophic relations of A. propatula was only revealed though analysis of individual predation events. This highlights the need for detailed investigations into the trophic ecology of marine invertebrates to understand the factors driving ecosystem structuring in sandy beaches. PMID:29736346
Food resource partitioning by nine sympatric darter species
van Snik, Gray E.; Boltz, J.M.; Kellogg, K.A.; Stauffer, J.R.
1997-01-01
We compared the diets among members of the diverse darter community of French Creek, Pennsylvania, in relation to seasonal prey availability, feeding ontogeny, and sex. Prey taxa and size attributes were characterized for nine syntopic darter species; taxon, size, and availability of macroinvertebrate prey were also analyzed from Surber samples. In general, darters fed opportunistically on immature insects; few taxa were consumed in greater proportions than they were found in the environment. Some variation in diet composition was expressed, however, among different life stages and species. Juvenile darters consumed smaller prey and more chironomids than did adults. Etheostoma blennioides and E. zonale consumed the fewest taxa (2-3), whereas E. maculatum, E. variatum, and Percina evides bad the most diverse diets (7-10 taxa). Etheostoma maculatum, E. flabellare, E. variatum, and P. evides consumed larger prey (1-13 mm in standard length), whereas E. blennioides, E. caeruleum, E. camurum, E. tippecanoe, and E. zonale rarely consumed prey longer than 6 mm. Percina evides fed on larger prey, fewer chironomids, and more fish eggs than Etheostoma species. Females consumed more prey than males and overlapped less in diet composition with males during the spawning season than afterwards. Fish diets did not seem related to habitat use. Greater trophic partitioning was observed in April, when prey resources were scarce, than in July, when prey were abundant. Darter species fed opportunistically when prey were dense, whereas they partitioned food resources mainly through the prey size dimension when prey were less abundant. The divergence of darter diets during a period of low food availability may be attributed to interspecific competition. Alternatively, the greater abundance of large prey in April may have facilitated better prey size selectivity, resulting in less overlap among darter species.
Inducible defenses in prey intensify predator cannibalism.
Kishida, Osamu; Trussell, Geoffrey C; Nishimura, Kinya; Ohgushi, Takayuki
2009-11-01
Trophic cascades are often a potent force in ecological communities, but abiotic and biotic heterogeneity can diffuse their influence. For example, inducible defenses in many species create variation in prey edibility, and size-structured interactions, such as cannibalism, can shift predator diets away from heterospecific prey. Although both factors diffuse cascade strength by adding heterogeneity to trophic interactions, the consequences of their interactioh remain poorly understood. We show that inducible defenses in tadpole prey greatly intensify cannibalism in predatory larval salamanders. The likelihood of cannibalism was also strongly influenced by asymmetries in salamander size that appear to be most important in the presence of defended prey. Hence, variation in prey edibility and the size structure of the predator may synergistically affect predator-prey population dynamics by reducing prey mortality and increasing predator mortality via cannibalism. We also suggest that the indirect effects of prey defenses may shape the evolution of predator traits that determine diet breadth and how trophic dynamics unfold in natural systems.
Predator-prey size relationships in an African large-mammal food web.
Owen-Smith, Norman; Mills, M G L
2008-01-01
1. Size relationships are central in structuring trophic linkages within food webs, leading to suggestions that the dietary niche of smaller carnivores is nested within that of larger species. However, past analyses have not taken into account the differing selection shown by carnivores for specific size ranges of prey, nor the extent to which the greater carcass mass of larger prey outweighs the greater numerical representation of smaller prey species in the predator diet. Furthermore, the top-down impact that predation has on prey abundance cannot be assessed simply in terms of the number of predator species involved. 2. Records of found carcasses and cause of death assembled over 46 years in the Kruger National Park, South Africa, corrected for under-recording of smaller species, enabled a definitive assessment of size relationships between large mammalian carnivores and their ungulate prey. Five carnivore species were considered, including lion (Panthera leo), leopard (Panthera pardus), cheetah (Acinonyx jubatus), African wild dog (Lycaon pictus) and spotted hyena (Crocuta crocuta), and 22 herbivore prey species larger than 10 kg in adult body mass. 3. These carnivores selectively favoured prey species approximately half to twice their mass, within a total prey size range from an order of magnitude below to an order of magnitude above the body mass of the predator. The three smallest carnivores, i.e. leopard, cheetah and wild dog, showed high similarity in prey species favoured. Despite overlap in prey size range, each carnivore showed a distinct dietary preference. 4. Almost all mortality was through the agency of a predator for ungulate species up to the size of a giraffe (800-1200 kg). Ungulates larger than twice the mass of the predator contributed substantially to the dietary intake of lions, despite the low proportional mortality inflicted by predation on these species. Only for megaherbivores substantially exceeding 1000 kg in adult body mass did predation become a negligible cause of mortality. 5. Hence, the relative size of predators and prey had a pervasive structuring influence on biomass fluxes within this large-mammal food web. Nevertheless, the large carnivore assemblage was dominated overwhelmingly by the largest predator, which contributed the major share of animals killed across a wide size range.
NASA Astrophysics Data System (ADS)
Montori, Albert; Tierno de Figueroa, J. Manuel; Santos, Xavier
2006-10-01
We investigated the autumnal diet of the brown trout Salmo trutta, in a Prepyrenean stream (NW Iberian Peninsula) focusing on intraspecific dietary differences related to size and sex. The diet of trout included 18 types of prey, with Plecoptera and Ephemeroptera nymphs and Diptera larvae as the most consumed taxa. Large trout ate larger prey, than did small trout, and also increased the consumption of terrestrial-surface prey with respect to aquatic-benthic prey. As terrestrial-surface preys were larger than aquatic-benthic prey, the size-related differences in the diet of trout were related to gape-limitations. Although male and female trout did not differ in size, we found that males foraged on a more diverse type of prey than females, probably owing to male territoriality during the reproductive period. This study provides new evidence of dietary plasticity in the brown trout and confirms the importance of local dietary studies to better understand factors which drive trophic ecology of predators.
Spider webs designed for rare but life-saving catches
Venner, Samuel; Casas, Jérôme
2005-01-01
The impact of rare but positive events on the design of organisms has been largely ignored, probably due to the paucity of recordings of such events and to the difficulty of estimating their impact on lifetime reproductive success. In this respect, we investigated the size of spider webs in relation to rare but large prey catches. First, we collected field data on a short time-scale using the common orb-weaving spider Zygiella x-notata to determine the distribution of the size of prey caught and to quantify the relationship between web size and daily capture success. Second, we explored, with an energetic model, the consequences of an increase in web size on spider fitness. Our results showed that (i) the great majority of prey caught are quite small (body length less than 2 mm) while large prey (length greater than 10 mm) are rare, (ii) spiders cannot survive or produce eggs without catching these large but rare prey and (iii) increasing web size increases the daily number of prey caught and thus long-term survival and fecundity. Spider webs seem, therefore, designed for making the best of the rare but crucial event of catching large prey. PMID:16048774
When prey provide more than food: mammalian predators appropriating the refugia of their prey
Bill Zielinski
2015-01-01
Some mammalian predators acquire both food and shelter from their prey, by eating them and using the refugia the prey construct. I searched the literature for examples of predators that exhibit this behavior and summarize their taxonomic affiliations, relative sizes, and distributions. I hypothesized that size ratios of species involved in this dynamic would be near 1....
Curvature facilitates prey fixation in predatory insect claws.
Petie, Ronald; Muller, Mees
2007-02-21
Insects show a large variety in prey capture strategies, with a correspondingly large diversity in predatory adaptations. We studied a specific type of predatory claws, these can for example be found in praying mantis species. The claw is closeable over its entire length and the prey is fixed between the femur (upper arm) and the tibia (lower arm) of the insect leg. The morphology of these predatory claws is diverse. Some species have straight claws covered with spines, while other species have smooth, curved claws. We have studied the mechanics of this femur-tibia type of predatory insect claws, by making a physical model, eventually trying to explain why in some insect species the claws are curved instead of straight. The main results are (1) when comparing curved claws to straight claws, curvature leads to a strong reduction of forces driving the prey away from the pivoting point, thereby reducing the need for friction generating structures. (2) In the curved claw model a position exists where the resulting force on the prey is exactly zero. This is because the normal forces on the femur and tibia are opposed, and in line. At this position the prey is perfectly clamped and not driven out of the claw. This feature does not exist in straight claws. (3) In the curved claw, the prey cannot be placed at a position further than a certain maximum distance from the pivoting point. Near this maximum position, the resulting force on the prey reaches high values because moment arms are near zero. (4) Between the zero position and the maximum position the resulting force is directed toward the pivoting point, which stabilizes prey fixation.
Patterns of resource partitioning by nesting herons and ibis: how are odonata exploited?
Samraoui, Farrah; Nedjah, Riad; Boucheker, Abdennour; Alfarhan, Ahmed H; Samraoui, Boudjéma
2012-04-01
Herons and ibis are colonially nesting waders which, owing to their number, mobility and trophic role as top predators, play a key role in aquatic ecosystems. They are also good biological models to investigate interspecific competition between sympatric species and predation; two processes which structure ecological communities. Odonata are also numerous, diverse, mobile and can play an important role in aquatic ecosystems by serving as prey for herons and ibis. A relationship between prey size and bird predator has been observed in Numidia wetlands (NE Algeria) after analyzing food boluses regurgitated by six species of birds (Purple Heron, Black-crowned Night Heron, Glossy Ibis, Little Egret, Squacco Heron and Cattle Egret) during the breeding period, which also shows a temporal gradient for the six species. Both the Levins index and preliminary multivariate analysis of the Odonata as prey fed to nestling herons and ibis, indicated a high degree of resource overlap. However, a distinction of prey based on taxonomy (suborder and family) and developmental stage (larvae or adults) reveals a clear size dichotomy with large-sized predators (Purple Heron, Black-crowned Night Heron and Glossy Ibis) preying on large preys like Aeshnids and Libellulids and small-sized predators feeding mainly on small prey like Zygoptera. Overall, the resource utilization suggests a pattern of resource segregation by coexisting nesting herons and ibis based on the timing of reproduction, prey types, prey size and foraging microhabitats. Copyright © 2012 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Growth and Maximum Size of Tiger Sharks (Galeocerdo cuvier) in Hawaii
Meyer, Carl G.; O'Malley, Joseph M.; Papastamatiou, Yannis P.; Dale, Jonathan J.; Hutchinson, Melanie R.; Anderson, James M.; Royer, Mark A.; Holland, Kim N.
2014-01-01
Tiger sharks (Galecerdo cuvier) are apex predators characterized by their broad diet, large size and rapid growth. Tiger shark maximum size is typically between 380 & 450 cm Total Length (TL), with a few individuals reaching 550 cm TL, but the maximum size of tiger sharks in Hawaii waters remains uncertain. A previous study suggested tiger sharks grow rather slowly in Hawaii compared to other regions, but this may have been an artifact of the method used to estimate growth (unvalidated vertebral ring counts) compounded by small sample size and narrow size range. Since 1993, the University of Hawaii has conducted a research program aimed at elucidating tiger shark biology, and to date 420 tiger sharks have been tagged and 50 recaptured. All recaptures were from Hawaii except a single shark recaptured off Isla Jacques Cousteau (24°13′17″N 109°52′14″W), in the southern Gulf of California (minimum distance between tag and recapture sites = approximately 5,000 km), after 366 days at liberty (DAL). We used these empirical mark-recapture data to estimate growth rates and maximum size for tiger sharks in Hawaii. We found that tiger sharks in Hawaii grow twice as fast as previously thought, on average reaching 340 cm TL by age 5, and attaining a maximum size of 403 cm TL. Our model indicates the fastest growing individuals attain 400 cm TL by age 5, and the largest reach a maximum size of 444 cm TL. The largest shark captured during our study was 464 cm TL but individuals >450 cm TL were extremely rare (0.005% of sharks captured). We conclude that tiger shark growth rates and maximum sizes in Hawaii are generally consistent with those in other regions, and hypothesize that a broad diet may help them to achieve this rapid growth by maximizing prey consumption rates. PMID:24416287
Growth and maximum size of tiger sharks (Galeocerdo cuvier) in Hawaii.
Meyer, Carl G; O'Malley, Joseph M; Papastamatiou, Yannis P; Dale, Jonathan J; Hutchinson, Melanie R; Anderson, James M; Royer, Mark A; Holland, Kim N
2014-01-01
Tiger sharks (Galecerdo cuvier) are apex predators characterized by their broad diet, large size and rapid growth. Tiger shark maximum size is typically between 380 & 450 cm Total Length (TL), with a few individuals reaching 550 cm TL, but the maximum size of tiger sharks in Hawaii waters remains uncertain. A previous study suggested tiger sharks grow rather slowly in Hawaii compared to other regions, but this may have been an artifact of the method used to estimate growth (unvalidated vertebral ring counts) compounded by small sample size and narrow size range. Since 1993, the University of Hawaii has conducted a research program aimed at elucidating tiger shark biology, and to date 420 tiger sharks have been tagged and 50 recaptured. All recaptures were from Hawaii except a single shark recaptured off Isla Jacques Cousteau (24°13'17″N 109°52'14″W), in the southern Gulf of California (minimum distance between tag and recapture sites = approximately 5,000 km), after 366 days at liberty (DAL). We used these empirical mark-recapture data to estimate growth rates and maximum size for tiger sharks in Hawaii. We found that tiger sharks in Hawaii grow twice as fast as previously thought, on average reaching 340 cm TL by age 5, and attaining a maximum size of 403 cm TL. Our model indicates the fastest growing individuals attain 400 cm TL by age 5, and the largest reach a maximum size of 444 cm TL. The largest shark captured during our study was 464 cm TL but individuals >450 cm TL were extremely rare (0.005% of sharks captured). We conclude that tiger shark growth rates and maximum sizes in Hawaii are generally consistent with those in other regions, and hypothesize that a broad diet may help them to achieve this rapid growth by maximizing prey consumption rates.
Lima, Albertina P; Moreira, Gloria
1993-03-01
The feeding niche ofColostethus stepheni changes during ontogeny. Small individuals eat small arthropods, principally mites and collembolans, and larger frogs eat bigger prey of other types. The shift in prey types is not a passive effect of selection for bigger prey. There is a strong relationship between electivity for prey types and frog size, independent of electivity for prey size. Four indices of general activity during foraging (number of movements, velocity, total area utilized and time spent moving), which are associated with electivity for prey types in adult frogs and lizards, did not predict the ontogenetic change in the diet ofC. stepheni. Apparently, the behavioral changes that cause the ontogenetic change inC. stepheni are more subtle than shifts in general activity during foraging. Studies of niche partitioning in communities of anurans that do not take into consideration ontogenetic changes in diet and seasonal changes in the size structures of populations present a partial and possibly erroneous picture of the potential interactions among species.
Capture success and efficiency of dragonflies pursuing different types of prey.
Combes, S A; Salcedo, M K; Pandit, M M; Iwasaki, J M
2013-11-01
The dynamics of predator-prey interactions vary enormously, due both to the heterogeneity of natural environments and to wide variability in the sensorimotor systems of predator and prey. In addition, most predators pursue a range of different types of prey, and most organisms are preyed upon by a variety of predators. We do not yet know whether predators employ a general kinematic and behavioral strategy, or whether they tailor their pursuits to each type of prey; nor do we know how widely prey differ in their survival strategies and sensorimotor capabilities. To gain insight into these questions, we compared aerial predation in 4 species of libelluid dragonflies pursuing 4 types of dipteran prey, spanning a range of sizes. We quantified the proportion of predation attempts that were successful (capture success), as well as the total time spent and the distance flown in pursuit of prey (capture efficiency). Our results show that dragonfly prey-capture success and efficiency both decrease with increasing size of prey, and that average prey velocity generally increases with size. However, it is not clear that the greater distances and times required for capturing larger prey are due solely to the flight performance (e.g., speed or evasiveness) of the prey, as predicted. Dragonflies initiated pursuits of large prey when they were located farther away, on average, as compared to small prey, and the total distance flown in pursuit was correlated with initial distance to the prey. The greater initial distances observed during pursuits of larger prey may arise from constraints on dragonflies' visual perception; dragonflies typically pursued prey subtending a visual angle of 1°, and rarely pursued prey at visual angles greater than 3°. Thus, dragonflies may be unable to perceive large prey flying very close to their perch (subtending a visual angle greater than 3-4°) as a distinct target. In comparing the performance of different dragonfly species that co-occur in the same habitat, we found significant differences that are not explained by body size, suggesting that some dragonflies may be specialized for pursuing particular types of prey. Our results underscore the importance of performing comparative studies of predator-prey interactions with freely behaving subjects in natural settings, to provide insight into how the behavior of both participants influences the dynamics of the interaction. In addition, it is clear that gaining a full understanding of predator-prey interactions requires detailed knowledge not only of locomotory mechanics and behavior, but also of the sensory capabilities and constraints of both predator and prey.
Schuchmann, Maike; Siemers, Björn M
2010-09-17
Only recently data on bat echolocation call intensities is starting to accumulate. Yet, intensity is an ecologically crucial parameter, as it determines the extent of the bats' perceptual space and, specifically, prey detection distance. Interspecifically, we thus asked whether sympatric, congeneric bat species differ in call intensities and whether differences play a role for niche differentiation. Specifically, we investigated whether R. mehelyi that calls at a frequency clearly above what is predicted by allometry, compensates for frequency-dependent loss in detection distance by using elevated call intensity. Maximum echolocation call intensities might depend on body size or condition and thus be used as an honest signal of quality for intraspecific communication. We for the first time investigated whether a size-intensity relation is present in echolocating bats. We measured maximum call intensities and frequencies for all five European horseshoe bat species. Maximum intensity differed among species largely due to R. euryale. Furthermore, we found no compensation for frequency-dependent loss in detection distance in R. mehelyi. Intraspecifically, there is a negative correlation between forearm lengths and intensity in R. euryale and a trend for a negative correlation between body condition index and intensity in R. ferrumequinum. In R. hipposideros, females had 8 dB higher intensities than males. There were no correlations with body size or sex differences and intensity for the other species. Based on call intensity and frequency measurements, we estimated echolocation ranges for our study community. These suggest that intensity differences result in different prey detection distances and thus likely play some role for resource access. It is interesting and at first glance counter-intuitive that, where a correlation was found, smaller bats called louder than large individuals. Such negative relationship between size or condition and vocal amplitude may indicate an as yet unknown physiological or sexual selection pressure.
Schuchmann, Maike; Siemers, Björn M.
2010-01-01
Background Only recently data on bat echolocation call intensities is starting to accumulate. Yet, intensity is an ecologically crucial parameter, as it determines the extent of the bats' perceptual space and, specifically, prey detection distance. Interspecifically, we thus asked whether sympatric, congeneric bat species differ in call intensities and whether differences play a role for niche differentiation. Specifically, we investigated whether R. mehelyi that calls at a frequency clearly above what is predicted by allometry, compensates for frequency-dependent loss in detection distance by using elevated call intensity. Maximum echolocation call intensities might depend on body size or condition and thus be used as an honest signal of quality for intraspecific communication. We for the first time investigated whether a size-intensity relation is present in echolocating bats. Methodology/Principal Findings We measured maximum call intensities and frequencies for all five European horseshoe bat species. Maximum intensity differed among species largely due to R. euryale. Furthermore, we found no compensation for frequency-dependent loss in detection distance in R. mehelyi. Intraspecifically, there is a negative correlation between forearm lengths and intensity in R. euryale and a trend for a negative correlation between body condition index and intensity in R. ferrumequinum. In R. hipposideros, females had 8 dB higher intensities than males. There were no correlations with body size or sex differences and intensity for the other species. Conclusions/Significance Based on call intensity and frequency measurements, we estimated echolocation ranges for our study community. These suggest that intensity differences result in different prey detection distances and thus likely play some role for resource access. It is interesting and at first glance counter-intuitive that, where a correlation was found, smaller bats called louder than large individuals. Such negative relationship between size or condition and vocal amplitude may indicate an as yet unknown physiological or sexual selection pressure. PMID:20862252
Carnivore stable carbon isotope niches reflect predator-prey size relationships in African savannas.
Codron, Jacqueline; Avenant, Nico L; Wigley-Coetsee, Corli; Codron, Daryl
2018-03-01
Predator-prey size relationships are among the most important patterns underlying the structure and function of ecological communities. Indeed, these relationships have already been shown to be important for understanding patterns of macroevolution and differential extinction in the terrestrial vertebrate fossil record. Stable isotope analysis (SIA) is a powerful remote approach to examining animal diets and paleodiets. The approach is based on the principle that isotope compositions of consumer tissues reflect those of their prey. In systems where resource isotope compositions are distributed along a body size gradient, SIA could be used to reconstruct predator-prey size relationships. We analyzed stable carbon isotope distributions amongst mammalian herbivores in extant and Plio-Pleistocene African savanna assemblages, and show that the range of δ 13 C values among mammalian prey species (herbivores and rodents) increases with body mass (BM), because C 4 plant feeding (essentially grazing) is more common among larger taxa. Consequently, δ 13 C values of mammalian carnivores in these systems are related to species' BM, reflecting a higher average C 4 prey component in the diets of larger-bodied carnivores. This pattern likely emerges because only the largest carnivores in these systems have regular access to the C 4 prey base, whereas smaller carnivores do not. The δ 13 C-BM relationship observed in mammalian carnivores is a potentially powerful approach for reconstructing and parameterizing predator-prey size relationships in contemporary and fossil savanna assemblages, and for interpreting how various behavioral, ecological and environmental factors influence prey size selection. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Byström, Pär; Ask, Per; Andersson, Jens; Persson, Lennart
2013-01-01
Occurrence of cannibalism and inferior competitive ability of predators compared to their prey have been suggested to promote coexistence in size-structured intraguild predation (IGP) systems. The intrinsic size-structure of fish provides the necessary prerequisites to test whether the above mechanisms are general features of species interactions in fish communities where IGP is common. We first experimentally tested whether Arctic char (Salvelinus alpinus) were more efficient as a cannibal than as an interspecific predator on the prey fish ninespine stickleback (Pungitius pungitius) and whether ninespine stickleback were a more efficient competitor on the shared zooplankton prey than its predator, Arctic char. Secondly, we performed a literature survey to evaluate if piscivores in general are more efficient as cannibals than as interspecific predators and whether piscivores are inferior competitors on shared resources compared to their prey fish species. Both controlled pool experiments and outdoor pond experiments showed that char imposed a higher mortality on YOY char than on ninespine sticklebacks, suggesting that piscivorous char is a more efficient cannibal than interspecific predator. Estimates of size dependent attack rates on zooplankton further showed a consistently higher attack rate of ninespine sticklebacks compared to similar sized char on zooplankton, suggesting that ninespine stickleback is a more efficient competitor than char on zooplankton resources. The literature survey showed that piscivorous top consumers generally selected conspecifics over interspecific prey, and that prey species are competitively superior compared to juvenile piscivorous species in the zooplankton niche. We suggest that the observed selectivity for cannibal prey over interspecific prey and the competitive advantage of prey species over juvenile piscivores are common features in fish communities and that the observed selectivity for cannibalism over interspecific prey has the potential to mediate coexistence in size structured intraguild predation systems.
Byström, Pär; Ask, Per; Andersson, Jens; Persson, Lennart
2013-01-01
Occurrence of cannibalism and inferior competitive ability of predators compared to their prey have been suggested to promote coexistence in size-structured intraguild predation (IGP) systems. The intrinsic size-structure of fish provides the necessary prerequisites to test whether the above mechanisms are general features of species interactions in fish communities where IGP is common. We first experimentally tested whether Arctic char (Salvelinus alpinus) were more efficient as a cannibal than as an interspecific predator on the prey fish ninespine stickleback (Pungitius pungitius) and whether ninespine stickleback were a more efficient competitor on the shared zooplankton prey than its predator, Arctic char. Secondly, we performed a literature survey to evaluate if piscivores in general are more efficient as cannibals than as interspecific predators and whether piscivores are inferior competitors on shared resources compared to their prey fish species. Both controlled pool experiments and outdoor pond experiments showed that char imposed a higher mortality on YOY char than on ninespine sticklebacks, suggesting that piscivorous char is a more efficient cannibal than interspecific predator. Estimates of size dependent attack rates on zooplankton further showed a consistently higher attack rate of ninespine sticklebacks compared to similar sized char on zooplankton, suggesting that ninespine stickleback is a more efficient competitor than char on zooplankton resources. The literature survey showed that piscivorous top consumers generally selected conspecifics over interspecific prey, and that prey species are competitively superior compared to juvenile piscivorous species in the zooplankton niche. We suggest that the observed selectivity for cannibal prey over interspecific prey and the competitive advantage of prey species over juvenile piscivores are common features in fish communities and that the observed selectivity for cannibalism over interspecific prey has the potential to mediate coexistence in size structured intraguild predation systems. PMID:23894650
USDA-ARS?s Scientific Manuscript database
We investigated maternal size – egg size relations in a specialized mite predator, Stethorus punctillum Weise (Coleoptera: Coleoptera). We tested these hypotheses: (1) prey quality affects egg size, (2) maternal size correlates with egg size, and (3) egg size affects hatching success. We reared pr...
Cynthia J. Zabel; Kevin S. McKelvey; James P. Ward
1995-01-01
Correlations between the home-range size of northern spotted owls (Strix occidentalis caurina) and proportion of their range in old-growth forest have been reported, but there are few data on the relationship between their home-range size and prey. The primary prey of spotted owls are wood rats and northern flying squirrels (Glaucomys sabrinus). Wood...
Differential wolf-pack-size persistence and the role of risk when hunting dangerous prey
Barber-Meyer, Shannon M.; Mech, L. David; Newton, Wesley E.; Borg, Bridget
2016-01-01
Risk to predators hunting dangerous prey is an emerging area of research and could account for possible persistent differences in gray wolf (Canis lupus) pack sizes. We documented significant differences in long-term wolf-pack-size averages and variation in the Superior National Forest (SNF), Denali National Park and Preserve, Yellowstone National Park, and Yukon, Canada (p<0.01). The SNF differences could be related to the wolves’ risk when hunting primary prey, for those packs (N=3) hunting moose (Alces americanus) were significantly larger than those (N=10) hunting white-tailed deer (Odocoileus virginianus) (F1,8=16.50, p=0.004). Our data support the hypothesis that differential pack-size persistence may be perpetuated by differences in primary prey riskiness to wolves, and we highlight two important extensions of this idea: (1) the potential for wolves to provision and defend injured packmates from other wolves and (2) the importance of less-risky, buffer prey to pack-size persistence and year-to-year variation. Risk to predators hunting dangerous prey is an emerging area of research and could account for possible persistent differences in gray wolf (Canis lupus) pack sizes. We documented significant differences in long-term wolf-pack-size averages and variation in the Superior National Forest (SNF), Denali National Park and Preserve, Yellowstone National Park, and Yukon, Canada (p<0.01). The SNF differences could be related to the wolves’ risk when hunting primary prey, for those packs (N=3) hunting moose (Alces americanus) were significantly larger than those (N=10) hunting white-tailed deer (Odocoileus virginianus) (F1,8=16.50, p=0.004). Our data support the hypothesis that differential pack-size persistence may be perpetuated by differences in primary prey riskiness to wolves, and we highlight two important extensions of this idea: (1) the potential for wolves to provision and defend injured packmates from other wolves and (2) the importance of less-risky, buffer prey to pack-size persistence and year-to-year variation.
Shultz, Susanne; Noë, Ronald; McGraw, W Scott; Dunbar, R I M
2004-04-07
Although predation avoidance is the most commonly invoked explanation for vertebrate social evolution, there is little evidence that individuals in larger groups experience lower predation rates than those in small groups. We compare the morphological and behavioural traits of mammal prey species in the Taï forest, Ivory Coast, with the diet preferences of three of their non-human predators: leopards, chimpanzees and African crowned eagles. Individual predators show marked differences in their predation rates on prey species of different body sizes, but clear patterns with prey behaviour were apparent only when differences in prey habitat use were incorporated into the analyses. Leopard predation rates are highest for terrestrial species living in smaller groups, whereas eagle predation rates are negatively correlated with group size only among arboreal prey. When prey predation rates are summed over all three predators, terrestrial species incur higher predation rates than arboreal species and, within both categories, predation rates decline with increasing prey group size and decreasing density of groups in the habitat. These results reveal that it is necessary to consider anti-predator strategies in the context of a dynamic behavioural interaction between predators and prey.
Urbano-Tenorio, Fernando
2016-01-01
The distribution and behavior of foraging animals usually imply a balance between resource availability and predation risk. In some predators such as scorpions, cannibalism constitutes an important mortality factor determining their ecology and behavior. Climbing on vegetation by scorpions has been related both to prey availability and to predation (cannibalism) risk. We tested different hypotheses proposed to explain climbing on vegetation by scorpions. We analyzed shrub climbing in Buthus cf. occitanus with regard to the following: a) better suitability of prey size for scorpions foraging on shrubs than on the ground, b) selection of shrub species with higher prey load, c) seasonal variations in prey availability on shrubs, and d) whether or not cannibalism risk on the ground increases the frequency of shrub climbing. Prey availability on shrubs was compared by estimating prey abundance in sticky traps placed in shrubs. A prey sample from shrubs was measured to compare prey size. Scorpions were sampled in six plots (50 m x 10 m) to estimate the proportion of individuals climbing on shrubs. Size difference and distance between individuals and their closest scorpion neighbor were measured to assess cannibalism risk. The results showed that mean prey size was two-fold larger on the ground. Selection of particular shrub species was not related to prey availability. Seasonal variations in the number of scorpions on shrubs were related to the number of active scorpions, but not with fluctuations in prey availability. Size differences between a scorpion and its nearest neighbor were positively related with a higher probability for a scorpion to climb onto a shrub when at a disadvantage, but distance was not significantly related. These results do not support hypotheses explaining shrub climbing based on resource availability. By contrast, our results provide evidence that shrub climbing is related to cannibalism risk. PMID:27655347
Sánchez-Piñero, Francisco; Urbano-Tenorio, Fernando
The distribution and behavior of foraging animals usually imply a balance between resource availability and predation risk. In some predators such as scorpions, cannibalism constitutes an important mortality factor determining their ecology and behavior. Climbing on vegetation by scorpions has been related both to prey availability and to predation (cannibalism) risk. We tested different hypotheses proposed to explain climbing on vegetation by scorpions. We analyzed shrub climbing in Buthus cf. occitanus with regard to the following: a) better suitability of prey size for scorpions foraging on shrubs than on the ground, b) selection of shrub species with higher prey load, c) seasonal variations in prey availability on shrubs, and d) whether or not cannibalism risk on the ground increases the frequency of shrub climbing. Prey availability on shrubs was compared by estimating prey abundance in sticky traps placed in shrubs. A prey sample from shrubs was measured to compare prey size. Scorpions were sampled in six plots (50 m x 10 m) to estimate the proportion of individuals climbing on shrubs. Size difference and distance between individuals and their closest scorpion neighbor were measured to assess cannibalism risk. The results showed that mean prey size was two-fold larger on the ground. Selection of particular shrub species was not related to prey availability. Seasonal variations in the number of scorpions on shrubs were related to the number of active scorpions, but not with fluctuations in prey availability. Size differences between a scorpion and its nearest neighbor were positively related with a higher probability for a scorpion to climb onto a shrub when at a disadvantage, but distance was not significantly related. These results do not support hypotheses explaining shrub climbing based on resource availability. By contrast, our results provide evidence that shrub climbing is related to cannibalism risk.
Kowalczyk, Nicole D; Reina, Richard D; Preston, Tiana J; Chiaradia, André
2015-08-01
Marine animals forage in areas that aggregate prey to maximize their energy intake. However, these foraging 'hot spots' experience environmental variability, which can substantially alter prey availability. To survive and reproduce animals need to modify their foraging in response to these prey shifts. By monitoring their inter-annual foraging behaviours, we can understand which environmental variables affect their foraging efficiency, and can assess how they respond to environmental variability. Here, we monitored the foraging behaviour and isotopic niche of little penguins (Eudyptula minor), over 3 years (2008, 2011, and 2012) of climatic and prey variability within Port Phillip Bay, Australia. During drought (2008), penguins foraged in close proximity to the Yarra River outlet on a predominantly anchovy-based diet. In periods of heavy rainfall, when water depth in the largest tributary into the bay (Yarra River) was high, the total distance travelled, maximum distance travelled, distance to core-range, and size of core- and home-ranges of penguins increased significantly. This larger foraging range was associated with broad dietary diversity and high reproductive success. These results suggest the increased foraging range and dietary diversity of penguins were a means to maximize resource acquisition rather than a strategy to overcome local depletions in prey. Our results demonstrate the significance of the Yarra River in structuring predator-prey interactions in this enclosed bay, as well as the flexible foraging strategies of penguins in response to environmental variability. This plasticity is central to the survival of this small-ranging, resident seabird species.
Chinook salmon foraging patterns in a changing Lake Michigan
Jacobs, Gregory R.; Madenjian, Charles P.; Bunnell, David B.; Warner, David M.; Claramunt, Randall M.
2013-01-01
Since Pacific salmon stocking began in Lake Michigan, managers have attempted to maintain salmon abundance at high levels within what can be sustained by available prey fishes, primarily Alewife Alosa pseudoharengus. Chinook Salmon Oncorhynchus tshawytscha are the primary apex predators in pelagic Lake Michigan and patterns in their prey selection (by species and size) may strongly influence pelagic prey fish communities in any given year. In 1994–1996, there were larger Alewives, relatively more abundant alternative prey species, fewer Chinook Salmon, and fewer invasive species in Lake Michigan than in 2009–2010. The years 2009–2010 were instead characterized by smaller, leaner Alewives, fewer alternative prey species, higher abundance of Chinook Salmon, a firmly established nonnative benthic community, and reduced abundance of Diporeia, an important food of Lake Michigan prey fish. We characterized Chinook Salmon diets, prey species selectivity, and prey size selectivity between 1994–1996 and 2009–2010 time periods. In 1994–1996, Alewife as prey represented a smaller percentage of Chinook Salmon diets than in 2009–2010, when alewife comprised over 90% of Chinook Salmon diets, possibly due to declines in alternative prey fish populations. The size of Alewives eaten by Chinook Salmon also decreased between these two time periods. For the largest Chinook Salmon in 2009–2010, the average size of Alewife prey was nearly 50 mm total length shorter than in 1994–1996. We suggest that changes in the Lake Michigan food web, such as the decline in Diporeia, may have contributed to the relatively low abundance of large Alewives during the late 2000s by heightening the effect of predation from top predators like Chinook Salmon, which have retained a preference for Alewife and now forage with greater frequency on smaller Alewives.
Relationship between exploitation, oscillation, MSY and extinction.
Ghosh, Bapan; Kar, T K; Legovic, T
2014-10-01
We give answers to two important problems arising in current fisheries: (i) how maximum sustainable yield (MSY) policy is influenced by the initial population level, and (ii) how harvesting, oscillation and MSY are related to each other in prey-predator systems. To examine the impact of initial population on exploitation, we analyze a single species model with strong Allee effect. It is found that even when the MSY exists, the dynamic solution may not converge to the equilibrium stock if the initial population level is higher but near the critical threshold level. In a prey-predator system with Allee effect in the prey species, the initial population does not have such important impact neither on MSY nor on maximum sustainable total yield (MSTY). However, harvesting the top predator may cause extinction of all species if odd number of trophic levels exist in the ecosystem. With regard to the second problem, we study two prey-predator models and establish that increasing harvesting effort either on prey, predator or both prey and predator destroys previously existing oscillation. Moreover, equilibrium stock both at MSY and MSTY level is stable. We also discuss the validity of found results to other prey-predator systems. Copyright © 2014 Elsevier Inc. All rights reserved.
Functional morphology of prey capture in the sturgeon, Scaphirhynchus albus.
Carroll, Andrew M; Wainwright, Peter C
2003-06-01
Acipenseriformes (sturgeon and paddlefish) are basal actinopterygians with a highly derived cranial morphology that is characterized by an anatomical independence of the jaws from the neurocranium. We examined the morphological and kinematic basis of prey capture in the Acipenseriform fish Scaphirhynchus albus, the pallid sturgeon. Feeding pallid sturgeon were filmed in lateral and ventral views and movement of cranial elements was measured from video sequences. Sturgeon feed by creating an anterior to posterior wave of cranial expansion resulting in prey movement through the mouth. The kinematics of S. albus resemble those of other aquatic vertebrates: maximum hyoid depression follows maximum gape by an average of 15 ms and maximum opercular abduction follows maximum hyoid depression by an average of 57 ms. Neurocranial rotation was not a part of prey capture kinematics in S. albus, but was observed in another sturgeon species, Acipenser medirostris. Acipenseriformes have a novel jaw protrusion mechanism, which converts rostral rotation of the hyomandibula into ventral protrusion of the jaw joint. The relationship between jaw protrusion and jaw opening in sturgeon typically resembles that of elasmobranchs, with peak upper jaw protrusion occurring after peak gape. Copyright 2003 Wiley-Liss, Inc.
Keeping the herds healthy and alert: Implications of predator control for infectious disease
Packer, Craig; Holt, Robert D.; Hudson, Peter J.; Lafferty, Kevin D.; Dobson, Andrew P.
2003-01-01
Predator control programmes are generally implemented in an attempt to increase prey population sizes. However, predator removal could prove harmful to prey populations that are regulated primarily by parasitic infections rather than by predation. We develop models for microparasitic and macroparasitic infection that specify the conditions where predator removal will (a) increase the incidence of parasitic infection, (b) reduce the number of healthy individuals in the prey population and (c) decrease the overall size of the prey population. In general, predator removal is more likely to be harmful when the parasite is highly virulent, macroparasites are highly aggregated in their prey, hosts are long-lived and the predators select infected prey.
Diets and trophic guilds of small fishes from coastal marine habitats in western Taiwan.
Egan, J P; Chew, U-S; Kuo, C-H; Villarroel-Diaz, V; Hundt, P J; Iwinski, N G; Hammer, M P; Simons, A M
2017-07-01
The diets and trophic guilds of small fishes were examined along marine sandy beaches and in estuaries at depths <1·5 m in western Taiwan, Republic of China. Copepods were the most frequently identified item in fish guts, indicating they are key prey for the fish assemblages studied. Piscivore, crustacivore, detritivore, omnivore, zooplanktivore and terrestrial invertivore trophic guilds were identified. The zooplanktivore guild contained the most fish species. Maximum prey size consumption was positively correlated with standard length (L S ) in seven species and at the assemblage level and negatively correlated with L S in a single detritivorous species. The diet data and trophic guild scheme produced by this study contribute to an understanding of coastal marine food webs and can inform ecosystem-based fisheries management. © 2017 The Fisheries Society of the British Isles.
Size-density scaling in protists and the links between consumer-resource interaction parameters.
DeLong, John P; Vasseur, David A
2012-11-01
Recent work indicates that the interaction between body-size-dependent demographic processes can generate macroecological patterns such as the scaling of population density with body size. In this study, we evaluate this possibility for grazing protists and also test whether demographic parameters in these models are correlated after controlling for body size. We compiled data on the body-size dependence of consumer-resource interactions and population density for heterotrophic protists grazing algae in laboratory studies. We then used nested dynamic models to predict both the height and slope of the scaling relationship between population density and body size for these protists. We also controlled for consumer size and assessed links between model parameters. Finally, we used the models and the parameter estimates to assess the individual- and population-level dependence of resource use on body-size and prey-size selection. The predicted size-density scaling for all models matched closely to the observed scaling, and the simplest model was sufficient to predict the pattern. Variation around the mean size-density scaling relationship may be generated by variation in prey productivity and area of capture, but residuals are relatively insensitive to variation in prey size selection. After controlling for body size, many consumer-resource interaction parameters were correlated, and a positive correlation between residual prey size selection and conversion efficiency neutralizes the apparent fitness advantage of taking large prey. Our results indicate that widespread community-level patterns can be explained with simple population models that apply consistently across a range of sizes. They also indicate that the parameter space governing the dynamics and the steady states in these systems is structured such that some parts of the parameter space are unlikely to represent real systems. Finally, predator-prey size ratios represent a kind of conundrum, because they are widely observed but apparently have little influence on population size and fitness, at least at this level of organization. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Vigg, Steven; Poe, Thomas P.; Prendergast , Linda A.; Hansel, Hal C.
1991-01-01
Adult northern squawfish Ptychocheilus oregonensis, walleyes Stizostedion vitreum, smallmouth bass Micropterus dolomieu, and channel catfish Ictalurus punctatus were sampled from four regions of John Day Reservoir from April to August 1983–1986 to quantify their consumption of 13 species of prey fish, particularly seaward-migrating juvenile Pacific salmon and steelhead (Oncorhynchus spp.). Consumption rates were estimated from field data on stomach contents and digestion rate relations determined in previous investigations. For each predator, consumption rates varied by reservoir area, month, time of day, and predator size or age. The greatest daily consumption of salmonids by northern squawfish and channel catfish (0.7 and 0.5 prey/predator) occurred in the upper end of the reservoir below McNary Dam. Greatest daily predation by walleyes (0.2 prey/predator) and smallmouth bass (0.04) occurred in the middle and lower reservoir. Consumption rates of all predators were highest in July, concurrent with maximum temperature and abundance of juvenile salmonids. Feeding by the predators tended to peak after dawn (0600–1200 hours) and near midnight (2000–2400). Northern squawfish below McNary Dam exhibited this pattern, but fed mainly in the morning hours down-reservoir. The daily ration of total prey fish was highest for northern squawfish over 451 mm fork length (> 13.2 mg/g predator), for walleyes 201–250 mm (42.5 mg/g), for smallmouth bass 176–200 mm (30.4 mg/g), and for channel catfish 401–450 mm (17.1 mg/g). Averaged over all predator sizes and sampling months (April–August), the total daily ration (fish plus other prey) of smallmouth bass (28.7 mg/ g) was about twice that of channel catfish (12.6), northern squawfish (14.1), and walleyes (14.2). However, northern squawfish was clearly the major predator on juvenile salmonids.
Walzer, Andreas; Schausberger, Peter
2011-03-01
We studied developmental plasticity under food stress in three female-biased size dimorphic predatory mite species, Phytoseiulus persimilis, Neoseiulus californicus, and Amblyseius andersoni. All three species prey on two-spotted spider mites but differ in the degree of adaptation to this prey. Phytoseiulus persimilis is a specialized spider mite predator, N. californicus is a generalist with a preference for spider mites, and A. andersoni is a broad generalist. Immature predators were offered prey patches of varying density and their survival chances, dispersal tendencies, age and size at maturity measured. Amblyseius andersoni dispersed earlier from and had lower survival chances in low density prey patches than N. californicus and P. persimilis. Age at maturity was not affected by prey density in the generalist A. andersoni, whereas both the specialist P. persimilis and the generalist N. californicus accelerated development at low prey densities. Species-specific plasticity in age at maturity reflects opposite survival strategies when confronted with limited prey: to prematurely leave and search for other food (A. andersoni) or to stay and accelerate development (P. persimilis, N. californicus). In all species, size at maturity was more plastic in females than males, indicating that males incur higher fitness costs from deviations from optimal body size.
Dynamics analysis of a predator-prey system with harvesting prey and disease in prey species.
Meng, Xin-You; Qin, Ni-Ni; Huo, Hai-Feng
2018-12-01
In this paper, a predator-prey system with harvesting prey and disease in prey species is given. In the absence of time delay, the existence and stability of all equilibria are investigated. In the presence of time delay, some sufficient conditions of the local stability of the positive equilibrium and the existence of Hopf bifurcation are obtained by analysing the corresponding characteristic equation, and the properties of Hopf bifurcation are given by using the normal form theory and centre manifold theorem. Furthermore, an optimal harvesting policy is investigated by applying the Pontryagin's Maximum Principle. Numerical simulations are performed to support our analytic results.
Prey Selection of Scandinavian Wolves: Single Large or Several Small?
Sand, Håkan; Eklund, Ann; Zimmermann, Barbara; Wikenros, Camilla; Wabakken, Petter
2016-01-01
Research on large predator-prey interactions are often limited to the predators' primary prey, with the potential for prey switching in systems with multiple ungulate species rarely investigated. We evaluated wolf (Canis lupus) prey selection at two different spatial scales, i.e., inter- and intra-territorial, using data from 409 ungulate wolf-kills in an expanding wolf population in Scandinavia. This expansion includes a change from a one-prey into a two-prey system with variable densities of one large-sized ungulate; moose (Alces alces) and one small-sized ungulate; roe deer (Capreolus capreolus). Among wolf territories, the proportion of roe deer in wolf kills was related to both pack size and roe deer density, but not to moose density. Pairs of wolves killed a higher proportion of roe deer than did packs, and wolves switched to kill more roe deer as their density increased above a 1:1 ratio in relation to the availability of the two species. At the intra-territorial level, wolves again responded to changes in roe deer density in their prey selection whereas we found no effect of snow depth, time during winter, or other predator-related factors on the wolves' choice to kill moose or roe deer. Moose population density was only weakly related to intra-territorial prey selection. Our results show that the functional response of wolves on moose, the species hitherto considered as the main prey, was strongly dependent on the density of a smaller, alternative, ungulate prey. The impact of wolf predation on the prey species community is therefore likely to change with the composition of the multi-prey species community along with the geographical expansion of the wolf population.
Prey Selection of Scandinavian Wolves: Single Large or Several Small?
Eklund, Ann; Zimmermann, Barbara; Wikenros, Camilla; Wabakken, Petter
2016-01-01
Research on large predator-prey interactions are often limited to the predators’ primary prey, with the potential for prey switching in systems with multiple ungulate species rarely investigated. We evaluated wolf (Canis lupus) prey selection at two different spatial scales, i.e., inter- and intra-territorial, using data from 409 ungulate wolf-kills in an expanding wolf population in Scandinavia. This expansion includes a change from a one-prey into a two-prey system with variable densities of one large-sized ungulate; moose (Alces alces) and one small-sized ungulate; roe deer (Capreolus capreolus). Among wolf territories, the proportion of roe deer in wolf kills was related to both pack size and roe deer density, but not to moose density. Pairs of wolves killed a higher proportion of roe deer than did packs, and wolves switched to kill more roe deer as their density increased above a 1:1 ratio in relation to the availability of the two species. At the intra-territorial level, wolves again responded to changes in roe deer density in their prey selection whereas we found no effect of snow depth, time during winter, or other predator-related factors on the wolves’ choice to kill moose or roe deer. Moose population density was only weakly related to intra-territorial prey selection. Our results show that the functional response of wolves on moose, the species hitherto considered as the main prey, was strongly dependent on the density of a smaller, alternative, ungulate prey. The impact of wolf predation on the prey species community is therefore likely to change with the composition of the multi-prey species community along with the geographical expansion of the wolf population. PMID:28030549
Manica, A.; Boogert, N. J.
2016-01-01
To investigate the link between personality and maximum food intake of inactive individuals, food‐deprived three‐spined sticklebacks Gasterosteus aculeatus at rest in their home compartments were provided with ad libitum prey items. Bolder individuals ate considerably more than shyer individuals, even after accounting for body size, while sociability did not have an effect. These findings support pace‐of‐life theory predicting that life‐history strategies are linked to boldness. PMID:26940195
Seasonal and sexual differences in American marten diet in northeastern Oregon.
E.L. Bull
2002-01-01
Information on the diet of the American marten (Martes americana) is vital to understanding habitat requirements of populations of this species. The frequency of occurrence of prey items found in 1014 scat samples associated with 31 radiocollared American martens in northeastern Oregon included: 62.7% vole-sized prey, 28.2% squirrel-sized prey, 22....
NASA Astrophysics Data System (ADS)
Djeghri, Nicolas; Atkinson, Angus; Fileman, Elaine S.; Harmer, Rachel A.; Widdicombe, Claire E.; McEvoy, Andrea J.; Cornwell, Louise; Mayor, Daniel J.
2018-07-01
There has been an upsurge of interest in trait-based approaches to zooplankton, modelling the seasonal changes in the feeding modes of zooplankton in relation to phytoplankton traits such as size or motility. We examined this link at two English Channel plankton monitoring sites south of Plymouth (L4 and E1). At L4 there was a general transition from diatoms in spring to motile microplankton in summer and autumn, but this was not mirrored in the succession of copepod feeding traits; for example the ambushing Oithona similis dominated during the spring diatom bloom. At nearby E1 we measured seasonality of food and grazers, finding strong variation between 2014 and 2015 but overall low mesozooplankton biomass (median 4.5 mg C m-3). We also made a seasonal grazing study of five copepods with contrasting feeding modes (Calanus helgolandicus, Centropages typicus, Acartia clausi, Pseudocalanus elongatus and Oithona similis), counting the larger prey items from the natural seston. All species of copepod fed on all food types and differences between their diets were only subtle; the overriding driver of diet was the composition of the prey field. Even the smaller copepods fed on copepod nauplii at significant rates, supporting previous suggestions of the importance of intra-guild predation. All copepods, including O. similis, were capable of tackling extremely long (>500 μm) diatom chains at clearance rates comparable to those on ciliates. Maximum observed prey:predator length ratios ranged from 0.12 (C. helgolandicus) up to 0.52 (O. similis). Unselective feeding behaviour and the ability to remove highly elongated cells have implications for how copepod feeding is represented in ecological and biogeochemical models.
Predator Persistence through Variability of Resource Productivity in Tritrophic Systems.
Soudijn, Floor H; de Roos, André M
2017-12-01
The trophic structure of species communities depends on the energy transfer between trophic levels. Primary productivity varies strongly through time, challenging the persistence of species at higher trophic levels. Yet resource variability has mostly been studied in systems with only one or two trophic levels. We test the effect of variability in resource productivity in a tritrophic model system including a resource, a size-structured consumer, and a size-specific predator. The model complies with fundamental principles of mass conservation and the body-size dependence of individual-level energetics and predator-prey interactions. Surprisingly, we find that resource variability may promote predator persistence. The positive effect of variability on the predator arises through periods with starvation mortality of juvenile prey, which reduces the intraspecific competition in the prey population. With increasing variability in productivity and starvation mortality in the juvenile prey, the prey availability increases in the size range preferred by the predator. The positive effect of prey mortality on the trophic transfer efficiency depends on the biologically realistic consideration of body size-dependent and food-dependent functions for growth and reproduction in our model. Our findings show that variability may promote the trophic transfer efficiency, indicating that environmental variability may sustain species at higher trophic levels in natural ecosystems.
The Killer Fly Hunger Games: Target Size and Speed Predict Decision to Pursuit
Wardill, Trevor J.; Knowles, Katie; Barlow, Laura; Tapia, Gervasio; Nordström, Karin; Olberg, Robert M.; Gonzalez-Bellido, Paloma T.
2015-01-01
Predatory animals have evolved to optimally detect their prey using exquisite sensory systems such as vision, olfaction and hearing. It may not be so surprising that vertebrates, with large central nervous systems, excel at predatory behaviors. More striking is the fact that many tiny insects, with their miniscule brains and scaled down nerve cords, are also ferocious, highly successful predators. For predation, it is important to determine whether a prey is suitable before initiating pursuit. This is paramount since pursuing a prey that is too large to capture, subdue or dispatch will generate a substantial metabolic cost (in the form of muscle output) without any chance of metabolic gain (in the form of food). In addition, during all pursuits, the predator breaks its potential camouflage and thus runs the risk of becoming prey itself. Many insects use their eyes to initially detect and subsequently pursue prey. Dragonflies, which are extremely efficient predators, therefore have huge eyes with relatively high spatial resolution that allow efficient prey size estimation before initiating pursuit. However, much smaller insects, such as killer flies, also visualize and successfully pursue prey. This is an impressive behavior since the small size of the killer fly naturally limits the neural capacity and also the spatial resolution provided by the compound eye. Despite this, we here show that killer flies efficiently pursue natural (Drosophila melanogaster) and artificial (beads) prey. The natural pursuits are initiated at a distance of 7.9 ± 2.9 cm, which we show is too far away to allow for distance estimation using binocular disparities. Moreover, we show that rather than estimating absolute prey size prior to launching the attack, as dragonflies do, killer flies attack with high probability when the ratio of the prey's subtended retinal velocity and retinal size is 0.37. We also show that killer flies will respond to a stimulus of an angular size that is smaller than that of the photoreceptor acceptance angle, and that the predatory response is strongly modulated by the metabolic state. Our data thus provide an exciting example of a loosely designed matched filter to Drosophila, but one which will still generate successful pursuits of other suitable prey. PMID:26398293
Carbone, Chris; Codron, Daryl; Scofield, Conrad; Clauss, Marcus; Bielby, Jon; Enquist, Brian
2014-01-01
Predator–prey relationships are vital to ecosystem function and there is a need for greater predictive understanding of these interactions. We develop a geometric foraging model predicting minimum prey size scaling in marine and terrestrial vertebrate predators taking into account habitat dimensionality and biological traits. Our model predicts positive predator–prey size relationships on land but negative relationships in the sea. To test the model, we compiled data on diets of 794 predators (mammals, snakes, sharks and rays). Consistent with predictions, both terrestrial endotherm and ectotherm predators have significantly positive predator–prey size relationships. Marine predators, however, exhibit greater variation. Some of the largest predators specialise on small invertebrates while others are large vertebrate specialists. Prey–predator mass ratios were generally higher for ectothermic than endothermic predators, although dietary patterns were similar. Model-based simulations of predator–prey relationships were consistent with observed relationships, suggesting that our approach provides insights into both trends and diversity in predator–prey interactions. PMID:25265992
Du Yoo, Yeong; Jeong, Hae Jin; Kim, Mi Seon; Kang, Nam Seon; Song, Jae Yoon; Shin, Woongghi; Kim, Kwang Young; Lee, Kitack
2009-01-01
We investigated feeding by phototrophic red-tide dinoflagellates on the ubiquitous diatom Skeletonema costatum to explore whether dinoflagellates are able to feed on S. costatum, inside the protoplasm of target dinoflagellate cells observed under compound microscope, confocal microscope, epifluorescence microscope, and transmission electron microscope (TEM) after adding living and fluorescently labeled S. costatum (FLSc). To explore effects of dinoflagellate predator size on ingestion rates of S. costatum, we measured ingestion rates of seven dinoflagellates at a single prey concentration. In addition, we measured ingestion rates of the common phototrophic dinoflagellates Prorocentrum micans and Gonyaulax polygramma on S. costatum as a function of prey concentration. We calculated grazing coefficients by combining field data on abundances of P. micans and G. polygramma on co-occurring S. costatum with laboratory data on ingestion rates obtained in the present study. All phototrophic dinoflagellate predators tested (i.e. Akashiwo sanguinea, Amphidinium carterae, Alexandrium catenella, Alexandrium tamarense, Cochlodinium polykrikoides, G. polygramma, Gymnodinium catenatum, Gymnodinium impudicum, Heterocapsa rotundata, Heterocapsa triquetra, Lingulodinium polyedrum, Prorocentrum donghaiense, P. micans, Prorocentrum minimum, Prorocentrum triestinum, and Scrippsiella trochoidea) were able to ingest S. costatum. When mean prey concentrations were 170-260 ng C/ml (i.e. 6,500-10,000 cells/ml), the ingestion rates of G. polygramma, H. rotundata, H. triquetra, L. polyedrum, P. donghaiense, P. micans, and P. triestinum on S. costatum (0.007-0.081 ng C/dinoflagellate/d [0.2-3.0 cells/dinoflagellate/d]) were positively correlated with predator size. With increasing mean prey concentration of ca 1-3,440 ng C/ml (40-132,200 cells/ml), the ingestion rates of P. micans and G. polygramma on S. costatum continuously increased. At the given prey concentrations, the maximum ingestion rates of P. micans and G. polygramma on S. costatum (0.344-0.345 ng C/grazer/d; 13 cells/grazer/d) were almost the same. The maximum clearance rates of P. micans and G. polygramma on S. costatum were 0.165 and 0.020 microl/grazer/h, respectively. The calculated grazing coefficients of P. micans and G. polygramma on co-occurring S. costatum were up to 0.100 and 0.222 h, respectively (i.e. up to 10% and 20% of S. costatum populations were removed by P. micans and G. polygramma populations in 1 h, respectively). Our results suggest that P. micans and G. polygramma sometimes have a considerable grazing impact on populations of S. costatum.
Habitat complexity and sex-dependent predation of mosquito larvae in containers
Griswold, Marcus W.; Lounibos, L. Philip
2012-01-01
Studies in aquatic systems have shown that habitat complexity may provide refuge or reduce the number of encounters prey have with actively searching predators. For ambush predators, habitat complexity may enhance or have no effect on predation rates because it conceals predators, reduces prey detection by predators, or visually impairs both predators and prey. We investigated the effects of habitat complexity and predation by the ambush predators Toxorhynchites rutilus and Corethrella appendiculata on their mosquito prey Aedes albopictus and Ochlerotatus triseriatus in container analogs of treeholes. As in other ambush predator-prey systems, habitat complexity did not alter the effects of T. rutilus or C. appendiculata whose presence decreased prey survivorship, shortened development time, and increased adult size compared to treatments where predators were absent. Faster growth and larger size were due to predator-mediated release from competition among surviving prey. Male and female prey survivorship were similar in the absence of predators, however when predators were present, survivorship of both prey species was skewed in favor of males. We conclude that habitat complexity is relatively unimportant in shaping predator-prey interactions in this treehole community, where predation risk differs between prey sexes. PMID:16041612
Intraspecific variation in the diet of the Mexican garter snake Thamnophis eques
Pacheco-Tinoco, Martha; Venegas-Barrera, Crystian S.
2017-01-01
The Mexican Garter Snake (Thamnophis eques) is a terrestrial-aquatic generalist that feeds on both aquatic and terrestrial prey. We describe size-related variation and sexual variation in the diet of T. eques through analysis of 262 samples of identifiable stomach contents in snakes from 23 locations on the Mexican Plateau. The snake T. eques we studied consumed mostly fish, followed in lesser amounts by leeches, earthworms, frogs, and tadpoles. Correspondence analysis suggested that the frequency of consumption of various prey items differed between the categories of age but not between sex of snakes, and the general pattern was a reduction of prey item diversity with size of snake. Snake length was correlated positively with mass of ingested prey. Large snakes consumed large prey and continued to consume smaller prey. In general, no differences were found between the prey taxa of male and female snakes, although males ate two times more tadpoles than females. Males and females did not differ in the mass of leeches, earthworms, fishes, frogs and tadpoles that they ate, and males and females that ate each prey taxon were similar in length. We discuss proximate and functional determinants of diet and suggest that the observed intraspecific variation in T. eques could be explored by temporal variation in prey availability, proportions of snake size classes and possible sexual dimorphism in head traits and prey dimensions to assess the role of intersexual resource competition. PMID:29158976
Optimal harvesting policy of predator-prey model with free fishing and reserve zones
NASA Astrophysics Data System (ADS)
Toaha, Syamsuddin; Rustam
2017-03-01
The present paper deals with an optimal harvesting of predator-prey model in an ecosystem that consists of two zones, namely the free fishing and prohibited zones. The dynamics of prey population in the ecosystem can migrate from the free fishing to the prohibited zone and vice versa. The predator and prey populations in the free fishing zone are then harvested with constant efforts. The existence of the interior equilibrium point is analyzed and its stability is determined using Routh-Hurwitz stability test. The stable interior equilibrium point is then related to the problem of maximum profit and the problem of present value of net revenue. We follow the Pontryagin's maximal principle to get the optimal harvesting policy of the present value of the net revenue. From the analysis, we found a critical point of the efforts that makes maximum profit. There also exists certain conditions of the efforts that makes the present value of net revenue becomes maximal. In addition, the interior equilibrium point is locally asymptotically stable which means that the optimal harvesting is reached and the unharvested prey, harvested prey, and harvested predator populations remain sustainable. Numerical examples are given to verify the analytical results.
Structural optimization of 3D-printed synthetic spider webs for high strength
NASA Astrophysics Data System (ADS)
Qin, Zhao; Compton, Brett G.; Lewis, Jennifer A.; Buehler, Markus J.
2015-05-01
Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological design and material distribution, here we create spider-web mimics composed of elastomeric filaments. Specifically, computational modelling and microscale 3D printing are combined to investigate the mechanical response of elastomeric webs under multiple loading conditions. We find the existence of an asymptotic prey size that leads to a saturated web strength. We identify pathways to design elastomeric material structures with maximum strength, low density and adaptability. We show that the loading type dictates the optimal material distribution, that is, a homogeneous distribution is better for localized loading, while stronger radial threads with weaker spiral threads is better for distributed loading. Our observations reveal that the material distribution within spider webs is dictated by the loading condition, shedding light on their observed architectural variations.
Structural optimization of 3D-printed synthetic spider webs for high strength.
Qin, Zhao; Compton, Brett G; Lewis, Jennifer A; Buehler, Markus J
2015-05-15
Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological design and material distribution, here we create spider-web mimics composed of elastomeric filaments. Specifically, computational modelling and microscale 3D printing are combined to investigate the mechanical response of elastomeric webs under multiple loading conditions. We find the existence of an asymptotic prey size that leads to a saturated web strength. We identify pathways to design elastomeric material structures with maximum strength, low density and adaptability. We show that the loading type dictates the optimal material distribution, that is, a homogeneous distribution is better for localized loading, while stronger radial threads with weaker spiral threads is better for distributed loading. Our observations reveal that the material distribution within spider webs is dictated by the loading condition, shedding light on their observed architectural variations.
Walzer, Andreas; Schausberger, Peter
2011-01-01
We studied developmental plasticity under food stress in three female-biased size dimorphic predatory mite species, Phytoseiulus persimilis, Neoseiulus californicus, and Amblyseius andersoni. All three species prey on two-spotted spider mites but differ in the degree of adaptation to this prey. Phytoseiulus persimilis is a specialized spider mite predator, N. californicus is a generalist with a preference for spider mites, and A. andersoni is a broad generalist. Immature predators were offered prey patches of varying density and their survival chances, dispersal tendencies, age and size at maturity measured. Amblyseius andersoni dispersed earlier from and had lower survival chances in low density prey patches than N. californicus and P. persimilis. Age at maturity was not affected by prey density in the generalist A. andersoni, whereas both the specialist P. persimilis and the generalist N. californicus accelerated development at low prey densities. Species-specific plasticity in age at maturity reflects opposite survival strategies when confronted with limited prey: to prematurely leave and search for other food (A. andersoni) or to stay and accelerate development (P. persimilis, N. californicus). In all species, size at maturity was more plastic in females than males, indicating that males incur higher fitness costs from deviations from optimal body size. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102, 650–660. PMID:22003259
Cooperative capture of large prey solves scaling challenge faced by spider societies
Yip, Eric C.; Powers, Kimberly S.; Avilés, Leticia
2008-01-01
A decrease in the surface area per unit volume is a well known constraint setting limits to the size of organisms at both the cellular and whole-organismal levels. Similar constraints may apply to social groups as they grow in size. The communal three-dimensional webs that social spiders build function ecologically as single units that intercept prey through their surface and should thus be subject to this constraint. Accordingly, we show that web prey capture area per spider, and thus number of insects captured per capita, decreases with colony size in a neotropical social spider. Prey biomass intake per capita, however, peaks at intermediate colony sizes because the spiders forage cooperatively and larger colonies capture increasingly large insects. A peaked prey biomass intake function would explain not only why these spiders live in groups and cooperate but also why they disperse only at large colony sizes, thus addressing both sociality and colony size range in this social spider. These findings may also explain the conspicuous absence of social spiders from higher latitudes and higher elevations, areas that we have previously shown to harbor considerably fewer insects of the largest size classes than the lowland tropical rainforests where social spiders thrive. Our findings thus illustrate the relevance of scaling laws to the size and functioning of levels of organization above the individual. PMID:18689677
Preference of redear sunfish on zebra mussels and rams-horn snails
French, John R. P.; Morgan, Michael N.
1995-01-01
We tested prey preferences of adult (200- to 222-mm long) redear sunfish (Lepomis microlophus) on two size classes of zebra mussels (Dreissena polymorpha) and two-ridge rams-horns (Helisoma anceps) in experimental aquaria. We also tested physical limitations on consuming these mollusks and determined prey bioenergetic profitability. Redear sunfish strongly preferred rams-horns over zebra mussels, but they displayed no size preference for either prey. Ingestion was not physically limited since both prey species up to 15-mm long fit within the pharyngeal gapes of redear sunfish. Rams-horns were more bioenergetically profitable than zebra mussels and ingestion of rams-horn shell fragments was about three times less than zebra mussels. Rams-horns were somewhat more resistant to shell-crushing, but all size ranges of both prey species tested were crushable by redear sunfish. These studies suggested that the redear sunfish should not be considered a panacea for biological control of zebra mussels.
Selective Predation of a Stalking Predator on Ungulate Prey
Heurich, Marco; Zeis, Klara; Küchenhoff, Helmut; Müller, Jörg; Belotti, Elisa; Bufka, Luděk; Woelfing, Benno
2016-01-01
Prey selection is a key factor shaping animal populations and evolutionary dynamics. An optimal forager should target prey that offers the highest benefits in terms of energy content at the lowest costs. Predators are therefore expected to select for prey of optimal size. Stalking predators do not pursue their prey long, which may lead to a more random choice of prey individuals. Due to difficulties in assessing the composition of available prey populations, data on prey selection of stalking carnivores are still scarce. We show how the stalking predator Eurasian lynx (Lynx lynx) selects prey individuals based on species identity, age, sex and individual behaviour. To address the difficulties in assessing prey population structure, we confirm inferred selection patterns by using two independent data sets: (1) data of 387 documented kills of radio-collared lynx were compared to the prey population structure retrieved from systematic camera trapping using Manly’s standardized selection ratio alpha and (2) data on 120 radio-collared roe deer were analysed using a Cox proportional hazards model. Among the larger red deer prey, lynx selected against adult males—the largest and potentially most dangerous prey individuals. In roe deer lynx preyed selectively on males and did not select for a specific age class. Activity during high risk periods reduced the risk of falling victim to a lynx attack. Our results suggest that the stalking predator lynx actively selects for size, while prey behaviour induces selection by encounter and stalking success rates. PMID:27548478
Intraspecific variation in body size does not alter the effects of mesopredators on prey.
Gallagher, Austin J; Brandl, Simon J; Stier, Adrian C
2016-12-01
As humans continue to alter the species composition and size structure of marine food webs, it is critical to understand size-dependent effects of predators on prey. Yet, how shifts in predator body size mediate the effect of predators is understudied in tropical marine ecosystems, where anthropogenic harvest has indirectly increased the density and size of small-bodied predators. Here, we combine field surveys and a laboratory feeding experiment in coral reef fish communities to show that small and large predators of the same species can have similar effects. Specifically, surveys show that the presence of a small predator ( Paracirrhites arcatus ) was correlated with lower chances of prey fish presence, but these correlations were independent of predator size. Experimental trials corroborated the size-independent effect of the predator; attack rates were indistinguishable between small and large predators, suggesting relatively even effects of hawkfish in various size classes on the same type of prey. Our results indicate that the effects of small predators on coral reefs can be size-independent, suggesting that variation in predator size-structure alone may not always affect the functional role of these predators.
Biomechanics of predator-prey arms race in lion, zebra, cheetah and impala.
Wilson, Alan M; Hubel, Tatjana Y; Wilshin, Simon D; Lowe, John C; Lorenc, Maja; Dewhirst, Oliver P; Bartlam-Brooks, Hattie L A; Diack, Rebecca; Bennitt, Emily; Golabek, Krystyna A; Woledge, Roger C; McNutt, J Weldon; Curtin, Nancy A; West, Timothy G
2018-02-08
The fastest and most manoeuvrable terrestrial animals are found in savannah habitats, where predators chase and capture running prey. Hunt outcome and success rate are critical to survival, so both predator and prey should evolve to be faster and/or more manoeuvrable. Here we compare locomotor characteristics in two pursuit predator-prey pairs, lion-zebra and cheetah-impala, in their natural savannah habitat in Botswana. We show that although cheetahs and impalas were universally more athletic than lions and zebras in terms of speed, acceleration and turning, within each predator-prey pair, the predators had 20% higher muscle fibre power than prey, 37% greater acceleration and 72% greater deceleration capacity than their prey. We simulated hunt dynamics with these data and showed that hunts at lower speeds enable prey to use their maximum manoeuvring capacity and favour prey survival, and that the predator needs to be more athletic than its prey to sustain a viable success rate.
Biomechanics of predator-prey arms race in lion, zebra, cheetah and impala
NASA Astrophysics Data System (ADS)
Wilson, Alan M.; Hubel, Tatjana Y.; Wilshin, Simon D.; Lowe, John C.; Lorenc, Maja; Dewhirst, Oliver P.; Bartlam-Brooks, Hattie L. A.; Diack, Rebecca; Bennitt, Emily; Golabek, Krystyna A.; Woledge, Roger C.; McNutt, J. Weldon; Curtin, Nancy A.; West, Timothy G.
2018-02-01
The fastest and most manoeuvrable terrestrial animals are found in savannah habitats, where predators chase and capture running prey. Hunt outcome and success rate are critical to survival, so both predator and prey should evolve to be faster and/or more manoeuvrable. Here we compare locomotor characteristics in two pursuit predator-prey pairs, lion-zebra and cheetah-impala, in their natural savannah habitat in Botswana. We show that although cheetahs and impalas were universally more athletic than lions and zebras in terms of speed, acceleration and turning, within each predator-prey pair, the predators had 20% higher muscle fibre power than prey, 37% greater acceleration and 72% greater deceleration capacity than their prey. We simulated hunt dynamics with these data and showed that hunts at lower speeds enable prey to use their maximum manoeuvring capacity and favour prey survival, and that the predator needs to be more athletic than its prey to sustain a viable success rate.
Penning, David A; Moon, Brad R
2017-03-15
Across ecosystems and trophic levels, predators are usually larger than their prey, and when trophic morphology converges, predators typically avoid predation on intraguild competitors unless the prey is notably smaller in size. However, a currently unexplained exception occurs in kingsnakes in the genus Lampropeltis Kingsnakes are able to capture, constrict and consume other snakes that are not only larger than themselves but that are also powerful constrictors (such as ratsnakes in the genus Pantherophis ). Their mechanisms of success as intraguild predators on other constrictors remain unknown. To begin addressing these mechanisms, we studied the scaling of muscle cross-sectional area, pulling force and constriction pressure across the ontogeny of six species of snakes ( Lampropeltis californiae , L. getula , L. holbrooki , Pantherophis alleghaniensis , P. guttatus and P. obsoletus ). Muscle cross-sectional area is an indicator of potential force production, pulling force is an indicator of escape performance, and constriction pressure is a measure of prey-handling performance. Muscle cross-sectional area scaled similarly for all snakes, and there was no significant difference in maximum pulling force among species. However, kingsnakes exerted significantly higher pressures on their prey than ratsnakes. The similar escape performance among species indicates that kingsnakes win in predatory encounters because of their superior constriction performance, not because ratsnakes have inferior escape performance. The superior constriction performance by kingsnakes results from their consistent and distinctive coil posture and perhaps from additional aspects of muscle structure and function that need to be tested in future research. © 2017. Published by The Company of Biologists Ltd.
Halstead, B.J.; Mushinsky, H.R.; McCoy, E.D.
2008-01-01
Masticophis flagellum (Coachwhip) and Coluber constrictor (Eastern Racer) are widespread North American snakes with similar foraging modes and habits. Little is known about the selection of prey by either species, and despite their apparently similar foraging habits, comparative studies of the foraging ecology of sympatric M. flagellum and C. constrictor are lacking. We examined the foraging ecology and prey selection of these actively foraging snakes in xeric, open-canopied Florida scrub habitat by defining prey availability separately for each snake to elucidate mechanisms underlying geographic, temporal, and interspecific variation in predator diets. Nineteen percent of M. flagellum and 28% of C. constrictor contained stomach contents, and most snakes contained only one prey item. Mean relative prey mass for both species was less than 10%. Larger C. constrictor consumed larger prey than small individuals, but this relationship disappeared when prey size was scaled to snake size. Masticophis flagellum was selective at the prey category level, and positively selected lizards and mammals; however, within these categories it consumed prey species in proportion to their availability. In contrast, C. constrictor preyed upon prey categories opportunistically, but was selective with regard to species. Specifically, C. constrictor positively selected Hyla femoralis (Pine Woods Treefrog) and negatively selected Bufo querclcus (Oak Toad), B. terrestris (Southern Toad), and Gastrophryne carolinensis (Eastern Narrowmouth Toad). Thus, despite their similar foraging habits, M. flagellum and C. constrictor select different prey and are selective of prey at different levels of taxonomy. ?? 2008 by the American Society of Ichthyologists and Herpetologists.
Predator cannibalism can intensify negative impacts on heterospecific prey.
Takatsu, Kunio; Kishida, Osamu
2015-07-01
Although natural populations consist of individuals with different traits, and the degree of phenotypic variation varies among populations, the impact of phenotypic variation on ecological interactions has received little attention, because traditional approaches to community ecology assume homogeneity of individuals within a population. Stage structure, which is a common way of generating size and developmental variation within predator populations, can drive cannibalistic interactions, which can affect the strength of predatory effects on the predator's heterospecific prey. Studies have shown that predator cannibalism weakens predatory effects on heterospecific prey by reducing the size of the predator population and by inducing less feeding activity of noncannibal predators. We predict, however, that predator cannibalism, by promoting rapid growth of the cannibals, can also intensify predation pressure on heterospecific prey, because large predators have large resource requirements and may utilize a wider variety of prey species. To test this hypothesis, we conducted an experiment in which we created carnivorous salamander (Hynobius retardatus) populations with different stage structures by manipulating the salamander's hatch timing (i.e., populations with large or small variation in the timing of hatching), and explored the resultant impacts on the abundance, behavior, morphology, and life history of the salamander's large heterospecific prey, Rana pirica frog tadpoles. Cannibalism was rare in salamander populations having small hatch-timing variation, but was frequent in those having large hatch-timing variation. Thus, giant salamander cannibals occurred only in the latter. We clearly showed that salamander giants exerted strong predation pressure on frog tadpoles, which induced large behavioral and morphological defenses in the tadpoles and caused them to metamorphose late at large size. Hence, predator cannibalism arising from large variation in the timing of hatching can strengthen predatory effects on heterospecific prey and can have impacts on various, traits of both predator and prey. Because animals commonly broaden their diet as they grow, such negative impacts of predator cannibalism on the heterospecific prey may be common in interactions between predators and prey species of similar size.
Predatory senescence in ageing wolves.
MacNulty, Daniel R; Smith, Douglas W; Vucetich, John A; Mech, L David; Stahler, Daniel R; Packer, Craig
2009-12-01
It is well established that ageing handicaps the ability of prey to escape predators, yet surprisingly little is known about how ageing affects the ability of predators to catch prey. Research into long-lived predators has assumed that adults have uniform impacts on prey regardless of age. Here we use longitudinal data from repeated observations of individually-known wolves (Canis lupus) hunting elk (Cervus elaphus) in Yellowstone National Park to demonstrate that adult predatory performance declines with age and that an increasing ratio of senescent individuals in the wolf population depresses the rate of prey offtake. Because this ratio fluctuates independently of population size, predatory senescence may cause wolf populations of equal size but different age structure to have different impacts on prey populations. These findings suggest that predatory senescence is an important, though overlooked, factor affecting predator-prey dynamics.
Predatory senescence in ageing wolves
MacNulty, D.R.; Smith, D.W.; Vucetich, J.A.; Mech, L.D.; Stahler, D.R.; Packer, C.
2009-01-01
It is well established that ageing handicaps the ability of prey to escape predators, yet surprisingly little is known about how ageing affects the ability of predators to catch prey. Research into long-lived predators has assumed that adults have uniform impacts on prey regardless of age. Here we use longitudinal data from repeated observations of individually-known wolves (Canis lupus) hunting elk (Cervus elaphus) in Yellowstone National Park to demonstrate that adult predatory performance declines with age and that an increasing ratio of senescent individuals in the wolf population depresses the rate of prey offtake. Because this ratio fluctuates independently of population size, predatory senescence may cause wolf populations of equal size but different age structure to have different impacts on prey populations. These findings suggest that predatory senescence is an important, though overlooked, factor affecting predator-prey dynamics. ?? 2009 Blackwell Publishing Ltd/CNRS.
