Direct measurement of a patient's entrance skin dose during pediatric cardiac catheterization
Sun, Lue; Mizuno, Yusuke; Iwamoto, Mari; Goto, Takahisa; Koguchi, Yasuhiro; Miyamoto, Yuka; Tsuboi, Koji; Chida, Koichi; Moritake, Takashi
2014-01-01
Children with complex congenital heart diseases often require repeated cardiac catheterization; however, children are more radiosensitive than adults. Therefore, radiation-induced carcinogenesis is an important consideration for children who undergo those procedures. We measured entrance skin doses (ESDs) using radio-photoluminescence dosimeter (RPLD) chips during cardiac catheterization for 15 pediatric patients (median age, 1.92 years; males, n = 9; females, n = 6) with cardiac diseases. Four RPLD chips were placed on the patient's posterior and right side of the chest. Correlations between maximum ESD and dose–area products (DAP), total number of frames, total fluoroscopic time, number of cine runs, cumulative dose at the interventional reference point (IRP), body weight, chest thickness, and height were analyzed. The maximum ESD was 80 ± 59 (mean ± standard deviation) mGy. Maximum ESD closely correlated with both DAP (r = 0.78) and cumulative dose at the IRP (r = 0.82). Maximum ESD for coiling and ballooning tended to be higher than that for ablation, balloon atrial septostomy, and diagnostic procedures. In conclusion, we directly measured ESD using RPLD chips and found that maximum ESD could be estimated in real-time using angiographic parameters, such as DAP and cumulative dose at the IRP. Children requiring repeated catheterizations would be exposed to high radiation levels throughout their lives, although treatment influences radiation dose. Therefore, the radiation dose associated with individual cardiac catheterizations should be analyzed, and the effects of radiation throughout the lives of such patients should be followed. PMID:24968708
Suzuki, Akira; Matsubara, Kosuke; Sasa, Yuko
2018-04-01
The present study aimed to determine doses delivered to the eye lenses of surgeons while using the inverted-C-arm technique and the protective effect of leaded spectacles during orthopedic surgery. The kerma in air was measured at five positions on leaded glasses positioned near the eye lens and on the neck using small optically stimulated luminescence (OSL) dosemeters. The lens equivalent dose was also measured at the neck using an OSL dosemeter. The maximum equivalent dose to the eye lens and the maximum kerma were 0.8 mSv/month and 0.66 mGy/month, respectively. The leaded glasses reduced the exposure by ~60%. Even if the surgeons are exposed to the maximum dose of X-ray radiation for 5 years, the equivalent doses to the eye lens will not exceed the present limit recommended by the ICRP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sparks, R.B.; Stabin, M.G.
1999-01-01
After administration of I-131 to the female patient, the possibility of radiation exposure of the embryo/fetus exists if the patient becomes pregnant while radioiodine remains in the body. Fetal radiation dose estimates for such cases were calculated. Doses were calculated for various maternal thyroid uptakes and time intervals between administration and conception, including euthyroid and hyperthyroid cases. The maximum fetal dose calculating was about 9.8E-03 mGy/MBq, which occurred with 100% maternal thyroid uptake and a 1 week interval between administration and conception. Placental crossover of the small amount of radioiodine remaining 90 days after conception was also considered. Such crossovermore » could result in an additional fetal dose of 9.8E-05 mGy/MBq and a maximum fetal thyroid self dose of 3.5E-04 mGy/MBq.« less
Chiang, Hsien-Wen; Liu, Ya-Ling; Chen, Tou-Rong; Chen, Chun-Lon; Chiang, Hsien-Jen; Chao, Shin-Yu
2015-01-01
This work aimed to investigate the spatial distribution of scattered radiation doses induced by exposure to the portable X-ray, the C-arm machine, and to simulate the radiologist without a shield of lead clothing, radiation doses absorbed by medical staff at 2 m from the central exposure point. With the adoption of the Rando Phantom, several frequently X-rayed body parts were exposed to X-ray radiation, and the scattered radiation doses were measured by ionization chamber dosimeters at various angles from the patient. Assuming that the central point of the X-ray was located at the belly button, five detection points were distributed in the operation room at 1 m above the ground and 1-2 m from the central point horizontally. The radiation dose measured at point B was the lowest, and the scattered radiation dose absorbed by the prosthesis from the X-ray's vertical projection was 0.07 ±0.03 μGy, which was less than the background radiation levels. The Fluke biomedical model 660-5DE (400 cc) and 660-3DE (4 cc) ion chambers were used to detect air dose at a distance of approximately two meters from the central point. The AP projection radiation doses at point B was the lowest (0.07±0.03 μGy) and the radiation doses at point D was the highest (0.26±0.08 μGy) .Only taking the vertical projection into account, the radiation doses at point B was the lowest (0.52 μGy), and the radiation doses at point E was the highest (4 μGy).The PA projection radiation at point B was the lowest (0.36 μGy) and the radiation doses at point E was the highest(2.77 μGy), occupying 10-32% of the maximum doses. The maximum dose in five directions was nine times to the minimum dose. When the PX and the C-arm machine were used, the radiation doses at a distance of 2 m were attenuated to the background radiation level. The radiologist without a lead shield should stand at point B of patient's feet. Accordingly, teaching materials on radiation safety for radiological interns and clinical technicians were formulated.
CT Fluoroscopy Shielding: Decreases in Scattered Radiation for the Patient and Operator
Neeman, Ziv; Dromi, Sergio A.; Sarin, Shawn; Wood, Bradford J.
2008-01-01
PURPOSE High-radiation exposure occurs during computed tomographic (CT) fluoroscopy. Patient and operator doses during thoracic and abdominal interventional procedures were studied in the present experiment, and a novel shielding device to reduce exposure to the patient and operator was evaluated. MATERIALS AND METHODS With a 16-slice CT scanner in CT fluoroscopy mode (120 kVp, 30 mA), surface dosimetry was performed on adult and pediatric phantoms. The shielding was composed of tungsten antimony in the form of a lightweight polymer sheet. Doses to the patient were measured with and without shielding for thoracic and abdominal procedures. Doses to the operator were recorded with and without phantom, gantry, and table shielding in place. Double-layer lead-free gloves were used by the operator during the procedures. RESULTS Tungsten antimony shielding adjacent to the scan plane resulted in a maximum dose reduction of 92.3% to the patient. Maximum 85.6%, 93.3%, and 85.1% dose reductions were observed for the operator’s torso, gonads, and hands, respectively. The use of double-layer lead-free gloves resulted in a maximum radiation dose reduction of 97%. CONCLUSIONS Methods to reduce exposure during CT fluoroscopy are effective and should be searched for. Significant reduction in radiation doses to the patient and operator can be accomplished with tungsten antimony shielding. PMID:17185699
Dickie, Colleen I; Parent, Amy L; Griffin, Anthony M; Fung, Sharon; Chung, Peter W M; Catton, Charles N; Ferguson, Peter C; Wunder, Jay S; Bell, Robert S; Sharpe, Michael B; O'Sullivan, Brian
2009-11-15
To examine the relationship between tumor location, bone dose, and irradiated bone length on the development of radiation-induced fractures for lower extremity soft tissue sarcoma (LE-STS) patients treated with limb-sparing surgery and radiotherapy (RT). Of 691 LE-STS patients treated from 1989 to 2005, 31 patients developed radiation-induced fractures. Analysis was limited to 21 fracture patients (24 fractures) who were matched based on tumor size and location, age, beam arrangement, and mean total cumulative RT dose to a random sample of 53 nonfracture patients and compared for fracture risk factors. Mean dose to bone, RT field size (FS), maximum dose to a 2-cc volume of bone, and volume of bone irradiated to >or=40 Gy (V40) were compared. Fracture site dose was determined by comparing radiographic images and surgical reports to fracture location on the dose distribution. For fracture patients, mean dose to bone was 45 +/- 8 Gy (mean dose at fracture site 59 +/- 7 Gy), mean FS was 37 +/- 8 cm, maximum dose was 64 +/- 7 Gy, and V40 was 76 +/- 17%, compared with 37 +/- 11 Gy, 32 +/- 9 cm, 59 +/- 8 Gy, and 64 +/- 22% for nonfracture patients. Differences in mean, maximum dose, and V40 were statistically significant (p = 0.01, p = 0.02, p = 0.01). Leg fractures were more common above the knee joint. The risk of radiation-induced fracture appears to be reduced if V40 <64%. Fracture incidence was lower when the mean dose to bone was <37 Gy or maximum dose anywhere along the length of bone was <59 Gy. There was a trend toward lower mean FS for nonfracture patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leavitt, Jacqueline A., E-mail: leavitt.jacqueline@mayo.edu; Stafford, Scott L.; Link, Michael J.
2013-11-01
Purpose: To determine the long-term risk of radiation-induced optic neuropathy (RION) in patients having single-fraction stereotactic radiosurgery (SRS) for benign skull base tumors. Methods and Materials: Retrospective review of 222 patients having Gamma Knife radiosurgery for benign tumors adjacent to the anterior visual pathway (AVP) between 1991 and 1999. Excluded were patients with prior or concurrent external beam radiation therapy or SRS. One hundred twenty-nine patients (58%) had undergone previous surgery. Tumor types included confirmed World Health Organization grade 1 or presumed cavernous sinus meningioma (n=143), pituitary adenoma (n=72), and craniopharyngioma (n=7). The maximum dose to the AVP was ≤8.0more » Gy (n=126), 8.1-10.0 Gy (n=39), 10.1-12.0 Gy (n=47), and >12 Gy (n=10). Results: The mean clinical and imaging follow-up periods were 83 and 123 months, respectively. One patient (0.5%) who received a maximum radiation dose of 12.8 Gy to the AVP developed unilateral blindness 18 months after SRS. The chance of RION according to the maximum radiation dose received by the AVP was 0 (95% confidence interval [CI] 0-3.6%), 0 (95% CI 0-10.7%), 0 (95% CI 0-9.0%), and 10% (95% CI 0-43.0%) for patients receiving ≤8 Gy, 8.1-10.0 Gy, 10.1-12.0 Gy, and >12 Gy, respectively. The overall risk of RION in patients receiving >8 Gy to the AVP was 1.0% (95% CI 0-6.2%). Conclusions: The risk of RION after single-fraction SRS in patients with benign skull base tumors who have no prior radiation exposure is very low if the maximum dose to the AVP is ≤12 Gy. Physicians performing single-fraction SRS should remain cautious when treating lesions adjacent to the AVP, especially when the maximum dose exceeds 10 Gy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pugh, Thomas J.; Chen Changhu; Rabinovitch, Rachel
Purpose: To determine the maximal tolerated dose of bortezomib with concurrent external beam radiation therapy in patients with incurable solid malignant tumors requiring palliative therapy. Methods and Materials: An open label, dose escalation, phase I clinical trial evaluated the safety of three dose levels of bortezomib administered intravenously (1.0 mg/m{sup 2}, 1.3 mg/m{sup 2}, and 1.6 mg/m{sup 2}/ dose) once weekly with concurrent radiation in patients with histologically confirmed solid tumors and a radiographically appreciable lesion suitable for palliative radiation therapy. All patients received 40 Gy in 16 fractions to the target lesion. Dose-limiting toxicity was the primary endpoint, definedmore » as any grade 4 hematologic toxicity, any grade {>=}3 nonhematologic toxicity, or any toxicity requiring treatment to be delayed for {>=}2 weeks. Results: A total of 12 patients were enrolled. Primary sites included prostate (3 patients), head and neck (3 patients), uterus (1 patient), abdomen (1 patient), breast (1 patient), kidney (1 patient), lung (1 patient), and colon (1 patient). The maximum tolerated dose was not realized with a maximum dose of 1.6 mg/m{sup 2}. One case of dose-limiting toxicity was appreciated (grade 3 urosepsis) and felt to be unrelated to bortezomib. The most common grade 3 toxicity was lymphopenia (10 patients). Common grade 1 to 2 events included nausea (7 patients), infection without neutropenia (6 patients), diarrhea (5 patients), and fatigue (5 patients). Conclusions: The combination of palliative external beam radiation with concurrent weekly bortezomib therapy at a dose of 1.6 mg/m{sup 2} is well tolerated in patients with metastatic solid tumors. The maximum tolerated dose of once weekly bortezomib delivered concurrently with radiation therapy is greater than 1.6 mg/m{sup 2}.« less
Cosmic Radiation Exposure of Biological Test Systems During the EXPOSE-E Mission
Hajek, Michael; Bilski, Pawel; Körner, Christine; Vanhavere, Filip; Reitz, Günther
2012-01-01
Abstract In the frame of the EXPOSE-E mission on the Columbus external payload facility EuTEF on board the International Space Station, passive thermoluminescence dosimeters were applied to measure the radiation exposure of biological samples. The detectors were located either as stacks next to biological specimens to determine the depth dose distribution or beneath the sample carriers to determine the dose levels for maximum shielding. The maximum mission dose measured in the upper layer of the depth dose part of the experiment amounted to 238±10 mGy, which relates to an average dose rate of 408±16 μGy/d. In these stacks of about 8 mm height, the dose decreased by 5–12% with depth. The maximum dose measured beneath the sample carriers was 215±16 mGy, which amounts to an average dose rate of 368±27 μGy/d. These values are close to those assessed for the interior of the Columbus module and demonstrate the high shielding of the biological experiments within the EXPOSE-E facility. Besides the shielding by the EXPOSE-E hardware itself, additional shielding was experienced by the external structures adjacent to EXPOSE-E, such as EuTEF and Columbus. This led to a dose gradient over the entire exposure area, from 215±16 mGy for the lowest to 121±6 mGy for maximum shielding. Hence, the doses perceived by the biological samples inside EXPOSE-E varied by 70% (from lowest to highest dose). As a consequence of the high shielding, the biological samples were predominantly exposed to galactic cosmic heavy ions, while electrons and a significant fraction of protons of the radiation belts and solar wind did not reach the samples. Key Words: Space radiation—Dosimetry—Passive radiation detectors—Thermoluminescence—EXPOSE-E. Astrobiology 12, 387–392. PMID:22680685
Zhang, W F; Tang, S H; Tan, Q; Liu, Y M
2016-08-20
Objective: To investigate radioactive source term dose monitoring and estimation results in a manufacturing enterprise of ion-absorbing type rare earth ore and the possible ionizing radiation dose received by its workers. Methods: Ionizing radiation monitoring data of the posts in the control area and supervised area of workplace were collected, and the annual average effective dose directly estimated or estimated using formulas was evaluated and analyzed. Results: In the control area and supervised area of the workplace for this rare earth ore, α surface contamination activity had a maximum value of 0.35 Bq/cm 2 and a minimum value of 0.01 Bq/cm 2 ; β radioactive surface contamination activity had a maximum value of 18.8 Bq/cm 2 and a minimum value of 0.22 Bq/cm 2 . In 14 monitoring points in the workplace, the maximum value of the annual average effective dose of occupational exposure was 1.641 mSv/a, which did not exceed the authorized limit for workers (5 mSv/a) , but exceeded the authorized limit for general personnel (0.25 mSv/a) . The radionuclide specific activity of ionic mixed rare earth oxides was determined to be 0.9. Conclusion: The annual average effective dose of occupational exposure in this enterprise does not exceed the authorized limit for workers, but it exceeds the authorized limit for general personnel. We should pay attention to the focus of the radiation process, especially for public works radiation.
Manning, F.W.; Groothuis, S.E.; Lykins, J.H.; Papke, D.M.
1962-06-12
S>An improved area radiation dose monitor is designed which is adapted to compensate continuously for background radiation below a threshold dose rate and to give warning when the dose integral of the dose rate of an above-threshold radiation excursion exceeds a selected value. This is accomplished by providing means for continuously charging an ionization chamber. The chamber provides a first current proportional to the incident radiation dose rate. Means are provided for generating a second current including means for nulling out the first current with the second current at all values of the first current corresponding to dose rates below a selected threshold dose rate value. The second current has a maximum value corresponding to that of the first current at the threshold dose rate. The excess of the first current over the second current, which occurs above the threshold, is integrated and an alarm is given at a selected integrated value of the excess corresponding to a selected radiation dose. (AEC)
Lee, Yun-Keun; Ju, Young-Su; Lee, Won Jin; Hwang, Seung Sik; Yim, Sang-Hyuk; Yoo, Sang-Chul; Lee, Jieon; Choi, Kyung-Hwa; Burm, Eunae; Ha, Mina
2015-01-01
We aimed to assess the radiation exposure for epidemiologic investigation in residents exposed to radiation from roads that were accidentally found to be contaminated with radioactive cesium-137 ((137)Cs) in Seoul. Using information regarding the frequency and duration of passing via the (137)Cs contaminated roads or residing/working near the roads from the questionnaires that were obtained from 8875 residents and the measured radiation doses reported by the Nuclear Safety and Security Commission, we calculated the total cumulative dose of radiation exposure for each person. Sixty-three percent of the residents who responded to the questionnaire were considered as ever-exposed and 1% of them had a total cumulative dose of more than 10 mSv. The mean (minimum, maximum) duration of radiation exposure was 4.75 years (0.08, 11.98) and the geometric mean (minimum, maximum) of the total cumulative dose was 0.049 mSv (<0.001, 35.35) in the exposed. An individual exposure assessment was performed for an epidemiological study to estimate the health risk among residents living in the vicinity of (137)Cs contaminated roads. The average exposure dose in the exposed people was less than 5% of the current guideline.
Cosmic radiation exposure of biological test systems during the EXPOSE-E mission.
Berger, Thomas; Hajek, Michael; Bilski, Pawel; Körner, Christine; Vanhavere, Filip; Reitz, Günther
2012-05-01
In the frame of the EXPOSE-E mission on the Columbus external payload facility EuTEF on board the International Space Station, passive thermoluminescence dosimeters were applied to measure the radiation exposure of biological samples. The detectors were located either as stacks next to biological specimens to determine the depth dose distribution or beneath the sample carriers to determine the dose levels for maximum shielding. The maximum mission dose measured in the upper layer of the depth dose part of the experiment amounted to 238±10 mGy, which relates to an average dose rate of 408±16 μGy/d. In these stacks of about 8 mm height, the dose decreased by 5-12% with depth. The maximum dose measured beneath the sample carriers was 215±16 mGy, which amounts to an average dose rate of 368±27 μGy/d. These values are close to those assessed for the interior of the Columbus module and demonstrate the high shielding of the biological experiments within the EXPOSE-E facility. Besides the shielding by the EXPOSE-E hardware itself, additional shielding was experienced by the external structures adjacent to EXPOSE-E, such as EuTEF and Columbus. This led to a dose gradient over the entire exposure area, from 215±16 mGy for the lowest to 121±6 mGy for maximum shielding. Hence, the doses perceived by the biological samples inside EXPOSE-E varied by 70% (from lowest to highest dose). As a consequence of the high shielding, the biological samples were predominantly exposed to galactic cosmic heavy ions, while electrons and a significant fraction of protons of the radiation belts and solar wind did not reach the samples.
Cancer risk estimation caused by radiation exposure during endovascular procedure
NASA Astrophysics Data System (ADS)
Kang, Y. H.; Cho, J. H.; Yun, W. S.; Park, K. H.; Kim, H. G.; Kwon, S. M.
2014-05-01
The objective of this study was to identify the radiation exposure dose of patients, as well as staff caused by fluoroscopy for C-arm-assisted vascular surgical operation and to estimate carcinogenic risk due to such exposure dose. The study was conducted in 71 patients (53 men and 18 women) who had undergone vascular surgical intervention at the division of vascular surgery in the University Hospital from November of 2011 to April of 2012. It had used a mobile C-arm device and calculated the radiation exposure dose of patient (dose-area product, DAP). Effective dose was measured by attaching optically stimulated luminescence on the radiation protectors of staff who participates in the surgery to measure the radiation exposure dose of staff during the vascular surgical operation. From the study results, DAP value of patients was 308.7 Gy cm2 in average, and the maximum value was 3085 Gy cm2. When converted to the effective dose, the resulted mean was 6.2 m Gy and the maximum effective dose was 61.7 milliSievert (mSv). The effective dose of staff was 3.85 mSv; while the radiation technician was 1.04 mSv, the nurse was 1.31 mSv. All cancer incidences of operator are corresponding to 2355 persons per 100,000 persons, which deemed 1 of 42 persons is likely to have all cancer incidences. In conclusion, the vascular surgeons should keep the radiation protection for patient, staff, and all participants in the intervention in mind as supervisor of fluoroscopy while trying to understand the effects by radiation by themselves to prevent invisible danger during the intervention and to minimize the harm.
Manchado de Sola, Francisco; Vilches, Manuel; Prezado, Yolanda; Lallena, Antonio M
2018-05-15
The purpose of this study was to assess the effects of brain movements induced by heartbeat on dose distributions in synchrotron micro- and minibeam radiation therapy and to develop a model to help guide decisions and planning for future clinical trials. The Monte Carlo code PENELOPE was used to simulate the irradiation of a human head phantom with a variety of micro- and minibeam arrays, with beams narrower than 100 μm and above 500 μm, respectively, and with radiation fields of 1 × 2 cm and 2 × 2 cm. The dose in the phantom due to these beams was calculated by superposing the dose profiles obtained for a single beam of 1 μm × 2 cm. A parameter δ, accounting for the total displacement of the brain during the irradiation and due to the cardiosynchronous pulsation, was used to quantify the impact on peak-to-valley dose ratios and the full width at half maximum. The difference between the maximum (at the phantom entrance) and the minimum (at the phantom exit) values of the peak-to-valley dose ratio reduces when the parameter δ increases. The full width at half maximum remains almost constant with depth for any δ value. Sudden changes in the two quantities are observed at the interfaces between the various tissues (brain, skull, and skin) present in the head phantom. The peak-to-valley dose ratio at the center of the head phantom reduces when δ increases, remaining above 70% of the static value only for minibeams and δ smaller than ∼200 μm. Optimal setups for brain treatments with synchrotron radiation micro- and minibeam combs depend on the brain displacement due to cardiosynchronous pulsation. Peak-to-valley dose ratios larger than 90% of the maximum values obtained in the static case occur only for minibeams and relatively large dose rates. © 2018 American Association of Physicists in Medicine.
The effect of dose heterogeneity on radiation risk in medical imaging.
Samei, Ehsan; Li, Xiang; Chen, Baiyu; Reiman, Robert
2013-06-01
The current estimations of risk associated with medical imaging procedures rely on assessing the organ dose via direct measurements or simulation. The dose to each organ is assumed to be homogeneous. To take into account the differences in radiation sensitivities, the mean organ doses are weighted by a corresponding tissue-weighting coefficients provided by ICRP to calculate the effective dose, which has been used as a surrogate of radiation risk. However, those coefficients were derived under the assumption of a homogeneous dose distribution within each organ. That assumption is significantly violated in most medical-imaging procedures. In helical chest CT, for example, superficial organs (e.g. breasts) demonstrate a heterogeneous dose distribution, whereas organs on the peripheries of the irradiation field (e.g. liver) might possess a discontinuous dose profile. Projection radiography and mammography involve an even higher level of organ dose heterogeneity spanning up to two orders of magnitude. As such, mean dose or point measured dose values do not reflect the maximum energy deposited per unit volume of the organ. In this paper, the magnitude of the dose heterogeneity in both CT and projection X-ray imaging was reported, using Monte Carlo methods. The lung dose demonstrated factors of 1.7 and 2.2 difference between the mean and maximum dose for chest CT and radiography, respectively. The corresponding values for the liver were 1.9 and 3.5. For mammography and breast tomosynthesis, the difference between mean glandular dose and maximum glandular dose was 3.1. Risk models based on the mean dose were found to provide a reasonable reflection of cancer risk. However, for leukaemia, they were found to significantly under-represent the risk when the organ dose distribution is heterogeneous. A systematic study is needed to develop a risk model for heterogeneous dose distributions.
Radiation dose to the global flying population.
Alvarez, Luis E; Eastham, Sebastian D; Barrett, Steven R H
2016-03-01
Civil airliner passengers and crew are exposed to elevated levels of radiation relative to being at sea level. Previous studies have assessed the radiation dose received in particular cases or for cohort studies. Here we present the first estimate of the total radiation dose received by the worldwide civilian flying population. We simulated flights globally from 2000 to 2013 using schedule data, applying a radiation propagation code to estimate the dose associated with each flight. Passengers flying in Europe and North America exceed the International Commission on Radiological Protection annual dose limits at an annual average of 510 or 420 flight hours per year, respectively. However, this falls to 160 or 120 h on specific routes under maximum exposure conditions.
Lee, Yun-Keun; Ju, Young-Su; Lee, Won Jin; Hwang, Seung Sik; Yim, Sang-Hyuk; Yoo, Sang-Chul; Lee, Jieon; Choi, Kyung-Hwa; Burm, Eunae; Ha, Mina
2015-01-01
Objectives We aimed to assess the radiation exposure for epidemiologic investigation in residents exposed to radiation from roads that were accidentally found to be contaminated with radioactive cesium-137 (137Cs) in Seoul. Methods Using information regarding the frequency and duration of passing via the 137Cs contaminated roads or residing/working near the roads from the questionnaires that were obtained from 8875 residents and the measured radiation doses reported by the Nuclear Safety and Security Commission, we calculated the total cumulative dose of radiation exposure for each person. Results Sixty-three percent of the residents who responded to the questionnaire were considered as ever-exposed and 1% of them had a total cumulative dose of more than 10 mSv. The mean (minimum, maximum) duration of radiation exposure was 4.75 years (0.08, 11.98) and the geometric mean (minimum, maximum) of the total cumulative dose was 0.049 mSv (<0.001, 35.35) in the exposed. Conclusions An individual exposure assessment was performed for an epidemiological study to estimate the health risk among residents living in the vicinity of 137Cs contaminated roads. The average exposure dose in the exposed people was less than 5% of the current guideline. PMID:26184047
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, B.
Thesis. Appropriate measures to decrease radiation exposure of medical- technical assistants and nursing staff of hospitals with radiotherapy departments require personnel dose measurements during the different working operations. The measured values were in all cases below the maximum permissible doses; they are presented in tabular form for the various operations. Proposals are made for a further reduction of radiation exposure in particular fields of application. (GE)
Method for microbeam radiation therapy
Slatkin, D.N.; Dilmanian, F.A.; Spanne, P.O.
1994-08-16
A method is disclosed of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation. The dose is in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue. No Drawings
Brachial Plexus-Associated Neuropathy After High-Dose Radiation Therapy for Head-and-Neck Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Allen M., E-mail: allen.chen@ucdmc.ucdavis.edu; Hall, William H.; Li, Judy
2012-09-01
Purpose: To identify clinical and treatment-related predictors of brachial plexus-associated neuropathies after radiation therapy for head-and-neck cancer. Methods and Materials: Three hundred thirty patients who had previously completed radiation therapy for head-and-neck cancer were prospectively screened using a standardized instrument for symptoms of neuropathy thought to be related to brachial plexus injury. All patients were disease-free at the time of screening. The median time from completion of radiation therapy was 56 months (range, 6-135 months). One-hundred fifty-five patients (47%) were treated by definitive radiation therapy, and 175 (53%) were treated postoperatively. Radiation doses ranged from 50 to 74 Gy (median,more » 66 Gy). Intensity-modulated radiation therapy was used in 62% of cases, and 133 patients (40%) received concurrent chemotherapy. Results: Forty patients (12%) reported neuropathic symptoms, with the most common being ipsilateral pain (50%), numbness/tingling (40%), motor weakness, and/or muscle atrophy (25%). When patients with <5 years of follow-up were excluded, the rate of positive symptoms increased to 22%. On univariate analysis, the following factors were significantly associated with brachial plexus symptoms: prior neck dissection (p = 0.01), concurrent chemotherapy (p = 0.01), and radiation maximum dose (p < 0.001). Cox regression analysis confirmed that both neck dissection (p < 0.001) and radiation maximum dose (p < 0.001) were independently predictive of symptoms. Conclusion: The incidence of brachial plexus-associated neuropathies after radiation therapy for head-and-neck cancer may be underreported. In view of the dose-response relationship identified, limiting radiation dose to the brachial plexus should be considered when possible.« less
Effect of the Maximum Dose on White Matter Fiber Bundles Using Longitudinal Diffusion Tensor Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Tong; Chapman, Christopher H.; Tsien, Christina
2016-11-01
Purpose: Previous efforts to decrease neurocognitive effects of radiation focused on sparing isolated cortical structures. We hypothesize that understanding temporal, spatial, and dosimetric patterns of radiation damage to whole-brain white matter (WM) after partial-brain irradiation might also be important. Therefore, we carried out a study to develop the methodology to assess radiation therapy (RT)–induced damage to whole-brain WM bundles. Methods and Materials: An atlas-based, automated WM tractography analysis was implemented to quantify longitudinal changes in indices of diffusion tensor imaging (DTI) of 22 major WM fibers in 33 patients with predominantly low-grade or benign brain tumors treated by RT. Sixmore » DTI scans per patient were performed from before RT to 18 months after RT. The DTI indices and planned doses (maximum and mean doses) were mapped onto profiles of each of 22 WM bundles. A multivariate linear regression was performed to determine the main dose effect as well as the influence of other clinical factors on longitudinal percentage changes in axial diffusivity (AD) and radial diffusivity (RD) from before RT. Results: Among 22 fiber bundles, AD or RD changes in 12 bundles were affected significantly by doses (P<.05), as the effect was progressive over time. In 9 elongated tracts, decreased AD or RD was significantly related to maximum doses received, consistent with a serial structure. In individual bundles, AD changes were up to 11.5% at the maximum dose locations 18 months after RT. The dose effect on WM was greater in older female patients than younger male patients. Conclusions: Our study demonstrates for the first time that the maximum dose to the elongated WM bundles causes post-RT damage in WM. Validation and correlative studies are necessary to determine the ability and impact of sparing these bundles on preserving neurocognitive function after RT.« less
SU-E-J-33: Cardiac Movement in Deep Inspiration Breath-Hold for Left-Breast Cancer Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, M; Lee, S; Suh, T
Purpose: The present study was designed to investigate the displacement of heart using Deep Inspiration Breath Hold (DIBH) CT data compared to free-breathing (FB) CT data and radiation exposure to heart. Methods: Treatment planning was performed on the computed tomography (CT) datasets of 20 patients who had received lumpectomy treatments. Heart, lung and both breasts were outlined. The prescribed dose was 50 Gy divided into 28 fractions. The dose distributions in all the plans were required to fulfill the International Commission on Radiation Units and Measurement specifications that include 100% coverage of the CTV with ≥ 95% of the prescribedmore » dose and that the volume inside the CTV receiving > 107% of the prescribed dose should be minimized. Displacement of heart was measured by calculating the distance between center of heart and left breast. For the evaluation of radiation dose to heart, minimum, maximum and mean dose to heart were calculated. Results: The maximum and minimum left-right (LR) displacements of heart were 8.9 mm and 3 mm, respectively. The heart moved > 4 mm in the LR direction in 17 of the 20 patients. The distances between the heart and left breast ranged from 8.02–17.68 mm (mean, 12.23 mm) and 7.85–12.98 mm (mean, 8.97 mm) with DIBH CT and FB CT, respectively. The maximum doses to the heart were 3115 cGy and 4652 cGy for the DIBH and FB CT dataset, respectively. Conclusion: The present study has demonstrated that the DIBH technique could help to reduce the risk of radiation dose-induced cardiac toxicity by using movement of cardiac; away from radiation field. The DIBH technique could be used in an actual treatment room for a few minutes and could effectively reduce the cardiac dose when used with a sub-device or image acquisition standard to maintain consistent respiratory motion.« less
Current status of radiological protection at nuclear power stations in Japan.
Suzuki, Akira; Hori, Shunsuke
2011-07-01
The radiation dose to workers at nuclear power stations (NPSs) in Japan was drastically reduced between the late-1970s and the early-1990s by continuous dose-reduction programmes. The total collective dose of radiation workers in FY 2008 was 84.04 person Sv, while the average collective dose was 1.5 person Sv per reactor. The average annual individual dose was 1.1 mSv and the maximum annual individual dose was 19.5 mSv. These values are sufficiently lower than the regulatory dose limits. Radioactive effluent released from NPSs is already so trivial that additional protective measures will not be necessary. Experience in radiation protection at NPSs has been accumulated over 40 y and will be very useful in establishing a rational radiation control system in the future.
Radioprotective properties of apple polyphenols: an in vitro study.
Chaudhary, Pankaj; Shukla, Sandeep Kumar; Kumar, I Prem; Namita, I; Afrin, Farhat; Sharma, Rakesh Kumar
2006-08-01
Present study was undertaken to evaluate the radioprotective ability of total polyphenols extracted from edible portion (epicarp and mesocarp) of apple. Prior administration of apple polyphenols to murine thymocytes significantly countered radiation induced DNA damage (evaluated by alkaline halo assay) and cell death (trypan blue exclusion method) in a dose dependent manner maximally at a concentration of 2 and 0.2 mg/ml respectively. Apple polyphenols in a dose dependent fashion inhibited both radiation or Fenton reaction mediated 2-deoxyribose (2-DR) degradation indicating its ability to scavenge hydroxyl radicals and this activity was found to be unaltered in presence of simulated gastric juice. Similarly apple polyphenols in a dose dependent fashion scavenged DPPH radicals (maximum 69% at 1 mg/ml), superoxide anions (maximum 88% at 2 mg/ml), reduced Fe(3 +) to Fe(2 +) (maximum at 1 mg/ml) and inhibited Fenton reaction mediated lipid peroxidation (maximum 66% at 1.5 mg/ml) further establishing its antioxidative properties. Studies carried out with plasmid DNA revealed the ability of apple polyphenols to inhibit radiation induced single as well as double strand breaks. The results clearly indicate that apple polyphenols have significant potential to protect cellular system from radiation induced damage and ability to scavenge free radicals might be playing an important role in its radioprotective manifestation.
Comparative analysis of radioecological monitoring dosimeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobolev, A.I.; Pol`skii, O.G.; Shanin, O.B.
1995-03-01
This paper describes comparative estimates of radiation doses measured by two types of thermoluminescence dosimeters and two types of background radiation radiometers. The dosimetry systems were tested by simultaneously recording background radiation and standard radiation sources at a radioactive waste storage facility. Statistical analysis of the measurement results is summarized. The maximum recorded exposure dose rate for the experiment was 19 microrads per hour. The DTK-2 dosimeter overestimated dose rates by 6 to 43% and the DTU-2 dosimeter underestimated dose rates by 7 to 21%. Both devices are recommended for radioecological monitoring in populated areas. 4 refs., 3 figs., 5more » tabs.« less
Radiation exposure of the radiologist's eye lens during CT-guided interventions.
Heusch, Philipp; Kröpil, Patric; Buchbender, Christian; Aissa, Joel; Lanzman, Rotem S; Heusner, Till A; Ewen, Klaus; Antoch, Gerald; Fürst, Günther
2014-02-01
In the past decade the number of computed tomography (CT)-guided procedures performed by interventional radiologists have increased, leading to a significantly higher radiation exposure of the interventionalist's eye lens. Because of growing concern that there is a stochastic effect for the development of lens opacification, eye lens dose reduction for operators and patients should be of maximal interest. To determine the interventionalist's equivalent eye lens dose during CT-guided interventions and to relate the results to the maximum of the recommended equivalent dose limit. During 89 CT-guided interventions (e.g. biopsies, drainage procedures, etc.) measurements of eye lens' radiation doses were obtained from a dedicated dosimeter system for scattered radiation. The sensor of the personal dosimeter system was clipped onto the side of the lead glasses which was located nearest to the CT gantry. After the procedure, radiation dose (µSv), dose rate (µSv/min) and the total exposure time (s) were recorded. For all 89 interventions, the median total exposure lens dose was 3.3 µSv (range, 0.03-218.9 µSv) for a median exposure time of 26.2 s (range, 1.1-94.0 s). The median dose rate was 13.9 µSv/min (range, 1.1-335.5 µSv/min). Estimating 50-200 CT-guided interventions per year performed by one interventionalist, the median dose of the eye lens of the interventional radiologist does not exceed the maximum of the ICRP-recommended equivalent eye lens dose limit of 20 mSv per year.
Marek, Josef; Jezková, Jana; Hána, Václav; Krsek, Michal; Bandúrová, L'ubomíra; Pecen, Ladislav; Vladyka, Vilibald; Liscák, Roman
2011-02-01
Radiation therapy is one of the treatment options for pituitary adenomas. The most common side effect associated with Leksell gamma knife (LGK) irradiation is the development of hypopituitarism. The aim of this study was to verify that hypopituitarism does not develop if the maximum mean dose to pituitary is kept under 15 Gy and to evaluate the influence of maximum distal infundibulum dose on the development of hypopituitarism. We followed the incidence of hypopituitarism in 85 patients irradiated with LGK in 1993-2003. The patients were divided in two subgroups: the first subgroup followed prospectively (45 patients), irradiated with a mean dose to pituitary <15 Gy; the second subgroup followed retrospectively 1993-2001 and prospectively 2001-2009 (40 patients), irradiated with a mean dose to pituitary >15 Gy. Serum TSH, free thyroxine, testosterone or 17β-oestradiol, IGF1, prolactin and cortisol levels were evaluated before and every 6 months after LGK irradiation. Hypopituitarism after LGK irradiation developed only in 1 out of 45 (2.2%) patients irradiated with a mean dose to pituitary <15 Gy, in contrast to 72.5% patients irradiated with a mean dose to pituitary >15 Gy. The radiation dose to the distal infundibulum was found as an independent factor of hypopituitarism with calculated maximum safe dose of 17 Gy. Keeping the mean radiation dose to pituitary under 15 Gy and the dose to the distal infundibulum under 17 Gy prevents the development of hypopituitarism following LGK irradiation.
