Grain refinement control in gas-shielded arc welding of aluminum tubing
NASA Technical Reports Server (NTRS)
Iceland, W. F.; Whiffen, E. L.
1974-01-01
When sections are being welded, operator varies pulse rate of power supply and simultaneously monitors signal on oscilloscope until rate is found which produces maximum arc gas voltage. Remainder of welding is performed with power supply set at this pulse rate, producing desired maximum weld puddle agitation and fine uniform weld of grain structure.
NASA Astrophysics Data System (ADS)
Middlebrooks, John C.
2004-07-01
Interactions among the multiple channels of a cochlear prosthesis limit the number of channels of information that can be transmitted to the brain. This study explored the influence on channel interactions of electrical pulse rates and temporal offsets between channels. Anesthetized guinea pigs were implanted with 2-channel scala-tympani electrode arrays, and spike activity was recorded from the auditory cortex. Channel interactions were quantified as the reduction of the threshold for pulse-train stimulation of the apical channel by sub-threshold stimulation of the basal channel. Pulse rates were 254 or 4069 pulses per second (pps) per channel. Maximum threshold reductions averaged 9.6 dB when channels were stimulated simultaneously. Among nonsimultaneous conditions, threshold reductions at the 254-pps rate were entirely eliminated by a 1966-μs inter-channel offset. When offsets were only 41 to 123 μs, however, maximum threshold shifts averaged 3.1 dB, which was comparable to the dynamic ranges of cortical neurons in this experimental preparation. Threshold reductions at 4069 pps averaged up to 1.3 dB greater than at 254 pps, which raises some concern in regard to high-pulse-rate speech processors. Thresholds for various paired-pulse stimuli, pulse rates, and pulse-train durations were measured to test possible mechanisms of temporal integration.
Augmentative effect of pulsatility on the wall shear stress in tube flow.
Nakata, M; Tatsumi, E; Tsukiya, T; Taenaka, Y; Nishimura, T; Nishinaka, T; Takano, H; Masuzawa, T; Ohba, K
1999-08-01
Wall shear stress (WSS) has been considered to play an important role in the physiological and metabolic functions of the vascular endothelial cells. We investigated the effects of the pulse rate and the maximum flow rate on the WSS to clarify the influence of pulsatility. Water was perfused in a 1/2 inch transparent straight cylinder with a nonpulsatile centrifugal pump and a pulsatile pneumatic ventricular assist device (VAD). In nonpulsatile flow (NF), the flow rate was changed 1 to 6 L/min by 1 L/min increments to obtain standard values of WSS at each flow rate. In pulsatile flow (PF), the pulse rate was controlled at 40, 60, and 80 bpm, and the maximum flow rate was varied from 3.3 to 12.0 L/min while the mean flow rate was kept at 3 L/min. The WSS was estimated from the velocity profile at measuring points using the laser illuminated fluorescence method. In NF, the WSS was 12.0 dyne/cm2 at 3 L/min and 33.0 dyne/cm2 at 6 L/min. In PF, the pulse rate change with the same mean, and the maximum flow rate did not affect WSS. On the other hand, the increase in the maximum flow rate at the constant mean flow rate of 3 L/min augmented the mean WSS from 13.1 to 32.9 dyne/cm2. We concluded that the maximum flow rate exerted a substantial augmentative effect on WSS, and the maximum flow rate was a dominant factor of pulsatility in this effect.
High-power, highly stable KrF laser with a 4-kHz pulse repetition rate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borisov, V M; El'tsov, A V; Khristoforov, O B
2015-08-31
An electric-discharge KrF laser (248 nm) with an average output power of 300 W is developed and studied. A number of new design features are related to the use of a laser chamber based on an Al{sub 2}O{sub 3} ceramic tube. A high power and pulse repetition rate are achieved by using a volume discharge with lateral preionisation by the UV radiation of a creeping discharge in the form of a homogeneous plasma sheet on the surface of a plane sapphire plate. Various generators for pumping the laser are studied. The maximum laser efficiency is 3.1%, the maximum laser energymore » is 160 mJ pulse{sup -1}, and the pulse duration at half maximum is 7.5 ns. In the case of long-term operation at a pulse repetition rate of 4 kHz and an output power of 300 W, high stability of laser output energy (σ ≤ 0.7%) is achieved using an all-solid-state pump system. (lasers)« less
Experimental investigation of high power pulsed 2.8 μm Er3+-doped ZBLAN fiber lasers
NASA Astrophysics Data System (ADS)
Shen, Yanlong; Wang, Yishan; Huang, Ke; Luan, Kunpeng; Chen, Hongwei; Tao, Mengmeng; Yu, Li; Yi, Aiping; Si, Jinhai
2017-05-01
We report on the recent progress on high power pulsed 2.8 μm Er3+-doped ZBLAN fiber laser through techniques of passively and actively Q-switching in our research group. In passively Q-switched operation, a diode-cladding-pumped mid-infrared passively Q-switched Er3+-doped ZBLAN fiber laser with an average output power of watt-level based on a semiconductor saturable absorber mirror (SESAM) was demonstrated. Stable pulse train was produced at a slope efficient of 17.8% with respect to launched pump power. The maximum average power of 1.01 W at a repetition rate of 146.3 kHz was achieved with a corresponding pulse energy of 6.9 μJ. The maximum peak power was calculated to be 21.9 W. In actively Q-switched operation, a diode-pumped actively Q-switched Er3+-doped ZBLAN fiber laser at 2.8 μm with an optical chopper was reported. The maximum laser pulse energy of up to 130 μJ and a pulse width of 127.3 ns at a repetition rate of 10 kHz with an operating wavelength of 2.78 μm was obtained, yielding the maximum peak power of exceeding 1.1 kW.
Molecular dynamics study of lubricant depletion by pulsed laser heating
NASA Astrophysics Data System (ADS)
Seo, Young Woo; Rosenkranz, Andreas; Talke, Frank E.
2018-05-01
In this study, molecular dynamics simulations were performed to numerically investigate the effect of pulsed laser heating on lubricant depletion. The maximum temperature, the lubricant depletion width, the number of evaporated lubricant beads and the number of fragmented lubricant chains were studied as a function of laser peak power, pulse duration and repetition rate. A continuous-wave laser and a square pulse laser were simulated and compared to a Gaussian pulse laser. With increasing repetition rate, pulsed laser heating was found to approach continuous-wave laser heating.
Viterbi equalization for long-distance, high-speed underwater laser communication
NASA Astrophysics Data System (ADS)
Hu, Siqi; Mi, Le; Zhou, Tianhua; Chen, Weibiao
2017-07-01
In long-distance, high-speed underwater laser communication, because of the strong absorption and scattering processes, the laser pulse is stretched with the increase in communication distance and the decrease in water clarity. The maximum communication bandwidth is limited by laser-pulse stretching. Improving the communication rate increases the intersymbol interference (ISI). To reduce the effect of ISI, the Viterbi equalization (VE) algorithm is used to estimate the maximum-likelihood receiving sequence. The Monte Carlo method is used to simulate the stretching of the received laser pulse and the maximum communication rate at a wavelength of 532 nm in Jerlov IB and Jerlov II water channels with communication distances of 80, 100, and 130 m, respectively. The high-data rate communication performance for the VE and hard-decision algorithms is compared. The simulation results show that the VE algorithm can be used to reduce the ISI by selecting the minimum error path. The trade-off between the high-data rate communication performance and minor bit-error rate performance loss makes VE a promising option for applications in long-distance, high-speed underwater laser communication systems.
Chu, Jennifer; Bruyninckx, Frans; Neuhauser, Duncan V
2017-07-01
Favourable pain relief results on evoking autonomous twitches at myofascial trigger points with Electrical Twitch Obtaining Intramuscular Stimulation (ETOIMS). To document autonomic nervous system (ANS) dysfunction in Complex Regional Pain Syndrome (CRPS) from blood pressure (BP) and pulse/heart rate changes with ETOIMS. A patient with persistent pain regularly received serial ETOIMS sessions of 60, 90, 120 or ≥150 min over 24 months. Outcome measures include BP: systolic, diastolic, pulse pressure and pulse/heart rate, pre-session/immediate-post-session summed differences (SDPPP index), and pain reduction. His results were compared with that of two other patients and one normal control. Each individual represented the following maximal elicitable twitch forces (TWF) graded 1-5: maximum TWF2: control subject; maximum TWF3: CRPS patient with suspected ANS dysfunction; and maximum TWF4 and TWF5: two patients with respective slow-fatigue and fast-fatigue twitches who during ETOIMS had autonomous twitching at local and remote myotomes simultaneously from denervation supersensitivity. ETOIMS results between TWFs were compared using one-way analysis of variance test. The patients showed immediate significant pain reduction, BP and pulse/heart rate changes/reduction(s) except for diastolic BP in the TWF5 patient. TWF2 control subject had diastolic BP reduction with ETOIMS but not with rest. Linear regression showed TWF grade to be the most significant variable in pain reduction, more so than the number of treatments, session duration and treatment interval. TWF grade was the most important variable in significantly reducing outcome measures, especially pulse/heart rate. Unlike others, the TWF3 patient had distinctive reductions in SDPPP index. Measuring BP and pulse/heart rate is clinically practical for alerting ANS dysfunction maintained CRPS. SDPPP index (≥26) and pulse/heart rate (≥8) reductions with almost every ETOIMS treatment, plus inability to evoke autonomous twitches due to pain-induced muscle hypertonicity, are pathognomonic of this problem.
Effect of sampling rate and record length on the determination of stability and control derivatives
NASA Technical Reports Server (NTRS)
Brenner, M. J.; Iliff, K. W.; Whitman, R. K.
1978-01-01
Flight data from five aircraft were used to assess the effects of sampling rate and record length reductions on estimates of stability and control derivatives produced by a maximum likelihood estimation method. Derivatives could be extracted from flight data with the maximum likelihood estimation method even if there were considerable reductions in sampling rate and/or record length. Small amplitude pulse maneuvers showed greater degradation of the derivative maneuvers than large amplitude pulse maneuvers when these reductions were made. Reducing the sampling rate was found to be more desirable than reducing the record length as a method of lessening the total computation time required without greatly degrading the quantity of the estimates.
A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.
Binh, P H; Trong, V D; Renucci, P; Marie, X
2013-08-01
We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.
NASA Technical Reports Server (NTRS)
Frederickson, A. R.; Mullen, E. G.; Brautigam, D. H.; Kerns, K. J.
1992-01-01
The Internal Discharge Monitor (IDM) was designed to observe electrical pulses from common electrical insulators in space service. The sixteen insulator samples included twelve planar printed circuit boards and four cables. The samples were fully enclosed, mutually isolated, and space radiation penetrated 0.02 cm of aluminum before striking the samples. Pulsing began on the seventh orbit, the maximum pulse rate occurred on the seventeenth orbit when 13 pulses occurred, and the pulses slowly diminished to about one per 3 orbits six months later. After 8 months, the radiation belts abruptly increased and the pulse rates attained a new high. These pulse rates were in agreement with laboratory experience on shorter time scales. Several of the samples never pulsed. If the pulses were not confined within IDM, the physical processes could spread to become a full spacecraft anomaly. The IDM results indicate the rate at which small insulator pulses occur. Small pulses are the seeds of larger satellite electrical anomalies. The pulse rates are compared with space radiation intensities, L shell location, and spectral distributions from the radiation spectrometers on the Combined Release and Radiation Effects Satellite.
NASA Astrophysics Data System (ADS)
Zuikafly, Siti Nur Fatin; Khalifa, Ali; Ahmad, Fauzan; Shafie, Suhaidi; Harun, SulaimanWadi
2018-06-01
The Q-switched pulse regime is demonstrated by integrating conductive graphene as passive saturable absorber producing relatively high instantaneous peak power and pulse energy. The fabricated conductive graphene is investigated using Raman spectroscopy. The single wavelength Q-switching operates at 1558.28 nm at maximum input pump power of 151.47 mW. As the pump power is increased from threshold power of 51.6 mW to 151.47 mW, the pulse train repetition rate increases proportionally from 47.94 kHz to 67.8 kHz while the pulse width is reduced from 9.58 μs to 6.02 μs. The generated stable pulse produced maximum peak power and pulse energy of 32 mW and 206 nJ, respectively. The first beat node of the measured signal-to-noise ratio is about 62 dB indicating high pulse stability.
Ordaz, Alberto; Sánchez, Mariana; Rivera, Rodrigo; Rojas, Rafael; Zepeda, Alejandro
2017-02-01
A nitrifying consortium was kinetically, stoichiometrically and molecularly characterized via the in situ pulse respirometric method and pyrosequencing analysis before and after the addition of m-cresol (25 mg C L -1 ) in a sequencing batch reactor (SBR). Five important kinetic and stoichiometric parameters were determined: the maximum oxygen uptake rate, the maximum nitrification rate, the oxidation yield, the biomass growth yield, and the substrate affinity constant. An inhibitory effect was observed in the nitrification process with a recovery of this by up to eight SBR cycles after m-cresol was added to the system. However, full recovery of the nitrification process was not observed, as the maximum oxygen uptake rate was 25% lower than that of the previous operation without m-cresol addition. Furthermore, the pyrosequencing analyses of the nitrifying consortium after the addition of only two pulses of 25 mg C L -1 m-cresol showed an important microbial community change represented by a decrease in the nitrifying populations and an increase in the populations degrading phenolic compounds.
NASA Astrophysics Data System (ADS)
Zakria Butt, Muhammad; Saher, Sobia; Waqas Khaliq, Muhammad; Siraj, Khurram
2016-11-01
Eight mirror-like polished p-type Si (111) wafers were irradiated with 100, 200, 300, 400, 800, 1200, 1600, and 2000 KrF excimer laser pulses in ambient environment of HCl fumes in air. The laser parameters were: wavelength = 248 nm, pulse width = 20 ns, pulse energy = 20 mJ, and repetition rate = 20 Hz. For each set of laser pulses, characterization of the rectangular etched patterns formed on target surface was done by optical/scanning electron microscopy, XRD, and EDX techniques. The average etched depth increased with the increase in number of laser pulses from 100 to 2000 in accord with Sigmoidal (Boltzmann) function, whereas the average etch rate followed an exponential decay with the increase in number of laser pulses. However, the etched area, maximum etched depth, and maximum etch rate were found to increase linearly with the number of laser pulses, but the rate of increase was faster for 100-400 laser pulses (region I) than that for 800-2000 laser pulses (region II). The elemental composition for each etched-pattern determined by EDX shows that both O and Cl contents increase progressively with the increase in the number of laser shots in region I. However, in region II both O and Cl contents attain saturation values of about 39.33 wt.% and 0.14 wt.%, respectively. Perforation of Si wafers was achieved on irradiation with 1200-2000 laser pulses. XRD analysis confirmed the formation of SiO2, SiCl2 and SiCl4 phases in Si (111) wafers due to chemical reaction of silicon with both HCl fumes and oxygen in air.
High-repetition-rate short-pulse gas discharge.
Tulip, J; Seguin, H; Mace, P N
1979-09-01
A high-average-power short-pulse gas discharge is described. This consists of a volume-preionized transverse discharge of the type used in gas lasers driven by a Blumlein energy storage circuit. The Blumlein circuit is fabricated from coaxial cable, is pulse-charged from a high-repetition-rate Marx-bank generator, and is switched by a high-repetition-rate segmented rail gap. The operation of this discharge under conditions typical of rare-gas halide lasers is described. A maximum of 900 pps was obtained, giving a power flow into the discharge of 30 kW.
Single and Multi-Pulse Low-Energy Conical Theta Pinch Inductive Pulsed Plasma Thruster Performance
NASA Technical Reports Server (NTRS)
Hallock, Ashley K.; Martin, Adam; Polzin, Kurt; Kimberlin, Adam; Eskridge, Richard
2013-01-01
Fabricated and tested CTP IPPTs at cone angles of 20deg, 38deg, and 60deg, and performed direct single-pulse impulse bit measurements with continuous gas flow. Single pulse performance highest for 38deg angle with impulse bit of approx.1 mN-s for both argon and xenon. Estimated efficiencies low, but not unexpectedly so based on historical data trends and the direction of the force vector in the CTP. Capacitor charging system assembled to provide rapid recharging of capacitor bank, permitting repetition-rate operation. IPPT operated at repetition-rate of 5 Hz, at maximum average power of 2.5 kW, representing to our knowledge the highest average power for a repetitively-pulsed thruster. Average thrust in repetition-rate mode (at 5 kV, 75 sccm argon) was greater than simply multiplying the single-pulse impulse bit and the repetition rate.
Zhao, Zhigang; Dong, Yantao; Pan, Sunqiang; Liu, Chong; Chen, Jun; Tong, Lixin; Gao, Qingsong; Tang, Chun
2012-01-16
A large aperture fused silica tapered fiber phase conjugate mirror is presented with a maximum 70% stimulated Brillouin scattering (SBS) reflectivity, which is obtained with 1 kHz repetition rate, 15 ns pulse width and 38 mJ input pulse energy. To the best of our knowledge, this is the highest SBS reflectivity ever reported by using optical fiber as a phase conjugate mirror for such high pulse repetition rate (1 kHz) and several tens of millijoule (mJ) input pulse energy. The influences of fiber end surface quality and pump pulse widths on SBS reflectivity are investigated experimentally. The results show that finer fiber end surface quality and longer input pulse widths are preferred for obtaining higher SBS reflectivity with higher input pulse energy. Double passing amplification experiments are also performed. 52 mJ pulse energy is achieved at 1 kHz repetition rate, with a reflected SBS pulse width of 1.5 ns and a M(2) factor of 2.3. The corresponding peak power reaches 34.6 MW. Obvious beam quality improvement is observed.
Current Pulses Momentarily Enhance Thermoelectric Cooling
NASA Technical Reports Server (NTRS)
Snyder, G. Jeffrey; Fleurial, Jean-Pierre; Caillat, Thierry; Chen, Gang; Yang, Rong Gui
2004-01-01
The rates of cooling afforded by thermoelectric (Peltier) devices can be increased for short times by applying pulses of electric current greater than the currents that yield maximum steady-state cooling. It has been proposed to utilize such momentary enhancements of cooling in applications in which diode lasers and other semiconductor devices are required to operate for times of the order of milliseconds at temperatures too low to be easily obtainable in the steady state. In a typical contemplated application, a semiconductor device would be in contact with the final (coldest) somewhat taller stage of a multistage thermoelectric cooler. Steady current would be applied to the stages to produce steady cooling. Pulsed current would then be applied, enhancing the cooling of the top stage momentarily. The principles of operation are straightforward: In a thermoelectric device, the cooling occurs only at a junction at one end of the thermoelectric legs, at a rate proportional to the applied current. However, Joule heating occurs throughout the device at a rate proportional to the current squared. Hence, in the steady state, the steady temperature difference that the device can sustain increases with current only to the point beyond which the Joule heating dominates. If a pulse of current greater than the optimum current (the current for maximum steady cooling) is applied, then the junction becomes momentarily cooled below its lowest steady temperature until thermal conduction brings the resulting pulse of Joule heat to the junction and thereby heats the junction above its lowest steady temperature. A theoretical and experimental study of such transient thermoelectric cooling followed by transient Joule heating in response to current pulses has been performed. The figure presents results from one of the experiments. The study established the essential parameters that characterize the pulse cooling effect, including the minimum temperature achieved, the maximum temperature overshoot, the time to reach minimum temperature, the time while cooled, and the time between pulses. It was found that at large pulse amplitude, the amount of pulse supercooling is about a fourth of the maximum steady-state temperature difference. For the particular thermoelectric device used in one set of the experiments, the practical optimum pulse amplitude was found to be about 3 times the optimum steady-state current. In a further experiment, a pulse cooler was integrated into a small commercial thermoelectric threestage cooler and found to provide several degrees of additional cooling for a time long enough to operate a semiconductor laser in a gas sensor.
NASA Astrophysics Data System (ADS)
Lin, Mu-Han; Price, Robert A., Jr.; Li, Jinsheng; Kang, Shengwei; Li, Jie; Ma, C.-M.
2013-11-01
Many tumor cells demonstrate hyperradiosensitivity at doses below ˜50 cGy. Together with the increased normal tissue repair under low dose rate, the pulsed low dose rate radiotherapy (PLDR), which separates a daily fractional dose of 200 cGy into 10 pulses with 3 min interval between pulses (˜20 cGy/pulse and effective dose rate 6.7 cGy min-1), potentially reduces late normal tissue toxicity while still providing significant tumor control for re-irradiation treatments. This work investigates the dosimetric and technical feasibilities of intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT)-based PLDR treatments using Varian Linacs. Twenty one cases (12 real re-irradiation cases) including treatment sites of pancreas, prostate, pelvis, lung, head-and-neck, and breast were recruited for this study. The lowest machine operation dose rate (100 MU min-1) was employed in the plan delivery. Ten-field step-and-shoot IMRT and dual-arc VMAT plans were generated using the Eclipse TPS with routine planning strategies. The dual-arc plans were delivered five times to achieve a 200 cGy daily dose (˜20 cGy arc-1). The resulting plan quality was evaluated according to the heterogeneity and conformity indexes (HI and CI) of the planning target volume (PTV). The dosimetric feasibility of retaining the hyperradiosensitivity for PLDR was assessed based on the minimum and maximum dose in the target volume from each pulse. The delivery accuracy of VMAT and IMRT at the 100 MU min-1 machine operation dose rate was verified using a 2D diode array and ion chamber measurements. The delivery reproducibility was further investigated by analyzing the Dynalog files of repeated deliveries. A comparable plan quality was achieved by the IMRT (CI 1.10-1.38 HI 1.04-1.10) and the VMAT (CI 1.08-1.26 HI 1.05-1.10) techniques. The minimum/maximum PTV dose per pulse is 7.9 ± 5.1 cGy/33.7 ± 6.9 cGy for the IMRT and 12.3 ± 4.1 cGy/29.2 ± 4.7 cGy for the VMAT. Six out of the 186 IMRT pulses (fields) were found to exceed 50 cGy maximum PTV dose per pulse while the maximum PTV dose per pulse was within 40 cGy for all the VMAT pulses (arcs). However, for VMAT plans, the dosimetric quality of the entire treatment plan was less superior for the breast cases and large irregular targets. The gamma passing rates for both techniques at the 100 MU min-1 dose rate were at least 94.1% (3%/3 mm) and the point dose measurements agreed with the planned values to within 2.2%. The average root mean square error of the leaf position was 0.93 ± 0.83 mm for IMRT and 0.53 ± 0.48 mm for VMAT based on the Dynalog file analysis. The RMS error of the leaf position was nearly identical for the repeated deliveries of the same plans. In general, both techniques are feasible for PLDR treatments. VMAT was more advantageous for PLDR with more uniform target dose per pulse, especially for centrally located tumors. However, for large, irregular and/or peripheral tumors, IMRT could produce more favorable PLDR plans. By taking the biological benefit of PLDR delivery and the dosimetric benefit of IMRT and VMAT, the proposed methods have a great potential for those previously-irradiated recurrent patients.
[Changes of pulse rate caused by sonic bomms during sleep (author's transl)].
Griefahn, B
1975-12-05
In two experimental series (19 resp. 53 nights, 2 different persons in each series, test-time 10.30 p.m. to 3.00 a.m.) pulse rate after sonic booms had been recorded during sleep. In the first 3 nights the subjects slept undisturbed by noise. In the following 11 resp. 30 nights sonic booms were applied alternately 2 or 4 times. In the main series after 10 more nights without any noise 4 nights with 8 and 16 sonic booms alternately followed. The last 6 undisturbed nights in both series were used as comparison phase. The interval between two sonic booms was 40 min in nights with 2 booms, 20 min in nights with 4 sonic booms and in the nights with 8 and 16 sonic booms 8.6 resp. 4.6 min. Sound level of the sonic booms ranged from 0.48 mbar to 1.45 mbar, 1 mbar [83.5 dB (A)] in the average. The first sonic boom was applied if one of the two subjects had entered the deepest stage of sleep. Sonic booms induced a biphasic reaction in pulse rate. After an initial increase in frequency with a maximum in the 4th sec pulse rate decreased below the value before sonic boom; it was followed by a slow increase towards the baseline value. This reaction was analysed with special regard to the following factors: 1. Intensity. Due to very fast increase of noise intensity there was no significant correlation between the intensity of sonic boom and the pulse reaction. 2. Exogenic variables. There is no significant connection between postboom pulse rate and noiseless time before the sonic boom, the duration of the test series and the ambient temperature. 3. Endogenic variables. No correlation could be found between the stage of sleep and the reaction. On the contrary a very significant correlation was found between the maximum of postboom increase of pulse rate and the pulse rate before boom. With increasing pulse rate the extent of reaction becomes smaller.
NASA Astrophysics Data System (ADS)
Wang, W. B.; Wang, F.; Yu, Q.; Zhang, X.; Lu, Y. X.; Gu, J.
2016-11-01
We propose and experimentally demonstrate a bidirectional erbium-doped fiber laser delivering dispersion-managed soliton (DMS) and Q-switched pulse based on a graphene-polyvinyl alcohol (PVA) and nonlinear optical loop mirror (NOLM) saturable absorbers (SAs). In proposed structure, the DMS is achieved in clockwise (CW) direction and Q-switched pulse is obtained in counter-clockwise (CCW) direction. By properly adjusting the intracavity attenuators (ATT) and polarizer controllers (PCs), DMS in the CW direction and Q-switched pulse in the CCW direction can be obtained, respectively or simultaneously. The DMS with full width at half maximum (FWHM) of ~480 fs, signal to noise ratio (SNR) of ~60 dB and repetition frequency about 3.907 MHz is obtained. The Q-switched pulse is established at a pump power of 180 mW with a repetition rate of ~43.5 kHz and FWHM of ~8.18 μs. When the pump power is increased to 700 mW, Q-switched pulse with a repetition rate of ~107.1 kHz and FWHM of ~2.15 μs is generated. When the two type pulses are formed simultaneously, the maximum repetition rate of Q-switched pulse is 55.8 kHz and minimum FWHM is 2.81 μs, the DMS can be formed by properly adjusting PC and ATT in this case. To the best of our knowledge, it is the first time that Q-switched pulse and DMS have been acquired respectively or simultaneously in a fiber laser.
Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles
NASA Astrophysics Data System (ADS)
Smith, Kandler; Wang, Chao-Yang
A 1D electrochemical, lumped thermal model is used to explore pulse power limitations and thermal behavior of a 6 Ah, 72 cell, 276 V nominal Li-ion hybrid-electric vehicle (HEV) battery pack. Depleted/saturated active material Li surface concentrations in the negative/positive electrodes consistently cause end of high-rate (∼25 C) pulse discharge at the 2.7 V cell -1 minimum limit, indicating solid-state diffusion is the limiting mechanism. The 3.9 V cell -1 maximum limit, meant to protect the negative electrode from lithium deposition side reaction during charge, is overly conservative for high-rate (∼15 C) pulse charges initiated from states-of-charge (SOCs) less than 100%. Two-second maximum pulse charge rate from the 50% SOC initial condition can be increased by as much as 50% without risk of lithium deposition. Controlled to minimum/maximum voltage limits, the pack meets partnership for next generation vehicles (PNGV) power assist mode pulse power goals (at operating temperatures >16 °C), but falls short of the available energy goal. In a vehicle simulation, the pack generates heat at a 320 W rate on a US06 driving cycle at 25 °C, with more heat generated at lower temperatures. Less aggressive FUDS and HWFET cycles generate 6-12 times less heat. Contact resistance ohmic heating dominates all other mechanisms, followed by electrolyte phase ohmic heating. Reaction and electronic phase ohmic heats are negligible. A convective heat transfer coefficient of h = 10.1 W m -2 K -1 maintains cell temperature at or below the 52 °C PNGV operating limit under aggressive US06 driving.
Highly efficient actively Q-switched Yb:LGGG laser generating 3.26 mJ of pulse energy
NASA Astrophysics Data System (ADS)
Li, Yanbin; Zhang, Jian; Zhao, Ruwei; Zhang, Baitao; He, Jingliang; Jia, Zhitai; Tao, Xutang
2018-05-01
An efficient acousto-optic Q-switched laser operation of Yb:(LuxGd1-x)3Ga5O12 (x = 0.062) (Yb:LGGG) crystal is demonstrated, producing stable pulses with repetition rate ranging from 1 to 20 kHz. Under the absorbed pump power of 8.75 W, the maximum average output power of 3.26 W is obtained at the pulse repletion rate of 1 kHz, corresponding to the slope efficiency as high as 52%. The pulse width of 14.5 ns is achieved with the pulse energy and peak power of 3.26 mJ and 225 kW, respectively. It indicates great potential of Yb:LGGG crystal for generating pulsed lasers.
ONR/MARCORSYSCOM Evaluation of Self-Applied Tourniquets for Combat Applications
2005-11-01
dicrotic notch in the IPG pulse, 5. Maximum amplitude of the postdicrotic segment of the IPG pulse, 6. Peak of the EKG QRS complex immediately after the...IPG pulse until the occurrence of the dicrotic notch (Wu, 1992). TOUT (s) Time of excess venous outflow = (tM7 - tM4), (Al 0) the time period from...the dicrotic notch until the end of the IPG pulse (Wu, 1992). Note that A, ST, and EXHT are measures of pulse morphology independent of heart rate. In
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, T Y; Deng, Yu; Ju, Y-L
2015-12-31
We demonstrate a continuous-wave (cw) and actively Q-switched Er : YAG ceramic laser resonantly dual-end-pumped by a 1532 nm fibre-coupled laser diode. A maximum cw output power of 1.48 W at 1645.3 nm is obtained at an absorbed pump power of 12.72 W, corresponding to a slope efficiency of 19.2%. In the Q-switched regime the maximum pulse energy of 0.84 mJ is reached at a pulse repetition rate of 100 Hz, pulse duration of 48.03 ns and absorbed pump power of 10.51 W. (lasers)
Pulse-burst laser systems for fast Thomson scattering (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Den Hartog, D. J.; Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, Madison, Wisconsin 53706; Ambuel, J. R.
2010-10-15
Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to ''pulse-burst'' capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinchmore » to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned.« less
2007-06-01
17 Table 2. Best (maximum free distance) rate r=2/3 punctured convolutional code ...Hamming distance between all pairs of non-zero paths. Table 2 lists the best rate r=2/3, punctured convolutional code information weight structure dB...Table 2. Best (maximum free distance) rate r=2/3 punctured convolutional code information weight structure. (From: [12]). K freed freeB
Microsecond gain-switched master oscillator power amplifier (1958 nm) with high pulse energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ke Yin; Weiqiang Yang; Bin Zhang
2014-02-28
An all-fibre master oscillator power amplifier (MOPA) emitting high-energy pulses at 1958 nm is presented. The seed laser is a microsecond gain-switched thulium-doped fibre laser (TDFL) pumped with a commercial 1550-nm pulsed fibre laser. The TDFL operates at a repetition rate f in the range of 10 to 100 kHz. The two-stage thulium-doped fibre amplifier is built to scale the energy of the pulses generated by the seed laser. The maximum output pulse energy higher than 0.5 mJ at 10 kHz is achieved which is comparable with the theoretical maximum extractable pulse energy. The slope efficiency of the second stagemore » amplifier with respect to the pump power is 30.4% at f = 10 kHz. The wavelength of the output pulse laser is centred near 1958 nm at a spectral width of 0.25 nm after amplification. Neither nonlinear effects nor significant amplified spontaneous emission (ASE) is observed in the amplification experiments. (lasers)« less
High energy passively mode-locked erbium-doped fiber laser at tens of kHz repetition rate
NASA Astrophysics Data System (ADS)
Chen, Jiong; Jia, Dongfang; Wang, Changle; Wang, Junlong; Wang, Zhaoying; Yang, Tianxin
2011-12-01
We demonstrate an ultra-long cavity all-fiber Erbium-doped fiber laser that is passively mode-locked by nonlinear polarization rotation. The length of the resonant cavity amounts to 4.046 km, which is achieved by incorporating a 4 km single mode fiber. The laser generates stable mode-locked pulses with a 50.90 kHz fundamental repetition rate. The maximum average power of output pulses is 2.73 mW, which corresponds to per-pulse energy of 53.63 nJ.
All solid-state high power visible laser
NASA Technical Reports Server (NTRS)
Grossman, William M.
1993-01-01
The overall objective of this Phase 2 effort was to develop and deliver to NASA a high repetition rate laser-diode-pumped solid-state pulsed laser system with output in the green portion of the spectrum. The laser is for use in data communications, and high efficiency, short pulses, and low timing jitter are important features. A short-pulse 1 micron laser oscillator, a new multi-pass amplifier to boost the infrared power, and a frequency doubler to take the amplified infrared pulsed laser light into the green. This produced 1.5 W of light in the visible at a pulse repetition rate of 20 kHz in the laboratory. The pulses have a full-width at half maximum of near 1 ns. The results of this program are being commercialized.
Performance of a green propellant thruster with discharge plasma
NASA Astrophysics Data System (ADS)
Shindo, Takahiro; Wada, Asato; Maeda, Hiroshi; Watanabe, Hiroki; Takegahara, Haruki
2017-02-01
A discharge plasma was applied to initiate the combustion of a hydroxylammonium nitrate-based propellant as a substitute for the catalysts that are typically employed. The resulting thrust and thrust-to-power ratio during short interval firing tests as well as the chamber pressure with a single pulse discharge were evaluated. A 1.5-s firing test generated a maximum thrust of 322 mN along with a thrust-to-power ratio of 0.95 mN/W. During the single-pulse discharge trials, pulsed discharge capacitor energies of 5.4, 10.8, and 16.4 J were assessed, and the maximum chamber pressure was found to increase as the energy was raised. The maximum chamber pressures varied widely between experimental trials, and a 16.4-J energy value resulted in the highest chamber pressure of over 1 MPaG. The time spans between the pulsed discharge and the peak chamber pressure were in the range of 1-2 ms, representing a chamber pressure increase rate much higher than those obtained with standard catalysts.
Q-switched Erbium-doped fiber laser at 1600 nm for photoacoustic imaging application
Zeng, Lvming; Chen, Zhongping; Kim, Chang-Seok
2016-01-01
We present a nanosecond Q-switched Erbium-doped fiber (EDF) laser system operating at 1600 nm with a tunable repetition rate from 100 kHz to 1 MHz. A compact fiber coupled, acousto-optic modulator-based EDF ring cavity was used to generate a nanosecond seed laser at 1600 nm, and a double-cladding EDF based power amplifier was applied to achieve the maximum average power of 250 mW. In addition, 12 ns laser pulses with the maximum pulse energy of 2.4 μJ were obtained at 100 kHz. Furthermore, the Stokes shift by Raman scattering over a 25 km long fiber was measured, indicating that the laser can be potentially used to generate the high repetition rate pulses at the 1.7 μm region. Finally, we detected the photoacoustic signal from a human hair at 200 kHz repetition rate with a pulse energy of 1.2 μJ, which demonstrates that a Q-switched Er-doped fiber laser can be a promising light source for the high speed functional photoacoustic imaging. PMID:27110032
Q-switched Erbium-doped fiber laser at 1600 nm for photoacoustic imaging application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piao, Zhonglie; Beckman Laser Institute, Department of Biomedical Engineering, University of California, Irvine, California 92612; Zeng, Lvming
We present a nanosecond Q-switched Erbium-doped fiber (EDF) laser system operating at 1600 nm with a tunable repetition rate from 100 kHz to 1 MHz. A compact fiber coupled, acousto-optic modulator-based EDF ring cavity was used to generate a nanosecond seed laser at 1600 nm, and a double-cladding EDF based power amplifier was applied to achieve the maximum average power of 250 mW. In addition, 12 ns laser pulses with the maximum pulse energy of 2.4 μJ were obtained at 100 kHz. Furthermore, the Stokes shift by Raman scattering over a 25 km long fiber was measured, indicating that the laser can be potentially used to generate the highmore » repetition rate pulses at the 1.7 μm region. Finally, we detected the photoacoustic signal from a human hair at 200 kHz repetition rate with a pulse energy of 1.2 μJ, which demonstrates that a Q-switched Er-doped fiber laser can be a promising light source for the high speed functional photoacoustic imaging.« less
Minimization of Dead-Periods in MRI Pulse Sequences for Imaging Oblique Planes
Atalar, Ergin; McVeigh, Elliot R.
2007-01-01
With the advent of breath-hold MR cardiac imaging techniques, the minimization of TR and TE for oblique planes has become a critical issue. The slew rates and maximum currents of gradient amplifiers limit the minimum possible TR and TE by adding dead-periods to the pulse sequences. We propose a method of designing gradient waveforms that will be applied to the amplifiers instead of the slice, readout, and phase encoding waveforms. Because this method ensures that the gradient amplifiers will always switch at their maximum slew rate, it results in the minimum possible dead-period for given imaging parameters and scan plane position. A GRASS pulse sequence has been designed and ultra-short TR and TE values have been obtained with standard gradient amplifiers and coils. For some oblique slices, we have achieved shorter TR and TE values than those for nonoblique slices. PMID:7869900
NASA Astrophysics Data System (ADS)
Golik, Sergey S.; Mayor, Alexsander Yu.; Proschenko, Dmitriy Yu.; Ilyin, Alexey A.; Nagorniy, Ivan G.; Biryukova, Yuliya S.; Babiy, Michael Yu.; Golik, Natalia N.; Gevorgyan, Tigran A.; Lisitsa, Vladimir V.; Borovskiy, Anton V.; Kulchin, Yuri N.
2017-10-01
The developed underwater laser induced breakdown spectrometer consists of two units: 1- remotely operated vehicle (ROV) with the next main characteristics: work deep - up to 150 meters, maximum speed of immersion 1 m/s, maximum cruise velocity - 2 m/s and 2 - spectrometer unit (SU) consist of a DPSS Nd: YAG laser excitation source (double pulse with 50 mJ energy for each pulse at wavelength 1064 nm, pulse width 12 ns and pulse repetition rate 1-15 Hz, DF251, SOL Instruments), a spectrum recording system (Maya HR4000 or 2000 Pro spectrometer, Ocean Optics) and microcomputer. These two units are connected by Ethernet network and registered spectral data are automatically processed in a MATLAB platform.
1047nm 270mJ all solid state diode pumped MOPA at 50 Hz
NASA Astrophysics Data System (ADS)
Ma, Jian; Yang, Qi; Lu, Tingting; Ma, Xiuhua; Zhu, Xiaolei; Chen, Weibiao
2015-02-01
A diode-pumped nanosecond Master Oscillator Power Amplifier (MOPA) system based on Nd:YLF crystal slabs has been demonstrated. The seed pulses with pulse duration of 11 ns were generated in an EO Q-switched Nd:YLF laser, with single pulse energy of 10 mJ. The 1047 nm signal pulses were amplified in a double-pass amplification system. Maximum output pulse energy of 270 mJ at a repetition rate of 50 Hz has been achieved with effective optical-to-optical efficiency of 14.5%.
Ultrashort pulse high repetition rate laser system for biological tissue processing
Neev, Joseph; Da Silva, Luiz B.; Matthews, Dennis L.; Glinsky, Michael E.; Stuart, Brent C.; Perry, Michael D.; Feit, Michael D.; Rubenchik, Alexander M.
1998-01-01
A method and apparatus is disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment.
Ultrashort pulse high repetition rate laser system for biological tissue processing
Neev, J.; Da Silva, L.B.; Matthews, D.L.; Glinsky, M.E.; Stuart, B.C.; Perry, M.D.; Feit, M.D.; Rubenchik, A.M.
1998-02-24
A method and apparatus are disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment. 8 figs.
2.36 J, 50 Hz nanosecond pulses from a diode side-pumped Nd:YAG MOPA system
NASA Astrophysics Data System (ADS)
Li, Chaoyang; Lu, Chengqiang; Li, Chuan; Yang, Ning; Li, Ye; Yang, Zhen; Han, Song; Shi, Junfeng; Zhou, Zewu
2017-07-01
We report on a high-energy high-repetition-rate nanosecond Nd:YAG main oscillator power amplifier (MOPA) system. Maximum output pulse energy of 2.36 J with duration of 9.4 ns at 50 Hz has been achieved. The master oscillator was a LD side-pumped electro-optical Q-switched Nd:YAG rod laser adopting unstable cavity with variable reflectivity mirror (VRM). It delivered a pulse train with energy up to 180 mJ and pulse duration of 10.7 ns. The near-field pattern demonstrated a nearly super Gaussian flat top profile. In the amplification stage, the pulse was boosted via double-pass two Nd:YAG rod amplifiers. Maximum pulse energy was obtained at the peak pump power of 37.5 kW, corresponding to an optical-optical conversion efficiency of 25.2%. The correlative peak power was deduced to be 251 MW. We also presented the result of 100 Hz nanosecond laser with average output power of >100 W.
High resolution, high rate x-ray spectrometer
Goulding, F.S.; Landis, D.A.
1983-07-14
It is an object of the invention to provide a pulse processing system for use with detected signals of a wide dynamic range which is capable of very high counting rates, with high throughput, with excellent energy resolution and a high signal-to-noise ratio. It is a further object to provide a pulse processing system wherein the fast channel resolving time is quite short and substantially independent of the energy of the detected signals. Another object is to provide a pulse processing system having a pile-up rejector circuit which will allow the maximum number of non-interfering pulses to be passed to the output. It is also an object of the invention to provide new methods for generating substantially symmetrically triangular pulses for use in both the main and fast channels of a pulse processing system.
High-speed photography of plasma during excimer laser-tissue interaction.
Murray, Andrea K; Dickinson, Mark R
2004-08-07
During high fluence laser-tissue interaction, ablation of tissue occurs, debris is removed from the ablation site and is then ejected at high velocity. This debris may be observed as a combination of luminous plasma and non-luminous plume, both of which have the potential to shield the ablation site. This study examined the role of ablation debris in shielding the tissue and determined its effects on the ablation rate over a range of laser pulse energies, pulse repetition rates and pulse numbers for dentine; the velocity differences between hard and soft tissues were also examined. High-speed photography was carried out at up to 1 x 10(8) frames per second. A maximum velocity of 2.58 +/- 0.52 x 10(4) m s(-1) was recorded for dentine debris within the first 10 ns following ejection. The maximum duration of tissue shielding due to a single pulse, determined by attenuation of a probe beam, was found to be approximately 7 ms, approximately 80 micros of which was due to luminous plasma and the remainder due to the non-luminous plume.
Generation of switchable domain wall and Cubic-Quintic nonlinear Schrödinger equation dark pulse
NASA Astrophysics Data System (ADS)
Tiu, Z. C.; Suthaskumar, M.; Zarei, A.; Tan, S. J.; Ahmad, H.; Harun, S. W.
2015-10-01
A switchable domain-wall (DW) and Cubic-Quintic nonlinear Schrödinger equation (CQNLSE) dark soliton pulse generation are demonstrated in Erbium-doped fiber laser (EDFL) for the first time. The DW pulse train operates at 1575 nm with a fundamental repetition rate of 1.52 MHz and pulse width of 203 ns as the pump power is increased above the threshold pump power of 80 mW. The highest pulse energy of 2.24 nJ is obtained at the maximum pump power of 140 mW. CQNLSE pulse can also be realized from the same cavity by adjusting the polarization state but at a higher threshold pump power of 104 mW. The repetition rate and pulse width of the CQNLSE dark pulses are obtained at 1.52 MHz and 219 ns, respectively. The highest energy of 0.58 nJ is obtained for the CQNLSE pulse at pump power of 140 mW.
Compressed 6 ps pulse in nonlinear amplification of a Q-switched microchip laser
NASA Astrophysics Data System (ADS)
Diao, Ruxin; Liu, Zuosheng; Niu, Fuzeng; Wang, Aimin; Taira, Takunori; Zhang, Zhigang
2017-02-01
We present a passively Q-switched Nd:YVO4 crystal microchip laser with a 6 ps pulse width, which is based on SPM-induced spectral broadening and pulse compression. The passive Q-switching is obtained by a semiconductor saturable absorber mirror. The laser’s seed source centered at 1064 nm pulses with a duration of 80 ps, at a repetition rate of 600 kHz corresponding to an average output power of 10 mW. After amplification and compression, the pulses were compressed to 6 ps with a maximum pulse energy of 0.5 µJ.
Huang, Yize; Jivraj, Jamil; Zhou, Jiaqi; Ramjist, Joel; Wong, Ronnie; Gu, Xijia; Yang, Victor X D
2016-07-25
A surgical laser soft tissue ablation system based on an adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser operating in pulsed or CW mode with nitrogen assistance is demonstrated. Ex vivo ablation on soft tissue targets such as muscle (chicken breast) and spinal cord (porcine) with intact dura are performed at different ablation conditions to examine the relationship between the system parameters and ablation outcomes. The maximum laser average power is 14.4 W, and its maximum peak power is 133.1 W with 21.3 μJ pulse energy. The maximum CW power density is 2.33 × 106 W/cm2 and the maximum pulsed peak power density is 2.16 × 107 W/cm2. The system parameters examined include the average laser power in CW or pulsed operation mode, gain-switching frequency, total ablation exposure time, and the input gas flow rate. The ablation effects were measured by microscopy and optical coherence tomography (OCT) to evaluate the ablation depth, superficial heat-affected zone diameter (HAZD) and charring diameter (CD). Our results conclude that the system parameters can be tailored to meet different clinical requirements such as ablation for soft tissue cutting or thermal coagulation for future applications of hemostasis.
Development of accelerated net nitrate uptake. [Zea mays L
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacKown, C.T.; McClure, P.R.
1988-05-01
Upon initial nitrate exposure, net nitrate uptake rates in roots of a wide variety of plants accelerate within 6 to 8 hours to substantially greater rates. Effects of solution nitrate concentrations and short pulses of nitrate ({le}1 hour) upon nitrate-induced acceleration of nitrate uptake in maize (Zea mays L.) were determined. Root cultures of dark-grown seedlings, grown without nitrate, were exposed to 250 micromolar nitrate for 0.25 to 1 hour or to various solution nitrate concentration (10-250 micromolar) for 1 hour before returning them to a nitrate-free solution. Net nitrate uptake rates were assayed at various periods following nitrate exposuremore » and compared to rates of roots grown either in the absence of nitrate (CaSO{sub 4}-grown) or with continuous nitrate for at least 20 hours. Three hours after initial nitrate exposure, nitrate pulse treatments increased nitrate uptake rates three- to four-fold compared to the rates of CaSO{sub 4}-grown roots. When cycloheximide (5 micrograms per milliliter) was included during a 1-hour pulse with 250 micromolar nitrate, development of the accelerated nitrate uptake state was delayed. Otherwise, nitrate uptake rates reached maximum values within 6 hours before declining. Maximum rates, however, were significantly less than those of roots exposed continuously for 20, 32, or 44 hours. Pulsing for only 0.25 hour with 250 micromolar nitrate and for 1 hour with 10 micromolar caused acceleration of nitrate uptake, but the rates attained were either less than or not sustained for a duration comparable to those of roots pulsed for 1 hour with 250 micromolar nitrate. These results indicate that substantial development of nitrate-induced accelerated nitrate uptake state can be achieved by small endogenous accumulations of nitrate, which appear to moderate the activity or level of root nitrate uptake.« less
Q-switched all-fiber laser with short pulse duration based on tungsten diselenide
NASA Astrophysics Data System (ADS)
Li, Wenyi; OuYang, Yuyi; Ma, Guoli; Liu, Mengli; Liu, Wenjun
2018-05-01
Fiber lasers are widely used in industrial processing, sensing, medical and communications applications due to their simple structure, good stability and low cost. With the rapid development of fiber lasers and the sustained improvement of industrial laser quality requirements, researchers in ultrafast optics focus on how to get laser pulses with high output power and narrow pulse duration. Q-switched technology is one of the most effective techniques to generate ultrashort pulses. In this paper, a tungsten diselenide saturable absorber with 16.82% modulation depth is prepared by chemical vapor deposition. Experimental results show that when the pump power changes from 115.7 mW to 630 mW, the all-fiber laser can achieve a stable Q-switched pulse output. The repetition rate of the output pulse varies from 80.32 kHz to 204.2 kHz, the pulse duration is 581 ns, the maximum output power is 17.1 mW and the maximum pulse energy is 83.7 nJ. Results in this paper show that tungsten diselenide can be applied to ultrafast optics, which is a kind of saturable absorption material with excellent properties.
A compact, low jitter, nanosecond rise time, high voltage pulse generator with variable amplitude.
Mao, Jiubing; Wang, Xin; Tang, Dan; Lv, Huayi; Li, Chengxin; Shao, Yanhua; Qin, Lan
2012-07-01
In this paper, a compact, low jitter, nanosecond rise time, command triggered, high peak power, gas-switch pulse generator system is developed for high energy physics experiment. The main components of the system are a high voltage capacitor, the spark gap switch and R = 50 Ω load resistance built into a structure to obtain a fast high power pulse. The pulse drive unit, comprised of a vacuum planar triode and a stack of avalanche transistors, is command triggered by a single or multiple TTL (transistor-transistor logic) level pulses generated by a trigger pulse control unit implemented using the 555 timer circuit. The control unit also accepts user input TTL trigger signal. The vacuum planar triode in the pulse driving unit that close the first stage switches is applied to drive the spark gap reducing jitter. By adjusting the charge voltage of a high voltage capacitor charging power supply, the pulse amplitude varies from 5 kV to 10 kV, with a rise time of <3 ns and the maximum peak current up to 200 A (into 50 Ω). The jitter of the pulse generator system is less than 1 ns. The maximum pulse repetition rate is set at 10 Hz that limited only by the gas-switch and available capacitor recovery time.
Doss, F. W.; Flippo, K. A.; Capelli, D.; ...
2016-05-26
Updates to the Los Alamos laser-driven high-energy-density Shock/Shear mixing- layer experiment are reported, which have collectively increased the platform's shot and data acquisition rates. Also, the strategies employed have included a move from two-strip to four-strip imagers (allowing four times to be recorded per shot instead of two), the implementation of physics-informed rules of engagements allowing for the maximum flexibility in a shot's total energy and symmetry performance, and by splitting the laser's main drive pulse from a monolithic single pulse equal to all beams into a triply-segmented pulse which minimizes optics damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doss, F. W.; Flippo, K. A.; Capelli, D.
Updates to the Los Alamos laser-driven high-energy-density Shock/Shear mixing- layer experiment are reported, which have collectively increased the platform's shot and data acquisition rates. Also, the strategies employed have included a move from two-strip to four-strip imagers (allowing four times to be recorded per shot instead of two), the implementation of physics-informed rules of engagements allowing for the maximum flexibility in a shot's total energy and symmetry performance, and by splitting the laser's main drive pulse from a monolithic single pulse equal to all beams into a triply-segmented pulse which minimizes optics damage.
NASA Astrophysics Data System (ADS)
Hang, Shuang; Liu, Yunpeng; Li, Huan; Tang, Xiaobin; Chen, Da
2018-04-01
X-ray communication (XCOM) is a new communication type and is expected to realize high-speed data transmission in some special communication scenarios, such as deep space communication and blackout communication. This study proposes a high-speed modulated X-ray source scheme based on the laser-to-X-ray conversion. The temporal characteristics of the essential components of the proposed laser-modulated pulsed X-ray source (LMPXS) were analyzed to evaluate its pulse emission performance. Results show that the LMPXS can provide a maximum modulation rate up to 100 Mbps which is expected to significantly improve the data rate of XCOM.
Parallel transmission RF pulse design with strict temperature constraints.
Deniz, Cem M; Carluccio, Giuseppe; Collins, Christopher
2017-05-01
RF safety in parallel transmission (pTx) is generally ensured by imposing specific absorption rate (SAR) limits during pTx RF pulse design. There is increasing interest in using temperature to ensure safety in MRI. In this work, we present a local temperature correlation matrix formalism and apply it to impose strict constraints on maximum absolute temperature in pTx RF pulse design for head and hip regions. Electromagnetic field simulations were performed on the head and hip of virtual body models. Temperature correlation matrices were calculated for four different exposure durations ranging between 6 and 24 min using simulated fields and body-specific constants. Parallel transmission RF pulses were designed using either SAR or temperature constraints, and compared with each other and unconstrained RF pulse design in terms of excitation fidelity and safety. The use of temperature correlation matrices resulted in better excitation fidelity compared with the use of SAR in parallel transmission RF pulse design (for the 6 min exposure period, 8.8% versus 21.0% for the head and 28.0% versus 32.2% for the hip region). As RF exposure duration increases (from 6 min to 24 min), the benefit of using temperature correlation matrices on RF pulse design diminishes. However, the safety of the subject is always guaranteed (the maximum temperature was equal to 39°C). This trend was observed in both head and hip regions, where the perfusion rates are very different. Copyright © 2017 John Wiley & Sons, Ltd.
System Design Verification for Closed Loop Control of Oxygenation With Concentrator Integration.
Gangidine, Matthew M; Blakeman, Thomas C; Branson, Richard D; Johannigman, Jay A
2016-05-01
Addition of an oxygen concentrator into a control loop furthers previous work in autonomous control of oxygenation. Software integrates concentrator and ventilator function from a single control point, ensuring maximum efficiency by placing a pulse of oxygen at the beginning of the breath. We sought to verify this system. In a test lung, fraction of inspired oxygen (FIO2) levels and additional data were monitored. Tests were run across a range of clinically relevant ventilator settings in volume control mode, for both continuous flow and pulse dose flow oxygenation. Results showed the oxygen concentrator could maintain maximum pulse output (192 mL) up to 16 breaths per minute. Functionality was verified across ranges of tidal volumes and respiratory rates, with and without positive end-expiratory pressure, in continuous flow and pulse dose modes. For a representative test at respiratory rate 16 breaths per minute, tidal volume 550 mL, without positive end-expiratory pressure, pulse dose oxygenation delivered peak FIO2 of 76.83 ± 1.41%, and continuous flow 47.81 ± 0.08%; pulse dose flow provided a higher FIO2 at all tested setting combinations compared to continuous flow (p < 0.001). These tests verify a system that provides closed loop control of oxygenation while integrating time-coordinated pulse-doses from an oxygen concentrator. This allows the most efficient use of resources in austere environments. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
Evaluation of arterial digital blood flow using Doppler ultrasonography in healthy dairy cows.
Müller, H; Heinrich, M; Mielenz, N; Reese, S; Steiner, A; Starke, A
2017-06-06
Local circulatory disturbances have been implicated in the development of foot disorders in cattle. The goals of this study were to evaluate the suitability of the interdigital artery in the pastern region in both hind limbs using pulsed-wave (PW) Doppler ultrasonography and to investigate quantitative arterial blood flow variables at that site in dairy cows. An Esaote MyLabOne ultrasound machine with a 10-MHz linear transducer was used to assess blood flow in the interdigital artery in the pastern region in both hind limbs of 22 healthy German Holstein cows. The cows originated from three commercial farms and were restrained in a standing hoof trimming chute without sedation. A PW Doppler signal suitable for analysis was obtained in 17 of 22 cows. The blood flow profiles were categorised into four curve types, and the following quantitative variables were measured in three uniform cardiac cycles: vessel diameter, pulse rate, maximum systolic velocity, maximum diastolic velocity, end-diastolic velocity, reverse velocity, maximum time-averaged mean velocity, blood flow rate, resistance index and persistence index. The measurements did not differ among cows from the three farms. Maximum systolic velocity, vessel diameter and pulse rate did not differ but other variables differed significantly among blood flow profiles. Differences in weight-bearing are thought to be responsible for the normal variability of blood flow profiles in healthy cows. The scanning technique used in this report for evaluation of blood flow in the interdigital artery appears suitable for further investigations in healthy and in lame cows.
NASA Astrophysics Data System (ADS)
Bai, Jinxi; Li, Ping; Chen, Xiaohan; Guo, Lei; Wang, Lili; Liu, Binghai
2017-08-01
Passively Q-switched Nd:YAG ceramic lasers at 1064 and 1123 nm are demonstrated based on a gold nanotriangles saturable absorber (GNTs-SA) for the first time. The maximum average output power reaches 226 mW at 1064 nm and 172 mW at 1123 nm with corresponding shortest pulse widths and maximum pulse repetition rates of (179 ns, 320 kHz) and (231 ns, 457 kHz), respectively. Our results prove that the GNTs-SA is a promising saturable absorber around the 1-µm region.
A simple fast pulse gas valve using a dynamic pressure differential as the primary closing mechanism
NASA Astrophysics Data System (ADS)
Thomas, J. C.; Hwang, D. Q.; Horton, R. D.; Rogers, J. H.; Raman, R.
1993-06-01
In this article we describe a simple fast pulse gas valve developed for use in a plasma discharge experiment. The valve delivers 1017-1019 molecules per pulse varied by changing the voltage on the electromagnetic driver power supply. Valve pulse widths are observed to be less than 300 μs full width at half maximum with a rise time of less than 100 μs resulting in a maximum gas flow rate of ˜1022 molecules per second. An optical transmission technique was used to determine the mechanical opening and closing characteristics of the valve piston. A fast ionization gauge (FIG) was used for diagnosis of the temporal character of the gas pulse while the total gas throughput was determined by measuring the change in pressure per pulse in a small test chamber with a convectron tube gauge. Calibration of the FIG was accomplished by comparing the net change in pressure in a large chamber as measured by the FIG to the net change in pressure in a small test chamber as measured by the convectron tube gauge.
Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge
NASA Astrophysics Data System (ADS)
Williamson, James M.; Trump, Darryl D.; Bletzinger, Peter; Ganguly, Biswa N.
2006-10-01
A surface dielectric barrier discharge (DBD) in atmospheric pressure air was excited either by low frequency (0.3-2 kHz) high-voltage ac or by short, high-voltage pulses at repetition rates from 50 to 600 pulses s-1. The short-pulse excited discharge was more diffuse and did not have the pronounced bright multiple cathode spots observed in the ac excited discharge. The discharge voltage, current and average power deposited into the discharge were calculated for both types of excitation. As a measure of plasma-chemical efficiency, the ozone number density was measured by UV absorption as a function of average deposited power. The density of ozone produced by ac excitation did not increase so rapidly as that produced by short-pulse excitation as a function of average power, with a maximum measured density of ~3 × 1015 cm-3 at 25 W. The maximum ozone production achieved by short-pulse excitation was ~8.5 × 1015 cm-3 at 20 W, which was four times greater than that achieved by ac excitation at the same power level.
NASA Astrophysics Data System (ADS)
Mesyats, G. A.; Pedos, M. S.; Rukin, S. N.; Rostov, V. V.; Romanchenko, I. V.; Sadykova, A. G.; Sharypov, K. A.; Shpak, V. G.; Shunailov, S. A.; Ul'masculov, M. R.; Yalandin, M. I.
2018-04-01
Fulfillment of the condition that the voltage rise time across an air gap is comparable with the time of electron acceleration from a cathode to an anode allows a flow of runaway electrons (REs) to be formed with relativistic energies approaching that determined by the amplitude of the voltage pulse. In the experiment described here, an RE energy of 1.4 MeV was observed by applying a negative travelling voltage pulse of 860-kV with a maximum rise rate of 10 MV/ns and a rise time of 100-ps. The voltage pulse amplitude was doubled at the cathode of the 2-cm-long air gap due to the delay of conventional pulsed breakdown. The above-mentioned record-breaking voltage pulse of ˜120 ps duration with a peak power of 15 GW was produced by an all-solid-state pulsed power source utilising pulse compression/sharpening in a multistage gyromagnetic nonlinear transmission line.
The threshold of vapor channel formation in water induced by pulsed CO2 laser
NASA Astrophysics Data System (ADS)
Guo, Wenqing; Zhang, Xianzeng; Zhan, Zhenlin; Xie, Shusen
2012-12-01
Water plays an important role in laser ablation. There are two main interpretations of laser-water interaction: hydrokinetic effect and vapor phenomenon. The two explanations are reasonable in some way, but they can't explain the mechanism of laser-water interaction completely. In this study, the dynamic process of vapor channel formation induced by pulsed CO2 laser in static water layer was monitored by high-speed camera. The wavelength of pulsed CO2 laser is 10.64 um, and pulse repetition rate is 60 Hz. The laser power ranged from 1 to 7 W with a step of 0.5 W. The frame rate of high-speed camera used in the experiment was 80025 fps. Based on high-speed camera pictures, the dynamic process of vapor channel formation was examined, and the threshold of vapor channel formation, pulsation period, the volume, the maximum depth and corresponding width of vapor channel were determined. The results showed that the threshold of vapor channel formation was about 2.5 W. Moreover, pulsation period, the maximum depth and corresponding width of vapor channel increased with the increasing of the laser power.
A dual-end-pumped Ho:YAG laser with a high energy output
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, X M; Cui, Zh; Dai, T Y
2015-08-31
We report a high energy output from a Ho:YAG oscillator resonantly double-end pumped by Tm:YLF lasers at room temperature. The maximum pulse energy of 52.5 mJ was achieved at a pulse repetition rate of 100Hz and a pulse duration of 35.2 ns, corresponding to a peak power of approximately 1.5 MW. The output wavelength was 2090.7 nm with beam quality factor M{sup 2} ∼ 1.2. (lasers)
Hughes, Michelle L.; Baudhuin, Jacquelyn L.; Goehring, Jenny L.
2014-01-01
The purpose of this study was to examine auditory-nerve temporal response properties and their relation to psychophysical threshold for electrical pulse trains of varying rates (“rate integration”). The primary hypothesis was that better rate integration (steeper slope) would be correlated with smaller decrements in ECAP amplitude as a function of stimulation rate (shallower slope of the amplitude-rate function), reflecting a larger percentage of the neural population contributing more synchronously to each pulse in the train. Data were obtained for 26 ears in 23 cochlear-implant recipients. Electrically evoked compound action potential (ECAP) amplitudes were measured in response to each of 21 pulses in a pulse train for the following rates: 900, 1200, 1800, 2400, and 3500 pps. Psychophysical thresholds were obtained using a 3-interval, forced-choice adaptive procedure for 300-ms pulse trains of the same rates as used for the ECAP measures, which formed the rate-integration function. For each electrode, the slope of the psychophysical rate-integration function was compared to the following ECAP measures: (1) slope of the function comparing average normalized ECAP amplitude across pulses versus stimulation rate (“adaptation”), (2) the rate that produced the maximum alternation depth across the pulse train, and (3) rate at which the alternating pattern ceased (stochastic rate). Results showed no significant relations between the slope of the rate-integration function and any of the ECAP measures when data were collapsed across subjects. However, group data showed that both threshold and average ECAP amplitude decreased with increased stimulus rate, and within-subject analyses showed significant positive correlations between psychophysical thresholds and mean ECAP response amplitudes across the pulse train. These data suggest that ECAP temporal response patterns are complex and further study is required to better understand the relative contributions of adaptation, desynchronization, and firing probabilities of individual neurons that contribute to the aggregate ECAP response. PMID:25093283
Directly diode-pumped high-energy Ho:YAG oscillator.
Lamrini, Samir; Koopmann, Philipp; Schäfer, Michael; Scholle, Karsten; Fuhrberg, Peter
2012-02-15
We report on the high-energy laser operation of an Ho:YAG oscillator resonantly pumped by a GaSb-based laser diode stack at 1.9 μm. The output energy was extracted from a compact plano-concave acousto-optically Q-switched resonator optimized for low repetition rates. Operating at 100 Hz, pulse energies exceeding 30 mJ at a wavelength of 2.09 μm were obtained. The corresponding pulse duration at the highest pump power was 100 ns, leading to a maximum peak power above 300 kW. Different pulse repetition rates and output coupling transmissions of the Ho:YAG resonator were studied. In addition, intracavity laser-induced damage threshold measurements are discussed.
Diode pumped passively Q-switched Nd:LuAG laser at 1442.6 nm
NASA Astrophysics Data System (ADS)
Guan, Chen; Liu, Zhaojun; Cong, Zhenhua; Liu, Yang; Xu, Xiaodong; Xu, Jun; Huang, Qingjie; Rao, Han; Chen, Xia; Zhang, Yanmin; Wu, Qianwen; Bai, Fen; Zhang, Sasa
2017-02-01
A diode-end-pumped passively Q-switched Nd:LuAG laser at 1442.6 nm was demonstrated with a V3+:YAG crystal as the saturable absorber. Under continuous-wave (CW) operation, the maximum output power of 1.83 W was obtained with an absorbed pumping power of 11.1 W. The corresponding optical-to-optical conversion efficiency was 16.5%. Under Q-switched operation, the maximum average output power of 424 mW was obtained at the same pumping power. The pulse duration and pulse repetition rate were 72 ns and 17.4 kHz, respectively.
Diode pumped CW and passively Q-switched Nd:LGGG laser at 1062 nm
NASA Astrophysics Data System (ADS)
Yang, H.; Jia, Z. T.; Zhang, B. T.; He, J. L.; Liu, S. D.; Yang, Y.; Tao, X. T.
2012-05-01
We report a Nd:LGGG laser at 1062 nm in the operations of the continuous-wave (CW) and passively Q-switching. The maximum CW output power of 5.62 W was obtained, corresponding to an optical-to-optical conversion efficiency of 49.0% and slope efficiency of 55.9%. By using Cr4+:YAG with initial transmission of 94% as the saturable absorber, for the first time, we got the maximum passively Q-switched output power of 1.21 W, accompanied with a highest pulse repetition rate of 27.1 kHz and a shortest pulse width of 9.1 ns.
Neutron Detection With Ultra-Fast Digitizer and Pulse Identification Techniques on DIII-D
NASA Astrophysics Data System (ADS)
Zhu, Y. B.; Heidbrink, W. W.; Piglowski, D. A.
2013-10-01
A prototype system for neutron detection with an ultra-fast digitizer and pulse identification techniques has been implemented on the DIII-D tokamak. The system consists of a cylindrical neutron fission chamber, a charge sensitive amplifier, and a GaGe Octopus 12-bit CompuScope digitizer card installed in a Linux computer. Digital pulse identification techniques have been successfully performed at maximum data acquisition rate of 50 MSPS with on-board memory of 2 GS. Compared to the traditional approach with fast nuclear electronics for pulse counting, this straightforward digital solution has many advantages, including reduced expense, improved accuracy, higher counting rate, and easier maintenance. The system also provides the capability of neutron-gamma pulse shape discrimination and pulse height analysis. Plans for the upgrade of the old DIII-D neutron counting system with these techniques will be presented. Work supported by the US Department of Energy under SC-G903402, and DE-FC02-04ER54698.
A 7.8 kV nanosecond pulse generator with a 500 Hz repetition rate
NASA Astrophysics Data System (ADS)
Lin, M.; Liao, H.; Liu, M.; Zhu, G.; Yang, Z.; Shi, P.; Lu, Q.; Sun, X.
2018-04-01
Pseudospark switches are widely used in pulsed power applications. In this paper, we present the design and performance of a 500 Hz repetition rate high-voltage pulse generator to drive TDI-series pseudospark switches. A high-voltage pulse is produced by discharging an 8 μF capacitor through a primary windings of a setup isolation transformer using a single metal-oxide-semiconductor field-effect transistor (MOSFET) as a control switch. In addition, a self-break spark gap is used to steepen the pulse front. The pulse generator can deliver a high-voltage pulse with a peak trigger voltage of 7.8 kV, a peak trigger current of 63 A, a full width at half maximum (FWHM) of ~30 ns, and a rise time of 5 ns to the trigger pin of the pseudospark switch. During burst mode operation, the generator achieved up to a 500 Hz repetition rate. Meanwhile, we also provide an AC heater power circuit for heating a H2 reservoir. This pulse generator can be used in circuits with TDI-series pseudospark switches with either a grounded cathode or with a cathode electrically floating operation. The details of the circuits and their implementation are described in the paper.
PCF based high power narrow line width pulsed fiber laser
NASA Astrophysics Data System (ADS)
Chen, H.; Yan, P.; Xiao, Q.; Wang, Y.; Gong, M.
2012-09-01
Based on semiconductor diode seeded multi-stage cascaded fiber amplifiers, we have obtained 88-W average power of a 1063-nm laser with high repetition rate of up to 1.5 MHz and a constant 2-ns pulse duration. No stimulated Brillouin scattering pulse or optical damage occurred although the maximum pulse peak power has exceeded 112 kW. The output laser exhibits excellent beam quality (M2x = 1.24 and M2y = 1.18), associated with a spectral line width as narrow as 0.065 nm (FWHM). Additionally, we demonstrate high polarization extinction ratio of 18.4 dB and good pulse stabilities superior to 1.6 % (RMS).
Peschek, G A; Hinterstoisser, B; Riedler, M; Muchl, R; Nitschmann, W H
1986-05-15
The net synthesis of ATP in dark anaerobic cells of Anacystis nidulans subjected to acid jumps and/or valinomycin pulses was characterized thermodynamically and kinetically. Maximum initial rates of 75 nmol ATP/min per mg dry weight at an applied proton motive force of -350 mV were obtained, the flow-force relationship (rate of ATP synthesis vs applied proton motive force) being linear between -240 and -320 mV irrespective of the source of the proton motive force. The pulse-induced ATP synthesis was inhibited by uncouplers (H+ ionophores) and F0F1-ATPase inhibitors but not by KCN or CO. In order to obtain maximum rates of pulse-induced ATP synthesis both a favorable stationary delta psi (-100 mV at pHo 9, preceding the acid jumps) and a favorable stationary delta pH (+2 units at pHo 4.1, preceding the valinomycin pulse) of the plasma membrane were obligatory, the effects of delta psi and delta pH being strictly additive. Moreover, the pulse-induced ATP synthesis required a minimum total proton motive force of -200 to -250 mV across the plasma membrane; it also required low preexisting phosphorylation potentials corresponding to -400 mV in dark anaerobic, i.e., energy-depleted, cells. The results are discussed in terms of both a reversible H+-ATPase and a respiratory electron transport system occurring in the plasma membrane of intact Anacystis nidulans.
A Quantitative Analysis of Pulsed Signals Emitted by Wild Bottlenose Dolphins.
Luís, Ana Rita; Couchinho, Miguel N; Dos Santos, Manuel E
2016-01-01
Common bottlenose dolphins (Tursiops truncatus), produce a wide variety of vocal emissions for communication and echolocation, of which the pulsed repertoire has been the most difficult to categorize. Packets of high repetition, broadband pulses are still largely reported under a general designation of burst-pulses, and traditional attempts to classify these emissions rely mainly in their aural characteristics and in graphical aspects of spectrograms. Here, we present a quantitative analysis of pulsed signals emitted by wild bottlenose dolphins, in the Sado estuary, Portugal (2011-2014), and test the reliability of a traditional classification approach. Acoustic parameters (minimum frequency, maximum frequency, peak frequency, duration, repetition rate and inter-click-interval) were extracted from 930 pulsed signals, previously categorized using a traditional approach. Discriminant function analysis revealed a high reliability of the traditional classification approach (93.5% of pulsed signals were consistently assigned to their aurally based categories). According to the discriminant function analysis (Wilk's Λ = 0.11, F3, 2.41 = 282.75, P < 0.001), repetition rate is the feature that best enables the discrimination of different pulsed signals (structure coefficient = 0.98). Classification using hierarchical cluster analysis led to a similar categorization pattern: two main signal types with distinct magnitudes of repetition rate were clustered into five groups. The pulsed signals, here described, present significant differences in their time-frequency features, especially repetition rate (P < 0.001), inter-click-interval (P < 0.001) and duration (P < 0.001). We document the occurrence of a distinct signal type-short burst-pulses, and highlight the existence of a diverse repertoire of pulsed vocalizations emitted in graded sequences. The use of quantitative analysis of pulsed signals is essential to improve classifications and to better assess the contexts of emission, geographic variation and the functional significance of pulsed signals.
Parametric Study of High Frequency Pulse Detonation Tubes
NASA Technical Reports Server (NTRS)
Cutler, Anderw D.
2008-01-01
This paper describes development of high frequency pulse detonation tubes similar to a small pulse detonation engine (PDE). A high-speed valve injects a charge of a mixture of fuel and air at rates of up to 1000 Hz into a constant area tube closed at one end. The reactants detonate in the tube and the products exit as a pulsed jet. High frequency pressure transducers are used to monitor the pressure fluctuations in the device and thrust is measured with a balance. The effects of injection frequency, fuel and air flow rates, tube length, and injection location are considered. Both H2 and C2H4 fuels are considered. Optimum (maximum specific thrust) fuel-air compositions and resonant frequencies are identified. Results are compared to PDE calculations. Design rules are postulated and applications to aerodynamic flow control and propulsion are discussed.