Predatory senescence in aging wolves
MacNulty, Daniel R.; Smith, Douglas W.; Vucetich, John A.; Mech, L. David; Stahler, Daniel R.; Packer, Craig
2009-01-01
It is well established that ageing handicaps the ability of prey to escape predators, yet surprisingly little is known about how ageing affects the ability of predators to catch prey. Research into long-lived predators has assumed that adults have uniform impacts on prey regardless of age. Here we use longitudinal data from repeated observations of individually-known wolves (Canis lupus) hunting elk (Cervus elaphus) in Yellowstone National Park to demonstrate that adult predatory performance declines with age and that an increasing ratio of senescent individuals in the wolf population depresses the rate of prey offtake. Because this ratio fluctuates independently of population size, predatory senescence may cause wolf populations of equal size but different age structure to have different impacts on prey populations. These findings suggest that predatory senescence is an important, though overlooked, factor affecting predator-prey dynamics.
Fu, Yutao; O'Kelly, Charles; Sieracki, Michael; Distel, Daniel L.
2003-01-01
Selective grazing by protists can profoundly influence bacterial community structure, and yet direct, quantitative observation of grazing selectivity has been difficult to achieve. In this investigation, flow cytometry was used to study grazing by the marine heterotrophic flagellate Paraphysomonas imperforata on live bacterial cells genetically modified to express the fluorescent protein markers green fluorescent protein (GFP) and red fluorescent protein (RFP). Broad-host-range plasmids were constructed that express fluorescent proteins in three bacterial prey species, Escherichia coli, Enterobacter aerogenes, and Pseudomonas putida. Micromonas pusilla, an alga with red autofluorescence, was also used as prey. Predator-prey interactions were quantified by using a FACScan flow cytometer and analyzed by using a Perl program described here. Grazing preference of P. imperforata was influenced by prey type, size, and condition. In competitive feeding trials, P. imperforata consumed algal prey at significantly lower rates than FP (fluorescent protein)-labeled bacteria of similar or different size. Within-species size selection was also observed, but only for P. putida, the largest prey species examined; smaller cells of P. putida were grazed preferentially. No significant difference in clearance rate was observed between GFP- and RFP-labeled strains of the same prey species or between wild-type and GFP-labeled strains. In contrast, the common chemical staining method, 5-(4,6-dichloro-triazin-2-yl)-amino fluorescein hydrochloride, depressed clearance rates for bacterial prey compared to unlabeled or RFP-labeled cells. PMID:14602649
Adapting to an invasive species: toxic cane toads induce morphological change in Australian snakes.
Phillips, Ben L; Shine, Richard
2004-12-07
The arrival of invasive species can devastate natural ecosystems, but the long-term effects of invasion are less clear. If native organisms can adapt to the presence of the invader, the severity of impact will decline with time. In Australia, invasive cane toads (Bufo marinus) are highly toxic to most snakes that attempt to eat them. Because snakes are gape-limited predators with strong negative allometry for head size, maximum relative prey mass (and thus, the probability of eating a toad large enough to be fatal) decreases with an increase in snake body size. Thus, the arrival of toads should exert selection on snake morphology, favoring an increase in mean body size and a decrease in relative head size. We tested these predictions with data from specimens of four species of Australian snakes, collected over >80 years. Geographic information system layers provided data on the duration of toad exposure for each snake population, as well as environmental variables (latitude, precipitation, and temperature). As predicted, two toad-vulnerable species (Pseudechis porphyriacus and Dendrelaphis punctulatus) showed a steady reduction in gape size and a steady increase in body length with time since exposure to toads. In contrast, two species at low risk from toads (Hemiaspis signata and Tropidonophis mairii) showed no consistent change in these morphological traits as a function of the duration of toad exposure. These results provide strong evidence of adaptive changes in native predators as a result of the invasion of toxic prey.
Corrêa, Daniele N; Quintela, Fernando M; Loebmann, Daniel
2016-03-01
The snakes Erythrolamprus jaegeri jaegeri and Erythrolamprus poecilogyrus sublineatus are sympatric and syntopic in the coastal region of southern Brazil. Herein, we analyzed the diet composition to evaluate the niche breadth and the prey selection by both species. We examined 192 specimens, and analysis of stomach contents revealed that both species predominantly consume anurans. However, the diet of E. j. jaegeri consists mainly of fish and amphibians, whereas that of E. p. sublineatus is broader, including fish, amphibians, reptiles and mammals. The Standardized Levins Index presented lower values for E. j. jaegeri (BA = 0.17) than for E. p. sublineatus (BA = 0.61), evidencing specialist and generalist strategies for each species, respectively. Regarding prey selection, E. p. sublineatus presented a larger snout-vent length, head, mouth and lower jaw than E. j. jaegeri and fed on larger prey. In addition, positive correlations between the size and weight of predators and prey were confirmed in both species. The results show the development of different mechanisms for co-occurrence of the two species, such as prey selection by size, such that the size of the predator is related to the size of their prey, or by developing different strategies to decrease niche overlap between species.
Sequential assessment of prey through the use of multiple sensory cues by an eavesdropping bat
NASA Astrophysics Data System (ADS)
Page, Rachel A.; Schnelle, Tanja; Kalko, Elisabeth K. V.; Bunge, Thomas; Bernal, Ximena E.
2012-06-01
Predators are often confronted with a broad diversity of potential prey. They rely on cues associated with prey quality and palatability to optimize their hunting success and to avoid consuming toxic prey. Here, we investigate a predator's ability to assess prey cues during capture, handling, and consumption when confronted with conflicting information about prey quality. We used advertisement calls of a preferred prey item (the túngara frog) to attract fringe-lipped bats, Trachops cirrhosus, then offered palatable, poisonous, and chemically manipulated anurans as prey. Advertisement calls elicited an attack response, but as bats approached, they used additional sensory cues in a sequential manner to update their information about prey size and palatability. While both palatable and poisonous small anurans were readily captured, large poisonous toads were approached but not contacted suggesting the use of echolocation for assessment of prey size at close range. Once prey was captured, bats used chemical cues to make final, post-capture decisions about whether to consume the prey. Bats dropped small, poisonous toads as well as palatable frogs coated in toad toxins either immediately or shortly after capture. Our study suggests that echolocation and chemical cues obtained at close range supplement information obtained from acoustic cues at long range. Updating information about prey quality minimizes the occurrence of costly errors and may be advantageous in tracking temporal and spatial fluctuations of prey and exploiting novel food sources. These findings emphasize the sequential, complex nature of prey assessment that may allow exploratory and flexible hunting behaviors.
Niche segregation among sympatric Amazonian teiid lizards.
Vitt, L J; Sartorius, S S; Avila-Pires, T C S; Espósito, M C; Miles, D B
2000-02-01
We examined standard niche axes (time, place, and food) for three sympatric teiid lizards in the Amazon rain forest. Activity times during the day were similar among species. Ameiva ameiva were in more open microhabitats and had higher body temperatures compared with the two species of Kentropyx. Microhabitat overlaps were low and not significantly different from simulations based on Monte Carlo analysis. Grasshoppers, crickets, and spiders were important in the diets of all three species and many relatively abundant prey were infrequently eaten (e.g., ants). Dietary overlaps were most similar between the two species of Kentropyx even though microhabitat overlaps were relatively low. A Monte Carlo analysis on prey types revealed that dietary overlaps were higher at all ranks than simulated overlaps indicating that use of prey is not random. Although prey size was correlated with lizard body size, there were no species differences in adjusted prey size. A. ameiva ate more prey items at a given body size than either species of Kentropyx. Body size varies among species, with A. ameiva being the largest and K. altamazonica the smallest. The two species of Kentropyx are most distant morphologically, with A. ameiva intermediate. The most distant species morphologically are the most similar in terms of prey types. A morphological analysis including 15 species from four genera revealed patterns of covariation that reflected phylogenetic affinities (i.e., taxonomic patterns are evident). A cluster analysis revealed that A. ameiva, K. pelviceps, and K. altamazonica were in the same morphological group and that within that group, A. ameiva differed from the rest of the species. In addition, K. pelviceps and K. altamazonica were distinguishable from other species of Kentropyx based on morphology.
Trophic specialization drives morphological evolution in sea snakes.
Sherratt, Emma; Rasmussen, Arne R; Sanders, Kate L
2018-03-01
Viviparous sea snakes are the most rapidly speciating reptiles known, yet the ecological factors underlying this radiation are poorly understood. Here, we reconstructed dated trees for 75% of sea snake species and quantified body shape (forebody relative to hindbody girth), maximum body length and trophic diversity to examine how dietary specialization has influenced morphological diversification in this rapid radiation. We show that sea snake body shape and size are strongly correlated with the proportion of burrowing prey in the diet. Specialist predators of burrowing eels have convergently evolved a 'microcephalic' morphotype with dramatically reduced forebody relative to hindbody girth and intermediate body length. By comparison, snakes that predominantly feed on burrowing gobies are generally short-bodied and small-headed, but there is no evidence of convergent evolution. The eel specialists also exhibit faster rates of size and shape evolution compared to all other sea snakes, including those that feed on gobies. Our results suggest that trophic specialization to particular burrowing prey (eels) has invoked strong selective pressures that manifest as predictable and rapid morphological changes. Further studies are needed to examine the genetic and developmental mechanisms underlying these dramatic morphological changes and assess their role in sea snake speciation.
Sonerud, Geir A; Steen, Ronny; Løw, Line M; Røed, Line T; Skar, Kristin; Selås, Vidar; Slagsvold, Tore
2013-05-01
In birds with bi-parental care, the provisioning link between prey capture and delivery to dependent offspring is regarded as often symmetric between the mates. However, in raptors, the larger female usually broods and feeds the nestlings, while the smaller male provides food for the family, assisted by the female in the latter part of the nestling period, if at all. Prey items are relatively large and often impossible for nestlings to handle without extended maternal assistance. We video-recorded prey delivery and handling in nests of a raptor with a wide diet, the Eurasian kestrel Falco tinnunculus, and simultaneously observed prey transfer from male to female outside the nest. The male selectively allocated larger items, in particular birds and larger mammals, to the female for further processing and feeding of nestlings, and smaller items, in particular lizards and smaller mammals, directly to the nestlings for unassisted feeding. Hence, from the video, the female appeared to have captured larger prey than the male, while in reality no difference existed. The female's size-biased interception of the male's prey provisioning line would maximize the male's foraging time, and maximize the female's control of the allocation of food between her own need and that of the offspring. The male would maximize his control of food allocation by capturing smaller prey. This conflict would select for larger dominant females and smaller energy-efficient males, and induce stronger selection the longer the female depends on the male for self-feeding, as a proportion of the offspring dependence period.
Shackell, Nancy L; Frank, Kenneth T; Fisher, Jonathan A D; Petrie, Brian; Leggett, William C
2010-05-07
Globally, overfishing large-bodied groundfish populations has resulted in substantial increases in their prey populations. Where it has been examined, the effects of overfishing have cascaded down the food chain. In an intensively fished area on the western Scotian Shelf, Northwest Atlantic, the biomass of prey species increased exponentially (doubling time of 11 years) even though the aggregate biomass of their predators remained stable over 38 years. Concomitant reductions in herbivorous zooplankton and increases in phytoplankton were also evident. This anomalous trophic pattern led us to examine how declines in predator body size (approx. 60% in body mass since the early 1970s) and climatic regime influenced lower trophic levels. The increase in prey biomass was associated primarily with declines in predator body size and secondarily to an increase in stratification. Sea surface temperature and predator biomass had no influence. A regression model explained 65 per cent of prey biomass variability. Trait-mediated effects, namely a reduction in predator size, resulted in a weakening of top predation pressure. Increased stratification may have enhanced growing conditions for prey fish. Size-selective harvesting under changing climatic conditions initiated a trophic restructuring of the food chain, the effects of which may have influenced three trophic levels.
NASA Astrophysics Data System (ADS)
Yamada, Katsumasa; Hori, Masakazu; Tanaka, Yoshiyuki; Hasegawa, Natsuki; Nakaoka, Masahiro
2010-01-01
We examined the variation in habitat use and diet of three dominant fish species ( Myoxocephalus brandti, Pholidapus dybowskii, and Pholis crassispina) in a seagrass meadow in the Akkeshi-ko estuary in northeastern Japan, where broad and dense Zostera marina beds exist, using a semi-quantitative census of the fishes and analyses of their stomach contents. Differences among the three fish species in the temporal variation in abundance of each age class (mainly 1- and 2-year age classes) indicated that the temporal pattern of utilization of the seagrass meadow were different among them. In the semi-quantitative dietary analysis, two prey categories, i.e., taxonomic group (order and suborder) and functional group, were used to explain the variation in prey composition with size-dependent changes. The six prey functional groups were classified based on the ecological traits of the prey, i.e., trophic level, size, and life type (habitat and behavior). Ontogenetic shifts in prey of the three fish species could be fully explained by a combination of the two prey categories, and not by the use of only one category (taxonomic or functional group). The pattern of ontogenetic shifts in prey differed among the fish species and size (age) classes. These results indicate that segregation of habitat (seagrass meadow) and prey group (taxonomic and functional group) is performed among the three species, which may contribute to their coexistence in this estuary.
Kerfoot, James R.; Easter, Emily; Elsey, Ruth M.
2016-01-01
Wetland habitats are used as nursery sites for hatchling and juvenile alligators (Alligator mississippiensis), where they utilize prey from aquatic and terrestrial settings. However, little is known about how viscosity of the medium influences feeding performance. We hypothesized that timing and linear excursion feeding kinematic variables would be different for individuals feeding on prey above the water compared with the same individuals feeding underwater. Individuals were fed immobile fish prey and feeding events were recorded using a high speed video camera. Feeding performance was summarized by analyzing three feeding kinematic variables (maximum gape, maximum gape velocity, duration of feeding bout) and success of strike. Results of a series of paired t-tests indicated no significant difference in kinematic variables between feeding events above water compared with underwater. Similarity in feeding performance could indicate that prey-capture is not altered by environmental viscosity or that feeding behavior can mitigate its influence. Behavioral differences were observed during feeding events with alligators approaching underwater prey having their mouths partially opened versus fully closed when feeding above water. This behavior could be an indication of a strategy used to overcome water viscosity. PMID:27706023
Effects of stream enclosures on drifting invertebrates and fish growth
Zimmerman, J.K.H.; Vondracek, B.
2006-01-01
Stream ecologists often use enclosure experiments to investigate predator-prey interactions and competition within and among fish species. The design of enclosures, manipulation of species densities, and method of replication may influence experimental results. We designed an experiment with enclosure cages (1 m2, 6-mm mesh) to examine the relative influence of fish size, density, and prey availability on growth of brown trout (Salmo trutta), brook trout (Salvelinus fontinalis), and slimy sculpin (Cottus cognatus) within enclosures in Valley Creek, Minnesota. In addition, we examined water flow and invertebrate drift entering enclosures and in open riffles to investigate whether enclosures reduced the supply of invertebrate prey. Growth of small (age-0) brook and brown trout was not influenced by fish density, but growth of larger (age-1) trout generally decreased as density increased. Sculpin growth was not related to fish size or density, but increased with mean size of invertebrates in the drift. Enclosures reduced water flow and tended to reduce invertebrate drift rate, although total drift rate (ind./min), total drift density (ind./m3), and mean size of invertebrates were not significantly different inside enclosures compared to adjacent stream riffles. Enclosures had no effect on drift rate or size of Gammarus pseudolimnaeus, the main prey item for trout and sculpin in Valley Creek. Overall, our analyses indicated that reductions of prey availability by enclosures did not influence fish growth. Trout growth may have been limited at larger sizes and densities because of increased activity costs of establishing and defending territories, whereas sculpin growth was related to availability of large prey, a factor not influenced by enclosures. ?? 2006 by The North American Benthological Society.
NASA Astrophysics Data System (ADS)
Leopold, M. F.; Swennen, C.; De Bruijn, L. L. M.
Oystercatchers, Haematopus ostralegus, were tested for size selection in two prey species, cockles ( Cerastoderma edule) and mussels ( Mytilus edulis), under semi-natural, but strictly experimental, conditions that allowed recovery of all shells of prey items eaten. Within any patch of cockles offered, size was not an important selection criterion for the birds. The mean length of cockles consumed always differed less than 1 mm (the measuring accuracy) from the mean length of the cockles presented. When given a choice between patches of different prey quality, the birds tended to select patches according to their relative dominance status, with the most dominant bird feeding mainly in the patch where the prey items had the largest flesh contents. Less dominant birds were forced out of the preferred patch and obtained most of theif food from a patch of presumedly lower quality. One of these birds adapted its prey-handling method and its bill shape for efficient feeding in such a low quality pathc, and it continued feeding in that patch, even after the dominant conspecifics had been removed. In experiments with mussels as prey, the test bird did not select primarily on the basis of size but tended to eat those mussels that were easiest to open. It is concluded that size selection in oystercatchers that eat either cockles or mussels ends with the choice of a certain foraging patch. Within a patch of cockles of one year-class, which is the field condition for the majority of oystercatchers in the Wadden Sea, no selection for size occurs, because this would take too much extra searching time to be profitable.
Influence of group size on the success of wolves hunting bison.
MacNulty, Daniel R; Tallian, Aimee; Stahler, Daniel R; Smith, Douglas W
2014-01-01
An intriguing aspect of social foraging behaviour is that large groups are often no better at capturing prey than are small groups, a pattern that has been attributed to diminished cooperation (i.e., free riding) in large groups. Although this suggests the formation of large groups is unrelated to prey capture, little is known about cooperation in large groups that hunt hard-to-catch prey. Here, we used direct observations of Yellowstone wolves (Canis lupus) hunting their most formidable prey, bison (Bison bison), to test the hypothesis that large groups are more cooperative when hunting difficult prey. We quantified the relationship between capture success and wolf group size, and compared it to previously reported results for Yellowstone wolves hunting elk (Cervus elaphus), a prey that was, on average, 3 times easier to capture than bison. Whereas improvement in elk capture success levelled off at 2-6 wolves, bison capture success levelled off at 9-13 wolves with evidence that it continued to increase beyond 13 wolves. These results are consistent with the hypothesis that hunters in large groups are more cooperative when hunting more formidable prey. Improved ability to capture formidable prey could therefore promote the formation and maintenance of large predator groups, particularly among predators that specialize on such prey.
Falk, Bryan; Reed, Robert N.
2015-01-01
Molecular approaches to prey identification are increasingly useful in elucidating predator–prey relationships, and we aimed to investigate the feasibility of these methods to document the species identities of prey consumed by invasive Burmese pythons in Florida. We were particularly interested in the diet of young snakes, because visual identification of prey from this size class has proven difficult. We successfully extracted DNA from the gastrointestinal contents of 43 young pythons, as well as from several control samples, and attempted amplification of DNA mini-barcodes, a 130-bp region of COX1. Using a PNA clamp to exclude python DNA, we found that prey DNA was not present in sufficient quality for amplification of this locus in 86% of our samples. All samples from the GI tracts of young pythons contained only hair, and the six samples we were able to identify to species were hispid cotton rats. This suggests that young Burmese pythons prey predominantly on small mammals and that prey diversity among snakes of this size class is low. We discuss prolonged gastrointestinal transit times and extreme gastric breakdown as possible causes of DNA degradation that limit the success of a molecular approach to prey identification in Burmese pythons
Influence of Group Size on the Success of Wolves Hunting Bison
MacNulty, Daniel R.; Tallian, Aimee; Stahler, Daniel R.; Smith, Douglas W.
2014-01-01
An intriguing aspect of social foraging behaviour is that large groups are often no better at capturing prey than are small groups, a pattern that has been attributed to diminished cooperation (i.e., free riding) in large groups. Although this suggests the formation of large groups is unrelated to prey capture, little is known about cooperation in large groups that hunt hard-to-catch prey. Here, we used direct observations of Yellowstone wolves (Canis lupus) hunting their most formidable prey, bison (Bison bison), to test the hypothesis that large groups are more cooperative when hunting difficult prey. We quantified the relationship between capture success and wolf group size, and compared it to previously reported results for Yellowstone wolves hunting elk (Cervus elaphus), a prey that was, on average, 3 times easier to capture than bison. Whereas improvement in elk capture success levelled off at 2–6 wolves, bison capture success levelled off at 9–13 wolves with evidence that it continued to increase beyond 13 wolves. These results are consistent with the hypothesis that hunters in large groups are more cooperative when hunting more formidable prey. Improved ability to capture formidable prey could therefore promote the formation and maintenance of large predator groups, particularly among predators that specialize on such prey. PMID:25389760
Clements, Hayley S; Tambling, Craig J; Hayward, Matt W; Kerley, Graham I H
2014-01-01
Broad-scale models describing predator prey preferences serve as useful departure points for understanding predator-prey interactions at finer scales. Previous analyses used a subjective approach to identify prey weight preferences of the five large African carnivores, hence their accuracy is questionable. This study uses a segmented model of prey weight versus prey preference to objectively quantify the prey weight preferences of the five large African carnivores. Based on simulations of known predator prey preference, for prey species sample sizes above 32 the segmented model approach detects up to four known changes in prey weight preference (represented by model break-points) with high rates of detection (75% to 100% of simulations, depending on number of break-points) and accuracy (within 1.3±4.0 to 2.7±4.4 of known break-point). When applied to the five large African carnivores, using carnivore diet information from across Africa, the model detected weight ranges of prey that are preferred, killed relative to their abundance, and avoided by each carnivore. Prey in the weight ranges preferred and killed relative to their abundance are together termed "accessible prey". Accessible prey weight ranges were found to be 14-135 kg for cheetah Acinonyx jubatus, 1-45 kg for leopard Panthera pardus, 32-632 kg for lion Panthera leo, 15-1600 kg for spotted hyaena Crocuta crocuta and 10-289 kg for wild dog Lycaon pictus. An assessment of carnivore diets throughout Africa found these accessible prey weight ranges include 88±2% (cheetah), 82±3% (leopard), 81±2% (lion), 97±2% (spotted hyaena) and 96±2% (wild dog) of kills. These descriptions of prey weight preferences therefore contribute to our understanding of the diet spectrum of the five large African carnivores. Where datasets meet the minimum sample size requirements, the segmented model approach provides a means of determining, and comparing, the prey weight range preferences of any carnivore species.
Refuge-mediated predator-prey dynamics and biomass pyramids.
Wang, Hao; Thanarajah, Silogini; Gaudreau, Philippe
2018-04-01
Refuge can greatly influence predator-prey dynamics by movements between the interior and the exterior of a refuge. The presence of refuge for prey decreases predation risk and can have important impacts on the sustainability of a predator-prey system. The principal purpose of this paper is to formulate and analyze a refuge-mediated predator-prey model when the refuge is available to protect a portion of prey from predation. We study the effect of the refuge size on the biomass ratio and extend our refuge model to incorporate fishing and predator migration separately. Our study suggests that decreasing the refuge size, increasing the predator fishing, and increasing the predator emigration stabilizes the system. Here, we investigate the dependence of Hopf bifurcation on refuge size in the presence of fishing or predator migration. Moreover, we discuss their effects on the biomass pyramid and establish a condition for the emergence of an inverted biomass pyramid. We perform numerical test and sensitivity analysis to check the robustness of our results and the relative importance of all parameters. We find that high fishing pressure may destroy the inverted biomass pyramid and thus decrease the resilience of reef ecosystems. In addition, increasing the emigration rate or decreasing the immigration rate decreases the predator-prey biomass ratio. An inverted biomass pyramid can occur in the presence of a stable limit cycle. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Abernethy, Gavin M.; McCartney, Mark; Glass, David H.
2018-03-01
A computational study of a system of ten prey phenotypes and either one or ten predator phenotypes with a range of foraging behaviours, arranged on two separate one-dimensional lattices, is presented. Mutation between nearest neighbours along the prey lattice occurs at a constant rate, and mutation may or may not be enabled for the predators. The significance of competition amongst the prey is investigated by testing a variety of distributions of the relative intraspecific and interspecific competition. We also study the influence this has on the survival and population size of predator phenotypes with a variety of foraging strategies. Our results indicate that the distribution of competition amongst prey is of little significance, provided that intraspecific is stronger than the interspecific, and that it is typically preferable for a predator to adopt a foraging strategy that scales linearly with prey population sizes if it is alone. In an environment of multiple predator phenotypes, the least or most-focused predators are most likely to persist, dependent on the feeding parameter.
Zooplankton Grazing Effects on Particle Size Spectra under Different Seasonal Conditions
NASA Astrophysics Data System (ADS)
Stamieszkin, K.; Poulton, N.; Pershing, A. J.
2016-02-01
Oceanic particle size spectra can be used to explain and predict variability in carbon export efficiency, since larger particles are more likely to sink to depth than small particles. The distribution of biogenic particle size in the surface ocean is the result of many variables and processes, including nutrient availability, primary productivity, aggregation, remineralization, and grazing. We conducted a series of grazing experiments to test the hypothesis that mesozooplankton shift particle size spectra toward larger particles, via grazing and egestion of relatively large fecal pellets. These experiments were carried out over several months, and used natural communities of mesozooplankton and their microbial prey, collected offshore of the Damariscotta River in the Gulf of Maine. We analyzed the samples using Fluid Imaging Technologies' FlowCam®, a particle imaging system. With this equipment, we processed live samples, decreasing the likelihood of losing or damaging fragile particles, and thereby lessening sources of error in commonly used preservation and enumeration protocols. Our results show how the plankton size spectrum changes as the Gulf of Maine progresses through a seasonal cycle. We explore the relationship of grazing community size structure to its effect on the overall biogenic particle size spectrum. At some times of year, mesozooplankton grazing does not alter the particle size spectrum, while at others it significantly does, affecting the potential for biogenic flux. We also examine prey selectivity, and find that chain diatoms are the only prey group preferentially consumed. Otherwise, we find that complete mesozooplankton communities are "evolved" to fit their prey such that most prey groups are grazed evenly. We discuss a metabolic numerical model which could be used to universalize the relationships between whole gazer and whole microbial communities, with respect to effects on particle size spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenaga, D.E.; Cole, R.A.
1975-10-01
The study was undertaken as part of an investigation of the impact of once through cooling at a large power plant in western Lake Erie and is an attempt to assess the relationship among fish based on foods consumed. Potential food organisms and stomach contents of yellow perch, white bass, freshwater drum and goldfish were sampled and compared over a two year period. On the basis of differences in food size alone, young of the year fish did not appear to be in competition but as they became larger, all but goldfish consumed the same mean size foods. Within amore » fish species, mean prey size varied little in fish older than age class zero. Goldfish differed markedly by lacking the prey size selectivity demonstrated by the other fish species. Some ramifications of food size and prey selectivity in relation to trophic dynamics, feeding efficiency, composition and distribution of fish species, and the use of cooling water by large power plants and their possible impact upon prey sizes are discussed. (GRA)« less
Diet Composition and Trophic Ecology of Northeast Pacific Ocean Sharks.
Bizzarro, Joseph J; Carlisle, Aaron B; Smith, Wade D; Cortés, Enric
Although there is a general perception of sharks as large pelagic, apex predators, most sharks are smaller, meso- and upper-trophic level predators that are associated with the seafloor. Among 73 shark species documented in the eastern North Pacific (ENP), less than half reach maximum lengths >200cm, and 78% occur in demersal or benthic regions of the continental shelf or slope. Most small (≤200cm) species (e.g., houndsharks) and demersal, nearshore juveniles of larger species (e.g., requiem sharks) consume small teleosts and decapod crustaceans, whereas large species in pelagic coastal and oceanic environments feed on large teleosts and squids. Several large, pelagic apex predator species occur in the ENP, but the largest species (i.e., Basking Shark, Whale Shark) consume zooplankton or small nekton. Size-based dietary variability is substantial for many species, and segregation of juvenile and adult foraging habitats also is common (e.g., Horn Shark, Shortfin Mako). Temporal dietary differences are most pronounced for temperate, nearshore species with wide size ranges, and least pronounced for smaller species in extreme latitudes and deep-water regions. Sympatric sharks often occupy various trophic positions, with resource overlap differing by space and time and some sharks serving as prey to other species. Most coastal species remain in the same general region over time and feed opportunistically on variable prey inputs (e.g., season migrations, spawning, or recruitment events), whereas pelagic, oceanic species actively seek hot spots of prey abundance that are spatiotemporally variable. The influence of sharks on ecosystem structure and regulation has been downplayed compared to that of large teleosts species with higher per capita consumption rates (e.g., tunas, billfishes). However, sharks also exert indirect influences on prey populations by causing behavioural changes that may result in restricted ranges and reduced fitness. Except for food web modelling efforts in Alaskan waters, the trophic impacts of sharks are poorly incorporated into current ecosystem approaches to fisheries management in the NEP. © 2017 Elsevier Ltd. All rights reserved.
Juncos, Romina; Beauchamp, David A.; Viglianoc, Pablo H.
2013-01-01
We examined trophic interactions of the nonnative salmonids Rainbow Trout Oncorhynchus mykiss, Brown Trout Salmo trutta, and Brook Trout Salvelinus fontinalisand the main native predator Creole Perch Percichthys trucha in Lake Nahuel Huapi (Patagonia, Argentina) to determine the relative impact of each predator on their forage base and to evaluate the potential vulnerability of each predator to competitive impacts by the others. Using bioenergetics simulations, we demonstrated the overall importance of galaxiids and decapods to the energy budgets of nonnative salmonids and Creole Perch. Introduced salmonids, especially Rainbow Trout, exerted considerably heavier predatory demands on shared resources than did the native Creole Perch on both a per capita basis and in terms of relative population impacts. Rainbow Trout consumed higher quantities and a wider size range of Small Puyen (also known as Inanga) Galaxias maculatus than the other predators, including early pelagic life stages of that prey; as such, this represents an additional source of mortality for the vulnerable early life stages of Small Puyen before and during their transition from pelagic to benthic habitats. All predators were generally feeding at high feeding rates (above 40% of their maximum physiological rates), suggesting that competition for prey does not currently limit either Creole Perch or the salmonids in this lake. This study highlights the importance of keystone prey for the coexistence of native species with nonnative top predators. It provides new quantitative and qualitative evidence of the high predation pressure exerted on Small Puyen, the keystone prey species, during the larval to juvenile transition from pelagic to littoral-benthic habitat in Patagonian lakes. This study also emphasizes the importance of monitoring salmonid and Creole Perch population dynamics in order to detect signs of potential impacts through competition and shows the need to carefully consider the rationale behind any additional trout stocking.
Optimal control of predator-prey mathematical model with infection and harvesting on prey
NASA Astrophysics Data System (ADS)
Diva Amalia, R. U.; Fatmawati; Windarto; Khusnul Arif, Didik
2018-03-01
This paper presents a predator-prey mathematical model with infection and harvesting on prey. The infection and harvesting only occur on the prey population and it assumed that the prey infection would not infect predator population. We analysed the mathematical model of predator-prey with infection and harvesting in prey. Optimal control, which is a prevention of the prey infection, also applied in the model and denoted as U. The purpose of the control is to increase the susceptible prey. The analytical result showed that the model has five equilibriums, namely the extinction equilibrium (E 0), the infection free and predator extinction equilibrium (E 1), the infection free equilibrium (E 2), the predator extinction equilibrium (E 3), and the coexistence equilibrium (E 4). The extinction equilibrium (E 0) is not stable. The infection free and predator extinction equilibrium (E 1), the infection free equilibrium (E 2), also the predator extinction equilibrium (E 3), are locally asymptotically stable with some certain conditions. The coexistence equilibrium (E 4) tends to be locally asymptotically stable. Afterwards, by using the Maximum Pontryagin Principle, we obtained the existence of optimal control U. From numerical simulation, we can conclude that the control could increase the population of susceptible prey and decrease the infected prey.
Kang, Jung Koo; Thibert-Plante, Xavier
2017-02-27
Over the last 300 years, interactions between alewives and zooplankton communities in several lakes in the U.S. have caused the alewives' morphology to transition rapidly from anadromous to landlocked. Lakes with landlocked alewives contain smaller-bodied zooplankton than those without alewives. Landlocked adult alewives display smaller body sizes, narrower gapes, smaller inter-gill-raker spacings, reach maturity at an earlier age, and are less fecund than anadromous alewives. Additionally, landlocked alewives consume pelagic prey exclusively throughout their lives whereas anadromous alewives make an ontogenetic transition from pelagic to littoral prey. These rapid, well-documented changes in the alewives' morphology provide important insights into the morphological evolution of fish. Predicting the morphological evolution of fish is crucial for fisheries and ecosystem management, but the involvement of multiple trophic interactions make predictions difficult. To obtain an improved understanding of rapid morphological change in fish, we developed an individual-based model that simulated rapid changes in the body size and gill-raker count of a fish species in a hypothetical, size-structured prey community. Model parameter values were based mainly on data from empirical studies on alewives. We adopted a functional trait approach; consequently, the model explicitly describes the relationships between prey body size, alewife body size, and alewife gill-raker count. We sought to answer two questions: (1) How does the impact of alewife populations on prey feed back to impact alewife size and gill raker number under several alternative scenarios? (2) Will the trajectory of the landlocked alewives' morphological evolution change after 150-300 years in freshwater? Over the first 250 years, the alewives' numbers of gill-rakers only increased when reductions in their body size substantially improved their ability to forage for small prey. Additionally, alewives' gill-raker counts increased more rapidly as the adverse effects of narrow gill-raker spacings on foraging for large prey were made less severe. For the first 150-250 years, alewives' growth decreased monotonically, and their gill-raker number increased monotonically. After the first 150-250 years, however, the alewives exhibited multiple evolutionary morphological trajectories in different trophic settings. In several of these settings, their evolutionary trajectories even reversed after the first 150-250 years. Alewives affected the abundance and morphology of their prey, which in turn changed the abundance and morphology of the alewives. Complex low-trophic-level interactions can alter the abundance and characteristics of alewives. This study suggests that the current morphology of recently (∼300 years)-landlocked alewives may not represent an evolutionarily stable state.
The Nutritional Content of Prey Affects the Foraging of a Generalist Arthropod Predator
Schmidt, Jason M.; Sebastian, Peter; Wilder, Shawn M.; Rypstra, Ann L.
2012-01-01
While foraging theory predicts that predatory responses should be determined by the energy content and size of prey, it is becoming increasingly clear that carnivores regulate their intake of specific nutrients. We tested the hypothesis that prey nutrient composition and predator nutritional history affects foraging intensity, consumption, and prey selection by the wolf spider, Pardosa milvina. By altering the rearing environment for fruit flies, Drosophila melanogaster, we produced high quality flies containing more nitrogen and protein and less lipid than low quality fruit flies. In one experiment, we quantified the proportion of flies taken and consumption across a range of densities of either high or low quality flies and, in a second experiment, we determined the prey capture and consumption of spiders that had been maintained on contrasting diets prior to testing. In both cases, the proportion of prey captured declined with increasing prey density, which characterizes the Type II functional response that is typical of wolf spiders. Spiders with similar nutritional histories killed similar numbers of each prey type but consumed more of the low quality prey. Spiders provided high quality prey in the weeks prior to testing killed more prey than those on the low quality diet but there was no effect of prior diet on consumption. In the third experiment, spiders were maintained on contrasting diets for three weeks and then allowed to select from a mixture of high and low quality prey. Interestingly, feeding history affected prey preferences: spiders that had been on a low quality diet showed no preference but those on the high quality diet selected high quality flies from the mixture. Our results suggest that, even when prey size and species identity are controlled, the nutritional experience of the predator as well as the specific content of the prey shapes predator-prey interactions. PMID:23145130
Zhang, Bo
2007-08-01
In the bottom trawl surveys in central Yellow Sea from January 2004 to October 2005, 622 samples of plaice Cleithenes herzensteini were collected, and their stomach contents were analyzed. The results indicated that the prey items of the plaice included 11 groups or 38 prey species, but only Crustacea and Lamellibranchia were the most important prey groups, accounting for 99% of the total food composition by percentage of index of relative importance. Euphausia pacific, Crangon affinis and Tellinidae were the dominant prey species. Comparing with the 1980s, the feeding activity of plaice declined significantly, and the diet composition changed. Fishes were no longer the dominant prey, and the proportion of anchovy in the diet decreased. Cluster analysis and two-way contingency table analysis were used to study the ontogenetic variations in the feeding habits of plaice, and the results showed that the feeding activity of plaice did not vary significantly among 7 size classes within the size between 51 mm and 370 mm, but ontogenetic variations were found in the diet composition. In the size class < 119 mm, the diet mainly included Euphausiacea and Decapoda. In the diets of fish with the size between 120 mm and 199 mm, the proportion of Lamellibranchia and fishes increased markedly. In the size class > 200 mm, plaice mainly fed on Decapoda and fishes.
Ecological allometries and niche use dynamics across Komodo dragon ontogeny.
Purwandana, Deni; Ariefiandy, Achmad; Imansyah, M Jeri; Seno, Aganto; Ciofi, Claudio; Letnic, Mike; Jessop, Tim S
2016-04-01
Ontogenetic allometries in ecological habits and niche use are key responses by which individuals maximize lifetime fitness. Moreover, such allometries have significant implications for how individuals influence population and community dynamics. Here, we examined how body size variation in Komodo dragons (Varanus komodoensis) influenced ecological allometries in their: (1) prey size preference, (2) daily movement rates, (3) home range area, and (4) subsequent niche use across ontogeny. With increased body mass, Komodo dragons increased prey size with a dramatic switch from small (≤10 kg) to large prey (≥50 kg) in lizards heavier than 20 kg. Rates of foraging movement were described by a non-linear concave down response with lizard increasing hourly movement rates up until ∼20 kg body mass before decreasing daily movement suggesting reduced foraging effort in larger lizards. In contrast, home range area exhibited a sigmoid response with increased body mass. Intrapopulation ecological niche use and overlap were also strongly structured by body size. Thus, ontogenetic allometries suggest Komodo dragon's transition from a highly active foraging mode exploiting small prey through to a less active sit and wait feeding strategy focused on killing large ungulates. Further, our results suggest that as body size increases across ontogeny, the Komodo dragon exhibited marked ontogenetic niche shifts that enabled it to function as an entire vertebrate predator guild by exploiting prey across multiple trophic levels.
Ecological allometries and niche use dynamics across Komodo dragon ontogeny
NASA Astrophysics Data System (ADS)
Purwandana, Deni; Ariefiandy, Achmad; Imansyah, M. Jeri; Seno, Aganto; Ciofi, Claudio; Letnic, Mike; Jessop, Tim S.
2016-04-01
Ontogenetic allometries in ecological habits and niche use are key responses by which individuals maximize lifetime fitness. Moreover, such allometries have significant implications for how individuals influence population and community dynamics. Here, we examined how body size variation in Komodo dragons ( Varanus komodoensis) influenced ecological allometries in their: (1) prey size preference, (2) daily movement rates, (3) home range area, and (4) subsequent niche use across ontogeny. With increased body mass, Komodo dragons increased prey size with a dramatic switch from small (≤10 kg) to large prey (≥50 kg) in lizards heavier than 20 kg. Rates of foraging movement were described by a non-linear concave down response with lizard increasing hourly movement rates up until ˜20 kg body mass before decreasing daily movement suggesting reduced foraging effort in larger lizards. In contrast, home range area exhibited a sigmoid response with increased body mass. Intrapopulation ecological niche use and overlap were also strongly structured by body size. Thus, ontogenetic allometries suggest Komodo dragon's transition from a highly active foraging mode exploiting small prey through to a less active sit and wait feeding strategy focused on killing large ungulates. Further, our results suggest that as body size increases across ontogeny, the Komodo dragon exhibited marked ontogenetic niche shifts that enabled it to function as an entire vertebrate predator guild by exploiting prey across multiple trophic levels.
Structural optimization of 3D-printed synthetic spider webs for high strength
Qin, Zhao; Compton, Brett G.; Lewis, Jennifer A.; Buehler, Markus J.
2015-01-01
Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological design and material distribution, here we create spider-web mimics composed of elastomeric filaments. Specifically, computational modelling and microscale 3D printing are combined to investigate the mechanical response of elastomeric webs under multiple loading conditions. We find the existence of an asymptotic prey size that leads to a saturated web strength. We identify pathways to design elastomeric material structures with maximum strength, low density and adaptability. We show that the loading type dictates the optimal material distribution, that is, a homogeneous distribution is better for localized loading, while stronger radial threads with weaker spiral threads is better for distributed loading. Our observations reveal that the material distribution within spider webs is dictated by the loading condition, shedding light on their observed architectural variations. PMID:25975372
Predation and landscape characteristics independently affect reef fish community organization.
Stier, Adrian C; Hanson, Katharine M; Holbrook, Sally J; Schmitt, Russell J; Brooks, Andrew J
2014-05-01
Trophic island biogeography theory predicts that the effects of predators on prey diversity are context dependent in heterogeneous landscapes. Specifically, models predict that the positive effect of habitat area on prey diversity should decline in the presence of predators, and that predators should modify the partitioning of alpha and beta diversity across patchy landscapes. However, experimental tests of the predicted context dependency in top-down control remain limited. Using a factorial field experiment we quantify the effects of a focal predatory fish species (grouper) and habitat characteristics (patch size, fragmentation) on the partitioning of diversity and assembly of coral reef fish communities. We found independent effects of groupers and patch characteristics on prey communities. Groupers reduced prey abundance by 50% and gamma diversity by 45%, with a disproportionate removal of rare species relative to common species (64% and 36% reduction, respectively; an oddity effect). Further, there was a 77% reduction in beta diversity. Null model analysis demonstrated that groupers increased the importance of stochastic community assembly relative to patches without groupers. With regard to patch size, larger patches contained more fishes, but a doubling of patch size led to a modest (36%) increase in prey abundance. Patch size had no effect on prey diversity; however, fragmented patches had 50% higher species richness and modified species composition relative to unfragmented patches. Our findings suggest two different pathways (i.e., habitat or predator shifts) by which natural and/or anthropogenic processes can drive variation in fish biodiversity and community assembly.
NASA Astrophysics Data System (ADS)
Bacha, M.; Amara, R.
2009-11-01
The diet of anchovy Engraulis encrasicolus was studied in three regions (Béjaia, Bénisaf and Ghazaouet) along the Algerian coast. Ontogenetic, spatial and seasonal variations in anchovy diet were investigated using multivariate analyses and analysed in relation with sea surface temperature and chlorophyll- a. 46 prey taxa of varying size between 0.57 mm ( Euterpina acutifrons) and 6.8 mm (fish larvae) were recorded. Whatever the season, the region or the fish size, anchovy is exclusively zooplanktivorous and copepods were the most present prey, constituting 87% by number of the prey taken and found in 98% of the anchovy stomachs examined. However, their occurrence and number varied according to the different areas, seasons and fish size. During its first year of life, anchovy feeds almost exclusively on copepods (mainly small and medium size prey). As anchovy grows, copepods are gradually substituted by large crustaceans such as decapods and amphipods. Hierarchical cluster analysis, analysis of similarities (ANOSIM) and similarities percentage (SIMPER) indicated a distinct diet of anchovy of the bay of Bejaia from those of the bays of Bénisaf and Ghazaouet probably due to differences in hydrologic conditions. Diet differences also occurred between seasons. Summer and spring have distinct prey assemblages each and showed low diet similarities with the two other seasons. More prey species were found in the diet during winter (36) and autumn (30) and the vacuity index was lower in winter. Temporal variability in satellite-derived chlorophyll- a matched the seasonal variability in the diversity of the anchovy prey and feeding intensity as reflected by the vacuity index, suggesting further investigation of the potential use of satellite-derived chlorophyll- a data as a proxy for anchovy feeding intensity.
ERIC Educational Resources Information Center
Hager, Stephen B.; Cosentino, Bradley J.
2006-01-01
We present an identification key to the common rodent prey found in owl pellets from the Northwestern (NW) and Southeastern (SE) United States that is based on differences in incisor size (arc diameter) among genera.
Codron, Daryl; Carbone, Chris; Clauss, Marcus
2013-01-01
Because egg-laying meant that even the largest dinosaurs gave birth to very small offspring, they had to pass through multiple ontogenetic life stages to adulthood. Dinosaurs’ successors as the dominant terrestrial vertebrate life form, the mammals, give birth to live young, and have much larger offspring and less complex ontogenetic histories. The larger number of juveniles in dinosaur as compared to mammal ecosystems represents both a greater diversity of food available to predators, and competitors for similar-sized individuals of sympatric species. Models of population abundances across different-sized species of dinosaurs and mammals, based on simulated ecological life tables, are employed to investigate how differences in predation and competition pressure influenced dinosaur communities. Higher small- to medium-sized prey availability leads to a normal body mass-species richness (M-S) distribution of carnivorous dinosaurs (as found in the theropod fossil record), in contrast to the right-skewed M-S distribution of carnivorous mammals (as found living members of the order Carnivora). Higher levels of interspecific competition leads to a left-skewed M-S distribution in herbivorous dinosaurs (as found in sauropods and ornithopods), in contrast to the normal M-S distribution of large herbivorous mammals. Thus, our models suggest that differences in reproductive strategy, and consequently ontogeny, explain observed differences in community structure between dinosaur and mammal faunas. Models also show that the largest dinosaurian predators could have subsisted on similar-sized prey by including younger life stages of the largest herbivore species, but that large predators likely avoided prey much smaller than themselves because, despite predicted higher abundances of smaller than larger-bodied prey, contributions of small prey to biomass intake would be insufficient to satisfy meat requirements. A lack of large carnivores feeding on small prey exists in mammals larger than 21.5 kg, and it seems a similar minimum prey-size threshold could have affected dinosaurs as well. PMID:24204749
Codron, Daryl; Carbone, Chris; Clauss, Marcus
2013-01-01
Because egg-laying meant that even the largest dinosaurs gave birth to very small offspring, they had to pass through multiple ontogenetic life stages to adulthood. Dinosaurs' successors as the dominant terrestrial vertebrate life form, the mammals, give birth to live young, and have much larger offspring and less complex ontogenetic histories. The larger number of juveniles in dinosaur as compared to mammal ecosystems represents both a greater diversity of food available to predators, and competitors for similar-sized individuals of sympatric species. Models of population abundances across different-sized species of dinosaurs and mammals, based on simulated ecological life tables, are employed to investigate how differences in predation and competition pressure influenced dinosaur communities. Higher small- to medium-sized prey availability leads to a normal body mass-species richness (M-S) distribution of carnivorous dinosaurs (as found in the theropod fossil record), in contrast to the right-skewed M-S distribution of carnivorous mammals (as found living members of the order Carnivora). Higher levels of interspecific competition leads to a left-skewed M-S distribution in herbivorous dinosaurs (as found in sauropods and ornithopods), in contrast to the normal M-S distribution of large herbivorous mammals. Thus, our models suggest that differences in reproductive strategy, and consequently ontogeny, explain observed differences in community structure between dinosaur and mammal faunas. Models also show that the largest dinosaurian predators could have subsisted on similar-sized prey by including younger life stages of the largest herbivore species, but that large predators likely avoided prey much smaller than themselves because, despite predicted higher abundances of smaller than larger-bodied prey, contributions of small prey to biomass intake would be insufficient to satisfy meat requirements. A lack of large carnivores feeding on small prey exists in mammals larger than 21.5 kg, and it seems a similar minimum prey-size threshold could have affected dinosaurs as well.
Forcada, J.; Malone, D.; Royle, J. Andrew; Staniland, I.J.
2009-01-01
Correctly quantifying the impacts of rare apex marine predators is essential to ecosystem-based approaches to fisheries management, where harvesting must be sustainable for targeted species and their dependent predators. This requires modelling the uncertainty in such processes as predator life history, seasonal abundance and movement, size-based predation, energetic requirements, and prey vulnerability. We combined these uncertainties to evaluate the predatory impact of transient leopard seals on a community of mesopredators (seals and penguins) and their prey at South Georgia, and assess the implications for an ecosystem-based management. The mesopredators are highly dependent on Antarctic krill and icefish, which are targeted by regional fisheries. We used a state-space formulation to combine (1) a mark-recapture open-population model and individual identification data to assess seasonally variable leopard seal arrival and departure dates, numbers, and residency times; (2) a size-based bioenergetic model; and (3) a size-based prey choice model from a diet analysis. Our models indicated that prey choice and consumption reflected seasonal changes in leopard seal population size and structure, size-selective predation and prey vulnerability. A population of 104 (90-125) leopard seals, of which 64% were juveniles, consumed less than 2% of the Antarctic fur seal pup production of the area (50% of total ingested energy, IE), but ca. 12-16% of the local gentoo penguin population (20% IE). Antarctic krill (28% IE) were the only observed food of leopard seal pups and supplemented the diet of older individuals. Direct impacts on krill and fish were negligible, but the "escapement" due to leopard seal predation on fur seal pups and penguins could be significant for the mackerel icefish fishery at South Georgia. These results suggest that: (1) rare apex predators like leopard seals may control, and may depend on, populations of mesopredators dependent on prey species targeted by fisheries; and (2) predatory impacts and community control may vary throughout the predator's geographic range, and differ across ecosystems and management areas, depending on the seasonal abundance of the prey and the predator's dispersal movements. This understanding is important to integrate the predator needs as natural mortality of its prey in models to set prey catch limits for fisheries. Reliable estimates of the variability of these needs are essential for a precautionary interpretation in the context of an ecosystem-based management. ?? 2009 Elsevier B.V.
Forcada, J.; Royle, J. Andrew; Staniland, I.J.
2009-01-01
Correctly quantifying the impacts of rare apex marine predators is essential to ecosystem-based approaches to fisheries management, where harvesting must be sustainable for targeted species and their dependent predators. This requires modelling the uncertainty in such processes as predator life history, seasonal abundance and movement, size-based predation, energetic requirements, and prey vulnerability. We combined these uncertainties to evaluate the predatory impact of transient leopard seals on a community of mesopredators (seals and penguins) and their prey at South Georgia, and assess the implications for an ecosystem-based management. The mesopredators are highly dependent on Antarctic krill and icefish, which are targeted by regional fisheries. We used a state-space formulation to combine (1) a mark-recapture open-population model and individual identification data to assess seasonally variable leopard seal arrival and departure dates, numbers, and residency times; (2) a size-based bioenergetic model; and (3) a size-based prey choice model from a diet analysis. Our models indicated that prey choice and consumption reflected seasonal changes in leopard seal population size and structure, size-selective predation and prey vulnerability. A population of 104 (90?125) leopard seals, of which 64% were juveniles, consumed less than 2% of the Antarctic fur seal pup production of the area (50% of total ingested energy, IE), but ca. 12?16% of the local gentoo penguin population (20% IE). Antarctic krill (28% IE) were the only observed food of leopard seal pups and supplemented the diet of older individuals. Direct impacts on krill and fish were negligible, but the ?escapement? due to leopard seal predation on fur seal pups and penguins could be significant for the mackerel icefish fishery at South Georgia. These results suggest that: (1) rare apex predators like leopard seals may control, and may depend on, populations of mesopredators dependent on prey species targeted by fisheries; and (2) predatory impacts and community control may vary throughout the predator's geographic range, and differ across ecosystems and management areas, depending on the seasonal abundance of the prey and the predator's dispersal movements. This understanding is important to integrate the predator needs as natural mortality of its prey in models to set prey catch limits for fisheries. Reliable estimates of the variability of these needs are essential for a precautionary interpretation in the context of an ecosystem-based management.
Energetic solutions of Rock Sandpipers to harsh winter conditions rely on prey quality
Ruthrauff, Daniel R.; Dekinga, Anne; Gill, Robert E.; Piersma, Theunis
2018-01-01
Rock Sandpipers Calidris ptilocnemis have the most northerly non-breeding distribution of any shorebird in the Pacific Basin (upper Cook Inlet, Alaska; 61°N, 151°W). In terms of freezing temperatures, persistent winds and pervasive ice, this site is the harshest used by shorebirds during winter. We integrated physiological, metabolic, behavioural and environmental aspects of the non-breeding ecology of Rock Sandpipers at the northern extent of their range to determine the relative importance of these factors in facilitating their unique non-breeding ecology. Not surprisingly, estimated daily energetic demands were greatest during January, the coldest period of winter. These estimates were greatest for foraging birds, and exceeded basal metabolic rates by a factor of 6.5, a scope of increase that approaches the maximum sustained rate of energetic output by shorebirds during periods of migration, but far exceeds these periods in duration. We assessed the quality of their primary prey, the bivalve Macoma balthica, to determine the daily foraging duration required by Rock Sandpipers to satisfy such energetic demands. Based on size-specific estimates of M. balthica quality, Rock Sandpipers require over 13 h/day of foraging time in upper Cook Inlet in January, even when feeding on the highest quality prey. This range approaches the average daily duration of mudflat availability in this region (c. 18 h), a maximum value that annually decreases due to the accumulation of shore-fast ice. Rock Sandpipers are likely to maximize access to foraging sites by following the exposure of ice-free mudflats across the upper Cook Inlet region and by selecting smaller, higher quality M. balthica to minimize foraging times. Ultimately, this unusual non-breeding ecology relies on the high quality of their prey resources. Compared with other sites across their range, M. balthica from upper Cook Inlet have relatively light shells, potentially the result of the region's depauperate invertebrate predator community. Given the delicate balance between environmental and prey conditions that currently make Cook Inlet a viable wintering area for Rock Sandpipers, small variations in these variables may affect the suitability of the site in the future.
Jolles, J W; Manica, A; Boogert, N J
2016-04-01
To investigate the link between personality and maximum food intake of inactive individuals, food-deprived three-spined sticklebacks Gasterosteus aculeatus at rest in their home compartments were provided with ad libitum prey items. Bolder individuals ate considerably more than shyer individuals, even after accounting for body size, while sociability did not have an effect. These findings support pace-of-life theory predicting that life-history strategies are linked to boldness. © 2016 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles.
Body size distribution of the dinosaurs.
O'Gorman, Eoin J; Hone, David W E
2012-01-01
The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size.
Body Size Distribution of the Dinosaurs
O’Gorman, Eoin J.; Hone, David W. E.
2012-01-01
The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size. PMID:23284818
Kapfer, Paul M.; Streby, Henry M.; Gurung, B.; Simcharoen, A.; McDougal, C.C.; Smith, J.L.D.
2011-01-01
Attempts to conserve declining tiger Panthera tigris populations and distributions have experienced limited success. The poaching of tiger prey is a key threat to tiger persistence; a clear understanding of tiger diet is a prerequisite to conserve dwindling populations. We used unpublished data on tiger diet in combination with two previously published studies to examine fine-scale spatio-temporal changes in tiger diet relative to prey abundance in Chitwan National Park, Nepal, and aggregated data from the three studies to examine the effect that study duration and the size of the study area have on estimates of tiger diet. Our results correspond with those of previous studies: in all three studies, tiger diet was dominated by members of Cervidae; small to medium-sized prey was important in one study. Tiger diet was unrelated to prey abundance, and the aggregation of studies indicates that increasing study duration and study area size both result in increased dietary diversity in terms of prey categories consumed, and increasing study duration changed which prey species contributed most to tiger diet. Based on our results, we suggest that managers focus their efforts on minimizing the poaching of all tiger prey, and that future studies of tiger diet be of long duration and large spatial extent to improve our understanding of spatio-temporal variation in estimates of tiger diet. ?? 2011 Wildlife Biology, NKV.
Body Size Evolution in Insular Speckled Rattlesnakes (Viperidae: Crotalus mitchellii)
Meik, Jesse M.; Lawing, A. Michelle; Pires-daSilva, André
2010-01-01
Background Speckled rattlesnakes (Crotalus mitchellii) inhabit multiple islands off the coast of Baja California, Mexico. Two of the 14 known insular populations have been recognized as subspecies based primarily on body size divergence from putative mainland ancestral populations; however, a survey of body size variation from other islands occupied by these snakes has not been previously reported. We examined body size variation between island and mainland speckled rattlesnakes, and the relationship between body size and various island physical variables among 12 island populations. We also examined relative head size among giant, dwarfed, and mainland speckled rattlesnakes to determine whether allometric differences conformed to predictions of gape size (and indirectly body size) evolving in response to shifts in prey size. Methodology/Principal Findings Insular speckled rattlesnakes show considerable variation in body size when compared to mainland source subspecies. In addition to previously known instances of gigantism on Ángel de la Guarda and dwarfism on El Muerto, various degrees of body size decrease have occurred frequently in this taxon, with dwarfed rattlesnakes occurring mostly on small, recently isolated, land-bridge islands. Regression models using the Akaike information criterion (AIC) showed that mean SVL of insular populations was most strongly correlated with island area, suggesting the influence of selection for different body size optima for islands of different size. Allometric differences in head size of giant and dwarf rattlesnakes revealed patterns consistent with shifts to larger and smaller prey, respectively. Conclusions/Significance Our data provide the first example of a clear relationship between body size and island area in a squamate reptile species; among vertebrates this pattern has been previously documented in few insular mammals. This finding suggests that selection for body size is influenced by changes in community dynamics that are related to graded differences in area over what are otherwise similar bioclimatic conditions. We hypothesize that in this system shifts to larger prey, episodic saturation and depression of primary prey density, and predator release may have led to insular gigantism, and that shifts to smaller prey and increased reproductive efficiency in the presence of intense intraspecific competition may have led to insular dwarfism. PMID:20209105
Small or far away? Size and distance perception in the praying mantis
Bissianna, Geoffrey
2016-01-01
Stereo or ‘3D’ vision is an important but costly process seen in several evolutionarily distinct lineages including primates, birds and insects. Many selective advantages could have led to the evolution of stereo vision, including range finding, camouflage breaking and estimation of object size. In this paper, we investigate the possibility that stereo vision enables praying mantises to estimate the size of prey by using a combination of disparity cues and angular size cues. We used a recently developed insect 3D cinema paradigm to present mantises with virtual prey having differing disparity and angular size cues. We predicted that if they were able to use these cues to gauge the absolute size of objects, we should see evidence for size constancy where they would strike preferentially at prey of a particular physical size, across a range of simulated distances. We found that mantises struck most often when disparity cues implied a prey distance of 2.5 cm; increasing the implied distance caused a significant reduction in the number of strikes. We, however, found no evidence for size constancy. There was a significant interaction effect of the simulated distance and angular size on the number of strikes made by the mantis but this was not in the direction predicted by size constancy. This indicates that mantises do not use their stereo vision to estimate object size. We conclude that other selective advantages, not size constancy, have driven the evolution of stereo vision in the praying mantis. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269605
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pecseli, H. L.; Trulsen, J.
2009-10-08
Experimental as well as theoretical studies have demonstrated that turbulence can play an important role for the biosphere in marine environments, in particular also by affecting prey-predator encounter rates. Reference models for the encounter rates rely on simplifying assumptions of predators and prey being described as point particles moving passively with the local flow velocity. Based on simple arguments that can be tested experimentally we propose corrections for the standard expression for the encounter rates, where now finite sizes and Stokes drag effects are included.
Petersen, J.H.
2001-01-01
Predation by northern pikeminnow Ptychocheilus oregonensis on juvenile salmonids Oncorhynchus spp. occurred probably during brief feeding bouts since diets were either dominated by salmonids (>80% by weight), or contained other prey types and few salmonids (<5%). In samples where salmonids had been consumed, large rather than small predators were more likely to have captured salmonids. Transects with higher catch-per-unit of effort of predators also had higher incidences of salmonids in predator guts. Predators in two of three reservoir areas were distributed more contagiously if they had preyed recently on salmonids. Spatial and temporal patchiness of salmonid prey may be generating differences in local density, aggregation, and body size of their predators in this large river.
Bionomic Exploitation of a Ratio-Dependent Predator-Prey System
ERIC Educational Resources Information Center
Maiti, Alakes; Patra, Bibek; Samanta, G. P.
2008-01-01
The present article deals with the problem of combined harvesting of a Michaelis-Menten-type ratio-dependent predator-prey system. The problem of determining the optimal harvest policy is solved by invoking Pontryagin's Maximum Principle. Dynamic optimization of the harvest policy is studied by taking the combined harvest effort as a dynamic…
Brousseau, D J.; Filipowicz, A; Baglivo, J A.
2001-07-30
Laboratory studies have shown that the nonindigenous Asian shore crab, Hemigrapsus sanguineus, readily consumes three species of commercial bivalves: blue mussels, Mytilus edulis, soft-shell clams, Mya arenaria, and oysters, Crassostrea virginica. Although crabs can eat bivalves of a wide size range, they preferred the smaller prey (=10 mm SL). Prey critical size limits exist for M. edulis and C. virginica, but not M. arenaria, possibly because of differences in shell characteristics among the three species. Crabs preferred M. arenaria over both M. edulis and C. virginica, and M. edulis was strongly preferred over C. virginica in pairwise comparison tests. Experiments to determine feeding rates on mussels showed that H. sanguineus can consume large numbers of mussels daily (12.7+/-11.6 mussels day(-1); sexes pooled; N=59). Mussel consumption rates increased with size of the predator and male crabs consumed more mussels than did similarly sized female crabs. The high densities of Hemigrapsus that occur in the wild, their effectiveness as predators of juvenile bivalves and their large appetites suggest an important role for these predators in restructuring the prey communities in habitats into which they have been introduced.
Partitioning the non‑consumptive effects of predators on preywith complex life histories
Davenport, Jon M.; Hossack, Blake R.; Lowe, Winsor H.
2014-01-01
Non-consumptive effects (NCEs) of predators on prey can be as strong as consumptive effects (CEs) and may be driven by numerous mechanisms, including predator characteristics. Previous work has highlighted the importance of predator characteristics in predicting NCEs, but has not addressed how complex life histories of prey could mediate predator NCEs. We conducted a meta-analysis to compare the effects of predator gape limitation (gape limited or not) and hunting mode (active or sit-and-pursue) on the activity, larval period, and size at metamorphosis of larval aquatic amphibians and invertebrates. Larval prey tended to reduce their activity and require more time to reach metamorphosis in the presence of all predator functional groups, but the responses did not differ from zero. Prey metamorphosed at smaller size in response to non-gape-limited, active predators, but counter to expectations, prey metamorphosed larger when confronted by non-gape-limited, sit-and-pursue predators. These results indicate NCEs on larval prey life history can be strongly influenced by predator functional characteristics. More broadly, our results suggest that understanding predator NCEs would benefit from greater consideration of how prey life history attributes mediate population and community-level outcomes.
The diets of Hispaniolan colubrid snakes : I. Introduction and prey genera.
Henderson, Robert W
1984-05-01
Approximately 1590 Hispaniolan colubrid snakes representing six genera and eight species were examined for prey remains (Alsophis cantherigerus, Antillophis parvifrons, Darlingtonia haetiana, Hypsirhynchus ferox, Ialtris dorsalis, Uromacer catesbyi, U. frenatus, and U. oxyrhynchus). The snakes were collected at many localities over a span of 80 years.Of 426 prey items, 77.9% were lizards (of which 69.6% were anoles), 19% frogs, 2.6% birds and mammals, and 0.5% other snakes. Darlingtonia was the only snake that did not exploit lizards; it fed exclusively on Eleutherodactylus frogs, including egg clutches. Disregarding Darlingtonia, there is no size class of Hispaniolan colubrids between 20-90 cm SVL that does not prey primarily on Anolis. Certain prey genera are added to, or deleted from, diets depending on snake size, but the data suggest that snake SVL alone does little to dictate what prey genera (or groups) are eaten. Shannon-Wiener values (H') indicate that Darlingtonia has the narrowest trophic niche, while Alsophis and Ialtris have the widest. Values of H' are not correlated with snake SVL, but highly significant (P<0.001) correlations exist between H' and mid-body circumference, head width, and snout width, and these characters may be indicators of trophic generalists and specialists. Anolis lizards are the most ubiquitous and conspicuous vertebrates on Hispaniola, and it is not surprising that they are widely exploited as a food source. Although as some snake species grow larger, anoles play a decreasingly important role in their diets, there is no evidence to suggest that they are ever abandoned as a food source by any Hispaniolan colubrid of any size.Secretive lizards of low vagility are eaten almost exclusively by wide ranging foragers (Alsophis, Antillophis); very active prey (Ameiva) is taken by sit-and-wait strategists (Hysirhynchus, U. frenatus). Those snakes which exploit the most prey groups are active foragers. Uromacer catesbyi exhibits both foraging modes, and predictably, eats diurnally active (anoles) and diurnally quiescent (hylid frogs) prey with almost equal frequency.Within Maglio's cantherigerus species assemblage, in which an Alsophis cantherigerus-like snake was ancestral to the other species, and in which longsnouted Uromacer are the most morphologically derived, there is an obvious trend toward trophic specialization on Hispaniola. The West Indies have provided an ideal natural laboratory for the investigation of many aspects of vertebrate ecology, and an arena in which to test theories of island biogeography. The most extensively studied West Indian vertebrates have been the lizards of the iguanid genus Anolis. Conversely, the ecology of West Indian snakes has been largely ignored. This is surprising in light of the fact that much has been written about Anolis predation, but little has been written about predators of Anolis; snakes may be important, frequent consumers of anoles.Hispaniola is physiographically and ecologically the most diverse of the Greater Antilles and, concomitantly, it has the most diverse snake fauna, including six colubrid genera containing 11 described species. It has rich frog and lizard faunas, but only two endemic mammals. Study of the diets of Hispaniola's colubrid snakes was undertaken to gain initial insights into the ecology of the snakes and to determine 1) what the snakes eat; 2) what relationships exist between snake diet and snake size as well as head and body proportions; 3) what relationships exist between snake foraging mode and prey type and size; 4) if anoles, as the most ubiquitous and conspicuous vertebrates on Hispaniola, comprise an important source of food; 5) if significant geographical differences in diet exist, expecially on satellite islands; 6) if "north island" and "south island" (sensu Williams 1961) Anolis ecomorphs are preyed upon by the same snake species in similar proportions; 7) if snakes are selective or opportunistic predators.This paper, the first in a series that will address all of the above topics, will briefly describe methods, snake species and prey genera. Prey genera are analyzed in terms of what snake taxa prey upon them, what size classes of snakes prey upon them, and prey genera diversity versus snake size and proportions.
Predatory birds and ants partition caterpillar prey by body size and diet breadth.
Singer, Michael S; Clark, Robert E; Lichter-Marck, Issac H; Johnson, Emily R; Mooney, Kailen A
2017-10-01
The effects of predator assemblages on herbivores are predicted to depend critically on predator-predator interactions and the extent to which predators partition prey resources. The role of prey heterogeneity in generating such multiple predator effects has received limited attention. Vertebrate and arthropod insectivores constitute two co-dominant predatory taxa in many ecosystems, and the emergent properties of their joint effects on insect herbivores inform theory on multiple predator effects as well as biological control of insect herbivores. Here we use a large-scale factorial manipulation to assess the extent to which birds and ants engage in antagonistic predator-predator interactions and the consequences of heterogeneity in herbivore body size and diet breadth (i.e. the diversity of host plants used) for prey partitioning. We excluded birds and reduced ant density (by 60%) in the canopies of eight northeastern USA deciduous tree species during two consecutive years and measured the community composition and traits of lepidopteran larvae (caterpillars). Birds did not affect ant density, implying limited intraguild predation between these taxa in this system. Birds preyed selectively upon large-bodied caterpillars (reducing mean caterpillar length by 12%) and ants preyed selectively upon small-bodied caterpillars (increasing mean caterpillar length by 6%). Birds and ants also partitioned caterpillar prey by diet breadth. Birds reduced the frequency dietary generalist caterpillars by 24%, while ants had no effect. In contrast, ants reduced the frequency of dietary specialists by 20%, while birds had no effect, but these effects were non-additive; under bird exclusion, ants had no detectable effect, while in the presence of birds, they reduced the frequency of specialists by 40%. As a likely result of prey partitioning by body size and diet breadth, the combined effects of birds and ants on total caterpillar density were additive, with birds and ants reducing caterpillar density by 44% and 20% respectively. These results show evidence for the role of prey heterogeneity in driving functional complementarity among predators and enhanced top-down control. Heterogeneity in herbivore body size and diet breadth, as well as other prey traits, may represent key predictors of the strength of top-down control from predator communities. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Miller, Jennifer R B; Ament, Judith M; Schmitz, Oswald J
2014-01-01
Ecologists have long searched for a framework of a priori species traits to help predict predator-prey interactions in food webs. Empirical evidence has shown that predator hunting mode and predator and prey habitat domain are useful traits for explaining predator-prey interactions. Yet, individual experiments have yet to replicate predator hunting mode, calling into question whether predator impacts can be attributed to hunting mode or merely species identity. We tested the effects of spider predators with sit-and-wait, sit-and-pursue and active hunting modes on grasshopper habitat domain, activity and mortality in a grassland system. We replicated hunting mode by testing two spider predator species of each hunting mode on the same grasshopper prey species. We observed grasshoppers with and without each spider species in behavioural cages and measured their mortality rates, movements and habitat domains. We likewise measured the movements and habitat domains of spiders to characterize hunting modes. We found that predator hunting mode explained grasshopper mortality and spider and grasshopper movement activity and habitat domain size. Sit-and-wait spider predators covered small distances over a narrow domain space and killed fewer grasshoppers than sit-and-pursue and active predators, which ranged farther distances across broader domains and killed more grasshoppers, respectively. Prey adjusted their activity levels and horizontal habitat domains in response to predator presence and hunting mode: sedentary sit-and-wait predators with narrow domains caused grasshoppers to reduce activity in the same-sized domain space; more mobile sit-and-pursue predators with broader domains caused prey to reduce their activity within a contracted horizontal (but not vertical) domain space; and highly mobile active spiders led grasshoppers to increase their activity across the same domain area. All predators impacted prey activity, and sit-and-pursue predators generated strong effects on domain size. This study demonstrates the validity of utilizing hunting mode and habitat domain for predicting predator-prey interactions. Results also highlight the importance of accounting for flexibility in prey movement ranges as an anti-predator response rather than treating the domain as a static attribute. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Foraging efficiency of a predator flock for randomly moving prey: A simulation study
NASA Astrophysics Data System (ADS)
Lee, Sang-Hee; Kwon, Ohsung
2016-03-01
Flocking behavior of animals is highly advantageous for taking food resources. The degree of the advantage is related to the ability of flock members to detect their prey and the mobility of prey individuals. In this study, to explore the relation, we constructed a model to simulate a predator flock and its randomly moving prey. The predator members have the prey detection ability, which was characterized as sensing distance, R, and a sensing angle, θ. The mobility of the prey individuals was characterized as the maximum traveling distance of an iteration time step, L. The relative flock foraging efficiency, ɛ, was defined as ɛ = 1 - (Td/Tup). Tup and Td represent the spent time for the flock to eat all prey individuals and to uptake the last remaining 10% prey, respectively. Simulation results showed that ɛ increased, maximized, and decreased with the increase of R, regardless of L. As the number of prey, N, increased, the tendency of the increasing and decreasing was diluted. The result was briefly discussed in relation to the flock foraging behavior and the development of the model toward applications for real ecosystems.
Weather and Prey Predict Mammals' Visitation to Water.
Harris, Grant; Sanderson, James G; Erz, Jon; Lehnen, Sarah E; Butler, Matthew J
2015-01-01
Throughout many arid lands of Africa, Australia and the United States, wildlife agencies provide water year-round for increasing game populations and enhancing biodiversity, despite concerns that water provisioning may favor species more dependent on water, increase predation, and reduce biodiversity. In part, understanding the effects of water provisioning requires identifying why and when animals visit water. Employing this information, by matching water provisioning with use by target species, could assist wildlife management objectives while mitigating unintended consequences of year-round watering regimes. Therefore, we examined if weather variables (maximum temperature, relative humidity [RH], vapor pressure deficit [VPD], long and short-term precipitation) and predator-prey relationships (i.e., prey presence) predicted water visitation by 9 mammals. We modeled visitation as recorded by trail cameras at Sevilleta National Wildlife Refuge, New Mexico, USA (June 2009 to September 2014) using generalized linear modeling. For 3 native ungulates, elk (Cervus Canadensis), mule deer (Odocoileus hemionus), and pronghorn (Antilocapra americana), less long-term precipitation and higher maximum temperatures increased visitation, including RH for mule deer. Less long-term precipitation and higher VPD increased oryx (Oryx gazella) and desert cottontail rabbits (Sylvilagus audubonii) visitation. Long-term precipitation, with RH or VPD, predicted visitation for black-tailed jackrabbits (Lepus californicus). Standardized model coefficients demonstrated that the amount of long-term precipitation influenced herbivore visitation most. Weather (especially maximum temperature) and prey (cottontails and jackrabbits) predicted bobcat (Lynx rufus) visitation. Mule deer visitation had the largest influence on coyote (Canis latrans) visitation. Puma (Puma concolor) visitation was solely predicted by prey visitation (elk, mule deer, oryx). Most ungulate visitation peaked during May and June. Coyote, elk and puma visitation was relatively consistent throughout the year. Within the diel-period, activity patterns for predators corresponded with prey. Year-round water management may favor species with consistent use throughout the year, and facilitate predation. Providing water only during periods of high use by target species may moderate unwanted biological costs.
Weather and Prey Predict Mammals’ Visitation to Water
Harris, Grant; Sanderson, James G.; Erz, Jon; Lehnen, Sarah E.; Butler, Matthew J.
2015-01-01
Throughout many arid lands of Africa, Australia and the United States, wildlife agencies provide water year-round for increasing game populations and enhancing biodiversity, despite concerns that water provisioning may favor species more dependent on water, increase predation, and reduce biodiversity. In part, understanding the effects of water provisioning requires identifying why and when animals visit water. Employing this information, by matching water provisioning with use by target species, could assist wildlife management objectives while mitigating unintended consequences of year-round watering regimes. Therefore, we examined if weather variables (maximum temperature, relative humidity [RH], vapor pressure deficit [VPD], long and short-term precipitation) and predator-prey relationships (i.e., prey presence) predicted water visitation by 9 mammals. We modeled visitation as recorded by trail cameras at Sevilleta National Wildlife Refuge, New Mexico, USA (June 2009 to September 2014) using generalized linear modeling. For 3 native ungulates, elk (Cervus Canadensis), mule deer (Odocoileus hemionus), and pronghorn (Antilocapra americana), less long-term precipitation and higher maximum temperatures increased visitation, including RH for mule deer. Less long-term precipitation and higher VPD increased oryx (Oryx gazella) and desert cottontail rabbits (Sylvilagus audubonii) visitation. Long-term precipitation, with RH or VPD, predicted visitation for black-tailed jackrabbits (Lepus californicus). Standardized model coefficients demonstrated that the amount of long-term precipitation influenced herbivore visitation most. Weather (especially maximum temperature) and prey (cottontails and jackrabbits) predicted bobcat (Lynx rufus) visitation. Mule deer visitation had the largest influence on coyote (Canis latrans) visitation. Puma (Puma concolor) visitation was solely predicted by prey visitation (elk, mule deer, oryx). Most ungulate visitation peaked during May and June. Coyote, elk and puma visitation was relatively consistent throughout the year. Within the diel-period, activity patterns for predators corresponded with prey. Year-round water management may favor species with consistent use throughout the year, and facilitate predation. Providing water only during periods of high use by target species may moderate unwanted biological costs. PMID:26560518
Feeding currents facilitate a mixotrophic way of life
Nielsen, Lasse T; Kiørboe, Thomas
2015-01-01
Mixotrophy is common, if not dominant, among eukaryotic flagellates, and these organisms have to both acquire inorganic nutrients and capture particulate food. Diffusion limitation favors small cell size for nutrient acquisition, whereas large cell size facilitates prey interception because of viscosity, and hence intermediately sized mixotrophic dinoflagellates are simultaneously constrained by diffusion and viscosity. Advection may help relax both constraints. We use high-speed video microscopy to describe prey interception and capture, and micro particle image velocimetry (micro-PIV) to quantify the flow fields produced by free-swimming dinoflagellates. We provide the first complete flow fields of free-swimming interception feeders, and demonstrate the use of feeding currents. These are directed toward the prey capture area, the position varying between the seven dinoflagellate species studied, and we argue that this efficiently allows the grazer to approach small-sized prey despite viscosity. Measured flow fields predict the magnitude of observed clearance rates. The fluid deformation created by swimming dinoflagellates may be detected by evasive prey, but the magnitude of flow deformation in the feeding current varies widely between species and depends on the position of the transverse flagellum. We also use the near-cell flow fields to calculate nutrient transport to swimming cells and find that feeding currents may enhance nutrient uptake by ≈75% compared with that by diffusion alone. We argue that all phagotrophic microorganisms must have developed adaptations to counter viscosity in order to allow prey interception, and conclude that the flow fields created by the beating flagella in dinoflagellates are key to the success of these mixotrophic organisms. PMID:25689024
Feeding currents facilitate a mixotrophic way of life.