The space radiation environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robbins, D E
There are three primary sources of space radiation: galactic cosmic rays (GCR), trapped belt radiation, and solar particle events (SPE). All are composed of ions, the nuclei of atoms. Their energies range from a few MeV u{sup -1} to over a GeV u{sup -1}. These ions can fragment when they interact with spacecraft materials and produce energetic neutrons and ions of lower atomic mass. Absorbed dose rates inside a typical spacecraft (like the Space Shuttle) in a low inclination (28.5 degrees) orbit range between 0.05 and 2 mGy d{sup -1} depending on the altitude and flight inclination (angle of orbitmore » with the equator). The quality factor of radiation in orbit depends on the relative contributions of trapped belt radiation and GCR, and the dose rate varies both with orbital altitude and inclination. The corresponding equivalent dose rate ranges between 0.1 and 4 mSv d{sup -1}. In high inclination orbits, like that of the Mir Space Station and as is planned for the International Space Station, blood-forming organ (BFO) equivalent dose rates as high as 1.5 mSv d{sup -1}. Thus, on a 1 y mission, a crew member could obtain a total dose of 0.55 Sv. Maximum equivalent dose rates measured in high altitude passes through the South Atlantic Anomaly (SAA) were 10 mSv h{sup -1}. For an interplanetary space mission (e.g., to Mars) annual doses from GCR alone range between 150 mSv y{sup -1} at solar maximum and 580 mSv y{sup -1} at solar minimum. Large SPE, like the October 1989 series, are more apt to occur in the years around solar maximum. In free space, such an event could contribute another 300 mSv, assuming that a warning system and safe haven can be effectively used with operational procedures to minimize crew exposures. Thus, the total dose for a 3 y mission to Mars could exceed 2 Sv.« less
Radiation measurements and doses at SST altitudes
NASA Technical Reports Server (NTRS)
Foelsche, T.
1972-01-01
Radiation components and dose equivalents due to galactic and solar cosmic rays in the high atmosphere, especially at SST altitudes, are presented. The dose equivalent rate for the flight personnel flying 500 hours per year in cruise altitudes of 60,000-65,000 feet (18-19.5 km) in high magnetic latitudes is about 0.75-1.0 rem per year averaged over the solar cycle, or about 15-20 percent of the maximum permissible dose rate.
75 FR 61226 - Exemption; Entergy Operations, Inc.; Arkansas Nuclear One, Units 1 and 2
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-04
... maximum potential annual radiation doses to the public resulting from effluent releases. The report must... radiation doses to the public resulting from effluent releases. This exemption does not affect the... submitted. Based on the above, no new accident precursors are created by extending the submittal date for...
[Methodology for an assessment of derived radiation levels for agrocenoses].
Udalova, A A; Ul'ianenko, L N; Aleksakhin, R M; Geras'kin, S A; Filipas, A S
2010-01-01
Radiation protection of agrarian ecosystems should be considered as an integral part of a system for radiation protection of environment, with a special concern to agroecosystems' features. A methodology is proposed for an assessment of maximum permissible doses of radiation impact for agrocenoses based on an unified analysis of available data about effects of radiation in cultivated plants. It is considered as a component of radiation protection system for agricultural ecosystems. Critical doses and dose rates are estimated for crops under different exposure situations. It is shown that doses that could result in decreasing indexes of productivity and survival for main crops below 50% are unlikely up to 170-200 Gy and 15-17 Gy at an acute exposure of dormant seeds and vegetative plants, correspondingly. At chronic exposure, above 10% loss of productivity in crops is not expected at dose rates below 3-10 mGy/h.
Method for microbeam radiation therapy
Slatkin, Daniel N.; Dilmanian, F. Avraham; Spanne, Per O.
1994-01-01
A method of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation, in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue.
An analysis of interplanetary space radiation exposure for various solar cycles
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Cucinotta, F. A.; O'Neill, P. M.; Wilson, J. W. (Principal Investigator)
1994-01-01
The radiation dose received by crew members in interplanetary space is influenced by the stage of the solar cycle. Using the recently developed models of the galactic cosmic radiation (GCR) environment and the energy-dependent radiation transport code, we have calculated the dose at 0 and 5 cm water depth; using a computerized anatomical man (CAM) model, we have calculated the skin, eye and blood-forming organ (BFO) doses as a function of aluminum shielding for various solar minima and maxima between 1954 and 1989. These results show that the equivalent dose is within about 15% of the mean for the various solar minima (maxima). The maximum variation between solar minimum and maximum equivalent dose is about a factor of three. We have extended these calculations for the 1976-1977 solar minimum to five practical shielding geometries: Apollo Command Module, the least and most heavily shielded locations in the U.S. space shuttle mid-deck, center of the proposed Space Station Freedom cluster and sleeping compartment of the Skylab. These calculations, using the quality factor of ICRP 60, show that the average CAM BFO equivalent dose is 0.46 Sv/year. Based on an approach that takes fragmentation into account, we estimate a calculation uncertainty of 15% if the uncertainty in the quality factor is neglected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, Daniel R., E-mail: dgomez@mdanderson.org; Estilo, Cherry L.; Wolden, Suzanne L.
Purpose: Osteoradionecrosis (ORN) is a known complication of radiation therapy to the head and neck. However, the incidence of this complication with intensity-modulated radiation therapy (IMRT) and dental sequelae with this technique have not been fully elucidated. Methods and Materials: From December 2000 to July 2007, 168 patients from our institution have been previously reported for IMRT of the oral cavity, nasopharynx, larynx/hypopharynx, sinus, and oropharynx. All patients underwent pretreatment dental evaluation, including panoramic radiographs, an aggressive fluoride regimen, and a mouthguard when indicated. The median maximum mandibular dose was 6,798 cGy, and the median mean mandibular dose was 3,845more » cGy. Patient visits were retrospectively reviewed for the incidence of ORN, and dental records were reviewed for the development of dental events. Univariate analysis was then used to assess the effect of mandibular and parotid gland dosimetric parameters on dental endpoints. Results: With a median clinic follow-up of 37.4 months (range, 0.8-89.6 months), 2 patients, both with oral cavity primaries, experienced ORN. Neither patient had preradiation dental extractions. The maximum mandibular dose and mean mandibular dose of the 2 patients were 7,183 and 6,828 cGy and 5812 and 5335 cGy, respectively. In all, 17% of the patients (n = 29) experienced a dental event. A mean parotid dose of >26 Gy was predictive of a subsequent dental caries, whereas a maximum mandibular dose >70 Gy and a mean mandibular dose >40 Gy were correlated with dental extractions after IMRT. Conclusions: ORN is rare after head-and-neck IMRT, but is more common with oral cavity primaries. Our results suggest different mechanisms for radiation-induced caries versus extractions.« less
Gomez, Daniel R; Estilo, Cherry L; Wolden, Suzanne L; Zelefsky, Michael J; Kraus, Dennis H; Wong, Richard J; Shaha, Ashok R; Shah, Jatin P; Mechalakos, James G; Lee, Nancy Y
2011-11-15
Osteoradionecrosis (ORN) is a known complication of radiation therapy to the head and neck. However, the incidence of this complication with intensity-modulated radiation therapy (IMRT) and dental sequelae with this technique have not been fully elucidated. From December 2000 to July 2007, 168 patients from our institution have been previously reported for IMRT of the oral cavity, nasopharynx, larynx/hypopharynx, sinus, and oropharynx. All patients underwent pretreatment dental evaluation, including panoramic radiographs, an aggressive fluoride regimen, and a mouthguard when indicated. The median maximum mandibular dose was 6,798 cGy, and the median mean mandibular dose was 3,845 cGy. Patient visits were retrospectively reviewed for the incidence of ORN, and dental records were reviewed for the development of dental events. Univariate analysis was then used to assess the effect of mandibular and parotid gland dosimetric parameters on dental endpoints. With a median clinic follow-up of 37.4 months (range, 0.8-89.6 months), 2 patients, both with oral cavity primaries, experienced ORN. Neither patient had preradiation dental extractions. The maximum mandibular dose and mean mandibular dose of the 2 patients were 7,183 and 6,828 cGy and 5812 and 5335 cGy, respectively. In all, 17% of the patients (n = 29) experienced a dental event. A mean parotid dose of >26 Gy was predictive of a subsequent dental caries, whereas a maximum mandibular dose >70 Gy and a mean mandibular dose >40 Gy were correlated with dental extractions after IMRT. ORN is rare after head-and-neck IMRT, but is more common with oral cavity primaries. Our results suggest different mechanisms for radiation-induced caries versus extractions. Copyright © 2011 Elsevier Inc. All rights reserved.
Stereotactic body radiation therapy of early-stage non-small-cell lung carcinoma: Phase I study
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGarry, Ronald C.; Papiez, Lech; Williams, Mark
Purpose: A Phase I dose escalation study of stereotactic body radiation therapy to assess toxicity and local control rates for patients with medically inoperable Stage I lung cancer. Methods and Materials: All patients had non-small-cell lung carcinoma, Stage T1a or T1b N0, M0. Patients were immobilized in a stereotactic body frame and treated in escalating doses of radiotherapy beginning at 24 Gy total (3 x 8 Gy fractions) using 7-10 beams. Cohorts were dose escalated by 6.0 Gy total with appropriate observation periods. Results: The maximum tolerated dose was not achieved in the T1 stratum (maximum dose = 60 Gy),more » but within the T2 stratum, the maximum tolerated dose was realized at 72 Gy for tumors larger than 5 cm. Dose-limiting toxicity included predominantly bronchitis, pericardial effusion, hypoxia, and pneumonitis. Local failure occurred in 4/19 T1 and 6/28 T2 patients. Nine local failures occurred at doses {<=}16 Gy and only 1 at higher doses. Local failures occurred between 3 and 31 months from treatment. Within the T1 group, 5 patients had distant or regional recurrence as an isolated event, whereas 3 patients had both distant and regional recurrence. Within the T2 group, 2 patients had solitary regional recurrences, and the 4 patients who failed distantly also failed regionally. Conclusions: Stereotactic body radiation therapy seems to be a safe, effective means of treating early-stage lung cancer in medically inoperable patients. Excellent local control was achieved at higher dose cohorts with apparent dose-limiting toxicities in patients with larger tumors.« less
Eye lens dosimetry in anesthesiology: a prospective study.
Vaes, Bart; Van Keer, Karel; Struelens, Lara; Schoonjans, Werner; Nijs, Ivo; Vandevenne, Jan; Van Poucke, Sven
2017-04-01
The eye lens is one of the most sensitive organs for radiation injury and exposure might lead to radiation induced cataract. Eye lens dosimetry in anesthesiology has been published in few clinical trials and an active debate about the causality of radiation induced cataract is still ongoing. Recently, the International Commission on Radiological Protection (ICRP) recommended a reduction in the annual dose limit for occupational exposure for the lens of the eye from 150 to 20 mSv, averaged over a period of 5 years, with the dose in a single year not exceeding 50 mSv. This prospective study investigated eye lens dosimetry in anesthesiology practice during a routine year of professional activity. The radiation exposure measured represented the exposure in a normal working schedule of a random anesthesiologist during 1 month and this cumulative eye lens dose was extrapolated to 1 year. Next, eye lens doses were measured in anesthesiology during neuro-embolisation procedures, radiofrequency ablations or vertebroplasty/kyphoplasty procedures. The eye lens doses are measured in terms of the dose equivalent H p (3) with the Eye-D dosimeter (Radcard, Poland) close to the right eye (on the temple). In 16 anesthesiologists, the estimated annual eye lens doses range from a minimum of 0.4 mSv to a maximum of 3.5 mSv with an average dose of 1.33 mSv. Next, eye lens doses were measured for nine neuro-embolisation procedures, ten radiofrequency ablations and six vertebroplasty/kyphoplasty procedures. Average eye lens doses of 77 ± 76 µSv for neuro-embolisations, 38 ± 34 µSv for cardiac ablations and 40 ± 44 µSv for vertebro-/kyphoplasty procedures were recorded. The maximum doses were respectively 264, 97 and 122 µSv. This study demonstrated that the estimated annual eye lens dose is well below the revised ICRP's limit of 20 mSv/year. However, we demonstrated high maximum and average doses during neuro-embolisation, cardiac ablation and vertebro-/kyphoplasty procedures. With radiation induced cataract being explained as a possible stochastic effect, without a threshold dose, anesthesiologists who regularly work in a radiological environment should remain vigilant and maintain radiation safety standards at all times. This includes adequately protective equipment (protection shields, apron, thyroid shield and leaded eye wear), keeping distance, routine monitoring and appropriate education.
Boice, John D; Leggett, Richard W; Ellis, Elizabeth Dupree; Wallace, Phillip W; Mumma, Michael; Cohen, Sarah S; Brill, A Bertrand; Chadda, Bandana; Boecker, Bruce B; Yoder, R Craig; Eckerman, Keith F
2006-05-01
Incomplete radiation exposure histories, inadequate treatment of internally deposited radionuclides, and failure to account for neutron exposures can be important uncertainties in epidemiologic studies of radiation workers. Organ-specific doses from lifetime occupational exposures and radionuclide intakes were estimated for an epidemiologic study of 5,801 Rocketdyne/Atomics International (AI) radiation workers engaged in nuclear technologies between 1948 and 1999. The entire workforce of 46,970 Rocketdyne/AI employees was identified from 35,042 Kardex work histories cards, 26,136 electronic personnel listings, and 14,189 radiation folders containing individual exposure histories. To obtain prior and subsequent occupational exposure information, the roster of all workers was matched against nationwide dosimetry files from the Department of Energy, the Nuclear Regulatory Commission, the Landauer dosimetry company, the U.S. Army, and the U.S. Air Force. Dosimetry files of other worker studies were also accessed. Computation of organ doses from radionuclide intakes was complicated by the diversity of bioassay data collected over a 40-y period (urine and fecal samples, lung counts, whole-body counts, nasal smears, and wound and incident reports) and the variety of radionuclides with documented intake including isotopes of uranium, plutonium, americium, calcium, cesium, cerium, zirconium, thorium, polonium, promethium, iodine, zinc, strontium, and hydrogen (tritium). Over 30,000 individual bioassay measurements, recorded on 11 different bioassay forms, were abstracted. The bioassay data were evaluated using ICRP biokinetic models recommended in current or upcoming ICRP documents (modified for one inhaled material to reflect site-specific information) to estimate annual doses for 16 organs or tissues taking into account time of exposure, type of radionuclide, and excretion patterns. Detailed internal exposure scenarios were developed and annual internal doses were derived on a case-by-case basis for workers with committed equivalent doses indicated by screening criteria to be greater than 10 mSv to the organ with the highest internal dose. Overall, 5,801 workers were monitored for radiation at Rocketdyne/AI: 5,743 for external exposure and 2,232 for internal intakes of radionuclides; 41,169 workers were not monitored for radiation. The mean cumulative external dose based on Rocketdyne/AI records alone was 10.0 mSv, and the dose distribution was highly skewed with most workers experiencing low cumulative doses and only a few with high doses (maximum 500 mSv). Only 45 workers received greater than 200 mSv while employed at Rocketdyne/AI. However, nearly 32% (or 1,833) of the Rocketdyne/AI workers had been monitored for radiation at other nuclear facilities and incorporation of these doses increased the mean dose to 13.5 mSv (maximum 1,005 mSv) and the number of workers with >200 mSv to 69. For a small number of workers (n=292), lung doses from internal radionuclide intakes were relatively high (mean 106 mSv; maximum 3,560 mSv) and increased the overall population mean dose to 19.0 mSv and the number of workers with lung dose>200 mSv to 109. Nearly 10% of the radiation workers (584) were monitored for neutron exposures (mean 1.2 mSv) at Rocketdyne/AI, and another 2% were monitored for neutron exposures elsewhere. Interestingly, 1,477 workers not monitored for radiation at Rocketdyne/AI (3.6%) were found to have worn dosimeters at other nuclear facilities (mean external dose of 2.6 mSv, maximum 188 mSv). Without considering all sources of occupational exposure, an incorrect characterization of worker exposure would have occurred with the potential to bias epidemiologic results. For these pioneering workers in the nuclear industry, 26.5% of their total occupational dose (collective dose) was received at other facilities both prior to and after employment at Rocketdyne/AI. In addition, a small number of workers monitored for internal radionuclides contributed disproportionately to the number of workers with high lung doses. Although nearly 12% of radiation workers had been monitored for neutron exposures during their career, the cumulative dose levels were small in comparison with other external and internal exposure. Risk estimates based on nuclear worker data must be interpreted cautiously if internally deposited radionuclides and occupational doses received elsewhere are not considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kok, H. Petra, E-mail: H.P.Kok@amc.uva.nl; Crezee, Johannes; Franken, Nicolaas A.P.
2014-03-01
Purpose: To develop a method to quantify the therapeutic effect of radiosensitization by hyperthermia; to this end, a numerical method was proposed to convert radiation therapy dose distributions with hyperthermia to equivalent dose distributions without hyperthermia. Methods and Materials: Clinical intensity modulated radiation therapy plans were created for 15 prostate cancer cases. To simulate a clinically relevant heterogeneous temperature distribution, hyperthermia treatment planning was performed for heating with the AMC-8 system. The temperature-dependent parameters α (Gy{sup −1}) and β (Gy{sup −2}) of the linear–quadratic model for prostate cancer were estimated from the literature. No thermal enhancement was assumed for normalmore » tissue. The intensity modulated radiation therapy plans and temperature distributions were exported to our in-house-developed radiation therapy treatment planning system, APlan, and equivalent dose distributions without hyperthermia were calculated voxel by voxel using the linear–quadratic model. Results: The planned average tumor temperatures T90, T50, and T10 in the planning target volume were 40.5°C, 41.6°C, and 42.4°C, respectively. The planned minimum, mean, and maximum radiation therapy doses were 62.9 Gy, 76.0 Gy, and 81.0 Gy, respectively. Adding hyperthermia yielded an equivalent dose distribution with an extended 95% isodose level. The equivalent minimum, mean, and maximum doses reflecting the radiosensitization by hyperthermia were 70.3 Gy, 86.3 Gy, and 93.6 Gy, respectively, for a linear increase of α with temperature. This can be considered similar to a dose escalation with a substantial increase in tumor control probability for high-risk prostate carcinoma. Conclusion: A model to quantify the effect of combined radiation therapy and hyperthermia in terms of equivalent dose distributions was presented. This model is particularly instructive to estimate the potential effects of interaction from different treatment modalities.« less
Sechopoulos, Ioannis; Vedantham, Srinivasan; Suryanarayanan, Sankararaman; D’Orsi, Carl J.; Karellas, Andrew
2008-01-01
Purpose To prospectively determine the radiation dose absorbed by the organs and tissues of the body during a dedicated computed tomography of the breast (DBCT) study using Monte Carlo methods and a phantom. Materials and Methods Using the Geant4 Monte Carlo toolkit, the Cristy anthropomorphic phantom and the geometry of a prototype DBCT was simulated. The simulation was used to track x-rays emitted from the source until their complete absorption or exit from the simulation limits. The interactions of the x-rays with the 65 different volumes representing organs, bones and other tissues of the anthropomorphic phantom that resulted in energy deposition were recorded. These data were used to compute the radiation dose to the organs and tissues during a complete DBCT acquisition relative to the average glandular dose to the imaged breast (ROD, relative organ dose), using the x-ray spectra proposed for DBCT imaging. The effectiveness of a lead shield for reducing the dose to the organs was investigated. Results The maximum ROD among the organs was for the ipsilateral lung with a maximum of 3.25%, followed by the heart and the thymus. Of the skeletal tissues, the sternum received the highest dose with a maximum ROD to the bone marrow of 2.24%, and to the bone surface of 7.74%. The maximum ROD to the uterus, representative of that of an early-stage fetus, was 0.026%. These maxima occurred for the highest energy x-ray spectrum (80 kVp) analyzed. A lead shield does not protect substantially the organs that receive the highest dose from DBCT. Discussion Although the dose to the organs from DBCT is substantially higher than that from planar mammography, they are comparable or considerably lower than those reached by other radiographic procedures and much lower than other CT examinations. PMID:18292479
Measurement of doses to the extremities of nuclear medicine staff
NASA Astrophysics Data System (ADS)
Shousha, Hany A.; Farag, Hamed; Hassan, Ramadan A.
2010-01-01
Medical uses of ionizing radiation now represent>95% of all man-made radiation exposure, and is the largest single radiation source after natural background radiation. Therefore, it is important to quantify the amount of radiation received by occupational individuals to optimize the working conditions for staff, and further, to compare doses in different departments to ensure compatibility with the recommended standards. For some groups working with unsealed sources in nuclear medicine units, the hands are more heavily exposed to ionizing radiation than the rest of the body. A personal dosimetry service runs extensively in Egypt. But doses to extremities have not been measured to a wide extent. The purpose of this study was to investigate the equivalent radiation doses to the fingers for five different nuclear medicine staff occupational groups for which heavy irradiation of the hands was suspected. Finger doses were measured for (1) nuclear medicine physicians, (2) technologists, (3) nurses and (4) physicists. The fifth group contains three technicians handling 131I, while the others handled 99mTc. Each staff member working with the radioactive material wore two thermoluminescent dosimeters (TLDs) during the whole testing period, which lasted from 1 to 4 weeks. Staff performed their work on a regular basis throughout the month, and mean annual doses were calculated for these groups. Results showed that the mean equivalent doses to the fingers of technologist, nurse and physicist groups were 30.24±14.5, 30.37±17.5 and 16.3±7.7 μSv/GBq, respectively. Equivalent doses for the physicians could not be calculated per unit of activity because they did not handle the radiopharmaceuticals directly. Their doses were reported in millisieverts (mSv) that accumulated in one week. Similarly, the dose to the fingers of individuals in Group 5 was estimated to be 126.13±38.2 μSv/GBq. The maximum average finger dose, in this study, was noted in the technologists who handled therapeutic 131I (2.5 mSv). In conclusion, the maximum expected annual dose to extremities is less than the annual limit (500 mSv/y).
Ormsby, Rebecca J; Lawrence, Mark D; Blyth, Benjamin J; Bexis, Katrina; Bezak, Eva; Murley, Jeffrey S; Grdina, David J; Sykes, Pamela J
2014-02-01
The radioprotective agent amifostine is a free radical scavenger that can protect cells from the damaging effects of ionising radiation when administered prior to radiation exposure. However, amifostine has also been shown to protect cells from chromosomal mutations when administered after radiation exposure. As apoptosis is a common mechanism by which cells with mutations are removed from the cell population, we investigated whether amifostine stimulates apoptosis when administered after radiation exposure. We chose to study a relatively low dose which is the maximum radiation dose for radiation emergency workers (0.25 Gy) and a high dose relevant to radiotherapy exposures (6 Gy). Mice were administered 400 mg/kg amifostine 30 min before, or 3 h after, whole-body irradiation with 0.25 or 6 Gy X-rays and apoptosis was analysed 3 or 7 h later in spleen and bone marrow. We observed a significant increase in radiation-induced apoptosis in the spleen of mice when amifostine was administered before or after 0.25 Gy X-rays. In contrast, when a high dose of radiation was used (6 Gy), amifostine caused a reduction in radiation-induced apoptosis 3 h post-irradiation in spleen and bone marrow similar to previously published studies. This is the first study to investigate the effect of amifostine on radiation-induced apoptosis at a relatively low radiation dose and the first to demonstrate that while amifostine can reduce apoptosis from high doses of radiation, it does not mediate the same effect in response to low-dose exposures. These results suggest that there may be a dose threshold at which amifostine protects from radiation-induced apoptosis and highlight the importance of examining a range of radiation doses and timepoints.
Kojima, Shuji
2006-10-01
We first examined the relation between the induction of glutathione and immune functions in mice after low-dose gamma-ray irradiation. Thereafter, inhibition of tumor growth by radiation was confirmed in Ehrlich solid tumor (EST)-bearing mice. The total glutathione level of the splenocytes transiently increased soon after irradiation and reached a maximum at around 4 h postirradiation. Thereafter, the level reverted to the 0 h value by 24 h postirradiation. A significantly high splenocyte proliferative response was also recognized 4 h postirradiation. Natural killer (NK) activity was also increased significantly in a similar manner. The time at which the response reached the maximum coincided well with that of maximum total glutathione levels of the splenocytes in the gamma-ray-irradiated mice. Reduced glutathione exogenously added to splenocytes obtained from normal mice enhanced the proliferative response and NK activity in a dose-dependent manner. The inhibitory effects of radiation on tumor growth was then examined in EST-bearing mice. Repeated low-dose irradiation (0.5 Gy, four times, before and within an early time after inoculation) significantly delayed the tumor growth. Finally, the effect of single low-dose (0.5 Gy), whole-body gamma-ray irradiation on immune balance was examined to elucidate the mechanism underlying the antitumor immunity. The percentage of B cells in blood lymphocytes was selectively decreased after radiation, concomitant with an increase in that of the helper T cell population. The IFN-gamma level in splenocyte culture prepared from EST-bearing mice was significantly increased 48 h after radiation, although the level of IL-4 was unchanged. IL-12 secretion from macrophages was also enhanced by radiation. These results suggest that low-dose gamma-rays induce Th1 polarization and enhance the activities of tumoricidal effector cells, leading to an inhibition of tumor growth.
NASA Astrophysics Data System (ADS)
Budiyono, T.; Budi, W. S.; Hidayanto, E.
2016-03-01
Radiation therapy for brain malignancy is done by giving a dose of radiation to a whole volume of the brain (WBRT) followed by a booster at the primary tumor with more advanced techniques. Two external radiation fields given from the right and left side. Because the shape of the head, there will be an unavoidable hotspot radiation dose of greater than 107%. This study aims to optimize planning of radiation therapy using field in field multi-leaf collimator technique. A study of 15 WBRT samples with CT slices is done by adding some segments of radiation in each field of radiation and delivering appropriate dose weighting using a TPS precise plan Elekta R 2.15. Results showed that this optimization a more homogeneous radiation on CTV target volume, lower dose in healthy tissue, and reduced hotspots in CTV target volume. Comparison results of field in field multi segmented MLC technique with standard conventional technique for WBRT are: higher average minimum dose (77.25% ± 0:47%) vs (60% ± 3:35%); lower average maximum dose (110.27% ± 0.26%) vs (114.53% ± 1.56%); lower hotspot volume (5.71% vs 27.43%); and lower dose on eye lenses (right eye: 9.52% vs 18.20%); (left eye: 8.60% vs 16.53%).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oumano, M; University of Massachusetts Lowell, Lowell, MA; Ngwa, W
Purpose: To measure the increase in in vitro radiosensitivity for A549 lung carcinoma cells due to gold nanoparticle (GNP) radiation dose enhancement in both traditional monolayer and three dimensional (3D) cell culture models. Methods: A γH2AX immunofluorescence assay is performed on monolayer A549 cell culture and quantitatively analyzed to measure the increase in double strand breaks (DSBs) resulting from GNP dose enhancement. A clonogenic survival assay (CSA) is then performed on monolayer A549 cell culture to assess true viability after treatment. And lastly, another γH2AX assay is performed on 3D A549 multicellular nodules overlaid on a bed of growth factormore » reduced matrigel to measure dose response in a model that better recapitulates treatment response to actual tumors in vivo. Results: The first γH2AX assay performed on the monolayer cell culture shows a significant increase in DSBs due to GNP dose enhancement. The maximum average observed increase in normalized fluorescent intensity for monolayer cell culture is 171% for the 6Gy-treatment groups incubated in 0.556 mg Au/ml solution. The CSA performed on monolayer cell culture also shows considerable GNP dose enhancement. The maximum decrease in the normalized surviving fraction is 12% for the 4Gy-treatment group incubated in 0.556 mg Au/ml. And lastly, the GNP dose enhancement is confirmed to be mitigated in three dimensional cell culture models as compared to the traditional monolayer model. The maximum average observed dose enhancement for 3D cell culture is 19% for the 6Gy-treatment groups and incubated in 0.556 mg Au/ml. Conclusion: A marked increase in radiosensitivity is observed for A549 lung carcinoma cells when treated with GNPs plus radiation as opposed to radiation alone. Traditional monolayer cell culture also shows a much more pronounced radiation dose enhancement than 3D cell culture.« less
Estimation Of Organ Doses From Solar Particle Events For Future Space Exploration Missions
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; Cucinotta, Francis A.
2006-01-01
Radiation protection practices define the effective dose as a weighted sum of equivalent dose over major organ sites for radiation cancer risks. Since a crew personnel dosimeter does not make direct measurement of the effective dose, it has been estimated with skin-dose measurements and radiation transport codes for ISS and STS missions. If sufficient protection is not provided near solar maximum, the radiation risk can be significant due to exposure to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR) on future exploratory-class and long-duration missions. For accurate estimates of overall fatal cancer risks from SPEs, the specific doses at various blood forming organs (BFOs) were considered, because proton fluences and doses vary considerably across marrow regions. Previous estimates of BFO doses from SPEs have used an average body-shielding distribution for the bone marrow based on the computerized anatomical man model (CAM). With the development of an 82-point body-shielding distribution at BFOs, the mean and variance of SPE doses in the major active marrow regions (head and neck, chest, abdomen, pelvis and thighs) will be presented. Consideration of the detailed distribution of bone marrow sites is one of many requirements to improve the estimation of effective doses for radiation cancer risks.
Solar Modulation of Inner Trapped Belt Radiation Flux as a Function of Atmospheric Density
NASA Technical Reports Server (NTRS)
Lodhi, M. A. K.
2005-01-01
No simple algorithm seems to exist for calculating proton fluxes and lifetimes in the Earth's inner, trapped radiation belt throughout the solar cycle. Most models of the inner trapped belt in use depend upon AP8 which only describes the radiation environment at solar maximum and solar minimum in Cycle 20. One exception is NOAAPRO which incorporates flight data from the TIROS/NOAA polar orbiting spacecraft. The present study discloses yet another, simple formulation for approximating proton fluxes at any time in a given solar cycle, in particular between solar maximum and solar minimum. It is derived from AP8 using a regression algorithm technique from nuclear physics. From flux and its time integral fluence, one can then approximate dose rate and its time integral dose.
Preliminary results of radiation measurements on EURECA
NASA Technical Reports Server (NTRS)
Benton, E. V.; Frank, A. L.
1995-01-01
The eleven-month duration of the EURECA mission allows long-term radiation effects to be studied similarly to those of the Long Duration Exposure Facility (LDEF). Basic data can be generated for projections to crew doses and electronic and computer reliability on spacecraft missions. A radiation experiment has been designed for EURECA which uses passive integrating detectors to measure average radiation levels. The components include a Trackoscope, which employs fourteen plastic nuclear track detector (PNTD) stacks to measure the angular dependence of high LET (greater than or equal to 6 keV/micro m) radiation. Also included are TLD's for total absorbed doses, thermal/resonance neutron detectors (TRND's) for low energy neutron fluences and a thick PNTD stack for depth dependence measurements. LET spectra are derived from the PNTD measurements. Preliminary TLD results from seven levels within the detector array show that integrated does inside the flight canister varied from 18.8 +/- 0.6 cGy to 38.9 +/- 1.2 cGy. The TLD's oriented toward the least shielded direction averaged 53% higher in dose than those oriented away from the least shielded direction (minimum shielding toward the least shielded direction varied from 1.13 to 7.9 g/cm(exp 2), Al equivalent). The maximum dose rate on EURECA (1.16 mGy/day) was 37% of the maximum measured on LDEF and dose rates at all depths were less than measured on LDEF. The shielding external to the flight canister covered a greater solid angle about the canister than the LDEF experiments.
Effect of combined heat and radiation on microbial destruction
NASA Technical Reports Server (NTRS)
Fisher, D. A.; Pflug, I. J.
1977-01-01
A series of experiments at several levels of relative humidity and radiation dose rates was carried out using spores of Bacillus subtilis var. niger to evaluate the effect of heat alone, radiation alone, and a combination of heat and radiation. Combined heat and radiation treatment of microorganisms yields a destruction rate greater than the additive rates of the independent agents. The synergistic mechanism shows a proportional dependency on radiation dose rate, an Arrhenius dependence on temperature, and a dependency on relative humidity. Maximum synergism occurs under conditions where heat and radiation individually destroy microorganisms at approximately equal rates. Larger synergistic advantage is possible at low relative humidities rather than at high relative humidities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayhurst, Caroline; Monsalves, Eric; Bernstein, Mark
2012-04-01
Purpose: To define clinical and dosimetric predictors of nonauditory adverse radiation effects after radiosurgery for vestibular schwannoma treated with a 12 Gy prescription dose. Methods: We retrospectively reviewed our experience of vestibular schwannoma patients treated between September 2005 and December 2009. Two hundred patients were treated at a 12 Gy prescription dose; 80 had complete clinical and radiological follow-up for at least 24 months (median, 28.5 months). All treatment plans were reviewed for target volume and dosimetry characteristics; gradient index; homogeneity index, defined as the maximum dose in the treatment volume divided by the prescription dose; conformity index; brainstem; andmore » trigeminal nerve dose. All adverse radiation effects (ARE) were recorded. Because the intent of our study was to focus on the nonauditory adverse effects, hearing outcome was not evaluated in this study. Results: Twenty-seven (33.8%) patients developed ARE, 5 (6%) developed hydrocephalus, 10 (12.5%) reported new ataxia, 17 (21%) developed trigeminal dysfunction, 3 (3.75%) had facial weakness, and 1 patient developed hemifacial spasm. The development of edema within the pons was significantly associated with ARE (p = 0.001). On multivariate analysis, only target volume is a significant predictor of ARE (p = 0.001). There is a target volume threshold of 5 cm3, above which ARE are more likely. The treatment plan dosimetric characteristics are not associated with ARE, although the maximum dose to the 5th nerve is a significant predictor of trigeminal dysfunction, with a threshold of 9 Gy. The overall 2-year tumor control rate was 96%. Conclusions: Target volume is the most important predictor of adverse radiation effects, and we identified the significant treatment volume threshold to be 5 cm3. We also established through our series that the maximum tolerable dose to the 5th nerve is 9 Gy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markovic, M; Stathakis, S; Jurkovic, I
2015-06-15
Purpose: The purpose of this study was to quantify performance of the nine detectors used for dosimetry measurements in advanced radiation therapy treatments. Methods: The 6 MV beam was utilized for measurements of the field sizes with the lack of lateral charge particle equilibrium. For dose fidelity aspect, energy dependence was studied by measuring PDD and profiles at different depths. The volume effect and its influence on the measured dose profiles have been observed by measuring detector’s response function. Output factor measurements with respect to change in energy spectrum have been performed and collected data has been analyzed. The linearitymore » of the measurements with the dose delivered has been evaluated and relevant comparisons were done. Results: The measured values of the output factors with respect to change in energy spectrum indicated presence of the energy dependence. The detectors with active volume size ≤ 0.3 mm3 maximum deviation from the mean is 5.6% for the field size 0.5 x 0.5 cm2 while detectors with active volume size > 0.3 mm3 have maximum deviation from the mean 7.1%. Linearity with dose at highest dose rate examined for diode detectors showed maximum deviation of 4% while ion chambers showed maximum deviation of 2.2%. Dose profiles showed energy dependence at shallow depths (surface to dmax) influenced by low energy particles with 12 % maximum deviation from the mean for 5 mm2 field size. In relation to Monte Carlo calculation, the detector’s response function σ values were between (0.42±0.25) mm and (1.2±0.25) mm. Conclusion: All the detectors are appropriate for the dosimetry measurements in advanced radiation therapy treatments. The choice of the detectors has to be determined by the application and the scope of the measurements in respect to energy dependence and ability to accurately resolve dose profiles as well as to it’s intrinsic characteristics.« less
NASA Astrophysics Data System (ADS)
Montanari, Davide; Scolari, Enrica; Silvestri, Chiara; Jiang Graves, Yan; Yan, Hao; Cervino, Laura; Rice, Roger; Jiang, Steve B.; Jia, Xun
2014-03-01
Cone beam CT (CBCT) has been widely used for patient setup in image-guided radiation therapy (IGRT). Radiation dose from CBCT scans has become a clinical concern. The purposes of this study are (1) to commission a graphics processing unit (GPU)-based Monte Carlo (MC) dose calculation package gCTD for Varian On-Board Imaging (OBI) system and test the calculation accuracy, and (2) to quantitatively evaluate CBCT dose from the OBI system in typical IGRT scan protocols. We first conducted dose measurements in a water phantom. X-ray source model parameters used in gCTD are obtained through a commissioning process. gCTD accuracy is demonstrated by comparing calculations with measurements in water and in CTDI phantoms. Twenty-five brain cancer patients are used to study dose in a standard-dose head protocol, and 25 prostate cancer patients are used to study dose in pelvis protocol and pelvis spotlight protocol. Mean dose to each organ is calculated. Mean dose to 2% voxels that have the highest dose is also computed to quantify the maximum dose. It is found that the mean dose value to an organ varies largely among patients. Moreover, dose distribution is highly non-homogeneous inside an organ. The maximum dose is found to be 1-3 times higher than the mean dose depending on the organ, and is up to eight times higher for the entire body due to the very high dose region in bony structures. High computational efficiency has also been observed in our studies, such that MC dose calculation time is less than 5 min for a typical case.
Dosimetric Analysis of Radiation-induced Gastric Bleeding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Mary, E-mail: maryfeng@umich.edu; Normolle, Daniel; Pan, Charlie C.