A design approach for systems based on magnetic pulse compression.
Kumar, D Durga Praveen; Mitra, S; Senthil, K; Sharma, D K; Rajan, Rehim N; Sharma, Archana; Nagesh, K V; Chakravarthy, D P
2008-04-01
A design approach giving the optimum number of stages in a magnetic pulse compression circuit and gain per stage is given. The limitation on the maximum gain per stage is discussed. The total system volume minimization is done by considering the energy storage capacitor volume and magnetic core volume at each stage. At the end of this paper, the design of a magnetic pulse compression based linear induction accelerator of 200 kV, 5 kA, and 100 ns with a repetition rate of 100 Hz is discussed with its experimental results.
Shock-Wave Pulse Compression and Stretching of Dodecane and Mineral Oils
NASA Astrophysics Data System (ADS)
Bannikova, I. A.; Zubareva, A. N.; Utkin, A. V.
2018-04-01
The behavior of dodecane, vacuum, and transformer oils under shock-wave pulse compression and stretching are studied experimentally. The wave profiles are registered using a VISAR laser interferometer. The shock adiabats, the dependence of the sound velocity on the pressure, and the maximum negative pressures developed in the studied liquids are determined. It is shown that the negative pressure value does not depend on the deformation rate in the case of oils and is a strong function of the compression pulse amplitude in the case of dodecane.
High peak power actively Q-switched mid-infrared fiber lasers at 3 μm
NASA Astrophysics Data System (ADS)
Shen, Yanlong; Wang, Yishan; Luan, Kunpeng; Chen, Hongwei; Tao, Mengmeng; Si, Jinhai
2017-04-01
Diode-pumped pulsed Er3+-doped ZBLAN fiber lasers at 2.8 μm actively Q-switched by using an mechanical Q-switch with feedbacks of a protected gold mirror and a blazing grating were investigated, respectively. A pulse energy of 0.13 mJ and repetition rate of 10 kHz with a pulse width of 127.3 ns at 2.78 μm was obtained when using a protected gold mirror as the feedback. By replacing the mirror with a blazing grating in Littrow configuration, the wavelength of the Q-switched pulse train was tunable with over 100 nm tuning range from 2.71 to 2.82 μm and a linewidth of 1.5 nm. A maxinmum pulse energy of up to 0.15 mJ and repetition rate of 10 kHz with a pulse width of 92.6 ns was achieved, yielding the maximum peak power of exceeding 1.6 kW. The pulse energy and peak power, to our knowledge, are the highest ever reported in the mid-infrared Q-switched fiber lasers.
NASA Astrophysics Data System (ADS)
Changqing, Zhao; Kai, Liu; Tong, Zhao; Takei, Masahiro; Weian, Ren
2014-04-01
The mud-pulse logging instrument is an advanced measurement-while-drilling (MWD) tool and widely used by the industry in the world. In order to improve the signal transmission rate, ensure the accurate transmission of information and address the issue of the weak signal on the ground of oil and gas wells, the signal generator should send out the strong mud-pulse signals with the maximum amplitude. With the rotary valve pulse generator as the study object, the three-dimensional Reynolds NS equations and standard k - ɛ turbulent model were used as a mathematical model. The speed and pressure coupling calculation was done by simple algorithms to get the amplitudes of different rates of flow and axial clearances. Tests were done to verify the characteristics of the pressure signals. The pressure signal was captured by the standpiece pressure monitoring system. The study showed that the axial clearances grew bigger as the pressure wave amplitude value decreased and caused the weakening of the pulse signal. As the rate of flow got larger, the pressure wave amplitude would increase and the signal would be enhanced.
First demonstration of multi-MeV proton acceleration from a cryogenic hydrogen ribbon target
NASA Astrophysics Data System (ADS)
Kraft, Stephan D.; Obst, Lieselotte; Metzkes-Ng, Josefine; Schlenvoigt, Hans-Peter; Zeil, Karl; Michaux, Sylvain; Chatain, Denis; Perin, Jean-Paul; Chen, Sophia N.; Fuchs, Julien; Gauthier, Maxence; Cowan, Thomas E.; Schramm, Ulrich
2018-04-01
We show efficient laser driven proton acceleration up to 14 MeV from a 62 μm thick cryogenic hydrogen ribbon. Pulses of the short pulse laser ELFIE at LULI with a pulse length of ≈350 fs at an energy of 8 J per pulse are directed onto the target. The results are compared to proton spectra from metal and plastic foils with different thicknesses and show a similarly good performance both in maximum energy as well as in proton number. Thus, this target type is a promising candidate for experiments with high repetition rate laser systems.
First demonstration of multi-MeV proton acceleration from a cryogenic hydrogen ribbon target
Kraft, Stephan; Obst, Lieselotte; Metzkes-Ng, Josefine; ...
2018-02-09
We show efficient laser driven proton acceleration up to 14 MeV from a 50 μm thick cryogenic hydrogen ribbon. Pulses of the short pulse laser ELFIE at LULI with a pulse length of ≈ 350 fs at an energy of 8 J per pulse are directed onto the target. The results were then compared to proton spectra from metal and plastic foils with different thicknesses and show a similar good performance both in maximum energy as well as in proton number. Thus, this target type is a promising candidate for experiments with high repetition rate laser systems.
First demonstration of multi-MeV proton acceleration from a cryogenic hydrogen ribbon target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraft, Stephan; Obst, Lieselotte; Metzkes-Ng, Josefine
We show efficient laser driven proton acceleration up to 14 MeV from a 50 μm thick cryogenic hydrogen ribbon. Pulses of the short pulse laser ELFIE at LULI with a pulse length of ≈ 350 fs at an energy of 8 J per pulse are directed onto the target. The results were then compared to proton spectra from metal and plastic foils with different thicknesses and show a similar good performance both in maximum energy as well as in proton number. Thus, this target type is a promising candidate for experiments with high repetition rate laser systems.
Choubey, Ambar; Vishwakarma, S C; Misra, Pushkar; Jain, R K; Agrawal, D K; Arya, R; Upadhyaya, B N; Oak, S M
2013-07-01
We have developed an efficient and high average power flash lamp pumped long pulse Nd:YAG laser capable of generating 1 kW of average output power with maximum 540 J of single pulse energy and 20 kW of peak power. The laser pulse duration can be varied from 1 to 40 ms and repetition rate from 1 to 100 Hz. A compact and robust laser pump chamber and resonator was designed to achieve this high average and peak power. It was found that this laser system provides highest single pulse energy as compared to other long pulsed Nd:YAG laser systems of similar rating. A slope efficiency of 5.4% has been achieved, which is on higher side for typical lamp pumped solid-state lasers. This system will be highly useful in laser welding of materials such as aluminium and titanium. We have achieved 4 mm deep penetration welding of these metals under optimized conditions of output power, pulse energy, and pulse duration. The laser resonator was optimized to provide stable operation from single shot to 100 Hz of repetition rate. The beam quality factor was measured to be M(2) ~ 91 and pulse-to-pulse stability of ±3% for the multimode operation. The laser beam was efficiently coupled through an optical fiber of 600 μm core diameter and 0.22 numerical aperture with power transmission of 90%.
MeV electron acceleration at 1kHz with <10 mJ laser pulses
NASA Astrophysics Data System (ADS)
Salehi, Fatholah; Goers, Andy; Hine, George; Feder, Linus; Kuk, Donghoon; Kim, Ki-Yong; Milchberg, Howard
2016-10-01
We demonstrate laser driven acceleration of electrons at 1 kHz repetition rate with pC charge above 1MeV per shot using < 10 mJ pulse energies focused on a near-critical density He or H2 gas jet. Using the H2 gas jet, electron acceleration to 0.5 MeV in 10 fC bunches was observed with laser pulse energy as low as 1.3mJ . Using a near-critical density gas jet sets the critical power required for relativistic self-focusing low enough for mJ scale laser pulses to self- focus and drive strong wakefields. Experiments and particle-in-cell simulations show that optimal drive pulse duration and chirp for maximum electron bunch charge and energy depends on the target gas species. High repetition rate, high charge, and short duration electron bunches driven by very modest pulse energies constitutes an ideal portable electron source for applications such as ultrafast electron diffraction experiments and high rep. rate γ-ray production. This work is supported by the US Department of Energy, the National Science Foundation, and the Air Force Office of Scientific Research.
On the Origin of Pulsations of Sub-THz Emission from Solar Flares
NASA Astrophysics Data System (ADS)
Zaitsev, V. V.; Stepanov, A. V.; Kaufmann, P.
2014-08-01
We propose a model to explain fast pulsations in sub-THz emission from solar flares. The model is based on the approach of a flaring loop as an equivalent electric circuit and explains the pulse-repetition rate, the high-quality factor, Q≥103, low modulation depth, pulse synchronism at different frequencies, and the dependence of the pulse-repetition rate on the emission flux, observed by Kaufmann et al. ( Astrophys. J. 697, 420, 2009). We solved the nonlinear equation for electric current oscillations using a Van der Pol method and found the steady-state value for the amplitude of the current oscillations. Using the pulse rate variation during the flare on 4 November 2003, we found a decrease of the electric current from 1.7×1012 A in the flare maximum to 4×1010 A just after the burst. Our model is consistent with the plasma mechanism of sub-THz emission suggested recently by Zaitsev, Stepanov, and Melnikov ( Astron. Lett. 39, 650, 2013).
NASA Astrophysics Data System (ADS)
Kaspar, Sebastian; Rattunde, Marcel; Töpper, Tino; Schwarz, Ulrich T.; Manz, Christian; Köhler, Klaus; Wagner, Joachim
2012-10-01
A 2 μm electro-optically cavity-dumped semiconductor disk laser (SDL) with a pulse full width at half maximum of 3 ns, a pulse peak power of 30 W, and repetition rates adjustable between 87 kHz and 1 MHz is reported. For ns-pulse cavity dumping the SDL was set up with a 35-cm long cavity into which an intra-cavity Brewster-angled polarizer prism and a Pockels cell for rotation of the linear polarization were inserted. By means of internal total reflection in the birefringent polarizer, pulses are coupled out of the cavity sideways. This variant of ns-pulse 2-μm SDL is well suited for applications such as high-precision light detection and ranging or ns-pulse laser materials processing after further power amplification.
NASA Technical Reports Server (NTRS)
Rustan, Pedro L., Jr.
1987-01-01
Lightning data obtained by measuring the surface electromagnetic fields on a CV-580 research aircraft during 48 lightning strikes between 1500 and 18,000 feet in central Florida during the summers of 1984 and 1985, and nuclear electromagnetic pulse (NEMP) data obtained by surface electromagnetic field measurements using a 1:74 CV-580 scale model, are presented. From one lightning event, maximum values of 3750 T/s for the time rate of change of the surface magnetic flux density, and 4.7 kA for the peak current, were obtained. From the simulated NEMP test, maximum values of 40,000 T/s for the time rate of change of the surface magnetic flux density, and 90 A/sq m for the total normal current density, were found. The data have application to the development of a military aircraft lightning/NEMP standard.
Method for distance determination using range-gated imaging suitable for an arbitrary pulse shape
NASA Astrophysics Data System (ADS)
Kabashnikov, Vitaly; Kuntsevich, Boris
2017-10-01
A method for distance determination with the help of range-gated viewing systems suitable for the arbitrary shape of the illumination pulse is proposed. The method is based on finding the delay time at which maximum of the return pulse energy takes place. The maximum position depends on the pulse and gate durations and, generally speaking, on the pulse shape. If the pulse length is less than or equal to the gate duration, the delay time appropriate to the maximum does not depend on the pulse shape. At equal pulse and gate durations, there is a strict local maximum, which turns into a plateau when pulse is shorter than gate duration. A delay time appropriate to the strict local maximum or the far boundary of the plateau (where non-strict maximum is) is directly related to the distance to the object. These findings are confirmed by analytical relationships for trapezoid pulses and numerical results for the real pulse shape. To verify the proposed method we used a vertical wall located at different distances from 15 to 120m as an observed object. Delay time was changing discretely in increments of 5 ns. Maximum of the signal was determined by visual observation of the object on the monitor screen. The distance defined by the proposed method coincided with the direct measurement with accuracy 1- 2m, which is comparable with the delay time step multiplied by half of the light velocity. The results can be useful in the development of 3-D vision systems.
Scaling of echolocation call parameters in bats.
Jones, G
1999-12-01
I investigated the scaling of echolocation call parameters (frequency, duration and repetition rate) in bats in a functional context. Low-duty-cycle bats operate with search phase cycles of usually less than 20 %. They process echoes in the time domain and are therefore intolerant of pulse-echo overlap. High-duty-cycle (>30 %) species use Doppler shift compensation, and they separate pulse and echo in the frequency domain. Call frequency scales negatively with body mass in at least five bat families. Pulse duration scales positively with mass in low-duty-cycle quasi-constant-frequency (QCF) species because the large aerial-hawking species that emit these signals fly fast in open habitats. They therefore detect distant targets and experience pulse-echo overlap later than do smaller bats. Pulse duration also scales positively with mass in the Hipposideridae, which show at least partial Doppler shift compensation. Pulse repetition rate corresponds closely with wingbeat frequency in QCF bat species that fly relatively slowly. Larger, fast-flying species often skip pulses when detecting distant targets. There is probably a trade-off between call intensity and repetition rate because 'whispering' bats (and hipposiderids) produce several calls per predicted wingbeat and because batches of calls are emitted per wingbeat during terminal buzzes. Severe atmospheric attenuation at high frequencies limits the range of high-frequency calls. Low-duty-cycle bats that call at high frequencies must therefore use short pulses to avoid pulse-echo overlap. Rhinolophids escape this constraint by Doppler shift compensation and, importantly, can exploit advantages associated with the emission of both high-frequency and long-duration calls. Low frequencies are unsuited for the detection of small prey, and low repetition rates may limit prey detection rates. Echolocation parameters may therefore constrain maximum body size in aerial-hawking bats.
A diode-pumped Tm:CaYAlO4 laser at 1851 nm
NASA Astrophysics Data System (ADS)
Lan, Jinglong; Guan, Xiaofeng; Xu, Bin; Moncorgé, Richard; Xu, Huiying; Cai, Zhiping
2017-07-01
Laser emission at ~1850 nm is of great interest for neural stimulation applications. In this letter, we report on the diode-pumped continuous-wave (CW) and Q-switched (QS) laser operation of Tm:CaYAlO4 at 1851 nm, for the first time to our knowledge. In the CW regime, a maximum output power up to 0.62 W is obtained with a laser slope efficiency of about 18.0%. Using a Cr:ZnSe saturable absorber, QS laser operation is achieved with a maximum average output power of 0.25 W, the narrowest pulse width of 107 ns and the highest repetition rate of 5.85 kHz. The corresponding pulse peak power and pulse energy are about 388 W and 42.8 µJ, respectively. In this Q-switched mode, wavelength tuning is also realized over about 3 nm by slightly tilting the saturable absorber.
Pulse pileup statistics for energy discriminating photon counting x-ray detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Adam S.; Harrison, Daniel; Lobastov, Vladimir
Purpose: Energy discriminating photon counting x-ray detectors can be subject to a wide range of flux rates if applied in clinical settings. Even when the incident rate is a small fraction of the detector's maximum periodic rate N{sub 0}, pulse pileup leads to count rate losses and spectral distortion. Although the deterministic effects can be corrected, the detrimental effect of pileup on image noise is not well understood and may limit the performance of photon counting systems. Therefore, the authors devise a method to determine the detector count statistics and imaging performance. Methods: The detector count statistics are derived analyticallymore » for an idealized pileup model with delta pulses of a nonparalyzable detector. These statistics are then used to compute the performance (e.g., contrast-to-noise ratio) for both single material and material decomposition contrast detection tasks via the Cramer-Rao lower bound (CRLB) as a function of the detector input count rate. With more realistic unipolar and bipolar pulse pileup models of a nonparalyzable detector, the imaging task performance is determined by Monte Carlo simulations and also approximated by a multinomial method based solely on the mean detected output spectrum. Photon counting performance at different count rates is compared with ideal energy integration, which is unaffected by count rate. Results: The authors found that an ideal photon counting detector with perfect energy resolution outperforms energy integration for our contrast detection tasks, but when the input count rate exceeds 20%N{sub 0}, many of these benefits disappear. The benefit with iodine contrast falls rapidly with increased count rate while water contrast is not as sensitive to count rates. The performance with a delta pulse model is overoptimistic when compared to the more realistic bipolar pulse model. The multinomial approximation predicts imaging performance very close to the prediction from Monte Carlo simulations. The monoenergetic image with maximum contrast-to-noise ratio from dual energy imaging with ideal photon counting is only slightly better than with dual kVp energy integration, and with a bipolar pulse model, energy integration outperforms photon counting for this particular metric because of the count rate losses. However, the material resolving capability of photon counting can be superior to energy integration with dual kVp even in the presence of pileup because of the energy information available to photon counting. Conclusions: A computationally efficient multinomial approximation of the count statistics that is based on the mean output spectrum can accurately predict imaging performance. This enables photon counting system designers to directly relate the effect of pileup to its impact on imaging statistics and how to best take advantage of the benefits of energy discriminating photon counting detectors, such as material separation with spectral imaging.« less
Chen, Fei; Xu, Dongdong; Gao, Fei; Zheng, Changbin; Zhang, Kuo; He, Yang; Wang, Chunrui; Guo, Jin
2015-05-04
Employing a fiber-coupled diode-laser with a center wavelength of 852.25 nm and a line width of 0.17 nm, experimental investigation on diode-end-pumped cesium (Cs) vapor laser stably operated at continuous-wave (CW) and pulse regime is carried out. A 5 mm long cesium vapor cell filled with 60 kPa helium and 20 kPa ethane is used as laser medium. Using an output coupler with reflectivity of 48.79%, 1.26 W 894.57 nm CW laser is obtained at an incident pump power of 4.76 W, corresponding an optical-optical efficiency of 26.8% and a slope-efficiency of 28.8%, respectively. The threshold temperature is 67.5 °C. Stable pulsed cesium laser with a maximum average output power of 2.6 W is obtained at a repetition rate of 76 Hz, and the pulse repetition rate can be extend to 1 kHz with a pulse width of 18 μs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durandet, J.; Defives, D.; Choffe, B.
1959-10-31
The performsnce of a pulsed column with perforated plates was studied with the aid of a uranyl nitrate-nitric acid --water --tributyl phosphate system. The extraction of uranium from an aqueous acidic solution by an organic solvent and the extraction of uranium from organic solutions by water were the two cases investigated. The variation of the efficiency and the capacity of the pulsed column was determined as a function of the pulse amplitude and frequency, of the total flow rate, of the diameter of the holes, and of the choice of dispersed phase. The results showed that for a given amplitudemore » and total flow rate the efficiency has a maximum with an increase in frequency. (J.S.R.)« less
NASA Astrophysics Data System (ADS)
Durán Sánchez, M.; Álvarez-Tamayo, R. I.; Posada-Ramírez, B.; Alaniz-Baylón, J.; Bravo-Huerta, E.; Santiago-Hernández, H.; Hernández-Arriaga, M. V.; Bello-Jiménez, Miguel; Ibarra-Escamilla, B.; Kuzin, E. A.
2018-02-01
We report a linear cavity all-fiber passive Q-switched thulium-doped fiber laser operating at the 2 μm wavelength range. The laser configuration is based on a thulium-doped fiber used as a gain medium and an unpumped segment of holmium-doped fiber which acts as a fiber saturable absorber. The cavity is formed by a fiber optical loop mirror and the flat end facet of the holmium-doped fiber. The fiber segments as saturable absorber is a 1-m long single mode doubleclad holmium-doped fiber. Q-switched pulses are obtained at the wavelength of 2024.5 nm with a pulse width of 1.1 μs. The pulse repetition rate increases as a linear function of the applied pump power. The maximum pulse repetition rate of 100 kHz was obtained with a pump power of 2.4 W.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang Gao
2015-11-30
A diode-pumped, passively Q-switched, intracavity frequency-doubled YVO{sub 4}/Nd : YVO{sub 4}/KTP green laser is realised using a GaAs saturable absorber. Two pieces of GaAs wafers are employed in the experiment. In using a 400-μm-thick GaAs wafer and an incident pump power of 10.5 W, the maximum output power of the passively Q-switched green laser is 362 mW at a pulse repetition rate of 84 kHz and a pulse duration of 2.5 ns. When use is made of a 700-mm-thick GaAs wafer, the minimum pulse duration is 1.5 ns at a repetition rate of 67 kHz, pulse energy of 4.18 μJmore » and peak power of 2.8 kW. (control of laser radiation parameters)« less
NASA Technical Reports Server (NTRS)
Olree, H. D.; Corbin, B.; Smith, C.
1977-01-01
Pedalling a bicycle at least ten minutes a day at 85% of maximum pulse rate, three days a week for ten weeks will produce moderate increases in overall strength and physical work capacity in college-age females. The longer the training session, up to thirty minutes per session, the greater are the increases in physical work capacity that result when college-age females are trained three days a week for ten weeks at 85% of their maximum heart rate.
Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge
NASA Astrophysics Data System (ADS)
Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu
2018-03-01
The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.
Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge.
Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu
2018-03-01
The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.
Theoretical Study of Molecular Transport Through a Permeabilized Cell Membrane in a Microchannel.
Mahboubi, Masoumeh; Movahed, Saeid; Hosseini Abardeh, Reza; Hoshyargar, Vahid
2017-06-01
A two-dimensional model is developed to study the molecular transport into an immersed cell in a microchannel and to investigate the effects of finite boundary (a cell is suspended in a microchannel), amplitude of electric pulse, and geometrical parameter (microchannel height and size of electrodes) on cell uptake. Embedded electrodes on the walls of the microchannel generate the required electric pulse to permeabilize the cell membrane, pass the ions through the membrane, and transport them into the cell. The shape of electric pulses is square with the time span of 6 ms; their intensities are in the range of 2.2, 2.4, 2.6, 3 V. Numerical simulations have been performed to comprehensively investigate the molecular uptake into the cell. The obtained results of the current study demonstrate that calcium ions enter the cell from the anodic side (the side near positive electrode); after a while, the cell faces depletion of the calcium ions on a positive electrode-facing side within the microchannel; the duration of depletion depends on the amplitude of electric pulse and geometry that lasts from microseconds to milliseconds. By keeping geometrical parameters and time span constant, increment of a pulse intensity enhances molecular uptake and rate of propagation inside the cell. If a ratio of electrode size to cell diameter is larger than 1, the transported amount of Ca 2+ into the cell, as well as the rate of propagation, will be significantly increased. By increasing the height of the microchannel, the rate of uptake is decreased. In an infinite domain, the peak concentration becomes constant after reaching the maximum value; this value depends on the intra-extracellular conductivity and diffusion coefficient of interior and exterior domains of the cell. In comparison, the maximum concentration is changed by geometrical parameters in the microchannel. After reaching the maximum value, the peak concentration reduces due to the depletion of Ca 2+ ions within the microchannel. Electrophoretic velocity has a significant effect on the cell uptake.
NASA Astrophysics Data System (ADS)
Berger, Jeffrey W.; Bochow, Thomas W.; Kim, Rosa Y.; D'Amico, Donald J.
1996-05-01
Er:YAG laser-mediated tissue disruption and removal results from both direct ablation and the acousto-mechanical sequelae of explosive vaporization of the tissue water. We investigated the scaling laws for photoablative and photodisruptive interactions, and interpret these results towards optimizing energy delivery for vitreoretinal surgical maneuvers. Experimental studies were performed with a free-running Er:YAG laser (100 - 300 microseconds FWHM, 0.5 - 20 mJ, 1 - 30 Hz). Energy was delivered by fiberoptic to a custom-made handpiece with a 75 - 600 micrometer quartz tip, and applied to excised, en bloc samples of bovine vitreous or model systems of saline solution. Sample temperature was measured with 33 gauge copper- constantan thermocouples. Expansion and collapse of the bubble following explosive vaporization of tissue water was optically detected. The bubble size was calculated from the period of the bubble oscillation and known material properties. A model for bubble expansion is presented based on energy principles and adiabatic gas expansion. Pressure transients associated with bubble dynamics are estimated following available experimental and analytical data. The temperature rise in vitreous and model systems depends on the pulse energy and repetition rate, but is independent of the probe-tip diameter at constant laser power; at moderate repetition rates, the temperature rise depends only on the total energy (mJ) delivered. The maximum bubble diameter increases as the cube root of the pulse energy with a reverberation period of 110 microseconds and a maximum bubble diameter of 1.2 mm following one mJ delivery to saline through a 100 micrometer tip. Our modeling studies generate predictions similar to experimental data and predicts that the maximum bubble diameter increases as the cube root of the pulse energy. We demonstrate that tissue ablation depends on radiant exposure (J/cm2), while temperature rise, bubble size, and pressure depends on total pulse energy. Further, we show that mechanical injury should be minimized by delivering low pulse energy, through small diameter probe tips, at high repetition rates. These results allow for optimization strategies relevant to achieving vitreoretinal surgical goals while minimizing the potential for unintentional injury.
Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2 μm.
Lagatsky, A A; Calvez, S; Gupta, J A; Kisel, V E; Kuleshov, N V; Brown, C T A; Dawson, M D; Sibbett, W
2011-05-09
Efficient mode-locking in a Tm:KY(WO(4))(2) laser is demonstrated by using InGaAsSb quantum-well SESAMs. Self-starting ultrashort pulse generation was realized in the 1979-2074 nm spectral region. Maximum average output power up to 411 mW was produced around 1986 nm with the corresponding pulse duration and repetition rate of 549 fs and 105 MHz respectively. Optimised pulse durations of 386 fs were produced with an average power of 235 mW at 2029 nm. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo
2016-03-01
In this paper, high-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (Aluminium, Copper, Stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high pulse repetition frequency picosecond laser with maximum average output power of 270 W in conjunction with a unique, in-house developed two-axis polygon scanner. Initially, different concepts of polygon scanners are engineered and tested to find out the optimal architecture for ultrafast and precision laser beam scanning. Remarkable 1,000 m/s scan speed is achieved on the substrate, and thanks to the resulting low pulse overlap, thermal accumulation and plasma absorption effects are avoided at up to 20 MHz pulse repetition frequencies. In order to identify optimum processing conditions for efficient high-average power laser machining, the depths of cavities produced under varied parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. The maximum removal rate is achieved as high as 27.8 mm3/min for Aluminium, 21.4 mm3/min for Copper, 15.3 mm3/min for Stainless steel and 129.1 mm3/min for Al2O3 when full available laser power is irradiated at optimum pulse repetition frequency.
NASA Astrophysics Data System (ADS)
Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu
2018-06-01
Hydrogenated amorphous carbon (a-C:H) films are deposited on silicon (Si) substrates using a high-repetition microsecond-pulsed DC plasma chemical vapor deposition (CVD) system from acetylene (C2H2) at a gas pressure of 15 Pa inside a custom-made vacuum chamber. The plasma discharge characteristics, hydrocarbon species, and the microstructure of the resulting films are examined at various pulse repetition rates from 50 to 400 kHz and a fixed duty cycle of 50%. The optical emission spectra confirmed the increase in electron excitation energy from 1.09 to 1.82 eV and the decrease in the intensity ratio of CH/C2 from 1.04 to 0.75 with increasing pulse frequency, indicating the enhanced electron impact dissociation of C2H2 gas. With increasing pulse frequency, the deposition rate gradually increased, reaching a maximum rate of 60 nm/min at 200 kHz, after which a progressive decrease was noted, whereas the deposition area was almost uniform for all the prepared films. Clear trends of increasing sp3 content (amorphization) and decreasing hydrogen (H) content in the films were observed as the pulse repetition rate increased, while most of the hydrogen atoms bonded to carbon atoms by sp3 hybridization rather than by sp2 hybridization.
Chen, Rong; Yang, Jianhua; Cheng, Xinbing; Pan, Zilong
2017-03-01
High voltage pulse generators are widely applied in a number of fields. Defense and industrial applications stimulated intense interests in the area of pulsed power technology towards the system with high power, high repetition rate, solid state characteristics, and compact structure. An all-solid-state microsecond-range quasi-square pulse generator based on a fractional-turn ratio saturable pulse transformer and anti-resonance network is proposed in this paper. This generator consists of a charging system, a step-up system, and a modulating system. In this generator, the fractional-turn ratio saturable pulse transformer is the key component since it acts as a step-up transformer and a main switch during the working process. Demonstrative experiments show that if the primary storage capacitors are charged to 400 V, a quasi-square pulse with amplitude of about 29 kV can be achieved on a 3500 Ω resistive load, as well as the pulse duration (full width at half maximum) of about 1.3 μs. Preliminary repetition rate experiments are also carried out, which indicate that this pulse generator could work stably with the repetition rates of 30 Hz and 50 Hz. It can be concluded that this kind of all-solid-state microsecond-range quasi-square pulse generator can not only lower both the operating voltage of the primary windings and the saturable inductance of the secondary windings, thus ideally realizing the magnetic switch function of the fractional-turn ratio saturable pulse transformer, but also achieve a quasi-square pulse with high quality and fixed flat top after the modulation of a two-section anti-resonance network. This generator can be applied in areas of large power microwave sources, sterilization, disinfection, and wastewater treatment.
Satellite tracking and Earth dynamics research programs
NASA Technical Reports Server (NTRS)
Pearlman, M. R.
1984-01-01
Following an upgrading program, ranging performance capabilities of a satellite-tracking pulsed laser system were assessed in terms of range accuracy, range noise, data yield, and reliability. With a shorter laser pulse duration (2.5 to 3.0 NSEC) and a new analog pulse processing system, the systematic range errors were reduced to 3 to 5 cm and range noise was reduced to 5 to 16 cm and range noise was reduced to 5 to 15 cm on Starlette and BE-C, and 10 to 18 cm on LAGEOS. Maximum pulse repetition rate was increased to 30 pulses per minute and significant improvement was made in signal to noise ratio by installing a 3 A interference filter and by reducing the range gate window to 200 to 400 nsec. The solution to a problem involving leakage of a fraction of the laser oscillator pulse through the pulse chopper was outlined.
Modular, Microprocessor-Controlled Flash Lighting System
NASA Technical Reports Server (NTRS)
Kiefer, Dwayne; Gray, Elizabeth; Skupinski, Robert; Stachowicz, Arthur; Birchenough, William
2006-01-01
A microprocessor-controlled lighting system generates brief, precisely timed, high-intensity flashes of light for scientific imaging at frame rates up to about 1 kHz. The system includes an array of light-emitting diodes (LEDs) that are driven in synchronism with an externally generated timing signal (for example, a timing signal generated by a video camera). The light output can be varied in peak intensity, pulse duration, pulse delay, and pulse rate, all depending on the timing signal and associated externally generated control signals. The array of LEDs comprises as many as 16 LED panels that can be attached together. Each LED panel is a module consisting of a rectangular subarray of 10 by 20 LEDs of advanced design on a printed-circuit board in a mounting frame with a power/control connector. The LED panels are controlled by an LED control module that contains an AC-to-DC power supply, a control board, and 8 LED-panel driver boards. In prior LED panels, the LEDs are packaged at less than maximum areal densities in bulky metal housings that reduce effective active areas. In contrast, in the present LED panels, the LEDs are packed at maximum areal density so as to afford 100-percent active area and so that when panels are joined side by side to form the array, there are no visible seams between them and the proportion of active area is still 100 percent. Each panel produces an illuminance of .5 x 10( exp 4) lux at a distance of 5.8 in. (approx.1.6 cm). The LEDs are driven according to a pulse-width-modulation control scheme that makes it safe to drive the LEDs beyond their rated steady-state currents in order to generate additional light during short periods. The drive current and the pulse-width modulation for each LED panel can be controlled independently of those of the other 15 panels. The maximum allowable duration of each pulse of drive current is a function of the amount of overdrive, the total time to be spent in overdrive operation, and the limitations of the LEDs. The system is configured to limit the overdrive according to values specific to each type of LED in the array. These values are coded into firmware to prevent inadvertent damage to the LED panels.
Implementation and initial test result of a prototype solid state modulator for pulsed magnetron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dake, Vishal; Mangalvedekar, H.A., E-mail: vishaldake90@gmail.com; Tillu, Abhijit
2014-07-01
A solid-state modulator rated for 50 kV, 120A, 4μs and 250 Hz has been designed. The discharging circuit of the modulator is being tested at ∼ 33 kV, 40-80A, at a maximum pulse repetition rate of 30 pps. The paper discusses development and testing of prototype discharging circuit on resistive load and magnetron. The technique used for measurement of pulse transformer leakage inductance, distributed capacitance and stray primary circuit series inductance will also be discussed in detail. It is necessary to have Energy Storage Capacitors with low ESL for these applications (ESL < 40 nH). The method used for evaluatingmore » the ESL of locally available metalized polypropylene capacitors will also be presented. (author)« less
Au nanocages/SiO2 as saturable absorbers for passively Q-switched all-solid-state laser
NASA Astrophysics Data System (ADS)
Wang, Lili; Chen, Xiaohan; Bai, Jinxi; Liu, Binghai; Hu, Qiongyu; Li, Ping
2018-04-01
Based on Au nanocages/SiO2 (Au-NCs/SiO2) as saturable absorber (SA), passively Q-switched Nd:YVO4 lasers with the output couplers (OCs) with the transmittance (T) of 4% and 10.8% were demonstrated, respectively. Q-switched pulse with the shortest pulse duration of 154.2 ns was achieved at T = 4% under the pump power of 2.11 W with the corresponding repetition rate of 280.0 kHz and average output power of 140.6 mW. While the maximum average output power of 150.2 mW was obtained at T = 10.8% under the pump power of 2.42 W, corresponding to the pulse width and repetition rate of 222.0 ns and 279.1 kHz.
NASA Astrophysics Data System (ADS)
Tulea, C.; Caron, J.; Wahab, H.; Gehlich, N.; Hoefer, M.; Esser, D.; Jungbluth, B.; Lenenbach, A.; Noll, R.
2013-03-01
Several laser systems in the infrared wavelength range, such as Nd:YAG, Er:YAG or CO2 lasers are used for efficient ablation of bone tissue. Here the application of short pulses in coaction with a thin water film results in reduced thermal side effects. Nonetheless up to now there is no laser-process for bone cutting in a clinical environment due to lack of ablation efficiency. Investigations of laser ablation rates of bone tissue using a rinsing system and concerning bleedings have not been reported yet. In our study we investigated the ablation rates of bovine cortical bone tissue, placed 1.5 cm deep in water under laminar flow conditions, using a short pulsed (25 ps), frequency doubled (532 nm) Nd:YVO4 laser with pulse energies of 1 mJ at 20 kHz repetition rate. The enhancement of the ablation rate due to debris removal by an additional water flow from a well-directed blast pipe as well as the negative effect of the admixture of bovine serum albumin to the water were examined. Optical Coherence Tomography (OCT) was used to measure the ablated volume. An experimental study of the depth dependence of the ablation rate confirms a simplified theoretical prediction regarding Beer-Lambert law, Fresnel reflection and a Gaussian beam profile. Conducting precise incisions with widths less than 1.5 mm the maximum ablation rate was found to be 0.2 mm3/s. At depths lower than 100 μm, while the maximum depth was 3.5 mm.
Kennison, Rachel L; Kamer, Krista; Fong, Peggy
2011-06-01
We quantified the effects of initial macroalgal tissue nitrogen (N) status (depleted and enriched) and varying pulses of nitrate (NO 3 - ) concentration on uptake and storage of nitrogen in Ulva intestinalis L. and Ulva expansa (Setch.) Setch. et N. L. Gardner using mesocosms modeling shallow coastal estuaries in Mediterranean climates. Uptake of NO 3 - (μmol · g dry weight [dwt] -1 · h -1 ) was measured as loss from the water after 1, 2, 4, 8, 12, and 24 h and storage as total tissue nitrogen (% dwt) and nitrate (ppm). Both species of algae exhibited a high affinity for NO 3 - across all N pulses and initial tissue contents. There was greater NO 3 - removal from the water for depleted than enriched algae across all time intervals. In the low-N-pulse treatment, U. intestinalis and U. expansa removed all measurable NO 3 - within 8 and 12 h, respectively, and in the medium and high treatments, removal was high and then decreased over time. Maximum mean uptake rates of nitrate were greater for U. expansa (∼300 μmol · g dwt -1 · h -1 ) than U. intestinalis (∼100 μmol · g dwt -1 · h -1 ); however, uptake rates were highly variable over time. Overall, U. expansa uptake rates were double those of U. intestinalis. Maximum tissue NO 3 - for U. expansa was >1,000 ppm, five times that of U. intestinalis, suggesting that U. expansa has a greater storage capacity in this cellular pool. These results showed that opportunistic green algae with differing tissue nutrient histories were able to efficiently remove nitrate from the water across a wide range of N pulses; thus, both are highly adapted to proliferate in estuarine environments with pulsed nutrient supplies. © 2011 Phycological Society of America.
Dysprosium-doped PbGa2S4 laser generating at 4.3 μm directly pumped by 1.7 μm laser diode.
Jelínková, Helena; Doroshenko, Maxim E; Jelínek, Michal; Sulc, Jan; Osiko, Vyacheslav V; Badikov, Valerii V; Badikov, Dmitrii V
2013-08-15
In this Letter, we demonstrate the pulsed and CW operation of the Dy:PbGa(2)S(4) laser directly pumped by the 1.7 μm laser diode. In the pulsed regime (pulse duration 5 ms; repetition rate 20 Hz), the maximum mean output power of 9.5 mW was obtained with the slope efficiency of 9.3% with respect to the absorbed pump power. The generated wavelength was 4.32 μm, and the laser beam cross section was approximately Gaussian on both axes. Stable CW laser generation was also successfully obtained with the maximum output power of 67 mW and the slope efficiency of 8%. Depopulation of the lower laser level by 1.7 μm pump radiation absorption followed by 1.3 μm upconversion fluorescence was demonstrated. These results show the possibility of construction of the compact diode-pumped solid-state pulsed or CW laser generating at 4.3 μm in the power level of tens mW operating at room temperature.
High beam quality and high energy short-pulse laser with MOPA
NASA Astrophysics Data System (ADS)
Jin, Quanwei; Pang, Yu; Jiang, JianFeng; Tan, Liang; Cui, Lingling; Wei, Bin; Sun, Yinhong; Tang, Chun
2018-03-01
A high energy, high beam quality short-pulse diode-pumped Nd:YAG master oscillator power-amplifier (MOPA) laser with two amplifier stages is demonstrated. The two-rod birefringence compensation was used as beam quality controlling methods, which presents a short-pulse energy of 40 mJ with a beam quality value of M2 = 1.2 at a repetition rate of 400Hz. The MOPA system delivers a short-pulse energy of 712.5 mJ with a pulse width of 12.4 ns.The method of spherical aberration compensation is improved the beam quality, a M2 factor of 2.3 and an optical-to-optical efficiency of 27.7% is obtained at the maximum laser out power.The laser obtained 1.4J out energy with polarization integration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C; Lin, M; Chen, L
Purpose: Recent in vitro and in vivo experimental findings provided strong evidence that pulsed low-dose-rate radiotherapy (PLDR) produced equivalent tumor control as conventional radiotherapy with significantly reduced normal tissue toxicities. This work aimed to implement a PLDR clinical protocol for the management of recurrent cancers utilizing IMRT and VMAT. Methods: Our PLDR protocol requires that the daily 2Gy dose be delivered in 0.2Gy×10 pulses with a 3min interval between the pulses. To take advantage of low-dose hyper-radiosensitivity the mean dose to the target is set at 0.2Gy and the maximum dose is limited to 0.4Gy per pulse. Practical planning strategiesmore » were developed for IMRT and VMAT: (1) set 10 ports for IMRT and 10 arcs for VMAT with each angle/arc as a pulse; (2) set the mean dose (0.2Gy) and maximum dose (0.4Gy) to the target per pulse as hard constraints (no constraints to OARs); (3) select optimal port/arc angles to avoid OARs; and (4) use reference structures in or around target/OARs to reduce maximum dose to the target/OARs. IMRT, VMAT and 3DCRT plans were generated for 60 H and N, breast, lung, pancreas and prostate patients and compared. Results: All PLDR treatment plans using IMRT and VMAT met the dosimetry requirements of the PLDR protocol (mean target dose: 0.20Gy±0.01Gy; maximum target dose < 0.4Gy). In comparison with 3DCRT, IMRT and VMAT exhibited improved target dose conformity and OAR dose sparing. A single arc can minimize the difference in the target dose due to multi-angle incidence although the delivery time is longer than 3DCRT and IMRT. Conclusion: IMRT and VMAT are better modalities for PLDR treatment of recurrent cancers with superior target dose conformity and critical structure sparing. The planning strategies/guidelines developed in this work are practical for IMRT/VMAT treatment planning to meet the dosimetry requirements of the PLDR protocol.« less
Passively Q-switched Tm:BaY2F8 lasers
NASA Astrophysics Data System (ADS)
Yu, Haohai; Veronesi, Stefano; Mateos, Xavier; Petrov, Valentin; Griebner, Uwe; Parisi, Daniela; Tonelli, Mauro
2013-07-01
We demonstrate passive Q-switching (PQS) of the Tm-doped BaY2F8 (Tm:BYF) laser for the first time. The Tm:BYF laser is diode-pumped using an L-shaped hemispherical resonator. In the cw regime, the maximum output power with an 18% Tm-doped BYF crystal reached 1.12 W at ~1920 nm for an absorbed pump power of 3.06 W. In the PQS regime, maximum pulse energy (720 μJ) and peak power (17.1 kW) were obtained with an 8% Tm-doped BYF crystal and a Cr:ZnS saturable absorber with 92% low-signal transmission, again near 1920 nm, for a pulse width of ~40 ns and a repetition rate of 50 Hz.
NASA Astrophysics Data System (ADS)
Zhang, Jingdong; Zhu, Tao; Zheng, Hua; Kuang, Yang; Liu, Min; Huang, Wei
2017-04-01
The round trip time of the light pulse limits the maximum detectable frequency response range of vibration in phase-sensitive optical time domain reflectometry (φ-OTDR). We propose a method to break the frequency response range restriction of φ-OTDR system by modulating the light pulse interval randomly which enables a random sampling for every vibration point in a long sensing fiber. This sub-Nyquist randomized sampling method is suits for detecting sparse-wideband- frequency vibration signals. Up to MHz resonance vibration signal with over dozens of frequency components and 1.153MHz single frequency vibration signal are clearly identified for a sensing range of 9.6km with 10kHz maximum sampling rate.
Study on processing parameters of glass cutting by nanosecond 532 nm fiber laser
NASA Astrophysics Data System (ADS)
Wang, Jin; Gao, Fan; Xiong, Baoxing; Zhang, Xiang; Yuan, Xiao
2018-03-01
The processing parameters of soda-lime glass cutting with several nanosecond 532 nm pulsed fiber laser are studied in order to obtain sufficiently large ablation rate and better processing quality. The influences of laser processing parameters on effective cutting speed and cutting quality of 1 2 mm thick soda-lime glass are studied. The experimental results show that larger laser pulse energy will lead to higher effective cutting speed and larger maximum edge collapse of the front side of the glass samples. Compared with that of 1.1 mm thick glass samples, the 2.0 mm thick glass samples is more difficult to cut. With the pulse energy of 51.2 μJ, the maximum edge collapse is more than 200 μm for the 2.0 mm thick glass samples. In order to achieve the high effective cutting speed and good cutting quality at the same time, the dual energy overlapping method is used to obtain the better cutting performance for the 2.0 mm thick glass samples, and the cutting speed of 194 mm/s and the maximum edge collapse of less than 132 μm are realized.
A continuous-wave and passively Q-switched Nd:LaGGG laser at 937 nm
NASA Astrophysics Data System (ADS)
Li, Z.-Y.; Ying, H.-Y.; Yang, H.; He, J.-L.
2013-10-01
A diode-end-pumped continuous-wave (CW) and passively Q-switched Nd:LaGGG (GGG: gadolinium gallium garnet) laser at about 937 nm was demonstrated for the first time. The maximum CW output power of 540 mW was obtained with the optical-optical conversion efficiency of 3.2% and the slope efficiency of 4.4%. A V3+:YAG (yttrium aluminum garnet) saturable absorber with the initial transmission of 97% was used for the passive Q-switching regime. The shortest pulse width was achieved as 500 ns with the pulse repetition rate of 96 kHz. The corresponding single-pulse energy and pulse peak power were determined as 1.56 μJ and 3.12 W, respectively.
NASA Astrophysics Data System (ADS)
Wilson, Nicholas; Mauch, Daniel; Meyers, Vincent; Feathers, Shannon; Dickens, James; Neuber, Andreas
2017-08-01
The electrical and optical characteristics of a high-power UV light emitting diode (LED) (365 nm wavelength) were evaluated under pulsed operating conditions at current amplitudes several orders of magnitude beyond the LED's manufacturer specifications. Geared towards triggering of photoconductive semiconductor switches (PCSSs) for pulsed power applications, measurements were made over varying pulse widths (25 ns-100 μs), current (0 A-250 A), and repetition rates (single shot-5 MHz). The LED forward voltage was observed to increase linearly with increasing current (˜3.5 V-53 V) and decrease with increasing pulse widths. The peak optical power observed was >30 W, and a maximum system efficiency of 23% was achieved. The evaluated LED and auxiliary hardware were successfully used as the optical trigger source for a 4H-SiC PCSS. The lowest measured on-resistance of SiC was approximately 67 kΩ.
Wilson, Nicholas; Mauch, Daniel; Meyers, Vincent; Feathers, Shannon; Dickens, James; Neuber, Andreas
2017-08-01
The electrical and optical characteristics of a high-power UV light emitting diode (LED) (365 nm wavelength) were evaluated under pulsed operating conditions at current amplitudes several orders of magnitude beyond the LED's manufacturer specifications. Geared towards triggering of photoconductive semiconductor switches (PCSSs) for pulsed power applications, measurements were made over varying pulse widths (25 ns-100 μs), current (0 A-250 A), and repetition rates (single shot-5 MHz). The LED forward voltage was observed to increase linearly with increasing current (∼3.5 V-53 V) and decrease with increasing pulse widths. The peak optical power observed was >30 W, and a maximum system efficiency of 23% was achieved. The evaluated LED and auxiliary hardware were successfully used as the optical trigger source for a 4H-SiC PCSS. The lowest measured on-resistance of SiC was approximately 67 kΩ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raitsimring, A.; Astashkin, A. V.; Enemark, J. H.
2012-12-29
In this work, the experimental conditions and parameters necessary to optimize the long-distance (≥ 60 Å) Double Electron-Electron Resonance (DEER) measurements of biomacromolecules labeled with Gd(III) tags are analyzed. The specific parameters discussed are the temperature, microwave band, the separation between the pumping and observation frequencies, pulse train repetition rate, pulse durations and pulse positioning in the electron paramagnetic resonance spectrum. It was found that: (i) in optimized DEER measurements, the observation pulses have to be applied at the maximum of the EPR spectrum; (ii) the optimal temperature range for Ka-band measurements is 14-17 K, while in W-band the optimalmore » temperatures are between 6-9 K; (iii) W-band is preferable to Ka-band for DEER measurements. Recent achievements and the conditions necessary for short-distance measurements (<15 Å) are also briefly discussed.« less
Theoretical and experimental investigations on high peak power Q-switched Nd:YAG laser at 1112 nm
NASA Astrophysics Data System (ADS)
He, Miao; Yang, Feng; Wang, Zhi-Chao; Gao, Hong-Wei; Yuan, Lei; Li, Chen-Long; Zong, Nan; Shen, Yu; Bo, Yong; Peng, Qin-Jun; Cui, Da-Fu; Xu, Zu-Yan
2018-07-01
We report on the experimental measurement and theoretical analysis on a Q-switched high peak power laser diode (LD) side-pumped 1112 nm Nd:YAG laser by means of special mirrors coating design in cavity. In theory, a numerical model, based on four-wavelength rate equations, is performed to analyze the competition process of different gain lines and the output characteristics of the Q-switched Nd:YAG laser. In the experiment, a maximum output power of 25.2 W with beam quality factor M2 of 1.46 is obtained at the pulse repetition rate of 2 kHz and 210 ns of pulse width, corresponding to a pulse energy and peak power of 12.6 mJ and 60 kW, respectively. The experimental data agree well with the theoretical simulation results.
He, Yugui; Feng, Jiwen; Zhang, Zhi; Wang, Chao; Wang, Dong; Chen, Fang; Liu, Maili; Liu, Chaoyang
2015-08-01
High sensitivity, high data rates, fast pulses, and accurate synchronization all represent challenges for modern nuclear magnetic resonance spectrometers, which make any expansion or adaptation of these devices to new techniques and experiments difficult. Here, we present a Peripheral Component Interconnect Express (PCIe)-based highly integrated distributed digital architecture pulsed spectrometer that is implemented with electron and nucleus double resonances and is scalable specifically for broad dynamic nuclear polarization (DNP) enhancement applications, including DNP-magnetic resonance spectroscopy/imaging (DNP-MRS/MRI). The distributed modularized architecture can implement more transceiver channels flexibly to meet a variety of MRS/MRI instrumentation needs. The proposed PCIe bus with high data rates can significantly improve data transmission efficiency and communication reliability and allow precise control of pulse sequences. An external high speed double data rate memory chip is used to store acquired data and pulse sequence elements, which greatly accelerates the execution of the pulse sequence, reduces the TR (time of repetition) interval, and improves the accuracy of TR in imaging sequences. Using clock phase-shift technology, we can produce digital pulses accurately with high timing resolution of 1 ns and narrow widths of 4 ns to control the microwave pulses required by pulsed DNP and ensure overall system synchronization. The proposed spectrometer is proved to be both feasible and reliable by observation of a maximum signal enhancement factor of approximately -170 for (1)H, and a high quality water image was successfully obtained by DNP-enhanced spin-echo (1)H MRI at 0.35 T.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yugui; Liu, Chaoyang, E-mail: chyliu@wipm.ac.cn; State Key Laboratory of Magnet Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
2015-08-15
High sensitivity, high data rates, fast pulses, and accurate synchronization all represent challenges for modern nuclear magnetic resonance spectrometers, which make any expansion or adaptation of these devices to new techniques and experiments difficult. Here, we present a Peripheral Component Interconnect Express (PCIe)-based highly integrated distributed digital architecture pulsed spectrometer that is implemented with electron and nucleus double resonances and is scalable specifically for broad dynamic nuclear polarization (DNP) enhancement applications, including DNP-magnetic resonance spectroscopy/imaging (DNP-MRS/MRI). The distributed modularized architecture can implement more transceiver channels flexibly to meet a variety of MRS/MRI instrumentation needs. The proposed PCIe bus with highmore » data rates can significantly improve data transmission efficiency and communication reliability and allow precise control of pulse sequences. An external high speed double data rate memory chip is used to store acquired data and pulse sequence elements, which greatly accelerates the execution of the pulse sequence, reduces the TR (time of repetition) interval, and improves the accuracy of TR in imaging sequences. Using clock phase-shift technology, we can produce digital pulses accurately with high timing resolution of 1 ns and narrow widths of 4 ns to control the microwave pulses required by pulsed DNP and ensure overall system synchronization. The proposed spectrometer is proved to be both feasible and reliable by observation of a maximum signal enhancement factor of approximately −170 for {sup 1}H, and a high quality water image was successfully obtained by DNP-enhanced spin-echo {sup 1}H MRI at 0.35 T.« less
Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser.
Li, Xian-lei; Xu, Jin-long; Wu, Yong-zhong; He, Jing-liang; Hao, Xiao-peng
2011-05-09
We demonstrated that the graphene could be used as an effective saturable absorber for Q-switched solid-state lasers. A graphene saturable absorber mirror was fabricated with large and high-quality graphene sheets deprived from the liquid phase exfoliation. Using this mirror, 105-ns pulses and 2.3-W average output power are obtained from a passively Q-switched Nd:GdVO(4) laser. The maximum pulse energy is 3.2 μJ. The slope efficiency is as high as 37% approximating to 40% of the continue-wave laser, indicating a low intrinsic loss of the graphene. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Antipov, O. L.; Eranov, I. D.; Kositsyn, R. I.
2017-01-01
A laser oscillator based on Ho:YAG crystal pumped by a Tm fiber laser with an acousto-optical Q-switch was optimized for maximum output power and pulse-to-pulse stability. Stable operation at 2097 nm in Q-switched mode is demonstrated, with pulse repetition rates from 10 to 30 kHz, and output power of 36 W (at 55 W of pump power at 1908 nm) in the good quality beam. The influence of Ho ion up-conversion and thermal lensing on the oscillation efficiency is discussed.
Goldberg, M S; Giannetti, N; Burnett, R T; Mayo, N E; Valois, M-F; Brophy, J M
2008-10-01
Recent studies suggest that persons with congestive heart failure (CHF) may be at higher risk for short-term effects of air pollution. This daily diary panel study in Montreal, Quebec, was carried out to determine whether oxygen saturation and pulse rate were associated with selected personal factors, weather conditions and air pollution. Thirty-one subjects with CHF participated in this study in 2002 and 2003. Over a 2-month period, the investigators measured their oxygen saturation, pulse rate, weight and temperature each morning and recorded these and other data in a daily diary. Air pollution and weather conditions were obtained from fixed-site monitoring stations. The study made use of mixed regression models, adjusting for within-subject serial correlation and temporal trends, to determine the association between oxygen saturation and pulse rate and personal and environmental variables. Depending on the model, we accounted for the effects of a variety of personal variables (eg, body temperature, salt consumption) as well as nitrogen dioxide (NO2), ozone, maximum temperature and change in barometric pressure at 8:00 from the previous day. In multivariable analyses, the study found that oxygen saturation was reduced when subjects reported that they were ill, consumed salt, or drank liquids on the previous day and had higher body temperatures on the concurrent day (only the latter was statistically significant). Relative humidity and decreased atmospheric pressure from the previous day were associated with oxygen saturation. In univariate analyses, there was negative associations with concentrations of fine particulates, ozone, and sulphur dioxide (SO2), but only SO2 was significant after adjustment for the effects of weather. For pulse rate, no associations were found for the personal variables and in univariate analyses the study found positive associations with NO(2), fine particulates (aerodynamic diameter of 2.5 microm or under, PM(2.5)), SO2, and maximum temperature, although only the latter two were significant after adjustment for environmental effects. The findings from the present investigation suggest that personal and environmental conditions affect intermediate physiological parameters that may affect the health of CHF patients.
Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning.
Cheng, Li-Chung; Chang, Chia-Yuan; Lin, Chun-Yu; Cho, Keng-Chi; Yen, Wei-Chung; Chang, Nan-Shan; Xu, Chris; Dong, Chen Yuan; Chen, Shean-Jen
2012-04-09
In this study, a microscope based on spatiotemporal focusing offering widefield multiphoton excitation has been developed to provide fast optical sectioning images. Key features of this microscope are the integrations of a 10 kHz repetition rate ultrafast amplifier featuring high instantaneous peak power (maximum 400 μJ/pulse at a 90 fs pulse width) and a TE-cooled, ultra-sensitive photon detecting, electron multiplying charge-coupled camera into a spatiotemporal focusing microscope. This configuration can produce multiphoton images with an excitation area larger than 200 × 100 μm² at a frame rate greater than 100 Hz (current maximum of 200 Hz). Brownian motions of fluorescent microbeads as small as 0.5 μm were observed in real-time with a lateral spatial resolution of less than 0.5 μm and an axial resolution of approximately 3.5 μm. Furthermore, second harmonic images of chicken tendons demonstrate that the developed widefield multiphoton microscope can provide high resolution z-sectioning for bioimaging.
Compact diode-pumped continuous-wave and passively Q-switched Nd:GYSO laser at 1.07 μm
NASA Astrophysics Data System (ADS)
Lin, Zhi; Huang, Xiaoxu; Lan, Jinglong; Cui, Shengwei; Wang, Yi; Xu, Bin; Luo, Zhengqian; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Zhang, Xiaoyan; Wang, Jun; Xu, Jun
2016-08-01
We report diode-pumped continuous-wave (CW) and Q-switched Nd:GYSO lasers using a compact two-mirror linear laser cavity. Single-wavelength laser emissions at 1074.11 nm with 4.1-W power and at 1058.27 nm with 1.47-W power have been obtained in CW mode. The slope efficiencies with respect to the absorbed pump powers are 48.5% and 22.9%, respectively. Wavelength tunability is also demonstrated with range of about 8 nm. Using a MoS2 saturable absorber, maximum average output power up to 410 mW at 1074 nm can be yielded with absorbed pump power 6.41 W and the maximum pulse energy reaches 1.20 μJ with pulse repetition rate of 342.5 kHz and shortest pulse width of 810 ns. The CW laser results represent the best laser performance and the Q-switching also present the highest output power for Q-switched Nd3+ lasers with MoS2 as saturable absorber.
Passively mode-locked Yb fiber laser with PbSe colloidal quantum dots as saturable absorber.
Wei, Kaihua; Fan, Shanhui; Chen, Qingguang; Lai, Xiaomin
2017-10-16
A passively mode-locked Yb fiber laser using PbSe colloidal quantum dots (CQDs) as saturable absorber (SA) is experimentally demonstrated. An all-fiber experimental scheme was designed to understand the SA property of PbSe CQDs. The non-saturable loss, modulation depth, and saturable intensity of SA measured were 23%, 7%, and 12 MW/cm 2 , respectively. The PbSe CQDs were sandwiched in a fiber connector, which was further inserted into the Yb fiber laser for mode-locking. As the pump power up to 110 mW, the self-starting mode-locking pulses were observed. Under the pump power of 285 mW, a maximum average laser power with fundamental mode-locking operation was obtained to be 21.3 mW. In this situation, the pulse full width at half maximum (FWHM), pulse repetition rate, and spectral FWHM were measured to be 70 ps, 8.3 MHz, and 4.5 nm, respectively.
Hollow waveguide for giant Er:YAG laser pulses transfer
NASA Astrophysics Data System (ADS)
Nemec, Michal; Jelinkova, Helena; Koranda, Petr; Cech, Miroslav; Sulc, Jan; Miyagi, Mitsunobu; Shi, Yi-Wei; Matsuura, Yuji
2004-06-01
Short Er:YAG laser pulses were delivered by a cyclic olefin polymer coated silver hollow glass (COP/Ag) waveguide specially designed for a high power radiation. Er:YAG laser was Q-switched by an electro-optic shutter - LiNbO3 Pockels cell with Brewster angle cut input/output faces. The maximum energy output obtained from this system was 29 mJ with the length of pulse 69 ns corresponding to 420 kW output peak power. The system was working with the repetition rate of 1.5 Hz. A delivery system composed of a lens (f = 40 mm), protector and waveguide with the 700/850 μm diameter and 50 cm or 1 m length. The measured maximum delivered intensity was 86 MW/cm2 what corresponds to the transmission of 78.6 % for whole delivery system. Using of a sealed cap, this delivery system gives a possibility of the contact surgical treatment in many medicine branches, for example ophthalmology, urology or dentistry.
Yu, Zhenhua; Song, Yanrong; Dong, Xinzheng; Li, Yanlin; Tian, Jinrong; Wang, Yonggang
2013-10-10
A watt-level passively Q-switched ytterbium-doped double-cladding fiber laser with a graphene oxide (GO) absorber was demonstrated. The structure of the GO saturable absorber mirror (GO-SAM) was of the sandwich type. A maximum output power of 1.8 W was obtained around a wavelength of 1044 nm. To the best of our knowledge, this is the highest output power in Q-switched fiber lasers based on a GO saturable absorber. The pure GO was protected from the oxygen in the air so that the damage threshold of the GO-SAM was effectively raised. The gain fiber was a D-shaped ytterbium-doped double-cladding fiber. The pulse repetition rates were tuned from 120 to 215 kHz with pump powers from 3.89 to 7.8 W. The maximum pulse energy was 8.37 μJ at a pulse width of 1.7 μs.
High speed micromachining with high power UV laser
NASA Astrophysics Data System (ADS)
Patel, Rajesh S.; Bovatsek, James M.
2013-03-01
Increasing demand for creating fine features with high accuracy in manufacturing of electronic mobile devices has fueled growth for lasers in manufacturing. High power, high repetition rate ultraviolet (UV) lasers provide an opportunity to implement a cost effective high quality, high throughput micromachining process in a 24/7 manufacturing environment. The energy available per pulse and the pulse repetition frequency (PRF) of diode pumped solid state (DPSS) nanosecond UV lasers have increased steadily over the years. Efficient use of the available energy from a laser is important to generate accurate fine features at a high speed with high quality. To achieve maximum material removal and minimal thermal damage for any laser micromachining application, use of the optimal process parameters including energy density or fluence (J/cm2), pulse width, and repetition rate is important. In this study we present a new high power, high PRF QuasarR 355-40 laser from Spectra-Physics with TimeShiftTM technology for unique software adjustable pulse width, pulse splitting, and pulse shaping capabilities. The benefits of these features for micromachining include improved throughput and quality. Specific example and results of silicon scribing are described to demonstrate the processing benefits of the Quasar's available power, PRF, and TimeShift technology.
Gosch, D; Ratzmer, A; Berauer, P; Kahn, T
2007-09-01
The objective of this study was to examine the extent to which the image quality on mobile C-arms can be improved by an innovative exposure rate control system (grid control). In addition, the possible dose reduction in the pulsed fluoroscopy mode using 25 pulses/sec produced by automatic adjustment of the pulse rate through motion detection was to be determined. As opposed to conventional exposure rate control systems, which use a measuring circle in the center of the field of view, grid control is based on a fine mesh of square cells which are overlaid on the entire fluoroscopic image. The system uses only those cells for exposure control that are covered by the object to be visualized. This is intended to ensure optimally exposed images, regardless of the size, shape and position of the object to be visualized. The system also automatically detects any motion of the object. If a pulse rate of 25 pulses/sec is selected and no changes in the image are observed, the pulse rate used for pulsed fluoroscopy is gradually reduced. This may decrease the radiation exposure. The influence of grid control on image quality was examined using an anthropomorphic phantom. The dose reduction achieved with the help of object detection was determined by evaluating the examination data of 146 patients from 5 different countries. The image of the static phantom made with grid control was always optimally exposed, regardless of the position of the object to be visualized. The average dose reduction when using 25 pulses/sec resulting from object detection and automatic down-pulsing was 21 %, and the maximum dose reduction was 60 %. Grid control facilitates C-arm operation, since optimum image exposure can be obtained independently of object positioning. Object detection may lead to a reduction in radiation exposure for the patient and operating staff.
Versatile soliton emission from a WS2 mode-locked fiber laser
NASA Astrophysics Data System (ADS)
Guo, Bo; Li, Shi; Fan, Ya-xian; Wang, Pengfei
2018-01-01
Recently, few-layer tungsten disulfide (WS2), as a shining 2D material, has been discovered to possess both the saturable absorption ability and large nonlinear refractive index. Here, we demonstrate versatile soliton pulses in a passively mode-locked fiber laser with a WS2-deposited microfiber. The few-layer WS2 is prepared by the liquid-phase exfoliation method and transferred onto a microfiber by the optical deposition method. Study found, the WS2-deposited microfiber can operate simultaneously as a mode-locker and a high-nonlinear device. In experiment, by further inserting the WS2 device into the fiber laser, besides the dual-wavelength soliton, noise-like soliton pulse, conventional soliton and its harmonic form are obtained by properly adjusting the pump strength and the polarization states. For the dual-wavelength soliton pulses and noise-like pulse, the maximum output power of 14.2 mW and pulse energy of 4.74 nJ is obtained, respectively. In addition, we also achieve the maximum harmonic number (135) of conventional soliton, corresponding to a repetition rate of ∼ 497 . 5 MHz. Our study shows clearly that WS2-deposited microfiber can be as a high-nonlinear photonic device for studying a plenty of nonlinear soliton phenomena.
PIC simulations of post-pulse field reversal and secondary ionization in nanosecond argon discharges
NASA Astrophysics Data System (ADS)
Kim, H. Y.; Gołkowski, M.; Gołkowski, C.; Stoltz, P.; Cohen, M. B.; Walker, M.
2018-05-01
Post-pulse electric field reversal and secondary ionization are investigated with a full kinetic treatment in argon discharges between planar electrodes on nanosecond time scales. The secondary ionization, which occurs at the falling edge of the voltage pulse, is induced by charge separation in the bulk plasma region. This process is driven by a reverse in the electric field from the cathode sheath to the formerly driven anode. Under the influence of the reverse electric field, electrons in the bulk plasma and sheath regions are accelerated toward the cathode. The electron movement manifests itself as a strong electron current generating high electron energies with significant electron dissipated power. Accelerated electrons collide with Ar molecules and an increased ionization rate is achieved even though the driving voltage is no longer applied. With this secondary ionization, in a single pulse (SP), the maximum electron density achieved is 1.5 times higher and takes a shorter time to reach using 1 kV 2 ns pulse as compared to a 1 kV direct current voltage at 1 Torr. A bipolar dual pulse excitation can increase maximum density another 50%–70% above a SP excitation and in half the time of RF sinusoidal excitation of the same period. The first field reversal is most prominent but subsequent field reversals also occur and correspond to electron temperature increases. Targeted pulse designs can be used to condition plasma density as required for fast discharge applications.
Miller, Joseph D; Slipchenko, Mikhail N; Meyer, Terrence R
2011-07-04
Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) offers accurate thermometry at kHz rates for combustion diagnostics. In high-temperature flames, selection of probe-pulse characteristics is key to simultaneously optimizing signal-to-nonresonant-background ratio, signal strength, and spectral resolution. We demonstrate a simple method for enhancing signal-to-nonresonant-background ratio by using a narrowband Lorentzian filter to generate a time-asymmetric probe pulse with full-width-half-maximum (FWHM) pulse width of only 240 fs. This allows detection within just 310 fs after the Raman excitation for eliminating nonresonant background while retaining 45% of the resonant signal at 2000 K. The narrow linewidth is comparable to that of a time-symmetric sinc2 probe pulse with a pulse width of ~2.4 ps generated with a conventional 4-f pulse shaper. This allows nonresonant-background-free, frequency-domain vibrational spectroscopy at high temperature, as verified using comparisons to a time-dependent theoretical fs/ps CARS model.
Bhattacharya, Tinish; Gupta, Ankesh; Singh, Salam ThoiThoi; Roy, Sitikantha; Prasad, Anamika
2017-07-01
Cuff-less and non-invasive methods of Blood Pressure (BP) monitoring have faced a lot of challenges like stability, noise, motion artefact and requirement for calibration. These factors are the major reasons why such devices do not get approval from the medical community easily. One such method is calculating Blood Pressure indirectly from pulse transit time (PTT) obtained from electrocardiogram (ECG) and Photoplethysmogram (PPG). In this paper we have proposed two novel analog signal conditioning circuits for ECG and PPG that increase stability, remove motion artefacts, remove the sinusoidal wavering of the ECG baseline due to respiration and provide consistent digital pulses corresponding to blood pulses/heart-beat. We have combined these two systems to obtain the PTT and then correlated it with the Mean Arterial Pressure (MAP). The aim was to perform major part of the processing in analog domain to decrease processing load over microcontroller so as to reduce cost and make it simple and robust. We have found from our experiments that the proposed circuits can calculate the Heart Rate (HR) with a maximum error of ~3.0% and MAP with a maximum error of ~2.4% at rest and ~4.6% in motion.
NASA Astrophysics Data System (ADS)
Khanna, Rajesh; Kumar, Anish; Garg, Mohinder Pal; Singh, Ajit; Sharma, Neeraj
2015-12-01
Electric discharge drill machine (EDDM) is a spark erosion process to produce micro-holes in conductive materials. This process is widely used in aerospace, medical, dental and automobile industries. As for the performance evaluation of the electric discharge drilling machine, it is very necessary to study the process parameters of machine tool. In this research paper, a brass rod 2 mm diameter was selected as a tool electrode. The experiments generate output responses such as tool wear rate (TWR). The best parameters such as pulse on-time, pulse off-time and water pressure were studied for best machining characteristics. This investigation presents the use of Taguchi approach for better TWR in drilling of Al-7075. A plan of experiments, based on L27 Taguchi design method, was selected for drilling of material. Analysis of variance (ANOVA) shows the percentage contribution of the control factor in the machining of Al-7075 in EDDM. The optimal combination levels and the significant drilling parameters on TWR were obtained. The optimization results showed that the combination of maximum pulse on-time and minimum pulse off-time gives maximum MRR.
Tunable passively Q-switched erbium-doped fiber laser with Chitosan/MoS2 saturable absorber
NASA Astrophysics Data System (ADS)
Ahmad, H.; Aidit, S. N.; Ooi, S. I.; Tiu, Z. C.
2018-07-01
Chitosan, an organic polymer derived from the outer skeletons of crustacean and in the cell wall of fungi is explored as polymer host to develop thin film saturable absorber (SA). As a polymer, Chitosan shows high thermal stability as well as significant transmission characteristics. The highly transparent polymer serves as a good host for SA materials, and a composite Chitosan/MoS2 thin film is demonstrated to successfully generate stable Q-switched lasing output at operating wavelength of 1561.5 nm. At maximum pump power of 280.5 mW, the generated pulse exhibits maximum pulse repetition rate and pulse energy of 79.4 kHz and 43.69 nJ respectively as well as minimum pulse width of 1.02 μs. The overall efficiency of the laser cavity with the Chitosan/MoS2 thin film SA is approximately 0.93%. These results reflect the outstanding performance of Chitosan/MoS2 SA as compared to other MoS2 SA prepared using mechanical exfoliation and optical deposition technique. Moreover, the Chitosan polymer is shown to be a highly potential host in the SA fabrication process due to its promising performance which is comparable to PVA.
Ropagnol, X; Khorasaninejad, M; Raeiszadeh, M; Safavi-Naeini, S; Bouvier, M; Côté, C Y; Laramée, A; Reid, M; Gauthier, M A; Ozaki, T
2016-05-30
We report the generation of free space terahertz (THz) pulses with energy up to 8.3 ± 0.2 µJ from an encapsulated interdigitated ZnSe Large Aperture Photo-Conductive Antenna (LAPCA). An aperture of 12.2 cm2 is illuminated using a 400 nm pump laser with multi-mJ energies at 10 Hz repetition rate. The calculated THz peak electric field is 331 ± 4 kV/cm with a spectrum characterized by a median frequency of 0.28 THz. Given its relatively low frequency, this THz field will accelerate charged particles efficiently having very large ponderomotive energy of 15 ± 1 eV for electrons in vacuum. The scaling of the emission is studied with respect to the dimensions of the antenna, and it is observed that the capacitance of the LAPCA leads to a severe decrease in and distortion of the biasing voltage pulse, fundamentally limiting the maximum applied bias field and consequently the maximum energy of the radiated THz pulses. In order to demonstrate the advantages of this source in the strong field regime, an open-aperture Z-scan experiment was performed on n-doped InGaAs, which showed significant absorption bleaching.
NASA Astrophysics Data System (ADS)
Ma, Yufei; He, Ying; Peng, Zhenfang; Sun, Haiyue; Peng, Fang; Yan, Renpeng; Li, Xudong; Yu, Xin; Zhang, Qingli; Ding, Shoujun
2018-05-01
A diode-pumped acousto-optically (AO) Q-switched 1066 nm laser with a novel Nd:GdTaO4 crystal was demonstrated for the first time to the best of our knowledge. The optimization selection of output coupler was carried out in the continuous-wave (CW) operation. After that the pulsed Nd:GdTaO4 laser performances using different modulation repetition rates of 10 kHz and 20 kHz were investigated. At an absorbed pump power of 10 W and repetition rates of 10 kHz, the obtained minimum pulse width was 28 ns and the maximum peak power was 5.4 kW.