Nielsen, Lasse T; Kiørboe, Thomas
2015-10-01
Mixotrophy is common, if not dominant, among eukaryotic flagellates, and these organisms have to both acquire inorganic nutrients and capture particulate food. Diffusion limitation favors small cell size for nutrient acquisition, whereas large cell size facilitates prey interception because of viscosity, and hence intermediately sized mixotrophic dinoflagellates are simultaneously constrained by diffusion and viscosity. Advection may help relax both constraints. We use high-speed video microscopy to describe prey interception and capture, and micro particle image velocimetry (micro-PIV) to quantify the flow fields produced by free-swimming dinoflagellates. We provide the first complete flow fields of free-swimming interception feeders, and demonstrate the use of feeding currents. These are directed toward the prey capture area, the position varying between the seven dinoflagellate species studied, and we argue that this efficiently allows the grazer to approach small-sized prey despite viscosity. Measured flow fields predict the magnitude of observed clearance rates. The fluid deformation created by swimming dinoflagellates may be detected by evasive prey, but the magnitude of flow deformation in the feeding current varies widely between species and depends on the position of the transverse flagellum. We also use the near-cell flow fields to calculate nutrient transport to swimming cells and find that feeding currents may enhance nutrient uptake by ≈75% compared with that by diffusion alone. We argue that all phagotrophic microorganisms must have developed adaptations to counter viscosity in order to allow prey interception, and conclude that the flow fields created by the beating flagella in dinoflagellates are key to the success of these mixotrophic organisms.
Kwon, Ji Eun; Jeong, Hae Jin; Kim, So Jin; Jang, Se Hyeon; Lee, Kyung Ha; Seong, Kyeong Ah
2017-09-01
Heterotrophic nanoflagellates are ubiquitous and known to be major predators of bacteria. The feeding of free-living heterotrophic nanoflagellates on phytoplankton is poorly understood, although these two components usually co-exist. To investigate the feeding and ecological roles of major heterotrophic nanoflagellates Katablepharis spp., the feeding ability of Katablepharis japonica on bacteria and phytoplankton species and the type of the prey that K. japonica can feed on were explored. Furthermore, the growth and ingestion rates of K. japonica on the dinoflagellate Akashiwo sanguinea-a suitable algal prey item-heterotrophic bacteria, and the cyanobacteria Synechococcus sp., as a function of prey concentration were determined. Among the prey tested, K. japonica ingested heterotrophic bacteria, Synechococcus sp., the prasinophyte Pyramimonas sp., the cryptophytes Rhodomonas salina and Teleaulax sp., the raphidophytes Heterosigma akashiwo and Chattonella ovata, the dinoflagellates Heterocapsa rotundata, Amphidinium carterae, Prorocentrum donghaiense, Alexandrium minutum, Cochlodinium polykrikoides, Gymnodinium catenatum, A. sanguinea, Coolia malayensis, and the ciliate Mesodinium rubrum, however, it did not feed on the dinoflagellates Alexandrium catenella, Gambierdiscus caribaeus, Heterocapsa triquetra, Lingulodinium polyedra, Prorocentrum cordatum, P. micans, and Scrippsiella acuminata and the diatom Skeletonema costatum. Many K. japonica cells attacked and ingested a prey cell together after pecking and rupturing the surface of the prey cell and then uptaking the materials that emerged from the ruptured cell surface. Cells of A. sanguinea supported positive growth of K. japonica, but neither heterotrophic bacteria nor Synechococcus sp. supported growth. The maximum specific growth rate of K. japonica on A. sanguinea was 1.01 d -1 . In addition, the maximum ingestion rate of K. japonica for A. sanguinea was 0.13ngC predator -1 d -1 (0.06 cells predator -1 d -1 ). The maximum ingestion rate of K. japonica for heterotrophic bacteria was 0.019ngC predator -1 d -1 (266 bacteria predator -1 d -1 ), and the highest ingestion rate of K. japonica for Synechococcus sp. at the given prey concentrations of up to ca. 10 7 cells ml -1 was 0.01ngC predator -1 d -1 (48 Synechococcus predator -1 d -1 ). The maximum daily carbon acquisition from A. sanguinea, heterotrophic bacteria, and Synechococcus sp. were 307, 43, and 22%, respectively, of the body carbon of the predator. Thus, low ingestion rates of K. japonica on heterotrophic bacteria and Synechococcus sp. may be responsible for the lack of growth. The results of the present study clearly show that K. japonica is a predator of diverse phytoplankton, including toxic or harmful algae, and may also affect the dynamics of red tides caused by these prey species. Copyright © 2017 Elsevier B.V. All rights reserved.
Deslauriers, David; Rosburg, Alex J.; Chipps, Steven R.
2017-01-01
We developed a foraging model for young fishes that incorporates handling and digestion rate to estimate daily food consumption. Feeding trials were used to quantify functional feeding response, satiation, and gut evacuation rate. Once parameterized, the foraging model was then applied to evaluate effects of prey type, prey density, water temperature, and fish size on daily feeding rate by age-0 (19–70 mm) pallid sturgeon (Scaphirhynchus albus). Prey consumption was positively related to prey density (for fish >30 mm) and water temperature, but negatively related to prey size and the presence of sand substrate. Model evaluation results revealed good agreement between observed estimates of daily consumption and those predicted by the model (r2 = 0.95). Model simulations showed that fish feeding on Chironomidae or Ephemeroptera larvae were able to gain mass, whereas fish feeding solely on zooplankton lost mass under most conditions. By accounting for satiation and digestive processes in addition to handling time and prey density, the model provides realistic estimates of daily food consumption that can prove useful for evaluating rearing conditions for age-0 fishes.
Park, Myung Gil; Kim, Miran; Kang, Misun
2013-01-01
The gonyaulacalean dinoflagellates Amylax spp. were recently found to contain plastids of the cryptophyte origin, more specifically of Teleaulax amphioxeia. However, not only how the dinoflagellates get the plastids of the cryptophyte origin is unknown but also their ecophysiology, including growth and feeding responses as functions of both light and prey concentration, remain unknown. Here, we report the establishment of Amylax triacantha in culture, its feeding mechanism, and its growth rate using the ciliate prey Mesodinium rubrum (= Myrionecta rubra) in light and dark, and growth and grazing responses to prey concentration and light intensity. The strain established in culture in this study was assigned to A. triacantha, based on morphological characteristics (particularly, a prominent apical horn and three antapical spines) and nuclear SSU and LSU rDNA sequences. Amylax triacantha grew well in laboratory culture when supplied with the marine mixotrophic ciliate M. rubrum as prey, reaching densities of over 7.5 × 10(3) cells/ml. Amylax triacantha captured its prey using a tow filament, and then ingested the whole prey by direct engulfment through the sulcus. The dinoflagellate was able to grow heterotrophically in the dark, but the growth rate was approximately two times lower than in the light. Although mixotrophic growth rates of A. triacantha increased sharply with mean prey concentrations, with maximum growth rate being 0.68/d, phototrophic growth (i.e. growth in the absence of prey) was -0.08/d. The maximum ingestion rate was 2.54 ng C/Amylax/d (5.9 cells/Amylax/d). Growth rate also increased with increasing light intensity, but the effect was evident only when prey was supplied. Increased growth with increasing light intensity was accompanied by a corresponding increase in ingestion. In mixed cultures of two predators, A. triacantha and Dinophysis acuminata, with M. rubrum as prey, A. triacantha outgrew D. acuminata due to its approximately three times higher growth rate, suggesting that it can outcompete D. acuminata. Our results would help better understand the ecophysiology of dinoflagellates retaining foreign plastids. © 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists.
Modelling Size Structured Food Webs Using a Modified Niche Model with Two Predator Traits
Klecka, Jan
2014-01-01
The structure of food webs is frequently described using phenomenological stochastic models. A prominent example, the niche model, was found to produce artificial food webs resembling real food webs according to a range of summary statistics. However, the size structure of food webs generated by the niche model and real food webs has not yet been rigorously compared. To fill this void, I use a body mass based version of the niche model and compare prey-predator body mass allometry and predator-prey body mass ratios predicted by the model to empirical data. The results show that the model predicts weaker size structure than observed in many real food webs. I introduce a modified version of the niche model which allows to control the strength of size-dependence of predator-prey links. In this model, optimal prey body mass depends allometrically on predator body mass and on a second trait, such as foraging mode. These empirically motivated extensions of the model allow to represent size structure of real food webs realistically and can be used to generate artificial food webs varying in several aspects of size structure in a controlled way. Hence, by explicitly including the role of species traits, this model provides new opportunities for simulating the consequences of size structure for food web dynamics and stability. PMID:25119999
Clements, Hayley S.; Tambling, Craig J.; Hayward, Matt W.; Kerley, Graham I. H.
2014-01-01
Broad-scale models describing predator prey preferences serve as useful departure points for understanding predator-prey interactions at finer scales. Previous analyses used a subjective approach to identify prey weight preferences of the five large African carnivores, hence their accuracy is questionable. This study uses a segmented model of prey weight versus prey preference to objectively quantify the prey weight preferences of the five large African carnivores. Based on simulations of known predator prey preference, for prey species sample sizes above 32 the segmented model approach detects up to four known changes in prey weight preference (represented by model break-points) with high rates of detection (75% to 100% of simulations, depending on number of break-points) and accuracy (within 1.3±4.0 to 2.7±4.4 of known break-point). When applied to the five large African carnivores, using carnivore diet information from across Africa, the model detected weight ranges of prey that are preferred, killed relative to their abundance, and avoided by each carnivore. Prey in the weight ranges preferred and killed relative to their abundance are together termed “accessible prey”. Accessible prey weight ranges were found to be 14–135 kg for cheetah Acinonyx jubatus, 1–45 kg for leopard Panthera pardus, 32–632 kg for lion Panthera leo, 15–1600 kg for spotted hyaena Crocuta crocuta and 10–289 kg for wild dog Lycaon pictus. An assessment of carnivore diets throughout Africa found these accessible prey weight ranges include 88±2% (cheetah), 82±3% (leopard), 81±2% (lion), 97±2% (spotted hyaena) and 96±2% (wild dog) of kills. These descriptions of prey weight preferences therefore contribute to our understanding of the diet spectrum of the five large African carnivores. Where datasets meet the minimum sample size requirements, the segmented model approach provides a means of determining, and comparing, the prey weight range preferences of any carnivore species. PMID:24988433
Revisiting the cost of carnivory in mammals.
Tucker, M A; Ord, T J; Rogers, T L
2016-11-01
Predator-prey relationships play a key role in the evolution and ecology of carnivores. An understanding of predator-prey relationships and how this differs across species and environments provides information on how carnivorous strategies have evolved and how they may change in response to environmental change. We aim to determine how mammals overcame the challenges of living within the marine environment; specifically, how this altered predator-prey body mass relationships relative to terrestrial mammals. Using predator and prey mass data collected from the literature, we applied phylogenetic piecewise regressions to investigate the relationship between predator and prey size across carnivorous mammals (51 terrestrial and 56 marine mammals). We demonstrate that carnivorous mammals have four broad dietary groups: small marine carnivores (< 11 000 kg) and small terrestrial carnivores (< 11 kg) feed on prey less than 5 kg and 2 kg, respectively. On average, large marine carnivores (> 11 000 kg) feed on prey equal to 0.01% of the carnivore's body size, compared to 45% or greater in large terrestrial carnivores (> 11 kg). We propose that differences in prey availability, and the relative ease of processing large prey in the terrestrial environment and small prey in marine environment, have led to the evolution of these novel foraging behaviours. Our results provide important insights into the selection pressures that may have been faced by early marine mammals and ultimately led to the evolution of a range of feeding strategies and predatory behaviours. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Fowler, Denver W.; Freedman, Elizabeth A.; Scannella, John B.
2009-01-01
Despite the ubiquity of raptors in terrestrial ecosystems, many aspects of their predatory behaviour remain poorly understood. Surprisingly little is known about the morphology of raptor talons and how they are employed during feeding behaviour. Talon size variation among digits can be used to distinguish families of raptors and is related to different techniques of prey restraint and immobilisation. The hypertrophied talons on digits (D) I and II in Accipitridae have evolved primarily to restrain large struggling prey while they are immobilised by dismemberment. Falconidae have only modest talons on each digit and only slightly enlarged D-I and II. For immobilisation, Falconini rely more strongly on strike impact and breaking the necks of their prey, having evolved a ‘tooth’ on the beak to aid in doing so. Pandionidae have enlarged, highly recurved talons on each digit, an adaptation for piscivory, convergently seen to a lesser extent in fishing eagles. Strigiformes bear enlarged talons with comparatively low curvature on each digit, part of a suite of adaptations to increase constriction efficiency by maximising grip strength, indicative of specialisation on small prey. Restraint and immobilisation strategy change as prey increase in size. Small prey are restrained by containment within the foot and immobilised by constriction and beak attacks. Large prey are restrained by pinning under the bodyweight of the raptor, maintaining grip with the talons, and immobilised by dismemberment (Accipitridae), or severing the spinal cord (Falconini). Within all raptors, physical attributes of the feet trade off against each other to attain great strength, but it is the variable means by which this is achieved that distinguishes them ecologically. Our findings show that interdigital talon morphology varies consistently among raptor families, and that this is directly correlative with variation in their typical prey capture and restraint strategy. PMID:19946365
Fowler, Denver W; Freedman, Elizabeth A; Scannella, John B
2009-11-25
Despite the ubiquity of raptors in terrestrial ecosystems, many aspects of their predatory behaviour remain poorly understood. Surprisingly little is known about the morphology of raptor talons and how they are employed during feeding behaviour. Talon size variation among digits can be used to distinguish families of raptors and is related to different techniques of prey restraint and immobilisation. The hypertrophied talons on digits (D) I and II in Accipitridae have evolved primarily to restrain large struggling prey while they are immobilised by dismemberment. Falconidae have only modest talons on each digit and only slightly enlarged D-I and II. For immobilisation, Falconini rely more strongly on strike impact and breaking the necks of their prey, having evolved a 'tooth' on the beak to aid in doing so. Pandionidae have enlarged, highly recurved talons on each digit, an adaptation for piscivory, convergently seen to a lesser extent in fishing eagles. Strigiformes bear enlarged talons with comparatively low curvature on each digit, part of a suite of adaptations to increase constriction efficiency by maximising grip strength, indicative of specialisation on small prey. Restraint and immobilisation strategy change as prey increase in size. Small prey are restrained by containment within the foot and immobilised by constriction and beak attacks. Large prey are restrained by pinning under the bodyweight of the raptor, maintaining grip with the talons, and immobilised by dismemberment (Accipitridae), or severing the spinal cord (Falconini). Within all raptors, physical attributes of the feet trade off against each other to attain great strength, but it is the variable means by which this is achieved that distinguishes them ecologically. Our findings show that interdigital talon morphology varies consistently among raptor families, and that this is directly correlative with variation in their typical prey capture and restraint strategy.
The hunter becomes the hunted: when cleptobiotic insects are captured by their target ants
NASA Astrophysics Data System (ADS)
Dejean, Alain; Carpenter, James M.; Corbara, Bruno; Wright, Pamela; Roux, Olivier; LaPierre, Louis M.
2012-04-01
Here we show that trying to rob prey (cleptobiosis) from a highly specialized predatory ant species is risky. To capture prey, Allomerus decemarticulatus workers build gallery-shaped traps on the stems of their associated myrmecophyte, Hirtella physophora. We wondered whether the frequent presence of immobilized prey on the trap attracted flying cleptoparasites. Nine social wasp species nest in the H. physophora foliage; of the six species studied, only Angiopolybia pallens rob prey from Allomerus colonies. For those H. physophora not sheltering wasps, we noted cleptobiosis by stingless bees ( Trigona), social wasps ( A. pallens and five Agelaia species), assassin bugs (Reduviidae), and flies. A relationship between the size of the robbers and their rate of capture by ambushing Allomerus workers was established for social wasps; small wasps were easily captured, while the largest never were. Reduviids, which are slow to extract their rostrum from prey, were always captured, while Trigona and flies often escaped. The balance sheet for the ants was positive vis-à-vis the reduviids and four out of the six social wasp species. For the latter, wasps began by cutting up parts of the prey's abdomen and were captured (or abandoned the prey) before the entire abdomen was retrieved so that the total weight of the captured wasps exceeded that of the prey abdomens. For A. pallens, we show that the number of individuals captured during attempts at cleptobiosis increases with the size of the Allomerus' prey.
Thurman, Jill; Parry, Jacqueline D; Hill, Philip J; Laybourn-Parry, Johanna
2010-10-01
This study examined whether two ciliates could discriminate between equally-sized bacterial prey in mixture and if so, how selectivity might benefit the ciliate population. Live Klebsiella aerogenes, K. ozaenae and Escherichia coli, expressing different coloured fluorescent proteins, were cultured in such a way as to provide populations containing equally-sized cells (to prevent size-selective grazing taking place) and these prey were fed to each ciliate in 50:50 mixtures. Colpidium striatum selected K. aerogenes over K. ozaenae which itself was selected over E. coli. Tetrahymena pyriformis showed no selectivity between K. aerogenes and E. coli but K. aerogenes was selected over K. ozaenae while E. coli was not. This apparent selection of K. aerogenes over K. ozaenae was sustained in ciliate populations with different feeding histories and when K. aerogenes comprised only 20% of the prey mixture, suggesting possible optimal foraging behaviour. The metabolic benefits for selecting K. aerogenes were identified as possibly being an increase in cell biovolume and yield for C. striatum and T. pyriformis, respectively. The mechanism by which these ciliates selected specific bacterial cells in mixture is currently unknown but the use of live fluorescent bacteria, in prey mixtures, offers an exciting avenue for further investigation of selective feeding by protozoa. Copyright 2010 Elsevier Ltd. All rights reserved.
Life history of the deep-sea cephalopod family Histioteuthidae in the western Mediterranean
NASA Astrophysics Data System (ADS)
Quetglas, Antoni; de Mesa, Aina; Ordines, Francesc; Grau, Amàlia
2010-08-01
The life cycle of the two species of the deep-sea family Histioteuthidae inhabiting the Mediterranean Sea ( Histioteuthis reversa and Histioteuthis bonnellii) was studied from monthly samples taken throughout the year during daytime hours by bottom trawl gears. A small sample of individuals found floating dead on the sea surface was also analyzed. Both species were caught exclusively on the upper slope at depths greater than 300 m. Their frequency of occurrence increased with depth and showed two different peaks, at 500-600 m and 600-700 m depth in H. bonnellii and H. reversa, respectively, which might indicate spatial segregation. Maturity stages were assigned using macroscopic determination and confirmed with histological analyses. Although mature males were caught all year round, no mature females were found, which suggests that their sexual maturation in the western Mediterranean takes place deeper than the maximum depth sampled (800 m). In fact, the increase in mean squid size with increasing depth in H. reversa indicates an ontogenetic migration to deeper waters. The individuals of both species found floating dead on the sea surface were spent females which had a relatively large cluster of small atresic eggs and a small number of remaining mature eggs scattered in the ovary and mantle cavity. The sizes of these females were clearly larger than the largest individuals caught with bottom trawls. A total of 12 and 7 different types of prey, belonging to three major taxonomic groups (crustaceans, osteichthyes and cephalopods), were identified in the stomach contents of H. reversa and H. bonnellii, respectively. In both species fishes were by far the main prey followed by crustaceans, whereas cephalopods were found only occasionally. The preys identified, mainly myctophids and natantian crustaceans, indicate that both histioteuthids base their diet on pelagic nictemeral migrators.
Mychek-Londer, Justin G.; Bunnell, David B.
2013-01-01
Accurate estimates of fish consumption are required to understand trophic interactions and facilitate ecosystem-based fishery management. Despite their importance within the food-web, no method currently exists to estimate daily consumption for Great Lakes slimy (Cottus cognatus) and deepwater sculpin (Myoxocephalus thompsonii). We conducted experiments to estimate gastric evacuation (GEVAC) and collected field data from Lake Michigan to estimate index of fullness [(g prey/g fish weight)100%) to determine daily ration for water temperatures ranging 2–5 °C, coinciding with the winter and early spring season. Exponential GEVAC rates equaled 0.0115/h for slimy sculpin and 0.0147/h for deepwater sculpin, and did not vary between 2.7 °C and 5.1 °C for either species or between prey types (Mysis relicta and fish eggs) for slimy sculpin. Index of fullness varied with fish size, and averaged 1.93% and 1.85% for slimy and deepwater sculpins, respectively. Maximum index of fullness was generally higher (except for the smallest sizes) for both species in 2009–2010 than in 1976 despite reductions in a primary prey, Diporeia spp. Predictive daily ration equations were derived as a function of fish dry weight. Estimates of daily consumption ranged from 0.2 to 0.8% of their body weight, which was within the low range of estimates from other species at comparably low water temperatures. These results provide a tool to estimate the consumptive demand of sculpins which will improve our understanding of benthic offshore food webs and aid in management and restoration of these native species in the Great Lakes.
Trueblood, Lloyd A; Seibel, Brad A
2014-08-01
Many pelagic fishes engage prey at high speeds supported by high metabolic rates and anaerobic metabolic capacity. Epipelagic squids are reported to have among the highest metabolic rates in the oceans as a result of demanding foraging strategies and the use of jet propulsion, which is inherently inefficient. This study examined enzymatic proxies of anaerobic metabolism in two species of pelagic squid, Dosidicus gigas and Doryteuthis pealeii (Lesueur 1821), over a size range of six orders of magnitude. We hypothesized that activity of the anaerobically poised enzymes would be high and increase with size as in ecologically similar fishes. In contrast, we demonstrate that anaerobic metabolic capacity in these organisms scales negatively with body mass. We explored several cephalopod-specific traits, such as the use of tentacles to capture prey, body morphology and reduced relative prey size of adult squids, that may create a diminished reliance on anaerobically fueled burst activity during prey capture in large animals. © 2014. Published by The Company of Biologists Ltd.
The effect of wounds on desiccation of prey: implications for a predator with extra-oral digestion.
Morse, Douglass H
1998-06-01
Predators that inject prey with proteolytic enzymes, thereby breaking down their tissues for subsequent ingestion, run the risk that desiccation will hinder eventual retrieval of resources from these prey. Wounds made in capture might exacerbate this problem. However, desiccation rates of small syrphid flies Toxomerusmarginatus (Diptera: Syrphidae) killed by juvenile crab spiders Misumena vatia (Araneae: Thomisidae) and intact dead syrphid flies did not differ over the normal period of feeding, though desiccation rates in shade and sun differed several-fold. Neither the size of the spider (and presumably the size of the wounds it inflicted) nor the location of the wounds on the flies' bodies affected desiccation rates. Thus, this tactic of prey handling does not exact an added processing cost on Misumena.
Gontijo, Lessando M; Nechols, James R; Margolies, David C; Cloyd, Raymond A
2012-01-01
The arrangement, number, and size of plant parts may influence predator foraging behavior, either directly, by altering the rate or pattern of predator movement, or, indirectly, by affecting the distribution and abundance of prey. We report on the effects of both plant architecture and prey distribution on foraging by the predatory mite, Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae), on cucumber (Cucumis sativus L.). Plants differed in leaf number (2- or 6-leafed), and there were associated differences in leaf size, plant height, and relative proportions of plant parts; but all had the same total surface area. The prey, the twospotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae), were distributed either on the basal leaf or on all leaves. The effect of plant architecture on predator foraging behavior varied depending on prey distribution. The dimensions of individual plant parts affected time allocated to moving and feeding, but they did not appear to influence the frequency with which predators moved among different plant parts. Overall, P. persimilis moved less, and fed upon prey longer, on 6-leafed plants with prey on all leaves than on plants representing other treatment combinations. Our findings suggest that both plant architecture and pattern of prey distribution should be considered, along with other factors such as herbivore-induced plant volatiles, in augmentative biological control programs.
Giacomini, Henrique C.; DeAngelis, Donald; Trexler, Joel C.; Petrere, Miguel
2013-01-01
Community ecology seeks to understand and predict the characteristics of communities that can develop under different environmental conditions, but most theory has been built on analytical models that are limited in the diversity of species traits that can be considered simultaneously. We address that limitation with an individual-based model to simulate assembly of fish communities characterized by life history and trophic interactions with multiple physiological tradeoffs as constraints on species performance. Simulation experiments were carried out to evaluate the distribution of 6 life history and 4 feeding traits along gradients of resource productivity and prey accessibility. These experiments revealed that traits differ greatly in importance for species sorting along the gradients. Body growth rate emerged as a key factor distinguishing community types and defining patterns of community stability and coexistence, followed by egg size and maximum body size. Dominance by fast-growing, relatively large, and fecund species occurred more frequently in cases where functional responses were saturated (i.e. high productivity and/or prey accessibility). Such dominance was associated with large biomass fluctuations and priority effects, which prevented richness from increasing with productivity and may have limited selection on secondary traits, such as spawning strategies and relative size at maturation. Our results illustrate that the distribution of species traits and the consequences for community dynamics are intimately linked and strictly dependent on how the benefits and costs of these traits are balanced across different conditions.
NASA Astrophysics Data System (ADS)
Quetglas, Antoni; Ordines, Francesc; González, María; Franco, Ignacio
2009-08-01
The life cycle of the deep-sea octopus Pteroctopus tetracirrhus was studied from monthly samples obtained throughout the year in different areas of the western Mediterranean (mainly around the Balearic Islands and along the coast of the Iberian Peninsula). A total of 373 individuals (205 females, 168 males) were analyzed; females ranged from 4.5 to 14.0 cm mantle length (ML) and males from 4.5 to 11.5 cm ML. There were few small-sized octopuses (<7 cm ML) in the samples, which might indicate that these individuals inhabit rocky grounds that are not accessible to trawlers or waters deeper than the maximum depth sampled (800 m). The species occurred more frequently around the Balearic Islands than along the Iberian Peninsula as they appeared in 20% and 7%, respectively, of the hauls in these areas. The octopus inhabits the lower continental shelf and upper slope in both areas, primarily between 200 and 500 m depth. Modal lengths were followed from autumn, when recruits were caught by trawlers, to summer, when reproduction took place. Females grew from 8 to 10 cm ML from winter to spring, but this modal size did not increase further in summer; males grew from 7 to 9 cm ML from winter to spring. The total disappearance of large individuals after summer suggests a life cycle lasting a single year. The evolution of the monthly mean sizes showed that the growth was best described by log-linear functions in both sexes. The length at first maturity was clearly higher in females (12 cm ML) than in males (8 cm ML). A total of 30 different prey items, belonging to four major taxonomic groups (crustaceans, osteichthyes, cephalopods and gastropods), were identified in the stomach contents. The diet of the octopus was based on crustaceans and teleosts, which accounted for 75% and 23% of the prey items, respectively. Cephalopods and gastropods were accessory prey as they only represented 1.6% and 0.7%, respectively, of the total. The octopus showed a marked preference for the benthic fish Symphurus nigrescens and the endobenthic crustacean Alpheus glaber. The bathymetric distribution of P. tetracirrhus coincides with those of these two main prey, which suggests that the distribution of the octopus might be strongly linked to its trophic resources.
NASA Astrophysics Data System (ADS)
Zwarts, Leo; Wanink, Jan H.
For several reasons, waders in the Wadden Sea face a large seasonal and annual variation in their food supply. Observations on a tidal flat in the Dutch Wadden Sea have shown that: - (1) The average energy density of ten invertebrate prey species varies between 21 and 23 kJ·g -1 AFDW. In Scrobicularia plana and Mya arenaria, but not in Macoma balthica, the energy density is 10% lower in winter than in summer. - (2) Depending on the species, body weights of prey of similar size are 30 to 60% lower in winter than in summer. - (3) The year-to-year fluctuation in standing-crop biomass is larger in some species than in others, the difference depending mainly on the frequency of successful recruitment. The overall biomass of the macrobenthos in winter is half of that in summer, but the timing of the peak biomass differs per species. - (4) The burying depth varies per species: Cerastoderma edule live just beneath the surface, while M. balthica, S. plana, M. arenaria, Arenicola marina and Nereis diversicolor bury more deeply and the majority of these prey live out of reach of the bird's bill. In all six species, burying depth increases with size. There is no seasonal variation in depth of C. edule and M. arenaria, but the four other species live at most shallow depth in early summer and most deeply in midwinter. Burying depths in winter vary from year to year, but are unrelated to temperature. Neither has temperature any effect on depth within months. For knot Calidris canutus feeding on M. balthica, the fluctuation in the accessible fraction was the main source of variation in the biomass of prey that is actually harvestable, i.e. the biomass of prey of suitable size that is accessible. Accordingly, the paper reviews the available data on the temporal variations in accessibility, detectability, ingestibility, digestibility and profitability of prey for waders. Only a small part of the prey is harvestable since many accessible prey are ignored because of their low profitability, while many profitable prey are inaccessible. The profitability of prey depends on their size and weight but also on their depth in the mud, since handling time increases with burying depth. A simple biomechanical rule explains why the handling time of small prey increases with bill length and why large, long-billed waders ignore a disproportionately larger part of the small prey. The fraction detectable for visually feeding waders is usually very low, especially when the temperature of the substrate is below 3-6°C. Waders vary their prey choice over the year in response to the changes in the availability and profitability of their different prey species. The food supply harvestable by waders is much lower in winter than in summer. For waders wintering in the Wadden Sea, the food supply may be characterized as unpredictable and usually meagre. Waders wintering in NW Europe are concentrated in coastal sites where the average surface temperature is above 3°C. This probably cannot be explained by a greater burying depth, and only partly by a lower body condition, of prey in colder areas. Yet the harvestable fraction is lower in colder sites, especially for sight-feeding waders, as invertebrates are less active at low temperatures. However, the lower energetic cost of living and reduced chances of the prey being covered by ice may also contribute to the waders' preference for warmer sites.
Vulnerability of coral reef fisheries to a loss of structural complexity.
Rogers, Alice; Blanchard, Julia L; Mumby, Peter J
2014-05-05
Coral reefs face a diverse array of threats, from eutrophication and overfishing to climate change. As live corals are lost and their skeletons eroded, the structural complexity of reefs declines. This may have important consequences for the survival and growth of reef fish because complex habitats mediate predator-prey interactions [1, 2] and influence competition [3-5] through the provision of prey refugia. A positive correlation exists between structural complexity and reef fish abundance and diversity in both temperate and tropical ecosystems [6-10]. However, it is not clear how the diversity of available refugia interacts with individual predator-prey relationships to explain emergent properties at the community scale. Furthermore, we do not yet have the ability to predict how habitat loss might affect the productivity of whole reef communities and the fisheries they support. Using data from an unfished reserve in The Bahamas, we find that structural complexity is associated not only with increased fish biomass and abundance, but also with nonlinearities in the size spectra of fish, implying disproportionately high abundances of certain size classes. By developing a size spectrum food web model that links the vulnerability of prey to predation with the structural complexity of a reef, we show that these nonlinearities can be explained by size-structured prey refugia that reduce mortality rates and alter growth rates in different parts of the size spectrum. Fitting the model with data from a structurally complex habitat, we predict that a loss of complexity could cause more than a 3-fold reduction in fishery productivity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Uma, Divya B; Weiss, Martha R
2012-12-01
An animal's body size plays a predominant role in shaping its interspecific interactions, and, in encounters between two predators, often determines which shall be predator and which shall be prey. Spiders are top predators of insects, yet can fall prey to mud-dauber wasps that provision their larval nests with paralyzed spiders. Here we examined predator-prey interactions between Chalybion californicum (Saussure) (Sphecidae), a mud-dauber wasp, and Parasteatoda tepidariorum C. L. Koch (Theridiidae), a cobweb spider. We examined whether a spider's size influences its response to an attacking wasp, and report a size-dependent change in spider behavior: small-sized spiders fled, whereas medium- and large-sized spiders fought in response to wasp attacks. From the wasps' perspective, we examined whether spider size influences a wasp's hunting behavior and capture success. We found that wasps commonly approached small spiders, but were much less likely to approach medium and large spiders. However, wasp capture success did not vary with spider size. We also report a strategy used by Chalybion wasps toward cobweb spiders that is consistent with an interpretation of aggressive mimicry.
Metabolic temperature compensation and coevolution of locomotory performance in pteropod molluscs.
Seibel, Brad A; Dymowska, Agnieszka; Rosenthal, Joshua
2007-12-01
Gymnosomatous pteropods are highly specialized planktonic predators that feed exclusively on their thecosomatous relatives. Feeding behavior and the morphology of gymnosome feeding structures are diverse and have evolved in concert with the size, shape, and consistency of the thecosome shell. Here, we show that the metabolic capacity and locomotory behaviors of gymnosomes are similarly diverse and vary with those of their prey. Both gymnosomes and thecosomes range from gelatinous sit-and-wait forms to active predators with high-performance locomotory muscles. We find more than 10-fold variation in size-adjusted and temperature-adjusted metabolic rates within both the Gymnosomata and Thecosomata and a strong correlation between the metabolic rates of predators and of prey. Furthermore, these characteristics are strongly influenced by environmental parameters and predator and prey converge upon similar physiological capacities under similar selection. For example, compensation of locomotory capacity in cold waters leads to elevated metabolic rates in polar species. This highly coevolved system is discussed in terms of a predator-prey "arms race" and the impending loss of both predator and prey as elevated atmospheric carbon dioxide levels threaten to dissolve prey shells via oceanic acidification.
Deep-sea in situ observations of gonatid squid and their prey reveal high occurrence of cannibalism
NASA Astrophysics Data System (ADS)
Hoving, H. J. T.; Robison, B. H.
2016-10-01
In situ observations are rarely applied in food web studies of deep-sea organisms. Using deep-sea observations obtained by remotely operated vehicles in the Monterey Submarine Canyon, we examined the prey choices of more than 100 individual squids of the genus Gonatus. Off the California coast, these squids are abundant, semelparous (one reproductive cycle) oceanic predators but their diet has remained virtually unknown. Gonatus onyx and Gonatus berryi were observed to feed on mesopelagic fishes (in particular the myctophid Stenobrachius leucopsarus) as often as on squids but inter-specific differences in feeding were apparent. Gonatids were the most common squid prey and while cannibalism occurred in both species it was particularly high in Gonatus onyx (42% of all prey items). Typically, the size of prey was similar to the size of the predator but the squids were also seen to take much larger prey. Postjuvenile gonatids are opportunistic predators that consume nektonic members of the meso-and bathypelagic communities, including their own species. Such voracious feeding is likely necessary to support the high energetic demands associated with the single reproductive event; and for females the long brooding period during which they must depend on stored resources.
Spatiotemporal predictability of schooling and nonschooling prey of Pigeon Guillemots
Litzow, Michael A.; Piatt, John F.; Abookire, Alisa A.; Speckman, Suzann G.; Arimitsu, Mayumi L.; Figurski, Jared D.
2004-01-01
Low spatiotemporal variability in the abundance of nonschooling prey might allow Pigeon Guillemots (Cepphus columba) to maintain the high chick provisioning rates that are characteristic of the species. We tested predictions of this hypothesis with data collected with beach seines and scuba and hydroacoustic surveys in Kachemak Bay, Alaska, during 1996–1999. Coefficients of variability were 20–211% greater for schooling than nonschooling prey on day, seasonal, and km scales. However, the proportion of schooling prey in chick diets explained relatively little variability in Pigeon Guillemot meal delivery rates at the scale of hours (r2 = 0.07) and weeks (r2 = 0.19). Behavioral adaptations such as flexible time budgets likely ameliorate the negative effects of high resource variability, but we propose that these adaptations are only effective when schooling prey are available at distances well below the maximum foraging range of the species.
Sorel, Mark H.; Hansen, Adam G.; Connelly, Kristin A.; Beauchamp, David A.
2016-01-01
The reintroduction of anadromous salmonids in reservoirs is being proposed with increasing frequency, requiring baseline studies to evaluate feasibility and estimate the capacity of reservoir food webs to support reintroduced populations. Using three reservoirs on the north fork Lewis River as a case study, we demonstrate a method to determine juvenile salmonid smolt rearing capacities for lakes and reservoirs. To determine if the Lewis River reservoirs can support reintroduced populations of juvenile stream-type Chinook Salmon Oncorhynchus tshawytscha, we evaluated the monthly production of daphniaDaphnia spp. (the primary zooplankton consumed by resident salmonids in the system) and used bioenergetics to model the consumption demand of resident fishes in each reservoir. To estimate the surplus of Daphnia prey available for reintroduced salmonids, we assumed a maximum sustainable exploitation rate and accounted for the consumption demand of resident fishes. The number of smolts that could have been supported was estimated by dividing any surplus Daphnia production by the simulated consumption demand of an individual Chinook Salmon fry rearing in the reservoir to successful smolt size. In all three reservoirs, densities of Daphnia were highest in the epilimnion, but warm epilimnetic temperatures and the vertical distribution of planktivores suggested that access to abundant epilimnetic prey was limited. By comparing accessible prey supply and demand on a monthly basis, we were able to identify potential prey supply bottlenecks that could limit smolt production and growth. These results demonstrate that a bioenergetics approach can be a valuable method of examining constraints on lake and reservoir rearing capacity, such as thermal structure and temporal food supply. This method enables numerical estimation of rearing capacity, which is a useful metric for managers evaluating the feasibility of reintroducing Pacific salmon Oncorhynchus spp. in lentic systems.
Home range size of Tengmalm's owl during breeding in Central Europe is determined by prey abundance.
Kouba, Marek; Bartoš, Luděk; Tomášek, Václav; Popelková, Alena; Šťastný, Karel; Zárybnická, Markéta
2017-01-01
Animal home ranges typically characterized by their size, shape and a given time interval can be affected by many different biotic and abiotic factors. However, despite the fact that many studies have addressed home ranges, our knowledge of the factors influencing the size of area occupied by different animals is, in many cases, still quite poor, especially among raptors. Using radio-telemetry (VHF; 2.1 g tail-mounted tags) we studied movements of 20 Tengmalm's owl (Aegolius funereus) males during the breeding season in a mountain area of Central Europe (the Czech Republic, the Ore Mountains: 50° 40' N, 13° 35' E) between years 2006-2010, determined their average hunting home range size and explored what factors affected the size of home range utilised. The mean breeding home range size calculated according to 95% fixed kernel density estimator was 190.7 ± 65.7 ha (± SD) with a median value of 187.1 ha. Home range size was affected by prey abundance, presence or absence of polygyny, the number of fledglings, and weather conditions. Home range size increased with decreasing prey abundance. Polygynously mated males had overall larger home range than those mated monogamously, and individuals with more fledged young possessed larger home range compared to those with fewer raised fledglings. Finally, we found that home ranges recorded during harsh weather (nights with strong wind speed and/or heavy rain) were smaller in size than those registered during better weather. Overall, the results provide novel insights into what factors may influence home range size and emphasize the prey abundance as a key factor for breeding dynamics in Tengmalm's owl.
Kelly, J T; Hanson, J M
2013-03-01
The goals of this study were to document the size and age structure, size at maturity, ovarian fecundity and diet of the endangered population of winter skate Leucoraja ocellata that resides in the southern Gulf of St Lawrence (SGSL). The maximum size observed for SGSL L. ocellata was 68 cm total length (LT ) but >99% of animals caught were <60 cm LT . Fifty per cent of male and female L. ocellata were fully mature at 40 and 42 cm LT , respectively, age c. 5 years. The oldest individual caught was age 11 years, but 98% of the 561 individuals examined were ≤age 8 years, indicating a short reproductive life span. Ovarian fecundity was low; no more than 29 ova >10 mm diameter were ever observed. At 40 cm LT , the diet changed from one dominated by shrimp Crangon septemspinosa and gammarid amphipods to one dominated by fishes (mainly sand lance Ammodytes spp. and rainbow smelt Osmerus mordax) and Atlantic rock crab Cancer irroratus. Sufficient differences were observed between SGSL L. ocellata and other populations in their size-at-maturity pattern and maximum size to propose the taxonomic re-evaluation of the population. © Her Majesty the Queen in Right of Canada 2013. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.
Marginal predation: do encounter or confusion effects explain the targeting of prey group edges?
Duffield, Callum; Ioannou, Christos C
2017-01-01
Marginal predation, also known as the edge effect, occurs when aggregations of prey are preferentially targeted on their periphery by predators and has long been established in many taxa. Two main processes have been used to explain this phenomenon, the confusion effect and the encounter rate between predators and prey group edges. However, it is unknown at what size a prey group needs to be before marginal predation is detectable and to what extent each mechanism drives the effect. We conducted 2 experiments using groups of virtual prey being preyed upon by 3-spined sticklebacks ( Gasterosteus aculeatus ) to address these questions. In Experiment 1, we show that group sizes do not need to be large for marginal predation to occur, with this being detectable in groups of 16 or more. In Experiment 2, we find that encounter rate is a more likely explanation for marginal predation than the confusion effect in this system. We find that while confusion does affect predatory behaviors (whether or not predators make an attack), it does not affect marginal predation. Our results suggest that marginal predation is a more common phenomenon than originally thought as it also applies to relatively small groups. Similarly, as marginal predation does not need the confusion effect to occur, it may occur in a wider range of predator-prey species pairings, for example those where the predators search for prey using nonvisual sensory modalities.
A new look at the Lake Superior biomass size spectrum
Yurista, Peder M.; Yule, Daniel L.; Balge, Matt; VanAlstine, Jon D.; Thompson, Jo A.; Gamble, Allison E.; Hrabik, Thomas R.; Kelly, John R.; Stockwell, Jason D.; Vinson, Mark
2014-01-01
We synthesized data from multiple sampling programs and years to describe the Lake Superior pelagic biomass size structure. Data consisted of Coulter counts for phytoplankton, optical plankton counts for zooplankton, and acoustic surveys for pelagic prey fish. The size spectrum was stable across two time periods separated by 5 years. The primary scaling or overall slope of the normalized biomass size spectra for the combined years was −1.113, consistent with a previous estimate for Lake Superior (−1.10). Periodic dome structures within the overall biomass size structure were fit to polynomial regressions based on the observed sub-domes within the classical taxonomic positions (algae, zooplankton, and fish). This interpretation of periodic dome delineation was aligned more closely with predator–prey size relationships that exist within the zooplankton (herbivorous, predacious) and fish (planktivorous, piscivorous) taxonomic positions. Domes were spaced approximately every 3.78 log10 units along the axis and with a decreasing peak magnitude of −4.1 log10 units. The relative position of the algal and herbivorous zooplankton domes predicted well the subsequent biomass domes for larger predatory zooplankton and planktivorous prey fish.
Motta, Philip J; Hueter, Robert E; Tricas, Timothy C; Summers, Adam P; Huber, Daniel R; Lowry, Dayv; Mara, Kyle R; Matott, Michael P; Whitenack, Lisa B; Wintzer, Alpa P
2008-09-01
The nurse shark, Ginglymostoma cirratum, is an obligate suction feeder that preys on benthic invertebrates and fish. Its cranial morphology exhibits a suite of structural and functional modifications that facilitate this mode of prey capture. During suction-feeding, subambient pressure is generated by the ventral expansion of the hyoid apparatus and the floor of its buccopharyngeal cavity. As in suction-feeding bony fishes, the nurse shark exhibits expansive, compressive, and recovery kinematic phases that produce posterior-directed water flow through the buccopharyngeal cavity. However, there is generally neither a preparatory phase nor cranial elevation. Suction is generated by the rapid depression of the buccopharyngeal floor by the coracoarcualis, coracohyoideus, and coracobranchiales muscles. Because the hyoid arch of G. cirratum is loosely connected to the mandible, contraction of the rectus cervicis muscle group can greatly depress the floor of the buccopharyngeal cavity below the depressed mandible, resulting in large volumetric expansion. Suction pressures in the nurse shark vary greatly, but include the greatest subambient pressures reported for an aquatic-feeding vertebrate. Maximum suction pressure does not appear to be related to shark size, but is correlated with the rate of buccopharyngeal expansion. As in suction-feeding bony fishes, suction in the nurse shark is only effective within approximately 3 cm in front of the mouth. The foraging behavior of this shark is most likely constrained to ambushing or stalking due to the exponential decay of effective suction in front of the mouth. Prey capture may be facilitated by foraging within reef confines and close to the substrate, which can enhance the effective suction distance, or by foraging at night when it can more closely approach prey.
Prey preferences and prey acceptance in juvenile Brown Treesnakes (Boiga irregularis)
Lardner, Bjorn; Savidge, Julie A.; Rodda, Gordon H.; Reed, Robert N.
2009-01-01
On the Pacific island of Guam, control of the invasive Brown Treesnake (Boiga irregularis) relies largely on methods that use mice as bait. Juvenile B. irregularis feed primarily on lizards and their eggs, but little is known about their prey preference. We conducted an experiment to investigate preferences for, and acceptance of, dead geckos, skinks, and neonatal mice, in juvenile B. irregularis ranging from 290 mm to ca. 700 mm snout-vent length (SVL). Snakes of all sizes showed a preference for geckos over skinks and neonatal mice. Geckos were the first prey chosen in 87% of 224 initial trials (56 snakes subjected to four trials each; 33% would be expected from a random choice). The smallest snakes had the most pronounced preference. Although many of the snakes accepted neonatal mice and/or skinks, some snakes of all sizes were reluctant to feed on anything but geckos, especially when well fed. We also addressed the hypothesis that repeated encounters with a particular prey type increase a snake's preference for that prey. Our study does not support this hypothesis. Our results suggest that control methods relying solely on rodent bait may be inefficient for targeting snakes < 700 mm SVL and that individual heterogeneity in prey preference may cause a significant part of this juvenile cohort to be completely refractory to capture with rodent bait, even if the bait is dead and small enough to be readily swallowed.
Stability and Hopf bifurcation of a delayed ratio-dependent predator-prey system
NASA Astrophysics Data System (ADS)
Wang, Wan-Yong; Pei, Li-Jun
2011-04-01
Since the ratio-dependent theory reflects the fact that predators must share and compete for food, it is suitable for describing the relationship between predators and their preys and has recently become a very important theory put forward by biologists. In order to investigate the dynamical relationship between predators and their preys, a so-called Michaelis-Menten ratio-dependent predator-prey model is studied in this paper with gestation time delays of predators and preys taken into consideration. The stability of the positive equilibrium is investigated by the Nyquist criteria, and the existence of the local Hopf bifurcation is analyzed by employing the theory of Hopf bifurcation. By means of the center manifold and the normal form theories, explicit formulae are derived to determine the stability, direction and other properties of bifurcating periodic solutions. The above theoretical results are validated by numerical simulations with the help of dynamical software WinPP. The results show that if both the gestation delays are small enough, their sizes will keep stable in the long run, but if the gestation delays of predators are big enough, their sizes will periodically fluctuate in the long term. In order to reveal the effects of time delays on the ratio-dependent predator-prey model, a ratio-dependent predator-prey model without time delays is considered. By Hurwitz criteria, the local stability of positive equilibrium of this model is investigated. The conditions under which the positive equilibrium is locally asymptotically stable are obtained. By comparing the results with those of the model with time delays, it shows that the dynamical behaviors of ratio-dependent predator-prey model with time delays are more complicated. Under the same conditions, namely, with the same parameters, the stability of positive equilibrium of ratio-dependent predator-prey model would change due to the introduction of gestation time delays for predators and preys. Moreover, with the variation of time delays, the positive equilibrium of the ratio-dependent predator-prey model subjects to Hopf bifurcation.
Bordehore, Cesar; Fuentes, Verónica L; Segarra, Jose G; Acevedo, Melisa; Canepa, Antonio; Raventós, Josep
2015-01-01
Frequently, population ecology of marine organisms uses a descriptive approach in which their sizes and densities are plotted over time. This approach has limited usefulness for design strategies in management or modelling different scenarios. Population projection matrix models are among the most widely used tools in ecology. Unfortunately, for the majority of pelagic marine organisms, it is difficult to mark individuals and follow them over time to determine their vital rates and built a population projection matrix model. Nevertheless, it is possible to get time-series data to calculate size structure and densities of each size, in order to determine the matrix parameters. This approach is known as a "demographic inverse problem" and it is based on quadratic programming methods, but it has rarely been used on aquatic organisms. We used unpublished field data of a population of cubomedusae Carybdea marsupialis to construct a population projection matrix model and compare two different management strategies to lower population to values before year 2008 when there was no significant interaction with bathers. Those strategies were by direct removal of medusae and by reducing prey. Our results showed that removal of jellyfish from all size classes was more effective than removing only juveniles or adults. When reducing prey, the highest efficiency to lower the C. marsupialis population occurred when prey depletion affected prey of all medusae sizes. Our model fit well with the field data and may serve to design an efficient management strategy or build hypothetical scenarios such as removal of individuals or reducing prey. TThis This sdfsdshis method is applicable to other marine or terrestrial species, for which density and population structure over time are available.
Schmitz, Oswald
2017-01-01
Predator–prey relationships are a central component of community dynamics. Classic approaches have tried to understand and predict these relationships in terms of consumptive interactions between predator and prey species, but characterizing the interaction this way is insufficient to predict the complexity and context dependency inherent in predator–prey relationships. Recent approaches have begun to explore predator–prey relationships in terms of an evolutionary-ecological game in which predator and prey adapt to each other through reciprocal interactions involving context-dependent expression of functional traits that influence their biomechanics. Functional traits are defined as any morphological, behavioral, or physiological trait of an organism associated with a biotic interaction. Such traits include predator and prey body size, predator and prey personality, predator hunting mode, prey mobility, prey anti-predator behavior, and prey physiological stress. Here, I discuss recent advances in this functional trait approach. Evidence shows that the nature and strength of many interactions are dependent upon the relative magnitude of predator and prey functional traits. Moreover, trait responses can be triggered by non-consumptive predator–prey interactions elicited by responses of prey to risk of predation. These interactions in turn can have dynamic feedbacks that can change the context of the predator–prey interaction, causing predator and prey to adapt their traits—through phenotypically plastic or rapid evolutionary responses—and the nature of their interaction. Research shows that examining predator–prey interactions through the lens of an adaptive evolutionary-ecological game offers a foundation to explain variety in the nature and strength of predator–prey interactions observed in different ecological contexts. PMID:29043073
Schmitz, Oswald
2017-01-01
Predator-prey relationships are a central component of community dynamics. Classic approaches have tried to understand and predict these relationships in terms of consumptive interactions between predator and prey species, but characterizing the interaction this way is insufficient to predict the complexity and context dependency inherent in predator-prey relationships. Recent approaches have begun to explore predator-prey relationships in terms of an evolutionary-ecological game in which predator and prey adapt to each other through reciprocal interactions involving context-dependent expression of functional traits that influence their biomechanics. Functional traits are defined as any morphological, behavioral, or physiological trait of an organism associated with a biotic interaction. Such traits include predator and prey body size, predator and prey personality, predator hunting mode, prey mobility, prey anti-predator behavior, and prey physiological stress. Here, I discuss recent advances in this functional trait approach. Evidence shows that the nature and strength of many interactions are dependent upon the relative magnitude of predator and prey functional traits. Moreover, trait responses can be triggered by non-consumptive predator-prey interactions elicited by responses of prey to risk of predation. These interactions in turn can have dynamic feedbacks that can change the context of the predator-prey interaction, causing predator and prey to adapt their traits-through phenotypically plastic or rapid evolutionary responses-and the nature of their interaction. Research shows that examining predator-prey interactions through the lens of an adaptive evolutionary-ecological game offers a foundation to explain variety in the nature and strength of predator-prey interactions observed in different ecological contexts.
Food resource effects on diel movements and body size of cisco in north-temperate lakes.
Ahrenstorff, Tyler D; Hrabik, Thomas R; Jacobson, Peter C; Pereira, Donald L
2013-12-01
The movement patterns and body size of fishes are influenced by a host of physical and biological conditions, including temperature and oxygen, prey densities and foraging potential, growth optimization, and predation risk. Our objectives were to (1) investigate variability in vertical movement patterns of cisco (Coregonus artedi) in a variety of inland lakes using hydroacoustics, (2) explore the causal mechanisms influencing movements through the use of temperature/oxygen, foraging, growth, and predation risk models, and (3) examine factors that may contribute to variations in cisco body size by considering all available information. Our results show that cisco vertical movements vary substantially, with different populations performing normal diel vertical migrations (DVM), no DVM, and reverse DVM in lakes throughout Minnesota and northern Wisconsin, USA. Cisco populations with the smallest body size were found in lakes with lower zooplankton densities. These smaller fish showed movements to areas of highest foraging or growth potential during the day and night, despite moving out of preferred temperature and oxygen conditions and into areas of highest predation risk. In lakes with higher zooplankton densities, cisco grew larger and had movements more consistent with behavioral thermoregulation and predator avoidance, while remaining in areas with less than maximum foraging and growth potential. Furthermore, the composition of potential prey items present in each lake was also important. Cisco that performed reverse DVM consumed mostly copepods and cladocerans, while cisco that exhibited normal DVM or no migration consumed proportionally more macro-zooplankton species. Overall, our results show previously undocumented variation in migration patterns of a fish species, the mechanisms underlying those movements, and the potential impact on their growth potential.
Luo, Jinhong; Koselj, Klemen; Zsebők, Sándor; Siemers, Björn M.; Goerlitz, Holger R.
2014-01-01
Climate change impacts the biogeography and phenology of plants and animals, yet the underlying mechanisms are little known. Here, we present a functional link between rising temperature and the prey detection ability of echolocating bats. The maximum distance for echo-based prey detection is physically determined by sound attenuation. Attenuation is more pronounced for high-frequency sound, such as echolocation, and is a nonlinear function of both call frequency and ambient temperature. Hence, the prey detection ability, and thus possibly the foraging efficiency, of echolocating bats and susceptible to rising temperatures through climate change. Using present-day climate data and projected temperature rises, we modelled this effect for the entire range of bat call frequencies and climate zones around the globe. We show that depending on call frequency, the prey detection volume of bats will either decrease or increase: species calling above a crossover frequency will lose and species emitting lower frequencies will gain prey detection volume, with crossover frequency and magnitude depending on the local climatic conditions. Within local species assemblages, this may cause a change in community composition. Global warming can thus directly affect the prey detection ability of individual bats and indirectly their interspecific interactions with competitors and prey. PMID:24335559
Luo, Jinhong; Koselj, Klemen; Zsebok, Sándor; Siemers, Björn M; Goerlitz, Holger R
2014-02-06
Climate change impacts the biogeography and phenology of plants and animals, yet the underlying mechanisms are little known. Here, we present a functional link between rising temperature and the prey detection ability of echolocating bats. The maximum distance for echo-based prey detection is physically determined by sound attenuation. Attenuation is more pronounced for high-frequency sound, such as echolocation, and is a nonlinear function of both call frequency and ambient temperature. Hence, the prey detection ability, and thus possibly the foraging efficiency, of echolocating bats and susceptible to rising temperatures through climate change. Using present-day climate data and projected temperature rises, we modelled this effect for the entire range of bat call frequencies and climate zones around the globe. We show that depending on call frequency, the prey detection volume of bats will either decrease or increase: species calling above a crossover frequency will lose and species emitting lower frequencies will gain prey detection volume, with crossover frequency and magnitude depending on the local climatic conditions. Within local species assemblages, this may cause a change in community composition. Global warming can thus directly affect the prey detection ability of individual bats and indirectly their interspecific interactions with competitors and prey.
Acoustic mirror effect increases prey detection distance in trawling bats
NASA Astrophysics Data System (ADS)
Siemers, Björn M.; Baur, Eric; Schnitzler, Hans-Ulrich
2005-06-01
Many different and phylogenetically distant species of bats forage for insects above water bodies and take insects from and close to the surface; the so-called ‘trawling behaviour’. Detection of surface-based prey by echolocation is facilitated by acoustically smooth backgrounds such as water surfaces that reflect sound impinging at an acute angle away from the bat and thereby render a prey object acoustically conspicuous. Previous measurements had shown that the echo amplitude of a target on a smooth surface is higher than that of the same target in mid-air, due to an acoustic mirror effect. In behavioural experiments with three pond bats (Myotis dasycneme), we tested the hypothesis that the maximum distances at which bats can detect prey are larger for prey on smooth surfaces than for the same prey in an airborne situation. We determined the moment of prey detection from a change in echolocation behaviour and measured the detection distance in 3D space from IR-video recordings using stereo-photogrammetry. The bats showed the predicted increase in detection distance for prey on smooth surfaces. The acoustic mirror effect therefore increases search efficiency and contributes to the acoustic advantages encountered by echolocating bats when foraging at low heights above smooth water surfaces. These acoustic advantages may have favoured the repeated evolution of trawling behaviour.
Acoustic mirror effect increases prey detection distance in trawling bats.
Siemers, Björn M; Baur, Eric; Schnitzler, Hans-Ulrich
2005-06-01
Many different and phylogenetically distant species of bats forage for insects above water bodies and take insects from and close to the surface; the so-called 'trawling behaviour'. Detection of surface-based prey by echolocation is facilitated by acoustically smooth backgrounds such as water surfaces that reflect sound impinging at an acute angle away from the bat and thereby render a prey object acoustically conspicuous. Previous measurements had shown that the echo amplitude of a target on a smooth surface is higher than that of the same target in mid-air, due to an acoustic mirror effect. In behavioural experiments with three pond bats (Myotis dasycneme), we tested the hypothesis that the maximum distances at which bats can detect prey are larger for prey on smooth surfaces than for the same prey in an airborne situation. We determined the moment of prey detection from a change in echolocation behaviour and measured the detection distance in 3D space from IR-video recordings using stereo-photogrammetry. The bats showed the predicted increase in detection distance for prey on smooth surfaces. The acoustic mirror effect therefore increases search efficiency and contributes to the acoustic advantages encountered by echolocating bats when foraging at low heights above smooth water surfaces. These acoustic advantages may have favoured the repeated evolution of trawling behaviour.
NASA Astrophysics Data System (ADS)
Dänhardt, Andreas; Becker, Peter H.
2011-02-01
Food availability is a key variable influencing breeding performance and demography of marine top predators. Due to methodological problems, proportionality between fish abundance and availability is often assumed without being explicitly tested. More specifically, better breeding performance of surface-feeding seabirds at times of large prey stocks suggests that prey availability is also a function of prey abundance. Using vertically resolved stow net sampling we tested whether local abundance and length composition of pelagic fish are reliable predictors of the availability of these fish to surface-feeding Common Terns ( Sterna hirundo) breeding in the German Wadden Sea. Prey fish were found to concentrate below the maximum diving depth of the terns. Individuals caught close to the surface were in most cases smaller than conspecifics caught at greater depth. Correlations between fish abundance within and out of reach of the terns appeared to be both species- and site-specific rather than driven by overall fish abundance. Vertical distribution patterns of the terns' main prey fish could be explained as anti-predator behavior, reducing prey availability to the terns. In 2007, when breeding performance was much better than in 2006, herring and whiting were much more abundant, suggesting that overall prey abundance may also increase prey availability in habitats other than those represented by the stow net sampling.
Jeong, Hae Jin; Lim, An Suk; Yoo, Yeong Du; Lee, Moo Joon; Lee, Kyung Ha; Jang, Tae Young; Lee, Kitack
2014-01-01
To investigate heterotrophic protists grazing on Symbiodinium sp., we tested whether the common heterotrophic dinoflagellates Gyrodinium dominans, Gyrodinium moestrupii, Gyrodinium spirale, Oblea rotundata, Oxyrrhis marina, and Polykrikos kofoidii and the ciliates Balanion sp. and Parastrombidinopsis sp. preyed on the free-living dinoflagellate Symbiodinium sp. (clade E). We measured the growth and ingestion rates of O. marina and G. dominans on Symbiodinium sp. as a function of prey concentration. Furthermore, we compared the results to those obtained for other algal prey species. In addition, we measured the growth and ingestion rates of other predators at single prey concentrations at which these rates of O. marina and G. dominans were saturated. All predators tested in the present study, except Balanion sp., preyed on Symbiodinium sp. The specific growth rates of O. marina and G. dominans on Symbiodinium sp. increased rapidly with increasing mean prey concentration < ca. 740-815 ng C/ml (7,400-8,150 cells/ml), but became saturated at higher concentrations. The maximum growth rates of O. marina and G. dominans on Symbiodinium sp. (0.87 and 0.61/d) were much higher than those of G. moestrupii and P. kofoidii (0.11 and 0.04/d). Symbiodinium sp. did not support positive growth of G. spirale, O. rotundata, and Parastrombidinopsis sp. However, the maximum ingestion rates of P. kofoidii and Parastrombidinopsis sp. (6.7-10.0 ng C/predator/d) were much higher than those of O. marina and G. dominans on Symbiodinium sp. (1.9-2.1 ng C/predator/d). The results of the present study suggest that Symbiodinium sp. may increase or maintain the populations of some predators. © 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists.
Wilcox, Rebecca C; Fletcher, Robert J
2016-01-01
Identifying impacts of exotic species on native populations is central to ecology and conservation. Although the effects of exotic predators on native prey have received much attention, the role of exotic prey on native predators is poorly understood. Determining if native predators actively prefer invasive prey over native prey has implications for interpreting invasion impacts, identifying the presence of evolutionary traps, and predator persistence. One of the world's most invasive species, Pomacea maculata, has recently established in portions of the endangered Everglade snail kite's (Rostrhamus sociabilis plumbeus) geographic range. Although these exotic snails could provide additional prey resources, they are typically much larger than the native snail, which can lead to lower foraging success and the potential for diminished energetic benefits in comparison to native snails. Nonetheless, snail kites frequently forage on exotic snails. We used choice experiments to evaluate snail kite foraging preference in relation to exotic species and snail size. We found that snail kites do not show a preference for native or exotic snails. Rather, snail kites generally showed a preference for medium-sized snails, the sizes reflective of large native snails. These results suggest that while snail kites frequently forage on exotic snails in the wild, this behavior is likely driven simply by the abundance of exotic snails rather than snail kites preferring exotics. This lack of preference offers insights to hypotheses regarding effects of exotic species, guidance regarding habitat and invasive species management, and illustrates how native-exotic relationships can be misleading in the absence of experimental tests of such interactions.
How moths escape bats: predicting outcomes of predator-prey interactions.
Corcoran, Aaron J; Conner, William E
2016-09-01
What determines whether fleeing prey escape from attacking predators? To answer this question, biologists have developed mathematical models that incorporate attack geometries, pursuit and escape trajectories, and kinematics of predator and prey. These models have rarely been tested using data from actual predator-prey encounters. To address this problem, we recorded multi-camera infrared videography of bat-insect interactions in a large outdoor enclosure. We documented 235 attacks by four Myotis volans bats on a variety of moths. Bat and moth flight trajectories from 50 high-quality attacks were reconstructed in 3-D. Despite having higher maximum velocity, deceleration and overall turning ability, bats only captured evasive prey in 69 of 184 attacks (37.5%); bats captured nearly all moths not evading attack (50 of 51; 98%). Logistic regression indicated that prey radial acceleration and escape angle were the most important predictors of escape success (44 of 50 attacks correctly classified; 88%). We found partial support for the turning gambit mathematical model; however, it underestimated the escape threshold by 25% of prey velocity and did not account for prey escape angle. Whereas most prey escaping strikes flee away from predators, moths typically escaped chasing bats by turning with high radial acceleration toward 'safety zones' that flank the predator. This strategy may be widespread in prey engaged in chases. Based on these findings, we developed a novel geometrical model of predation. We discuss implications of this model for the co-evolution of predator and prey kinematics and pursuit and escape strategies. © 2016. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Divine, Lauren M.; Bluhm, Bodil A.; Mueter, Franz J.; Iken, Katrin
2017-01-01
We used stomach content and stable δ13C and δ15N isotope analyses to investigate male and female snow crab diets over a range of body sizes (30-130 mm carapace width) in five regions of the Pacific Arctic (southern and northern Chukchi Sea, western, central, and Canadian Beaufort Sea). Snow crab stomach contents from the southern Chukchi Sea were also compared to available prey biomass and abundance. Snow crabs consumed four main prey taxa: polychaetes, decapod crustaceans (crabs, amphipods), echinoderms (mainly ophiuroids), and mollusks (bivalves, gastropods). Both approaches revealed regional differences. Crab diets in the two Chukchi regions were similar to those in the western Beaufort (highest bivalve, amphipod, and crustacean consumption). The Canadian Beaufort region was most unique in prey composition and in stable isotope values. We also observed a trend of decreasing carbon stable isotopes in crabs from the Chukchi to those in the Canadian Beaufort, likely reflecting the increasing use of terrestrial carbon sources towards the eastern regions of the Beaufort Sea from Mackenzie River influx. Cannibalism on snow crabs was higher in the Chukchi regions relative to the Beaufort regions. We suggest that cannibalism may have an impact on recruitment in the Chukchi Sea via reduction of cohort strength after settlement to the benthos, as known from the Canadian Atlantic. Prey composition varied with crab size only in some size classes in the southern Chukchi and central Beaufort, while stable isotope results showed no size-dependent differences. Slightly although significantly higher mean carbon isotope values for males in the southern Chukchi may not be reflective of a gender-specific pattern but rather be driven by low sample size. Finally, the lack of prey selection relative to availability in crabs in the southern Chukchi suggests that crabs consume individual prey taxa in relative proportions to prey field abundances. The present study is the first to provide a baseline of the omnivorous role of snow crabs across the entire Pacific Arctic, as well as evidence for cannibalism in the Chukchi Sea. In light of climate change predictions for the Alaska Arctic, and the potential for future fisheries harvest of snow crabs in this region, continued monitoring of snow crabs, including population and trophic dynamics, is increasingly important to assess snow crab impacts on benthic communities and vice versa.
Klobucar, Stephen L.; Budy, Phaedra
2016-01-01
In reservoirs, seasonal drawdown can alter the physical environment and may influence predatory fish performance. We investigated the performance of lake trout (Salvelinus namaycush) in a western reservoir by coupling field measurements with visual foraging and bioenergetic models at four distinct states (early summer, mid-summer, late summer, and fall). The models suggested that lake trout prey, juvenile kokanee (Oncorhynchus nerka), are limited seasonally by suitable temperature and dissolved oxygen. Accordingly, prey densities were greatest in late summer when reservoir volume was lowest and fish were concentrated by stratification. Prey encounter rates (up to 68 fish·day−1) and predator consumption are also predicted to be greatest during late summer. However, our models suggested that turbidity negatively correlates with prey detection and consumption across reservoir states. Under the most turbid conditions, lake trout did not meet physiological demands; however, during less turbid periods, predator consumption reached maximum bioenergetic efficiency. Overall, our findings demonstrate that rapid reservoir fluctuations and associated abiotic conditions can influence predator–prey interactions, and our models describe the potential impacts of water level fluctuation on valuable sport fishes.
Coupling suitable prey field to in situ fish larval condition and abundance in a subtropical estuary
NASA Astrophysics Data System (ADS)
Machado, Irene; Calliari, Danilo; Denicola, Ana; Rodríguez-Graña, Laura
2017-03-01
Survival of fish larvae is influenced by the suitability of the prey field and its variability in time and space. Relationships among food quality, quantity and recruitment have been explored in temperate ecosystems where spawning and secondary production are strongly seasonal, but for subtropical estuaries the mechanisms responsible for larval survival remain poorly identified. This study evaluated the nutritional condition (feeding incidence and AARS activity) and abundance of a multi-specific assemblage of fish larvae from a subtropical estuary in South America (Solís Grande, Uruguay) during the fish reproductive season; and related both variables to prey abundance, composition, size and fatty acids content. The larval assemblage was composed of 13 species belonging to different functional groups and composition varied seasonally. Contrary to expectations larval condition did not match an increase in prey quality. Food availability was high throughout the study period, although significant changes existed in the size and taxonomic structure of the prey assemblage. The temporal succession of complementary factors - temperature, prey composition, abundance and quality - promoted a wide window of opportunity for larvae, where quality seemed to have compensated quantity. Such combination of factors could allow an extended larval survival along the spawning season. These findings underline the importance of a better understanding of subtropical estuaries as nursery areas.
Walzer, A; Paulus, H F; Schausberger, P
2004-12-01
In greenhouse agroecosystems, a guild of spider mite predators may consist of the oligophagous predatory mite Phytoseiulus persimilis Athias-Henriot, the polyphagous predatory mite Neoseiulus californicus McGregor (both Acari: Phytoseiidae) and the primarily herbivorous but facultatively predatory western flower thrips Frankliniella occidentalis Pergande (Thysanoptera: Thripidae). Diet-specialization and the predator body size relative to prey are crucial factors in predation on F. occidentalis by P. persimilis and N. californicus. Here, it was tested whether the relevance of these factors changes during predator ontogeny. First, the predator (protonymphs and adult females of P. persimilis and N. californicus): prey (F. occidentalis first instars) body size ratios were measured. Second, the aggressiveness of P. persimilis and N. californicus towards F. occidentalis was assessed. Third, survival, development and oviposition of P. persimilis and N. californicus with F. occidentalis prey was determined. The body size ranking was P. persimilis females > N. californicus females > P. persimilis protonymphs > N. californicus protonymphs. Neoseiulus californicus females were the most aggressive predators, followed by highly aggressive N. californicus protonymphs and moderately aggressive P. persimilis protonymphs. Phytoseiulus persimilis females did not attack thrips. Frankliniella occidentalis larvae are an alternative prey for juvenile N. californicus and P. persimilis, enabling them to reach adulthood. Females of N. californicus but not P. persimilis sustained egg production with thrips prey. Within the guild studied here, N. californicus females are the most harmful predators for F. occidentalis larvae, followed by N. californicus and P. persimilis juveniles. Phytoseiulus persimilis females are harmless to F. occidentalis.
Comparative growth and development of spiders reared on live and dead prey.
Peng, Yu; Zhang, Fan; Gui, Shaolan; Qiao, Huping; Hose, Grant C
2013-01-01
Scavenging (feeding on dead prey) has been demonstrated across a number of spider families, yet the implications of feeding on dead prey for the growth and development of individuals and population is unknown. In this study we compare the growth, development, and predatory activity of two species of spiders that were fed on live and dead prey. Pardosa astrigera (Lycosidae) and Hylyphantes graminicola (Lyniphiidae) were fed live or dead fruit flies, Drosophila melanogaster. The survival of P. astrigera and H. graminicola was not affected by prey type. The duration of late instars of P. astrigera fed dead prey were longer and mature spiders had less protein content than those fed live prey, whereas there were no differences in the rate of H. graminicola development, but the mass of mature spiders fed dead prey was greater than those fed live prey. Predation rates by P. astrigera did not differ between the two prey types, but H. graminicola had a higher rate of predation on dead than alive prey, presumably because the dead flies were easier to catch and handle. Overall, the growth, development and reproduction of H. graminicola reared with dead flies was better than those reared on live flies, yet for the larger P. astrigera, dead prey may suit smaller instars but mature spiders may be best maintained with live prey. We have clearly demonstrated that dead prey may be suitable for rearing spiders, although the success of the spiders fed such prey appears size- and species specific.
Comparative Growth and Development of Spiders Reared on Live and Dead Prey
Peng, Yu; Zhang, Fan; Gui, Shaolan; Qiao, Huping; Hose, Grant C.
2013-01-01
Scavenging (feeding on dead prey) has been demonstrated across a number of spider families, yet the implications of feeding on dead prey for the growth and development of individuals and population is unknown. In this study we compare the growth, development, and predatory activity of two species of spiders that were fed on live and dead prey. Pardosa astrigera (Lycosidae) and Hylyphantes graminicola (Lyniphiidae) were fed live or dead fruit flies, Drosophila melanogaster. The survival of P. astrigera and H. graminicola was not affected by prey type. The duration of late instars of P. astrigera fed dead prey were longer and mature spiders had less protein content than those fed live prey, whereas there were no differences in the rate of H. graminicola development, but the mass of mature spiders fed dead prey was greater than those fed live prey. Predation rates by P. astrigera did not differ between the two prey types, but H. graminicola had a higher rate of predation on dead than alive prey, presumably because the dead flies were easier to catch and handle. Overall, the growth, development and reproduction of H. graminicola reared with dead flies was better than those reared on live flies, yet for the larger P. astrigera, dead prey may suit smaller instars but mature spiders may be best maintained with live prey. We have clearly demonstrated that dead prey may be suitable for rearing spiders, although the success of the spiders fed such prey appears size- and species specific. PMID:24386248
Prey and mound disassembly, manipulation and transport by fire ant collectives
NASA Astrophysics Data System (ADS)
Dutta, Bahnisikha; Monaenkova, Daria; Goodisman, Michael A.; Goldman, Daniel
Fire ants inhabit subterranean nests covered by a hemispherical mound of soil permeated by narrow ( 1 body length diameter) tunnels. Fire ants can use their mound for long-term food storage [Gayahan &Tschinkel, J. Insect Sci.,2008]. Since mound tunnels are narrow, we expect that in addition to prey manipulation, mound reconfiguration could also be an important aspect of the food storage strategy. Ant colonies collected from wild were allowed to build nests in containers filled with clay soil in the laboratory. These colonies were offered diverse prey embedded with lead markers, including mealworms, crickets and shrimp. Ant-prey-soil interactions on the nest surface were recorded using overhead video and subsurface using x-ray imaging. Individual ants involved in prey storage exhibited three distinct behaviors: prey maneuvering, prey dissection and mound reconfiguration. Small prey (e.g. mealworms) were collectively carried intact into the mound through a tunnel, and then disassembled within the mound. Larger prey (e.g. shrimp) were dismantled into small pieces above the surface and carried to mound tunnels. The bodies of hard medium-sized prey (e.g. crickets) were buried after limb removal and then disassembled and moved into tunnels. Soil reconfiguration occurred in all cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashim, Marina; Abidin, Diana Atiqah Zainal; Das, Simon K.
The present study was conducted to investigate the food consumption pattern and gastric emptying time using x-radiography technique in scats fish, Scatophagus argus feeding to satiation in laboratory conditions. Prior to feeding experiment, fish of various sizes were examined their stomach volume, using freshly prepared stomachs ligatured at the tips of the burret, where the maximum amount of distilled water collected in the stomach were measured (ml). Stomach volume is correlated with maximum food intake (S{sub max}) and it can estimate the maximum stomach distension by allometric model i.e volume=0.0000089W{sup 2.93}. Gastric emptying time was estimated using a qualitative X-radiographymore » technique, where the fish of various sizes were fed to satiation at different time since feeding. All the experimental fish was feed into satiation using radio-opaque barium sulphate (BaSO{sub 4}) paste injected in the wet shrimp in proportion to the body weight. The BaSO{sub 4} was found suitable to track the movement of feed/prey in the stomach over time and gastric emptying time of scats fish can be estimated. The results of qualitative X-Radiography observation of gastric motility, showed the fish (200 gm) that fed to maximum satiation meal (circa 11 gm) completely emptied their stomach within 30 - 36 hrs. The results of the present study will provide the first baseline information on the stomach volume, gastric emptying of scats fish in captivity.« less
NASA Astrophysics Data System (ADS)
Hashim, Marina; Abidin, Diana Atiqah Zainal; Das, Simon K.; Ghaffar, Mazlan Abd.