2012-09-01
Purpose: Radiation-induced gastric bleeding has been poorly understood. In this study, we described dosimetric predictors for gastric bleeding after fractionated radiation therapy. Methods and Materials: The records of 139 sequential patients treated with 3-dimensional conformal radiation therapy (3D-CRT) for intrahepatic malignancies were reviewed. Median follow-up was 7.4 months. The parameters of a Lyman normal tissue complication probability (NTCP) model for the occurrence of {>=}grade 3 gastric bleed, adjusted for cirrhosis, were fitted to the data. The principle of maximum likelihood was used to estimate parameters for NTCP models. Results: Sixteen of 116 evaluable patients (14%) developed gastric bleeds at amore » median time of 4.0 months (mean, 6.5 months; range, 2.1-28.3 months) following completion of RT. The median and mean maximum doses to the stomach were 61 and 63 Gy (range, 46-86 Gy), respectively, after biocorrection of each part of the 3D dose distributions to equivalent 2-Gy daily fractions. The Lyman NTCP model with parameters adjusted for cirrhosis predicted gastric bleed. Best-fit Lyman NTCP model parameters were n=0.10 and m=0.21 and with TD{sub 50} (normal) = 56 Gy and TD{sub 50} (cirrhosis) = 22 Gy. The low n value is consistent with the importance of maximum dose; a lower TD{sub 50} value for the cirrhosis patients points out their greater sensitivity. Conclusions: This study demonstrates that the Lyman NTCP model has utility for predicting gastric bleeding and that the presence of cirrhosis greatly increases this risk. These findings should facilitate the design of future clinical trials involving high-dose upper abdominal radiation.« less
Preliminary analysis of the implications of natural radiations on geostationary operations
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Denn, F. M.
1976-01-01
The natural radiations present at geostationary orbit are discussed. Low-level galactic cosmic rays are important for careers spending a year or more at geostationary altitude. Trapped radiation will on occasion require interruption of extravehicular activity (EVA). The spacesuit shield requirements are strongly affected by the number of interruptions allowed. EVA cannot proceed during a large solar event and maximum allowable doses are exceeded in a few hours unless a heavily shielded area is provided. A shelter of 10 g/sq cm with personal shielding for the eyes and testes would contain exposure to within the presently accepted exposure constraints. Since radiation levels can increase unexpectedly to serious levels, an onboard radiation monitoring system with rate and integration capabilities is required for both surface-dose and depth-dose monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamison, J.D.; Watson, E.C.
1980-11-01
Potential environmental consequences in terms of radiation dose to people are presented for postulated plutonium releases caused by severe natural phenomena at the General Electric Company Vallecitos Nuclear Center, Vallecitos, California. The severe natural phenomena considered are earthquakes, tornadoes, and high straight-line winds. Maximum plutonium deposition values are given for significant locations around the site. All important potential exposure pathways are examined. The most likely 50-year committed dose equivalents are given for the maximum-exposed individual and the population within a 50-mile radius of the plant. The maximum plutonium deposition values likely to occur offsite are also given. The most likelymore » calculated 50-year collective committed dose equivalents are all much lower than the collective dose equivalent expected from 50 years of exposure to natural background radiation and medical x-rays. The most likely maximum residual plutonium contamination estimated to be deposited offsite following the earthquakes, and the 180-mph and 230-mph tornadoes are above the Environmental Protection Agency's (EPA) proposed guideline for plutonium in the general environment of 0.2 ..mu..Ci/m/sup 2/. The deposition values following the 135-mph tornado are below the EPA proposed guidelines.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minsky, B.D.; Cohen, A.M.; Kemeny, N.
1993-04-02
The authors performed a Phase 1 trial to determine the maximum tolerated dose of combined pre-operative radiation (5040 cGy) and 2 cycles (bolus daily [times] 5) of 5-FU and low dose LV (20 mg/m2), followed by surgery and 10 cycles of post-operative LV/5-FU in patients with unresectable primary or recurrent rectal cancer. Twelve patients were entered. The initial dose of 5-FU was 325 mg/m2. 5-FU was to be escalated while the LV remained constant at 20 mg/m2. Chemotherapy began on day 1 and radiation on day 8. The post-operative chemotherapy was not dose escalated; 5-FU: 425 mg/m2 and LV: 20more » mg/m2. The median follow-up was 14 months (7--16 months). Following pre-operative therapy, the resectability rate with negative margins was 91% and the pathologic complete response rate was 9%. For the combined modality segment (preoperative) the incidence of any grade 3+ toxicity was diarrhea: 17%, dysuria: 8%, mucositis: 8%, and erythema: 8%. The median nadir counts were WBC: 3.1, HGB: 8.8, and PLT: 153000. The maximum tolerated dose of 5-FU for pre-operative combined LV/5-FU/RT was 325 mg/m2 with no escalation possible. Therefore, the recommended dose was less than 325 mg/m2. Since adequate doses of 5-FU to treat systemic disease could not be delivered until at least 3 months (cycle 3) following the start of therapy, the authors do not recommend that this 5-FU, low dose LV, and sequential radiation therapy regimen be used as presently designed. However, given the 91% resectability rate they remain encouraged with this approach. 31 refs., 1 fig., 2 tabs.« less
Radiation exposure assessment for portsmouth naval shipyard health studies.
Daniels, R D; Taulbee, T D; Chen, P
2004-01-01
Occupational radiation exposures of 13,475 civilian nuclear shipyard workers were investigated as part of a retrospective mortality study. Estimates of annual, cumulative and collective doses were tabulated for future dose-response analysis. Record sets were assembled and amended through range checks, examination of distributions and inspection. Methods were developed to adjust for administrative overestimates and dose from previous employment. Uncertainties from doses below the recording threshold were estimated. Low-dose protracted radiation exposures from submarine overhaul and repair predominated. Cumulative doses are best approximated by a hybrid log-normal distribution with arithmetic mean and median values of 20.59 and 3.24 mSv, respectively. The distribution is highly skewed with more than half the workers having cumulative doses <10 mSv and >95% having doses <100 mSv. The maximum cumulative dose is estimated at 649.39 mSv from 15 person-years of exposure. The collective dose was 277.42 person-Sv with 96.8% attributed to employment at Portsmouth Naval Shipyard.
Intraluminal radiation for esophageal cancer: a Howard University technique.
Moorthy, C R; Nibhanupudy, J R; Ashayeri, E; Goldson, A L; Espinoza, M C; Nidiry, J J; Warner, O G; Roux, V J
1982-03-01
The objective of radiotherapeutic management in esophageal cancer is to accomplish maximum tumor sterilization with minimal normal tissue damage. This sincere effort is most often countered by the differential in tumor dose response vs normal tissue tolerance. Intraluminal isotope radiation, with its inherent advantage of rapid dose falloff, spares the lungs, the spinal cord, and other vital structures, yet yields adequately high doses to esophageal tumor. Though in existence since the turn of the century, the method of intracavitary radium bougie application dropped out of favor due to technical difficulties imposed by the size of the radium source and radiation exposure to the personnel involved. The authors describe a simple "iridium 192 afterloading intraluminal technique" that eliminates technical problems and reduces radiation exposure considerably.
Dosimetric Considerations in Radioimmunotherapy and Systemic Radionuclide Therapies: A Review
Loke, Kelvin S. H.; Padhy, Ajit K.; Ng, David C. E.; Goh, Anthony S.W.; Divgi, Chaitanya
2011-01-01
Radiopharmaceutical therapy, once touted as the “magic bullet” in radiation oncology, is increasingly being used in the treatment of a variety of malignancies; albeit in later disease stages. With ever-increasing public and medical awareness of radiation effects, radiation dosimetry is becoming more important. Dosimetry allows administration of the maximum tolerated radiation dose to the tumor/organ to be treated but limiting radiation to critical organs. Traditional tumor dosimetry involved acquiring pretherapy planar scans and plasma estimates with a diagnostic dose of intended radiopharmaceuticals. New advancements in single photon emission computed tomography and positron emission tomography systems allow semi-quantitative measurements of radiation dosimetry thus allowing treatments tailored to each individual patient. PMID:22144871
Montes, Carlos; Tamayo, Pilar; Hernandez, Jorge; Gomez-Caminero, Felipe; García, Sofia; Martín, Carlos; Rosero, Angela
2013-08-01
Hybrid imaging, such as SPECT/CT, is used in routine clinical practice, allowing coregistered images of the functional and structural information provided by the two imaging modalities. However, this multimodality imaging may mean that patients are exposed to a higher radiation dose than those receiving SPECT alone. The study aimed to determine the radiation exposure of patients who had undergone SPECT/CT examinations and to relate this to the Background Equivalent Radiation Time (BERT). 145 SPECT/CT studies were used to estimate the total effective dose to patients due to both radiopharmaceutical administrations and low-dose CT scans. The CT contribution was estimated by the Dose-Length Product method. Specific conversion coefficients were calculated for SPECT explorations. The radiation dose from low-dose CTs ranged between 0.6 mSv for head and neck CT and 2.6 mSv for whole body CT scan, representing a maximum of 1 year of background radiation exposure. These values represent a decrease of 80-85% with respect to the radiation dose from diagnostic CT. The radiation exposure from radiopharmaceutical administration varied from 2.1 mSv for stress myocardial perfusion SPECT to 26 mSv for gallium SPECT in patients with lymphoma. The BERT ranged from 1 to 11 years. The contribution of low-dose CT scans to the total radiation dose to patients undergoing SPECT/CT examinations is relatively low compared with the effective dose from radiopharmaceutical administration. When a CT scan is only acquired for anatomical localization and attenuation correction, low-dose CT scan is justified on the basis of its lower dose.
Aoki, Masahiko; Sato, Mariko; Hirose, Katsumi; Akimoto, Hiroyoshi; Kawaguchi, Hideo; Hatayama, Yoshiomi; Ono, Shuichi; Takai, Yoshihiro
2015-04-22
Radiation-induced rib fracture after stereotactic body radiotherapy (SBRT) for lung cancer has been recently reported. However, incidence of radiation-induced rib fracture after SBRT using moderate fraction sizes with a long-term follow-up time are not clarified. We examined incidence and risk factors of radiation-induced rib fracture after SBRT using moderate fraction sizes for the patients with peripherally located lung tumor. During 2003-2008, 41 patients with 42 lung tumors were treated with SBRT to 54-56 Gy in 9-7 fractions. The endpoint in the study was radiation-induced rib fracture detected by CT scan after the treatment. All ribs where the irradiated doses were more than 80% of prescribed dose were selected and contoured to build the dose-volume histograms (DVHs). Comparisons of the several factors obtained from the DVHs and the probabilities of rib fracture calculated by Kaplan-Meier method were performed in the study. Median follow-up time was 68 months. Among 75 contoured ribs, 23 rib fractures were observed in 34% of the patients during 16-48 months after SBRT, however, no patients complained of chest wall pain. The 4-year probabilities of rib fracture for maximum dose of ribs (Dmax) more than and less than 54 Gy were 47.7% and 12.9% (p = 0.0184), and for fraction size of 6, 7 and 8 Gy were 19.5%, 31.2% and 55.7% (p = 0.0458), respectively. Other factors, such as D2cc, mean dose of ribs, V10-55, age, sex, and planning target volume were not significantly different. The doses and fractionations used in this study resulted in no clinically significant rib fractures for this population, but that higher Dmax and dose per fraction treatments resulted in an increase in asymptomatic grade 1 rib fractures.
Spacecraft shielding for a Mars mission
NASA Astrophysics Data System (ADS)
O'Brien, K.
Calculations of the effective radiation dose due to cosmic rays in the interplanetary medium between Earth and Mars show that, as in the atmosphere above the Pfotzer Maximum, the dose rate increases with increasing wall thickness. An unshielded space crew member would receive almost 70 rem (0.70 Sv) a year. The effect of a typically proposed composite space-craft hull of aluminum and polyethylene would increase the dose rate by a few percent. However, 100 g/cm2 of almost any light material would more than double the cosmic radiation exposure of the crew.
Proton depth dose distribution: 3-D calculation of dose distributions from solar flare irradiation
NASA Astrophysics Data System (ADS)
Leavitt, Dennis D.
1990-11-01
Relative depth dose distribution to the head from 3 typical solar flare proton events were calculated for 3 different exposure geometries: (1) single directional radiation incident upon a fixed head; (2) single directional radiation incident upon head rotating axially (2-D rotation); and (3) omnidirectional radiation incident upon head (3-D rotation). Isodose distributions in the transverse plane intersecting isocenter are presented for each of the 3 solar flare events in all 3 exposure geometries. In all 3 calculation configurations the maximum predicted dose occurred on the surface of the head. The dose at the isocenter of the head relative to the surface dose for the 2-D and 3-D rotation geometries ranged from 2 to 19 percent, increasing with increasing energy of the event. The calculations suggest the superficially located organs (lens of the eye and skin) are at greatest risk for the proton events studied here.
[Basic principles and results of brachytherapy in gynecological oncology].
Kanaev, S V; Turkevich, V G; Baranov, S B; Savel'eva, V V
2014-01-01
The fundamental basics of contact radiation therapy (brachytherapy) for gynecological cancer are presented. During brachytherapy the principles of conformal radiotherapy should be implemented, the aim of which is to sum the maximum possible dose of radiation to the tumor and decrease the dose load in adjacent organs and tissues, which allows reducing the frequency of radiation damage at treatment of primary tumors. It is really feasible only on modern technological level, thanks to precision topometry preparation, optimal computer dosimetrical and radiobiological planning of each session and radiotherapy in general. Successful local and long-term results of the contact radiation therapy for cancer of cervix and endometrium are due to optimal anatomical and topometrical ratio of the tumor localization, radioactive sources, and also physical and radiobiological laws of distribution and effects of ionizing radiation, the dose load accounting rules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kendall, E; Higby, C; Algan, O
2016-06-15
Purpose: To compare the treatment plan quality and dose gradient near the hippocampus between VMAT (RapidArc) and IMRT delivery techniques for whole brain radiation therapy. Methods: Fifteen patients were evaluated in this retrospective study. All treatments were planned on Varian Eclipse TPS, using 3-Arc VMAT and 9-Field IMRT, following NRG Oncology protocol NRG-CC001 guidelines evaluated by a single radiation oncologist. Prescribed doses in all plans were 30 Gy delivered over 10 fractions normalized to a minimum of 100% of the dose covering 95% of the target volume. Identical contour sets and dose-volume constraints following protocol guidelines were also applied inmore » all plans. A paired t-test analysis was used to compare VMAT and IMRT plans. Results: NRG-CC001 protocol dose-volume constraints were met for all VMAT and IMRT plans. For the planning target volume (PTV), the average values for D2% and D98% were 6% lower and 4% higher in VMAT than in IMRT, respectively. The average mean and maximum hippocampus doses in Gy for VMAT vs IMRT plans were (11.85±0.81 vs. 12.24±0.56, p=0.10) and (16.27±0.78 vs. 16.59±0.71, p=0.24), respectively. In VMAT, the average mean and maximum chiasm doses were 3% and 1% higher than in IMRT plans, respectively. For the left optic nerve, the average mean and maximum doses were 10% and 5% higher in VMAT than in IMRT plans, respectively. These values were 12% and 3% for the right optic nerve. The average percentage of dose gradient around the hippocampus in the 0–5mm and 5–10mm abutted regions for VMAT vs. IMRT were (4.42%±2.22% /mm vs. 3.95%±2.61% /mm, p=0.43) and (4.54%±1.50% /mm vs. 4.39%±1.28% /mm, p=0.73), respectively. Conclusion: VMAT plans can achieve higher hippocampus sparing with a faster dose fall-off than IMRT plans. Though statistically insignificant, VMAT offers better PTV coverage with slightly higher doses to OARs.« less
Radiation dose to workers due to the inhalation of dust during granite fabrication.
Zwack, L M; McCarthy, W B; Stewart, J H; McCarthy, J F; Allen, J G
2014-03-01
There has been very little research conducted to determine internal radiation doses resulting from worker exposure to ionising radiation in granite fabrication shops. To address this issue, we estimated the effective radiation dose of granite workers in US fabrication shops who were exposed to the maximum respirable dust and silica concentrations allowed under current US regulations, and also to concentrations reported in the literature. Radiation doses were calculated using standard methods developed by the International Commission on Radiological Protection. The calculated internal doses were very low, and below both US occupational standards (50 mSv yr(-1)) and limits applicable to the general public (1 mSv yr(-1)). Workers exposed to respirable granite dust concentrations at the US Occupational Safety and Health Administration (OSHA) respirable dust permissible exposure limit (PEL) of 5 mg m(-3) over a full year had an estimated radiation dose of 0.062 mSv yr(-1). Workers exposed to respirable granite dust concentrations at the OSHA silica PEL and at the American Conference of Governmental Industrial Hygienists Threshold Limit Value for a full year had expected radiation doses of 0.007 mSv yr(-1) and 0.002 mSv yr(-1), respectively. Using data from studies of respirable granite dust and silica concentrations measured in granite fabrication shops, we calculated median expected radiation doses that ranged from <0.001 to 0.101 mSv yr(-1).
Updated mortality analysis of radiation workers at Rocketdyne (Atomics International), 1948-2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boice, John; Cohen, Sarah; Mumma, Michael
Updated analyses of mortality data are presented on 5,801 radiation workers, including 2,232 monitored for radionuclide intakes, and 41,169 non-radiation workers employed 1948-1999 at Rocketdyne (Atomics International). The worker population is unique in that lifetime occupational doses from all places of employment were sought and incorporated into the analyses. Further, radiation doses from intakes of 14 different radionuclides were calculated for 16 organs or tissues using biokinetic models of the International Commission on Radiation Protection (ICRP). The mean dose from external radiation was 13.5 mSv (maximum 1 Sv), and the mean lung dose from external and internal radiation combined wasmore » 19.0 mSv (maximum 3.6 Sv). An additional nine years of follow-up, from December 31,1999 through 2008, increased the person-years of observation by 21.7% to 196,674 (mean 33.9 years) and the number of cancer deaths by 50% to 684. Analyses included comparisons with the general population and the computation of standardized mortality ratios (SMRs), and internal comparisons using proportional hazards models. All cancers taken together (SMR 0.88; 95% CI 0.81-0.95), lung cancer (SMR 0.87; 95% CI 0.76-1.00) and leukemia other than chronic lymphocytic leukemia (CLL) (SMR 1.04; 95% 0.67-1.53) were not significantly elevated. Cox regression analyses revealed no significant dose-response trends for any cancer. For all cancers excluding leukemia, the relative risk (RR) at 100 mSv was estimated as 0.98 (95% CI 0.82-1.17) and for all leukemia other than CLL it was 1.06 (95% CI 0.50-2.23). Uranium was the primary radionuclide contributing to internal exposures, but significant increases in lung and kidney disease were not seen. The extended follow-up re-enforces the findings in the previous study in failing to observe a detectable increase in cancer deaths associated with radiation, but strong conclusions still cannot be drawn because of small numbers and relatively low career doses. Larger combined studies of early workers in the United States following similar methodologies are warranted to refine and clarify radiation risks following protracted exposures.« less
Zhao, Hanxi; Zhu, Wanqi; Jia, Li; Sun, Xiaorong; Chen, Guanxuan; Zhao, Xianguang; Li, Xiaolin; Meng, Xiangjiao; Kong, Lingling; Xing, Ligang; Yu, Jinming
2016-01-01
The purpose of this study was to investigate the safety, tolerability and preliminary effectiveness of topical epigallocatechin-3-gallate (EGCG) for radiation dermatitis in patients with breast cancer receiving adjuvant radiotherapy. Patients with breast cancer who received radiotherapy to the chest wall after mastectomy were enrolled. EGCG solution was sprayed to the radiation field from the initiation of Grade 1 radiation dermatitis until 2 weeks after completion of radiotherapy. EGCG concentration escalated from 40 to 660 μmol l(-1) in 7 levels with 3-6 patients in each level. EGCG toxicity was graded using the NCI (National Cancer Institute Common Terminology Criteria for Adverse Events) v. 3.0. Any adverse event >Grade 1 attributed to EGCG was considered dose-limiting toxicity. The maximum tolerated dose was defined as the dose level that induced dose-limiting toxicity in more than one-third of patients at a given cohort. Radiation dermatitis was recorded weekly by the Radiation Therapy Oncology Group scoring and patient-reported symptoms. From March 2012 to August 2013, 24 patients were enrolled. Acute skin redness was observed in 1 patient and considered to be associated with the EGCG treatment at 140 μmol l(-1) level. Three more patients were enrolled at this level and did not experience toxicity to EGCG. The dose escalation stopped at 660 μmol l(-1). No other reported acute toxicity was associated with EGCG. Grade 2 radiation dermatitis was observed in eight patients during or after radiotherapy, but all decreased to Grade 1 after EGCG treatments. Patient-reported symptom scores were significantly decreased at 2 weeks after the end of radiotherapy in pain, burning, itching and tenderness, p < 0.05. The topical administration of EGCG was well tolerated and the maximum tolerated dose was not found. EGCG may be effective in treating radiation dermatitis with preliminary investigation. EGCG solution seemed to be feasible for treating radiation dermatitis in patients with breast cancer after mastectomy. It should be tested as a way to reduce radiation-induced normal tissue toxicity and complications in future years.
A method to reduce patient's eye lens dose in neuro-interventional radiology procedures
NASA Astrophysics Data System (ADS)
Safari, M. J.; Wong, J. H. D.; Kadir, K. A. A.; Sani, F. M.; Ng, K. H.
2016-08-01
Complex and prolonged neuro-interventional radiology procedures using the biplane angiography system increase the patient's risk of radiation-induced cataract. Physical collimation is the most effective way of reducing the radiation dose to the patient's eye lens, but in instances where collimation is not possible, an attenuator may be useful in protecting the eyes. In this study, an eye lens protector was designed and fabricated to reduce the radiation dose to the patients' eye lens during neuro-interventional procedures. The eye protector was characterised before being tested on its effectiveness in a simulated aneurysm procedure on an anthropomorphic phantom. Effects on the automatic dose rate control (ADRC) and image quality are also evaluated. The eye protector reduced the radiation dose by up to 62.1% at the eye lens. The eye protector is faintly visible in the fluoroscopy images and increased the tube current by a maximum of 3.7%. It is completely invisible in the acquisition mode and does not interfere with the clinical procedure. The eye protector placed within the radiation field of view was able to reduce the radiation dose to the eye lens by direct radiation beam of the lateral x-ray tube with minimal effect on the ADRC system.
Ohri, Nisha; Cordeiro, Peter G; Keam, Jennifer; Ballangrud, Ase; Shi, Weiji; Zhang, Zhigang; Nerbun, Claire T; Woch, Katherine M; Stein, Nicholas F; Zhou, Ying; McCormick, Beryl; Powell, Simon N; Ho, Alice Y
2012-10-01
To assess the impact of immediate breast reconstruction on postmastectomy radiation (PMRT) using dose-volume histogram (DVH) data. Two hundred forty-seven women underwent PMRT at our center, 196 with implant reconstruction and 51 without reconstruction. Patients with reconstruction were treated with tangential photons, and patients without reconstruction were treated with en-face electron fields and customized bolus. Twenty percent of patients received internal mammary node (IMN) treatment. The DVH data were compared between groups. Ipsilateral lung parameters included V20 (% volume receiving 20 Gy), V40 (% volume receiving 40 Gy), mean dose, and maximum dose. Heart parameters included V25 (% volume receiving 25 Gy), mean dose, and maximum dose. IMN coverage was assessed when applicable. Chest wall coverage was assessed in patients with reconstruction. Propensity-matched analysis adjusted for potential confounders of laterality and IMN treatment. Reconstruction was associated with lower lung V20, mean dose, and maximum dose compared with no reconstruction (all P<.0001). These associations persisted on propensity-matched analysis (all P<.0001). Heart doses were similar between groups (P=NS). Ninety percent of patients with reconstruction had excellent chest wall coverage (D95 >98%). IMN coverage was superior in patients with reconstruction (D95 >92.0 vs 75.7%, P<.001). IMN treatment significantly increased lung and heart parameters in patients with reconstruction (all P<.05) but minimally affected those without reconstruction (all P>.05). Among IMN-treated patients, only lower lung V20 in those without reconstruction persisted (P=.022), and mean and maximum heart doses were higher than in patients without reconstruction (P=.006, P=.015, respectively). Implant reconstruction does not compromise the technical quality of PMRT when the IMNs are untreated. Treatment technique, not reconstruction, is the primary determinant of target coverage and normal tissue doses. Published by Elsevier Inc.
NASA Technical Reports Server (NTRS)
Foelsche, T.; Mendell, R. B.; Wilson, J. W.; Adams, R. R.
1974-01-01
Results of the NASA Langley-New York University high-altitude radiation study are presented. Measurements of the absorbed dose rate and of secondary fast neutrons (1 to 10 MeV energy) during the years 1965 to 1971 are used to determine the maximum radiation exposure from galactic and solar cosmic rays of supersonic transport (SST) and subsonic jet occupants. The maximum dose equivalent rates that the SST crews might receive turn out to be 13 to 20 percent of the maximum permissible dose rate (MPD) for radiation workers (5 rem/yr). The exposure of passengers encountering an intense giant-energy solar particle event could exceed the MPD for the general population (0.5 rem/yr), but would be within these permissible limits if in such rare cases the transport descends to subsonic altitude; it is in general less than 12 percent of the MPD. By Monte Carlo calculations of the transport and buildup of nucleons in air for incident proton energies E of 0.02 to 10 GeV, the measured neutron spectra were extrapolated to lower and higher energies and for galactic cosmic rays were found to continue with a relatively high intensity to energies greater than 400 MeV, in a wide altitude range. This condition, together with the measured intensity profiles of fast neutrons, revealed that the biologically important fast and energetic neutrons penetrate deep into the atmosphere and contribute approximately 50 percent of the dose equivalant rates at SST and present subsonic jet altitudes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C; Yin, Y
Purpose: The purpose of this work was to determine the dosimetric benefit to normal tissues by tracking liver tumor dose in four dimensional radiation therapy (4DRT) on ten phases of four dimensional computer tomagraphy(4DCT) images. Methods: Target tracking each phase with the beam aperture for ten liver cancer patients were converted to cumulative plan and compared to the 3D plan with a merged target volume based on 4DCT image in radiation treatment planning system (TPS). The change in normal tissue dose was evaluated in the plan by using the parameters V5, V10, V15, V20,V25, V30, V35 and V40 (volumes receivingmore » 5, 10, 15, 20, 25, 30, 35 and 40Gy, respectively) in the dose-volume histogram for the liver; mean dose for the following structures: liver, left kidney and right kidney; and maximum dose for the following structures: bowel, duodenum, esophagus, stomach and heart. Results: There was significant difference between 4D PTV(average 115.71cm3 )and ITV(169.86 cm3). When the planning objective is 95% volume of PTV covered by the prescription dose, the mean dose for the liver, left kidney and right kidney have an average decrease 23.13%, 49.51%, and 54.38%, respectively. The maximum dose for bowel, duodenum,esophagus, stomach and heart have an average decrease 16.77%, 28.07%, 24.28%, 4.89%, and 4.45%, respectively. Compared to 3D RT, radiation volume for the liver V5, V10, V15, V20, V25, V30, V35 and V40 by using the 4D plans have a significant decrease(P≤0.05). Conclusion: The 4D plan method creates plans that permit better sparing of the normal structures than the commonly used ITV method, which delivers the same dosimetric effects to the target.« less
ERIC Educational Resources Information Center
National Bureau of Standards (DOC), Washington, DC.
This handbook is designed to help users of radioactive materials to handle the radioactive material without exposing themselves or others to radiation doses in excess of maximum permissible limits. The discussion of radiation levels is in terms of readings from dosimeters and survey instruments. Safety in the handling of radioactive materials in…
Capacitance-Based Dosimetry of Co-60 Radiation using Fully-Depleted Silicon-on-Insulator Devices
Li, Yulong; Porter, Warren M.; Ma, Rui; Reynolds, Margaret A.; Gerbi, Bruce J.; Koester, Steven J.
2015-01-01
The capacitance based sensing of fully-depleted silicon-on-insulator (FDSOI) variable capacitors for Co-60 gamma radiation is investigated. Linear response of the capacitance is observed for radiation dose up to 64 Gy, while the percent capacitance change per unit dose is as high as 0.24 %/Gy. An analytical model is developed to study the operational principles of the varactors and the maximum sensitivity as a function of frequency is determined. The results show that FDSOI varactor dosimeters have potential for extremely-high sensitivity as well as the potential for high frequency operation in applications such as wireless radiation sensing. PMID:27840451
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, J.
A case is reported of a 39-yr-old dentist who realized that his dental x- ray machine had been on for about 90 min. During this time he was near the machine constantly, with his back usually toward the source of radiation. The estimated dose to the back of his head and upper torso was 180 r. The dentist saffered some anxiety, but no acute symptoms of radiation sickness. Physical examination gave negative results. There was no evidence of acute radiation damage. Study of temporal scalp hair revealed an estimated maximum dose received by the hair follicles of approximates 50 tomore » 75 r. The direct technical cause of the accident was a loose washer in the timer mechanism, making contact and completing the switching circuit, thereby causing the unit to go on. It is suggested that dentists and their assistants should wear radiation exposure badges at all times. In addition, equipment shouid be systcmatically and regularly checked so that maximum operating efficiency can be combined with minimum exposure. (P.C.H.)« less
Yoshikawa, Hiroto; Roback, Donald M; Larue, Susan M; Nolan, Michael W
2015-01-01
Potential benefits of planning radiation therapy on a contrast-enhanced computed tomography scan (ceCT) should be weighed against the possibility that this practice may be associated with an inadvertent risk of overdosing nearby normal tissues. This study investigated the influence of ceCT on intensity-modulated stereotactic body radiotherapy (IM-SBRT) planning. Dogs with head and neck, pelvic, or appendicular tumors were included in this retrospective cross-sectional study. All IM-SBRT plans were constructed on a pre- or ceCT. Contours for tumor and organs at risk (OAR) were manually constructed and copied onto both CT's; IM-SBRT plans were calculated on each CT in a manner that resulted in equal radiation fluence. The maximum and mean doses for OAR, and minimum, maximum, and mean doses for targets were compared. Data were collected from 40 dogs per anatomic site (head and neck, pelvis, and limbs). The average dose difference between minimum, maximum, and mean doses as calculated on pre- and ceCT plans for the gross tumor volume was less than 1% for all anatomic sites. Similarly, the differences between mean and maximum doses for OAR were less than 1%. The difference in dose distribution between plans made on CTs with and without contrast enhancement was tolerable at all treatment sites. Therefore, although caution would be recommended when planning IM-SBRT for tumors near "reservoirs" for contrast media (such as the heart and urinary bladder), findings supported the use of ceCT with this dose calculation algorithm for both target delineation and IM-SBRT treatment planning. © 2015 American College of Veterinary Radiology.
Energy response of diamond sensor to beta radiation.
Tchouaso, Modeste Tchakoua; Kasiwattanawut, Haruetai; Prelas, Mark A
2018-04-26
This paper demonstrates the ability of diamond sensors to respond to beta radiation. A Chemical Vapor Deposition (CVD) single crystal diamond was used in this work. The diamond crystal has a dimension of 4.5×4.5 by 0.5 mm thick. Metal contacts were fabricated on both sides of the diamond using titanium and palladium metals with thicknesses of 50 nm and 150 nm, respectively. The energy response of the diamond sensor was experimentally measured using three beta isotopes that cover the entire range of beta energy: 147 Pm, a weak beta radiation with a maximum energy of 0.225 MeV, 2 ° 4 Tl, a medium energy beta radiation with a maximum energy of 0.763 MeV, and 9 °Sr/ 9 °Y, with both a medium energy beta radiation with a maximum energy of 0.546 MeV, and a high energy beta radiation with a maximum energy of 2.274 MeV. The beta measurements indicate that diamond sensors are sensitive to beta radiation and are suitable for beta spectroscopy. This is important in estimating dose since diamond is tissue equivalent, and the absorbed dose is easily determined from the energy and the mass of the active volume. The high energy betas from 2 ° 4 Tl and 90 Sr/ 90 Y penetrates the sensor without depositing sufficient energy in the active area because their range is larger than the thickness of sensor. The sensitivity of the detector is limited because of its small volume and can be improved by combining smaller area sensors since growing large size diamond is currently a challenge. Copyright © 2018 Elsevier Ltd. All rights reserved.
Flight attendant radiation dose from solar particle events.
Anderson, Jeri L; Mertens, Christopher J; Grajewski, Barbara; Luo, Lian; Tseng, Chih-Yu; Cassinelli, Rick T
2014-08-01
Research has suggested that work as a flight attendant may be related to increased risk for reproductive health effects. Air cabin exposures that may influence reproductive health include radiation dose from galactic cosmic radiation and solar particle events. This paper describes the assessment of radiation dose accrued during solar particle events as part of a reproductive health study of flight attendants. Solar storm data were obtained from the National Oceanic and Atmospheric Administration Space Weather Prediction Center list of solar proton events affecting the Earth environment to ascertain storms relevant to the two study periods (1992-1996 and 1999-2001). Radiation dose from exposure to solar energetic particles was estimated using the NAIRAS model in conjunction with galactic cosmic radiation dose calculated using the CARI-6P computer program. Seven solar particle events were determined to have potential for significant radiation exposure, two in the first study period and five in the second study period, and over-lapped with 24,807 flight segments. Absorbed (and effective) flight segment doses averaged 6.5 μGy (18 μSv) and 3.1 μGy (8.3 μSv) for the first and second study periods, respectively. Maximum doses were as high as 440 μGy (1.2 mSv) and 20 flight segments had doses greater than 190 μGy (0.5 mSv). During solar particle events, a pregnant flight attendant could potentially exceed the equivalent dose limit to the conceptus of 0.5 mSv in a month recommended by the National Council on Radiation Protection and Measurements.
Haddad, Mohamed; Herent, Marie-France; Tilquin, Bernard; Quetin-Leclercq, Joëlle
2007-07-25
The microbiological contamination of raw plant materials is common and may be adequately reduced by radiation processing. This study evaluated the effects of gamma- and e-beam ionizing radiations (25 kGy) on three plants used as food or as medicinal products (Thymus vulgaris L., Eucalyptus radiata D.C., and Lavandula angustifolia Mill.) as well as their effects on extracted or commercial essential oils and pure standard samples. Comparison between irradiated and nonirradiated samples was performed by GC/FID and GC/MS. At the studied doses, gamma and e-beam ionizing radiation did not induce any detectable qualitative or quantitative significant changes in the contents and yields of essential oils immediately after ionizing radiation of plants or commercial essential oils and standards. As the maximum dose tested (25 kGy) is a sterilizing dose (much higher than doses used for decontamination of vegetable drugs), it is likely that even decontamination with lower doses will not modify yields or composition of essential oils of these three plants.
Barber, J; McNulty, J P
2012-10-01
To measure the intensity and distribution of scatter radiation received by a restrainer in veterinary radiography including the intensity of scatter radiation passing through lead protective devices at pre-defined positions. Anthropomorphic phantoms and a Labrador dog cadaver were used to simulate a restrainer and patient. Scatter dose measurements were recorded at the position of the restraining hands, thyroid, breast and gonads with and without appropriate lead protection. This was repeated for the eight most common projections as identified in an initial retrospective survey. Manual restraint of an animal for a radiographic procedure will result in a scatter radiation dose to the restrainer. The level of radiation dose varies between body regions and between projections. The use of appropriate lead protection resulted in statistically significant dose reductions to all body regions with maximum scatter dose reductions between 93 and 100%. While the doses recorded were small (μGy) in terms of associated risk, they are nonetheless cumulative which can result in a more significant dose. Therefore manual restraint should be avoided and forms of immobilisation should be used such as mechanical means, sedation or general anaesthesia. However, if completely necessary both principles of distance and adequate lead protection should be employed. © 2012 British Small Animal Veterinary Association.
Karlsson, Kristin; Nyman, Jan; Baumann, Pia; Wersäll, Peter; Drugge, Ninni; Gagliardi, Giovanna; Johansson, Karl-Axel; Persson, Jan-Olov; Rutkowska, Eva; Tullgren, Owe; Lax, Ingmar
2013-11-01
To evaluate the dose-response relationship between radiation-induced atelectasis after stereotactic body radiation therapy (SBRT) and bronchial dose. Seventy-four patients treated with SBRT for tumors close to main, lobar, or segmental bronchi were selected. The association between incidence of atelectasis and bronchial dose parameters (maximum point-dose and minimum dose to the high-dose bronchial volume [ranging from 0.1 cm(3) up to 2.0 cm(3)]) was statistically evaluated with survival analysis models. Prescribed doses varied between 4 and 20 Gy per fraction in 2-5 fractions. Eighteen patients (24.3%) developed atelectasis considered to be radiation-induced. Statistical analysis showed a significant correlation between the incidence of radiation-induced atelectasis and minimum dose to the high-dose bronchial volumes, of which 0.1 cm(3) (D(0.1cm3)) was used for further analysis. The median value of D(0.1cm3) (α/β = 3 Gy) was EQD(2,LQ) = 147 Gy3 (range, 20-293 Gy3). For patients who developed atelectasis the median value was EQD(2,LQ) = 210 Gy3, and for patients who did not develop atelectasis, EQD(2,LQ) = 105 Gy3. Median time from treatment to development of atelectasis was 8.0 months (range, 1.1-30.1 months). In this retrospective study a significant dose-response relationship between the incidence of atelectasis and the dose to the high-dose volume of the bronchi is shown. Copyright © 2013 Elsevier Inc. All rights reserved.