NASA Astrophysics Data System (ADS)
Guo, Jing; Zhang, Baofu; Jiao, Zhongxing; He, Guangyuan; Wang, Biao
2018-05-01
A high-energy, azimuthally polarized (AP) and actively Q-switched Nd:YAG laser is demonstrated. The thermal bipolar lensing effect in the Nd:YAG laser rod is used as a polarization discriminator, and a c-cut YVO4 crystal is inserted into the laser cavity to increase the mode-selecting ability of the cavity for AP mode. The laser generated AP pulses with maximum pulse energy as high as 4.2 mJ. To the best of our knowledge, this is the highest pulse energy obtained from an actively Q-switched AP laser. The pulse energy remained higher than 1 mJ over a wide range of repetition rates from 5 kHz to 25 kHz.
NASA Astrophysics Data System (ADS)
Chu, Hongwei; Zhao, Shengzhi; Yang, Kejian; Zhao, Jia; Li, Yufei; Li, Tao; Li, Guiqiu; Li, Dechun; Qiao, Wenchao
2015-05-01
An intracavity KTiOPO4 (KTP) optical parametric oscillator (OPO) pumped by a Kerr lens mode-locking (KLM) Nd:GGG laser near 1062 nm with a single AO modulator was realized for the first time. The mode-locking pulses of the signal wave were obtained with a short duration of subnanosecond and a repetition rate of several kilohertz (kHz). Under a diode pump power of 8.25 W, a maximum output power of 104 mW at signal wavelength near 1569 nm was obtained at a repetition rate of 2 kHz. The highest pulse energy and peak power were estimated to be 80 μJ and 102 kW at a repetition rate of 1 kHz, respectively. The shortest pulse duration was measured to be 749 ps. By considering the Gaussian spatial distribution of the photon density and the Kerr-lens effect in the gain medium, a set of the coupled rate equations for QML intracavity optical parametric oscillator are given and the numerical simulations are basically fitted with the experimental results.
Compact conductively cooled electro-optical Q-switched Nd:YAG laser
NASA Astrophysics Data System (ADS)
Li, Chaoyang; Lu, Chengqiang; Li, Chuan; Zang, Yannan; Yang, Zhen; Han, Song; Li, Ye; Yang, Ning; Shi, Junfeng; Zhou, Zewu
2017-11-01
We report on a compact conductively cooled high-repetition-rate nanosecond Nd:YAG laser. The oscillator was an laser diode side-pumped electro-optical (EO) Q-switched Nd:YAG rod laser adopting unstable cavity with a variable reflectivity mirror. A pulse train of 142 mJ with duration of 10 ns, repetition rate of 80 Hz at 1064 nm has been achieved. Maximum pulse energy was obtained at the pump energy of 1380 mJ, corresponding to the optical-optical conversion efficiency of 10.3%. The peak power was deduced to be 14.2 MW. The near-field pattern demonstrated a nearly super Gaussian flat top profile. To our knowledge, this is the highest repetition rate operation for a conductively cooled EO Q-switched Nd:YAG rod laser.
Compact self-Q-switched Tm:YLF laser at 1.91 μm
NASA Astrophysics Data System (ADS)
Zhang, B.; Li, L.; He, C. J.; Tian, F. J.; Yang, X. T.; Cui, J. H.; Zhang, J. Z.; Sun, W. M.
2018-03-01
We report self-Q-switching operation in a diode-pumped Tm:YLF bulk laser by exploiting saturable re-absorption under the quasi-three-level regime. Robust self-Q-switched pulse output at 1.91 μm in fundamental mode is demonstrated experimentally with 1.5 at.% doped Tm:YLF crystal. At maximum absorbed pump power of 4.5 W, the average output power and pulse energy are obtained as high as 610 mW and 29 μJ, respectively, with the corresponding slope efficiency of 22%. Pulse repetition rate is tunable in the range of 3-21 kHz with changing the pump power. The dynamics of self-Q-switching of Tm:YLF laser are discussed with the help of a rate equation model showing good agreement with the experiment. The compact self-Q-switched laser near 2 μm has potential application in laser radar systems for accurate wind velocity measurements.
Biological Effects of Nonionizing Electromagnetic Radiation. Volume IV. Number 4.
1980-06-01
absorbed power levels. The effect of EMR on CCAs will be evaluated using the following parameters: beat rate, maximum diastolic potential, action 0591...cerebral forma- superior olive were similar to those evoked by tions examined. The swelling of the cytoplasm was acoustic pulses presented binaurally at a
NASA Astrophysics Data System (ADS)
Ahmad, H.; Faruki, M. J.; Jasim, A. A.; Ooi, S. I.; Thambiratnam, K.
2018-02-01
A passively Q-switched fiber laser using a Saturable Absorber (SA) fabricated from a new Poly (N-vinyl Carbazole) - Polypyrrole/Graphene Oxide (PNVC-PPy/GO) nanocomposite material deposited on a tapered fiber is proposed and demonstrated. The PNVC-PPy/GO composition is deposited along a 3 mm length of the 6.5 cm tapered fiber which has a tapered waist of 8 μm. Q-switched pulses are obtained with repetition rates of 25.15-42.7 kHz and pulse widths of 5.74-2.48 μs over a pump power range of 12.8-40.0 mW. A maximum average power of 0.19 mW and pulse energy of 4.43 nJ are also observed. The proposed Q-switched maintains advantages of a simple design and low fabrication cost while at the same time generating high quality Q-switched pulses.
In-band pumped Q-switched fiber laser based on monolayer graphene
NASA Astrophysics Data System (ADS)
Wu, Hanshuo; Wu, Jian; Xiao, Hu; Leng, Jinyong; Xu, Jiangming; Zhou, Pu
2017-06-01
We propose and demonstrate an in-band pumped all-fiberized passively Q-switched laser emitting at 1080 nm. A single mode 1030 nm fiber laser is used as the pump source, while a 2D material, CVD-grown monolayer graphene, is adopted as a saturable absorber inside the ring cavity. The repetition rate of the output pulses can be varied from 12.74 to 24.6 kHz with the pulse duration around 12 µs. The maximum average output power is 34.25 mW, with the pulse energy of 1.392 µJ. This work proves the practicability of achieving passively Q-switched operation via in-band pump.
Femtosecond laser microfabrication in polymers towards memory devices and microfluidic applications
NASA Astrophysics Data System (ADS)
Deepak, K. L. N.; Venugopal Rao, S.; Narayana Rao, D.
2011-12-01
We have investigated femtosecond laser induced microstructures, gratings, and craters in four different polymers: poly methyl methacrylate (PMMA), poly dimethyl siloxane (PDMS), polystyrene (PS) and poly vinyl alcohol (PVA) using Ti:sapphire laser delivering 800 nm, 100 femtosecond (fs) pulses at 1 kHz repetition rate with a maximum pulse energy of 1 mJ. Local chemical modifications leading to the formation of optical centers and peroxide radicals which were studied using UV-Visible absorption and emission, confocal micro-Raman and Electron Spin Resonance (ESR) spectroscopic techniques.
NASA Astrophysics Data System (ADS)
Shin, Hyun Wook; Son, Jong Yeog
2018-05-01
Cu-doped ZnO (CZO) thin films were fabricated on single-crystalline (0001) Al2O3 substrates by co-deposition using pulsed laser deposition for ZnO and radio frequency sputtering for Cu. CZO thin films with 0-20% molar concentrations are obtained by adjusting the deposition rates of ZnO and Cu. The CZO thin films exhibit room temperature ferromagnetism, and CZO with 5% Cu molar concentration has maximum remanent magnetization, which is consistent with theoretical results.
Research on the underwater target imaging based on the streak tube laser lidar
NASA Astrophysics Data System (ADS)
Cui, Zihao; Tian, Zhaoshuo; Zhang, Yanchao; Bi, Zongjie; Yang, Gang; Gu, Erdan
2018-03-01
A high frame rate streak tube imaging lidar (STIL) for real-time 3D imaging of underwater targets is presented in this paper. The system uses 532nm pulse laser as the light source, the maximum repetition rate is 120Hz, and the pulse width is 8ns. LabVIEW platform is used in the system, the system control, synchronous image acquisition, 3D data processing and display are realized through PC. 3D imaging experiment of underwater target is carried out in a flume with attenuation coefficient of 0.2, and the images of different depth and different material targets are obtained, the imaging frame rate is 100Hz, and the maximum detection depth is 31m. For an underwater target with a distance of 22m, the high resolution 3D image real-time acquisition is realized with range resolution of 1cm and space resolution of 0.3cm, the spatial relationship of the targets can be clearly identified by the image. The experimental results show that STIL has a good application prospect in underwater terrain detection, underwater search and rescue, and other fields.
MoS2-based passively Q-switched diode-pumped Nd:YAG laser at 946 nm
NASA Astrophysics Data System (ADS)
Lin, Haifeng; Zhu, Wenzhang.; Xiong, Feibing; Cai, Lie
2017-06-01
We demonstrate a passively Q-switched Nd: YAG quasi-three-level laser operating at 946 nm using MoS2 as saturable absorber. A maximum average output power of 210 mW is achieved at an absorbed pump power of 6.67 W with a slope efficiency of about 5.8%. The shortest pulse width and maximum pulse repetition frequency are measured to be 280 ns and 609 kHz, respectively. The maximum pulse energy and maximum pulse peak power are therefore estimated to be about 0.35 μJ and 1.23 W, respectively. This work represents the first MoS2-based Q-switched laser operating at 0.9 μm spectral region.
2D photoacoustic scanning imaging with a single pulsed laser diode excitation
NASA Astrophysics Data System (ADS)
Chen, Xuegang; Li, Changwei; Zeng, Lvming; Liu, Guodong; Huang, Zhen; Ren, Zhong
2012-03-01
A portable near-infrared photoacoustic scanning imaging system has been developed with a single pulsed laser diode, which was integrated with an optical lens system to straightforward boost the laser energy density for photoacoustic generation. The 905 nm laser diode provides a maximum energy output of 14 μJ within 100 ns pulse duration, and the pulse repetition frequency rate is 0.8 KHz. As a possible alternative light source, the preliminary 2D photoacoustic results primely correspond with the test phantoms of umbonate extravasated gore and knotted blood vessel network. The photoacoustic SNR can reach 20.6+/-1.2 dB while signal averaging reduces to 128 pulses from thousands to tens of thousands times, and the signal acquisition time accelerates to less than 0.2 s in each A-scan, especially the volume of the total radiation source is only 10 × 3 × 3 cm3. It demonstrated that the pulsed semiconductor laser could be a candidate of photoacoustic equipment for daily clinical application.
High-power picosecond laser with 400W average power for large scale applications
NASA Astrophysics Data System (ADS)
Du, Keming; Brüning, Stephan; Gillner, Arnold
2012-03-01
Laser processing is generally known for low thermal influence, precise energy processing and the possibility to ablate every type of material independent on hardness and vaporisation temperature. The use of ultra-short pulsed lasers offers new possibilities in the manufacturing of high end products with extra high processing qualities. For achieving a sufficient and economical processing speed, high average power is needed. To scale the power for industrial uses the picosecond laser system has been developed, which consists of a seeder, a preamplifier and an end amplifier. With the oscillator/amplifier system more than 400W average power and maximum pulse energy 1mJ was obtained. For study of high speed processing of large embossing metal roller two different ps laser systems have been integrated into a cylinder engraving machine. One of the ps lasers has an average power of 80W while the other has 300W. With this high power ps laser fluencies of up to 30 J/cm2 at pulse repetition rates in the multi MHz range have been achieved. Different materials (Cu, Ni, Al, steel) have been explored for parameters like ablation rate per pulse, ablation geometry, surface roughness, influence of pulse overlap and number of loops. An enhanced ablation quality and an effective ablation rate of 4mm3/min have been achieved by using different scanning systems and an optimized processing strategy. The max. achieved volume rate is 20mm3/min.
An Efficient Single Frequency Ho:YLF Laser for IPDA Lidar Applications
NASA Technical Reports Server (NTRS)
Yu, J.; Bai, Y.; Wong, T.; Reithmeier, K.; Petros, M.
2016-01-01
A highly efficient, versatile, single frequency 2-micron pulsed laser can be used in a pulsed Differential Absorption Lidar (DIAL) / Integrated Path Differential Absorption (IPDA) instrument to make precise, high-resolution measurements to investigate sources and sinks of CO2. For a direct detection IPDA lidar, the desired 2 ?m Ho:YLF laser should generate 30-40 mJ pulses at the repetition rate of 100 to 200 Hz, with short pulse length (<100 ns) and better than 2% wall plug efficiency. A Tm fiber laser in-band pumped Ho:YLF laser has been developed to meet this technical challenge. This Ho:YLF laser is designed in a four mirror ring resonator with bow tie configuration, which helps to obtain high beam quality. It is end-pumped by a 40 W linearly polarized Tm fiber laser at 1.94µm. The resonator length is 1.10 meters with output coupler reflectivity at 45%. The laser crystal size is 3 x 3 x 60 mm (w, h, l) with a doping concentration of 0.5% Holmium. The laser beam and pump beam are mode-matched in the active medium. Thus, the pump and laser beams have the same confocal parameters. Mode-matching is also helpful for operating the laser in a single transverse mode. The laser beam waist is slightly less than 0.5 mm at the center of the laser crystal. Based on quasi-four level modeling, pump absorption and saturation depend on laser intensity. Laser amplification and saturation also depend on the pump intensity in the crystal. The laser is injection seeded to obtain the single frequency required by an IPDA lidar measurement. The seed beam is entered into the resonator through an output coupler. The laser is mounted on a water cooled optical bench for stable and reliable operation. The size of the optical bench is 22.16 x 9.20 x 1.25 inches. It is stiffened so that the laser can be operated in any orientation of the optical bench. This packaged Ho:YLF laser is designed for either mobile trailer or airborne platform operation. The engineering prototype Ho:YLF laser has been fully characterized to demonstrate laser performance. Figure 1 shows the laser output power as a function of pump power at different pulse repetition rates from 100 Hz to 333 Hz. The threshold of the laser is less than 14 W. The slope efficiencies are 28%, 40%, 41% and 43% for pulse repetition rates of 100, 200, 250 and 333 Hz, respectively. Maximum power increases with the pulse repetition rate. Output power of 4.2 W, 6 W, 6.7 W, and 7.7 W is achieved for pulse repetition rates of 100, 200, 250 and 333Hz, respectively. This represents the optical conversion efficiency of 16.7%, 22.4%, 23.7%, and 26.5% at these various pulse repletion rates. It is the most efficient and compact Ho:YLF laser demonstrated in the high pulse energy (>20mJ) and moderate pulse repetition rate (100's Hz) operation range. As shown in Figure 1, the maximum pulse energy at 100 Hz is 42 mJ. This is limited due to optical damage. The laser stability is characterized and found to be very stable. A relative pulse energy standard deviation of 2% was measured. The beam quality of the Ho:YLF was measured by a Spiricon infrared laser beam camera. Figure 2 shows the beam profile image of the laser. Both the X-profile of the beam (horizontal direction) and the Y-profile of the beam (vertical direction) are well fitted by a Gaussian profile. The qualitative beam quality measurement shows excellent beam quality in both axis. The M-square value for the laser beam is measured at 1.06 and 1.09 for the x and y axis respectively.-
Combinatorial pulse position modulation for power-efficient free-space laser communications
NASA Technical Reports Server (NTRS)
Budinger, James M.; Vanderaar, M.; Wagner, P.; Bibyk, Steven
1993-01-01
A new modulation technique called combinatorial pulse position modulation (CPPM) is presented as a power-efficient alternative to quaternary pulse position modulation (QPPM) for direct-detection, free-space laser communications. The special case of 16C4PPM is compared to QPPM in terms of data throughput and bit error rate (BER) performance for similar laser power and pulse duty cycle requirements. The increased throughput from CPPM enables the use of forward error corrective (FEC) encoding for a net decrease in the amount of laser power required for a given data throughput compared to uncoded QPPM. A specific, practical case of coded CPPM is shown to reduce the amount of power required to transmit and receive a given data sequence by at least 4.7 dB. Hardware techniques for maximum likelihood detection and symbol timing recovery are presented.
Graphene Oxide saturable absorber for generating eye-safe Q-switched fiber laser
NASA Astrophysics Data System (ADS)
Rosol, A. H. A.; Jusoh, Z.; Rahman, H. A.; Rusdi, M. F. M.; Harun, S. W.; Latiff, A. A.
2017-06-01
This paper reports the generation of Q-switched fiber laser using thulium doped fiber (TDF) as a gain medium and graphene oxide (GO) as a saturable absorber (SA). The GO powder is embedded into polyvinyl alcohol (PVA) to form an SA film based on a drop-casting technique. GO-SA film is sandwiched between two fiber connectors and tighten by FC adapter before it is incorporated into an TDF laser cavity for Q-switching pulse generation. At 344 mW pump level, a stable Q-switching regime presence at 1943 nm with a 3-dB spectral bandwidth of 9 nm. The maximum repetition rate, pulse width, and pulse energy are at 25 kHz, 4.2 µs, and 0.68 µJ, respectively. All finding results are comparable with other reported pulse fiber lasers.
Control of pulse format in high energy per pulse all-fiber erbium/ytterbium laser systems
NASA Astrophysics Data System (ADS)
Klopfer, Michael; Block, Matthew K.; Deffenbaugh, James; Fitzpatrick, Zak G.; Urioste, Michael T.; Henry, Leanne J.; Jain, Ravinder
2017-02-01
A multi-stage linearly polarized (PM) (15 dB) pulsed fiber laser system at 1550 nm capable of operating at repetition rates between 3 and 20 kHz was investigated. A narrow linewidth seed source was linewidth broadened to approximately 20 GHz and pulses were created and shaped via an electro-optic modulator (EOM) in conjunction with a home built arbitrary waveform generator. As expected, a high repetition rate pulse train with a near diffraction limited beam quality (M2 1.12) was achieved. However, the ability to store energy was limited by the number of active ions within the erbium/ytterbium doped gain fiber within the various stages. As a result, the maximum energy per pulse achievable from the system was approximately 0.3 and 0.38 mJ for 300 ns and 1 μs pulses, respectively, at 3 kHz. Because the system was operated at high inversion, the erbium/ytterbium doped optical fiber preferred to lase at 1535 nm versus 1550 nm resulting in amplified spontaneous emission (ASE) both intra- and inter-pulse. For the lower power stages, the ASE was controllable via a EOM whose function was to block the energy between pulses as well as ASE filters whose purpose was to block spectral components outside of the 1550 nm passband. For the higher power stages, the pump diodes were pulsed to enable strategic placement of an inversion resulting in higher intrapulse energies as well as an improved spectrum of the signal. When optimized, this system will be used to seed higher power solid state amplifier stages.
Mg Incorporation Efficiency in Pulsed MOCVD of N-Polar GaN:Mg
NASA Astrophysics Data System (ADS)
Marini, Jonathan; Mahaboob, Isra; Hogan, Kasey; Novak, Steve; Bell, L. D.; Shahedipour-Sandvik, F.
2017-10-01
We report on the effect of growth polarity and pulsed or δ -doped growth mode on impurity incorporation in metalorganic chemical vapor deposition-grown GaN. In Ga-polar orientation, up to 12× enhancement in Mg concentration for given Mg flow rate is observed, resulting in enhanced p-type conductivity for these samples. In contrast, this enhancement effect is greatly diminished for N-polar samples, falling off with increasing Mg flow and showing maximum enhancement of 2.7× at 30 nmol/min Mg flow. At higher Mg flow rates, Mg incorporation at normal levels did not correspond to p-type conductivity, which may be due to Mg incorporation at nonacceptor sites. Concentrations of C, O, and Si were also investigated, revealing dependence on Mg flow in N-polar pulsed samples. Carbon incorporation was found to decrease with increasing Mg flow, and oxygen incorporation was found to remain high across varied Mg flow. These effects combine to result in N-polar samples that are not p-type when using the pulsed growth mode.
Pulsed optical fibre lasers: Self-pulsation, Q-switching and tissue interactions
NASA Astrophysics Data System (ADS)
El-Sherif, Ashraf Fathy
The experimental and theoretical aspects of self-pulsing and dynamics effects of a CW Tm3+-doped silica fibre laser operating near 2 mum are investigated and examined for the first time. Various self-pulsing regimes are observed for a range of pumping rates when the fibre is end-pumped with a high power Nd:YAG laser operating at 1.319 mum in a linear bidirectional cavity. A theoretical model based on pair induced quenching (PIQ) is considered. The quenching effect acts as a saturable absorber or an additional dynamical loss mechanism, this additional absorber then may make the laser system unstable depending on whether the obtained steady-state solution is stable or not. A comparison between measured self-pulsation frequency and calculated relaxation oscillation frequency as a function of pumping rate is presented and discussed. High performance operation of a mechanical shutter Q-switched Tm3+-doped silica fibre laser operating near 2 mum is observed and presented. A single Q-switched pulse with peak power of 18.5 W and pulse duration at full width half maximum (FWHM) of 300 ns at higher mechanical chopper frequencies of nearly 20 kHz is achieved. The pulse-to-pulse stability was measured and improved to be more less than 5 %. The development, optimisation of the performance and analysis of an acousto-optic modulator (AOM) Q-switched Tm3+-doped silica fibre laser operating near 2 mum are presented. The shortest pulse duration obtained was 150 ns, giving a highest peak power of 4.1 kW, and is the highest yet reported from any type of active Q-switched fibre laser operating in low order mode. The maximum peak power was obtained for an optimum cavity length of 1.15 meters made up of fibre length, Q-switch crystal and passive space. The pulse train with high pulse-to-pulse stability of 1 % occurred at a range of high repetition rates from 10 to 30 kHz. High energy, high brightness of an electro-optic modulator (EOM) Q-switched Tm3+-doped silica fibre laser operating near 2 mum is presented. Appropriate design precautions have been undertaken to ensure that prelasing does not occur. In this system, the main Q-switched pulse may be followed by one pulse of lower amplitude "postlasing" when an optimised quarter wave voltage of 750 V is applied. It was found that the laser produced 320 ns pulses with 2.5 mJ pulse energy and 3.3 kW peak power at low repetition rates of 50-70 Hz. This is the first time that such studies of electro-optic modulator (EOM) Q-switched Tm3+ fibre lasers have been reported. The maximum peak power was obtained for an optimum cavity length of 2.15 meters, made up of fibre length, broadband beamsplitter polarizer, Q-switch crystal and passive space. Computer simulation of Tm3+doped silica and Er2-doped fluorozirconate fibre lasers using general laser analysis and design (GLAD) software has been successfully investigated for the first time. Input files, which are very similar to language are created to model three designs of fibre lasers, two for Tm3+-doped silica fibre lasers, core pumped at 1.57 mum and cladding pumped at 790 nm, and one for a 2.7 mum Er3+-doped fluorozirconate fibre laser cladding pumped at 975 nm. Results are presented from a relatively comprehensive computer model, which simulates CW operation of the fibre lasers. The simulation suggests that to enhance the conversion energy we have to optimise between the absorption coefficient of the fibre and the diffraction algorithms. Comparison of soft and hard tissue ablation with high peak power Q-switched and CW Tm3+-silica fibre lasers are presented. The ablation of chicken breast and lamb liver tissues as a soft tissue and cartilage as a hard tissue have been investigated using a free running CW-Tm3+-doped fibre laser (wavelength 1.99 mum, with self-pulsation duration ranging over 1 to few tens of microseconds) and for Q-switched operation of the same laser (pulse duration ranging from 150 ns to 900 ns and pulse repetition rates from 100 Hz to 17 kHz). Residual damage and affected zones using the CW laser were nearly 6 times greater than using the Q-switched fibre laser for about 50 s of exposure time, and increased with pulse repetition rate. The energy required to ablate tissues with the CW-fibre laser ranged from 153 to 334 kJ/cm3 and was significantly smaller from 0.2 to 0.6 kJ/cm3 for the Q-switched fibre laser. This study is the first direct comparison of tissue interaction of CW and Q- switched Tm3+-doped silica fibre lasers on crater depth, heat of ablation and collateral damage. The Q-switched Tm3+-doped silica fibre laser effectively ablates tissue with little secondary damage.
Cavitation bubble dynamics during thulium fiber laser lithotripsy
NASA Astrophysics Data System (ADS)
Hardy, Luke A.; Kennedy, Joshua D.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.
2016-02-01
The Thulium fiber laser (TFL) is being explored for lithotripsy. TFL parameters differ from standard Holmium:YAG laser in several ways, including smaller fiber delivery, more strongly absorbed wavelength, low pulse energy/high pulse rate operation, and more uniform temporal pulse structure. High speed imaging of cavitation bubbles was performed at 105,000 fps and 10 μm spatial resolution to determine influence of these laser parameters on bubble formation. TFL was operated at 1908 nm with pulse energies of 5-75 mJ, and pulse durations of 200-1000 μs, delivered through 100-μm-core fiber. Cavitation bubble dynamics using Holmium laser at 2100 nm with pulse energies of 200-1000 mJ and pulse duration of 350 μs was studied, for comparison. A single, 500 μs TFL pulse produced a bubble stream extending 1090 +/- 110 μm from fiber tip, and maximum bubble diameters averaged 590 +/- 20 μm (n=4). These observations are consistent with previous studies which reported TFL ablation stallout at working distances < 1.0 mm. TFL bubble dimensions were five times smaller than for Holmium laser due to lower pulse energy, higher water absorption coefficient, and smaller fiber diameter used.
Pure antimony film as saturable absorber for Q-switched erbium-doped fiber laser
NASA Astrophysics Data System (ADS)
Rahman, M. F. A.; Zhalilah, M. Z.; Latiff, A. A.; Rosol, A. H. A.; Lokman, M. Q.; Bushroa, A. R.; Dimyati, K.; Harun, S. W.
2018-04-01
This paper reports on the use of Antimony (Sb) polymer film to generate stable Q-switching pulses in Erbium-doped fiber laser (EDFL) cavity. The SA is fabricated by coating a thin layer of Sb on a polyvinyl alcohol (PVA) film through physical vapour deposition (PVD) process. A 1 × 1 mm area of the film SA is cut and integrated into between two fiber ferrules inside the laser cavity for intra-cavity loss modulation. Self-starting and stable Q-switched pulses are obtained within a pump power range from 60 to 142 mW. Within this range, the repetition rate increases from 70.82 to 98.04 kHz, while pulse width decreases from 7.42 to 5.36 μs. The fundamental frequency signal-to-noise ratio of the pulse signal is 74 dB, which indicates the excellent stability of the pulses. The maximum output power and pulse energy are 8.45 mW and 86.19 nJ, respectively. Our demonstration shows that Sb film SA capable of generating stable pulses train operating at 1.55-micron region.
NASA Astrophysics Data System (ADS)
Ahmad, H.; Samion, M. Z.; Sharbirin, A. S.; Norizan, S. F.; Aidit, S. N.; Ismail, M. F.
2018-05-01
Graphene, a 2D material, has been used for generation of pulse lasers due to the presence of its various fascinating optical properties compared to other materials. Hence in this paper, we report the first demonstration of a thulium doped fiber laser with a wavelength-tunable, passive Q-switched output using a graphene-polyvinyl-alcohol composite film for operation in the 2.0 µm region. The proposed laser has a wavelength-tunable output spanning from 1932.0 nm to 1946.0 nm, giving a total tuning range of 14.0 nm. The generated pulse has a maximum repetition rate and average output power of 36.29 kHz and 0.394 mW at the maximum pump power of 130.87 mW, as well as a pulse width of 6.8 µs at this pump power. The generated pulses have a stable output, having a signal-to-noise ratio of 31.75 dB, and the laser output is stable when tested over a period of 60 min. The proposed laser would have multiple applications for operation near the 2.0 micron region, especially for bio-medical applications and range-finding.
Li, Jiangtao; Zhao, Zheng; Sun, Yi; Liu, Yuhao; Ren, Ziyuan; He, Jiaxin; Cao, Hui; Zheng, Minjun
2017-03-01
Numerous applications driven by pulsed voltage require pulses to be with high amplitude, high repetitive frequency, and narrow width, which could be satisfied by utilizing avalanche transistors. The output improvement is severely limited by power capacities of transistors. Pulse combining is an effective approach to increase the output amplitude while still adopting conventional pulse generating modules. However, there are drawbacks in traditional topologies including the saturation tendency of combining efficiency and waveform oscillation. In this paper, a hybrid pulse combining topology was adopted utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer. The factors affecting the combining efficiency were determined including the output time synchronization of Marx circuits, and the quantity and position of magnetic cores. The numbers of the parallel modules and the stages were determined by the output characteristics of each combining method. Experimental results illustrated the ability of generating pulses with 2-14 kV amplitude, 7-11 ns width, and a maximum 10 kHz repetitive rate on a matched 50-300 Ω resistive load. The hybrid topology would be a convinced pulse combining method for similar nanosecond pulse generators based on the solid-state switches.
NASA Astrophysics Data System (ADS)
Li, Jiangtao; Zhao, Zheng; Sun, Yi; Liu, Yuhao; Ren, Ziyuan; He, Jiaxin; Cao, Hui; Zheng, Minjun
2017-03-01
Numerous applications driven by pulsed voltage require pulses to be with high amplitude, high repetitive frequency, and narrow width, which could be satisfied by utilizing avalanche transistors. The output improvement is severely limited by power capacities of transistors. Pulse combining is an effective approach to increase the output amplitude while still adopting conventional pulse generating modules. However, there are drawbacks in traditional topologies including the saturation tendency of combining efficiency and waveform oscillation. In this paper, a hybrid pulse combining topology was adopted utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer. The factors affecting the combining efficiency were determined including the output time synchronization of Marx circuits, and the quantity and position of magnetic cores. The numbers of the parallel modules and the stages were determined by the output characteristics of each combining method. Experimental results illustrated the ability of generating pulses with 2-14 kV amplitude, 7-11 ns width, and a maximum 10 kHz repetitive rate on a matched 50-300 Ω resistive load. The hybrid topology would be a convinced pulse combining method for similar nanosecond pulse generators based on the solid-state switches.
Shen, Yanlong; Wang, Yishan; Luan, Kunpeng; Huang, Ke; Tao, Mengmeng; Chen, Hongwei; Yi, Aiping; Feng, Guobin; Si, Jinhai
2016-01-01
A diode-cladding pumped mid-infrared passively Q-switched Er3+-doped ZBLAN fiber laser with an average output power of watt-level based on a semiconductor saturable absorber mirror (SESAM) is demonstrated. Stable pulse train was produced at a slope efficiency of 17.8% with respect to launched pump power. The maximum average power of 1.01 W at a repetition rate of 146.3 kHz was achieved with a corresponding pulse energy of 6.9 μJ, from which the maximum peak power was calculated to be 21.9 W. To the best of our knowledge, the average power and the peak power are the highest in 3 μm region passively Q-switched fiber lasers. The influence of gain fiber length on the operation regime of the fiber laser has been investigated in detail. PMID:27225029
LD end pumped mode locked and cavity dumped Nd:YAP laser at 1.34 μm
NASA Astrophysics Data System (ADS)
Wang, X.; Wang, S.; Rhee, H.; Eichler, H. J.; Meister, S.
2011-06-01
We report a LD end pumped actively mode locked, passively Q switched and cavity dumped Nd:YAP laser at 1.34 μm. The dumped output pulse energy of 160 μJ is obtained at a repetition rate of 10 Hz. Passing through a LD end pumped, double-passed Nd:YAP amplifier the pulse energy is amplified to 1.44 mJ. The corresponding amplification factor is 9. Stimulated Raman scattering experiment is taken with a 9 mm long PbWO4 Raman crystal. Maximum of 20% Raman conversion is reached.
High performance thyratron driver with low jitter.
Verma, Rishi; Lee, P; Springham, S V; Tan, T L; Rawat, R S
2007-08-01
We report the design and development of insulated gate bipolar junction transistor based high performance driver for operating thyratrons in grounded grid mode. With careful design, the driver meets the specification of trigger output pulse rise time less than 30 ns, jitter less than +/-1 ns, and time delay less than 160 ns. It produces a -600 V pulse of 500 ns duration (full width at half maximum) at repetition rate ranging from 1 Hz to 1.14 kHz. The developed module also facilitates heating and biasing units along with protection circuitry in one complete package.
Dynamics of erosion in a compressional mountain range revealed by 10Be paleoerosion rates
NASA Astrophysics Data System (ADS)
Val, P.; Hoke, G. D.; Fosdick, J. C.; Wittmann, H.
2015-12-01
The temporal evolution of erosion over million-year timescales is key to understanding the evolution of mountain ranges and adjacent fold-and-thrust belts. While models of orogenic wedge evolution predict an instantaneous response of erosion to pulses of rock uplift, stream-power based landscape evolution models predict catchment-wide erosion maxima that lag behind a rock uplift pulse. Here, we explore the relationships between rock uplift, erosion, and sediment deposition in the Argentine Precordillera fold-and-thrust belt at 30°S where extensive previous work documents deformation, climate and sediment accumulation histories. Sandstone samples spanning 8.8 to 1.8 Ma were collected from the previously dated wedge-top (Iglesia) and foredeep basins (Bermejo) for quartz purification and 10Be extraction. 10Be concentrations due to burial and exhumation were estimated and subtracted from the measured concentrations and yielded the inherited 10Be concentrations, which were then corrected for sample magnetostratigraphic age. The inherited concentrations were then used to calculate paleoerosion rates. We modeled various pre-burial and post-burial exposure scenarios in order to assess potential sources of uncertainty in the recovered paleoerosion rates. The modeling results reveal that pre-burial and post-burial exposure periods only marginally affect our results. By combining the 10Be-derived paleoerosion rates and geomorphic observations with detrital zircon provenance, we document the isolation of the wedge-top basin, which was later reconnected by an upstream migrating pulse of erosion in a process that was directly controlled by thrust activity and base level. The data further indicate that the attainment of maximum upland erosion rates lags maximum rates of deformation and subsidence over million-year timescales. The magnitudes and causes of the erosional delays shed new light on the catchment erosional response to tectonic deformation and rock uplift in orogenic wedges.
Decoding carotid pressure waveforms recorded by laser Doppler vibrometry: Effects of rebreathing
NASA Astrophysics Data System (ADS)
Casaccia, Sara; Sirevaag, Erik J.; Richter, Edward; O'Sullivan, Joseph A.; Scalise, Lorenzo; Rohrbaugh, John W.
2014-05-01
The principal goal of this study was to assess the capability of the laser Doppler vibrometry (LDV) method for assessing cardiovascular activity. A rebreathing task was used to provoke changes within individuals in cardiac and vascular performance. The rebreathing task is known to produce multiple effects, associated with changes in autonomic drive as well as alterations in blood gases. The rise in CO2 (hypercapnia), in particular, produces changes in the cerebral and systemic circulation. The results from a rebreathing task (involving rebreathing the same air in a rubber bag) are presented for 35 individuals. The LDV pulse was measured from a site overlying the carotid artery. For comparison and validation purposes, several conventional measures of cardiovascular function were also obtained, with an emphasis on the electrocardiogram (ECG), continuous blood pressure (BP) from the radial artery, and measures of myocardial performance using impedance cardiography (ICG). During periods of active rebreathing, ventilation increased. The conventional cardiovascular effects included increased mean arterial BP and systemic vascular resistance, and decreased cardiac stroke volume (SV) and pulse transit time (PTT). These effects were consistent with a pattern of α-adrenergic stimulation. During the immediate post-rebreathing segments, in contrast, mean BP was largely unaffected but pulse BP increased, as did PTT and SV, whereas systemic vascular resistance decreased-a pattern consistent with β-adrenergic effects in combination with the direct effects of hypercapnia on the vascular system. Measures of cardiovascular activity derived from the LDV pulse velocity and displacement waveforms revealed patterns of changes that mirrored the results obtained using conventional measures. In particular, the ratio of the maximum early peak in the LDV velocity pulse to the maximum amplitude of the LDV displacement pulse (in an early systolic interval) closely mirrored the conventional SV effects. Additionally, changes in an augmentation ratio (computed as the maximum amplitude of the LDV displacement pulse during systole / amplitude at the end of the incident wave) were very similar to changes in systemic vascular resistance. Heart rates measured from the ECG and LDV were nearly identical. These preliminary results suggest that measures derived using the non-contact LDV technique can provide surrogate measures for those obtained using impedance cardiography.
Development of Long-Lifetime Pulsed Gas Valves for Pulsed Electric Thrusters
NASA Technical Reports Server (NTRS)
Burkhardt, Wendel M.; Crapuchettes, John M.; Addona, Brad M.; Polzin, Kurt A.
2015-01-01
The design and test results for two types of pulsed gas valves are presented. The valves, a piezo valve and a solenoid actuated valve, must have exceedingly long lifetime to support gas-fed pulsed electric thruster operation for missions of interest. The performance of both valves was tested, with both demonstrating the capability to throttle the gas flow rate while maintaining low leakage levels below 10(exp -3) sccs of He at the beginning of valve lifetime. The piezo valve varies the flow rate by changing the amount that the valve is open, which is a function of applied voltage. This valve demonstrated continuous throttlability from 0-10 mL/s, with opening and closing times of 100 microsecond or less. The solenoid actuated valve flow rate changes as a function of the inlet gas pressure, with demonstrated flow rates in these tests from 2.7-11 mL per second. The valve response time is slower than the piezo valve, opening in 1-2 ms and closing in several ms. The solenoid actuated valve was tested to one million cycles, with the valve performance remaining relatively unchanged throughout the test. Galling of the sliding plunger caused the valve to bind and fail just after one million cycles, but at this point in the test the valve sealing surface leak rate still appeared to be well below the maximum target leak rake of 1×10(exp -3) sccs of He.
Numerical study on the maximum small-signal gain coefficient in passively mode-locked fiber lasers
NASA Astrophysics Data System (ADS)
Tang, Xin; Wang, Jian; Chen, Zhaoyang; Lin, Chengyou; Ding, Yingchun
2017-06-01
Ultrashort pulses have been found to have important applications in many fields, such as ultrafast diagnosis, biomedical engineering, and optical imaging. Passively mode-locked fiber lasers have become a tool for generating picosecond and femtosecond pulses. In this paper, the evolution of a picosecond laser pulse in different stable passively mode-locked fiber laser is analyzed using nonlinear Schrödinger equation. Firstly, different mode-locked regimes are calculated with different net cavity dispersion (from -0.3 ps2 to +0.3 ps2 ). Then we calculate the maximum small-signal gain on the different net cavity dispersion conditions, and estimate the pulse width, 3 dB bandwidth and time bandwidth product (TBP) when the small-signal gain coefficient is selected as the maximum value. The results show that the small signal gain coefficient is approximately proportional to the net cavity. Moreover, when the small signal gain coefficient reaches the maximum value, the pulse width of the output pulse and their corresponding TBP show a trend of increase gradually, and 3dB bandwidth shows a trend of increase firstly and then decrease. In addition, in the case that the net dispersion is positive, because of the pulse with quite large frequency chirp, the revolution to dechirp the pulse is researched and the output of the pulse is compressed and its compression ratio reached more than 10 times. The results provide a reference for the optimization of passively mode-locked fiber lasers.
1985-10-31
4-45 4-1 SPC =. NTiC)NS I SPIKEGUARD SUPPRESSORS NANOSECOND TRANSIENT PROTECTION MODELS AVAILABLE FOR ,u * COAXIAL LINES...molded epoxy casc 4-40 General1- ~ *Sewiconductor4*industries,, Inc. Squats D oE.!v! MAXIMUM RATINGS DESCRIPTION coNro CASE 19 * Steady State POWr I
Effects of an Aerobic Exercise Program on Community-Based Adults with Mental Retardation.
ERIC Educational Resources Information Center
Pommering, Thomas L.; And Others
1994-01-01
Evaluation of a 10-week aerobic exercise program on 14 community-based adults with mental retardation found a 91.3% attendance rate and significant increases in maximal oxygen consumption, oxygen pulse, maximum ventilation, exercise stress test duration, and flexibility. However, no significant changes were observed in weight or body composition.…
Microcomponents manufacturing for precise devices by copper vapor laser
NASA Astrophysics Data System (ADS)
Gorny, Sergey; Nikonchuk, Michail O.; Polyakov, Igor V.
2001-06-01
This paper presents investigation results of drilling of metal microcomponents by copper vapor laser. The laser consists of master oscillator - spatial filter - amplifier system, electronics switching with digital control of laser pulse repetition rate and quantity of pulses, x-y stage with computer control system. Mass of metal, removed by one laser pulse, is measured and defined by means of diameter and depth of holes. Interaction of next pulses on drilled material is discussed. The difference between light absorption and metal evaporation processes is considered for drilling and cutting. Efficiency of drilling is estimated by ratio of evaporation heat and used laser energy. Maximum efficiency of steel cutting is calculated with experimental data of drilling. Applications of copper vapor laser for manufacturing is illustrated by such microcomponents as pin guide plate for printers, stents for cardio surgery, encoded disks for security systems and multiple slit masks for spectrophotometers.
A vacuum-sealed, gigawatt-class, repetitively pulsed high-power microwave source
NASA Astrophysics Data System (ADS)
Xun, Tao; Fan, Yu-wei; Yang, Han-wu; Zhang, Zi-cheng; Chen, Dong-qun; Zhang, Jian-de
2017-06-01
A compact L-band sealed-tube magnetically insulated transmission line oscillator (MILO) has been developed that does not require bulky external vacuum pump for repetitive operations. This device with a ceramic insulated vacuum interface, a carbon fiber array cathode, and non-evaporable getters has a base vacuum pressure in the low 10-6 Pa range. A dynamic 3-D Monte-Carlo model for the molecular flow movement and collision was setup for the MILO chamber. The pulse desorption, gas evolution, and pressure distribution were exactly simulated. In the 5 Hz repetition rate experiments, using a 600 kV diode voltage and 48 kA beam current, the average radiated microwave power for 25 shots is about 3.4 GW in 45 ns pulse duration. The maximum equilibrium pressure is below 4.0 × 10-2 Pa, and no pulse shortening limitations are observed during the repetitive test in the sealed-tube condition.
Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tunability
NASA Astrophysics Data System (ADS)
Parali, Ufuk; Sheng, Xin; Minassian, Ara; Tawy, Goronwy; Sathian, Juna; Thomas, Gabrielle M.; Damzen, Michael J.
2018-03-01
We report the first experimental demonstration of a wavelength tunable passively Q-switched red-diode-end pumped Alexandrite laser using a semiconductor saturable absorber mirror (SESAM). We present the results of the study of passive SESAM Q-switching and wavelength-tuning in continuous diode-pumped Alexandrite lasers in both linear cavity and X-cavity configurations. In the linear cavity configuration, pulsed operation up to 27 kHz repetition rate in fundamental TEM00 mode was achieved and maximum average power was 41 mW. The shortest pulse generated was 550 ns (FWHM) and the Q-switched wavelength tuning band spanned was between 740 nm and 755 nm. In the X-cavity configuration, a higher average power up to 73 mW, and obtained with higher pulse energy 6 . 5 μJ at 11.2 kHz repetition rate, in fundamental TEM00 mode with excellent spatial quality M2 < 1 . 1. The Q-switched wavelength tuning band spanned was between 775 nm and 781 nm.
Kleinhans, F.W.; Mazur, Peter
2015-01-01
We report additional details of the thermal modeling, selection of the laser, and construction of the Cryo Jig used for our ultra-rapid warming studies of mouse oocytes (B Jin, FW Kleinhans, Peter Mazur, Cryobiology 68 (2014) 419–430). A Nd:YAG laser operating at 1064 nm was selected to deliver short 1 msec pulses of sufficient power to produce a warming rate of 1 × 107 °C/min from –190°C to 0°C. A special Cryo Jig was designed and built to rapidly remove the sample from LN2 and expose it to the laser pulse. India ink carbon black particles were required to increase the laser energy absorption of the sample. The thermal model reported here is more general than that previously reported. The modeling reveals that the maximum warming rate achievable via external warming across the cell membrane is proportional to (1/R2) where R is the cell radius. PMID:25724528
Experimental investigation of a pulsed Rb-Ar excimer-pumped alkali laser
NASA Astrophysics Data System (ADS)
Cheng, Hongling; Wang, Zhimin; Zhang, Fengfeng; Wang, Mingqiang; Tian, Zhaoshuo; Peng, Qinjun; Cui, Dafu; Xu, Zuyan
2017-03-01
We present experimental results of an exciplex-pumped alkali laser (XPAL) at 780 nm based on the 52P3/2 → 52S1/2 transition of the Rb atom in mixtures of Rb vapor and Ar. A laboratory-built Ti:sapphire laser with a pulse repetition rate of 3 kHz and a pulse width of 100 ns is used as the pump source. The maximum laser pulse energy of 0.26 µJ at 780 nm is obtained under an absorbed pump pulse energy of 42 µJ at 755 nm in mixtures of Rb vapor and Ar at a temperature of 423 K, corresponding to an optical conversion efficiency of 0.62%. Further experiments show that the output laser at 780 nm can always be detected for pump wavelengths ranging from 754 to 759 nm, indicating that Rb-Ar mixtures can be effectively pumped by commercial laser diodes (LDs) with a bandwidth of 5 nm.
The Toxicity of Inhaled Sulphur Mustard
2012-10-01
Index − CO – Cardiac Output − CvO2 – Mixed Venous Oxygenation − CVP – Central Venous Pressure − DO2 – Oxygen Delivery − dpMax – Maximum...in central venous pressure following exposure to HD: HD controls () and HD + NAC (). Data are expressed as mean ± SEM. UK UNCLASSIFIED Page 64 of...Respiratory rate (RR) Heart rate (HR) Expired CO2 Pulse oximetry Mean arterial pressure Central venous pressure Blood Chemistry (arterial and
Li, Lee; Bao, Chaobing; Feng, Xibo; Liu, Yunlong; Fochan, Lin
2013-02-01
For a compact and reliable nanosecond-pulse high-voltage generator (NPHVG), the specification parameter selection and potential usage of fast controllable state-solid switches have an important bearing on the optimal design. The NPHVG with closed transformer core and fast switching thyristor (FST) was studied in this paper. According to the analysis of T-type circuit, the expressions for the voltages and currents of the primary and secondary windings on the transformer core of NPHVG were deduced, and the theoretical maximum analysis was performed. For NPHVG, the rise-rate of turn-on current (di/dt) across a FST may exceed its transient rating. Both mean and maximum values of di/dt were determined by the leakage inductances of the transformer, and the difference is 1.57 times. The optimum winding ratio is helpful to getting higher voltage output with lower specification FST, especially when the primary and secondary capacitances have been established. The oscillation period analysis can be effectively used to estimate the equivalent leakage inductance. When the core saturation effect was considered, the maximum di/dt estimated from the oscillating period of the primary current is more accurate than one from the oscillating period of the secondary voltage. Although increasing the leakage inductance of NPHVG can decrease di/dt across FST, it may reduce the output peak voltage of the NPHVG.
Effect of current on the maximum possible reward.
Gallistel, C R; Leon, M; Waraczynski, M; Hanau, M S
1991-12-01
Using a 2-lever choice paradigm with concurrent variable interval schedules of reward, it was found that when pulse frequency is increased, the preference-determining rewarding effect of 0.5-s trains of brief cathodal pulses delivered to the medial forebrain bundle of the rat saturates (stops increasing) at values ranging from 200 to 631 pulses/s (pps). Raising the current lowered the saturation frequency, which confirms earlier, more extensive findings showing that the rewarding effect of short trains saturates at pulse frequencies that vary from less than 100 pps to more than 800 pps, depending on the current. It was also found that the maximum possible reward--the magnitude of the reward at or beyond the saturation pulse frequency--increases with increasing current. Thus, increasing the current reduces the saturation frequency but increases the subjective magnitude of the maximum possible reward.
Demonstration of passive saturable absorber by utilizing MWCNT-ABS filament as starting material
NASA Astrophysics Data System (ADS)
Zuikafly, S. N. F.; Ahmad, F.; Ibrahim, M. H.; Latif, A. A.; Harun, S. W.
2017-06-01
This work demonstrated a stable passively Q-switched laser with the employment MWCNTs dispersed in acrylonitrile butadiene styrene (ABS) resin (MWCNTs-ABS) based filament as passive saturable absorber. The simple fabrication process of the SA is further explained, started from the process of extruding the filament through a 3D printer nozzle at 210 °C to reduce the diameter from 1.75 mm to 200 μm. It is then weighed to about 25 mg and mixed with 1 ml acetone before sonicated for 5 minutes to dissolve the ABS. The resultant MWCNTs-acetone suspension is dropped on a glass slide to be characterized using Field-Emission Scanning Electron Microscope (FESEM) and Raman spectroscopy. It is also drop-casted on the end of a fiber ferrule to be integrated in the laser cavity. The proposed work revealed that the laser oscillated at about 1558 nm with threshold input pump power of 22.54 mW and maximum input pump power of 108.8 mW. The increase in pump power resulted in the increase in repetition rate where the pulse train increases from 8.96 kHz to 39.34 kHz while the pulse width decreases from 33.58 μs to 5.14 μs. The generated pulsed laser yields a maximum of 1.01 mW and 5.53 nJ of peak power and pulse energy respectively. The signal-to-noise ratio of 40 dB indicates that the generated pulse is stable.
Wear-reducing Surface Functionalization of Implant Materials Using Ultrashort Laser Pulses
NASA Astrophysics Data System (ADS)
Oldorf, P.; Peters, R.; Reichel, S.; Schulz, A.-P.; Wendlandt, R.
The aim of the project called "EndoLas" is the development of a reproducible and reliable method for a functionalization of articulating surfaces on hip joint endoprostheses due to a reduction of abrasion and wear by the generation of micro structures using ultrashort laser pulses. On the one hand, the microstructures shall ensure the capture of abraded particles, which cause third-body wear and thereby increase aseptic loosening. On the other hand, the structures shall improve or maintain the tribologically important lubricating film. Thereby, the cavities serve as a reservoir for the body's own synovial fluid. The dry friction, which promotes abrasion and is a part of the mixed friction in the joint, shall therefore be reduced. In experimental setups it was shown, that the abrasive wear can be reduced significantly due to micro-structuring the articulating implant surfaces. To shape the fine and deterministic cavities on the surfaces, an ultra-short pulsed laser, which is integrated in a high-precision, 5-axes micro-machining system, was used. The laser system, based on an Yb:YAG thin-disk regenerative amplifier, has an average output power of 50 W at the fundamental wavelength of 1030 nm, a maximum repetition rate of 400 kHz and a pulse duration of 6 ps. Due to this, a maximum pulse energy of 125 μJ is achievable. Furthermore external second and third harmonic generation enables the usage of wavelengths in the green and violet spectral range.
30-W Yb3+-pulsed fiber laser with wavelength tuning
NASA Astrophysics Data System (ADS)
Davydov, B. L.; Krylov, A. A.
2007-12-01
We have investigated various pulsed operation regimes of a diode-pumped Yb3+-doped fiber laser with both an acoustooptic filter and a shutter inside the resonator. To imbed the polarization-sensitive acoustooptic-tunable spectral filter into the polarization-nonmaintaining resonator, based on an “isotropic” single-mode fiber without “polarization’ losses, we have used a CaCO3 single-crystal nondispersive thermostable polarization splitter. Stable smooth bell-shaped laser pulses were obtained in the Q-switch generation regime across the entire wavelength tuning band. Their duration depended on the resonator travel time and their repetition rate was determined exclusively by the outer high-frequency generator controlling the acoustooptic shutter. A pulsed laser radiation tuning bandwidth of more than 20-nm at a repetition rate band of 10-100 kHz was observed in the amplification band of the Yb3+-doped fiber. A stable average power of 30 W of the pulsed 70-ns 100-kHz laser radiation in a near Gaussian beam was reached by means of the two-stage amplifier based on Yb3+-doped fibers with an enlarged mode field diameter (14 μm). The amplifier was pumped by λ = 975 nm CW multimode laser diodes with a maximum average power of 42 W.
Mode-locked Ti:sapphire laser oscillators pumped by wavelength-multiplexed laser diodes
NASA Astrophysics Data System (ADS)
Sugiyama, Naoto; Tanaka, Hiroki; Kannari, Fumihiko
2018-05-01
We directly pumped a Ti:sapphire laser by combining 478 and 520 nm laser diodes to prevent the effect of absorption loss induced by the pump laser of shorter wavelengths (∼450 nm). We obtain a continuous-wave output power of 660 mW at a total incident pump power of 3.15 W. We demonstrate mode locking using a semiconductor saturable absorber mirror, and 126 fs pulses were obtained at a repetition rate of 192 MHz. At the maximum pump power, the average output power is 315 mW. Shorter mode-locked pulses of 42 and 48 fs were respectively achieved by Kerr-lens mode locking with average output powers of 280 and 360 mW at a repetition rate of 117 MHz.
NASA Technical Reports Server (NTRS)
Burkard, R.; Jones, S.; Jones, T.
1994-01-01
Rate-dependent changes in the chick brain-stem auditory evoked response (BAER) using conventional averaging and a cross-correlation technique were investigated. Five 15- to 19-day-old white leghorn chicks were anesthetized with Chloropent. In each chick, the left ear was acoustically stimulated. Electrical pulses of 0.1-ms duration were shaped, attenuated, and passed through a current driver to an Etymotic ER-2 which was sealed in the ear canal. Electrical activity from stainless-steel electrodes was amplified, filtered (300-3000 Hz) and digitized at 20 kHz. Click levels included 70 and 90 dB peSPL. In each animal, conventional BAERs were obtained at rates ranging from 5 to 90 Hz. BAERs were also obtained using a cross-correlation technique involving pseudorandom pulse sequences called maximum length sequences (MLSs). The minimum time between pulses, called the minimum pulse interval (MPI), ranged from 0.5 to 6 ms. Two BAERs were obtained for each condition. Dependent variables included the latency and amplitude of the cochlear microphonic (CM), wave 2 and wave 3. BAERs were observed in all chicks, for all level by rate combinations for both conventional and MLS BAERs. There was no effect of click level or rate on the latency of the CM. The latency of waves 2 and 3 increased with decreasing click level and increasing rate. CM amplitude decreased with decreasing click level, but was not influenced by click rate for the 70 dB peSPL condition. For the 90 dB peSPL click, CM amplitude was uninfluenced by click rate for conventional averaging. For MLS BAERs, CM amplitude was similar to conventional averaging for longer MPIs.(ABSTRACT TRUNCATED AT 250 WORDS).
NASA Astrophysics Data System (ADS)
McCreery, Douglas; Han, Martin; Pikov, Victor; Yadav, Kamal; Pannu, Satinderpall
2013-10-01
Objectives. Persons without a functional auditory nerve cannot benefit from cochlear implants, but some hearing can be restored by an auditory brainstem implant (ABI) with stimulating electrodes implanted on the surface of the cochlear nucleus (CN). Most users benefit from their ABI, but speech recognition tends to be poorer than for users of cochlear implants. Psychophysical studies suggest that poor modulation detection may contribute to the limited performance of ABI users. In a cat model, we determined how the pulse rate of the electrical stimulus applied within or on the CN affects temporal and rate encoding of amplitude modulation (AM) by neurons in the central nucleus of the inferior colliculus (ICC). Approach. Stimulating microelectrodes were implanted chronically in and on the cats' CN, and multi-site recording microelectrodes were implanted chronically into the ICC. Encoding of AM pulse trains by neurons in the ICC was characterized as vector strength (VS), the synchrony of neural activity with the AM, and as the mean rate of neuronal action potentials (neuronal spike rate (NSR)). Main results. For intranuclear microstimulation, encoding of AM as VS was up to 3 dB greater when stimulus pulse rate was increased from 250 to 500 pps, but only for neuronal units with low best acoustic frequencies, and when the electrical stimulation was modulated at low frequencies (10-20 Hz). For stimulation on the surface of the CN, VS was similar at 250 and 500 pps, and the dynamic range of the VS was reduced for pulse rates greater than 250 pps. Modulation depth was encoded strongly as VS when the maximum stimulus amplitude was held constant across a range of modulation depth. This ‘constant maximum’ protocol allows enhancement of modulation depth while preserving overall dynamic range. However, modulation depth was not encoded as strongly as NSR. Significance. The findings have implications for improved sound processors for present and future ABIs. The performance of ABIs may benefit from using pulse rates greater than those presently used in most ABIs, and by sound processing strategies that enhance the modulation depth of the electrical stimulus while preserving dynamic range.
Noise-like pulse generation in an ytterbium-doped fiber laser using tungsten disulphide
NASA Astrophysics Data System (ADS)
Zhang, Wenping; Song, Yanrong; Guoyu, Heyang; Xu, Runqin; Dong, Zikai; Li, Kexuan; Tian, Jinrong; Gong, Shuang
2017-12-01
We demonstrated the noise-like pulse (NLP) generation in an ytterbium-doped fiber (YDF) laser with tungsten disulphide (WS2). Stable fundamental mode locking and second-order harmonic mode locking were observed. The saturable absorber (SA) was a WS2-polyvinyl alcohol film. The modulation depth of the WS2 film was 2.4%, and the saturable optical intensity was 155 MW cm-2. Based on this SA, the fundamental NLP with a pulse width of 20 ns and repetition rate of 7 MHz were observed. The autocorrelation trace of output pulses had a coherent spike, which came from NLP. The average pulse width of the spike was 550 fs on the top of a broad pedestal. The second-order harmonic NLP had a spectral bandwidth of 1.3 nm and pulse width of 10 ns. With the pump power of 400 mW, the maximum output power was 22.2 mW. To the best of our knowledge, this is the first time a noise-like mode locking in an YDF laser based on WS2-SA in an all normal dispersion regime was obtained.
Performance improvement of high repetition rate electro-optical cavity-dumped Nd:GdVO4 laser
NASA Astrophysics Data System (ADS)
Yu, X.; Wang, C.; Ma, Y. F.; Chen, F.; Yan, R. P.; Li, X. D.
2012-02-01
We improved the electro-optical cavity-dumped Nd:GdVO4 laser performance at high repetition rates by employing continuous-grown GdVO4/Nd:GdVO4 composite crystal under 879 nm diode-laser pumping. A constant 3.8 ns duration pulsed laser was obtained and the repetition rate could reach up to 100 kHz with a maximum average output power of 13.1 W and a slope efficiency of 56.4%, corresponding to a peak power of 34.4 kW.
Electric fence standards comport with human data and AC limits.
Kroll, Mark W; Perkins, Peter E; Panescu, Dorin
2015-08-01
The ubiquitous electric fence is essential to modern agriculture and has saved lives by reducing the number of livestock automobile collisions. Modern safety standards such as IEC 60335-2-76 and UL 69 have played a role in this positive result. However, these standards are essentially based on energy and power (RMS current), which have limited direct relationship to cardiac effects. We compared these standards to bioelectrically more relevant units of charge and average current in view of recent work on VF (ventricular fibrillation) induction and to existing IEC AC current limits. There are 3 limits for normal (low) pulsing rate: IEC energy limit, IEC current limit, and UL current limit. We then calculated the delivered charge allowed for each pulse duration for these limits and then compared them to a charge-based safety model derived from published human ventricular-fibrillation induction data. Both the IEC and UL also allow for rapid pulsing for up to 3 minutes. We calculated maximum outputs for various pulse durations assuming pulsing at 10, 20, and 30 pulses per second. These were then compared to standard utility power safety (AC) limits via the conversion factor of 7.4 to convert average current to RMS current for VF risk. The outputs of TASER electrical weapons (typically < 100 μC and ~100 μs duration) were also compared. The IEC and UL electric fence energizer normal rate standards are conservative in comparison with actual human laboratory experiments. The IEC and UL electric fence energizer rapid-pulsing standards are consistent with accepted IEC AC current limits for commercially used pulse durations.
Solid-state laser source of narrowband ultraviolet B light for skin disease care
NASA Astrophysics Data System (ADS)
Tarasov, Aleksandr A.; Chu, Hong
2013-03-01
We report about the development of all-solid-state laser source of narrowband UV-B light for medical applications. The device is based on a gain-switched Ti: Sapphire laser with volume Bragg grating, pumped at 532 nm and operating at 931.8 nm, followed by a third harmonic generator and a fiber optic beam homogenizer. The maximum available pulse energy exceeded 5 mJ at 310.6 nm, with a pulse repetition rates of 50 Hz. The output characteristics satisfy the medical requirements for psoriasis and vitiligo treatment. A new optical scheme for third harmonic generation enhancement at moderate levels of input intensities is proposed and investigated. As a result, 40% harmonic efficiency was obtained, when input pulse power was only 300 kW.
Ways of increasing muscular activity by means of isometric muscular exertion
NASA Technical Reports Server (NTRS)
Kovalik, A. V.
1980-01-01
The effect of isometric muscular exertion on the human body was investigated by having subjects perform basic movements in a sitting position in the conventional manner with additional muscle tension at 50% maximum force and at maximum force. The pulse, arterial pressure, skin temperature, respiratory rate, minute respiratory volume and electrical activity of the muscles involved were all measured. Performance of the exercises with maximum muscular exertion for 20 sec and without movement resulted in the greatest shifts in these indices; in the conventional manner substantial changes did not occur; and with isometric muscular exertion with 50% maximum force with and without movement, optimal functional shifts resulted. The latter is recommended for use in industrial exercises for the prevention of hypodynamia. Ten exercises are suggested.
The synthesis of polyadenylated messenger RNA in herpes simplex type I virus infected BHK cells.
Harris, T J; Wildy, P
1975-09-01
The pattern of polyadenylated messenger RNA (mRNA) synthesis in BHK cell monolayers, infected under defined conditions with herpes simplex type I virus has been investigated by polyacrylamide gel electrophoresis or pulse-labelled RNA isolated by oligo dT-cellulose chromatography. Two classes of mRNA molecules were synthesized in infected cells; these were not detected in uninfected cells. The rate of synthesis of the larger, 18 to 30S RNA class reached a maximum soon after injection and then declined, whereas the rate of synthesis of the 7 to 11 S RNA class did not reach a maximum until much later and did not decline. In the presence of cytosine arabinoside, the rate of mRNA synthesis in infected cells was reduced but the electrophoretic pattern remained the same.
Optimization of a Fully-Pulsed Jet in a Fluid of Similar Density
NASA Astrophysics Data System (ADS)
Krueger, Paul S.; Gharib, Morteza
1998-11-01
In a previous work, Gharib et al.(Morteza Gharib, Edmond Rambod, Karim Shariff, "A Universal Time Scale for Vortex Ring Formation," JFM, vol. 360, pp. 121-140, 1998) have studied vortex rings generated through impulsively started jets using a piston/cylinder arrangement. This work showed that the vortex ring that formed at the leading edge of the jet reached a maximum strength for a piston stroke to diameter ratio (L/D) of approximately 4 for a wide range of piston motions and jet exit boundaries. This result suggests interesting consequences for a fully-pulsed jet, which is simply a series of impulsively started jets strung together. Specifically, the thrust of the present investigation is to study how the physical behavior of a fully-pulsed jet varies as both L/D and the pulsing frequency of the jet (rate at which pulses are ejected) are varied. To this end, a piston/cylinder arrangement with a stepper motor is used to generate a fully-pulsed jet with different L/D and pulsing frequency (f) combinations. The thrust produced by these various jets is measured directly and used as a gauge of the effectiveness of the pulsed jet. Combinations of L/D and f leading to optimization of the pulsed jet will be presented.
A Fiber-Optic System Generating Pulses of High Spectral Density
NASA Astrophysics Data System (ADS)
Abramov, A. S.; Zolotovskii, I. O.; Korobko, D. A.; Fotiadi, A. A.
2018-03-01
A cascade fiber-optic system that generates pulses of high spectral density by using the effect of nonlinear spectral compression is proposed. It is demonstrated that the shape of the pulse envelope substantially influences the degree of compression of its spectrum. In so doing, maximum compression is achieved for parabolic pulses. The cascade system includes an optical fiber exhibiting normal dispersion that decreases along the fiber length, thereby ensuring that the pulse envelope evolves toward a parabolic shape, along with diffraction gratings and a fiber spectral compressor. Based on computer simulation, we determined parameters of cascade elements leading to maximum spectral density of radiation originating from a subpicosecond laser pulse of medium energy.
Machining of glass and quartz using nanosecond and picosecond laser pulses
NASA Astrophysics Data System (ADS)
Ashkenasi, David; Kaszemeikat, Tristan; Mueller, Norbert; Lemke, Andreas; Eichler, Hans Joachim
2012-03-01
New laser processing strategies in micro processing of glass, quartz and other optically transparent materials are being developed with increasing effort. Utilizing diode-pumped solid-state laser generating nanosecond pulsed green (532 nm) laser light in conjunction with either scanners or special trepanning systems can provide for reliable glass machining at excellent efficiency. Micro ablation can be induced either from the front or rear side of the glass sample. Ablation rates of over 100 μm per pulse can be achieved in rear side processing. In comparison, picosecond laser processing of glass and quartz (at a wavelength of 1064 or 532 nm) yield smaller feed rates at however much better surface and bore wall quality. This is of great importance for small sized features, e.g. through-hole diameters smaller 50 μm in thin glass. Critical for applications with minimum micro cracks and maximum performance is an appropriate distribution of laser pulses over the work piece along with optimum laser parameters. Laser machining tasks are long aspect micro drilling, slanted through holes, internal contour cuts, micro pockets and more complex geometries in e.g. soda-lime glass, B33, B270, D236T, AF45 and BK7 glass, quartz, and Zerodur.
The annoyance of impulsive helicopter noise
NASA Technical Reports Server (NTRS)
Karamcheti, K.
1981-01-01
A total of 96 impulsive and non-impulsive sounds were rated for annoyance by 10 subjects. The signals had the same amplitude spectrum with a maximum frequency of 4.75 kHz. By changing the phase of the spectral components different levels of impulsivity were obtained. The signals had coefficients of impulsivity of 10,8, 7,9, and -0.2 respectively. Further, signals had intensity levels 89 and 95 dBA, pulse repetition rates 10 and 20 Hz, and half the signals had pink noise added at a level 12 dBA lower than the level of the sound. The significant results were: The four females and six male subjects rated the impulsive sounds respectively 3.7 dB less annoying and 2.6 dB more annoying than the non-impulsive sounds. Overall, impulsivity had no effect. The hish pulse repetition rate increased annoyance by 2.2 dB. Addition of pink noise increased annoyance of the non-impulsive sounds 1.2 dB, but decreased the annoyance of the impulsive sounds 0.5 dB.
NASA Astrophysics Data System (ADS)
Lau, K. Y.; Ng, E. K.; Abu Bakar, M. H.; Abas, A. F.; Alresheedi, M. T.; Yusoff, Z.; Mahdi, M. A.
2018-04-01
We demonstrate a passively mode-locked erbium-doped fiber laser in L-band wavelength region with low mode-locking threshold employing a 1425 nm pump wavelength. The mode-locking regime is generated by microfiber-based saturable absorber using carbon nanotube-polymer composite in a ring cavity. This carbon nanotube saturable absorber shows saturation intensity of 9 MW/cm2. In this work, mode-locking laser threshold is observed at 36.4 mW pump power. At the maximum pump power of 107.6 mW, we obtain pulse duration at full-width half-maximum point of 490 fs and time bandwidth product of 0.33, which corresponds to 3-dB spectral bandwidth of 5.8 nm. The pulse repetition rate remains constant throughout the experiment at 5.8 MHz due to fixed cavity length of 35.5 m. Average output power and pulse energy of 10.8 mW and 1.92 nJ are attained respectively through a 30% laser output extracted from the mode-locked cavity. This work highlights the feasibility of attaining a low threshold mode-locked laser source to be employed as seed laser in L-band wavelength region.
High-power picosecond pulse delivery through hollow core photonic band gap fibers
NASA Astrophysics Data System (ADS)
Michieletto, Mattia; Johansen, Mette M.; Lyngsø, Jens K.; Lægsgaard, Jesper; Bang, Ole; Alkeskjold, Thomas T.
2016-03-01
We demonstrated robust and bend insensitive fiber delivery of high power laser with diffraction limited beam quality for two different kinds of hollow core band gap fibers. The light source for this experiment consists of ytterbium-doped double clad fiber aeroGAIN-ROD-PM85 in a high power amplifier setup. It provided 22ps pulses with a maximum average power of 95W, 40MHz repetition rate at 1032nm (~2.4μJ pulse energy), with M2 <1.3. We determined the facet damage threshold for a 7-cells hollow core photonic bandgap fiber and showed up to 59W average power output for a 5 meters fiber. The damage threshold for a 19-cell hollow core photonic bandgap fiber exceeded the maximum power provided by the light source and up to 76W average output power was demonstrated for a 1m fiber. In both cases, no special attention was needed to mitigate bend sensitivity. The fibers were coiled on 8 centimeters radius spools and even lower bending radii were present. In addition, stimulated rotational Raman scattering arising from nitrogen molecules was measured through a 42m long 19 cell hollow core fiber.
Christopher, Heike; Kovalchuk, Evgeny V; Wenzel, Hans; Bugge, Frank; Weyers, Markus; Wicht, Andreas; Peters, Achim; Tränkle, Günther
2017-07-01
We present a compact, mode-locked diode laser system designed to emit a frequency comb in the wavelength range around 780 nm. We compare the mode-locking performance of symmetric and asymmetric double quantum well ridge-waveguide diode laser chips in an extended-cavity diode laser configuration. By reverse biasing a short section of the diode laser chip, passive mode-locking at 3.4 GHz is achieved. Employing an asymmetric double quantum well allows for generation of a mode-locked optical spectrum spanning more than 15 nm (full width at -20 dB) while the symmetric double quantum well device only provides a bandwidth of ∼2.7 nm (full width at -20 dB). Analysis of the RF noise characteristics of the pulse repetition rate shows an RF linewidth of about 7 kHz (full width at half-maximum) and of at most 530 Hz (full width at half-maximum) for the asymmetric and symmetric double quantum well devices, respectively. Investigation of the frequency noise power spectral density at the pulse repetition rate shows a white noise floor of approximately 2100 Hz 2 /Hz and of at most 170 Hz 2 /Hz for the diode laser employing the asymmetric and symmetric double quantum well structures, respectively. The pulse width is less than 10 ps for both devices.
Microbial endogenous response to acute inhibitory impact of antibiotics.
Pala-Ozkok, I; Kor-Bicakci, G; Çokgör, E U; Jonas, D; Orhon, D
2017-06-13
Enhanced endogenous respiration was observed as the significant/main response of the aerobic microbial culture under pulse exposure to antibiotics: sulfamethoxazole, tetracycline and erythromycin. Peptone mixture and acetate were selected as organic substrates to compare the effect of complex and simple substrates. Experiments were conducted with microbial cultures acclimated to different sludge ages of 10 and 2 days, to visualize the effect of culture history. Evaluation relied on modeling of oxygen uptake rate profiles, reflecting the effect of all biochemical reactions associated with substrate utilization. Model calibration exhibited significant increase in values of endogenous respiration rate coefficient with all antibiotic doses. Enhancement of endogenous respiration was different with antibiotic type and initial dose. Results showed that both peptone mixture and acetate cultures harbored resistance genes against the tested antibiotics, which suggests that biomass spends cellular maintenance energy for activating the required antibiotic resistance mechanisms to survive, supporting higher endogenous decay rates. [Formula: see text]: maximum growth rate for X H (day -1 ); K S : half saturation constant for growth of X H (mg COD/L); b H : endogenous decay rate for X H (day -1 ); k h : maximum hydrolysis rate for S H1 (day -1 ); K X : hydrolysis half saturation constant for S H1 (mg COD/L); k hx : maximum hydrolysis rate for X S1 (day -1 ); K XX : hydrolysis half saturation constant for X S1 (mg COD/L); k STO : maximum storage rate of PHA by X H (day -1 ); [Formula: see text]: maximum growth rate on PHA for X H (day -1 ); K STO : half saturation constant for storage of PHA by X H (mg COD/L); X H1 : initial active biomass (mg COD/L).
Exploiting solitons in all-optical networks
NASA Astrophysics Data System (ADS)
Atieh, Ahmad K.