2014-09-01
The present study was conducted to investigate the food consumption pattern and gastric emptying time using x-radiography technique in scats fish, Scatophagus argus feeding to satiation in laboratory conditions. Prior to feeding experiment, fish of various sizes were examined their stomach volume, using freshly prepared stomachs ligatured at the tips of the burret, where the maximum amount of distilled water collected in the stomach were measured (ml). Stomach volume is correlated with maximum food intake (Smax) and it can estimate the maximum stomach distension by allometric model i.e volume=0.0000089W2.93. Gastric emptying time was estimated using a qualitative X-radiography technique, where the fish of various sizes were fed to satiation at different time since feeding. All the experimental fish was feed into satiation using radio-opaque barium sulphate (BaSO4) paste injected in the wet shrimp in proportion to the body weight. The BaSO4 was found suitable to track the movement of feed/prey in the stomach over time and gastric emptying time of scats fish can be estimated. The results of qualitative X-Radiography observation of gastric motility, showed the fish (200 gm) that fed to maximum satiation meal (circa 11 gm) completely emptied their stomach within 30 - 36 hrs. The results of the present study will provide the first baseline information on the stomach volume, gastric emptying of scats fish in captivity.
Adamová-Ježová, Dana; Hospodková, Eliška; Fuchsová, Lucie; Štys, Pavel; Exnerová, Alice
2016-10-01
European tits (Paridae) exhibit species-specific levels of initial wariness towards aposematic prey. This wariness may be caused by neophobia, dietary conservatism or innate bias against particular prey traits. We assessed the contribution of these three mechanisms to the behaviour of juvenile tits towards novel palatable prey and novel aposematic prey. We compared levels of initial wariness in great tits (Parus major), blue tits (Cyanistes caeruleus) and coal tits (Periparus ater), and tested how the wariness can be deactivated by experience with a palatable prey. One group of birds was pre-trained to attack familiar naturally coloured mealworms the other one, novel red-painted mealworms. Then all the birds were offered a novel palatable prey of different colour and shape: cricket (Acheta domestica) with blue sticker, and then a novel aposematic firebug (Pyrrhocoris apterus). The three species of tits differed in how the experience with a novel palatable prey affected their behaviour towards another novel prey. Great tits and coal tits from experienced groups significantly decreased their neophobia towards both palatable prey and aposematic prey while blue tits did not change their strongly neophobic reactions. The interspecific differences may be explained by differences in body size, geographic range, and habitat specialisation. Copyright © 2016 Elsevier B.V. All rights reserved.
Possible ecosystem impacts of applying maximum sustainable yield policy in food chain models.
Ghosh, Bapan; Kar, T K
2013-07-21
This paper describes the possible impacts of maximum sustainable yield (MSY) and maximum sustainable total yield (MSTY) policy in ecosystems. In general it is observed that exploitation at MSY (of single species) or MSTY (of multispecies) level may cause the extinction of several species. In particular, for traditional prey-predator system, fishing under combined harvesting effort at MSTY (if it exists) level may be a sustainable policy, but if MSTY does not exist then it is due to the extinction of the predator species only. In generalist prey-predator system, harvesting of any one of the species at MSY level is always a sustainable policy, but harvesting of both the species at MSTY level may or may not be a sustainable policy. In addition, we have also investigated the MSY and MSTY policy in a traditional tri-trophic and four trophic food chain models. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ingram, Travis; Stutz, William E.; Bolnick, Daniel I.
2011-01-01
It has long been known that intraspecific variation impacts evolutionary processes, but only recently have its potential ecological effects received much attention. Theoretical models predict that genetic or phenotypic variance within species can alter interspecific interactions, and experiments have shown that genotypic diversity in clonal species can impact a wide range of ecological processes. To extend these studies to quantitative trait variation within populations, we experimentally manipulated the variance in body size of threespine stickleback in enclosures in a natural lake environment. We found that body size of stickleback in the lake is correlated with prey size and (to a lesser extent) composition, and that stickleback can exert top-down control on their benthic prey in enclosures. However, a six-fold contrast in body size variance had no effect on the degree of diet variation among individuals, or on the abundance or composition of benthic or pelagic prey. Interestingly, post-hoc analyses revealed suggestive correlations between the degree of diet variation and the strength of top-down control by stickleback. Our negative results indicate that, unless the correlation between morphology and diet is very strong, ecological variation among individuals may be largely decoupled from morphological variance. Consequently we should be cautious in our interpretation both of theoretical models that assume perfect correlations between morphology and diet, and of empirical studies that use morphological variation as a proxy for resource use diversity. PMID:21687670
Ingram, Travis; Stutz, William E; Bolnick, Daniel I
2011-01-01
It has long been known that intraspecific variation impacts evolutionary processes, but only recently have its potential ecological effects received much attention. Theoretical models predict that genetic or phenotypic variance within species can alter interspecific interactions, and experiments have shown that genotypic diversity in clonal species can impact a wide range of ecological processes. To extend these studies to quantitative trait variation within populations, we experimentally manipulated the variance in body size of threespine stickleback in enclosures in a natural lake environment. We found that body size of stickleback in the lake is correlated with prey size and (to a lesser extent) composition, and that stickleback can exert top-down control on their benthic prey in enclosures. However, a six-fold contrast in body size variance had no effect on the degree of diet variation among individuals, or on the abundance or composition of benthic or pelagic prey. Interestingly, post-hoc analyses revealed suggestive correlations between the degree of diet variation and the strength of top-down control by stickleback. Our negative results indicate that, unless the correlation between morphology and diet is very strong, ecological variation among individuals may be largely decoupled from morphological variance. Consequently we should be cautious in our interpretation both of theoretical models that assume perfect correlations between morphology and diet, and of empirical studies that use morphological variation as a proxy for resource use diversity.
Verdeny-Vilalta, O; Fox, C W; Wise, D H; Moya-Laraño, J
2015-06-01
Ecological networks incorporate myriad biotic interactions that determine the selection pressures experienced by the embedded populations. We argue that within food webs, the negative scaling of abundance with body mass and foraging theory predict that the selective advantages of larger egg size should be smaller for sit-and-wait than active-hunting generalist predators, leading to the evolution of a difference in egg size between them. Because body mass usually scales negatively with predator abundance and constrains predation rate, slightly increasing egg mass should simultaneously allow offspring to feed on more prey and escape from more predators. However, the benefits of larger offspring would be relatively smaller for sit-and-wait predators because (i) due to their lower mobility, encounters with other predators are less common, and (ii) they usually employ a set of alternative hunting strategies that help to subdue relatively larger prey. On the other hand, for active predators, which need to confront prey as they find them, body-size differences may be more important in subduing prey. This difference in benefits should lead to the evolution of larger egg sizes in active-hunting relative to sit-and-wait predators. This prediction was confirmed by a phylogenetically controlled analysis of 268 spider species, supporting the view that the structure of ecological networks may serve to predict relevant selective pressures acting on key life history traits. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Trophic pathways supporting Arctic grayling in a small stream on the Arctic Coastal Plain, Alaska
McFarland, Jason J.; Wipfli, Mark S.; Whitman, Matthew S.
2018-01-01
Beaded streams are prominent across the Arctic Coastal Plain (ACP) of Alaska, yet prey flow and food web dynamics supporting fish inhabiting these streams are poorly understood. Arctic grayling (Thymallus arcticus) are a widely distributed upper-level consumer on the ACP and migrate into beaded streams to forage during the short 3-month open-water season. We investigated energy pathways and key prey resources that support grayling in a representative beaded stream, Crea Creek. We measured terrestrial invertebrates entering the stream from predominant riparian vegetation types, prey types supporting a range of fish size classes, and how riparian plants and fish size influenced foraging habits. We found that riparian plants influenced the quantity of terrestrial invertebrates entering Crea Creek; however, these differences were not reflected in fish diets. Prey type and size ingested varied with grayling size and season. Small grayling (<15 cm fork length (FL)) consumed mostly aquatic invertebrates early in the summer, and terrestrial invertebrates later in summer, while larger fish (>15 cm FL) foraged most heavily on ninespine stickleback (Pungitius pungitius) throughout the summer, indicating that grayling can be insectivorous and piscivorous, depending on size. These findings underscore the potential importance of small streams in Arctic ecosystems as key summer foraging habitats for fish. Understanding trophic pathways supporting stream fishes in these systems will help interpret whether and how petroleum development and climate change may affect energy flow and stream productivity, terrestrial–aquatic linkages and fishes in Arctic ecosystems.
Scaling of lunge feeding in rorqual whales: an integrated model of engulfment duration.
Potvin, J; Goldbogen, J A; Shadwick, R E
2010-12-07
Rorqual whales (Balaenopteridae) obtain their food by lunge feeding, a dynamic process that involves the intermittent engulfment and filtering of large amounts of water and prey. During a lunge, whales accelerate to high speed and open their mouth wide, thereby exposing a highly distensible buccal cavity to the flow and facilitating its inflation. Unsteady hydrodynamic models suggest that the muscles associated with the ventral groove blubber undergo eccentric contraction in order to stiffen and control the inflation of the buccal cavity; in doing so the engulfed water mass is accelerated forward as the whale's body slows down. Although the basic mechanics of lunge feeding are relatively well known, the scaling of this process remains poorly understood, particularly with regards to its duration (from mouth opening to closure). Here we formulate a new theory of engulfment time which integrates prey escape behavior with the mechanics of the whale's body, including lunge speed and acceleration, gape angle dynamics, and the controlled inflation of the buccal cavity. Given that the complex interaction between these factors must be highly coordinated in order to maximize engulfment volume, the proposed formulation rests on the scenario of Synchronized Engulfment, whereby the filling of the cavity (posterior to the temporomandibular joint) coincides with the moment of maximum gape. When formulated specifically for large rorquals feeding on krill, our analysis predicts that engulfment time increases with body size, but in amounts dictated by the specifics of krill escape and avoidance kinematics. The predictions generated by the model are corroborated by limited empirical data on a species-specific basis, particularly for humpback and blue whales chasing krill. A sensitivity analysis applied to all possible sized fin whales also suggests that engulfment duration and lunge speed will increase intra-specifically with body size under a wide range of predator-prey scenarios. This study provides the theoretical framework required to estimate the scaling of the mass-specific drag being generated during engulfment, as well as the energy expenditures incurred. Copyright © 2010 Elsevier Ltd. All rights reserved.
A trait-based approach reveals the feeding selectivity of a small endangered Mediterranean fish.
Rodríguez-Lozano, Pablo; Verkaik, Iraima; Maceda-Veiga, Alberto; Monroy, Mario; de Sostoa, Adolf; Rieradevall, Maria; Prat, Narcís
2016-05-01
Functional traits are growing in popularity in modern ecology, but feeding studies remain primarily rooted in a taxonomic-based perspective. However, consumers do not have any reason to select their prey using a taxonomic criterion, and prey assemblages are variable in space and time, which makes taxon-based studies assemblage-specific. To illustrate the benefits of the trait-based approach to assessing food choice, we studied the feeding ecology of the endangered freshwater fish Barbus meridionalis. We hypothesized that B. meridionalis is a selective predator which food choice depends on several prey morphological and behavioral traits, and thus, its top-down pressure may lead to changes in the functional composition of in-stream macroinvertebrate communities. Feeding selectivity was inferred by comparing taxonomic and functional composition (13 traits) between ingested and free-living potential prey using the Jacob's electivity index. Our results showed that the fish diet was influenced by 10 of the 13 traits tested. Barbus meridionalis preferred prey with a potential size of 5-10 mm, with a medium-high drift tendency, and that drift during daylight. Potential prey with no body flexibility, conical shape, concealment traits (presence of nets and/or cases, or patterned coloration), and high aggregation tendency had a low predation risk. Similarly, surface swimmers and interstitial taxa were low vulnerable to predation. Feeding selectivity altered the functional composition of the macroinvertebrate communities. Fish absence favored taxa with weak aggregation tendency, weak flexibility, and a relatively large size (10-20 mm of potential size). Besides, predatory invertebrates may increase in fish absence. In conclusion, our study shows that the incorporation of the trait-based approach in diet studies is a promising avenue to improve our mechanistic understanding of predator-prey interactions and to help predict the ecological outcomes of predator invasions and extinctions.
NASA Astrophysics Data System (ADS)
White, T. C. R.
2013-11-01
Among both ecologists and the wider community there is a tacit assumption that predators regulate populations of their prey. But there is evidence from a wide taxonomic and geographic range of studies that predators that are adapted to co-evolved prey generally do not regulate their prey. This is because predators either cannot reproduce as fast as their prey and/or are inefficient hunters unable to catch enough prey to sustain maximum reproduction. The greater capacity of herbivores to breed successfully is, however, normally restricted by a lack of enough food of sufficient quality to support reproduction. But whenever this shortage is alleviated by a large pulse of food, herbivores increase their numbers to outbreak levels. Their predators are unable to contain this increase, but their numbers, too, surge in response to this increase in food. Eventually both their populations will crash once the food supply runs out, first for the herbivores and then for the predators. Then an “over-run” of predators will further depress the already declining prey population, appearing to be controlling its abundance. This latter phenomenon has led many ecologists to conclude that predators are regulating the numbers of their prey. However, it is the same process that is revealed during outbreaks that limits populations of both predator and prey in “normal” times, although this is usually not readily apparent. Nevertheless, as all the diverse cases discussed here attest, the abundance of predators and their co-evolved prey are both limited by their food: the predators are passengers, not drivers.
García, Luis Fernando; Viera, Carmen; Pekár, Stano
2018-04-02
Predators are traditionally classified as generalists and specialists based on the presence of adaptations that increase efficiency of prey capture and consumption and selection of particular prey types. Nevertheless, empirical evidence comparing foraging efficiency between generalist and specialist carnivores is scarce. We compared the prey-capture and feeding efficiency in a generalist and a specialist (araneophagous) spider predator. By using two related species, the generalist Harpactea rubicunda (Dysderidae) and the specialist Nops cf. variabilis (Caponiidae), we evaluated their fundamental trophic niche by studying the acceptance of different prey. Then, we compared their predatory behavior, efficiency in capturing prey of varying sizes, feeding efficiency, and nutrient extraction. Nops accepted only spiders as prey, while Harpactea accepted all offered prey, confirming that Nops is stenophagous, while Harpactea is euryphagous. Further, Nops displayed more specialized (stereotyped) capture behavior than Harpactea, suggesting that Nops is a specialist, while Harpactea is a generalist. The specialist immobilized prey faster, overcame much larger prey, and gained more mass (due to feeding on larger prey) than the generalist. Both the specialist and the generalist spider extracted more proteins than lipids, but the extraction of macronutrients in the specialist was achieved mainly by consuming the prosoma of the focal prey. We show that the specialist has more efficient foraging strategy than the generalist.
Food-limitation in a generalist predator.
Rutz, Christian; Bijlsma, Rob G
2006-08-22
Investigating food-limitation in generalist predators is difficult, because they can switch to alternative prey, when one of their staple prey becomes scarce. Apart from data on the dynamics of the predator population, a robust study requires: (i) a documentation of the predator's entire prey base; and (ii) an experimental or natural situation, where profitable dietary shifts are impossible, because several preferred prey species decline simultaneously. Here, we provide a detailed description of how food-supply has limited a generalist avian top predator, the northern goshawk Accipiter gentilis. In our study area, populations of several principal goshawk prey species crashed simultaneously during 1975-2000, whereas other extrinsic factors remained essentially unchanged. The breeding and non-breeding segments of the local goshawk population declined markedly, associated with a significant increase in nest failures. Brood size of successful pairs remained unaffected by changes in prey availability. Breeding recruitment ceased at a time when potential replacement birds ('floaters') were still present, providing a rare empirical demonstration of an 'acceptance threshold' in raptor territory choice. To investigate how goshawk diet changed in response to varying food-supplies, we make novel use of an analytical tool from biodiversity research-'abundance-biomass-comparison curves' (ABC curves). With increasing levels of food-stress, the dominance of principal prey species in the diet decreased, and the number of small-bodied prey species increased, as did intra-guild predation. Our finding that breeder and non-breeder segments declined in concert is unexpected. Our results carry the management implication that, in food-limited raptor populations, externally induced breeder mortality can rapidly depress population size, as losses are no longer buffered when floaters reject breeding opportunities.
Food-limitation in a generalist predator
Rutz, Christian; Bijlsma, Rob G
2006-01-01
Investigating food-limitation in generalist predators is difficult, because they can switch to alternative prey, when one of their staple prey becomes scarce. Apart from data on the dynamics of the predator population, a robust study requires: (i) a documentation of the predator's entire prey base; and (ii) an experimental or natural situation, where profitable dietary shifts are impossible, because several preferred prey species decline simultaneously. Here, we provide a detailed description of how food-supply has limited a generalist avian top predator, the northern goshawk Accipiter gentilis. In our study area, populations of several principal goshawk prey species crashed simultaneously during 1975–2000, whereas other extrinsic factors remained essentially unchanged. The breeding and non-breeding segments of the local goshawk population declined markedly, associated with a significant increase in nest failures. Brood size of successful pairs remained unaffected by changes in prey availability. Breeding recruitment ceased at a time when potential replacement birds (‘floaters’) were still present, providing a rare empirical demonstration of an ‘acceptance threshold’ in raptor territory choice. To investigate how goshawk diet changed in response to varying food-supplies, we make novel use of an analytical tool from biodiversity research—‘abundance–biomass–comparison curves’ (ABC curves). With increasing levels of food-stress, the dominance of principal prey species in the diet decreased, and the number of small-bodied prey species increased, as did intra-guild predation. Our finding that breeder and non-breeder segments declined in concert is unexpected. Our results carry the management implication that, in food-limited raptor populations, externally induced breeder mortality can rapidly depress population size, as losses are no longer buffered when floaters reject breeding opportunities. PMID:16846915
García-Salgado, Gonzalo; Rebollo, Salvador; Pérez-Camacho, Lorenzo; Martínez-Hesterkamp, Sara; Navarro, Alberto; Fernández-Pereira, José-Manuel
2015-01-01
Diet studies present numerous methodological challenges. We evaluated the usefulness of commercially available trail-cameras for analyzing the diet of Northern Goshawks (Accipiter gentilis) as a model for nesting raptors during the period 2007–2011. We compared diet estimates obtained by direct camera monitoring of 80 nests with four indirect analyses of prey remains collected from the nests and surroundings (pellets, bones, feather-and-hair remains, and feather-hair-and-bone remains combined). In addition, we evaluated the performance of the trail-cameras and whether camera monitoring affected Goshawk behavior. The sensitivity of each diet-analysis method depended on prey size and taxonomic group, with no method providing unbiased estimates for all prey sizes and types. The cameras registered the greatest number of prey items and were probably the least biased method for estimating diet composition. Nevertheless this direct method yielded the largest proportion of prey unidentified to species level, and it underestimated small prey. Our trail-camera system was able to operate without maintenance for longer periods than what has been reported in previous studies with other types of cameras. Initially Goshawks showed distrust toward the cameras but they usually became habituated to its presence within 1–2 days. The habituation period was shorter for breeding pairs that had previous experience with cameras. Using trail-cameras to monitor prey provisioning to nests is an effective tool for studying the diet of nesting raptors. However, the technique is limited by technical failures and difficulties in identifying certain prey types. Our study also shows that cameras can alter adult Goshawk behavior, an aspect that must be controlled to minimize potential negative impacts. PMID:25992956
García-Salgado, Gonzalo; Rebollo, Salvador; Pérez-Camacho, Lorenzo; Martínez-Hesterkamp, Sara; Navarro, Alberto; Fernández-Pereira, José-Manuel
2015-01-01
Diet studies present numerous methodological challenges. We evaluated the usefulness of commercially available trail-cameras for analyzing the diet of Northern Goshawks (Accipiter gentilis) as a model for nesting raptors during the period 2007-2011. We compared diet estimates obtained by direct camera monitoring of 80 nests with four indirect analyses of prey remains collected from the nests and surroundings (pellets, bones, feather-and-hair remains, and feather-hair-and-bone remains combined). In addition, we evaluated the performance of the trail-cameras and whether camera monitoring affected Goshawk behavior. The sensitivity of each diet-analysis method depended on prey size and taxonomic group, with no method providing unbiased estimates for all prey sizes and types. The cameras registered the greatest number of prey items and were probably the least biased method for estimating diet composition. Nevertheless this direct method yielded the largest proportion of prey unidentified to species level, and it underestimated small prey. Our trail-camera system was able to operate without maintenance for longer periods than what has been reported in previous studies with other types of cameras. Initially Goshawks showed distrust toward the cameras but they usually became habituated to its presence within 1-2 days. The habituation period was shorter for breeding pairs that had previous experience with cameras. Using trail-cameras to monitor prey provisioning to nests is an effective tool for studying the diet of nesting raptors. However, the technique is limited by technical failures and difficulties in identifying certain prey types. Our study also shows that cameras can alter adult Goshawk behavior, an aspect that must be controlled to minimize potential negative impacts.
Changes in Alaskan soft-bottom prey communities along a gradient in sea otter predation
Kvitek, R.G.; Oliver, J.S.; DeGange, A.R.; Anderson, B.S.
1992-01-01
Sea Otter (Enhydra lutris), well documented as "keystone" predators in rocky marine communities, were found to exert a strong influence on infaunal prey communities in soft-sediment habitats. Direct and indirect effects of sea otter predation on subtidal soft-bottom prey communities were evaluated along a temporal gradient of sea otter occupancy around the Kodiak Archipelago. The results indicate that Kodiak otters forage primarily on bivalve prey and dramatically reduce infaunal bivalve and green sea urchin (Strongylocentrotus droebachiensis) prey populations. Bivalve prey abundance, biomass, and size were inversely related to duration of sea otter occupancy. The relative conditions of shells discarded by otters in shallow (<10 m) vs. deep (> 20 m) water at the same sites indicate that otters first exploited Saxidomus in shallow-water feeding areas, and later switched to Macoma spp. in deeper water. Otter-cracked shells of the deep-burrowing clam Tresus capax were rarely found, even at otter foraging sites where the clam accounted for the majority of available prey biomass, suggesting that it has a partial depth refuge from otter predation. The indirect effects of otter predation included substratum disturbance and the facilitation of sea star predation on infaunal prey. Sea stars, Pycnopodia helianthoides, were attracted to experimentally dug excavations as well as natural sea otter foraging pits, where the sea stars foraged on smaller size classes of infaunal bivalves than those eaten by otters. Otters also discard clam shells on the sediment surface and expose old, buried shells during excavation. Surface shells were found to provide attachment sites for large anemones and kelp. Our study shows that sea otters can affect soft-sediment communities, not only through predation, as in rocky habitats, but also through disturbance, and thus retain a high degree of influence in two very different habitat types.
Lizards on newly created islands independently and rapidly adapt in morphology and diet
Eloy de Amorim, Mariana; Schoener, Thomas W.; Santoro, Guilherme Ramalho Chagas Cataldi; Lins, Anna Carolina Ramalho; Piovia-Scott, Jonah; Brandão, Reuber Albuquerque
2017-01-01
Rapid adaptive changes can result from the drastic alterations humans impose on ecosystems. For example, flooding large areas for hydroelectric dams converts mountaintops into islands and leaves surviving populations in a new environment. We report differences in morphology and diet of the termite-eating gecko Gymnodactylus amarali between five such newly created islands and five nearby mainland sites located in the Brazilian Cerrado, a biodiversity hotspot. Mean prey size and dietary prey-size breadth were larger on islands than mainlands, expected because four larger lizard species that also consume termites, but presumably prefer larger prey, went extinct on the islands. In addition, island populations had larger heads relative to their body length than mainland populations; larger heads are more suited to the larger prey taken, and disproportionately larger heads allow that functional advantage without an increase in energetic requirements resulting from larger body size. Parallel morphological evolution is strongly suggested, because there are indications that, before flooding, relative head size did not differ between future island and future mainland sites. Females and males showed the same trend of relatively larger heads on islands, so the difference between island and mainland sites is unlikely to be due to greater male–male competition for mates on islands. We thus discovered a very fast (at most 15 y) case of independent parallel adaptive change in response to catastrophic human disturbance. PMID:28760959
Landaeta, Mauricio F; Bustos, Claudia A; Contreras, Jorge E; Salas-Berríos, Franco; Palacios-Fuentes, Pámela; Alvarado-Niño, Mónica; Letelier, Jaime; Balbontín, Fernando
2015-05-01
During austral spring 2011, a survey was carried out in the inland sea (41°30'-44°S) of north Patagonia, South Pacific, studying a northern basin (NB: Reloncaví Fjord, Reloncaví Sound and Ancud Gulf) characterized by estuarine regime with stronger vertical stratification and warmer (11-14 °C) and most productive waters, and a southern basin (SB: Corcovado Gulf and Guafo mouth), with more oceanic water influence, showed mixed conditions of the water column, colder (11-10.5 °C) and less productive waters. Otolith microstructure and gut content analysis of larval lightfish Maurolicus parvipinnis and rockfish Sebastes oculatus were studied. Larval M. parvipinnis showed similar growth rates in both regions (0.13-0.15 mm d(-1)), but in NB larvae were larger-at-age than in SB. Larval S. oculatus showed no differences in size-at-age and larval growth (0.16 and 0.11 mm d(-1) for NB and SB, respectively). M. parvipinnis larvae from NB had larger number of prey items (mostly invertebrate eggs), similar total volume in their guts and smaller prey size than larvae collected in SB (mainly calanoid copepods). Larval S. oculatus had similar number, volume and body width of prey ingested at both basins, although prey ingestion rate by size was 5 times larger in NB than in SB, and prey composition varied from nauplii in NB to copepodites in SB. This study provides evidence that physical-biological interactions during larval stages of marine fishes from Chilean Patagonia are species-specific, and that in some cases large size-at-age correspond to increasing foraging success. Copyright © 2015 Elsevier Ltd. All rights reserved.
Net trophic transfer efficiency of PCBs to Lake Michigan coho salmon from their prey
Madenjian, Charles P.; Elliott, Robert F.; Schmidt, Larry J.; DeSorcie, Timothy J.; Hesselberg, Robert J.; Quintal, Richard T.; Begnoche, Linda J.; Bouchard, Patrick M.; Holey, Mark E.
1998-01-01
Most of the polychlorinated biphenyl (PCB) body burden accumulated by coho salmon (Oncorhynchus kisutch) from the Laurentian Great Lakes is from their food. We used diet information, PCB determinations in both coho salmon and their prey, and bioenergetics modeling to estimate the efficiency with which Lake Michigan coho salmon retain PCBs from their food. Our estimate was the most reliable estimate to date because (a) the coho salmon and prey fish sampled during our study were sampled in spring, summer, and fall from various locations throughout the lake, (b) detailed measurements were made on the PCB concentrations of both coho salmon and prey fish over wide ranges in fish size, and (c) coho salmon diet was analyzed in detail from April through November over a wide range of salmon size from numerous locations throughout the lake. We estimated that coho salmon from Lake Michigan retain 50% of the PCBs that are contained within their food.
deVries, Maya S
2017-04-01
Competition for food drives divergence and specialization in feeding morphology. Stomatopod crustaceans have two kinds of highly specialized feeding appendages: either elongate spear-like appendages ( spearers ) used to ambush soft-bodied evasive prey or hammer-like appendages ( smashers ) that produce extremely high forces used both to break hard-shelled prey and to capture evasive prey. To evaluate associations between appendage type and feeding ecology, the diet of two small smasher and spearer species (size range: 21-27 mm) that co-occur were compared. Stable isotope analysis and the Bayesian mixing model MixSIAR were used to estimate the proportional contributions of prey types to the diet. Both species had relatively wide diets that included hard-shelled and soft-bodied prey, albeit in different proportions; the smasher consumed a greater proportion of hard-shelled prey, and the spearer consumed mostly soft-bodied prey. Appendage kinematics in stomatopods is known to scale linearly across species. These two small species may produce similar kinematics allowing them both to capture evasive prey and hammer hard-shelled prey, thereby widening their diets. Yet, the spearer species is more highly adept at capturing evasive prey, indicating that small spearers are stronger competitors for soft-bodied prey. These findings suggest that a smasher's ability to access hard prey reduced competition for soft prey, and therefore conferred an important benefit favouring the evolution of the impressive smashing strike. © 2017 The Author(s).
Ercit, Kyla; Martinez-Novoa, Andrew; Gwynne, Darryl T
2014-01-01
Female-biased predation is an uncommon phenomenon in nature since males of many species take on riskier behaviours to gain more mates. Several species of sphecid wasps have been observed taking more female than male prey, and it is not fully understood why. The solitary sphecid Isodontia mexicana catches more adult female tree cricket (Oecanthus nigricornis) prey. Previous work has shown that, although female tree crickets are larger and thus likely to be more valuable as prey than males, body size alone cannot fully explain why wasps take more females. We tested the hypothesis that wasps catch adult female tree crickets more often because bearing eggs impedes a female's ability to escape predation. We compared female survivors to prey of I. mexicana, and found that females carrying more eggs were significantly more likely to be caught by wasps, regardless of their body size and jumping leg mass. We also conducted laboratory experiments where females' jumping responses to a simulated attack were measured and compared to her egg load and morphology. We found a significant negative relationship between egg load and jumping ability, and a positive relationship between body size and jumping ability. These findings support the hypothesis that ovarian eggs are a physical handicap that contributes to female-biased predation in this system. Predation on the most fecund females may have ecological-evolutionary consequences such as collapse of prey populations or selection for alternate life history strategies and behaviours.
Understanding the Venus flytrap through mathematical modelling.
Lehtinen, Sami
2018-05-07
Among carnivorous plants, the Venus flytrap is of particular interest for the rapid movement of its snap-traps and hypothesised prey selection, where small prey are allowed to escape from the traps. In this paper, we provide the first mathematical cost-benefit model for carnivory in the Venus flytrap. Specifically, we analyse the dynamics of prey capture; the costs and benefits of capturing and digesting its prey; and optimisation of trap size and prey selection. We fit the model to available data, making predictions regarding trap behaviour. In particular, we predict that non-prey sources, such as raindrops or wind, cause a large proportion of trap closures; only few trap closures result in a meal; most of the captured prey are allowed to escape; the closure mechanism of a trap is triggered about once every two days; and a trap has to wait more than a month for a meal. We also find that prey capture of traps of the Venus flytrap follows the Beddington-DeAngelis functional response. These predictions indicate that the Venus flytrap is highly selective in its prey capture. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Warming magnifies predation and reduces prey coexistence in a model litter arthropod system.
Thakur, Madhav P; Künne, Tom; Griffin, John N; Eisenhauer, Nico
2017-03-29
Climate warming can destabilize interactions between competitors as smaller organisms gain advantages in warmer environments. Whether and how warming-induced effects on competitive interactions are modified by predation remains unknown. We hypothesized that predation will offset the competitive advantage of smaller prey species in warmer environments because of their greater vulnerability to predation. To test this, we assembled a litter arthropod community with two Collembola species ( Folsomia candida and Proisotoma minuta ) of different body sizes across a temperature gradient (three thermal environments) and in the presence and absence of predatory mites. Predatory mites reduced Collembola coexistence with increasing temperatures. Contradicting our hypothesis, the larger prey species always outperformed the smaller prey species in warmer environments with predators. Larger prey probably benefited as they expressed a greater trait (body length) plasticity to warming. Warming can thus magnify predation effects and reduce the probability of prey coexistence. © 2017 The Author(s).
Tsehaye, Iyob; Jones, Michael L.; Bence, James R.; Brenden, Travis O.; Madenjian, Charles P.; Warner, David M.
2014-01-01
Using a Bayesian model fitting approach, we developed a multispecies statistical catch-at-age model to assess trade-offs between predatory demands and prey productivities, focusing on the Lake Michigan pelagic fish community. We assessed these trade-offs in terms of predation mortalities and productivities of alewife (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax) and functional responses of salmonines. Our predation mortality estimates suggest that salmonine consumption has been a major driver of historical fluctuations in prey abundance, with sharp declines in alewife abundance in the 1980s and 2000s coinciding with estimated increases in predation mortalities. While Chinook salmon (Oncorhynchus tshawytscha) were food limited during periods of low alewife abundance, other salmonines appeared to maintain a (near) maximum per-predator consumption across all observed prey densities, suggesting that feedback mechanisms are unlikely to help maintain a balance between predator consumption and prey productivity in Lake Michigan. This study demonstrates that a multispecies modeling approach that combines stock assessment methods with explicit consideration of predator–prey interactions could provide the basis for tactical decision-making from a broader ecosystem perspective.
Global seabird responses to forage fish depletion - One-third for the birds
Cury, Philippe M.; Boyd, Ian L.; Bonhommeau, Sylvain; Anker-Nilssen, Tycho; Crawford, Robert J.M.; Furness, Robert W.; Mills, James A.; Murphy, Eugene J.; Österblom, Henrik; Paleczny, Michelle; Piatt, John F.; Roux, Jean-Paul; Shannon, Lynne; Sydeman, William J.
2011-01-01
Determining the form of key predator-prey relationships is critical for understanding marine ecosystem dynamics. Using a comprehensive global database, we quantified the effect of fluctuations in food abundance on seabird breeding success. We identified a threshold in prey (fish and krill, termed “forage fish”) abundance below which seabirds experience consistently reduced and more variable productivity. This response was common to all seven ecosystems and 14 bird species examined within the Atlantic, Pacific, and Southern Oceans. The threshold approximated one-third of the maximum prey biomass observed in long-term studies. This provides an indicator of the minimal forage fish biomass needed to sustain seabird productivity over the long term.
Global seabird response to forage fish depletion--one-third for the birds.
Cury, Philippe M; Boyd, Ian L; Bonhommeau, Sylvain; Anker-Nilssen, Tycho; Crawford, Robert J M; Furness, Robert W; Mills, James A; Murphy, Eugene J; Osterblom, Henrik; Paleczny, Michelle; Piatt, John F; Roux, Jean-Paul; Shannon, Lynne; Sydeman, William J
2011-12-23
Determining the form of key predator-prey relationships is critical for understanding marine ecosystem dynamics. Using a comprehensive global database, we quantified the effect of fluctuations in food abundance on seabird breeding success. We identified a threshold in prey (fish and krill, termed "forage fish") abundance below which seabirds experience consistently reduced and more variable productivity. This response was common to all seven ecosystems and 14 bird species examined within the Atlantic, Pacific, and Southern Oceans. The threshold approximated one-third of the maximum prey biomass observed in long-term studies. This provides an indicator of the minimal forage fish biomass needed to sustain seabird productivity over the long term.
Reum, Jonathan C P; Jennings, Simon; Hunsicker, Mary E
2015-11-01
Nitrogen stable isotope ratios (δ(15) N) may be used to estimate community-level relationships between trophic level (TL) and body size in size-structured food webs and hence the mean predator to prey body mass ratio (PPMR). In turn, PPMR is used to estimate mean food chain length, trophic transfer efficiency and rates of change in abundance with body mass (usually reported as slopes of size spectra) and to calibrate and validate food web models. When estimating TL, researchers had assumed that fractionation of δ(15) N (Δδ(15) N) did not change with TL. However, a recent meta-analysis indicated that this assumption was not as well supported by data as the assumption that Δδ(15) N scales negatively with the δ(15) N of prey. We collated existing fish community δ(15) N-body size data for the Northeast Atlantic and tropical Western Arabian Sea with new data from the Northeast Pacific. These data were used to estimate TL-body mass relationships and PPMR under constant and scaled Δδ(15) N assumptions, and to assess how the scaled Δδ(15) N assumption affects our understanding of the structure of these food webs. Adoption of the scaled Δδ(15) N approach markedly reduces the previously reported differences in TL at body mass among fish communities from different regions. With scaled Δδ(15) N, TL-body mass relationships became more positive and PPMR fell. Results implied that realized prey size in these size-structured fish communities are less variable than previously assumed and food chains potentially longer. The adoption of generic PPMR estimates for calibration and validation of size-based fish community models is better supported than hitherto assumed, but predicted slopes of community size spectra are more sensitive to a given change or error in realized PPMR when PPMR is small. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Body size and predatory performance in wolves: is bigger better?
MacNulty, Daniel R; Smith, Douglas W; Mech, L David; Eberly, Lynn E
2009-05-01
1. Large body size hinders locomotor performance in ways that may lead to trade-offs in predator foraging ability that limit the net predatory benefit of larger size. For example, size-related improvements in handling prey may come at the expense of pursuing prey and thus negate any enhancement in overall predatory performance due to increasing size. 2. This hypothesis was tested with longitudinal data from repeated observations of 94 individually known wolves (Canis lupus) hunting elk (Cervus elaphus) in Yellowstone National Park, USA. Wolf size was estimated from an individually based sex-specific growth model derived from body mass measurements of 304 wolves. 3. Larger size granted individual wolves a net predatory advantage despite substantial variation in its effect on the performance of different predatory tasks; larger size improved performance of a strength-related task (grappling and subduing elk) but failed to improve performance of a locomotor-related task (selecting an elk from a group) for wolves > 39 kg. 4. Sexual dimorphism in wolf size also explained why males outperformed females in each of the three tasks considered (attacking, selecting, and killing). 5. These findings support the generalization that bigger predators are overall better hunters, but they also indicate that increasing size ultimately limits elements of predatory behaviour that require superior locomotor performance. We argue that this could potentially narrow the dietary niche of larger carnivores as well as limit the evolution of larger size if prey are substantially more difficult to pursue than to handle.
Body size and predatory performance in wolves: Is bigger better?
MacNulty, D.R.; Smith, D.W.; Mech, L.D.; Eberly, L.E.
2009-01-01
Large body size hinders locomotor performance in ways that may lead to trade-offs in predator foraging ability that limit the net predatory benefit of larger size. For example, size-related improvements in handling prey may come at the expense of pursuing prey and thus negate any enhancement in overall predatory performance due to increasing size. 2. This hypothesis was tested with longitudinal data from repeated observations of 94 individually known wolves (Canis lupus) hunting elk (Cervus elaphus) in Yellowstone National Park, USA. Wolf size was estimated from an individually based sex-specific growth model derived from body mass measurements of 304 wolves. 3. Larger size granted individual wolves a net predatory advantage despite substantial variation in its effect on the performance of different predatory tasks; larger size improved performance of a strength-related task (grappling and subduing elk) but failed to improve performance of a locomotor-related task (selecting an elk from a group) for wolves > 39 kg. 4. Sexual dimorphism in wolf size also explained why males outperformed females in each of the three tasks considered (attacking, selecting, and killing). 5. These findings support the generalization that bigger predators are overall better hunters, but they also indicate that increasing size ultimately limits elements of predatory behaviour that require superior locomotor performance. We argue that this could potentially narrow the dietary niche of larger carnivores as well as limit the evolution of larger size if prey are substantially more difficult to pursue than to handle. ?? 2009 British Ecological Society.
NASA Astrophysics Data System (ADS)
Buckley, Troy W.; Ortiz, Ivonne; Kotwicki, Stan; Aydin, Kerim
2016-12-01
The composition of walleye pollock diets from the eastern Bering Sea continental shelf was determined from 25 years of sampling during summer surveys from 1987 through 2011. Substantial differences in the stomach contents of walleye pollock were found among the sizes and geographic strata that correspond to geographic distribution of the prey. With increasing pollock size, copepods decreased in importance in middle and outer shelf areas while mysids decreased in importance in the inner shelf. Euphausiids increased in importance with increasing pollock size in southeastern areas of the shelf, and fishes and shrimp increased in importance with increasing pollock size in northeastern areas of the middle and outer shelf. The biomass-weighted average diet composition of eastern Bering Sea pollock in each year's survey indicated perennial but variable importance of euphausiids and copepods as prey. An index of partial fullness indicated an interannual pattern of below-average consumption of copepods by the surveyed pollock from 1993 to 2004, but during this period the amount of euphausiids consumed continued to fluctuate about a mean that was similar to years surveyed before and after that period. The summer feeding success, as indicated by average stomach fullness, of intermediate sizes of pollock appears to be closely related to the consumption of copepods (especially for pollock 30-39 cm fork length (FL)) and prey other than euphausiids (especially for pollock 40-49 cm FL). Length-specific predator-prey relationships with copepods and euphausiids correspond to patterns in pollock feeding migrations. Interannual trends in the biomass of copepods in the EBS are reflected most closely in the diet of 20-29 cm FL pollock, and trends in the biomass of euphausiids in the EBS are reflected most closely in the diet of the largest pollock (60+ cm FL). Climate-mediated changes in the zooplankton community will likely have differential impacts across the demographic spectrum of pollock in the EBS.
Trophic dynamics of few selected nearshore coastal finfishes with emphasis on prawns as prey item
NASA Astrophysics Data System (ADS)
Velip, Dinesh T.; Rivonker, Chandrashekher U.
2018-06-01
A trophic dynamic study of marine finfishes was undertaken based on stomach content analysis of twenty four species (N = 1742) collected from the nearshore coastal waters off Goa, west coast of India (15°29‧07.6″ N to 15°34‧44.3″ N, and 73°38‧10.5″ E to 73°46‧03.1″ E) during November 2010 to May 2013. This study aimed to thoroughly understand the feeding attributes of finfishes, and comprehend the possible effects of bycatch-related loss of biomass on trophic ecology. The study assessed diet preferences of the finfishes, their feeding guilds, significance of prawns as prey items, and the influence of mouth parts in prey selection. Altogether 84 prey taxa were identified from the stomach contents. Percentage Index of Relative Importance (IRI) values revealed that zooplankton (34.74), prawns (21.71), phytoplankton (19.80), and teleosts (18.62) were the major prey categories, and, among prawns, Metapenaeus dobsoni (%IRI = 19.34) was the single-most important prey item. Cluster analysis revealed three major trophic guilds namely 'teleost feeders' (mean Trophic Level (TrL) = 4.06 ± 0.42; mean B = 0.46 ± 0.24), 'zooplankton feeders' (mean TrL = 3.43 ± 0.29; mean B = 0.23 ± 0.13), and 'prawn feeders' (mean TrL = 3.86 ± 0.25; mean B = 0.48 ± 0.32), with low diet overlap among them. Principal Component Analysis of prey categories and mouth parts of finfishes suggested that zooplanktivory is associated with gill raker density as well as number of gill arches bearing rakers, whereas gape height determined the size of large-sized prey (fish and invertebrates). The study identified M. dobsoni, mysis and teleosts as highly influential prey for predatory finfishes. The present results could be useful to resolve broader issues in fisheries management.
A tiger beetle’s pursuit of prey depends on distance
NASA Astrophysics Data System (ADS)
Noest, R. M.; Wang, Z. Jane
2017-04-01
Tiger beetles pursue prey by adjusting their heading according to a time-delayed proportional control law that minimizes the error angle (Haselsteiner et al 2014 J. R. Soc. Interface 11 20140216). This control law can be further interpreted in terms of mechanical actuation: to catch prey, tiger beetles exert a sideways force by biasing their tripod gait in proportion to the error angle measured half a stride earlier. The proportional gain was found to be nearly optimal in the sense that it minimizes the time to point directly toward the prey. For a time-delayed linear proportional controller, the optimal gain, k, is inversely proportional to the time delay, τ, and satisfies kτ =1/e . Here we present evidence that tiger beetles adjust their control gain during their pursuit of prey. Our analysis shows two critical distances: one corresponding to the beetle’s final approach to the prey, and the second, less expected, occurring at a distance around 10 cm for a prey size of 4.5 mm. The beetle initiates its chase using a sub-critical gain and increases the gain to the optimal value once the prey is within this critical distance. Insects use a variety of methods to detect distance, often involving different visual cues. Here we examine two such methods: one based on motion parallax and the other based on the prey’s elevation angle. We show that, in order for the motion parallax method to explain the observed data, the beetle needs to correct for the ratio of the prey’s sideways velocity relative to its own. On the other hand, the simpler method based on the elevation angle can detect both the distance and the prey’s size. Moreover we find that the transition distance corresponds to the accuracy required to distinguish small prey from large predators.
An energy-circuit population model for great egrets (Ardea alba) at Lake Okeechobee, Florida, U.S.A
Smith, Jeff P.
1997-01-01
I simulated the annual population cycles of Great Egrets (Ardea alba) at Lake Okeechobee, Florida, to provide a framework for evaluating the local population dynamics of nesting and foraging wading birds. The external forcing functions were solar energy, minimum air temperature, water depth, surface-water drying rate, and season. Solar input controlled the production of prey at moderate to high lake stages, but water area exerted primary control during a two-year drought. Modeling prey production as a linear function of water area resulted in underestimation of prey density during the drought, suggesting that prey organisms maintained high fecundity while concentrated in submerged vegetation at the lakeward fringe of the littoral zone. Simulation confirmed that large influxes of wading birds during the drought were the combined result of a regional refuge response and the availability of concentrated prey. Modeling immigration and emigration as primarily functions of the surface-water drying rate, rather than lake stage, resulted in a closer match of observed and simulated population trends for foraging birds, suggesting that the pattern of surface-water fluctuations was a more important factor than water depth. Simulation indicated an abrupt-threshold response rather than a linear association between foraging efficiency and low temperatures, which reduce activity levels of forage fishes. Great Egret breeder recruitment is primarily a function of prey availability, climate, and hydrologic trends, but simulation confirmed the concurrent involvement of a seasonal or physiological-readiness factor. An attractor function driven by high winter lake stages was necessary to reproduce observed patterns of breeder recruitment, suggesting that Great Egrets initiate nesting based on environmental cues that lead to peak food availability when nestlings are present. Poor correspondence of reproductive effort and nest productivity suggested that the drought compromised the birds' predictive abilities. The need to model breeder recruitment as a function of a maximum rate rather than the size of the local foraging population suggested that birds may nest on the lake even though on-lake foraging conditions are poor. Simulated and observed estimates of egg and hatching production did not match, suggesting that the causes of failure during incubation were complex or more localized than could be accounted for with lakewide hydrologic and climatic data. A forced increase in prey consumption of 12% was necessary to reproduce observed, high levels of nest productivity in 1990, which corresponded to the finding that panhandled fish constituted 10–12% of the biomass fed to Great Egret nestlings that year.
Aizpurua, Ostaizka; Aihartza, Joxerra; Alberdi, Antton; Baagøe, Hans J; Garin, Inazio
2014-09-15
Formerly thought to be a strictly insectivorous trawling bat, recent studies have shown that Myotis capaccinii also preys on fish. To determine whether differences exist in bat flight behaviour, prey handling and echolocation characteristics when catching fish and insects of different size, we conducted a field experiment focused on the last stage of prey capture. We used synchronized video and ultrasound recordings to measure several flight and dip features as well as echolocation characteristics, focusing on terminal buzz phase I, characterized by a call rate exceeding 100 Hz, and buzz phase II, characterized by a drop in the fundamental well below 20 kHz and a repetition rate exceeding 150 Hz. When capturing insects, bats used both parts of the terminal phase to the same extent, and performed short and superficial drags on the water surface. In contrast, when preying on fish, buzz I was longer and buzz II shorter, and the bats made longer and deeper dips. These variations suggest that lengthening buzz I and shortening buzz II when fishing is beneficial, probably because buzz I gives better discrimination ability and the broader sonar beam provided by buzz II is useless when no evasive flight of the prey is expected. Additionally, bats continued emitting calls beyond the theoretical signal-overlap zone, suggesting that they might obtain information even when they have surpassed that threshold, at least initially. This study shows that M. capaccinii can regulate the temporal components of its feeding buzzes and modify prey capture technique according to the target. © 2014. Published by The Company of Biologists Ltd.
French, William E.; Graeb, Brian D. S.; Chipps, Steven R.; Klumb, Robert A.
2014-01-01
Predation can play an important role in the recruitment dynamics of fishes with intensity regulated by behavioral (i.e., prey selectivity) and/or environmental conditions that may be especially important for rare or endangered fishes. We conducted laboratory experiments to quantify prey selection and capture efficiency by three predators employing distinct foraging strategies: pelagic piscivore (walleye Sander vitreus); benthic piscivore (flathead catfish Pylodictis olivaris) and generalist predator (smallmouth bass Micropterus dolomieu) foraging on two size classes of age-0 pallid sturgeon: large (75–100 mm fork length [FL]) and small (40–50 mm FL). Experiments at high (> 70 nephalometric turbidity units [NTU]) and low (< 5 NTU) turbidity for each predator were conducted with high and low densities of pallid sturgeon and contrasting densities of an alternative prey, fathead minnow Pimephales promelas. Predator behaviors (strikes, captures, and consumed prey) were also quantified for each prey type. Walleye and smallmouth bass negatively selected pallid sturgeon (Chesson’s α = 0.04–0.1) across all treatments, indicating low relative vulnerability to predation. Relative vulnerability to predation by flathead catfish was moderate for small pallid sturgeon (α = 0.44, neutral selection), but low for large pallid sturgeon (α = 0.11, negative selection). Turbidity (up to 100 NTU) did not affect pallid sturgeon vulnerability, even at low density of alternative prey. Age-0 pallid sturgeon were easily captured by all predators, but were rarely consumed, suggesting mechanisms other than predator capture efficiency govern sturgeon predation vulnerability.
Empirical assessment of indices of prey importance in the diets of predacious fish
Liao, H.; Pierce, C.L.; Larscheid, J.G.
2001-01-01
Determining the importance of prey taxa in the diets of predacious species is a frequent objective in fisheries research. Various indices of prey importance are in common use, and all give different results because of their emphasis on different aspects of fish diets. We explored these differences by empirically comparing four well-known indices-percent weight (%W), percent occurrence (%O), percent number (%N), and percent index of relative importance (%IRI)-as well as a modified %IRI (%MIRI), as applied to an extensive data set on the diets of six fish species in Spirit Lake, Iowa. Correlations among all indices were positive but were weaker among component indices (%W, %O, and %N) than between the two compound indices (%IRI and %MIRI); correlations among component indices were also weaker than correlations of compound with component indices. Correlation strength of %MIRI with the three component indices varied greatly (%N %O %W), whereas the correlation strength of %IRI with component indices was similar. Importance values based on %W, %MIRI, and %N depend more on prey size than those based on %IRI and %O. The %W and %MIRI emphasized the importance of large prey taxa, whereas %N emphasized small prey in diets; %IRI and %O were similarly unbiased with respect to prey size. The %O yielded substantially higher importance values than all other indices. Thus, for use as a general index of dietary importance, we believe %IRI provides the optimal balancing of frequency of occurrence, numerical abundance, and abundance by weight of taxa in fish diets.
Rapid depth perception in hunting archerfish II. An analysis of potential cues.
Reinel, Caroline P; Schuster, Stefan
2018-05-24
Based on the initial movement of falling prey hunting archerfish select a C-start that turns them right to where their prey is going to land and lends the speed to arrive simultaneously with prey. Our preceding study suggested that the information sampled in less than 100 ms also includes the initial height of falling prey. Here we examine which cues the fish might be using to gauge height so quickly. First, we show that binocular cues are not required: C-starts that either could or could not have used binocular information were equally fast and precise. Next, we explored whether the fish were using simplifying assumptions about the absolute size of their prey or its distance from a structured background. However, experiments with unexpected changes from the standard conditions failed to cause any errors. We then tested the hypothesis that the fish might infer depth from accommodation or from cues related to blurring in the image of their falling prey. However, the fish determined also the height of 'fake-flies' correctly, whose image could never be focused and whose combined size and degree of blurring should have mislead the fish. Our findings are not compatible with the view that the fish uses a flexible combination of cues. They also do not support the view that height is gauged relative to structures in the vicinity of starting prey. We suggest that the fish use an elaborate analysis of looming to rapidly gauge initial height. © 2018. Published by The Company of Biologists Ltd.
Preisser, Evan L.; Bolnick, Daniel I.
2008-01-01
Background Most ecological models assume that predator and prey populations interact solely through consumption: predators reduce prey densities by killing and consuming individual prey. However, predators can also reduce prey densities by forcing prey to adopt costly defensive strategies. Methodology/Principal Findings We build on a simple Lotka-Volterra predator-prey model to provide a heuristic tool for distinguishing between the demographic effects of consumption (consumptive effects) and of anti-predator defenses (nonconsumptive effects), and for distinguishing among the multiple mechanisms by which anti-predator defenses might reduce prey population growth rates. We illustrate these alternative pathways for nonconsumptive effects with selected empirical examples, and use a meta-analysis of published literature to estimate the mean effect size of each pathway. Overall, predation risk tends to have a much larger impact on prey foraging behavior than measures of growth, survivorship, or fecundity. Conclusions/Significance While our model provides a concise framework for understanding the many potential NCE pathways and their relationships to each other, our results confirm empirical research showing that prey are able to partially compensate for changes in energy income, mitigating the fitness effects of defensive changes in time budgets. Distinguishing the many facets of nonconsumptive effects raises some novel questions, and will help guide both empirical and theoretical studies of how predation risk affects prey dynamics. PMID:18560575
NASA Astrophysics Data System (ADS)
Raia, Pasquale; Meloro, Carlo; Barbera, Carmela
2007-03-01
Constancy in predator/prey ratio (PPR) is a controversial issue in ecological research. Published reports support both constancy and inconstancy of the ratio in animal communities. Only a few studies, however, specifically address its course through time. Here we study the course of predator/prey ratio in communities of large Plio-Pleistocene mammals in Italy. After controlling for taphonomic biases, we find strong support for PPR inconstancy through time. Extinction, dispersal events, and differences in body size trends between predators and their prey were found to affect the ratio, which was distributed almost bimodally. We suggest that this stepwise dynamic in PPR indicates changes in ecosystem functioning. Prey richness was controlled by predation when PPR was high and by resources when PPR was low.
Lotka-Volterra system in a random environment.
Dimentberg, Mikhail F
2002-03-01
Classical Lotka-Volterra (LV) model for oscillatory behavior of population sizes of two interacting species (predator-prey or parasite-host pairs) is conservative. This may imply unrealistically high sensitivity of the system's behavior to environmental variations. Thus, a generalized LV model is considered with the equation for preys' reproduction containing the following additional terms: quadratic "damping" term that accounts for interspecies competition, and term with white-noise random variations of the preys' reproduction factor that simulates the environmental variations. An exact solution is obtained for the corresponding Fokker-Planck-Kolmogorov equation for stationary probability densities (PDF's) of the population sizes. It shows that both population sizes are independent gamma-distributed stationary random processes. Increasing level of the environmental variations does not lead to extinction of the populations. However it may lead to an intermittent behavior, whereby one or both population sizes experience very rare and violent short pulses or outbreaks while remaining on a very low level most of the time. This intermittency is described analytically by direct use of the solutions for the PDF's as well as by applying theory of excursions of random functions and by predicting PDF of peaks in the predators' population size.
Lotka-Volterra system in a random environment
NASA Astrophysics Data System (ADS)
Dimentberg, Mikhail F.
2002-03-01
Classical Lotka-Volterra (LV) model for oscillatory behavior of population sizes of two interacting species (predator-prey or parasite-host pairs) is conservative. This may imply unrealistically high sensitivity of the system's behavior to environmental variations. Thus, a generalized LV model is considered with the equation for preys' reproduction containing the following additional terms: quadratic ``damping'' term that accounts for interspecies competition, and term with white-noise random variations of the preys' reproduction factor that simulates the environmental variations. An exact solution is obtained for the corresponding Fokker-Planck-Kolmogorov equation for stationary probability densities (PDF's) of the population sizes. It shows that both population sizes are independent γ-distributed stationary random processes. Increasing level of the environmental variations does not lead to extinction of the populations. However it may lead to an intermittent behavior, whereby one or both population sizes experience very rare and violent short pulses or outbreaks while remaining on a very low level most of the time. This intermittency is described analytically by direct use of the solutions for the PDF's as well as by applying theory of excursions of random functions and by predicting PDF of peaks in the predators' population size.
Chan, K; Boutin, S; Hossie, T J; Krebs, C J; O'Donoghue, M; Murray, D L
2017-07-01
To improve understanding of the complex and variable patterns of predator foraging behavior in natural systems, it is critical to determine how density-dependent predation and predator hunting success are mediated by alternate prey or predator interference. Despite considerable theory and debate seeking to place predator-prey interactions in a more realistic context, few empirical studies have quantified the role of alternate prey or intraspecific interactions on predator-prey dynamics. We assessed functional responses of two similarly sized, sympatric carnivores, lynx (Lynx canadensis) and coyotes (Canis latrans), foraging on common primary (snowshoe hares; Lepus americanus) and alternate (red squirrels; Tamiasciurus hudsonicus) prey in a natural system. Lynx exhibited a hyperbolic prey-dependent response to changes in hare density, which is characteristic of predators relying primarily on a single prey species. In contrast, the lynx-squirrel response was found to be linear ratio dependent, or inversely dependent on hare density. The coyote-hare and coyote-squirrel interactions also were linear and influenced by predator density. We explain these novel results by apparent use of spatial and temporal refuges by prey, and the likelihood that predators commonly experience interference and lack of satiation when foraging. Our study provides empirical support from a natural predator-prey system that (1) predation rate may not be limited at high prey densities when prey are small or rarely captured; (2) interference competition may influence the predator functional response; and (3) predator interference has a variable role across different prey types. Ultimately, distinct functional responses of predators to different prey types illustrates the complexity associated with predator-prey interactions in natural systems and highlights the need to investigate predator behavior and predation rate in relation to the broader ecological community. © 2017 by the Ecological Society of America.
Food stress causes sex-specific maternal effects in mites
Walzer, Andreas; Schausberger, Peter
2015-01-01
ABSTRACT Life history theory predicts that females should produce few large eggs under food stress and many small eggs when food is abundant. We tested this prediction in three female-biased size-dimorphic predatory mites feeding on herbivorous spider mite prey: Phytoseiulus persimilis, a specialized spider mite predator; Neoseiulus californicus, a generalist preferring spider mites; Amblyseius andersoni, a broad diet generalist. Irrespective of predator species and offspring sex, most females laid only one small egg under severe food stress. Irrespective of predator species, the number of female but not male eggs decreased with increasing maternal food stress. This sex-specific effect was probably due to the higher production costs of large female than small male eggs. The complexity of the response to the varying availability of spider mite prey correlated with the predators' degree of adaptation to this prey. Most A. andersoni females did not oviposit under severe food stress, whereas N. californicus and P. persimilis did oviposit. Under moderate food stress, only P. persimilis increased its investment per offspring, at the expense of egg number, and produced few large female eggs. When prey was abundant, P. persimilis decreased the female egg sizes at the expense of increased egg numbers, resulting in a sex-specific egg size/number trade-off. Maternal effects manifested only in N. californicus and P. persimilis. Small egg size correlated with the body size of daughters but not sons. Overall, our study provides a key example of sex-specific maternal effects, i.e. food stress during egg production more strongly affects the sex of the large than the small offspring. PMID:26089530
Climate variability, human wildlife conflict and population dynamics of lions Panthera leo.
Trinkel, Martina
2013-04-01
Large carnivores are threatened by habitat loss, declining prey populations and direct persecution. Pride dynamics of eight lion prides in the centre of the Etosha National Park, Namibia are described during a 16-year study. Since the beginning of the 1980s, the number of adult and subadult lions declined continuously to two third of its initial population size, and reached a new equilibrium in the 1990s. Pride sizes decreased from 6.3 adult females in 1989 to 2.8 lionesses in 1997. While the number of adult females declined continuously, the number of adult males, subadult females and subadult males remained constant over the years. A severe drought period, lasting for more than 20 years, led to declining prey populations inside the lions' territory. Besides declining prey populations, conflict with humans at the border of Etosha puts substantial pressure onto the lion population: 82% of all known lion mortalities were caused by humans, and most of these consisted of adult females (28%) and subadult males (29%). I postulate that the considerable decline in the lion population is a response to declining prey populations, and although the human predator conflict is severe, it does not seem to limit the size of Etosha's lion population.
Climate variability, human wildlife conflict and population dynamics of lions Panthera leo
NASA Astrophysics Data System (ADS)
Trinkel, Martina
2013-04-01
Large carnivores are threatened by habitat loss, declining prey populations and direct persecution. Pride dynamics of eight lion prides in the centre of the Etosha National Park, Namibia are described during a 16-year study. Since the beginning of the 1980s, the number of adult and subadult lions declined continuously to two third of its initial population size, and reached a new equilibrium in the 1990s. Pride sizes decreased from 6.3 adult females in 1989 to 2.8 lionesses in 1997. While the number of adult females declined continuously, the number of adult males, subadult females and subadult males remained constant over the years. A severe drought period, lasting for more than 20 years, led to declining prey populations inside the lions' territory. Besides declining prey populations, conflict with humans at the border of Etosha puts substantial pressure onto the lion population: 82 % of all known lion mortalities were caused by humans, and most of these consisted of adult females (28 %) and subadult males (29 %). I postulate that the considerable decline in the lion population is a response to declining prey populations, and although the human predator conflict is severe, it does not seem to limit the size of Etosha's lion population.
Ecomorphology of the eyes and skull in zooplanktivorous labrid fishes
NASA Astrophysics Data System (ADS)
Schmitz, L.; Wainwright, P. C.
2011-06-01
Zooplanktivory is one of the most distinct trophic niches in coral reef fishes, and a number of skull traits are widely recognized as being adaptations for feeding in midwater on small planktonic prey. Previous studies have concluded that zooplanktivores have larger eyes for sharper visual acuity, reduced mouth structures to match small prey sizes, and longer gill rakers to help retain captured prey. We tested these three traditional hypotheses plus two novel adaptive hypotheses in labrids, a clade of very diverse coral reef fishes that show multiple independent evolutionary origins of zooplanktivory. Using phylogenetic comparative methods with a data set from 21 species, we failed to find larger eyes in three independent transitions to zooplanktivory. Instead, an impression of large eyes may be caused by a size reduction of the anterior facial region. However, two zooplanktivores ( Clepticus parrae and Halichoeres pictus) possess several features interpreted as adaptations to zooplankton feeding, namely large lens diameters relative to eye axial length, round pupil shape, and long gill rakers. The third zooplanktivore in our analysis, Cirrhilabrus solorensis, lacks all above features. It remains unclear whether Cirrhilabrus shows optical specializations for capturing planktonic prey. Our results support the prediction that increased visual acuity is adaptive for zooplanktivory, but in labrids increases in eye size are apparently not part of the evolutionary response.
Heaslip, Susan G; Iverson, Sara J; Bowen, W Don; James, Michael C
2012-01-01
The endangered leatherback turtle is a large, highly migratory marine predator that inexplicably relies upon a diet of low-energy gelatinous zooplankton. The location of these prey may be predictable at large oceanographic scales, given that leatherback turtles perform long distance migrations (1000s of km) from nesting beaches to high latitude foraging grounds. However, little is known about the profitability of this migration and foraging strategy. We used GPS location data and video from animal-borne cameras to examine how prey characteristics (i.e., prey size, prey type, prey encounter rate) correlate with the daytime foraging behavior of leatherbacks (n = 19) in shelf waters off Cape Breton Island, NS, Canada, during August and September. Video was recorded continuously, averaged 1:53 h per turtle (range 0:08-3:38 h), and documented a total of 601 prey captures. Lion's mane jellyfish (Cyanea capillata) was the dominant prey (83-100%), but moon jellyfish (Aurelia aurita) were also consumed. Turtles approached and attacked most jellyfish within the camera's field of view and appeared to consume prey completely. There was no significant relationship between encounter rate and dive duration (p = 0.74, linear mixed-effects models). Handling time increased with prey size regardless of prey species (p = 0.0001). Estimates of energy intake averaged 66,018 kJ • d(-1) but were as high as 167,797 kJ • d(-1) corresponding to turtles consuming an average of 330 kg wet mass • d(-1) (up to 840 kg • d(-1)) or approximately 261 (up to 664) jellyfish • d(-1). Assuming our turtles averaged 455 kg body mass, they consumed an average of 73% of their body mass • d(-1) equating to an average energy intake of 3-7 times their daily metabolic requirements, depending on estimates used. This study provides evidence that feeding tactics used by leatherbacks in Atlantic Canadian waters are highly profitable and our results are consistent with estimates of mass gain prior to southward migration.
Heaslip, Susan G.; Iverson, Sara J.; Bowen, W. Don; James, Michael C.
2012-01-01
The endangered leatherback turtle is a large, highly migratory marine predator that inexplicably relies upon a diet of low-energy gelatinous zooplankton. The location of these prey may be predictable at large oceanographic scales, given that leatherback turtles perform long distance migrations (1000s of km) from nesting beaches to high latitude foraging grounds. However, little is known about the profitability of this migration and foraging strategy. We used GPS location data and video from animal-borne cameras to examine how prey characteristics (i.e., prey size, prey type, prey encounter rate) correlate with the daytime foraging behavior of leatherbacks (n = 19) in shelf waters off Cape Breton Island, NS, Canada, during August and September. Video was recorded continuously, averaged 1:53 h per turtle (range 0:08–3:38 h), and documented a total of 601 prey captures. Lion's mane jellyfish (Cyanea capillata) was the dominant prey (83–100%), but moon jellyfish (Aurelia aurita) were also consumed. Turtles approached and attacked most jellyfish within the camera's field of view and appeared to consume prey completely. There was no significant relationship between encounter rate and dive duration (p = 0.74, linear mixed-effects models). Handling time increased with prey size regardless of prey species (p = 0.0001). Estimates of energy intake averaged 66,018 kJ•d−1 but were as high as 167,797 kJ•d−1 corresponding to turtles consuming an average of 330 kg wet mass•d−1 (up to 840 kg•d−1) or approximately 261 (up to 664) jellyfish•d-1. Assuming our turtles averaged 455 kg body mass, they consumed an average of 73% of their body mass•d−1 equating to an average energy intake of 3–7 times their daily metabolic requirements, depending on estimates used. This study provides evidence that feeding tactics used by leatherbacks in Atlantic Canadian waters are highly profitable and our results are consistent with estimates of mass gain prior to southward migration. PMID:22438906
NASA Astrophysics Data System (ADS)
Stehle, Chelsea M.; Battles, Andrew C.; Sparks, Michelle N.; Johnson, Michele A.
2017-10-01
The availability of food resources can affect the size and shape of territories, as well as the behaviors used to defend territories, in a variety of animal taxa. However, individuals within a population may respond differently to variation in food availability if the benefits of territoriality vary among those individuals. For example, benefits to territoriality may differ for animals of differing sizes, because larger individuals may require greater territory size to acquire required resources, or territorial behavior may differ between the sexes if males and females defend different resources in their territories. In this study, we tested whether arthropod abundance and biomass were associated with natural variation in territory size and defense in insectivorous green anole lizards, Anolis carolinensis. Our results showed that both male and female lizards had smaller territories in a habitat with greater prey biomass than lizards in habitats with less available prey, but the rates of aggressive behaviors used to defend territories did not differ among these habitats. Further, we did not find a relationship between body size and territory size, and the sexes did not differ in their relationships between food availability and territory size or behavioral defense. Together, these results suggest that differences in food availability influenced male and female territorial strategies similarly, and that territory size may be more strongly associated with variation in food resources than social display behavior. Thus, anole investment in the behavioral defense of a territory may not vary with territory quality.
Examining predator–prey body size, trophic level and body mass across marine and terrestrial mammals
Tucker, Marlee A.; Rogers, Tracey L.
2014-01-01
Predator–prey relationships and trophic levels are indicators of community structure, and are important for monitoring ecosystem changes. Mammals colonized the marine environment on seven separate occasions, which resulted in differences in species' physiology, morphology and behaviour. It is likely that these changes have had a major effect upon predator–prey relationships and trophic position; however, the effect of environment is yet to be clarified. We compiled a dataset, based on the literature, to explore the relationship between body mass, trophic level and predator–prey ratio across terrestrial (n = 51) and marine (n = 56) mammals. We did not find the expected positive relationship between trophic level and body mass, but we did find that marine carnivores sit 1.3 trophic levels higher than terrestrial carnivores. Also, marine mammals are largely carnivorous and have significantly larger predator–prey ratios compared with their terrestrial counterparts. We propose that primary productivity, and its availability, is important for mammalian trophic structure and body size. Also, energy flow and community structure in the marine environment are influenced by differences in energy efficiency and increased food web stability. Enhancing our knowledge of feeding ecology in mammals has the potential to provide insights into the structure and functioning of marine and terrestrial communities. PMID:25377460
Ibáñez, Carlos; Popa-Lisseanu, Ana G; Pastor-Beviá, David; García-Mudarra, Juan L; Juste, Javier
2016-10-01
Recently, several species of aerial-hawking bats have been found to prey on migrating songbirds, but details on this behaviour and its relevance for bird migration are still unclear. We sequenced avian DNA in feather-containing scats of the bird-feeding bat Nyctalus lasiopterus from Spain collected during bird migration seasons. We found very high prey diversity, with 31 bird species from eight families of Passeriformes, almost all of which were nocturnally flying sub-Saharan migrants. Moreover, species using tree hollows or nest boxes in the study area during migration periods were not present in the bats' diet, indicating that birds are solely captured on the wing during night-time passage. Additional to a generalist feeding strategy, we found that bats selected medium-sized bird species, thereby assumingly optimizing their energetic cost-benefit balance and injury risk. Surprisingly, bats preyed upon birds half their own body mass. This shows that the 5% prey to predator body mass ratio traditionally assumed for aerial hunting bats does not apply to this hunting strategy or even underestimates these animals' behavioural and mechanical abilities. Considering the bats' generalist feeding strategy and their large prey size range, we suggest that nocturnal bat predation may have influenced the evolution of bird migration strategies and behaviour. © 2016 John Wiley & Sons Ltd.
Feeding strategy of Downs herring larvae (Clupea harengus L.) in the English Channel and North Sea
NASA Astrophysics Data System (ADS)
Denis, Jeremy; Vallet, Carole; Courcot, Lucie; Lefebvre, Valérie; Caboche, Josselin; Antajan, Elvire; Marchal, Paul; Loots, Christophe
2016-09-01
This study aims to characterize the larval feeding strategy of the Downs sub-population of North Sea herring (Clupea harengus L.). Diet composition, vacuity rate and prey selectivity of larvae from 8 to 15 mm collected during the International Bottom Trawl Survey (IBTS) - MIK sampling from 2008 to 2013 were assessed by direct observation of their gut contents using Scanning Electron Microscopy (SEM). The high contribution of protists and small zooplanktonic prey observed in the gut contents proved the relevance of SEM to study the diet of first feeding larvae. The relatively low vacuity rate of 45% suggests that food may not be a limiting factor for Downs herring larvae in winter. These larvae appeared to be omnivorous and there was a clear shift in term of prey composition at a size of 13 mm. Smaller larvae (8-12 mm) fed on a higher diversity of small prey, mainly small copepods (Oncaea spp. and Euterpina acutifrons), invertebrate eggs, diatoms (Psammodicthyon panduriforme and Coscinodiscus spp.) and dinoflagellates (Dinophysis acuminate and Prorocentrum micans) whereas bigger larvae (13-15 mm) fed on a lower diversity of larger prey, mainly copepods (Temora longicornis and Paracalanus parvus) and dinoflagellates (Gonyaulax spp.). Downs herring larvae had clear prey preferences as some dinoflagellates (Pyrophacus spp., Gonyaulax spp., P. micans and Porocentrum lima), invertebrate eggs, copepods (Oncaea spp. and nauplii) and diatoms (Thalassiosira curviseriata) were positively selected and other diatoms (Nitzschia spp., Thalassiosira tenera, Thalassiosira spp. and Chaetoceros spp.) and copepods (Pseudocalanus elongatus, T. longicornis and Unidentified calanoid) were negatively selected. We argue that this shift in term of prey preferences occurring at a size of 13 mm constitutes the critical period for Downs herring larvae.
NASA Astrophysics Data System (ADS)
Greer, A. T.; Woodson, C. B.
2016-02-01
Because of the complexity and extremely large size of marine ecosystems, research attention has a strong focus on modelling the system through space and time to elucidate processes driving ecosystem state. One of the major weaknesses of current modelling approaches is the reliance on a particular grid cell size (usually 10's of km in the horizontal & water column mean) to capture the relevant processes, even though empirical research has shown that marine systems are highly structured on fine scales, and this structure can persist over relatively long time scales (days to weeks). Fine-scale features can have a strong influence on the predator-prey interactions driving trophic transfer. Here we apply a statistic, the AB ratio, used to quantify increased predator production due to predator-prey overlap on fine scales in a manner that is computationally feasible for larger scale models. We calculated the AB ratio for predator-prey distributions throughout the scientific literature, as well as for data obtained with a towed plankton imaging system, demonstrating that averaging across a typical model grid cell neglects the fine-scale predator-prey overlap that is an essential component of ecosystem productivity. Organisms from a range of trophic levels and oceanographic regions tended to overlap with their prey both in the horizontal and vertical dimensions. When predator swimming over a diel cycle was incorporated, the amount of production indicated by the AB ratio increased substantially. For the plankton image data, the AB ratio was higher with increasing sampling resolution, especially when prey were highly aggregated. We recommend that ecosystem models incorporate more fine-scale information both to more accurately capture trophic transfer processes and to capitalize on the increasing sampling resolution and data volume from empirical studies.
Do predators control prey species abundance? An experimental test with brown treesnakes on Guam
Campbell, Earl W.; Yackel Adams, Amy A.; Converse, Sarah J.; Fritts, Thomas H.; Rodda, Gordon H.
2012-01-01
The effect of predators on the abundance of prey species is a topic of ongoing debate in ecology; the effect of snake predators on their prey has been less debated, as there exists a general consensus that snakes do not negatively influence the abundance of their prey. However, this viewpoint has not been adequately tested. We quantified the effect of brown treesnake (Boiga irregularis) predation on the abundance and size of lizards on Guam by contrasting lizards in two 1-ha treatment plots of secondary forest from which snakes had been removed and excluded vs. two 1-ha control plots in which snakes were monitored but not removed or excluded. We removed resident snakes from the treatment plots with snake traps and hand capture, and snake immigration into these plots was precluded by electrified snake barriers. Lizards were sampled in all plots quarterly for a year following snake elimination in the treatment plots. Following the completion of this experiment, we used total removal sampling to census lizards on a 100-m2 subsample of each plot. Results of systematic lizard population monitoring before and after snake removal suggest that the abundance of the skink, Carlia ailanpalai, increased substantially and the abundance of two species of gekkonids, Lepidodactylus lugubris and Hemidactylus frenatus, also increased on snake-free plots. No treatment effect was observed for the skink Emoia caeruleocauda. Mean snout–vent length of all lizard species only increased following snake removal in the treatment plots. The general increase in prey density and mean size was unexpected in light of the literature consensus that snakes do not control the abundance of their prey species. Our findings show that, at least where alternate predators are lacking, snakes may indeed affect prey populations.
Medusa consumption and prey selection of silver pomfret Pampus argenteus juveniles
NASA Astrophysics Data System (ADS)
Liu, Chunsheng; Zhuang, Zhimeng; Chen, Siqing; Shi, Zhaohong; Yan, Jingping; Liu, Changlin
2014-01-01
The current study explored Aurelia aurita and Rhopilema esculent um consumption by silver pomfret juveniles, as well as their prey selection between the two jellyfish species. Silver pomfret juveniles weighing 1±0.1 g actively preyed on both the species. Their daily A. aurita consumption was 11.6 times their own body weights regardless of the size of A. aurita medusae. Their daily R. esculent um consumption was 13, 9.1, 5, and 4.1 times their own body weights when the R. esculentum medusae were 10, 20, 30, and 40 mm in bell diameter, respectively. The survival rates of the R. esculent um were higher than those of the A. aurita. When the R. esculent um medusae were more than 30 mm in bell diameter, their survival rate exceeded 92%. Silver pomfrets serve as a type of potential predators on A. aurita in coastal waters, and they have little influence on R. esculent um with a size exceeding 30 mm. Besides, A. aurita may be able to be used as fish prey in silver pomfret artificial breeding.