Sakumi, Akira; Miyagawa, Ryu; Tamari, Yuki; Nawa, Kanabu; Sakura, Osamu; Nakagawa, Keiichi
2016-03-01
Since the Great East Japan Earthquake on 11 March 2011, Iitate Village has continued to be classified as a deliberate evacuation area, in which residents are estimated to receive an annual additional effective radiation dose of >20 mSv. Some companies still operate in Iitate Village, with a special permit from the Cabinet Office Team in Charge of Assisting the Lives of Disaster Victims. In this study, we measured the annual effective radiation dose to workers in Iitate Village from 15 January to 13 December 2013. The workers stayed in Iitate for 10 h and left the village for the remaining 14 h each working day. They worked for 5 days each week in Iitate Village, but stayed outside of the village for the remaining 2 days each week. We found that the effective radiation dose of 70% of the workers was <2 mSv, including natural radiation; the maximum dose was 3.6 mSv. We estimated the potential annual additional effective radiation dose if people returned full-time to Iitate. Our analysis supports the plan for people to return to their home village at the end of 2017. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romesser, Paul B.; Qureshi, Muhammad M.; Kovalchuk, Nataliya
2014-07-01
To determine the effect of gross tumor volume of the primary (GTV-P) and nodal (GTV-N) disease on planned radiation dose to the brachial plexus (BP) in head and neck intensity-modulated radiotherapy (IMRT). Overall, 75 patients underwent definitive IMRT to a median total dose of 69.96 Gy in 33 fractions. The right BP and left BP were prospectively contoured as separate organs at risk. The GTV was related to BP dose using the unpaired t-test. Receiver operating characteristics curves were constructed to determine optimized volumetric thresholds of GTV-P and GTV-N corresponding to a maximum BP dose cutoff of > 66 Gy.more » Multivariate analyses were performed to account for factors associated with a higher maximal BP dose. A higher maximum BP dose (> 66 vs ≤ 66 Gy) correlated with a greater mean GTV-P (79.5 vs 30.8 cc; p = 0.001) and ipsilateral GTV-N (60.6 vs 19.8 cc; p = 0.014). When dichotomized by the optimized nodal volume, patients with an ipsilateral GTV-N ≥ 4.9 vs < 4.9 cc had a significant difference in maximum BP dose (64.2 vs 59.4 Gy; p = 0.001). Multivariate analysis confirmed that an ipsilateral GTV-N ≥ 4.9 cc was an independent predictor for the BP to receive a maximal dose of > 66 Gy when adjusted individually for BP volume, GTV-P, the use of a low anterior neck field technique, total planned radiation dose, and tumor category. Although both the primary and the nodal tumor volumes affected the BP maximal dose, the ipsilateral nodal tumor volume (GTV-N ≥ 4.9 cc) was an independent predictor for high maximal BP dose constraints in head and neck IMRT.« less
Martínez-Lozano, José A; Marín, María J; Tena, Fernando; Utrillas, María P; Sánchez-Muniosguren, Luis; González-Frías, Carlos; Cuevas, Emilio; Redondas, Alberto; Lorente, Jerónimo; de Cabo, Xavier; Cachorro, Victoria; Vergaz, Ricardo; de Frutos, Angel; Díaz, Juan P; Expósito, Francisco J; de la Morena, Benito; Vilaplana, José M
2002-08-01
An analysis is made of experimental ultraviolet erythemal solar radiation data measured during the years 2000 and 2001 by the Spanish UV-B radiation evaluation and prediction network. This network consists of 16 Robertson-Berger type pyranometers for evaluating solar erythemal radiation and five Brewer spectroradiometers for evaluating the stratospheric ozone. On the basis of these data the Ultraviolet Index (UVI) was evaluated for the measuring stations that are located either in coastal regions or in the more densely populated regions inland on the Iberian Peninsula. It has been checked that in most cases the maximum irradiance values corresponded to solar noon, although there were exceptions that could be explained by cloudiness. The maximum experimental values of the UVI were around 9 during the summer, though frequently passing this value at the inland measurement stations. The annual accumulated dose of irradiation on a horizontal plane has also been studied, as well as the evolution through the year in units of energy, standard erythemal doses and minimum erythemal doses, according to different phototypes.
Ushakov, I B; Grigoriev, Yu G; Shafirkin, A V; Shurshakov, V A
2016-01-01
Review of the data of experimental radiobiology and epidemiological follow-up of large groups of people subjected to radiation exposures on Earth has been undertaken to substantiate dose limits for critical organs of cosmonauts in order to ensure good performance and vitality while on long-duration orbital missions. The career dose limits for cosmonauts and astronauts established earlier in the USSR and USA amounted to nothing more but banning the risk of cancer death increase to 3%. To apply more rigorous criteria of delayed radiation risks, the Russian limits for cosmonauts were revised to substantiate a 4-fold reduction of the average tissue equivalent dose maximum to 1 Sv. The total of cancer and non-cancer radiation risks over lifetime and probable reduction of mean life expectancy (MLE) were calculated using the model of radiation-induced mortality for mammals and taken as the main damage to health. The established dose limit is equal to the career dose for nuclear industry personnel set forth by Russian standard document NRB 99/2009. For better agreement of admissible threshold doses to critical human organs (bone marrow, lens and skin) in the revised radiation limits for long-duration space missions and radiation safety limits on Earth, reduction of dose limits for the critical organs were substantiated additionally; these limits comply with those for planned over-exposure on Earth in document NRB 99/2009.
Tonnonchiang, Siriporn; Sritongkul, Nopamon; Chaudakshetrin, Pachee; Tuntawiroon, Malulee
2016-02-01
Thyroid cancer patients treated with 1-131 are potential source of radiation exposure to relatives who are knowingly and willingly exposed to ionizing radiation as a result of providing comfort to patients undergoing I-131 therapy. This study aims to determine radiation dose received by relatives who care for non self-supporting 1-131 patients at Siriraj Hospital. Twenty caregivers of 20 patients underwent I-131 therapy for thyroid cancer with a standard protocol were given specific instructions with regard to radiation safety and provided with electronic digital dosimeter to continuously measure radiation dose received on daily basis, three days in the hospital. On the day patient is released, thyroid uptake estimates were performed to assess internal radiation dose received by caregivers. The 3-day accumulative doses to caregivers to patients receiving 150 mCi (n = 11) and 200 mCi (n = 9) of I-131 ranged from 37 to 333 uSv and 176 to 1,920 pSv respectively depending on the level of supports required. Thyroid uptake estimates in all caregivers were undetectable. Dosimeter indicated a maximum whole-body dose of1.92 mSv was more than the public dose limit of] mSv but within the dose constraint of 5 mSv for caregivers. Radiation dose to caregivers of a non self-supporting hospitalized patient undergoing 1-131 therapy were well below the limits recommended by the ICRP. The patients can be comforted with confidence that dose to caregivers will be less than the limit. This study provides guidance for medical practitioners to obtain practical radiation safety concerns associated with hospitalized patients receiving I-131 therapy especially when patient needs assistance.
Design and construction of portable survey meter
NASA Astrophysics Data System (ADS)
Singseeta, W.; Thong-aram, D.; Pencharee, S.
2017-09-01
This work was aimed to design and construction of portable survey meter for radiation dose measuring. The designed system consists of 4 main parts consisting of low voltage power supply, radiation detection, radiation measurement and data display part on android phone. The test results show that the ripple voltage of low voltage power supply is less than 1%, the maximum integral counts are found to be 104 counts per second and the maximum distance of wireless commination between the server and the client is about 10 meter. It was found that the developed system had small size and light weight for portable instrument.
Sakumi, Akira; Miyagawa, Ryu; Tamari, Yuki; Nawa, Kanabu; Sakura, Osamu; Nakagawa, Keiichi
2016-01-01
Since the Great East Japan Earthquake on 11 March 2011, Iitate Village has continued to be classified as a deliberate evacuation area, in which residents are estimated to receive an annual additional effective radiation dose of >20 mSv. Some companies still operate in Iitate Village, with a special permit from the Cabinet Office Team in Charge of Assisting the Lives of Disaster Victims. In this study, we measured the annual effective radiation dose to workers in Iitate Village from 15 January to 13 December 2013. The workers stayed in Iitate for 10 h and left the village for the remaining 14 h each working day. They worked for 5 days each week in Iitate Village, but stayed outside of the village for the remaining 2 days each week. We found that the effective radiation dose of 70% of the workers was <2 mSv, including natural radiation; the maximum dose was 3.6 mSv. We estimated the potential annual additional effective radiation dose if people returned full-time to Iitate. Our analysis supports the plan for people to return to their home village at the end of 2017. PMID:26661855
Ionizing radiation induces O6-alkylguanine-DNA-alkyltransferase mRNA and activity in mouse tissues.
Wilson, R E; Hoey, B; Margison, G P
1993-04-01
The effect of exposure to whole-body gamma-irradiation or fast electrons on O6-alkylguanine-DNA-alkyltransferase (ATase) activity and mRNA abundance has been examined in mice. In response to gamma-radiation, hepatic ATase activity was significantly raised in BDF1 mice 24 h post-irradiation, reaching a maximum of 2- to 3-fold at 36 h and beginning to decrease by 48-60 h. A small but consistently higher level of induction was achieved when mice were exposed using a low dose rate (0.015 Gy/min) compared to a high dose rate (0.5 Gy/min). ATase activity was also induced approximately 2-fold 48 h post-irradiation in brain, kidney, lung and spleen, with a greater induction again observed in response to the lower dose rate. In response to fast electrons from a linear accelerator hepatic ATase activity was also induced 2- to 3-fold 48 h post-irradiation in BDF1, BALB/c, C57Bl and DBA2 strains. Induction of ATase activity in livers of BDF1 mice was observed 48 h after a total single dose of 5 Gy gamma-radiation (2-fold), increasing to a slightly higher level at 15 Gy, but no induction was observed at doses of 2 Gy and below. Although a maximum 2- to 3-fold induction of ATase activity was observed, mRNA levels were induced 3- to 4-fold by 48 h after a dose of 15 Gy. Furthermore, significant increases in mRNA levels were detected at low doses (1-2 Gy) at which there was no apparent increase in ATase activity. This suggests that ionizing radiation increases ATase levels by a process involving transcriptional upregulation but that strong post-transcriptional and/or translational controls operate to limit induction of enzyme activity to 2- to 3-fold. This is the first report of an in vivo induction of ATase by ionizing radiation in a species other than the rat.
Cosmic radiation dose measurements from the RaD-X flight campaign
NASA Astrophysics Data System (ADS)
Mertens, Christopher J.; Gronoff, Guillaume P.; Norman, Ryan B.; Hayes, Bryan M.; Lusby, Terry C.; Straume, Tore; Tobiska, W. Kent; Hands, Alex; Ryden, Keith; Benton, Eric; Wiley, Scott; Gersey, Brad; Wilkins, Richard; Xu, Xiaojing
2016-10-01
The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5°N, 104.2°W) on 25 September 2015. Over 18 h of flight data were obtained from each of the four different science instruments at altitudes above 20 km. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.
Cosmic Radiation Dose Measurements from the RaD-X Flight Campaign
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.; Gronoff, Guillaume P.; Norman, Ryan B.; Hayes, Bryan M.; Lusby, Terry C.; Straume, Tore; Tobiska, W. Kent; Hands, Alex; Ryden, Keith; Benton, Eric;
2016-01-01
The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5 degrees North, 104.2 degrees West) on 25 September 2015. Over 18 hours of flight data were obtained from each of the four different science instruments at altitudes above 20 kilometers. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.
High mortality of Red Sea zooplankton under ambient solar radiation.
Al-Aidaroos, Ali M; El-Sherbiny, Mohsen M O; Satheesh, Sathianeson; Mantha, Gopikrishna; Agustī, Susana; Carreja, Beatriz; Duarte, Carlos M
2014-01-01
High solar radiation along with extreme transparency leads to high penetration of solar radiation in the Red Sea, potentially harmful to biota inhabiting the upper water column, including zooplankton. Here we show, based on experimental assessments of solar radiation dose-mortality curves on eight common taxa, the mortality of zooplankton in the oligotrophic waters of the Red Sea to increase steeply with ambient levels of solar radiation in the Red Sea. Responses curves linking solar radiation doses with zooplankton mortality were evaluated by exposing organisms, enclosed in quartz bottles, allowing all the wavelengths of solar radiation to penetrate, to five different levels of ambient solar radiation (100%, 21.6%, 7.2%, 3.2% and 0% of solar radiation). The maximum mortality rates under ambient solar radiation levels averaged (±standard error of the mean, SEM) 18.4±5.8% h(-1), five-fold greater than the average mortality in the dark for the eight taxa tested. The UV-B radiation required for mortality rates to reach ½ of maximum values averaged (±SEM) 12±5.6 h(-1)% of incident UVB radiation, equivalent to the UV-B dose at 19.2±2.7 m depth in open coastal Red Sea waters. These results confirm that Red Sea zooplankton are highly vulnerable to ambient solar radiation, as a consequence of the combination of high incident radiation and high water transparency allowing deep penetration of damaging UV-B radiation. These results provide evidence of the significance of ambient solar radiation levels as a stressor of marine zooplankton communities in tropical, oligotrophic waters. Because the oligotrophic ocean extends across 70% of the ocean surface, solar radiation can be a globally-significant stressor for the ocean ecosystem, by constraining zooplankton use of the upper levels of the water column and, therefore, the efficiency of food transfer up the food web in the oligotrophic ocean.
Radiation exposure during scoliosis screening radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nottage, W.M.; Waugh, T.R.; McMaster, W.C.
Screening programs to detect scoliosis in the adolescent population are active in most communities. Two percent of children screened will be referred for treatment or observation. Increasing concern has been voiced regarding the amount of the potential effects of the radiation administered in such screening programs. Radiation dosage was directly measured on 19 children participating in an established school scoliosis screening program, using lithium fluoride thermoluminescence dosimeters. The mean gonadal doses are measured to be 19 mrem in males and estimated at a maximum 95 mrem in females. The mean entrance skin dose was 174 mrem. A lack of uniformitymore » in the radiographic techniques employed by individual technician was identified. The measured doses were within established acceptable limits and are comparable or below the average dose of 100 mrem received annually by the general public from the environment.« less
The features of radiation dose variations onboard ISS and Mir space station: comparative study.
Tverskaya, L V; Panasyuk, M I; Reizman, S Ya; Sosnovets, E N; Teltsov, M V; Tsetlin, V V
2004-01-01
The dynamics of the ISS-measured radiation dose variations since August 2000 is studied. Use is made of the data obtained with the R-16 instrument, which consists of two ionization chambers behind different shielding thicknesses. The doses recorded during solar energetic particle (SEP) events are compared with the data obtained also by R-16 on Mir space station. The SEP events in the solar maximum of the current cycle make a much smaller contribution to the radiation dose compared with the October 1989 event recorded on Mir space station. In the latter event, the proton intensity was peaking during a strong magnetic storm. The storm-time effect of solar proton geomagnetic cutoff decreases on dose variations is estimated. The dose variations on Mir space stations due to formation of a new radiation belt of high-energy protons and electrons during a sudden commencement of March 24, 1991 storm are also studied. It was for the first time throughout the ISS and Mir dose measurement period that the counting rates recorded by both R-16 channels on ISS in 2001-2002 were nearly the same during some time intervals. This effect may arise from the decreases of relativistic electron fluxes in the outer radiation belt. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Arno, Matthew Gordon
Texas is investigating building a long-term waste storage facility, also known as an Assured Isolation Facility. This is an above-ground low-level radioactive waste storage facility that is actively maintained and from which waste may be retrieved. A preliminary, scoping-level analysis has been extended to consider more complex scenarios of radiation streaming and skyshine by using the computer code Monte Carlo N-Particle (MCNP) to model the facility in greater detail. Accidental release scenarios have been studied in more depth to better assess the potential dose to off-site individuals. Using bounding source term assumptions, the projected radiation doses and dose rates are estimated to exceed applicable limits by an order of magnitude. By altering the facility design to fill in the hollow cores of the prefabricated concrete slabs used in the roof over the "high-gamma rooms," where the waste with the highest concentration of gamma emitting radioactive material is stored, dose rates outside the facility decrease by an order of magnitude. With the modified design, the annual dose at the site fenceline is estimated at 86 mrem, below the 100 mrem annual limit for exposure of the public. Within the site perimeter, the dose rates are lowered sufficiently such that it is not necessary to categorize many workers and contractor personnel as radiation workers, saving on costs as well as being advisable under ALARA principles. A detailed analysis of bounding accidents incorporating information on the local meteorological conditions indicate that the maximum committed effective dose equivalent from the passage of a plume of material released in an accident at any of the cities near the facility is 59 :rem in the city of Eunice, NM based on the combined day and night meteorological conditions. Using the daytime meteorological conditions, the maximum dose at any city is 7 :rem, also in the city of Eunice. The maximum dose at the site boundary was determined to be 230 mrem using the combined day and night meteorological conditions and 33 mrem using the daytime conditions.
Evaluation of image-guided helical tomotherapy for the retreatment of spinal metastasis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahan, Stephen L.; Ramsey, Chester R.; Scaperoth, Daniel D.
Introduction: Patients with vertebral metastasis that receive radiation therapy are typically treated to the spinal cord tolerance dose. As such, it is difficult to successfully deliver a second course of radiation therapy for patients with overlapping treatment volumes. In this study, an image-guided helical tomotherapy system was evaluated for the retreatment of previously irradiated vertebral metastasis. Methods and Materials: Helical tomotherapy dose gradients and maximum cord doses were measured in a cylindrical phantom for geometric test cases with separations between the planning target volume (PTV) and the spinal cord organ at risk (OAR) of 2 mm, 4 mm, 6 mm,more » 8 mm, and 10 mm. Megavoltage computed tomography (CT) images were examined for their ability to localize spinal anatomy for positioning purposes by repeat imaging of the cervical spine in an anthropomorphic phantom. In addition to the phantom studies, 8 patients with cord compressions that had received previous radiation therapy were retreated to a mean dose of 28 Gy using conventional fractionation. Results and Discussion: Megavoltage CT images were capable of positioning an anthropomorphic phantom to within {+-}1.2 mm (2{sigma}) superior-inferiorly and within {+-}0.6 mm (2{sigma}) anterior-posteriorly and laterally. Dose gradients of 10% per mm were measured in phantom while PTV uniformity indices of less than 11% were maintained. The calculated maximum cord dose was 25% of the prescribed dose for a 10-mm PTV-to-OAR separation and 71% of the prescribed dose for a PTV-to-OAR separation of 2 mm. Eight patients total have been treated without radiation-induced myelopathy or any other adverse effects from treatment. Conclusions: A technique has been evaluated for the retreatment of vertebral metastasis using image-guided helical tomotherapy. Phantom and patient studies indicated that a tomotherapy system is capable of delivering dose gradients of 10% per mm and positioning the patient within 1.2 mm without the use of special stereotactic immobilization.« less
Center, Brian; Petty, William Jeffrey; Ayala, Diandra; Hinson, William H; Lovato, James; Capellari, James; Oaks, Timothy; Miller, Antonius A; Blackstock, Arthur William
2010-01-01
Concurrent radiation and chemotherapy is the standard of care for good performance status patients with stage III non-small cell lung cancer. Locoregional control remains a significant factor relating to poor outcome. Preclinical and early clinical data suggest that docetaxel and gefitinib have radiosensitizing activity. This study sought to define the maximum tolerated dose of weekly docetaxel that could be given with daily gefitinib and concurrent thoracic radiation therapy. Patients with histologically confirmed, inoperable stage III non-small cell lung cancer and good performance status (Eastern Cooperative Oncology Group 0-1) were eligible for this study. Patients received three-dimensional conformal thoracic radiation to a dose of 70 Gy concurrently with oral gefitinib at a dose of 250 mg daily and intravenous, weekly docetaxel at escalating doses from 15 to 30 mg/m2 in cohorts of patients. Patients were given a 2-week rest period after the concurrent therapy, during which they received only gefitinib. After the 2-week rest period, patients received consolidation chemotherapy with docetaxel 75 mg/m2 given every 21 days for two cycles. Maintenance gefitinib was continued until disease progression or study completion. Sixteen patients were enrolled on the study between December 2003 and April 2007 with the following characteristics: median age, 64 years (range 43-79 years); M/F: 9/7; and performance status 0/1, 1/15. Dose-limiting pulmonary toxicity and esophagitis were encountered at a weekly docetaxel dose of 25 mg/m2, resulting in a maximum tolerated dose of 20 mg/m2/wk. Overall, grade 3/4 hematologic toxicity was observed in 27% of patients. Grade 3/4 esophageal and pulmonary toxicities were reported in 27% and 20% of patients, respectively. The overall response rate was 46%, and the median survival for all patients was 21 months. Concurrent thoracic radiation with weekly docetaxel and daily gefitinib is feasible but results in moderate toxicity. For further studies, the recommended weekly docetaxel dose for this chemoradiation regimen is 20 mg/m2.
NASA Technical Reports Server (NTRS)
Fornes, R. E.; Gilbert, R. D.; Memory, J. D.
1986-01-01
The epoxy resin system formed by tetraglycidyl 4,4'-diamino diphenyl methane (TGDDM) and 4,4'-diamino diphenyl sulfone (DDS) was characterized by dynamic mechanical analysis and differential scanning calorimetry. Dynamic mechanical properties of graphite fiber epoxy composite specimens formulated with two different adhesive systems (NARMCO 5208, NARMCO 5209) were determined. The specimens were exposed to varying dose levels of ionizing radiation (0.5 MeV electrons) with a maximum absorbed dose of 10,000 Mrads. Following irradiation, property measurements were made to assess the influence of radiation on the epoxy and composite specimens. The results established that ionizing radiation has a limited effect on the properties of epoxy and composite specimens.
Radiation dose delivery verification in the treatment of carcinoma-cervix
NASA Astrophysics Data System (ADS)
Shrotriya, D.; Kumar, S.; Srivastava, R. N. L.
2015-06-01
The accurate dose delivery to the clinical target volume in radiotherapy can be affected by various pelvic tissues heterogeneities. An in-house heterogeneous woman pelvic phantom was designed and used to verify the consistency and computational capability of treatment planning system of radiation dose delivery in the treatment of cancer cervix. Oncentra 3D-TPS with collapsed cone convolution (CCC) dose calculation algorithm was used to generate AP/PA and box field technique plan. the radiation dose was delivered by Primus Linac (Siemens make) employing high energy 15 MV photon beam by isocenter technique. A PTW make, 0.125cc ionization chamber was used for direct measurements at various reference points in cervix, bladder and rectum. The study revealed that maximum variation between computed and measured dose at cervix reference point was 1% in both the techniques and 3% and 4% variation in AP/PA field and 5% and 4.5% in box technique at bladder and rectum points respectively.
Pattison, John E; Hugtenburg, Richard P; Green, Stuart
2010-04-06
Ongoing controversy surrounds the adverse health effects of the use of depleted uranium (DU) munitions. The biological effects of gamma-radiation arise from the direct or indirect interaction between secondary electrons and the DNA of living cells. The probability of the absorption of X-rays and gamma-rays with energies below about 200 keV by particles of high atomic number is proportional to the third to fourth power of the atomic number. In such a case, the more heavily ionizing low-energy recoil electrons are preferentially produced; these cause dose enhancement in the immediate vicinity of the particles. It has been claimed that upon exposure to naturally occurring background gamma-radiation, particles of DU in the human body would produce dose enhancement by a factor of 500-1000, thereby contributing a significant radiation dose in addition to the dose received from the inherent radioactivity of the DU. In this study, we used the Monte Carlo code EGSnrc to accurately estimate the likely maximum dose enhancement arising from the presence of micrometre-sized uranium particles in the body. We found that although the dose enhancement is significant, of the order of 1-10, it is considerably smaller than that suggested previously.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamison, J.D.; Watson, E.C.
1982-02-01
Potential environmental consequences in terms of radiation dose to people are presented for postulated plutonium releases caused by severe natural phenomena at the Atomics International's Nuclear Materials Development Facility (NMDF), in the Santa Susana site, California. The severe natural phenomena considered are earthquakes, tornadoes, and high straight-line winds. Plutonium deposition values are given for significant locations around the site. All important potential exposure pathways are examined. The most likely 50-year committed dose equivalents are given for the maximum-exposed individual and the population within a 50-mile radius of the plant. The maximum plutonium deposition values likely to occur offsite are alsomore » given. The most likely calculated 50-year collective committed dose equivalents are all much lower than the collective dose equivalent expected from 50 years of exposure to natural background radiation and medical x-rays. The most likely maximum residual plutonium contamination estimated to be deposited offsite following the earthquake, and the 150-mph and 170-mph tornadoes are above the Environmental Protection Agency's (EPA) proposed guideline for plutonium in the general environment of 0.2 ..mu..Ci/m/sup 2/. The deposition values following the 110-mph and the 130-mph tornadoes are below the EPA proposed guideline.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Yuchuan; Deng, Min; Zhou, Xiaojuan
To evaluate the lung sparing in intensity-modulated radiation therapy (IMRT) for patients with upper thoracic esophageal tumors extending inferiorly to the thorax by different beam arrangement. Overall, 15 patient cases with cancer of upper thoracic esophagus were selected for a retrospective treatment-planning study. Intensity-modulated radiation therapy plans using 4, 5, and 7 beams (4B, 5B, and 7B) were developed for each patient by direct machine parameter optimization (DMPO). All plans were evaluated with respect to dose volumes to irradiated targets and normal structures, with statistical comparisons made between 4B with 5B and 7B intensity-modulated radiation therapy plans. Differences among plansmore » were evaluated using a two-tailed Friedman test at a statistical significance of p < 0.05. The maximum dose, average dose, and the conformity index (CI) of planning target volume 1 (PTV1) were similar for 3 plans for each case. No significant difference of coverage for planning target volume 1 and maximum dose for spinal cords were observed among 3 plans in present study (p > 0.05). The average V{sub 5}, V{sub 13}, V{sub 20}, mean lung dose, and generalized equivalent uniform dose (gEUD) for the total lung were significantly lower in 4B-plans than those data in 5B-plans and 7B-plans (p < 0.01). Although the average V{sub 30} for the total lung were significantly higher in 4B-plans than those in 5B-plans and 7B-plans (p < 0.05). In addition, when comparing with the 4B-plans, the conformity/heterogeneity index of the 5B- and 7B-plans were significantly superior (p < 0.05). The 4B-intensity-modulated radiation therapy plan has advantage to address the specialized problem of lung sparing to low- and intermediate-dose exposure in the thorax when dealing with relative long tumors extended inferiorly to the thoracic esophagus for upper esophageal carcinoma with the cost for less conformity. Studies are needed to compare the superiority of volumetric modulated arc therapy with intensity-modulated radiation therapy technique.« less
The Effect of High-Dose Ionizing Radiation on the Astrobiological Model Lichen Circinaria gyrosa
NASA Astrophysics Data System (ADS)
de la Torre, Rosa; Zélia Miller, Ana; Cubero, Beatriz; Martín-Cerezo, M. Luisa; Raguse, Marina; Meeßen, Joachim
2017-02-01
The lichen Circinaria gyrosa is an astrobiological model defined by its high capacity of resistance to space conditions and to a simulated martian environment. Therefore, it became part of the currently operated BIOMEX experiment on board the International Space Station and the recent STARLIFE campaign to study the effects of four types of space-relevant ionizing radiation. The samples were irradiated with helium and iron ions at doses up to 2 kGy, with X-rays at doses up to 5 kGy and with γ rays at doses from 6 to 113 kGy. Results on C. gyrosa's resistance to simulated space ionizing radiation and its post-irradiation viability were obtained by (i) chlorophyll a fluorescence of photosystem II (PSII), (ii) epifluorescence microscopy, (iii) confocal laser scanning microscopy (CLSM), and (iv) field emission scanning electron microscopy (FESEM). Results of photosynthetic activity and epifluorescence show no significant changes up to a dose of 1 kGy (helium ions), 2 kGy (iron ions), 5 kGy (X-rays) - the maximum doses applied for those radiation qualities - as well as a dose of 6 kGy of γ irradiation, which was the lowest dose applied for this low linear energy transfer (LET) radiation. Significant damage in a dose-related manner was observed only at much higher doses of γ irradiation (up to 113 kGy). These data corroborate the findings of the parallel STARLIFE studies on the effects of ionizing radiation on the lichen Circinaria gyrosa, its isolated photobiont, and the lichen Xanthoria elegans.
Measurement of radiation damage on an epoxy-based optical glue
NASA Astrophysics Data System (ADS)
Huang, H. C.; Peng, K. C.; Sahu, S. K.; Ueno, K.; Chang, Y. H.; Wang, C. H.; Hou, W. S.
1997-02-01
We measured the radiation damage on an optical glue called Eccobond-24, which is a candidate for CsI and BGO crystal calorimeters of the BELLE detector of the KEK B-factory. Absorption spectrophotometry in the range 300-800 nm was used to monitor the radiation damage. The maximum equivalent dose was 1.64 Mrad. The glue shows effects of damage, but is acceptable for the radiation level in the above-mentioned experiment.
NASA Astrophysics Data System (ADS)
Mitrikas, Victor; Aleksandr, Shafirkin; Shurshakov, Vyacheslav
This work contains calculation data of generalized doses and dose equivalents in critical organs and tissues of cosmonauts produces by galactic cosmic rays (GCR), solar cosmic rays (SCR) and the Earth’s radiation belts (ERB) that will impact crewmembers during a flight to Mars, while staying in the landing module and on the Martian surface, and during the return to Earth. Also calculated total radiation risk values during whole life of cosmonauts after the flight are presented. Radiation risk (RR) calculations are performed on the basis of a radiobiological model of radiation damage to living organisms, while taking into account reparation processes acting during continuous long-term exposure at various dose rates and under acute recurrent radiation impact. The calculations of RR are performed for crewmembers of various ages implementing a flight to Mars over 2 - 3 years in maximum and minimum of the solar cycle. The total carcinogenic and non-carcinogenic RR and possible life-span shortening are estimated on the basis of a model of the radiation death probability for mammals. This model takes into account the decrease in compensatory reserve of an organism as well as the increase in mortality rate and descent of the subsequent lifetime of the cosmonaut. The analyzed dose distributions in the shielding and body areas are applied to making model calculations of tissue equivalent spherical and anthropomorphic phantoms.
Uncertainties in estimating heart doses from 2D-tangential breast cancer radiotherapy.
Lorenzen, Ebbe L; Brink, Carsten; Taylor, Carolyn W; Darby, Sarah C; Ewertz, Marianne
2016-04-01
We evaluated the accuracy of three methods of estimating radiation dose to the heart from two-dimensional tangential radiotherapy for breast cancer, as used in Denmark during 1982-2002. Three tangential radiotherapy regimens were reconstructed using CT-based planning scans for 40 patients with left-sided and 10 with right-sided breast cancer. Setup errors and organ motion were simulated using estimated uncertainties. For left-sided patients, mean heart dose was related to maximum heart distance in the medial field. For left-sided breast cancer, mean heart dose estimated from individual CT-scans varied from <1Gy to >8Gy, and maximum dose from 5 to 50Gy for all three regimens, so that estimates based only on regimen had substantial uncertainty. When maximum heart distance was taken into account, the uncertainty was reduced and was comparable to the uncertainty of estimates based on individual CT-scans. For right-sided breast cancer patients, mean heart dose based on individual CT-scans was always <1Gy and maximum dose always <5Gy for all three regimens. The use of stored individual simulator films provides a method for estimating heart doses in left-tangential radiotherapy for breast cancer that is almost as accurate as estimates based on individual CT-scans. Copyright © 2016. Published by Elsevier Ireland Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Xuanfeng; Dionisi, Francesco; Tang, Shikui
With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as wellmore » as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V{sub 18} {sub Gy}), stomach (mean and V{sub 20} {sub Gy}), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V{sub 18} {sub Gy}), liver (mean dose), total bowel (V{sub 20} {sub Gy} and mean dose), and small bowel (V{sub 15} {sub Gy} absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose escalation and combining with radiosensitizing chemotherapy.« less
Radiation hardness study of semi-insulating GaAs detectors against 5 MeV electrons
NASA Astrophysics Data System (ADS)
Šagátová, A.; Zaťko, B.; Nečas, V.; Sedlačková, K.; Boháček, P.; Fülöp, M.; Pavlovič, M.
2018-01-01
A radiation hardness study of Semi-Insulating (SI) GaAs detectors against 5 MeV electrons is described in this paper. The influence of two parameters, the accumulative absorbed dose (from 1 to 200 kGy) and the applied dose rate (20, 40 or 80 kGy/h), on detector spectrometric properties were studied. The accumulative dose has influenced all evaluated spectrometric properties and also negatively affected the detector CCE (Charge Collection Efficiency). We have observed its systematic reduction from an initial 79% before irradiation down to about 51% at maximum dose of 200 kGy. Relative energy resolution was also influenced by electron irradiation. Its degradation was obvious in the range of doses from 24 up to a maximum dose of 200 kGy, where an increase from 19% up to 31% at 200 V reverse voltage was noticed. On the other hand, a global increase of detection efficiency with accumulative absorbed dose was observed for all samples. Concerning the actual detector degradation we can assume that the tested SI GaAs detectors will be able to operate up to a dose of 300 kGy at least, when irradiated by 5 MeV electrons. The second investigated parameter of irradiation, the dose rate of chosen ranges, did not greatly alter the spectrometric properties of studied detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Xiaodong, E-mail: lxdctopone@sina.com; Ni, Lingqin; Hu, Wei
The objective of this study was to evaluate the dose conformity and feasibility of whole-brain radiotherapy with a simultaneous integrated boost by forward intensity-modulated radiation therapy in patients with 1 to 3 brain metastases. Forward intensity-modulated radiation therapy plans were generated for 10 patients with 1 to 3 brain metastases on Pinnacle 6.2 Treatment Planning System. The prescribed dose was 30 Gy to the whole brain (planning target volume [PTV]{sub wbrt}) and 40 Gy to individual brain metastases (PTV{sub boost}) simultaneously, and both doses were given in 10 fractions. The maximum diameters of individual brain metastases ranged from 1.6 tomore » 6 cm, and the summated PTVs per patient ranged from 1.62 to 69.81 cm{sup 3}. Conformity and feasibility were evaluated regarding conformation number and treatment delivery time. One hundred percent volume of the PTV{sub boost} received at least 95% of the prescribed dose in all cases. The maximum doses were less than 110% of the prescribed dose to the PTV{sub boost}, and all of the hot spots were within the PTV{sub boost}. The volume of the PTV{sub wbrt} that received at least 95% of the prescribed dose ranged from 99.2% to 100%. The mean values of conformation number were 0.682. The mean treatment delivery time was 2.79 minutes. Ten beams were used on an average in these plans. Whole-brain radiotherapy with a simultaneous integrated boost by forward intensity-modulated radiation therapy in 1 to 3 brain metastases is feasible, and treatment delivery time is short.« less
NASA Astrophysics Data System (ADS)
Fontenot, Jonas; Taddei, Phillip; Zheng, Yuanshui; Mirkovic, Dragan; Jordan, Thomas; Newhauser, Wayne
2008-03-01
Proton therapy reduces the integral therapeutic dose required for local control in prostate patients compared to intensity-modulated radiotherapy. One proposed benefit of this reduction is an associated decrease in the incidence of radiogenic secondary cancers. However, patients are also exposed to stray radiation during the course of treatment. The purpose of this study was to quantify the stray radiation dose received by patients during proton therapy for prostate cancer. Using a Monte Carlo model of a proton therapy nozzle and a computerized anthropomorphic phantom, we determined that the effective dose from stray radiation per therapeutic dose (E/D) for a typical prostate patient was approximately 5.5 mSv Gy-1. Sensitivity analysis revealed that E/D varied by ±30% over the interval of treatment parameter values used for proton therapy of the prostate. Equivalent doses per therapeutic dose (HT/D) in specific organs at risk were found to decrease with distance from the isocenter, with a maximum of 12 mSv Gy-1 in the organ closest to the treatment volume (bladder) and 1.9 mSv Gy-1 in the furthest (esophagus). Neutrons created in the nozzle predominated effective dose, though neutrons created in the patient contributed substantially to the equivalent dose in organs near the proton field. Photons contributed less than 15% to equivalent doses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, R; Chisela, W
2015-06-15
Purpose: To investigate the use of EPID transit dosimetry for monitoring daily dose variations in radiation treatment delivery. Methods: A patient with head and neck cancer treated using nine field IMRT beams was used in this study. The prescription was 45 Gy in 25 fractions. A KV CBCT was acquired before each treatment on a Varian NTX linear accelerator. Integrated images using MV EPID were acquired for each treatment beam. Planning CT images, treatment plan, and daily integrated images were imported into a commercial QA software Dosimetry Check (v4r4 Math Resolutions, LLC, Columbia, MD) to calculate 3D dose of themore » day assuming 25 fractions treatment. Planning CT images were deformed and registered to each daily CBCT using Varian SmartAdapt (v11.MR2). ROIs were then propagated from planning CT to daily CBCT. The correlation between maximum, average dose of ROIs and ROI volume, center of mass shift, Dice Similarity Coefficient (DSC) were investigated. Results: Not all parameters investigated showed strong correlations. For PTV and CTV, the average dose has inverse correlation with their volume change (correlation coefficient −0.52, −0.50, respectively) and DSC (−0.59, −0.59, respectively). The average dose of right parotid has correlation with its volume change (0.56). The maximum dose of spinal cord has correlation with the center of mass superior-inferior shift (0.52) and inverse correlation with the center of mass anterior-posterior shift (−0.73). Conclusion: Transit dosimetry using EPID images collected during treatment delivery offers great potential to monitor daily dose variations due to patient anatomy change, motion, and setup errors in radiation treatment delivery. It can provide a patient-specific QA tool valuable for adaptive radiation therapy. Further work is needed to validate the technique.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makkia, R; Pelletier, C; Jung, J
Purpose: To reconstruct major organ doses for the Wilms tumor pediatric patients treated with radiation therapy using pediatric computational phantoms, treatment planning system (TPS), and Monte Carlo (MC) dose calculation methods. Methods: A total of ten female and male pediatric patients (15–88 months old) were selected from the National Wilms Tumor Study cohort and ten pediatric computational phantoms corresponding to the patient’s height and weight were selected for the organ dose reconstruction. Treatment plans were reconstructed on the computational phantoms in a Pinnacle TPS (v9.10) referring to treatment records and exported into DICOM-RT files, which were then used to generatemore » the input files for XVMC MC code. The mean doses to major organs and the dose received by 50% of the heart were calculated and compared between TPS and MC calculations. The same calculations were conducted by replacing the computational human phantoms with a series of diagnostic patient CT images selected by matching the height and weight of the patients to validate the anatomical accuracy of the computational phantoms. Results: Dose to organs located within the treatment fields from the computational phantoms and the diagnostic patient CT images agreed within 2% for all cases for both TPS and MC calculations. The maximum difference of organ doses was 55.9 % (thyroid), but the absolute dose difference in this case was 0.33 Gy which was 0.96% of the prescription dose. The doses to ovaries and testes from MC in out-of-field provided more discrepancy (the maximum difference of 13.2% and 50.8%, respectively). The maximum difference of the 50% heart volume dose between the phantoms and the patient CT images was 40.0%. Conclusion: This study showed the pediatric computational phantoms are applicable to organ doses reconstruction for the radiotherapy patients whose three-dimensional radiological images are not available.« less
Direct plan comparison of RapidArc and CyberKnife for spine stereotactic body radiation therapy
NASA Astrophysics Data System (ADS)
Choi, Young Eun; Kwak, Jungwon; Song, Si Yeol; Choi, Eun Kyung; Ahn, Seung Do; Cho, Byungchul
2015-07-01
We compared the treatment planning performance of RapidArc (RA) vs. CyberKnife (CK) for spinal stereotactic body radiation therapy (SBRT). Ten patients with spinal lesions who had been treated with CK were re-planned with RA, which consisted of two complete arcs. Computed tomography (CT) and volumetric dose data of CK, generated using the Multiplan (Accuray) treatment planning system (TPS) and the Ray-trace algorithm, were imported to Varian Eclipse TPS in Dicom format, and the data were compared with the RA plan by using an analytical anisotropic algorithm (AAA) dose calculation. The optimized dose priorities for both the CK and the RA plans were similar for all patients. The highest priority was to provide enough dose coverage to the planned target volume (PTV) while limiting the maximum dose to the spinal cord. Plan quality was evaluated with respect to PTV coverage, conformity index (CI), high-dose spillage, intermediate-dose spillage (R50% and D2cm), and maximum dose to the spinal cord, which are criteria recommended by the RTOG 0631 spine and 0915 lung SBRT protocols. The mean CI' SD values of the PTV were 1.11' 0.03 and 1.17' 0.10 for RA and CK ( p = 0.02), respectively. On average, the maximum dose delivered to the spinal cord in CK plans was approximately 11.6% higher than that in RA plans, and this difference was statistically significant ( p < 0.001). High-dose spillages were 0.86% and 2.26% for RA and CK ( p = 0.203), respectively. Intermediate-dose spillage characterized by D2cm was lower for RA than for CK; however, R50% was not statistically different. Even though both systems can create highly conformal volumetric dose distributions, the current study shows that RA demonstrates lower high- and intermediate-dose spillages than CK. Therefore, RA plans for spinal SBRT may be superior to CK plans.