Two key components, the pulse generator and optical signal demultiplexer, needed for the implementation of all-optical soliton-based local area and wide area networks are investigated. The technology of generating a bright soliton pulse train from a sinusoidal pulse train produced as the beat signal of two distributed feedback laser diodes passed through a so-called comblike fiber structure is developed. A design methodology for this structure is discussed, and using this approach a soliton pulse source is constructed generating 1553 nm pulses at a repetition rate of 50 GHz, with pulses of full width at half maximum of 2.0 ps. The fiber structure used to generate the bright soliton pulse train employs the lowest average power for the beat signal ever reported in the literature, and the shortest length of fiber. The same structure (with a different design) is also used to produce a 47.6 GHz dark soliton pulse train with a full width at half maximum of 3.8 ps. This is the first reported use of this structure to generate dark solitons. It is shown that the comblike dispersion profile fiber structures may also be exploited for soliton pulse compression producing widths as short as 200 fs. Two approaches to implementation of optical signal demultiplexing are discussed. These are the nonlinear optical loop mirror (NOLM) and the separation of multilevel time division multiplexed signal pulses in the frequency domain by exploiting the relationship between the pulse's energy (i.e. pulse amplitude and width) and the Raman self-frequency shift. A modification of the NOLM scheme is investigated where feedback that adjusts the power of the control signal (by controlling the gain of an erbium-doped fiber amplifier introduced into the control signal input path) is employed to make the structure insensitive to the state of polarization of the signal and control pulses. In order to better understand the physical phenomena exploited in optical fiber soliton transmission and the above schemes, two experiments are conducted to measure the fiber nonlinear ratio (n2/Aeff) and the Raman time constant (TR) in single-mode fibers at 1550 nm. The fiber nonlinear ratio was measured for standard telecommunication fiber, dispersion shifted fiber, and dispersion compensating fiber. A value of 3.0 fs for the Raman time constant was measured and is recommended for soliton pulse propagation modeling in single-mode optical fibers.
Greenblatt, M.H.
1958-03-25
This patent pertains to pulse amplitude analyzers for sorting and counting a serles of pulses, and specifically discloses an analyzer which ls simple in construction and presents the puise height distribution visually on an oscilloscope screen. According to the invention, the pulses are applied to the vertical deflection plates of an oscilloscope and trigger the horizontal sweep. Each pulse starts at the same point on the screen and has a maximum amplitude substantially along the same vertical line. A mask is placed over the screen except for a slot running along the line where the maximum amplitudes of the pulses appear. After the slot has been scanned by a photocell in combination with a slotted rotating disk, the photocell signal is displayed on an auxiliary oscilloscope as vertical deflection along a horizontal time base to portray the pulse amplitude distribution.
NASA Astrophysics Data System (ADS)
Sun, Xuehuan; Wu, Yongxiao; Chen, Sanbin; Li, Jianlang
2018-05-01
In this paper, we demonstrated a passive Q-switched ytterbium-doped fiber laser with radially polarized beam emission by using a c-cut YVO4 birefringent crystal as the intracavity polarization discriminator, and a Cr4+:YAG crystal as the saturable absorber and output coupler. The maximum averaged laser power reached 3.89 W with a high slope efficiency of 66.5%. The laser pulse had a peak power of 161 W, 160 ns duration, and 151 kHz repetition rate at the absorbed pump power of 6.48 W. Such a radially polarized pulse would facilitate numerous applications.
High-energy, ceramic-disk Yb:LuAG laser amplifier.
Siebold, M; Loeser, M; Roeser, F; Seltmann, M; Harzendorf, G; Tsybin, I; Linke, S; Banerjee, S; Mason, P D; Phillips, P J; Ertel, K; Collier, J C; Schramm, U
2012-09-24
We report the first short-pulse amplification results to several hundred millijoule energies in ceramic Yb:LuAG. We have demonstrated ns-pulse output from a diode-pumped Yb:LuAG amplifier at a maximum energy of 580 mJ and a peak optical-to-optical efficiency of 28% at 550 mJ. In cavity dumped operation of a nanosecond oscillator we obtained 1 mJ at up to 100 Hz repetition rate. A gain bandwidth of 5.4 nm was achieved at room temperature by measuring the small-signal single-pass gain. Furthermore, we compared our results with Yb:YAG within the same amplifier system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofmann, R.; Hartung, R.; Geissdoerfer, K.A.
Laser energy of a Nd-YAG laser (1064 nm. wave length, 8 nsec pulse duration) was directed against various tissue cultures and the urothelium of the ureter, bladder and kidney parenchyma in pigs. Single pulse energy was 50 to 120 mJ with a repetition rate of 20 Hz. Urothelium and kidney parenchyma were irradiated in seven pigs. Tissue samples were examined histologically and electron microscopically directly, two, four, eight and 12 days after irradiation. No macroscopic lesion could be found. Maximum energy caused a small rupture cone of 40 micron. depth. No thermic effects or necrosis resulted, so that no harmmore » is to be expected with unintentional irradiation during laser stone disintegration.« less
Thermal effects in an ultrafast BiB 3O 6 optical parametric oscillator at high average powers
Petersen, T.; Zuegel, J. D.; Bromage, J.
2017-08-15
An ultrafast, high-average-power, extended-cavity, femtosecond BiB 3O 6 optical parametric oscillator was constructed as a test bed for investigating the scalability of infrared parametric devices. Despite the high pulse energies achieved by this system, the reduction in slope efficiency near the maximum-available pump power prompted the investigation of thermal effects in the crystal during operation. Furthermore, the local heating effects in the crystal were used to determine the impact on both phase matching and thermal lensing to understand limitations that must be overcome to achieve microjoule-level pulse energies at high repetition rates.
Tungsten ditelluride for a nanosecond Ho,Pr:LiLuF4 laser at 2.95 µm
NASA Astrophysics Data System (ADS)
Yan, Zhengyu; Li, Tao; Zhao, Jia; Zhao, Shengzhi; Yang, Kejian; Li, Guiqiu; Li, Dechun; Zhang, Shuaiyi; Li, Jian
2018-04-01
The linear and nonlinear absorption characteristics of a home-built multilayer tungsten ditelluride (WTe2) saturable absorber at ~3 µm were demonstrated for the first time. A passively Q-switched Ho,Pr:LiLuF4 laser was realized by inserting the WTe2-saturable absorber into a plane-concave laser cavity. A maximum average output power of 128 mW, with a pulse duration of 366 ns at a repetition rate of 92 kHz was obtained under an absorbed pump power of 3.67 W, corresponding to a pulse energy of 1.4 µJ.
Passively mode-locked diode-pumped Tm3+:YLF laser emitting at 1.91 µm using a GaAs-based SESAM
NASA Astrophysics Data System (ADS)
Tyazhev, A.; Soulard, R.; Godin, T.; Paris, M.; Brasse, G.; Doualan, J.-L.; Braud, A.; Moncorgé, R.; Laroche, M.; Camy, P.; Hideur, A.
2018-04-01
We report on a diode-pumped Tm:YLF laser passively mode-locked with an InGaAs saturable absorber. The laser emits a train of 31 ps pulses at a wavelength of 1.91 µm with a repetition rate of 94 MHz and a maximum average power of 95 mW. A sustained and robust mode-locking with a signal-to-noise ratio of ~70 dB is obtained even at high relative air humidity, making this system attractive for applications requiring ultra-short pulses in the spectral window just below 2 µm.
Thermal effects in an ultrafast BiB 3O 6 optical parametric oscillator at high average powers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, T.; Zuegel, J. D.; Bromage, J.
An ultrafast, high-average-power, extended-cavity, femtosecond BiB 3O 6 optical parametric oscillator was constructed as a test bed for investigating the scalability of infrared parametric devices. Despite the high pulse energies achieved by this system, the reduction in slope efficiency near the maximum-available pump power prompted the investigation of thermal effects in the crystal during operation. Furthermore, the local heating effects in the crystal were used to determine the impact on both phase matching and thermal lensing to understand limitations that must be overcome to achieve microjoule-level pulse energies at high repetition rates.
A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals.
Li, Suyi; Jiang, Shanqing; Jiang, Shan; Wu, Jiang; Xiong, Wenji; Diao, Shu
2017-01-01
The noninvasive peripheral oxygen saturation (SpO 2 ) and the pulse rate can be extracted from photoplethysmography (PPG) signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects' PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO 2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis.
A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals
Jiang, Shanqing; Jiang, Shan; Wu, Jiang; Xiong, Wenji
2017-01-01
The noninvasive peripheral oxygen saturation (SpO2) and the pulse rate can be extracted from photoplethysmography (PPG) signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects' PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis. PMID:29250135
Susi, Louis; Reader, Al; Nusstein, John; Beck, Mike; Weaver, Joel; Drum, Melissa
2008-01-01
The authors, using a crossover design, randomly administered, in a single-blind manner, 3 primary intraosseous injections to 61 subjects using: the Wand local anesthetic system at a deposition rate of 45 seconds (fast injection); the Wand local anesthetic system at a deposition rate of 4 minutes and 45 seconds (slow injection); a conventional syringe injection at a deposition rate of 4 minutes and 45 seconds (slow injection), in 3 separate appointments spaced at least 3 weeks apart. A pulse oximeter measured heart rate (pulse). The results demonstrated the mean maximum heart rate was statistically higher with the fast intraosseous injection (average 21 to 28 beats/min increase) than either of the 2 slow intraosseous injections (average 10 to 12 beats/min increase). There was no statistically significant difference between the 2 slow injections. We concluded that an intraosseous injection of 1.4 mL of 2% lidocaine with 1 : 100,000 epinephrine with the Wand at a 45-second rate of anesthetic deposition resulted in a significantly higher heart rate when compared with a 4-minute and 45-second anesthetic solution deposition using either the Wand or traditional syringe. PMID:18327970
Susi, Louis; Reader, Al; Nusstein, John; Beck, Mike; Weaver, Joel; Drum, Melissa
2008-01-01
The authors, using a crossover design, randomly administered, in a single-blind manner, 3 primary intraosseous injections to 61 subjects using: the Wand local anesthetic system at a deposition rate of 45 seconds (fast injection); the Wand local anesthetic system at a deposition rate of 4 minutes and 45 seconds (slow injection); a conventional syringe injection at a deposition rate of 4 minutes and 45 seconds (slow injection), in 3 separate appointments spaced at least 3 weeks apart. A pulse oximeter measured heart rate (pulse). The results demonstrated the mean maximum heart rate was statistically higher with the fast intraosseous injection (average 21 to 28 beats/min increase) than either of the 2 slow intraosseous injections (average 10 to 12 beats/min increase). There was no statistically significant difference between the 2 slow injections. We concluded that an intraosseous injection of 1.4 mL of 2% lidocaine with 1 : 100,000 epinephrine with the Wand at a 45-second rate of anesthetic deposition resulted in a significantly higher heart rate when compared with a 4-minute and 45-second anesthetic solution deposition using either the Wand or traditional syringe.
Multi-watt passively Q-switched Yb:YAB/Cr:YAG microchip lasers
NASA Astrophysics Data System (ADS)
Serres, Josep Maria; Loiko, Pavel; Mateos, Xavier; Liu, Junhai; Zhang, Huaijing; Yumashev, Konstantin; Griebner, Uwe; Petrov, Valentin; Aguiló, Magdalena; Díaz, Francesc
2017-02-01
A trigonal 5.6 at.% Yb:YAl3(BO3)4 (Yb:YAB) crystal is employed in continuous-wave (CW) and passively Q-switched microchip lasers pumped by a diode at 978 nm. Using a 3 mm-thick, c-cut Yb:YAB crystal, which has a higher pump absorption efficiency, efficient CW microchip laser operation is demonstrated. This laser generated a maximum output power of 7.18 W at 1041-1044 nm with a slope efficiency η of 67% (with respect to the absorbed pump power) and an almost diffraction-limited beam, M2 x,y < 1.1. Inserting a Cr:YAG saturable absorber, stable passive Q-switching of the Yb:YAB microchip laser was obtained. The maximum average output power from the Yb:YAB/Cr:YAG laser reached 2.82 W at 1042 nm with η = 53% and a conversion efficiency with respect to the CW mode of 65% (when using a 0.7 mm-thick Cr:YAG). The latter corresponded to a pulse duration and energy of 7.1 ns / 47 μJ at a pulse repetition rate (PRR) of 60 kHz. Using a 1.3 mm-thick Cr:YAG, 2.02 W were achieved at 1041 nm corresponding to η = 38%. The pulse characteristics were 4.9 ns / 83 μJ at PRR = 24.3 kHz and the maximum peak power reached 17 kW. Yb:YAB crystals are very promising for compact sub-ns power-scalable microchip lasers.
In-vitro ablation of fibrocartilage by XeCl excimer laser
NASA Astrophysics Data System (ADS)
Buchelt, Martin; Papaioannou, Thanassis; Fishbein, Michael C.; Peters, Werner; Beeder, Clain; Grundfest, Warren S.
1991-07-01
A 308 nm excimer laser was employed for ablation of human fibrocartilage. Experiments were conducted in vitro. The tissue response was investigated with respect to dosimetry (ablation rate versus radiant exposure) and thermal effect (thermographic analysis). Irradiation was performed via a 600 um fiber, with radiant exposures ranging between 20mj/mm2 and 80mj/mm2, at 20Hz. The ablation rates were found to range from 3um/pulse to 80um/pulse depending on the radiant exposure and/or the applied pressure on the delivery system. Thermographic analysis, during ablation, revealed maximum average temperatures of about 65 degree(s)C. Similar measurements performed, for the purpose of comparison, with a CW Nd:YAG and a CW CO2 laser showed higher values, of the order of 200 degree(s)C.
High-performance time-resolved fluorescence by direct waveform recording.
Muretta, Joseph M; Kyrychenko, Alexander; Ladokhin, Alexey S; Kast, David J; Gillispie, Gregory D; Thomas, David D
2010-10-01
We describe a high-performance time-resolved fluorescence (HPTRF) spectrometer that dramatically increases the rate at which precise and accurate subnanosecond-resolved fluorescence emission waveforms can be acquired in response to pulsed excitation. The key features of this instrument are an intense (1 μJ/pulse), high-repetition rate (10 kHz), and short (1 ns full width at half maximum) laser excitation source and a transient digitizer (0.125 ns per time point) that records a complete and accurate fluorescence decay curve for every laser pulse. For a typical fluorescent sample containing a few nanomoles of dye, a waveform with a signal/noise of about 100 can be acquired in response to a single laser pulse every 0.1 ms, at least 10(5) times faster than the conventional method of time-correlated single photon counting, with equal accuracy and precision in lifetime determination for lifetimes as short as 100 ps. Using standard single-lifetime samples, the detected signals are extremely reproducible, with waveform precision and linearity to within 1% error for single-pulse experiments. Waveforms acquired in 0.1 s (1000 pulses) with the HPTRF instrument were of sufficient precision to analyze two samples having different lifetimes, resolving minor components with high accuracy with respect to both lifetime and mole fraction. The instrument makes possible a new class of high-throughput time-resolved fluorescence experiments that should be especially powerful for biological applications, including transient kinetics, multidimensional fluorescence, and microplate formats.
Maximum value of the pulse energy of a passively Q-switched laser as a function of the pump power.
Li, Jianlang; Ueda, Ken-ichi; Dong, Jun; Musha, Mitsuru; Shirakawa, Akira
2006-07-20
The finite recovery time Ts of the bleached absorber is presented as one of the possible mechanisms accounting for the increase-maximum-decrease in pulse energy E with the pumping rate Wp in cw-pumped passively Q-switched solid-state lasers, by analytically evaluating the sign of the derivative partial differentialE/ partial differentialWP. The results show that, in the low pump regime (T>Ts, T is the interpulse period), the initial population density ni remains constant, the final population density nf decreases with Wp, and this results in a monotonic increase of E with Wp. In the high pump regime (T
[Development and medical application of Er-YAG laser].
Okamoto, Y; Kobayashi, A; Awazu, A; Ogino, H; Ban, T
1993-09-01
Result of developments of Er-YAG laser and its delivery system were reported. Er-YAG laser's wavelength is 2.94 microns, the beam absorption rate by water is higher than other laser beam. Er-YAG laser has repeated pulse oscillation, pulse width is 400 mu, sec, the repeat frequency is between 5 to 10 pulse per second. The mean power is 4 W maximum, 10 pps. The fibers of laser are made of zirconium-F-glass. We carried out a study on the possible application of the Er-YAG laser on the rabbit arteries and myocardium and human arteries were examined in vitro. Very clear cuts were observed on the histological examination. There were no evidence of thermal damage, no carbonization on the sharp cutting surface. Experimental result showed that Er-YAG lasers had good potential for angioplastic laser.
Generation of subnanosecond electron beams in air at atmospheric pressure
NASA Astrophysics Data System (ADS)
Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.
2009-11-01
Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.
Oximetry in children recovering from deep hypothermia for cardiac surgery.
Macnab, A J; Baker-Brown, G; Anderson, E E
1990-10-01
Although pulse oximetry is a potentially useful diagnostic tool in the treatment of children after major open heart surgery, there are concerns regarding its reliability for measuring oxygen saturation (SaO2) in hypothermic or low perfusion states. To test pulse oximeter reliability in children under these conditions, our study compared 187 SaO2 pulse oximeter readings (Biox 3700) with simultaneous hemoximeter (OSM2, Radiometer) readings from 56 children rewarming after open heart surgery. Ages ranged from 4 months to 18 yr; temperatures ranged from 23.5 degrees to 38 degrees C (toe) and 31.3 degrees to 40.8 degrees C (core). The mean pulse oximeter SaO2 reading was 94.90% (SD 7.18, range 54% to 100%), mean hemoximeter reading was 96.07% (SD 7.06; minimum 54%; maximum 100%). The correlation between the readings was high (r = .88, p less than .005), and was not affected by low core temperature. When oximeter and cardiac monitor pulse rates coincided, the oximeter SaO2 value was within +/- 5% (p less than .05). We conclude that the Biox 3700 oximeter is reliable for noninvasive SaO2 monitoring in mild to moderately hypothermic children after open heart surgery, particularly when oximeter and cardiac heart rates coincide. Further studies are needed to confirm our findings in children with core temperatures less than 31.3 degrees C, and when other oximeters are used.
NASA Astrophysics Data System (ADS)
Soukup, B.; Johnson, W.; Repasky, K. S.; Carlsten, J. L.
2013-12-01
A scanning differential absorption lidar (DIAL) instrument for carbon sequestration site monitoring is under development and testing at Montana State University. The laser transmitter uses two tunable discrete mode laser diodes (DMLD) operating in the continuous wave (cw) mode with one locked to the on-line absorption wavelength at 1571.4067 nm and the second operating at the off-line wavelength at 1571.2585 nm. Two in-line fiber optic switches are used to switch between on-line and off-line operation. After the fiber optic switches, an acousto-optic modulator (AOM) is used to generate a pulse train used to injection seed an erbium doped fiber amplifier (EDFA) to produce eye-safe laser pulses with maximum pulse energies of 66 J and a pulse repetition frequency of 15 kHz. The DIAL receiver uses a 28 cm diameter Schmidt-Cassegrain telescope to collect that backscattered light, which is then monitored using a fiber coupled photo-multiplier tube (PMT) module operating in the photon counting mode. The PMT has a 3% quantum efficiency, a dark count rate of 90 kHz, and a maximum count rate of 1 MHz. Recently, a fiber coupled avalanche photodiode (APD) operating in the geiger mode has been incorporated into the DIAL receiver. The APD has a quantum efficiency of 10%, a dark count rate of 10 kHz, and a maximum count rate of 1 MHz and provides a much larger dynamic range than the PMT. Both the PMT and APD provide TTL logic pulses that are monitored using a multichannel scaler card used to count the return photons as a function of time of flight and are thus interchangeable. The DIAL instrument was developed at the 1.571 m wavelength to take advantage of commercial-off-the-shelf components. The instrument is operated using a custom Labview program that switches to the DMLD operating at the on-line wavelength, locks this laser to a user defined wavelength setting, and collects return signals for a user defined time. The control program switches to the DMLD operating at the off-line wavelength where data is again collected for a user defined time. The control program repeats this process until stopped by the operator. The DIAL instrument has been operated at the Zero Emission Research Technology (ZERT) field site located on the Montana State University campus and at the Big Sky Carbon Sequestration Partnership site located in north-central Montana. Data collected by the DIAL instrument at both field sites demonstrate that the DIAL is capable of retrieving night time CO2 number density profiles out to a range of 2.5 km with a 150 m range resolution. The DIAL retrievals are validated using a co-located Li-COR 820 gas analyzer placed along the DIAL optical path allowing comparison at a single range as a function of time.
The fluid dynamics of microjet explosions caused by extremely intense X-ray pulses
NASA Astrophysics Data System (ADS)
Stan, Claudiu; Laksmono, Hartawan; Sierra, Raymond; Milathianaki, Despina; Koglin, Jason; Messerschmidt, Marc; Williams, Garth; Demirci, Hasan; Botha, Sabine; Nass, Karol; Stone, Howard; Schlichting, Ilme; Shoeman, Robert; Boutet, Sebastien
2014-11-01
Femtosecond X-ray scattering experiments at free-electron laser facilities typically requires liquid jet delivery methods to bring samples to the region of interaction with X-rays. We have imaged optically the damage process in water microjets due to intense hard X-ray pulses at the Linac Coherent Light Source (LCLS), using time-resolved imaging techniques to record movies at rates up to half a billion frames per second. For pulse energies larger than a few percent of the maximum pulse energy available at LCLS, the X-rays deposit energies much larger than the latent heat of vaporization in water, and induce a phase explosion that opens a gap in the jet. The LCLS pulses last a few tens of femtoseconds, but the full evolution of the broken jet is orders of magnitude slower - typically in the microsecond range - due to complex fluid dynamics processes triggered by the phase explosion. Although the explosion results in a complex sequence of phenomena, they lead to an approximately self-similar flow of the liquid in the jet.
Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi₂Se₃.
Dou, Zhiyuan; Song, Yanrong; Tian, Jinrong; Liu, Jinghui; Yu, Zhenhua; Fang, Xiaohui
2014-10-06
We demonstrated an all-normal-dispersion Yb-doped mode-locked fiber laser based on Bi₂Se₃ topological insulator (TI). Different from previous TI-mode-locked fiber lasers in which TIs were mixed with film-forming agent, we used a special way to paste a well-proportioned pure TI on a fiber end-facet. In this way, the effect of the film-forming agent could be removed, thus the heat deposition was relieved and damage threshold could be improved. The modulation depth of the Bi₂Se₃ film was measured to be 5.2%. When we used the Bi₂Se₃ film in the Yb-doped fiber laser, the mode locked pulses with pulse energy of 0.756 nJ, pulse width of 46 ps and the repetition rate of 44.6 MHz were obtained. The maximum average output power was 33.7 mW. When the pump power exceeded 270 mW, the laser can operate in multiple pulse state that six-pulse regime can be realized. This contribution indicates that Bi₂Se₃ has an attractive optoelectronic property at 1μm waveband.
Maximizing fluid delivered by bubble-free electroosmotic pump with optimum pulse voltage waveform.
Tawfik, Mena E; Diez, Francisco J
2017-03-01
In generating high electroosmotic (EO) flows for use in microfluidic pumps, a limiting factor is faradaic reactions that are more pronounced at high electric fields. These reactions lead to bubble generation at the electrodes and pump efficiency reduction. The onset of gas generation for high current density EO pumping depends on many parameters including applied voltage, working fluid, and pulse duration. The onset of gas generation can be delayed and optimized for maximum volume pumped in the minimum time possible. This has been achieved through the use of a novel numerical model that predicts the onset of gas generation during EO pumping using an optimized pulse voltage waveform. This method allows applying current densities higher than previously reported. Optimal pulse voltage waveforms are calculated based on the previous theories for different current densities and electrolyte molarity. The electroosmotic pump performance is investigated by experimentally measuring the fluid volume displaced and flow rate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
MW-assisted synthesis of LiFePO 4 for high power applications
NASA Astrophysics Data System (ADS)
Beninati, Sabina; Damen, Libero; Mastragostino, Marina
LiFePO 4/C was prepared by solid-state reaction from Li 3PO 4, Fe 3(PO 4) 2·8H 2O, carbon and glucose in a few minutes in a scientific MW (microwave) oven with temperature and power control. The material was characterized by X-ray diffraction, scanning electron microscopy and by TGA analysis to evaluate carbon content. The electrochemical characterization as positive electrode in EC (ethylene carbonate)-DMC (dimethylcarbonate) 1 M LiPF 6 was performed by galvanostatic charge-discharge cycles at C/10 to evaluate specific capacity and by sequences of 10 s discharge-charge pulses, at different high C-rates (5-45C) to evaluate pulse-specific power in simulate operative conditions for full-HEV application. The maximum pulse-specific power and, particularly, pulse efficiency values are quite high and make MW synthesis a very promising route for mass production of LiFePO 4/C for full-HEV batteries at low energy costs.
Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser
NASA Astrophysics Data System (ADS)
Li, Jianfeng; Luo, Hongyu; He, Yulian; Liu, Yong; Luo, Binbin; Sun, Zhongyuan; Zhang, Lin; Turitsyn, Sergei K.
2014-05-01
A diode-cladding-pumped mid-infrared passively Q-switched Ho3+-doped fluoride fiber laser using a reverse designed broad band semiconductor saturable mirror (SESAM) was demonstrated. Nonlinear reflectivity of the SESAM was measured using an in-house Yb3+-doped mode-locked fiber laser at 1062 nm. Stable pulse train was produced at a slope efficient of 12.1% with respect to the launched pump power. Maximum pulse energy of 6.65 μJ with a pulse width of 1.68 μs and signal to noise ratio (SNR) of ~50 dB was achieved at a repetition rate of 47.6 kHz and center wavelength of 2.971 μm. To the best of our knowledge, this is the first 3 μm region SESAM based Q-switched fiber laser with the highest average power and pulse energy, as well as the longest wavelength from mid-infrared passively Q-switched fluoride fiber lasers.
Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser
NASA Astrophysics Data System (ADS)
Li, J. F.; Luo, H. Y.; He, Y. L.; Liu, Y.; Zhang, L.; Zhou, K. M.; Rozhin, A. G.; Turistyn, S. K.
2014-06-01
A diode-cladding-pumped mid-infrared passively Q-switched Ho3+-doped fluoride fiber laser using a reverse designed broad band semiconductor saturable mirror (SESAM) was demonstrated. Nonlinear reflectivity of the SESAM was measured using an in-house Yb3+-doped mode-locked fiber laser at 1062 nm. Stable pulse train was produced at a slope efficient of 12.1% with respect to the launched pump power. Maximum pulse energy of 6.65 µJ with a pulse width of 1.68 µs and signal-to-noise ratio (SNR) of ~50 dB was achieved at a repetition rate of 47.6 kHz and center wavelength of 2.971 µm. To the best of our knowledge, this is the first 3 µm region SESAM-based Q-switched fiber laser with the highest average power and pulse energy, as well as the longest wavelength from mid-infrared passively Q-switched fluoride fiber lasers.
Miniaturized pulsed CO2 laser with sealed electron source
NASA Astrophysics Data System (ADS)
Bychkov, Y. I.; Orlovskiy, V. M.; Osipov, V. V.; Poteryayev, A. G.
1984-04-01
A new miniature electron beam-controlled CO2 laser (the MIG-3) contains an electron accelerator, gas cell and DC supply in one large unit (0.22 x 0,16 x 0.7 m) and the accelerator power supply and laser control panel in a second smaller unit. The overall weight of the instrument in 30 kg. The electron beam is controlled by four vacuum diodes in parallel; a 180 KV pulse is fed to the vacuum diode inputs from a "NORA" series-produced X-ray source (the MIRA-3D) also is used). The total electron beam current from all diodes was 600 A following the foil with a half-height width of 10 ns. The lasing medium is CO2:N2 - 1:1 at 4.5 atm. The maximum stimulated emission pulse energy was 1 J with an efficiency of 8% when the pressure was 4 atm. With a pulse repetition rate of 4 Hz, the average power consumption of the unit was 100 W.
Effects of pulse width and coding on radar returns from clear air
NASA Technical Reports Server (NTRS)
Cornish, C. R.
1983-01-01
In atmospheric radar studies it is desired to obtain maximum information about the atmosphere and to use efficiently the radar transmitter and processing hardware. Large pulse widths are used to increase the signal to noise ratio since clear air returns are generally weak and maximum height coverage is desired. Yet since good height resolution is equally important, pulse compression techniques such as phase coding are employed to optimize the average power of the transmitter. Considerations in implementing a coding scheme and subsequent effects of an impinging pulse on the atmosphere are investigated.
Redondo, L M; Fernando Silva, J; Margato, E
2007-03-01
This article discusses the operation of a modular generator topology, which has been developed for high-frequency (kHz), high-voltage (kV) pulsed applications. The proposed generator uses individual modules, each one consisting of a pulse circuit based on a modified forward converter, which takes advantage of the required low duty cycle to operate with a low voltage clamp reset circuit for the step-up transformer. This reduces the maximum voltage on the semiconductor devices of both primary and secondary transformer sides. The secondary winding of each step-up transformer is series connected, delivering a fraction of the total voltage. Each individual pulsed module is supplied via an isolation transformer. The assembled modular laboratorial prototype, with three 5 kV modules, 800 V semiconductor switches, and 1:10 step-up transformers, has 80% efficiency, and is capable of delivering, into resistive loads, -15 kV1 A pulses with 5 micros width, 10 kHz repetition rate, with less than 1 micros pulse rise time. Experimental results for resistive loads are presented and discussed.
A Tesla-type repetitive nanosecond pulse generator for solid dielectric breakdown research.
Zhao, Liang; Pan, Ya Feng; Su, Jian Cang; Zhang, Xi Bo; Wang, Li Min; Fang, Jin Peng; Sun, Xu; Lui, Rui
2013-10-01
A Tesla-type repetitive nanosecond pulse generator including a pair of electrode and a matched absorption resistor is established for the application of solid dielectric breakdown research. As major components, a built-in Tesla transformer and a gas-gap switch are designed to boost and shape the output pulse, respectively; the electrode is to form the anticipated electric field; the resistor is parallel to the electrode to absorb the reflected energy from the test sample. The parameters of the generator are a pulse width of 10 ns, a rise and fall time of 3 ns, and a maximum amplitude of 300 kV. By modifying the primary circuit of the Tesla transformer, the generator can produce both positive and negative pulses at a repetition rate of 1-50 Hz. In addition, a real-time measurement and control system is established based on the solid dielectric breakdown requirements for this generator. With this system, experiments on test samples made of common insulation materials in pulsed power systems are conducted. The preliminary experimental results show that the constructed generator is capable to research the solid dielectric breakdown phenomenon on a nanosecond time scale.
Measurement of OH Radicals in Pulsed Corona and Pulsed Dielectric Barrier Discharge
NASA Astrophysics Data System (ADS)
Ono, Ryo; Oda, Tetsuji
OH radicals are measured in a pulsed corona or a pulsed dielectric barrier discharge (DBD) using laserinduced fluorescence (LIF) method. The pulsed discharges occur in nitrogen-oxygen mixture with 2.4% water vapor at atmospheric pressure. The pulse width is 100ns and the peak voltage is 35kV. The electrode configuration is a needle to plate electrode with 16-mm gap for corona discharge, and with 5-mm gap for DBD where the barrier is 2mm thick glass plate. It is shown that OH density is approximately proportional to the energy consumed by the discharge. The OH density per the discharge energy is about 2-4×1014cm-3/mJ for both discharges in H2O(2.4%)/N2 mixture. It is shown that OH density increases with oxygen content in DBD, whereas OH density reaches a maximum at 3% oxygen content in corona discharge. The existence of oxygen accelerates OH decay rate in both discharges. A trace amount of trichloroethylene (TCE) is added to the ambient gas. It is shown that the addition of 100ppm TCE to corona discharge reduces discharge current by about 50%. That leads to decrease of OH production.
A Study of the Response of the Human Cadaver Head to Impact
Hardy, Warren N.; Mason, Matthew J.; Foster, Craig D.; Shah, Chirag S.; Kopacz, James M.; Yang, King H.; King, Albert I.; Bishop, Jennifer; Bey, Michael; Anderst, William; Tashman, Scott
2008-01-01
High-speed biplane x-ray and neutral density targets were used to examine brain displacement and deformation during impact. Relative motion, maximum principal strain, maximum shear strain, and intracranial pressure were measured in thirty-five impacts using eight human cadaver head and neck specimens. The effect of a helmet was evaluated. During impact, local brain tissue tends to keep its position and shape with respect to the inertial frame, resulting in relative motion between the brain and skull and deformation of the brain. The local brain motions tend to follow looping patterns. Similar patterns are observed for impact in different planes, with some degree of posterior-anterior and right-left symmetry. Peak coup pressure and pressure rate increase with increasing linear acceleration, but coup pressure pulse duration decreases. Peak average maximum principal strain and maximum shear are on the order of 0.09 for CFC 60 Hz data for these tests. Peak average maximum principal strain and maximum shear increase with increasing linear acceleration, coup pressure, and coup pressure rate. Linear and angular acceleration of the head are reduced with use of a helmet, but strain increases. These results can be used for the validation of finite element models of the human head. PMID:18278591
NASA Astrophysics Data System (ADS)
Bahrenberg, Thorsten; Rosenski, Yael; Carmieli, Raanan; Zibzener, Koby; Qi, Mian; Frydman, Veronica; Godt, Adelheid; Goldfarb, Daniella; Feintuch, Akiva
2017-10-01
Chirp and shaped pulses have been recently shown to be highly advantageous for improving sensitivity in DEER (double electron-electron resonance, also called PELDOR) measurements due to their large excitation bandwidth. The implementation of such pulses for pulse EPR has become feasible due to the availability of arbitrary waveform generators (AWG) with high sampling rates to support pulse shaping for pulses with tens of nanoseconds duration. Here we present a setup for obtaining chirp pulses on our home-built W-band (95 GHz) spectrometer and demonstrate its performance on Gd(III)-Gd(III) and nitroxide-nitroxide DEER measurements. We carried out an extensive optimization procedure on two model systems, Gd(III)-PyMTA-spacer-Gd(III)-PyMTA (Gd-PyMTA ruler; zero-field splitting parameter (ZFS) D ∼ 1150 MHz) as well as nitroxide-spacer-nitroxide (nitroxide ruler) to evaluate the applicability of shaped pulses to Gd(III) complexes and nitroxides, which are two important classes of spin labels used in modern DEER/EPR experiments. We applied our findings to ubiquitin, doubly labeled with Gd-DOTA-monoamide (D ∼ 550 MHz) as a model for a system with a small ZFS. Our experiments were focused on the questions (i) what are the best conditions for positioning of the detection frequency, (ii) which pump pulse parameters (bandwidth, positioning in the spectrum, length) yield the best signal-to-noise ratio (SNR) improvements when compared to classical DEER, and (iii) how do the sample's spectral parameters influence the experiment. For the nitroxide ruler, we report an improvement of up to 1.9 in total SNR, while for the Gd-PyMTA ruler the improvement was 3.1-3.4 and for Gd-DOTA-monoamide labeled ubiquitin it was a factor of 1.8. Whereas for the Gd-PyMTA ruler the two setups pump on maximum and observe on maximum gave about the same improvement, for Gd-DOTA-monoamide a significant difference was found. In general the choice of the best set of parameters depends on the D parameter of the Gd(III) complex.
NASA Astrophysics Data System (ADS)
Ewing, Jacob; Wang, Yuzheng; Arnold, David P.
2018-05-01
This paper investigates methods for electroplating thick (>20 μm), high-coercivity CoPt films using high current densities (up to 1 A/cm2) and elevated bath temperatures (70 °C). Correlations are made tying current-density and temperature process parameters with plating rate, elemental ratio and magnetic properties of the deposited CoPt films. It also investigates how pulsed currents can increase the plating rate and film to substrate adhesion. Using 500 mA/cm2 and constant current, high-quality, dense CoPt films were successfully electroplated up to 20 μm thick in 1 hr on silicon substrates (0.35 μm/min plating rate). After standard thermal treatment (675°C, 30 min) to achieve the ordered L10 crystalline phase, strong magnetic properties were measured: coercivities up 850 kA/m, remanences >0.5 T, and maximum energy products up to 46 kJ/m3.
500-MHz x-ray counting with a Si-APD and a fast-pulse processing system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kishimoto, Shunji; Taniguchi, Takashi; Tanaka, Manobu
2010-06-23
We introduce a counting system of up to 500 MHz for synchrotron x-ray high-rate measurements. A silicon avalanche photodiode detector was used in the counting system. The fast-pulse circuit of the amplifier was designed with hybrid ICs to prepare an ASIC system for a large-scale pixel array detector in near future. The fast amplifier consists of two cascading emitter-followers using 10-GHz band transistors. A count-rate of 3.25x10{sup 8} s{sup -1} was then achieved using the system for 8-keV x-rays. However, a baseline shift by adopting AC-coupling in the amplifier disturbed us to observe the maximum count of 4.49x10{sup 8} s{supmore » -1}, determined by electron-bunch filling into a ring accelerator. We also report that an amplifier with a baseline restorer was tested in order to keep the baseline level to be 0 V even at high input rates.« less
On pulse duration of self-terminating lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bokhan, P A
2011-02-28
The problem of the maximum pulse duration {tau}{sub max} of self-terminating lasers is considered. It is shown that the duration depends on the transition probability in the laser channel, on the decay rate of the resonant state in all other channels, and on the excitation rate of the metastable state. As a result, {tau}{sub max} is found to be significantly shorter than previously estimated. The criteria for converting the 'self-terminating' lasing to quasi-cw lasing are determined. It is shown that in the case of nonselective depopulation of the metastable state, for example in capillary lasers or in a fast flowmore » of the active medium gas, it is impossible to obtain continuous lasing. Some concrete examples are considered. It is established that in several studies of barium vapour lasers ({lambda} = 1.5 {mu}m) and nitrogen lasers ({lambda} = 337 nm), collisional lasing is obtained by increasing the relaxation rate of the metastable state in collisions with working particles (barium atoms and nitrogen molecules). (lasers)« less
2010-01-01
Background Despite advances in transplant surgery and general medicine, the number of patients awaiting transplant organs continues to grow, while the supply of organs does not. This work outlines a method of organ decellularization using non-thermal irreversible electroporation (N-TIRE) which, in combination with reseeding, may help supplement the supply of organs for transplant. Methods In our study, brief but intense electric pulses were applied to porcine livers while under active low temperature cardio-emulation perfusion. Histological analysis and lesion measurements were used to determine the effects of the pulses in decellularizing the livers as a first step towards the development of extracellular scaffolds that may be used with stem cell reseeding. A dynamic conductivity numerical model was developed to simulate the treatment parameters used and determine an irreversible electroporation threshold. Results Ninety-nine individual 1000 V/cm 100-μs square pulses with repetition rates between 0.25 and 4 Hz were found to produce a lesion within 24 hours post-treatment. The livers maintained intact bile ducts and vascular structures while demonstrating hepatocytic cord disruption and cell delamination from cord basal laminae after 24 hours of perfusion. A numerical model found an electric field threshold of 423 V/cm under specific experimental conditions, which may be used in the future to plan treatments for the decellularization of entire organs. Analysis of the pulse repetition rate shows that the largest treated area and the lowest interstitial density score was achieved for a pulse frequency of 1 Hz. After 24 hours of perfusion, a maximum density score reduction of 58.5 percent had been achieved. Conclusions This method is the first effort towards creating decellularized tissue scaffolds that could be used for organ transplantation using N-TIRE. In addition, it provides a versatile platform to study the effects of pulse parameters such as pulse length, repetition rate, and field strength on whole organ structures. PMID:21143979
Piper, David Z.; Dean, Walter E.
2002-01-01
A sediment core from the Cariaco Basin on the Venezuelan continental shelf, which recovered sediment that has been dated back to 20 ka (thousand years ago), was examined for its major-element-oxide and trace-element composition. Cadmium (Cd), chromium (Cr), copper (Cu), molybdenum (Mo), nickel (Ni), vanadium (V), and zinc (Zn) can be partitioned between a siliciclastic, terrigenous-derived fraction and two seawater-derived fractions. The two marine fractions are (1) a biogenic fraction represented by nutrient trace elements taken up mostly in the photic zone by phytoplankton, and (2) a hydrogenous fraction that has been derived from bottom water via adsorption and precipitation reactions. This suite of trace elements contrasts with a second suite of trace elements—barium (Ba), cobalt (Co), gallium (Ga), lithium (Li), the rare-earth elements, thorium (Th), yttrium (Y), and several of the major-element oxides—that has had solely a terrigenous source. The partitioning scheme, coupled with bulk sediment accumulation rates measured by others, allows us to determine the accumulation rate of trace elements in each of the three sediment fractions and of the fractions themselves. The current export of organic matter from the photic zone, redox conditions and advection of bottom water, and flux of terrigenous debris into the basin can be used to calculate independently trace-element depositional rates. The calculated rates show excellent agreement with the measured rates of the surface sediment. This agreement supports a model of trace-element accumulation rates in the subsurface sediment that gives a 20-kyr history of upwelling into the photic zone (that is, primary productivity), bottom-water advection and redox, and provenance. Correspondence of extrema in the geochemical signals with global changes in sea level and climate demonstrates the high degree to which the basin hydrography and provenance have responded to the paleoceanographic and paleoclimatic regimes of the last 20 kyr. The accumulation rate of the marine fraction of Mo increased abruptly at about 14.8 ka (calendar years), from less than 0.5 µg cm-2 yr-1 to greater than 4 µg cm-2 yr-1. Its accumulation rate remained high but variable until 8.6 ka, when it decreased sharply to 1 µg cm-2 yr-1. It continued to decrease to 4.0 ka, to its lowest value for the past 15 kyr, before gradually increasing to the present. Between 14.8 ka and 8.6 ka, its accumulation rate exhibited strong maxima at 14.4, 13.0, and 9.9 ka. The oldest maximum corresponds to melt-water pulse IA into the Gulf of Mexico. A relative minimum, centered at about 11.1 ka, corresponds to melt-water pulse IB; a strong maximum occurs in the immediately overlying sediment. The maximum at 13.0 ka corresponds to onset of the Younger Dryas cold event. This pattern to the accumulation rate of Mo (and V) can be interpreted in terms of its deposition from bottom water of the basin, the hydrogenous fraction, under SO42- -reducing conditions, during times of intense bottom-water advection 14.8 ka to 11.1 ka and significantly less intense bottom-water advection 11 ka to the present. The accumulation rate of Cd shows a pattern that is only slightly different from that of Mo, although its deposition was determined largely by the rain rate of organic matter into the bottom water, a biogenic fraction whose deposition was driven by upwelling of nutrient-enriched water into the photic zone. Its accumulation exhibits only moderately high rates, on average, during both melt-water pulses. Its highest rate, and that of upwelling, occurred during the Younger Dryas, and again following melt-water pulse IB. The marine fractions of Cu, Ni, and Zn also have a strong biogenic signal. The siliciclastic terrigenous debris, however, represents the dominant source, and host, of Cu, Ni, and Zn. All four trace elements have a consid-erably weaker hydrogenous signal than biogenic signal. Accumulation rates of the terrigenous fraction, as reflected by accumulation rates of Th and Ga, show strong maxima at 16.2 and 12.7 ka and minima at 14.1 and 11.1 ka. Co, Li, REE, and Y have a similar distribution. The minima occurred during melt-water pulses IA and IB, the maxima during the Younger Dryas and the rise in sea level following the last glacial maximum.
A z-gradient array for simultaneous multi-slice excitation with a single-band RF pulse.
Ertan, Koray; Taraghinia, Soheil; Sadeghi, Alireza; Atalar, Ergin
2018-07-01
Multi-slice radiofrequency (RF) pulses have higher specific absorption rates, more peak RF power, and longer pulse durations than single-slice RF pulses. Gradient field design techniques using a z-gradient array are investigated for exciting multiple slices with a single-band RF pulse. Two different field design methods are formulated to solve for the required current values of the gradient array elements for the given slice locations. The method requirements are specified, optimization problems are formulated for the minimum current norm and an analytical solution is provided. A 9-channel z-gradient coil array driven by independent, custom-designed gradient amplifiers is used to validate the theory. Performance measures such as normalized slice thickness error, gradient strength per unit norm current, power dissipation, and maximum amplitude of the magnetic field are provided for various slice locations and numbers of slices. Two and 3 slices are excited by a single-band RF pulse in simulations and phantom experiments. The possibility of multi-slice excitation with a single-band RF pulse using a z-gradient array is validated in simulations and phantom experiments. Magn Reson Med 80:400-412, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guk, I. V., E-mail: corchand@gmail.com; Shandybina, G. D.; Yakovlev, E. B.
2016-05-15
The results of quantitative evaluation of the heat accumulation effect during the femtosecond laser microstructuring of the surface of silicon are presented for discussion. In the calculations, the numerical–analytical method is used, in which the dynamics of electronic processes and lattice heating are simulated by the numerical method, and the cooling stage is described on the basis of an analytical solution. The effect of multipulse irradiation on the surface temperature is studied: in the electronic subsystem, as the dependence of the absorbance on the excited carrier density and the dependence of the absorbance on the electron-gas temperature; in the latticemore » subsystem, as the variation in the absorbance from pulse to pulse. It was shown that, in the low-frequency pulse-repetition mode characteristic of the femtosecond microstructuring of silicon, the heat accumulation effect is controlled not by the residual surface temperature by the time of the next pulse arrival, which corresponds to conventional concepts, but by an increase in the maximum temperature from pulse to pulse, from which cooling begins. The accumulation of the residual temperature of the surface can affect the microstructuring process during irradiation near the evaporation threshold or with increasing pulse-repetition rate.« less
NASA Astrophysics Data System (ADS)
Jia, Chenglai; Shastri, Bhavin J.; Abdukerim, Nurmemet; Rochette, Martin; Prucnal, Paul R.; Saad, Mohammed; Chen, Lawrence R.
2016-11-01
Dual-band fiber lasers are emerging as a promising technology to penetrate new industrial and medical applications from their dual-band properties, in addition to providing compactness and environmental robustness from the waveguide structure. Here, we demonstrate the use of a common graphene saturable absorber and a single gain medium (Tm3+:ZBLAN fiber) to implement (1) a dual-band fiber ring laser with synchronized Q-switched pulses at wavelengths of 1480 nm and 1840 nm, and (2) a dual-band fiber linear laser with synchronized mode-locked pulses at wavelengths of 1480 nm and 1845 nm. Q-switched operation at 1480 nm and 1840 nm is achieved with a synchronized repetition rate from 20 kHz to 40.5 kHz. For synchronous mode-locked operation, pulses with full-width at half maximum durations of 610 fs and 1.68 ps at wavelengths of 1480 nm and 1845 nm, respectively, are obtained at a repetition rate of 12.3 MHz. These dual-band pulsed sources with an ultra-broadband wavelength separation of ~360 nm will add new capabilities in applications including optical sensing, spectroscopy, and communications.
Jia, Chenglai; Shastri, Bhavin J; Abdukerim, Nurmemet; Rochette, Martin; Prucnal, Paul R; Saad, Mohammed; Chen, Lawrence R
2016-11-02
Dual-band fiber lasers are emerging as a promising technology to penetrate new industrial and medical applications from their dual-band properties, in addition to providing compactness and environmental robustness from the waveguide structure. Here, we demonstrate the use of a common graphene saturable absorber and a single gain medium (Tm 3+ :ZBLAN fiber) to implement (1) a dual-band fiber ring laser with synchronized Q-switched pulses at wavelengths of 1480 nm and 1840 nm, and (2) a dual-band fiber linear laser with synchronized mode-locked pulses at wavelengths of 1480 nm and 1845 nm. Q-switched operation at 1480 nm and 1840 nm is achieved with a synchronized repetition rate from 20 kHz to 40.5 kHz. For synchronous mode-locked operation, pulses with full-width at half maximum durations of 610 fs and 1.68 ps at wavelengths of 1480 nm and 1845 nm, respectively, are obtained at a repetition rate of 12.3 MHz. These dual-band pulsed sources with an ultra-broadband wavelength separation of ~360 nm will add new capabilities in applications including optical sensing, spectroscopy, and communications.
NASA Astrophysics Data System (ADS)
Yonemori, Seiya; Ono, Ryo
2014-03-01
The atmospheric-pressure helium plasma jet is of emerging interest as a cutting-edge biomedical device for cancer treatment, wound healing and sterilization. Reactive oxygen species such as OH and O radicals are considered to be major factors in the application of biological plasma. In this study, density distribution, temporal behaviour and flux of OH and O radicals on a surface are measured using laser-induced fluorescence. A helium plasma jet is generated by applying pulsed high voltage of 8 kV with 10 kHz using a quartz tube with an inner diameter of 4 mm. To evaluate the relation between the surface condition and active species production, three surfaces are used: dry, wet and rat skin. When the helium flow rate is 1.5 l min-1, radial distribution of OH density on the rat skin surface shows a maximum density of 1.2 × 1013 cm-3 at the centre of the plasma-mediated area, while O atom density shows a maximum of 1.0 × 1015 cm-3 at 2.0 mm radius from the centre of the plasma-mediated area. Their densities in the effluent of the plasma jet are almost constant during the intervals of the discharge pulses because their lifetimes are longer than the pulse interval. Their density distribution depends on the helium flow rate and the surface humidity. With these results, OH and O production mechanisms in the plasma jet and their flux onto the surface are discussed.
Diode-pumped continuous wave tunable and graphene Q-switched Tm:LSO lasers.
Feng, T L; Zhao, S Z; Yang, K J; Li, G Q; Li, D C; Zhao, J; Qiao, W C; Hou, J; Yang, Y; He, J L; Zheng, L H; Wang, Q G; Xu, X D; Su, L B; Xu, J
2013-10-21
We have investigated the lasing characteristics of Tm:LSO crystal in three operation regimes: continuous wave (CW), wavelength tunable and passive Q-switching based on graphene. In CW regime, a maximum output power of 0.65 W at 2054.9 nm with a slope efficiency of 21% was achieved. With a quartz plate, a broad wavelength tunable range of 145 nm was obtained, corresponding to a FWHM of 100 nm. By using a graphene saturable absorber mirror, the passively Q-switched Tm:LSO laser produced pulses with duration of 7.8 μs at 2030.8 nm under a repetition rate of 7.6 kHz, corresponding to pulse energy of 14.0 μJ.
Zhang, H N; Chen, X H; Wang, Q P; Zhang, X Y; Chang, J; Gao, L; Shen, H B; Cong, Z H; Liu, Z J; Tao, X T; Li, P
2014-05-01
A diode-pumped actively Q-switched Raman laser employing BaWO4 as the Raman active medium and a ceramic Nd:YAG laser operating at 1444 nm as the pump source is demonstrated. The first-Stokes-Raman generation at 1666 nm is achieved. With a pump power of 20.3 W and pulse repetition frequency rate of 5 kHz, a maximum output power of 1.21 W is obtained, which is the highest output power for a 1.6 μm Raman laser. The corresponding optical-to-optical conversion efficiency is 6%; the pulse energy and peak power are 242 μJ and 8.96 kW, respectively.
Lin, Hua; Guo, Jie; Gao, Peng; Yu, Hai; Liang, Xiaoyan
2016-06-27
We report on a high power passively mode-locked picosecond oscillator based on Nd:GdVO4 crystal with σ polarized in-band pumping. Thermal gradient and thermal aberration was greatly decreased with proposed configuration. Maximum output power of 37 W at 81 MHz repetition rate with 19.3 ps pulse duration was achieved directly from Nd:GdVO4 oscillator, corresponding to 51% optical efficiency. The oscillator maintained diffraction limited beam quality of M2 < 1.05 at different output coupling with pulse duration between 11.2 ps to 19.3 ps.
Microchip laser based on Yb:YAG/V:YAG monolith crystal
NASA Astrophysics Data System (ADS)
Nejezchleb, Karel; Šulc, Jan; Jelínková, Helena; Škoda, Václav
2016-03-01
V:YAG crystal was investigated as a passive Q-switch of longitudinally diode-pumped microchip laser, emitting radiation at wavelength 1030.5 nm. This laser was based on diffusion bonded monolith crystal (diameter 3 mm) which combines in one piece an active laser part (Yb:YAG crystal, 10 at.% Yb/Y, 3 mm long) and saturable absorber (V:YAG crystal, 2 mm long, initial transmission 86 % @ 1031 nm). The microchip resonator consisted of dielectric mirrors directly deposited on the monolith surfaces (pump mirror HT @ 968 nm and HR @ 1031 nm on Yb:YAG part, output coupler with reflection 55 % @ 1031 nm on the V:YAG part). For longitudinal CW pumping of Yb:YAG part, a fibre coupled (core diameter 100 μm, NA = 0.22, emission @ 968 nm) laser diode was used. The laser threshold was 3.8W. The laser slope efficiency for output mean in respect to incident pumping was 16 %. The linearly polarized generated transversal intensity beam profile was close to the fundamental Gaussian mode. The generated pulse length, stable and mostly independent on pumping power, was equal to 1.3 ns (FWHM). The single pulse energy was increasing with the pumping power and for the maximum pumping 9.7W it was 78 μJ which corresponds to the pulse peak-power 56 kW. The maximum Yb:YAG/V:YAG microchip laser mean output power of 1W was reached without observable thermal roll-over. The corresponding Q-switched pulses repetition rate was 13.1 kHz.
New stable tunable solid-state dye laser in the red
NASA Astrophysics Data System (ADS)
Gvishi, Raz; Reisfeld, Renata; Burshtein, Zeev; Miron, Eli
1993-08-01
A red perylene derivative was impregnated into a composite silica-gel glass, and characterized as a dye laser material. The absorption spectrum in the range 480 - 600 nm belongs to the S0 - S1 electronic transition, with a structure reflecting the perylene skeletal vibrations, of typical energy 1100 - 1200 cm-1. An additional peak between 400 and 460 nm belongs to the S0 - S2 transition. The fluorescence exhibits a mirror image relative to the S0 - S1 absorption, with a Stokes shift of about 40 nm for the 0 - 0 transition. Laser tunability was obtained in the range 605 - 630 nm using a frequency-doubled Nd:YAG laser for pumping ((lambda) equals 532 nm). This wavelength range is important for medical applications, such as photodynamic therapy of some cancer tumors. Maximum laser efficiency of approximately 2.5% was obtained at 617 nm. Maximum output was approximately 0.36 mJ/pulse at a repetition rate of 10 Hz. Minimum laser threshold obtained was 0.45 mJ/pulse. The medium losses are attributed to an excited-state singlet-singlet absorption, with an upper limit cross-section of approximately 2.5 X 10-16 cm2. The laser output was stable over more than approximately 500,000 pulses, under excitation with the green line of a copper vapor laser (510 nm), of energy density approximately 40 mJ/cm2 per pulse. Good prospects exist for a considerable enhancement in laser output efficiency.
Fergany, Lamyaa A; Shaker, Husain; Arafa, Magdy; Elbadry, Mohamed S
2017-06-01
To compare the effectiveness of pulsed electromagnetic field therapy (PEMFT) and transcutaneous electrical nerve stimulation (TENS) on neurogenic overactive bladder dysfunction (OAB) in patients with spinal cord injury (SCI). In all, 80 patients [50 men and 30 women, with a mean (SD) age of 40.15 (8.76) years] with neurogenic OAB secondary to suprasacral SCI were included. They underwent urodynamic studies (UDS) before and after treatment. Patients were divided into two equal groups: Group A, comprised 40 patients who received 20 min of TENS (10 Hz with a 700 s generated pulse), three times per week for 20 sessions; Group B, comprised 40 patients who received PEMFT (15 Hz with 50% intensity output for 5 s/min for 20 min), three times per week for 20 sessions. In Group B, there was a significant increase in the maximum cystometric capacity ( P < 0.001), volume at first uninhibited detrusor contraction ( P < 0.002), and maximum urinary flow rate ( P < 0.02). The UDS showed that the effects of PEMFT in patients with neurogenic OAB secondary to suprasacral SCI was better than TENS for inducing an inhibitory effect on neurogenic detrusor overactivity.
NASA Astrophysics Data System (ADS)
Yang, Can; Ma, Cheng; Hu, Linxi; He, Guangqiang
2018-06-01
We present a hierarchical modulation coherent communication protocol, which simultaneously achieves classical optical communication and continuous-variable quantum key distribution. Our hierarchical modulation scheme consists of a quadrature phase-shifting keying modulation for classical communication and a four-state discrete modulation for continuous-variable quantum key distribution. The simulation results based on practical parameters show that it is feasible to transmit both quantum information and classical information on a single carrier. We obtained a secure key rate of 10^{-3} bits/pulse to 10^{-1} bits/pulse within 40 kilometers, and in the meantime the maximum bit error rate for classical information is about 10^{-7}. Because continuous-variable quantum key distribution protocol is compatible with standard telecommunication technology, we think our hierarchical modulation scheme can be used to upgrade the digital communication systems to extend system function in the future.
Neutron Star Spin Measurements and Dense Matter with LOFT
NASA Technical Reports Server (NTRS)
Strohmayer, Tod
2011-01-01
Observations over the last decade with RXTE have begun to reveal the X-ray binary progenitors of the fastest spinning neutron stars presently known. Detection and study of the spin rates of binary neutron stars has important implications for constraining the nature of dense matter present in neutron star interiors, as both the maximum spin rate and mass for neutron stars is set by the equation of state. Precision pulse timing of accreting neutron star binaries can enable mass constraints. Particularly promIsing is the combination of the pulse and eclipse timing, as for example, in systems like Swift 11749.4-2807. With its greater sensitivity, LOFT will enable deeper searches for the spin periods of the neutron stars, both during persistent outburst intervals and thermonuclear X-ray bursts, and enable more precise modeling of detected pulsations. I will explore the anticipated impact of LOFT on spin measurements and its potential for constraining dense matter in neutron stars
Electron acceleration by laser produced wake field: Pulse shape effect
NASA Astrophysics Data System (ADS)
Malik, Hitendra K.; Kumar, Sandeep; Nishida, Yasushi
2007-12-01
Analytical expressions are obtained for the longitudinal field (wake field: Ex), density perturbations ( ne') and the potential ( ϕ) behind a laser pulse propagating in a plasma with the pulse duration of the electron plasma period. A feasibility study on the wake field is carried out with Gaussian-like (GL) pulse, rectangular-triangular (RT) pulse and rectangular-Gaussian (RG) pulse considering one-dimensional weakly nonlinear theory ( ne'/n0≪1), and the maximum energy gain acquired by an electron is calculated for all these three types of the laser pulse shapes. A comparative study infers that the RT pulse yields the best results: In its case maximum electron energy gain is 33.5 MeV for a 30 fs pulse duration whereas in case of GL (RG) pulse of the same duration the gain is 28.6 (28.8)MeV at the laser frequency of 1.6 PHz and the intensity of 3.0 × 10 18 W/m 2. The field of the wake and hence the energy gain get enhanced for the higher laser frequency, larger pulse duration and higher laser intensity for all types of the pulses.
Liu, Hongliang; Tan, Yang; Vázquez de Aldana, Javier R; Chen, Feng
2014-08-01
We report on the fabrication of depressed cladding waveguides in Nd:GdVO(4) laser crystal by using femtosecond laser inscription. The cross section of the structure is a circular shape with a diameter of 150 μm. Under the optical pump at 808 nm, the continuous wave (cw) as well as pulsed (Q-switched by graphene saturable absorber) waveguide lasing at 1064 nm has been realized, supporting guidance of both TE and TM polarizations. The maximum output power of 0.57 W was obtained in the cw regime, while the maximum pulse energy of the pulsed laser emissions was up to 19 nJ (corresponding to a maximum average output power of 0.33 W, at a resonant frequency of 18 MHz). The slope efficiencies achieved for the cw and pulsed Nd:GdVO(4) waveguide lasers were as high as 68% and 52%, respectively.
Anesthesia of bulls undergoing surgical manipulation of the vas deferentia.
Garner, H E; Mather, E C; Hoover, T R; Brown, R E; Halliwell, W C
1975-01-01
Twelve bulls ranging from 341 to 545 kilograms in body mass were successfully anesthetized for either vasectomy or prosthetic vas deferens implantation with a combination of thiopental sodium, glyceryl guaiacolate, nitrous oxide, halothane and oxygen. Duration of anesthetic administration was 119.2 plus or minus 24.2 (S.D.) minutes. Righting reflexes returned 15.0 plus or minus 8.0 minutes after cessation of anesthetic administration and the bulls were capable of standing within 46.6 plus or minus 17.8 minutes. Interpretations of pulse rate, respiratory rate and eye reflexes were related to anesthetic depth and maintenance. A control mean respiratory frequency of 28.8 plus or minus 3.6 per minute compared to minimum and maximum frequencies of 26.8 plus or minus 5.1 and 37.6 plus or minus 6.3, respectively, during anesthetic maintenance. A control mean pulse frequency of 91.6 plus or minus 15.9 per minute compared to minimum and maximum frequencies of 84.8 plus or minus 13 and 102.3 plus or minus 13.4, respectively, during maintenance of anesthesia. Methods for avoiding complications related to anesthetic induction, maintenance and emergence were described. Specific pharmacological aspects of atropine, halothane and nitrous oxide were emphasized in light of their application to ruminant anesthesia. PMID:1139409
Growth, spectroscopy, and laser performance of a 2.79 μm Cr,Er,Pr:GYSGG radiation-resistant crystal.
Luo, Jianqiao; Sun, Dunlu; Zhang, Huili; Guo, Qiang; Fang, Zhongqing; Zhao, Xuyao; Cheng, Maojie; Zhang, Qingli; Yin, Shaotang
2015-09-15
We demonstrate the growth, spectroscopy, and laser performance of a 2.79 μm Cr,Er,Pr:GYSGG radiation-resistant crystal. The lifetimes for the upper laser level (4)I(11/2) and lower laser level (4)I(13/2) are 0.59 and 0.84 ms, respectively, which are due to the doping of the Pr(3+) ions. A maximum pulse energy of 278 mJ operated at 10 Hz and 2.79 μm is obtained when pumped with a flash lamp, which corresponds to the electrical-to-optical efficiency of 0.6% and a slope efficiency of 0.7%. A maximum average power of 2.9 W at 60 Hz is achieved, which corresponds to the electrical-to-optical efficiency of 0.4% and slope efficiency of 0.8%. Compared with a Cr,Er:YSGG crystal, the Cr,Er,Pr:GYSGG crystal can be operated at a higher pulse repetition rate. These results suggest that doping deactivator Pr(3+) ions can effectively decrease the lower laser level lifetime and improve the laser repetition rate. Therefore, the application fields and range of the Cr,Er,Pr:GYSGG laser can be extended greatly due to its properties of radiation resistance and high repetition frequency.
Safety and efficacy of caffeine-augmented ECT in elderly depressives: a retrospective study.
Kelsey, M C; Grossberg, G T
1995-07-01
Prior studies have shown that in younger depressives undergoing ECT whose seizure durations declined despite maximum settings on three different ECT devices, pretreatment with caffeine lengthened seizures and resulted in clinical improvement. Caffeine (half life, 140-270 minutes) was well tolerated even in patients with pre-existing cardiovascular disease. The purpose of this retrospective study was to determine the safety and efficacy of caffeine augmented ECT in elderly depressed patients. The charts of 14 elderly depressives (average age 75.6, range 59-83; 2 males, 12 females) who received caffeine-augmented ECT were reviewed. Patients pre- and post-ECT medications, blood pressure, pulse, and seizure times (cuff and EEG) for each ECT performed were noted. The following conclusions were drawn from our study: (1) Caffeine definitely increases the seizure length and was useful in our setting when the energy settings could not be increased anymore. (2) Caffeine augmentation inconsistently causes an increase in pulse rate, on average, in the elderly. (3) Caffeine inconsistently produces an increase in mean arterial pressure. (4) Caffeine did not consistently produce an increase in the maximum rate-pressure product. We conclude from this study that caffeine-augmented ECT is safe and effective in increasing seizure duration in the elderly. However, more research needs to be done to determine optimal dosing and tolerability.
Laser pulse heating of steel mixing with WC particles in a irradiated region
NASA Astrophysics Data System (ADS)
Shuja, S. Z.; Yilbas, B. S.; Ali, H.; Karatas, C.
2016-12-01
Laser pulse heating of steel mixing with tungsten carbide (WC) particles is carried out. Temperature field in the irradiated region is simulated in line with the experimental conditions. In the analysis, a laser pulse parameter is introduced, which defines the laser pulse intensity distribution at the irradiated surface. The influence of the laser parameter on the melt pool size and the maximum temperature increase in the irradiated region is examined. Surface temperature predictions are compared with the experimental data. In addition, the distribution of WC particles and their re-locations in the treated layer, due to combination of the natural convection and Marangoni currents, are predicted. The findings are compared to the experimental data. It is found that surface temperature predictions agree well with the experimental data. The dislocated WC particles form a streamlining in the near region of the melt pool wall, which agree with the experimental findings. The Gaussian distribution of the laser pulse intensity results in the maximum peak temperature and the maximum flow velocity inside the melt pool. In this case, the melt pool depth becomes the largest as compared to those corresponding to other laser pulse intensity distributions at the irradiated surface.
High quality ultrafast transmission electron microscopy using resonant microwave cavities.
Verhoeven, W; van Rens, J F M; Kieft, E R; Mutsaers, P H A; Luiten, O J
2018-05-01
Ultrashort, low-emittance electron pulses can be created at a high repetition rate by using a TM 110 deflection cavity to sweep a continuous beam across an aperture. These pulses can be used for time-resolved electron microscopy with atomic spatial and temporal resolution at relatively large average currents. In order to demonstrate this, a cavity has been inserted in a transmission electron microscope, and picosecond pulses have been created. No significant increase of either emittance or energy spread has been measured for these pulses. At a peak current of 814 ± 2 pA, the root-mean-square transverse normalized emittance of the electron pulses is ɛ n,x =(2.7±0.1)·10 -12 m rad in the direction parallel to the streak of the cavity, and ɛ n,y =(2.5±0.1)·10 -12 m rad in the perpendicular direction for pulses with a pulse length of 1.1-1.3 ps. Under the same conditions, the emittance of the continuous beam is ɛ n,x =ɛ n,y =(2.5±0.1)·10 -12 m rad. Furthermore, for both the pulsed and the continuous beam a full width at half maximum energy spread of 0.95 ± 0.05 eV has been measured. Copyright © 2018 Elsevier B.V. All rights reserved.
Microwave Triggered Laser Ionization of Air
NASA Astrophysics Data System (ADS)
Vadiee, Ehsan; Prasad, Sarita; Jerald Buchenauer, C.; Schamiloglu, Edl
2012-10-01
The goal of this work is to study the evolution and dynamics of plasma expansion when a high power microwave (HPM) pulse is overlapped in time and space on a very small, localized region of plasma formed by a high energy laser pulse. The pulsed Nd:YAG laser (8 ns, 600mJ, repetition rate 10 Hz) is focused to generate plasma filaments in air with electron density of 10^17/cm^3. When irradiated with a high power microwave pulse these electrons would gain enough kinetic energy and further escalate avalanche ionization of air due to elastic electron-neutral collisions thereby causing an increased volumetric discharge region. An X-band relativistic backward wave oscillator(RBWO) at the Pulsed Power,Beams and Microwaves laboratory at UNM is constructed as the microwave source. The RBWO produces a microwave pulse of maximum power 400 MW, frequency of 10.1 GHz, and energy of 6.8 Joules. Special care is being given to synchronize the RBWO and the pulsed laser system in order to achieve a high degree of spatial and temporal overlap. A photodiode and a microwave waveguide detector will be used to ensure the overlap. Also, a new shadowgraph technique with a nanosecond time resolution will be used to detect changes in the shock wave fronts when the HPM signal overlaps the laser pulse in time and space.
Register, Janna; Scaffidi, Jonathan; Angel, S Michael
2012-08-01
Direct measurements of temperature changes were made using small thermocouples (TC), placed near a laser-induced air plasma. Temperature changes up to ~500 °C were observed. From the measured temperature changes, estimates were made of the amount of heat absorbed per unit area. This allowed calculations to be made of the surface temperature, as a function of time, of a sample heated by the air plasma that is generated during orthogonal pre-ablation spark dual-pulse (DP) LIBS measurements. In separate experiments, single-pulse (SP) LIBS emission and sample ablation rate measurements were performed on nickel at sample temperatures ranging from room temperature to the maximum surface temperature that was calculated using the TC measurement results (500 °C). A small, but real sample temperature-dependent increase in both SP LIBS emission and the rate of sample ablation was found for nickel samples heated up to 500 °C. Comparison of DP LIBS emission enhancement values for bulk nickel samples at room temperature versus the enhanced SP LIBS emission and sample ablation rates observed as a function of increasing sample temperature suggests that sample heating by the laser-induced air plasma plays only a minor role in DP LIBS emission enhancement.
Optimizing Ti:Sapphire laser for quantitative biomedical imaging
NASA Astrophysics Data System (ADS)
James, Jeemol; Thomsen, Hanna; Hanstorp, Dag; Alemán Hérnandez, Felipe Ademir; Rothe, Sebastian; Enger, Jonas; Ericson, Marica B.
2018-02-01
Ti:Sapphire lasers are powerful tools in the field of scientific research and industry for a wide range of applications such as spectroscopic studies and microscopic imaging where tunable near-infrared light is required. To push the limits of the applicability of Ti:Sapphire lasers, fundamental understanding of the construction and operation is required. This paper presents two projects, (i) dealing with the building and characterization of custom built tunable narrow linewidth Ti:Sapphire laser for fundamental spectroscopy studies; and the second project (ii) the implementation of a fs-pulsed commercial Ti:Sapphire laser in an experimental multiphoton microscopy platform. For the narrow linewidth laser, a gold-plated diffraction grating with a Littrow geometry was implemented for highresolution wavelength selection. We demonstrate that the laser is tunable between 700 to 950 nm, operating in a pulsed mode with a repetition rate of 1 kHz and maximum average output power around 350 mW. The output linewidth was reduced from 6 GHz to 1.5 GHz by inserting an additional 6 mm thick etalon. The bandwidth was measured by means of a scanning Fabry Perot interferometer. Future work will focus on using a fs-pulsed commercial Ti:Sapphire laser (Tsunami, Spectra physics), operating at 80 MHz and maximum average output power around 1 W, for implementation in an experimental multiphoton microscopy set up dedicated for biomedical applications. Special focus will be on controlling pulse duration and dispersion in the optical components and biological tissue using pulse compression. Furthermore, time correlated analysis of the biological samples will be performed with the help of time correlated single photon counting module (SPCM, Becker&Hickl) which will give a novel dimension in quantitative biomedical imaging.
Coding for Communication Channels with Dead-Time Constraints
NASA Technical Reports Server (NTRS)
Moision, Bruce; Hamkins, Jon
2004-01-01
Coding schemes have been designed and investigated specifically for optical and electronic data-communication channels in which information is conveyed via pulse-position modulation (PPM) subject to dead-time constraints. These schemes involve the use of error-correcting codes concatenated with codes denoted constrained codes. These codes are decoded using an interactive method. In pulse-position modulation, time is partitioned into frames of Mslots of equal duration. Each frame contains one pulsed slot (all others are non-pulsed). For a given channel, the dead-time constraints are defined as a maximum and a minimum on the allowable time between pulses. For example, if a Q-switched laser is used to transmit the pulses, then the minimum allowable dead time is the time needed to recharge the laser for the next pulse. In the case of bits recorded on a magnetic medium, the minimum allowable time between pulses depends on the recording/playback speed and the minimum distance between pulses needed to prevent interference between adjacent bits during readout. The maximum allowable dead time for a given channel is the maximum time for which it is possible to satisfy the requirement to synchronize slots. In mathematical shorthand, the dead-time constraints for a given channel are represented by the pair of integers (d,k), where d is the minimum allowable number of zeroes between ones and k is the maximum allowable number of zeroes between ones. A system of the type to which the present schemes apply is represented by a binary- input, real-valued-output channel model illustrated in the figure. At the transmitting end, information bits are first encoded by use of an error-correcting code, then further encoded by use of a constrained code. Several constrained codes for channels subject to constraints of (d,infinity) have been investigated theoretically and computationally. The baseline codes chosen for purposes of comparison were simple PPM codes characterized by M-slot PPM frames separated by d-slot dead times.