Pekár, Stano; Sobotník, Jan; Lubin, Yael
2011-07-01
In a predator-prey system where both intervenients come from the same taxon, one can expect a strong selection on behavioural and morphological traits involved in prey capture. For example, in specialised snake-eating snakes, the predator is unaffetced by the venom of the prey. We predicted that similar adaptations should have evolved in spider-eating (araneophagous) spiders. We investigated potential and actual prey of two Palpimanus spiders (P. gibbulus, P. orientalis) to support the prediction that these are araneophagous predators. Specific behavioural adaptations were investigated using a high-speed camera during staged encounters with prey, while morphological adaptations were investigated using electron microscopy. Both Palpimanus species captured a wide assortment of spider species from various guilds but also a few insect species. Analysis of the potential prey suggested that Palpimanus is a retreat-invading predator that actively searches for spiders that hide in a retreat. Behavioural capture adaptations include a slow, stealthy approach to the prey followed by a very fast attack. Morphological capture adaptations include scopulae on forelegs used in grabbing prey body parts, stout forelegs to hold the prey firmly, and an extremely thick cuticle all over the body preventing injury from a counter bite of the prey. Palpimanus overwhelmed prey that was more than 200% larger than itself. In trials with another araneophagous spider, Cyrba algerina (Salticidae), Palpimanus captured C. algerina in more than 90% of cases independent of the size ratio between the spiders. Evidence indicates that both Palpimanus species possesses remarkable adaptations that increase its efficiency in capturing spider prey.
NASA Astrophysics Data System (ADS)
Pekár, Stano; Šobotník, Jan; Lubin, Yael
2011-07-01
In a predator-prey system where both intervenients come from the same taxon, one can expect a strong selection on behavioural and morphological traits involved in prey capture. For example, in specialised snake-eating snakes, the predator is unaffetced by the venom of the prey. We predicted that similar adaptations should have evolved in spider-eating (araneophagous) spiders. We investigated potential and actual prey of two Palpimanus spiders ( P. gibbulus, P. orientalis) to support the prediction that these are araneophagous predators. Specific behavioural adaptations were investigated using a high-speed camera during staged encounters with prey, while morphological adaptations were investigated using electron microscopy. Both Palpimanus species captured a wide assortment of spider species from various guilds but also a few insect species. Analysis of the potential prey suggested that Palpimanus is a retreat-invading predator that actively searches for spiders that hide in a retreat. Behavioural capture adaptations include a slow, stealthy approach to the prey followed by a very fast attack. Morphological capture adaptations include scopulae on forelegs used in grabbing prey body parts, stout forelegs to hold the prey firmly, and an extremely thick cuticle all over the body preventing injury from a counter bite of the prey. Palpimanus overwhelmed prey that was more than 200% larger than itself. In trials with another araneophagous spider, Cyrba algerina (Salticidae), Palpimanus captured C. algerina in more than 90% of cases independent of the size ratio between the spiders. Evidence indicates that both Palpimanus species possesses remarkable adaptations that increase its efficiency in capturing spider prey.
Prey Capture Ecology of the Cubozoan Carukia barnesi
Sachlikidis, Nik; Jones, Rhondda
2015-01-01
Adult Carukia barnesi medusae feed predominantly on larval fish; however, their mode of prey capture seems more complex than previously described. Our findings revealed that during light conditions, this species extends its tentacles and ‘twitches’ them frequently. This highlights the lure-like nematocyst clusters in the water column, which actively attract larval fish that are consequently stung and consumed. This fishing behavior was not observed during dark conditions, presumably to reduce energy expenditure when they are not luring visually oriented prey. We found that larger medusae have longer tentacles; however, the spacing between the nematocyst clusters is not dependent on size, suggesting that the spacing of the nematocyst clusters is important for prey capture. Additionally, larger specimens twitch their tentacles more frequently than small specimens, which correlate with their recent ontogenetic prey shift from plankton to larval fish. These results indicate that adult medusae of C. barnesi are not opportunistically grazing in the water column, but instead utilize sophisticated prey capture techniques to specifically target larval fish. PMID:25970583
Rudolf, Volker H W
2008-06-01
Direct and indirect interactions between two prey species can strongly alter the dynamics of predator-prey systems. Most predators are cannibalistic, and as a consequence, even systems with only one predator and one prey include two prey types: conspecifics and heterospecifics. The effects of the complex direct and indirect interactions that emerge in such cannibalistic systems are still poorly understood. This study examined how the indirect interaction between conspecific and heterospecific prey affects cannibalism and predation rates and how the direct interactions between both species indirectly alter the effect of the cannibalistic predator. I tested for these effects using larvae of the stream salamanders Eurycea cirrigera (prey) and Pseudotriton ruber (cannibalistic predator) by manipulating the relative densities of the conspecific and heterospecific prey in the presence and absence of the predator in experimental streams. The rates of cannibalism and heterospecific predation were proportional to the respective densities and negatively correlated, indicating a positive indirect interaction between conspecific and heterospecific prey, similar to "apparent mutualism." Direct interactions between prey species did not alter the effect of the predator. Although both types of prey showed a similar 30% reduction in night activity and switch in microhabitat use in response to the presence of the predator, cannibalism rates were three times higher than heterospecific predation rates irrespective of the relative densities of the two types of prey. Cumulative predation risks differed even more due to the 48% lower growth rate of conspecific prey. Detailed laboratory experiments suggest that the 3:1 difference in cannibalism and predation rate was due to the higher efficiency of heterospecific prey in escaping immediate attacks. However, no difference was observed when the predator was a closely related salamander species, Gyrinophilus porphyriticus, indicating that this difference is species specific. This demonstrates that cannibalism can result in the coupling of predator and prey mortality rates that strongly determines the dynamics of predator-prey systems.
Growth characteristics and otolith analysis on age-0 American shad
Sauter, Sally T.; Wetzel, Lisa A.
2011-01-01
Otolith microstructure analysis provides useful information on the growth history of fish (Campana and Jones 1992, Bang and Gronkjaer 2005). Microstructure analysis can be used to construct the size-at-age growth trajectory of fish, determine daily growth rates, and estimate hatch date and other ecologically important life history events (Campana and Jones 1992, Tonkin et al. 2008). This kind of information can be incorporated into bioenergetics modeling, providing necessary data for estimating prey consumption, and guiding the development of empirically-based modeling scenarios for hypothesis testing. For example, age-0 American shad co-occur with emigrating juvenile fall Chinook salmon originating from Hanford Reach and the Snake River in the lower Columbia River reservoirs during the summer and early fall. The diet of age-0 American shad appears to overlap with that of juvenile fall Chinook salmon (Chapter 1, this reoprt), but juvenile fall Chinook salmon are also known to feed on age-0 American shad in the reservoirs (USGS unpublished data). Abundant, energy-dense age-0 American shad may provide juvenile fall Chinook salmon opportunities for rapid growth during the time period when large number of age-0 American shad are available. Otolith analysis of hatch dates and the growth curve of age-0 American shad could be used to identify when eggs, larvae, and juveniles of specific size classes are temporally available as food for fall Chinook salmon in the lower Columbia River reservoirs. This kind of temporally and spatially explicit life history information is important to include in bioenergetics modeling scenarios. Quantitive estimates of prey consumption could be used with spatially-explicit estimates of prey abundance to construct a quantitative assessment of the age-0 American shad impact on a reservoir food web.
Analysis of the age-0 American shad growth trajectory or individual growth records may show evidence of differential growth rates over time that may be linked to environmental conditions such as water temperature (Leach and Houde 1999, Meekan et al. 2003), size-selective mortality (Folkvord et al. 1997), developmental changes in metabolic rate (Bang and Gronkjaer 2005, Bochdanksy et al. 2005), feeding ability (Schmitt and Holbrook 1984, Luecke 1986, Johnson and Dropkin 1995, Johnson and Dropkin 1996), and intra- and inter-specific competition (Crecco and Savoy 1987, Marchand and Boisclair 1998, Gadomski and Wagner 2009). For example, environmental conditions associated with John Day reservoir may eliminate or reduce the availability of many aquatic and terrestrial insect prey types (Rondorf et al. 1990). Many juvenile fishes, including age-0 American shad and juvenile fall Chinook salmon may be foraging on limited insect prey in John Day Reservoir (Gadomski and Wagner 2009). Because larger insect prey has higher energy densities than most zooplankton prey, and insect availability may be limited in John Day reservoir, the growth of American shad may be constrained once fish grow to a size where they could exploit larger, more energy-dense insect prey (Mayer and Wahl 1997).
Similarly, as age-0 American shad grow, they are able to forage on larger zooplankton with higher energy densities than smaller individuals of the same species, or other smaller-bodied zooplankton species (Schael et al. 1991, Mayer and Wahl 1997). Intra- and inter-specific demand for larger-bodied and higher energy zooplankton prey may reduce the availability of these prey items (Tabor et al. 1996). Constrained growth increments on the otolith microstructure of juvenile American shad or other planktivorous fish could help identify important interactions between fishes that may be linked to the year class strength of age-0 American shad and prey partitioning in John Day reservoir.
The objective of this study was to determine time of hatch and size-at-age of age-0 American shad in lower Columbia River reservoirs for use with the American shad and fall Chinook salmon bioenergetic models. Size-at-age data on age-0 American shad can be used to generate quantitative estimates of prey consumption with the American shad bioenergetics model. Otolith microstructure analysis was used to provide reference points on the temporal availability of early life stages and sizes of American shad in the reservoir (Limburg 1996a,b, Limburg et al. 1999). Additional analyses on the age-0 American shad growth trajectory in John Day reservoir may reveal differential growth patterns during the early life history of these fish that are linked to developmental differences between individual fish, transient environmental conditions, or food web constraints (Limburg 1996a).
Island colonisation and the evolutionary rates of body size in insular neonate snakes
Aubret, F
2015-01-01
Island colonisation by animal populations is often associated with dramatic shifts in body size. However, little is known about the rates at which these evolutionary shifts occur, under what precise selective pressures and the putative role played by adaptive plasticity on driving such changes. Isolation time played a significant role in the evolution of body size in island Tiger snake populations, where adaptive phenotypic plasticity followed by genetic assimilation fine-tuned neonate body and head size (hence swallowing performance) to prey size. Here I show that in long isolated islands (>6000 years old) and mainland populations, neonate body mass and snout-vent length are tightly correlated with the average prey body mass available at each site. Regression line equations were used to calculate body size values to match prey size in four recently isolated populations of Tiger snakes. Rates of evolution in body mass and snout-vent length, calculated for seven island snake populations, were significantly correlated with isolation time. Finally, rates of evolution in body mass per generation were significantly correlated with levels of plasticity in head growth rates. This study shows that body size evolution occurs at a faster pace in recently isolated populations and suggests that the level of adaptive plasticity for swallowing abilities may correlate with rates of body mass evolution. I hypothesise that, in the early stages of colonisation, adaptive plasticity and directional selection may combine and generate accelerated evolution towards an ‘optimal' phenotype. PMID:25074570
Mosquito Consumption by Insectivorous Bats: Does Size Matter?
Gonsalves, Leroy; Bicknell, Brian; Law, Brad; Webb, Cameron; Monamy, Vaughan
2013-01-01
Insectivorous bats have often been touted as biological control for mosquito populations. However, mosquitoes generally represent only a small proportion of bat diet. Given the small size of mosquitoes, restrictions imposed on prey detectability by low frequency echolocation, and variable field metabolic rates (FMR), mosquitoes may not be available to or profitable for all bats. This study investigated whether consumption of mosquitoes was influenced by bat size, which is negatively correlated with echolocation frequency but positively correlated with bat FMR. To assess this, we investigated diets of five eastern Australian bat species (Vespadelus vulturnus Thomas, V. pumilus Gray, Miniopterus australis Tomes, Nyctophilus gouldi Tomes and Chalinolobus gouldii Gray) ranging in size from 4-14 g in coastal forest, using molecular analysis of fecal DNA. Abundances of potential mosquito and non-mosquito prey were concurrently measured to provide data on relative prey abundance. Aedes vigilax was locally the most abundant mosquito species, while Lepidoptera the most abundant insect order. A diverse range of prey was detected in bat feces, although members of Lepidoptera dominated, reflecting relative abundance at trap sites. Consumption of mosquitoes was restricted to V. vulturnus and V. pumilus, two smaller sized bats (4 and 4.5 g). Although mosquitoes were not commonly detected in feces of V. pumilus, they were present in feces of 55 % of V. vulturnus individuals. To meet nightly FMR requirements, Vespadelus spp. would need to consume ~600-660 mosquitoes on a mosquito-only diet, or ~160-180 similar sized moths on a moth-only diet. Lower relative profitability of mosquitoes may provide an explanation for the low level of mosquito consumption among these bats and the absence of mosquitoes in feces of larger bats. Smaller sized bats, especially V. vulturnus, are likely to be those most sensitive to reductions in mosquito abundance and should be monitored during mosquito control activities. PMID:24130851
Food stress causes sex-specific maternal effects in mites.
Walzer, Andreas; Schausberger, Peter
2015-08-01
Life history theory predicts that females should produce few large eggs under food stress and many small eggs when food is abundant. We tested this prediction in three female-biased size-dimorphic predatory mites feeding on herbivorous spider mite prey: Phytoseiulus persimilis, a specialized spider mite predator; Neoseiulus californicus, a generalist preferring spider mites; Amblyseius andersoni, a broad diet generalist. Irrespective of predator species and offspring sex, most females laid only one small egg under severe food stress. Irrespective of predator species, the number of female but not male eggs decreased with increasing maternal food stress. This sex-specific effect was probably due to the higher production costs of large female than small male eggs. The complexity of the response to the varying availability of spider mite prey correlated with the predators' degree of adaptation to this prey. Most A. andersoni females did not oviposit under severe food stress, whereas N. californicus and P. persimilis did oviposit. Under moderate food stress, only P. persimilis increased its investment per offspring, at the expense of egg number, and produced few large female eggs. When prey was abundant, P. persimilis decreased the female egg sizes at the expense of increased egg numbers, resulting in a sex-specific egg size/number trade-off. Maternal effects manifested only in N. californicus and P. persimilis. Small egg size correlated with the body size of daughters but not sons. Overall, our study provides a key example of sex-specific maternal effects, i.e. food stress during egg production more strongly affects the sex of the large than the small offspring. © 2015. Published by The Company of Biologists Ltd.
Diel foraging behavior of gravid leatherback sea turtles in deep waters of the Caribbean Sea.
Casey, James; Garner, Jeanne; Garner, Steve; Williard, Amanda Southwood
2010-12-01
It is generally assumed that leatherback turtles (Dermochelys coriacea), like other species of sea turtle, do not feed while offshore from nesting beaches, and rely instead on fat reserves to fuel reproductive activities. Recent studies, however, provide evidence that leatherbacks may forage during the internesting interval while offshore in the Western Atlantic Ocean and Caribbean Sea. Bio-logging technology was used to investigate the foraging behavior of female leatherback turtles at St Croix, US Virgin Islands. Leatherback gastrointestinal tract temperatures (T(GT)) were analyzed for sudden fluctuations indicative of ingestions, and laboratory ingestion simulations were used to characterize temperature fluctuations associated with ingestion of prey versus seawater. Dive patterns associated with prey ingestion were characterized and the proportion of prey ingestion during the day (05:00-18:59 h) and night (19:00-04:59 h) were compared. A combined total of 111 prey ingestions for seven leatherback turtles were documented during the internesting interval. The number of prey ingestions ranged from six to 48 for individual turtles, and the majority (87.4%) of these events occurred during the daytime. Prey ingestions were most frequently associated with V-shaped dives, and the mean (±1 s.d.) maximum dive depth with prey ingestion ranged from 154±51 to 232±101 m for individual turtles. Although leatherbacks were found to opportunistically feed during the internesting interval, the low prey ingestion rates indicate that energy reserves acquired prior to the breeding season are critical for successful reproduction by leatherbacks from the St Croix, USVI nesting population.
Free-ranging farm cats: home range size and predation on a livestock unit in Northwest Georgia.
Kitts-Morgan, Susanna E; Caires, Kyle C; Bohannon, Lisa A; Parsons, Elizabeth I; Hilburn, Katharine A
2015-01-01
This study's objective was to determine seasonal and diurnal vs. nocturnal home range size, as well as predation for free-ranging farm cats at a livestock unit in Northwest Georgia. Seven adult cats were tracked with attached GPS units for up to two weeks for one spring and two summer seasons from May 2010 through August 2011. Three and five cats were tracked for up to two weeks during the fall and winter seasons, respectively. Feline scat was collected during this entire period. Cats were fed a commercial cat food daily. There was no seasonal effect (P > 0.05) on overall (95% KDE and 90% KDE) or core home range size (50% KDE). Male cats tended (P = 0.08) to have larger diurnal and nocturnal core home ranges (1.09 ha) compared to female cats (0.64 ha). Reproductively intact cats (n = 2) had larger (P < 0.0001) diurnal and nocturnal home ranges as compared to altered cats. Feline scat processing separated scat into prey parts, and of the 210 feline scats collected during the study, 75.24% contained hair. Of these 158 scat samples, 86 contained non-cat hair and 72 contained only cat hair. Other prey components included fragments of bone in 21.43% of scat and teeth in 12.86% of scat. Teeth were used to identify mammalian prey hunted by these cats, of which the Hispid cotton rat (Sigmodon hispidus) was the primary rodent. Other targeted mammals were Peromyscus sp., Sylvilagus sp. and Microtus sp. Invertebrates and birds were less important as prey, but all mammalian prey identified in this study consisted of native animals. While the free-ranging farm cats in this study did not adjust their home range seasonally, sex and reproductive status did increase diurnal and nocturnal home range size. Ultimately, larger home ranges of free-ranging cats could negatively impact native wildlife.
Free-Ranging Farm Cats: Home Range Size and Predation on a Livestock Unit In Northwest Georgia
Kitts-Morgan, Susanna E.; Caires, Kyle C.; Bohannon, Lisa A.; Parsons, Elizabeth I.; Hilburn, Katharine A.
2015-01-01
This study’s objective was to determine seasonal and diurnal vs. nocturnal home range size, as well as predation for free-ranging farm cats at a livestock unit in Northwest Georgia. Seven adult cats were tracked with attached GPS units for up to two weeks for one spring and two summer seasons from May 2010 through August 2011. Three and five cats were tracked for up to two weeks during the fall and winter seasons, respectively. Feline scat was collected during this entire period. Cats were fed a commercial cat food daily. There was no seasonal effect (P > 0.05) on overall (95% KDE and 90% KDE) or core home range size (50% KDE). Male cats tended (P = 0.08) to have larger diurnal and nocturnal core home ranges (1.09 ha) compared to female cats (0.64 ha). Reproductively intact cats (n = 2) had larger (P < 0.0001) diurnal and nocturnal home ranges as compared to altered cats. Feline scat processing separated scat into prey parts, and of the 210 feline scats collected during the study, 75.24% contained hair. Of these 158 scat samples, 86 contained non-cat hair and 72 contained only cat hair. Other prey components included fragments of bone in 21.43% of scat and teeth in 12.86% of scat. Teeth were used to identify mammalian prey hunted by these cats, of which the Hispid cotton rat (Sigmodon hispidus) was the primary rodent. Other targeted mammals were Peromyscus sp., Sylvilagus sp. and Microtus sp. Invertebrates and birds were less important as prey, but all mammalian prey identified in this study consisted of native animals. While the free-ranging farm cats in this study did not adjust their home range seasonally, sex and reproductive status did increase diurnal and nocturnal home range size. Ultimately, larger home ranges of free-ranging cats could negatively impact native wildlife. PMID:25894078
Brown, Gregory P; Shine, Richard
2007-11-01
To predict the impacts of climate change on animal populations, we need long-term data sets on the effects of annual climatic variation on the demographic traits (growth, survival, reproductive output) that determine population viability. One frequent complication is that fecundity also depends upon maternal body size, a trait that often spans a wide range within a single population. During an eight-year field study, we measured annual variation in weather conditions, frog abundance and snake reproduction on a floodplain in the Australian wet-dry tropics. Frog numbers varied considerably from year to year, and were highest in years with hotter wetter conditions during the monsoonal season ("wet season"). Mean maternal body sizes, egg sizes and post-partum maternal body conditions of frog-eating snakes (keelback, Tropidonophis mairii, Colubridae) showed no significant annual variation over this period, but mean clutch sizes were higher in years with higher prey abundance. Larger females were more sensitive to frog abundance in this respect than were smaller conspecifics, so that the rate at which fecundity increased with body size varied among years, and was highest when prey availability was greatest. Thus, the link between female body size and reproductive output varied among years, with climatic factors modifying the relative reproductive rates of larger (older) versus smaller (younger) animals within the keelback population.
An advanced method to assess the diet of free-ranging large carnivores based on scats.
Wachter, Bettina; Blanc, Anne-Sophie; Melzheimer, Jörg; Höner, Oliver P; Jago, Mark; Hofer, Heribert
2012-01-01
The diet of free-ranging carnivores is an important part of their ecology. It is often determined from prey remains in scats. In many cases, scat analyses are the most efficient method but they require correction for potential biases. When the diet is expressed as proportions of consumed mass of each prey species, the consumed prey mass to excrete one scat needs to be determined and corrected for prey body mass because the proportion of digestible to indigestible matter increases with prey body mass. Prey body mass can be corrected for by conducting feeding experiments using prey of various body masses and fitting a regression between consumed prey mass to excrete one scat and prey body mass (correction factor 1). When the diet is expressed as proportions of consumed individuals of each prey species and includes prey animals not completely consumed, the actual mass of each prey consumed by the carnivore needs to be controlled for (correction factor 2). No previous study controlled for this second bias. Here we use an extended series of feeding experiments on a large carnivore, the cheetah (Acinonyx jubatus), to establish both correction factors. In contrast to previous studies which fitted a linear regression for correction factor 1, we fitted a biologically more meaningful exponential regression model where the consumed prey mass to excrete one scat reaches an asymptote at large prey sizes. Using our protocol, we also derive correction factor 1 and 2 for other carnivore species and apply them to published studies. We show that the new method increases the number and proportion of consumed individuals in the diet for large prey animals compared to the conventional method. Our results have important implications for the interpretation of scat-based studies in feeding ecology and the resolution of human-wildlife conflicts for the conservation of large carnivores.
An Advanced Method to Assess the Diet of Free-Ranging Large Carnivores Based on Scats
Wachter, Bettina; Blanc, Anne-Sophie; Melzheimer, Jörg; Höner, Oliver P.; Jago, Mark; Hofer, Heribert
2012-01-01
Background The diet of free-ranging carnivores is an important part of their ecology. It is often determined from prey remains in scats. In many cases, scat analyses are the most efficient method but they require correction for potential biases. When the diet is expressed as proportions of consumed mass of each prey species, the consumed prey mass to excrete one scat needs to be determined and corrected for prey body mass because the proportion of digestible to indigestible matter increases with prey body mass. Prey body mass can be corrected for by conducting feeding experiments using prey of various body masses and fitting a regression between consumed prey mass to excrete one scat and prey body mass (correction factor 1). When the diet is expressed as proportions of consumed individuals of each prey species and includes prey animals not completely consumed, the actual mass of each prey consumed by the carnivore needs to be controlled for (correction factor 2). No previous study controlled for this second bias. Methodology/Principal Findings Here we use an extended series of feeding experiments on a large carnivore, the cheetah (Acinonyx jubatus), to establish both correction factors. In contrast to previous studies which fitted a linear regression for correction factor 1, we fitted a biologically more meaningful exponential regression model where the consumed prey mass to excrete one scat reaches an asymptote at large prey sizes. Using our protocol, we also derive correction factor 1 and 2 for other carnivore species and apply them to published studies. We show that the new method increases the number and proportion of consumed individuals in the diet for large prey animals compared to the conventional method. Conclusion/Significance Our results have important implications for the interpretation of scat-based studies in feeding ecology and the resolution of human-wildlife conflicts for the conservation of large carnivores. PMID:22715373
Prey pursuit strategy of Japanese horseshoe bats during an in-flight target-selection task.
Kinoshita, Yuki; Ogata, Daiki; Watanabe, Yoshiaki; Riquimaroux, Hiroshi; Ohta, Tetsuo; Hiryu, Shizuko
2014-09-01
The prey pursuit behavior of Japanese horseshoe bats (Rhinolophus ferrumequinum nippon) was investigated by tasking bats during flight with choosing between two tethered fluttering moths. Echolocation pulses were recorded using a telemetry microphone mounted on the bat combined with a 17-channel horizontal microphone array to measure pulse directions. Flight paths of the bat and moths were monitored using two high-speed video cameras. Acoustical measurements of returning echoes from fluttering moths were first collected using an ultrasonic loudspeaker, turning the head direction of the moth relative to the loudspeaker from 0° (front) to 180° (back) in the horizontal plane. The amount of acoustical glints caused by moth fluttering varied with the sound direction, reaching a maximum at 70°-100° in the horizontal plane. In the flight experiment, moths chosen by the bat fluttered within or moved across these angles relative to the bat's pulse direction, which would cause maximum dynamic changes in the frequency and amplitude of acoustical glints during flight. These results suggest that echoes with acoustical glints containing the strongest frequency and amplitude modulations appear to attract bats for prey selection.
Srijayat, T C; Pradeep, P J; Hassan, A; Chatterji, A; Shaharom, F; Jeffs, Andrew
2014-03-01
The trilobite larvae of C. rotundicauda were tested to determine their colour preference and light sensitivity until their first moulting (25 days post hatching) under laboratory conditions. Maximum congregation size of the trilobite larvae was found in the white zone respectively where (n = 12) followed by yellow (n = 8) and orange (n = 8), which showed the larval preference for lighter zones. Morisita's index calculation showed a clumped/aggregated distribution (yellow, blue, orange and white) and uniform/hyper dispersed distribution (green, red and black) for various colours tested. Trilobite larvae showed least preference for brighter regions while tested in the experiment [black; (n = 4) and red; (n = 5)]. Experiments done to determine the light sensitivity of trilobite larvae showed that the larvae had more preference towards ultraviolet lights. The maximum congregation size of 38.8 and 40.7% of the larvae was encountered under ultraviolet light, when the light sources were kept horizontal and vertical, respectively. Overall, results suggested that the trilobite larvae of C. rotundicauda, preferred light source of shorter wavelengths (UV light) and colours of lighter zone (white, yellow, orange), which might be due to their adaptation to their natural habitat for predator avoidance, prey selection and water quality.
Specialists and generalists coexist within a population of spider-hunting mud dauber wasps
Taylor, Lisa A.
2017-01-01
Abstract Individual foraging specialization describes the phenomenon where conspecifics within a population of generalists exhibit differences in foraging behavior, each specializing on different prey types. Individual specialization is widespread in animals, yet is understudied in invertebrates, despite potential impacts to food web and population dynamics. Sceliphron caementarium (Hymenoptera: Sphecidae) is an excellent system to examine individual specialization. Females of these mud dauber wasps capture and paralyze spiders which they store in mud nests to provision their offspring. Individuals may make hundreds of prey choices in their short lifespan and fully intact prey items can be easily excavated from their mud nests, where each distinct nest cell represents a discrete foraging bout. Using data collected from a single population of S. caementarium (where all individuals had access to the same resources), we found evidence of strong individual specialization; individuals utilized different resources (with respect to prey taxa, prey ecological guild, and prey size) to provision their nests. The extent of individual specialization differed widely within the population with some females displaying extreme specialization (taking only prey from a single species) while others were generalists (taking prey from up to 6 spider families). We also found evidence of temporal consistency in individual specialization over multiple foraging events. We discuss these findings broadly in the context of search images, responses to changing prey availability, and intraspecific competition pressure. PMID:29622922
Effects of bottom trawling on fish foraging and feeding.
Johnson, Andrew Frederick; Gorelli, Giulia; Jenkins, Stuart Rees; Hiddink, Jan Geert; Hinz, Hilmar
2015-01-22
The effects of bottom trawling on benthic invertebrates include reductions of biomass, diversity and body size. These changes may negatively affect prey availability for demersal fishes, potentially leading to reduced food intake, body condition and yield of fishes in chronically trawled areas. Here, the effect of trawling on the prey availability and diet of two commercially important flatfish species, plaice (Pleuronectes platessa) and dab (Limanda limanda), was investigated over a trawling intensity gradient in the Irish Sea. Previous work in this area has shown that trawling negatively affects the condition of plaice but not of dab. This study showed that reductions in local prey availability did not result in reduced feeding of fish. As trawling frequency increased, both fish and prey biomass declined, such that the ratio of fish to prey remained unchanged. Consequently, even at frequently trawled sites with low prey biomass, both plaice and dab maintained constant levels of stomach fullness and gut energy contents. However, dietary shifts in plaice towards energy-poor prey items were evident when prey species were analysed individually. This, together with a potential decrease in foraging efficiency due to low prey densities, was seen as the most plausible cause for the reduced body condition observed. Understanding the relationship between trawling, benthic impacts, fish foraging and resultant body condition is an important step in designing successful mitigation measures for future management strategies in bottom trawl fisheries.
Effects of bottom trawling on fish foraging and feeding
Johnson, Andrew Frederick; Gorelli, Giulia; Jenkins, Stuart Rees; Hiddink, Jan Geert; Hinz, Hilmar
2015-01-01
The effects of bottom trawling on benthic invertebrates include reductions of biomass, diversity and body size. These changes may negatively affect prey availability for demersal fishes, potentially leading to reduced food intake, body condition and yield of fishes in chronically trawled areas. Here, the effect of trawling on the prey availability and diet of two commercially important flatfish species, plaice (Pleuronectes platessa) and dab (Limanda limanda), was investigated over a trawling intensity gradient in the Irish Sea. Previous work in this area has shown that trawling negatively affects the condition of plaice but not of dab. This study showed that reductions in local prey availability did not result in reduced feeding of fish. As trawling frequency increased, both fish and prey biomass declined, such that the ratio of fish to prey remained unchanged. Consequently, even at frequently trawled sites with low prey biomass, both plaice and dab maintained constant levels of stomach fullness and gut energy contents. However, dietary shifts in plaice towards energy-poor prey items were evident when prey species were analysed individually. This, together with a potential decrease in foraging efficiency due to low prey densities, was seen as the most plausible cause for the reduced body condition observed. Understanding the relationship between trawling, benthic impacts, fish foraging and resultant body condition is an important step in designing successful mitigation measures for future management strategies in bottom trawl fisheries. PMID:25621336
Toxin constraint explains diet choice, survival and population dynamics in a molluscivore shorebird
van Gils, Jan A.; van der Geest, Matthijs; Leyrer, Jutta; Oudman, Thomas; Lok, Tamar; Onrust, Jeroen; de Fouw, Jimmy; van der Heide, Tjisse; van den Hout, Piet J.; Spaans, Bernard; Dekinga, Anne; Brugge, Maarten; Piersma, Theunis
2013-01-01
Recent insights suggest that predators should include (mildly) toxic prey when non-toxic food is scarce. However, the assumption that toxic prey is energetically as profitable as non-toxic prey misses the possibility that non-toxic prey have other ways to avoid being eaten, such as the formation of an indigestible armature. In that case, predators face a trade-off between avoiding toxins and minimizing indigestible ballast intake. Here, we report on the trophic interactions between a shorebird (red knot, Calidris canutus canutus) and its two main bivalve prey, one being mildly toxic but easily digestible, and the other being non-toxic but harder to digest. A novel toxin-based optimal diet model is developed and tested against an existing one that ignores toxin constraints on the basis of data on prey abundance, diet choice, local survival and numbers of red knots at Banc d'Arguin (Mauritania) over 8 years. Observed diet and annual survival rates closely fit the predictions of the toxin-based model, with survival and population size being highest in years when the non-toxic prey is abundant. In the 6 of 8 years when the non-toxic prey is not abundant enough to satisfy the energy requirements, red knots must rely on the toxic alternative. PMID:23740782
Northern Goshawk diet in Minnesota: An Analysis using video recording systems
Smithers, B.L.; Boal, C.W.; Andersen, D.E.
2005-01-01
We used video-recording systems to collect diet information at 13 Northern Goshawk (Accipiter gentilis) nests in Minnesota during the 2000, 2001, and 2002 breeding seasons. We collected 4871 hr of video footage, from which 652 prey deliveries were recorded. The majority of prey deliveries identified were mammals (62%), whereas birds (38%) composed a smaller proportion of diet. Mammals accounted for 61% of biomass delivered, and avian prey items accounted for 39% of prey biomass. Sciurids and leporids accounted for 70% of the identified prey. Red squirrel (Tamiasciurus hudsonicus), eastern chipmunk (Tamias striatus), and snowshoe hare (Lepus americanus) were the dominant mammals identified in the diet, while American Crow (Corvus brachyrhynchos) and Ruffed Grouse (Bonasa umbellus) were the dominant avian prey delivered to nests. On average, breeding goshawks delivered 2.12 prey items/d, and each delivery averaged 275 g for a total of 551 g delivered/d. However, daily (P < 0.001) and hourly (P = 0.01) delivery rates varied among nests. Delivery rates (P = 0.01) and biomass delivered (P = 0.038) increased with brood size. Diversity and equitability of prey used was similar among nests and was low throughout the study area, most likely due to the dominance of red squirrel in the diet. ?? 2005 The Raptor Research Foundation, Inc.
Toxin constraint explains diet choice, survival and population dynamics in a molluscivore shorebird.
van Gils, Jan A; van der Geest, Matthijs; Leyrer, Jutta; Oudman, Thomas; Lok, Tamar; Onrust, Jeroen; de Fouw, Jimmy; van der Heide, Tjisse; van den Hout, Piet J; Spaans, Bernard; Dekinga, Anne; Brugge, Maarten; Piersma, Theunis
2013-07-22
Recent insights suggest that predators should include (mildly) toxic prey when non-toxic food is scarce. However, the assumption that toxic prey is energetically as profitable as non-toxic prey misses the possibility that non-toxic prey have other ways to avoid being eaten, such as the formation of an indigestible armature. In that case, predators face a trade-off between avoiding toxins and minimizing indigestible ballast intake. Here, we report on the trophic interactions between a shorebird (red knot, Calidris canutus canutus) and its two main bivalve prey, one being mildly toxic but easily digestible, and the other being non-toxic but harder to digest. A novel toxin-based optimal diet model is developed and tested against an existing one that ignores toxin constraints on the basis of data on prey abundance, diet choice, local survival and numbers of red knots at Banc d'Arguin (Mauritania) over 8 years. Observed diet and annual survival rates closely fit the predictions of the toxin-based model, with survival and population size being highest in years when the non-toxic prey is abundant. In the 6 of 8 years when the non-toxic prey is not abundant enough to satisfy the energy requirements, red knots must rely on the toxic alternative.
Discovery of a monophagous true predator, a specialist termite-eating spider (Araneae: Ammoxenidae)
Petráková, Lenka; Líznarová, Eva; Pekár, Stano; Haddad, Charles R.; Sentenská, Lenka; Symondson, William O. C.
2015-01-01
True predators are characterised by capturing a number of prey items during their lifetime and by being generalists. Some true predators are facultative specialists, but very few species are stenophagous specialists that catch only a few closely related prey types. A monophagous true predator that would exploit a single prey species has not been discovered yet. Representatives of the spider family Ammoxenidae have been reported to have evolved to only catch termites. Here we tested the hypothesis that Ammoxenus amphalodes is a monophagous termite-eater capturing only Hodotermes mossambicus. We studied the trophic niche of A. amphalodes by means of molecular analysis of the gut contents using Next Generation Sequencing. We investigated their willingness to accept alternative prey and observed their specific predatory behaviour and prey capture efficiency. We found all of the 1.4 million sequences were H. mossambicus. In the laboratory A. amphalodes did not accept any other prey, including other termite species. The spiders attacked the lateral side of the thorax of termites and immobilised them within 1 min. The paralysis efficiency was independent of predator:prey size ratio. The results strongly indicate that A. amphalodes is a monophagous prey specialist, specifically adapted to feed on H. mossambicus. PMID:26359085
Elrod, Joseph H.; O'Gorman, Robert
1991-01-01
We examined the diet of juvenile lake trout Salvelinus namaycush (<450 mm, total length) in Lake Ontario during four sampling periods (April–May, June, July–August, and October 1979–1987) in relation to changes in prey fish abundance in the depth zone where we caught the lake trout. Over all years combined, slimy sculpins Cottus cognatus contributed the most (39–52%) by wet weight to the diet, followed by alewives Alosa pseudoharengus(3–38%), rainbow smelt Osmerus mordax (17–43%), and johnny darters Etheostoma nigrum(2–10%). Over 90% of alewives eaten during April–May and June were age 1, and 98% of those eaten during October were age 0 (few alewives were eaten in July–August). Mean lengths of rainbow smelt and slimy sculpins in stomachs increased with size of lake trout. Juvenile lake trout generally fed opportunistically—seasonal and annual changes in diet usually reflected seasonal and annual changes in abundance of prey fishes near bottom where we captured the lake trout. Furthermore, diet within a given season varied with depth of capture of lake trout, and changes with depth in proportions of prey species in lake trout stomachs mirrored changes in proportions of the prey species in trawl catches at the same depth. Alewives (ages 0 and 1) were the only prey fish eaten in substantial quantities by both juvenile lake trout and other salmonines, and thus are a potential focus of competition between these predators.
Pickering, Tyler R; Poirier, Luke A; Barrett, Timothy J; McKenna, Shawn; Davidson, Jeff; Quijón, Pedro A
2017-06-01
Non-indigenous green crabs (Carcinus maenas) are emerging as important predators of autogenic engineers like American oysters (Crassostrea virginica) throughout the eastern seaboard of Canada and the United States. To document the spreading distribution of green crabs, we carried out surveys in seven sites of Prince Edward Island during three fall seasons. To assess the potential impact of green crabs on oyster mortality in relation to predator and prey size, we conducted multiple predator-prey manipulations in the field and laboratory. The surveys confirmed an ongoing green crab spread into new productive oyster habitats while rapidly increasing in numbers in areas where crabs had established already. The experiments measured mortality rates on four sizes of oysters exposed to three sizes of crab, and lasted 3-5 days. The outcomes of experiments conducted in Vexar ® bags, laboratory tanks and field cages were consistent and were heavily dependent on both crab size and oyster size: while little predation occurred on large oysters, large and medium green crabs preyed heavily on small sizes. Oysters reached a refuge within the 35-55 mm shell length range; below that range, oysters suffered high mortality due to green crab predation and thus require management measures to enhance their survival. These results are most directly applicable to aquaculture operations and restoration initiatives but have implications for oyster sustainability. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tucker, Marlee A; Rogers, Tracey L
2014-12-22
Predator-prey relationships and trophic levels are indicators of community structure, and are important for monitoring ecosystem changes. Mammals colonized the marine environment on seven separate occasions, which resulted in differences in species' physiology, morphology and behaviour. It is likely that these changes have had a major effect upon predator-prey relationships and trophic position; however, the effect of environment is yet to be clarified. We compiled a dataset, based on the literature, to explore the relationship between body mass, trophic level and predator-prey ratio across terrestrial (n = 51) and marine (n = 56) mammals. We did not find the expected positive relationship between trophic level and body mass, but we did find that marine carnivores sit 1.3 trophic levels higher than terrestrial carnivores. Also, marine mammals are largely carnivorous and have significantly larger predator-prey ratios compared with their terrestrial counterparts. We propose that primary productivity, and its availability, is important for mammalian trophic structure and body size. Also, energy flow and community structure in the marine environment are influenced by differences in energy efficiency and increased food web stability. Enhancing our knowledge of feeding ecology in mammals has the potential to provide insights into the structure and functioning of marine and terrestrial communities. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Estimate of net trophic transfer efficiency of PCBs to Lake Michigan lake trout from their prey
Madenjian, Charles P.; Hesselberg, Robert J.; DeSorcie, Timothy J.; Schmidt, Larry J.; Stedman, Ralph M.; Quintal, Richard T.; Begnoche, Linda J.; Passino-Reader, Dora R.
1998-01-01
Most of the polychlorinated biphenyl (PCB) body burden accumulated by lake trout (Salvelinus namaycush) from the Laurentian Great Lakes is from their food. We used diet information, PCB determinations in both lake trout and their prey, and bioenergetics modeling to estimate the efficiency with which Lake Michigan lake trout retain PCBs from their food. Our estimates were the most reliable estimates to date because (a) the lake trout and prey fish sampled during our study were all from the same vicinity of the lake, (b) detailed measurements were made on the PCB concentrations of both lake trout and prey fish over wide ranges in fish size, and (c) lake trout diet was analyzed in detail over a wide range of lake trout size. Our estimates of net trophic transfer efficiency of PCBs to lake trout from their prey averaged from 0.73 to 0.89 for lake trout between the ages of 5 and 10 years old. There was no evidence of an upward or downward trend in our estimates of net trophic transfer efficiency for lake trout between the ages of 5 and 10 years old, and therefore this efficiency appeared to be constant over the duration of the lake trout's adult life in the lake. On the basis of our estimtes, lake trout retained 80% of the PCBs that are contained within their food.
Pernía, Javier; de Zoppi, Roa Evelyn; Palacios-Cáceres, Mario
2007-06-01
Copepods from the genus Mesocyclops are considered predators and potential biological control for mosquito larvae. Two copepod species M. meridianus and M. longisetus were found in natural developmental habitat for malaria vector Anopheles aquasalis in Paria, Venezuela. Predatory potential on 1st-stage mosquito larvae An. aquasalis was evaluated under laboratory conditions for the 2 species of copepod. Further records of both copepod life cycle and body size were taken. A 2 x 3 factorial design was used, consisting of 1:1 and 10:1 prey-predator ratios with and without interspecific interactions. Despite significant body-size differences, M. longisetus and M. meridianus reached maturity 17 days after hatching with no significant differences. Life cycle span of both copepod species are described for the first time. The 2 species showed the same predatory potential despite larval (prey) abundance variation.
Dual influences of ecosystem size and disturbance on food chain length in streams.
McHugh, Peter A; McIntosh, Angus R; Jellyman, Phillip G
2010-07-01
The number of trophic transfers occurring between basal resources and top predators, food chain length (FCL), varies widely in the world's ecosystems for reasons that are poorly understood, particularly for stream ecosystems. Available evidence indicates that FCL is set by energetic constraints, environmental stochasticity, or ecosystem size effects, although no single explanation has yet accounted for FCL patterns in a broad sense. Further, whether environmental disturbance can influence FCL has been debated on both theoretical and empirical grounds for quite some time. Using data from sixteen South Island, New Zealand streams, we determined whether the so-called ecosystem size, disturbance, or resource availability hypotheses could account for FCL variation in high country fluvial environments. Stable isotope-based estimates of maximum trophic position ranged from 2.6 to 4.2 and averaged 3.5, a value on par with the global FCL average for streams. Model-selection results indicated that stream size and disturbance regime best explained across-site patterns in FCL, although resource availability was negatively correlated with our measure of disturbance; FCL approached its maximum in large, stable springs and was <3.5 trophic levels in small, fishless and/or disturbed streams. Community data indicate that size influenced FCL, primarily through its influence on local fish species richness (i.e., via trophic level additions and/or insertions), whereas disturbance did so via an effect on the relative availability of intermediate predators (i.e., predatory invertebrates) as prey for fishes. Overall, our results demonstrate that disturbance can have an important food web-structuring role in stream ecosystems, and further imply that pluralistic explanations are needed to fully understand the range of structural variation observed for real food webs.
Satiety and eating patterns in two species of constricting snakes.
Nielsen, Torben P; Jacobsen, Magnus W; Wang, Tobias
2011-01-10
Satiety has been studied extensively in mammals, birds and fish but very little information exists on reptiles. Here we investigate time-dependent satiation in two species of constricting snakes, ball pythons (Python regius) and yellow anacondas (Eunectes notaeus). Satiation was shown to depend on both fasting time and prey size. In the ball pythons fed with mice of a relative prey mass RPM (mass of the prey/mass of the snake×100) of 15%, we observed a satiety response that developed between 6 and 12h after feeding, but after 24h pythons regained their appetite. With an RPM of 10% the pythons kept eating throughout the experiment. The anacondas showed a non-significant tendency for satiety to develop between 6 and 12h after ingesting a prey of 20% RPM. Unlike pythons, anacondas remained satiated after 24h. Handling time (from strike until prey swallowed) increased with RPM. We also found a significant decrease in handling time between the first and the second prey and a positive correlation between handling time and the mass of the snake. 2010 Elsevier Inc. All rights reserved.
Anna L. Burrow; Richard T. Kazmaier; Eric C. Hellgren; Donald C. Ruthven, III
2002-01-01
We examined the effects of rotational livestock grazing and prescribed winter burning on the state threatened Texas horned lizard, Phrynosoma cornutum, by comparing home range sizes, survival estimates and prey abundance across burning and grazing treatments in southern Texas. Adult lizards were fitted with backpacks carrying radio transmitters and...
Gan, Wenjin; Liu, Shengjie; Yang, Xiaodong; Li, Daiqin; Lei, Chaoliang
2015-09-24
A striking feature of web-building spiders is the use of silk to make webs, mainly for prey capture. However, building a web is energetically expensive and increases the risk of predation. To reduce such costs and still have access to abundant prey, some web-building spiders have evolved web invasion behaviour. In general, no consistent patterns of web invasion have emerged and the factors determining web invasion remain largely unexplored. Here we report web invasion among conspecifics in seven nocturnal species of orb-web spiders, and examined the factors determining the probability of webs that could be invaded and taken over by conspecifics. About 36% of webs were invaded by conspecifics, and 25% of invaded webs were taken over by the invaders. A web that was built higher and intercepted more prey was more likely to be invaded. Once a web was invaded, the smaller the size of the resident spider, the more likely its web would be taken over by the invader. This study suggests that web invasion, as a possible way of reducing costs, may be widespread in nocturnal orb-web spiders. © 2015. Published by The Company of Biologists Ltd.
Gan, Wenjin; Liu, Shengjie; Yang, Xiaodong; Li, Daiqin; Lei, Chaoliang
2015-01-01
ABSTRACT A striking feature of web-building spiders is the use of silk to make webs, mainly for prey capture. However, building a web is energetically expensive and increases the risk of predation. To reduce such costs and still have access to abundant prey, some web-building spiders have evolved web invasion behaviour. In general, no consistent patterns of web invasion have emerged and the factors determining web invasion remain largely unexplored. Here we report web invasion among conspecifics in seven nocturnal species of orb-web spiders, and examined the factors determining the probability of webs that could be invaded and taken over by conspecifics. About 36% of webs were invaded by conspecifics, and 25% of invaded webs were taken over by the invaders. A web that was built higher and intercepted more prey was more likely to be invaded. Once a web was invaded, the smaller the size of the resident spider, the more likely its web would be taken over by the invader. This study suggests that web invasion, as a possible way of reducing costs, may be widespread in nocturnal orb-web spiders. PMID:26405048
Diet dynamics of the adult piscivorous fish community in Spirit Lake, Iowa, USA 1995-1997
Liao, H.; Pierce, C.L.; Larscheid, J.G.
2002-01-01
Diets of adults of six important piscivorous fish species, black crappie Pomoxis nigromaculatus, largemouth bass Micropterus salmoides, northern pike Esox lucius, smallmouth bass Micropterus dolomieui, walleye Stizostedion vitreum, and yellow perch Perca flavescens were quantified in Spirit Lake, Iowa, USA from May to October in 1995-1997. Forty-one prey taxa were found in the diets of these species, including 19 species of fish. The most important prey taxa overall were yellow perch, amphipods and dipterans. Diets of northern pike and walleye were dominated by yellow perch. Largemouth bass diets included large percentages of both yellow perch and black bullhead Ameiurus melas. Smallmouth bass diets included large percentages of both yellow perch and crayfish. Black crappie and yellow perch diets were dominated by invertebrates, primarily amphipods and dipterans. There were pronounced differences in diets among species, among size classes within species and over time. Most of the dominant prey taxa we documented in the diets of piscivorous species were in accordance with previous studies, but a few deviated significantly from expectations. Many of the temporal diet changes were asynchronous among piscivorous species and size classes, suggesting different responses to common prey resources over time.
Selden, Rebecca L; Batt, Ryan D; Saba, Vincent S; Pinsky, Malin L
2018-01-01
Asymmetries in responses to climate change have the potential to alter important predator-prey interactions, in part by altering the location and size of spatial refugia for prey. We evaluated the effect of ocean warming on interactions between four important piscivores and four of their prey in the U.S. Northeast Shelf by examining species overlap under historical conditions (1968-2014) and with a doubling in CO 2 . Because both predator and prey shift their distributions in response to changing ocean conditions, the net impact of warming or cooling on predator-prey interactions was not determined a priori from the range extent of either predator or prey alone. For Atlantic cod, an historically dominant piscivore in the region, we found that both historical and future warming led to a decline in the proportion of prey species' range it occupied and caused a potential reduction in its ability to exert top-down control on these prey. In contrast, the potential for overlap of spiny dogfish with prey species was enhanced by warming, expanding their importance as predators in this system. In sum, the decline in the ecological role for cod that began with overfishing in this ecosystem will likely be exacerbated by warming, but this loss may be counteracted by the rise in dominance of other piscivores with contrasting thermal preferences. Functional diversity in thermal affinity within the piscivore guild may therefore buffer against the impact of warming on marine ecosystems, suggesting a novel mechanism by which diversity confers resilience. © 2017 John Wiley & Sons Ltd.
Sharks modulate their escape behavior in response to predator size, speed and approach orientation.
Seamone, Scott; Blaine, Tristan; Higham, Timothy E
2014-12-01
Escape responses are often critical for surviving predator-prey interactions. Nevertheless, little is known about how predator size, speed and approach orientation impact escape performance, especially in larger prey that are primarily viewed as predators. We used realistic shark models to examine how altering predatory behavior and morphology (size, speed and approach orientation) influences escape behavior and performance in Squalus acanthias, a shark that is preyed upon by apex marine predators. Predator models induced C-start escape responses, and increasing the size and speed of the models triggered a more intense response (increased escape turning rate and acceleration). In addition, increased predator size resulted in greater responsiveness from the sharks. Among the responses, predator approach orientation had the most significant impact on escapes, such that the head-on approach, as compared to the tail-on approach, induced greater reaction distances and increased escape turning rate, speed and acceleration. Thus, the anterior binocular vision in sharks renders them less effective at detecting predators approaching from behind. However, it appears that sharks compensate by performing high-intensity escapes, likely induced by the lateral line system, or by a sudden visual flash of the predator entering their field of view. Our study reveals key aspects of escape behavior in sharks, highlighting the modulation of performance in response to predator approach. Copyright © 2014 Elsevier GmbH. All rights reserved.
Penguin head movement detected using small accelerometers: a proxy of prey encounter rate.
Kokubun, Nobuo; Kim, Jeong-Hoon; Shin, Hyoung-Chul; Naito, Yasuhiko; Takahashi, Akinori
2011-11-15
Determining temporal and spatial variation in feeding rates is essential for understanding the relationship between habitat features and the foraging behavior of top predators. In this study we examined the utility of head movement as a proxy of prey encounter rates in medium-sized Antarctic penguins, under the presumption that the birds should move their heads actively when they encounter and peck prey. A field study of free-ranging chinstrap and gentoo penguins was conducted at King George Island, Antarctica. Head movement was recorded using small accelerometers attached to the head, with simultaneous monitoring for prey encounter or body angle. The main prey was Antarctic krill (>99% in wet mass) for both species. Penguin head movement coincided with a slow change in body angle during dives. Active head movements were extracted using a high-pass filter (5 Hz acceleration signals) and the remaining acceleration peaks (higher than a threshold acceleration of 1.0 g) were counted. The timing of head movements coincided well with images of prey taken from the back-mounted cameras: head movement was recorded within ±2.5 s of a prey image on 89.1±16.1% (N=7 trips) of images. The number of head movements varied largely among dive bouts, suggesting large temporal variations in prey encounter rates. Our results show that head movement is an effective proxy of prey encounter, and we suggest that the method will be widely applicable for a variety of predators.
Dynamics of prey moving through a predator field: a model of migrating juvenile salmon
Petersen, J.H.; DeAngelis, D.L.
2000-01-01
The migration of a patch of prey through a field of relatively stationary predators is a situation that occurs frequently in nature. Making quantitative predictions concerning such phenomena may be difficult, however, because factors such as the number of the prey in the patch, the spatial length and velocity of the patch, and the feeding rate and satiation of the predators all interact in a complex way. However, such problems are of great practical importance in many management situations; e.g., calculating the mortality of juvenile salmon (smolts) swimming down a river or reservoir containing many predators. Salmon smolts often move downstream in patches short compared with the length of the reservoir. To take into account the spatial dependence of the interaction, we used a spatially-explicit, individual-based modeling approach. We found that the mortality of prey depends strongly on the number of prey in the patch, the downstream velocity of prey in the patch, and the dispersion or spread of the patch in size through time. Some counterintuitive phenomena are predicted, such as predators downstrean capturing more prey per predator than those upstream, even though the number of prey may be greatly depleted by the time the prey patch reaches the downstream predators. Individual-based models may be necessary for complex spatial situations, such as salmonid migration, where processes such as schooling occur at fine scales and affect system predictions. We compare some results to predictions from other salmonid models. (C) 2000 Elsevier Science Inc.
Stomach fullness shapes prey choice decisions in crab plovers (Dromas ardeola)
Bom, Roeland A.; Fijen, Thijs P. M.; van Gils, Jan A.
2018-01-01
Foragers whose energy intake rate is constrained by search and handling time should, according to the contingency model (CM), select prey items whose profitability exceeds or equals the forager’s long-term average energy intake rate. This rule does not apply when prey items are found and ingested at a higher rate than the digestive system can process them. According to the digestive rate model (DRM), foragers in such situations should prefer prey with the highest digestive quality, instead of the highest profitability. As the digestive system fills up, the limiting constraint switches from ingestion rate to digestion rate, and prey choice is expected to change accordingly for foragers making decisions over a relative short time window. We use these models to understand prey choice in crab plovers (Dromas ardeola), preying on either small burrowing crabs that are swallowed whole (high profitability, but potentially inducing a digestive constraint) or on larger swimming crabs that are opened to consume only the flesh (low profitability, but easier to digest). To parameterize the CM and DRM, we measured energy content, ballast mass and handling times for different sized prey, and the birds’ digestive capacity in three captive individuals. Subsequently, these birds were used in ad libitum experiments to test if they obeyed the rules of the CM or DRM. We found that crab plovers with an empty stomach mainly chose the most profitable prey, matching the CM. When stomach fullness increased, the birds switched their preference from the most profitable prey to the highest-quality prey, matching the predictions of the DRM. This shows that prey choice is context dependent, affected by the stomach fullness of an animal. Our results suggest that prey choice experiments should be carefully interpreted, especially under captive conditions as foragers often ‘fill up’ in the course of feeding trials. PMID:29641542
Nonlinear effects of group size on the success of wolves hunting elk
MacNulty, Daniel R.; Smith, Douglas W.; Mech, L. David; Vucetich, John A.; Packer, Craig
2012-01-01
Despite the popular view that social predators live in groups because group hunting facilitates prey capture, the apparent tendency for hunting success to peak at small group sizes suggests that the formation of large groups is unrelated to prey capture. Few empirical studies, however, have tested for nonlinear relationships between hunting success and group size, and none have demonstrated why success trails off after peaking. Here, we use a unique dataset of observations of individually known wolves (Canis lupus) hunting elk (Cervus elaphus) in Yellowstone National Park to show that the relationship between success and group size is indeed nonlinear and that individuals withholding effort (free riding) is why success does not increase across large group sizes. Beyond 4 wolves, hunting success leveled off, and individual performance (a measure of effort) decreased for reasons unrelated to interference from inept hunters, individual age, or size. But performance did drop faster among wolves with an incentive to hold back, i.e., nonbreeders with no dependent offspring, those performing dangerous predatory tasks, i.e., grabbing and restraining prey, and those in groups of proficient hunters. These results suggest that decreasing performance was free riding and that was why success leveled off in groups with >4 wolves that had superficially appeared to be cooperating. This is the first direct evidence that nonlinear trends in group hunting success reflect a switch from cooperation to free riding. It also highlights how hunting success per se is unlikely to promote formation and maintenance of large groups.
Body size affects the evolution of hidden colour signals in moths.
Kang, Changku; Zahiri, Reza; Sherratt, Thomas N
2017-08-30
Many cryptic prey have also evolved hidden contrasting colour signals which are displayed to would-be predators. Given that these hidden contrasting signals may confer additional survival benefits to the prey by startling/intimidating predators, it is unclear why they have evolved in some species, but not in others. Here, we have conducted a comparative phylogenetic analysis of the evolution of colour traits in the family Erebidae (Lepidoptera), and found that the hidden contrasting colour signals are more likely to be found in larger species. To understand why this relationship occurs, we present a general mathematical model, demonstrating that selection for a secondary defence such as deimatic display will be stronger in large species when (i) the primary defence (crypsis) is likely to fail as its body size increases and/or (ii) the secondary defence is more effective in large prey. To test the model assumptions, we conducted behavioural experiments using a robotic moth which revealed that survivorship advantages were higher against wild birds when the moth has contrasting hindwings and large size. Collectively, our results suggest that the evolutionary association between large size and hidden contrasting signals has been driven by a combination of the need for a back-up defence and its efficacy. © 2017 The Author(s).
Transient recovery dynamics of a predator-prey system under press and pulse disturbances.
Karakoç, Canan; Singer, Alexander; Johst, Karin; Harms, Hauke; Chatzinotas, Antonis
2017-04-04
Species recovery after disturbances depends on the strength and duration of disturbance, on the species traits and on the biotic interactions with other species. In order to understand these complex relationships, it is essential to understand mechanistically the transient dynamics of interacting species during and after disturbances. We combined microcosm experiments with simulation modelling and studied the transient recovery dynamics of a simple microbial food web under pulse and press disturbances and under different predator couplings to an alternative resource. Our results reveal that although the disturbances affected predator and prey populations by the same mortality, predator populations suffered for a longer time. The resulting diminished predation stress caused a temporary phase of high prey population sizes (i.e. prey release) during and even after disturbances. Increasing duration and strength of disturbances significantly slowed down the recovery time of the predator prolonging the phase of prey release. However, the additional coupling of the predator to an alternative resource allowed the predator to recover faster after the disturbances thus shortening the phase of prey release. Our findings are not limited to the studied system and can be used to understand the dynamic response and recovery potential of many natural predator-prey or host-pathogen systems. They can be applied, for instance, in epidemiological and conservational contexts to regulate prey release or to avoid extinction risk of the top trophic levels under different types of disturbances.
Lovvorn, James R.; De La Cruz, Susan; Takekawa, John Y.; Shaskey, Laura E.; Richman, Samantha E.
2013-01-01
Planning for marine conservation often requires estimates of the amount of habitat needed to support assemblages of interacting species. During winter in subtidal San Pablo Bay, California, the 3 main diving duck species are lesser scaup Aythya affinis (LESC), greater scaup A. marila (GRSC), and surf scoter Melanitta perspicillata (SUSC), which all feed almost entirely on the bivalve Corbula amurensis. Decreased body mass and fat, increased foraging effort, and major departures of these birds appeared to result from food limitation. Broad overlap in prey size, water depth, and location suggested that the 3 species responded similarly to availability of the same prey. However, an energetics model that accounts for differing body size, locomotor mode, and dive behavior indicated that each species will become limited at different stages of prey depletion in the order SUSC, then GRSC, then LESC. Depending on year, 35 to 66% of the energy in Corbula standing stocks was below estimated threshold densities for profitable foraging. Ectothermic predators, especially flounders and sturgeons, could reduce excess carrying capacity for different duck species by 4 to 10%. A substantial quantity of prey above profitability thresholds was not exploited before most ducks left San Pablo Bay. Such pre-depletion departure has been attributed in other taxa to foraging aggression. However, in these diving ducks that showed no overt aggression, this pattern may result from high costs of locating all adequate prey patches, resulting reliance on existing flocks to find food, and propensity to stay near dense flocks to avoid avian predation. For interacting species assemblages, modeling profitability thresholds can indicate the species most vulnerable to food declines. However, estimates of total habitat needed require better understanding of factors affecting the amount of prey above thresholds that is not depleted before the predators move elsewhere.
Hawk Eyes I: Diurnal Raptors Differ in Visual Fields and Degree of Eye Movement
O'Rourke, Colleen T.; Hall, Margaret I.; Pitlik, Todd; Fernández-Juricic, Esteban
2010-01-01
Background Different strategies to search and detect prey may place specific demands on sensory modalities. We studied visual field configuration, degree of eye movement, and orbit orientation in three diurnal raptors belonging to the Accipitridae and Falconidae families. Methodology/Principal Findings We used an ophthalmoscopic reflex technique and an integrated 3D digitizer system. We found inter-specific variation in visual field configuration and degree of eye movement, but not in orbit orientation. Red-tailed Hawks have relatively small binocular areas (∼33°) and wide blind areas (∼82°), but intermediate degree of eye movement (∼5°), which underscores the importance of lateral vision rather than binocular vision to scan for distant prey in open areas. Cooper's Hawks' have relatively wide binocular fields (∼36°), small blind areas (∼60°), and high degree of eye movement (∼8°), which may increase visual coverage and enhance prey detection in closed habitats. Additionally, we found that Cooper's Hawks can visually inspect the items held in the tip of the bill, which may facilitate food handling. American Kestrels have intermediate-sized binocular and lateral areas that may be used in prey detection at different distances through stereopsis and motion parallax; whereas the low degree eye movement (∼1°) may help stabilize the image when hovering above prey before an attack. Conclusions We conclude that: (a) there are between-species differences in visual field configuration in these diurnal raptors; (b) these differences are consistent with prey searching strategies and degree of visual obstruction in the environment (e.g., open and closed habitats); (c) variations in the degree of eye movement between species appear associated with foraging strategies; and (d) the size of the binocular and blind areas in hawks can vary substantially due to eye movements. Inter-specific variation in visual fields and eye movements can influence behavioral strategies to visually search for and track prey while perching. PMID:20877645
Hawk eyes I: diurnal raptors differ in visual fields and degree of eye movement.
O'Rourke, Colleen T; Hall, Margaret I; Pitlik, Todd; Fernández-Juricic, Esteban
2010-09-22
Different strategies to search and detect prey may place specific demands on sensory modalities. We studied visual field configuration, degree of eye movement, and orbit orientation in three diurnal raptors belonging to the Accipitridae and Falconidae families. We used an ophthalmoscopic reflex technique and an integrated 3D digitizer system. We found inter-specific variation in visual field configuration and degree of eye movement, but not in orbit orientation. Red-tailed Hawks have relatively small binocular areas (∼33°) and wide blind areas (∼82°), but intermediate degree of eye movement (∼5°), which underscores the importance of lateral vision rather than binocular vision to scan for distant prey in open areas. Cooper's Hawks' have relatively wide binocular fields (∼36°), small blind areas (∼60°), and high degree of eye movement (∼8°), which may increase visual coverage and enhance prey detection in closed habitats. Additionally, we found that Cooper's Hawks can visually inspect the items held in the tip of the bill, which may facilitate food handling. American Kestrels have intermediate-sized binocular and lateral areas that may be used in prey detection at different distances through stereopsis and motion parallax; whereas the low degree eye movement (∼1°) may help stabilize the image when hovering above prey before an attack. We conclude that: (a) there are between-species differences in visual field configuration in these diurnal raptors; (b) these differences are consistent with prey searching strategies and degree of visual obstruction in the environment (e.g., open and closed habitats); (c) variations in the degree of eye movement between species appear associated with foraging strategies; and (d) the size of the binocular and blind areas in hawks can vary substantially due to eye movements. Inter-specific variation in visual fields and eye movements can influence behavioral strategies to visually search for and track prey while perching.
Pelagic cephalopods in the western Indian Ocean: New information from diets of top predators
NASA Astrophysics Data System (ADS)
Ménard, Frédéric; Potier, Michel; Jaquemet, Sébastien; Romanov, Evgeny; Sabatié, Richard; Cherel, Yves
2013-10-01
Using a combination of diverse large predatory fishes and one seabird, we collected information on the cephalopod fauna of the western Indian Ocean. We analyzed the stomach contents of 35 fishes representing ten families (Xiphiidae, Istiophoridae, Scombridae, Carangidae, Coryphaenidae, Alepisauridae, Dasyatidae, Carcharhinidae, Alopiidae and Sphyrnidae) and of the sooty tern Onychoprion fuscata of the Mozambique Channel from 2000 to 2010. Both fresh and accumulated beaks were used for identifying cephalopod prey. Cephalopods were important prey for twelve predators; swordfish Xiphias gladius had the highest cephalopod proportion; sooty tern (O. fuscata) and bigeye tuna (Thunnus obesus) had high proportions too. We recovered 23 cephalopod families and identified 38 species. Ten species from four Teuthida families (Ommastrephidae, Onychoteuthidae, Histioteuthidae and Ancistrocheiridae) and two Octopoda families (Argonautidae and Bolitaenidae) occurred very frequently in the stomach contents, while Sepiida were rare. Ommastrephidae were the most cephalopod food sources: the purpleback flying squid Sthenoteuthis oualaniensis was the most prevalent prey by far, Ornithoteuthis volatilis was important for eleven predators and few but large specimens of the neon flying squid Ommastrephes bartramii were recovered in the stomachs of swordfish in the Indian South Subtropical Gyre province only. Predators' groups were identified based on cephalopod prey composition, on depth in which they forage, and on prey size. Surface predators' diets were characterized by lower cephalopod diversity but greater average numbers of cephalopod prey, whereas the deep-dwelling predators (swordfish and bigeye tuna) preyed on larger specimens than surface predators (O. fuscata or yellowfin tunas Thunnus albacares). Our findings emphasized the usefulness of a community of marine predators to gain valuable information on the biology and the distribution of the cephalopod forage fauna that are discussed with regard to biogeographic province, marine predator, fishing gear to catch the large pelagic fishes, and size of the beaks recovered in the stomachs.
Eiders Somateria mollissima scavenging behind a lugworm boat
NASA Astrophysics Data System (ADS)
Leopold, Mardik F.
2002-02-01
The eider is one of the most important molluscivorous birds in the Wadden Sea, where it feeds mainly on blue mussels Mytilus edulis and edible cockles Cerastoderma edule. These prey species are within reach of the birds at all times. Other potential prey of suitable size that are abundantly present, such as several polychaete worms, or the clam Mya arenaria, are taken to a much lesser extent, possibly because they live buried in the sediment and digging them out would take too much effort. Mya may pose another problem because they grow to sizes that prevent eiders from swallowing them. Large Mya also live too deep down in the sediment, but young (small) specimens should be available to eiders. Yet, even these have only rarely been found as prey in eiders in the Wadden Sea. However, diet studies in relation to food abundance have been few, and may have missed prey that do not leave large shell fragments (i.e. in faeces studies). This paper describes observations on eiders taking both Mya and polychaete worms. The eiders fed on these prey in a fashion reminiscent of gulls that scavenge behind fishing vessels: some eiders have learnt to follow professional worm-digging boats that supply a bycatch of molluscs (mainly Mya arenaria) and polychaete worms (mainly Arenicola marina and Nephtys hombergii) .Mya and worms were also the main targets of the eiders that fed in a dense flock close to the boat's stern. Faeces found on the flats at low tide comprised mainly cockle shell fragments, a prey rarely taken by the eiders behind the boat. Faeces studies may thus give a highly biased impression of local eider diet.
A new look at the Lake Superior biomass size-spectrum
We combined data from multiple sampling programs to describe the Lake Superior pelagic biomass size structure. The data represented phytoplankton, zooplankton and prey-fish that spanned over 10 orders of magnitude in size and two time periods separated by five years. The biomas...
NASA Astrophysics Data System (ADS)
Lin, C.; Accoroni, S.; Glibert, P. M.
2016-02-01
Mixotrophic grazing activity can be promoted in response to nutrient-enriched prey and this nutritional strategy is thought to be a factor in promoting growth of some toxic microalgae under nutrient limiting conditions for the mixotroph. However, it is unclear how the nutritional condition of the predator or the prey affects mixotrophic metabolism and, consequently, potential effects on the mixotroph that may, in turn, affect early life stages of bivalves. In laboratory experiments, we measured the grazing rate of the Karlodinium veneficum on Rhodomonas salina as prey, under varied nitrogen (N): phosphorus (P) stoichiometry of both predator and prey, and we compared the nutritionally-regulated effects of K. veneficum on larvae of the eastern oyster (Crassostrea virginia). Nutritionally sufficient, N-deficient, and P-deficient K. veneficum at two growth stages (exponential and stationary) were mixed with nutritionally sufficient, N-deficient, and P-deficient R. salina, in a factorial experimental design. Regardless of the nutritional condition of K. veneficum, it showed significantly higher grazing rates with N-rich prey in exponential stage and P-rich prey in stationary stage. Maximum grazing rates of N-deficient K. veneficum on N-rich prey in exponential stage were 20-fold larger than those nutritionally sufficient K. veneficum on N-rich prey. Significantly increased larval mortality was observed in 2-day exposures to monocultures of P-deficient K. veneficum at both stages. When mixed with P-deficient (or N-rich) prey, the presence of K. veneficum resulted in significantly enhanced larval mortality, but this was not the case for N-deficient K. veneficum in exponential stage. Mixotrophic feeding for K. veneficum may not only provide nutrition flexibility needed to persist bloom but appears to increase the negative effects of K. veneficum on the survival of oyster larvae.
NASA Astrophysics Data System (ADS)
Cross, Alison D.; Beauchamp, David A.; Armstrong, Janet L.; Blikshteyn, Mikhail; Boldt, Jennifer L.; Davis, Nancy D.; Haldorson, Lewis J.; Moss, Jamal H.; Myers, Katherine W.; Walker, Robert V.
2005-01-01
Prince William Sound hatcheries release over 600 million pink salmon ( Oncorhynchus gorbuscha) fry each year. The effect of the additional consumption demand by hatchery fish on prey biomass in Prince William Sound and the coastal Gulf of Alaska is unknown. The objectives of this study were to: (1) use bioenergetics models to compare spatial and temporal variation in the consumption demand and growth efficiency of hatchery and wild juvenile pink salmon in Prince William Sound and the coastal Gulf of Alaska between May and October 2001; and (2) compare localized population-level consumption in each region to the standing stock biomass of coexisting prey. In order to achieve observed growth, juvenile pink salmon consumed at 64-107% of their theoretical maximum consumption rate. Individual juvenile pink salmon consumed an average of 366.5 g of prey from marine entry through October of their first growing season. Growth efficiency ranged from 18.9% to 33.8% over the model simulation period. Juvenile salmon that migrated to the Gulf of Alaska grew more efficiently than those that remained in Prince William Sound until August, but after August juvenile salmon in Prince William Sound grew more efficiently than those in the Gulf of Alaska due to differences in prey quality between regions. Temperatures did not vary much between regions; thus differences in the thermal experience of juvenile pink salmon did not affect growth, consumption, and growth efficiency as much as the effects of different prey quality. Consumption demand by juvenile pink salmon exceeded the average standing stock biomass of key prey (large copepods, pteropods, hyperiid amphipods, and larvaceans) during some months. Our results are consistent with advection and production of these prey replenishing the forage base, or the reliance of individual pink salmon on high-density prey patches that occur at finer temporal scales than we were capable of sampling.
Efficiency of insect capture by Sarracenia purpurea (Sarraceniaceae), the northern pitcher plant.
Newell, S; Nastase, A
1998-01-01
Pitcher plants (Sarracenia purpurea L.) attract insects to pitchers and then capture them in fluid-filled, pitfall traps, but how efficient are pitcher plants at capturing prey in their natural environment? We monitored insect activity by videotaping pitchers and analyzing videotapes for several variables including identity of each visitor and outcome of each visit (e.g., departure or capture). Efficiency of capture (i.e., number of captures per number of visits) was low. Overall efficiency of capture was 0.83-0.93%, depending on whether potential prey were broadly or narrowly defined. Ants constituted 74% of the potential prey. Efficiency of capture of ants was even lower at 0.37%. Potential prey were more likely to visit pitchers with greater red venation and less water in the pitcher. There was no correlation between number of potential prey visiting a pitcher and pitcher age, length, or mouth width. Also, number of potential prey visits did not correlate with plant size, air temperature, time of day or date of videotaping. While the overall efficiency of prey capture was very low, pitcher plants may still benefit from the additional nutrients. However, the relationship between ants and S. purpurea remains an enigma, since it is unclear whether the plants capture enough ants to compensate for nectar lost to ants.
Haddaway, Neal R; Wilcox, Ruth H; Heptonstall, Rachael E A; Griffiths, Hannah M; Mortimer, Robert J G; Christmas, Martin; Dunn, Alison M
2012-01-01
Invasive predators may change the structure of invaded communities through predation and competition with native species. In Europe, the invasive signal crayfish Pacifastacus leniusculus is excluding the native white clawed crayfish Austropotamobius pallipes. This study compared the predatory functional responses and prey choice of native and invasive crayfish and measured impacts of parasitism on the predatory strength of the native species. Invasive crayfish showed a higher (>10%) prey (Gammarus pulex) intake rate than (size matched) natives, reflecting a shorter (16%) prey handling time. The native crayfish also showed greater selection for crustacean prey over molluscs and bloodworm, whereas the invasive species was a more generalist predator. A. pallipes parasitised by the microsporidian parasite Thelohania contejeani showed a 30% reduction in prey intake. We suggest that this results from parasite-induced muscle damage, and this is supported by a reduced (38%) attack rate and increased (30%) prey handling time. Our results indicate that the per capita (i.e., functional response) difference between the species may contribute to success of the invader and extinction of the native species, as well as decreased biodiversity and biomass in invaded rivers. In addition, the reduced predatory strength of parasitized natives may impair their competitive abilities, facilitating exclusion by the invader.
Foraging theory predicts predator-prey energy fluxes.
Brose, U; Ehnes, R B; Rall, B C; Vucic-Pestic, O; Berlow, E L; Scheu, S
2008-09-01
1. In natural communities, populations are linked by feeding interactions that make up complex food webs. The stability of these complex networks is critically dependent on the distribution of energy fluxes across these feeding links. 2. In laboratory experiments with predatory beetles and spiders, we studied the allometric scaling (body-mass dependence) of metabolism and per capita consumption at the level of predator individuals and per link energy fluxes at the level of feeding links. 3. Despite clear power-law scaling of the metabolic and per capita consumption rates with predator body mass, the per link predation rates on individual prey followed hump-shaped relationships with the predator-prey body mass ratios. These results contrast with the current metabolic paradigm, and find better support in foraging theory. 4. This suggests that per link energy fluxes from prey populations to predator individuals peak at intermediate body mass ratios, and total energy fluxes from prey to predator populations decrease monotonically with predator and prey mass. Surprisingly, contrary to predictions of metabolic models, this suggests that for any prey species, the per link and total energy fluxes to its largest predators are smaller than those to predators of intermediate body size. 5. An integration of metabolic and foraging theory may enable a quantitative and predictive understanding of energy flux distributions in natural food webs.
de Toledo, M A; Reis, P R; da Silveira, E C; de P Marafeli, P; de Souza-Pimentel, G C
2013-04-01
This study evaluated the predatory capacity of Euseius alatus (DeLeon) as a biological control agent of the pest mite Oligonychus ilicis (McGregor) on coffee leaves under laboratory conditions, using arenas containing 25 O. ilicis per coffee (Coffea arabica) leaf to one specimen of each stage of the predator mite. The functional response and oviposition rate of adult females of E. alatus were evaluated on coffee leaf arenas and offered from 1 to 125 immature stages of O. ilicis per arena. The number of preys killed and the number of eggs laid by the predator were evaluated every 24 h during 8 days. The preys consumed were daily replaced. Male and female adults of E. alatus were the most efficient in killing all developmental stages of O. ilicis. Larvae and nymphs of O. ilicis were the most consumed by all stages of the predatory mite. The functional response and oviposition rates of E. alatus increased as the prey density increased, with a positive and highly significant correlation. Regression analysis suggested a type II functional response, with a maximum predation of 22 O. ilicis/arena and a maximum oviposition rate of 1.7 eggs/day at a density of 70 O. ilicis/arena.
The Rise of Jaw Protrusion in Spiny-Rayed Fishes Closes the Gap on Elusive Prey.