NASA Astrophysics Data System (ADS)
El-Jaby, Samy; Richardson, Richard B.
2015-07-01
Occupational exposures from ionizing radiation are currently regulated for airline travel (<20 km) and for missions to low-Earth orbit (∼300-400 km). Aircrew typically receive between 1 and 6 mSv of occupational dose annually, while aboard the International Space Station, the area radiation dose equivalent measured over just 168 days was 106 mSv at solar minimum conditions. It is anticipated that space tourism vehicles will reach suborbital altitudes of approximately 100 km and, therefore, the annual occupational dose to flight crew during repeated transits is expected to fall somewhere between those observed for aircrew and astronauts. Unfortunately, measurements of the radiation environment at the high altitudes reached by suborbital vehicles are sparse, and modelling efforts have been similarly limited. In this paper, preliminary MCNPX radiation transport code simulations are developed of the secondary neutron flux profile in air from surface altitudes up to low Earth orbit at solar minimum conditions and excluding the effects of spacecraft shielding. These secondary neutrons are produced by galactic cosmic radiation interacting with Earth's atmosphere and are among the sources of radiation that can pose a health risk. Associated estimates of the operational neutron ambient dose equivalent, used for radiation protection purposes, and the neutron effective dose equivalent that is typically used for estimates of stochastic health risks, are provided in air. Simulations show that the neutron radiation dose rates received at suborbital altitudes are comparable to those experienced by aircrew flying at 7 to 14 km. We also show that the total neutron dose rate tails off beyond the Pfotzer maximum on ascension from surface up to low Earth orbit.
El-Jaby, Samy; Richardson, Richard B
2015-07-01
Occupational exposures from ionizing radiation are currently regulated for airline travel (<20 km) and for missions to low-Earth orbit (∼300-400 km). Aircrew typically receive between 1 and 6 mSv of occupational dose annually, while aboard the International Space Station, the area radiation dose equivalent measured over just 168 days was 106 mSv at solar minimum conditions. It is anticipated that space tourism vehicles will reach suborbital altitudes of approximately 100 km and, therefore, the annual occupational dose to flight crew during repeated transits is expected to fall somewhere between those observed for aircrew and astronauts. Unfortunately, measurements of the radiation environment at the high altitudes reached by suborbital vehicles are sparse, and modelling efforts have been similarly limited. In this paper, preliminary MCNPX radiation transport code simulations are developed of the secondary neutron flux profile in air from surface altitudes up to low Earth orbit at solar minimum conditions and excluding the effects of spacecraft shielding. These secondary neutrons are produced by galactic cosmic radiation interacting with Earth's atmosphere and are among the sources of radiation that can pose a health risk. Associated estimates of the operational neutron ambient dose equivalent, used for radiation protection purposes, and the neutron effective dose equivalent that is typically used for estimates of stochastic health risks, are provided in air. Simulations show that the neutron radiation dose rates received at suborbital altitudes are comparable to those experienced by aircrew flying at 7 to 14 km. We also show that the total neutron dose rate tails off beyond the Pfotzer maximum on ascension from surface up to low Earth orbit. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Dosimetric evaluation of the effect of dental implants in head and neck radiotherapy.
Ozen, Julide; Dirican, Bahar; Oysul, Kaan; Beyzadeoglu, Murat; Ucok, Ozlem; Beydemir, Bedri
2005-06-01
The aim of the study was to examine the dose enhancement from scattered radiation at bone-dental implant interfaces during simulated head and neck radiotherapy. Four cylindrical titanium dental implants with 3 different sizes and lengths were implanted into a human mandible in 4 different positions. Ionization measurements for 6 MV X, 25 MV X, and Co-60 gamma rays were done. Thermoluminescent dosimeter (TLD 100 ) chips were used to measure radiation dose enhancement due to the scattered electrons from titanium and electronic disequilibrium at the tissue-metal interface. The results showed that for Co-60, there is a 21% maximum increase in dose to alveolar mandibular bone at the close proximity to the titanium. For 6-MV x-rays the dose enhancement increase was almost the same or slightly lower than for Co-60, while for 25-MV high-energy x-rays, dose enhancement was lower than that of others. This increase in dose enhancement fell off rapidly and became insignificant at 2 mm from the interface. Total dose that may lead to osteoradionecrosis risk of the mandible is slightly but not significantly affected by the scattered dose of the dental implants of lower jaw in the radiation field exposed to 3 different radiation beams.
Tavares, J B; Sacadura-Leite, E; Matoso, T; Neto, L L; Biscoito, L; Campos, J; Sousa-Uva, A
2016-06-01
In interventional neuroradiology, few operators routinely use radiation protection glasses. Moreover, in most centers, radiation dose data only accounts for whole body dose without specific information on lens dose. In 2012, the International Commission on Radiological Protection advised that the threshold limit value for the lens should be 20 mSv/year instead of the previous 150 mSv/year limit. The purpose of this study was to compare the radiation dose in the operator's lens during real diagnostic and interventional neuroangiographies, either using or without lead protection glasses. Using the Educational Direct Dosimeter (EDD30 dosimeter), accumulated radiation dose in the lens was measured in 13 neuroangiographies: seven diagnostic and six interventional. Operators with and without radiation protection glasses were included and the sensor was placed near their left eye, closest to the radiation beam. Without glasses, the corrected mean dose of radiation in the lens was 8.02 µSv for diagnostic procedures and 168.57 µSv for interventional procedures. Using glasses, these values were reduced to 1.74 µSv and 33.24 µSv, respectively. Considering 20 mSv as the suggested annual limit of equivalent dose in the lens, neuroradiologists may perform up to 2,494 diagnostic procedures per year without protecting glasses, a number that increases to 11,494 when glasses are used consistently. Regarding intervention, a maximum of 119 procedures per year is advised if glasses are not used, whereas up to 602 procedures/year may be performed using this protection. Therefore, neuroradiologists should always wear radiation protection glasses. © The Author(s) 2016.
Burns, Sean; Thornton, Raymond; Dauer, Lawrence T; Quinn, Brian; Miodownik, Daniel; Hak, David J
2013-07-17
Despite recommendations to do so, few orthopaedists wear leaded glasses when performing operative fluoroscopy. Radiation exposure to the ocular lens causes cataracts, and regulatory limits for maximum annual occupational exposure to the eye continue to be revised downward. Using anthropomorphic patient and surgeon phantoms, radiation dose at the surgeon phantom's lens was measured with and without leaded glasses during fluoroscopic acquisition of sixteen common pelvic and hip views. The magnitude of lens dose reduction from leaded glasses was calculated by dividing the unprotected dose by the dose measured behind leaded glasses. On average, the use of leaded glasses reduced radiation to the surgeon phantom's eye by tenfold, a 90% reduction in dose. However, there was widespread variation in the amount of radiation that reached the phantom surgeon's eye among the various radiographic projections we studied. Without leaded glasses, the dose measured at the surgeon's lens varied more than 250-fold among these sixteen different views. In addition to protecting the surgeon's eye from the deleterious effects of radiation, the use of leaded glasses could permit an orthopaedist to perform fluoroscopic views on up to ten times more patients before reaching the annual dose limit of 20 mSv of radiation to the eye recommended by the International Commission on Radiological Protection. Personal safety and adherence to limits of occupational radiation exposure should compel orthopaedists to wear leaded glasses for fluoroscopic procedures if other protective barriers are not in use. Leaded glasses are a powerful tool for reducing the orthopaedic surgeon's lens exposure to radiation during acquisition of common intraoperative fluoroscopic views.
DOSE-RATE DEPENDENCE OF INSTANTANEOUS PHYSIOLOGICAL RADIATION EFFECTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hug, O.
Nastic movements in Mimosa pudica were induced by x radiation. Using short radiation impulses of 10 to 30 sec and doses up to 120 kr/min, the leaflets were observed to close and the stem to bend in the main joint during the first minute. After irradiation of parts of the leaflet, the reaction spreads along the physiological pathways as in any other stimulus. When the action potential is completed, slow depolarization continues and reaches a maximum, finally returning to the initial value in about two hr. The effect was found to be dose- dependent. It is hypothesized that either amore » direct physicochemical change of the cell membrane or a damage of substances which influence the function of the cell membrane is induced by the irradiation. (H.M.G.)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russo, James K.; Armeson, Kent E.; Richardson, Susan, E-mail: srichardson@radonc.wustl.edu
2012-05-01
Purpose: To evaluate bladder and rectal doses using two-dimensional (2D) and 3D treatment planning for vaginal cuff high-dose rate (HDR) in endometrial cancer. Methods and Materials: Ninety-one consecutive patients treated between 2000 and 2007 were evaluated. Seventy-one and 20 patients underwent 2D and 3D planning, respectively. Each patient received six fractions prescribed at 0.5 cm to the superior 3 cm of the vagina. International Commission on Radiation Units and Measurements (ICRU) doses were calculated for 2D patients. Maximum and 2-cc doses were calculated for 3D patients. Organ doses were normalized to prescription dose. Results: Bladder maximum doses were 178% ofmore » ICRU doses (p < 0.0001). Two-cubic centimeter doses were no different than ICRU doses (p = 0.22). Two-cubic centimeter doses were 59% of maximum doses (p < 0.0001). Rectal maximum doses were 137% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were 87% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were 64% of maximum doses (p < 0.0001). Using the first 1, 2, 3, 4 or 5 fractions, we predicted the final bladder dose to within 10% for 44%, 59%, 83%, 82%, and 89% of patients by using the ICRU dose, and for 45%, 55%, 80%, 85%, and 85% of patients by using the maximum dose, and for 37%, 68%, 79%, 79%, and 84% of patients by using the 2-cc dose. Using the first 1, 2, 3, 4 or 5 fractions, we predicted the final rectal dose to within 10% for 100%, 100%, 100%, 100%, and 100% of patients by using the ICRU dose, and for 60%, 65%, 70%, 75%, and 75% of patients by using the maximum dose, and for 68%, 95%, 84%, 84%, and 84% of patients by using the 2-cc dose. Conclusions: Doses to organs at risk vary depending on the calculation method. In some cases, final dose accuracy appears to plateau after the third fraction, indicating that simulation and planning may not be necessary in all fractions. A clinically relevant level of accuracy should be determined and further research conducted to address this issue.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karlsson, Kristin, E-mail: kristin.karlsson@karolinska.se; Department of Oncology-Pathology, Karolinska Institute, Stockholm; Nyman, Jan
2013-11-01
Purpose: To evaluate the dose–response relationship between radiation-induced atelectasis after stereotactic body radiation therapy (SBRT) and bronchial dose. Methods and Materials: Seventy-four patients treated with SBRT for tumors close to main, lobar, or segmental bronchi were selected. The association between incidence of atelectasis and bronchial dose parameters (maximum point-dose and minimum dose to the high-dose bronchial volume [ranging from 0.1 cm{sup 3} up to 2.0 cm{sup 3}]) was statistically evaluated with survival analysis models. Results: Prescribed doses varied between 4 and 20 Gy per fraction in 2-5 fractions. Eighteen patients (24.3%) developed atelectasis considered to be radiation-induced. Statistical analysis showedmore » a significant correlation between the incidence of radiation-induced atelectasis and minimum dose to the high-dose bronchial volumes, of which 0.1 cm{sup 3} (D{sub 0.1cm3}) was used for further analysis. The median value of D{sub 0.1cm3} (α/β = 3 Gy) was EQD{sub 2,LQ} = 147 Gy{sub 3} (range, 20-293 Gy{sub 3}). For patients who developed atelectasis the median value was EQD{sub 2,LQ} = 210 Gy{sub 3}, and for patients who did not develop atelectasis, EQD{sub 2,LQ} = 105 Gy{sub 3}. Median time from treatment to development of atelectasis was 8.0 months (range, 1.1-30.1 months). Conclusion: In this retrospective study a significant dose–response relationship between the incidence of atelectasis and the dose to the high-dose volume of the bronchi is shown.« less
Patino, Manuel; Fuentes, Jorge M; Hayano, Koichi; Kambadakone, Avinash R; Uyeda, Jennifer W; Sahani, Dushyant V
2015-02-01
OBJECTIVE. The objective of our study was to compare the performance of three hybrid iterative reconstruction techniques (IRTs) (ASiR, iDose4, SAFIRE) and their respective strengths for image noise reduction on low-dose CT examinations using filtered back projection (FBP) as the standard reference. Also, we compared the performance of these three hybrid IRTs with two model-based IRTs (Veo and IMR) for image noise reduction on low-dose examinations. MATERIALS AND METHODS. An anthropomorphic abdomen phantom was scanned at 100 and 120 kVp and different tube current-exposure time products (25-100 mAs) on three CT systems (for ASiR and Veo, Discovery CT750 HD; for iDose4 and IMR, Brilliance iCT; and for SAFIRE, Somatom Definition Flash). Images were reconstructed using FBP and using IRTs at various strengths. Nine noise measurements (mean ROI size, 423 mm(2)) on extracolonic fat for the different strengths of IRTs were recorded and compared with FBP using ANOVA. Radiation dose, which was measured as the volume CT dose index and dose-length product, was also compared. RESULTS. There were no significant differences in radiation dose and image noise among the scanners when FBP was used (p > 0.05). Gradual image noise reduction was observed with each increasing increment of hybrid IRT strength, with a maximum noise suppression of approximately 50% (48.2-53.9%). Similar noise reduction was achieved on the scanners by applying specific hybrid IRT strengths. Maximum noise reduction was higher on model-based IRTs (68.3-81.1%) than hybrid IRTs (48.2-53.9%) (p < 0.05). CONCLUSION. When constant scanning parameters are used, radiation dose and image noise on FBP are similar for CT scanners made by different manufacturers. Significant image noise reduction is achieved on low-dose CT examinations rendered with IRTs. The image noise on various scanners can be matched by applying specific hybrid IRT strengths. Model-based IRTs attain substantially higher noise reduction than hybrid IRTs irrespective of the radiation dose.
Radiation dosimetry for quality control of food preservation and disinfestation
NASA Astrophysics Data System (ADS)
McLaughlin, W. L.; Miller, A.; Uribe, R. M.
In the use of x and gamma rays and scanned electron beams to extend the shelf life of food by delay of sprouting and ripening, killing of microbes, and control of insect population, quality assurance is provided by standardized radiation dosimetry. By strategic placement of calibrated dosimeters that are sufficiently stable and reproducible, it is possible to monitor minimum and maximum radiation absorbed dose levels and dose uniformity for a given processed foodstuff. The dosimetry procedure is especially important in the commisioning of a process and in making adjustments of process parameters (e.g. conveyor speed) to meet changes that occur in product and source parameters (e.g. bulk density and radiation spectrum). Routine dosimetry methods and certain corrections of dosimetry data may be selected for the radiations used in typical food processes.
Mars' surface radiation environment measured with the Mars Science Laboratory's Curiosity rover.
Hassler, Donald M; Zeitlin, Cary; Wimmer-Schweingruber, Robert F; Ehresmann, Bent; Rafkin, Scot; Eigenbrode, Jennifer L; Brinza, David E; Weigle, Gerald; Böttcher, Stephan; Böhm, Eckart; Burmeister, Soenke; Guo, Jingnan; Köhler, Jan; Martin, Cesar; Reitz, Guenther; Cucinotta, Francis A; Kim, Myung-Hee; Grinspoon, David; Bullock, Mark A; Posner, Arik; Gómez-Elvira, Javier; Vasavada, Ashwin; Grotzinger, John P
2014-01-24
The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.
Potential for focused beam orthovoltage therapy
NASA Astrophysics Data System (ADS)
Mahato, Dip N.; MacDonald, C. A.
2010-08-01
Radiation therapy typically employs high energy photon beams because the low absorption coefficient at these energies minimizes skin dose with a conventional, unfocused beam. At orthovoltage energies less than 150 keV, the maximum dose for a single beam occurs very close to the skin surface. However a well-focused beam of low energy x rays can provide much higher flux at the target depth while sparing dose to the skin. The measured focal spot size for the polycapillary optic was 0.2 mm and was found to remain unchanged through 50 mm of phantom thickness. The calculated depth-dose curve was found to peak several centimeters below the surface with 25-40 keV radiation. Modeling indicates that the tumor dose would remain much higher than the skin dose even after scanning to cover a 1 cm3 tumor.
Orita, Makiko; Hayashida, Naomi; Taira, Yasuyuki; Fukushima, Yoshiko; Ide, Juichi; Endo, Yuuko; Kudo, Takashi; Yamashita, Shunichi; Takamura, Noboru
2015-01-01
To confirm the availability of individual dose evaluation for the return of residents after the accident at the Fukushima Dai-ichi Nuclear Power Plant (FNPP), we evaluated individual doses of radiation as measured by personal dosimeters in residents who temporarily stayed in Evacuation Order Areas in Kawauchi village, which is partially located within a 20 km radius of the FNPP. We also compared individual doses with the external radiation doses estimated from the ambient dose rates and with doses estimated from the concentrations of radionuclides in the soil around each individual’s house. Individual doses were significantly correlated with the ambient doses in front of the entrances to the houses (r = 0.90, p<0.01), in the backyards (r = 0.41, p<0.01) and in the nearby fields (r = 0.80, p<0.01). The maximum cumulative ambient doses in the backyards and fields around the houses were 6.38 and 9.27 mSv/y, respectively. The maximum cumulative individual dose was 3.28 mSv/y, and the median and minimum doses were 1.35 and 0.71 mSv/y. The estimated external effective doses from concentrations of artificial radionuclides in soil samples ranged from 0.03 to 23.42 mSv/y. The individual doses were moderately correlated with external effective doses in the backyards (r = 0.38, p<0.01) and in the fields (r = 0.36, p<0.01); however, the individual doses were not significantly correlated with the external effective doses in front of the entrances (r = 0.01, p = 0.92). Our study confirmed that individual doses are low levels even in the evacuation order area in Kawauchi village, and external effective dose levels are certainly decreasing due to the decay of artificial radionuclides and the decontamination of contaminated soil. Long-term follow-up of individual doses as well as internal-exposure doses, environmental monitoring and reconstruction of infrastructure are needed so that residents may return to their hometowns after a nuclear disaster. PMID:25806523
Orita, Makiko; Hayashida, Naomi; Taira, Yasuyuki; Fukushima, Yoshiko; Ide, Juichi; Endo, Yuuko; Kudo, Takashi; Yamashita, Shunichi; Takamura, Noboru
2015-01-01
To confirm the availability of individual dose evaluation for the return of residents after the accident at the Fukushima Dai-ichi Nuclear Power Plant (FNPP), we evaluated individual doses of radiation as measured by personal dosimeters in residents who temporarily stayed in Evacuation Order Areas in Kawauchi village, which is partially located within a 20 km radius of the FNPP. We also compared individual doses with the external radiation doses estimated from the ambient dose rates and with doses estimated from the concentrations of radionuclides in the soil around each individual's house. Individual doses were significantly correlated with the ambient doses in front of the entrances to the houses (r = 0.90, p<0.01), in the backyards (r = 0.41, p<0.01) and in the nearby fields (r = 0.80, p<0.01). The maximum cumulative ambient doses in the backyards and fields around the houses were 6.38 and 9.27 mSv/y, respectively. The maximum cumulative individual dose was 3.28 mSv/y, and the median and minimum doses were 1.35 and 0.71 mSv/y. The estimated external effective doses from concentrations of artificial radionuclides in soil samples ranged from 0.03 to 23.42 mSv/y. The individual doses were moderately correlated with external effective doses in the backyards (r = 0.38, p<0.01) and in the fields (r = 0.36, p<0.01); however, the individual doses were not significantly correlated with the external effective doses in front of the entrances (r = 0.01, p = 0.92). Our study confirmed that individual doses are low levels even in the evacuation order area in Kawauchi village, and external effective dose levels are certainly decreasing due to the decay of artificial radionuclides and the decontamination of contaminated soil. Long-term follow-up of individual doses as well as internal-exposure doses, environmental monitoring and reconstruction of infrastructure are needed so that residents may return to their hometowns after a nuclear disaster.
Design and "As Flown" Radiation Environments for Materials in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Minow, Joseph; McWilliams, Brett; Altstatt, Richard; Koontz, Steven
2006-01-01
A conservative design approach was adopted by the International Space Station Program for specifying total ionizing radiation dose requirements for use in selecting and qualifying materials for construction of the International Space Station. The total ionizing dose design environment included in SSP 30512 Space Station Ionizing Radiation Design Environment is based on trapped proton and electron fluence derived from the solar maximum versions of the AE-8 and AP-8 models, respectively, specified for a circular orbit at 500 km altitude and 51.7 degree inclination. Since launch, the range of altitudes utilized for Space Station operations vary from a minimum of approximately 330 km to a maximum of approximately 405 km with a mean operational altitude less than 400 km. The design environment, therefore, overestimates the radiation environment because the particle flux in the South Atlantic Anomaly is the primary contributor to radiation dose in low Earth orbit and flux within the Anomaly is altitude dependent. In addition, a 2X multiplier is often applied to the design environment to cover effects from the contributions of galactic cosmic rays, solar energetic particle events, geomagnetic storms, and uncertainties in the trapped radiation models which are not explicitly included in the design environment. Application of this environment may give radiation dose overestimates on the order of 1OX to 30X for materials exposed to the space environment, suggesting that materials originally qualified for ten year exposures on orbit may be used for longer periods without replacement. In this paper we evaluate the "as flown" radiation environments derived from historical records of the ISS flight trajectory since launch and compare the results with the SSP 30512 design environment to document the magnitude of the radiation dose overestimate provided by the design environment. "As flown" environments are obtained from application of the AE-8/AP-8 trapped particle models along the ISS flight trajectory including variations in altitude due to decay of the vehicle orbit and periodic reboosts to higher altitudes. In addition, an estimate of the AE-8 model to predict low Earth orbit electron flux (because the radiation dose for thin materials is dominated by the electron component of the radiation environment) is presented based on comparisons of the AE-8 model to measurements of electron integral flux at approximately 850 km from the Medium Energy Proton and Electron Detector on board the NOAA Polar Operational Environmental Satellite.
NASA Astrophysics Data System (ADS)
Hassan, Amro B.; Mahmoud, Nagat S.; Elmamoun, Khalid; Adiamo, Oladipupo Q.; Mohamed Ahmed, Isam A.
2018-03-01
This study was aimed at investigating the effect of gamma irradiation at various doses (0.5, 1.0, 1.5 and 2.0 kGy) on protein characteristics and functional properties of sesame seeds. Gamma radiation at high doses (>1.0 kGy) significantly (P ≤ 0.05) increased globulin and albumin fractions of sesame protein. Concomitant (P ≤ 0.05) increase of in-vitro protein digestibility was noticed in irradiated sesame flour compared to non-radiated sample. Maximum protein solubility was observed in sesame flour irradiated at 1.0 kGy. SDS-PAGE electrophoretic patterns of total sesame protein were not affected by irradiation process. Significant enhancement (P ≤ 0.05) in emulsification capacity (EC) and emulsion stability (ES) was recorded after irradiation at a dose level of 1.0 and 1.5-2.0 kGy, respectively. Foaming capacity reached a significantly maximum value in sesame flour irradiated at 1.0 kGy while foaming stability was not significantly affected by gamma irradiation. It can be concluded that gamma radiation enhances the protein and functional properties of sesame flour and thus can be employed as an effective method of preserving sesame flour and its products.
Experimental check of bremsstrahlung dosimetry predictions for 0.75 MeV electrons
NASA Astrophysics Data System (ADS)
Sanford, T. W. L.; Halbleib, J. A.; Beezhold, W.
Bremsstrahlung dose in CaF2 TLDs from the radiation produced by 0.75 MeV electrons incident on Ta/C targets is measured and compared with that calculated via the CYLTRAN Monte Carlo code. The comparison was made to validate the code, which is used to predict and analyze radiation environments of flash X-ray simulators measured by TLDs. Over a wide range of Ta target thicknesses and radiation angles the code is found to agree with the 5% measurements. For Ta thickness near those that optimize the radiation output, however, the code overestimates the radiation dose at small angles. Maximum overprediction is about 14 + or - 5%. The general agreement, nonetheless, gives confidence in using the code at this energy and in the TLD calibration procedure. For the bulk of the measurements, a standard TLD employing a 2.2 mm thick Al equilibrator was used. In this paper we also show that this thickness can significantly attenuate the free-field dose and introduces significant photon buildup in the equalibrator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McPherson, R.B.; Watson, E.C.
1979-06-01
Potential environmental consequences in terms of radiation dose to people are presented for postulated accidents due to earthquakes, tornadoes, high straight-line winds, and floods. Maximum plutonium deposition values are given for significant locations around the site. All important potential exposure pathways are examined. The most likely calculated 50-year collective committed dose equivalents are all much lower than the collective dose equivalent expected from 50 years of exposure to natural background radiation and medical x-rays except Earthquake No. 4 and the 260-mph tornado. The most likely maximum residual plutonium contamination estimated to be deposited offsite following Earthquake No. 4, and themore » 200-mph and 260-mph tornadoes are above the Environmental Protection Agency's (EPA) proposed guideline for plutonium in the general environment of 0.2 ..mu..Ci/m/sup 2/. The deposition values following the other severe natural phenomena are below the EPA proposed guideline.« less
Broome, E J; Brown, D L; Mitchel, R E J
2002-08-01
The dose response for adaption to radiation at low doses was compared in normal human fibroblasts (AG1522) exposed to either (60)Co gamma rays or (3)H beta particles. Cells were grown in culture to confluence and exposed at either 37 degrees C or 0 degrees C to (3)H beta-particle or (60)Co gamma-ray adapting doses ranging from 0.1 mGy to 500 mGy. These cells, and unexposed control cells, were allowed to adapt during a fixed 3-h, 37 degrees C incubation prior to a 4-Gy challenge dose of (60)Co gamma rays. Adaption was assessed by measuring micronucleus frequency in cytokinesis-blocked, binucleate cells. No adaption was detected in cells exposed to (60)Co gamma radiation at 37 degrees C after a dose of 0.1 mGy given at a low dose rate or to 500 mGy given at a high dose rate. However, low-dose-rate exposure (1-3 mGy/min) to any dose between 1 and 500 mGy from either radiation, delivered at either temperature, caused cells to adapt and reduced the micronucleus frequency that resulted from the subsequent 4-Gy exposure. Within this dose range, the magnitude of the reduction was the same, regardless of the dose or radiation type. These results demonstrate that doses as low as (on average) about one track per cell (1 mGy) produce the same maximum adaptive response as do doses that deposit many tracks per cell, and that the two radiations were not different in this regard. Exposure at a temperature where metabolic processes, including DNA repair, were inactive (0 degrees C) did not alter the result, indicating that the adaptive response is not sensitive to changes in the accumulation of DNA damage within this range. The results also show that the RBE for low doses of tritium beta-particle radiation is 1, using adaption as the end point.
Cumulative total effective whole-body radiation dose in critically ill patients.
Rohner, Deborah J; Bennett, Suzanne; Samaratunga, Chandrasiri; Jewell, Elizabeth S; Smith, Jeffrey P; Gaskill-Shipley, Mary; Lisco, Steven J
2013-11-01
Uncertainty exists about a safe dose limit to minimize radiation-induced cancer. Maximum occupational exposure is 20 mSv/y averaged over 5 years with no more than 50 mSv in any single year. Radiation exposure to the general population is less, but the average dose in the United States has doubled in the past 30 years, largely from medical radiation exposure. We hypothesized that patients in a mixed-use surgical ICU (SICU) approach or exceed this limit and that trauma patients were more likely to exceed 50 mSv because of frequent diagnostic imaging. Patients admitted into 15 predesignated SICU beds in a level I trauma center during a 30-day consecutive period were prospectively observed. Effective dose was determined using Huda's method for all radiography, CT imaging, and fluoroscopic examinations. Univariate and multivariable linear regressions were used to analyze the relationships between observed values and outcomes. Five of 74 patients (6.8%) exceeded exposures of 50 mSv. Univariate analysis showed trauma designation, length of stay, number of CT scans, fluoroscopy minutes, and number of general radiographs were all associated with increased doses, leading to exceeding occupational exposure limits. In a multivariable analysis, only the number of CT scans and fluoroscopy minutes remained significantly associated with increased whole-body radiation dose. Radiation levels frequently exceeded occupational exposure standards. CT imaging contributed the most exposure. Health-care providers must practice efficient stewardship of radiologic imaging in all critically ill and injured patients. Diagnostic benefit must always be weighed against the risk of cumulative radiation dose.
NASA Astrophysics Data System (ADS)
Hardiyanti, Y.; Haekal, M.; Waris, A.; Haryanto, F.
2016-08-01
This research compares the quadratic optimization program on Intensity Modulated Radiation Therapy Treatment Planning (IMRTP) with the Computational Environment for Radiotherapy Research (CERR) software. We assumed that the number of beams used for the treatment planner was about 9 and 13 beams. The case used the energy of 6 MV with Source Skin Distance (SSD) of 100 cm from target volume. Dose calculation used Quadratic Infinite beam (QIB) from CERR. CERR was used in the comparison study between Gauss Primary threshold method and Gauss Primary exponential method. In the case of lung cancer, the threshold variation of 0.01, and 0.004 was used. The output of the dose was distributed using an analysis in the form of DVH from CERR. The maximum dose distributions obtained were on the target volume (PTV) Planning Target Volume, (CTV) Clinical Target Volume, (GTV) Gross Tumor Volume, liver, and skin. It was obtained that if the dose calculation method used exponential and the number of beam 9. When the dose calculation method used the threshold and the number of beam 13, the maximum dose distributions obtained were on the target volume PTV, GTV, heart, and skin.
NASA Technical Reports Server (NTRS)
Gilbert, R. D.; Fornes, R. E.; Memory, J. D.
1983-01-01
The effects of high energy radiation on mechanical properties and on the molecular and structural properties of graphite fiber reinforced composites are assessed so that durability in space applications can be predicted. A listing of composite systems irradiated along with the maximum radiation dose applied and type of mechanical tests performed is shown. These samples were exposed to 1/2 MeV electrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huddart, Robert A., E-mail: robert.huddart@icr.ac.uk; Hall, Emma; Hussain, Syed A.
2013-10-01
Purpose: To test whether reducing radiation dose to uninvolved bladder while maintaining dose to the tumor would reduce side effects without impairing local control in the treatment of muscle-invasive bladder cancer. Methods and Materials: In this phase III multicenter trial, 219 patients were randomized to standard whole-bladder radiation therapy (sRT) or reduced high-dose volume radiation therapy (RHDVRT) that aimed to deliver full radiation dose to the tumor and 80% of maximum dose to the uninvolved bladder. Participants were also randomly assigned to receive radiation therapy alone or radiation therapy plus chemotherapy in a partial 2 × 2 factorial design. Themore » primary endpoints for the radiation therapy volume comparison were late toxicity and time to locoregional recurrence (with a noninferiority margin of 10% at 2 years). Results: Overall incidence of late toxicity was less than predicted, with a cumulative 2-year Radiation Therapy Oncology Group grade 3/4 toxicity rate of 13% (95% confidence interval 8%, 20%) and no statistically significant differences between groups. The difference in 2-year locoregional recurrence free rate (RHDVRT − sRT) was 6.4% (95% confidence interval −7.3%, 16.8%) under an intention to treat analysis and 2.6% (−12.8%, 14.6%) in the “per-protocol” population. Conclusions: In this study RHDVRT did not result in a statistically significant reduction in late side effects compared with sRT, and noninferiority of locoregional control could not be concluded formally. However, overall low rates of clinically significant toxicity combined with low rates of invasive bladder cancer relapse confirm that (chemo)radiation therapy is a valid option for the treatment of muscle-invasive bladder cancer.« less
NASA Astrophysics Data System (ADS)
Nketsia-Tabiri, Josephine
1998-06-01
The effects of pre-irradiation storage time (7-21 days), radiation dose (0-75 Gy) and post-irradiation storage time (2-20 weeks) on sprouting, wrinkling and weight loss of ginger was investigated using a central composite rotatable design. Predictive models developed for all three responses were highly significant. Weight loss and wrinkling decreased as pre-irradiation storage time increased. Dose and post-irradiation storage time had significant interactive effects on weight loss and sprouting. Processing conditions for achieving minimal sprouting resulted in maximum weight loss and wrinkling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deenen, Maarten J.; Dewit, Luc; Boot, Henk
2013-04-01
Purpose: Newer radiation techniques, and the application of continuous 5-FU exposure during radiation therapy using oral capecitabine may improve the treatment of anal cancer. This phase 1, dose-finding study assessed the feasibility and efficacy of simultaneous integrated boost–intensity modulated radiation therapy (SIB-IMRT) with concomitant capecitabine and mitomycin C in locally advanced anal cancer, including pharmacokinetic and pharmacogenetic analyses. Methods and Materials: Patients with locally advanced anal carcinoma were treated with SIB-IMRT in 33 daily fractions of 1.8 Gy to the primary tumor and macroscopically involved lymph nodes and 33 fractions of 1.5 Gy electively to the bilateral iliac and inguinalmore » lymph node areas. Patients received a sequential radiation boost dose of 3 × 1.8 Gy on macroscopic residual tumor if this was still present in week 5 of treatment. Mitomycin C 10 mg/m{sup 2} (maximum 15 mg) was administered intravenously on day 1, and capecitabine was given orally in a dose-escalated fashion (500-825 mg/m{sup 2} b.i.d.) on irradiation days, until dose-limiting toxicity emerged in ≥2 of maximally 6 patients. An additional 8 patients were treated at the maximum tolerated dose (MTD). Results: A total of 18 patients were included. The MTD of capecitabine was determined to be 825 mg/m{sup 2} b.i.d. The predominant acute grade ≥3 toxicities included radiation dermatitis (50%), fatigue (22%), and pain (6%). Fifteen patients (83% [95%-CI: 66%-101%]) achieved a complete response, and 3 (17%) patients a partial response. With a median follow-up of 28 months, none of the complete responders, and 2 partial responders had relapsed. Conclusions: SIB-IMRT with concomitant single dose mitomycin C and capecitabine 825 mg/m{sup 2} b.i.d. on irradiation days resulted in an acceptable safety profile, and proved to be a tolerable and effective treatment regimen for locally advanced anal cancer.« less
Pattison, John E.; Hugtenburg, Richard P.; Green, Stuart
2010-01-01
Ongoing controversy surrounds the adverse health effects of the use of depleted uranium (DU) munitions. The biological effects of gamma-radiation arise from the direct or indirect interaction between secondary electrons and the DNA of living cells. The probability of the absorption of X-rays and gamma-rays with energies below about 200 keV by particles of high atomic number is proportional to the third to fourth power of the atomic number. In such a case, the more heavily ionizing low-energy recoil electrons are preferentially produced; these cause dose enhancement in the immediate vicinity of the particles. It has been claimed that upon exposure to naturally occurring background gamma-radiation, particles of DU in the human body would produce dose enhancement by a factor of 500–1000, thereby contributing a significant radiation dose in addition to the dose received from the inherent radioactivity of the DU. In this study, we used the Monte Carlo code EGSnrc to accurately estimate the likely maximum dose enhancement arising from the presence of micrometre-sized uranium particles in the body. We found that although the dose enhancement is significant, of the order of 1–10, it is considerably smaller than that suggested previously. PMID:19776147
Spatial frequency performance limitations of radiation dose optimization and beam positioning
NASA Astrophysics Data System (ADS)
Stewart, James M. P.; Stapleton, Shawn; Chaudary, Naz; Lindsay, Patricia E.; Jaffray, David A.