2 µm high-power dissipative soliton resonance in a compact σ-shaped Tm-doped double-clad fiber laser
NASA Astrophysics Data System (ADS)
Du, Tuanjie; Li, Weiwei; Ruan, Qiujun; Wang, Kaijie; Chen, Nan; Luo, Zhengqian
2018-05-01
We report direct generation of a high-power, large-energy dissipative soliton resonance (DSR) in a 2 µm Tm-doped double-clad fiber laser. A compact σ-shaped cavity is formed by a fiber Bragg grating and a 10/90 fiber loop mirror (FLM). The 10/90 FLM is not only used as an output mirror, but also acts as a nonlinear optical loop mirror for initiating mode locking. The mode-locked laser can deliver high-power, nanosecond DSR pulses at 2005.9 nm. We further perform a comparison study of the effect of the FLM’s loop length on the mode-locking threshold, peak power, pulse energy, and optical spectrum of the DSR pulses. We achieve a maximum average output power as high as 1.4 W, a maximum pulse energy of 353 nJ, and a maximum peak power of 84 W. This is, to the best of our knowledge, the highest power for 2 µm DSR pulses obtained in a mode-locked fiber laser.
Barona-de-Guzmán, Rafael; Krstulovic-Roa, Claudio; Donderis-Malea, Elena; Barona-Lleó, Luz
2018-03-08
The emotional evaluation of the causes of vertigo is made using the clinical records and several subjective questionnaires. The aim of the present study is to evaluate the emotional response objectively, in normal subjects, during an induced vertigo crisis. A caloric vestibular test with cold water was performed on 30 healthy subjects. The following physiological parameters were monitored during the 60seconds prior to and the 60seconds after the stimulation: Skin Conductivity, Peripheral Pulse Volume, Body Temperature, Muscle Contraction, Heart Rate, and Respiratory Rate. The maximum angular speed of the nystagmus slow phase at each stimulation was assessed. Skin conductance presented a statistically significant increase during the vertigo crisis in relation to the prior period while the peripheral pulse volume presented a statistically significant decrease. There was no relationship between the slow phase of the provoked nystagmus angular speed and skin conductance and peripheral pulse volume changes. The decrease in peripheral pulse volume was significantly higher in the second vertigo crisis. Skin conductance and peripheral pulse volume changed significantly during a vertigo crisis. There was no relation between the provoked vertiginous crisis intensity and the changes produced in those variables. The stress generated by the caloric stimulation is higher in the second crisis, when the subject has experience of the vertigo caused by the stimulation. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.
Varela, José E; Page, Juan E; Esteban, Jaime
2010-09-01
The interaction between electromagnetic fields and biological media, particularly regarding very high power, short pulses as in radar signals, is not a fully understood phenomenon. In the past few years, many in vitro, cellular communications-oriented exposure studies have been carried out. This article presents a high-power waveguide exposure system capable of dealing with monochromatic, multicarrier or pulsed signals between 1.8 and 3.2 GHz (L- and S-band) with a pulse duration as low as 90 ns, minimum pulse repetition of 100 Hz, and maximum instantaneous power of 100 W. The setup is currently being used with a 2.2 GHz carrier modulated by 5 micros pulses with a 100 Hz repetition period and approximately 30 W of instantaneous power. After a worst-case temperature analysis, which does not account for conduction and convection thermal effects, the experiment's exposure is considered sub-thermal. Evaluation of the results through the specific absorption rate distribution is not considered sufficient enough in these cases. An electromagnetic field distribution analysis is needed. For monochromatic signals, the representation of the modulus of the electric and magnetic field components is proposed as a suitable method of assessment. 2010 Wiley-Liss, Inc.
Proton acceleration by a pair of successive ultraintense femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Ferri, J.; Senje, L.; Dalui, M.; Svensson, K.; Aurand, B.; Hansson, M.; Persson, A.; Lundh, O.; Wahlström, C.-G.; Gremillet, L.; Siminos, E.; DuBois, T. C.; Yi, L.; Martins, J. L.; Fülöp, T.
2018-04-01
We investigate the target normal sheath acceleration of protons in thin aluminum targets irradiated at a relativistic intensity by two time-separated ultrashort (35 fs) laser pulses. When the full-energy laser pulse is temporally split into two identical half-energy pulses, and using target thicknesses of 3 and 6 μm, we observe experimentally that the second half-pulse boosts the maximum energy and charge of the proton beam produced by the first half-pulse for time delays below ˜0.6-1 ps. Using two-dimensional particle-in-cell simulations, we examine the variation of the proton energy spectra with respect to the time-delay between the two pulses. We demonstrate that the expansion of the target front surface caused by the first pulse significantly enhances the hot-electron generation by the second pulse arriving after a few hundreds of fs time delay. This enhancement, however, does not suffice to further accelerate the fastest protons driven by the first pulse once three-dimensional quenching effects have set in. This implies a limit to the maximum time delay that leads to proton energy enhancement, which we theoretically determine.
Dynamic Positron Emission Tomography [PET] in Man Using Small Bismuth Germanate Crystals
DOE R&D Accomplishments Database
Derenzo, S. E.; Budinger, T. F.; Huesman, R. H.; Cahoon, J. L.
1982-04-01
Primary considerations for the design of positron emission tomographs for medical studies in humans are the need for high imaging sensitivity, whole organ coverage, good spatial resolution, high maximum data rates, adequate spatial sampling with minimum mechanical motion, shielding against out of plane activity, pulse height discrimination against scattered photons, and timing discrimination against accidental coincidences. We discuss the choice of detectors, sampling motion, shielding, and electronics to meet these objectives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Ajit; Appold, Martin S.; Nunn, Jeffrey A.
Hydrocarbons in shallow reservoirs of the Eugene Island 330 field in the Gulf of Mexico basin are thought to have migrated rapidly along low permeability sediments of the Red fault zone as discrete pressure pulses from source rocks at depths of about 4.5 km. The aim of this research was to evaluate the hypothesis that these pressure pulses represent solitary waves by investigating the mechanics of solitary wave formation and motion and wave oil transport capability. A two-dimensional numerical model of Eugene Island minibasin formation predicted overpressures at the hydrocarbon source depth to increase at an average rate of 30more » Pa/yr, reaching 52 MPa by the present day and oil velocities of 1E-12 m/yr, far too low for kilometer scale oil transport to fill shallow Plio-Pleistocene reservoirs within the 3.6 million year minibasin history. Calculations from a separate one-dimensional model that used the pressure generation rate from the two-dimensional model showed that solitary waves could only form and migrate within sediments that have very low permeabilities between 1-25 to 1-24 m2 and that are highly overpressured to 91-93% of lithostatic pressure. Solitary waves were found to have a maximum pore volume of 105 m3, to travel a maximum distance of 1-2 km, and to have a maximum velocity of 1-3 m/yr. Based on these results, solitary waves are unlikely to have transported oil to the shallowest reservoirs in the Eugene Island field in a poroelastic fault gouge rheology at the pressure generation rates likely to have been caused by disequilibrium compaction and hydrocarbon generation. However, solitary waves could perhaps be important agents for oil transport in other locations where reservoirs are closer to the source rocks, where the pore space is occupied by more than one fluid, or where sudden fracturing of overpressured hydrocarbon source sediments would allow the solitary waves to propagate as shock waves. Hydrocarbons in shallow reservoirs of the Eugene Island 330 field in the Gulf of Mexico basin are thought to have migrated rapidly along low permeability sediments of the Red fault zone as discrete pressure pulses from source rocks at depths of about 4.5 km. The aim of this research was to evaluate the hypothesis that these pressure pulses represent solitary waves by investigating the mechanics of solitary wave formation and motion and wave oil transport capability. A two-dimensional numerical model of Eugene Island minibasin formation predicted overpressures at the hydrocarbon source depth to increase at an average rate of 30 Pa/yr, reaching 52 MPa by the present day and oil velocities of 1-12 m/yr, far too low for kilometer scale oil transport to fill shallow Plio-Pleistocene reservoirs within the 3.6 million year minibasin history. Calculations from a separate one-dimensional model that used the pressure generation rate from the two-dimensional model showed that solitary waves could only form and migrate within sediments that have very low permeabilities between 1-25 to 1-24 m2 and that are highly overpressured to 91-93% of lithostatic pressure. Solitary waves were found to have a maximum pore volume of 100,000 m3, to travel a maximum distance of 1-2 km, and to have a maximum velocity of 1-3 m/yr. Based on these results, solitary waves are unlikely to have transported oil to the shallowest reservoirs in the Eugene Island field in a poroelastic fault gouge rheology at the pressure generation rates likely to have been caused by disequilibrium compaction and hydrocarbon generation. However, solitary waves could perhaps be important agents for oil transport in other locations where reservoirs are closer to the source rocks, where the pore space is occupied by more than one fluid, or where sudden fracturing of overpressured hydrocarbon source sediments would allow the solitary waves to propagate as shock waves.« less
Multi-Wavelength Q-Switched Ytterbium-Doped Fiber Laser with Multi-Walled Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Al-Masoodi, A. H. H.; Ahmed, M. H. M.; Arof, H.; Harun, S. W.
2018-03-01
We demonstrate a passively multi-wavelength Q-switched Ytterbium-doped fiber laser (YDFL) based on a multi-wall carbon nanotubes embedded in polyethylene oxide film as saturable absorber. The YDFL generates a stable multi-wavelength with spacing of 1.9 nm as the 980 nm pump power is fixed within 62. 4 mW and 78.0 mW. The repetition rate of the laser is tunable from 10.41 to 29.04 kHz by increasing the pump power from the threshold power of 62.4 mW to 78 mW. At 78 mW pump power, the maximum pulse energy of 38 nJ and the shortest pulse width of 8.87 µs are obtained.
NASA Astrophysics Data System (ADS)
Cai, Wei; Li, Yaqi; Zhu, Hongtong; Jiang, Shouzhen; Xu, Shicai; Liu, Jie; Zheng, Lihe; Su, Liangbi; Xu, Jun
2014-12-01
A reflective graphene saturable absorber mirror (SAM) was successfully fabricated by chemical vapor deposition technology. A stable diode-pumped passively mode-locked Yb3+:Sc2SiO5 laser using a graphene SAM as a saturable absorber was accomplished for the first time. The measured average output power amounts to 351 mW under the absorbed pump power of 12.5 W. Without prisms compensating for dispersion, the minimum pulse duration of 7 ps with a repetition rate of 97 MHz has been obtained at the central wavelength of 1063 nm. The corresponding peak power and the maximum pulse energy were 516 W and 3.6 nJ, respectively.
Mode-locked fiber laser using SU8 resist incorporating carbon nanotubes
NASA Astrophysics Data System (ADS)
Hernandez-Romano, Ivan; Mandridis, Dimitrios; May-Arrioja, Daniel A.; Sanchez-Mondragon, Jose J.; Delfyett, Peter J.
2011-06-01
We report the fabrication of a saturable absorber made of a novel polymer SU8 doped with Single Wall Carbon Nanotubes (SWCNTs). A passive mode-locked ring cavity fiber laser was built with a 100 μm thick SU8/SWCNT film inserted between two FC/APC connectors. Self-starting passively mode-locked lasing operation was observed at 1572.04 nm, with a FWHM of 3.26 nm. The autocorrelation trace was 1.536 ps corresponding to a pulse-width of 871 fs. The time-bandwidth product was 0.344, which is close enough to transform-limited sech squared pulses. The repetition rate was 21.27 MHz, and a maximum average output power of 1 mW was also measured.
NASA Technical Reports Server (NTRS)
Taranenko, Y. N.; Inan, U. S.; Bell, T. F.
1993-01-01
A self consistent and fully kinetic simulation of the interaction of lightning radiated electromagnetic (EM) pulses with the nighttime lower ionosphere indicates that optical emissions observable with conventional instruments would be excited. For example, emissions of the 1st and 2nd positive bands of N2 occur at rates reaching 7 x 10(exp 7) and 10(exp 7) cu cm/s respectively at 92 km altitude for a lightning discharge with an electric field E(sub 100) = 20 V/m (normalized to a 100 km distance). The maximum height integrated intensities of these emissions are 4 x 10(exp 7) and 6 x 10(exp 6) R respectively, lasting for approx. 50 micrometers.
Electronic enhancement of tear secretion
NASA Astrophysics Data System (ADS)
Brinton, Mark; Lim Chung, Jae; Kossler, Andrea; Kook, Koung Hoon; Loudin, Jim; Franke, Manfred; Palanker, Daniel
2016-02-01
Objective. To study electrical stimulation of the lacrimal gland and afferent nerves for enhanced tear secretion, as a potential treatment for dry eye disease. We investigate the response pathways and electrical parameters to safely maximize tear secretion. Approach. We evaluated the tear response to electrical stimulation of the lacrimal gland and afferent nerves in isofluorane-anesthetized rabbits. In acute studies, electrical stimulation was performed using bipolar platinum foil electrodes, implanted beneath the inferior lacrimal gland, and a monopolar electrode placed near the afferent ethmoid nerve. Wireless microstimulators with bipolar electrodes were implanted beneath the lacrimal gland for chronic studies. To identify the response pathways, we applied various pharmacological inhibitors. To optimize the stimulus, we measured tear secretion rate (Schirmer test) as a function of pulse amplitude (1.5-12 mA), duration (0.1-1 ms) and repetition rate (10-100 Hz). Main results. Stimulation of the lacrimal gland increased tear secretion by engaging efferent parasympathetic nerves. Tearing increased with stimulation amplitude, pulse duration and repetition rate, up to 70 Hz. Stimulation with 3 mA, 500 μs pulses at 70 Hz provided a 4.5 mm (125%) increase in Schirmer score. Modulating duty cycle further increased tearing up to 57%, compared to continuous stimulation in chronically implanted animals (36%). Ethmoid (afferent) nerve stimulation increased tearing similar to gland stimulation (3.6 mm) via a reflex pathway. In animals with chronically implanted stimulators, a nearly 6 mm increase (57%) was achieved with 12-fold less charge density per pulse (0.06-0.3 μC mm-2 with 170-680 μs pulses) than the damage threshold (3.5 μC mm-2 with 1 ms pulses). Significance. Electrical stimulation of the lacrimal gland or afferent nerves may be used as a treatment for dry eye disease. Clinical trials should validate this approach in patients with aqueous tear deficiency, and further optimize electrical parameters for maximum clinical efficacy.
Baek, Hyun Jae; Shin, JaeWook
2017-08-15
Most of the wrist-worn devices on the market provide a continuous heart rate measurement function using photoplethysmography, but have not yet provided a function to measure the continuous heart rate variability (HRV) using beat-to-beat pulse interval. The reason for such is the difficulty of measuring a continuous pulse interval during movement using a wearable device because of the nature of photoplethysmography, which is susceptible to motion noise. This study investigated the effect of missing heart beat interval data on the HRV analysis in cases where pulse interval cannot be measured because of movement noise. First, we performed simulations by randomly removing data from the RR interval of the electrocardiogram measured from 39 subjects and observed the changes of the relative and normalized errors for the HRV parameters according to the total length of the missing heart beat interval data. Second, we measured the pulse interval from 20 subjects using a wrist-worn device for 24 h and observed the error value for the missing pulse interval data caused by the movement during actual daily life. The experimental results showed that mean NN and RMSSD were the most robust for the missing heart beat interval data among all the parameters in the time and frequency domains. Most of the pulse interval data could not be obtained during daily life. In other words, the sample number was too small for spectral analysis because of the long missing duration. Therefore, the frequency domain parameters often could not be calculated, except for the sleep state with little motion. The errors of the HRV parameters were proportional to the missing data duration in the presence of missing heart beat interval data. Based on the results of this study, the maximum missing duration for acceptable errors for each parameter is recommended for use when the HRV analysis is performed on a wrist-worn device.
Colaux, Henri; Dawson, Daniel M; Ashbrook, Sharon E
2014-08-07
The conversion between multiple- and single-quantum coherences is integral to many nuclear magnetic resonance (NMR) experiments of quadrupolar nuclei. This conversion is relatively inefficient when effected by a single pulse, and many composite pulse schemes have been developed to improve this efficiency. To provide the maximum improvement, such schemes typically require time-consuming experimental optimization. Here, we demonstrate an approach for generating amplitude-modulated pulses to enhance the efficiency of the triple- to single-quantum conversion. The optimization is performed using the SIMPSON and MATLAB packages and results in efficient pulses that can be used without experimental reoptimisation. Most significant signal enhancements are obtained when good estimates of the inherent radio-frequency nutation rate and the magnitude of the quadrupolar coupling are used as input to the optimization, but the pulses appear robust to reasonable variations in either parameter, producing significant enhancements compared to a single-pulse conversion, and also comparable or improved efficiency over other commonly used approaches. In all cases, the ease of implementation of our method is advantageous, particularly for cases with low sensitivity, where the improvement is most needed (e.g., low gyromagnetic ratio or high quadrupolar coupling). Our approach offers the potential to routinely improve the sensitivity of high-resolution NMR spectra of nuclei and systems that would, perhaps, otherwise be deemed "too challenging".
Efficient Amplitude-Modulated Pulses for Triple- to Single-Quantum Coherence Conversion in MQMAS NMR
2014-01-01
The conversion between multiple- and single-quantum coherences is integral to many nuclear magnetic resonance (NMR) experiments of quadrupolar nuclei. This conversion is relatively inefficient when effected by a single pulse, and many composite pulse schemes have been developed to improve this efficiency. To provide the maximum improvement, such schemes typically require time-consuming experimental optimization. Here, we demonstrate an approach for generating amplitude-modulated pulses to enhance the efficiency of the triple- to single-quantum conversion. The optimization is performed using the SIMPSON and MATLAB packages and results in efficient pulses that can be used without experimental reoptimisation. Most significant signal enhancements are obtained when good estimates of the inherent radio-frequency nutation rate and the magnitude of the quadrupolar coupling are used as input to the optimization, but the pulses appear robust to reasonable variations in either parameter, producing significant enhancements compared to a single-pulse conversion, and also comparable or improved efficiency over other commonly used approaches. In all cases, the ease of implementation of our method is advantageous, particularly for cases with low sensitivity, where the improvement is most needed (e.g., low gyromagnetic ratio or high quadrupolar coupling). Our approach offers the potential to routinely improve the sensitivity of high-resolution NMR spectra of nuclei and systems that would, perhaps, otherwise be deemed “too challenging”. PMID:25047226
NASA Technical Reports Server (NTRS)
Ferrera, J. D.
1972-01-01
The purpose of this report is to define and program the transient pneumatic flow equations necessary to determine, for a given set of conditions (geometry, pressures, temperatures, valve on time, etc.), the total nitrogen impulse and mass flow per pulse for the single pulsing of a Mariner type reaction control assembly valve. The rates of opening and closing of the valves are modeled, and electrical pulse durations from 20 to 100 ms are investigated. In developing the transient flow analysis, maximum use was made of the steady-state analysis. The impulse results are also compared to an equivalent square-wave impulse for both the Mariner Mars 1971 (MM'71) and Mariner Mars 1964 (MM'64) systems. It is demonstrated that, whereas in the MM'64 system, the actual impulse was as much as 56 percent higher than an assumed impulse (which is the product of the steady-state thrust and value on time i.e., the square wave), in the MM'71 system, these two values were in error in the same direction by only approximately 4 percent because of the larger nozzle areas and shorter valve stroke used.
Pulse circuit apparatus for gas discharge laser
Bradley, Laird P.
1980-01-01
Apparatus and method using a unique pulse circuit for a known gas discharge laser apparatus to provide an electric field for preconditioning the gas below gas breakdown and thereafter to place a maximum voltage across the gas which maximum voltage is higher than that previously available before the breakdown voltage of that gas laser medium thereby providing greatly increased pumping of the laser.
20 kA PFN capacitor bank with solid-state switching. [pulse forming network for plasma studies
NASA Technical Reports Server (NTRS)
Posta, S. J.; Michels, C. J.
1973-01-01
A compact high-current pulse-forming network capacitor bank using paralleled silicon controlled rectifiers as switches is described. The maximum charging voltage of the bank is 1kV and maximum load current is 20 kA. The necessary switch equalization criteria and performance with dummy load and an arc plasma generator are described.
Dynamic modelling and experimental study of asymmetric optothermal microactuator
NASA Astrophysics Data System (ADS)
Wang, Shuying; Chun, Qin; You, Qingyang; Wang, Yingda; Zhang, Haijun
2017-01-01
This paper reports the dynamic modelling and experimental study of an asymmetric optothermal microactuator (OTMA). According to the principle of thermal flux, a theoretical model for instantaneous temperature distribution of an expansion arm is established and the expression of expansion increment is derived. Dynamic expansion properties of the arm under laser pulse irradiation are theoretically analyzed indicating that both of the maximum expansion and expansion amplitude decrease with the pulse frequency increasing. Experiments have been further carried out on an OTMA fabricated by using an excimer laser micromachining system. It is shown that the OTMA deflects periodically with the same frequency of laser pulse irradiation. Experimental results also prove that both OTMA's maximum deflection and deflection amplitude (related to maximum expansion and expansion amplitude of the arm) decrease as frequency increases, matching with the theoretical model quite well. Even though the OTMA's deflection decrease at higher frequency, it is still capable of generating 8.2 μm maximum deflection and 4.2 μm deflection amplitude under 17 Hz/2 mW laser pulse irradiation. This work improves the potential applications of optothermal microactuators in micro-opto-electro-mechanical system (MOEMS) and micro/nano-technology fields.
980 nm all-fiber NPR mode-locking Yb-doped phosphate fiber oscillator and its amplifier
NASA Astrophysics Data System (ADS)
Li, Pingxue; Yao, Yifei; Chi, Junjie; Hu, Haowei; Yang, Chun; Zhao, Ziqiang; Zhang, Guangju
2014-12-01
We report on a 980 nm all-fiber passively mode-locking Yb-doped phosphate fiber oscillator with the nonlinear polarization rotation (NPR) technique and its amplifier. In order to obtaining the stable self-starting mode-locking oscillator at 980 nm, a bandpass filter with 30 nm transmission bandwidth around 980 nm is inserted into the cavity. The oscillator generates the average output power of 26.1 mW with the repetition rate of 20.38 MHz, corresponding to the single pulse energy of 1.28 nJ. The pulse width is 159.48 ps. The output spectrum of the pulses is centered at 977 nm with a full width half maximum (FWHM) of 10 nm and has the characteristic steep spectral edges of dissipative soliton. No undesired ASE and harmful oscillation around 1030 nm is observed. Moreover, through two stage all-fiber-integrated amplifier by using the 980 nm oscillator as seed source, an amplified output power of 205 mW at 980 nm and pulse duration of 178.10 ps is achieved.
Characteristics of a Pulse-Periodic Corona Discharge in Atmospheric Air
NASA Astrophysics Data System (ADS)
Tarasenko, V. F.; Baksht, E. Kh.; Sosnin, E. A.; Burachenko, A. G.; Panarin, V. A.; Skakun, V. S.
2018-05-01
Pulse-periodic corona discharge in atmospheric air excited by applying a voltage pulse with a subnanosecond or microsecond rise time to a point electrode is studied experimentally. It is shown that, at a voltage rise rate of dU/ dt 1014 V/s, positive and negative ball-shaped streamers with a front velocity of ≥2 mm/ns form near the point electrode. As dU/ dt is reduced to 1010-1011 V/s, the streamer shape changes and becomes close to cylindrical. The propagation velocity of cylindrical streamers is found to be 0.1 mm/ns at dU/ dt 2 × 1010 V/s. It is shown that the propagation direction of a cylindrical streamer can be changed by tilting the point electrode, on the axis of which the electric field strength reaches its maximum value. It is established that, for the negative polarity of the point electrode and a microsecond rise time of the voltage pulse, a higher voltage is required to form a cylindrical streamer than for the positive polarity of the point electrode.
Beirow, Frieder; Eckerle, Michael; Dannecker, Benjamin; Dietrich, Tom; Ahmed, Marwan Abdou; Graf, Thomas
2018-02-19
We report on a high-power passively mode-locked radially polarized Yb:YAG thin-disk oscillator providing 125 W of average output power. To the best of our knowledge, this is the highest average power ever reported from a mode-locked radially polarized oscillator without subsequent amplification stages. Mode-locking was achieved by implementing a SESAM as the cavity end mirror and the radial polarization of the LG* 01 mode was obtained by means of a circular Grating Waveguide Output Coupler. The repetition rate was 78 MHz. A pulse duration of 0.97 ps and a spectral bandwidth of 1.4 nm (FWHM) were measured at the maximum output power. This corresponds to a pulse energy of 1.6 µJ and a pulse peak power of 1.45 MW. A high degree of radial polarization of 97.3 ± 1% and an M 2 -value of 2.16 which is close to the theoretical value for the LG* 01 doughnut mode were measured.
A versatile pulse programmer for pulsed nuclear magnetic resonance spectroscopy.
NASA Technical Reports Server (NTRS)
Tarr, C. E.; Nickerson, M. A.
1972-01-01
A digital pulse programmer producing the standard pulse sequences required for pulsed nuclear magnetic resonance spectroscopy is described. In addition, a 'saturation burst' sequence, useful in the measurement of long relaxation times in solids, is provided. Both positive and negative 4 V trigger pulses are produced that are fully synchronous with a crystal-controlled time base, and the pulse programmer may be phase-locked with a maximum pulse jitter of 3 ns to the oscillator of a coherent pulse spectrometer. Medium speed TTL integrated circuits are used throughout.
25 ns software correlator for photon and fluorescence correlation spectroscopy
NASA Astrophysics Data System (ADS)
Magatti, Davide; Ferri, Fabio
2003-02-01
A 25 ns time resolution, multi-tau software correlator developed in LABVIEW based on the use of a standard photon counting unit, a fast timer/counter board (6602-PCI National Instrument) and a personal computer (PC) (1.5 GHz Pentium 4) is presented and quantitatively discussed. The correlator works by processing the stream of incoming data in parallel according to two different algorithms: For large lag times (τ⩾100 μs), a classical time-mode (TM) scheme, based on the measure of the number of pulses per time interval, is used; differently, for τ⩽100 μs a photon-mode (PM) scheme is adopted and the time sequence of the arrival times of the photon pulses is measured. By combining the two methods, we developed a system capable of working out correlation functions on line, in full real time for the TM correlator and partially in batch processing for the PM correlator. For the latter one, the duty cycle depends on the count rate of the incoming pulses, being ˜100% for count rates ⩽3×104 Hz, ˜15% at 105 Hz, and ˜1% at 106 Hz. For limitations imposed by the fairly small first-in, first-out (FIFO) buffer available on the counter board, the maximum count rate permissible for a proper functioning of the PM correlator is limited to ˜105 Hz. However, this limit can be removed by using a board with a deeper FIFO. Similarly, the 25 ns time resolution is only limited by maximum clock frequency available on the 6602-PCI and can be easily improved by using a faster clock. When tested on dilute solutions of calibrated latex spheres, the overall performances of the correlator appear to be comparable with those of commercial hardware correlators, but with several nontrivial advantages related to its flexibility, low cost, and easy adaptability to future developments of PC and data acquisition technology.
NASA Astrophysics Data System (ADS)
Yang, H.; Fu, X.-W.; Jia, Z.-T.; He, J.-L.; Yang, X.-Q.; Zhang, B.-T.; Wang, R.-H.; Liu, X.-M.; Hou, J.; Lou, F.; Wang, Z.-W.; Yang, Y.
2012-10-01
The performance of diode-pumped continuous-wave (CW) and passively Q-switched (PQS) Nd:(LaxGd1-x)3Ga5O12 lasers at 1062 nm were demonstrated for the first time to our knowledge. The highest CW output power of 9.9 W was obtained, corresponding to an optical-to-optical efficiency of 42.9%. For the passive Q-switching operation, when the output coupler of Toc = 27% was adopted, the maximum output power of 3.97 W was obtained by a Cr4+:YAG saturable absorber with the initial transmission of T0 = 89.9%.While at T0 = 81.4% and Toc = 27%, the output power of 2.83 W, with pulse width of 7.4 ns and the repetition rate of 13.87 kHz, was obtained, corresponding to the maximum peak power of 27.6 kW and single pulse energy of 0.2 mJ, respectively.
NASA Astrophysics Data System (ADS)
Bragov, A. M.; Balandin, Vl. V.; Kotov, V. L.; Balandin, Vl. Vl.
2018-04-01
We present new experimental results on the investigation of the dynamic properties of sand soil on the basis of the inverse experiment technique using a measuring rod with a flat front-end face. A limited applicability has been shown of the method using the procedure for correcting the shape of the deformation pulse due to dispersion during its propagation in the measuring rod. Estimates of the pulse maximum have been obtained and the results of comparison of numerical calculations with experimental data are given. The sufficient accuracy in determining the drag force during the quasi-stationary stage of penetration has been established. The parameters of dynamic compressibility and resistance to shear of water-saturated sand have been determined in the course of the experimental-theoretical analysis of the maximum values of the drag force and its values at the quasi-stationary stage of penetration. It has been shown that with almost complete water saturation of sand its shear properties are reduced but remain significant in the practically important range of penetration rates.
NASA Astrophysics Data System (ADS)
Pfannkuche, O.
The benthic response to the sedimentation of particulate organic matter (POM) was investigated during 1985-1990 at 47°N, 20°W (BIOTRANS station). The first noticeable annual sedimentation of phytodetritus, as indicated by chlorophyll a concentrations in the sediment, occurred as early as late April-early May. Maximum amounts were found in June-July. Two different sedimentation pulses to the sea bed are described that demonstrate interannual variation: the occurrence of salp faecal pellets early in the year 1988 and the massive fall out of a plankton bloom in summer 1986, which deposited approximately 15 mmol C m -2. The benthic reaction to POM pulses was quite diverse. The mega-, macro- and meiobenthos showed no change in biomass, whereas bacterial biomass doubled between March and July. This corresponds to a seasonal maximum of total adenylate biomass. The relative abundance of Foraminifera among the meiobenthos increased during the summer. Benthic activity (ATP, ratio ATP/ETSA), as well as in situ sediment community oxygen consumption rates (SCOC), showed distinct seasonal maxima in July-August of 0.75 mmol C m -2 day -1. Based on SCOC and the carbon demand for growth, a benthic carbon consumption of 0.94 mmol C m -2 day -1 was estimated. This represents about 1.1% of spring bloom primary production and 9.6% of the export flux beneath the 150 m layer, measured during the North Atlantic Bloom Experiment. Bacteria and protozoans colonizing the epibenthic phytodetrital layer were responsible for 60-80% of the seasonal increase in SCOC. The strong reaction of the smaller benthic size groups (bacteria, protozoans) to POM pulses stresses their particular importance for sediment-water interface flux rates.
Diode-end-pumped Ho, Pr:LiLuF4 bulk laser at 2.95 μm.
Nie, Hongkun; Zhang, Peixiong; Zhang, Baitao; Yang, Kejian; Zhang, Lianhan; Li, Tao; Zhang, Shuaiyi; Xu, Jianqiu; Hang, Yin; He, Jingliang
2017-02-15
A diode-end-pumped continuous-wave (CW) and passively Q-switched Ho, Pr:LiLuF4 (Ho, Pr:LLF) laser operation at 2.95 μm was demonstrated for the first time, to the best of our knowledge. The maximum CW output power was 172 mW. By using a monolayer graphene as the saturable absorber, the passively Q-switched operation was realized, in which regimes with the highest output power, the shortest pulse duration, and the maximum repetition rate were determined to be 88 mW, 937.5 ns, and 55.7 kHz, respectively. The laser beam quality factor M2 at the maximum CW output power were measured to be Mx2=1.48 and My2=1.47.
Single-longitudinal-mode Er:GGG microchip laser operating at 2.7 μm.
You, Zhenyu; Wang, Yan; Xu, Jinlong; Zhu, Zhaojie; Li, Jianfu; Wang, Hongyan; Tu, Chaoyang
2015-08-15
We reported on a diode-end-pumped single-longitudinal-mode microchip laser using a 600-μm-thick Er:GGG crystal at ∼2.7 μm, generating a maximum output power of 50.8 mW and the maximum pulsed energy of 0.306 mJ, with repetition rates of pumping light of 300, 200, and 100 Hz, respectively. The maximum slope efficiency of the laser was 20.1%. The laser was operated in a single-longitudinal mode centered at about 2704 nm with a FWHM of 0.42 nm. The laser had a fundamental beam profile and the beam quality parameter M(2) was measured as 1.46. These results indicate that the Er:GGG microchip laser is a potential compact mid-infrared laser source.
A racetrack mode-locked silicon evanescent laser.
Fang, Alexander W; Koch, Brian R; Gan, Kian-Giap; Park, Hyundai; Jones, Richard; Cohen, Oded; Paniccia, Mario J; Blumenthal, Daniel J; Bowers, John E
2008-01-21
By utilizing a racetrack resonator topography, an on-chip mode locked silicon evanescent laser (ML-SEL) is realized that is independent of facet polishing. This enables integration with other devices on silicon and precise control of the ML-SEL's repetition rate through lithographic definition of the cavity length. Both passive and hybrid mode-locking have been achieved with transform limited, 7 ps pulses emitted at a repetition rate of 30 GHz. Jitter and locking range are measured under hybrid mode locking with a minimum absolute jitter and maximum locking range of 364 fs, and 50 MHz, respectively.
Target Glint Suppression Technology.
1980-09-01
report is organized into two principal sections. Section 2 addresses the impact of target effects on the noncoherent detection problem associated with...zero pulse-to-pulse correlation. Results are presented for a scanning search radar which is assumed to noncoherently integrate N pulses. Generally...speaking, detection performance is shown to be a maximum when the pulse-to-pulse correlation is a minimum. As a result noncoherent search radars should
A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery
Ferhanoglu, Onur; Yildirim, Murat; Subramanian, Kaushik; Ben-Yakar, Adela
2014-01-01
Towards developing precise microsurgery tools for the clinic, we previously developed image-guided miniaturized devices using low repetition rate amplified ultrafast lasers for surgery. To improve the speed of tissue removal while reducing device diameter, here we present a new 5-mm diameter device that delivers high-repetition rate laser pulses for high speed ultrafast laser microsurgery. The device consists of an air-core photonic bandgap fiber (PBF) for the delivery of high energy pulses, a piezoelectric tube actuator for fiber scanning, and two aspheric lenses for focusing the light. Its inline optical architecture provides easy alignment and substantial size reduction to 5 mm diameter as compared to our previous MEMS-scanning devices while realizing improved intensity squared (two-photon) lateral and axial resolutions of 1.16 μm and 11.46 μm, respectively. Our study also sheds light on the maximum pulse energies that can be delivered through the air-core PBF and identifies cladding damage at the input facet of the fiber as the limiting factor. We have achieved a maximum energy delivery larger than 700 nJ at 92% coupling efficiency. An in depth analysis reveals how this value is greatly affected by possible slight misalignments of the beam during coupling and the measured small beam pointing fluctuations. In the absence of these imperfections, self-phase modulation becomes the limiting factor for the maximum energy delivery, setting the theoretical upper bound to near 2 μJ for a 1-m long, 7-μm, air-core PBF. Finally, the use of a 300 kHz repetition rate fiber laser enabled rapid ablation of 150 µm x 150 µm area within only 50 ms. Such ablation speeds can now allow the surgeons to translate the surgery device as fast as ~4 mm/s to continuously remove a thin layer of a 150 µm wide tissue. Thanks to a high optical transmission efficiency of the in-line optical architecture of the device and improved resolution, we could successfully perform ablation of scarred cheek pouch tissue, drilling through a thin slice. With further development, this device can serve as a precise and high speed ultrafast laser scalpel in the clinic. PMID:25071946
NASA Astrophysics Data System (ADS)
Ab Razak, Mohd Zulhakimi; Saleh, Zatul Saliza; Ahmad, Fauzan; Anyi, Carol Livan; Harun, Sulaiman W.; Arof, Hamzah
2016-10-01
Due to an enormous potential of pulsed lasers in applications such as manufacturing, metrology, environmental sensing, and biomedical diagnostics, a high-power and stable Q-switched erbium-ytterbium codoped double-clad fiber laser (EYDFL) incorporating of multiwall carbon nanotubes (MWCNTs) saturable absorber (SA) made based on polyvinyl alcohol (PVA) with a 3∶2 ratio is demonstrated. The SA was fabricated by mixing a dilute PVA solution with an MWCNTs homogeneous solution. Subsequently, the mixture was sonicated and centrifuged to produce a homogeneous suspension that was left to dry at room temperature to form the MWCNTs-PVA film. The SA was formed by inserting the film between a pair of FC/PC fiber connectors. Then, it was integrated into the EYDFL's ring cavity, which uses a 5-m-long erbium-ytterbium codoped fiber (EYDF). The lasing threshold for the Q-switched EYDFL was at 330 mW. At the maximum available pump power of 900 mW, the proposed EYDFL produced Q-switched pulses with a repetition rate of 74.85 kHz, pulsewidth of ˜3.6 μs, and an average output power of about 5 mW. The maximum energy per pulse of ˜85 nJ was obtained at pump power of ˜700 mW with peak power of 21 mW.
Zhang, Yuxia; Yu, Haohai; Zhang, Huaijin; Di Lieto, Alberto; Tonelli, Mauro; Wang, Jiyang
2016-06-15
We demonstrate efficient laser-diode pumped multi-gigahertz (GHz) self-mode-locked praseodymium (Pr3+) visible lasers with broadband spectra from green to deep red for the first time to our knowledge. With a Pr3+-doped GdLiF4 crystal, stable self-mode-locked visible pulsed lasers at the wavelengths of 522 nm, 607 nm, 639 nm, and 720 nm have been obtained with the repetition rates of 2.8 GHz, 3.1 GHz, 3.1 GHz, and 3.0 GHz, respectively. The maximum output power was 612 mW with the slope efficiency of 46.9% at 639 nm. The mode-locking mechanism was theoretically analyzed. The stable second-harmonic mode-locking with doubled repetition frequency was also realized based on the Fabry-Perot effect formed in the laser cavity. In addition, we find that the polarization directions were turned with lasing wavelengths. This work may provide a new way for generating efficient ultrafast pulses with high- and changeable-repetition rates in the visible range.
Fuel cladding behavior under rapid loading conditions
NASA Astrophysics Data System (ADS)
Yueh, K.; Karlsson, J.; Stjärnsäter, J.; Schrire, D.; Ledergerber, G.; Munoz-Reja, C.; Hallstadius, L.
2016-02-01
A modified burst test (MBT) was used in an extensive test program to characterize fuel cladding failure behavior under rapid loading conditions. The MBT differs from a normal burst test with the use of a driver tube to simulate the expansion of a fuel pellet, thereby producing a partial strain driven deformation condition similar to that of a fuel pellet expansion in a reactivity insertion accident (RIA). A piston/cylinder assembly was used to pressurize the driver tube. By controlling the speed and distance the piston travels the loading rate and degree of sample deformation could be controlled. The use of a driver tube with a machined gauge section localizes deformation and allows for continuous monitoring of the test sample diameter change at the location of maximum hoop strain, during each test. Cladding samples from five irradiated fuel rods were tested between 296 and 553 K and loading rates from 1.5 to 3.5/s. The test rods included variations of Zircaloy-2 with different liners and ZIRLO, ranging in burn-up from 41 to 74 GWd/MTU. The test results show cladding ductility is strongly temperature and loading rate dependent. Zircaloy-2 cladding ductility degradation due to operational hydrogen pickup started to recover at approximately 358 K for test condition used in the study. This recovery temperature is strongly loading rate dependent. At 373 K, ductility recovery was small for loading rates less than 8 ms equivalent RIA pulse width, but longer than 8 ms the ductility recovery increased exponentially with increasing pulse width, consistent with literature observations of loading rate dependent brittle-to-ductile (BTD) transition temperature. The cladding ductility was also observed to be strongly loading rate/pulse width dependent for BWR cladding below the BTD temperature and Pressurized Water Reactor (PWR) cladding at both 296 and 553 K.
Johnstone, C.W.
1959-09-29
A pulse-height discriminator for generating an output pulse when the accepted input pulse is approximately at its maximum value is described. A gating tube and a negative bias generator responsive to the derivative of the input pulse and means for impressing the output of the bias generator to at least one control electrode of the gating tube are included.
Taudorf, Elisabeth H; Haak, Christina S; Erlendsson, Andrés M; Philipsen, Peter A; Anderson, R Rox; Paasch, Uwe; Haedersdal, Merete
2014-04-01
Treatment of a variety of skin disorders with ablative fractional lasers (AFXL) is driving the development of portable AFXLs. This study measures micropore dimensions produced by a small 2,940 nm AFXL using a variety of stacked pulses, and determines a model correlating laser parameters with tissue effects. Ex vivo pig skin was exposed to a miniaturized 2,940 nm AFXL, spot size 225 µm, density 5%, power levels 1.15-2.22 W, pulse durations 50-225 microseconds, pulse repetition rates 100-500 Hz, and 2, 20, or 50 stacked pulses, resulting in pulse energies of 2.3-12.8 mJ/microbeam and total energy levels of 4.6-640 mJ/microchannel. Histological endpoints were ablation depth (AD), coagulation zone (CZ) and ablation width (AW). Data were logarithmically transformed if required prior to linear regression analyses. Results for histological endpoints were combined in a mathematical model. In 138 sections from 91 biopsies, AD ranged from 16 to a maximum of 1,348 µm and increased linearly with the logarithm of total energy delivered by stacked pulses, but also depended on variations in power, pulse duration, pulse repetition rate, and pulse energy (r(2) = 0.54-0.85, P < 0.0001). Microchannels deeper than 500 µm were created only by the highest pulse energy of 12.8 mJ/microbeam. Pulse stacking increased AD, and enlarged CZ and AW. CZ varied from 0 to 205 µm and increased linearly with total energy (r(2) = 0.56-0.75, P < 0.0001). AW ranged from 106 to 422 µm and increased linearly with the logarithm of number of stacked pulses (r(2) = 0.53-0.61, P < 0.001). The mathematical model estimated micropores of specific ADs with an associated range of CZs and AWs, for example, 300 µm ADs were associated with CZs from 27 to 73 µm and AWs from 190 to 347 µm. Pulse stacking with a small, low power 2,940 nm AFXL created reproducible shallow to deep micropores, and influenced micropore configuration. Mathematical modeling established relations between laser settings and micropore dimensions, which assists in choosing laser settings for desired tissue effects. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Shi, Wei; Fang, Qiang; Fan, Jingli; Cui, Xuelong; Zhang, Zhuo; Li, Jinhui; Zhou, Guoqing
2017-02-01
We report a single frequency, linearly polarized, near diffraction-limited, pulsed laser source at 775 nm by frequency doubling a single frequency nanosecond pulsed all fiber based master oscillator-power amplifier, seeded by a fiber coupled semiconductor DFB laser diode at 1550 nm. The laser diode was driven by a pulsed laser driver to generate 5 ns laser pulses at 260 Hz repetition rate with 50 pJ pulse energy. The pulse energy was boosted to 200 μJ using two stages of core-pumped fiber amplifiers and two stages of cladding-pumped fiber amplifiers. The multi-stage synchronous pulse pumping technique was adopted in the four stages of fiber amplifiers to mitigate the ASE. The frequency doubling is implemented in a single pass configuration using a periodically poled lithium niobate (PPLN) crystal. The crystal is 3 mm long, 1.4 mm wide, 1 mm thick, with a 19.36 μm domain period chosen for quasi-phase matching at 33°C. It was AR coated at both 1550 nm and 775 nm. The maximum pulse energy of 97 μJ was achieved when 189 μJ fundamental laser was launched. The corresponding conversion efficiency is about 51.3%. The pulse duration was measured to be 4.8 ns. So the peak power of the generated 775 nm laser pulses reached 20 kW. To the best of our knowledge, this is the first demonstration of a 100 μJ-level, tens of kilowatts-peak-power-level single frequency linearly polarized 775 nm laser based on the frequency doubling of the fiber lasers.
Ordaz, Alberto; López, Juan C; Figueroa-González, Ivonne; Muñoz, Raúl; Quijano, Guillermo
2014-12-15
Biological methane biodegradation is a promising treatment alternative when the methane produced in waste management facilities cannot be used for energy generation. Two-phase partitioning bioreactors (TPPBs), provided with a non-aqueous phase (NAP) with high affinity for the target pollutant, are particularly suitable for the treatment of poorly water-soluble compounds such as methane. Nevertheless, little is known about the influence of the presence of the NAP on the resulting biodegradation kinetics in TPPBs. In this study, an experimental framework based on the in situ pulse respirometry technique was developed to assess the impact of NAP addition on the methane biodegradation kinetics using Methylosinus sporium as a model methane-degrading microorganism. A comprehensive mass transfer characterization was performed in order to avoid mass transfer limiting scenarios and ensure a correct kinetic parameter characterization. The presence of the NAP mediated significant changes in the apparent kinetic parameters of M. sporium during methane biodegradation, with variations of 60, 120, and 150% in the maximum oxygen uptake rate, half-saturation constant and maximum specific growth rate, respectively, compared with the intrinsic kinetic parameters retrieved from a control without NAP. These significant changes in the kinetic parameters mediated by the NAP must be considered for the design, operation and modeling of TPPBs devoted to air pollution control. Copyright © 2014 Elsevier Ltd. All rights reserved.
Intense picosecond pulsed electric fields inhibit proliferation and induce apoptosis of HeLa cells.
Zhang, Min; Xiong, Zheng-Ai; Chen, Wen-Juan; Yao, Cheng-Guo; Zhao, Zhong-Yong; Hua, Yuan-Yuan
2013-06-01
A picosecond pulsed electric field (psPEF) is a localized physical therapy for tumors that has been developed in recent years, and that may in the future be utilized as a targeted non‑invasive treatment. However, there are limited studies regarding the biological effects of psPEF on cells. Electric field amplitude and pulse number are the main parameters of psPEF that influence its biological effects. In this study, we exposed HeLa cells to a psPEF with a variety of electric field amplitudes, from 100 to 600 kV/cm, and various pulse numbers, from 1,000 to 3,000. An MTT assay was used to detect the growth inhibition, while flow cytometry was used to determine the occurrence of apoptosis and the cell cycle of the HeLa cells following treatment. The morphological changes during cell apoptosis were observed using transmission electron microscopy (TEM). The results demonstrated that the cell growth inhibition rate gradually increased, in correlation with the increasing electric field amplitude and pulse number, and achieved a plateau of maximum cell inhibition 12 h following the pulses. In addition, typical characteristics of HeLa cell apoptosis in the experimental groups were observed by TEM. The results demonstrated that the rate of apoptosis in the experimental groups was significantly elevated in comparison with the untreated group. In the treatment groups, the rate of apoptosis was greater in the higher amplitude groups than in the lower amplitude groups. The same results were obtained when the variable was the pulse number. Flow cytometric analysis indicated that the cell cycle of the HeLa cells was arrested at the G2/M phase following psPEF treatment. Overall, our results indicated that psPEF inhibited cell proliferation and induced cell apoptosis, and that these effects occurred in a dose-dependent manner. In addition, the results demonstrated that the growth of the HeLa cells was arrested at the G2/M phase following treatment. This study may provide a foundation for further in vivo experiments, and for the potential clinical application of psPEF in the treatment of cervical cancer.
Gransier, Robin; Deprez, Hanne; Hofmann, Michael; Moonen, Marc; van Wieringen, Astrid; Wouters, Jan
2016-05-01
Previous studies have shown that objective measures based on stimulation with low-rate pulse trains fail to predict the threshold levels of cochlear implant (CI) users for high-rate pulse trains, as used in clinical devices. Electrically evoked auditory steady-state responses (EASSRs) can be elicited by modulated high-rate pulse trains, and can potentially be used to objectively determine threshold levels of CI users. The responsiveness of the auditory pathway of profoundly hearing-impaired CI users to modulation frequencies is, however, not known. In the present study we investigated the responsiveness of the auditory pathway of CI users to a monopolar 500 pulses per second (pps) pulse train modulated between 1 and 100 Hz. EASSRs to forty-three modulation frequencies, elicited at the subject's maximum comfort level, were recorded by means of electroencephalography. Stimulation artifacts were removed by a linear interpolation between a pre- and post-stimulus sample (i.e., blanking). The phase delay across modulation frequencies was used to differentiate between the neural response and a possible residual stimulation artifact after blanking. Stimulation artifacts were longer than the inter-pulse interval of the 500pps pulse train for recording electrodes ipsilateral to the CI. As a result the stimulation artifacts could not be removed by artifact removal on the bases of linear interpolation for recording electrodes ipsilateral to the CI. However, artifact-free responses could be obtained in all subjects from recording electrodes contralateral to the CI, when subject specific reference electrodes (Cz or Fpz) were used. EASSRs to modulation frequencies within the 30-50 Hz range resulted in significant responses in all subjects. Only a small number of significant responses could be obtained, during a measurement period of 5 min, that originate from the brain stem (i.e., modulation frequencies in the 80-100 Hz range). This reduced synchronized activity of brain stem responses in long-term severely-hearing impaired CI users could be an attribute of processes associated with long-term hearing impairment and/or electrical stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Clark, T D; Ryan, T; Ingram, B A; Woakes, A J; Butler, P J; Frappell, P B
2005-01-01
Several previous reports, often from studies utilising heavily instrumented animals, have indicated that for teleosts, the increase in cardiac output (Vb) during exercise is mainly the result of an increase in cardiac stroke volume (V(S)) rather than in heart rate (fH). More recently, this contention has been questioned following studies on animals carrying less instrumentation, though the debate continues. In an attempt to shed more light on the situation, we examined the heart rates and oxygen consumption rates (Mo2; normalised to a mass of 1 kg, given as Mo2kg) of six Murray cod (Maccullochella peelii peelii; mean mass+/-SE = 1.81+/-0.14 kg) equipped with implanted fH and body temperature data loggers. Data were determined during exposure to varying temperatures and swimming speeds to encompass the majority of the biological scope of this species. An increase in body temperature (Tb) from 14 degrees C to 29 degrees C resulted in linear increases in Mo2kg (26.67-41.78 micromol min(-1) kg(-1)) and fH (22.3-60.8 beats min(-1)) during routine exercise but a decrease in the oxygen pulse (the amount of oxygen extracted per heartbeat; 1.28-0.74 micromol beat(-1) kg(-1)). During maximum exercise, the factorial increase in Mo2kg was calculated to be 3.7 at all temperatures and was the result of temperature-independent 2.2- and 1.7-fold increases in fH and oxygen pulse, respectively. The constant factorial increases in fH and oxygen pulse suggest that the cardiovascular variables of the Murray cod have temperature-independent maximum gains that contribute to maximal oxygen transport during exercise. At the expense of a larger factorial aerobic scope at an optimal temperature, as has been reported for species of salmon and trout, it is possible that the Murray cod has evolved a lower, but temperature-independent, factorial aerobic scope as an adaptation to the largely fluctuating and unpredictable thermal climate of southeastern Australia.
Sokolov, Alexander; Louhi-Kultanen, Marjatta
2018-06-07
The increase in volume and variety of pharmaceuticals found in natural water bodies has become an increasingly serious environmental problem. The implementation of cold plasma technology, specifically gas-phase pulsed corona discharge (PCD), for sulfamethizole abatement was studied in the present work. It was observed that sulfamethizole is easily oxidized by PCD. The flow rate and pH of the solution have no significant effect on the oxidation. Treatment at low pulse repetition frequency is preferable from the energy efficiency point of view but is more time-consuming. The maximum energy efficiency was around 120 g/kWh at half-life and around 50 g/kWh at the end of the treatment. Increasing the solution temperature from room temperature to 50 °C led to a significant reaction retardation of the process and decrease in energy efficiency. The pseudo-first order reaction rate constant (k 1 ) grows with increase in pulse repetition frequency and does not depend on pH. By contrast, decreasing frequency leads to a reduction of the second order reaction rate constant (k 2 ). At elevated temperature of 50 °C, the k 1 , k 2 values decrease 2 and 2.9 times at 50 pps and 500 pps respectively. Lower temperature of 10 °C had no effect on oxidation efficiency compared with room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silaev, A. A., E-mail: silaev@appl.sci-nnov.ru; Vvedenskii, N. V., E-mail: vved@appl.sci-nnov.ru; University of Nizhny Novgorod, Nizhny Novgorod 603950
2015-05-15
When a gas is ionized by a few-cycle laser pulse, some residual current density (RCD) of free electrons remains in the produced plasma after the passage of the laser pulse. This quasi-dc RCD is an initial impetus to plasma polarization and excitation of the plasma oscillations which can radiate terahertz (THz) waves. In this work, the analytical model for calculation of RCD excited by a few-cycle laser pulse is developed for the first time. The dependences of the RCD on the carrier-envelope phase (CEP), wavelength, duration, and intensity of the laser pulse are derived. It is shown that maximum RCDmore » corresponding to optimal CEP increases with the laser pulse wavelength, which indicates the prospects of using mid-infrared few-cycle laser pulses in the schemes of generation of high-power THz pulses. Analytical formulas for optimal pulse intensity and maximum efficiency of excitation of the RCD are obtained. Basing on numerical solution of the 3D time-dependent Schrödinger equation for hydrogen atoms, RCD dependence on CEP is calculated in a wide range of wavelengths. High accuracy of analytical formulas is demonstrated at the laser pulse parameters which correspond to the tunneling regime of ionization.« less
Pulsed-DC selfsputtering of copper
NASA Astrophysics Data System (ADS)
Wiatrowski, A.; Posadowski, W. M.; Radzimski, Z. J.
2008-03-01
At standard magnetron sputtering conditions (argon pressure ~0.5 Pa) inert gas particles are often entrapped in the formed films. Inert gas contamination can be eliminated by using the self-sustained magnetron sputtering process because it is done in the absence of the inert gas atmosphere. The self-sustained sputtering (SSS) gives also a unique condition during the transport of sputtered particles to the substrate. It is especially useful for filling high aspect ratio submicron scale structures for microelectronics. So far it has been shown that the self-sputtering process can be sustained in the DC operation mode (DC-SSS) only. The main disadvantage of DC-SSS process is instability related to possible arc formation. Usage of pulsed sputtering, similarly to reactive pulsed magnetron sputtering, could eliminate this problem. In this paper results of pulsed-DC self-sustained magnetron sputtering (pulsed DC-SSS) of copper are presented for the first time. The planar magnetron equipped with a 50 mm in diameter and 6 mm thick copper target was powered by DC-power supply modulated by power switch. The maximum target power was about 11 kW (~550W/cm2). The magnetron operation was investigated as a function of pulsing frequency (20-100 kHz) and duty factor (50-90%). The discharge extinction pressure was determined for these conditions. The plasma emission spectra (400-410nm range) and deposition rates were observed for both DC and pulsed DC sustained self-sputtering processes. The presented results illustrate that stable pulsed DC-SSS process can be obtained at pulsing frequency in the range of 60-100 kHz and duty factor of 70-90%.
Pakhomov, Andrei G; Grigoryev, Sergey; Semenov, Iurii; Casciola, Maura; Jiang, Chunqi; Xiao, Shu
2018-03-29
Bipolar cancellation refers to a phenomenon when applying a second electric pulse reduces ("cancels") cell membrane damage by a preceding electric pulse of the opposite polarity. Bipolar cancellation is a reason why bipolar nanosecond electric pulses (nsEP) cause weaker electroporation than just a single unipolar phase of the same pulse. This study was undertaken to explore the dependence of bipolar cancellation on nsEP parameters, with emphasis on the amplitude ratio of two opposite polarity phases of a bipolar pulse. Individual cells (CHO, U937, or adult mouse ventricular cardiomyocytes (VCM)) were exposed to either uni- or bipolar trapezoidal nsEP, or to nanosecond electric field oscillations (NEFO). The membrane injury was evaluated by time-lapse confocal imaging of the uptake of propidium (Pr) or YO-PRO-1 (YP) dyes and by phosphatidylserine (PS) externalization. Within studied limits, bipolar cancellation showed little or no dependence on the electric field intensity, pulse repetition rate, chosen endpoint, or cell type. However, cancellation could increase for larger pulse numbers and/or for longer pulses. The sole most critical parameter which determines bipolar cancellation was the phase ratio: maximum cancellation was observed with the 2nd phase of about 50% of the first one, whereas a larger 2nd phase could add a damaging effect of its own. "Swapping" the two phases, i.e., delivering the smaller phase before the larger one, reduced or eliminated cancellation. These findings are discussed in the context of hypothetical mechanisms of bipolar cancellation and electroporation by nsEP. Copyright © 2018 Elsevier B.V. All rights reserved.
Development of 600 kV triple resonance pulse transformer.
Li, Mingjia; Zhang, Faqiang; Liang, Chuan; Xu, Zhou
2015-06-01
In this paper, a triple-resonance pulse transformer based on an air-core transformer is introduced. The voltage across the high-voltage winding of the air-core transformer is significantly less than the output voltage; instead, the full output voltage appears across the tuning inductor. The maximum ratio of peak load voltage to peak transformer voltage is 2.77 in theory. By analyzing pulse transformer's lossless circuit, the analytical expression for the output voltage and the characteristic equation of the triple-resonance circuit are presented. Design method for the triple-resonance pulse transformer (iterated simulation method) is presented, and a triple-resonance pulse transformer is developed based on the existing air-core transformer. The experimental results indicate that the maximum ratio of peak voltage across the load to peak voltage across the high-voltage winding of the air-core transformer is approximately 2.0 and the peak output voltage of the triple-resonance pulse transformer is approximately 600 kV.
Dynamical resonance shift and unification of resonances in short-pulse laser-cluster interaction
NASA Astrophysics Data System (ADS)
Mahalik, S. S.; Kundu, M.
2018-06-01
Pronounced maximum absorption of laser light irradiating a rare-gas or metal cluster is widely expected during the linear resonance (LR) when Mie-plasma wavelength λM of electrons equals the laser wavelength λ . On the contrary, by performing molecular dynamics (MD) simulations of an argon cluster irradiated by short 5-fs (FWHM) laser pulses it is revealed that, for a given laser pulse energy and a cluster, at each peak intensity there exists a λ —shifted from the expected λM—that corresponds to a unified dynamical LR at which evolution of the cluster happens through very efficient unification of possible resonances in various stages, including (i) the LR in the initial time of plasma creation, (ii) the LR in the Coulomb expanding phase in the later time, and (iii) anharmonic resonance in the marginally overdense regime for a relatively longer pulse duration, leading to maximum laser absorption accompanied by maximum removal of electrons from cluster and also maximum allowed average charge states for the argon cluster. Increasing the laser intensity, the absorption maxima is found to shift to a higher wavelength in the band of λ ≈(1 -1.5 ) λM than permanently staying at the expected λM. A naive rigid sphere model also corroborates the wavelength shift of the absorption peak as found in MD and unequivocally proves that maximum laser absorption in a cluster happens at a shifted λ in the marginally overdense regime of λ ≈(1 -1.5 ) λM instead of λM of LR. The present study is important for guiding an optimal condition laser-cluster interaction experiment in the short-pulse regime.
Knee implant imaging at 3 Tesla using high-bandwidth radiofrequency pulses.
Bachschmidt, Theresa J; Sutter, Reto; Jakob, Peter M; Pfirrmann, Christian W A; Nittka, Mathias
2015-06-01
To investigate the impact of high-bandwidth radiofrequency (RF) pulses used in turbo spin echo (TSE) sequences or combined with slice encoding for metal artifact correction (SEMAC) on artifact reduction at 3 Tesla in the knee in the presence of metal. Local transmit/receive coils feature increased maximum B1 amplitude, reduced SAR exposition and thus enable the application of high-bandwidth RF pulses. Susceptibility-induced through-plane distortion scales inversely with the RF bandwidth and the view angle, hence blurring, increases for higher RF bandwidths, when SEMAC is used. These effects were assessed for a phantom containing a total knee arthroplasty. TSE and SEMAC sequences with conventional and high RF bandwidths and different contrasts were tested on eight patients with different types of implants. To realize scan times of 7 to 9 min, SEMAC was always applied with eight slice-encoding steps and distortion was rated by two radiologists. A local transmit/receive knee coil enables the use of an RF bandwidth of 4 kHz compared with 850 Hz in conventional sequences. Phantom scans confirm the relation of RF bandwidth and through-plane distortion, which can be reduced up to 79%, and demonstrate the increased blurring for high-bandwidth RF pulses. In average, artifacts in this RF mode are rated hardly visible for patients with joint arthroplasties, when eight SEMAC slice-encoding steps are applied, and for patients with titanium fixtures, when TSE is used. The application of high-bandwidth RF pulses by local transmit coils substantially reduces through-plane distortion artifacts at 3 Tesla. © 2014 Wiley Periodicals, Inc.
Time-optimized laser micro machining by using a new high dynamic and high precision galvo scanner
NASA Astrophysics Data System (ADS)
Jaeggi, Beat; Neuenschwander, Beat; Zimmermann, Markus; Zecherle, Markus; Boeckler, Ernst W.
2016-03-01
High accuracy, quality and throughput are key factors in laser micro machining. To obtain these goals the ablation process, the machining strategy and the scanning device have to be optimized. The precision is influenced by the accuracy of the galvo scanner and can further be enhanced by synchronizing the movement of the mirrors with the laser pulse train. To maintain a high machining quality i.e. minimum surface roughness, the pulse-to-pulse distance has also to be optimized. Highest ablation efficiency is obtained by choosing the proper laser peak fluence together with highest specific removal rate. The throughput can now be enhanced by simultaneously increasing the average power, the repetition rate as well as the scanning speed to preserve the fluence and the pulse-to-pulse distance. Therefore a high scanning speed is of essential importance. To guarantee the required excellent accuracy even at high scanning speeds a new interferometry based encoder technology was used, that provides a high quality signal for closed-loop control of the galvo scanner position. Low inertia encoder design enables a very dynamic scanner system, which can be driven to very high line speeds by a specially adapted control solution. We will present results with marking speeds up to 25 m/s using a f = 100 mm objective obtained with a new scanning system and scanner tuning maintaining a precision of about 5 μm. Further it will be shown that, especially for short line lengths, the machining time can be minimized by choosing the proper speed which has not to be the maximum one.
Guede-Fernandez, F; Ferrer-Mileo, V; Ramos-Castro, J; Fernandez-Chimeno, M; Garcia-Gonzalez, M A
2015-01-01
The aim of this paper is to present a smartphone based system for real-time pulse-to-pulse (PP) interval time series acquisition by frame-to-frame camera image processing. The developed smartphone application acquires image frames from built-in rear-camera at the maximum available rate (30 Hz) and the smartphone GPU has been used by Renderscript API for high performance frame-by-frame image acquisition and computing in order to obtain PPG signal and PP interval time series. The relative error of mean heart rate is negligible. In addition, measurement posture and the employed smartphone model influences on the beat-to-beat error measurement of heart rate and HRV indices have been analyzed. Then, the standard deviation of the beat-to-beat error (SDE) was 7.81 ± 3.81 ms in the worst case. Furthermore, in supine measurement posture, significant device influence on the SDE has been found and the SDE is lower with Samsung S5 than Motorola X. This study can be applied to analyze the reliability of different smartphone models for HRV assessment from real-time Android camera frames processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knill, C; Wayne State University School of Medicine, Detroit, MI; Snyder, M
Purpose: PTW’s Octavius 1000 SRS array performs IMRT QA measurements with liquid filled ionization chambers (LICs). Collection efficiencies of LICs have been shown to change during IMRT delivery as a function of LINAC pulse frequency and pulse dose, which affects QA results. In this study, two methods were developed to correct changes in collection efficiencies during IMRT QA measurements, and the effects of these corrections on QA pass rates were compared. Methods: For the first correction, Matlab software was developed that calculates pulse frequency and pulse dose for each detector, using measurement and DICOM RT Plan files. Pulse information ismore » converted to collection efficiency and measurements are corrected by multiplying detector dose by ratios of calibration to measured collection efficiencies. For the second correction, MU/min in daily 1000 SRS calibration was chosen to match average MU/min of the VMAT plan. Usefulness of derived corrections were evaluated using 6MV and 10FFF SBRT RapidArc plans delivered to the OCTAVIUS 4D system using a TrueBeam equipped with an HD- MLC. Effects of the two corrections on QA results were examined by performing 3D gamma analysis comparing predicted to measured dose, with and without corrections. Results: After complex Matlab corrections, average 3D gamma pass rates improved by [0.07%,0.40%,1.17%] for 6MV and [0.29%,1.40%,4.57%] for 10FFF using [3%/3mm,2%/2mm,1%/1mm] criteria. Maximum changes in gamma pass rates were [0.43%,1.63%,3.05%] for 6MV and [1.00%,4.80%,11.2%] for 10FFF using [3%/3mm,2%/2mm,1%/1mm] criteria. On average, pass rates of simple daily calibration corrections were within 1% of complex Matlab corrections. Conclusion: Ion recombination effects can potentially be clinically significant for OCTAVIUS 1000 SRS measurements, especially for higher pulse dose unflattened beams when using tighter gamma tolerances. Matching daily 1000 SRS calibration MU/min to average planned MU/min is a simple correction that greatly reduces ion recombination effects, improving measurements accuracy and gamma pass rates. This work was supported by PTW.« less
High Strain Rate Response of 7055 Aluminum Alloy Subject to Square-spot Laser Shock Peening
NASA Astrophysics Data System (ADS)
Sun, Rujian; Zhu, Ying; Li, Liuhe; Guo, Wei; Peng, Peng
2017-12-01
The influences of laser pulse energy and impact time on high strain rate response of 7055 aluminum alloy subject to square-spot laser shock peening (SLSP) were investigate. Microstructural evolution was characterized by OM, SEM and TEM. Microhardness distribution and in-depth residual stress in 15 J with one and two impacts and 25 J with one and two impacts were analyzed. Results show that the original rolling structures were significantly refined due to laser shock induced recrystallization. High density of microdefects was generated, such as dislocation tangles, dislocation wall and stacking faults. Subgrains and nanograins were induced in the surface layer, resulting in grain refinement in the near surface layer after SLSP. Compressive residual stresses with maximum value of more than -200 MPa and affected depths of more than 1 mm can be generated after SLSP. Impact time has more effectiveness than laser pulse energy in increasing the magnitude of residual stress and achieving thicker hardening layer.
NASA Technical Reports Server (NTRS)
Sun, Xiaoli; Davidson, Frederic; Field, Christopher
1990-01-01
A 50 Mbps direct detection optical communication system for use in an intersatellite link was constructed with an AlGaAs laser diode transmitter and a silicon avalanche photodiode photodetector. The system used a Q = 4 PPM format. The receiver consisted of a maximum likelihood PPM detector and a timing recovery subsystem. The PPM slot clock was recovered at the receiver by using a transition detector followed by a PLL. The PPM word clock was recovered by using a second PLL whose input was derived from the presence of back-to-back PPM pulses contained in the received random PPM pulse sequences. The system achieved a bit error rate of 0.000001 at less than 50 detected signal photons/information bit. The receiver was capable of acquiring and maintaining slot and word synchronization for received signal levels greater than 20 photons/information bit, at which the receiver bit error rate was about 0.01.
NASA Astrophysics Data System (ADS)
Cheng, Li-Chung; Chang, Chia-Yuan; Yen, Wei-Chung; Chen, Shean-Jen
2012-10-01
Conventional multiphoton microscopy employs beam scanning; however, in this study a microscope based on spatiotemporal focusing offering widefield multiphoton excitation has been developed to provide fast optical sectioning images. The microscope integrates a 10 kHz repetition rate ultrafast amplifier featuring strong instantaneous peak power (maximum 400 μJ/pulse at 90 fs pulse width) with a TE-cooled, ultra-sensitive photon detecting, electron multiplying charge-coupled device camera. This configuration can produce multiphoton excited images with an excitation area larger than 200 × 100 μm2 at a frame rate greater than 100 Hz. Brownian motions of fluorescent microbeads as small as 0.5 μm have been instantaneously observed with a lateral spatial resolution of less than 0.5 μm and an axial resolution of approximately 3.5 μm. Moreover, we combine the widefield multiphoton microscopy with structure illuminated technique named HiLo to reject the background scattering noise to get better quality for bioimaging.
Tactile information transfer: A comparison of two stimulation sites
NASA Astrophysics Data System (ADS)
Summers, Ian R.; Whybrow, Jon J.; Gratton, Denise A.; Milnes, Peter; Brown, Brian H.; Stevens, John C.
2005-10-01
Two experiments on the discrimination of time-varying tactile stimuli were performed, with comparison of stimulus delivery to the distal pad of the right index finger and to the right wrist (palmar surface). Subjects were required to perceive differences in short sequences of computer-generated stimulus elements (experiment 1) or differences in short tactile stimuli derived from a speech signal (experiment 2). The pulse-train stimuli were distinguished by differences in frequency (i.e., pulse repetition rate) and amplitude, and by the presence/absence of gaps (~100-ms duration). Stimulation levels were 10 dB higher at the wrist than at the fingertip, to compensate for the lower vibration sensitivity at the wrist. Results indicate similar gap detection at wrist and fingertip and similar perception of frequency differences. However, perception of amplitude differences was found to be better at the wrist than at the fingertip. Maximum information transfer rates for the stimuli in experiment 1 were estimated at 7 bits s-1 at the wrist and 5 bits s-1 at the fingertip.
Fast neutron tomography with real-time pulse-shape discrimination in organic scintillation detectors
NASA Astrophysics Data System (ADS)
Joyce, Malcolm J.; Agar, Stewart; Aspinall, Michael D.; Beaumont, Jonathan S.; Colley, Edmund; Colling, Miriam; Dykes, Joseph; Kardasopoulos, Phoevos; Mitton, Katie
2016-10-01
A fast neutron tomography system based on the use of real-time pulse-shape discrimination in 7 organic liquid scintillation detectors is described. The system has been tested with a californium-252 source of dose rate 163 μSv/h at 1 m and neutron emission rate of 1.5×107 per second into 4π and a maximum acquisition time of 2 h, to characterize two 100×100×100 mm3 concrete samples. The first of these was a solid sample and the second has a vertical, cylindrical void. The experimental data, supported by simulations with both Monte Carlo methods and MATLAB®, indicate that the presence of the internal cylindrical void, corners and inhomogeneities in the samples can be discerned. The potential for fast neutron assay of this type with the capability to probe hydrogenous features in large low-Z samples is discussed. Neutron tomography of bulk porous samples is achieved that combines effective penetration not possible with thermal neutrons in the absence of beam hardening.
Tactile information transfer: a comparison of two stimulation sites.
Summers, lan R; Whybrow, Jon J; Gratton, Denise A; Milnes, Peter; Brown, Brian H; Stevens, John C
2005-10-01
Two experiments on the discrimination of time-varying tactile stimuli were performed, with comparison of stimulus delivery to the distal pad of the right index finger and to the right wrist (palmar surface). Subjects were required to perceive differences in short sequences of computer-generated stimulus elements (experiment 1) or differences in short tactile stimuli derived from a speech signal (experiment 2). The pulse-train stimuli were distinguished by differences in frequency (i.e., pulse repetition rate) and amplitude, and by the presence/absence of gaps (approximately 100-ms duration). Stimulation levels were 10 dB higher at the wrist than at the fingertip, to compensate for the lower vibration sensitivity at the wrist. Results indicate similar gap detection at wrist and fingertip and similar perception of frequency differences. However, perception of amplitude differences was found to be better at the wrist than at the fingertip. Maximum information transfer rates for the stimuli in experiment 1 were estimated at 7 bits s(-1) at the wrist and 5 bits s(-1) at the fingertip.
NASA Astrophysics Data System (ADS)
Arif Malik, Muhammad; Hughes, David
2016-04-01
Improvements in ozone synthesis from air and oxygen by increasing the number density of plasma channels and lower voltage for the same specific input energy (SIE) were explored in a nonthermal plasma based on a sliding discharge. The number of plasma channels and energy per pulse increased in direct proportion to the increase in the effective length of the anode (the high voltage electrode). Decreasing the discharge gap increased the energy per pulse for the same length and allowed the installation of more electrode pairs in the same space. It allowed the increase of the number of plasma channels in the same space to achieve the same SIE at a lower peak voltage with less energy per plasma channel. The ozone concentration gradually increased to ~1500 ppmv (140 to 50 g kWh-1) from air and to ~6000 ppmv (400 to 200 g kWh-1) from oxygen with a gradual increase in the SIE to ~200 J L-1, irrespective of the variations in electrode geometry, applied voltage or flow rate of the feed gas. A gradual increase in SIE beyond 200 J L-1 gradually increased the ozone concentration to a certain maximum value followed by a decline, but the rate of increase and the maximum value was higher for the greater number of plasma channels and lower peak voltage combination. The maximum ozone concentration was ~5000 ppmv (~30 g kWh-1) from air and ~22 000 ppmv (~80 g kWh-1) from oxygen. The results are explained on the basis of characteristics of the plasma and ozone synthesis mechanism.