Bellwood, David R; Goatley, Christopher H R; Bellwood, Orpha; Delbarre, Daniel J; Friedman, Matt
2015-10-19
Jaw protrusion is one of the most important innovations in vertebrate feeding over the last 400 million years [1, 2]. Protrusion enables a fish to rapidly decrease the distance between itself and its prey [2, 3]. We assessed the evolution and functional implications of jaw protrusion in teleost fish assemblages from shallow coastal seas since the Cretaceous. By examining extant teleost fishes, we identified a robust morphological predictor of jaw protrusion that enabled us to predict the extent of jaw protrusion in fossil fishes. Our analyses revealed increases in both average and maximum jaw protrusion over the last 100 million years, with a progressive increase in the potential impact of fish predation on elusive prey. Over this period, the increase in jaw protrusion was initially driven by a taxonomic restructuring of fish assemblages, with an increase in the proportion of spiny-rayed fishes (Acanthomorpha), followed by an increase in the extent of protrusion within this clade. By increasing the ability of fishes to catch elusive prey [2, 4], jaw protrusion is likely to have fundamentally changed the nature of predator-prey interactions and may have contributed to the success of the spiny-rayed fishes, the dominant fish clade in modern oceans [5]. Copyright © 2015 Elsevier Ltd. All rights reserved.
Predation risk suppresses the positive feedback between size structure and cannibalism.
Kishida, Osamu; Trussell, Geoffrey C; Ohno, Ayaka; Kuwano, Shinya; Ikawa, Takuya; Nishimura, Kinya
2011-11-01
1. Cannibalism can play a prominent role in the structuring and dynamics of ecological communities. Previous studies have emphasized the importance of size structure and density of cannibalistic species in shaping short- and long-term cannibalism dynamics, but our understanding of how predators influence cannibalism dynamics is limited. This is despite widespread evidence that many prey species exhibit behavioural and morphological adaptations in response to predation risk. 2. This study examined how the presence and absence of predation risk from larval dragonflies Aeshna nigroflava affected cannibalism dynamics in its prey larval salamanders Hynobius retardatus. 3. We found that feedback dynamics between size structure and cannibalism depended on whether dragonfly predation risk was present. In the absence of dragonfly risk cues, a positive feedback between salamander size structure and cannibalism through time occurred because most of the replicates in this treatment contained at least one salamander larvae having an enlarged gape (i.e. cannibal). In contrast, this feedback and the emergence of cannibalism were rarely observed in the presence of the dragonfly risk cues. Once salamander size divergence occurred, experimental reversals of the presence or absence of dragonfly risk cues did not alter existing cannibalism dynamics as the experiment progressed. Thus, the effects of risk on the mechanisms driving cannibalism dynamics likely operated during the early developmental period of the salamander larvae. 4. The effects of dragonfly predation risk on behavioural aspects of cannibalistic interactions among hatchlings may prohibit the initiation of dynamics between size structure and cannibalism. Our predation trials clearly showed that encounter rates among hatchlings and biting and ingestion rates of prospective prey by prospective cannibals were significantly lower in the presence vs. absence of dragonfly predation risk even though the size asymmetry between cannibals and victims was similar in both risk treatments. These results suggest that dragonfly risk cues first suppress cannibalism among hatchlings and then prevent size variation from increasing through time. 5. We suggest that the positive feedback dynamics between size structure and cannibalism and their modification by predation risk may also operate in other systems to shape the population dynamics of cannibalistic prey species as well as overall community dynamics. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.
Late summer food habits of three heron species in northeastern Louisiana
Niethammer, K.R.; Kaiser, M.S.
1983-01-01
Yellow-crowned Night-Herons (Nycticorax violaceus), Little Blue Herons (Egretta caerulea), and Green-backed Herons (Butorides striatus) collected in northeastern Louisiana from July-September 1980 exhibited different diets. Yellow-crowned Night-Herons fed mostly on crayfish (74% by weight) and Green-backed Herons fed primarily on fish (93% by weight). The diet of Little Blue Herons was diverse, including fish (61%), crustaceans (11%), insects (13%), and arachnids (14%). Yellow-crowned Night-Herons captured larger prey than did either of the smaller herons. Green-backed Herons took larger prey and a greater range of prey sizes than did the larger Little Blue Herons.
Morozov, Andrew; Sen, Moitri; Banerjee, Malay
2012-02-01
In this paper, we revisit the stabilizing role that predator dispersal and aggregation have in the top-down regulation of predator-prey systems in a heterogeneous environment. We consider an environment consisting of sites interconnected by dispersal, and propose a novel mechanism of stabilization for the case with a non-sigmoid functional response of predators. We assume that the carrying capacity of the prey is infinitely large in each site, and show that successful top-down regulation of this otherwise globally unstable system is made possible through an interplay between the unevenness of prey fitness across the sites and the rapid food-dependent migration of predators. We argue that this mechanism of stabilization is different from those previously reported in the literature: in particular, it requires a high degree of synchronicity in local oscillations of species densities across the sites. Prey outbreaks take place synchronously, but the unevenness of prey growth rates across the sites results in a pronounced difference in the species densities, and so the predator quickly disperses to the sites with the highest prey abundances. For this reason, the consumption of prey mostly takes place in the sites with high densities of prey, which assures an efficient suppression of outbreaks. Furthermore, when the total size of prey population is low, the distribution of both species among the sites becomes more even, and this prevents overconsumption of the prey by the predator. Finally, we put forward the hypothesis that this mechanism, when considered in a tri-trophic plankton community in the water column, can explain the stability of the nutrient-rich low-chlorophyll open ocean regions. Copyright © 2011 Elsevier Inc. All rights reserved.
Mammal population regulation, keystone processes and ecosystem dynamics.
Sinclair, A R E
2003-01-01
The theory of regulation in animal populations is fundamental to understanding the dynamics of populations, the causes of mortality and how natural selection shapes the life history of species. In mammals, the great range in body size allows us to see how allometric relationships affect the mode of regulation. Resource limitation is the fundamental cause of regulation. Top-down limitation through predators is determined by four factors: (i). body size; (ii). the diversity of predators and prey in the system; (iii). whether prey are resident or migratory; and (iv). the presence of alternative prey for predators. Body size in mammals has two important consequences. First, mammals, particularly large species, can act as keystones that determine the diversity of an ecosystem. I show how keystone processes can, in principle, be measured using the example of the wildebeest in the Serengeti ecosystem. Second, mammals act as ecological landscapers by altering vegetation succession. Mammals alter physical structure, ecological function and species diversity in most terrestrial biomes. In general, there is a close interaction between allometry, population regulation, life history and ecosystem dynamics. These relationships are relevant to applied aspects of conservation and pest management. PMID:14561329
Sexual dimorphism and feeding ecology of Diamond-backed Terrapins (Malaclemys terrapin)
Underwood, Elizabeth B.; Bowers, Sarah; Guzy, Jacquelyn C.; Lovich, Jeffrey E.; Taylor, Carole A.; Gibbons, J. Whitfield; Dorcas, Michael E.
2013-01-01
Natural and sexual selection are frequently invoked as causes of sexual size dimorphism in animals. Many species of turtles, including the Diamond-backed Terrapin (Malaclemys terrapin), exhibit sexual dimorphism in body size, possibly enabling the sexes to exploit different resources and reduce intraspecific competition. Female terrapins not only have larger body sizes but also disproportionately larger skulls and jaws relative to males. To better understand the relationship between skull morphology and terrapin feeding ecology, we measured the in-lever to out-lever ratios of 27 male and 33 female terrapin jaws to evaluate biomechanics of the trophic apparatus. In addition, we measured prey handling times by feeding Fiddler Crabs (Uca pugnax), a natural prey item, to 24 terrapins in the laboratory. Our results indicate that although females have disproportionately larger heads, they have similar in:out lever ratios to males, suggesting that differences in adductor muscle mass are more important in determining bite force than jaw in:out lever ratios. Females also had considerably reduced prey handling times. Understanding the factors affecting terrapin feeding ecology can illuminate the potential roles male and female terrapins play as top-down predators that regulate grazing of Periwinkle Snails (Littorina irrorata) on Cord Grass (Spartina alterniflora).
Allain, Valerie; Fernandez, Emilie; Hoyle, Simon D.; Caillot, Sylvain; Jurado-Molina, Jesus; Andréfouët, Serge; Nicol, Simon J.
2012-01-01
The Western and Central Pacific Ocean sustains the highest tuna production in the world. This province is also characterized by many islands and a complex bathymetry that induces specific current circulation patterns with the potential to create a high degree of interaction between coastal and oceanic ecosystems. Based on a large dataset of oceanic predator stomach contents, our study used generalized linear models to explore the coastal-oceanic system interaction by analyzing predator-prey relationship. We show that reef organisms are a frequent prey of oceanic predators. Predator species such as albacore (Thunnus alalunga) and yellowfin tuna (Thunnus albacares) frequently consume reef prey with higher probability of consumption closer to land and in the western part of the Pacific Ocean. For surface-caught-predators consuming reef prey, this prey type represents about one third of the diet of predators smaller than 50 cm. The proportion decreases with increasing fish size. For predators caught at depth and consuming reef prey, the proportion varies with predator species but generally represents less than 10%. The annual consumption of reef prey by the yellowfin tuna population was estimated at 0.8±0.40CV million tonnes or 2.17×1012±0.40CV individuals. This represents 6.1%±0.17CV in weight of their diet. Our analyses identify some of the patterns of coastal-oceanic ecosystem interactions at a large scale and provides an estimate of annual consumption of reef prey by oceanic predators. PMID:22615796
Assessment of gray whale feeding grounds and sea floor interaction in the northeastern Bering Sea
Nelson, C.H.; Johnson, K.R.; Barber, John H.
1983-01-01
A dense ampeliscid amphipod community in Chirikov Basin and around St. Lawrence Island in the northeastern Bering Sea has been outlined by summarizing biological studies, analyzing bioturbation in sediment samples, and examining sea floor photos and videotapes. The amphipod population is associated with a homogeneous, relict fine-grained sand body 0.10-1.5 m thick that is deposited during the marine transgression over the Bering land bridge 8,000-10,000 yr B.P. Modern current and water mass movements and perhaps whale feeding activity prevent modern deposition in this area. The distribution of the transgressive sand sheet, associated amphipod community and feeding gray whales mapped by aerial survey correlate closely with three types of sea-floor pits observed on high (500 kHz) and low (105 kHz) resolution side-scan sonar; they are attributed to gray whale feeding traces and their subsequent current scour modification. The fresh and modified feeding pits are present in 22,000 km2 of the basin and they cover a total of 2 to 18% of the sea floor in different areas of the feeding region. The smallest size class of pits approximates whale mouth gape size and is assumed to represent fresh whale feeding pits. Fresh feeding disturbance of the sea floor is estimated to average about 5.7% for a full feeding season. Combined with information that 34% of the measured benthic biomass is amphipod prey species, and calculating the number of gray whale feeding days in the Alaskan waters plus amount consumed per day, it can be estimated that Chirikov Basin, 2% of the feeding area, supplies a minimum of 5.3 to 7.1% of the gray whale's food resource in the Bering Sea and Arctic Ocean. If a maximum of 50% of the fresh feeding features are assumed to be missed because they parallel side-scan beam paths, then a maximum whale food resource of 14.2% is possible in northeastern Bering Sea. Because of side-scan techniques and possible higher amphipod biomass estimates, a reasonable minimum estimate of the total whale food resource in northeastern Bering Sea is 10%. These data show that side-scan sonar is a powerful new technique for analyzing marine mammal benthic feeding grounds. Sonographs reveal that the gray whales profoundly disturb the substrate and initiate substantial further erosion by bottom currents, all of which enhances productivity of the prey species and results in a 'farming of the sea floor'. In turn, because of the high concentration of whale prey species in a prime feeding ground that is vulnerable to the development of petroleum and mining for sand, great care is required in the exploitation of these resources in the Chirikov Basin.
Croteau, M.-N.; Hare, L.; Tessier, A.
2003-01-01
Because Chaoborus larvae take up most of their cadmium (Cd) from food, we tested the hypothesis that Cd concentrations in this insect are directly related to those in their planktonic prey. We measured Cd in Chaoborus and in Zooplankton collected from 24 eastern Canadian lakes varying widely in their Cd concentrations. Cd concentrations in the predator were not correlated with those in bulk zooplankton, whether separated into size fractions liable to be eaten by Chaoborus or not. In highly acidic lakes, Cd concentrations in Chaoborus did not respond to increases in zooplankton Cd because of either competition between H and Cd ions at Cd absorption sites in the predator's gut or differences in prey community composition between highly acidic and circumneutral lakes. Relationships between Cd in Chaoborus and in its potential prey were stronger when we used Cd concentrations for specific crustacean taxa in a mechanistic model. We conclude that predictive relationships between metal concentrations in predators and their prey are likely to be strongest if the subset of prey consumed by the predator has been characterized and if this information is used in a bioaccumulation model.
David and Goliath: potent venom of an ant-eating spider (Araneae) enables capture of a giant prey.
Pekár, Stano; Šedo, Onřej; Líznarová, Eva; Korenko, Stanislav; Zdráhal, Zdeněk
2014-07-01
It is rare to find a true predator that repeatedly and routinely kills prey larger than itself. A solitary specialised ant-eating spider of the genus Zodarion can capture a relatively giant prey. We studied the trophic niche of this spider species and investigated its adaptations (behavioural and venomic) that are used to capture ants. We found that the spider captures mainly polymorphic Messor arenarius ants. Adult female spiders captured large morphs while tiny juveniles captured smaller morphs, yet in both cases ants were giant in comparison with spider size. All specimens used an effective prey capture strategy that protected them from ant retaliation. Juvenile and adult spiders were able to paralyse their prey using a single bite. The venom glands of adults were more than 50 times larger than those of juvenile spiders, but the paralysis latency of juveniles was 1.5 times longer. This suggests that this spider species possesses very potent venom already at the juvenile stage. Comparison of the venom composition between juvenile and adult spiders did not reveal significant differences. We discovered here that specialised capture combined with very effective venom enables the capture of giant prey.
David and Goliath: potent venom of an ant-eating spider (Araneae) enables capture of a giant prey
NASA Astrophysics Data System (ADS)
Pekár, Stano; Šedo, Onřej; Líznarová, Eva; Korenko, Stanislav; Zdráhal, Zdeněk
2014-07-01
It is rare to find a true predator that repeatedly and routinely kills prey larger than itself. A solitary specialised ant-eating spider of the genus Zodarion can capture a relatively giant prey. We studied the trophic niche of this spider species and investigated its adaptations (behavioural and venomic) that are used to capture ants. We found that the spider captures mainly polymorphic Messor arenarius ants. Adult female spiders captured large morphs while tiny juveniles captured smaller morphs, yet in both cases ants were giant in comparison with spider size. All specimens used an effective prey capture strategy that protected them from ant retaliation. Juvenile and adult spiders were able to paralyse their prey using a single bite. The venom glands of adults were more than 50 times larger than those of juvenile spiders, but the paralysis latency of juveniles was 1.5 times longer. This suggests that this spider species possesses very potent venom already at the juvenile stage. Comparison of the venom composition between juvenile and adult spiders did not reveal significant differences. We discovered here that specialised capture combined with very effective venom enables the capture of giant prey.
Biro, Peter A; Post, John R; Abrahams, Mark V
2005-01-01
Given limited food, prey fishes in a temperate climate must take risks to acquire sufficient reserves for winter and/or to outgrow vulnerability to predation. However, how can we distinguish which selective pressure promotes risk-taking when larger body size is always beneficial? To address this question, we examined patterns of energy allocation in populations of age-0 trout to determine if greater risk-taking corresponds with energy allocation to lipids or to somatic growth. Trout achieved maximum growth rates in all lakes and allocated nearly all of their acquired energy to somatic growth when small in early summer. However, trout in low-food lakes took greater risks to achieve this maximal growth, and therefore incurred high mortality. By late summer, age-0 trout allocated considerable energy to lipids and used previously risky habitats in all lakes. These results indicate that: (i) the size-dependent risk of predation (which is independent of behaviour) promotes risk-taking behaviour of age-0 trout to increase growth and minimize time spent in vulnerable sizes; and (ii) the physiology of energy allocation and behaviour interact to mediate growth/mortality trade-offs for young animals at risk of predation and starvation. PMID:16011918
Effects of deterministic and random refuge in a prey-predator model with parasite infection.
Mukhopadhyay, B; Bhattacharyya, R
2012-09-01
Most natural ecosystem populations suffer from various infectious diseases and the resulting host-pathogen dynamics is dependent on host's characteristics. On the other hand, empirical evidences show that for most host pathogen systems, a part of the host population always forms a refuge. To study the role of refuge on the host-pathogen interaction, we study a predator-prey-pathogen model where the susceptible and the infected prey can undergo refugia of constant size to evade predator attack. The stability aspects of the model system is investigated from a local and global perspective. The study reveals that the refuge sizes for the susceptible and the infected prey are the key parameters that control possible predator extinction as well as species co-existence. Next we perform a global study of the model system using Lyapunov functions and show the existence of a global attractor. Finally we perform a stochastic extension of the basic model to study the phenomenon of random refuge arising from various intrinsic, habitat-related and environmental factors. The stochastic model is analyzed for exponential mean square stability. Numerical study of the stochastic model shows that increasing the refuge rates has a stabilizing effect on the stochastic dynamics. Copyright © 2012 Elsevier Inc. All rights reserved.
Vaslet, A; Phillips, D L; France, C A M; Feller, I C; Baldwin, C C
2015-08-01
Stable isotope (δ(13)C and δ(15)N) and gut content analyses were used to investigate size-related feeding habits of four reef fishes (the beaugregory Stegastes leucostictus, the french grunt Haemulon flavolineatum, the schoolmaster snapper Lutjanus apodus and the yellowtail snapper Ocyurus chrysurus) inhabiting an offshore (non-estuarine) mangrove islet off Belize, Central America. Comparisons of isotopic niche space and Schoener diet similarity index suggested a low to moderate degree of niche overlap between fish size groups. The δ(13)C gradient between mangrove and seagrass prey as well as results of Bayesian mixing models revealed that sampled fishes relied mostly on seagrass prey items. Only small and large juveniles of the carnivorous species L. apodus derived a part of their diet from mangroves by targeting mangrove-associated Grapsidae crabs and fish prey, respectively. Isotopic niche shifts were particularly obvious for carnivorous fishes that ingested larger prey items (Xanthidae crabs and fishes) during their ontogeny. The utilization of mangrove food resources is less than expected and depends on the ecology and life history of the fish species considered. This research highlights that mangrove-derived carbon contributed relatively little to the diets of four fish taxa from an offshore mangrove islet. © 2015 The Fisheries Society of the British Isles.
Viranta, Suvi; Lommi, Hanna; Holmala, Katja; Laakkonen, Juha
2016-06-01
Mammalian carnivores adhere to two different feeding strategies relative to their body masses. Large carnivores prey on animals that are the same size or larger than themselves, whereas small carnivores prey on smaller vertebrates and invertebrates. The Eurasian lynx (Lynx lynx) falls in between these two categories. Lynx descend from larger forms that were probably large prey specialists, but during the Pleistocene became predators of small prey. The modern Eurasian lynx may be an evolutionary reversal toward specializing in large prey again. We hypothesized that the musculoskeletal anatomy of lynx should show traits for catching large prey. To test our hypothesis, we dissected the forelimb muscles of six Eurasian lynx individuals and compared our findings to results published for other felids. We measured the bones and compared their dimensions to the published material. Our material displayed a well-developed pectoral girdle musculature with some uniquely extensive muscle attachments. The upper arm musculature resembled that of the pantherine felids and probably the extinct sabertooths, and also the muscles responsible for supination and pronation were similar to those in large cats. The muscles controlling the pollex were well-developed. However, skeletal indices were similar to those of small prey predators. Our findings show that lynx possess the topographic pattern of muscle origin and insertion like in large felids. J. Morphol. 277:753-765, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Optimal web investment in sub-optimal foraging conditions.
Harmer, Aaron M T; Kokko, Hanna; Herberstein, Marie E; Madin, Joshua S
2012-01-01
Orb web spiders sit at the centre of their approximately circular webs when waiting for prey and so face many of the same challenges as central-place foragers. Prey value decreases with distance from the hub as a function of prey escape time. The further from the hub that prey are intercepted, the longer it takes a spider to reach them and the greater chance they have of escaping. Several species of orb web spiders build vertically elongated ladder-like orb webs against tree trunks, rather than circular orb webs in the open. As ladder web spiders invest disproportionately more web area further from the hub, it is expected they will experience reduced prey gain per unit area of web investment compared to spiders that build circular webs. We developed a model to investigate how building webs in the space-limited microhabitat on tree trunks influences the optimal size, shape and net prey gain of arboricolous ladder webs. The model suggests that as horizontal space becomes more limited, optimal web shape becomes more elongated, and optimal web area decreases. This change in web geometry results in decreased net prey gain compared to webs built without space constraints. However, when space is limited, spiders can achieve higher net prey gain compared to building typical circular webs in the same limited space. Our model shows how spiders optimise web investment in sub-optimal conditions and can be used to understand foraging investment trade-offs in other central-place foragers faced with constrained foraging arenas.
Optimal web investment in sub-optimal foraging conditions
NASA Astrophysics Data System (ADS)
Harmer, Aaron M. T.; Kokko, Hanna; Herberstein, Marie E.; Madin, Joshua S.
2012-01-01
Orb web spiders sit at the centre of their approximately circular webs when waiting for prey and so face many of the same challenges as central-place foragers. Prey value decreases with distance from the hub as a function of prey escape time. The further from the hub that prey are intercepted, the longer it takes a spider to reach them and the greater chance they have of escaping. Several species of orb web spiders build vertically elongated ladder-like orb webs against tree trunks, rather than circular orb webs in the open. As ladder web spiders invest disproportionately more web area further from the hub, it is expected they will experience reduced prey gain per unit area of web investment compared to spiders that build circular webs. We developed a model to investigate how building webs in the space-limited microhabitat on tree trunks influences the optimal size, shape and net prey gain of arboricolous ladder webs. The model suggests that as horizontal space becomes more limited, optimal web shape becomes more elongated, and optimal web area decreases. This change in web geometry results in decreased net prey gain compared to webs built without space constraints. However, when space is limited, spiders can achieve higher net prey gain compared to building typical circular webs in the same limited space. Our model shows how spiders optimise web investment in sub-optimal conditions and can be used to understand foraging investment trade-offs in other central-place foragers faced with constrained foraging arenas.
Nesting habits shape feeding preferences and predatory behavior in an ant genus
NASA Astrophysics Data System (ADS)
Dejean, Alain; Labrière, Nicolas; Touchard, Axel; Petitclerc, Frédéric; Roux, Olivier
2014-04-01
We tested if nesting habits influence ant feeding preferences and predatory behavior in the monophyletic genus Pseudomyrmex (Pseudomyrmecinae) which comprises terrestrial and arboreal species, and, among the latter, plant-ants which are obligate inhabitants of myrmecophytes (i.e., plants sheltering so-called plant-ants in hollow structures). A cafeteria experiment revealed that the diet of ground-nesting Pseudomyrmex consists mostly of prey and that of arboreal species consists mostly of sugary substances, whereas the plant-ants discarded all the food we provided. Workers forage solitarily, detecting prey from a distance thanks to their hypertrophied eyes. Approach is followed by antennal contact, seizure, and the manipulation of the prey to sting it under its thorax (next to the ventral nerve cord). Arboreal species were not more efficient at capturing prey than were ground-nesting species. A large worker size favors prey capture. Workers from ground- and arboreal-nesting species show several uncommon behavioral traits, each known in different ant genera from different subfamilies: leaping abilities, the use of surface tension strengths to transport liquids, short-range recruitment followed by conflicts between nestmates, the consumption of the prey's hemolymph, and the retrieval of entire prey or pieces of prey after having cut it up. Yet, we never noted group ambushing. We also confirmed that Pseudomyrmex plant-ants live in a kind of food autarky as they feed only on rewards produced by their host myrmecophyte, or on honeydew produced by the hemipterans they attend and possibly on the fungi they cultivate.
Estimating maximum bite performance in Tyrannosaurus rex using multi-body dynamics
Bates, K. T.; Falkingham, P. L.
2012-01-01
Bite mechanics and feeding behaviour in Tyrannosaurus rex are controversial. Some contend that a modest bite mechanically limited T. rex to scavenging, while others argue that high bite forces facilitated a predatory mode of life. We use dynamic musculoskeletal models to simulate maximal biting in T. rex. Models predict that adult T. rex generated sustained bite forces of 35 000–57 000 N at a single posterior tooth, by far the highest bite forces estimated for any terrestrial animal. Scaling analyses suggest that adult T. rex had a strong bite for its body size, and that bite performance increased allometrically during ontogeny. Positive allometry in bite performance during growth may have facilitated an ontogenetic change in feeding behaviour in T. rex, associated with an expansion of prey range in adults to include the largest contemporaneous animals. PMID:22378742
Estimating maximum bite performance in Tyrannosaurus rex using multi-body dynamics.
Bates, K T; Falkingham, P L
2012-08-23
Bite mechanics and feeding behaviour in Tyrannosaurus rex are controversial. Some contend that a modest bite mechanically limited T. rex to scavenging, while others argue that high bite forces facilitated a predatory mode of life. We use dynamic musculoskeletal models to simulate maximal biting in T. rex. Models predict that adult T. rex generated sustained bite forces of 35 000-57 000 N at a single posterior tooth, by far the highest bite forces estimated for any terrestrial animal. Scaling analyses suggest that adult T. rex had a strong bite for its body size, and that bite performance increased allometrically during ontogeny. Positive allometry in bite performance during growth may have facilitated an ontogenetic change in feeding behaviour in T. rex, associated with an expansion of prey range in adults to include the largest contemporaneous animals.
NASA Astrophysics Data System (ADS)
Gray, Benjamin P.; Norcross, Brenda L.; Beaudreau, Anne H.; Blanchard, Arny L.; Seitz, Andrew C.
2017-01-01
Arctic staghorn sculpin (Gymnocanthus tricuspis) and shorthorn sculpin (Myoxocephalus scorpius) belong to Cottidae, the second most abundant fish family in the western Arctic. Although considered important in food webs, little is known about their food habits throughout this region. To address this knowledge gap, we examined and compared the diets of 515 Arctic staghorn sculpin and 422 shorthorn sculpin using stomachs collected over three summers in the northeastern Chukchi Sea (2010-2012) and one summer in the western Beaufort Sea (2011). We used permutational multivariate analysis of variance (PERMANOVA) and non-metric multidimensional scaling (nMDS) to compare sculpin diets between regions and selected size classes. Differences in mouth morphologies and predator size versus prey size relationships were examined using regression techniques. Arctic staghorn sculpin and shorthorn sculpin diet compositions differed greatly throughout the Chukchi and Beaufort Seas. Regardless of body size, the smaller-mouthed Arctic staghorn sculpin consumed mostly benthic amphipods and polychaetes, whereas the larger-mouthed shorthorn sculpin shifted from a diet composed of benthic and pelagic macroinvertebrates as smaller individuals to shrimps and fish prey as larger individuals. Within shared habitats, the sculpins appear to partition prey, either by taxa or size, in a manner that suggests no substantial overlap occurs between species. This study increases knowledge of sculpin feeding ecology in the western Arctic and offers regional, quantitative diet information that could support current and future food web modeling efforts.
Norazlimi, Nor Atiqah; Ramli, Rosli
2015-01-01
A study was conducted to investigate the relationship between the physical morphology of shorebirds and water birds (i.e., Lesser adjutant (Leptoptilos javanicus), Common redshank (Tringa totanus), Whimbrel (Numenius phaeopus), and Little heron (Butorides striata)) and their foraging behavior in the mudflats area of Selangor, Peninsular Malaysia, from August 2013 to July 2014 by using direct observation techniques (using binoculars and a video recorder). The actively foraging bird species were watched, and their foraging activities were recorded for at least 30 seconds for up to a maximum of five minutes. A Spearman Rank Correlation highlighted a significant relationship between bill size and foraging time (R = 0.443, p < 0.05), bill size and prey size (R = −0.052, p < 0.05), bill size and probing depth (R = 0.42, p = 0.003), and leg length and water/mud depth (R = 0.706, p < 0.005). A Kruskal-Wallis Analysis showed a significant difference between average estimates of real probing depth of the birds (mm) and species (H = 15.96, p = 0.0012). Three foraging techniques were recorded: pause-travel, visual-feeding, and tactile-hunting. Thus, morphological characteristics of bird do influence their foraging behavior and strategies used when foraging. PMID:26345324
Nonlinear effects of group size on the success of wolves hunting elk
MacNulty, D.R.; Smith, D.W.; Mech, L.D.; Vucetich, J.A.; Packer, C.
2012-01-01
Despite the popular view that social predators live in groups because group hunting facilitates prey capture, the apparent tendency for hunting success to peak at small group sizes suggests that the formation of large groups is unrelated to prey capture. Few empirical studies, however, have tested for nonlinear relationships between hunting success and group size, and none have demonstrated why success trails off after peaking. Here, we use a unique dataset of observations of individually known wolves (Canis lupus) hunting elk (Cervus elaphus) in Yellowstone National Park to show that the relationship between success and group size is indeed nonlinear and that individuals withholding effort (free riding) is why success does not increase across large group sizes. Beyond 4 wolves, hunting success leveled off, and individual performance (a measure of effort) decreased for reasons unrelated to interference from inept hunters, individual age, or size. But performance did drop faster among wolves with an incentive to hold back, i.e., nonbreeders with no dependent offspring, those performing dangerous predatory tasks, i.e., grabbing and restraining prey, and those in groups of proficient hunters. These results suggest that decreasing performance was free riding and that was why success leveled off in groups with >4 wolves that had superficially appeared to be cooperating. This is the first direct evidence that nonlinear trends in group hunting success reflect a switch from cooperation to free riding. It also highlights how hunting success per se is unlikely to promote formation and maintenance of large groups. ?? 2011 The Author.
The effect of aggregation on visibility in open water
2016-01-01
Aggregation is a common life-history trait in open-water taxa. Qualitative understanding of how aggregation by prey influences their encounter rates with predators is critical for understanding pelagic predator–prey interactions and trophic webs. We extend a recently developed theory on underwater visibility to predict the consequences of grouping in open-water species in terms of increased visual detection of groups by predators. Our model suggests that enhanced visibility will be relatively modest, with maximum detection distance typically only doubling for a 100-fold increase in the number of prey in a group. This result suggests that although larger groups are more easily detected, this cost to aggregation will in many cases be dominated by benefits, especially through risk dilution in situations where predators cannot consume all members of a discovered group. This, in turn, helps to explain the ubiquity of grouping across a great variety of open-water taxa. PMID:27655767
Zooplankton size selection relative to gill raker spacing in rainbow trout
Budy, P.; Haddix, T.; Schneidervin, R.
2005-01-01
Rainbow trout Oncorhynchus mykiss are one of the most widely stocked salmonids worldwide, often based on the assumption that they will effectively utilize abundant invertebrate food resources. We evaluated the potential for feeding morphology to affect prey selection by rainbow trout using a combination of laboratory feeding experiments and field observations in Flaming Gorge Reservoir, Utah-Wyoming. For rainbow trout collected from the reservoir, inter-gill raker spacing averaged 1.09 mm and there was low variation among fish overall (SD = 0.28). Ninety-seven percent of all zooplankton observed in the diets of rainbow trout collected in the reservoir were larger than the interraker spacing, while only 29% of the zooplankton found in the environment were larger than the interraker spacing. Over the size range of rainbow trout evaluated here (200-475 mm), interraker spacing increased moderately with increasing fish length; however, the size of zooplankton found in the diet did not increase with increasing fish length. In laboratory experiments, rainbow trout consumed the largest zooplankton available; the mean size of zooplankton observed in the diets was significantly larger than the mean size of zooplankton available. Electivity indices for both laboratory and field observations indicated strong selection for larger-sized zooplankton. The size threshold at which electivity switched from selection against smaller-sized zooplankton to selection for larger-sized zooplankton closely corresponded to the mean interraker spacing for both groups (???1-1.2 mm). The combination of results observed here indicates that rainbow trout morphology limits the retention of different-sized zooplankton prey and reinforces the importance of understanding how effectively rainbow trout can utilize the type and sizes of different prey available in a given system. These considerations may improve our ability to predict the potential for growth and survival of rainbow trout within and among different systems. ?? Copyright by the American Fisheries Society 2005.
The giant bite of a new raptorial sperm whale from the Miocene epoch of Peru.
Lambert, Olivier; Bianucci, Giovanni; Post, Klaas; de Muizon, Christian; Salas-Gismondi, Rodolfo; Urbina, Mario; Reumer, Jelle
2010-07-01
The modern giant sperm whale Physeter macrocephalus, one of the largest known predators, preys upon cephalopods at great depths. Lacking a functional upper dentition, it relies on suction for catching its prey; in contrast, several smaller Miocene sperm whales (Physeteroidea) have been interpreted as raptorial (versus suction) feeders, analogous to the modern killer whale Orcinus orca. Whereas very large physeteroid teeth have been discovered in various Miocene localities, associated diagnostic cranial remains have not been found so far. Here we report the discovery of a new giant sperm whale from the Middle Miocene of Peru (approximately 12-13 million years ago), Leviathan melvillei, described on the basis of a skull with teeth and mandible. With a 3-m-long head, very large upper and lower teeth (maximum diameter and length of 12 cm and greater than 36 cm, respectively), robust jaws and a temporal fossa considerably larger than in Physeter, this stem physeteroid represents one of the largest raptorial predators and, to our knowledge, the biggest tetrapod bite ever found. The appearance of gigantic raptorial sperm whales in the fossil record coincides with a phase of diversification and size-range increase of the baleen-bearing mysticetes in the Miocene. We propose that Leviathan fed mostly on high-energy content medium-size baleen whales. As a top predator, together with the contemporaneous giant shark Carcharocles megalodon, it probably had a profound impact on the structuring of Miocene marine communities. The development of a vast supracranial basin in Leviathan, extending on the rostrum as in Physeter, might indicate the presence of an enlarged spermaceti organ in the former that is not associated with deep diving or obligatory suction feeding.
Huber, Daniel R; Eason, Thomas G; Hueter, Robert E; Motta, Philip J
2005-09-01
Three-dimensional static equilibrium analysis of the forces generated by the jaw musculature of the horn shark Heterodontus francisci was used to theoretically estimate the maximum force distributions and loadings on its jaws and suspensorium during biting. Theoretical maximum bite force was then compared with bite forces measured (1) voluntarily in situ, (2) in restrained animals and (3) during electrical stimulation of the jaw adductor musculature of anesthetized sharks. Maximum theoretical bite force ranged from 128 N at the anteriormost cuspidate teeth to 338 N at the posteriormost molariform teeth. The hyomandibula, which connects the posterior margin of the jaws to the base of the chondrocranium, is loaded in tension during biting. Conversely, the ethmoidal articulation between the palatal region of the upper jaw and the chondrocranium is loaded in compression, even during upper jaw protrusion, because H. francisci's upper jaw does not disarticulate from the chondrocranium during prey capture. Maximum in situ bite force averaged 95 N for free-swimming H. francisci, with a maximum of 133 N. Time to maximum force averaged 322 ms and was significantly longer than time away from maximum force (212 ms). Bite force measurements from restrained individuals (187 N) were significantly greater than those from free-swimming individuals (95 N) but were equivalent to those from both theoretical (128 N) and electrically stimulated measurements (132 N). The mean mass-specific bite of H. francisci was greater than that of many other vertebrates and second highest of the cartilaginous fishes that have been studied. Measuring bite force on restrained sharks appears to be the best indicator of maximum bite force. The large bite forces and robust molariform dentition of H. francisci correspond to its consumption of hard prey.
NASA Astrophysics Data System (ADS)
Grange, Sophie; Owen-Smith, Norman; Gaillard, Jean-Michel; Druce, Dave J.; Moleón, Marcos; Mgobozi, Mandisa
2012-07-01
Large predators have been reintroduced to an increasing number of protected areas in South Africa. However, the conditions allowing both prey and predator populations to be sustained in enclosed areas are still unclear as there is a lack of understanding of the consequences of such reintroductions for ungulate population dynamics. Variation in lion numbers, two decades after their first release, offered a special opportunity to test the effects of predation pressure on the population dynamics of seven ungulate species in the 960 km2 Hluhluwe-iMfolozi Park (HiP), South Africa. We used two different approaches to examine predator-prey relationships: the population response of ungulates to predation pressure after accounting for possible confounding factors, and the pattern of ungulate adult mortality observed from carcass records. Rainfall patterns affected observed mortalities of several ungulate species in HiP. Although lion predation accounted for most ungulate mortality, it still had no detectable influence on ungulate population trends and mortality patterns, with one possible exception. This evidence suggests that the lion population had not yet attained the maximum abundance potentially supported by their ungulate prey; but following recent increases in lion numbers it will probably occur soon. It remains uncertain whether a quasi-stable balance will be reached between prey and predator populations, or whether favoured prey species will be depressed towards levels potentially generating oscillatory dynamics in this complex large mammal assemblage. We specifically recommend a continuous monitoring of predator and prey populations in HiP since lions are likely to show more impacts on their prey species in the next years.
Bifurcation analysis of a discrete-time ratio-dependent predator-prey model with Allee Effect
NASA Astrophysics Data System (ADS)
Cheng, Lifang; Cao, Hongjun
2016-09-01
A discrete-time predator-prey model with Allee effect is investigated in this paper. We consider the strong and the weak Allee effect (the population growth rate is negative and positive at low population density, respectively). From the stability analysis and the bifurcation diagrams, we get that the model with Allee effect (strong or weak) growth function and the model with logistic growth function have somewhat similar bifurcation structures. If the predator growth rate is smaller than its death rate, two species cannot coexist due to having no interior fixed points. When the predator growth rate is greater than its death rate and other parameters are fixed, the model can have two interior fixed points. One is always unstable, and the stability of the other is determined by the integral step size, which decides the species coexistence or not in some extent. If we increase the value of the integral step size, then the bifurcated period doubled orbits or invariant circle orbits may arise. So the numbers of the prey and the predator deviate from one stable state and then circulate along the period orbits or quasi-period orbits. When the integral step size is increased to a critical value, chaotic orbits may appear with many uncertain period-windows, which means that the numbers of prey and predator will be chaotic. In terms of bifurcation diagrams and phase portraits, we know that the complexity degree of the model with strong Allee effect decreases, which is related to the fact that the persistence of species can be determined by the initial species densities.
Green, Stephanie J; Côté, Isabelle M
2014-11-01
Understanding how predators select their prey can provide important insights into community structure and dynamics. However, the suite of prey species available to a predator is often spatially and temporally variable. As a result, species-specific selectivity data are of limited use for predicting novel predator-prey interactions because they are assemblage specific. We present a method for predicting diet selection that is applicable across prey assemblages, based on identifying general morphological and behavioural traits of prey that confer vulnerability to predation independent of species identity. We apply this trait-based approach to examining prey selection by Indo-Pacific lionfish (Pterois volitans and Pterois miles), invasive predators that prey upon species-rich reef fish communities and are rapidly spreading across the western Atlantic. We first generate hypotheses about morphological and behavioural traits recurring across fish species that could facilitate or deter predation by lionfish. Constructing generalized linear mixed-effects models that account for relatedness among prey taxa, we test whether these traits predict patterns of diet selection by lionfish within two independent data sets collected at different spatial scales: (i) in situ visual observations of prey consumption and availability for individual lionfish and (ii) comparisons of prey abundance in lionfish stomach contents to availability on invaded reefs at large. Both analyses reveal that a number of traits predicted to affect vulnerability to predation, including body size, body shape, position in the water column and aggregation behaviour, are important determinants of diet selection by lionfish. Small, shallow-bodied, solitary fishes found resting on or just above reefs are the most vulnerable. Fishes that exhibit parasite cleaning behaviour experience a significantly lower risk of predation than non-cleaning fishes, and fishes that are nocturnally active are at significantly greater risk. Together, vulnerable traits heighten the risk of predation by a factor of nearly 200. Our study reveals that a trait-based approach yields insights into predator-prey interactions that are robust across prey assemblages. Importantly, in situ observations of selection yield similar results to broadscale comparisons of prey use and availability, which are more typically gathered for predator species. A trait-based approach could therefore be of use across predator species and ecosystems to predict the outcomes of changing predator-prey interactions on community dynamics. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Escobedo, R.; Muro, C.; Spector, L.; Coppinger, R. P.
2014-01-01
The emergence of cooperation in wolf-pack hunting is studied using a simple, homogeneous, particle-based computational model. Wolves and prey are modelled as particles that interact through attractive and repulsive forces. Realistic patterns of wolf aggregation readily emerge in numerical simulations, even though the model includes no explicit wolf–wolf attractive forces, showing that the form of cooperation needed for wolf-pack hunting can take place even among strangers. Simulations are used to obtain the stationary states and equilibria of the wolves and prey system and to characterize their stability. Different geometric configurations for different pack sizes arise. In small packs, the stable configuration is a regular polygon centred on the prey, while in large packs, individual behavioural differentiation occurs and induces the emergence of complex behavioural patterns between privileged positions. Stable configurations of large wolf-packs include travelling and rotating formations, periodic oscillatory behaviours and chaotic group behaviours. These findings suggest a possible mechanism by which larger pack sizes can trigger collective behaviours that lead to the reduction and loss of group hunting effectiveness, thus explaining the observed tendency of hunting success to peak at small pack sizes. They also explain how seemingly complex collective behaviours can emerge from simple rules, among agents that need not have significant cognitive skills or social organization. PMID:24694897
Kloskowski, Janusz
2011-06-01
Size-structured interspecific interactions can shift between predation and competition, depending on ontogenetic changes in size relationships. I examined the effects of common carp (Cyprinus carpio), an omnivorous fish, on the reproductive success of the red-necked grebe (Podiceps grisegena), an avian gape-limited predator, along a fish size gradient created by stocking distinct age-cohorts in seminatural ponds. Young-of-the-year (0+) carp were an essential food source for young grebes. Only adult birds were able to consume 1-year-old (1+) fish, while 2-year-old (2+) fish attained a size refuge from grebes. Amphibian larvae were the principal alternative prey to fish, followed by macroinvertebrates, but the abundance of both dramatically decreased along the carp size gradient. Fledging success was 2.8 times greater in ponds with 0+ versus 1+ carp; in ponds with 1+ carp, chicks received on average 2.6-3 times less prey biomass from their parents, and over 1/3 of broods suffered total failure. Breeding birds avoided settling on 2+ ponds. These results show that changes in prey fish size structure can account for shifts from positive trophic effects on the avian predator to a negative impact on the predator's alternative resources. However, competition did not fully explain the decrease in grebe food resources in the presence of large fish, as carp and grebes overlapped little in diet. In experimental cages, 1+ carp totally eliminated young larvae of amphibians palatable to fish. In field conditions, breeding adults of palatable taxa avoided ponds with 1+ and older carp. Non-trophic interactions such as habitat selection by amphibians or macroinvertebrates to avoid large fish may provide an indirect mechanism strengthening the adverse bottom-up effects of fish on birds.
Effects of spatial grouping on the functional response of predators
Cosner, C.; DeAngelis, D.L.; Ault, J.S.; Olson, D.B.
1999-01-01
A unified mechanistic approach is given for the derivation of various forms of functional response in predator-prey models. The derivation is based on the principle-of-mass action but with the crucial refinement that the nature of the spatial distribution of predators and/or opportunities for predation are taken into account in an implicit way. If the predators are assumed to have a homogeneous spatial distribution, then the derived functional response is prey-dependent. If the predators are assumed to form a dense colony or school in a single (possibly moving) location, or if the region where predators can encounter prey is assumed to be of limited size, then the functional response depends on both predator and prey densities in a manner that reflects feeding interference between predators. Depending on the specific assumptions, the resulting functional response may be of Beddington-DeAngelis type, of Hassell-Varley type, or ratio-dependent.
Problems with studying wolf predation on small prey in summer via global positioning system collars
Palacios, Vicente; Mech, L. David
2010-01-01
We attempted to study predation on various-sized prey by a male and female wolf (Canis lupus) with global positioning system (GPS) collars programmed to acquire locations every 10 min in the Superior National Forest of Minnesota. During May to August 2007, we investigated 147 clusters of locations (31% of the total) and found evidence of predation on a white-tailed deer (Odocoileus virginianus) fawn and yearling, a beaver (Castor canadensis), ruffed grouse (Bonasa umbellus), and fisher (Martes pennanti) and scavenging on a road-killed deer and other carrion. However, we missed finding many prey items and discuss the problems associated with trying to conduct such a study.
Problems with studying wolf predation on small prey in summer via global positioning system collars
Palacios, V.; Mech, L.D.
2011-01-01
We attempted to study predation on various-sized prey by a male and female wolf (Canis lupus) with global positioning system (GPS) collars programmed to acquire locations every 10 min in the Superior National Forest of Minnesota. During May to August 2007, we investigated 147 clusters of locations (31% of the total) and found evidence of predation on a white-tailed deer (Odocoileus virginianus) fawn and yearling, a beaver (Castor canadensis), ruffed grouse (Bonasa umbellus), and fisher (Martes pennanti) and scavenging on a road-killed deer and other carrion. However, we missed finding many prey items and discuss the problems associated with trying to conduct such a study. ?? 2010 US Government.
Geospatial Analysis of Grey Wolf Movement Patterns
NASA Astrophysics Data System (ADS)
Sur, D.
2017-12-01
The grey wolf is a top predator that lives across a diverse habitat, ranging from Europe to North America. They often hunt in packs, preferring caribou, deer and elk as prey. Currently, many gray wolves live in Denali National Park and Preserve. In this study, several wolf packs were studied in three distinct regions of Denali. The purpose of my research was to investigate the links between wolf habitat, movement patterns, and prey thresholds. These are needed for projecting future population, growth and distribution of wolves in the studied region. I also investigated the effect wolves have on the ecological structure of the communities they inhabit. In the study I carried out a quantitative analysis of wolf population trends and daily distance movement by utilizing an analysis of variance (ANOVA) in the program JmpPro12 (SAS Institute, Crary, NC) to assess regional differences in pack size, wolf density, average daily distance moved. I found a clear link between the wolf habitat and prey thresholds; the habitat directly influences the types of prey available. However there was no link between the daily distance movement, the wolf habitat and prey density.
First longitudinal study of seal-feeding killer whales (Orcinus orca) in Norwegian coastal waters.
Jourdain, Eve; Vongraven, Dag; Bisther, Anna; Karoliussen, Richard
2017-01-01
Killer whales (Orcinus orca) have been documented preying on either fish or marine mammals in several regions, suggesting that this odontocete species has the ability to specialize on different types of prey. Off Norway, killer whales have been shown to rely on the Atlantic herring (Clupea harengus) as a main prey resource. Infrequent observations have revealed seals as an additional component of their diet, yet the extent of predation on marine mammals has remained largely unknown. Here, we present the findings of 29 years of photographic and observational data on seal-feeding killer whale groups identified in Norwegian coastal waters. Four groups have been observed preying and feeding on seals over several years, taking both harbor (Phoca vitulina) and grey (Halichoerus grypus) seals. These stable groups are shown to adopt small group sizes, were typically observed in near-shore areas and were not encountered on herring wintering grounds. Behavioral and social traits adopted by these groups are similar to those of pinniped-feeding killer whales from other regions. The potential ecological reasons and the extent of such prey specializations are discussed.
First longitudinal study of seal-feeding killer whales (Orcinus orca) in Norwegian coastal waters
Bisther, Anna; Karoliussen, Richard
2017-01-01
Killer whales (Orcinus orca) have been documented preying on either fish or marine mammals in several regions, suggesting that this odontocete species has the ability to specialize on different types of prey. Off Norway, killer whales have been shown to rely on the Atlantic herring (Clupea harengus) as a main prey resource. Infrequent observations have revealed seals as an additional component of their diet, yet the extent of predation on marine mammals has remained largely unknown. Here, we present the findings of 29 years of photographic and observational data on seal-feeding killer whale groups identified in Norwegian coastal waters. Four groups have been observed preying and feeding on seals over several years, taking both harbor (Phoca vitulina) and grey (Halichoerus grypus) seals. These stable groups are shown to adopt small group sizes, were typically observed in near-shore areas and were not encountered on herring wintering grounds. Behavioral and social traits adopted by these groups are similar to those of pinniped-feeding killer whales from other regions. The potential ecological reasons and the extent of such prey specializations are discussed. PMID:28666015
Prey capture kinematics and four-bar linkages in the bay pipefish, Syngnathus leptorhynchus.
Flammang, Brooke E; Ferry-Graham, Lara A; Rinewalt, Christopher; Ardizzone, Daniele; Davis, Chante; Trejo, Tonatiuh
2009-01-01
Because of their modified cranial morphology, syngnathid pipefishes have been described as extreme suction feeders. The presumption is that these fishes use their elongate snout much like a pipette in capturing planktonic prey. In this study, we quantify the contribution of suction to the feeding strike and quantitatively describe the prey capture mechanics of the bay pipefish Syngnathus leptorhynchus, focusing specifically on the role of both cranial elevation and snout movement. We used high-speed video to capture feeding sequences from nine individuals feeding on live brine shrimp. Sequences were digitized in order to calculate kinematic variables that could be used to describe prey capture. Prey capture was very rapid, from 2 to 6 ms from the onset of cranial rotation. We found that suction contributed at most about one-eighth as much as ram to the reduction of the distance between predator and prey. This movement of the predator was due almost exclusively to movement of the snout and neurocranium rather than movement of the whole body. The body was positioned ventral and posterior to the prey and the snout was rotated dorsally by as much as 21 degrees, thereby placing the mouth immediately behind the prey for capture. The snout did not follow the identical trajectory as the neurocranium, however, and reached a maximum angle of only about 10 degrees. The snout consists, in part, of elongate suspensorial elements and the linkages among these elements are retained despite changes in shape. Thus, when the neurocranium is rotated, the four-bar linkage that connects this action with hyoid depression simultaneously acts to expand and straighten the snout relative to the neurocranium. We confirm the presence of a four-bar linkage that facilitates these kinematics by couplings between the pectoral girdle, urohyal, hyoid complex, and the neurocranium-suspensorium complex.
Siddon, Elizabeth Calvert; Kristiansen, Trond; Mueter, Franz J; Holsman, Kirstin K; Heintz, Ron A; Farley, Edward V
2013-01-01
Understanding mechanisms behind variability in early life survival of marine fishes through modeling efforts can improve predictive capabilities for recruitment success under changing climate conditions. Walleye pollock (Theragra chalcogramma) support the largest single-species commercial fishery in the United States and represent an ecologically important component of the Bering Sea ecosystem. Variability in walleye pollock growth and survival is structured in part by climate-driven bottom-up control of zooplankton composition. We used two modeling approaches, informed by observations, to understand the roles of prey quality, prey composition, and water temperature on juvenile walleye pollock growth: (1) a bioenergetics model that included local predator and prey energy densities, and (2) an individual-based model that included a mechanistic feeding component dependent on larval development and behavior, local prey densities and size, and physical oceanographic conditions. Prey composition in late-summer shifted from predominantly smaller copepod species in the warmer 2005 season to larger species in the cooler 2010 season, reflecting differences in zooplankton composition between years. In 2010, the main prey of juvenile walleye pollock were more abundant, had greater biomass, and higher mean energy density, resulting in better growth conditions. Moreover, spatial patterns in prey composition and water temperature lead to areas of enhanced growth, or growth 'hot spots', for juvenile walleye pollock and survival may be enhanced when fish overlap with these areas. This study provides evidence that a spatial mismatch between juvenile walleye pollock and growth 'hot spots' in 2005 contributed to poor recruitment while a higher degree of overlap in 2010 resulted in improved recruitment. Our results indicate that climate-driven changes in prey quality and composition can impact growth of juvenile walleye pollock, potentially severely affecting recruitment variability.
Influence of prey body characteristics and performance on predator selection.
Holmes, Thomas H; McCormick, Mark I
2009-03-01
At the time of settlement to the reef environment, coral reef fishes differ in a number of characteristics that may influence their survival during a predatory encounter. This study investigated the selective nature of predation by both a multi-species predator pool, and a single common predator (Pseudochromis fuscus), on the reef fish, Pomacentrus amboinensis. The study focused on the early post-settlement period of P. amboinensis, when mortality, and hence selection, is known to be highest. Correlations between nine different measures of body condition/performance were examined at the time of settlement, in order to elucidate the relationships between different traits. Single-predator (P. fuscus) choice trials were conducted in 57.4-l aquaria with respect to three different prey characteristics [standard length (SL), body weight and burst swimming speed], whilst multi-species trials were conducted on open patch reefs, manipulating prey body weight only. Relationships between the nine measures of condition/performance were generally poor, with the strongest correlations occurring between the morphological measures and within the performance measures. During aquaria trials, P. fuscus was found to be selective with respect to prey SL only, with larger individuals being selected significantly more often. Multi-species predator communities, however, were selective with respect to prey body weight, with heavier individuals being selected significantly more often than their lighter counterparts. Our results suggest that under controlled conditions, body length may be the most important prey characteristic influencing prey survival during predatory encounters with P. fuscus. In such cases, larger prey size may actually be a distinct disadvantage to survival. However, these relationships appear to be more complex under natural conditions, where the expression of prey characteristics, the selectivity fields of a number of different predators, their relative abundance, and the action of external environmental characteristics, may all influence which individuals survive.
Selective carnivory by Euphausia lucens
NASA Astrophysics Data System (ADS)
Gibbons, M. J.; Pillar, S. C.; Stuart, V.
1991-07-01
Stomach contents of adult Euphausia lucens were analysed to determine what criteria this euphausiid uses to select copepod prey. The results indicate that although E. lucens of all sizes ingest a wide range of prey sizes at apparently ambient proportions, small copepods (e.g. Oithona) are consistently consumed in greater than ambient amounts. Small copepods (especially Oithona) are known to move slowly, and have been shown to be more susceptible to predation via negative pressure than larger copepods. In the presence of an abundant phytoplankton food supply and in an otherwise generally non-selective diet, we conclude that such copepod selection by E. lucens is passive. This is in line with the idea of a non-hunting, preferentially herbivorous zooplankter.
Bartoń, Kamil A.; Scott, Beth E.; Travis, Justin M.J.
2014-01-01
Foraging in the marine environment presents particular challenges for air-breathing predators. Information about prey capture rates, the strategies that diving predators use to maximise prey encounter rates and foraging success are still largely unknown and difficult to observe. As well, with the growing awareness of potential climate change impacts and the increasing interest in the development of renewable sources it is unknown how the foraging activity of diving predators such as seabirds will respond to both the presence of underwater structures and the potential corresponding changes in prey distributions. Motivated by this issue we developed a theoretical model to gain general understanding of how the foraging efficiency of diving predators may vary according to landscape structure and foraging strategy. Our theoretical model highlights that animal movements, intervals between prey capture and foraging efficiency are likely to critically depend on the distribution of the prey resource and the size and distribution of introduced underwater structures. For multiple prey loaders, changes in prey distribution affected the searching time necessary to catch a set amount of prey which in turn affected the foraging efficiency. The spatial aggregation of prey around small devices (∼ 9 × 9 m) created a valuable habitat for a successful foraging activity resulting in shorter intervals between prey captures and higher foraging efficiency. The presence of large devices (∼ 24 × 24 m) however represented an obstacle for predator movement, thus increasing the intervals between prey captures. In contrast, for single prey loaders the introduction of spatial aggregation of the resources did not represent an advantage suggesting that their foraging efficiency is more strongly affected by other factors such as the timing to find the first prey item which was found to occur faster in the presence of large devices. The development of this theoretical model represents a useful starting point to understand the energetic reasons for a range of potential predator responses to spatial heterogeneity and environmental uncertainties in terms of search behaviour and predator–prey interactions. We highlight future directions that integrated empirical and modelling studies should take to improve our ability to predict how diving predators will be impacted by the deployment of manmade structures in the marine environment. PMID:25250211
Fernandez-Fournier, Philippe; Guevara, Jennifer; Hoffman, Catherine; Avilés, Leticia
2018-05-21
Among the factors that may lead to differences in resource use among closely related species, body size and morphology have been traditionally considered to play a role in community assembly. Here we argue that for animals that live and forage in groups, level of sociality, reflecting differences in group size and cooperative tendencies, can be an additional and powerful dimension separating species in niche space. We compare 50+ communities of the social spider genus Anelosimus across the Americas against a null model that accounts for known effects of biotic and abiotic factors on the distribution of social systems in the genus. We show that these communities are more overdispersed than expected by chance in either or both body size and level of sociality, traits we have previously shown to be associated with differences in resource utilization (prey size, microhabitat, and phenology). We further show that the contribution of sociality to differences in the size of the prey captured is two to three times greater than that of body size, suggesting that changes in group size and cooperative tendencies may be more effective than changes in body size at separating species in niche space.
Are red-tailed hawks and great horned owls diurnal-nocturnal dietary counterparts?
Marti, C.D.; Kochert, Michael N.
1995-01-01
Red-tailed Hawks (Buteo jamaicensis) and Great Homed Owls (Bubo virginianus)are common in North America where they occupy a wide range of habitats, often sympatrically. The two species are similar in size and have been portrayed as ecological counterparts, eating the same prey by day and night. We tested the trophic similarity of the two species by comparing published dietary data from across the United States. Both species ate primarily mammals and birds, and mean proportions of those two prey types did not differ significantly between diets of the two raptors. Red-tailed Hawks ate significantly more reptiles, and Great Homed Owls significantly more invertebrates. Dietary diversity was not significantly different at the level of prey taxonomic class, and diet overlap between the two species averaged 91%. At the prey species level, dietary overlap averaged only 50%, and at that level Red-tailed Hawk dietary diversity was significantly greater than that of Great Horned Owls. Mean prey mass of Red-tailed Hawks was significantly greater than that of Great Homed Owls. Populations of the two species in the western United States differed trophically more than did eastern populations. We conclude that, although the two species are generalist predators, they take largely different prey species in the same localities resulting in distinctive trophic characteristics.
Prey Capture, Ingestion, and Digestion Dynamics of Octopus vulgaris Paralarvae Fed Live Zooplankton
Nande, Manuel; Presa, Pablo; Roura, Álvaro; Andrews, Paul L. R.; Pérez, Montse
2017-01-01
Octopus vulgaris is a species of great interest in research areas such as neurobiology, ethology, and ecology but also a candidate species for aquaculture as a food resource and for alleviating the fishing pressure on its wild populations. This study aimed to characterize the predatory behavior of O. vulgaris paralarvae and to quantify their digestive activity. Those processes were affordable using the video-recording analysis of 3 days post-hatching (dph), mantle-transparent paralarvae feeding on 18 types of live zooplanktonic prey. We show for the first time in a live cephalopod that octopus paralarvae attack, immobilize, drill, and ingest live cladocerans and copepods with 100% efficiency, which decreases dramatically to 60% on decapod prey (Pisidia longicornis). The majority (85%) of successful attacks targeted the prey cephalothorax while unsuccessful attacks either targeted the dorsal cephalothorax or involved prey defensive strategies (e.g., juvenile crab megalopae) or prey protected by thick carapaces (e.g., gammaridae amphipods). After immobilization, the beak, the buccal mass and the radula were involved in exoskeleton penetration and content ingestion. Ingestion time of prey content was rapid for copepods and cladocerans (73.13 ± 23.34 s) but much slower for decapod zoeae and euphausiids (152.49 ± 29.40 s). Total contact time with prey was always <5 min. Contrary to the conventional view of crop filling dynamics observed in adult O. vulgaris, food accumulated first in the stomach of paralarvae and the crop filled after the stomach volume plateaued. Peristaltic crop contractions (~18/min) moved food into the stomach (contractions ~30/min) from where it passed to the caecum. Pigmented food particles were seen to enter the digestive gland, 312 ± 32 s after the crop reached its maximum volume. Digestive tract contents passed into the terminal intestine by peristalsis (contraction frequency ~50/min) and defaecation was accompanied by an increased frequency of mantle contractions. Current results provide novel insights into both, O. vulgaris paralarvae—live prey capture strategies and the physiological mechanisms following ingestion, providing key information required to develop an effective rearing protocol for O. vulgaris paralarvae. PMID:28860996
Grazing experiments and model simulations of the role of zooplankton in Phaeocystis food webs
NASA Astrophysics Data System (ADS)
Verity, P. G.
2000-08-01
A combined empirical and modelling study was conducted to further examine the potential importance of grazing by zooplankton in pelagic food webs in which Phaeocystis is a significant or dominant component. Laboratory experiments were designed to measure ingestion of Phaeocystis and other potential prey items which co-occur with Phaeocystis. Grazers included copepods and ciliates, and prey included Phaeocystis colonies and solitary cells, diatoms, ciliates, bacteria, and detritus. These data were expressed in the model currency of nitrogen units, and fit to hyperbolic tangent equations which included minimum prey thresholds. These equations and literature data were used to constrain a food web model whose purpose was to investigate trophic interactions rather than to mimic actual events. Nevertheless, the model output was similar to the general pattern and magnitude of development of Phaeocystis-diatom communities in some environments where they occur, e.g. north Norwegian waters. The model included three forms of nitrogen, three phytoplankton groups, bacteria, two zooplankton groups, and detritus, with detailed flows between compartments. An important component of the model was inclusion of variable prey preferences for zooplankton. The experiments and model simulations suggest several salient conclusions. Phaeocystis globosa colonies were eaten by a medium-sized copepod species, but ingestion appeared to be strongly dependent upon a proper size match between grazer and prey. If not, colonies were eaten little if at all. Phaeocystis solitary cells were ingested rapidly by ciliate microzooplankton, in agreement with prior literature observations. In contrast, detritus was eaten comparatively slowly by both ciliates and copepods. Both types of zooplankton exhibited apparent minimum prey thresholds below which grazing did not occur or was inconsequential. Model simulations implied that transitions between life cycle stages of Phaeocystis may potentially be important to phytoplankton-zooplankton interactions, and that relative rates of ingestion of Phaeocystis by various zooplankton may have significant impacts upon material fluxes through and out of Phaeocystis-diatom ecosystems. Indirect effects of trophic interactions appear to be equally significant as direct effects.
NASA Astrophysics Data System (ADS)
Dell'Arte, Graziella L.; Leonardi, Giovanni
2005-09-01
The red fox Vulpes vulpes is considered an opportunistic predator able to avoid prey shortages by exploiting a wide range of available food resources. However, as predicted by the Resources Dispersion Hypothesis (RDH), the distribution of other key resources such as suitable areas for dens can affect fox populations. Furthermore, in insularity conditions, resources are spatially limited and their availability is greatly influenced by territory sizes and the feeding habits of predators. In this paper we report the spatial use and foraging habits of foxes in three habitats (grassland, cultivation and suburban) of a sub-arid island off north Africa in relation to habitat composition and food availability. We found that diet composition in a gross sense did not differ significantly among habitats, with insects comprising > 48% and fruits 25% of the total prey items. Grasslands offered temporary clumped food resources (e.g. birds) that induced foxes to increase their territory sizes and to enlarge their diet range during prey shortages. Inversely, in cultivated and suburban areas, the main prey (insects) were more evenly distributed, especially in olive groves which constitute the most extensive form of cultivation on the island. In large areas covered by olive trees, the high availability of Coleoptera spp. significantly reduced core areas used by foxes and also distances among dens. Palm groves were patchy on the island but contained high densities of Orthoptera spp. and date fruits which represent alternative food sources. Thus, these patches are attractive foraging places, but a modification of the perimeter of fox territories was necessary for their exploitation. Our study confirmed that in this arid environment, habitat composition per se affected a generalist predator less than the dispersion of its main prey. In addition, the patchy distribution of resources can assume a role in the spacing and feeding behaviours of foxes only in relation to clumped alternative prey types.
Kerley, Linda L; Mukhacheva, Anna S; Matyukhina, Dina S; Salmanova, Elena; Salkina, Galina P; Miquelle, Dale G
2015-07-01
Prey availability is one of the principal drivers of tiger distribution and abundance. Therefore, formulating effective conservation strategies requires a clear understanding of tiger diet. We used scat analysis in combination with data on the abundance of several prey species to estimate Amur tiger diet and preference at 3 sites in the Russian Far East. We also examined the effect of pseudoreplication on estimates of tiger diet. We collected 770 scats across the 3 sites. Similar to previous studies, we found that tigers primarily preyed on medium to large ungulates, with wild boar, roe, sika and red deer collectively comprising 86.7% of total biomass consumed on average. According to Jacobs' index, tigers preferred wild boar, and avoided sika deer. Variation in preference indices derived from these scat analyses compared to indices derived from kill data appear to be due to adjustments in biomass intake when sex-age of a killed individual is known: a component missing from scat data. Pseudoreplication (multiple samples collected from a single kill site) also skewed results derived from scat analyses. Scat analysis still appears useful in providing insight into the diets of carnivores when the full spectrum of prey species needs to be identified, or when sample sizes from kill data are not sufficient. When sample sizes of kill data are large (as is now possible with GPS-collared animals), kill data adjusted by sex-age categories probably provides the most accurate estimates of prey biomass composition. Our results provide further confirmation of the centrality of medium ungulates, in particular wild boar, to Amur tiger diet, and suggest that the protection of this group of species is critical to Amur tiger conservation. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.
Kobak, Jarosław; Poznańska, Małgorzata; Jermacz, Łukasz; Kakareko, Tomasz; Prądzynski, Daniel; Łodygowska, Małgorzata; Montowska, Karolina; Bącela-Spychalska, Karolina
2016-01-01
Aggregations of the Ponto-Caspian invasive zebra mussel ( Dreissena polymorpha ) constitute a suitable habitat for macroinvertebrates, considerably increasing their abundance and providing effective antipredator protection. Thus, the overall effect of a mussel bed on particular predator species may vary from positive to negative, depending on both prey density increase and predator ability to prey in a structurally complex habitat. Alien Ponto-Caspian goby fish are likely to be facilitated when introduced into new areas by zebra mussels, provided that they are capable of utilizing mussel beds as habitat and feeding grounds. We ran laboratory experiments to find which prey (chironomid larvae) densities (from ca. 500 to 2,000 individuals m -2 ) in a mussel bed make it a more beneficial feeding ground for the racer goby Babka gymnotrachelus (RG) and western tubenose goby Proterorhinus semilunaris (WTG) compared to sandy and stone substrata (containing the basic prey density of 500 ind. m -2 ). Moreover, we checked how food availability affects habitat selection by fish. Mussel beds became more suitable for fish than alternative mineral substrata when food abundance was at least two times higher (1,000 vs. 500 ind. m -2 ), regardless of fish size and species. WTG was associated with mussel beds regardless of its size and prey density, whereas RG switched to this habitat when it became a better feeding ground than alternative substrata. Larger RG exhibited a stronger affinity for mussels than small individuals. WTG fed more efficiently from a mussel bed at high food abundances than RG. A literature review has shown that increasing chironomid density, which in our study was sufficient to make a mussel habitat an attractive feeding ground for the gobies, is commonly observed in mussel beds in the field. Therefore, we conclude that zebra mussels may positively affect the alien goby species and are likely to facilitate their establishment in novel areas, contributing to an invasional meltdown in the Ponto-Caspian invasive community.
White, Thomas E; Kemp, Darrell J
2017-08-14
Theory predicts that colour polymorphism may be favored by variation in the visual context under which signals are perceived. The context encompasses all environmental determinants of light availability and propagation, but also the dynamics of perception in receivers. Color vision involves the neural separation of information into spectral versus luminance channels, which often differentially guide specific tasks. Here we explicitly tested whether this discrete perceptual basis contributes to the maintenance of polymorphism in a prey-luring system. The orb-weaving spider Gasteracantha fornicata is known to attract a broad community of primarily dipteran prey due to their conspicuous banded dorsal signal. They occur in two morphs ("white" and "yellow") which should, respectively, generate greater luminance and color contrast in the dipteran eye. Given that arthropods often rely upon luminance-versus-spectral cues for relatively small-versus-large stimulus detection, we predicted a switch in relative attractiveness among morphs according to apparent spider size. Our experimental tests used colour-naïve individuals of two known prey species (Drosophila hydei and Musca domestica) in replicate Y-maze choice trials designed to manipulate the apparent size of spider models via the distance at which they are viewed. Initial trials confirmed that flies were attracted to each G. fornicata morph in single presentations. When given a simultaneous choice between morphs against a viewing background typical of those encountered in nature, flies exhibited no preference regardless of the visual angle subtended by models. However, when backgrounds were adjusted to nearer the extremes of those of each morph in the wild, flies were more attracted by white morphs when presented at longer range (consistent with a reliance on achromatic cues), yet were unbiased in their close-range choice. While not fully consistent with predictions (given the absence of a differential preference for stimuli at close range), our results demonstrate an effect of apparent stimulus size upon relative morph attractiveness in the direction anticipated from present knowledge of fly visual ecology. This implies the potential tuning of G. fornicata morph signal structure according to a perceptual feature that is likely common across their breadth of arthropod prey, and complements recent observational work in suggesting a candidate mechanism for the maintenance of deceptive polymorphism through the exploitation of different visual channels in prey.
Modulation of shark prey capture kinematics in response to sensory deprivation.
Gardiner, Jayne M; Atema, Jelle; Hueter, Robert E; Motta, Philip J
2017-02-01
The ability of predators to modulate prey capture in response to the size, location, and behavior of prey is critical to successful feeding on a variety of prey types. Modulating in response to changes in sensory information may be critical to successful foraging in a variety of environments. Three shark species with different feeding morphologies and behaviors were filmed using high-speed videography while capturing live prey: the ram-feeding blacktip shark, the ram-biting bonnethead, and the suction-feeding nurse shark. Sharks were examined intact and after sensory information was blocked (olfaction, vision, mechanoreception, and electroreception, alone and in combination), to elucidate the contribution of the senses to the kinematics of prey capture. In response to sensory deprivation, the blacktip shark demonstrated the greatest amount of modulation, followed by the nurse shark. In the absence of olfaction, blacktip sharks open the jaws slowly, suggestive of less motivation. Without lateral line cues, blacktip sharks capture prey from greater horizontal angles using increased ram. When visual cues are absent, blacktip sharks elevate the head earlier and to a greater degree, allowing them to overcome imprecise position of the prey relative to the mouth, and capture prey using decreased ram, while suction remains unchanged. When visual cues are absent, nurse sharks open the mouth wider, extend the labial cartilages further, and increase suction while simultaneously decreasing ram. Unlike some bony fish, neither species switches feeding modalities (i.e. from ram to suction or vice versa). Bonnetheads failed to open the mouth when electrosensory cues were blocked, but otherwise little to no modulation was found in this species. These results suggest that prey capture may be less plastic in elasmobranchs than in bony fishes, possibly due to anatomical differences, and that the ability to modulate feeding kinematics in response to available sensory information varies by species, rather than by feeding modality. Copyright © 2016 Elsevier GmbH. All rights reserved.
Bedrosian, Geoffrey; Watson, James W.; Steenhof, Karen; Kochert, Michael N.; Preston, Charles R.; Woodbridge, Brian; Williams, Gary E.; Keller, Kent R.; Crandall, Ross H.
2017-01-01
Detailed information on diets and predatory ecology of Golden Eagles (Aquila chrysaetos) is essential to prioritize prey species management and to develop landscape-specific conservation strategies, including mitigation of the effects of energy development across the western United States. We compiled published and unpublished data on Golden Eagle diets to (1) summarize available information on Golden Eagle diets in the western U.S., (2) compare diets among biogeographic provinces, and (3) discuss implications for conservation planning and future research. We analyzed 35 studies conducted during the breeding season at 45 locations from 1940–2015. Golden Eagle diet differed among western ecosystems. Lower dietary breadth was associated with desert and shrub-steppe ecosystems and higher breadth with mountain ranges and the Columbia Plateau. Correlations suggest that percentage of leporids in the diet is the factor driving overall diversity of prey and percentage of other prey groups in the diet of Golden Eagles. Leporids were the primary prey of breeding Golden Eagles in 78% of study areas, with sciurids reported as primary prey in 18% of study areas. During the nonbreeding season, Golden Eagles were most frequently recorded feeding on leporids and carrion. Golden Eagles can be described as both generalist and opportunistic predators; they can feed on a wide range of prey species but most frequently feed on abundant medium-sized prey species in a given habitat. Spatial variations in Golden Eagle diet likely reflect regional differences in prey community, whereas temporal trends likely reflect responses to long-term change in prey populations. Evidence suggests dietary shifts from traditional (leporid) prey can have adverse effects on Golden Eagle reproductive rates. Land management practices that support or restore shrub-steppe ecosystem diversity should benefit Golden Eagles. More information is needed on nonbreeding-season diet to determine what food resources, such as carrion, are important for overwinter survival.
Fewer but not smaller schools in declining fish and krill populations.
Brierley, Andrew S; Cox, Martin J
2015-01-05
Many pelagic species (species that live in the water column), including herring and krill, aggregate to form schools, shoals, or swarms (hereafter simply "schools," although the words are not synonyms). Schools provide benefits to individual members, including locomotory economy and protection from predators that prey on individuals, but paradoxically make schooling species energetically viable and commercially attractive targets for predators of groups and for fishers. Large schools are easier to find and yield greater prey/catch than small schools, and there is a requirement from fields as diverse as theoretical ecology and fisheries management to understand whether and how aggregation sizes change with changing population size. We collated data from vertical echosounder surveys of taxonomically diverse pelagic stocks from geographically diverse ecosystems. The data contain common significant positive linear stock-biomass to school-number relationships. They show that the numbers of schools in the stocks change with changing stock biomass and suggest that the distributions of school sizes do not change with stock biomass. New data that we collected using a multibeam sonar, which can image entire schools, contained the same stock-biomass to school-number relationship and confirm that the distribution of school sizes is not related to changing stock size: put simply, as stocks decline, individuals are distributed among fewer schools, not smaller schools. Since school characteristics affect catchability (the ease or difficulty with which fishers can capture target species) and availability of prey to predators, our findings have commercial and ecological implications, particularly within the aspirational framework of ecosystem-based management of marine systems. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Brischoux, F.; Bonnet, X.; Cherel, Y.; Shine, R.
2011-03-01
A predator's species, sex and body size can influence the types of prey that it consumes, but why? Do such dietary divergences result from differences in foraging habitats, or reflect differential ability to locate, capture or ingest different types of prey? That question is difficult to answer if foraging occurs in places that preclude direct observation. In New Caledonia, amphibious sea kraits ( Laticauda laticaudata and L. saintgironsi) mostly eat eels—but the species consumed differ between snake species and vary with snake body size and sex. Because the snakes capture eels within crevices on the sea floor, it is not possible to observe snake foraging on any quantitative basis. We used stable isotopes to investigate habitat-divergence and ontogenetic shifts in feeding habits of sympatric species of sea kraits. Similarities in δ15 N (~10.5‰) values suggest that the two snake species occupy similar trophic levels in the coral-reef foodweb. However, δ13C values differed among the eight eel species consumed by snakes, as well as between the two snake species, and were linked to habitat types. Specifically, δ13C differed between soft- vs. hard-substrate eel species, and consistently differed between the soft-bottom forager L. laticaudata (~ -14.7‰) and the hard-bottom forager L. saintgironsi (~ -12.5‰). Differences in isotopic signatures within and between the two sea krait species and their prey were consistent with the hypothesis of habitat-based dietary divergence. Isotopic composition varied with body size within each of the snake species and varied with body size within some eel species, reflecting ontogenetic shifts in feeding habits of both the sea kraits and their prey. Our results support the findings of previous studies based on snake stomach contents, indicating that further studies could usefully expand these isotopic analyses to a broader range of trophic levels, fish species and spatial scales.