2018-06-01
The flexibility and sophistication of modern radiotherapy treatment planning and delivery methods have advanced techniques to improve the therapeutic ratio. Contemporary dose optimization and calculation algorithms facilitate radiotherapy plans which closely conform the three-dimensional dose distribution to the target, with beam shaping devices and image guided field targeting ensuring the fidelity and accuracy of treatment delivery. Ultimately, dose distribution conformity is limited by the maximum deliverable dose gradient; shallow dose gradients challenge techniques to deliver a tumoricidal radiation dose while minimizing dose to surrounding tissue. In this work, this ‘dose delivery resolution’ observation is rigorously formalized for a general dose delivery model based on the superposition of dose kernel primitives. It is proven that the spatial resolution of a delivered dose is bounded by the spatial frequency content of the underlying dose kernel, which in turn defines a lower bound in the minimization of a dose optimization objective function. In addition, it is shown that this optimization is penalized by a dose deposition strategy which enforces a constant relative phase (or constant spacing) between individual radiation beams. These results are further refined to provide a direct, analytic method to estimate the dose distribution arising from the minimization of such an optimization function. The efficacy of the overall framework is demonstrated on an image guided small animal microirradiator for a set of two-dimensional hypoxia guided dose prescriptions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matyushichev, V.B.; Taratukhin, V.R.; Shamratova, V.G.
1978-01-01
The effectiveness of exposing rats to different doses of x radiation after submitting them to a heat load, according to the tests of ATPase and creatine kinase activity of aqueous extracts of skin at the relatively late observation period was compared. The effects of the combined factors were monitored by means of a heat load (one group) and exposure to radiation alone in doses of 25, 50, 100, 250, and 400 R (5 groups). The obtained data are indicative of marked specificity of ATPase and creatine kinase reactions to the combined factors. Creatine kinase activity undergoes a 157% change, whereasmore » the mean relative deviation of ATPase activity constitutes only 71% of the normal level. The most effect loads are 36/sup 0/C + 25 R and 36/sup 0/C + 400 R. With all tested doses the extent of the effect of radiation on creatine kinase activity is only negligibly lower than the effectiveness of combined loads, whereas according to the ATPase test, radiation alone induces virtually the same changes in activity as combined factors. ATPase undergoes maximum change after irradiation in doses of 250 and 400 R; delivery of 25 to 100 R is associated with much less marked changes in activity. In contrast, creatine kinase demonstrates maximum sensitivity to radiation in a dosage of 25 R and minimum sensitivity, with a dosage of 100 R. Thermal stress (according to ATPase and creatine kinase activity) has a profound and quite substantial effect on processes of development of radiation lesion. It can be manifested by complete or partial summation of effects of each of the factors, mutual attenuation of effects, or absence of interaction between factors in the combination. All this is indicative of the complexity and differences in mechanisms of expression of effects of the factors used. (ERB)« less
Kishan, Amar U; Cao, Minsong; Mikaeilian, Argin G; Low, Daniel A; Kupelian, Patrick A; Steinberg, Michael L; Kamrava, Mitchell
2015-01-01
The purpose of this study was to investigate the dosimetric differences of delivering preoperative intensity modulated radiation therapy (IMRT) to patients with soft tissue sarcomas of the extremity (ESTS) with a teletherapy system equipped with 3 rotating (60)Co sources and a built-in magnetic resonance imaging and with standard linear accelerator (LINAC)-based IMRT. The primary study population consisted of 9 patients treated with preoperative radiation for ESTS between 2008 and 2014 with LINAC-based static field IMRT. LINAC plans were designed to deliver 50 Gy in 25 fractions to 95% of the planning target volume (PTV). Tri-(60)Co system IMRT plans were designed with ViewRay system software. Tri-(60)Co-based IMRT plans achieved equivalent target coverage and dosimetry for organs at risk (long bone, skin, and skin corridor) compared with LINAC-based IMRT plans. The maximum and minimum PTV doses, heterogeneity indices, and ratio of the dose to 50% of the volume were equivalent for both planning systems. One LINAC plan violated the maximum bone dose constraint, whereas none of the tri-(60)Co plans did. Using a tri-(60)Co system, we were able to achieve equivalent dosimetry to the PTV and organs at risk for patients with ESTS compared with LINAC-based IMRT plans. The tri-(60)Co system may be advantageous over current treatment platforms by allowing PTV reduction and by elimination of the additional radiation dose associated with daily image guidance, but this needs to be evaluated prospectively. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Time-dependent radiation dose simulations during interplanetary space flights
NASA Astrophysics Data System (ADS)
Dobynde, Mikhail; Shprits, Yuri; Drozdov, Alexander; Hoffman, Jeffrey; Li, Ju
2016-07-01
Space radiation is one of the main concerns in planning long-term interplanetary human space missions. There are two main types of hazardous radiation - Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR). Their intensities and evolution depend on the solar activity. GCR activity is most enhanced during solar minimum, while the most intense SEPs usually occur during the solar maximum. SEPs are better shielded with thick shields, while GCR dose is less behind think shields. Time and thickness dependences of the intensity of these two components encourage looking for a time window of flight, when radiation intensity and dose of SEP and GCR would be minimized. In this study we combine state-of-the-art space environment models with GEANT4 simulations to determine the optimal shielding, geometry of the spacecraft, and launch time with respect to the phase of the solar cycle. The radiation environment was described by the time-dependent GCR model, and the SEP spectra that were measured during the period from 1990 to 2010. We included gamma rays, electrons, neutrons and 27 fully ionized elements from hydrogen to nickel. We calculated the astronaut's radiation doses during interplanetary flights using the Monte-Carlo code that accounts for the primary and the secondary radiation. We also performed sensitivity simulations for the assumed spacecraft size and thickness to find an optimal shielding. In conclusion, we present the dependences of the radiation dose as a function of launch date from 1990 to 2010, for flight durations of up to 3 years.
Ordiales, J M; Nogales, J M; Vano, E; López-Mínguez, J R; Alvarez, F J; Ramos, J; Martínez, G; Sánchez, R M
2017-04-25
The aim of this study was to evaluate the occupational radiation dose in interventional cardiology by using a shielding drape on the patient. A random study with and without the protective material was conducted. The following control parameters were registered: demographic data, number of stents, contrast media volume, fluoroscopy time, number of cine images, kerma-area product and cumulative air kerma. Occupational dose data were obtained by electronic active dosemeters. No statistically significant differences in the analysed control parameters were registered. The median dose value received by the interventional cardiologist was 50% lower in the group with a shielding drape with a statistically significant p-value <0.001. In addition, the median value of the maximum scatter radiation dose was 31% lower in this group with a statistically significant p-value <0.001. This study showed that a shielding drape is a useful tool for reducing the occupational radiation dose in a cardiac catheterisation laboratory. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Shuttle radiation dose measurements in the International Space Station orbits
NASA Technical Reports Server (NTRS)
Badhwar, Gautam D.
2002-01-01
The International Space Station (ISS) is now a reality with the start of a permanent human presence on board. Radiation presents a serious risk to the health and safety of the astronauts, and there is a clear requirement for estimating their exposures prior to and after flights. Predictions of the dose rate at times other than solar minimum or solar maximum have not been possible, because there has been no method to calculate the trapped-particle spectrum at intermediate times. Over the last few years, a tissue-equivalent proportional counter (TEPC) has been flown at a fixed mid-deck location on board the Space Shuttle in 51.65 degrees inclination flights. These flights have provided data that cover the expected changes in the dose rates due to changes in altitude and changes in solar activity from the solar minimum to the solar maximum of the current 23rd solar cycle. Based on these data, a simple function of the solar deceleration potential has been derived that can be used to predict the galactic cosmic radiation (GCR) dose rates to within +/-10%. For altitudes to be covered by the ISS, the dose rate due to the trapped particles is found to be a power-law function, rho(-2/3), of the atmospheric density, rho. This relationship can be used to predict trapped dose rates inside these spacecraft to +/-10% throughout the solar cycle. Thus, given the shielding distribution for a location inside the Space Shuttle or inside an ISS module, this approach can be used to predict the combined GCR + trapped dose rate to better than +/-15% for quiet solar conditions.
Kilburn, Lindsay B.; Kocak, Mehmet; Schaedeli Stark, Franziska; Meneses-Lorente, Georgina; Brownstein, Carrie; Hussain, Sazzad; Chintagumpala, Murali; Thompson, Patrick A.; Gururangan, Sri; Banerjee, Anuradha; Paulino, Arnold C.; Kun, Larry; Boyett, James M.; Blaney, Susan M.
2013-01-01
Background We conducted a phase I study to estimate the maximum tolerated dose and describe the dose-limiting toxicities and pharmacokinetics of oral capecitabine rapidly disintegrating tablets given concurrently with radiation therapy to children with newly diagnosed brainstem or high-grade gliomas. Methods Children 3–21 y with newly diagnosed intrinsic brainstem or high-grade gliomas were eligible for enrollment. The starting dose was 500 mg/m2, given twice daily, with subsequent cohorts enrolled at 650 mg/m2 and 850 mg/m2 using a 3 + 3 phase I design. Children received capecitabine at the assigned dose daily for 9 wks starting from the first day of radiation therapy (RT). Following a 2-wk break, patients received 3 courses of capecitabine 1250 mg/m2 twice daily for 14 days followed by a 7-day rest. Pharmacokinetic sampling was performed in consenting patients. Six additional patients with intrinsic brainstem gliomas were enrolled at the maximum tolerated dose to further characterize the pharmacokinetic and toxicity profiles. Results Twenty-four patients were enrolled. Twenty were fully assessable for toxicity. Dose-limiting toxicities were palmar plantar erythroderma (grades 2 and 3) and elevation of alanine aminotransferase (grades 2 and 3). Systemic exposure to capecitabine and metabolites was similar to or slightly lower than predicted based on adult data. Conclusions Capecitabine with concurrent RT was generally well tolerated. The recommended phase II capecitabine dose when given with concurrent RT is 650 mg/m2, administered twice daily. A phase II study to evaluate the efficacy of this regimen in children with intrinsic brainstem gliomas is in progress (PBTC-030). PMID:23592571
Small Radiation Beam Dosimetry for Radiosurgery of Trigeminal Neuralgia: One Case Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Garduno, O. A.; Larraga-Gutierrez, J. M.; Unidad de Radioneurocirugia, Instituto Nacional de Neurologia y Neurocirugia. Insurgentes Sur 3677, Col. La Fama, C. P. 14269, Tlalpan, Mexico, D. F.
2008-08-11
The use of small radiation beams for trigeminal neuralgia (TN) treatment requires high precision and accuracy in dose distribution calculations and delivery. Special attention must be kept on the type of detector to be used. In this work, the use of GafChromic EBT registered radiochromic and X-OMAT V2 radiographic films for small radiation beam characterization is reported. The dosimetric information provided by the films (total output factors, tissue maximum ratios and off axis ratios) is compared against measurements with a shielded solid state (diode) reference detector. The film dosimetry was used for dose distribution calculations for the treatment of trigeminalmore » neuralgia radiosurgery. Comparison of the isodose curves shows that the dosimetry produced with the X-OMAT radiographic film overestimates the dose distributions in the penumbra region.« less
Olmstead, Craig; Cruz, Kyle; Stodilka, Robert; Zabel, Pamela; Wolfson, Robert
2015-02-01
Radionuclide therapies, including treatment of neuroendocrine tumors with lutetium-177 (Lu-177) octreotate, often involve hospital admission to minimize radiation exposure to the public. Overnight admission due to Lu-177 octreotate therapy incurs additional cost for the hospital and is an inconvenience for the patient. This study endeavors to characterize the potential radiation risk to caregivers and the public should Lu-177 octreotate therapies be performed on an outpatient basis. Dose rate measurements of radiation emanating from 10 patients were taken 30 min, 4, and 20 h after initiation of Lu-177 octreotate therapy. Instadose radiation dose measurement monitors were also placed around the patients' rooms to assess the potential cumulative radiation exposure during the initial 30 min-4 h after treatment (simulating the hospital-based component of the outpatient model) as well as 4-20 h after treatment (simulating the discharged outpatient portion). The mean recorded dose rate at 30 min, 4, and 20 h after therapy was 20.4, 14.0, and 6.6 μSv/h, respectively. The majority of the cumulative dose readings were below the minimum recordable threshold of 0.03 mSv, with a maximum dose recorded of 0.18 mSv. Given the low dose rate and cumulative levels of radiation measured, the results support that an outpatient Lu-177 octreotate treatment protocol would not jeopardize public safety. Nevertheless, the concept of ALARA still requires that detailed radiation safety protocols be developed for Lu-177 octreotate outpatients to minimize radiation exposure to family members, caregivers, and the general public.
Clinical assessment of the jaw-tracking function in IMRT for a brain tumor
NASA Astrophysics Data System (ADS)
Kim, Jin-Young; Kim, Shin-Wook; Choe, Bo-Young; Suh, Tae-Suk; Park, Sung-Kwang; Jo, Sun-Mi; Oh, Won-Yong; Shin, Jung-Wook; Cho, Gyu-Seok; Nam, Sang-Hee; Chung, Jin-Beom; Kim, Jung-Ki; Lee, Young-Kyu
2015-01-01
Intensity-modulated radiotherapy (IMRT) improves dose conformity and saves critical organs. IMRT is widely used in cases of head and neck, prostate, and brain cancer due to the close location of the targets to critical structures. However, because IMRT has a larger amount of radiation exposure than 3 dimensional-conformal radiation therapy (3D-CRT), it has disadvantages such as increases in the low dose irradiation to normal tissues and in the accumulated dose for the whole volume due to leakage and transmission of the multi-leaf collimator (MLC). The increased accumulated dose and the larger low dose may increase the occurrence of secondary malignant neoplasms. For these reasons, the jaw-tracking function of the TrueBeam (Varian Medical Systems, Palo Alto, CA) was developed to reduce the leakage and the transmission dose of the MLC with linear accelerators. However, the change in the superficial dose has not been verified with a quantitative analysis of the dose reduction in a brain tumor. Therefore, in the present study, we intended to verify the clinical possibility of utilizing the jaw-tracking function for a brain tumor by comparing treatment plans and superficial doses. To accomplish this, we made three types of original treatment plans using Eclipse11 (Varian Medical Systems, Palo Alto, CA): 1) farther than 2 cm from the organs at risk (OAR); 2) within 2 cm of the OAR; and 3) intersecting with the OAR. Jaw-tracking treatment plans were also made with copies of the original treatment plan using Smart LMC Version 11.0.31 (Varian Medical Systems, Palo Alto, CA). A comparison between the original treatment plans and jaw-tracking treatment plans was performed using the difference of the mean dose and maximum dose to the OARs in cumulative Dose Volume Histogram (DVH). In addition, the dependencies of the effects of transmission and the scattering doses according to jaw motion were assessed through the difference in the surface doses. In the DVH comparison, a maximum dose difference of 0.4% was observed between the planning methods in the case of over 2 cm distance, and the maximum dose of 0.6% was obtained for within the 2 cm distance. For the case intersecting with the OAR, the maximum dose difference of 2.3% was achieved. According to these results, the differences in the mean doses and the maximum doses to the OARs ware larger when the OARs and the planning target volume (PTV) were closer. In addition, small differences in the surface dose measurements were observed. In the case of the inside field, the differences were under 2% of the prescription dose while the difference was under 0.1% in the case of the outside field. Therefore, treatment plans with the jaw-tracking function consistently affected the dose reduction for a brain tumor, and the clinical possibility could be verified as the surface dose was not increased.
Measurements of the neutron spectrum in transit to Mars on the Mars Science Laboratory.
Köhler, J; Ehresmann, B; Zeitlin, C; Wimmer-Schweingruber, R F; Hassler, D M; Reitz, G; Brinza, D E; Appel, J; Böttcher, S; Böhm, E; Burmeister, S; Guo, J; Lohf, H; Martin, C; Posner, A; Rafkin, S
2015-04-01
The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011. Although designed for measuring the radiation on the surface of Mars, the Radiation Assessment Detector (RAD) measured the radiation environment inside the spacecraft during most of the 253-day, 560-million-kilometer cruise to Mars. An important factor for determining the biological impact of the radiation environment inside the spacecraft is the specific contribution of neutrons with their high biological effectiveness. We apply an inversion method (based on a maximum-likelihood estimation) to calculate the neutron and gamma spectra from the RAD neutral particle measurements. The measured neutron spectrum (12-436 MeV) translates into a radiation dose rate of 3.8±1.2 μGy/day and a dose equivalent of 19±5 μSv/day. Extrapolating the measured spectrum (0.1-1000 MeV), we find that the total neutron-induced dose rate is 6±2 μGy/day and the dose equivalent rate is 30±10 μSv/day. For a 360 day round-trip from Earth to Mars with comparable shielding, this translates into a neutron induced dose equivalent of about 11±4 mSv. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Victor Ho Fun, E-mail: vhflee@hku.hk; Ng, Sherry Chor Yi; Kwong, Dora Lai Wan
The aim of this study was to investigate if intravenous contrast injection affected the radiation doses to carotid arteries and thyroid during intensity-modulated radiation therapy (IMRT) planning for nasopharyngeal carcinoma (NPC). Thirty consecutive patients with NPC underwent plain computed tomography (CT) followed by repeated scanning after contrast injection. Carotid arteries (common, external, internal), thyroid, target volumes, and other organs-at-risk (OARs), as well as IMRT planning, were based on contrast-enhanced CT (CE-CT) images. All these structures and the IMRT plans were then copied and transferred to the non–contrast-enhanced CT (NCE-CT) images, and dose calculation without optimization was performed again. The radiationmore » doses to the carotid arteries and the thyroid based on CE-CT and NCE-CT were then compared. Based on CE-CT, no statistical differences, despite minute numeric decreases, were noted in all dosimetric parameters (minimum, maximum, mean, median, D05, and D01) of the target volumes, the OARs, the carotid arteries, and the thyroid compared with NCE-CT. Our results suggested that compared with NCE-CT planning, CE-CT scanning should be performed during IMRT for better target and OAR delineation, without discernible change in radiation doses.« less
Space radiation risks to the central nervous system
NASA Astrophysics Data System (ADS)
Cucinotta, Francis A.; Alp, Murat; Sulzman, Frank M.; Wang, Minli
2014-07-01
Central nervous system (CNS) risks which include during space missions and lifetime risks due to space radiation exposure are of concern for long-term exploration missions to Mars or other destinations. Possible CNS risks during a mission are altered cognitive function, including detriments in short-term memory, reduced motor function, and behavioral changes, which may affect performance and human health. The late CNS risks are possible neurological disorders such as premature aging, and Alzheimer's disease (AD) or other dementia. Radiation safety requirements are intended to prevent all clinically significant acute risks. However the definition of clinically significant CNS risks and their dependences on dose, dose-rate and radiation quality is poorly understood at this time. For late CNS effects such as increased risk of AD, the occurrence of the disease is fatal with mean time from diagnosis of early stage AD to death about 8 years. Therefore if AD risk or other late CNS risks from space radiation occur at mission relevant doses, they would naturally be included in the overall acceptable risk of exposure induced death (REID) probability for space missions. Important progress has been made in understanding CNS risks due to space radiation exposure, however in general the doses used in experimental studies have been much higher than the annual galactic cosmic ray (GCR) dose (∼0.1 Gy/y at solar maximum and ∼0.2 Gy/y at solar minimum with less than 50% from HZE particles). In this report we summarize recent space radiobiology studies of CNS effects from particle accelerators simulating space radiation using experimental models, and make a critical assessment of their relevance relative to doses and dose-rates to be incurred on a Mars mission. Prospects for understanding dose, dose-rate and radiation quality dependencies of CNS effects and extrapolation to human risk assessments are described.
Elquza, Emad; Babiker, Hani M; Howell, Krisha J; Kovoor, Andrew I; Brown, Thomas David; Patel, Hitendra; Malangone, Steven A; Borad, Mitesh J; Dragovich, Tomislav
2016-01-01
To establish the maximum tolerated dose (MTD) and safety profile of bi-weekly Pemetrexed (PEM) when combined with weekly cisplatin (CDDP) and standard dose external beam radiation (EBRT) in patients with locally advanced or metastatic esophageal and gastroesophageal junction (GEJ) carcinomas. We conducted an open label, single institution, phase I dose escalation study designed to evaluate up to 15-35 patients with advanced or metastatic esophageal and GEJ carcinomas. 10 patients were treated with bi-weekly PEM, weekly CDDP, and EBRT. The MTD of bi-weekly PEM was determined to be 500 mg/m(2).
Conformal Stereotactic Radiosurgery With Multileaf Collimation.
1992-01-01
Hartmann, W. Schlegel, V. Sturm, B. Kober, 0. Pastyr, W.J. Lorenz, "Cerebral radiation surgery using moving field irradiation at a linear ac ...Kober, 0. Pastyr, W.J. Lorenz, "Cerebral radiation surgery using moving field irradiation at a linear ac - celerator facility," Int. J. Radiation...scattered photons), off-axis ratios (for points off of the central axis of the incident beam), percent depth dose or tissue maximum ratio (to ac - count for
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlampp, Ingmar; Karger, Christian P.; Jaekel, Oliver
2011-07-01
Purpose: To identify predictors for the development of temporal lobe reactions (TLR) after carbon ion radiation therapy (RT) for radiation-resistant tumors in the central nervous system and to evaluate the predictions of the local effect model (LEM) used for calculation of the biologically effective dose. Methods and Materials: This retrospective study reports the TLR rates in patients with skull base chordomas and chondrosarcomas irradiated with carbon ions at GSI, Darmstadt, Germany, in the years 2002 and 2003. Calculation of the relative biological effectiveness and dose optimization of treatment plans were performed on the basis of the LEM. Clinical examinations andmore » magnetic resonance imaging (MRI) were performed at 3, 6, and 12 months after RT and annually thereafter. Local contrast medium enhancement in temporal lobes, as detected on MRI, was regarded as radiation-induced TLR. Dose-volume histograms of 118 temporal lobes in 59 patients were analyzed, and 16 therapy-associated and 2 patient-associated factors were statistically evaluated for their predictive value for the occurrence of TLR. Results: Median follow-up was 2.5 years (range, 0.3--6.6 years). Age and maximum dose applied to at least 1 cm{sup 3} of the temporal lobe (D{sub max,V-1cm}3, maximum dose in the remaining temporal lobe volume, excluding the volume 1 cm{sup 3} with the highest dose) were found to be the most important predictors for TLR. Dose response curves of D{sub max,V-1cm}3 were calculated. The biologically equivalent tolerance doses for the 5% and 50% probabilities to develop TLR were 68.8 {+-} 3.3 Gy equivalents (GyE) and 87.3 {+-} 2.8 GyE, respectively. Conclusions: D{sub max,V-1cm}3 is predictive for radiation-induced TLR. The tolerance doses obtained seem to be consistent with published data for highly conformal photon and proton irradiations. We could not detect any clinically relevant deviations between clinical findings and expectations based on predictions of the LEM.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkatramani, Rajkumar, E-mail: rvenkatramani@chla.usc.edu; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California; Kamath, Sunil
Purpose: To identify the incidence and the risk factors for pulmonary toxicity in children treated for cancer with contemporary lung irradiation. Methods and Materials: We analyzed clinical features, radiographic findings, pulmonary function tests, and dosimetric parameters of children receiving irradiation to the lung fields over a 10-year period. Results: We identified 109 patients (75 male patients). The median age at irradiation was 13.8 years (range, 0.04-20.9 years). The median follow-up period was 3.4 years. The median prescribed radiation dose was 21 Gy (range, 0.4-64.8 Gy). Pulmonary toxic chemotherapy included bleomycin in 58.7% of patients and cyclophosphamide in 83.5%. The followingmore » pulmonary outcomes were identified and the 5-year cumulative incidence after irradiation was determined: pneumonitis, 6%; chronic cough, 10%; pneumonia, 35%; dyspnea, 11%; supplemental oxygen requirement, 2%; radiographic interstitial lung disease, 40%; and chest wall deformity, 12%. One patient died of progressive respiratory failure. Post-irradiation pulmonary function tests available from 44 patients showed evidence of obstructive lung disease (25%), restrictive disease (11%), hyperinflation (32%), and abnormal diffusion capacity (12%). Thoracic surgery, bleomycin, age, mean lung irradiation dose (MLD), maximum lung dose, prescribed dose, and dosimetric parameters between V{sub 22} (volume of lung exposed to a radiation dose ≥22 Gy) and V{sub 30} (volume of lung exposed to a radiation dose ≥30 Gy) were significant for the development of adverse pulmonary outcomes on univariate analysis. MLD, maximum lung dose, and V{sub dose} (percentage of volume of lung receiving the threshold dose or greater) were highly correlated. On multivariate analysis, MLD was the sole significant predictor of adverse pulmonary outcome (P=.01). Conclusions: Significant pulmonary dysfunction occurs in children receiving lung irradiation by contemporary techniques. MLD rather than prescribed dose should be used to perform risk stratification of patients receiving lung irradiation.« less
LDEF: Dosimetric measurement results (AO 138-7 experiment)
NASA Technical Reports Server (NTRS)
Bourrieau, J.
1992-01-01
One of the objectives of the AO 138-7 experiment on board the LDEF was a total dose measurement with Thermo Luminescent Detectors (TLD 100). Two identical cases, both including 5 TLDs inside various aluminum shields, are exposed to the space environment in order to obtain the absorbed dose profile induced. Radiation fluence received during the total mission length was computed, taking into account the trapped particles (solar maximum and solar minimum periods) and the cosmic rays; due to the magnetospheric shielding, the solar proton fluences are negligible on the LDEF orbit. The total dose induced by these radiations inside a semi-infinite plane shield of Al are computed with radiation transport codes. TLD reading are performed after flight; due to the mission duration increase, a post-flight calibration was necessary in order to cover the range of the flight induced dose. The results obtained, similar (+ or - 30 pct.) in both cases, are compared with the dose profile computation. In practice, these LDEF results, with less than a factor 1.4 between measurements and forecasts, reinforce the validity of the computation methods and models used for the long term evaluation of space radiation intensity on low inclination Earth orbits.
NASA Astrophysics Data System (ADS)
Khattak, Khanzadi Fatima
2012-06-01
Whole plant of Fagonia arabica with 3 different particle sizes (30, 50 and 70 mesh) were exposed to gamma radiation doses of 1-10 kGy from a Cobalt 60 source. A series of tests was performed in order to check the feasibility of irradiation processing of the plant. The applied radiation doses did not affect (P<0.05) pH and antimicrobial activities of the plant. The total weight of the dry extracts in methanol as well as water was found increased with irradiation. The irradiated samples showed significant increase in phenolic content and free radical scavenging activity using DPPH. Shortly after irradiation (on the day of radiation treatment) high amounts of free radicals were detected in the irradiated plant samples and the chemiluminescence measurements were generally found to be dose dependent. Maximum luminescence intensity was observed in case of samples with mesh size of 30 for all the radiation doses applied. After a period of one month the chemiluminescence signals of the irradiated samples approximated those of the controls. The study suggests that gamma irradiation treatment is effective for quality improvement and enhances certain beneficial biological properties of the treated materials.
Take, Toshio; Sato, Kaori; Kiuchi, Katsunori; Nakazawa, Yasuo
2007-11-20
A variety of radiation hazards resulting from interventional radiology (IVR) have been reported in recent years. Particularly affected are the skin and the crystalline lens, with their high radiation sensitivity. During neurological interventions, the radiological technologist should consider decreasing radiation exposure. We found exposure projections where the exposure dose became a radiation hazard for the crystalline lens, and examined an efficient method of cover for the exposure projections used for neurological interventions. The exposure projection for maximum crystalline lens radiation exposure was a lateral projection. In the crystalline lens the maximum exposure to radiation was on the X-ray tube side. The method of defense adopted was that of installing a lead plate of the appropriate shape on the surface of the X-ray tube collimator. In other exposure projections, this cover did not become a redundant shadow. With the cover that was created, the X-ray side crystalline lens lateral projection could be defended effectively.
Can contrast media increase organ doses in CT examinations? A clinical study.
Amato, Ernesto; Salamone, Ignazio; Naso, Serena; Bottari, Antonio; Gaeta, Michele; Blandino, Alfredo
2013-06-01
The purpose of this article is to quantify the CT radiation dose increment in five organs resulting from the administration of iodinated contrast medium. Forty consecutive patients who underwent both un-enhanced and contrast-enhanced thoracoabdominal CT were included in our retrospective study. The dose increase between CT before and after contrast agent administration was evaluated in the portal phase for the thyroid, liver, spleen, pancreas, and kidneys by applying a previously validated method. An increase in radiation dose was noted in all organs studied. Average dose increments were 19% for liver, 71% for kidneys, 33% for spleen and pancreas, and 41% for thyroid. Kidneys exhibited the maximum dose increment, whereas the pancreas showed the widest variance because of the differences in fibro-fatty involution. Finally, thyroids with high attenuation values on unenhanced CT showed a lower Hounsfield unit increase and, thus, a smaller increment in the dose. Our study showed an increase in radiation dose in several parenchymatous tissues on contrast-enhanced CT. Our method allowed us to evaluate the dose increase from the change in attenuation measured in Hounsfield units. Because diagnostic protocols require multiple acquisitions after the contrast agent administration, such a dose increase should be considered when optimizing these protocols.
NASA Astrophysics Data System (ADS)
Chardenet, Kathleen A.
Purpose: A real-time dose management system was used to determine if radiation exposure levels would decrease when providers were privy to their real-time radiation exposure levels. Six aggregate categories of providers were first blinded (phase 1) and subsequently made aware of their radiation exposure levels during electrophysiology procedures (phase 2). Methods: A primary, quantitative crossover study of faculty and staff working in an electrophysiology lab at the University of Michigan Hospitals setting occurred. Participants in the control group was first blinded in phase 1 to their radiation exposure over an 10-week time period. The same group subsequently became the treatment group in phase 2 when over a second 10-week period real-time exposure levels were made available to them. Power analysis, using a 40% decrease in exposure, was calculated using a variance of radiation exposure equal to the mean radiation exposure with 80% power and alpha = .05. Calculations revealed 102 subjects in each treatment and control group were necessary. Results: Using the mixed effect linear model, a significant decrease in radiation levels occurred in phase 2 as compared to phase 1 for the operator role represented by the combined electrophysiologist-fellow role with a P value of .025. Exposure levels in all other provider groups for phase 1 or 2 failed to reach statistical significance. All dose values were low and well below the US maximum allowable yearly dose of 5,000 mrem per year. Conclusion: A real-time radiation dose monitoring system during electrophysiology procedures may significantly lower occupational radiation exposure in health care workers.
Updated Mortality Analysis of Radiation Workers at Rocketdyne (Atomics International), 1948-2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boice Jr JD, Colen SS, Mumma MT, Ellis ED, Eckerman DF, Leggett RW, Boecker BB, Brill B, Henderson BE
Updated analyses of mortality data are presented on 46,970 workers employed 1948-1999 at Rocketdyne (Atomics International). Overall, 5,801 workers were involved in radiation activities, including 2,232 who were monitored for intakes of radionuclides, and 41,169 workers were engaged in rocket testing or other non-radiation activities. The worker population is unique in that lifetime occupational doses from all places of employment were sought, updated and incorporated into the analyses. Further, radiation doses from intakes of 14 different radionuclides were calculated for 16 organs or tissues using biokinetic models of the International Commission on Radiation Protection (ICRP). Because only negligible exposures weremore » received by the 247 workers monitored for radiation activities after 1999, the mean dose from external radiation remained essentially the same at 13.5 mSv (maximum 1 Sv) as reported previously, as did the mean lung dose from external and internal radiation combined at 19.0 mSv (maximum 3.6 Sv). An additional 9 years of follow-up, from December 31,1999 through 2008, increased the person-years of observation for the radiation workers by 21.7% to 196,674 (mean 33.9 years) and the number of cancer deaths by 50% to 684. Analyses included external comparisons with the general population and the computation of standardized mortality ratios (SMRs) and internal comparisons using proportional hazards models and the computation of relative risks (RRs). A low SMR for all causes of death (SMR 0.82; 95% CI 0.78-0.85) continued to indicate that the Rocketdyne radiation workers were healthier than the general population and were less likely to die. The SMRs for all cancers taken together (SMR 0.88; 95% CI 0.81-0.95), lung cancer (SMR 0.87; 95% CI 0.76-1.00) and leukemia other than chronic lymphocytic leukemia (CLL) (SMR 1.04; 95% 0.67-1.53) were not significantly elevated. Cox regression analyses revealed no significant dose-response trends for any cancer. For all cancers excluding leukemia, the RR at 100 mSv was estimated as 0.98 (95% CI 0.82-1.17), and for all leukemia other than CLL it was 1.06 (95% CI 0.50-2.23). Uranium was the primary radionuclide contributing to internal exposures, but no significant increases in lung and kidney disease were seen. The extended follow-up reinforces the findings in the previous study in failing to observe a detectable increase in cancer deaths associated with radiation, but strong conclusions still cannot be drawn because of small numbers and relatively low career doses. Larger combined studies of early workers in the United States using similar methodologies are warranted to refine and clarify radiation risks after protracted exposures.« less
Fu, Yuchuan; Deng, Min; Zhou, Xiaojuan; Lin, Qiang; Du, Bin; Tian, Xue; Xu, Yong; Wang, Jin; Lu, You; Gong, Youling
2017-01-01
To evaluate the lung sparing in intensity-modulated radiation therapy (IMRT) for patients with upper thoracic esophageal tumors extending inferiorly to the thorax by different beam arrangement. Overall, 15 patient cases with cancer of upper thoracic esophagus were selected for a retrospective treatment-planning study. Intensity-modulated radiation therapy plans using 4, 5, and 7 beams (4B, 5B, and 7B) were developed for each patient by direct machine parameter optimization (DMPO). All plans were evaluated with respect to dose volumes to irradiated targets and normal structures, with statistical comparisons made between 4B with 5B and 7B intensity-modulated radiation therapy plans. Differences among plans were evaluated using a two-tailed Friedman test at a statistical significance of p < 0.05. The maximum dose, average dose, and the conformity index (CI) of planning target volume 1 (PTV1) were similar for 3 plans for each case. No significant difference of coverage for planning target volume 1 and maximum dose for spinal cords were observed among 3 plans in present study (p > 0.05). The average V 5 , V 13 , V 20 , mean lung dose, and generalized equivalent uniform dose (gEUD) for the total lung were significantly lower in 4B-plans than those data in 5B-plans and 7B-plans (p < 0.01). Although the average V 30 for the total lung were significantly higher in 4B-plans than those in 5B-plans and 7B-plans (p < 0.05). In addition, when comparing with the 4B-plans, the conformity/heterogeneity index of the 5B- and 7B-plans were significantly superior (p < 0.05). The 4B-intensity-modulated radiation therapy plan has advantage to address the specialized problem of lung sparing to low- and intermediate-dose exposure in the thorax when dealing with relative long tumors extended inferiorly to the thoracic esophagus for upper esophageal carcinoma with the cost for less conformity. Studies are needed to compare the superiority of volumetric modulated arc therapy with intensity-modulated radiation therapy technique. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
NAIRAS aircraft radiation model development, dose climatology, and initial validation.
Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing
2013-10-01
[1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests that these single-point differences will be within 30% when a new deterministic pion-initiated electromagnetic cascade code is integrated into NAIRAS, an effort which is currently underway.
NAIRAS aircraft radiation model development, dose climatology, and initial validation
NASA Astrophysics Data System (ADS)
Mertens, Christopher J.; Meier, Matthias M.; Brown, Steven; Norman, Ryan B.; Xu, Xiaojing
2013-10-01
The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests that these single-point differences will be within 30% when a new deterministic pion-initiated electromagnetic cascade code is integrated into NAIRAS, an effort which is currently underway.