Apparatus and method for classifying fuel pellets for nuclear reactor
Wilks, Robert S.; Sternheim, Eliezer; Breakey, Gerald A.; Sturges, Jr., Robert H.; Taleff, Alexander; Castner, Raymond P.
1984-01-01
Control for the operation of a mechanical handling and gauging system for nuclear fuel pellets. The pellets are inspected for diameters, lengths, surface flaws and weights in successive stations. The control includes, a computer for commanding the operation of the system and its electronics and for storing and processing the complex data derived at the required high rate. In measuring the diameter, the computer enables the measurement of a calibration pellet, stores that calibration data and computes and stores diameter-correction factors and their addresses along a pellet. To each diameter measurement a correction factor is applied at the appropriate address. The computer commands verification that all critical parts of the system and control are set for inspection and that each pellet is positioned for inspection. During each cycle of inspection, the measurement operation proceeds normally irrespective of whether or not a pellet is present in each station. If a pellet is not positioned in a station, a measurement is recorded, but the recorded measurement indicates maloperation. In measuring diameter and length a light pattern including successive shadows of slices transverse for diameter or longitudinal for length are projected on a photodiode array. The light pattern is scanned electronically by a train of pulses. The pulses are counted during the scan of the lighted diodes. For evaluation of diameter the maximum diameter count and the number of slices for which the diameter exceeds a predetermined minimum is determined. For acceptance, the maximum must be less than a maximum level and the minimum must exceed a set number. For evaluation of length, the maximum length is determined. For acceptance, the length must be within maximum and minimum limits.
Diode-pumped continuous-wave and passively Q-switched 1066 nm Nd:GYNbO4 laser
NASA Astrophysics Data System (ADS)
Ma, Yufei; Peng, Zhenfang; He, Ying; Li, Xudong; Yan, Renpeng; Yu, Xin; Zhang, Qingli; Ding, Shoujun; Sun, Dunlu
2017-08-01
A diode-pumped passively Q-switched 1066 nm laser with a novel Nd:Gd0.69Y0.3NbO4 mixed crystal was demonstrated for the first time to the best of our knowledge. In the continuous-wave (CW) operation, optimization selection of output couplers was carried out, and a maximum output power of 2.13 W was obtained when the plane mirror with transmission of 25% was chosen and the absorbed pump power was 10.5 W. The Cr4+:YAG passively Q-switched Nd:Gd0.69Y0.3NbO4 laser performance was investigated. At an absorbed pump power of 10.5 W, using Cr4+:YAG with initial transmission of 80%, the obtained minimum pulse width was 7.2 ns with the pulse repetition rate of 19 kHz. The single pulse energy and peak power were estimated to be 26.7 µJ and 3.7 kW, respectively.
NASA Astrophysics Data System (ADS)
Ning, Shougui; Feng, Guoying; Dai, Shenyu; Zhang, Hong; Zhang, Wei; Deng, Lijuan; Zhou, Shouhuan
2018-02-01
A mid-infrared (mid-IR) semiconductor saturable absorber mirror (SESAM) based on Fe2+:ZnSe for passively Q-switched Er3+-doped ZBLAN fiber laser has been demonstrated. Fe2+:ZnSe SESAM was fabricated by electron beam evaporation method. Fe2+ was innovatively doped into the reflective Bragg stack, in which ZnSe layer served as both doped matrix and high refractive layer during the fabricating process. By using the Fe2+:ZnSe SESAM, stable passively Q-switched pulses with the minimum pulse width of 0.43 μs under a repetition rate of 160.82 kHz were obtained. The recorded maximum average output power of 873 mW with a peak power of 12.59 W and pulse energy of 5.43 μJ were achieved. The results demonstrated a new method for fabricating Fe2+:ZnSe SESAM, which can be used in compact mid-IR Q-switched fiber laser.
Polarized Negative Light Ions at the Cooler Synchrotron COSY/Juelich
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gebel, R.; Felden, O.; Rossen, P. von
2005-04-06
The polarized ion source at the cooler synchrotron facility COSY of the research centre Juelich in Germany delivers negative polarized protons or deuterons for medium energy experiments. The polarized ion source, originally built by the universities of Bonn, Erlangen and Cologne, is based on the colliding beams principle, using after an upgrade procedure an intense pulsed neutralized caesium beam for charge exchange with a pulsed highly polarized hydrogen beam. The source is operated at 0.5 Hz repetition rate with 20 ms pulse length, which is the maximum useful length for the injection into the synchrotron. Routinely intensities of 20 {mu}Amore » are delivered for injection into the cyclotron of the COSY facility. For internal targets the intensity of 2 mA and a polarization up to 90% have been reached. Reliable long-term operation for experiments at COSY for up to 9 weeks has been achieved. Since 2003 polarized deuterons with different combinations of vector and tensor polarization were delivered to experiments.« less
NASA Astrophysics Data System (ADS)
Vatnik, S. M.; Vedin, I. A.; Kurbatov, P. F.; Smolina, E. A.; Pavlyuk, A. A.; Korostelin, Yu. V.; Skasyrsky, Ya. K.
2017-12-01
Laser characteristics of a 5%Tm : KLu(WO4)2 Nm-cut minislab laser passively Q-switched by a Cr2+ : ZnSe saturable absorber are presented. At a pump power of 21 W, the average laser power at a wavelength of 1.91 μm was 3.2 W (pulse duration 35 ns, pulse energy 0.3 mJ). The maximum slope efficiency of the laser in the Q-switched regime was 31%; the loss in power with respect to the cw regime did not exceed 17%. At pump powers above 15 W, the dependence of the output power in the Q-switched regime on the pump power considerably differed from linear, which was explained by the formation of a thermal lens in the saturable absorber volume. The experimental energies and durations of laser pulses well agree with the values calculated from rate equations.
Plate-shaped Yb:LuPO4 crystal for efficient CW and passively Q-switched microchip lasers
NASA Astrophysics Data System (ADS)
Liu, Junhai; Wang, Lisha; Han, Wenjuan; Xu, Honghao; Zhong, Degao; Teng, Bing
2016-10-01
It is demonstrated that plate-shaped crystals of Yb:LuPO4, which are grown from spontaneous nucleation by high-temperature solution method, can be utilized to make microchip lasers operating in continuous-wave (CW) or passively Q-switched mode. Efficient operation of such a microchip laser, which is built with a 0.3 mm thick crystal plate in a 2 mm long plane-parallel cavity, is realized at room temperature. With 2.37 W of pump power absorbed, 1.45 W of CW output power is generated with a slope efficiency of 73%. When passively Q-switched with a Cr4+:YAG crystal plate as saturable absorber, the laser produces a maximum pulsed output power of 0.53 W at 1013.3 nm, at a pulse repetition rate of 23.8 kHz, the resulting pulse energy, duration, and peak power are 22.3 μJ, 4.0 ns, and 5.6 kW, respectively.
NASA Astrophysics Data System (ADS)
Jiang, D. P.; Zou, Y. Q.; Su, L. B.; Tang, H. L.; Wu, F.; Zheng, L. H.; Li, H. J.; Xu, J.
2011-05-01
Co2+-doped Mg0.4Al2.4O4 single crystal up to varnothing28×40 mm3 was successfully grown by the Czochralski method. By using this crystal as saturable absorber, we have demonstrated a diode-end-pumped passively Q-switched Er:glass microchip laser operating at 1535 nm for the first time to the best of our knowledge. The dependences of average output power, repetition rate and pulse energy on the incident pump power were investigated. In the passive Q-switching regime, a maximum average output power of 22.12 mW was obtained at the incident pump power of 410 mW. The narrowest pulse width, the largest pulse energy and the highest peak power were obtained to be about 3.5 ns, 4.8 μJ, and 1.37 kW, respectively.
All-fibre Q-switching YDFL operation with bismuth-doped fibre as saturable absorber
NASA Astrophysics Data System (ADS)
Muhammad, A. R.; Haris, H.; Arof, H.; Tan, S. J.; Ahmad, M. T.; Harun, S. W.
2018-05-01
We demonstrate the generation of a passively Q-switched ytterbium-doped fibre laser (YDFL) using a bismuth-doped fibre (BDF) as a solid-state fibre saturable absorber (FSA) in a ring cavity. The BDF used has a wide and low absorption band of 5 dB/m at the 1.0 μm region due to the ion transition of ? that occurs around the region. When introduced into a YDFL laser cavity, a stable Q-switched pulse operation was observed and the pulse repetition rate was proportional to the input pump power. It was limited to 72.99 kHz by the maximum power that the laser diode could supply. Meanwhile, the pulse width decreased from 12.22 to 4.85 μs as the pump power was increased from 215.6 to 475.6 mW. The finding suggests that BDF could be used as a potential SA for the development of robust, compact, efficient and low cost Q-switched fibre lasers operating at 1 micron region.
Tm:GdVO4 microchip laser Q-switched by a Sb2Te3 topological insulator
NASA Astrophysics Data System (ADS)
Loiko, Pavel; Bogusławski, Jakub; Serres, Josep Maria; Kifle, Esrom; Kowalczyk, Maciej; Mateos, Xavier; Sotor, Jarosław; Zybała, Rafał; Mars, Krzysztof; Mikuła, Andrzej; Aguiló, Magdalena; Díaz, Francesc; Griebner, Uwe; Petrov, Valentin
2018-02-01
We report on the first application of a topological insulator based on antimony telluride (Sb2Te3) as a saturable absorber (SA) in a bulk microchip laser. The transmission-type SA consisted of a thin film of Sb2Te3 (thickness: 3 nm) deposited on a glass substrate by pulsed magnetron sputtering. The saturable absorption of the Sb2Te3 film was confirmed for ns-long pulses. The microchip laser was based on a Tm:GdVO4 crystal diode-pumped at 802 nm. In the continuous-wave regime, this laser generated 3.54 W at 1905-1921 nm with a slope efficiency η of 37%. The Q-switched laser generated a maximum average output power of 0.70 W at 1913 nm. The pulse energy and duration were 3.5 μJ and 223 ns, respectively, at a repetition rate of 200 kHz. The Sb2Te3 SAs are promising for passively Q-switched waveguide lasers at 2 μm.
NASA Astrophysics Data System (ADS)
Latiff, A. A.; Rusdi, M. F. M.; Hisyam, M. B.; Ahmad, H.; Harun, S. W.
2016-11-01
This paper reports a few-layer black phosphorus (BP) as a saturable absorber (SA) or phase-locker in generating modelocked pulses from a double-clad ytterbium-doped fiber laser (YDFL). We mechanically exfoliated the BP flakes from BP crystal through a scotch tape, and repeatedly press until the flakes thin and spread homogenously. Then, a piece of BP tape was inserted in the cavity between two fiber connectors end facet. Under 810 mW to 1320 mW pump power, stable mode-locked operation at 1085 nm with a repetition rate of 13.4 MHz is successfully achieved in normal dispersion regime. Before mode-locked operation disappears above maximum pump, the output power and pulse energy is about 80 mW and 6 nJ, respectively. This mode-locked laser produces peak power of 0.74 kW. Our work may validates BP SA as a phase-locker related to two-dimensional nanomaterials and pulsed generation in normal dispersion regime.
NASA Astrophysics Data System (ADS)
Lukes, Petr; Clupek, Martin; Babicky, Vaclav; Janda, Vaclav; Sunka, Pavel
2005-02-01
Ozone formation by a pulse positive corona discharge generated in the gas phase between a planar high voltage electrode made from reticulated vitreous carbon and a water surface with an immersed ground stainless steel plate electrode was investigated under various operating conditions. The effects of gas flow rate (0.5-3 litre min-1), discharge gap spacing (2.5-10 mm), applied input power (2-45 W) and gas composition (oxygen containing argon or nitrogen) on ozone production were determined. Ozone concentration increased with increasing power input and with increasing discharge gap. The production of ozone was significantly affected by the presence of water vapour formed through vaporization of water at the gas-liquid interface by the action of the gas phase discharge. The highest energy efficiency for ozone production was obtained using high voltage pulses of approximately 150 ns duration in Ar/O2 mixtures with the maximum efficiency (energy yield) of 23 g kW h-1 for 40% argon content.
Characterization of Transient Plasma Ignition Flame Kernel Growth for Varying Inlet Conditions
2009-12-01
unlimited 12b. DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) Pulse detonation engines ( PDEs ) have the...Instruments NPS - Naval Postgraduate School PDC - Pulse Detonation Combustor PDE - Pulse Detonation Engine Phi The Greek letter Φ PSIA...produced little to no new chemical propulsion developments; only improvements to existing architectures. The Pulse Detonation Engine ( PDE ) is a
Time-optimal excitation of maximum quantum coherence: Physical limits and pulse sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Köcher, S. S.; Institute of Energy and Climate Research; Heydenreich, T.
Here we study the optimum efficiency of the excitation of maximum quantum (MaxQ) coherence using analytical and numerical methods based on optimal control theory. The theoretical limit of the achievable MaxQ amplitude and the minimum time to achieve this limit are explored for a set of model systems consisting of up to five coupled spins. In addition to arbitrary pulse shapes, two simple pulse sequence families of practical interest are considered in the optimizations. Compared to conventional approaches, substantial gains were found both in terms of the achieved MaxQ amplitude and in pulse sequence durations. For a model system, theoreticallymore » predicted gains of a factor of three compared to the conventional pulse sequence were experimentally demonstrated. Motivated by the numerical results, also two novel analytical transfer schemes were found: Compared to conventional approaches based on non-selective pulses and delays, double-quantum coherence in two-spin systems can be created twice as fast using isotropic mixing and hard spin-selective pulses. Also it is proved that in a chain of three weakly coupled spins with the same coupling constants, triple-quantum coherence can be created in a time-optimal fashion using so-called geodesic pulses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poels, Kenneth, E-mail: kenneth.poels@uzbrussel.be; Verellen, Dirk; Van de Vondel, Iwein
Purpose: Because frame rates on current clinical available electronic portal imaging devices (EPID’s) are limited to 7.5 Hz, a new commercially available PerkinElmer EPID (XRD 1642 AP19) with a maximum frame rate of 30 Hz and a new scintillator (Kyokko PI200) with improved sensitivity (light output) for megavolt (MV) irradiation was evaluated. In this work, the influence of MV pulse artifacts and pulsing artifact suppression techniques on fiducial marker and marker-less detection of a lung lesion was investigated, because target localization is an important component of uncertainty in geometrical verification of real-time tumor tracking. Methods: Visicoil™ markers with a diametermore » of 0.05 and 0.075 cm were used for MV marker tracking with a frame rate of, respectively, 7.5, 15, and 30 Hz. A 30 Hz readout of the detector was obtained by a 2 × 2 pixel binning, reducing spatial resolution. Static marker detection was conducted in function of increasing phantom thickness. Additionally, marker-less tracking was conducted and compared with the ground-truth fiducial marker motion. Performance of MV target detection was investigated by comparing the least-square sine wave fit of the detected marker positions with the predefined sine wave motion. For fiducial marker detection, a Laplacian-of-Gaussian enhancement was applied after which normalized cross correlation was used to find the most probable marker position. Marker-less detection was performed by using the scale and orientation adaptive mean shift tracking algorithm. For each MV fluoroscopy, a free running (FR-nF) (ignoring MV pulsing during readout) acquisition mode was compared with two acquisition modes intending to reduce MV pulsing artifacts, i.e., combined wavelet-FFT filtering (FR-wF) and electronic readout synchronized with respect to MV pulses. Results: A 0.05 cm Visicoil marker resulted in an unacceptable root-mean square error (RMSE) > 0.2 cm with a maximum frame rate of 30 Hz during FR-nF readout. With a 30 Hz synchronized readout (S-nF) and during 15 Hz readout (independent of readout mode), RMSE was submillimeter for a static 0.05 cm Visicoil. A dynamic 0.05 cm Visicoil was not detectable on the XRD 1642 AP19, despite a fast synchronized readout. For a 0.075 cm Visicoil, deviations of sine wave motion were submillimeter (RMSE < 0.08 cm), independent of the acquisition mode (FR, S). For marker-less tumor detection, FR-nF images resulted in RMSE > 0.3 cm, while for MV fluoroscopy in S-mode RMSE < 0.1 cm for 15 Hz and RMSE < 0.16 cm for 30 Hz. Largest consistency in target localization was experienced during 15 Hz S-nF readout. Conclusions: In general, marker contrast decreased in function of higher frame rates, which was detrimental for marker detection success. In this work, Visicoils with a thickness of 0.075 cm were showing best results for a 15 Hz frame rate, while non-MV compatible 0.05 cm Visicoil markers were not visible on the new EPID with improved sensitivity compared to EPID models based on a Kodak Lanex Fast scintillator. No noticeable influence of pulsing artifacts on the detection of a 0.075 cm Visicoil was observed, while a synchronized readout provided most reliable detection of a marker-less soft-tissue structure.« less
Liao, Jen-Chung; Chen, Wen-Jer; Chen, Lih-Hui; Lai, Po-Liang; Keorochana, Gun
2011-04-01
Laminectomy-derived chip bone graft was usually used in spinal fusion; however, the result of this kind of local bone used in lumbar posterolateral fusion is uncertain. This study tested the hypotheses that low-intensity pulsed ultrasound (LIPU) can accelerate the healing process of laminectomy bone chips in a spinal fusion and enhance the union rate. Forty-eight rabbits were randomly divided into three groups for the spinal unilateral uninstrumented posterolateral fusion of L5-L6: autologous iliac bone graft (AIBG), laminectomy chip bone graft (LCBG), LCBG plus LIPU (LCBG + LIPU). Each group was subdivided into 6-week and 12-week subgroups. All rabbits were subjected to radiographic examination and manual testing. All successful spinal fusion specimens received biomechanical testing and a histologic examination. The LCBG + LIPU group had the highest successful fusion rate at 6-week and 12-week examination (75% and 100%, respectively). At 6 weeks, the average maximum toque at failure values of the fusion masses for the LCBG + LIPU group was significantly higher than that for the LCBG group (p = 0.034). The average maximum torque of the 12-week LCBG + LIPU group was significantly higher than those of the 12-week AIBG and 12-week LCBG groups (p = 0.040 and p = 0.026, respectively). This study suggested that LIPU can enhance bone healing. With augmentation by LIPU, laminectomy chip bone used in lumbar posterolateral fusion can achieve a similar fusion rate and stronger fusion mass than those of an AIBG.
SWIFT OBSERVATIONS OF GAMMA-RAY BURST PULSE SHAPES: GRB PULSE SPECTRAL EVOLUTION CLARIFIED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hakkila, Jon; Lien, Amy; Sakamoto, Takanori
Isolated Swift gamma-ray burst (GRB) pulses, like their higher-energy BATSE counterparts, emit the bulk of their pulsed emission as a hard-to-soft component that can be fitted by the Norris et al. empirical pulse model. This signal is overlaid by a fainter, three-peaked signal that can be modeled by the residual fit of Hakkila and Preece: the two fits combine to reproduce GRB pulses with distinctive three-peaked shapes. The precursor peak appears on or before the pulse rise and is often the hardest component, the central peak is the brightest, and the decay peak converts exponentially decaying emission into a long,more » soft, power-law tail. Accounting for systematic instrumental differences, the general characteristics of the fitted pulses are remarkably similar. Isolated GRB pulses are dominated by hard-to-soft evolution; this is more pronounced for asymmetric pulses than for symmetric ones. Isolated GRB pulses can also exhibit intensity tracking behaviors that, when observed, are tied to the timing of the three peaks: pulses with the largest maximum hardnesses are hardest during the precursor, those with smaller maximum hardnesses are hardest during the central peak, and all pulses can re-harden during the central peak and/or during the decay peak. Since these behaviors are essentially seen in all isolated pulses, the distinction between “hard-to-soft and “intensity-tracking” pulses really no longer applies. Additionally, the triple-peaked nature of isolated GRB pulses seems to indicate that energy is injected on three separate occasions during the pulse duration: theoretical pulse models need to account for this.« less
Wang, Jinghui; Trovati, Stefania; Borchard, Philipp M; Loo, Billy W; Maxim, Peter G; Fahrig, Rebecca
2017-12-01
To study the impact of target geometrical and linac operational parameters, such as target material and thickness, electron beam size, repetition rate, and mean current on the ability of the radiotherapy treatment head to deliver high-dose-rate x-ray irradiation in the context of novel linear accelerators capable of higher repetition rates/duty cycle than conventional clinical linacs. The depth dose in a water phantom without a flattening filter and heat deposition in an x-ray target by 10 MeV pulsed electron beams were calculated using the Monte-Carlo code MCNPX, and the transient temperature behavior of the target was simulated by ANSYS. Several parameters that affect both the dose distribution and temperature behavior were investigated. The target was tungsten with a thickness ranging from 0 to 3 mm and a copper heat remover layer. An electron beam with full width at half maximum (FWHM) between 0 and3 mm and mean current of 0.05-2 mA was used as the primary beam at repetition rates of 100, 200, 400, and 800 Hz. For a 10 MeV electron beam with FWHM of 1 mm, pulse length of 5 μs, by using a thin tungsten target with thickness of 0.2 mm instead of 1 mm, and by employing a high repetition rate of 800 Hz instead of 100 Hz, the maximum dose rate delivered can increase two times from 0.57 to 1.16 Gy/s. In this simple model, the limiting factor on dose rate is the copper heat remover's softening temperature, which was considered to be 500°C in our study. A high dose rate can be obtained by employing thin targets together with high repetition rate electron beams enabled by novel linac designs, whereas the benefit of thin targets is marginal at conventional repetition rates. Next generation linacs used to increase dose rate need different target designs compared to conventional linacs. © 2017 American Association of Physicists in Medicine.
Diode-pumped continuous wave and passively Q-switched Tm, Mg: LiTaO₃ lasers.
Feng, T; Li, T; Zhao, S; Li, Q; Yang, K; Zhao, J; Qiao, W; Hang, Y; Zhang, P; Wang, Y; Xu, J
2014-02-24
We have demonstrated the continuous wave and passively Q-switched Tm, Mg: LiTaO3 lasers for the first time. In continuous wave (CW) regime, a maximum CW output power of 1.03 W at 1952 nm was obtained, giving a slope efficiency of 9.5% and a beam quality M2 = 2.2. In passive Q-switching regime, a single walled carbon nanotube (SWCNT) was employed as saturable absorber (SA). The Tm,Mg:LiTaO3 laser has yielded a pulse of 560 ns under repetition rate of 34.2 kHz at 1926 nm, corresponding to a single pulse energy of 10.1 μJ. The results indicate a promising potential of nonlinear crystals in the applications for laser host materials.
Characteristic analysis of a polarization output coupling Porro prism resonator
NASA Astrophysics Data System (ADS)
Yang, Hailong; Meng, Junqing; Chen, Weibiao
2015-02-01
An Electro-optical Q-switched Nd:YAG slab laser with a crossed misalignment Porro prism resonator for space applications has been theoretically and experimentally investigated. The phase shift induced by the combination of different wave plates and Porro prism azimuth angles have been studied for creating high loss condition prior to Q-switching. The relationship of the effective output coupling reflectivity and the employed Q-switch driving voltage is explored by using Jones matrix optics. In the experiment, the maximum output pulse energy of 93 mJ with 14-ns pulse duration is obtained at the repetition rate of 20 Hz and the optical-to-optical conversion efficiency is 16.8%. The beam quality factors are M 2 x = 2.5 and M 2y = 2.2, respectively.
POWER SUPPLY CONTROL AND MONITORING FOR THE SNS RING AND TRANSPORT SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
LAMBIASE,R.; OERTER,B.; PENG,S.
2001-06-28
There are approximately 300 magnet power supplies in the SNS accumulator ring and transport lines. Control and monitoring of the these converters will be primarily accomplished with a new Power Supply Interface and Controller (PSI/PSC) system developed for the SNS project. This PSI/PSC system provides all analog and digital commands and status readbacks in one fiber isolated module. With a maximum rate of 10KHz, the PSI/PSC must be supplemented with higher speed systems for the wide bandwidth pulsed injection supplies, and the even wider bandwidth extraction kickers. This paper describes the implementation of this PSI/PSC system, which was developed throughmore » an industry/laboratory collaboration, and the supplementary equipment used to support the wider bandwidth pulsed supplies.« less
Resonantly pumped high efficiency Ho:YAG laser.
Shen, Ying-Jie; Yao, Bao-Quan; Duan, Xiao-Ming; Dai, Tong-Yu; Ju, You-Lun; Wang, Yue-Zhu
2012-11-20
High-efficient CW and Q-switched Ho:YAG lasers resonantly dual-end-pumped by two diode-pumped Tm:YLF lasers at 1908 nm were investigated. A maximum slope efficiency of 74.8% in CW operation as well as a maximum output power of 58.7 W at 83.2 W incident pump power was achieved, which corresponded to an optical-to-optical conversion efficiency of 70.6%. The maximum pulse energy of 2.94 mJ was achieved, with a 31 ns FWHM pulse width and a peak power of approximately 94.7 kW.
Deformation behavior and spall fracture of the Hadfield steel under shock-wave loading
NASA Astrophysics Data System (ADS)
Gnyusov, S. F.; Rotshtein, V. P.; Polevin, S. D.; Kitsanov, S. A.
2011-03-01
Comparative studies of regularities in plastic deformation and fracture of the Hadfield polycrystalline steel upon quasi-static tension, impact failure, and shock-wave loading with rear spall are performed. The SINUS-7 accelerator was used as a shock-wave generator. The electron beam parameters of the accelerator were the following: maximum electron energy was 1.35 MeV, pulse duration at half-maximum was 45 ns, maximum energy density on a target was 3.4·1010 W/cm2, shock-wave amplitude was ~20 GPa, and strain rate was ~106 s-1. It is established that the failure mechanism changes from ductile transgranular to mixed ductile-brittle intergranular one when going from quasi-static tensile and Charpy impact tests to shock-wave loading. It is demonstrated that a reason for the intergranular spallation is the strain localization near the grain boundaries containing a carbide interlayer.
Coulomb explosion of hydrogen clusters irradiated by an ultrashort intense laser pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Hongyu; Liu Jiansheng; Wang Cheng
The explosion dynamics of hydrogen clusters driven by an ultrashort intense laser pulse has been analyzed analytically and numerically by employing a simplified Coulomb explosion model. The dependence of average and maximum proton kinetic energy on cluster size, pulse duration, and laser intensity has been investigated respectively. The existence of an optimum cluster size allows the proton energy to reach the maximum when the cluster size matches with the intensity and the duration of the laser pulse. In order to explain our experimental results such as the measured proton energy spectrum and the saturation effect of proton energy, the effectsmore » of cluster size distribution as well as the laser intensity distribution on the focus spot should be considered. A good agreement between them is obtained.« less
Coulomb explosion of hydrogen clusters irradiated by an ultrashort intense laser pulse
NASA Astrophysics Data System (ADS)
Li, Hongyu; Liu, Jiansheng; Wang, Cheng; Ni, Guoquan; Li, Ruxin; Xu, Zhizhan
2006-08-01
The explosion dynamics of hydrogen clusters driven by an ultrashort intense laser pulse has been analyzed analytically and numerically by employing a simplified Coulomb explosion model. The dependence of average and maximum proton kinetic energy on cluster size, pulse duration, and laser intensity has been investigated respectively. The existence of an optimum cluster size allows the proton energy to reach the maximum when the cluster size matches with the intensity and the duration of the laser pulse. In order to explain our experimental results such as the measured proton energy spectrum and the saturation effect of proton energy, the effects of cluster size distribution as well as the laser intensity distribution on the focus spot should be considered. A good agreement between them is obtained.
Ablation of steel by microsecond pulse trains
NASA Astrophysics Data System (ADS)
Windeler, Matthew Karl Ross
Laser micromachining is an important material processing technique used in industry and medicine to produce parts with high precision. Control of the material removal process is imperative to obtain the desired part with minimal thermal damage to the surrounding material. Longer pulsed lasers, with pulse durations of milli- and microseconds, are used primarily for laser through-cutting and welding. In this work, a two-pulse sequence using microsecond pulse durations is demonstrated to achieve consistent material removal during percussion drilling when the delay between the pulses is properly defined. The light-matter interaction moves from a regime of surface morphology changes to melt and vapour ejection. Inline coherent imaging (ICI), a broadband, spatially-coherent imaging technique, is used to monitor the ablation process. The pulse parameter space is explored and the key regimes are determined. Material removal is observed when the pulse delay is on the order of the pulse duration. ICI is also used to directly observe the ablation process. Melt dynamics are characterized by monitoring surface changes during and after laser processing at several positions in and around the interaction region. Ablation is enhanced when the melt has time to flow back into the hole before the interaction with the second pulse begins. A phenomenological model is developed to understand the relationship between material removal and pulse delay. Based on melt refilling the interaction region, described by logistic growth, and heat loss, described by exponential decay, the model is fit to several datasets. The fit parameters reflect the pulse energies and durations used in the ablation experiments. For pulse durations of 50 us with pulse energies of 7.32 mJ +/- 0.09 mJ, the logisitic growth component of the model reaches half maximum after 8.3 mus +/- 1.1 us and the exponential decays with a rate of 64 mus +/- 15 us. The phenomenological model offers an interpretation of the material removal process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yousefi, S; Ahmad, M; Xiang, L
Purpose: To report our investigations of proton acoustic imaging, including computer simulations and preliminary experimental studies at clinical facilities. The ultimate achievable accuracy, sensitivity and clinical translation challenges are discussed. Methods: The acoustic pulse due to pressure rise was estimated using finite element model. Since the ionoacoustic pulse is highly dependent on the proton pulse width and energy, multiple pulse widths were studied. Based on the received signal spectrum at piezoelectric ultrasound transducer with consideration of random thermal noise, maximum spatial resolution of the proton-acoustic imaging modality was calculated. The simulation studies defined the design specifications of the system tomore » detect proton acoustic signal from Hitachi and Mevion clinical machines. A 500 KHz hydrophone with 100 dB amplification was set up in a water tank placed in front of the proton nozzle A 40 MHz data acquisition was synchronized by a trigger signal provided by the machine. Results: Given 30–800 mGy dose per pulse at the Bragg peak, the minimum number of protons detectable by the proton acoustic technique was on the order of 10×10^6 per pulse. The broader pulse widths produce signal with lower acoustic frequencies, with 10 µs pulses producing signals with frequency less than 100 kHz. As the proton beam pulse width increases, a higher dose rate is required to measure the acoustic signal. Conclusion: We have established the minimal detection limit for protonacoustic range validation for a variety of pulse parameters. Our study indicated practical proton-acoustic range verification can be feasible with a pulse shorter than 10 µs, 5×10^6 protons/pulse, 50 nA beam current and a highly sensitive ultrasonic transducer. The translational challenges into current clinical machines include proper magnetic shielding of the measurement equipment, providing a clean trigger signal from the proton machine, providing a shorter proton beam pulse and higher dose per pulse.« less
Formation of nanosecond SBS-compressed pulses for pumping an ultra-high power parametric amplifier
NASA Astrophysics Data System (ADS)
Kuz’min, A. A.; Kulagin, O. V.; Rodchenkov, V. I.
2018-04-01
Compression of pulsed Nd : glass laser radiation under stimulated Brillouin scattering (SBS) in perfluorooctane is investigated. Compression of 16-ns pulses at a beam diameter of 30 mm is implemented. The maximum compression coefficient is 28 in the optimal range of laser pulse energies from 2 to 4 J. The Stokes pulse power exceeds that of the initial laser pulse by a factor of about 11.5. The Stokes pulse jitter (fluctuations of the Stokes pulse exit time from the compressor) is studied. The rms spread of these fluctuations is found to be 0.85 ns.
Perspective on One Decade of Laser Propulsion Research at Air Force Research Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, C. William
The Air Force Laser Propulsion Program spanned nearly 10-years and included about 35-weeks of experimental research with the Pulsed Laser Vulnerability Test System of the High Energy Laser Systems Test Facility at White Sands Missile Range, New Mexico, WSMR/HELSTF/PLVTS. PLVTS is a pulsed CO2 laser that produces up to 10 kW of power in {approx}10 cm{sup 2} spot at wavelength of 10.6 microns. The laser is capable of a pulse repetition rate up to 25 Hz, with pulse durations of about 20 microseconds. During the program basic research was conducted on the production of propulsion thrust from laser energy throughmore » heating of air and ablation of various candidate rocket propellant fuels. Flight tests with an ablation fuel (Delrin) and air were accomplished with a model Laser Lightcraft vehicle that was optimized for propulsion by the PLVTS at its maximum power output, 10 kW at 25 Hz, 400 J/pulse. Altitudes exceeding 200-feet were achieved with ablation fuels. The most recent contributions to the technology included development of a mini-thruster standard for testing of chemically enhanced fuels and theoretical calculations on the performance of formulations containing ammonium nitrate and Delrin. Results of these calculations will also be reported here.« less
Perspective on One Decade of Laser Propulsion Research at Air Force Research Laboratory
NASA Astrophysics Data System (ADS)
Larson, C. William
2008-04-01
The Air Force Laser Propulsion Program spanned nearly 10-years and included about 35-weeks of experimental research with the Pulsed Laser Vulnerability Test System of the High Energy Laser Systems Test Facility at White Sands Missile Range, New Mexico, WSMR/HELSTF/PLVTS. PLVTS is a pulsed CO2 laser that produces up to 10 kW of power in ˜10 cm2 spot at wavelength of 10.6 microns. The laser is capable of a pulse repetition rate up to 25 Hz, with pulse durations of about 20 microseconds. During the program basic research was conducted on the production of propulsion thrust from laser energy through heating of air and ablation of various candidate rocket propellant fuels. Flight tests with an ablation fuel (Delrin) and air were accomplished with a model Laser Lightcraft vehicle that was optimized for propulsion by the PLVTS at its maximum power output, 10 kW at 25 Hz, 400 J/pulse. Altitudes exceeding 200-feet were achieved with ablation fuels. The most recent contributions to the technology included development of a mini-thruster standard for testing of chemically enhanced fuels and theoretical calculations on the performance of formulations containing ammonium nitrate and Delrin. Results of these calculations will also be reported here.
Theoretical analysis of low-power fast optogenetic control of firing of Chronos-expressing neurons.
Saran, Sant; Gupta, Neha; Roy, Sukhdev
2018-04-01
A detailed theoretical analysis of low-power, fast optogenetic control of firing of Chronos-expressing neurons has been presented. A three-state model for the Chronos photocycle has been formulated and incorporated in a fast-spiking interneuron circuit model. The effect of excitation wavelength, pulse irradiance, pulse width, and pulse frequency has been studied in detail and compared with ChR2. Theoretical simulations are in excellent agreement with recently reported experimental results and bring out additional interesting features. At very low irradiances ([Formula: see text]), the plateau current in Chronos exhibits a maximum. At [Formula: see text], the plateau current is 2 orders of magnitude smaller and saturates at longer pulse widths ([Formula: see text]) compared to ChR2 ([Formula: see text]). [Formula: see text] in Chronos saturates at much shorter pulse widths (1775 pA at 1.5 ms and [Formula: see text]) than in ChR2. Spiking fidelity is also higher at lower irradiances and longer pulse widths compared to ChR2. Chronos exhibits an average maximal driven rate of over [Formula: see text] in response to [Formula: see text] stimuli, each of 1-ms pulse-width, in the intensity range 0 to [Formula: see text]. The analysis is important to not only understand the photodynamics of Chronos and Chronos-expressing neurons but also to design opsins with optimized properties and perform precision experiments with required spatiotemporal resolution.
NASA Astrophysics Data System (ADS)
Sumiyoshi, Takashi; Fujiyoshi, Ryoko; Katagiri, Miho; Sawamura, Sadashi
2007-05-01
Dimethylsulfoxide (DMSO)-Br complexes were generated by pulse radiolysis of DMSO/bromomethane mixtures and the formation mechanism and spectral characteristics of the formed complexes were investigated in detail. The rate constant for the reaction of bromine atoms with DMSO and the extinction coefficient of the complex were obtained to be 4.6×10 9 M -1 s -1 and 6300 M -1 cm -1 at the absorption maximum of 430 nm. Rate constants for the reaction of bromine atoms with a series of alcohols were determined in CBrCl 3 solutions applying a competitive kinetic method using the DMSO-Br complex as the reference system. The obtained rate constants were ˜10 8 M -1 s -1, one or two orders larger than those reported for highly polar solvents. Rate constants of DMSO-Br complexes with alcohols were determined to be ˜ 10 7 M -1 s -1. A comparison of the reactivities of Br atoms and DMSO-Br complexes with those of chlorine atoms and chlorine atom complexes which are ascribed to hydrogen abstracting reactants strongly indicates that hydrogen abstraction from alcohols is not the rate determining step in the case of Br atoms and DMSO-Br complexes.
Tarasenko, V F; Rybka, D V; Burachenko, A G; Lomaev, M I; Balzovsky, E V
2012-08-01
This note reports the time-amplitude characteristic of the supershort avalanche electron beam with up to 20 ps time resolution. For the first time it is shown that the electron beam downstream of small-diameter diaphragms in atmospheric pressure air has a complex structure which depends on the interelectrode gap width and cathode design. With a spherical cathode and collimator the minimum duration at half maximum of the supershort avalanche electron beam current pulse was shown to be ~25 ps. The minimum duration at half maximum of one peak in the pulses with two peaks can reach ~25 ps too.
Facilitation and refractoriness of the electrically evoked compound action potential.
Hey, Matthias; Müller-Deile, Joachim; Hessel, Horst; Killian, Matthijs
2017-11-01
In this study we aim to resolve the contributions of facilitation and refractoriness at very short pulse intervals. Measurements of the refractory properties of the electrically evoked compound action potential (ECAP) of the auditory nerve in cochlear implant (CI) users at inter pulse intervals below 300 μs are influenced by facilitation and recovery effects. ECAPs were recorded using masker pulses with a wide range of current levels relative to the probe pulse levels, for three suprathreshold probe levels and pulse intervals from 13 to 200 μs. Evoked potentials were measured for 21 CI patients by using the masked response extraction artifact cancellation procedure. During analysis of the measurements the stimulation current was not used as absolute value, but in relation to the patient's individual ECAP threshold. This enabled a more general approach to describe facilitation as a probe level independent effect. Maximum facilitation was found for all tested inter pulse intervals at masker levels near patient's individual ECAP threshold, independent from probe level. For short inter pulse intervals an increased N 1 P 1 amplitude was measured for subthreshold masker levels down to 120 CL below patient's individual ECAP threshold in contrast to the recreated state. ECAPs recorded with inter pulse intervals up to 200 μs are influenced by facilitation and recovery. Facilitation effects are most pronounced for masker levels at or below ECAP threshold, while recovery effects increase with higher masker levels above ECAP threshold. The local maximum of the ECAP amplitude for masker levels around ECAP threshold can be explained by the mutual influence of maximum facilitation and minimal refractoriness. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Effects of type of exercise on depression in recovering substance abusers.
Palmer, J A; Palmer, L K; Michiels, K; Thigpen, B
1995-04-01
This experiment investigated the effects of three types of structured exercise (aerobics, bodybuilding, and circuit training) on depressive symptoms of 45 clients undergoing a 4-wk., inpatient rehabilitation program for substance abuse. Pre- and posttest measures included the Center of Epidemiological Studies--Depression, resting pulse rate, blood pressure, maximum strength on incline bench press, and estimates of aerobic fitness and body fat. The bodybuilding program produced a significant decrease in depressive symptoms. Physiological and psychological explanations are discussed.
Tm:KLu(WO(4))(2) microchip laser Q-switched by a graphene-based saturable absorber.
Serres, Josep Maria; Loiko, Pavel; Mateos, Xavier; Yumashev, Konstantin; Griebner, Uwe; Petrov, Valentin; Aguiló, Magdalena; Díaz, Francesc
2015-06-01
We report on the first Tm-doped double tungstate microchip laser Q-switched with graphene using a Tm:KLu(WO4)2 crystal cut along the Ng dielectric axis. This laser generates a maximum average output power of 310 mW with a slope efficiency of 13%. At a repetition rate of 190 kHz the shortest pulses with 285 ns duration and 1.6 µJ energy are achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Kei; Mao, Hann-Shin; Gonsalves, Anthony J.
A laser system producing controllable and stable pulses with high power and ultrashort duration at high repetition rate is a key component of a high energy laser-plasma accelerator (LPA). Precise characterization and control of laser properties are essential to understanding laser-plasma interactions required to build a 10-GeV class LPA. This study discusses the diagnostics, control and performance parameters of a 1 Hz, 1 petawatt (PW) class laser at the Berkeley Lab Laser Accelerator (BELLA) facility. The BELLA PW laser provided up to 46 J on target with a 1% level energy fluctuation and 1.3-μrad pointing stability. The spatial profile wasmore » measured and optimized by using a camera, wavefront sensor, and deformable mirror (ILAO system). The focus waist was measured to be r 0 = 53 μm and the fraction of energy within the circular area defined by the first minimum of the diffraction pattern (r = 67 μm) was 0.75. The temporal profile was controlled via the angle of incidence on a stretcher and a compressor, as well as an acousto-optic programmable dispersive. The temporal pulse shape was measured to be about 33 fs in full width at half maximum (WIZZLER and GRENOUILLE diagnostics). In order to accurately evaluate peak intensity, the energy-normalized peak fluence, and energy-normalized peak power were analyzed for the measured spatial and temporal mode profiles, and were found to be 15 kJ/(cm 2 J) with 6% fluctuation (standard deviation) and 25 TW/J with 5% fluctuation for 46-J on-target energy, respectively. This yielded a peak power of 1.2 PW and a peak intensity of 17×10 18 W/cm 2 with 8% fluctuation. A method to model the pulse shape for arbitrary compressor grating distance with high accuracy was developed. The pulse contrast above the amplified spontaneous emission pedestal was measured by SEQUOIA and found to be better than 10 9. The first order spatiotemporal couplings (STCs) were measured with GRENOUILLE, and a simulation of the pulse's evolution at the vicinity of the target was presented. A maximum pulse front tilt angle of less than 7 mrad was achieved. The reduction of the peak power caused by the first order STCs was estimated to be less than 1%. Finally, the capabilities described in this paper are essential for generation of high quality electron beams.« less
Nakamura, Kei; Mao, Hann-Shin; Gonsalves, Anthony J.; ...
2017-05-25
A laser system producing controllable and stable pulses with high power and ultrashort duration at high repetition rate is a key component of a high energy laser-plasma accelerator (LPA). Precise characterization and control of laser properties are essential to understanding laser-plasma interactions required to build a 10-GeV class LPA. This study discusses the diagnostics, control and performance parameters of a 1 Hz, 1 petawatt (PW) class laser at the Berkeley Lab Laser Accelerator (BELLA) facility. The BELLA PW laser provided up to 46 J on target with a 1% level energy fluctuation and 1.3-μrad pointing stability. The spatial profile wasmore » measured and optimized by using a camera, wavefront sensor, and deformable mirror (ILAO system). The focus waist was measured to be r 0 = 53 μm and the fraction of energy within the circular area defined by the first minimum of the diffraction pattern (r = 67 μm) was 0.75. The temporal profile was controlled via the angle of incidence on a stretcher and a compressor, as well as an acousto-optic programmable dispersive. The temporal pulse shape was measured to be about 33 fs in full width at half maximum (WIZZLER and GRENOUILLE diagnostics). In order to accurately evaluate peak intensity, the energy-normalized peak fluence, and energy-normalized peak power were analyzed for the measured spatial and temporal mode profiles, and were found to be 15 kJ/(cm 2 J) with 6% fluctuation (standard deviation) and 25 TW/J with 5% fluctuation for 46-J on-target energy, respectively. This yielded a peak power of 1.2 PW and a peak intensity of 17×10 18 W/cm 2 with 8% fluctuation. A method to model the pulse shape for arbitrary compressor grating distance with high accuracy was developed. The pulse contrast above the amplified spontaneous emission pedestal was measured by SEQUOIA and found to be better than 10 9. The first order spatiotemporal couplings (STCs) were measured with GRENOUILLE, and a simulation of the pulse's evolution at the vicinity of the target was presented. A maximum pulse front tilt angle of less than 7 mrad was achieved. The reduction of the peak power caused by the first order STCs was estimated to be less than 1%. Finally, the capabilities described in this paper are essential for generation of high quality electron beams.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, K; Mao, HS; Gonsalves, AJ
2017-08-01
© 2017 IEEE. A laser system producing controllable and stable pulses with high power and ultrashort duration at high repetition rate is a key component of a high energy laser-plasma accelerator (LPA). Precise characterization and control of laser properties are essential to understanding laser-plasma interactions required to build a 10-GeV class LPA. This paper discusses the diagnostics, control and performance parameters of a 1 Hz, 1 petawatt (PW) class laser at the Berkeley Lab Laser Accelerator (BELLA) facility. The BELLA PW laser provided up to 46 J on target with a 1% level energy fluctuation and 1.3-μrad pointing stability. Themore » spatial profile was measured and optimized by using a camera, wavefront sensor, and deformable mirror (ILAO system). The focus waist was measured to be r 0 = 53 μm and the fraction of energy within the circular area defined by the first minimum of the diffraction pattern (r = 67 μm) was 0.75. The temporal profile was controlled via the angle of incidence on a stretcher and a compressor, as well as an acousto-optic programmable dispersive. The temporal pulse shape was measured to be about 33 fs in full width at half maximum (WIZZLER and GRENOUILLE diagnostics). In order to accurately evaluate peak intensity, the energy-normalized peak fluence, and energy-normalized peak power were analyzed for the measured spatial and temporal mode profiles, and were found to be 15 kJ/(cm 2 J) with 6% fluctuation (standard deviation) and 25 TW/J with 5% fluctuation for 46-J on-target energy, respectively. This yielded a peak power of 1.2 PW and a peak intensity of 17×10 18 W/cm 2 with 8% fluctuation. A method to model the pulse shape for arbitrary compressor grating distance with high accuracy was developed. The pulse contrast above the amplified spontaneous emission pedestal was measured by SEQUOIA and found to be better than 10 9 . The first order spatiotemporal couplings (STCs) were measured with GRENOUILLE, and a simulation of the pulse's evolution at the vicinity of the target was presented. A maximum pulse front tilt angle of less than 7 mrad was achieved. The reduction of the peak power caused by the first order STCs was estimated to be less than 1%. The capabilities described in thispaper are essential for generation of high quality electron beams.« less
NASA Astrophysics Data System (ADS)
Grudinin, A. B.; Dianov, Evgenii M.; Korobkin, D. V.; Prokhorov, A. M.; Semenov, V. A.; Khrushchev, I. Yu
1990-08-01
An experimental investigation was made of the process of amplification of femtosecond pulses in single-mode fiber waveguides activated with erbium ions. The amplified pulses were compressed from 80 to 55 fs in the course of their propagation. The energy of the pulses was estimated to be 5 nJ. The maximum gain was 26 dB.
Heller, Christian Maria
2004-04-27
An organic electroluminescent device ("OELD") has a controllable brightness, an improved energy efficiency, and stable optical output at low brightness. The OELD is activated with a series of voltage pulses, each of which has a maximum voltage value that corresponds to the maximum power efficiency when the OELD is activated. The frequency of the pulses, or the duty cycle, or both are chosen to provide the desired average brightness.
Two-photon fluorescence bioimaging with an all-semiconductor laser picosecond pulse source.
Kuramoto, Masaru; Kitajima, Nobuyoshi; Guo, Hengchang; Furushima, Yuji; Ikeda, Masao; Yokoyama, Hiroyuki
2007-09-15
We have demonstrated successful two-photon excitation fluorescence bioimaging using a high-power pulsed all-semiconductor laser. Toward this purpose, we developed a pulsed light source consisting of a mode-locked laser diode and a two-stage diode laser amplifier. This pulsed light source provided optical pulses of 5 ps duration and having a maximum peak power of over 100 W at a wavelength of 800 nm and a repetition frequency of 500 MHz.
The effect of seasonal harvesting on stage-structured population models.
Tang, Sanyi; Chen, Lansun
2004-04-01
In most models of population dynamics, increases in population due to birth are assumed to be time-independent, but many species reproduce only during a single period of the year. We propose an exploited single-species model with stage structure for the dynamics in a fish population for which births occur in a single pulse once per time period. Since birth pulse populations are often characterized with a discrete time dynamical system determined by its Poincaré map, we explore the consequences of harvest timing to equilibrium population sizes under seasonal dependence and obtain threshold conditions for their stability, and show that the timing of harvesting has a strong impact on the persistence of the fish population, on the volume of mature fish stock and on the maximum annual-sustainable yield. Moreover, our results imply that the population can sustain much higher harvest rates if the mature fish is removed as early in the season (after the birth pulse) as possible. Further, the effects of harvesting effort and harvest timing on the dynamical complexity are also investigated. Bifurcation diagrams are constructed with the birth rate (or harvesting effort or harvest timing) as the bifurcation parameter, and these are observed to display rich structure, including chaotic bands with periodic windows, pitch-fork and tangent bifurcations, non-unique dynamics (meaning that several attractors coexist) and attractor crisis. This suggests that birth pulse, in effect, provides a natural period or cyclicity that makes the dynamical behavior more complex.
Tailoring the transverse mode of a high-finesse optical resonator with stepped mirrors
NASA Astrophysics Data System (ADS)
Högner, M.; Saule, T.; Lilienfein, N.; Pervak, V.; Pupeza, I.
2018-02-01
Enhancement cavities (ECs) seeded with femtosecond pulses have developed into the most powerful technique for high-order harmonic generation (HHG) at repetition rates in the tens of MHz. Here, we demonstrate the feasibility of controlling the phase front of the excited transverse eigenmode of a ring EC by using mirrors with stepped surface profiles, while maintaining the high finesse required to reach the peak intensities necessary for HHG. The two lobes of a {{TEM}}01 mode of a 3.93 m long EC, seeded with a single-frequency laser, are delayed by 15.6 fs with respect to each other before a tight focus, and the delay is reversed after the focus. The tailored transverse mode exhibits an on-axis intensity maximum in the focus. Furthermore, the geometry is designed to generate a rotating wavefront in the focus when few-cycle pulses circulate in the EC. This paves the way to gating isolated attosecond pulses (IAPs) in a transverse manner (similarly to the attosecond lighthouse), heralding IAPs at repetition rates well into the multi-10 MHz range. In addition, these results promise high-efficiency harmonic output coupling from ECs in general, with an unparalleled power scalability. These prospects are expected to tremendously benefit photoelectron spectroscopy and extreme-ultraviolet frequency comb spectroscopy.
Nguyen, Minh D; Houwman, Evert P; Dekkers, Matthijn; Rijnders, Guus
2017-03-22
Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) films with (001) orientation were deposited on Pt(111)/Ti/SiO 2 /Si(100) substrates using pulsed laser deposition. Variation of the laser pulse rate during the deposition of the PZT films was found to play a key role in the control of the microstructure and to change strongly the piezoelectric response of the thin film. The film deposited at low pulse rate has a denser columnar microstructure, which improves the transverse piezoelectric coefficient (d 31f ) and ferroelectric remanent polarization (P r ), whereas the less densely packed columnar grains in the film deposited at high pulse rates give rise to a significantly higher longitudinal piezoelectric coefficient (d 33f ) value. The effect of film thickness on the ferroelectric and piezoelectric properties of the PZT films was also investigated. With increasing film thickness, the grain column diameter gradually increases, and also the average P r and d 33f values become larger. The largest piezoelectric coefficient of d 33f = 408 pm V -1 was found for a 4-μm film thickness. From a series of films in the thickness range 0.5-5 μm, the z-position dependence of the piezoelectric coefficient could be deduced. A local maximum value of 600 pm V -1 was deduced in the 3.5-4.5 μm section of the thickest films. The dependence of the film properties on film thickness is attributed to the decreasing effect of the clamping constraint imposed by the substrate and the increasing spatial separation between the grains with increasing film thickness.
2017-01-01
Pb(Zr0.52Ti0.48)O3 (PZT) films with (001) orientation were deposited on Pt(111)/Ti/SiO2/Si(100) substrates using pulsed laser deposition. Variation of the laser pulse rate during the deposition of the PZT films was found to play a key role in the control of the microstructure and to change strongly the piezoelectric response of the thin film. The film deposited at low pulse rate has a denser columnar microstructure, which improves the transverse piezoelectric coefficient (d31f) and ferroelectric remanent polarization (Pr), whereas the less densely packed columnar grains in the film deposited at high pulse rates give rise to a significantly higher longitudinal piezoelectric coefficient (d33f) value. The effect of film thickness on the ferroelectric and piezoelectric properties of the PZT films was also investigated. With increasing film thickness, the grain column diameter gradually increases, and also the average Pr and d33f values become larger. The largest piezoelectric coefficient of d33f = 408 pm V–1 was found for a 4-μm film thickness. From a series of films in the thickness range 0.5–5 μm, the z-position dependence of the piezoelectric coefficient could be deduced. A local maximum value of 600 pm V–1 was deduced in the 3.5–4.5 μm section of the thickest films. The dependence of the film properties on film thickness is attributed to the decreasing effect of the clamping constraint imposed by the substrate and the increasing spatial separation between the grains with increasing film thickness. PMID:28247756
Influence of Temperature on Nanosecond Pulse Amplification in Thulium Doped Fiber Lasers
NASA Astrophysics Data System (ADS)
Abdulfattah, Ali; Gausmann, Stefan; Sincore, Alex; Bradford, Joshua; Bodnar, Nathan; Cook, Justin; Shah, Lawrence; Richardson, Martin
2018-05-01
Thulium silica doped fiber (TDF) lasers are becoming important laser sources in both research and applications in industry. A key element of all high-power lasers is thermal management and its impact on laser performance. This is particularly important in TDF lasers, which utilize an unusual cross-relation pumping scheme, and are optically less efficient than other types of fiber lasers. The present work describes an experimental investigation of thermal management in a high power, high repetition-rate, pulsed Thulium (Tm) fiber laser. A tunable nanosecond TDF laser system across the 1838 nm – 1948 nm wavelength range, has been built to propagate 2μm signal seed pulses into a TDF amplifier, comprising a polarized large mode area (PLMA) thulium fiber (TDF) with a 793nm laser diode pump source. The PLMA TDF amplifier is thermally managed by a separately controlled cooling system with a temperature varied from 12°C to 36°C. The maximum output energy (∼400 μJ), of the system is achieved at 12°C at 1947 nm wavelength with ∼32 W of absorbed pump power at 20 kHz with a pulse duration of ∼ 74 ns.
On the use of a chirped Bragg grating as a cavity mirror of a picosecond Nd : YAG laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zubko, A E; Shashkov, E V; Smirnov, A V
2016-02-28
The first experimental evidence is presented that the use of a chirped volume Bragg grating (CVBG) as a cavity mirror of a Q-switched picosecond Nd : YAG laser with self-mode-locking leads to significant changes in the temporal parameters of the laser output. Measurements have been performed at two positions of the CVBG: with the grating placed so that shorter wavelengths reflected from its front part lead longer wavelengths or with the grating rotated through 180°, so that longer wavelengths are reflected first. In the former case, the duration of individual pulses in a train increased from ∼35 to ∼300 ps,more » whereas the pulse train shape and duration remained the same as in the case of a conventional laser with a mirror cavity. In the latter case, the full width at half maximum of pulse trains increased from ∼70 ns (Nd : YAG laser with a mirror cavity) to ∼1 ms, and the duration of individual pulses increased from 35 ps to ∼1.2 ns, respectively, which is more typical of free-running laser operation. (laser crystals and braggg ratings)« less
Observation of IPL spectra using detector system incorporating broadband optical filters
NASA Astrophysics Data System (ADS)
Clarkson, D. McG.
2007-07-01
Systems using intense pulsed light are being increasingly used in therapy applications where issues related to safety of devices and also of performance are becoming more urgent to address. Mechanisms to address this include a suitable standards framework and also the development and application of appropriate measurement techniques. An approach of using conventional bandpass optical filters and silicon photodetectors has been implemented using an analogue USB data capture interfaces linked to a laptop PC. An initial system with 8 concurrent channels has been upgraded to a separate system sampling up to 16 analogue channels. Sampling takes place at the maximum hardware conversion rate of the USB device. Observations have been made of a range of intense pulsed light systems, including a Lumenis One unit with a range of discrete filters. The system has been of value in determining the basic parameters of output pulse profile and spectral composition. This has in turn been related to aspects of standards development for both device manufacture and allocation of appropriate safety eyewear. Initial assessments of a subset of intense pulsed light systems indicate significant complexities in terms, for example, of variation in spectral content as a function of device output setting.
Screening of cardiomyocyte fluorescence during cell contraction by multi-dimensional TCSPC
NASA Astrophysics Data System (ADS)
Chorvat, D., Jr.; Abdulla, S.; Elzwiei, F.; Mateasik, A.; Chorvatova, A.
2008-02-01
Autofluorescence is one of the most versatile non-invasive tools for mapping the metabolic state of living tissues, such as the heart. We present a new approach to the investigation of changes in endogenous fluorescence during cardiomyocyte contraction - by spectrally-resolved, time correlated, single photon counting (TCSPC). Cell contraction is stimulated by external platinum electrodes, incorporated in a home-made bath and triggered by a pulse generator at a frequency of 0.5 Hz (to stabilize sarcoplasmic reticulum loading), or 5 Hz (the rat heart rate). Cell illumination by the laser is synchronized with cell contraction, using TTL logic pulses operated by a stimulator and delayed to study mitochondrial metabolism at maximum contraction (10-110 ms) and/or at steady state (1000-1100 ms at 0.5 Hz). To test the setup, we recorded calcium transients in cells loaded with the Fluo-3 fluorescent probe (excited by 475 nm pulsed picosecond diode laser). We then evaluated recordings of flavin AF (excited by 438 nm pulsed laser) at room and physiological temperatures. Application of the presented approach will shed new insight into metabolic changes in living, contracting myocytes and, therefore, regulation of excitation-contraction coupling and/or ionic homeostasis and, thus, heart excitability.
Nichols, J Tyler; Krueger, Paul S
2012-09-01
Recent results have demonstrated that pulsed-jet propulsion can achieve propulsive efficiency greater than that for steady jets when short, high frequency pulses are used, and the pulsed-jet advantage increases as Reynolds number decreases into the intermediate range (∼50). An important aspect of propulsive performance, however, is the vehicle configuration. The nozzle configuration influences the jet speed and, in the case of pulsed-jets, the formation of the vortex rings with each jet pulse, which have important effects on thrust. Likewise, the hull configuration influences the vehicle speed through its effect on drag. To investigate these effects, several flow inlet, nozzle, and hull tail configurations were tested on a submersible, self-propelled pulsed-jet vehicle ('Robosquid' for short) for jet pulse length-to-diameter ratios (L/D) in the range 0.5-6 and pulsing duty cycles (St(L)) of 0.2 and 0.5. For the configurations tested, the vehicle Reynolds number (Re(υ)) ranged from 25 to 110. In terms of propulsive efficiency, changing between forward and aft-facing inlets had little effect for the conditions considered, but changing from a smoothly tapered aft hull section to a blunt tail increased propulsive efficiency slightly due to reduced drag for the blunt tail at intermediate Re(υ). Sharp edged orifices also showed increased vehicle velocity and propulsive efficiency in comparison to smooth nozzles, which was associated with stronger vortex rings being produced by the flow contraction through the orifice. Larger diameter orifices showed additional gains in propulsive efficiency over smaller orifices if the rate of mass flow was matched with the smaller diameter cases, but using the same maximum jet velocity with the larger diameter decreased the propulsive efficiency relative to the smaller diameter cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knill, Cory, E-mail: knillcor@gmail.com; Snyder, Michael; Rakowski, Joseph T.
Purpose: PTW’s Octavius 1000 SRS array performs IMRT quality assurance (QA) measurements with liquid-filled ionization chambers (LICs) to allow closer detector spacing and higher resolution, compared to air-filled QA devices. However, reduced ion mobility in LICs relative to air leads to increased ion recombination effects and reduced collection efficiencies that are dependent on Linac pulse frequency and pulse dose. These pulse parameters are variable during an IMRT delivery, which affects QA results. In this study, (1) 1000 SRS collection efficiencies were measured as a function of pulse frequency and pulse dose, (2) two methods were developed to correct changes inmore » collection efficiencies during IMRT QA measurements, and the effects of these corrections on QA pass rates were compared. Methods: To obtain collection efficiencies, the OCTAVIUS 1000 SRS was used to measure open fields of varying pulse frequency, pulse dose, and beam energy with results normalized to air-filled chamber measurements. Changes in ratios of 1000 SRS to chamber measured dose were attributed to changing collection efficiencies, which were then correlated to pulse parameters using regression analysis. The usefulness of the derived corrections was then evaluated using 6 MV and 10FFF SBRT RapidArc plans delivered to the OCTAVIUS 4D system using a TrueBeam (Varian Medical Systems) linear accelerator equipped with a high definition multileaf collimator. For the first correction, MATLAB software was developed that calculates pulse frequency and pulse dose for each detector, using measurement and DICOM RT Plan files. Pulse information is converted to collection efficiency, and measurements are corrected by multiplying detector dose by ratios of calibration to measured collection efficiencies. For the second correction the MU/min in the daily 1000 SRS calibration was chosen to match the average MU/min of the volumetric modulated arc therapy plan. Effects of the two corrections on QA results were examined by performing 3D gamma analysis comparing predicted to measured dose, with and without corrections. Results: Collection efficiencies correlated linearly to pulse dose, while correlations with pulse frequency were less defined, generally increasing as pulse frequency decreased. After complex MATLAB corrections, average 3D gamma pass rates improved by [0.07%,0.40%,1.17%] for 6 MV and [0.29%,1.40%,4.57%] for 10FFF using [3%/3 mm,2%/2 mm,1%/1 mm] criteria. Maximum changes in gamma pass rates were [0.43%,1.63%,3.05%] for 6 MV and [1.00%,4.80%,11.2%] for 10FFF using [3%/3 mm,2%/2 mm,1%/1 mm] criteria. On average, pass rates of simple daily calibration corrections were within 1% of complex MATLAB corrections. Conclusions: OCTAVIUS 1000 SRS ion recombination effects have little effect on 6 MV measurements. However, the effect could potentially be clinically significant for higher pulse dose unflattened beams when using tighter gamma tolerances, especially when small aperture sizes are used, as is common for SRS/SBRT. In addition, ion recombination effects are strongly correlated to changing MU/min, therefore MU/min used in daily 1000 SRS calibrations should be matched to the expected average MU/min of the IMRT plan.« less
Tu, Yiyou; Plotnikov, Elizaveta Y; Seidman, David N
2015-04-01
This study investigates the effects of the charge-state ratio of evaporated ions on the accuracy of local-electrode atom-probe (LEAP) tomographic compositional and structural analyses, which employs a picosecond ultraviolet pulsed laser. Experimental results demonstrate that the charge-state ratio is a better indicator of the best atom-probe tomography (APT) experimental conditions compared with laser pulse energy. The thermal tails in the mass spectra decrease significantly, and the mass resolving power (m/Δm) increases by 87.5 and 185.7% at full-width half-maximum and full-width tenth-maximum, respectively, as the laser pulse energy is increased from 5 to 30 pJ/pulse. The measured composition of this alloy depends on the charge-state ratio of the evaporated ions, and the most accurate composition is obtained when Ni2+/Ni+ is in the range of 0.3-20. The γ(f.c.c.)/γ'(L12) interface is quantitatively more diffuse when determined from the measured concentration profiles for higher laser pulse energies. Conclusions of the APT compositional and structural analyses utilizing the same suitable charge-state ratio are more comparable than those collected with the same laser pulse energy.
Choi, Yong
2013-01-01
Nickel-nano-sized ferrites composites sheet for electromagnetic shielding was produced by pulse-electroforming in a modified nickel sulfamate solution. The ferrite particles were prepared by self-propagating high temperature synthesis (SHS) followed by mechanical milling, and classified with an ultrasonic agitation-floating unit to obtain about 100 nm in size. Average combustion temperature and combustion propagating rate during SHS reaction were 1190 K and 5.8 mm/sec at the oxygen pressure of 1.0 MPa, respectively. The nickel-ferrite composite sheet had preferred orientation which (100) pole clearly concentrated to normal direction, whereas, (110) and (111) poles tended to split to the longitudinal direction, respectively. Maximum magnetization, residual magnetization and coercive force of the nano-sized ferrites were 27.13 A x m2/kg, 6.4 A x m2/kg and 14.58 kA/m, respectively. Complex permeability of the composites decreased with an increase in frequency, and its real value (mu'r) had the maximum at about 0.3 GHz. The dielectric constants of the composites were epsilon'r = 6.7 and epsilon"r = 0.
Argon nucleation in a cryogenic supersonic nozzle
NASA Astrophysics Data System (ADS)
Sinha, Somnath; Bhabhe, Ashutosh; Laksmono, Hartawan; Wölk, Judith; Strey, Reinhard; Wyslouzil, Barbara
2010-02-01
We have measured pressures p and temperatures T corresponding to the maximum nucleation rate of argon in a cryogenic supersonic nozzle apparatus where the estimated nucleation rates are J =1017±1 cm-3 s-1. As T increases from 34 to 53 K, p increases from 0.47 to 8 kPa. Under these conditions, classical nucleation theory predicts nucleation rates of 11-13 orders of magnitude lower than the observed rates while mean field kinetic nucleation theory predicts the observed rates within 1 order of magnitude. The current data set appears consistent with the measurements of Iland et al. [J. Chem. Phys. 127, 154506 (2007)] in the cryogenic nucleation pulse chamber. Combining the two data sets suggests that classical nucleation theory fails because it overestimates both the critical cluster size and the excess internal energy of the critical clusters.
NASA Astrophysics Data System (ADS)
Coudert, L. H.
2018-03-01
Quantum optimal control theory is applied to determine numerically the terahertz and nonresonant laser pulses leading, respectively, to the highest degree of orientation and alignment of the asymmetric-top H2S molecule. The optimized terahertz pulses retrieved for temperatures of zero and 50 K lead after 50 ps to an orientation with ⟨ΦZx⟩ = 0.959 73 and ⟨⟨ΦZx⟩⟩ = 0.742 30, respectively. For the zero temperature, the orientation is close to its maximum theoretical value; for the higher temperature, it is below the maximum theoretical value. The mechanism by which the terahertz pulse populates high lying rotational levels is elucidated. The 5 ps long optimized laser pulse calculated for a zero temperature leads to an alignment with ⟨ΦZy 2 ⟩ =0.944 16 and consists of several kick pulses with a duration of ≈0.1 ps. It is found that the timing of these kick pulses is such that it leads to an increase of the rotational energy of the molecule. The optimized laser pulse retrieved for a temperature of 20 K is 6 ps long and yields a lower alignment with ⟨⟨ΦZy 2 ⟩ ⟩ =0.717 20 .
Envelope matching for enhanced backward Raman amplification by using self-ionizing plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z. M.; Zhang, B.; Hong, W.
2014-12-15
Backward Raman amplification (BRA) in plasmas has been promoted as a means for generating ultrapowerful laser pulses. For the purpose of achieving the maximum intensities over the shortest distances, an envelope matching between the seed pulse and the amplification gain is required, i.e., the seed pulse propagates at the same velocity with the gain such that the peak of the seed pulse can always enjoy the maximum gain. However, such an envelope matching is absent in traditional BRA because in the latter the amplification gain propagates at superluminous velocity while the seed pulse propagates at the group velocity, which ismore » less than the speed of light. It is shown here that, by using self-ionizing plasmas, the speed of the amplification gain can be well reduced to reach the envelope matching regime. This results in a favorable BRA process, in which higher saturated intensity, shorter interaction length and higher energy-transfer efficiency are achieved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scorby, John C.; Hickman, David; Hudson, Becka
This report documents the experimental conditions and final results for the performance testing of the Y-12 Criticality Accident Alarm System (CAAS) detectors at the Godiva IV Burst Reactor at the National Criticality Experimental Research Center (NCERC) at the Nevada National Security Site (NNSS). The testing followed a previously issued test plan and was conducted during the week of July 17, 2017, with completion on Thursday July 20. The test subjected CAAS detectors supplied by Y-12 to very intense and short duration mixed neutron and gamma radiation fields to establish compliance to maximum radiation and minimum pulse width requirements. ANSI/ANS- 8.3.1997more » states that the “system shall be sufficiently robust as to actuate an alarm signal when exposed to the maximum radiation expected”, which has been defined at Y-12, in Documented Safety Analyses (DSAs), to be a dose rate of 10 Rad/s. ANSI/ANS-8.3.1997 further states that “alarm actuation shall occur as a result of a minimum duration transient” which may be assumed to be 1 msec. The pulse widths and dose rates provided by each burst during the test exceeded those requirements. The CAAS detectors all provided an immediate alarm signal and remained operable after the bursts establishing compliance to the requirements and fitness for re-deployment at Y-12.« less
Multi-gigahertz, femtosecond Airy beam optical parametric oscillator pumped at 78 MHz
Aadhi, A.; Sharma, Varun; Chaitanya, N. Apurv; Samanta, G. K.
2017-01-01
We report a high power ultrafast Airy beam source producing femtosecond pulses at multi-gigahertz (GHz) repetition rate (RR). Based on intra-cavity cubic phase modulation of an optical parametric oscillator (OPO) designed in high harmonic cavity configuration synchronous to a femtosecond Yb-fiber laser operating at 78 MHz, we have produced ultrafast 2D Airy beam at multi-GHz repetition rate through the fractional increment in the cavity length. While small (<1 mm) crystals are used in femtosecond OPOs to take the advantage of broad phase-matching bandwidth, here, we have exploited the extended phase-matching bandwidth of a 50-mm long Magnesium-oxide doped periodically poled LiNbO3 (MgO:PPLN) crystal for efficient generation of ultrafast Airy beam and broadband mid-IR radiation. Pumping the MgO:PPLN crystal of grating period, Λ = 30 μm and crystal temperature, T = 100 °C using a 5-W femtosecond laser centred at 1064 nm, we have produced Airy beam radiation of 684 mW in ~639 fs (transform limited) pulses at 1525 nm at a RR of ~2.5 GHz. Additionally, the source produces broadband idler radiation with maximum power of 510 mW and 94 nm bandwidth at 3548 nm in Gaussian beam profile. Using an indirect method (change in cavity length) we estimate maximum RR of the Airy beam source to be ~100 GHz. PMID:28262823
Acharya, Santhosh; Bhat, N N; Joseph, Praveen; Sanjeev, Ganesh; Sreedevi, B; Narayana, Y
2011-05-01
The effects of single pulses and multiple pulses of 7 MV electrons on micronuclei (MN) induction in cytokinesis-blocked human peripheral blood lymphocytes (PBLs) were investigated over a wide range of dose rates per pulse (instantaneous dose rate). PBLs were exposed to graded doses of 2, 3, 4, 6, and 8 Gy of single electron pulses of varying pulse widths at different dose rates per pulse, ranging from 1 × 10(6) Gy s(-1) to 3.2 × 10(8) Gy s(-1). Different dose rates per pulse were achieved by changing the dose per electron pulse by adjusting the beam current and pulse width. MN yields per unit absorbed dose after irradiation with single electron pulses were compared with those of multiple pulses of electrons. A significant decrease in the MN yield with increasing dose rates per pulse was observed, when dose was delivered by a single electron pulse. However, no reduction in the MN yield was observed when dose was delivered by multiple pulses of electrons. The decrease in the yield at high dose rates per pulse suggests possible radical recombination, which leads to decreased biological damage. Cellular response to the presence of very large numbers of chromosomal breaks may also alter the damage.