Eloranta, Antti P; Kahilainen, Kimmo K; Amundsen, Per-Arne; Knudsen, Rune; Harrod, Chris; Jones, Roger I
2015-01-01
Prey preference of top predators and energy flow across habitat boundaries are of fundamental importance for structure and function of aquatic and terrestrial ecosystems, as they may have strong effects on production, species diversity, and food-web stability. In lakes, littoral and pelagic food-web compartments are typically coupled and controlled by generalist fish top predators. However, the extent and determinants of such coupling remains a topical area of ecological research and is largely unknown in oligotrophic high-latitude lakes. We analyzed food-web structure and resource use by a generalist top predator, the Arctic charr Salvelinus alpinus (L.), in 17 oligotrophic subarctic lakes covering a marked gradient in size (0.5–1084 km2) and fish species richness (2–13 species). We expected top predators to shift from littoral to pelagic energy sources with increasing lake size, as the availability of pelagic prey resources and the competition for littoral prey are both likely to be higher in large lakes with multispecies fish communities. We also expected top predators to occupy a higher trophic position in lakes with greater fish species richness due to potential substitution of intermediate consumers (prey fish) and increased piscivory by top predators. Based on stable carbon and nitrogen isotope analyses, the mean reliance of Arctic charr on littoral energy sources showed a significant negative relationship with lake surface area, whereas the mean trophic position of Arctic charr, reflecting the lake food-chain length, increased with fish species richness. These results were supported by stomach contents data demonstrating a shift of Arctic charr from an invertebrate-dominated diet to piscivory on pelagic fish. Our study highlights that, because they determine the main energy source (littoral vs. pelagic) and the trophic position of generalist top predators, ecosystem size and fish diversity are particularly important factors influencing function and structure of food webs in high-latitude lakes. PMID:25937909
Ye, Lin; Chang, Chun-Yi; García-Comas, Carmen; Gong, Gwo-Ching; Hsieh, Chih-Hao
2013-09-01
1. The biodiversity-ecosystem functioning debate is a central topic in ecology. Recently, there has been a growing interest in size diversity because body size is sensitive to environmental changes and is one of the fundamental characteristics of organisms linking many ecosystem properties. However, how size diversity affects ecosystem functioning is an important yet unclear issue. 2. To fill the gap, with large-scale field data from the East China Sea, we tested the novel hypothesis that increasing zooplankton size diversity enhances top-down control on phytoplankton (H1) and compared it with five conventional hypotheses explaining the top-down control: flatter zooplankton size spectrum enhances the strength of top-down control (H2); nutrient enrichment lessens the strength of top-down control (H3); increasing zooplankton taxonomic diversity enhances the strength of top-down control (H4); increasing fish predation decreases the strength of top-down control of zooplankton on phytoplankton through trophic cascade (H5); increasing temperature intensifies the strength of top-down control (H6). 3. The results of univariate analyses support the hypotheses based on zooplankton size diversity (H1), zooplankton size spectrum (H2), nutrient (H3) and zooplankton taxonomic diversity (H4), but not the hypotheses based on fish predation (H5) and temperature (H6). More in-depth analyses indicate that zooplankton size diversity is the most important factor in determining the strength of top-down control on phytoplankton in the East China Sea. 4. Our results suggest a new potential mechanism that increasing predator size diversity enhances the strength of top-down control on prey through diet niche partitioning. This mechanism can be explained by the optimal predator-prey body-mass ratio concept. Suppose each size group of zooplankton predators has its own optimal phytoplankton prey size, increasing size diversity of zooplankton would promote diet niche partitioning of predators and thus elevates the strength of top-down control. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
The Neuronal Control of Flying Prey Interception in Dragonflies
2014-08-19
Gonzalez-Bellido’s fluorescent dye ( Lucifer -yellow) injections illuminated for the first time the anatomy of the output regions of the TSDNs...out in Cape Cod (MA) to test the effect of bead size(C), and in the Olberg Laboratory (Union College, NY) to test the effect of bead speed by...AFRL-OSR-VA-TR-2014-0193 THE NEURONAL CONTROL OF FLYING PREY INTERCEPTION IN DRAGONFLIES Robert Olberg TRUSTEES OF UNION COLLEGE IN THE TOWN OF
Chandrasegaran, Karthikeyan; Kandregula, Samyuktha Rao; Quader, Suhel; Juliano, Steven A
2018-01-01
Predation impacts development, behavior and morphology of prey species thereby shaping their abundances, distribution and community structure. Non-lethal threat of predation, specifically, can have a strong influence on prey lifehistory characteristics. While investigations often focus on the impact of predation threat on prey in isolation, tests of its interactive effects with food availability and resource competition on prey survival and fitness can improve understanding of costs, benefits and trade-offs of anti-predator strategies. This study, involving Aedes aegypti mosquitoes as a model organism, investigates both simple and interactive effects of predation threat during the larval stage on survival, size at and time to maturity, stored teneral reserves of glycogen, protein and lipid in adults, and adult longevity. Our results show that development times of mosquito larvae were increased (by 14.84% in males and by 97.63% in females), and size of eclosing adults decreased (by 62.30% in males and by 58.33% in females) when exposed to lowered nutrition and elevated intraspecific competition, but that predation had no detectable effect on these simple traits. Teneral reserves of glycogen, protein and lipid and adult longevity were positively correlated with adult body size. Non-lethal predation threat had significant interactive effects with nutrition and larval competition on teneral reserves in males and adult longevity in males and females. The sexes responded differently to conditions encountered as larvae, with the larval environment affecting development and adult characteristics more acutely for females than for males. The outcome of this study shows how threat of predation on juveniles can have long-lasting effects on adults that are likely to impact mosquito population dynamics and that may impact disease transmission.
Effects of osmotic stress on predation behaviour of Asterias rubens L.
NASA Astrophysics Data System (ADS)
Agüera, Antonio; Schellekens, Tim; Jansen, Jeroen M.; Smaal, Aad C.
2015-05-01
Environmental stress plays an important role in determining ecosystem functioning and structure. In estuarine areas both tidal and seasonal salinity changes may cause osmotic stress on predators, affecting their behaviour and survival. The interaction between these predators and their prey may affect performance, thus influencing predator impact on prey populations. The common starfish, Asterias rubens, inhabits estuarine areas, such as the Dutch Wadden Sea, that exhibit large seasonal variation in salinity (10-32 PSU). In those areas A. rubens exerts top down control on its prey, thus representing an important shellfish predator. This predation may impact on cultured and natural shellfish populations. However, the effects of osmotic stress on A. rubens performance may influence its effect on prey. Although the effect of salinity in A. rubens survival has been extensively studied, the impact on its predation behaviour and acclimation capacity remains unclear. In this study, we analyse the performance of A. rubens preying on mussels (Mytilus edulis) after a salinity decrease and monitor its acclimation capacity over a period of 22 days. Our experiments demonstrated that salinity affected performance by reducing feeding activity and altering size prey selection. Moreover, as acclimation occurred, A. rubens predation performance improved in all sub-lethal treatments. We conclude that osmotic stress caused by decreasing salinity potentially influences A. rubens distribution, abundance, and potential impact on prey populations. However the magnitude of the change in salinity (from 31 to a minimum of 10 PSU) and its timescale (3 weeks) mediate this effect.
Predator-induced flow disturbances alert prey, from the onset of an attack
Casas, Jérôme; Steinmann, Thomas
2014-01-01
Many prey species, from soil arthropods to fish, perceive the approach of predators, allowing them to escape just in time. Thus, prey capture is as important to predators as prey finding. We extend an existing framework for understanding the conjoint trajectories of predator and prey after encounters, by estimating the ratio of predator attack and prey danger perception distances, and apply it to wolf spiders attacking wood crickets. Disturbances to air flow upstream from running spiders, which are sensed by crickets, were assessed by computational fluid dynamics with the finite-elements method for a much simplified spider model: body size, speed and ground effect were all required to obtain a faithful representation of the aerodynamic signature of the spider, with the legs making only a minor contribution. The relationship between attack speed and the maximal distance at which the cricket can perceive the danger is parabolic; it splits the space defined by these two variables into regions differing in their values for this ratio. For this biological interaction, the ratio is no greater than one, implying immediate perception of the danger, from the onset of attack. Particular attention should be paid to the ecomechanical aspects of interactions with such small ratio, because of the high degree of bidirectional coupling of the behaviour of the two protagonists. This conclusion applies to several other predator–prey systems with sensory ecologies based on flow sensing, in air and water. PMID:25030986
Foraging patterns and prey selection in an increasing and expanding sea otter population
Laidre, K.L.; Jameson, R.J.
2006-01-01
Focal observations of sea otter (Enhydra lutris kenyoni) foraging patterns and prey selection were collected in coastal Washington between 1993 and 1999. Records consisted of 13,847 individual dives from 841 feeding bouts ranging from 1 min to >4 h. Average dive time was 55 s ?? 0.9 SE and average surface time was 45 s ?? 2.3 SE, irrespective of dive success. At least 77% of all dives (n = 10,636) were successful prey captures (dives in low light or of undetermined success were excluded). Prey capture success was significantly lower for subadults (63% ?? 5 SE) than adults (82% ?? 1 SE; P 60% red urchins (Strongylocentrotus franciscanus), with only 2 other prey species comprising >10% of their diet. Prey size and prey category were dominant predictor variables in generalized linear models of dive duration and postdive surface duration on successful dives. Significant increases in areal extent of surface canopy of giant kelp (Macrocystis integrifolia) and bull kelp (Nereocystis leutkeana) were found both in the outer coast and the Strait of Juan de Fuca (0.4-0.5 km2 per year, P < 0.05) and suggest increasing suitable habitat for a growing population. The growth and expansion of a small and isolated sea otter population provides a unique opportunity to examine the relationship between dietary diversity and population status and explore similarities and differences between trophic paradigms established for sea otter populations at other localities. ?? 2006 American Society of Mammalogists.
Perelman, J N; Schmidt, K N; Haro, I; Tibbetts, I R; Zischke, M T
2017-05-01
This study reports the diet composition of 363 wahoo Acanthocybium solandri captured from the Indo-Pacific. The study also provides the first estimates of consumption and daily ration for the species worldwide, which are important parameters for ecosystem models and may improve ecosystem-based fisheries management. Thirty-four prey taxa were identified from A. solandri stomachs with Scombridae having the highest relative importance. Actinopterygii comprised 96% of the total prey wet mass, of which 29% were epipelagic fishes, with 22% alone from Scombridae. There was no significant relationship between fish size and the size of prey items consumed. Feeding intensity, as measured by stomach fullness, did not significantly differ either among seasons or reproductive activity. The mean daily consumption rate was estimated as 344 g day -1 , which corresponded to a mean daily ration of 2·44% body mass day -1 . The results from this study suggest A. solandri is an opportunistic predator similar to other pelagic piscivores, worldwide. © 2017 The Fisheries Society of the British Isles.
Scantlebury, David M; Mills, Michael G L; Wilson, Rory P; Wilson, John W; Mills, Margaret E J; Durant, Sarah M; Bennett, Nigel C; Bradford, Peter; Marks, Nikki J; Speakman, John R
2014-10-03
Population viability is driven by individual survival, which in turn depends on individuals balancing energy budgets. As carnivores may function close to maximum sustained power outputs, decreased food availability or increased activity may render some populations energetically vulnerable. Prey theft may compromise energetic budgets of mesopredators, such as cheetahs and wild dogs, which are susceptible to competition from larger carnivores. We show that daily energy expenditure (DEE) of cheetahs was similar to size-based predictions and positively related to distance traveled. Theft at 25% only requires cheetahs to hunt for an extra 1.1 hour per day, increasing DEE by just 12%. Therefore, not all mesopredators are energetically constrained by direct competition. Other factors that increase DEE, such as those that increase travel, may be more important for population viability. Copyright © 2014, American Association for the Advancement of Science.
Optical surface profiling of orb-web spider capture silks.
Kane, D M; Joyce, A M; Staib, G R; Herberstein, M E
2010-09-01
Much spider silk research to date has focused on its mechanical properties. However, the webs of many orb-web spiders have evolved for over 136 million years to evade visual detection by insect prey. It is therefore a photonic device in addition to being a mechanical device. Herein we use optical surface profiling of capture silks from the webs of adult female St Andrews cross spiders (Argiope keyserlingi) to successfully measure the geometry of adhesive silk droplets and to show a bowing in the aqueous layer on the spider capture silk between adhesive droplets. Optical surface profiling shows geometric features of the capture silk that have not been previously measured and contributes to understanding the links between the physical form and biological function. The research also demonstrates non-standard use of an optical surface profiler to measure the maximum width of a transparent micro-sized droplet (microlens).
NASA Astrophysics Data System (ADS)
Portner, Elan J.; Polovina, Jeffrey J.; Choy, C. Anela
2017-07-01
We examined the diet of a common midwater predator, the longnose lancetfish (Alepisaurus ferox, n=1371), with respect to fork length, season, and capture location within the North Pacific Subtropical Gyre (NPSG). While A. ferox fed diversely across 97 prey families, approximately 70% of its diet by wet weight consisted of seven prey families (fishes: Sternoptychidae, Anoplogastridae, Omosudidae, Alepisauridae; hyperiid amphipods: Phrosinidae; octopods: Amphitretidae; polychaetes: Alciopidae). Altogether, these micronekton prey families constitute a poorly known forage community distinct from those exploited by other pelagic predators and poorly sampled by conventional methods. We demonstrate ontogenetic variation in diet between two size classes of A. ferox (<97 cm fork length=;small;, ≥97 cm fork length=;large;). Large A. ferox consumed more fish and octopods, fewer crustaceans, and were more cannibalistic than small A. ferox. Ontogenetic shifts in vertical foraging habitat were observed as the consumption of larger and more mesopelagic prey with increasing fork length. Spatial and seasonal variation in the diet of A. ferox is consistent with expected patterns of variation in prey distribution with respect to oceanographic features of the NPSG. Within both size classes, the diets of specimens collected from the oligotrophic core of the NPSG were more diverse than those collected near the boundaries of the gyre and appeared to track seasonal variation in the position of the northern boundary of the gyre. Our data suggest seasonal and spatial variability in the composition of midwater forage communities exploited by A. ferox across the NPSG, and demonstrate that sustained monitoring of diet could provide valuable insights into long-term changes in these understudied communities.
Is extreme bite performance associated with extreme morphologies in sharks?
Huber, Daniel R; Claes, Julien M; Mallefet, Jérôme; Herrel, Anthony
2009-01-01
As top predators in many oceanic communities, sharks are known to eat large prey and are supposedly able to generate high bite forces. This notion has, however, largely gone untested due to the experimental intractability of these animals. For those species that have been investigated, it remains unclear whether their high bite forces are simply a consequence of their large body size or the result of diet-related adaptation. As aquatic poikilotherms, sharks can grow very large, making them ideal subjects with which to investigate the effects of body size on bite force. Relative bite-force capacity is often associated with changes in head shape because taller or wider heads can, for example, accommodate larger jaw muscles. Constraints on bite force in general may also be released by changes in tooth shape. For example, more pointed teeth may allow a predator to penetrate prey more effectively than blunt, pavementlike teeth. Our analyses show that large sharks do not bite hard for their body size, but they generally have larger heads. Head width is the best predictor of bite force across the species included in our study as indicated by a multiple regression model. Contrary to our predictions, sharks with relatively high bite forces for their body size also have relatively more pointed teeth at the front of the tooth row. Moreover, species including hard prey in their diet are characterized by high bite forces and narrow and pointed teeth at the jaw symphysis.
Reecht, Y; Rochet, M-J; Trenkel, V M; Jennings, S; Pinnegar, J K
2013-08-01
An ecomorphological method was developed, with a focus on predation functions, to define functional groups in the Celtic Sea fish community. Eleven functional traits, measured for 930 individuals from 33 species, led to 11 functional groups. Membership of functional groups was linked to body size and taxonomy. For seven species, there were ontogenetic changes in group membership. When diet composition, expressed as the proportions of different prey types recorded in stomachs, was compared among functional groups, morphology-based predictions accounted for 28-56% of the interindividual variance in prey type. This was larger than the 12-24% of variance that could be explained solely on the basis of body size. © 2013 The Fisheries Society of the British Isles.
Trivedi, Chintan A; Bollmann, Johann H
2013-01-01
Prey capture behavior critically depends on rapid processing of sensory input in order to track, approach, and catch the target. When using vision, the nervous system faces the problem of extracting relevant information from a continuous stream of input in order to detect and categorize visible objects as potential prey and to select appropriate motor patterns for approach. For prey capture, many vertebrates exhibit intermittent locomotion, in which discrete motor patterns are chained into a sequence, interrupted by short periods of rest. Here, using high-speed recordings of full-length prey capture sequences performed by freely swimming zebrafish larvae in the presence of a single paramecium, we provide a detailed kinematic analysis of first and subsequent swim bouts during prey capture. Using Fourier analysis, we show that individual swim bouts represent an elementary motor pattern. Changes in orientation are directed toward the target on a graded scale and are implemented by an asymmetric tail bend component superimposed on this basic motor pattern. To further investigate the role of visual feedback on the efficiency and speed of this complex behavior, we developed a closed-loop virtual reality setup in which minimally restrained larvae recapitulated interconnected swim patterns closely resembling those observed during prey capture in freely moving fish. Systematic variation of stimulus properties showed that prey capture is initiated within a narrow range of stimulus size and velocity. Furthermore, variations in the delay and location of swim triggered visual feedback showed that the reaction time of secondary and later swims is shorter for stimuli that appear within a narrow spatio-temporal window following a swim. This suggests that the larva may generate an expectation of stimulus position, which enables accelerated motor sequencing if the expectation is met by appropriate visual feedback.
NASA Astrophysics Data System (ADS)
Benoit-Bird, K. J.
2016-02-01
We explored the behavior of Risso's dolphins foraging in scattering layers off California using an integrated approach comprising echosounders deployed in a deep-diving autonomous underwater vehicle, ship based acoustics, visual observations, direct prey sampling, and animal-borne tags on deep-diving predators. We identified three distinct prey layers: a persistent layer around 425 m, a vertically migrating layer around 300 m, and a layer intermittently present near 50 m, all of which were used by individual tagged animals. Active acoustic measurements demonstrated that Risso's dolphins dove to discrete prey layers throughout the day and night with only slightly higher detection rates at night. Dolphins were detected in all three layers during the day with over half of detections in the middle layer, 20% of detections in the deepest layer, and 10% falling outside the main layers. Dolphins were found less frequently in areas where the shallow, intermittent layer was absent, suggesting that this layer, while containing the smallest prey and the lowest densities of squid, was an important component of their foraging strategy. The deepest layer was targeted equally both during the day and at night. Using acoustic data collected from the AUV, we found layers were made up of distinct, small patches of animals of similar size and taxonomy adjacent to contrasting patches. Squid made up over 70% of the patches in which dolphins were found and more than 95% of those in deep water. Squid targeted by dolphins in deep water were also relatively large, indicating significant benefit from these relatively rare, physically demanding dives. Within these patches, prey formed tighter aggregations when Risso's dolphins were present. Careful integration of a suite of traditional and novel tools is providing insight into the ecology and dynamics of predator and prey in the mesopelagic.
Males choose to keep their heads: Preference for lower risk females in a praying mantid.
Avigliano, Esteban; Scardamaglia, Romina C; Gabelli, Fabián M; Pompilio, Lorena
2016-08-01
Male reproductive success is obviously mate limited, which implies that males should rarely be choosy. One extreme case of a reproductive (or mating) cost is sexual cannibalism. Recent research has proposed that male mantids (Parastagmatoptera tessellata) are choosy and not complicit in cannibalism and that they modify behavior towards females based on the risk imposed by them. Since female cannibalism depends on females' energetic state (i.e. hunger) we investigated whether male mantids are capable of using environmental cues that provide information regarding the energetic state of females to make their mate choices. Under laboratory conditions, males were confronted individually with three options: a female eating a prey, a female without a prey, and a male eating a prey (as a control for the presence of prey). Each subject comprising a choice was harnessed and placed in the corners of a triangular experimental arena at an equidistant distance from the focal male. The prey was a middle size cricket that subjects ate in approximately twenty minutes. The behavior of focal males was recorded for six hours. Females were under the same deprivation regime and, in line with previous studies, consuming one cricket did not significantly increase females' abdomen girth. Male mantids significantly preferred females that were eating a prey. In all cases choices were made after the females consumed the whole prey. This suggests that males did not use the prey as a direct way to avoid being cannibalized by keeping the female busy. The preference for females that had recently fed may have evolved because of the potential reduction in sexual cannibalism. Copyright © 2016 Elsevier B.V. All rights reserved.
a Predator-Prey Model Based on the Fully Parallel Cellular Automata
NASA Astrophysics Data System (ADS)
He, Mingfeng; Ruan, Hongbo; Yu, Changliang
We presented a predator-prey lattice model containing moveable wolves and sheep, which are characterized by Penna double bit strings. Sexual reproduction and child-care strategies are considered. To implement this model in an efficient way, we build a fully parallel Cellular Automata based on a new definition of the neighborhood. We show the roles played by the initial densities of the populations, the mutation rate and the linear size of the lattice in the evolution of this model.
Arctic skate Amblyraja hyperborea preys on remarkably large glacial eelpouts Lycodes frigidus.
Byrkjedal, I; Christiansen, J S; Karamushko, O V; Langhelle, G; Lynghammar, A
2015-01-01
During scientific surveys on the continental slopes north-west of Spitsbergen and off north-east Greenland (c. 600 and 1000 m depths), two female Arctic skates Amblyraja hyperborea were caught while swallowing extraordinary large individuals of glacial eelpout Lycodes frigidus. The total length (LT) of the prey constituted 50 and 80% of the LT of the skates, which reveal that A. hyperborea are capable predators of fishes of surprisingly large relative size. © 2014 The Fisheries Society of the British Isles.
Xiong, Mengyin; Wang, Dajun; Bu, Hongliang; Shao, Xinning; Zhang, Dan; Li, Sheng; Wang, Rongjiang; Yao, Meng
2017-01-01
Dietary information is lacking in most of small to mid-sized carnivores due to their elusive predatory behaviour and versatile feeding habits. The leopard cat (LPC; Prionailurus bengalensis) and the Asiatic golden cat (AGC; Catopuma temminckii) are two important yet increasingly endangered carnivore species in the temperate mountain forest ecosystem in Southwest China, a global biodiversity hotspot and a significant reservoir of China’s endemic species. We investigated the vertebrate prey of the two sympatric felids using faecal DNA and a next-generation sequencing (NGS)/metabarcoding approach. Forty vertebrate prey taxa were identified from 93 LPC and 10 AGC faecal samples; 37 taxa were found in the LPC diet, and 20 were detected in the AGC diet. Prey included 27 mammalian taxa, 11 birds, one lizard and one fish, with 73% (29/40) of the taxa assigned to the species level. Rodents and pikas were the most dominant LPC prey categories, whereas rodents, pheasant, fowl and ungulates were the main AGC prey. We also analysed the seasonal and altitudinal variations in the LPC diet. Our results provide the most comprehensive dietary data for these felids and valuable information for their conservation planning. PMID:28195150
Escobar-Sánchez, Ofelia; Galván-Magaña, Felipe; Rosíles-Martínez, René
2011-12-01
The aim of this study was to determine the biomagnification of mercury through the principal prey of the blue shark, Prionace glauca, off the western coast of Baja California Sur, Mexico, as well as the relationship between mercury and selenium in blue sharks. High levels of mercury were found in shark muscle tissues (1.39 ± 1.58 μg/g wet weight); these values are above the allowed 1.0 μg/g for human consumption. The mercury to selenium molar ratio was 1:0.2. We found a low correlation between mercury bioaccumulation and shark size. Juveniles have lower concentrations of mercury than adults. Regarding the analyzed prey, the main prey of the blue shark, pelagic red crab, Pleuroncodes planipes, bioaccumulated 0.04 ± 0.01 μg/g Hg wet weight, but the prey with higher bioaccumulation was the bullet fish Auxis spp. (0.20 ± 0.02 μg/g wet weight). In terms of volume, the red crab P. planipes can be the prey that provides high levels of mercury to the blue shark.
Cannibalistic behavior of octopus (Octopus vulgaris) in the wild.
Hernández-Urcera, Jorge; Garci, Manuel E; Roura, Alvaro; González, Angel F; Cabanellas-Reboredo, Miguel; Morales-Nin, Beatriz; Guerra, Angel
2014-11-01
The first description of cannibalism in wild adult Octopus vulgaris is presented from 3 observations made in the Ría de Vigo (NW Spain), which were filmed by scuba divers. These records document common traits in cannibalistic behavior: (a) it was intercohort cannibalism; (b) attacks were made by both males and females; (c) in 2 of the records, the prey were transported to the den, which was covered with stones of different sizes; (d) the predator started to eat the tip of the arms of its prey; (e) predation on conspecifics occurred even if there were other abundant prey available (i.e., mussels); and (f) the prey/predator weight ratio in the 3 cases ranged from 20% to 25% body weight. The relationships between this behavior and sex, defense of territory, energy balance, food shortage, competition and predation, as well as how the attacker kills its victim are discussed. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Hydrodynamic starvation in first-feeding larval fishes
China, Victor; Holzman, Roi
2014-01-01
Larval fishes suffer prodigious mortality rates, eliminating 99% of the brood within a few days after first feeding. Hjort (1914) famously attributed this “critical period” of low survival to the larvae’s inability to obtain sufficient food [Hjort (1914) Rapp P-v Réun Cons Int Explor Mer 20:1–228]. However, the cause of this poor feeding success remains to be identified. Here, we show that hydrodynamic constraints on the ubiquitous suction mechanism in first-feeding larvae limit their ability to capture prey, thereby reducing their feeding rates. Dynamic-scaling experiments revealed that larval size is the primary determinant of feeding rate, independent of other ontogenetic effects. We conclude that first-feeding larvae experience “hydrodynamic starvation,” in which low Reynolds numbers mechanistically limit their feeding performance even under high prey densities. Our results provide a hydrodynamic perspective on feeding of larval fishes that focuses on the physical properties of the larvae and prey, rather than on prey concentration and the rate of encounters. PMID:24843180
Consumer co-evolution as an important component of the eco-evolutionary feedback.
Hiltunen, Teppo; Becks, Lutz
2014-10-22
Rapid evolution in ecologically relevant traits has recently been recognized to significantly alter the interaction between consumers and their resources, a key interaction in all ecological communities. While these eco-evolutionary dynamics have been shown to occur when prey populations are evolving, little is known about the role of predator evolution and co-evolution between predator and prey in this context. Here, we investigate the role of consumer co-evolution for eco-evolutionary feedback in bacteria-ciliate microcosm experiments by manipulating the initial trait variation in the predator populations. With co-evolved predators, prey evolve anti-predatory defences faster, trait values are more variable, and predator and prey population sizes are larger at the end of the experiment compared with the non-co-evolved predators. Most importantly, differences in predator traits results in a shift from evolution driving ecology, to ecology driving evolution. Thus we demonstrate that predator co-evolution has important effects on eco-evolutionary dynamics.
Spitz, Jérôme; Trites, Andrew W; Becquet, Vanessa; Brind'Amour, Anik; Cherel, Yves; Galois, Robert; Ridoux, Vincent
2012-01-01
Understanding the mechanisms that drive prey selection is a major challenge in foraging ecology. Most studies of foraging strategies have focused on behavioural costs, and have generally failed to recognize that differences in the quality of prey may be as important to predators as the costs of acquisition. Here, we tested whether there is a relationship between the quality of diets (kJ · g(-1)) consumed by cetaceans in the North Atlantic and their metabolic costs of living as estimated by indicators of muscle performance (mitochondrial density, n = 60, and lipid content, n = 37). We found that the cost of living of 11 cetacean species is tightly coupled with the quality of prey they consume. This relationship between diet quality and cost of living appears to be independent of phylogeny and body size, and runs counter to predictions that stem from the well-known scaling relationships between mass and metabolic rates. Our finding suggests that the quality of prey rather than the sheer quantity of food is a major determinant of foraging strategies employed by predators to meet their specific energy requirements. This predator-specific dependence on food quality appears to reflect the evolution of ecological strategies at a species level, and has implications for risk assessment associated with the consequences of changing the quality and quantities of prey available to top predators in marine ecosystems.
Kurczewski, Frank E.; Coville, Rollin E.; Schal, Coby
2010-01-01
The nesting behaviors of 10 females of Tachysphex inconspicuus (Kirby) (Hymenoptera: Crabronidae) were studied on a sandy, mowed lawn at the La Selva Biological Station in northeastern Costa Rica on 27–29 April 1980. Twenty-four completed nests were observed, excavated, and measured. The nests had oblique, short burrows leading to one or two shallow cells. Prey cockroaches belonging to 11 species of Chorisoneura and Riatia fulgida (Saussure) (Blattaria: Blattellidae), all tropical wet forest canopy indicator species, were removed from the cells, weighed, and identified. The cockroaches consisted mainly of adult females, selectively preyed upon over adult males and nymphs due to their larger sizes. The aggregate prey mass in cells was separable into prospective larger (heavier) female and smaller (lighter) male cells. Wasps usually oviposited on the heaviest cockroach in a cell, in most cases an adult female. Atypical genus behavior included (1) prey being carried to one side of the wasp and perhaps grasped by a hindleg during removal of the temporary entrance closure and nest entry and (2) wasp's egg being laid affixed to a forecoxal corium and extending backward in a longitudinally posteriad position across the prey's ventral thorax. A comparison with the nesting behavior of other species in the Tachysphex obscuripennis species group is made. PMID:21062142
James, Craig D
1991-02-01
The diets of five syntopic species of Ctenotus were examined over a two-year period on a 60 ha spinifex grassland site in central Australia. The aims of the study were to test predictions that termites were an important part of the food web for syntopic Ctenotus in spinifex grasslands, and to examine seasonal changes in prey use and dietary overlap between the species. Environmental conditions during the first season of the study were dry resulting in generally low invertebrate abundance. In contrast the second season was relatively moist and overall invertebrate abundance was higher than in the first season. Diets of five species of Ctenotus contained a range of terrestrial prey although one species (C. pantherinus) was relatively termite-specialized at all times. Dietary overlap at the ordinal level between the species was generally higher during dry periods when prey abundance was low, and higher for species-pairs that were similar in body size. During the driest period of the study most species of Ctenotus ate a high proportion of termite prey which accounted for the high dietary overlap. However, each species of Ctenotus consumed different genera or foraging guilds of termites. The results suggest that most of these lizards were opportunistic in their selection of prey but that during dry periods when prey are scarce, termites may play a significant role in supporting a high α-diversity of Ctenotus.
Vulnerability of age-0 pallid sturgeon Scaphirhynchus albus to fish predation
French, William E.; Graeb, B.D.S.; Chipps, S.R.; Bertrand, K.N.; Selch, T.M.; Klumb, Robert A.
2010-01-01
Stocking is a commonly employed conservation strategy for endangered species such as the pallid sturgeon, Scaphirhynchus albus. However, decisions about when, where and at what size pallid sturgeon should be stocked are hindered because vulnerability of pallid sturgeon to fish predation is not known. The objective of this study was to evaluate the vulnerability of age-0 pallid sturgeon to predation by two Missouri River predators under different flow regimes, and in combination with alternative prey. To document vulnerability, age-0 pallid sturgeon (<100 mm) were offered to channel catfish Ictalurus punctatus and smallmouth bass Micropterus dolomieu in laboratory experiments. Selection of pallid sturgeon by both predators was measured by offering pallid sturgeon and an alternative prey, fathead minnows Pimephales promelas, in varying prey densities. Smallmouth bass consumed more age-0 pallid sturgeon (0.95 h-1) than did channel catfish (0.13 h-1), and predation rates did not differ between water velocities supporting sustained (0 m s-1) or prolonged swimming speeds (0.15 m s-1). Neither predator positively selected pallid sturgeon when alternative prey was available. Both predator species consumed more fathead minnows than pallid sturgeon across all prey density combinations. Results indicate that the vulnerability of age-0 pallid sturgeon to predation by channel catfish and smallmouth bass is low, especially in the presence of an alternative fish prey. ?? 2009 Blackwell Verlag GmbH.
Metabolic rate and body size are linked with perception of temporal information☆
Healy, Kevin; McNally, Luke; Ruxton, Graeme D.; Cooper, Natalie; Jackson, Andrew L.
2013-01-01
Body size and metabolic rate both fundamentally constrain how species interact with their environment, and hence ultimately affect their niche. While many mechanisms leading to these constraints have been explored, their effects on the resolution at which temporal information is perceived have been largely overlooked. The visual system acts as a gateway to the dynamic environment and the relative resolution at which organisms are able to acquire and process visual information is likely to restrict their ability to interact with events around them. As both smaller size and higher metabolic rates should facilitate rapid behavioural responses, we hypothesized that these traits would favour perception of temporal change over finer timescales. Using critical flicker fusion frequency, the lowest frequency of flashing at which a flickering light source is perceived as constant, as a measure of the maximum rate of temporal information processing in the visual system, we carried out a phylogenetic comparative analysis of a wide range of vertebrates that supported this hypothesis. Our results have implications for the evolution of signalling systems and predator–prey interactions, and, combined with the strong influence that both body mass and metabolism have on a species' ecological niche, suggest that time perception may constitute an important and overlooked dimension of niche differentiation. PMID:24109147
Mesozooplankton grazing during spring sea-ice conditions in the eastern Bering Sea
NASA Astrophysics Data System (ADS)
Campbell, Robert G.; Ashjian, Carin J.; Sherr, Evelyn B.; Sherr, Barry F.; Lomas, Michael W.; Ross, Celia; Alatalo, Philip; Gelfman, Celia; Keuren, Donna Van
2016-12-01
Mesozooplankton (copepods and euphausiids) grazing rates and prey preferences were determined during a series of three research cruises to the eastern Bering Sea in spring 2008, 2009, and 2010. Chlorophyll was dominated by large cells (>5 μm), especially at bloom locations where they usually comprised greater than 90% of the total chlorophyll biomass. The relative importance of microzooplankton to the prey field biomass decreased with increasing chlorophyll concentration, and was less than 10% of the total prey biomass in ice-edge bloom regions. Overall, microzooplankton was the preferred prey of the mesozooplankton, although phytoplankton/ice algae were the dominant component of the diet because of their much greater biomass, especially during blooms. There were differences between mesozooplankton species in their prey preferences: Metridia pacifica, Pseudocalanus spp. and Calanus spp. had the strongest preference for microzooplankton prey, while euphausiids (Thysanoessa spp.) and Neocalanus flemingeri/plumchrus appeared to feed non-selectively on all prey items. Mesozooplankton exhibited a saturating feeding response to chlorophyll concentration (Holling's type II) that could be modeled by Michaelis-Menten equations. Taxa-specific maximum ingestion rates generally followed allometric theory, with smaller zooplankton having higher feeding rates than larger zooplankton, and ranged from about 4-30% body carbon day-1. Trophic cascades during grazing experiments could result in a substantial underestimate of chlorophyll ingestion rates, especially for those taxa that had a strong preference for microzooplankton. Grazing impacts by mesozooplankton on the integrated chlorophyll biomass and primary production were 2.7±4.4 and 26±48% day-1, respectively. Impacts increased significantly with increasing mesozooplankton biomass, which increased from early to late spring. However, grazing impacts were extremely low in ice-edge bloom regions. Our findings suggest that even when grazing by microzooplankton is included in our grazing impact estimates, about 50% of the primary production in phytoplankton blooms during spring on the eastern Bering Sea shelf is not grazed and is available for direct export to the benthic community.
Thomas, Rebecca L.; Fellowes, Mark D. E.; Baker, Philip J.
2012-01-01
Urban domestic cat (Felis catus) populations can attain exceedingly high densities and are not limited by natural prey availability. This has generated concerns that they may negatively affect prey populations, leading to calls for management. We enlisted cat-owners to record prey returned home to estimate patterns of predation by free-roaming pets in different localities within the town of Reading, UK and questionnaire surveys were used to quantify attitudes to different possible management strategies. Prey return rates were highly variable: only 20% of cats returned ≥4 dead prey annually. Consequently, approximately 65% of owners received no prey in a given season, but this declined to 22% after eight seasons. The estimated mean predation rate was 18.3 prey cat−1 year−1 but this varied markedly both spatially and temporally: per capita predation rates declined with increasing cat density. Comparisons with estimates of the density of six common bird prey species indicated that cats killed numbers equivalent to adult density on c. 39% of occasions. Population modeling studies suggest that such predation rates could significantly reduce the size of local bird populations for common urban species. Conversely, most urban residents did not consider cat predation to be a significant problem. Collar-mounted anti-predation devices were the only management action acceptable to the majority of urban residents (65%), but were less acceptable to cat-owners because of perceived risks to their pets; only 24% of cats were fitted with such devices. Overall, cat predation did appear to be of sufficient magnitude to affect some prey populations, although further investigation of some key aspects of cat predation is warranted. Management of the predation behavior of urban cat populations in the UK is likely to be challenging and achieving this would require considerable engagement with cat owners. PMID:23173057
Peckarsky, Barbara L; Abrams, Peter A; Bolnick, Daniel I; Dill, Lawrence M; Grabowski, Jonathan H; Luttbeg, Barney; Orrock, John L; Peacor, Scott D; Preisser, Evan L; Schmitz, Oswald J; Trussell, Geoffrey C
2008-09-01
Predator effects on prey dynamics are conventionally studied by measuring changes in prey abundance attributed to consumption by predators. We revisit four classic examples of predator-prey systems often cited in textbooks and incorporate subsequent studies of nonconsumptive effects of predators (NCE), defined as changes in prey traits (e.g., behavior, growth, development) measured on an ecological time scale. Our review revealed that NCE were integral to explaining lynx-hare population dynamics in boreal forests, cascading effects of top predators in Wisconsin lakes, and cascading effects of killer whales and sea otters on kelp forests in nearshore marine habitats. The relative roles of consumption and NCE of wolves on moose and consequent indirect effects on plant communities of Isle Royale depended on climate oscillations. Nonconsumptive effects have not been explicitly tested to explain the link between planktonic alewives and the size structure of the zooplankton, nor have they been invoked to attribute keystone predator status in intertidal communities or elsewhere. We argue that both consumption and intimidation contribute to the total effects of keystone predators, and that characteristics of keystone consumers may differ from those of predators having predominantly NCE. Nonconsumptive effects are often considered as an afterthought to explain observations inconsistent with consumption-based theory. Consequently, NCE with the same sign as consumptive effects may be overlooked, even though they can affect the magnitude, rate, or scale of a prey response to predation and can have important management or conservation implications. Nonconsumptive effects may underlie other classic paradigms in ecology, such as delayed density dependence and predator-mediated prey coexistence. Revisiting classic studies enriches our understanding of predator-prey dynamics and provides compelling rationale for ramping up efforts to consider how NCE affect traditional predator-prey models based on consumption, and to compare the relative magnitude of consumptive and NCE of predators.
Diet and trophic ecology of the tiger shark (Galeocerdo cuvier) from South African waters
Hussey, Nigel E.; Christiansen, Heather M.; Smale, Malcolm J.; Nkabi, Nomfundo; Cliff, Geremy; Wintner, Sabine P.
2017-01-01
Knowledge of the diet and trophic ecology of apex predators is key for the implementation of effective ecosystem as well as species-based management initiatives. Using a combination of stomach content data and stable isotope analysis (δ15N and δ13C) the current study provides information on size-based and sex-specific variations in diet, trophic position (TP) and foraging habitat of tiger sharks (Galeocerdo cuvier) caught in the KwaZulu-Natal Sharks Board bather protection program. This study presents the longest time-series and most detailed analysis of stomach content data for G. cuvier worldwide. Prey identified from 628 non-empty stomachs revealed a size-based shift in diet. Reptiles, birds, mysticetes, and large shark species increased in dietary importance with G. cuvier size, concomitant with a decrease in smaller prey such as batoids and teleosts. Seasonal and decadal shifts in diet driven primarily by changes in the importance of elasmobranchs and mammal (cetacean) prey were recorded for medium sized (150–220 cm) G. cuvier. Both stomach content and stable isotope analysis indicated that G. cuvier is a generalist feeder at the population level. Size-based δ13C profiles indicated a movement to offshore foraging habitats by larger G. cuvier. Calculated TP varied by method ranging from 4.0 to 5.0 (TPSCA for stomach contents) and from 3.6 to 4.5 (TPscaled and TPadditive for δ15N). Large (> 220 cm) G. cuvier did not feed at discrete trophic levels, but rather throughout the food web. These data provide key information on the ecological role of G. cuvier to improve the accuracy of regional food web modelling. This will enable a better understanding of the ecological impacts related to changes in the abundance of this predator. PMID:28594833
Evolutionary escalation: the bat-moth arms race.
Ter Hofstede, Hannah M; Ratcliffe, John M
2016-06-01
Echolocation in bats and high-frequency hearing in their insect prey make bats and insects an ideal system for studying the sensory ecology and neuroethology of predator-prey interactions. Here, we review the evolutionary history of bats and eared insects, focusing on the insect order Lepidoptera, and consider the evidence for antipredator adaptations and predator counter-adaptations. Ears evolved in a remarkable number of body locations across insects, with the original selection pressure for ears differing between groups. Although cause and effect are difficult to determine, correlations between hearing and life history strategies in moths provide evidence for how these two variables influence each other. We consider life history variables such as size, sex, circadian and seasonal activity patterns, geographic range and the composition of sympatric bat communities. We also review hypotheses on the neural basis for anti-predator behaviours (such as evasive flight and sound production) in moths. It is assumed that these prey adaptations would select for counter-adaptations in predatory bats. We suggest two levels of support for classifying bat traits as counter-adaptations: traits that allow bats to eat more eared prey than expected based on their availability in the environment provide a low level of support for counter-adaptations, whereas traits that have no other plausible explanation for their origination and maintenance than capturing defended prey constitute a high level of support. Specific predator counter-adaptations include calling at frequencies outside the sensitivity range of most eared prey, changing the pattern and frequency of echolocation calls during prey pursuit, and quiet, or 'stealth', echolocation. © 2016. Published by The Company of Biologists Ltd.
Berlin, Alicia; Perry, Matthew C.; Kohn, R.A.; Paynter, K.T.; Ottinger, Mary Ann
2015-01-01
Decline in surf scoter (Melanitta perspicillata) waterfowl populations wintering in the Chesapeake Bay has been associated with changes in the availability of benthic bivalves. The Bay has become more eutrophic, causing changes in the benthos available to surf scoters. The subsequent decline in oyster beds (Crassostrea virginica) has reduced the hard substrate needed by the hooked mussel (Ischadium recurvum), one of the primary prey items for surf scoters, causing the surf scoter to switch to a more opportune species, the dwarf surfclam (Mulinia lateralis). The composition (macronutrients, minerals, and amino acids), shell strength (N), and metabolizable energy (kJ) of these prey items were quantified to determine the relative foraging values for wintering scoters. Pooled samples of each prey item were analyzed to determine composition. Shell strength (N) was measured using a shell crack compression test. Total collection digestibility trials were conducted on eight captive surf scoters. For the prey size range commonly consumed by surf scoters (6-12 mm for M. lateralis and 18-24 mm for I. recurvum), I. recurvum contained higher ash, protein, lipid, and energy per individual organism than M. lateralis. I. recurvum required significantly greater force to crack the shell relative to M. lateralis. No difference in metabolized energy was observed for these prey items in wintering surf scoters, despite I. recurvum's higher ash content and harder shell than M. lateralis. Therefore, wintering surf scoters were able to obtain the same amount of energy from each prey item, implying that they can sustain themselves if forced to switch prey.
Wells-Berlin, Alicia M.; Perry, Matthew C.; Kohn, Richard A.; Paynter, Kennedy T.; Ottinger, Mary Ann
2015-01-01
Decline in surf scoter (Melanitta perspicillata) waterfowl populations wintering in the Chesapeake Bay has been associated with changes in the availability of benthic bivalves. The Bay has become more eutrophic, causing changes in the benthos available to surf scoters. The subsequent decline in oyster beds (Crassostrea virginica) has reduced the hard substrate needed by the hooked mussel (Ischadium recurvum), one of the primary prey items for surf scoters, causing the surf scoter to switch to a more opportune species, the dwarf surfclam (Mulinia lateralis). The composition (macronutrients, minerals, and amino acids), shell strength (N), and metabolizable energy (kJ) of these prey items were quantified to determine the relative foraging values for wintering scoters. Pooled samples of each prey item were analyzed to determine composition. Shell strength (N) was measured using a shell crack compression test. Total collection digestibility trials were conducted on eight captive surf scoters. For the prey size range commonly consumed by surf scoters (6–12 mm for M. lateralis and 18–24 mm for I. recurvum), I. recurvum contained higher ash, protein, lipid, and energy per individual organism than M. lateralis. I. recurvum required significantly greater force to crack the shell relative to M. lateralis. No difference in metabolized energy was observed for these prey items in wintering surf scoters, despite I. recurvum’s higher ash content and harder shell than M. lateralis. Therefore, wintering surf scoters were able to obtain the same amount of energy from each prey item, implying that they can sustain themselves if forced to switch prey. PMID:25978636
Xue, Yingen; Meats, Alan; Beattie, G Andrew C; Spooner-Hart, Robert; Herron, Grant A
2009-08-01
Occasional pesticide application in integrated pest management to at least part of a crop requires that any biological control agents must re-invade previously sprayed areas in order that resurgent pests can be constrained. The ability of the phytoseiid predatory mite Phytoseiulus persimilis to feed on adult two-spotted spider mite (TSSM) Tetranychus urticae on excised leaf discs in both control conditions and in a treatment with a sub lethal residue of agricultural mineral oil (AMO) was assessed. The predator exhibited a Type II functional response with the asymptote significantly higher in the AMO conditions due to the fact that the prey grew slower and reached a smaller size in this treatment. In terms of prey volume eaten, the satiation level of the predator was unchanged by the AMO deposits. The numbers of eggs produced by adult P. persimilis females at densities of 4, 8 and 16 TSSM adult females/disc in the control were significantly higher than those in the AMO treatment, but were similar for the higher density levels, 32 and 64 prey per disc. Thus the functional response in terms of volume of prey eaten explained the numerical response in terms of predator eggs produced. The presence of AMO deposits when the prey were at high density had no effect on predator efficiency (volume eaten) but resulted in a lower intake than that in control conditions when there was a greater distance between prey.
Resource partitioning among top predators in a Miocene food web
Domingo, M. Soledad; Domingo, Laura; Badgley, Catherine; Sanisidro, Oscar; Morales, Jorge
2013-01-01
The exceptional fossil sites of Cerro de los Batallones (Madrid Basin, Spain) contain abundant remains of Late Miocene mammals. From these fossil assemblages, we have inferred diet, resource partitioning and habitat of three sympatric carnivorous mammals based on stable isotopes. The carnivorans include three apex predators: two sabre-toothed cats (Felidae) and a bear dog (Amphicyonidae). Herbivore and carnivore carbon isotope (δ13C) values from tooth enamel imply the presence of a woodland ecosystem dominated by C3 plants. δ13C values and mixing-model analyses suggest that the two sabre-toothed cats, one the size of a leopard and the other the size of a tiger, consumed herbivores with similar δ13C values from a more wooded portion of the ecosystem. The two sabre-toothed cats probably hunted prey of different body sizes, and the smaller species could have used tree cover to avoid encounters with the larger felid. For the bear dog, δ13C values are higher and differ significantly from those of the sabre-toothed cats, suggesting a diet that includes prey from more open woodland. Coexistence of the sabre-toothed cats and the bear dog was likely facilitated by prey capture in different portions of the habitat. This study demonstrates the utility of stable isotope analysis for investigating the behaviour and ecology of members of past carnivoran guilds. PMID:23135673
Multiple micro-predators controlling bacterial communities in the environment.
Johnke, Julia; Cohen, Yossi; de Leeuw, Marina; Kushmaro, Ariel; Jurkevitch, Edouard; Chatzinotas, Antonis
2014-06-01
Predator-prey interactions are a main issue in ecological theory, including multispecies predator-prey relationships and intraguild predation. This knowledge is mainly based on the study of plants and animals, while its relevance for microorganisms is not well understood. The three key groups of micro-predators include protists, predatory bacteria and bacteriophages. They greatly differ in size, in prey specificity, in hunting strategies and in the resulting population dynamics. Yet, their potential to jointly control bacterial populations and reducing biomass in complex environments such as wastewater treatment plants is vast. Here, we present relevant ecological concepts and recent findings on micropredators, and propose that an integrative approach to predation at the microscale should be developed enabling the exploitation of this potential. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, L.J.
1995-12-31
Great Lakes managers continue to be concerned by PCB concentrations in Great Lakes sport fish. A reduction in sport fish consumption advisory levels would heighten public concern and increase pressure on managers to reduce contaminant levels in sport fish. PCB concentrations in Great Lakes sediments remain high and exchange with the water column is significant. Atmospheric inputs help maintain PCB availability in the Great Lakes. However, it is not technically feasible to control sediment and atmospheric inputs. Here the author uses a detailed age-structured simulation model of chinook salmon, alewife and rainbow smelt to examine the potential for fish managementmore » actions to make progress towards reducing PCB concentrations of sport fish consumed by humans. Chinook salmon PCB concentrations were found to be more affected by prey PCB concentrations than chinook salmon growth rates. Salmonid predators selectively attack the largest prey, but these prey are likely the oldest and most contaminated. The interaction between size selective predation by chinook salmon and their growth rates suggests that there is an ideal stocking level of sport fish that should keep the average prey fish small, and therefore have relatively low PCE concentrations, but not reduce the age structure of the alewife population to include few reproductive individuals. These results are applicable to other stocked salmonids too, (e.g., lake trout, brown trout, coho salmon, steelhead) because they also exhibit size selective predation and their recruitment is primarily by stocking.« less
Jewelled spiders manipulate colour-lure geometry to deceive prey
2017-01-01
Selection is expected to favour the evolution of efficacy in visual communication. This extends to deceptive systems, and predicts functional links between the structure of visual signals and their behavioural presentation. Work to date has primarily focused on colour, however, thereby understating the multicomponent nature of visual signals. Here I examined the relationship between signal structure, presentation behaviour, and efficacy in the context of colour-based prey luring. I used the polymorphic orb-web spider Gasteracantha fornicata, whose yellow- or white-and-black striped dorsal colours have been broadly implicated in prey attraction. In a manipulative assay, I found that spiders actively control the orientation of their conspicuous banded signals in the web, with a distinct preference for near-diagonal bearings. Further field-based study identified a predictive relationship between pattern orientation and prey interception rates, with a local maximum at the spiders' preferred orientation. There were no morph-specific effects on capture success, either singularly or via an interaction with pattern orientation. These results reveal a dynamic element in a traditionally ‘static’ signalling context, and imply differential functions for chromatic and geometric signal components across visual contexts. More broadly, they underscore how multicomponent signal designs and display behaviours may coevolve to enhance efficacy in visual deception. PMID:28356411
Jewelled spiders manipulate colour-lure geometry to deceive prey.
White, Thomas E
2017-03-01
Selection is expected to favour the evolution of efficacy in visual communication. This extends to deceptive systems, and predicts functional links between the structure of visual signals and their behavioural presentation. Work to date has primarily focused on colour, however, thereby understating the multicomponent nature of visual signals. Here I examined the relationship between signal structure, presentation behaviour, and efficacy in the context of colour-based prey luring. I used the polymorphic orb-web spider Gasteracantha fornicata , whose yellow- or white-and-black striped dorsal colours have been broadly implicated in prey attraction. In a manipulative assay, I found that spiders actively control the orientation of their conspicuous banded signals in the web, with a distinct preference for near-diagonal bearings. Further field-based study identified a predictive relationship between pattern orientation and prey interception rates, with a local maximum at the spiders' preferred orientation. There were no morph-specific effects on capture success, either singularly or via an interaction with pattern orientation. These results reveal a dynamic element in a traditionally 'static' signalling context, and imply differential functions for chromatic and geometric signal components across visual contexts. More broadly, they underscore how multicomponent signal designs and display behaviours may coevolve to enhance efficacy in visual deception. © 2017 The Author(s).
Stability and Optimal Harvesting of Modified Leslie-Gower Predator-Prey Model
NASA Astrophysics Data System (ADS)
Toaha, S.; Azis, M. I.
2018-03-01
This paper studies a modified of dynamics of Leslie-Gower predator-prey population model. The model is stated as a system of first order differential equations. The model consists of one predator and one prey. The Holling type II as a predation function is considered in this model. The predator and prey populations are assumed to be beneficial and then the two populations are harvested with constant efforts. Existence and stability of the interior equilibrium point are analysed. Linearization method is used to get the linearized model and the eigenvalue is used to justify the stability of the interior equilibrium point. From the analyses, we show that under a certain condition the interior equilibrium point exists and is locally asymptotically stable. For the model with constant efforts of harvesting, cost function, revenue function, and profit function are considered. The stable interior equilibrium point is then related to the maximum profit problem as well as net present value of revenues problem. We show that there exists a certain value of the efforts that maximizes the profit function and net present value of revenues while the interior equilibrium point remains stable. This means that the populations can live in coexistence for a long time and also maximize the benefit even though the populations are harvested with constant efforts.
The role of internal waves in larval fish interactions with potential predators and prey
NASA Astrophysics Data System (ADS)
Greer, Adam T.; Cowen, Robert K.; Guigand, Cedric M.; Hare, Jonathan A.; Tang, Dorothy
2014-09-01
Tidally driven internal wave packets in coastal environments have the potential to influence patchiness of larval fishes, prey, and gelatinous predators. We used the In Situ Ichthyoplankton Imaging System (ISIIS) to synoptically sample larval fishes, copepods, and planktonic predators (ctenophores, hydromedusae, chaetognaths, and polychaetes) across these predictable features in the summer near Stellwagen Bank, Massachusetts, USA. Full water column profiles and fixed depth transects (∼10 m depth) were used to quantify vertical and horizontal components of the fish and invertebrate distributions during stable and vertically mixed conditions associated with tidally generated internal waves. Larval fishes, consisting mostly of Urophycis spp., Merluccius bilinearis, and Labridae, were concentrated near the surface, with larger sizes generally occupying greater depths. During stable water column conditions, copepods formed a near surface thin layer several meters above the chlorophyll-a maximum that was absent when internal waves were propagating. In contrast, ctenophores and other predators were much more abundant at depth, but concentrations near 10 m increased immediately after the internal hydraulic jump mixed the water column. During the propagation of internal waves, the fine-scale abundance of larval fishes was more correlated with the abundance of gelatinous predators and less correlated with copepods compared to the stable conditions. Vertical oscillations caused by the internal hydraulic jump can disperse patches of zooplankton and force surface dwelling larval fishes into deeper water where probability of predator contact is increased, creating conditions potentially less favorable for larval fish growth and survival on short time scales.
Walls, S.C.; Taylor, D.G.; Wilson, C.M.
2002-01-01
Fundamental issues in the study of predator-prey interactions include addressing how prey coexist with their predators and, moreover, whether predators promote coexistence among competing prey. We conducted a series of laboratory experiments with a freshwater assemblage consisting of two predators that differed in their foraging modes (a crayfish, Procambarus sp., and the western mosquitofish, Gambusia affinis) and their prospective anuran prey (tadpoles of the narrow-mouthed toad, Gastrophryne carolinensis, and the squirrel treefrog, Hyla squirella). We examined whether competition occurs within and between these two prey species and, if so, whether the non-lethal presence of predators alters the outcome of competitive interactions. We also asked whether the two species of prey differ in their susceptibility to the two types of predators and whether interspecific differences in predator avoidance behavior might account for this variation. Our results indicated that Gastrophryne was a stronger competitor than Hyla; at high densities, Gastrophryne reduced the body size of both congeners and conspecifics, as well as the proportion of surviving conspecifics that metamorphosed. However, the presence of mosquitofish did not alter the outcome of this competition, nor did either type of predator affect the density-dependent responses of Gastrophryne. In laboratory foraging trials, the number of tadpoles of each prey species that was killed, but not completely consumed by mosquitofish, was similar for Gastrophryne and Hyla. Yet, significantly more individuals of Gastrophryne than of Hyla were the first prey eaten by mosquitofish; there was no difference in the number of individuals of each species eaten by crayfish. Overall, more individuals of Gastrophryne than of Hyla were killed and completely eaten by mosquitofish at the end of the experiment. The two species of prey did not differ in their spatial avoidance of either type of predator, suggesting that this behavior did not play a significant role in the differential vulnerability of the prey to predation. By reducing the abundance of G. carolinensis, the potential exists for predators, such as mosquitofish, to ameliorate this species' competitive impact on other species. In this way, predators may promote coexistence of species within some assemblages of amphibians.
Protection zone in a diffusive predator-prey model with Beddington-DeAngelis functional response.
He, Xiao; Zheng, Sining
2017-07-01
In any reaction-diffusion system of predator-prey models, the population densities of species are determined by the interactions between them, together with the influences from the spatial environments surrounding them. Generally, the prey species would die out when their birth rate is too low, the habitat size is too small, the predator grows too fast, or the predation pressure is too high. To save the endangered prey species, some human interference is useful, such as creating a protection zone where the prey could cross the boundary freely but the predator is prohibited from entering. This paper studies the existence of positive steady states to a predator-prey model with reaction-diffusion terms, Beddington-DeAngelis type functional response and non-flux boundary conditions. It is shown that there is a threshold value [Formula: see text] which characterizes the refuge ability of prey such that the positivity of prey population can be ensured if either the prey's birth rate satisfies [Formula: see text] (no matter how large the predator's growth rate is) or the predator's growth rate satisfies [Formula: see text], while a protection zone [Formula: see text] is necessary for such positive solutions if [Formula: see text] with [Formula: see text] properly large. The more interesting finding is that there is another threshold value [Formula: see text], such that the positive solutions do exist for all [Formula: see text]. Letting [Formula: see text], we get the third threshold value [Formula: see text] such that if [Formula: see text], prey species could survive no matter how large the predator's growth rate is. In addition, we get the fourth threshold value [Formula: see text] for negative [Formula: see text] such that the system admits positive steady states if and only if [Formula: see text]. All these results match well with the mechanistic derivation for the B-D type functional response recently given by Geritz and Gyllenberg (J Theoret Biol 314:106-108, 2012). Finally, we obtain the uniqueness of positive steady states for [Formula: see text] properly large, as well as the asymptotic behavior of the unique positive steady state as [Formula: see text].
Spencer, Ricky-John; Van Dyke, James U; Thompson, Michael B
2016-10-01
Ecological traps are threats to organisms, and exist in a range of biological systems. A subset of ecological trap theory is the "ethological trap," whereby behaviors canalized by past natural selection become traps when environments change rapidly. Invasive predators are major threats to imperiled species and their ability to exploit canalized behaviors of naive prey is particularly important for the establishment of the predator and the decline of the native prey. Our study uses ecological theory to demonstrate that invasive predator controls require shifts in management priorities. Total predation rate (i.e., total response) is the product of both the functional response and numerical response of predators to prey. Functional responses are the changes in the rate of prey consumption by individual predators, relative to prey abundance. Numerical responses are the aggregative rates of prey consumption by all predators relative to prey density, which change with predator density via reproduction or migration, in response to changes in prey density. Traditional invasive predator management methods focus on reducing predator populations, and thus manage for numerical responses. These management efforts fail to manage for functional responses, and may not eliminate impacts of highly efficient individual predators. We explore this problem by modeling the impacts of functional and numerical responses of invasive foxes depredating imperiled Australian turtle nests. Foxes exhibit exceptionally efficient functional responses. A single fox can destroy >95% of turtle nests in a nesting area, which eliminates juvenile recruitment. In this case, the ethological trap is the "Arribada" nesting strategy, an emergent behavior whereby most turtles in a population nest simultaneously in the same nesting grounds. Our models show that Arribada nesting events do not oversaturate foxes, and small numbers of foxes depredate all of the nests in a given Arribada. Widely scattering nests may reduce fox predation rates, but the long generation times of turtles combined with their rapid recent decline suggests that evolutionary responses in nesting strategy may be unlikely. Our study demonstrates that reducing populations of highly efficient invasive predators is insufficient for preserving native prey species. Instead, management must reduce individual predator efficiency, independent of reducing predator population size. © 2016 by the Ecological Society of America.
Quentin, J C; Seureau, C; Railhac, C
1983-01-01
A habronemid nematode in birds of prey, Milvus migrans Bonaparti and Accipiter badius Linné, in Togo, is identified as Cyrnea (Procyrnea) mansioni (Seurat, 1914). Larval development is experimentally studied in the orthopteran Acrididae Tylotropidius patagiatus Karsch. The first three larval stages are described and illustrated. The biology of this spiruroid nematode is distinguished by the unusual rapidity of larval development (infective larvae at 10 days). Comparison of the life cycle of C. mansioni with life cycles of other Habronemid Nematodes parasitizing birds, points out an evolution of larvae from primitive forms of large size and slow development to evolved forms of small size and rapid development. Observations concerning the encapsulation of infective larvae in the intermediate host confirm this larval evolution.
NASA Astrophysics Data System (ADS)
Cobián-Rojas, Dorka; Schmitter-Soto, Juan J.; Aguilar Betancourt, Consuelo M.; Aguilar-Perera, Alfonso; Ruiz-Zárate, Miguel Á.; González-Sansón, Gaspar; Chevalier Monteagudo, Pedro P.; Herrera Pavón, Roberto; García Rodríguez, Alain; Corrada Wong, Raúl I.; Cabrera Guerra, Delmis; Salvat Torres, Héctor; Perera Valderrama, Susana
2018-04-01
Marine protected areas (MPAs) conserve diversity and abundance of fish communities. According to the biotic resistance hypothesis, communities with higher diversity and abundance should resist invasions better. To test this idea, the presence of lionfish in two Caribbean MPAs was studied: Parque Nacional Guanahacabibes (PNG) in Cuba and Parque Nacional Arrecifes de Xcalak (PNAX) in Mexico. Selection of these MPAs was based on both their different levels of success with enforcement and different abundances of native fish, with a more abundant native fish fauna at PNG. Underwater visual censuses were used to evaluate both the native fish structure and composition and at the same time distribution and abundance of lionfish. The abundance of potential predators on lionfish was also measured to determine possible effects of lionfish on both the abundance and the size of its prey and competitors. Lionfish showed higher abundance and larger size in PNG compared to PNAX, even though its probable competitors and predators were also more abundant and larger in PNG. Prey abundance and size decreased after the invasion. No correlation was detected between potential predators and lionfish, which might indicate natural predation is not substantial. In PNAX, lower abundance of prey, potential competitors and predators can also be attributed to historical overfishing, but this did not provide an advantage to lionfish. Lionfish were less abundant and reached smaller sizes in PNAX compared to PNG. This work confirms the effectiveness of lionfish culling at PNAX, but does not support the biotic resistence hypothesis that native fish might have controlled this invasive species.
Prey risk allocation in a grazing ecosystem.
Gude, Justin A; Garrott, Robert A; Borkowski, John J; King, Fred
2006-02-01
Understanding the behaviorally mediated indirect effects of predators in ecosystems requires knowledge of predator-prey behavioral interactions. In predator-ungulate-plant systems, empirical research quantifying how predators affect ungulate group sizes and distribution, in the context of other influential variables, is particularly needed. The risk allocation hypothesis proposes that prey behavioral responses to predation risk depend on background frequencies of exposure to risk, and it can be used to make predictions about predator-ungulate-plant interactions. We determined non-predation variables that affect elk (Cervus elaphus) group sizes and distribution on a winter range in the Greater Yellowstone Ecosystem (GYE) using logistic and log-linear regression on surveys of 513 1-km2 areas conducted over two years. Employing model selection techniques, we evaluated risk allocation and other a priori hypotheses of elk group size and distributional responses to wolf (Canis lupus) predation risk while accounting for influential non-wolf-predation variables. We found little evidence that wolves affect elk group sizes, which were strongly influenced by habitat type and hunting by humans. Following predictions from the risk allocation hypothesis, wolves likely created a more dynamic elk distribution in areas that they frequently hunted, as elk tended to move following wolf encounters in those areas. This response should dilute elk foraging pressure on plant communities in areas where they are frequently hunted by wolves. We predict that this should decrease the spatial heterogeneity of elk impacts on grasslands in areas that wolves frequently hunt. We also predict that this should decrease browsing pressure on heavily browsed woody plant stands in certain areas, which is supported by recent research in the GYE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rotenberry, J.T.
1980-03-01
The suggestion that in less stable environments resource limitation and subsequent interspecific competition may be relatively unimportant in determining bird community structure is explored by examining the dietary relationships within a guild of three ground-foraging passerine birds (Horned Lark, Sage Sparrow, and Western Meadowlark) in the shrubsteppe of southeastern Washington, USA, an area of severe, arid, unstable climate. General dietary analyses indicated a strong temporal component to the organization of bird diets: different species collected at the same time ate much the same things while the same species collected at different times ate different things. This pattern is reinforced bymore » cluster analysis and stepwise discriminant analysis. Similarities in diet extended to other components as well. Dietary diversities tended to be the same for contemporaneous collections of birds, as did averge prey sizes, although the latter evidenced a few statistically significant exceptions. Theoretically predicted relationships between diet and trophic structure morphology emerged only at the most general level, and even then were not always observed. In general, differences in body size or bill length were insufficient to account for variations in prey sizes, although meadowlarks did on occasion take significantly larger items than the other, smaller species. Average prey size was significantly correlated with the proportion of seeds in the diet and varied seasonally as seed consumption varied. Several aspects of this study indicate that shrubsteppe passerines are largely opportunistic in their foraging and diet selection, and that the apparent absence of fine tuning to their competitive milieu is most likely a function of the variable environment in which they coexist.« less
Bite force estimation and the fiber architecture of felid masticatory muscles.
Hartstone-Rose, Adam; Perry, Jonathan M G; Morrow, Caroline J
2012-08-01
Increasingly, analyses of craniodental dietary adaptations take into account mechanical properties of foods. However, masticatory muscle fiber architecture has been described for relatively few lineages, even though an understanding of the scaling of this anatomy can yield important information about adaptations for stretch and strength in the masticatory system. Data on the mandibular adductors of 28 specimens from nine species of felids representing nearly the entire body size range of the family allow us to evaluate the influence of body size and diet on the masticatory apparatus within this lineage. Masticatory muscle masses scale isometrically, tending toward positive allometry, with body mass and jaw length. This allometry becomes significant when the independent variable is a geometric mean of cranial variables. For all three body size proxies, the physiological cross-sectional area and predicted bite forces scale with significant positive allometry. Average fiber lengths (FL) tend toward negative allometry though with wide confidence intervals resulting from substantial scatter. We believe that these FL residuals are affected by dietary signals within the sample; though the mechanical properties of felid diets are relatively similar across species, the most durophagous species in our sample (the jaguar) appears to have relatively higher force production capabilities. The more notable dietary trend in our sample is the relationship between FL and relative prey size: felid species that predominantly consume relatively small prey have short masticatory muscle fibers, and species that regularly consume relatively large prey have relatively long fibers. This suggests an adaptive signal related to gape. Copyright © 2012 Wiley Periodicals, Inc.
Runemark, Anna; Sagonas, Kostas; Svensson, Erik I
2015-08-01
Although rapid evolution of body size on islands has long been known, the ecological mechanisms behind this island phenomenon remain poorly understood. Diet is an important selective pressure for morphological divergence. Here we investigate if selection for novel diets has contributed to the multiple independent cases of island gigantism in the Skyros wall lizard (Podarcis gaigeae) and if diet, predation, or both factors best explain island gigantism. We combined data on body size, shape, bite force, and realized and available diets to address this. Several lines of evidence suggest that diet has contributed to the island gigantism. The larger islet lizards have relatively wider heads and higher bite performance in relation to mainland lizards than would be expected from size differences alone. The proportions of consumed and available hard prey are higher on islets than mainland localities, and lizard body size is significantly correlated with the proportion of hard prey. Furthermore, the main axis of divergence in head shape is significantly correlated with dietary divergence. Finally, a model with only diet and one including diet and predation regime explain body size divergence equally well. Our results suggest that diet is an important ecological factor behind insular body size divergence, but could be consistent with an additional role for predation.
Habitat selection by breeding waterbirds at ponds with size-structured fish populations
NASA Astrophysics Data System (ADS)
Kloskowski, Janusz; Nieoczym, Marek; Polak, Marcin; Pitucha, Piotr
2010-07-01
Fish may significantly affect habitat use by birds, either as their prey or as competitors. Fish communities are often distinctly size-structured, but the consequences for waterbird assemblages remain poorly understood. We examined the effects of size structure of common carp ( Cyprinus carpio) cohorts together with other biotic and abiotic pond characteristics on the distribution of breeding waterbirds in a seminatural system of monocultured ponds, where three fish age classes were separately stocked. Fish age corresponded to a distinct fish size gradient. Fish age and total biomass, macroinvertebrate and amphibian abundance, and emergent vegetation best explained the differences in bird density between ponds. Abundance of animal prey other than fish (aquatic macroinvertebrates and larval amphibians) decreased with increasing carp age in the ponds. Densities of ducks and smaller grebes were strongly negatively associated with fish age/size gradient. The largest of the grebes, the piscivorous great crested grebe ( Podiceps cristatus), was the only species that preferred ponds with medium-sized fish and was positively associated with total fish biomass. Habitat selection by bitterns and most rallids was instead strongly influenced by the relative amount of emergent vegetation cover in the ponds. Our results show that fish size structure may be an important cue for breeding habitat choice and a factor affording an opportunity for niche diversification in avian communities.
Mammoth grazers on the ocean's minuteness: a review of selective feeding using mucous meshes
2018-01-01
Mucous-mesh grazers (pelagic tunicates and thecosome pteropods) are common in oceanic waters and efficiently capture, consume and repackage particles many orders of magnitude smaller than themselves. They feed using an adhesive mucous mesh to capture prey particles from ambient seawater. Historically, their grazing process has been characterized as non-selective, depending only on the size of the prey particle and the pore dimensions of the mesh. The purpose of this review is to reverse this assumption by reviewing recent evidence that shows mucous-mesh feeding can be selective. We focus on large planktonic microphages as a model of selective mucus feeding because of their important roles in the ocean food web: as bacterivores, prey for higher trophic levels, and exporters of carbon via mucous aggregates, faecal pellets and jelly-falls. We identify important functional variations in the filter mechanics and hydrodynamics of different taxa. We review evidence that shows this feeding strategy depends not only on the particle size and dimensions of the mesh pores, but also on particle shape and surface properties, filter mechanics, hydrodynamics and grazer behaviour. As many of these organisms remain critically understudied, we conclude by suggesting priorities for future research. PMID:29720410
Westerbom, Mats; Lappalainen, Antti; Mustonen, Olli; Norkko, Alf
2018-05-21
Climate change is predicted to cause a freshening of the Baltic Sea, facilitating range expansions of freshwater species and contractions of marine. Resident marine flounders (Platichthys flesus) and expansive freshwater roach (Rutilus rutilus) are dominant consumers in the Baltic Sea sublittoral where they occur in partial sympatry. By comparing patterns of resource use by flounders and roach along a declining resource gradient of blue mussels (Mytilus trossulus) our aim was to explore predator functional responses and the degree of trophic overlap. Understanding the nature of density-dependent prey acquisition has important implications for predicting population dynamics of both predators and their shared prey. Results showed a highly specialized diet for both species, high reliance on blue mussels throughout the range, similar prey size preference and high trophic overlap. Highest overlap occurred where blue mussels were abundant but overlap was also high where they were scarce. Our results highlight the importance of a single food item - the blue mussel - for both species, likely promoting high population size and range expansion of roach. Findings also suggest that range expansion of roach may have a top-down structuring force on mussels that differ in severity and location from that originating from resident flounders.
USDA-ARS?s Scientific Manuscript database
Identifying factors that may be responsible for affecting and possibly regulating the size of animal populations is a cornerstone in understanding population ecology. The main factors that are thought to influence population size are either resources (bottom-up), predation, (top-down), or interspec...
1994-04-01
Sparrow 2 8 2 2 Spizella passerina Clay-colored Sparrow 3 8 5 2 Spizella pallida Vesper Sparrow 1 8 5 2 Pooecetes gramineus Savannah Sparrow 1 8 5 2...mortality. Reverse Lee’s Phenomenon can occur also, especially in non-exploited populations or where predator - prey relationships do not exist or are...mass as well as predator / prey mass ratios. Finally, we I followed changes in numbers and sizes of six insect taxa to see whether their growth rates
Hansen, Adam G.; Beauchamp, David A.
2014-01-01
Most predators eat only a subset of possible prey. However, studies evaluating diet selection rarely measure prey availability in a manner that accounts for temporal–spatial overlap with predators, the sensory mechanisms employed to detect prey, and constraints on prey capture.We evaluated the diet selection of cutthroat trout (Oncorhynchus clarkii) feeding on a diverse planktivore assemblage in Lake Washington to test the hypothesis that the diet selection of piscivores would reflect random (opportunistic) as opposed to non-random (targeted) feeding, after accounting for predator–prey overlap, visual detection and capture constraints.Diets of cutthroat trout were sampled in autumn 2005, when the abundance of transparent, age-0 longfin smelt (Spirinchus thaleichthys) was low, and 2006, when the abundance of smelt was nearly seven times higher. Diet selection was evaluated separately using depth-integrated and depth-specific (accounted for predator–prey overlap) prey abundance. The abundance of different prey was then adjusted for differences in detectability and vulnerability to predation to see whether these factors could explain diet selection.In 2005, cutthroat trout fed non-randomly by selecting against the smaller, transparent age-0 longfin smelt, but for the larger age-1 longfin smelt. After adjusting prey abundance for visual detection and capture, cutthroat trout fed randomly. In 2006, depth-integrated and depth-specific abundance explained the diets of cutthroat trout well, indicating random feeding. Feeding became non-random after adjusting for visual detection and capture. Cutthroat trout selected strongly for age-0 longfin smelt, but against similar sized threespine stickleback (Gasterosteus aculeatus) and larger age-1 longfin smelt in 2006. Overlap with juvenile sockeye salmon (O. nerka) was minimal in both years, and sockeye salmon were rare in the diets of cutthroat trout.The direction of the shift between random and non-random selection depended on the presence of a weak versus a strong year class of age-0 longfin smelt. These fish were easy to catch, but hard to see. When their density was low, poor detection could explain their rarity in the diet. When their density was high, poor detection was compensated by higher encounter rates with cutthroat trout, sufficient to elicit a targeted feeding response. The nature of the feeding selectivity of a predator can be highly dependent on fluctuations in the abundance and suitability of key prey.
Mason, Doran M.; Johnson, Timothy B.; Harvey, Chris J.; Kitchell, James F.; Schram, Stephen T.; Bronte, Charles R.; Hoff, Michael H.; Lozano, Stephen J.; Trebitz, Anett S.; Schreiner, Donald R.; Lamon, E. Conrad; Hrabik, Thomas R.
2005-01-01
Lake herring (Coregonus artedi) and rainbow smelt (Osmerus mordax) are a valuable prey resource for the recovering lake trout (Salvelinus namaycush) in Lake Superior. However, prey biomass may be insufficient to support the current predator demand. In August 1997, we assessed the abundance and spatial distribution of pelagic coregonines and rainbow smelt in western Lake Superior by combining a 120 kHz split beam acoustics system with midwater trawls. Coregonines comprised the majority of the midwater trawl catches and the length distributions for trawl caught fish coincided with estimated sizes of acoustic targets. Overall mean pelagic prey fish biomass was 15.56 kg ha−1 with the greatest fish biomass occurring in the Apostle Islands region (27.98 kg ha−1), followed by the Duluth Minnesota region (20.22 kg ha−1), and with the lowest biomass occurring in the open waters of western Lake Superior (9.46 kg ha−1). Biomass estimates from hydroacoustics were typically 2–134 times greater than estimates derived from spring bottom trawl surveys. Prey fish biomass for Lake Superior is about order of magnitude less than acoustic estimates for Lakes Michigan and Ontario. Discrepancies observed between bioenergetics-based estimates of predator consumption of coregonines and earlier coregonine biomass estimates may be accounted for by our hydroacoustic estimates.
Environmental fluctuations restrict eco-evolutionary dynamics in predator-prey system.