NAIRAS aircraft radiation model development, dose climatology, and initial validation
Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing
2013-01-01
[1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests that these single-point differences will be within 30% when a new deterministic pion-initiated electromagnetic cascade code is integrated into NAIRAS, an effort which is currently underway. PMID:26213513
Assessing exposure to granite countertops--Part 1: Radiation.
Myatt, Theodore A; Allen, Joseph G; Minegishi, Taeko; McCarthy, William B; Stewart, James H; Macintosh, David L; McCarthy, John F
2010-05-01
Humans are continuously exposed to low levels of ionizing radiation. Known sources include radon, soil, cosmic rays, medical treatment, food, and building products such as gypsum board and concrete. Little information exists about radiation emissions and associated doses from natural stone finish materials such as granite countertops in homes. To address this knowledge gap, gross radioactivity, gamma ray activity, and dose rate were determined for slabs of granite marketed for use as countertops. Annual effective radiation doses were estimated from measured dose rates and human activity patterns while accounting for the geometry of granite countertops in a model kitchen. Gross radioactivity, gamma activity, and dose rate varied significantly among and within slabs of granite with ranges for median levels at the slab surface of ND to 3000 cpm, ND to 98,000 cpm, and ND to 1.5E-4 mSv/h, respectively. The maximum activity concentrations of the (40)K, (232)Th, and (226)Ra series were 2715, 231, and 450 Bq/kg, respectively. The estimated annual radiation dose from spending 4 h/day in a hypothetical kitchen ranged from 0.005 to 0.18 mSv/a depending on the type of granite. In summary, our results show that the types of granite characterized in this study contain varying levels of radioactive isotopes and that their observed emissions are consistent with those reported in the scientific literature. We also conclude from our analyses that these emissions are likely to be a minor source of external radiation dose when used as countertop material within the home and present a negligible risk to human health.
Radiation-stability of smectite.
Sorieul, Stéphanie; Allard, Thierry; Wang, Lumin M; Grambin-Lapeyre, Caroline; Lian, Jie; Calas, Georges; Ewings, Rodney C
2008-11-15
The safety assessment of geological repositories for high-level nuclear waste and spent nuclear fuel requires an understanding of the response of materials to high temperatures and intense radiation fields. Clays, such as smectite, have been proposed as backfill material around waste packages, but their response to intense radiation from short-lived fission products and alpha decay of sorbed actinides remains poorly understood. Cumulative doses may amorphize clays and may alter their properties of sorption, swelling, or water retention. We describe the amorphization of smectites induced by electron and heavy ion irradiations to simulate ionizing radiation and alpha recoil nuclei, respectively. A new "bell-shaped" evolution of the amorphization dose with temperature has been determined. The maximum dose for amorphization occurs at about 300-400 degrees C, showing that temperature-induced dehydroxylation enhances amorphization. The exact shape of the bell-shaped curves depends on the interlayer cation. At ambient temperature, ionizing radiation and alpha-decay events do not show the same efficiency. The former results in amorphization at doses between 10(10)-10(11) Gy which are greater than the total radiation dose expected for radioactive waste over 10(6) years. In contrast, alpha-decay events amorphize clays at doses as low as 0.13-0.16 displacements per atom, i.e. doses consistent with nuclear waste accumulated over approximately 1000 yrs. However, the limited penetration of alpha particles and recoil nuclei, in the 100 nm - 20 microm range, will minimize damage. Clays will not be amorphized unless the waste package is breached and released actinides are heavily sorbed onto the clay overpack.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Francesca, D., E-mail: diego.di.francesca@univ-st-etienne.fr; Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, I-90123 Palermo; Girard, S.
2014-11-03
We report on an experimental investigation of the infrared Radio-Luminescence (iRL) emission of interstitial O{sub 2} molecules loaded in radiation hardened pure-silica-core and fluorine-doped silica-based optical fibers (OFs). The O{sub 2} loading treatment successfully dissolved high concentrations of oxygen molecules into the silica matrix. A sharp luminescence at 1272 nm was detected when 2.5 cm of the treated OFs were irradiated with 10 keV X-rays. This emission originates from the radiative decay of the first excited singlet state of the embedded O{sub 2} molecules. The dose, dose-rate, and temperature dependencies of the infrared emission are studied through in situ optical measurements. The resultsmore » show that the iRL is quite stable in doses of up to 1 MGy(SiO{sub 2}) and is linearly dependent on the dose-rate up to the maximum investigated dose-rate of ∼200 kGy(SiO{sub 2})/h. The temperature dependency of the iRL shows a decrease in efficiency above 200 °C, which is attributed to the non-radiative decay of the excited O{sub 2} molecules. The results obtained and the long-term stability of the O{sub 2}-loading treatment (no out-gassing effect) strongly suggest the applicability of these components to real-time remote dosimetry in environments characterized by high radiation doses and dose-rates.« less
NASA Astrophysics Data System (ADS)
Hassan, G. M.; Rabie, N.; Mustafa, K. A.; Abdel-Khalik, S. S.
2012-09-01
Radiation exposure and image quality in X-ray diagnostic radiology provide a clear understanding of the relationship between the radiation dose delivered to a patient and image quality in optimizing medical diagnostic radiology. Because a certain amount of radiation is unavoidably delivered to patients, this should be as low as reasonably achievable. Several X-ray diagnostic machines were used at different medical diagnostic centers in Egypt for studying the beam quality and the dose delivered to the patient. This article studies the factors affecting the beam quality, such as the kilo-volt peak (kVp), exposure time (mSc), tube current (mAs) and the absorbed dose in (μGy) for different examinations. The maximum absorbed dose measured per mAs was 594±239 and 12.5±3.7 μGy for the abdomen and the chest, respectively, while the absorbed dose at the elbow was 18±6 μGy, which was the minimum dose recorded. The compound and expanded uncertainties accompanying these measurements were 4±0.35% and 8±0.7%, respectively. The measurements were done through quality control tests as acceptance procedures.
Jeukens, Cécile R L P N; Lalji, Ulrich C; Meijer, Eduard; Bakija, Betina; Theunissen, Robin; Wildberger, Joachim E; Lobbes, Marc B I
2014-10-01
Contrast-enhanced spectral mammography (CESM) shows promising initial results but comes at the cost of increased dose as compared with full-field digital mammography (FFDM). We aimed to quantitatively assess the dose increase of CESM in comparison with FFDM. Radiation exposure-related data (such as kilovoltage, compressed breast thickness, glandularity, entrance skin air kerma (ESAK), and average glandular dose (AGD) were retrieved for 47 CESM and 715 FFDM patients. All examinations were performed on 1 mammography unit. Radiation dose values reported by the unit were validated by phantom measurements. Descriptive statistics of the patient data were generated using a statistical software package. Dose values reported by the mammography unit were in good qualitative agreement with those of phantom measurements. Mean ESAK was 10.5 mGy for a CESM exposure and 7.46 mGy for an FFDM exposure. Mean AGD for a CESM exposure was 2.80 mGy and 1.55 mGy for an FFDM exposure. Compared with our institutional FFDM, the AGD of a single CESM exposure is increased by 1.25 mGy (+81%), whereas ESAK is increased by 3.07 mGy (+41%). Dose values of both techniques meet the recommendations for maximum dose in mammography.
Simulating Space Radiation-Induced Breast Tumor Incidence Using Automata.
Heuskin, A C; Osseiran, A I; Tang, J; Costes, S V
2016-07-01
Estimating cancer risk from space radiation has been an ongoing challenge for decades primarily because most of the reported epidemiological data on radiation-induced risks are derived from studies of atomic bomb survivors who were exposed to an acute dose of gamma rays instead of chronic high-LET cosmic radiation. In this study, we introduce a formalism using cellular automata to model the long-term effects of ionizing radiation in human breast for different radiation qualities. We first validated and tuned parameters for an automata-based two-stage clonal expansion model simulating the age dependence of spontaneous breast cancer incidence in an unexposed U.S. We then tested the impact of radiation perturbation in the model by modifying parameters to reflect both targeted and nontargeted radiation effects. Targeted effects (TE) reflect the immediate impact of radiation on a cell's DNA with classic end points being gene mutations and cell death. They are well known and are directly derived from experimental data. In contrast, nontargeted effects (NTE) are persistent and affect both damaged and undamaged cells, are nonlinear with dose and are not well characterized in the literature. In this study, we introduced TE in our model and compared predictions against epidemiologic data of the atomic bomb survivor cohort. TE alone are not sufficient for inducing enough cancer. NTE independent of dose and lasting ∼100 days postirradiation need to be added to accurately predict dose dependence of breast cancer induced by gamma rays. Finally, by integrating experimental relative biological effectiveness (RBE) for TE and keeping NTE (i.e., radiation-induced genomic instability) constant with dose and LET, the model predicts that RBE for breast cancer induced by cosmic radiation would be maximum at 220 keV/μm. This approach lays the groundwork for further investigation into the impact of chronic low-dose exposure, inter-individual variation and more complex space radiation scenarios.
Process control and dosimetry in a multipurpose irradiation facility
NASA Astrophysics Data System (ADS)
Cabalfin, E. G.; Lanuza, L. G.; Solomon, H. M.
1999-08-01
Availability of the multipurpose irradiation facility at the Philippine Nuclear Research Institute has encouraged several local industries to use gamma radiation for sterilization or decontamination of various products. Prior to routine processing, dose distribution studies are undertaken for each product and product geometry. During routine irradiation, dosimeters are placed at the minimum and maximum dose positions of a process load.
21 CFR 579.40 - Ionizing radiation for the treatment of poultry feed and poultry feed ingredients.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IRRADIATION IN... (Mrad)); maximum dose 25 kGy (2.5 megarads Mrad). The absorbed dose of irradiation is to be based on... concentration by one log cycle (one decimal reduction). (2) Feeds treated by irradiation should be formulated to...
21 CFR 579.40 - Ionizing radiation for the treatment of poultry feed and poultry feed ingredients.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IRRADIATION IN... (Mrad)); maximum dose 25 kGy (2.5 megarads Mrad). The absorbed dose of irradiation is to be based on... concentration by one log cycle (one decimal reduction). (2) Feeds treated by irradiation should be formulated to...
21 CFR 579.40 - Ionizing radiation for the treatment of poultry feed and poultry feed ingredients.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IRRADIATION IN... (Mrad)); maximum dose 25 kGy (2.5 megarads Mrad). The absorbed dose of irradiation is to be based on... concentration by one log cycle (one decimal reduction). (2) Feeds treated by irradiation should be formulated to...
21 CFR 579.40 - Ionizing radiation for the treatment of poultry feed and poultry feed ingredients.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IRRADIATION IN... (Mrad)); maximum dose 25 kGy (2.5 megarads Mrad). The absorbed dose of irradiation is to be based on... concentration by one log cycle (one decimal reduction). (2) Feeds treated by irradiation should be formulated to...
Grigoryeva, Evgeniya S; Haylock, Richard G E; Pikulina, Maria V; Moseeva, Maria B
2015-01-01
Objective: Incidence and mortality from ischaemic heart disease (IHD) was studied in an extended cohort of 22,377 workers first employed at the Mayak Production Association during 1948–82 and followed up to the end of 2008. Methods: Relative risks and excess relative risks per unit dose (ERR/Gy) were calculated based on the maximum likelihood using Epicure software (Hirosoft International Corporation, Seattle, WA). Dose estimates used in analyses were provided by an updated “Mayak Worker Dosimetry System—2008”. Results: A significant increasing linear trend in IHD incidence with total dose from external γ-rays was observed after having adjusted for non-radiation factors and dose from internal radiation {ERR/Gy = 0.10 [95% confidence interval (CI): 0.04 to 0.17]}. The pure quadratic model provided a better fit of the data than did the linear one. No significant association of IHD mortality with total dose from external γ-rays after having adjusted for non-radiation factors and dose from internal alpha radiation was observed in the study cohort [ERR/Gy = 0.06 (95% CI: <0 to 0.15)]. A significant increasing linear trend was observed in IHD mortality with total absorbed dose from internal alpha radiation to the liver after having adjusted for non-radiation factors and dose from external γ-rays in both the whole cohort [ERR/Gy = 0.21 (95% CI: 0.01 to 0.58)] and the subcohort of workers exposed at alpha dose <1.00 Gy [ERR/Gy = 1.08 (95% CI: 0.34 to 2.15)]. No association of IHD incidence with total dose from internal alpha radiation to the liver was found in the whole cohort after having adjusted for non-radiation factors and external gamma dose [ERR/Gy = 0.02 (95% CI: not available to 0.10)]. Statistically significant dose effect was revealed in the subcohort of workers exposed to internal alpha radiation at dose to the liver <1.00 Gy [ERR/Gy = 0.44 (95% CI: 0.09 to 0.85)]. Conclusion: This study provides strong evidence of IHD incidence and mortality association with external γ-ray exposure and some evidence of IHD incidence and mortality association with internal alpha-radiation exposure. Advances in knowledge: It is the first time the validity of internal radiation dose estimates has been shown to affect the risk of IHD incidence. PMID:26224431
Critical Dose of Internal Organs Internal Exposure - 13471
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigoryan, G.; Amirjanyan, A.; Grigoryan, N.
2013-07-01
The health threat posed by radionuclides has stimulated increased efforts to developed characterization on the biological behavior of radionuclides in humans in all ages. In an effort motivated largely by the Chernobyl nuclear accident, the International Commission on Radiological Protection (ICRP) is assembling a set of age specific biokinetic models for environmentally important radioelements. Radioactive substances in the air, mainly through the respiratory system and digestive tract, is inside the body. Radioactive substances are unevenly distributed in various organs and tissues. Therefore, the degree of damage will depend not only on the dose of radiation have but also on themore » critical organ, which is the most accumulation of radioactive substances, which leads to the defeat of the entire human body. The main objective of radiation protection, to avoid exceeding the maximum permissible doses of external and internal exposure of a person to prevent the physical and genetic damage people. The maximum tolerated dose (MTD) of radiation is called a dose of radiation a person in uniform getting her for 50 years does not cause changes in the health of the exposed individual and his progeny. The following classification of critical organs, depending on the category of exposure on their degree of sensitivity to radiation: First group: the whole body, gonads and red bone marrow; Second group: muscle, fat, liver, kidney, spleen, gastrointestinal tract, lungs and lens of the eye; The third group: bone, thyroid and skin; Fourth group: the hands, forearms, feet. MTD exposure whole body, gonads and bone marrow represent the maximum exposures (5 rem per year) experienced by people in their normal activities. The purpose of this article is intended dose received from various internal organs of the radionuclides that may enter the body by inhalation, and gastrointestinal tract. The biokinetic model describes the time dependent distribution and excretion of different radionuclides that have intake into the organism or absorbed into blood. Transport of different radionuclides between compartments is assumed to follow first order kinetics provided the concentration in red blood cells (RBCs) stays below a nonlinear threshold concentration. When the concentration in RBCs exceeds that threshold, the transfer rate from diffusible plasma to RBCs is assumed to decrease as the concentration in RBCs increases. For the calculations used capabilities AMBER by using the traces of radionuclides in the body. Model for the transfer of radionuclides in the body has been built on the basis of existing models at AMBER for lead. (authors)« less
Real-time eye lens dose monitoring during cerebral angiography procedures.
Safari, M J; Wong, J H D; Kadir, K A A; Thorpe, N K; Cutajar, D L; Petasecca, M; Lerch, M L F; Rosenfeld, A B; Ng, K H
2016-01-01
To develop a real-time dose-monitoring system to measure the patient's eye lens dose during neuro-interventional procedures. Radiation dose received at left outer canthus (LOC) and left eyelid (LE) were measured using Metal-Oxide-Semiconductor Field-Effect Transistor dosimeters on 35 patients who underwent diagnostic or cerebral embolization procedures. The radiation dose received at the LOC region was significantly higher than the dose received by the LE. The maximum eye lens dose of 1492 mGy was measured at LOC region for an AVM case, followed by 907 mGy for an aneurysm case and 665 mGy for a diagnostic angiography procedure. Strong correlations (shown as R(2)) were observed between kerma-area-product and measured eye doses (LOC: 0.78, LE: 0.68). Lateral and frontal air-kerma showed strong correlations with measured dose at LOC (AKL: 0.93, AKF: 0.78) and a weak correlation with measured dose at LE. A moderate correlation was observed between fluoroscopic time and dose measured at LE and LOC regions. The MOSkin dose-monitoring system represents a new tool enabling real-time monitoring of eye lens dose during neuro-interventional procedures. This system can provide interventionalists with information needed to adjust the clinical procedure to control the patient's dose. Real-time patient dose monitoring helps interventionalists to monitor doses. Strong correlation was observed between kerma-area-product and measured eye doses. Radiation dose at left outer canthus was higher than at left eyelid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ming, X; Zhang, Y; Yale University, New Haven, CT, US
2014-06-01
Purpose: The cardiac toxicity for lung cancer patients, each treated with dynamic conformal arc therapy (DAT), intensity-modulated radiation therapy (IMRT), or volumetric modulated arc therapy (VMAT) is investigated. Methods: 120 lung patients were selected for this study: 25 treated with DAT, 50 with IMRT and 45 with VMAT. For comparison, all plans were generated in the same treatment planning system, normalized such that the 100% isodose lines encompassed 95% of planning target volume. The plan quality was evaluated in terms of homogeneity index (HI) and 95% conformity index (%95 CI) for target dose coverage and mean dose, maximum dose, V{submore » 30} Gy as well as V{sub 5} Gy for cardiac toxicity analysis. Results: When all the plans were analyzed, the VMAT plans offered the best target coverage with 95% CI = 0.992 and HI = 1.23. The DAT plans provided the best heart sparing with mean heart dose = 2.3Gy and maximum dose = 11.6Gy, as compared to 5.7 Gy and 31.1 Gy by IMRT as well as 4.6 Gy and 30.9 Gy by VMAT. The mean V30Gy and V5Gy of the heart in the DAT plans were up to 11.7% lower in comparison to the IMRT and VMAT plans. When the tumor volume was considered, the VMAT plans spared up to 70.9% more doses to the heart when the equivalent diameter of the tumor was larger than 4cm. Yet the maximum dose to the heart was reduced the most in the DAT plans with up to 139.8% less than that of the other two plans. Conclusion: Overall, the VMAT plans achieved the best target coverage among the three treatment modalities, and would spare the heart the most for the larger tumors. The DAT plans appeared advantageous in delivering the least maximum dose to the heart as compared to the IMRT and VMAT plans.« less
Mairs, William DA
2016-06-01
The International Commission on Radiological Protection (ICRP) has recommended a 20 mSv year(-1) dose limit for the lens of the eye, which has been adopted in the European Union Basic Safety Standards. Interventional radiologists (IRs) and interventional cardiologists (ICs) are likely to be affected by this. The effects of radiation in the lens are somewhat uncertain, and the ICRP explicitly recommend optimization. Occupational dose constraints are part of the optimization process and define a level of dose which ought to be achievable in a well-managed practice. This commentary calls on the professional bodies to review a need for national constraints to guide local decisions. Consideration is given to developing such constraints using maximum expected doses in high-workload facilities with good radiation protection practices and application of a factor allowing for attenuation by lead glasses (LG). Doses are based on a Public Health England survey of eye dose in the UK. Maximum expected doses for ICs are approximately 21 mSv year(-1), neglecting LG. However, the extent of IR exposure is not yet fully known, and further evidence is required before conclusions are drawn. A Health and Safety Laboratory review of LG established a conservative dose reduction factor of 3 for models available in 2012. Application of this factor provides a dose constraint of 7 mSv year(-1) to the eye for ICs. To achieve this constraint, those employers with the most exposed ICs will have to provide and ensure the correct use of a ceiling-suspended eye shield and LG.
Bayesian estimation of dose thresholds
NASA Technical Reports Server (NTRS)
Groer, P. G.; Carnes, B. A.
2003-01-01
An example is described of Bayesian estimation of radiation absorbed dose thresholds (subsequently simply referred to as dose thresholds) using a specific parametric model applied to a data set on mice exposed to 60Co gamma rays and fission neutrons. A Weibull based relative risk model with a dose threshold parameter was used to analyse, as an example, lung cancer mortality and determine the posterior density for the threshold dose after single exposures to 60Co gamma rays or fission neutrons from the JANUS reactor at Argonne National Laboratory. The data consisted of survival, censoring times and cause of death information for male B6CF1 unexposed and exposed mice. The 60Co gamma whole-body doses for the two exposed groups were 0.86 and 1.37 Gy. The neutron whole-body doses were 0.19 and 0.38 Gy. Marginal posterior densities for the dose thresholds for neutron and gamma radiation were calculated with numerical integration and found to have quite different shapes. The density of the threshold for 60Co is unimodal with a mode at about 0.50 Gy. The threshold density for fission neutrons declines monotonically from a maximum value at zero with increasing doses. The posterior densities for all other parameters were similar for the two radiation types.
The Advantages of Collimator Optimization for Intensity Modulated Radiation Therapy
NASA Astrophysics Data System (ADS)
Doozan, Brian
The goal of this study was to improve dosimetry for pelvic, lung, head and neck, and other cancers sites with aspherical planning target volumes (PTV) using a new algorithm for collimator optimization for intensity modulated radiation therapy (IMRT) that minimizes the x-jaw gap (CAX) and the area of the jaws (CAA) for each treatment field. A retroactive study on the effects of collimator optimization of 20 patients was performed by comparing metric results for new collimator optimization techniques in Eclipse version 11.0. Keeping all other parameters equal, multiple plans are created using four collimator techniques: CA 0, all fields have collimators set to 0°, CAE, using the Eclipse collimator optimization, CAA, minimizing the area of the jaws around the PTV, and CAX, minimizing the x-jaw gap. The minimum area and the minimum x-jaw angles are found by evaluating each field beam's eye view of the PTV with ImageJ and finding the desired parameters with a custom script. The evaluation of the plans included the monitor units (MU), the maximum dose of the plan, the maximum dose to organs at risk (OAR), the conformity index (CI) and the number of fields that are calculated to split. Compared to the CA0 plans, the monitor units decreased on average by 6% for the CAX method with a p-value of 0.01 from an ANOVA test. The average maximum dose remained within 1.1% difference between all four methods with the lowest given by CAX. The maximum dose to the most at risk organ was best spared by the CAA method, which decreased by 0.62% compared to the CA0. Minimizing the x-jaws significantly reduced the number of split fields from 61 to 37. In every metric tested the CAX optimization produced comparable or superior results compared to the other three techniques. For aspherical PTVs, CAX on average reduced the number of split fields, lowered the maximum dose, minimized the dose to the surrounding OAR, and decreased the monitor units. This is achieved while maintaining the same control of the PTV.
Gamma Radiation Reduced Toxicity of Azoxystrobin Tested on Artemia franciscana.
Dvorak, P; Zdarsky, M; Benova, K; Falis, M; Tomko, M
2016-06-01
Fungicide azoxystrobin toxicity was monitored by means of a 96-h biotest with Artemia franciscana nauplius stages after exposure to solutions with concentrations of 0.2, 0.4, 0.6 and 0.8 mg L(-1) irradiated with (60)Co gamma radiation with doses of 1, 2.5, 5 and 10 kGy. The effects of ionization radiation on azoxystrobin toxicity were mainly manifested by a statistically significant reduction of lethality after 72- and 96-h exposure. A maximum reduction of lethality of 72 % was achieved using doses of 1-5 kGy for an azoxystrobin initial concentration of 0.4 mg L(-1) and after 72 h of exposure. At a 96-h exposure, a difference of lethal effects reached up to 70 % for a dose of 10 kGy. The observed effect of gamma ionizing radiation on azoxystrobin toxicity suggest that this approach can be applied as an alternative for a reduction of azoxystrobin residua in food.
SU-E-T-609: Perturbation Effects of Pedicle Screws On Radiotherapy Dose Distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bar-Deroma, R; Borzov, E; Nevelsky, A
2015-06-15
Purpose: Radiation therapy in conjunction with surgical implant fixation is a common combined treatment in case of bone metastases. However, metal implants generally used in orthopedic implants perturb radiation dose distributions. Carbon-Fiber Reinforced (CFR) PEEK material has been recently introduced for production of intramedullary screws and plates. Gold powder can be added to the CFR-PEEK material in order to enhance visibility of the screws during intraoperative imaging procedures. In this work, we investigated the perturbation effects of the pedicle screws made of CFR-PEEK, CFR-PEEK with added gold powder (CFR-PEEK-AU) and Titanium (Ti) on radiotherapy dose distributions. Methods: Monte Carlo (MC)more » simulations were performed using the EGSnrc code package for 6MV beams with 10×10 fields at SSD=100cm. By means of MC simulations, dose distributions around titanium, CFR- PEEK and CFR-PEEK-AU screws (manufactured by Carbo-Fix Orthopedics LTD, Israel) placed in a water phantom were calculated. The screw axis was either parallel or perpendicular to the beam axis. Dose perturbation (relative to dose in homogeneous water phantom) was assessed. Results: Maximum overdose due to backscatter was 10% for the Ti screws, 5% for the CFR-PEEK-AU screws and effectively zero for the CFR-PEEK screws. Maximum underdose due to attenuation was 25% for the Ti screws, 15% for the CFR-PEEK-AU screws and 5% for the CFR-PEEK screws. Conclusion: Titanium screws introduce the largest distortion on the radiation dose distribution. The gold powder added to the CFR-PEEK material improves visibility at the cost of increased dose perturbation. CFR-PEEK screws caused minimal alteration on the dose distribution. This can decrease possible over and underdose of adjacent tissue and thus favorably influence treatment efficiency. The use of such implants has potential clinical advantage in the treatment of neoplastic bone disease.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deville, Curtiland, E-mail: deville@uphs.upenn.ed; Both, Stefan; Hwang, Wei-Ting
2010-11-01
Purpose: To assess whether whole-pelvis (WP) intensity-modulated radiation therapy (IMRT) is associated with increased toxicity compared with prostate-only (PO) IMRT. Methods and Materials: We retrospectively analyzed all patients with prostate cancer undergoing definitive IMRT to 79.2 Gy with concurrent androgen deprivation at our institution from November 2005 to May 2007 with a minimum follow-up of 12 months. Thirty patients received initial WP IMRT to 45 Gy in 1.8-Gy fractions, and thirty patients received PO IMRT. Study patients underwent computed tomography simulation and treatment planning by use of predefined dose constraints. Bladder and rectal dose-volume histograms, maximum genitourinary (GU) and gastrointestinalmore » (GI) Radiation Therapy Oncology Group toxicity grade, and late Grade 2 or greater toxicity-free survival curves were compared between the two groups by use of the Student t test, Fisher exact test, and Kaplan-Meier curve, respectively. Results: Bladder minimum dose, mean dose, median dose, volume receiving 5 Gy, volume receiving 20 Gy, volume receiving 40 Gy, and volume receiving 45 Gy and rectal minimum dose, median dose, and volume receiving 20 Gy were significantly increased in the WP group (all p values < 0.01). Maximum acute GI toxicity was limited to Grade 2 and was significantly increased in the WP group at 50% vs. 13% the PO group (p = 0.006). With a median follow-up of 24 months (range, 12-35 months), there was no difference in late GI toxicity (p = 0.884) or in acute or late GU toxicity. Conclusions: Despite dosimetric differences in the volume of bowel, bladder, and rectum irradiated in the low-dose and median-dose regions, WP IMRT results only in a clinically significant increase in acute GI toxicity, in comparison to PO IMRT, with no difference in GU or late GI toxicity.« less
Takeda, Atsuya; Oku, Yohei; Sanuki, Naoko; Eriguchi, Takahisa; Aoki, Yousuke; Enomoto, Tatsuji; Kaneko, Takeshi; Nishimura, Shuichi; Kunieda, Etsuo
2014-09-01
We evaluated toxicity and outcomes for patients with peripheral lung tumors treated with stereotactic body radiation therapy (SBRT) in a dose-escalation and dose-convergence study. A total of 15 patients were enrolled. SBRT was performed with 60 Gy in 5 fractions (fr.) prescribed to the 60% isodose line of maximum dose, which was 100 Gy in 5 fr., covering the planning target volume (PTV) surface (60 Gy/5 fr. - (60%-isodose)) using dynamic conformal multiple arc therapy (DCMAT). The primary endpoint was radiation pneumonitis (RP) ≥ Grade 2 within 6 months. Toxicities were graded according to the Common Terminology Criteria for Adverse Events, version 4.0. Using dose-volumetric analysis, the trial regimen of 60 Gy/5 fr. - (60%-isodose) was compared with our institutional conventional regimen of 50 Gy/5 fr. - (80%-isodose). The enrolled consecutive patients had either a solitary peripheral tumor or two ipsilateral tumors. The median follow-up duration was 22.0 (12.0-27.0) months. After 6 months post-SBRT, the respective number of RP Grade 0, 1 and 2 cases was 5, 9 and 1. In the Grade 2 RP patient, the image showed an organizing pneumonia pattern at 6.0 months post-SBRT. No other toxicity was found. At last follow-up, there was no evidence of recurrence of the treated tumors. The target volumes of 60 Gy/ 5 fr. - (60%-isodose) were irradiated with a significantly higher dose than those of 50 Gy/5 fr. - (80%-isodose), while the former dosimetric parameters of normal lung were almost equivalent to the latter. SBRT with 60 Gy/5 fr. - (60%-isodose) using DCMAT allowed the delivery of very high and convergent doses to peripheral lung tumors with feasibility in the acute and subacute phases. Further follow-up is required to assess for late toxicity. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Higher energy: is it necessary, is it worth the cost for radiation oncology?
Das, I J; Kase, K R
1992-01-01
The physical characteristics of the interactions of megavoltage photons and electrons with matter provide distinct advantages, relative to low-energy (orthovoltage) x rays, that lead to better radiation dose distributions in patients. Use of these high-energy radiations has resulted in better patient care, which has been reflected in improved radiation treatment outcome in recent years. But, as the desire for higher energy radiation beams increases, it becomes important to determine whether the physical characteristics that make megavoltage beams beneficial continue to provide a net advantage. It is demonstrated that, in fact, there is an energy range from 4 to 15 MV for photons and 4 to 20 MeV for electrons that is optimally suited for the treatment of cancer in humans. Radiation beams that exceed these maximum energies were found to add no advantage. This is because the costs (price of unit, installation, maintenance, shielding for neutron and photons) are not justified by either improved physical characteristics of the radiation (penetration, skin sparing, dose distribution) or treatment outcome. In fact, for photon beams some physical characteristics result in less desirable dose distributions, less accurate dosimetry, and increased safety problems as the energy increases for example, increasingly diffuse beam edges, loss of electron equilibrium, uncertainty in dose perturbations at interfaces, increased neutron contamination, and potential for higher personnel dose. The special features that make electron beams useful at lower energies, for example, skin sparing and small penetration, are lost at high energies. These physical factors are analyzed together with the economic factors related to radiation therapy patient care using megavoltage beams.
Radiation exposure to the eye lens of orthopaedic surgeons during various orthopaedic procedures.
Romanova, K; Vassileva, J; Alyakov, M
2015-07-01
The aim of the present study was to assess the radiation dose to the eye lens of orthopaedic surgeons during various orthopaedic procedures and to make efforts to ensure that radiation protection is optimised. The study was performed for Fractura femoris and Fractura cruris procedures performed in orthopaedic operating theatres, as well as for fractures of wrist, ankle and hand/shoulder performed in the emergency trauma room. The highest mean value of the eye lens dose of 47.2 μSv and higher mean fluoroscopy time of 3 min, as well as the corresponding highest maximum values of 77.1 μSv and 5.0 min were observed for the Fractura femoris procedure performed with the Biplanar 500e fluoroscopy systems. At a normal workload, the estimated mean annual dose values do not exceed the annual occupational dose limit for the lens of eye, but at a heavy workload in the department, this dose limit could be achieved or exceeded. The use of protective lead glasses is recommended as they could reduce the radiation exposure of the lens of the eye. The phantom measurements demonstrated that the use of half-dose mode could additionally reduce dose to the operator's eye lens. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fury, Matthew G.; Department of Medicine, Weill Cornell Medical College, New York, New York; Lee, Nancy Y.
Purpose: Elevated expression of eukaryotic protein synthesis initiation factor 4E (eIF4E) in histologically cancer-free margins of resected head and neck squamous cell carcinomas (HNSCCs) is mediated by mammalian target of rapamycin complex 1 (mTORC1) and has been associated with increased risk of disease recurrence. Preclinically, inhibition of mTORC1 with everolimus sensitizes cancer cells to cisplatin and radiation. Methods and Materials: This was single-institution phase 1 study to establish the maximum tolerated dose of daily everolimus given with fixed dose cisplatin (30 mg/m{sup 2} weekly × 6) and concurrent intensity modulated radiation therapy for patients with locally and/or regionally advanced head-and-neckmore » cancer. The study had a standard 3 + 3 dose-escalation design. Results: Tumor primary sites were oral cavity (4), salivary gland (4), oropharynx (2), nasopharynx (1), scalp (1), and neck node with occult primary (1). In 4 of 4 cases in which resected HNSCC surgical pathology specimens were available for immunohistochemistry, elevated expression of eIF4E was observed in the cancer-free margins. The most common grade ≥3 treatment-related adverse event was lymphopenia (92%), and dose-limiting toxicities (DLTs) were mucositis (n=2) and failure to thrive (n=1). With a median follow up of 19.4 months, 2 patients have experienced recurrent disease. The maximum tolerated dose was everolimus 5 mg/day. Conclusions: Head-and-neck cancer patients tolerated everolimus at therapeutic doses (5 mg/day) given with weekly cisplatin and intensity modulated radiation therapy. The regimen merits further evaluation, especially among patients who are status post resection of HNSCCs that harbor mTORC1-mediated activation of eIF4E in histologically negative surgical margins.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Zhi-Feng, E-mail: wuzhifeng2@126.com, E-mail:
Purpose: Lower radiation tolerance of the whole liver hinders dose escalations of stereotactic body radiation therapy (SBRT) in hepatocellular carcinoma (HCC) treatment. This study was conducted to define the exact doses that result in radiation-induced liver disease (RILD) as well as to determine dose constraints for the critical organs at risk (OARs) in mice; these parameters are still undefined in HCC SBRT. Methods: This study consisted of two phases. In the primary phase, mice treated with helical tomotherapy-based SBRT were stratified according to escalating radiation doses to the livers. The pathological differences, signs [such as mouse performance status (MPS)], andmore » serum aspartate aminotransferase (AST)/alanine aminotransferase (ALT)/albumin levels were observed. Radiation-induced disease severities of the OARs were scored using systematic evaluation standards. In the validation phase in humans, 13 patients with HCC who had undergone radiotherapy before hepatectomy were enrolled to validate RILD pathological changes in a mouse study. Results: The evaluation criteria of the mouse liver radiotherapy-related signs were as follows: MPS ≥ 2.0 ± 0.52, AST/ALT ≥ 589.2 ± 118.5/137.4 ± 15.3 U/L, serum albumin ≤ 16.8 ± 2.29 g/L. The preliminary dose constraints of the OARs were also obtained, such as those for the liver (average dose ≤ 26.36 ± 1.71 Gy) and gastrointestinal tract (maximum dose ≤ 22.63 Gy). Mouse RILD models were able to be developed when the livers were irradiated with average doses of ≥31.76 ± 1.94 Gy (single fraction). RILD pathological changes in mice have also been validated in HCC patients. Conclusions: Mouse RILD models could be developed with SBRT based on the dose constraints for the OARs and evaluation criteria of mouse liver radiotherapy-related signs, and the authors’ results favor the study of further approaches to treat HCC with SBRT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amini, Arya; Westerly, David C.; Waxweiler, Timothy V.
Targeted focal therapy strategies for treating single-lobe prostate cancer are under investigation. In this planning study, we investigate the feasibility of treating a portion of the prostate to full-dose external beam radiation with reduced dose to the opposite lobe, compared with full-dose radiation delivered to the entire gland using hypofractionated radiation. For 10 consecutive patients with low- to intermediate-risk prostate cancer, 2 hypofractionated, single-arc volumetric-modulated arc therapy (VMAT) plans were designed. The first plan (standard hypofractionation regimen [STD]) included the entire prostate gland, treated to 70 Gy delivered in 28 fractions. The second dose painting plan (DP) encompassed the involvedmore » lobe treated to 70 Gy delivered in 28 fractions, whereas the opposing, uninvolved lobe received 50.4 Gy in 28 fractions. Mean dose to the opposing neurovascular bundle (NVB) was considerably lower for DP vs STD, with a mean dose of 53.9 vs 72.3 Gy (p < 0.001). Mean penile bulb dose was 18.6 Gy for DP vs 19.2 Gy for STD (p = 0.880). Mean rectal dose was 21.0 Gy for DP vs 22.8 Gy for STD (p = 0.356). Rectum V{sub 70} (the volume receiving ≥70 Gy) was 2.01% for DP vs 2.74% for STD (p = 0.328). Bladder V{sub 70} was 1.69% for DP vs 2.78% for STD (p = 0.232). Planning target volume (PTV) maximum dose points were 76.5 and 76.3 Gy for DP and STD, respectively (p = 0.760). This study demonstrates the feasibility of using VMAT for partial-lobe prostate radiation in patients with prostate cancer involving 1 lobe. Partial-lobe prostate plans appeared to spare adjacent critical structures including the opposite NVB.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C; Yin, Y
2015-06-15
Purpose: A method using four-dimensional(4D) PET/CT in design of radiation treatment planning was proposed and the target volume and radiation dose distribution changes relative to standard three-dimensional (3D) PET/CT were examined. Methods: A target deformable registration method was used by which the whole patient’s respiration process was considered and the effect of respiration motion was minimized when designing radiotherapy planning. The gross tumor volume of a non-small-cell lung cancer was contoured on the 4D FDG-PET/CT and 3D PET/CT scans by use of two different techniques: manual contouring by an experienced radiation oncologist using a predetermined protocol; another technique using amore » constant threshold of standardized uptake value (SUV) greater than 2.5. The target volume and radiotherapy dose distribution between VOL3D and VOL4D were analyzed. Results: For all phases, the average automatic and manually GTV volume was 18.61 cm3 (range, 16.39–22.03 cm3) and 31.29 cm3 (range, 30.11–35.55 cm3), respectively. The automatic and manually volume of merged IGTV were 27.82 cm3 and 49.37 cm3, respectively. For the manual contour, compared to 3D plan the mean dose for the left, right, and total lung of 4D plan have an average decrease 21.55%, 15.17% and 15.86%, respectively. The maximum dose of spinal cord has an average decrease 2.35%. For the automatic contour, the mean dose for the left, right, and total lung have an average decrease 23.48%, 16.84% and 17.44%, respectively. The maximum dose of spinal cord has an average decrease 1.68%. Conclusion: In comparison to 3D PET/CT, 4D PET/CT may better define the extent of moving tumors and reduce the contouring tumor volume thereby optimize radiation treatment planning for lung tumors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrotriya, D., E-mail: shrotriya2007@gmail.com; Srivastava, R. N. L.; Kumar, S.