The LUX experiment - trigger and data acquisition systems
NASA Astrophysics Data System (ADS)
Druszkiewicz, Eryk
2013-04-01
The Large Underground Xenon (LUX) detector is a two-phase xenon time projection chamber designed to detect interactions of dark matter particles with the xenon nuclei. Signals from the detector PMTs are processed by custom-built analog electronics which provide properly shaped signals for the trigger and data acquisition (DAQ) systems. During calibrations, both systems must be able to handle high rates and have large dynamic ranges; during dark matter searches, maximum sensitivity requires low thresholds. The trigger system uses eight-channel 64-MHz digitizers (DDC-8) connected to a Trigger Builder (TB). The FPGA cores on the digitizers perform real-time pulse identification (discriminating between S1 and S2-like signals) and event localization. The TB uses hit patterns, hit maps, and maximum response detection to make trigger decisions, which are reached within few microseconds after the occurrence of an event of interest. The DAQ system is comprised of commercial digitizers with customized firmware. Its real-time baseline suppression allows for a maximum event acquisition rate in excess of 1.5 kHz, which results in virtually no deadtime. The performance of the trigger and DAQ systems during the commissioning runs of LUX will be discussed.
NASA Astrophysics Data System (ADS)
1985-09-01
No existing LINAC Based Beam Heating facility comes within a factor of ten of the needs of a high heating rate thermodynamic properties research facility. The facility could be built at the Naval Research Lab. for a cost in the neighborhood of 2 million dollars. The 10 MeV electron beam would not produce any serious radioactivity but would provide unprecedented beam power for such other applications as food processing, sewer treatment, materials curing, radiation hardness assurance, etc. One can always achieve lower current densities by scattering the beam and moving the device under test further away from the scatterer. In this case one must rely on the TLD readings to indicate the dose rate at the point of interest. For general utility with the beam covering about four TLD's fairly evenly one can claim that the NRL LINAC can produce a maximum dose rate of about 6 x 10 to the 10th power rads (Si) per second for a pulse length of 1.5 microseconds, and about 1.4 x 10 to the 11th power rads (Si) per second in a 50 nanosecond pulse. In both cases the beam area is about 0.4 square centimeters.
Pulsed wire discharge apparatus for mass production of copper nanopowders.
Suematsu, H; Nishimura, S; Murai, K; Hayashi, Y; Suzuki, T; Nakayama, T; Jiang, W; Yamazaki, A; Seki, K; Niihara, K
2007-05-01
A pulsed wire discharge (PWD) apparatus for the mass production of nanopowders has been developed. The apparatus has a continuous wire feeder, which is operated in synchronization with a discharging circuit. The apparatus is designed for operation at a maximum repetition rate of 1.4 Hz at a stored energy of 160 J. In the present study, Cu nanopowder was synthesized using the PWD apparatus and the performance of the apparatus was examined. Cu nanopowder of 2.0 g quantity was prepared in N(2) gas at 100 kPa for 90 s. The particle size distribution of the Cu nanopowder was analyzed by transmission electron microscopy and the mean surface diameter was determined to be 65 nm. The ratio of the production mass of the powder to input energy was 362 g/kW h.
Torrisi, Lorenzo
2014-10-23
Deuterated polyethylene targets have been irradiated by means of a 1016 W/cm2 laser using 600 J pulse energy, 1315 nm wavelength, 300 ps pulse duration and 70 micron spot diameter. The plasma parameters were measured using on-line diagnostics based on ion collectors, SiC detectors and plastic scintillators, all employed in time-of-flight configuration. In addition, a Thomson parabola spectrometer, an X-ray streak camera, and calibrated neutron dosimeter bubble detectors were employed. Characteristic protons and neutrons at maximum energies of 3.0 MeV and 2.45 MeV, respectively, were detected, confirming that energy spectra of reaction products coming from deuterium-deuterium nuclear fusion occur. In thick advanced targets a fusion rate of the order of 2 × 108 fusions per laser shot was calculated.
NASA Astrophysics Data System (ADS)
Liégeois, Flavien; Hernandez, Yves; Kinet, Damien; Giannone, Domenico; Robin, Thierry; Cadier, Benoît
2008-11-01
In this letter, we report on the study of a new all-fiber laser source suitable for coherent Doppler LIDAR use in the eyesafe domain. The laser consists on a MOPA configuration where the Master Oscillator is a modulated ultranarrow (< 8 kHz) fiber laser. The optical amplifiers are also all-fibered and make use of a new Large Mode Area (LMA) index pedestal fiber that is very effective in limiting the non-linear effects without quality degradation of the laser beam. The amplified pulses have a maximum energy of 0.15 mJ for a duration of 340 ns at a repetition rate of 15 kHz. The average output power of the laser is 2.5 W, free of Stimulated Brillouin Scattering and with a measured M2 = 1.3.
A high power diode-side-pumped Nd:YAG/BaWO4 Raman laser at 1103 nm
NASA Astrophysics Data System (ADS)
Li, Lei; Zhang, Xingyu; Liu, Zhaojun; Wang, Qingpu; Cong, Zhenhua; Zhang, Yuangeng; Wang, Weitao; Wu, Zhenguo; Zhang, Huaijin
2013-04-01
Pulsed operation at 1103 nm of a diode-side-pumped Nd:YAG laser with intracavity Raman shifting in BaWO4 is reported. The first Stokes wavelength at 1103 nm was generated by a Raman shift of 332 cm-1 from the fundamental wave (1064 nm). A maximum power at 1103 nm of 9.4 W was obtained for a diode pump power of 115 W at a pulse repetition rate of 15 kHz. The pump-to-Stokes conversion efficiency was up to 8.2%. When the output power at 1103 nm was over 7 W, a second Stokes line at 1145 nm was also observed in the experiment. Our research indicates that efficient Raman conversion can be realized by a Raman frequency shift at 332 cm-1 in BaWO4 Raman lasers.
Jiang, Jian-ping; Luo, Zhong-yang; Xuan, Jian-yong; Zhao, Lei; Fang, Meng-xiang; Gao, Xiang
2015-10-01
Pulsed corona discharge in atmosphere has been widely regarded as an efficient flue gas treatment technology for the generation of active radical species, such as the OH radicals. The spatial distribution of OH radicals generated by pulsed corona discharge plays an important role in decomposing pollutants. The two-dimensional (2-D) distribution of OH radicals of positive wire--plate pulsed corona discharge was detected using laser-induced fluorescence (LIF). The influence of relative humidity (RH) and oxygen concentration on the 2-D distribution of OH radicals were investigated. The results indicated that the 2-D distribution of OH radicals was characterized by a fan-shaped distribution from the wire electrode to plate electrode, and both the maximum values of vertical length and horizontal width of the fan area was less than 1 cm. The 2-D distribution area of OH radicals increased significantly with increasing the RH and the optimum condition was 65% RH. The optimal level of the oxygen concentration for the 2-D distribution area of OH radicals was 2%. The process of OH radical generation and 2-D distribution area of OH radicals were significantly interfered when the oxygen concentration was larger than 15%. The total quenching rate coefficients for different RH values and oxygen concentration in this study were used to calculate the fluorescence yield of OH radical. The fluorescence yield, which is the ratio between the emission rate (Einstein coefficient) and the sum of the emission rate and quenching rate, was used to normalize the 2-D distribution area of OH radicals. The fluorescence yield of OH radical decreased with increasing the RH and oxygen concentration linearly and rapidly. It was also found that compared with the RH, the influence of the oxygen concentration had more notable effect on the fluorescence yield of OH radical and 2-D distribution area of OH radicals.
The behavior of nanothermite reaction based on Bi2O3/Al
NASA Astrophysics Data System (ADS)
Wang, L.; Luss, D.; Martirosyan, K. S.
2011-10-01
We studied the impact of aluminum particle size and the thickness of surrounding alumina layer on the dynamic pressure discharge of nanothermite reactions in the Bi2O3/Al system. A pressure discharge from 9 to 13 MPa was generated using as-synthesized Bi2O3 nano-particles produced by combustion synthesis and Al nanoparticles with size from 3 μm to 100 nm. The maximum reaction temperature was measured to be ˜2700 °C. The estimated activation energy of the reaction was 45 kJ/mol. A very large (several orders of magnitude) difference existed between the rate of the pressure pulse release by nanothermite reactions and by thermite reactions with large aluminum particles. The maximum observed pressurization rate was 3200 GPa/s. The time needed to reach the peak pressure was 0.01 ms and 100 ms for aluminum particles with diameter of 100 nm and 70 microns, respectively. The discharge pressure was a monotonic decreasing function of the thickness of the surrounding alumina layer.
NASA Technical Reports Server (NTRS)
Montogomery, Leslie D.; Ku, Yu-Tsuan E.; Webbon, Bruce W. (Technical Monitor)
1995-01-01
We have prepared a computer program (RHEOSYS:RHEOencephalographic impedance trace scanning SyStem) that can be used to automate the analysis of segmental impedance blood flow waveforms. This program was developed to assist in the post test analysis of recorded impedance traces from multiple segments of the body. It incorporates many of the blood flow, segmental volume, and vascular state indices reported in the world literature. As it is currently programmed, seven points are selected from each blood flow pulse and associated ECG waveforrn: 1. peak of the first ECG QRS complex, 2. start of systolic slope on the blood flow trace, 3. maximum amplitude of the impedance pulse, 4. position of the dicrotic notch, 5. maximum amplitude of the postdicrotic segment, 6. peak of the second ECG QRS complex, and 7. start of the next blood flow pulse. These points we used to calculate various geometric, area, and time-related values associated with the impedance pulse morphology. RHEOSYS then calculates a series of 34 impedance and cardiac cycle parameters which include pulse amplitudes; areas; pulse propagation times; cardiac cycle times; and various measures of arterial and various tone, contractility, and pulse volume. We used this program to calculate the scalp and intracranial blood flow responses to head and neck cooling as it may be applied to lower the body temperatures of multiple sclerosis patients. Twelve women and twelve men were tested using a commercially available head and neck cooling system operated at its maximum cooling capacity for a period of 30 minutes. Head and neck cooling produced a transient change in scalp blood flow and a significant, (P<0.05) decrease of approx. 30% in intracranial blood flow. Results of this experiment will illustrate how REG and RHEOSYS can be used in biomedical applications.
Polymers Used as Fuel for Laser Plasma Thrusters in Small Satellites
2006-09-12
irradiation fluences 100 ns after the laser pulse . The velocity of the maximum intensity versus the irradiation fluence is plotted in Fig. 61. The...The first region can be assigned to ionized elements that have been accelerated by a fs laser pulse induced coulomb explosion on the sample surface...acquired for ns laser pulses , plasma studies for fs laser pulse irradiation were performed. This data allowed a comparison of thrust
Novel MCP-Based Electron Source Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haughey, M.; Shiltsev V., Shiltsev V.; Stancari, G.
Microchannel plates (MCPs) were recently proposed as novel type of cathodes for electron guns [1], suitable for applications in design of electron lenses. We report results of the first systematic study of microchannel plate based photomultiplier time response and maximum cur-rent density tests using different sources of light pulses. The Burle 85011-501 MCP-PMT is found to have good time response properties being capable of producing na-nosecond long pulses with modest maximum current density and performance strongly dependent on magnetic field strength.
Maximum angular accuracy of pulsed laser radar in photocounting limit.
Elbaum, M; Diament, P; King, M; Edelson, W
1977-07-01
To estimate the angular position of targets with pulsed laser radars, their images may be sensed with a fourquadrant noncoherent detector and the image photocounting distribution processed to obtain the angular estimates. The limits imposed on the accuracy of angular estimation by signal and background radiation shot noise, dark current noise, and target cross-section fluctuations are calculated. Maximum likelihood estimates of angular positions are derived for optically rough and specular targets and their performances compared with theoretical lower bounds.
Urgency is a non-monotonic function of pulse rate.
Russo, Frank A; Jones, Jeffery A
2007-11-01
Magnitude estimation was used to assess the experience of urgency in pulse-train stimuli (pulsed white noise) ranging from 3.13 to 200 Hz. At low pulse rates, pulses were easily resolved. At high pulse rates, pulses fused together leading to a tonal sensation with a clear pitch level. Urgency ratings followed a nonmonotonic (polynomial) function with local maxima at 17.68 and 200 Hz. The same stimuli were also used in response time and pitch scaling experiments. Response times were negatively correlated with urgency ratings. Pitch scaling results indicated that urgency of pulse trains is mediated by the perceptual constructs of speed and pitch.
Entropy Production Within a Pulsed Bose-Einstein Condensate
NASA Astrophysics Data System (ADS)
Heinisch, Christoph; Holthaus, Martin
2016-10-01
We suggest to subject anharmonically trapped Bose-Einstein condensates to sinusoidal forcing with a smooth, slowly changing envelope, and to measure the coherence of the system after such pulses. In a series of measurements with successively increased maximum forcing strength, one then expects an adiabatic return of the condensate to its initial state as long as the pulses remain sufficiently weak. In contrast, once the maximum driving amplitude exceeds a certain critical value there should be a drastic loss of coherence, reflecting significant heating induced by the pulse. This predicted experimental signature is traced to the loss of an effective adiabatic invariant, and to the ensuing breakdown of adiabatic motion of the system's Floquet state when the many-body dynamics become chaotic. Our scenario is illustrated with the help of a two-site model of a forced bosonic Josephson junction, but should also hold for other, experimentally accessible configurations.
Compact pulse generators with soft ferromagnetic cores driven by gunpowder and explosive.
Ben, Chi; He, Yong; Pan, Xuchao; Chen, Hong; He, Yuan
2015-12-01
Compact pulse generators which utilized soft ferromagnets as an initial energy carrier inside multi-turn coil and hard ferromagnets to provide the initial magnetic field outside the coil have been studied. Two methods of reducing the magnetic flux in the generators have been studied: (1) by igniting gunpowder to launch the core out of the generator, and (2) by detonating explosives that demagnetize the core. Several types of compact generators were explored to verify the feasibility. The generators with an 80-turn coil that utilize gunpowder were capable of producing pulses with amplitude 78.6 V and the full width at half maximum was 0.41 ms. The generators with a 37-turn coil that utilize explosive were capable of producing pulses with amplitude 1.41 kV and the full width at half maximum was 11.68 μs. These two methods were both successful, but produce voltage waveforms with significantly different characteristics.
160mJ and 9ns electro-optics Q-switched conductively cooled 1047nm Nd:YLF laser
NASA Astrophysics Data System (ADS)
Yang, Qi; Ma, Jian; Lu, Tingting; Ma, Xiuhua; Zhu, Xiaolei
2015-02-01
A compact diode side-pumped conductively cooled 1047 nm Nd:YLF slab laser with high energy and short pulse width is developed. Through ray tracing method, we design a home-made pump module to homogenize the pump intensity. Based on the Possion equation, a thermal conduct model of side-pump laser is established. The temperature distribution in laser crystal is obtained, and the thermal lens is caculated. With the absorbed pump energy of 818 mJ, the maximum output energy of 228 mJ is achieved in free-running mode. At a repetition rate of 50 Hz, 160 mJ, 9 ns 1047 nm infrared light is obtained under the maximum absorbed pump energy, and the slope efficiency is 27.8%.
Spaans, Harm-Pieter; Verwijk, Esmée; Comijs, Hannie C; Kok, Rob M; Sienaert, Pascal; Bouckaert, Filip; Fannes, Katrien; Vandepoel, Koen; Scherder, Erik J A; Stek, Max L; Kho, King H
2013-11-01
To compare the efficacy and cognitive side effects of high-dose unilateral brief pulse electroconvulsive therapy (ECT) with those of high-dose unilateral ultrabrief pulse ECT in the treatment of major depression. From April 2007 until March 2011, we conducted a prospective, double-blind, randomized multicenter trial in 3 tertiary psychiatric hospitals. All patients with a depressive disorder according to DSM-IV criteria were eligible. Depression severity was assessed with the Montgomery-Asberg Depression Rating Scale; primary efficacy outcomes were response, defined as a score decrease ≥ 60% from baseline, and remission, defined as a score < 10 at 2 consecutive weekly assessments. Total scores on the Autobiographical Memory Interview and Amsterdam Media Questionnaire were the primary outcome measures for retrograde amnesia. Other cognitive domains included category fluency (semantic memory) and letter fluency (lexical memory). Patients received twice-weekly unilateral brief pulse (1.0 millisecond) or ultrabrief pulse (0.3-0.4 millisecond) ECT 8 times seizure threshold until remission, for a maximum of 6 weeks. Of the 116 patients, 75% (n = 87) completed the study. Among completers, 68.4% (26/58) of those in the brief pulse group achieved remission versus 49.0% (24/49) of those in the ultrabrief pulse group (P = .019), and the brief pulse group needed fewer treatment sessions to achieve remission: mean (SD) of 7.1 (2.6) versus 9.2 (2.3) sessions (P = .008). No significant group differences were found in the evaluation of the cognitive assessments. The efficacy and speed of remission seen with high-dose brief pulse right unilateral ECT twice weekly were superior to those seen with high-dose ultrabrief pulse right unilateral ECT, with equal cognitive side effects as defined by retrograde amnesia, semantic memory, and lexical memory. Netherlands National Trial Register number: NTR1304. © Copyright 2013 Physicians Postgraduate Press, Inc.
Darvishi Cheshmeh Soltani, Reza; Safari, Mahdi
2016-09-01
The improvement of sonocatalytic treatment of real textile wastewater in the presence of MgO nanoparticles was the main goal of the present study. According to our preliminary results, the application of pulse mode of sonication, together with the addition of periodate ions, produced the greatest sonocatalytic activity and consequently, the highest chemical oxygen demand (COD) removal efficiency (73.95%) among all the assessed options. In the following, pulsed sonocatalysis of real textile wastewater in the presence of periodate ions was evaluated response surface methodologically on the basis of central composite design. Accordingly, a high correlation coefficient of 0.95 was attained for the applied statistical strategy to optimize the process. As results, a pulsed sonication time of 141min, MgO dosage of 2.4g/L, solution temperature of 314K and periodate concentration of 0.11M gave the maximum COD removal of about 85%. Under aforementioned operational conditions, the removal of total organic carbon (TOC) was obtained to be 63.34% with the reaction rate constant of 7.1×10(-3)min(-1) based on the pseudo-first order kinetic model (R(2)=0.99). Overall, periodate-assisted pulsed sonocatalysis over MgO nanoparticles can be applied as an efficient alternative process for treating and mineralizing real textile wastewater with good reusability potential. Copyright © 2016 Elsevier B.V. All rights reserved.
Control and data acquisition upgrades for NSTX-U
Davis, W. M.; Tchilinguirian, G. J.; Carroll, T.; ...
2016-06-06
The extensive NSTX Upgrade (NSTX-U) Project includes major components which allow a doubling of the toroidal field strength to 1 T, of the Neutral Beam heating power to 12 MW, and the plasma current to 2 MA, and substantial structural enhancements to withstand the increased electromagnetic loads. The maximum pulse length will go from 1.5 to 5 s. The larger and more complex forces on the coils will be protected by a Digital Coil Protection System, which requires demanding real-time data input rates, calculations and responses. The amount of conventional digitized data for a given pulse is expected to increasemore » from 2.5 to 5 GB per second of pulse. 2-D Fast Camera data is expected to go from 2.5 GB/pulse to 10, and another 2 GB/pulse is expected from new IR cameras. Our network capacity will be increased by a factor of 10, with 10 Gb/s fibers used for the major trunks. 32-core Linux systems will be used for several functions, including between-shot data processing, MDSplus data serving, between-shot EFIT analysis, real-time processing, and for a new capability, between-shot TRANSP. As a result, improvements to the MDSplus events subsystem will be made through the use of both UDP and TCP/IP based methods and the addition of a dedicated “event server”.« less
NASA Astrophysics Data System (ADS)
Qing, XIE; Haofan, LIN; Shuai, ZHANG; Ruixue, WANG; Fei, KONG; Tao, SHAO
2018-02-01
Non-thermal plasma surface modification for epoxy resin (EP) to improve the insulation properties has wide application prospects in gas insulated switchgear and gas insulated transmission line. In this paper, a pulsed Ar dual dielectrics atmospheric-pressure plasma jet (APPJ) was used for SiC x H y O z thin film deposition on EP samples. The film deposition was optimized by varying the treatment time while other parameters were kept at constants (treatment distance: 10 mm, precursor flow rate: 0.6 l min-1, maximum instantaneous power: 3.08 kW and single pulse energy: 0.18 mJ). It was found that the maximum value of flashover voltages for negative and positive voltage were improved by 18% and 13% when the deposition time was 3 min, respectively. The flashover voltage reduced as treatment time increased. Moreover, all the surface conductivity, surface charge dissipation rate and surface trap level distribution reached an optimal value when thin film deposition time was 3 min. Other measurements, such as atomic force microscopy and scanning electron microscope for EP surface morphology, Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy for EP surface compositions, optical emission spectra for APPJ deposition process were carried out to better understand the deposition processes and mechanisms. The results indicated that the original organic groups (C-H, C-C, C=O, C=C) were gradually replaced by the Si containing inorganic groups (Si-O-Si and Si-OH). The reduction of C=O in ester group and C=C in p-substituted benzene of the EP samples might be responsible for shallowing the trap level and then enhancing the flashover voltage. However, when the plasma treatment time was longer than 3 min, the significant increase of the surface roughness might increase the trap level depth and then deteriorate the flashover performance.
Blackmon, Richard L; Irby, Pierce B; Fried, Nathaniel M
2011-07-01
The holmium:YAG (Ho:YAG) laser lithotriptor is capable of operating at high pulse energies, but efficient operation is limited to low pulse rates (∼10 Hz) during lithotripsy. On the contrary, the thulium fiber laser (TFL) is limited to low pulse energies, but can operate efficiently at high pulse rates (up to 1000 Hz). This study compares stone ablation threshold, ablation rate, and retropulsion for the two different Ho:YAG and TFL operation modes. The TFL (λ = 1908 nm) was operated with pulse energies of 5 to 35 mJ, 500-μs pulse duration, and pulse rates of 10 to 400 Hz. The Ho:YAG laser (λ = 2120 nm) was operated with pulse energies of 30 to 550 mJ, 350-μs pulse duration, and a pulse rate of 10 Hz. Laser energy was delivered through 200- and 270-μm-core optical fibers in contact mode with human calcium oxalate monohydrate (COM) stones for ablation studies and plaster-of-Paris stone phantoms for retropulsion studies. The COM stone ablation threshold for Ho:YAG and TFL measured 82.6 and 20.8 J∕cm(2), respectively. Stone retropulsion with the Ho:YAG laser linearly increased with pulse energy. Retropulsion with TFL was minimal at pulse rates less than 150 Hz, then rapidly increased at higher pulse rates. For minimal stone retropulsion, Ho:YAG operation at pulse energies less than 175 mJ at 10 Hz and TFL operation at 35 mJ at 100 Hz is recommended, with both lasers producing comparable ablation rates. Further development of a TFL operating with both high pulse energies of 100 to 200 mJ and high pulse rates of 100 to 150 Hz may also provide an alternative to the Ho:YAG laser for higher ablation rates, when retropulsion is not a primary concern.
High-durability surface-discharge flash x-ray tube driven by a two-stage Marx pulser
NASA Astrophysics Data System (ADS)
Shikoda, Arimitsu; Sato, Eiichi; Kimura, Shingo; Oizumi, Teiji; Tamakawa, Yoshiharu; Yanagisawa, Toru
1993-02-01
We developed a high-durability flash x-ray tube with a plate-shaped ferrite cathode for the use in the field of biomedical engineering and technology. The surface-discharge cathode was very useful for generating stable flash x rays. This flash x-ray generator consisted of the following essential components: a high-voltage power supply, an energy-storage condenser of 97 nF, a two-stage Marx type pulser, an oil diffusion pump, and a flash x-ray tube. This x-ray tube was of a diode which was connected to the turbo molecular pump and had plate-shaped anode and cathode electrodes. The cathode electrode was made of ferrite, and its edge was covered with a thin gold film by means of the spattering in order to decrease contact resistance. The space between the anode and cathode electrodes could be regulated from the outside of the x-ray rube. The two condensers in Marx circuit were charged from 50 to 70 kV by a power supply, and the condensers were connected in series after closing a gap switch. Thus the maximum output voltages from the pulser were about two times the charged voltages. In this experiment, the maximum tube voltage and the current were about 110 kV and 0.8 kA, respectively. The pulse widths were less than 140 ns, and the maximum x-ray intensity was 1.27 (mu) C/kg at 0.5 m per pulse. The size of the focal spot and the maximum repetition rate were about 2 X 2.5 mm and 50 Hz (fps), respectively.
Evaporative cooling by a pulsed jet spray of binary ethanol-water mixture
NASA Astrophysics Data System (ADS)
Karpov, P. N.; Nazarov, A. D.; Serov, A. F.; Terekhov, V. I.
2015-07-01
We have experimentally studied the heat transfer under conditions of pulsed multinozzle jet spray impact onto a vertical surface. The working coolant fluid was aqueous ethanol solution in a range of concentrations K 1 = 0-96%. The duration of spray pulses was τ = 2, 4, and 10 ms at a repetition frequency of 10 Hz. The maximum heat transfer coefficient was achieved at an ethanol solution concentration within 50-60%. The thermal efficiency of pulsed spray cooling grows with increasing ethanol concentration and decreasing jet spray pulse duration.
Huang, Yizhong; Luo, Zhengqian; Li, Yingyue; Zhong, Min; Xu, Bin; Che, Kaijun; Xu, Huiying; Cai, Zhiping; Peng, Jian; Weng, Jian
2014-10-20
We propose and demonstrate a MoS2-based passively Q-switched Er-doped fiber laser with a wide tuning range of 1519.6-1567.7 nm. The few-layer MoS2 nano-platelets are prepared by the liquid-phase exfoliation method, and are then made into polymer-composite film to construct the fiber-compatible MoS2 saturable absorber (SA). It is measured at 1560 nm wavelength, that such MoS2 SA has the modulation depth of ∼ 2% and the saturable optical intensity of ∼ 10 MW/cm(2). By further inserting the filmy MoS2-SA into an Er-doped fiber laser, stable Q-switching operation with a 48.1 nm continuous tuning from S- to C-waveband is successfully achieved. The shortest pulse duration and the maximum pulse energy are 3.3 μs and 160 nJ, respectively. The repetition rate and the pulse duration under different operation conditions have been also characterized. To the best of our knowledge, it is the first demonstration of MoS2 Q-switched, widely-tunable fiber laser.
A parametric study of the copper chloride laser
NASA Technical Reports Server (NTRS)
Nerheim, N. M.
1977-01-01
A parametric study of the double-pulsed copper chloride laser is reported. The effects of a wide range of variables on the laser energy density and on three characteristic time intervals (the minimum, maximum, and optimum delay time) between the two electrical-discharge pulses were studied. The geometric variables investigated included a tube diameter of 2.3 to 40 mm and a tube length of 3 to 60 cm. Three buffer gases, helium, neon, and argon, were studied over the pressure range 0.5-50 torr, and the tube temperature was varied from 270 to 500 C. The energy density and voltage of both the dissociation and pumping pulse were varied independently from less than 1 mJ/cu cm at 8.5 kV to over 500 mJ/cu cm at 20 kV. The optimum conditions for maximum laser energy density were found to be with 20 torr neon in a 10-mm by 30-cm tube at 400 C. The maximum energy density obtained was 22 microjoules/cu cm.
Detuning-induced stimulated Raman adiabatic passage in dense two-level systems
NASA Astrophysics Data System (ADS)
Deng, Li; Lin, Gongwei; Niu, Yueping; Gong, Shangqing
2018-05-01
We investigate the coherence generation in dense two-level systems under detuning-induced stimulated Raman adiabatic passage (D-STIRAP). In the dense two-level system, the near dipole-dipole (NDD) interaction should be taken into consideration. With the increase in the strength of the NDD interaction, it is found that a switchlike transition of the generated coherence from maximum value to zero appears. Meanwhile, the adiabatic condition of the D-STIRAP is destroyed in the presence of the NDD interaction. In order to avoid the sudden decrease in the generated coherence and maintain the maximum value, we can use stronger detuning pulse or pump pulse, between which increasing the intensity of the detuning pulse is of more efficiency. Except for taking advantage of such maximum coherence in the high density case into areas like enhancing the four-wave mixing process, we also point out that the phenomenon of the coherence transition can be applied as an optical switch.
Single photon detection using Geiger mode CMOS avalanche photodiodes
NASA Astrophysics Data System (ADS)
Lawrence, William G.; Stapels, Christopher; Augustine, Frank L.; Christian, James F.
2005-10-01
Geiger mode Avalanche Photodiodes fabricated using complementary metal-oxide-semiconductor (CMOS) fabrication technology combine high sensitivity detectors with pixel-level auxiliary circuitry. Radiation Monitoring Devices has successfully implemented CMOS manufacturing techniques to develop prototype detectors with active diameters ranging from 5 to 60 microns and measured detection efficiencies of up to 60%. CMOS active quenching circuits are included in the pixel layout. The actively quenched pixels have a quenching time less than 30 ns and a maximum count rate greater than 10 MHz. The actively quenched Geiger mode avalanche photodiode (GPD) has linear response at room temperature over six orders of magnitude. When operating in Geiger mode, these GPDs act as single photon-counting detectors that produce a digital output pulse for each photon with no associated read noise. Thermoelectrically cooled detectors have less than 1 Hz dark counts. The detection efficiency, dark count rate, and after-pulsing of two different pixel designs are measured and demonstrate the differences in the device operation. Additional applications for these devices include nuclear imaging and replacement of photomultiplier tubes in dosimeters.
High repetition rate compact source of nanosecond pulses of 5-100 keV x-ray photons
NASA Astrophysics Data System (ADS)
Khacef, A.; Viladrosa, R.; Cachoncinlle, C.; Robert, E.; Pouvesle, J. M.
1997-06-01
A powerful, compact, and repetitive flash x-ray system based on a cable transformer technology powered by ceramic capacitors in a Blumlein-like configuration has been developed. Open circuit voltages in excess of 100 kV can be achieved while commutation occurs at low voltage (<20 kV). The x-ray emission from a low impedance x-ray diode with a hollow cathode configuration was observed under a wide range of experimental conditions. The critical parameters limiting the flash x-ray performances are mainly the pressure in the x-ray diode and the anode-cathode space. This true table top device is able to produce doses up to 1 R per shot, measured at the output window, of x-rays between 5 and 100 keV. The pulse widths were about 20 ns and the maximum repetition rate was about 60 Hz. Operation is possible in air or in other gases (He, Ne, Ar, Kr, Xe, H2, N2) at pressures varying from 10-3 mbar for xenon to about 1 mbar for helium.
1 K cryostat with sub-millikelvin stability based on a pulse-tube cryocooler
NASA Astrophysics Data System (ADS)
DeMann, A.; Mueller, Sara; Field, S. B.
2016-01-01
A cryogenic system has been designed and tested that reaches a temperature below 1.1 K, with an rms temperature stability of 25 μ K. In this system a commercial pulse-tube cryocooler is used to liquify helium gas supplied from an external source. This liquid helium enters a 1 K pot through a large-impedance capillary tube, similar to a conventional 1 K system operated from a liquid helium bath. Unlike a conventional system, however, the molar flow rate of the system can be varied by changing the pressure of the incoming helium. This allows for a trade-off between helium usage and cooling power, which has a maximum value of 27 mW. The measured cooling power and fraction of helium exiting the capillary as liquid agree well with predictions based on an isenthalpic model of helium flow through the capillary. The system is simple to use and inexpensive to operate: The system can be cooled to base temperature in about 3 h and, with a flow rate giving a cooling power of 13 mW, the helium cost is around 6 per day.
Baudisch, M; Hemmer, M; Pires, H; Biegert, J
2014-10-15
The performance of potassium niobate (KNbO₃), MgO-doped periodically poled lithium niobate (MgO:PPLN), and potassium titanyl arsenate (KTA) were experimentally compared for broadband mid-wave infrared parametric amplification at a high repetition rate. The seed pulses, with an energy of 6.5 μJ, were amplified using 410 μJ pump energy at 1064 nm to a maximum pulse energy of 28.9 μJ at 3 μm wavelength and at a 160 kHz repetition rate in MgO:PPLN while supporting a transform limited duration of 73 fs. The high average powers of the interacting beams used in this study revealed average power-induced processes that limit the scaling of optical parametric amplification in MgO:PPLN; the pump peak intensity was limited to 3.8 GW/cm² due to nonpermanent beam reshaping, whereas in KNbO₃ an absorption-induced temperature gradient in the crystal led to permanent internal distortions in the crystal structure when operated above a pump peak intensity of 14.4 GW/cm².
Concerted manipulation of laser plasma dynamics with two laser pulses
NASA Astrophysics Data System (ADS)
Braenzel, J.; Andreev, A. A.; Ehrentraut, L.; Sommer, D.; Schnürer, M.
2017-05-01
In this article we present experimental results from a counter-propagating two laser pulse experiment at high intensity and using ultrathin gold and plastic foil targets. We applied one laser pulse as a pre-pulse with an intensity of up to 1x1018 W/cm2. By this method we manipulated the pre-plasma of the foil target with which the stronger laser pulse with an intensity of 6x1019W/cm2 interacts. This alters significantly subsequent processes from the laser plasma interaction which we show the ion acceleration and high harmonic generation. On the one hand, the maximum kinetic ion energy and the maximum charge state for gold ions decline due to the pre-heating of the target in the time range of few ps, on the other hand the number of accelerated ions is increased. For the same parameter range we detected a significant raise of the high harmonic emission. Moreover, we present first experimental observations, that when the second laser pulse is applied as a counter-propagating post-pulse the energy distribution of accelerated carbon ions is charge selective altered. Our findings indicate that using this method a parametric optimization can be achieved, which promises new insights about the concurrent processes of the laser plasma dynamics.
Pulsed electric fields for pasteurization: defining processing conditions
USDA-ARS?s Scientific Manuscript database
Application of pulsed electric fields (PEF) technology in food pasteurization has been extensively studied. Optimal PEF treatment conditions for maximum microbial inactivation depend on multiple factors including PEF processing conditions, production parameters and product properties. In order for...
NASA Astrophysics Data System (ADS)
Yang, Xiao-tao; Xie, Wen-qiang; Liu, Long; Li, Lin-jun
2017-08-01
A compact intra-cavity pumped low-threshold passively Q-switched (PQS) Ho:Sc2SiO5 (Ho:SSO) laser is reported for the first time. The Tm:YAlO3 (Tm:YAP) crystal and the Ho:SSO crystal are placed in the same laser cavity. A laser diode with a central wavelength of 793 nm is used to realize the output of the Ho:SSO laser. Both the continuous wave (CW) and PQS operation are investigated. A Cr2+:ZnSe is used as the saturable absorber in the PQS Ho:SSO laser. For the CW mode, the laser threshold is only 750 mW, which is 980 mW in the PQS mode. A maximum pulse energy of 699 µJ is primarily obtained, corresponding to the pulse width of 96 ns. The maximum repetition frequency is 1.46 kHz. The maximum pulse peak power can be calculated to be 7.28 kW. The beam quality factor M 2 is calculated to be 1.4 with the maximum output power.
Saturation pulse design for quantitative myocardial T1 mapping.
Chow, Kelvin; Kellman, Peter; Spottiswoode, Bruce S; Nielles-Vallespin, Sonia; Arai, Andrew E; Salerno, Michael; Thompson, Richard B
2015-10-01
Quantitative saturation-recovery based T1 mapping sequences are less sensitive to systematic errors than the Modified Look-Locker Inversion recovery (MOLLI) technique but require high performance saturation pulses. We propose to optimize adiabatic and pulse train saturation pulses for quantitative T1 mapping to have <1 % absolute residual longitudinal magnetization (|MZ/M0|) over ranges of B0 and [Formula: see text] (B1 scale factor) inhomogeneity found at 1.5 T and 3 T. Design parameters for an adiabatic BIR4-90 pulse were optimized for improved performance within 1.5 T B0 (±120 Hz) and [Formula: see text] (0.7-1.0) ranges. Flip angles in hard pulse trains of 3-6 pulses were optimized for 1.5 T and 3 T, with consideration of T1 values, field inhomogeneities (B0 = ±240 Hz and [Formula: see text]=0.4-1.2 at 3 T), and maximum achievable B1 field strength. Residual MZ/M0 was simulated and measured experimentally for current standard and optimized saturation pulses in phantoms and in-vivo human studies. T1 maps were acquired at 3 T in human subjects and a swine using a SAturation recovery single-SHot Acquisition (SASHA) technique with a standard 90°-90°-90° and an optimized 6-pulse train. Measured residual MZ/M0 in phantoms had excellent agreement with simulations over a wide range of B0 and [Formula: see text]. The optimized BIR4-90 reduced the maximum residual |MZ/M0| to <1 %, a 5.8× reduction compared to a reference BIR4-90. An optimized 3-pulse train achieved a maximum residual |MZ/M0| <1 % for the 1.5 T optimization range compared to 11.3 % for a standard 90°-90°-90° pulse train, while a 6-pulse train met this target for the wider 3 T ranges of B0 and [Formula: see text]. The 6-pulse train demonstrated more uniform saturation across both the myocardium and entire field of view than other saturation pulses in human studies. T1 maps were more spatially homogeneous with 6-pulse train SASHA than the reference 90°-90°-90° SASHA in both human and animal studies. Adiabatic and pulse train saturation pulses optimized for different constraints found at 1.5 T and 3 T achieved <1 % residual |MZ/M0| in phantom experiments, enabling greater accuracy in quantitative saturation recovery T1 imaging.
Carbon nanotube mode-locked vertical external-cavity surface-emitting laser
NASA Astrophysics Data System (ADS)
Seger, K.; Meiser, N.; Choi, S. Y.; Jung, B. H.; Yeom, D.-I.; Rotermund, F.; Okhotnikov, O.; Laurell, F.; Pasiskevicius, V.
2014-03-01
Mode-locking an optically pumped semiconductor disk laser has been demonstrated using low-loss saturable absorption containing a mixture of single-walled carbon nanotubes in PMM polymer. The modulator was fabricated by a simple spin-coating technique on fused silica substrate and was operating in transmission. Stable passive fundamental modelocking was obtained at a repetition rate of 613 MHz with a pulse length of 1.23 ps. The mode-locked semiconductor disk laser in a compact geometry delivered a maximum average output power of 136 mW at 1074 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Jiao; Wang Yanhui; Wang Dezhen
2013-04-15
The pulsed discharge for producing iodine atoms from the alkyl and perfluoroalky iodides (CH{sub 3}I, CF{sub 3}I, etc.) is the most efficient method for achieving the pulse operating mode of a chemical oxygen-iodine laser. In this paper, a one-dimensional fluid model is developed to study the characteristics of pulsed discharge in CF{sub 3}I-He mixture. By solving continuity equation, momentum equation, Poisson equation, Boltzmann equation, and an electric circuit equation, the temporal evolution of discharge current density and various discharge products, especially the atomic iodine, are investigated. The dependence of iodine atom density on discharge parameters is also studied. The resultsmore » show that iodine atom density increases with the pulsed width and pulsed voltage amplitude. The mixture ratio of CF{sub 3}I and helium plays a more significant role in iodine atom production. For a constant voltage amplitude, there exists an optimal mixture ratio under which the maximum iodine atom concentration is achieved. The bigger the applied voltage amplitude is, the higher partial pressure of CF{sub 3}I is needed to obtain the maximum iodine atom concentration.« less
Mid-IR lasers based on transition metal and rare-earth ion doped crystals
NASA Astrophysics Data System (ADS)
Mirov, S.; Fedorov, V.; Martyshkin, D.; Moskalev, I.; Mirov, M.; Vasilyev, S.
2015-05-01
We report a novel design of CW Cr2+:ZnS/ZnSe laser systems and demonstrate record output powers of 27.5 W at 2.45 μm and 13.9 W at 2.94 μm with slope efficiencies of 63.7% and 37.4%, respectively. Power scaling of ultra-fast Cr2+:ZnS/ZnSe Kerr mode-locked lasers beyond 2 W level, as well as the shortest pulse duration of 29 fs, are also reported. New development of Fe:ZnSe laser with average output power > 35 W at 4.1 μm output wavelength and 100 Hz pulse repetition rate (PRR) was achieved in a nonselective cavity. With intracavity prim selector, wavelength tunability of 3.88-4.17 μm was obtained with maximum average output power of 23 W. We also report new results on Tm-fiber pumped passively and actively Q-switched Ho:YAG laser systems. High peak power actively Q-switched Ho:YAG laser demonstrates stable operation with pulse energy > 50 mJ, 12 ns pulse duration, and 100-1000 Hz PRR which correspondents to more than 4 MW peak power. The actively Q-switched Ho:YAG laser system optimized for high repetition rate delivers 40 W average output power at 10-100 kHz PRR. The Ho:YAG laser with passive Q-switcher demonstrates constant 5 mJ output energy from 200 Hz to 2.23 kHz PRR with optical slope efficiency with respect to Tm-fiber laser of ~43%.
Controlling laser driven protons acceleration using a deformable mirror at a high repetition rate
NASA Astrophysics Data System (ADS)
Noaman-ul-Haq, M.; Sokollik, T.; Ahmed, H.; Braenzel, J.; Ehrentraut, L.; Mirzaie, M.; Yu, L.-L.; Sheng, Z. M.; Chen, L. M.; Schnürer, M.; Zhang, J.
2018-03-01
We present results from a proof-of-principle experiment to optimize laser driven protons acceleration by directly feeding back its spectral information to a deformable mirror (DM) controlled by evolutionary algorithms (EAs). By irradiating a stable high-repetition rate tape driven target with ultra-intense pulses of intensities ∼1020 W/ cm2, we optimize the maximum energy of the accelerated protons with a stability of less than ∼5% fluctuations near optimum value. Moreover, due to spatio-temporal development of the sheath field, modulations in the spectrum are also observed. Particularly, a prominent narrow peak is observed with a spread of ∼15% (FWHM) at low energy part of the spectrum. These results are helpful to develop high repetition rate optimization techniques required for laser-driven ion accelerators.
Dual-wavelength mid-infrared CW and Q-switched laser in diode end-pumped Tm,Ho:GdYTaO4 crystal
NASA Astrophysics Data System (ADS)
Wang, Beibei; Gao, Congcong; Dou, Renqin; Nie, Hongkun; Sun, Guihua; Liu, Wenpeng; Yu, Haijuan; Wang, Guoju; Zhang, Qingli; Lin, Xuechun; He, Jingliang; Wang, Wenjun; Zhang, Bingyuan
2018-02-01
Dual-wavelength continuous-wave and Q-switched lasers are demonstrated in a Tm,Ho:GdYTaO4 crystal under 790 nm laser diode end pumping for the first time to the best of our knowledge. The laser operates with a dual wavelength at 1949.677 nm and 2070 nm for continuous-wave with a spacing of about 120 nm. The maximum output power is 0.332 W with a pump power of 3 W. By using graphene as the saturable absorber, a passively Q-switched operation is performed with a dual-wavelength at 1950.323 nm and 2068.064 nm with a wavelength interval of about 118 nm. The maximum average output power of the Q-switched laser goes up to 200 mW with a minimum pulse duration of 1.2 µs and a maximum repetition rate of 34.72 kHz.
Fornaini, Carlo; Merigo, Elisabetta; Poli, Federica; Cavatorta, Chiara; Rocca, Jean-Paul; Selleri, Stefano; Cucinotta, Annamaria
2017-12-31
The aim of this ex vivo study was to demonstrate the performances of 1070 nm fiber lasers for the ablation of oral tissues through the evaluation of the histological modifications made by a blind pathologist and the measurement of the thermal elevation during laser irradiation by a sensor based on a fiber Bragg grating. The source used was a pulsed fiber laser emitting at 1070 nm, with 20 W maximum average output power and 100 ns fixed pulse duration. Different tests were performed by changing the laser parameters, particularly the peak power of the pulses and the repetition rate. The tissue of the measurements demonstrated that the best properties in term of cutting capability and, at the same time, the lower thermal damages to the tissues can be obtained with a peak power of 3 kW, a repetition rate of 50 kHz and a speed of 5 mm/s. This ex vivo study showed that 1070 nm fiber lasers can be very useful in oral surgery, since they provide a reduced thermal elevation in the irradiated tissues, thus consequently respecting their biological structures. Moreover, this work demonstrates that FBG sensors, based on the optical fiber technology as the laser source considered for the tests, may be good instruments to record thermal elevation when applied to the ex vivo studies on animal models.
NASA Astrophysics Data System (ADS)
Feehan, James S.; Price, Jonathan H. V.; Butcher, Thomas J.; Brocklesby, William S.; Frey, Jeremy G.; Richardson, David J.
2017-01-01
The development of an Yb3+-fiber-based chirped-pulse amplification system and the performance in the generation of extreme ultraviolet (EUV) radiation by high-harmonic generation is reported. The fiber laser produced 100 μJ, 350 fs output pulses with diffraction-limited beam quality at a repetition rate of 16.7 kHz. The system used commercial single-mode, polarization maintaining fiber technology. This included a 40 μm core, easily packaged, bendable final amplifier fiber in order to enable a compact system, to reduce cost, and provide reliable and environmentally stable long-term performance. The system enabled the generation of 0.4 μW of EUV at wavelengths between 27 and 80 nm with a peak at 45 nm using xenon gas. The EUV flux of 1011 photons per second for a driving field power of 1.67 W represents state-of-the-art generation efficiency for single-fiber amplifier CPA systems, corresponding to a maximum calculated energy conversion efficiency of 2.4 × 10-7 from the infrared to the EUV. The potential for high average power operation at increased repetition rates and further suggested technical improvements are discussed. Future applications could include coherent diffractive imaging in the EUV, and high-harmonic spectroscopy.
NASA Astrophysics Data System (ADS)
Yang, Weiqiang; Yin, Ke; Zhang, Bin; Xue, Guanghui; Hou, Jing
2014-07-01
We have experimentally investigated several hundred kHz repetition rate 1,550-nm nanosecond pulses amplification in Er-Yb co-doped fiber amplifier (EYDFA). The experimental setup has three stage fiber amplifiers. At the output of the second stage EYDFA, Yb3+ ions induced amplified spontaneous emission (Yb-ASE) is not observed owing to the low pump power. In the third stage EYDFA, a simultaneously seeded 1,064-nm continuous-wave laser is used to control Yb-ASE. Without any additional 1,064-nm signal, significantly backward Yb-ASE which caused loss-induced heat accumulation at the input port of the pump combiner can be observed. The monitored temperature at the input port of the pump combiner rapidly grows from 30 to 80 °C when the pump power is turned from 20 to 32 W. When a 196-mW forward 1,064-nm laser is added, the monitored backward Yb-ASE power is significantly declined, and the monitored temperature is kept below 35 °C. But, the additional signal caused a large power fraction at 1,064 nm in the output laser. In our experiment at the maximum pump power of 48.5 W, the total output power is 20 W with ~6.4-W 1,550-nm pulsed laser and ~13-W 1,064-nm continuous-wave laser.
Electron heating enhancement by frequency-chirped laser pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yazdani, E.; Afarideh, H., E-mail: hafarideh@aut.ac.ir; Sadighi-Bonabi, R., E-mail: Sadighi@sharif.ir
2014-09-14
Propagation of a chirped laser pulse with a circular polarization through an uprising plasma density profile is studied by using 1D-3V particle-in-cell simulation. The laser penetration depth is increased in an overdense plasma compared to an unchirped pulse. The induced transparency due to the laser frequency chirp results in an enhanced heating of hot electrons as well as increased maximum longitudinal electrostatic field at the back side of the solid target, which is very essential in target normal sheath acceleration regime of proton acceleration. For an applied chirp parameter between 0.008 and 0.01, the maximum amount of the electrostatic fieldmore » is improved by a factor of 2. Furthermore, it is noticed that for a chirped laser pulse with a₀=5, because of increasing the plasma transparency length, the laser pulse can penetrate up to about n{sub e}≈6n{sub c}, where n{sub c} is plasma critical density. It shows 63% increase in the effective critical density compared to the relativistic induced transparency regime for an unchirped condition.« less
Aligned copper nanorod arrays for highly efficient generation of intense ultra-broadband THz pulses
NASA Astrophysics Data System (ADS)
Mondal, S.; Wei, Q.; Ding, W. J.; Hafez, H. A.; Fareed, M. A.; Laramée, A.; Ropagnol, X.; Zhang, G.; Sun, S.; Sheng, Z. M.; Zhang, J.; Ozaki, T.
2017-01-01
We demonstrate an intense broadband terahertz (THz) source based on the interaction of relativistic-intensity femtosecond lasers with aligned copper nanorod array targets. For copper nanorod targets with a length of 5 μm, a maximum 13.8 times enhancement in the THz pulse energy (in ≤20 THz spectral range) is measured as compared to that with a thick plane copper target under the same laser conditions. A further increase in the nanorod length leads to a decrease in the THz pulse energy at medium frequencies (≤20 THz) and increase of the electromagnetic pulse energy in the high-frequency range (from 20-200 THz). For the latter, we measure a maximum energy enhancement of 28 times for the nanorod targets with a length of 60 μm. Particle-in-cell simulations reveal that THz pulses are mostly generated by coherent transition radiation of laser produced hot electrons, which are efficiently enhanced with the use of nanorod targets. Good agreement is found between the simulation and experimental results.
Aligned copper nanorod arrays for highly efficient generation of intense ultra-broadband THz pulses.
Mondal, S; Wei, Q; Ding, W J; Hafez, H A; Fareed, M A; Laramée, A; Ropagnol, X; Zhang, G; Sun, S; Sheng, Z M; Zhang, J; Ozaki, T
2017-01-10
We demonstrate an intense broadband terahertz (THz) source based on the interaction of relativistic-intensity femtosecond lasers with aligned copper nanorod array targets. For copper nanorod targets with a length of 5 μm, a maximum 13.8 times enhancement in the THz pulse energy (in ≤20 THz spectral range) is measured as compared to that with a thick plane copper target under the same laser conditions. A further increase in the nanorod length leads to a decrease in the THz pulse energy at medium frequencies (≤20 THz) and increase of the electromagnetic pulse energy in the high-frequency range (from 20-200 THz). For the latter, we measure a maximum energy enhancement of 28 times for the nanorod targets with a length of 60 μm. Particle-in-cell simulations reveal that THz pulses are mostly generated by coherent transition radiation of laser produced hot electrons, which are efficiently enhanced with the use of nanorod targets. Good agreement is found between the simulation and experimental results.
Aligned copper nanorod arrays for highly efficient generation of intense ultra-broadband THz pulses
Mondal, S.; Wei, Q.; Ding, W. J.; Hafez, H. A.; Fareed, M. A.; Laramée, A.; Ropagnol, X.; Zhang, G.; Sun, S.; Sheng, Z. M.; Zhang, J.; Ozaki, T.
2017-01-01
We demonstrate an intense broadband terahertz (THz) source based on the interaction of relativistic-intensity femtosecond lasers with aligned copper nanorod array targets. For copper nanorod targets with a length of 5 μm, a maximum 13.8 times enhancement in the THz pulse energy (in ≤20 THz spectral range) is measured as compared to that with a thick plane copper target under the same laser conditions. A further increase in the nanorod length leads to a decrease in the THz pulse energy at medium frequencies (≤20 THz) and increase of the electromagnetic pulse energy in the high-frequency range (from 20–200 THz). For the latter, we measure a maximum energy enhancement of 28 times for the nanorod targets with a length of 60 μm. Particle-in-cell simulations reveal that THz pulses are mostly generated by coherent transition radiation of laser produced hot electrons, which are efficiently enhanced with the use of nanorod targets. Good agreement is found between the simulation and experimental results. PMID:28071764
NASA Astrophysics Data System (ADS)
Koshelev, V. I.; Plisko, V. V.; Sevostyanov, E. A.
2017-05-01
To broaden the spectrum of high-power ultrawideband radiation, it is suggested to synthesize an electromagnetic pulse summing the pulses of different length in free space. On the example of model pulses corresponding to radiation of combined antennas excited by bipolar voltage pulses of the length of 2 and 3 ns, the possibility of twofold broadening of the radiation spectrum was demonstrated. Radiation pulses with the spectrum width exceeding three octaves were obtained. Pattern formation by the arrays of different geometry excited by the pulses having different time shifts was considered. Optimum array structure with the pattern maximum in the main direction was demonstrated on the example of a 2×2 array.
Assessment of Effectiveness of Cool Coat in Reducing Heat Strain among Workers in Steel Industry.
Parameswarappa, S B; Narayana, J
2017-01-01
A research study was conducted to assess the effectiveness of cool coat in reducing heat strain among workers exposed to heat in a steel plant located in south India. The study consists of assessing heat strain of workers exposed to heat in a steel plant by measuring physiological reactions of workers such as pulse rate and core body temperature with and without cool coat. The coal coat taken for this study was procured from M/s Yamuna Industries, Noida. Out of 140 employees exposed to heat hazard, 101 employees were examined in this study. Study was done in important production units in steel plant having heat hazard. Workers were interviewed and examined and information regarding thermal comfort was collected. First, the heat strain was assessed when the workers were not using cool coats. The air temperature was measured at all hot zone workplaces and found in the range of 34 0 C to 39.4 0 C (Mean: 36.54 0 C & S.D: 1.54). Physiological response such as core body temperature, pulse rate and blood pressure of workers exposed to heat hazard were measured before & after work to know the heat strain sustained by workers when they were working. Maximum core body temperature after work was found to be 39.3 0 C (Mean; 38.52 & S.D; 0.7). Maximum pulse rate of workers after work was found to be 120 beats/minute (Mean; 94.96 beats/minute, S.D: 13.11). The study indicate core body temperature of workers was found more than the permissible exposure limit prescribed by ACGIH, indicating the heat strain sustained by workers is significant, whereas the pulse rate and blood pressure was found normal & not exceeded the limits. Second, with cool coat, the heat strain was assessed among 10 workers selected from the 101 employees. Core body temperature was measured before and soon after work, The core body temperature recorded soon after work was in the range of 35.5 - 37.20C (Mean 36.36, SD= 0.52), indicating a drop in the core body temperature. In this study, a core body temperature rise in the range of 1 0 -1.4 0 C was noticed when the employees were not wearing cool coats. Whereas, with the usage of cool coat a rise in core body temperature was not found and in many coat wearing workers a drop in core body temperature (0.2 to 0.9 0 C) was noticed. Employees revealed that the cool coats was comfortable to use and provided the thermal comforts. The study concluded that the cool coat taken for this study was found effective in reducing the heat strain.
Assessment of Effectiveness of Cool Coat in Reducing Heat Strain among Workers in Steel Industry
Parameswarappa, S. B.; Narayana, J.
2017-01-01
A research study was conducted to assess the effectiveness of cool coat in reducing heat strain among workers exposed to heat in a steel plant located in south India. The study consists of assessing heat strain of workers exposed to heat in a steel plant by measuring physiological reactions of workers such as pulse rate and core body temperature with and without cool coat. The coal coat taken for this study was procured from M/s Yamuna Industries, Noida. Out of 140 employees exposed to heat hazard, 101 employees were examined in this study. Study was done in important production units in steel plant having heat hazard. Workers were interviewed and examined and information regarding thermal comfort was collected. First, the heat strain was assessed when the workers were not using cool coats. The air temperature was measured at all hot zone workplaces and found in the range of 34 0 C to 39.4 0 C (Mean: 36.54 0 C & S.D: 1.54). Physiological response such as core body temperature, pulse rate and blood pressure of workers exposed to heat hazard were measured before & after work to know the heat strain sustained by workers when they were working. Maximum core body temperature after work was found to be 39.3 0 C (Mean; 38.52 & S.D; 0.7). Maximum pulse rate of workers after work was found to be 120 beats/minute (Mean; 94.96 beats/minute, S.D: 13.11). The study indicate core body temperature of workers was found more than the permissible exposure limit prescribed by ACGIH, indicating the heat strain sustained by workers is significant, whereas the pulse rate and blood pressure was found normal & not exceeded the limits. Second, with cool coat, the heat strain was assessed among 10 workers selected from the 101 employees. Core body temperature was measured before and soon after work, The core body temperature recorded soon after work was in the range of 35.5 - 37.20C (Mean 36.36, SD= 0.52), indicating a drop in the core body temperature. In this study, a core body temperature rise in the range of 1 0 -1.4 0 C was noticed when the employees were not wearing cool coats. Whereas, with the usage of cool coat a rise in core body temperature was not found and in many coat wearing workers a drop in core body temperature (0.2 to 0.9 0 C) was noticed. Employees revealed that the cool coats was comfortable to use and provided the thermal comforts. The study concluded that the cool coat taken for this study was found effective in reducing the heat strain. PMID:29391745
Electro-Optical Modulator Bias Control Using Bipolar Pulses
NASA Technical Reports Server (NTRS)
Farr, William; Kovalik, Joseph
2007-01-01
An improved method has been devised for controlling the DC bias applied to an electro-optical crystal that is part of a Mach-Zehnder modulator that generates low-duty-cycle optical pulses for a pulse-position modulation (PPM) optical data-communication system. In such a system, it is desirable to minimize the transmission of light during the intervals between pulses, and for this purpose, it is necessary to maximize the extinction ratio of the modulator (the ratio between the power transmitted during an "on" period and the power transmitted during an "off" period). The present method is related to prior dither error feedback methods, but unlike in those methods, there is no need for an auxiliary modulation subsystem to generate a dithering signal. Instead, as described below, dither is effected through alternation of the polarity of the modulation signal. The upper part of Figure 1 schematically depicts a Mach-Zehnder modulator. The signal applied to the electro-optical crystal consists of a radio-frequency modulating pulse signal, VRF, superimposed on a DC bias Vbias. Maximum extinction occurs during the off (VRF = 0) period if Vbias is set at a value that makes the two optical paths differ by an odd integer multiple of a half wavelength so that the beams traveling along the two paths interfere destructively at the output beam splitter. Assuming that the modulating pulse signal VRF has a rectangular waveform, maximum transmission occurs during the "on" period if the amplitude of VRF is set to a value, V , that shifts the length of the affected optical path by a half wavelength so that now the two beams interfere constructively at the output beam splitter. The modulating pulse signal is AC-coupled from an amplifier to the electro-optical crystal. Sometimes, two successive pulses occur so close in time that the operating point of the amplifier drifts, one result being that there is not enough time for the signal level to return to ground between pulses. Also, the difference between the optical-path lengths can drift with changes in temperature and other spurious effects. The effects of both types of drift are suppressed in the present method, in which one takes advantage of the fact that when Vbias is set at the value for maximum extinction, equal-magnitude positive and negative pulses applied to the electro-optical crystal produce equal output light pulses.
Acousto-optic replication of ultrashort laser pulses
NASA Astrophysics Data System (ADS)
Yushkov, Konstantin B.; Molchanov, Vladimir Ya.; Ovchinnikov, Andrey V.; Chefonov, Oleg V.
2017-10-01
Precisely controlled sequences of ultrashort laser pulses are required in various scientific and engineering applications. We developed a phase-only acousto-optic pulse shaping method for replication of ultrashort laser pulses in a TW laser system. A sequence of several Fourier-transform-limited pulses is generated from a single femtosecond laser pulse by means of applying a piecewise linear phase modulation over the whole emission spectrum. Analysis demonstrates that the main factor which limits maximum delay between the pulse replicas is spectral resolution of the acousto-optic dispersive delay line used for pulse shaping. In experiments with a Cr:forsterite laser system, we obtained delays from 0.3 to 3.5 ps between two replicas of 190 fs transform-limited pulses at the central wavelength of laser emission, 1230 nm.
Efficient and compact Q-switched green laser using graphene oxide as saturable absorber
NASA Astrophysics Data System (ADS)
Chang, Jianhua; Li, Hanhan; Yang, Zhenbo; Yan, Na
2018-01-01
A new type of graphene oxide (GO) is successfully prepared using an improved modified Hummers method. The Raman shift, X-ray diffraction (XRD), and scanning electron microscope (SEM) measurement techniques are used to characterize the GO. An efficient and compact Q-switched green laser based on Nd:YVO4/PPLN is demonstrated with a few-layered GO as the saturable absorber. Our experimental results show that such a few-layered GO saturable absorber allows for the generation of a stable Q-switched laser pulse centered at 532.1 nm with a 3 dB spectral bandwidth of 2.78 nm, a repetition rate of 71.4 kHz, and a pulse duration of 98 ns. The maximum average output power of 536 mW is obtained at the absorbed pump power of 5.16 W, corresponding to an optical conversion efficiency of 10.3%.
Oxidation of cinnamic acid derivatives: A pulse radiolysis and theoretical study
NASA Astrophysics Data System (ADS)
Yadav, Pooja; Mohan, Hari; Maity, Dilip Kumar; Suresh, Cherumuttathu H.; Rao, B. S. Madhav
2008-07-01
Second order rate constants in the range of ( k = 1.6-4.5) × 10 9 dm 3 mol -1 s -1 were obtained for the rad OH induced oxidation of nitro- and methoxycinnamic acid derivatives in neutral solutions using pulse radiolysis. The transient absorption spectra exhibited a broad peak around 360-410 nm in o-methoxy, o- and p-nitrocinnamates or two peaks around 310-330 and 370-410 nm in other isomers. Quantum chemical calculations revealed that addition of rad OH to olefinic moiety yielded considerably more stable structures than ring addition products and the para system among the latter is the most stable. Spin density analysis suggested that olefinic adducts retained the aromaticity in contrast to its loss in ring rad OH adducts. An excellent linear correlation between the relative stabilities of the rad OH adducts (after accounting for the aromatic stabilization in olefinic adducts) and the maximum Sd values is also obtained.
Molteni, Matteo; Weigel, Udo M; Remiro, Francisco; Durduran, Turgut; Ferri, Fabio
2014-11-17
We present a new hardware simulator (HS) for characterization, testing and benchmarking of digital correlators used in various optical correlation spectroscopy experiments where the photon statistics is Gaussian and the corresponding time correlation function can have any arbitrary shape. Starting from the HS developed in [Rev. Sci. Instrum. 74, 4273 (2003)], and using the same I/O board (PCI-6534 National Instrument) mounted on a modern PC (Intel Core i7-CPU, 3.07GHz, 12GB RAM), we have realized an instrument capable of delivering continuous streams of TTL pulses over two channels, with a time resolution of Δt = 50ns, up to a maximum count rate of 〈I〉 ∼ 5MHz. Pulse streams, typically detected in dynamic light scattering and diffuse correlation spectroscopy experiments were generated and measured with a commercial hardware correlator obtaining measured correlation functions that match accurately the expected ones.
NASA Astrophysics Data System (ADS)
Mohammed, D. Z.; Khaleel, Wurood Abdulkhaleq; Al-Janabi, A. H.
2017-12-01
Ferro-oxide (Fe3O4) nanoparticles were used as a saturable absorber (SA) for a passively Q-switched erbium doped fiber laser (EDFL) with ring cavity. The Q-switching operation was achieved at a pump threshold of 80 mW. The proposed fiber laser produces stable pulses train of repetition rate ranging from 25 kHz to 80 kHz as the pump power increases from threshold to 342 mW. The minimum recorded pulse width was 2.7 μs at 342 mW. The C-band tunability operation was performed using single mode-multimode-single mode fiber (SM-MM-SM) structure. The laser exhibited a total tuning range of 7 nm, maximum sensitivity of 106.9 nm, optical signal to noise ratio (OSNR) of 38 dB and 3-dB linewidth of 0.06 nm.
NASA Astrophysics Data System (ADS)
Borisov, V. M.; Vinokhodov, A. Yu; Ivanov, A. S.; Kiryukhin, Yu B.; Mishchenko, V. A.; Prokof'ev, A. V.; Khristoforov, O. B.
2009-10-01
The development of high-power discharge sources emitting in the 13.5±0.135-nm spectral band is of current interest because they are promising for applications in industrial EUV (extreme ultraviolet) lithography for manufacturing integrated circuits according to technological precision standards of 22 nm and smaller. The parameters of EUV sources based on a laser-induced discharge in tin vapours between rotating disc electrodes are investigated. The properties of the discharge initiation by laser radiation at different wavelengths are established and the laser pulse parameters providing the maximum energy characteristics of the EUV source are determined. The EUV source developed in the study emits an average power of 276 W in the 13.5±0.135-nm spectral band on conversion to the solid angle 2π sr in the stationary regime at a pulse repetition rate of 3000 Hz.
[Leisure-time sport activities and cardiac outpatient therapy in coronary patients].
Heitkamp, Hans-Christian; Schimpf, Thomas M; Hipp, Arno; Niess, Andreas
2005-03-01
Exercise intensity in coronary patients is controlled by heart rate measurements. Very few investigations have compared the maximum heart rate in cardiac outpatient groups, in leisure-time sport activities, and especially in swimming. Within different exercise conditions 21 coronary patients, nine in well-compensated cardiac condition joining a training group and twelve joining the exercise group with lower intensity, without signs of heart failure, engaged in an incremental bicycle ergometry. A six-lead ECG was derived at the same time with a 24-h ECG. The performance tolerance was measured by the pulse limit derived in 20 patients; one patient failed to show signs of subjective or objective ischemia. During a 24-h ECG monitoring, the patients took part in a 1-h standardized cardiac outpatient program, a standardized swimming program 4 x 25 m, and a typical self-selected leisure-time activity. The patients showed a peak work capacity of 2.2 W/kg and a symptom-free work capacity of 1.3 W/kg. The derived upper heart rate limit was passed during swimming by 19, during leisure-time activity by 16, and during cardiac outpatient program by two patients. The maximum of the mean overriding the limit occurred in leisure-time activity. Signs of ischemia occurred during ergometry in 15, during swimming training in ten patients, during leisure-time activity in eight, and during cardiac outpatient therapy in one. Arrhythmia < Lown IVa was documented on the ergometer in 15, during leisure-time sport activity in 15, during cardiac outpatient therapy in 17, and during swimming in eight patients. Arrhythmia Lown IVa occurred in one patient each during ergometry, leisure sports, and during the night. Coronary patients are in danger to exercise beyond the pulse limit during swimming and other leisure-time sports and not during cardiac outpatient therapy. The upper heart rate limit should be observed during swimming and other endurance leisure-time activities, and is of little importance during cardiac outpatient therapy.
The Accuracy and Validity of iOS-Based Heart Rate Apps During Moderate to High Intensity Exercise.
Bouts, Alexa M; Brackman, Lauren; Martin, Elizabeth; Subasic, Adam M; Potkanowicz, Edward S
2018-01-01
People use their smartphones for everything from web browsing to tracking fitness metrics. However, it is unclear whether smartphone-based apps that use photoplethysmography to measure heart rate are an accurate or valid measure of exercise intensity. Purpose was to determine the accuracy and validity of two iOS-based heart rate monitors, Runtastic Heart Rate Monitor and Pulse Tracker PRO by Runtastic (Runtastic) and Instant Heart Rate+: Heart Rate and Pulse Monitor by Azumio (Instant Heart Rate), when compared to the electrocardiogram (ECG) and Polar® T31 uncoded heart rate monitor from moderate to vigorous intensity exercise. Participants were 15 male and female regularly active college students. Pre-exercise heart rate and blood pressure were recorded and then participants exercised on a stationary bike at a pedal rate of between 50-60 rpms. After completing a warm-up stage at 40% of age estimated maximum heart rate (AEMHR), exercise intensity progressed from 50% of AEMHR through to 85% of AEMHR in eight, 5-minute stages. At the end of each stage, and having achieved steady-state, heart rates were recorded from each apparatus. After completing the final stage, participants completed a cooldown at 40% of their AEMHR. Post-exercise heart rate and blood pressure were also recorded to ensure full recovery to baseline. There was a strong positive correlation between the Polar® monitor and the ECG during all stages. However, there were not strong correlations for either of the smartphone-based apps at any time point. Although there were weak correlations between the smartphone-based apps and ECG and Polar®, further studies need to be conducted to determine if inaccuracy is due to user error (finger placement, finger temperature, etc.) or the technology behind the apps.
The Accuracy and Validity of iOS-Based Heart Rate Apps During Moderate to High Intensity Exercise
BOUTS, ALEXA M.; BRACKMAN, LAUREN; MARTIN, ELIZABETH; SUBASIC, ADAM M.; POTKANOWICZ, EDWARD S.
2018-01-01
People use their smartphones for everything from web browsing to tracking fitness metrics. However, it is unclear whether smartphone-based apps that use photoplethysmography to measure heart rate are an accurate or valid measure of exercise intensity. Purpose was to determine the accuracy and validity of two iOS-based heart rate monitors, Runtastic Heart Rate Monitor and Pulse Tracker PRO by Runtastic (Runtastic) and Instant Heart Rate+: Heart Rate and Pulse Monitor by Azumio (Instant Heart Rate), when compared to the electrocardiogram (ECG) and Polar® T31 uncoded heart rate monitor from moderate to vigorous intensity exercise. Participants were 15 male and female regularly active college students. Pre-exercise heart rate and blood pressure were recorded and then participants exercised on a stationary bike at a pedal rate of between 50–60 rpms. After completing a warm-up stage at 40% of age estimated maximum heart rate (AEMHR), exercise intensity progressed from 50% of AEMHR through to 85% of AEMHR in eight, 5-minute stages. At the end of each stage, and having achieved steady-state, heart rates were recorded from each apparatus. After completing the final stage, participants completed a cooldown at 40% of their AEMHR. Post-exercise heart rate and blood pressure were also recorded to ensure full recovery to baseline. There was a strong positive correlation between the Polar® monitor and the ECG during all stages. However, there were not strong correlations for either of the smartphone-based apps at any time point. Although there were weak correlations between the smartphone-based apps and ECG and Polar®, further studies need to be conducted to determine if inaccuracy is due to user error (finger placement, finger temperature, etc.) or the technology behind the apps. PMID:29541341
NASA Astrophysics Data System (ADS)
Hardy, Luke A.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.
2014-03-01
The Holmium:YAG laser (λ = 2120 nm) is currently the preferred laser for fragmenting kidney stones in the clinic. However, this laser has some limitations, including operation at low pulse rates and a multimode spatial beam profile which prohibits its use with smaller, more flexible optical fibers. Our laboratory is studying the Thulium fiber laser (λ = 1908 nm) as an alternative lithotripter. The TFL has several advantages, including lower stone ablation thresholds, use with smaller and more flexible fibers, and operation at arbitrary pulse lengths and pulse rates. Previous studies have reported increased stone ablation rates with TFL operation at higher pulse rates, however, stone retropulsion remains an obstacle to even more efficient stone ablation. This study explores TFL operation at high pulse rates in combination with a stone stabilization device (e.g. stone basket) for improved efficiency. A TFL beam with pulse energy of 35 mJ, pulse duration of 500-μs, and pulse rates of 10-500 Hz was coupled into 100-μm-core, low-OH, silica fibers, in contact mode with uric acid and calcium oxalate monohydrate stones, ex vivo. TFL operation at 500 Hz produced UA and COM stone ablation rates up to 5.0 mg/s and 1.3 mg/s, respectively. High TFL pulse rates produced increased stone ablation rates sufficient for use in the clinic.
Delivery of high-energy radiation in midinfrared spectral region by hollow waveguides
NASA Astrophysics Data System (ADS)
Nemec, Michal; Jelinkova, Helena; Sulc, Jan; Cerny, Pavel; Miyagi, Mitsunobu; Iwai, Katsumasa; Abe, Yukio; Shi, Yi-Wei; Matsuura, Yuji
2003-07-01
Due to increasing number of requirements dealing with the application of a high energy mid-infrared radiation in various branches of medicine (cardiology, dentistry, dermatology, urology, gastroenterology), an enough flexible and lossless delivery system is required. For a transport of this high energy pulses in a mid-infrared region special cyclic olefin polymer-coated silver (COP/Ag) hollow glass waveguides were prepared and tested. A length of the waveguides was 0.5 m and inner diameter 1 mm. As a radiation source, an Er:YAG laser was used. The system generated the energy up to 2.16 J or 2.35 J (in dependence on a repetition rate used - 3 Hz or 4 Hz, respectively). The length of transmitted pulses was measured to be from 110 up to 550 usec in dependence on output energy used. The output radiation was coupled into the COP/Ag waveguide and a throughput and losses values were measured in dependence to input radiation parameters. The transmission obtained was 91%. The maximum delivered energy was dependent on a damage threshold of the waveguide. It was found that the damage threshold is dependent on the repetition rate which shows the dependences on the heat dissipated in the waveguide wall. The value of the damage was 1.7 J and 1.5 J for 3 Hz and 4 Hz repetition rate, respectively. The safe delivered power reached the value of 5 W. The characteristics obtained make this specially constructed COP/Ag hollow glass waveguide promising for the delivery of high-energy laser pulses in medicine and also in other applications.