Hiltunen, Teppo; Ayan, Gökçe B; Becks, Lutz
2015-06-07
Environmental fluctuations, species interactions and rapid evolution are all predicted to affect community structure and their temporal dynamics. Although the effects of the abiotic environment and prey evolution on ecological community dynamics have been studied separately, these factors can also have interactive effects. Here we used bacteria-ciliate microcosm experiments to test for eco-evolutionary dynamics in fluctuating environments. Specifically, we followed population dynamics and a prey defence trait over time when populations were exposed to regular changes of bottom-up or top-down stressors, or combinations of these. We found that the rate of evolution of a defence trait was significantly lower in fluctuating compared with stable environments, and that the defence trait evolved to lower levels when two environmental stressors changed recurrently. The latter suggests that top-down and bottom-up changes can have additive effects constraining evolutionary response within populations. The differences in evolutionary trajectories are explained by fluctuations in population sizes of the prey and the predator, which continuously alter the supply of mutations in the prey and strength of selection through predation. Thus, it may be necessary to adopt an eco-evolutionary perspective on studies concerning the evolution of traits mediating species interactions. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Reproductive responses to spatial and temporal prey availability in a coastal Arctic fox population.
Eide, Nina E; Stien, Audun; Prestrud, Pål; Yoccoz, Nigel G; Fuglei, Eva
2012-05-01
1. Input of external subsidies in the Arctic may have substantial effects on predator populations that otherwise would have been limited by low local primary productivity. 2. We explore life-history traits, age-specific fecundity, litter sizes and survival, and the population dynamics of an Arctic fox (Vulpes lagopus) population to explore the influence of the spatial distribution and temporal availability of its main prey; including both resident and migrating (external) prey resources. 3. This study reveals that highly predictable cross-boundary subsidies from the marine food web, acting through seasonal access to seabirds, sustain larger local Arctic fox populations. Arctic fox dens located close to the coast in Svalbard were found to have higher occupancy rates, as expected from both high availability and high temporal and spatial predictability of prey resources (temporally stable external subsidies). Whereas the occupancy rate of inland dens varied between years in relation to the abundance of reindeer carcasses (temporally varying resident prey). 4. With regard to demography, juvenile Arctic foxes in Svalbard have lower survival rates and a high age of first reproduction compared with other populations. We suggest this may be caused by a lack of unoccupied dens and a saturated population. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.
NASA Astrophysics Data System (ADS)
Spitz, Jérôme; Rousseau, Yann; Ridoux, Vincent
2006-10-01
In aquatic ecosystems, competitive interactions are occasionally described. Violent attacks on harbour porpoises by bottlenose dolphins were reported and it was proposed that this behavior could result from competitive interactions for food. This hypothesis implies that the two predators should share all or part of they prey range. In this work, we describe the diets of each predator in the Bay of Biscay and adjacent areas from stomach content analysis of stranded animals. The diet of the harbour porpoise was mostly composed of small schooling fish living close to the seafloor (98 percent by mass). The diet of the bottlenose dolphin was characterised by the presence of large specimens of demersal fish (91 percent by mass) and cephalopods. Several prey species are common in the two diets and even the length distributions of some of them, such as sardine or scads, are very similar. However, global indices such as the Mantel test or the Pianka's index indicate no or weak overlap. The dietary results suggest that the two predators show partial dietary overlap over several major dimensions of the foraging niche: prey profile, foraging habitats, prey species and size range. We suggest interference competition is plausible at the scale of a prey school that would be exploited jointly by groups of the two predators.
Madin, Elizabeth M. P.; Gaines, Steven D.; Madin, Joshua S.; Link, Anne-Katrin; Lubchenco, Peggy J.; Selden, Rebecca L.; Warner, Robert R.
2012-01-01
Efforts to restore top predators in human-altered systems raise the question of whether rebounds in predator populations are sufficient to restore pristine foodweb dynamics. Ocean ecosystems provide an ideal system to test this question. Removal of fishing in marine reserves often reverses declines in predator densities and size. However, whether this leads to restoration of key functional characteristics of foodwebs, especially prey foraging behavior, is unclear. The question of whether restored and pristine foodwebs function similarly is nonetheless critically important for management and restoration efforts. We explored this question in light of one important determinant of ecosystem function and structure – herbivorous prey foraging behavior. We compared these responses for two functionally distinct herbivorous prey fishes (the damselfish Plectroglyphidodon dickii and the parrotfish Chlorurus sordidus) within pairs of coral reefs in pristine and restored ecosystems in two regions of these species' biogeographic ranges, allowing us to quantify the magnitude and temporal scale of this key ecosystem variable's recovery. We demonstrate that restoration of top predator abundances also restored prey foraging excursion behaviors to a condition closely resembling those of a pristine ecosystem. Increased understanding of behavioral aspects of ecosystem change will greatly improve our ability to predict the cascading consequences of conservation tools aimed at ecological restoration, such as marine reserves. PMID:22403650
Spitz, Jérôme; Trites, Andrew W.; Becquet, Vanessa; Brind'Amour, Anik; Cherel, Yves; Galois, Robert; Ridoux, Vincent
2012-01-01
Understanding the mechanisms that drive prey selection is a major challenge in foraging ecology. Most studies of foraging strategies have focused on behavioural costs, and have generally failed to recognize that differences in the quality of prey may be as important to predators as the costs of acquisition. Here, we tested whether there is a relationship between the quality of diets (kJ·g−1) consumed by cetaceans in the North Atlantic and their metabolic costs of living as estimated by indicators of muscle performance (mitochondrial density, n = 60, and lipid content, n = 37). We found that the cost of living of 11 cetacean species is tightly coupled with the quality of prey they consume. This relationship between diet quality and cost of living appears to be independent of phylogeny and body size, and runs counter to predictions that stem from the well-known scaling relationships between mass and metabolic rates. Our finding suggests that the quality of prey rather than the sheer quantity of food is a major determinant of foraging strategies employed by predators to meet their specific energy requirements. This predator-specific dependence on food quality appears to reflect the evolution of ecological strategies at a species level, and has implications for risk assessment associated with the consequences of changing the quality and quantities of prey available to top predators in marine ecosystems. PMID:23185542
NASA Astrophysics Data System (ADS)
Kucera, Florian; Beisser, Christian J.; Lemell, Patrick
2018-03-01
Many studies have yet been conducted on suction feeding in aquatic salamander species. Within the Salamandridae, the crested newt Triturus dobrogicus (Kiritzescu, 1903), occurring from the Austrian Danube floodplains to the Danube Delta, was not subject of investigations so far. The present study examines the kinematics of aquatic suction feeding in this species by means of high-speed videography. Recordings of five individuals of different size and sex while feeding on bloodworms were conducted, in order to identify potential discrepancies among individuals and sizes. Five coordinate points were digitized from recordings of prey capture and twelve time- and velocity-determined variables were evaluated. All specimens follow a typical inertial suction feeding process, where rapid hyoid depression expands the buccal cavity. Generated negative pressure within the buccal cavity causes influx of water along with the prey item into the mouth. Results demonstrate higher distance values and angles for gape in individuals with smaller size. In addition, hyoid depression is maximized in smaller individuals. While Triturus dobrogicus resembles a typical inertial suction feeder in its functional morphology, intraspecific differences could be found regarding the correlation of different feeding patterns and body size.
Movements of wintering surf scoters: Predator responses to different prey landscapes
Kirk, M.; Esler, Daniel N.; Iverson, S.A.; Boyd, W.S.
2008-01-01
The distribution of predators is widely recognized to be intimately linked to the distribution of their prey. Foraging theory suggests that predators will modify their behaviors, including movements, to optimize net energy intake when faced with variation in prey attributes or abundance. While many studies have documented changes in movement patterns of animals in response to temporal changes in food, very few have contrasted movements of a single predator species naturally occurring in dramatically different prey landscapes. We documented variation in the winter movements, foraging range size, site fidelity, and distribution patterns of a molluscivorous sea duck, the surf scoter (Melanitta perspicillata), in two areas of coastal British Columbia with very different shellfish prey features. Baynes Sound has extensive tidal flats with abundant clams, which are high-quality and temporally stable prey for scoters. Malaspina Inlet is a rocky fjord-like inlet where scoters consume mussels that are superabundant and easily accessible in some patches but are heavily depleted over the course of winter. We used radio telemetry to track surf scoter movements in both areas and found that in the clam habitats of Baynes Sound, surf scoters exhibited limited movement, small winter ranges, strong foraging site fidelity, and very consistent distribution patterns. By contrast, in mussel habitats in the Malaspina Inlet, surf scoters displayed more movement, larger ranges, little fidelity to specific foraging sites, and more variable distribution patterns. We conclude that features associated with the different prey types, particularly the higher depletion rates of mussels, strongly influenced seasonal space use patterns. These findings are consistent with foraging theory and confirm that predator behavior, specifically movements, is environmentally mediated. ?? 2008 Springer-Verlag.
Staudinger, Michelle D
2011-04-01
Total mercury was analyzed as a function of body length, season, and diet in four commercially and recreationally important marine fish, bluefish (Pomatomus saltatrix), goosefish (Lophius americanus), silver hake (Merluccius bilinearis), and summer flounder (Paralichthys dentatus), collected from continental shelf waters of the northwest Atlantic Ocean. Mercury levels in the dorsal muscle tissue of 115 individuals ranged from 0.006 to 1.217 μg/g (wet weight) and varied significantly among species. The relationship between predator length and mercury concentration was linear for bluefish and summer flounder, while mercury levels increased with size at an exponential rate for silver hake and goosefish. Mercury burdens were the highest overall in bluefish, but increased with size at the greatest rate in silver hake. Seasonal differences were detected for bluefish and goosefish with mercury levels peaking during summer and spring, respectively. Prey mercury burdens and predator foraging habits are discussed as the primary factors influencing mercury accumulation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Winter wolf predation in a multiple ungulate prey system, Gates of the Arctic National Park, Alaska
Dale, Bruce W.; Adams, Layne G.; Bowyer, R. Terry; Carbyn, Ludwig N.; Fritts, Steven H.; Seip, Dale R.
1995-01-01
We investigated patterns of winter wolf predation, including prey selection, prey switching, kill rates, carcass utilization, and consumption rates for four wolf packs during three different study periods (March 1989, March 1990, and November 1990) in Gates of the Arctic National Park and Preserve, Alaska. Wolves killed predominantly caribou (165 caribou, seven moose, and five Dall sheep) even when moose and sheep were more abundant. Prey selection varied between study periods. More moose were killed in march 1989, a particularly deep snow year, and more sheep were killed in November 1990 than during other periods. Overall kill rates ranged from 0-8 days/ungulate killed (x̅ = 2.0, SD = 1.6) and did not vary between study periods. Pack size and species killed explained significant variation in the length of time intervals between kills. Although caribou density varied nearly 40-fold between pack territories, it had little influence on predation characteristics except at low densities, when kill rates may have declined. Caribou distribution had marked effects on wolf predation rate.
Coelho, Joseph R.; Hastings, Jon M.; Holliday, Charles W.
2012-01-01
This study evaluated foraging effectiveness of Pacific cicada killers (Sphecius convallis) by comparing observed prey loads to that predicted by an optimality model. Female S. convallis preyed exclusively on the cicada Tibicen parallelus, resulting in a mean loaded flight muscle ratio (FMR) of 0.187 (N = 46). This value lies just above the marginal level, and only seven wasps (15%) were below 0.179. The low standard error (0.002) suggests that S. convallis is the most ideal flying predator so far examined in this respect. Preying on a single species may have allowed stabilizing selection to adjust the morphology of females to a nearly ideal size. That the loaded FMR is slightly above the marginal level may provide a small safety factor for wasps that do not have optimal thorax temperatures or that have to contend with attempted prey theft. Operational FMR was directly related to wasp body mass. Smaller wasps were overloaded in spite of provisioning with smaller cicadas, while larger wasps were underloaded despite provisioning with larger cicadas. Small wasps may have abandoned larger cicadas because of difficulty with carriage. PMID:26467953
Deslauriers, David; Heironimus, Laura B.; Chipps, Steven R.
2016-01-01
Factors affecting feeding and growth of early life stages of the federally endangered pallid sturgeon (Scaphirhynchus albus) are not fully understood, owing to their scarcity in the wild. In this study was we evaluated the performance of a combined foraging-bioenergetics model as a tool for assessing growth of age-0 pallid sturgeon in the Missouri River. In the laboratory, three size classes of sturgeon larvae (18–44 mm; 0.027–0.329 g) were grown for 7 to 14 days under differing temperature (14–24 °C) and prey density (0–9 Chironomidae larvae/d) regimes. After accounting for effects of water temperature and prey density on fish activity, we compared observed final weight, final length, and number of prey consumed to values generated from the foraging-bioenergetics model. When confronted with an independent dataset, the combined model provided reliable estimates (within 13% of observations) of fish growth and prey consumption, underscoring the usefulness of the modeling approach for evaluating growth dynamics of larval fish when empirical data are lacking.
Diet and feeding strategies of mesopelagic fishes in the western Mediterranean
NASA Astrophysics Data System (ADS)
Bernal, Ainhoa; Olivar, M. Pilar; Maynou, Francesc; Fernández de Puelles, M. Luz
2015-06-01
Myctophids, gonostomatids and sternoptychids are the most abundant teleosteans worldwide and constitute an important assemblage of the mesopelagic ecosystem, functioning as vehicles of energy and matter through trophic webs. This study concentrates on the trophic ecology of the most abundant mesopelagic fishes of the western Mediterranean (WM) based on stomach content analysis. The myctophids (in this study: Benthosema glaciale, Ceratoscopelus maderensis, Lobianchia dofleini, Myctophum punctatum, Hygophum benoiti, Hygophum hygomii, Lampanyctus crocodilus, Lampanyctus pusillus and Notoscopelus elongatus) perform extensive diel migrations across the water column, between the surface to as deep as 1000 m, interacting with plankton and micronekton at multiple depths, and generally feeding in the epipelagic layers at night. In contrast, the gonostomatids Cyclothone braueri, Cyclothone pygmaea, and the sternoptychid Argyropelecus hemigymnus remain below epipelagic layers, feeding at different times throughout the day and night. The diet composition, trophic niche breadth and prey selectivity of 11 of these fish species were determined for juvenile and adult individuals from two surveys performed in December 2009 and July 2010 in the western Mediterranean Sea. The number of prey items varied among species, e.g. Myctophum punctatum was the species with the highest feeding intensity, reaching ca. 700 prey items in a stomach, whereas the mean number of prey in Cyclothone braueri was low (usually 1 or 2 prey per stomach). A dietary shift towards larger prey was evident from juveniles to the largest and oldest adult individuals, despite trophic niche breadths did not increase with body length for any of these mesopelagic species. The diets of the small gonostomatids, sternoptychid and early juveniles of myctophids were dominated by non-calanoid copepods, ostracods, and other small zooplankton, whereas medium-sized myctophids, e.g. L. dofleini or H. benoiti, preyed mainly on calanoids. The oldest stages of L. crocodilus and N. elongatus fed mostly on macrozooplankton and micronekton. There was high diet overlap among mesopelagic fish species and strong heterogeneity in diet composition at intraspecific level. Nevertheless, some species showed certain degree of segregation of food resources, determined by the developmental stage or spatial distribution, and positive selection towards particular prey items. The Chesson's electivity index showed that L. dofleini, N. elongatus, L. crocodilus and L. pusillus preyed selectively on euphausiids; B. glaciale was selective on the calanoid genus Pleuromamma, and C. maderensis preferred to feed on larvaceans in autumn. The two congeneric species of Hygophum consumed a high number of food items, but H. hygomii showed positive selection for euphausiids, whilst H. benoiti preferred small corycaeid copepods. Overall, the main trophic difference among mesopelagic fishes in the WM was observed between the small non-migratory species that do not evidence a diel rhythm, feeding during both day- and night-time on small zooplankton, and the largest-sized myctophids, which fed on meso- and macrozooplankton and, more occasionally, on small fishes. Mediterranean midwater fishes can be characterised by the adoption of mixed feeding strategies, with varying degrees of specialisation on different prey types that allow flexibility in a changeable environment.
Hua, Fangyuan; Yong, Ding Li; Janra, Muhammad Nazri; Fitri, Liza M; Prawiradilaga, Dewi; Sieving, Kathryn E
2016-12-01
In birds and mammals, mobbing calls constitute an important form of social information that can attract numerous sympatric species to localized mobbing aggregations. While such a response is thought to reduce the future predation risk for responding species, there is surprisingly little empirical evidence to support this hypothesis. One way to test the link between predation risk reduction and mobbing attraction involves testing the relationship between species' attraction to mobbing calls and the functional traits that define their vulnerability to predation risk. Two important traits known to influence prey vulnerability include relative prey-to-predator body size ratio and the overlap in space use between predator and prey; in combination, these measures strongly influence prey accessibility, and therefore their vulnerability, to predators. Here, we combine community surveys with behavioral experiments of a diverse bird assemblage in the lowland rainforest of Sumatra to test whether the functional traits of body mass (representing body size) and foraging height (representing space use) can predict species' attraction to heterospecific mobbing calls. At four forest sites along a gradient of forest degradation, we characterized the resident bird communities using point count and mist-netting surveys, and determined the species groups attracted to standardized playbacks of mobbing calls produced by five resident bird species of roughly similar body size and foraging height. We found that (1) a large, diverse subcommunity of bird species was attracted to the mobbing calls and (2) responding species (especially the most vigorous respondents) tended to be (a) small (b) mid-storey foragers (c) with similar trait values as the species producing the mobbing calls. Our findings from the relatively lesser known bird assemblages of tropical Asia add to the growing evidence for the ubiquity of heterospecific information networks in animal communities, and provide empirical support for the long-standing hypothesis that predation risk reduction is a major benefit of mobbing information networks.
van der Meeren, Terje; Rønnestad, Ivar; Mangor-Jensen, Anders; Galloway, Trina F.; Kjørsvik, Elin; Hamre, Kristin
2015-01-01
The current commercial production protocols for Atlantic cod depend on enriched rotifers and Artemia during first-feeding, but development and growth remain inferior to fish fed natural zooplankton. Two experiments were conducted in order to identify the underlying factors for this phenomenon. In the first experiment (Exp-1), groups of cod larvae were fed either (a) natural zooplankton, mainly copepods, increasing the size of prey as the larvae grew or (b) enriched rotifers followed by Artemia (the intensive group). In the second experiment (Exp-2), two groups of larvae were fed as in Exp-1, while a third group was fed copepod nauplii (approximately the size of rotifers) throughout the larval stage. In both experiments, growth was not significantly different between the groups during the first three weeks after hatching, but from the last part of the rotifer feeding period and onwards, the growth of the larvae fed copepods was higher than that of the intensive group. In Exp-2, the growth was similar between the two copepod groups during the expeimental period, indicating that nutrient composition, not prey size caused the better growth on copepods. Analyses of the prey showed that total fatty acid composition and the ratio of phospholipids to total lipids was slightly different in the prey organisms, and that protein, taurine, astaxanthin and zinc were lower on a dry weight basis in rotifers than in copepods. Other measured nutrients as DHA, all analysed vitamins, manganese, copper and selenium were similar or higher in the rotifers. When compared to the present knowledge on nutrient requirements, protein and taurine appeared to be the most likely limiting nutrients for growth in cod larvae fed rotifers and Artemia. Larvae fed rotifers/Artemia had a higher whole body lipid content than larvae fed copepods at the end of the experiment (stage 5) after the fish had been fed the same formulated diet for approximately 2 weeks. PMID:26038712
Pyenson, Nicholas D.; Lindberg, David R.
2011-01-01
Background Gray whales (Eschrichtius robustus) undertake long migrations, from Baja California to Alaska, to feed on seasonally productive benthos of the Bering and Chukchi seas. The invertebrates that form their primary prey are restricted to shallow water environments, but global sea-level changes during the Pleistocene eliminated or reduced this critical habitat multiple times. Because the fossil record of gray whales is coincident with the onset of Northern Hemisphere glaciation, gray whales survived these massive changes to their feeding habitat, but it is unclear how. Methodology/Principal Findings We reconstructed gray whale carrying capacity fluctuations during the past 120,000 years by quantifying gray whale feeding habitat availability using bathymetric data for the North Pacific Ocean, constrained by their maximum diving depth. We calculated carrying capacity based on modern estimates of metabolic demand, prey availability, and feeding duration; we also constrained our estimates to reflect current population size and account for glaciated and non-glaciated areas in the North Pacific. Our results show that key feeding areas eliminated by sea-level lowstands were not replaced by commensurate areas. Our reconstructions show that such reductions affected carrying capacity, and harmonic means of these fluctuations do not differ dramatically from genetic estimates of carrying capacity. Conclusions/Significance Assuming current carrying capacity estimates, Pleistocene glacial maxima may have created multiple, weak genetic bottlenecks, although the current temporal resolution of genetic datasets does not test for such signals. Our results do not, however, falsify molecular estimates of pre-whaling population size because those abundances would have been sufficient to survive the loss of major benthic feeding areas (i.e., the majority of the Bering Shelf) during glacial maxima. We propose that gray whales survived the disappearance of their primary feeding ground by employing generalist filter-feeding modes, similar to the resident gray whales found between northern Washington State and Vancouver Island. PMID:21754984
Loggerhead Turtles (Caretta caretta) Use Vision to Forage on Gelatinous Prey in Mid-Water
Narazaki, Tomoko; Sato, Katsufumi; Abernathy, Kyler J.; Marshall, Greg J.; Miyazaki, Nobuyuki
2013-01-01
Identifying characteristics of foraging activity is fundamental to understanding an animals’ lifestyle and foraging ecology. Despite its importance, monitoring the foraging activities of marine animals is difficult because direct observation is rarely possible. In this study, we use an animal-borne imaging system and three-dimensional data logger simultaneously to observe the foraging behaviour of large juvenile and adult sized loggerhead turtles (Caretta caretta) in their natural environment. Video recordings showed that the turtles foraged on gelatinous prey while swimming in mid-water (i.e., defined as epipelagic water column deeper than 1 m in this study). By linking video and 3D data, we found that mid-water foraging events share the common feature of a marked deceleration phase associated with the capture and handling of the sluggish prey. Analysis of high-resolution 3D movements during mid-water foraging events, including presumptive events extracted from 3D data using deceleration in swim speed as a proxy for foraging (detection rate = 0.67), showed that turtles swam straight toward prey in 171 events (i.e., turning point absent) but made a single turn toward the prey an average of 5.7±6.0 m before reaching the prey in 229 events (i.e., turning point present). Foraging events with a turning point tended to occur during the daytime, suggesting that turtles primarily used visual cues to locate prey. In addition, an incident of a turtle encountering a plastic bag while swimming in mid-water was recorded. The fact that the turtle’s movements while approaching the plastic bag were analogous to those of a true foraging event, having a turning point and deceleration phase, also support the use of vision in mid-water foraging. Our study shows that integrated video and high-resolution 3D data analysis provides unique opportunities to understand foraging behaviours in the context of the sensory ecology involved in prey location. PMID:23776603
Weiss, Katharina; Strohm, Erhard; Kaltenpoth, Martin; Herzner, Gudrun
2015-12-21
Hymenoptera that mass-provision their offspring have evolved elaborate antimicrobial strategies to ward off fungal infestation of the highly nutritive larval food. Females of the Afro-European Philanthus triangulum and the South American Trachypus elongatus (Crabronidae, Philanthinae) embalm their prey, paralyzed bees, with a secretion from a complex postpharyngeal gland (PPG). This coating consists of mainly unsaturated hydrocarbons and reduces water accumulation on the prey's surface, thus rendering it unfavorable for fungal growth. Here we (1) investigated whether a North American Philanthus species also employs prey embalming and (2) assessed the occurrence and morphology of a PPG among females of the subfamily Philanthinae in order to elucidate the evolution of prey embalming as an antimicrobial strategy. We provide clear evidence that females of the North American Philanthus gibbosus possess large PPGs and embalm their prey. The comparative analyses of 26 species from six genera of the Philanthinae, using histological methods and 3D-reconstructions, revealed pronounced differences in gland morphology within the subfamily. A formal statistical analysis based on defined characters of the glands confirmed that while all members of the derived tribe Philanthini have large and complex PPGs, species of the two more basal tribes, Cercerini and Aphilanthopsini, possess simple and comparatively small glands. According to an ancestral state reconstruction, the complex PPG most likely evolved in the last common ancestor of the Philanthini, thus representing an autapomorphy of this tribe. Prey embalming, as described for P. triangulum and T. elongatus, and now also for P. gibbosus, most probably requires a complex PPG. Hence, the morphology and size of the PPG may allow for inferences about the origin and distribution of the prey embalming behavior within the Philanthinae. Based on our results, we suggest that prey embalming has evolved as an antimicrobial strategy in and is restricted to the tribe Philanthini, which seems to face exceptional threats with regard to fungal infestations of their larval provisions.
Trivedi, Chintan A.; Bollmann, Johann H.
2013-01-01
Prey capture behavior critically depends on rapid processing of sensory input in order to track, approach, and catch the target. When using vision, the nervous system faces the problem of extracting relevant information from a continuous stream of input in order to detect and categorize visible objects as potential prey and to select appropriate motor patterns for approach. For prey capture, many vertebrates exhibit intermittent locomotion, in which discrete motor patterns are chained into a sequence, interrupted by short periods of rest. Here, using high-speed recordings of full-length prey capture sequences performed by freely swimming zebrafish larvae in the presence of a single paramecium, we provide a detailed kinematic analysis of first and subsequent swim bouts during prey capture. Using Fourier analysis, we show that individual swim bouts represent an elementary motor pattern. Changes in orientation are directed toward the target on a graded scale and are implemented by an asymmetric tail bend component superimposed on this basic motor pattern. To further investigate the role of visual feedback on the efficiency and speed of this complex behavior, we developed a closed-loop virtual reality setup in which minimally restrained larvae recapitulated interconnected swim patterns closely resembling those observed during prey capture in freely moving fish. Systematic variation of stimulus properties showed that prey capture is initiated within a narrow range of stimulus size and velocity. Furthermore, variations in the delay and location of swim triggered visual feedback showed that the reaction time of secondary and later swims is shorter for stimuli that appear within a narrow spatio-temporal window following a swim. This suggests that the larva may generate an expectation of stimulus position, which enables accelerated motor sequencing if the expectation is met by appropriate visual feedback. PMID:23675322
Marelli, Crystal A.; Simons, Erin L. R.
2014-01-01
The Red-tailed Hawk and Great Horned Owl are two species of raptor that are similar in body size, diet, and habitat. Both species use their hindlimbs during hunting, but differ in foot morphology, how they approach and immobilize prey, and the average size of prey captured. They also differ in primary flight style: the Red-tailed Hawk uses static soaring and the Great Horned Owl uses flap-gliding. The objectives of this study were to characterize the microstructure and cross-sectional shape of limb bones of these species and examine the relationship with flight and hunting behaviors. The mid-shaft of six limb bones from six individuals of each species was sampled. The degree of bone laminarity (proportion of circular primary vascular canals) and cross-sectional geometric parameters were calculated. In both species, the humerus and femur exhibited features that suggest high resistance to torsional loading, whereas the tibiotarsus and phalanges had a shape more likely to resist compression and bending in a specific plane. The femur of the Red-tailed Hawk exhibited higher laminarity and larger polar moment of area than that of the Great Horned Owl. The tibiotarsus was more elliptical than that of the Great Horned Owl. The hawk approaches prey from a more horizontal axis, takes prey of greater mass, and is more likely to pursue prey on the ground, which could potentially be causing more torsional loads on the femur and bending loads on the tibiotarsus. In addition, differences in polar moment of area of the phalanges between the species could relate to differences in foot morphology or digit length. The humerus and ulna of the flap-gliding Great Horned Owl are more elliptical than the static soaring Red-tailed Hawk, a shape that may better resist the bending loads associated with a larger amount of flapping. PMID:25162595
Marelli, Crystal A; Simons, Erin L R
2014-01-01
The Red-tailed Hawk and Great Horned Owl are two species of raptor that are similar in body size, diet, and habitat. Both species use their hindlimbs during hunting, but differ in foot morphology, how they approach and immobilize prey, and the average size of prey captured. They also differ in primary flight style: the Red-tailed Hawk uses static soaring and the Great Horned Owl uses flap-gliding. The objectives of this study were to characterize the microstructure and cross-sectional shape of limb bones of these species and examine the relationship with flight and hunting behaviors. The mid-shaft of six limb bones from six individuals of each species was sampled. The degree of bone laminarity (proportion of circular primary vascular canals) and cross-sectional geometric parameters were calculated. In both species, the humerus and femur exhibited features that suggest high resistance to torsional loading, whereas the tibiotarsus and phalanges had a shape more likely to resist compression and bending in a specific plane. The femur of the Red-tailed Hawk exhibited higher laminarity and larger polar moment of area than that of the Great Horned Owl. The tibiotarsus was more elliptical than that of the Great Horned Owl. The hawk approaches prey from a more horizontal axis, takes prey of greater mass, and is more likely to pursue prey on the ground, which could potentially be causing more torsional loads on the femur and bending loads on the tibiotarsus. In addition, differences in polar moment of area of the phalanges between the species could relate to differences in foot morphology or digit length. The humerus and ulna of the flap-gliding Great Horned Owl are more elliptical than the static soaring Red-tailed Hawk, a shape that may better resist the bending loads associated with a larger amount of flapping.
NASA Astrophysics Data System (ADS)
Farley, Edward V.; Heintz, Ron A.; Andrews, Alex G.; Hurst, Thomas P.
2016-12-01
The revised Oscillating Control Hypothesis for the Bering Sea suggests that recruitment of groundfish is linked to climatic processes affecting seasonal sea ice that, in turn, drives the quality and quantity of prey available to young fish for growth and energy storage during their critical life history stages. We test this notion for age-0 (juvenile) Pacific cod (Gadus macrocephalus) by examining the variability in size, diet, and energetic condition during warm (2003-2005), average (2006), and cool (2007-2011) climate states in the eastern Bering Sea. Juvenile cod stomachs contained high proportions of age-0 walleye pollock (by wet weight) during years with warm sea temperatures with a shift to euphausiids and large copepods during years with cool sea temperatures. Juvenile cod were largest during years with warm sea temperatures and smallest during years with cool sea temperatures. However, energetic status (condition) of juvenile cod was highest during years with cool sea temperatures. This result is likely linked to the shift to high quality, lipid-rich prey found in greater abundance on the shelf and in the stomach contents of juvenile cod during cool years. Our examination of juvenile cod size, diet, and energetic status provided results that are similar to those from studies on juvenile pollock, suggesting that the common mechanisms regulating gadid recruitment on the eastern Bering Sea shelf are climate state, prey quality and quantity, and caloric density of gadids prior to winter.
Crowley, Philip H; Hopper, Kevin R; Krupa, James J
2013-12-01
Carnivorous plants and spiders, along with their prey, are main players in an insect-feeding guild found on acidic, poorly drained soils in disturbed habitat. Darwin's notion that these plants must actively attract the insects they capture raises the possibility that spiders could benefit from proximity to prey hotspots created by the plants. Alternatively, carnivorous plants and spiders may deplete prey locally or (through insect redistribution) more widely, reducing each other's gain rates from predation. Here, we formulate and analyze a model of this guild, parameterized for carnivorous sundews and lycosid spiders, under assumptions of random movement by insects and optimal foraging by predators. Optimal foraging here involves gain maximization via trap investment (optimal web sizes and sundew trichome densities) and an ideal free distribution of spiders between areas with and without sundews. We find no facilitation: spiders and sundews engage in intense exploitation competition. Insect attraction by plants modestly increases sundew gain rates but slightly decreases spider gain rates. In the absence of population size structure, optimal spider redistribution between areas with and without sundews yields web sizes that are identical for all spiders, regardless of proximity to sundews. Web-building spiders have higher gain rates than wandering spiders in this system at high insect densities, but wandering spiders have the advantage at low insect densities. Results are complex, indicating that predictions to be tested empirically must be based on careful quantitative assessment.
De Kerckhove, Derrick; McLaughlin, Robert L; Noakes, David L G
2006-03-01
1. Behavioural diversification is thought to be an important initial step in the origin of resource polymorphisms. We developed a model for young brook charr (Salvelinus fontinalis Mitchill) to examine four mechanisms that could generate a U-shaped relationship between growth rate (fitness) and the proportion of time spent moving that would favour alternative foraging tactics in the absence of obvious differences in body size and shape. 2. Recently emerged brook charr of similar size and shape inhabit still-water pools along the sides of streams. Some individuals tend to sit and wait for crustacean prey at the pool substrate near the bank, while others tend to search actively for insect prey at the pool surface away from the bank. 3. The ecological mechanisms modelled were (i) the relationship between the rate of prey capture and the proportion of time spent moving is curvilinear, such that net rate of energy gain is maximized at two different levels of activity; (ii) switching between foraging locations and, hence, tactics involves lost opportunity and travel costs; (iii) switching between prey types and, hence, tactics involves a learning cost; and (iv) foraging success is status-dependent with individuals switching between tactics having a lower status than those specializing at a tactic. 4. Singly, no mechanism predicted the U-shaped relationship between growth rate and the proportion of time spent moving. Together, a U-shaped relationship was obtained, indicating that the behavioural diversification and diversifying selection observed in the field may be a consequence of multiple, subtle mechanisms.
Attard, Marie R. G.; Parr, William C. H.; Wilson, Laura A. B.; Archer, Michael; Hand, Suzanne J.; Rogers, Tracey L.; Wroe, Stephen
2014-01-01
Thylacinidae is an extinct family of Australian and New Guinean marsupial carnivores, comprizing 12 known species, the oldest of which are late Oligocene (∼24 Ma) in age. Except for the recently extinct thylacine (Thylacinus cynocephalus), most are known from fragmentary craniodental material only, limiting the scope of biomechanical and ecological studies. However, a particularly well-preserved skull of the fossil species Nimbacinus dicksoni, has been recovered from middle Miocene (∼16-11.6 Ma) deposits in the Riversleigh World Heritage Area, northwestern Queensland. Here, we ask whether N. dicksoni was more similar to its recently extinct relative or to several large living marsupials in a key aspect of feeding ecology, i.e., was N. dicksoni a relatively small or large prey specialist. To address this question we have digitally reconstructed its skull and applied three-dimensional Finite Element Analysis to compare its mechanical performance with that of three extant marsupial carnivores and T. cynocephalus. Under loadings adjusted for differences in size that simulated forces generated by both jaw closing musculature and struggling prey, we found that stress distributions and magnitudes in the skull of N. dicksoni were more similar to those of the living spotted-tailed quoll (Dasyurus maculatus) than to its recently extinct relative. Considering the Finite Element Analysis results and dental morphology, we predict that N. dicksoni likely occupied a broadly similar ecological niche to that of D. maculatus, and was likely capable of hunting vertebrate prey that may have exceeded its own body mass. PMID:24718109
Does corticosterone mediate predator-induced responses of larval Hylarana indica?
Joshi, A M; Wadekar, N V; Gramapurohit, N P
2017-09-15
Prey-predator interactions have been studied extensively in terms of morphological and behavioural responses of prey to predation risk using diverse model systems. However, the underlying physiological changes associated with morphological, behavioural or life historical responses have been rarely investigated. Herein, we studied the effect of chronic predation risk on larval growth and metamorphosis of Hylarana indica and the underlying physiological changes in prey tadpoles. In the first experiment, tadpoles were exposed to a caged predator from Gosner stage 25-42 to record growth and metamorphosis. Further, whole body corticosterone (CORT) was measured to determine the physiological changes underlying morphological and life historical responses of these prey tadpoles. Surprisingly, tadpoles experiencing continuous predation risk grew and developed faster and metamorphosed at a larger size. Interestingly, these tadpoles had significantly lower CORT levels. In the second experiment, tadpoles were exposed to predation risk (PR) or PR+CORT from stage 25-42 to determine the role of CORT in mediating predator-induced responses of H. indica. Tadpoles facing continuous predation risk grew and developed faster and metamorphosed at a larger size reinforcing the results of the first experiment. However, when CORT was administered along with predation risk, tadpoles grew and developed slowly leading to delayed metamorphosis. Interestingly, growth and metamorphic traits of tadpoles exposed to PR+CORT were comparable to those of the control group indicating that exogenous CORT nullified the positive effect of predation risk. Apparently, CORT mediates predator-induced morphological responses of H. indica tadpoles by regulating their physiology. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Alegre, Ana; Bertrand, Arnaud; Espino, Marco; Espinoza, Pepe; Dioses, Teobaldo; Ñiquen, Miguel; Navarro, Iván; Simier, Monique; Ménard, Frédéric
2015-09-01
Jack mackerel Trachurus murphyi (JM) and chub mackerel Scomber japonicus (CM) are medium size pelagic fish predators and highly exploited resources. Here we investigated the spatiotemporal patterns of JM and CM diet composition using a large dataset of stomach samples collected from 1973 to 2013 along the Peruvian coast. In total 47,535 stomachs (18,377 CM and 29,158 JM) were analysed, of which 23,570 (12,476 CM and 11,094 JM) were non-empty. Results show that both species are opportunistic and present a trophic overlap. However, despite their smaller maximal size, CM consumed more fish than JM. Both diets presented high spatiotemporal variability. Spatially, the shelf break appears as a strong biogeographical barrier affecting prey species distribution and thus CM and JM diet. Opportunistic foragers are often considered as actual indicators of ecosystem changes; we show here that diet composition of CM and JM reveal ecosystem changes but is not always a good indicator of changes in prey biomass as prey accessibility and energy content can also play an important role. In addition we found that El Niño events have a surprisingly weak effect on stomach fullness and diet. Finally our results show that the classic paradigm of positive correlation between diversity and temperature is unlikely to occur in the Humboldt Current system where productivity seems to be the main driver. We show how energy content of forage species and the strength of the oxygen minimum zone most likely play an important role prey diversity and accessibility, and thus in fish foraging behaviour.
Influences on Bythotrephes longimanus life-history characteristics in the Great Lakes
Pothoven, Steven A.; Vanderploeg, Henry A.; Warner, David M.; Schaeffer, Jeffrey S.; Ludsin, Stuart A.; Claramunt, Randall M.; Nalepa, Thomas F.
2012-01-01
We compared Bythotrephes population demographics and dynamics to predator (planktivorous fish) and prey (small-bodied crustacean zooplankton) densities at a site sampled through the growing season in Lakes Michigan, Huron, and Erie. Although seasonal average densities of Bythotrephes were similar across lakes (222/m2 Erie, 247/m2 Huron, 162/m2 Michigan), temporal trends in abundance differed among lakes. In central Lake Erie where Bythotrephes' prey assemblage was dominated by small individuals (60%), where planktivorous fish densities were high (14,317/ha), and where a shallow water column limited availability of a deepwater refuge, the Bythotrephes population was characterized by a small mean body size, large broods with small neonates, allocation of length increases mainly to the spine rather than to the body, and a late summer population decline. By contrast, in Lake Michigan where Bythotrephes' prey assemblage was dominated by large individuals (72%) and planktivorous fish densities were lower (5052/ha), the Bythotrephes population was characterized by a large mean body size (i.e., 37–55% higher than in Erie), small broods with large neonates, nearly all growth in body length occurring between instars 1 and 2, and population persistence into fall. Life-history characteristics in Lake Huron tended to be intermediate to those found in Lakes Michigan and Erie, reflecting lower overall prey and predator densities (1224/ha) relative to the other lakes. Because plasticity in life history can affect interactions with other species, our findings point to the need to understand life-history variation among Great Lakes populations to improve our ability to model the dynamics of these ecosystems.
Biosonar, diving and movements of two tagged white-beaked dolphin in Icelandic waters
NASA Astrophysics Data System (ADS)
Rasmussen, M. H.; Akamatsu, T.; Teilmann, J.; Vikingsson, G.; Miller, L. A.
2013-04-01
For the first time bio-logging tags were attached to free-ranging white-beaked dolphins, Lagenorhynchus albirostris. A satellite tag was attached to one animal while an acoustic A-tag, a time-depth recorder and a VHF transmitter complex was attached to a second dolphin with a suction cup. The satellite tag transmitted for 201 day, during which time the dolphin stayed in the coastal waters of western Iceland. The acoustic tag complex was on the second animal for 13 h and 40 min and provided the first insight into the echolocation behaviour of a free-ranging white-beaked dolphin. The tag registered 162 dives. The dolphin dove to a maximum depth of 45 m, which is about the depth of the bay in which the dolphin was swimming. Two basic types of dives were identified; U-shaped and V-shaped dives. The dolphin used more time in U-shaped dives, more clicks and sonar signals with shorter click intervals compared to those it used in V-shaped dives. The dolphin was in acoustic contact with other dolphins about five hours after it was released and stayed with these for the rest of the tagging time. Possible foraging attempts were found based on the reduction of click intervals from about 100 ms to 2-3 ms, which suggests a prey capture attempt. We found 19 punitive prey capture attempts and of these 53% occurred at the maximum dive depth. This suggests that more than half of the possible prey capture events occurred at or near the sea bed.
Apfelbach, Raimund; Parsons, Michael H.; Soini, Helena A.; Novotny, Milos V.
2015-01-01
When exposed to the odor of a sympatric predator, prey animals typically display escape or defensive responses. These phenomena have been well-documented, especially in rodents, when exposed to the odor of a cat, ferret, or fox. As a result of these experiments new discussions center on the following questions: (1) is a single volatile compound such as a major or a minor mixture constituent in urine or feces, emitted by the predator sufficient to cause defensive reactions in a potential prey species or (2) is a whole array of odors required to elicit a response and (3) will the relative size or escapability of the prey as compared to the predator influence responsiveness. Most predator-prey studies on this topic have been performed in the laboratory or under semi-natural conditions. Field studies could help to find answers to these questions. Australian mammals are completely naïve toward the introduced placental carnivores. That offers ideal opportunities to analyze in the field the responses of potential prey species to unknown predator odors. During the last decades researchers have accumulated an enormous amount of data exploring the effects of eutherian predator odors on native marsupial mammals. In this review, we will give a survey about the development of olfactory research, chemical signals and their influence on the behavior and—in some cases—physiology of prey species. In addition, we report on the effects of predator odor experiments performed under natural conditions in Australia. When studying all these literature we learned that data gained under controlled laboratory conditions elucidate the role of individual odors on brain structures and ultimately on a comparatively narrow range behaviors. In contrast to single odors odor arrays mimic much more the situation prey animals are confronted to in nature. Therefore, a broad range of methodology—from chemistry to ecology including anatomy, physiology, and behavior—is needed to understand all the different (relevant) stimuli that govern and guide the interactions between a predator and its potential prey. PMID:26283903
Apfelbach, Raimund; Parsons, Michael H; Soini, Helena A; Novotny, Milos V
2015-01-01
When exposed to the odor of a sympatric predator, prey animals typically display escape or defensive responses. These phenomena have been well-documented, especially in rodents, when exposed to the odor of a cat, ferret, or fox. As a result of these experiments new discussions center on the following questions: (1) is a single volatile compound such as a major or a minor mixture constituent in urine or feces, emitted by the predator sufficient to cause defensive reactions in a potential prey species or (2) is a whole array of odors required to elicit a response and (3) will the relative size or escapability of the prey as compared to the predator influence responsiveness. Most predator-prey studies on this topic have been performed in the laboratory or under semi-natural conditions. Field studies could help to find answers to these questions. Australian mammals are completely naïve toward the introduced placental carnivores. That offers ideal opportunities to analyze in the field the responses of potential prey species to unknown predator odors. During the last decades researchers have accumulated an enormous amount of data exploring the effects of eutherian predator odors on native marsupial mammals. In this review, we will give a survey about the development of olfactory research, chemical signals and their influence on the behavior and-in some cases-physiology of prey species. In addition, we report on the effects of predator odor experiments performed under natural conditions in Australia. When studying all these literature we learned that data gained under controlled laboratory conditions elucidate the role of individual odors on brain structures and ultimately on a comparatively narrow range behaviors. In contrast to single odors odor arrays mimic much more the situation prey animals are confronted to in nature. Therefore, a broad range of methodology-from chemistry to ecology including anatomy, physiology, and behavior-is needed to understand all the different (relevant) stimuli that govern and guide the interactions between a predator and its potential prey.
Protection of large predators in a marine reserve alters size-dependent prey mortality
Gaines, Steven D.; Hamilton, Scott L.; Warner, Robert R.
2017-01-01
Where predator–prey interactions are size-dependent, reductions in predator size owing to fishing has the potential to disrupt the ecological role of top predators in marine ecosystems. In southern California kelp forests, we investigated the size-dependence of the interaction between herbivorous sea urchins and one of their predators, California sheephead (Semicossyphus pulcher). Empirical tests examined how differences in predator size structure between reserve and fished areas affected size-specific urchin mortality. Sites inside marine reserves had greater sheephead size and biomass, while empirical feeding trials indicated that larger sheephead were required to successfully consume urchins of increasing test diameter. Evaluations of the selectivity of sheephead for two urchin species indicated that shorter-spined purple urchins were attacked more frequently and successfully than longer-spined red urchins of the same size class, particularly at the largest test diameters. As a result of these size-specific interactions and the higher biomass of large sheephead inside reserves, urchin mortality rates were three times higher inside the reserve for both species. In addition, urchin mortality rates decreased with urchin size, and very few large urchins were successfully consumed in fished areas. The truncation of sheephead size structure that commonly occurs owing to fishing will probably result in reductions in urchin mortality, which may reduce the resilience of kelp beds to urchin barren formation. By contrast, the recovery of predator size structure in marine reserves may restore this resilience, but may be delayed until fish grow to sizes capable of consuming larger urchins. PMID:28123086
Viola, M N Paso; Riccialdelli, L; Jaureguizar, A; Panarello, H O; Cappozzo, H L
2018-05-01
The aim of this study was to analyze the isotopic composition in muscle of striped weakfish Cynoscion guatucupa from Southwest Atlantic Ocean in order to evaluate a possible variation in δ13C and δ15N in response to dietary shifts that occur as animals grow. We also explored for isotopic evidence of differences between sample locations. The results showed an agreement between isotope analysis and previous conventional studies. Differences in the isotope composition between sampling location were not observed. A positive relation exists between isotope values and total body length of the animals. The Cluster analysis defined three groups of size classes, validated by the MDS. Differences in the relative consumption of prey species in each size class were also observed performing isotope mixing models (SIAR). Variation in δ15N among size classes would be associated with the consumption of a different type of prey as animals grow. Small striped weakfish feed on small crustaceans and progressively increase their consumption of fish (anchovy, Engraulis anchoita), increasing by this way their isotope values. On the other hand, differences in δ13C values seemed to be related to age-class specific spatial distribution patterns. Therefore, large and small striped weakfish remain specialized but feeding on different prey at different trophic levels. These results contribute to the study of the diet of striped weakfish, improve the isotopic ecology models and highlight on the importance of accounting for variation in the isotopic composition in response to dietary shifts with the size of one of the most important fishery resources in the region.
An individual-based model of the krill Euphausia pacifica in the California Current
NASA Astrophysics Data System (ADS)
Dorman, Jeffrey G.; Sydeman, William J.; Bograd, Steven J.; Powell, Thomas M.
2015-11-01
Euphausia pacifica is an abundant and important prey resource for numerous predators of the California Current and elsewhere in the North Pacific. We developed an individual-based model (IBM) for E. pacifica to study its bioenergetics (growth, stage development, reproduction, and mortality) under constant/ideal conditions as well as under varying ocean conditions and food resources. To model E. pacifica under varying conditions, we coupled the IBM to an oceanographic-ecosystem model over the period 2000-2008 (9 years). Model results under constant/ideal food conditions compare favorably with experimental studies conducted under food unlimited conditions. Under more realistic variable oceanographic conditions, mean growth rates over the continental shelf were positive only when individuals migrated diurnally to the depth of maximum phytoplankton layer during nighttime feeding. Our model only used phytoplankton as prey and coastal growth rates were lower than expected (0.01 mm d-1), suggesting that a diverse prey base (zooplankton, protists, marine snow) may be required to facilitate growth and survival of modeled E. pacifica in the coastal environment. This coupled IBM-ROMS modeling framework and its parameters provides a tool for understanding the biology and ecology of E. pacifica and could be developed to further the understanding of climatic effects on this key prey species and enhance an ecosystem approach to fisheries and wildlife management in this region.
Feeding on prey increases photosynthetic efficiency in the carnivorous sundew Drosera capensis
Pavlovič, Andrej; Krausko, Miroslav; Libiaková, Michaela; Adamec, Lubomír
2014-01-01
Backround and Aims It has been suggested that the rate of net photosynthesis (AN) of carnivorous plants increases in response to prey capture and nutrient uptake; however, data confirming the benefit from carnivory in terms of increased AN are scarce and unclear. The principal aim of our study was to investigate the photosynthetic benefit from prey capture in the carnivorous sundew Drosera capensis. Methods Prey attraction experiments were performed, with measurements and visualization of enzyme activities, elemental analysis and pigment quantification together with simultaneous measurements of gas exchange and chlorophyll a fluorescence in D. capensis in response to feeding with fruit flies (Drosophila melanogaster). Key Results Red coloration of tentacles did not act as a signal to attract fruit flies onto the traps. Phosphatase, phophodiesterase and protease activities were induced 24 h after prey capture. These activities are consistent with the depletion of phosphorus and nitrogen from digested prey and a significant increase in their content in leaf tissue after 10 weeks. Mechanical stimulation of tentacle glands alone was not sufficient to induce proteolytic activity. Activities of β-D-glucosidases and N-acetyl-β-D-glucosaminidases in the tentacle mucilage were not detected. The uptake of phosphorus from prey was more efficient than that of nitrogen and caused the foliar N:P ratio to decrease; the contents of other elements (K, Ca, Mg) decreased slightly in fed plants. Increased foliar N and P contents resulted in a significant increase in the aboveground plant biomass, the number of leaves and chlorophyll content as well as AN, maximum quantum yield (Fv/Fm) and effective photochemical quantum yield of photosystem II (ΦPSII). Conclusions According to the stoichiometric relationships among different nutrients, the growth of unfed D. capensis plants was P-limited. This P-limitation was markedly alleviated by feeding on fruit flies and resulted in improved plant nutrient status and photosynthetic performance. This study supports the original cost/benefit model proposed by T. Givnish almost 30 years ago and underlines the importance of plant carnivory for increasing phosphorus, and thereby photosynthesis. PMID:24201141
Yoo, Yeong Du; Yoon, Eun Young; Jeong, Hae Jin; Lee, Kyung Ha; Hwang, Yeong Jong; Seong, Kyeong Ah; Kim, Jae Seong; Park, Jae Yeon
2013-01-01
Few protistan grazers feed on toxic dinoflagellates, and low grazing pressure on toxic dinoflagellates allows these dinoflagellates to form red-tide patches. We explored the feeding ecology of the newly described heterotrophic dinoflagellate Gyrodinium moestrupii when it fed on toxic strains of Alexandrium minutum, Alexandrium tamarense, and Karenia brevis and on nontoxic strains of A. tamarense, Prorocentrum minimum, and Scrippsiella trochoidea. Specific growth rates of G. moestrupii feeding on each of these dinoflagellates either increased continuously or became saturated with increasing mean prey concentration. The maximum specific growth rate of G. moestrupii feeding on toxic A. minutum (1.60/d) was higher than that when feeding on nontoxic S. trochoidea (1.50/d) or P. minimum (1.07/d). In addition, the maximum growth rate of G. moestrupii feeding on the toxic strain of A. tamarense (0.68/d) was similar to that when feeding on the nontoxic strain of A. tamarense (0.71/d). Furthermore, the maximum ingestion rate of G. moestrupii on A. minutum (2.6 ng C/grazer/d) was comparable to that of S. trochoidea (3.0 ng C/grazer/d). Additionally, the maximum ingestion rate of G. moestrupii on the toxic strain of A. tamarense (2.1 ng C/grazer/d) was higher than that when feeding on the nontoxic strain of A. tamarense (1.3 ng C/grazer/d). Thus, feeding by G. moestrupii is not suppressed by toxic dinoflagellate prey, suggesting that it is an effective protistan grazer of toxic dinoflagellates. © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists.
Life-History and Spatial Determinants of Somatic Growth Dynamics in Komodo Dragon Populations
Laver, Rebecca J.; Purwandana, Deni; Ariefiandy, Achmad; Imansyah, Jeri; Forsyth, David; Ciofi, Claudio; Jessop, Tim S.
2012-01-01
Somatic growth patterns represent a major component of organismal fitness and may vary among sexes and populations due to genetic and environmental processes leading to profound differences in life-history and demography. This study considered the ontogenic, sex-specific and spatial dynamics of somatic growth patterns in ten populations of the world’s largest lizard the Komodo dragon (Varanus komodoensis). The growth of 400 individual Komodo dragons was measured in a capture-mark-recapture study at ten sites on four islands in eastern Indonesia, from 2002 to 2010. Generalized Additive Mixed Models (GAMMs) and information-theoretic methods were used to examine how growth rates varied with size, age and sex, and across and within islands in relation to site-specific prey availability, lizard population density and inbreeding coefficients. Growth trajectories differed significantly with size and between sexes, indicating different energy allocation tactics and overall costs associated with reproduction. This leads to disparities in maximum body sizes and longevity. Spatial variation in growth was strongly supported by a curvilinear density-dependent growth model with highest growth rates occurring at intermediate population densities. Sex-specific trade-offs in growth underpin key differences in Komodo dragon life-history including evidence for high costs of reproduction in females. Further, inverse density-dependent growth may have profound effects on individual and population level processes that influence the demography of this species. PMID:23028983
Holden, Jeremy; Eves, Robert; Tufts, Bruce
2017-01-01
Largemouth (LMB: Micropterus salmoides) and Smallmouth Bass (SMB: Micropterus dolomieu) are important species in the recreational fisheries of the Laurentian Great Lakes. The invasion of the Round Goby (Neogobius melanostomus) into these lakes has changed several facets of black bass biology, but there is still much to learn about the relationship between these species. Previous dietary analyses have shown Round Goby to be important prey for bass, but have been limited by low visual identification rates of dissected stomach items. Within the present study, DNA barcoding and stable isotope analysis improve prey identification and provide a more quantitative dietary analysis of adult black bass in Lake Ontario, comparing the importance of Round Goby as prey between these two species. Eighty-four LMB (406mm fork length ±4mm SEM) and two hundred sixty-four SMB (422mm ±2mm) obtained as tournament mortalities had prey identified using DNA-based methods. Round Goby was the most prevalent prey species for both predators. The diet of LMB was three times more diverse than that of SMB, which almost entirely consists of Round Goby. Our results provide further support that recent increases in the size of Lake Ontario bass are a result of Round Goby consumption, and that the effects of this dietary shift on body condition are greater for SMB. Techniques developed in this study include reverse-oriented dual priming oligonucleotides used as blocking primers for predator DNA, and an automated design approach of restriction fragment length polymorphism tests for identifying prey DNA barcodes. PMID:28771612
Kouba, Marek; Bartoš, Luděk; Štastný, Karel
2013-01-01
Fledgling behaviour and movement patterns throughout the post-fledging dependence period (PFDP), especially in relation to changing environmental conditions, have been rarely studied, despite the fact that this period is recognized as of crucial significance in terms of high mortality of juveniles. The PFDP can extend over quite a protracted period, particularly in birds of prey, and a knowledge of the movement patterns of individuals is fundamental for understanding mechanisms underlying survival, habitat use and dispersion. We radiotracked 39 fledglings of the Tengmalm's owl (Aegolius funereus) in two years with different availability of prey: 2010 (n = 29) and 2011 (n = 10) and obtained 1455 daily locations. Fledglings reached independence on average in 45 days after fledging in 2010 (n = 22) and 57 days in 2011 (n = 6). Within years, the most important measures influencing the distance moved from the nest box were age of fledglings and number of surviving siblings present. Individual home range size and duration of PFDP in particular were dependent on maximal number of siblings seen outside the nest box. In the season with low prey availability fledglings were observed at greater distances from the nest box than in the year with higher prey availability (mean distance: 350 m in 2010 and 650 m in 2011) and occupied larger home ranges (mean: 30.3 ha in 2010 and 57.7 ha in 2011). The main factor causing these differences between years was probably the different availability of prey in these two years, affecting breeding success and post-fledging survivorship of the Tengmalm's owls.
Nelson, Erich J H; Holden, Jeremy; Eves, Robert; Tufts, Bruce
2017-01-01
Largemouth (LMB: Micropterus salmoides) and Smallmouth Bass (SMB: Micropterus dolomieu) are important species in the recreational fisheries of the Laurentian Great Lakes. The invasion of the Round Goby (Neogobius melanostomus) into these lakes has changed several facets of black bass biology, but there is still much to learn about the relationship between these species. Previous dietary analyses have shown Round Goby to be important prey for bass, but have been limited by low visual identification rates of dissected stomach items. Within the present study, DNA barcoding and stable isotope analysis improve prey identification and provide a more quantitative dietary analysis of adult black bass in Lake Ontario, comparing the importance of Round Goby as prey between these two species. Eighty-four LMB (406mm fork length ±4mm SEM) and two hundred sixty-four SMB (422mm ±2mm) obtained as tournament mortalities had prey identified using DNA-based methods. Round Goby was the most prevalent prey species for both predators. The diet of LMB was three times more diverse than that of SMB, which almost entirely consists of Round Goby. Our results provide further support that recent increases in the size of Lake Ontario bass are a result of Round Goby consumption, and that the effects of this dietary shift on body condition are greater for SMB. Techniques developed in this study include reverse-oriented dual priming oligonucleotides used as blocking primers for predator DNA, and an automated design approach of restriction fragment length polymorphism tests for identifying prey DNA barcodes.
Davis, Melanie; Ellings, Christopher S.; Woo, Isa; Hodgson, Sayre; Larsen, Kimberly A.; Nakai, Glynnis
2018-01-01
In the context of delta restoration and its impact on salmonid rearing, success is best evaluated based on whether out-migrating juvenile salmon can access and benefit from suitable estuarine habitat. Here, we integrated 3 years of post-restoration monitoring data including habitat availability, invertebrate prey biomass, and juvenile Chinook salmon (Oncorhynchus tshawytscha) physiological condition to determine whether individuals profited from the addition of 364 ha of delta habitat in South Puget Sound, Washington, United States. Productivity in the restored mudflat was comparable to reference sites 3 years after dike removal, surpassing a mean total of 6 million kJ energy from invertebrate prey. This resulted from the development of a complex network of tidal channels and a resurgence in dipteran biomass that was unique to the restoration area. Consequently, a notable shift in invertebrate consumption occurred between 2010 and 2011, whereby individuals switched from eating primarily amphipods to dipteran flies; however, dietary similarity to the surrounding habitat did not change from year to year, suggesting that this shift was a result of a change in the surrounding prey communities. Growth rates did not differ between restored and reference sites, but catch weight was positively correlated with prey biomass, where greater prey productivity appeared to offset potential density-dependent effects. These results demonstrate how the realized function of restoring estuarine habitat is functionally dependent. High prey productivity in areas with greater connectivity may support healthy juvenile salmon that are more likely to reach the critical size class for offshore survival.
Gadomski, D.M.; Parsley, M.J.
2005-01-01
We conducted laboratory trials to test the vulnerability of young white sturgeon, Acipenser transmontanus, to predation when an alternative prey was available. In trials with two species of predators, we observed two feeding patterns. When equal numbers of white sturgeon and goldfish, Carassius auratus, were available, prickly sculpins, Cottus asper, ingested more white sturgeon. Conversely, northern pikeminnow, Ptychocheilus oregonensis, ate more juvenile coho salmon, Oncorhynchus kisutch, than white sturgeon in three out of four sets of trials, but ate more white sturgeon in one set of trials. White sturgeon size and the availability of cover did not affect the proportions of prey species ingested. Our results indicate that predation may be affecting survival of white sturgeon larvae and juveniles in the wild and could be one factor limiting recruitment of young-of-the-year white sturgeon in some locations. ?? Springer 2005.
Williams, Terrie M; Wolfe, Lisa; Davis, Tracy; Kendall, Traci; Richter, Beau; Wang, Yiwei; Bryce, Caleb; Elkaim, Gabriel Hugh; Wilmers, Christopher C
2014-10-03
Pumas (Puma concolor) live in diverse, often rugged, complex habitats. The energy they expend for hunting must account for this complexity but is difficult to measure for this and other large, cryptic carnivores. We developed and deployed a physiological SMART (species movement, acceleration, and radio tracking) collar that used accelerometry to continuously monitor energetics, movements, and behavior of free-ranging pumas. This felid species displayed marked individuality in predatory activities, ranging from low-cost sit-and-wait behaviors to constant movements with energetic costs averaging 2.3 times those predicted for running mammals. Pumas reduce these costs by remaining cryptic and precisely matching maximum pouncing force (overall dynamic body acceleration = 5.3 to 16.1g) to prey size. Such instantaneous energetics help to explain why most felids stalk and pounce, and their analysis represents a powerful approach for accurately forecasting resource demands required for survival by large, mobile predators. Copyright © 2014, American Association for the Advancement of Science.
2018-01-01
Much of life's diversity has arisen through ecological opportunity and adaptive radiations, but the mechanistic underpinning of such diversification is not fully understood. Competition and predation can affect adaptive radiations, but contrasting theoretical and empirical results show that they can both promote and interrupt diversification. A mechanistic understanding of the link between microevolutionary processes and macroevolutionary patterns is thus needed, especially in trophic communities. Here, we use a trait-based eco-evolutionary model to investigate the mechanisms linking competition, predation and adaptive radiations. By combining available micro-evolutionary theory and simulations of adaptive radiations we show that intraspecific competition is crucial for diversification as it induces disruptive selection, in particular in early phases of radiation. The diversification rate is however decreased in later phases owing to interspecific competition as niche availability, and population sizes are decreased. We provide new insight into how predation tends to have a negative effect on prey diversification through decreased population sizes, decreased disruptive selection and through the exclusion of prey from parts of niche space. The seemingly disparate effects of competition and predation on adaptive radiations, listed in the literature, may thus be acting and interacting in the same adaptive radiation at different relative strength as the radiation progresses. PMID:29514970
Whale sharks target dense prey patches of sergestid shrimp off Tanzania
Rohner, Christoph A.; Armstrong, Amelia J.; Pierce, Simon J.; Prebble, Clare E. M.; Cagua, E. Fernando; Cochran, Jesse E. M.; Berumen, Michael L.; Richardson, Anthony J.
2015-01-01
Large planktivores require high-density prey patches to make feeding energetically viable. This is a major challenge for species living in tropical and subtropical seas, such as whale sharks Rhincodon typus. Here, we characterize zooplankton biomass, size structure and taxonomic composition from whale shark feeding events and background samples at Mafia Island, Tanzania. The majority of whale sharks were feeding (73%, 380 of 524 observations), with the most common behaviour being active surface feeding (87%). We used 20 samples collected from immediately adjacent to feeding sharks and an additional 202 background samples for comparison to show that plankton biomass was ∼10 times higher in patches where whale sharks were feeding (25 vs. 2.6 mg m−3). Taxonomic analyses of samples showed that the large sergestid Lucifer hanseni (∼10 mm) dominated while sharks were feeding, accounting for ∼50% of identified items, while copepods (<2 mm) dominated background samples. The size structure was skewed towards larger animals representative of L.hanseni in feeding samples. Thus, whale sharks at Mafia Island target patches of dense, large, zooplankton dominated by sergestids. Large planktivores, such as whale sharks, which generally inhabit warm oligotrophic waters, aggregate in areas where they can feed on dense prey to obtain sufficient energy. PMID:25814777
Wright, Brianna M; Ford, John K B; Ellis, Graeme M; Deecke, Volker B; Shapiro, Ari Daniel; Battaile, Brian C; Trites, Andrew W
2017-01-01
We sought to quantitatively describe the fine-scale foraging behavior of northern resident killer whales ( Orcinus orca ), a population of fish-eating killer whales that feeds almost exclusively on Pacific salmon ( Oncorhynchus spp.). To reconstruct the underwater movements of these specialist predators, we deployed 34 biologging Dtags on 32 individuals and collected high-resolution, three-dimensional accelerometry and acoustic data. We used the resulting dive paths to compare killer whale foraging behavior to the distributions of different salmonid prey species. Understanding the foraging movements of these threatened predators is important from a conservation standpoint, since prey availability has been identified as a limiting factor in their population dynamics and recovery. Three-dimensional dive tracks indicated that foraging ( N = 701) and non-foraging dives ( N = 10,618) were kinematically distinct (Wilks' lambda: λ 16 = 0.321, P < 0.001). While foraging, killer whales dove deeper, remained submerged longer, swam faster, increased their dive path tortuosity, and rolled their bodies to a greater extent than during other activities. Maximum foraging dive depths reflected the deeper vertical distribution of Chinook (compared to other salmonids) and the tendency of Pacific salmon to evade predators by diving steeply. Kinematic characteristics of prey pursuit by resident killer whales also revealed several other escape strategies employed by salmon attempting to avoid predation, including increased swimming speeds and evasive maneuvering. High-resolution dive tracks reconstructed using data collected by multi-sensor accelerometer tags found that movements by resident killer whales relate significantly to the vertical distributions and escape responses of their primary prey, Pacific salmon.
Briggs, Kevin B; Craig, J Kevin; Shivarudrappa, S; Richards, T M
2017-02-01
The macrobenthos and megabenthos responses to long-term, recurring hypoxia on the Louisiana continental shelf were compared at four locations with different historical (2000-2010) episodes of annual exposure to bottom-water hypoxia. Measurements of abundance, biomass, species diversity, and community composition of the two size classes of benthos suggested that the macrobenthic response is driven chiefly by tolerance to hypoxia, whereas the megabenthic response was affected by the ability to migrate and the availability/unavailability of macrobenthos prey at the sediment surface. The site exposed to the historically lowest average bottom-water dissolved oxygen (BWDO) concentration exhibited the lowest species diversity for macrobenthos and the highest species diversity for megabenthos, exemplifying the differential effects of hypoxia on different size classes. The high diversity and smaller average size of the megabenthos at the lowest DO site was due to high abundance of invertebrates and a preponderance of small, less vagile fishes that appeared to remain in the area after larger dominant sciaenids had presumably emigrated. The average size and the depth of habitation in the sediment of macrobenthos prey may have also influenced the abundance and biomass of megabenthos foragers. Published by Elsevier Ltd.
Induced defences in an endangered amphibian in response to an introduced snake predator.
Moore, Robin D; Griffiths, Richard A; O'Brien, Cliona M; Murphy, Adam; Jay, David
2004-09-01
Introduced species have contributed significantly to the extinction of endemic species on islands. They also create new selection pressures on their prey that may result in modified life history strategies. Introduced viperine snakes ( Natrix maura) have been implicated in the decline of the endemic midwife toad of Mallorca ( Alytes muletensis). A comparison of A. muletensis tadpoles in natural pools with and without snakes showed that those populations subject to snake predation possessed longer tails with narrower tail fins but deeper tail muscles. Field and laboratory experiments showed that these changes in tail morphology could be induced by chemical and tactile cues from snakes. Populations of tadpoles that were subject to snake predation also displayed clear bimodal size-frequency distributions, with intermediate-sized tadpoles missing from the pools completely. Tadpoles in pools frequented by snakes developed faster in relation to their body size than those in pools without snakes. Variation in morphology between toad populations may therefore be caused by a combination of size-selective predation and tadpole plasticity. The results of this study indicate that the introduction of alien species can result in selection for induced defences, which may facilitate coexistence between predator and prey under certain conditions.
Eye Size, Fovea, and Foraging Ecology in Accipitriform Raptors.
Potier, Simon; Mitkus, Mindaugas; Bonadonna, Francesco; Duriez, Olivier; Isard, Pierre-François; Dulaurent, Thomas; Mentek, Marielle; Kelber, Almut
2017-01-01
Birds with larger eyes are predicted to have higher spatial resolution because of their larger retinal image. Raptors are well known for their acute vision, mediated by their deep central fovea. Because foraging strategies may demand specific visual adaptations, eye size and fovea may differ between species with different foraging ecology. We tested whether predators (actively hunting mobile prey) and carrion eaters (eating dead prey) from the order Accipitriformes differ in eye size, foveal depth, and retinal thickness using spectral domain optical coherence tomography and comparative phylogenetic methods. We found that (1) all studied predators (except one) had a central and a temporal fovea, but all carrion eaters had only the central fovea; (2) eye size scaled with body mass both in predators and carrion eaters; (3) predators had larger eyes relative to body mass and a thicker retina at the edge of the fovea than carrion eaters, but there was no difference in the depth of the central fovea between the groups. Finally, we found that (4) larger eyes generally had a deeper central fovea. These results suggest that the visual system of raptors within the order Accipitriformes may be highly adapted to the foraging strategy, except for the foveal depth, which seems mostly dependent upon the eye size. © 2017 S. Karger AG, Basel.
Tinker, M.T.; Mangel, M.; Estes, J.A.
2009-01-01
Question: How does the ability to improve foraging skills by learning, and to transfer that learned knowledge, affect the development of intra-population foraging specializations? Features of the model: We use both a state-dependent life-history model implemented by stochastic dynamic programming (SDPM) and an individual-based model (IBM) to capture the dynamic nature of behavioural preferences in feeding. Variables in the SDPM include energy reserves, skill levels, energy and handling time per single prey item, metabolic rate, the rates at which skills are learned and forgotten, the effect of skills on handling time, and the relationship between energy reserves and fitness. Additional variables in the IBM include the probability of successful weaning, the logistic dynamics of the prey species with stochastic recruitment, the intensity of top-down control of prey by predators, the mean and variance in skill levels of new recruits, and the extent to which learned Information can be transmitted via matrilineal social learning. Key range of variables: We explore the effects of approaching the time horizon in the SDPM, changing the extent to which skills can improve with experience, increasing the rates of learning or forgetting of skills, changing whether the learning curve is constant, accelerating (T-shaped) or decelerating ('r'-shaped), changing both mean and maximum possible energy reserves, changing metabolic costs of foraging, and changing the rate of encounter with prey. Conclusions: The model results show that the following factors increase the degree of prey specialization observed in a predator population: (1) Experience handling a prey type can substantially improve foraging skills for that prey. (2) There is limited ability to retain complex learned skills for multiple prey types. (3) The learning curve for acquiring new foraging skills is accelerating, or J-shaped. (4) The metabolic costs of foraging are high relative to available energy reserves. (5) Offspring can learn foraging skills from their mothers (matrilineal social learning). (6) Food abundance is limited, such that average individual energy reserves are low Additionally, the following factors increase the likelihood of alternative specializations co-occurring in a predator population: (1) The predator exerts effective top-down control of prey abundance, resulting in frequency-dependent dynamics. (2) There is stochastic Variation in prey population dynamics, but this Variation is neither too extreme in magnitude nor too 'slow' with respect to the time required for an individual forager to learn new foraging skills. For a given predator population, we deduce that the degree of specialization will be highest for those prey types requiring complex capture or handling skills, while prey species that are both profitable and easy to capture and handle will be included in the diet of all individuals. Frequency-dependent benefits of selecting alternative prey types, combined with the ability of foragers to improve their foraging skills by learning, and transmit learned skills to offspring, can result in behaviourally mediated foraging specialization, and also lead to the co-existence of alternative specializations. The extent of such specialization is predicted to be a variable trait, increasing in locations or years when intra-specific competition is high relative to inter-specific competition. ?? 2009 M. Tim Tinker.
Pythons metabolize prey to fuel the response to feeding.
Starck, J. Matthias; Moser, Patrick; Werner, Roland A.; Linke, Petra
2004-01-01
We investigated the energy source fuelling the post-feeding metabolic upregulation (specific dynamic action, SDA) in pythons (Python regius). Our goal was to distinguish between two alternatives: (i) snakes fuel SDA by metabolizing energy depots from their tissues; or (ii) snakes fuel SDA by metabolizing their prey. To characterize the postprandial response of pythons we used transcutaneous ultrasonography to measure organ-size changes and respirometry to record oxygen consumption. To discriminate unequivocally between the two hypotheses, we enriched mice (= prey) with the stable isotope of carbon (13C). For two weeks after feeding we quantified the CO2 exhaled by pythons and determined its isotopic 13C/12C signature. Ultrasonography and respirometry showed typical postprandial responses in pythons. After feeding, the isotope ratio of the exhaled breath changed rapidly to values that characterized enriched mouse tissue, followed by a very slow change towards less enriched values over a period of two weeks after feeding. We conclude that pythons metabolize their prey to fuel SDA. The slowly declining delta13C values indicate that less enriched tissues (bone, cartilage and collagen) from the mouse become available after several days of digestion. PMID:15255044
Predator-guided sampling reveals biotic structure in the bathypelagic.
Benoit-Bird, Kelly J; Southall, Brandon L; Moline, Mark A
2016-02-24
We targeted a habitat used differentially by deep-diving, air-breathing predators to empirically sample their prey's distributions off southern California. Fine-scale measurements of the spatial variability of potential prey animals from the surface to 1,200 m were obtained using conventional fisheries echosounders aboard a surface ship and uniquely integrated into a deep-diving autonomous vehicle. Significant spatial variability in the size, composition, total biomass, and spatial organization of biota was evident over all spatial scales examined and was consistent with the general distribution patterns of foraging Cuvier's beaked whales (Ziphius cavirostris) observed in separate studies. Striking differences found in prey characteristics between regions at depth, however, did not reflect differences observed in surface layers. These differences in deep pelagic structure horizontally and relative to surface structure, absent clear physical differences, change our long-held views of this habitat as uniform. The revelation that animals deep in the water column are so spatially heterogeneous at scales from 10 m to 50 km critically affects our understanding of the processes driving predator-prey interactions, energy transfer, biogeochemical cycling, and other ecological processes in the deep sea, and the connections between the productive surface mixed layer and the deep-water column. © 2016 The Author(s).
Comparison of cranial form and function in association with diet in natricine snakes.
Hampton, Paul M
2011-12-01
The skull of squamates has many functions, with food acquisition and ingestion being paramount. Snakes vary interspecifically in the frequency, size, and types of prey that are consumed. Natural selection should favor phenotypes that minimize the costs of energy acquisition; therefore, trophic morphology should reflect a snake's primary prey type to enhance some aspect of feeding performance. I measured 19 cranial variables for six natricine species that vary in the frequency with which they consume frogs and fish. Both conventional and phylogenetically corrected analyses indicated that fish-eating snakes have relatively longer upper and lower jaw elements than frog-eating snakes, which tended to have broader skull components. I also compared the ratio of the in-lever to the out-lever lengths of the jaw-closing mechanism [jaw mechanical advantage (MA)] among species. Fish-eating snakes had significantly lower MAs in the jaws than did the frog-eating snakes. This result suggests that piscivores have faster closing jaws and that the jaws of frog-eating snakes have higher closing forces. Cranial morphology and the functional demands of prey capture and ingestion appear to be associated with primary prey type in natricine snakes. Copyright © 2011 Wiley-Liss, Inc.
Daly, Elizabeth A.; Brodeur, Richard D.
2015-01-01
The trophic habits, size and condition of yearling Chinook salmon (Oncorhynchus tshawytscha) caught early in their marine residence were examined during 19 survey years (1981–1985; 1998–2011). Juvenile salmon consumed distinct highly piscivorous diets in cold and warm ocean regimes with major differences between ocean regimes driven by changes in consumption of juvenile rockfishes, followed by several other fish prey, adult euphausiids and decapod larvae. Notable, Chinook salmon consumed 30% more food in the warm versus cold ocean regime in both May and June. Additionally, there were about 30% fewer empty stomachs in the warm ocean regime in May, and 10% fewer in warm June periods. The total prey energy density consumed during the warmer ocean regime was also significantly higher than in cold. Chinook salmon had lower condition factor and were smaller in fork length during the warm ocean regime, and were longer and heavier for their size during the cold ocean regime. The significant increase in foraging during the warm ocean regime occurred concurrently with lower available prey biomass. Adult return rates of juvenile Chinook salmon that entered the ocean during a warm ocean regime were lower. Notably, our long term data set contradicts the long held assertion that juvenile salmon eat less in a warm ocean regime when low growth and survival is observed, and when available prey are reduced. Comparing diet changes between decades under variable ocean conditions may assist us in understanding the effects of projected warming ocean regimes on juvenile Chinook salmon and their survival in the ocean environment. Bioenergetically, the salmon appear to require more food resources during warm ocean regimes. PMID:26675673