Hollow steel tips for reducing distal fiber burn-back during thulium fiber laser lithotripsy.
Hutchens, Thomas C; Blackmon, Richard L; Irby, Pierce B; Fried, Nathaniel M
2013-07-01
The use of thulium fiber laser (TFL) as a potential alternative laser lithotripter to the clinical holmium:YAG laser is being studied. The TFL's Gaussian spatial beam profile provides efficient coupling of higher laser power into smaller core fibers without proximal fiber tip degradation. Smaller fiber diameters are more desirable, because they free up space in the single working channel of the ureteroscope for increased saline irrigation rates and allow maximum ureteroscope deflection. However, distal fiber tip degradation and "burn-back" increase as fiber diameter decreases due to both excessive temperatures and mechanical stress experienced during stone ablation. To eliminate fiber tip burn-back, the distal tip of a 150-μm core silica fiber was glued inside 1-cm-long steel tubing with fiber tip recessed 100, 250, 500, 1000, or 2000 μm inside the steel tubing to create the hollow-tip fiber. TFL pulse energy of 34 mJ with 500-μs pulse duration and 150-Hz pulse rate was delivered through the hollow-tip fibers in contact with human calcium oxalate monohydrate urinary stones during ex vivo studies. Significant fiber tip burn-back and degradation was observed for bare 150-μm core-diameter fibers. However, hollow steel tip fibers experienced minimal fiber burn-back without compromising stone ablation rates. A simple, robust, compact, and inexpensive hollow fiber tip design was characterized for minimizing distal fiber burn-back during the TFL lithotripsy. Although an increase in stone retropulsion was observed, potential integration of the hollow fiber tip into a stone basket may provide rapid stone vaporization, while minimizing retropulsion.
Fiber-optic manipulation of urinary stone phantoms using holmium:YAG and thulium fiber lasers.
Blackmon, Richard L; Case, Jason R; Trammell, Susan R; Irby, Pierce B; Fried, Nathaniel M
2013-02-01
Fiber-optic attraction of urinary stones during laser lithotripsy may be exploited to manipulate stone fragments inside the urinary tract without mechanical grasping tools, saving the urologist time and space in the ureteroscope working channel. We compare thulium fiber laser (TFL) high pulse rate/low pulse energy operation to conventional holmium:YAG low pulse rate/high pulse energy operation for fiber-optic suctioning of plaster-of-paris (PoP) stone phantoms. A TFL (wavelength of 1908 nm, pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rate of 10 to 350 Hz) and a holmium laser (wavelength of 2120 nm, pulse energy of 35 to 360 mJ, pulse duration of 300 μs, and pulse rate of 20 Hz) were tested using 270-μm-core optical fibers. A peak drag speed of ~2.5 mm/s was measured for both TFL (35 mJ and 150 to 250 Hz) and holmium laser (210 mJ and 20 Hz). Particle image velocimetry and thermal imaging were used to track water flow for all parameters. Fiber-optic suctioning of urinary stone phantoms is feasible. TFL operation at high pulse rates/low pulse energies is preferable to holmium operation at low pulse rates/high pulse energies for rapid and smooth stone pulling. With further development, this novel technique may be useful for manipulating stone fragments in the urinary tract.
Multiparameter analysis of activated sludge inhibition by nickel, cadmium, and cobalt.
Hernandez-Martinez, Gabriel R; Ortiz-Alvarez, Daniela; Perez-Roa, Michael; Urbina-Suarez, Nestor Andres; Thalasso, Frederic
2018-06-05
Activated sludge processes are often inhibited by nickel, cadmium, and cobalt. The inhibitory effect of these heavy metals on a synthetic wastewater treatment process was tested through pulse microrespirometry; i.e., pulse of substrate injected in a microreactor system. The inhibitory effect was tested under different conditions including the heavy metals, substrate and biomass concentrations, and exposure time. The inhibitory effect was quantified by the percentage of inhibition, half saturation constant (K S ), inhibition constant (K I ), and maximum oxygen uptake rate (OUR max ). The results indicated that, in a range of concentration from 0 to 40 mg L -1 , the three heavy metals exerted an uncompetitive and incomplete inhibitory effect, with a maximum inhibition of 67, 57, and 53% for Ni, Co, and Cd, respectively. An increase of the biomass concentration by 620% resulted in a decrease of the inhibition by 47 and 69% for Co and Cd, respectively, while no effect was observed on Ni inhibition. An increase of the substrate concentration by 87% resulted in an increase of the inhibition by 24, 70, and 47% for Ni, Co and Cd, respectively. In the case of nickel and cadmium, an increase in the exposure time to the heavy metals also increased the inhibition. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gazeli, K.; Bauville, G.; Fleury, M.; Jeanney, P.; Neveu, O.; Pasquiers, S.; Santos Sousa, J.
2018-06-01
This work presents spatial (axial-z and transversal-y) and temporal distributions of Ar(1s5) metastable absolute densities in an atmospheric pressure argon micro-plasma jet impinging on an ungrounded glass surface. Guided streamers are generated with a DBD device driven by pulsed positive high voltages of 6 kV in amplitude, 224 +/- 3 ns in FWHM and 20 kHz in frequency. The argon flow rate is varied between 200 and 600 sccm. The glass plate is placed at 5 mm away from the reactor’s nozzle and perpendicular to the streamers propagation. At these conditions, a diffuse stable discharge is established after the passage of the streamers allowing the quantification of the Ar(1s5) absolute density by means of a conventional TDLAS technique coupled with emission spectroscopy and ICCD imaging. The good reproducibility of the absorption signals is demonstrated. The experiments show the strong dependence of the maximum density ({0.5-4}× {10}13 {{{cm}}}-3) on the gas flow rate and the axial and transversal position. At 200 sccm, high maximum densities (> 2.4× {10}13 {{{cm}}}-3) are obtained in a small area close to the plasma source, while with increasing flow rate this area expands towards the glass plate. In the transversal direction, density maxima are obtained in a small zone around the propagation axis of the streamers. Finally, a noticeable increase is measured on the Ar(1s5) effective lifetime close to the glass surface by varying the flow rate from 200 to 600 sccm. In overall, the effective lifetime varies between ∼25 and ∼550 ns, depending on the gas flow rate and the values of z and y coordinates. The results obtained suggest that the present system can be implemented in various applications and particularly in what concerns the detection of weakly volatile organic compounds present in trace amounts on different surfaces.
Free electron laser with masked chicane
Nguyen, Dinh C.; Carlsten, Bruce E.
1999-01-01
A free electron laser (FEL) is provided with an accelerator for outputting electron beam pulses; a buncher for modulating each one of the electron beam pulses to form each pulse into longitudinally dispersed bunches of electrons; and a wiggler for generating coherent light from the longitudinally dispersed bunches of electrons. The electron beam buncher is a chicane having a mask for physically modulating the electron beam pulses to form a series of electron beam bunches for input to the wiggler. In a preferred embodiment, the mask is located in the chicane at a position where each electron beam pulse has a maximum dispersion.
Improving Reliability of High Power Quasi-CW Laser Diode Arrays Operating in Long Pulse Mode
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.
2006-01-01
Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data of the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.
Sugita, Norihiro; Yoshizawa, Makoto; Abe, Makoto; Tanaka, Akira; Watanabe, Takashi; Chiba, Shigeru; Yambe, Tomoyuki; Nitta, Shin-ichi
2007-09-28
Computer graphics and virtual reality techniques are useful to develop automatic and effective rehabilitation systems. However, a kind of virtual environment including unstable visual images presented to wide field screen or a head mounted display tends to induce motion sickness. The motion sickness induced in using a rehabilitation system not only inhibits effective training but also may harm patients' health. There are few studies that have objectively evaluated the effects of the repetitive exposures to these stimuli on humans. The purpose of this study is to investigate the adaptation to visually induced motion sickness by physiological data. An experiment was carried out in which the same video image was presented to human subjects three times. We evaluated changes of the intensity of motion sickness they suffered from by a subjective score and the physiological index rho(max), which is defined as the maximum cross-correlation coefficient between heart rate and pulse wave transmission time and is considered to reflect the autonomic nervous activity. The results showed adaptation to visually-induced motion sickness by the repetitive presentation of the same image both in the subjective and the objective indices. However, there were some subjects whose intensity of sickness increased. Thus, it was possible to know the part in the video image which related to motion sickness by analyzing changes in rho(max) with time. The physiological index, rho(max), will be a good index for assessing the adaptation process to visually induced motion sickness and may be useful in checking the safety of rehabilitation systems with new image technologies.
High efficiency, linearly polarized, directly diode-pumped Er:YAG laser at 1617 nm.
Yu, Zhenzhen; Wang, Mingjian; Hou, Xia; Chen, Weibiao
2014-12-01
An efficient, directly diode-pumped Er:YAG laser at 1617 nm was demonstrated. A folding mirror with high reflectivity for the s-polarized light at the laser wavelength was used to achieve a linearly polarized laser. A maximum continuous-wave output power of 7.73 W was yielded under incident pump power of 50.57 W, and the optical conversion efficiency with respect to incident pump power was ∼15.28%, which was the highest optical conversion efficiency with directly diode-pumped Er:YAG lasers up to now; in Q-switched operation, the maximum pulse energy of 7.82 mJ was generated with pulse duration of about 80 ns at a pulse repetition frequency of 500 Hz.
Large-amplitude acoustic solitary waves in a Yukawa chain
NASA Astrophysics Data System (ADS)
Sheridan, T. E.; Gallagher, James C.
2017-06-01
We experimentally study the excitation and propagation of acoustic solitary waves in a one-dimensional dusty plasma (i.e. a Yukawa chain) with particles interacting through a screened Coulomb potential. The lattice constant mm. Waves are launched by applying a 100 mW laser pulse to one end of the chain for laser pulse durations from 0.10 to 2.0 s. We observe damped solitary waves which propagate for distances with an acoustic speed s=11.5\\pm 0.2~\\text{mm}~\\text{s}-1$ . The maximum velocity perturbation increases with laser pulse duration for durations s and then saturates at . The wave speed is found to be independent of the maximum amplitude, indicating that the formation of nonlinear solitons is prevented by neutral-gas damping.
Effect of Pulse Rate on Loudness Discrimination in Cochlear Implant Users.
Azadpour, Mahan; McKay, Colette M; Svirsky, Mario A
2018-03-12
Stimulation pulse rate affects current amplitude discrimination by cochlear implant (CI) users, indicated by the evidence that the JND (just noticeable difference) in current amplitude delivered by a CI electrode becomes larger at higher pulse rates. However, it is not clearly understood whether pulse rate would affect discrimination of speech intensities presented acoustically to CI processors, or what the size of this effect might be. Intensity discrimination depends on two factors: the growth of loudness with increasing sound intensity and the loudness JND (or the just noticeable loudness increment). This study evaluated the hypothesis that stimulation pulse rate affects loudness JND. This was done by measuring current amplitude JNDs in an experiment design based on signal detection theory according to which loudness discrimination is related to internal noise (which is manifested by variability in loudness percept in response to repetitions of the same physical stimulus). Current amplitude JNDs were measured for equally loud pulse trains of 500 and 3000 pps (pulses per second) by increasing the current amplitude of the target pulse train until it was perceived just louder than a same-rate or different-rate reference pulse train. The JND measures were obtained at two presentation levels. At the louder level, the current amplitude JNDs were affected by the rate of the reference pulse train in a way that was consistent with greater noise or variability in loudness perception for the higher pulse rate. The results suggest that increasing pulse rate from 500 to 3000 pps can increase loudness JND by 60 % at the upper portion of the dynamic range. This is equivalent to a 38 % reduction in the number of discriminable steps for acoustic and speech intensities.
NASA Astrophysics Data System (ADS)
Salehi, M.; Mirzanejad, S.
2017-05-01
Amplifying the attosecond pulse by the chirp pulse amplification method is impossible. Furthermore, the intensity of attosecond pulse is low in the interaction of laser pulse and underdense plasma. This motivates us to propose using a multi-color pulse to produce the high intense attosecond pulse. In the present study, the relativistic interaction of a three-color linearly-polarized laser-pulse with highly overdense plasma is studied. We show that the combination of {{ω }}1, {{ω }}2 and {{ω }}3 frequencies decreases the instance full width at half maximum reflected attosecond pulse train from the overdense plasma surface. Moreover, we show that the three-color pulse increases the intensity of generated harmonics, which is explained by the relativistic oscillating mirror model. The obtained results demonstrate that if the three-color laser pulse interacts with overdense plasma, it will enhance two orders of magnitude of intensity of ultra short attosecond pulses in comparison with monochromatic pulse.
308-nm excimer laser ablation of human cartilage
NASA Astrophysics Data System (ADS)
Prodoehl, John A.; Rhodes, Anthony L.; Meller, Menachem M.; Sherk, Henry H.
1993-07-01
The XeCl excimer laser was investigated as an ablating tool for human fibrocartilage and hyaline cartilage. Quantitative measurements were made of tissue ablation rates as a function of fluence in meniscal fibrocartilage and articular hyaline cartilage. A force of 1.47 Newtons was applied to an 800 micrometers fiber with the laser delivering a range of fluences (40 to 190 mj/mm2) firing at a frequency of 5 Hz. To assess the effect of repetition rate on ablation rate, a set of measurements was made at a constant fluence of 60 mj/mm2, with the repetition rate varying from 10 to 40 Hz. Histologic and morphometric analysis was performed using light microscopy. The results of these studies revealed that the ablation rate was directly proportional to fluence over the range tested. Fibrocartilage was ablated at a rate 2.56 times faster than hyaline cartilage at the maximum fluence tested. Repetition rate had no effect on the penetration per pulse. Adjacent tissue damage was noted to be minimal (10 - 70 micrometers ).
PIC simulation of the vacuum power flow for a 5 terawatt, 5 MV, 1 MA pulsed power system
NASA Astrophysics Data System (ADS)
Liu, Laqun; Zou, Wenkang; Liu, Dagang; Guo, Fan; Wang, Huihui; Chen, Lin
2018-03-01
In this paper, a 5 Terawatt, 5 MV, 1 MA pulsed power system based on vacuum magnetic insulation is simulated by the particle-in-cell (PIC) simulation method. The system consists of 50 100-kV linear transformer drive (LTD) cavities in series, using magnetically insulated induction voltage adder (MIVA) technology for pulsed power addition and transmission. The pulsed power formation and the vacuum power flow are simulated when the system works in self-limited flow and load-limited flow. When the pulsed power system isn't connected to the load, the downstream magnetically insulated transmission line (MITL) works in the self-limited flow, the maximum of output current is 1.14 MA and the amplitude of voltage is 4.63 MV. The ratio of the electron current to the total current is 67.5%, when the output current reached the peak value. When the impedance of the load is 3.0 Ω, the downstream MITL works in the self-limited flow, the maximums of output current and the amplitude of voltage are 1.28 MA and 3.96 MV, and the ratio of the electron current to the total current is 11.7% when the output current reached the peak value. In addition, when the switches are triggered in synchronism with the passage of the pulse power flow, it effectively reduces the rise time of the pulse current.
Gender recognition from vocal source
NASA Astrophysics Data System (ADS)
Sorokin, V. N.; Makarov, I. S.
2008-07-01
Efficiency of automatic recognition of male and female voices based on solving the inverse problem for glottis area dynamics and for waveform of the glottal airflow volume velocity pulse is studied. The inverse problem is regularized through the use of analytical models of the voice excitation pulse and of the dynamics of the glottis area, as well as the model of one-dimensional glottal airflow. Parameters of these models and spectral parameters of the volume velocity pulse are considered. The following parameters are found to be most promising: the instant of maximum glottis area, the maximum derivative of the area, the slope of the spectrum of the glottal airflow volume velocity pulse, the amplitude ratios of harmonics of this spectrum, and the pitch. On the plane of the first two main components in the space of these parameters, an almost twofold decrease in the classification error relative to that for the pitch alone is attained. The male voice recognition probability is found to be 94.7%, and the female voice recognition probability is 95.9%.
High-power industrial pulsed CO2 laser
NASA Astrophysics Data System (ADS)
Levin, G. I.
1983-12-01
The use of a pulsed TEA CO2 laser (with maximum average power 1.0 kW; maximum pulse energy 3.5 J; repetition frequency 400-600 Hz; half-width pulse duration 15 microsec; circular-coupling-aperture beam diameter 6, 8, or 12 mm; and beam divergence 10 mrad) in industrial welding applications is investigated experimentally in carbon and stainless steels, Zr, Ti, and Ni of various thicknesses. The power required to melt the metals is found to be about 120-200 W/sq cm, or 5-6 times less than that for CW lasers. It is shown that deep narrow-seam welds with mechanical properties identical to those of the bulk metal can be obtained with little or no intercrystalline corrosion or thermal distortion of the surrounding area. Disadvantages such as the 65-dB noise level, low welding speed, formation of an overlap at the top and a crater at the bottom of the weld, and root porosity are considered the primary limitations on the applicability of the device tested.
A new high intensity and short-pulse molecular beam valve
NASA Astrophysics Data System (ADS)
Yan, B.; Claus, P. F. H.; van Oorschot, B. G. M.; Gerritsen, L.; Eppink, A. T. J. B.; van de Meerakker, S. Y. T.; Parker, D. H.
2013-02-01
In this paper, we report on the design and performance of a new home-built pulsed gas valve, which we refer to as the Nijmegen Pulsed Valve (NPV). The main output characteristics include a short pulse width (as short as 20 μs) combined with operating rates up to 30 Hz. The operation principle of the NPV is based on the Lorentz force created by a pulsed current passing through an aluminum strip located within a magnetic field, which opens the nozzle periodically. The amplitude of displacement of the opening mechanism is sufficient to allow the use of nozzles with up to 1.0 mm diameter. To investigate the performance of the valve, several characterizations were performed with different experimental methods. First, a fast ionization gauge was used to measure the beam intensity of the free jet emanating from the NPV. We compare free jets from the NPV with those from several other pulsed valves in current use in our laboratory. Results showed that a high intensity and short pulse-length beam could be generated by the new valve. Second, the NPV was tested in combination with a skimmer, where resonance enhanced multiphoton ionization combined with velocity map imaging was used to show that the NPV was able to produce a pulsed molecular beam with short pulse duration (˜20 μs using 0.1% NO/He at 6 bars) and low rotational temperature (˜1 K using 0.5% NO/Ar at 6 bars). Third, a novel two-point pump-probe method was employed which we label double delay scan. This method allows a full kinematic characterization of the molecular beam, including accurate speed ratios at different temporal positions. It was found that the speed ratio was maximum (S = 50 using 0.1% NO/He at 3 bars) at the peak position of the molecular beam and decreased when it was on the leading or falling edge.
Ma, Huan; Mismar, Wael; Wang, Yuli; Small, Donald W.; Ras, Mat; Allbritton, Nancy L.; Sims, Christopher E.; Venugopalan, Vasan
2012-01-01
We use time-resolved interferometry, fluorescence assays and computational fluid dynamics (CFD) simulations to examine the viability of confluent adherent cell monolayers to selection via laser microbeam release of photoresist polymer micropallets. We demonstrate the importance of laser microbeam pulse energy and focal volume position relative to the glass–pallet interface in governing the threshold energies for pallet release as well as the pallet release dynamics. Measurements using time-resolved interferometry show that increases in laser pulse energy result in increasing pallet release velocities that can approach 10 m s−1 through aqueous media. CFD simulations reveal that the pallet motion results in cellular exposure to transient hydrodynamic shear stress amplitudes that can exceed 100 kPa on microsecond timescales, and which produces reduced cell viability. Moreover, CFD simulation results show that the maximum shear stress on the pallet surface varies spatially, with the largest shear stresses occurring on the pallet periphery. Cell viability of confluent cell monolayers on the pallet surface confirms that the use of larger pulse energies results in increased rates of necrosis for those cells situated away from the pallet centre, while cells situated at the pallet centre remain viable. Nevertheless, experiments that examine the viability of these cell monolayers following pallet release show that proper choices for laser microbeam pulse energy and focal volume position lead to the routine achievement of cell viability in excess of 90 per cent. These laser microbeam parameters result in maximum pallet release velocities below 6 m s−1 and cellular exposure of transient hydrodynamic shear stresses below 20 kPa. Collectively, these results provide a mechanistic understanding that relates pallet release dynamics and associated transient shear stresses with subsequent cellular viability. This provides a quantitative, mechanistic basis for determining optimal operating conditions for laser microbeam-based pallet release systems for the isolation and selection of adherent cells. PMID:22158840
Ultraviolet out-of-band radiation studies in laser tin plasma sources
NASA Astrophysics Data System (ADS)
Parchamy, Homaira; Szilagyi, John; Masnavi, Majid; Richardson, Martin
2017-11-01
Out-of-band long wavelength emission measurements from high power, high-repetition-rate extreme-ultra-violet lithography (EUVL) laser plasma sources are imperative to estimating heat deposition in EUV mirrors, and the impact of short wavelength light transported through the imaging system to the wafer surface. This paper reports a series of experiments conducted to measure the absolute spectral irradiances of laser-plasmas produced from planar tin targets over the wavelength region of 124 to 164 nm by 1.06 μm wavelength, 10 ns full-width-at-half-maximum Gaussian laser pulses. The use of spherical targets is relevant to the EUVL source scenario. Although plasmas produced from planar surfaces evolve differently, there is a close similarity to the evolution of current from 10.6 μm CO2 laser EUVL sources, which use a pre-pulse from a lower energy solid-state laser to melt and reform an initial spherical droplet into a thin planar disc target. The maximum of radiation conversion efficiency in the 124-164 nm wavelength band (1%/2πsr) occurs at the laser intensity of 1010 W cm-2. A developed collisional-radiative model reveals the strong experimental spectra that originate mainly from the 4d105p2-4d105s5p, 4d105p-4d105s resonance lines, and 4d95p-4d95s unresolved transition arrays from Sn III, Sn IV, and Sn V ions, respectively. The calculated conversion efficiencies using a 2D radiation-hydrodynamics model are in agreement with the measurements. The model predicts the out-of-band (100-400 nm) radiation conversion efficiencies generated by both 1.06 and 10.6 μm pulses. The 10.6 μm laser pulse produces a higher conversion efficiency (12%/2πsr) at the lower laser intensity of 109 W cm-2.
Ma, Huan; Mismar, Wael; Wang, Yuli; Small, Donald W; Ras, Mat; Allbritton, Nancy L; Sims, Christopher E; Venugopalan, Vasan
2012-06-07
We use time-resolved interferometry, fluorescence assays and computational fluid dynamics (CFD) simulations to examine the viability of confluent adherent cell monolayers to selection via laser microbeam release of photoresist polymer micropallets. We demonstrate the importance of laser microbeam pulse energy and focal volume position relative to the glass-pallet interface in governing the threshold energies for pallet release as well as the pallet release dynamics. Measurements using time-resolved interferometry show that increases in laser pulse energy result in increasing pallet release velocities that can approach 10 m s(-1) through aqueous media. CFD simulations reveal that the pallet motion results in cellular exposure to transient hydrodynamic shear stress amplitudes that can exceed 100 kPa on microsecond timescales, and which produces reduced cell viability. Moreover, CFD simulation results show that the maximum shear stress on the pallet surface varies spatially, with the largest shear stresses occurring on the pallet periphery. Cell viability of confluent cell monolayers on the pallet surface confirms that the use of larger pulse energies results in increased rates of necrosis for those cells situated away from the pallet centre, while cells situated at the pallet centre remain viable. Nevertheless, experiments that examine the viability of these cell monolayers following pallet release show that proper choices for laser microbeam pulse energy and focal volume position lead to the routine achievement of cell viability in excess of 90 per cent. These laser microbeam parameters result in maximum pallet release velocities below 6 m s(-1) and cellular exposure of transient hydrodynamic shear stresses below 20 kPa. Collectively, these results provide a mechanistic understanding that relates pallet release dynamics and associated transient shear stresses with subsequent cellular viability. This provides a quantitative, mechanistic basis for determining optimal operating conditions for laser microbeam-based pallet release systems for the isolation and selection of adherent cells.
Individually Coded Telemetry: a Tool for Studying Heart Rate and Behaviour in Reindeer Calves
Eloranta, E; Norberg, H; Nilsson, A; Pudas, T; Säkkinen, H
2002-01-01
The aim of the study was to test the performance of a silver wire modified version of the coded telemetric heart rate monitor Polar Vantage NV™ (PVNV) and to measure heart rate (HR) in a group of captive reindeer calves during different behaviour. The technical performance of PVNV HR monitors was tested in cold conditions (-30°C) using a pulse generator and the correlation between generated pulse and PVNV values was high (r = 0.9957). The accuracy was tested by comparing the HR obtained with the PVNV monitor with the standard ECG, and the correlation was significant (r = 0.9965). Both circadian HR and HR related to behavioural pattern were recorded. A circadian rhythm was observed in the HR in reindeer with a minimum during night and early morning hours and maximum at noon and during the afternoon, the average HR of the reindeer calves studied being 42.5 beats/min in February. The behaviour was recorded by focal individual observations and the data was synchronized with the output of the HR monitors. Running differed from all other behavioural categories in HR. Inter-individual differences were seen expressing individual responses to external and internal stimuli. The silver wire modified Polar Vantage NV™ provides a suitable and reliable tool for measuring heart rate in reindeer, also in natural conditions. PMID:12564543
[Echolocation calls of free-flying Himalayan swiftlets (Aerodramus brevirostris)].
Wang, Bin; Ma, Jian-Zhang; Chen, Yi; Tan, Liang-Jing; Liu, Qi; Shen, Qi-Qi; Liao, Qing-Yi; Zhang, Li-Biao
2013-02-01
Here, we present our findings of free-flying echolocation calls of Himalayan swiftlets (Aerodramus brevirostris), which were recorded in Shenjing Cave, Hupingshan National Reserve, Shimen County, Hunan Province in June 2012, using Avisoft-UltraSoundGate 116(e). We noted that after foraging at dusk, the Himalayan swiftlets flew fast into the cave without clicks, and then slowed down in dark area in the cave, but with sounds. The echolocation sounds of Himalayan swiftlets are broadband, double noise burst clicks, separated by a short pause. The inter-pulse intervals between double clicks (99.3±3.86 ms)were longer than those within double clicks (6.6±0.42 ms) (P<0.01). With the exception of peak frequency, between 6.2±0.08 kHz and 6.2±0.10 kHz, (P>0.05) and pulse duration 2.9±0.12 ms, 3.2±0.17 ms, (P>0.05) between the first and second, other factors-maximum frequency, minimum frequency, frequency bandwidth, and power-were significantly different between the clicks. The maximum frequency of the first pulse (20.1±1.10 kHz) was higher than that of second (15.4±0.98 kHz) (P<0.01), while the minimum frequency of the first pulse (3.7±0.12 kHz) was lower than that of second (4.0±0.09 kHz) (P<0.05); resulting in the frequency bandwidth of the first pulse (16.5±1.17 kHz) longer than that of second (11.4±1.01 kHz) (P<0.01). The power of the first pulse (-32.5±0.60 dB) was higher than that of second (-35.2±0.94 dB) (P<0.05). More importantly, we found that Himalayan swiftlets emitted echolocation pulses including ultrasonic sound, with a maximum frequency reaching 33.2 kHz.
Study on the Depth, Rate, Shape, and Strength of Pulse with Cardiovascular Simulator.
Lee, Ju-Yeon; Jang, Min; Shin, Sang-Hoon
2017-01-01
Pulse diagnosis is important in oriental medicine. The purpose of this study is explaining the mechanisms of pulse with a cardiovascular simulator. The simulator is comprised of the pulse generating part, the vessel part, and the measurement part. The pulse generating part was composed of motor, slider-crank mechanism, and piston pump. The vessel part, which was composed with the aorta and a radial artery, was fabricated with silicon to implement pulse wave propagation. The pulse parameters, such as the depth, rate, shape, and strength, were simulated. With changing the mean pressure, the floating pulse and the sunken pulse were generated. The change of heart rate generated the slow pulse and the rapid pulse. The control of the superposition time of the reflected wave generated the string-like pulse and the slippery pulse. With changing the pulse pressure, the vacuous pulse and the replete pulse were generated. The generated pulses showed good agreements with the typical pulses.
Fiber-optic manipulation of urinary stone phantoms using holmium:YAG and thulium fiber lasers
NASA Astrophysics Data System (ADS)
Blackmon, Richard L.; Case, Jason R.; Trammell, Susan R.; Irby, Pierce B.; Fried, Nathaniel M.
2013-02-01
Fiber-optic attraction of urinary stones during laser lithotripsy may be exploited to manipulate stone fragments inside the urinary tract without mechanical grasping tools, saving the urologist time and space in the ureteroscope working channel. We compare thulium fiber laser (TFL) high pulse rate/low pulse energy operation to conventional holmium:YAG low pulse rate/high pulse energy operation for fiber-optic suctioning of plaster-of-paris (PoP) stone phantoms. A TFL (wavelength of 1908 nm, pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rate of 10 to 350 Hz) and a holmium laser (wavelength of 2120 nm, pulse energy of 35 to 360 mJ, pulse duration of 300 μs, and pulse rate of 20 Hz) were tested using 270-μm-core optical fibers. A peak drag speed of ˜2.5 mm/s was measured for both TFL (35 mJ and 150 to 250 Hz) and holmium laser (210 mJ and 20 Hz). Particle image velocimetry and thermal imaging were used to track water flow for all parameters. Fiber-optic suctioning of urinary stone phantoms is feasible. TFL operation at high pulse rates/low pulse energies is preferable to holmium operation at low pulse rates/high pulse energies for rapid and smooth stone pulling. With further development, this novel technique may be useful for manipulating stone fragments in the urinary tract.
RARE/Turbo Spin Echo Imaging with Simultaneous MultiSlice Wave-CAIPI
Eichner, Cornelius; Bhat, Himanshu; Grant, P. Ellen; Wald, Lawrence L.; Setsompop, Kawin
2014-01-01
Purpose To enable highly accelerated RARE/Turbo Spin Echo (TSE) imaging using Simultaneous MultiSlice (SMS) Wave-CAIPI acquisition with reduced g-factor penalty. Methods SMS Wave-CAIPI incurs slice shifts across simultaneously excited slices while playing sinusoidal gradient waveforms during the readout of each encoding line. This results in an efficient k-space coverage that spreads aliasing in all three dimensions to fully harness the encoding power of coil sensitivities. The novel MultiPINS radiofrequency (RF) pulses dramatically reduce the power deposition of multiband (MB) refocusing pulse, thus allowing high MB factors within the Specific Absorption Rate (SAR) limit. Results Wave-CAIPI acquisition with MultiPINS permits whole brain coverage with 1 mm isotropic resolution in 70 seconds at effective MB factor 13, with maximum and average g-factor penalties of gmax=1.34 and gavg=1.12, and without √R penalty. With blipped-CAIPI, the g-factor performance was degraded to gmax=3.24 and gavg=1.42; a 2.4-fold increase in gmax relative to Wave-CAIPI. At this MB factor, the SAR of the MultiBand and PINS pulses are 4.2 and 1.9 times that of the MultiPINS pulse, while the peak RF power are 19.4 and 3.9 times higher. Conclusion Combination of the two technologies, Wave-CAIPI and MultiPINS pulse, enables highly accelerated RARE/TSE imaging with low SNR penalty at reduced SAR. PMID:25640187
Uranus, H P; Zhuang, L; Roeloffzen, C G H; Hoekstra, H J W M
2007-09-01
We report experimental observations of the negative-group-velocity (v(g)) phenomenon in an integrated-optical two-port ring-resonator circuit. We demonstrate that when the v(g) is negative, the (main) peak of output pulse appears earlier than the peak of a reference pulse, while for a positive v(g), the situation is the other way around. We observed that a pulse splitting phenomenon occurs in the neighborhood of the critical-coupling point. This pulse splitting limits the maximum achievable delay and advancement of a single device as well as facilitating a smooth transition from highly advanced to highly delayed pulse, and vice versa, across the critical-coupling point.
Auditory Temporal Acuity Probed With Cochlear Implant Stimulation and Cortical Recording
Kirby, Alana E.
2010-01-01
Cochlear implants stimulate the auditory nerve with amplitude-modulated (AM) electric pulse trains. Pulse rates >2,000 pulses per second (pps) have been hypothesized to enhance transmission of temporal information. Recent studies, however, have shown that higher pulse rates impair phase locking to sinusoidal AM in the auditory cortex and impair perceptual modulation detection. Here, we investigated the effects of high pulse rates on the temporal acuity of transmission of pulse trains to the auditory cortex. In anesthetized guinea pigs, signal-detection analysis was used to measure the thresholds for detection of gaps in pulse trains at rates of 254, 1,017, and 4,069 pps and in acoustic noise. Gap-detection thresholds decreased by an order of magnitude with increases in pulse rate from 254 to 4,069 pps. Such a pulse-rate dependence would likely influence speech reception through clinical speech processors. To elucidate the neural mechanisms of gap detection, we measured recovery from forward masking after a 196.6-ms pulse train. Recovery from masking was faster at higher carrier pulse rates and masking increased linearly with current level. We fit the data with a dual-exponential recovery function, consistent with a peripheral and a more central process. High-rate pulse trains evoked less central masking, possibly due to adaptation of the response in the auditory nerve. Neither gap detection nor forward masking varied with cortical depth, indicating that these processes are likely subcortical. These results indicate that gap detection and modulation detection are mediated by two separate neural mechanisms. PMID:19923242
Pankiewicz, Urszula; Sujka, Monika; Kowalski, Radosław; Mazurek, Artur; Włodarczyk-Stasiak, Marzena; Jamroz, Jerzy
2017-04-15
The cultures of Saccharomyces cerevisiae were treated with pulsed electric fields (PEF) in order to obtain a maximum accumulation of selenium and zinc ions (simultaneously) in the biomass. The following concentrations: 100μgSe/ml and 150μgZn/ml medium were assumed to be optimal for the maximum accumulation of these ions, that is 43.07mg/gd.m. for selenium and 14.48mg/gd.m. for zinc, in the cultures treated with PEF. At optimal PEF parameters: electric field strength of 3kV/cm and pulse width of 10μs after the treatment of 20-h culture for 10min, the maximum accumulation of both ions in the yeast cells was observed. Application of PEF caused the increase of ions accumulation by 65% for selenium and 100% for zinc. Optimization of PEF parameters led to the further rise in the both ions accumulation resulting in over 2-fold and 2.5-fold higher concentration of selenium and zinc. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shikoda, A.; Sato, E.; Sagae, M.; Oizumi, T.; Tamakawa, Y.; Yanagisawa, T.
1994-04-01
The fundamental studies of a repetitive soft flash x-ray generator having a high-durability diode for high-speed radiography in biomedical and technological fields are described. This generator consisted of the following essential components: a constant negative high-voltage power supply, a line-type high-voltage pulser with two 10 m coaxial-cable condensers, each with a capacity of 1.0 nF, a thyratron pulser as a trigger device, an oil-diffusion pump, and a flash x-ray tube. The x-ray tube was of a diode type which was evacuated by an oil-diffusion pump with a pressure of approximately 6.7×10-3 Pa and was composed of a planar tungsten anode, a planar ferrite cathode, and a polymethylmethacrylate tube body. The space between the anode and cathode electrodes (AC space) could be regulated from the outside of the tube. The two cable condensers were charged from -40 to -60 kV by a power supply, and the output voltage was about -1.5 times the charged voltage. Both the first peak voltage and current increased according to increases in the charged voltage, and the maximum values of the voltage and current were about 90 kV and 0.72 kA, respectively. The pulse widths had values of less than 100 ns, and the maximum x-ray intensity was approximately 1.1 μC/kg at 0.5 m per pulse. The repetition rate was less than 54 Hz, and the maximum focal spot size was about 2.0×2.5 mm.
NASA Astrophysics Data System (ADS)
Matsushita, Ryo; Sato, Eiichi; Yanbe, Yutaka; Chiba, Hiraku; Maeda, Tomoko; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2013-03-01
A low-dose-rate X-ray computed tomography (CT) system is useful for reducing absorbed dose for patients. The CT system with a tube current of sub-mA was developed using a silicon X-ray diode (Si-XD). The Si-XD is a high-sensitivity Si photodiode (PD) selected for detecting X-ray photons, and the X-ray sensitivity of the Si-XD was twice as high as that of Si-PD cerium-doped yttrium aluminum perovskite [YAP(Ce)]. X-ray photons are directly detected using the Si-XD without a scintillator, and the photocurrent from the diode is amplified using current-voltage and voltage-voltage amplifiers. The output voltage is converted into logical pulses using a voltage-frequency converter with a maximum frequency of 500 kHz, and the frequency is proportional to the voltage. The pulses from the converter are sent to the differentiator with a time constant of 500 ns to generate short positive pulses for counting, and the pulses are counted using a counter card. Tomography is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan. The exposure time for obtaining a tomogram was 5 min at a scan step of 0.5 mm and a rotation step of 3.0°. The tube current and voltage were 0.55 mA and 60 kV, respectively, and iodine K-edge CT was carried out using filtered bremsstrahlung X-ray spectra with a peak energy of 38 keV.
FIBER OPTICS. ACOUSTOOPTICS: Compression of random pulses in fiber waveguides
NASA Astrophysics Data System (ADS)
Aleshkevich, Viktor A.; Kozhoridze, G. D.
1990-07-01
An investigation is made of the compression of randomly modulated signal + noise pulses during their propagation in a fiber waveguide. An allowance is made for a cubic nonlinearity and quadratic dispersion. The relationships governing the kinetics of transformation of the time envelope, and those which determine the duration and intensity of a random pulse are derived. The expressions for the optimal length of a fiber waveguide and for the maximum degree of compression are compared with the available data for regular pulses and the recommendations on selection of the optimal parameters are given.
Effect of Board Thickness on Sn-Ag-Cu Joint Interconnect Mechanical Shock Performance
NASA Astrophysics Data System (ADS)
Lee, Tae-Kyu; Xie, Weidong
2014-12-01
The mechanical stability of solder joints with Sn-Ag-Cu alloy joints on various board thicknesses was investigated with a high G level shock environment. A test vehicle with three different board thicknesses was used for board drop shock performance tests. These vehicles have three different strain and shock level condition couples per board, and are used to identify the joint stability and failure modes based on the board responses. The results revealed that joint stability is sensitive to board thickness. The board drop shock test showed that the first failure location shifts from the corner location near the standoff to the center with increased board thickness due to the shock wave response. From analysis of the thickness variation and failure cycle number, the strain rate during the pulse strain cycle is the dominant factor, which defines the life cycle number per board thickness, and not the maximum strain value. The failure location shift and the shock performance differentiation are discussed from the perspective of maximum principal strain, cycle frequency and strain rate per cycle.
Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; ...
2015-03-13
Radiation Pressure Acceleration is a highly efficient mechanism of laser driven ion acceleration, with the laser energy almost totally transferrable to the ions in the relativistic regime. There is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. In the case of a tightly focused laser pulses, which are utilized to get the highest intensity, another factor limiting the maximum ion energy comes into play, the transverse expansion of the target. Transverse expansion makes the target transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guidingmore » structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.« less
NASA Astrophysics Data System (ADS)
Zhang, Guoqing; Lina, Liu
2018-02-01
An ultra-fast photon counting method is proposed based on the charge integration of output electrical pulses of passive quenching silicon photomultipliers (SiPMs). The results of the numerical analysis with actual parameters of SiPMs show that the maximum photon counting rate of a state-of-art passive quenching SiPM can reach ~THz levels which is much larger than that of the existing photon counting devices. The experimental procedure is proposed based on this method. This photon counting regime of SiPMs is promising in many fields such as large dynamic light power detection.
Mode-locked Tm,Ho:KLu(WO(4))(2) laser at 2060 nm using InGaSb-based SESAMs.
Aleksandrov, Veselin; Gluth, Alexander; Petrov, Valentin; Buchvarov, Ivan; Steinmeyer, Günter; Paajaste, Jonna; Suomalainen, Soile; Härkönen, Antti; Guina, Mircea; Mateos, Xavier; Díaz, Francesc; Griebner, Uwe
2015-02-23
Passive mode-locking of a Tm,Ho:KLu(WO(4))(2) laser operating at 2060 nm using different designs of InGaAsSb quantum-well based semiconductor saturable absorber mirrors (SESAMs) is demonstrated. The self-starting mode-locked laser delivers pulse durations between 4 and 8 ps at a repetition rate of 93 MHz with maximum average output power of 155 mW. Mode-locking performance of a Tm,Ho:KLu(WO(4))(2) laser is compared for usage of a SESAM to a single-walled carbon nanotube saturable absorber.
Diode-pumped continuous-wave and passively Q-switched Nd:GdLuAG laser at 1443.9 nm
NASA Astrophysics Data System (ADS)
Wu, Qianwen; Liu, Zhaojun; Zhang, Sasa; Cong, Zhenghua; Guan, Chen; Xue, Feng; Chen, Hui; Huang, Qingjie; Xu, Xiaodong; Xu, Jun; Qin, Zengguang
2017-12-01
We investigated the 1443.9 nm laser characteristics of Nd:GdLuAG crystal. Diode-end-pumping configuration was employed under both continuous-wave (CW) and passively Q-switched operations. For CW operation, the maximum average output power was 1.36 W with a slope efficiency of 15%. By using a V3+:YAG crystal as the saturable absorber, we obtained the maximum average output power of 164 mW under Q-switched operation. The corresponding pulse energy was 29.3 μJ and pulse duration was 59 ns.
Qualification Testing of Laser Diode Pump Arrays for a Space-Based 2-micron Coherent Doppler Lidar
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.
2007-01-01
The 2-micron thulium and holmium-based lasers being considered as the transmitter source for space-based coherent Doppler lidar require high power laser diode pump arrays operating in a long pulse regime of about 1 msec. Operating laser diode arrays over such long pulses drastically impact their useful lifetime due to the excessive localized heating and substantial pulse-to-pulse thermal cycling of their active regions. This paper describes the long pulse performance of laser diode arrays and their critical thermal characteristics. A viable approach is then offered that allows for determining the optimum operational parameters leading to the maximum attainable lifetime.
NASA Astrophysics Data System (ADS)
Ionin, A. A.; Mokrousova, D. V.; Piterimov, D. A.; Seleznev, L. V.; Sinitsyn, D. V.; Sunchugasheva, E. S.
2018-04-01
The critical power for self-focusing in air for ultrashort ultraviolet laser pulses, stretched due to dispersion from 90 to 730 fs, was experimentally measured. It was shown that the pulse duration enhancement due to its propagation in condensed media leads to an almost linear decrease in the critical power for self-focusing. It was also observed that when the pulse peak power exceeds the critical one, the maximum of linear plasma distribution along the ultraviolet laser filament does not shift in the direction opposite to the laser pulse propagation, as observed for infrared laser filaments, but remains at the geometrical focus.
Experimental study of the acrylamide photopolymer with a pulsed laser
NASA Astrophysics Data System (ADS)
García, C.; Pascual, I.; Costela, A.; García-Moreno, I.; Fimia, A.; Sastre, R.
2001-02-01
We have demonstrated that holograms may be recorded in polyvinyl alcohol/acrylamide photopolymer dry films using pulsed laser exposure with a pulse length of 8 ns. We also studied the effect of the pulse fluency together with the number of pulses necessary to obtain maximum diffraction efficiency. The recording was performed using a holographic copying process. The original was a grating of 1000 lines/mm processed using silver halide sensitized gelatin. Diffraction efficiencies of 55% were obtained with sensitivities similar to those reached with the same material and cw exposure, without the need for pre-processing or final processing of the gratings.
Volcanic eruption volume flux estimations from very long period infrasound signals
NASA Astrophysics Data System (ADS)
Yamada, Taishi; Aoyama, Hiroshi; Nishimura, Takeshi; Iguchi, Masato; Hendrasto, Muhamad
2017-01-01
We examine very long period infrasonic signals accompanying volcanic eruptions near active vents at Lokon-Empung volcano in Indonesia, Aso, Kuchinoerabujima, and Kirishima volcanoes in Japan. The excitation of the very long period pulse is associated with an explosion, the emerging of an eruption column, and a pyroclastic density current. We model the excitation of the infrasound pulse, assuming a monopole source, to quantify the volume flux and cumulative volume of erupting material. The infrasound-derived volume flux and cumulative volume can be less than half of the video-derived results. A largely positive correlation can be seen between the infrasound-derived volume flux and the maximum eruption column height. Therefore, our result suggests that the analysis of very long period volcanic infrasound pulses can be helpful in estimating the maximum eruption column height.
High-slope-efficiency 2.06 μm Ho: YLF laser in-band pumped by a fiber-coupled broadband diode.
Ji, Encai; Liu, Qiang; Nie, Mingming; Cao, Xuezhe; Fu, Xing; Gong, Mali
2016-03-15
We first demonstrate the laser performance of a compact 2.06 μm Ho: YLF laser resonantly pumped by a broadband fiber-coupled diode. In continuous-wave (CW) operation, maximum output power of 1.63 W, corresponding to a slope efficiency of 89.2%, was obtained with a near diffraction-limited beam quality. In actively Q-switched operation, maximum pulse energy of 1.1 mJ was achieved at the repetition frequency of 100 Hz. The minimum pulse duration was 43 ns. The performance in both the CW and Q-switched regimes indicates that the current fiber-coupled diode in-band pumped Ho: YLF laser has great potential in certain conditions that require several watts of output power or several millijoules of short pulse energy.
Picosecond and femtosecond lasers for industrial material processing
NASA Astrophysics Data System (ADS)
Mayerhofer, R.; Serbin, J.; Deeg, F. W.
2016-03-01
Cold laser materials processing using ultra short pulsed lasers has become one of the most promising new technologies for high-precision cutting, ablation, drilling and marking of almost all types of material, without causing unwanted thermal damage to the part. These characteristics have opened up new application areas and materials for laser processing, allowing previously impossible features to be created and also reducing the amount of post-processing required to an absolute minimum, saving time and cost. However, short pulse widths are only one part of thee story for industrial manufacturing processes which focus on total costs and maximum productivity and production yield. Like every other production tool, ultra-short pulse lasers have too provide high quality results with maximum reliability. Robustness and global on-site support are vital factors, as well ass easy system integration.
High beam quality of a Q-switched 2-µm Tm,Ho:LuVO4 laser
NASA Astrophysics Data System (ADS)
Wang, Wei; Yang, Xining; Shen, Yingjie; Li, Linjun; Zhou, Long; Yang, Yuqiang; Bai, Yunfeng; Xie, Wenqiang; Ye, Guangchao; Yu, Xiaoyang
2018-05-01
A diode-end-pumped 2.05-µm Q-switched Tm,Ho:LuVO4 laser is reported in this paper. The cryogenic Tm3+ (5.0 at.%),Ho3+ (0.5 at.%):LuVO4 crystal was pumped by an 800-nm laser diode. At a pulse repetition frequency of 10 kHz, the maximum average output power of 3.77 W was achieved at 77 K when an incident pump power of 14.7 W was used. The slope efficiency and optical-optical conversion efficiency were 28.3 and 25.6%, respectively. The maximum per pulse energy was 2.54 mJ for a pulse duration of 69.9 ns. The beam quality factor Mx 2 was approximately 1.17 and My 2 was approximately 1.01 for the Tm,Ho:LuVO4 laser.
Kinetic processes determining attainable pulse repetition rate in pulsed metal vapor lasers
NASA Astrophysics Data System (ADS)
Petrash, Gueorgii G.
1998-06-01
A review of the investigations of the main processes determining the attainable pulse repetition rate of elemental metal vapor pulsed gas discharge self-terminating lasers, such as copper vapor laser, gold vapor laser, lead vapor laser, is given. Kinetic processes during an excitation pulse and interpulse period are considered as well as experiments with lasers operating at high repetition rate.
Laser Stimulation of Single Auditory Nerve Fibers
Littlefield, Philip D.; Vujanovic, Irena; Mundi, Jagmeet; Matic, Agnella Izzo; Richter, Claus-Peter
2011-01-01
Objectives/Hypothesis One limitation with cochlear implants is the difficulty stimulating spatially discrete spiral ganglion cell groups because of electrode interactions. Multipolar electrodes have improved on this some, but also at the cost of much higher device power consumption. Recently, it has been shown that spatially selective stimulation of the auditory nerve is possible with a mid-infrared laser aimed at the spiral ganglion via the round window. However, these neurons must be driven at adequate rates for optical radiation to be useful in cochlear implants. We herein use single-fiber recordings to characterize the responses of auditory neurons to optical radiation. Study Design In vivo study using normal-hearing adult gerbils. Methods Two diode lasers were used for stimulation of the auditory nerve. They operated between 1.844 μm and 1.873 μm, with pulse durations of 35 μs to 1,000 μs, and at repetition rates up to 1,000 pulses per second (pps). The laser outputs were coupled to a 200-μm-diameter optical fiber placed against the round window membrane and oriented toward the spiral ganglion. The auditory nerve was exposed through a craniotomy, and recordings were taken from single fibers during acoustic and laser stimulation. Results Action potentials occurred 2.5 ms to 4.0 ms after the laser pulse. The latency jitter was up to 3 ms. Maximum rates of discharge averaged 97 ± 52.5 action potentials per second. The neurons did not strictly respond to the laser at stimulation rates over 100 pps. Conclusions Auditory neurons can be stimulated by a laser beam passing through the round window membrane and driven at rates sufficient for useful auditory information. Optical stimulation and electrical stimulation have different characteristics; which could be selectively exploited in future cochlear implants. Level of Evidence Not applicable. PMID:20830761
Code of Federal Regulations, 2011 CFR
2011-10-01
... or below its maximum level. (p) Pulse. A pulse is a continuous transmission of a sequence of... bridge in a peer-to-peer connection or as a connector between the wired and wireless segments of the... the presence of a radar. (c) Average Symbol Envelope Power. The average symbol envelope power is the...
Efficacy in Microbial Sterilization of Pulsed Magnetic Field Treatment
USDA-ARS?s Scientific Manuscript database
Sterilization effects of the pulsed magnetic field with a maximum intensity of 11.37 Tesla were investigated on Escherichia coli AS 1.129, Staphylococcus aureus AS 1.89, Saccharomyces cerevisiae ATTC 7552 and Bacillus subtilis AS 1.921. The well-regulated fluctuations of sterilization effects with m...
Frequency domain tailoring for intra-pulse frequency mixing.
Ernotte, G; Lassonde, P; Légaré, F; Schmidt, B E
2016-10-17
Generating mid infrared (MIR) pulses by difference frequency generation (DFG) is often a trade-off between the maximum stability given by all-inline intra-pulse arrangements and the independent control of pulse parameters with inter-pulse pump-probe like scenarios. We propose a coalescence between both opposing approaches by realizing an all-inline inter-pulse DFG scheme employing a 4-f setup. This allows independent manipulation of the amplitude, delay and polarization of the two corresponding spectral side bands of a supercontinuum source while maintaining 20 attoseconds jitter without any feedback stabilization. After filamentation in air, the broadened Ti:Sa spectrum is tailored in a 4-f setup to generate tunable MIR pulses. In this manner, 2 µm, 4.8 µJ, 26.5 fs and carrier-envelope-phase (CEP) stabilized pulses are generated in a single DFG stage.
NASA Astrophysics Data System (ADS)
Rahman, M. F. A.; Dhar, A.; Das, S.; Dutta, D.; Paul, M. C.; Rusdi, M. F. M.; Latiff, A. A.; Dimyati, K.; Harun, S. W.
2018-07-01
We demonstrate a Q-switched all-fiber laser operating at 2-μm region by adding a piece of 8 cm long holmium doped fiber (HDF) as a fiber saturable absorber (SA) in Thulium doped fiber laser (TDFL) ring cavity. Doping of Ho ions into yttria-alumina silica glass was done through conventional Modified Chemical Vapor Deposition (MCVD) technique in conjunction with solution doping process. The fabricated HDF has a linear absorption of 3 dB with a core diameter and a numerical aperture of 10 μm and 0.18, respectively. A self-started Q-switching operation begins at 418 mW pump level and continually dominant until 564 mW pump level. As the pump power increases, stable pulse train presence from 30.61 kHz to 38.89 kHz while the pulse width reduces from 3.18 μs to 2.27 μs. Both maximum output power and maximum peak power are obtained at 5.05 mW and 57.2 mW, respectively, while the maximum pulse energy is calculated to be 129 nJ. The signal-to-noise ratio (SNR) of the fundamental frequency is 50 dB. Our work may contribute to the discovery of stable, robust, and economic SA for pulse fiber laser generation at 2-μm region.
NASA Astrophysics Data System (ADS)
Praveen, L.; Geeta Krishna, P.; Venugopal, L.; Prasad, N. E. C.
2018-03-01
Electrical Discharge Machining (EDM) is an unconventional metal removal process that is extensively used for removing the difficult-to-machine metal such as Ti alloys, super alloys and metal matrix composites. This paper investigates the effects of pulse (ON/OFF) time on EDM machining characteristics of Ti-6Al-4V alloy using copper and graphite as electrodes in reverse polarity condition. Full factorial design method was used to design the experiments. Two variables (Pulse On and OFF) with three levels are considered. The output variables are the tool wear rate and the material removal rate. The important findings from the present work are: (1) the material removal rate (MRR) increases gradually with an increase of the Pulse ON time whereas the change is insignificant with an increase of the Pulse OFF time, (2) Between copper and graphite electrodes, the copper electrode is proved to be good in terms of MRR, (3) a combination of high pulse ON time and OFF time is desirable for high MRR rate in the Cu electrode whereas for the graphite electrode, a combination of high pulse ON time and low pulse OFF time is desirable for high MRR rate, (4) the tool wear rate (TWR) reduces with the Pulse On or OFF time, the rate of TWR is uniform for the graphite electrode in contrast to abrupt decrease from 25 to 50 μs (pulse ON time) in the copper electrode, (5) In order to keep the TWR as minimum possible, it is desirable to have a combination of high pulse ON time and OFF time for both the copper and the graphite electrode.
Self-masking: Listening during vocalization. Normal hearing.
Borg, Erik; Bergkvist, Christina; Gustafsson, Dan
2009-06-01
What underlying mechanisms are involved in the ability to talk and listen simultaneously and what role does self-masking play under conditions of hearing impairment? The purpose of the present series of studies is to describe a technique for assessment of masked thresholds during vocalization, to describe normative data for males and females, and to focus on hearing impairment. The masking effect of vocalized [a:] on narrow-band noise pulses (250-8000 Hz) was studied using the maximum vocalization method. An amplitude-modulated series of sound pulses, which sounded like a steam engine, was masked until the criterion of halving the perceived pulse rate was reached. For masking of continuous reading, a just-follow-conversation criterion was applied. Intra-session test-retest reproducibility and inter-session variability were calculated. The results showed that female voices were more efficient in masking high frequency noise bursts than male voices and more efficient in masking both a male and a female test reading. The male had to vocalize 4 dBA louder than the female to produce the same masking effect on the test reading. It is concluded that the method is relatively simple to apply and has small intra-session and fair inter-session variability. Interesting gender differences were observed.
NASA Astrophysics Data System (ADS)
Bratton, John F.; Colman, Steven M.; Thieler, E. Robert; Seal, Robert R.
2002-12-01
Two major pulses of sea-level rise are thought to have taken place since the last glacial maximum — meltwater pulses (mwp) 1A (12 cal ka) and 1B (9.5 cal ka). Between mwp 1B and about 6 cal ka, many of the complex coastal ecosystems which ring the world's oceans began to form. Here we report data for rhenium, carbon isotopes, total organic carbon, and fossil oysters from Chesapeake Bay which span the transition from fresh to brackish water conditions in the bay in the mid-Holocene. These data constrain sea-level change and resulting environmental change in the bay. They indicate that the transition was rapid, and that it was produced by (1) a third pulse of rapid eustatic sea-level rise, or (2) a geometry of the prehistoric Chesapeake Bay basin which predisposed it to a nonlinear response to a steadily rising sea level. Similar nonlinear changes in vulnerable coastal environments are likely to take place in the future due to polar warming, regardless of the timing or rate of sea-level rise.
Bratton, John F.; Colman, Steven M.; Thieler, E. Robert; Seal, Robert R.
2003-01-01
Two major pulses of sea-level rise are thought to have taken place since the last glacial maximum — meltwater pulses (mwp) 1A (12 cal ka) and 1B (9.5 cal ka). Between mwp 1B and about 6 cal ka, many of the complex coastal ecosystems which ring the world’s oceans began to form. Here we report data for rhenium, carbon isotopes, total organic carbon, and fossil oysters from Chesapeake Bay which span the transition from fresh to brackish water conditions in the bay in the mid-Holocene. These data constrain sea-level change and resulting environmental change in the bay. They indicate that the transition was rapid, and that it was produced by (1) a third pulse of rapid eustatic sea-level rise, or (2) a geometry of the prehistoric Chesapeake Bay basin which predisposed it to a nonlinear response to a steadily rising sea level. Similar nonlinear changes in vulnerable coastal environments are likely to take place in the future due to polar warming, regardless of the timing or rate of sea-level rise.
Applications of picosecond lasers and pulse-bursts in precision manufacturing
NASA Astrophysics Data System (ADS)
Knappe, Ralf
2012-03-01
Just as CW and quasi-CW lasers have revolutionized the materials processing world, picosecond lasers are poised to change the world of micromachining, where lasers outperform mechanical tools due to their flexibility, reliability, reproducibility, ease of programming, and lack of mechanical force or contamination to the part. Picosecond lasers are established as powerful tools for micromachining. Industrial processes like micro drilling, surface structuring and thin film ablation benefit from a process, which provides highest precision and minimal thermal impact for all materials. Applications such as microelectronics, semiconductor, and photovoltaic industries use picosecond lasers for maximum quality, flexibility, and cost efficiency. The range of parts, manufactured with ps lasers spans from microscopic diamond tools over large printing cylinders with square feet of structured surface. Cutting glass for display and PV is a large application, as well. With a smart distribution of energy into groups of ps-pulses at ns-scale separation (known as burst mode) ablation rates can be increased by one order of magnitude or more for some materials, also providing a better surface quality under certain conditions. The paper reports on the latest results of the laser technology, scaling of ablation rates, and various applications in ps-laser micromachining.
Testing the odontocete acoustic prey debilitation hypothesis: no stunning results.
Benoit-Bird, Kelly J; Au, Whitlow W L; Kastelein, Ronald
2006-08-01
The hypothesis that sounds produced by odontocetes can debilitate fish was examined. The effects of simulated odontocete pulsed signals on three species of fish commonly preyed on by odontocetes were examined, exposing three individuals of each species as well as groups of four fish to a high-frequency click of a bottlenose dolphin [peak frequency (PF) 120 kHz, 213-dB peak-to-peak exposure level (EL)], a midfrequency click modeled after a killer whale's signal (PF 55 kHz, 208-dB EL), and a low-frequency click (PF 18 kHz, 193-dB EL). Fish were held in a 50-cm diameter net enclosure immediately in front of a transducer where their swimming behavior, orientation, and balance were observed with two video cameras. Clicks were presented at constant rates and in graded sweeps simulating a foraging dolphin's "terminal buzz." No measurable change in behavior was observed in any of the fish for any signal type or pulse modulation rate, despite the fact that clicks were at or near the maximum source levels recorded for odontocetes. Based on the results, the hypothesis that acoustic signals of odontocetes alone can disorient or "stun" prey cannot be supported.
Tm:CaGdAlO4: spectroscopy, microchip laser and passive Q-switching by carbon nanostructures
NASA Astrophysics Data System (ADS)
Loiko, Pavel; Mateos, Xavier; Choi, Sun Young; Rotermund, Fabian; Liebald, Christoph; Peltz, Mark; Vernay, Sophie; Rytz, Daniel; Wang, Yicheng; Kemnitzer, Matthias; Agnesi, Antonio; Vilejshikova, Elena; Yumashev, Konstantin; Griebner, Uwe; Petrov, Valentin
2017-02-01
Absorption, stimulated-emission and gain cross-sections are determined for 3 at.% Tm:CaGdAlO4. This crystal is employed in a microchip laser diode-pumped at 802 nm. In the continuous-wave (CW) regime, this laser generates 1.16 W at 1883-1893 nm with a slope efficiency of 32% with respect to the absorbed pump power. Using a special "bandpass" output coupler, vibronic CW laser operation up to 2043 nm is achieved. For passive Q-switching of the Tm:CaGdAlO4 laser-saturable absorbers (SAs) based on CVD-grown graphene and randomly-oriented arc-discharge single-walled carbon nanotubes (SWCNTs) in a PMMA film. The SWCNT-SA demonstrates superior performance. The laser produced a maximum average output power of 245 mW at 1844 nm with a slope efficiency of 8%. The latter corresponds to a pulse energy and duration of 6 μJ and 138 ns, respectively, at a repetition rate of 41 kHz. Using the graphene-SA, 2.8 μJ, 490 ns pulses are obtained at a repetition rate of 86 kHz.
NASA Astrophysics Data System (ADS)
Plamann, Karsten; Nuzzo, Valeria; Albert, Olivier; Mourou, Gérard A.; Savoldelli, Michèle; Dagonet, Françoise; Donate, David; Legeais, Jean-Marc
2007-02-01
Femtosecond lasers start to be routinely used in refractive eye surgery. Current research focuses on their application to glaucoma and cataract surgery as well as cornea transplant procedures. To avoid unwanted tissue damage during the surgical intervention it is of utmost importance to maintain a working energy just above the ablation threshold and maintain the laser energy at this working point independently of the local and global tissue properties. To quantify the attenuation of the laser power density in the tissue by absorption, scattering and modification of the point spread function we monitor the second harmonic radiation generated in the collagen matrix of the cornea when exposed to ultrashort laser pulses. We use a CPA system with a regenerative amplifier delivering pulses at a wavelength of 1.06 μm, pulse durations of 400 fs and a maximum energy of 60 μJ. The repetition rate is adjustable from single shot up to 10 kHz. The experiments are performed on human corneas provided by the French Eye bank. To capture the SHG radiation we use a photomultiplier tube connected to a lockin amplifier tuned to the laser repetition rate. The measured data indicates an exponential decay of the laser beam intensity in the volume of the sample and allows for the quantification of the attenuation coefficient and its correlation with the optical properties of the cornea. Complementary analyses were performed on the samples by ultrastructural histology.
In-vitro Comminution of Model Renal Calculi using Histotripsy
Duryea, Alexander P.; Maxwell, Adam D.; Roberts, William W.; Xu, Zhen; Hall, Timothy L.; Cain, Charles A.
2013-01-01
Shock wave lithotripsy (SWL) suffers from the fact that it can produce residual stone fragments of significant size (>2 mm). Mechanistically, cavitation has been shown to play an important role in the reduction of such fragments to smaller debris. In this study we assessed the feasibility of using cavitationally-based pulsed ultrasound therapy (histotripsy) to erode kidney stones. Previous work has shown that histotripsy is capable of mechanically fractionating soft tissue into fine, acellular debris. Here, we investigated the potential for translating this technology to renal calculi through the use of a commonly accepted stone model, Ultracal-30 cement. Stones were sonicated using a 1-MHz focused transducer, with 5-cycle pulses delivered at a rate of 1 kHz. Pulses having peak negative pressures ranging from 3–21 MPa were tested. Results indicate that histotripsy is capable of effectively eroding the Ultracal-30 model, achieving an average stone erosion rate of 26 mg/min at maximum treatment pressure; substantial stone erosion was only observed in the presence of a dense cavitational bubble cloud. Sequential sieving of residual stone fragments indicated that debris produced by histotripsy was smaller than 100 μm in size, and treatment monitoring showed that both the cavitational bubble cloud and model stone appear as hyperechoic regions on B-mode imaging. These preliminary results indicate that histotripsy shows promise in its use for stone comminution, and an optimized erosion process may provide a potential adjunct to conventional SWL procedures. PMID:21622053
How the laser-induced ionization of transparent solids can be suppressed
NASA Astrophysics Data System (ADS)
Gruzdev, Vitaly
2013-12-01
A capability to suppress laser-induced ionization of dielectric crystals in controlled and predictable way can potentially result in substantial improvement of laser damage threshold of optical materials. The traditional models that employ the Keldysh formula do not predict any suppression of the ionization because of the oversimplified description of electronic energy bands underlying the Keldysh formula. To fix this gap, we performed numerical simulations of time evolution of conduction-band electron density for a realistic cosine model of electronic bands characteristic of wide-band-gap cubic crystals. The simulations include contributions from the photo-ionization (evaluated by the Keldysh formula and by the formula for the cosine band of volume-centered cubic crystals) and from the avalanche ionization (evaluated by the Drude model). Maximum conduction-band electron density is evaluated from a single rate equation as a function of peak intensity of femtosecond laser pulses for alkali halide crystals. Results obtained for high-intensity femtosecond laser pulses demonstrate that the ionization can be suppressed by proper choice of laser parameters. In case of the Keldysh formula, the peak electron density exhibits saturation followed by gradual increase. For the cosine band, the electron density increases with irradiance within the low-intensity multiphoton regime and switches to decrease with intensity approaching threshold of the strong singularity of the ionization rate characteristic of the cosine band. Those trends are explained with specific modifications of band structure by electric field of laser pulses.
Effect of Repetition Rate on Femtosecond Laser-Induced Homogenous Microstructures
Biswas, Sanchari; Karthikeyan, Adya; Kietzig, Anne-Marie
2016-01-01
We report on the effect of repetition rate on the formation and surface texture of the laser induced homogenous microstructures. Different microstructures were micromachined on copper (Cu) and titanium (Ti) using femtosecond pulses at 1 and 10 kHz. We studied the effect of the repetition rate on structure formation by comparing the threshold accumulated pulse (FΣpulse) values and the effect on the surface texture through lacunarity analysis. Machining both metals at low FΣpulse resulted in microstructures with higher lacunarity at 10 kHz compared to 1 kHz. On increasing FΣpulse, the microstructures showed higher lacunarity at 1 kHz. The effect of the repetition rate on the threshold FΣpulse values were, however, considerably different on the two metals. With an increase in repetition rate, we observed a decrease in the threshold FΣpulse on Cu, while on Ti we observed an increase. These differences were successfully allied to the respective material characteristics and the resulting melt dynamics. While machining Ti at 10 kHz, the melt layer induced by one laser pulse persists until the next pulse arrives, acting as a dielectric for the subsequent pulse, thereby increasing FΣpulse. However, on Cu, the melt layer quickly resolidifies and no such dielectric like phase is observed. Our study contributes to the current knowledge on the effect of the repetition rate as an irradiation parameter. PMID:28774143
Using a Calculated Pulse Rate with an Artificial Neural Network to Detect Irregular Interbeats.
Yeh, Bih-Chyun; Lin, Wen-Piao
2016-03-01
Heart rate is an important clinical measure that is often used in pathological diagnosis and prognosis. Valid detection of irregular heartbeats is crucial in the clinical practice. We propose an artificial neural network using the calculated pulse rate to detect irregular interbeats. The proposed system measures the calculated pulse rate to determine an "irregular interbeat on" or "irregular interbeat off" event. If an irregular interbeat is detected, the proposed system produces a danger warning, which is helpful for clinicians. If a non-irregular interbeat is detected, the proposed system displays the calculated pulse rate. We include a flow chart of the proposed software. In an experiment, we measure the calculated pulse rates and achieve an error percentage of < 3% in 20 participants with a wide age range. When we use the calculated pulse rates to detect irregular interbeats, we find such irregular interbeats in eight participants.
NASA Astrophysics Data System (ADS)
Rączka, P.; Dubois, J.-L.; Hulin, S.; Tikhonchuk, V.; Rosiński, M.; Zaraś-Szydłowska, A.; Badziak, J.
2017-12-01
Measurements are reported of the target neutralization current, the target charge, and the tangential component of the magnetic field generated as a result of laser-target interaction by pulses with the energy in the range of 45 mJ to 92 mJ on target and the pulse duration from 39 fs to 1000 fs. The experiment was performed at the Eclipse facility in CELIA, Bordeaux. The aim of the experiment was to extend investigations performed for the thick (mm scale) targets to the case of thin (micrometer thickness) targets in a way that would allow for a straightforward comparison of the results. We found that thin foil targets tend to generate 20 to 50 percent higher neutralization current and the target charge than the thick targets. The measurement of the tangential component of the magnetic field had shown that the initial spike is dominated by the 1 ns pulse consistent with the 1 ns pulse of the neutralization current, but there are some differences between targets of different type on sub-ns scale, which is an effect going beyond a simple picture of the target acting as an antenna. The sub-ns structure appears to be reproducible to surprising degree. We found that there is in general a linear correlation between the maximum value of the magnetic field and the maximum neutralization current, which supports the target-antenna picture, except for pulses hundreds of fs long.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulanov, Stepan S.; Brantov, Andrei; Bychenkov, Valery Yu.
2008-05-15
Proton acceleration by high-intensity laser pulses from ultrathin foils for hadron therapy is discussed. With the improvement of the laser intensity contrast ratio to 10{sup -11} achieved on the Hercules laser at the University of Michigan, it became possible to attain laser-solid interactions at intensities up to 10{sup 22} W/cm{sup 2} that allows an efficient regime of laser-driven ion acceleration from submicron foils. Particle-in-cell (PIC) computer simulations of proton acceleration in the directed Coulomb explosion regime from ultrathin double-layer (heavy ions/light ions) foils of different thicknesses were performed under the anticipated experimental conditions for the Hercules laser with pulse energiesmore » from 3 to 15 J, pulse duration of 30 fs at full width half maximum (FWHM), focused to a spot size of 0.8 {mu}m (FWHM). In this regime heavy ions expand predominantly in the direction of laser pulse propagation enhancing the longitudinal charge separation electric field that accelerates light ions. The dependence of the maximum proton energy on the foil thickness has been found and the laser pulse characteristics have been matched with the thickness of the target to ensure the most efficient acceleration. Moreover, the proton spectrum demonstrates a peaked structure at high energies, which is required for radiation therapy. Two-dimensional PIC simulations show that a 150-500 TW laser pulse is able to accelerate protons up to 100-220 MeV energies.« less
Bulanov, Stepan S.; Brantov, Andrei; Bychenkov, Valery Yu.; Chvykov, Vladimir; Kalinchenko, Galina; Matsuoka, Takeshi; Rousseau, Pascal; Reed, Stephen; Yanovsky, Victor; Krushelnick, Karl; Litzenberg, Dale William; Maksimchuk, Anatoly
2008-01-01
Proton acceleration by high-intensity laser pulses from ultrathin foils for hadron therapy is discussed. With the improvement of the laser intensity contrast ratio to 10−11 achieved on the Hercules laser at the University of Michigan, it became possible to attain laser-solid interactions at intensities up to 1022 W∕cm2 that allows an efficient regime of laser-driven ion acceleration from submicron foils. Particle-in-cell (PIC) computer simulations of proton acceleration in the directed Coulomb explosion regime from ultrathin double-layer (heavy ions∕light ions) foils of different thicknesses were performed under the anticipated experimental conditions for the Hercules laser with pulse energies from 3 to 15 J, pulse duration of 30 fs at full width half maximum (FWHM), focused to a spot size of 0.8 μm (FWHM). In this regime heavy ions expand predominantly in the direction of laser pulse propagation enhancing the longitudinal charge separation electric field that accelerates light ions. The dependence of the maximum proton energy on the foil thickness has been found and the laser pulse characteristics have been matched with the thickness of the target to ensure the most efficient acceleration. Moreover, the proton spectrum demonstrates a peaked structure at high energies, which is required for radiation therapy. Two-dimensional PIC simulations show that a 150–500 TW laser pulse is able to accelerate protons up to 100–220 MeV energies. PMID:18561651