The accurate dose delivery to the clinical target volume in radiotherapy can be affected by various pelvic tissues heterogeneities. An in-house heterogeneous woman pelvic phantom was designed and used to verify the consistency and computational capability of treatment planning system of radiation dose delivery in the treatment of cancer cervix. Oncentra 3D-TPS with collapsed cone convolution (CCC) dose calculation algorithm was used to generate AP/PA and box field technique plan. the radiation dose was delivered by Primus Linac (Siemens make) employing high energy 15 MV photon beam by isocenter technique. A PTW make, 0.125cc ionization chamber was used for directmore » measurements at various reference points in cervix, bladder and rectum. The study revealed that maximum variation between computed and measured dose at cervix reference point was 1% in both the techniques and 3% and 4% variation in AP/PA field and 5% and 4.5% in box technique at bladder and rectum points respectively.« less
Comparison of codes assessing galactic cosmic radiation exposure of aircraft crew.
Bottollier-Depois, J F; Beck, P; Bennett, B; Bennett, L; Bütikofer, R; Clairand, I; Desorgher, L; Dyer, C; Felsberger, E; Flückiger, E; Hands, A; Kindl, P; Latocha, M; Lewis, B; Leuthold, G; Maczka, T; Mares, V; McCall, M J; O'Brien, K; Rollet, S; Rühm, W; Wissmann, F
2009-10-01
The assessment of the exposure to cosmic radiation onboard aircraft is one of the preoccupations of bodies responsible for radiation protection. Cosmic particle flux is significantly higher onboard aircraft than at ground level and its intensity depends on the solar activity. The dose is usually estimated using codes validated by the experimental data. In this paper, a comparison of various codes is presented, some of them are used routinely, to assess the dose received by the aircraft crew caused by the galactic cosmic radiation. Results are provided for periods close to solar maximum and minimum and for selected flights covering major commercial routes in the world. The overall agreement between the codes, particularly for those routinely used for aircraft crew dosimetry, was better than +/-20 % from the median in all but two cases. The agreement within the codes is considered to be fully satisfactory for radiation protection purposes.
NASA Technical Reports Server (NTRS)
Buehler, Martin G. (Inventor); Blaes, Brent R. (Inventor)
1994-01-01
A p-MOSFET total dose dosimeter where the gate voltage is proportional to the incident radiation dose. It is configured in an n-WELL of a p-BODY substrate. It is operated in the saturation region which is ensured by connecting the gate to the drain. The n-well is connected to zero bias. Current flow from source to drain, rather than from peripheral leakage, is ensured by configuring the device as an edgeless MOSFET where the source completely surrounds the drain. The drain junction is the only junction not connected to zero bias. The MOSFET is connected as part of the feedback loop of an operational amplifier. The operational amplifier holds the drain current fixed at a level which minimizes temperature dependence and also fixes the drain voltage. The sensitivity to radiation is made maximum by operating the MOSFET in the OFF state during radiation soak.
De-contamination of pesticide residues in food by ionizing radiation
NASA Astrophysics Data System (ADS)
Basfar, Ahmed A.; Mohamed, Khaled A.; Al-Saqer, Omar A.
2012-04-01
The role of gamma irradiation on removal of pesticides in aqueous solutions or in vegetables and fruits was investigated. Radiation - induced decontamination of pesticides is generally greater in aqueous solutions than in selected vegetables and fruits. Residues of malathion (0.5 ppm in potatoes, 8 ppm in onions and dates), pirimiphos-methyl (1 ppm in onions and grapes) and cypermethrin (0.05 ppm in potatoes and 0.1 ppm in onions) were not reduced to below maximum residue limits (MRLs) for irradiation doses up to 1 kGy. The same trend was observed when irradiation was performed for grapes fortified with malathion (8 ppm) and cypermethrin (2 ppm) for absorbed doses up to 2 kGy. Ionizing radiation reduced the residues of pirimiphos-methyl (0.05 ppm in potatoes at1 kGy, 1 ppm in grapes at 2 kGy and 0.1 ppm in dates at1 kGy), malathion (8 ppm in grapes at 7 kGy) and cypermethrin (2 ppm in grapes at 7 kGy) to below maximum residue limits (MRLs).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelsey, Chris R., E-mail: christopher.kelsey@duke.edu; Das, Shiva; Gu, Lin
2015-12-01
Purpose: To determine the maximum tolerated dose of radiation therapy (RT) given in an accelerated fashion with concurrent chemotherapy using intensity modulated RT. Methods and Materials: Patients with locally advanced lung cancer (non-small cell and small cell) with good performance status and minimal weight loss received concurrent cisplatin and etoposide with RT. Intensity modulated RT with daily image guidance was used to facilitate esophageal avoidance and delivered using 6 fractions per week (twice daily on Fridays with a 6-hour interval). The dose was escalated from 58 Gy to a planned maximum dose of 74 Gy in 4 Gy increments in a standardmore » 3 + 3 trial design. Dose-limiting toxicity (DLT) was defined as acute grade 3-5 nonhematologic toxicity attributed to RT. Results: A total of 24 patients were enrolled, filling all dose cohorts, all completing RT and chemotherapy as prescribed. Dose-limiting toxicity occurred in 1 patient at 58 Gy (grade 3 esophagitis) and 1 patient at 70 Gy (grade 3 esophageal fistula). Both patients with DLTs had large tumors (12 cm and 10 cm, respectively) adjacent to the esophagus. Three additional patients were enrolled at both dose cohorts without further DLT. In the final 74-Gy cohort, no DLTs were observed (0 of 6). Conclusions: Dose escalation and acceleration to 74 Gy with intensity modulated RT and concurrent chemotherapy was tolerable, with a low rate of grade ≥3 acute esophageal reactions.« less
Results from the first five years of radiation exposure monitoring aboard the ISS
NASA Astrophysics Data System (ADS)
Golightly, M.; Semones, E.; Shelfer, T.; Johnson, S.; Zapp, N.; Weyland, M.
NASA uses a variety of radiation monitoring devices aboard the International Space Station as part of its space flight radiation health program. This operational monitoring system consists of passive dosimeters, internal and external charged particle telescopes, and a tissue equivalent proportional counter (TEPC). Sixteen passive dosimeters, each consisting of TLD-100, TLD-300, TLD-600, and TLD-700 chips in a small acrylic holder, are placed throughout the habitable volume of the ISS. The TEPC and internal charged particle telescopes are portable and can be relocated to multiple locations in the Lab Module or Service Module. The external charged particle telescopes are mounted to a fixed boom attached to the starboard truss. Passive dosimeters were used in eleven monitoring periods over the period 20 May 1999 to 04 May 2003. Over this period exposure rates from TLD-100 measurements ranged from 0.120-0.300 mGy/d. Exposure rates inside the habitable volume are non-uniform: exposures vary by a factor of ˜ 1.7 from minimum to maximum, with the greatest non-uniformity occurring in the Lab Module. Highest daily exposure rates are near the window in the Lab Module, inside the Joint Airlock, and the sleep stations inside the Service Module, while the lowest rates occur inside the polyethylene-lined Temporary Sleep Station in the Lab Module, adjacent to the port ``arm'' of Node 1, and the aft end of the Service Module. The minimum exposure rates as measured by the passive dosimeters occurred in the spring of 2002, very close to the solar F10.7 emission maximum (Feb 2002), and two years after the sunspot maximum (Apr 2000). Exposure rates have since gradually increased as the sun's activity transitions towards solar minimum conditions. Since 01 Jun 2002, dose rates measured by the IV-CPDS, estimated from the count rate in first detector of the telescope's stack, ranged from ˜ 0.170-0.390 mGy/d. The maximum measured dose rate occurred 28 Oct 2003 during the ``Halloween'' space weather event. Interestingly, the minimum dose rate occurred 31 Oct 2003, near the end of the same remarkable space weather event, when the Earth was experiencing a significant Forbush decrease. The average IV-CPDS-measured dose rate increased from 0.194 to 0.234 mGy/d since 01 Jun 2002--an increase of ˜ 21% and a further indication that the low-Earth radiation environment is transitioning from solar maximum conditions towards solar minimum.
Assessment of human exposure doses received by activation of medical linear accelerator components
NASA Astrophysics Data System (ADS)
Lee, D.-Y.; Kim, J.-H.; Park, E.-T.
2017-08-01
This study analyzes the radiation exposure dose that an operator can receive from radioactive components during maintenance or repair of a linear accelerator. This study further aims to evaluate radiological safety. Simulations are performed on 10 MV and 15 MV photon beams, which are the most frequently used high-energy beams in clinics. The simulation analyzes components in order of activity and the human exposure dose based on the amount of neutrons received. As a result, the neutron dose, radiation dose, and human exposure dose are ranked in order of target, primary collimator, flattening filter, multi-leaf collimator, and secondary collimator, where the minimum dose is 9.34E-07 mSv/h and the maximum is 1.71E-02 mSv/h. When applying the general dose limit (radiation worker 20 mSv/year, pubic 1 mSv/year) in accordance with the Nuclear Safety Act, all components of a linear accelerator are evaluated as below the threshold value. Therefore, the results suggest that there is no serious safety issue for operators in maintaining and repairing a linear accelerator. Nevertheless, if an operator recognizes an exposure from the components of a linear accelerator during operation and considers the operating time and shielding against external exposure, exposure of the operator is expected to be minimized.
NASA Astrophysics Data System (ADS)
Wu, Jay; Shih, Cheng-Ting; Ho, Chang-hung; Liu, Yan-Lin; Chang, Yuan-Jen; Min Chao, Max; Hsu, Jui-Ting
2014-11-01
Dental cone beam computed tomography (CBCT) provides high-resolution tomographic images and has been gradually used in clinical practice. Thus, it is important to examine the amount of radiation dose resulting from dental CBCT examinations. In this study, we developed an in-house anthropomorphic adult head phantom to evaluate the level of effective dose. The anthropomorphic phantom was made of acrylic and filled with plaster to replace the bony tissue. The contour of the head was extracted from a set of adult computed tomography (CT) images. Different combinations of the scanning parameters of CBCT were applied. Thermoluminescent dosimeters (TLDs) were used to measure the absorbed doses at 19 locations in the head and neck regions. The effective doses measured using the proposed phantom at 65, 75, and 85 kVp in the D-mode were 72.23, 100.31, and 134.29 μSv, respectively. In the I-mode, the effective doses were 108.24, 190.99, and 246.48 μSv, respectively. The maximum percent error between the doses measured by the proposed phantom and the Rando phantom was l4.90%. Therefore, the proposed anthropomorphic adult head phantom is applicable for assessing the radiation dose resulting from clinical dental CBCT.
Frasch, Gerhard; Kammerer, Lothar; Karofsky, Ralf; Schlosser, Andrea; Stegemann, Ralf
2014-12-01
The exposure of German aircraft crews to cosmic radiation varies both with solar activity and operational factors of airline business. Data come from the German central dose registry and cover monthly exposures of up to 37,000 German aircraft crewmembers that were under official monitoring. During the years 2004 to 2009 of solar cycle 23 (i.e., in the decreasing phase of solar activity), the annual doses of German aircraft crews increased by an average of 20%. Decreasing solar activity allows more galactic radiation to reach the atmosphere, increasing high-altitude doses. The rise results mainly from the less effective protection from the solar wind but also from airline business factors. Both cockpit and cabin personnel differ in age-dependent professional and social status. This status determines substantially the annual effective dose: younger cabin personnel and the elder pilots generally receive higher annual doses than their counterparts. They also receive larger increases in their annual dose when the solar activity decreases. The doses under this combined influence of solar activity and airline business factors result in a maximum of exposure for German aircrews for this solar cycle. With the increasing solar activity of the current solar cycle 24, the doses are expected to decrease again.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farfan, E.; Jannik, T.
2011-10-01
Radiation exposure of the biota in the shoreline area of the Chernobyl Nuclear Power Plant Cooling Pond was assessed to evaluate radiological consequences from the decommissioning of the Cooling Pond. The article addresses studies of radioactive contamination of the terrestrial faunal complex and radionuclide concentration ratios in bodies of small birds, small mammals, amphibians, and reptiles living in the area. The data were used to calculate doses to biota using the ERICA Tool software. Doses from {sup 90}Sr and {sup 137}Cs were calculated using the default parameters of the ERICA Tool and were shown to be consistent with biota dosesmore » calculated from the field data. However, the ERICA dose calculations for plutonium isotopes were much higher (2-5 times for small mammals and 10-14 times for birds) than the doses calculated using the experimental data. Currently, the total doses for the terrestrial biota do not exceed maximum recommended levels. However, if the Cooling Pond is allowed to drawdown naturally and the contaminants of the bottom sediments are exposed and enter the biological cycle, the calculated doses to biota may exceed the maximum recommended values. The study is important in establishing the current exposure conditions such that a baseline exists from which changes can be documented following the lowering of the reservoir water. Additionally, the study provided useful radioecological data on biota concentration ratios for some species that are poorly represented in the literature.« less
NASA Astrophysics Data System (ADS)
Koshiishi, H.; Kimoto, Y.; Matsumoto, H.; Goka, T.
The Tsubasa satellite developed by the Japan Aerospace Exploration Agency was launched in Feb 2002 into Geo-stationary Transfer Orbit GTO Perigee 500km Apogee 36000km and had been operated well until Sep 2003 The objective of this satellite was to verify the function of commercial parts and new technologies of bus-system components in space Thus the on-board experiments were conducted in the more severe radiation environment of GTO rather than in Geo-stationary Earth Orbit GEO or Low Earth Orbit LEO The Space Environment Data Acquisition equipment SEDA on board the Tsubasa satellite had the Single-event Upset Monitor SUM and the DOSimeter DOS to evaluate influences on electronic devices caused by radiation environment that was also measured by the particle detectors of the SEDA the Standard DOse Monitor SDOM for measurements of light particles and the Heavy Ion Telescope HIT for measurements of heavy ions The SUM monitored single-event upsets and single-event latch-ups occurred in the test sample of two 64-Mbit DRAMs The DOS measured accumulated radiation dose at fifty-six locations in the body of the Tsubasa satellite Using the data obtained by these instruments single-event and total-dose effects in GTO during solar-activity maximum period especially their rapid changes due to solar flares and CMEs in the region from L 1 1 through L 11 is discussed in this paper
Measurements of the neutron spectrum on the Martian surface with MSL/RAD
NASA Astrophysics Data System (ADS)
Köhler, J.; Zeitlin, C.; Ehresmann, B.; Wimmer-Schweingruber, R. F.; Hassler, D. M.; Reitz, G.; Brinza, D. E.; Weigle, G.; Appel, J.; Böttcher, S.; Böhm, E.; Burmeister, S.; Guo, J.; Martin, C.; Posner, A.; Rafkin, S.; Kortmann, O.
2014-03-01
The Radiation Assessment Detector (RAD), onboard the Mars Science Laboratory (MSL) rover Curiosity, measures the energetic charged and neutral particles and the radiation dose rate on the surface of Mars. An important factor for determining the biological impact of the Martian surface radiation is the specific contribution of neutrons, with their deeper penetration depth and ensuing high biological effectiveness. This is very difficult to measure quantitatively, resulting in considerable uncertainties in the total radiation dose. In contrast to charged particles, neutral particles (neutrons and gamma rays) are generally only measured indirectly. Measured spectra are a complex convolution of the incident particle spectrum with the detector response function and must be unfolded. We apply an inversion method (based on a maximum likelihood estimation) to calculate the neutron and gamma spectra from the RAD neutral particle measurements. Here we show the first spectra on the surface of Mars and compare them to theoretical predictions. The measured neutron spectrum (ranging from 8 to 740 MeV) translates into a radiation dose rate of 14±4μGy/d and a dose equivalent rate of 61±15μSv/d. This corresponds to 7% of the measured total surface dose rate and 10% of the biologically relevant surface dose equivalent rate on Mars. Measuring the Martian neutron and gamma spectra is an essential step for determining the mutagenic influences to past or present life at or beneath the Martian surface as well as the radiation hazard for future human exploration, including the shielding design of a potential habitat.
Annual environmental monitoring report of the Lawrence Berkeley Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schleimer, G.E.
1983-04-01
In order to establish whether LBL research activities produces any impact on the population surrounding the Laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1982, as in the previous several years, doses attributable to LBL radiological operations were a small fraction of the relevant radiation protection guidelines (RPG). The maximum perimeter dose equivalent was less than or equal to 24.0 mrem (the 1982 dose equivalent measured at the Building 88 monitoring station B-13A, about 5% of the RPG). The total population dose equivalent attributable to LBL operations duringmore » 1982 was less than or equal to 16 man-rem, about 0.002% of the RPG of 170 mrem/person to a suitable sample of the population.« less
Effect of polyfunctional monomers on properties of radiation crosslinked EPDM/waste tire dust blend
NASA Astrophysics Data System (ADS)
Yasin, Tariq; Khan, Sajid; Nho, Young-Chang; Ahmad, Rashid
2012-04-01
In this study, waste tire dust is recycled as filler and blended with ethylene-propylene diene monomer (EPDM) rubber. Three different polyfuntional monomers (PFMs) are incorporated into the standard formulation and irradiated under electron beam at different doses up to maximum of 100 kGy. The combined effects of PFMs and absorbed dose on the physical properties of EPDM/WTD blend are measured and compared with sulfur crosslinked formulation. Thermogravimetric analysis showed that radiation developed better crosslinked network with higher thermal stability than sulfur crosslinked structure. The physical properties of radiation crosslinked blend are similar to the sulfur crosslinked blend. The absence of toxic chemicals/additives in radiation crosslinked blends made them an ideal candidate for many applications such as roof sealing sheets, water retention pond, playground mat, sealing profile for windows etc.
Historical Study of Radiation Exposures and the Incidence of Cataracts in Astronauts
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Manuel, F. K.; Iszard, G.; Feiveson, A.; Peterson, L. E.; Hardy, D.; Marak, L.; Tung, W.; Wear, M.; Chylack, L. T., Jr.
2004-01-01
For over 35 years, astronauts in low Earth orbit or on missions to the moon have been exposed to space radiation comprised of high-energy protons, heavy ions, and secondary neutrons. We reviewed the radiation exposures received by astronauts in space and on Earth, and presented results from the first epidemiological study of cataract incidence in the astronauts. Our data suggested an increased risk for cataracts from space radiation exposures. Using parametric survival analysis and the maximum likelihood method, we estimated the dose-response and age distribution for cataract incidence in astronauts by space radiation. Considering the high-LET dose contributions on specific space missions as well as data from animal studies with neutrons and heavy ions, suggested a linear response with no dose-threshold for cataracts. However, there are unanswered questions related to the importance and the definition of clinically significant cataracts commonly used in radiation protection, especially in light of epidemiological data suggesting that the probability that sub-clinical cataracts will progress is highly dependent on the age at which cataracts appear. We briefly describe a new study that will address the measurement of cataract progression-rates in astronauts and a ground-based comparison group.
Historical Study of Radiation Exposures and the Incidence of Cataracts in Astronauts
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Manuel, F. K.; Iszard, G.; Feiveson, A.; Peterson, L. E.; Hardy, D.; Marak, L.; Tung, W.; Wear, M.; Chylack, L. T., Jr.
2004-01-01
For over 35 years, astronauts in low Earth orbit or on missions to the moon have been exposed to space radiation comprised of high-energy protons, heavy ions, and secondary neutrons. We reviewed the radiation exposures received by astronauts in space and on Earth, and presented results from the first epidemiological study of cataract incidence in the astronauts. Our data suggested an increased risk for cataracts from space radiation exposures*. Using parametric survival analysis and the maximum likelihood method, we estimated the dose-response and age distribution for cataract incidence in astronauts by space radiation. Considering the high-LET dose contributions on specific space missions as well as data from animal studies with neutrons and heavy ions, suggested a linear response with no dose-threshold for cataracts. However, there are unanswered questions related to the importance and the definition of "clinically significant" cataracts commonly used in radiation protection, especially in light of epidemiological data suggesting that the probability that "sub-clinical" cataracts will progress is highly dependent on the age at which cataracts appear. We briefly describe a new study that will address the measurement of cataract progression-rates in astronauts and a ground-based comparison group.
Final Technical Report- Radiation Hard Tight Pitch GaInP SPAD Arrays for High Energy Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, Eric S.
The specialized photodetectors used in high energy physics experiments often need to remain extremely sensitive for years despite radiation induced damage caused by the constant bombardment of high energy particles. To solve this problem, LightSpin Technologies, Inc. in collaboration with Prof. Bradley Cox and the University of Virginia is developing radiation-hard GaInP photodetectors which are projected to be extraordinarily radiation hard, theoretically capable of withstanding a 100,000-fold higher radiation dose than silicon. In this Phase I SBIR project, LightSpin investigated the performance and radiation hardness of fifth generation GaInP SPAD arrays. These fifth generation devices used a new planar processingmore » approach that enables very tight pitch arrays to be produced. High performance devices with SPAD pitches of 11, 15, and 25 μm were successfully demonstrated, which greatly increased the dynamic range and maximum count rate of the devices. High maximum count rates are critical when considering radiation hardness, since radiation damage causes a proportional increase in the dark count rate, causing SPAD arrays with low maximum count rates (large SPAD pitches) to fail. These GaInP SPAD array Photomultiplier Chips™ were irradiated with protons, electrons, and neutrons. Initial irradiation results were disappointing, with the post-irradiation devices exhibiting excessively high dark currents. The degradation was traced to surface leakage currents that were largely eliminated through the use of trenches etched around the exterior of the Photomultiplier Chip™ (not between SPAD elements). A second round of irradiations on Photomultiplier Chips™ with trenches proved substantially more successful, with post-irradiation dark currents remaining relatively low, though dark count rates were observed to increase at the highest doses. Preliminary analysis of the post-irradiation devices is promising … many of the irradiated Photomultiplier Chips™ still exhibit good gain characteristics after 1E12/cm 2 – 1E13/cm 2 doses and have apparent dark count rates that are lower than the apparent dark count rates published for irradiation of silicon SPAD arrays (silicon photomultipliers or SiPMs). Some post-irradiation results are still pending because the samples will still too radioactive to be shipped back from the irradiation facility for post-irradiation testing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, Roberto; Jaboin, Jerry J.; Morales-Paliza, Manuel
Purpose: To conduct a retrospective review of 168 consecutively treated locally advanced head-and-neck cancer (LAHNC) patients treated with intensity-modulated radiotherapy (IMRT)/chemotherapy, to determine the rate and risk factors for developing hypothyroidism. Methods and Materials: Intensity-modulated radiotherapy was delivered in 33 daily fractions to 69.3 Gy to gross disease and 56.1 Gy to clinically normal cervical nodes. Dose-volume histograms (DVHs) of IMRT plans were used to determine radiation dose to thyroid and were compared with DVHs using conventional three-dimensional radiotherapy (3D-RT) in 10 of these same patients randomly selected for replanning and with DVHs of 16 patients in whom the thyroidmore » was intentionally avoided during IMRT. Weekly paclitaxel (30 mg/m{sup 2}) and carboplatin area under the curve-1 were given concurrently with IMRT. Results: Sixty-one of 128 evaluable patients (47.7%) developed hypothyroidism after a median of 1.08 years after IMRT (range, 2.4 months to 3.9 years). Age and volume of irradiated thyroid were associated with hypothyroidism development after IMRT. Compared with 3D-RT, IMRT with no thyroid dose constraints resulted in significantly higher minimum, maximum, and median dose (p < 0.0001) and percentage thyroid volume receiving 10, 20, and 60 Gy (p < 0.05). Compared with 3D-RT, IMRT with thyroid dose constraints resulted in lower median dose and percentage thyroid volume receiving 30, 40, and 50 Gy (p < 0.005) but higher minimum and maximum dose (p < 0.005). Conclusions: If not protected, IMRT for LAHNC can result in higher radiation to the thyroid than with conventional 3D-RT. Techniques to reduce dose and volume of radiation to thyroid tissue with IMRT are achievable and recommended.« less
Optimisation of radiation dose and image quality in mobile neonatal chest radiography.
Hinojos-Armendáriz, V I; Mejía-Rosales, S J; Franco-Cabrera, M C
2018-05-01
To optimise the radiation dose and image quality for chest radiography in the neonatal intensive care unit (NICU) by increasing the mean beam energy. Two techniques for the acquisition of NICU AP chest X-ray images were compared for image quality and radiation dose. 73 images were acquired using a standard technique (56 kV, 3.2 mAs and no additional filtration) and 90 images with a new technique (62 kV, 2 mAs and 2 mm Al filtration). The entrance surface air kerma (ESAK) was measured using a phantom and compared between the techniques and against established diagnostic reference levels (DRL). Images were evaluated using seven image quality criteria independently by three radiologists. Images quality and radiation dose were compared statistically between the standard and new techniques. The maximum ESAK for the new technique was 40.20 μGy, 43.7% of the ESAK of the standard technique. Statistical evaluation demonstrated no significant differences in image quality between the two acquisition techniques. Based on the techniques and acquisition factors investigated within this study, it is possible to lower the radiation dose without any significant effects on image quality by adding filtration (2 mm Al) and increasing the tube potential. Such steps are relatively simple to undertake and as such, other departments should consider testing and implementing this dose reduction strategy within clinical practice where appropriate. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constine, Louis S.; Department of Pediatrics, James P. Wilmot Cancer Center at University of Rochester, Rochester, NY; Tarbell, Nancy
2008-09-01
Purpose: Subsequent malignant neoplasms (SMNs) are a dominant cause of morbidity and mortality in children treated for Hodgkin's disease (HD). We evaluated select demographic and therapeutic factors associated with SMNs, specifically gender and radiation dose. Methods and Materials: A total of 930 children treated for HD at five institutions between 1960 and 1990 were studied. Mean age at diagnosis was 13.6 years, and mean follow-up was 16.8 years (maximum, 39.4 years). Treatment included radiation alone (43%), chemotherapy alone (9%), or both (48%). Results: We found that SMNs occurred in 102 (11%) patients, with a 25-year actuarial rate of 19%. Withmore » 15,154 patient years of follow-up, only 7.18 cancers were expected (standardized incidence ratio [SIR] = 14.2; absolute excess risk [AER] = 63 cases/10,000 years). The SIR for female subjects, 19.93, was significantly greater than for males, 8.41 (p < 0.0001). After excluding breast cancer, the SIR for female patients was 15.4, still significantly greater than for male patients (p = 0.0012). Increasing radiation dose was associated with an increasing SIR (p = 0.0085). On univariate analysis, an increased risk was associated with female gender, increasing radiation dose, and age at treatment (12-16 years). Using logistic regression, mantle radiation dose increased risk, and this was 2.5-fold for female patients treated with more than 35 Gy primarily because of breast cancer. Conclusions: Survivors of childhood HD are at risk for SMNs, and this risk is greater for female individuals even after accounting for breast cancer. Although SMNs occur in the absence of radiation therapy, the risk increases with RT dose.« less
Constine, Louis S; Tarbell, Nancy; Hudson, Melissa M; Schwartz, Cindy; Fisher, Susan G; Muhs, Ann G; Basu, Swati K; Kun, Larry E; Ng, Andrea; Mauch, Peter; Sandhu, Ajay; Culakova, Eva; Lyman, Gary; Mendenhall, Nancy
2008-09-01
Subsequent malignant neoplasms (SMNs) are a dominant cause of morbidity and mortality in children treated for Hodgkin's disease (HD). We evaluated select demographic and therapeutic factors associated with SMNs, specifically gender and radiation dose. A total of 930 children treated for HD at five institutions between 1960 and 1990 were studied. Mean age at diagnosis was 13.6 years, and mean follow-up was 16.8 years (maximum, 39.4 years). Treatment included radiation alone (43%), chemotherapy alone (9%), or both (48%). We found that SMNs occurred in 102 (11%) patients, with a 25-year actuarial rate of 19%. With 15,154 patient years of follow-up, only 7.18 cancers were expected (standardized incidence ratio [SIR] = 14.2; absolute excess risk [AER] = 63 cases/10,000 years). The SIR for female subjects, 19.93, was significantly greater than for males, 8.41 (p < 0.0001). After excluding breast cancer, the SIR for female patients was 15.4, still significantly greater than for male patients (p = 0.0012). Increasing radiation dose was associated with an increasing SIR (p = 0.0085). On univariate analysis, an increased risk was associated with female gender, increasing radiation dose, and age at treatment (12-16 years). Using logistic regression, mantle radiation dose increased risk, and this was 2.5-fold for female patients treated with more than 35 Gy primarily because of breast cancer. Survivors of childhood HD are at risk for SMNs, and this risk is greater for female individuals even after accounting for breast cancer. Although SMNs occur in the absence of radiation therapy, the risk increases with RT dose.
NASA Astrophysics Data System (ADS)
El-Jaby, Samy; Tomi, Leena; Sihver, Lembit; Sato, Tatsuhiko; Richardson, Richard B.; Lewis, Brent J.
2014-03-01
This paper describes a methodology for assessing the pre-mission exposure of space crew aboard the International Space Station (ISS) in terms of an effective dose equivalent. In this approach, the PHITS Monte Carlo code was used to assess the particle transport of galactic cosmic radiation (GCR) and trapped radiation for solar maximum and minimum conditions through an aluminum shield thickness. From these predicted spectra, and using fluence-to-dose conversion factors, a scaling ratio of the effective dose equivalent rate to the ICRU ambient dose equivalent rate at a 10 mm depth was determined. Only contributions from secondary neutrons, protons, and alpha particles were considered in this analysis. Measurements made with a tissue equivalent proportional counter (TEPC) located at Service Module panel 327, as captured through a semi-empirical correlation in the ISSCREM code, where then scaled using this conversion factor for prediction of the effective dose equivalent. This analysis shows that at this location within the service module, the total effective dose equivalent is 10-30% less than the total TEPC dose equivalent. Approximately 75-85% of the effective dose equivalent is derived from the GCR. This methodology provides an opportunity for pre-flight predictions of the effective dose equivalent and therefore offers a means to assess the health risks of radiation exposure on ISS flight crew.
NASA Astrophysics Data System (ADS)
Zhao, Qian; Sun, Yeqing; Wang, Wei; Wen, Bin
Spaceflight represents a very complex environmental condition with highly ionizing radiations (HZE). To further investigate the incentives of ion effects in space environment, we performed on-ground simulated HZE particle radiations to rice seeds with different cumulative doses (0Gy, 0.01Gy, 0.02Gy, 0.1Gy, 0.2Gy, 1Gy , 2Gy, 5Gy, 20Gy ). Using Methylation-Sensitive Amplification Polymorphism (MSAP) analysis technology, differential polymorphism sites of DNA methylation of seedlings were analysed and acquired. The results showed that changes of methylation and demethylation on CCGG sites had taken place after irradiated treatments in all doses. It was noted that there was a stimulating effect in low-dose radiation ≤1 Gy. The minimum proportion of DNA methylation polymorphism level was 3.15% in 0.1Gy, whereas the maximum proportion was 9.87% in 2Gy, interestingly the proportion reduced with radiation doses increased, suggesting the dosage effects of radiation. We further found that the CG site tended to have a higher proportion of cytosine methylation alterations than CNG site in six of the eight dose groups. The results also indicated that different dose treatment groups showed various frequencies of methylation variation patterns: The type of CG hypermethylation was higher than CG hypormethylation in four low-dose groups (<≤2 Gy) ,whereas the result presented the opposite trends in all high-dose groups(>≥1 Gy). In addition, the type of CNG hypormethylation was obviously higher than the CNG hypermethylation in seven dose groups. This result indicated that the methylation variation patterns caused by radiation had site preferences. To investigate the mechanisms of sequences underlying alterations in DNA methylation after ion irradiation, we isolated, cloned and sequenced a subset of bands which showed obvious mutational bias. BLAST analysis indicated that many sequences showed significant homology to known function genes, most of which were related to resistance to environmental stresses such as cytochrome P450-like protein , RelA/SpoT Homologue 2 , 12-oxo-phytodienoic acid reductase. The epigenetic changing of rice in low- or high-dose radiation in this research might provide new insights for further understanding of radiation mechanism of space environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chisela, W; Yao, R; Dorbu, G
Purpose: To verify dose delivered with HDR Accuboost applicators using TLD, ion chamber and Gafchromic film measurements and to examine applicator leakage. Methods: A microSelectron HDR unit was used to deliver a dose of 50cGy to the mid-plane of a 62mm thick solid water phantom using dwell times from Monte Carlo pre-calculated nomograms for a 60mm, 70mm Round and 60mm Skin-Dose Optimized (SDO) applicators respectively. GafChromic EBT3+ film was embedded in the phantom midplane horizontally to measure dose distribution. Absolute dose was also measured with TLDs and an ADCL calibrated parallel-plate ion chamber placed in the film plane at fieldmore » center for each applicator. The film was calibrated using 6MV x-ray beam. TLDs were calibrated in a Cs-137 source at UW-Madison calibration laboratory. Radiation leakage through the tungsten alloy shell was measured with a film wrapped around outside surface of a 60mm Round applicator. Results: Measured maximum doses at field center are consistently lower than predicated by 5.8% for TLD, 8.8% for ion chamber, and 2.6% for EBT3+ film on average, with measurement uncertainties of 2.2%, 0.3%, and 2.9% for TLD, chamber, film respectively. The total standard uncertainties for ion chamber and Gafchromic film measurement are 4.9% and 4.6% respectively[1]. The area defined by the applicator aperture was covered by 80% of maximum dose for 62mm compression thickness. When 100cGy is delivered to mid-plane with a 60mm Round applicator, surface dose ranges from 60cGy to a maximum of 145cGy, which occurs at source entrance to the applicator. Conclusion: Measured doses by all three techniques are consistently lower than predicted in our measurements. For a compression thickness of 62 mm, the field size defined by the applicator is only covered by 80% of prescribed dose. Radiation leakage of up to 145cGy was found at the source entrance of applicators.« less
Willegaignon, José; Crema, Karin Paola; Oliveira, Nathaliê Canhameiro; Pelissoni, Rogério Alexandre; Coura-Filho, George Barberio; Sapienza, Marcelo Tatit; Buchpiguel, Carlos Alberto
2018-06-19
I-metaiodobenzylguanidine (I-MIBG) has been used in the diagnosis and therapy of neuroblastoma in adult and pediatric patients for many years. In this study, we evaluated whole-body I-MIBG clearance and radiation doses received by patients, family caregivers, and medical staff to establish appropriate radiation safety measures to be used in therapy applications. Research was focused on 23 children and adolescents with metastatic neuroblastoma, with ages ranging from 1.8 to 13 years, being treated with I-MIBG. Based on measured external dose rates from patients, dosimetric data to patients, family members, and others were calculated. The mean ± SD I-MIBG activity administered was 8.55 ± 1.69 GBq. Percent whole-body retention rates of I-MIBG at 24, 48, and 72 hours after administration were 48% ± 7%, 23% ± 7%, and 12% ± 6%, with a whole-body I-MIBG effective half-life of 23 ± 5 hours for all patients. The mean doses for patients were 0.234 ± 0.096 mGy·MBq to red-marrow and 0.251 ± 0.101 mGy·MBq to whole body. The maximum potential radiation doses transmitted by patients to others at 1.0 m was estimated to be 11.9 ± 3.4 mSv, with 97% of this dose occurring over 120 hours after therapy administration. Measured mean dose received by the 22 family caregivers was 1.88 ± 1.85 mSv, and that received by the 19 pediatric physicians was 43 ± 51 μSv. In this study, we evaluated the whole-body clearance of I-MIBG in 23 pediatric patients, and the radiation doses received by family caregivers and medical staff during these therapy procedures, thus facilitating the establishment of radiation safety measures to be applied in pediatric therapy.
Radiation Exposure and Attributable Cancer Risk in Patients With Esophageal Atresia.
Yousef, Yasmine; Baird, Robert
2018-02-01
Cases of esophageal carcinoma have been documented in survivors of esophageal atresia (EA). Children with EA undergo considerable amounts of diagnostic imaging and consequent radiation exposure potentially increasing their lifetime cancer mortality risk. This study evaluates the radiological procedures performed on patients with EA and estimates their cumulative radiation exposure and attributable lifetime cancer mortality risk. Medical records of patients with EA managed at a tertiary care center were reviewed for demographics, EA subtype, and number and type of radiological investigations. Existing normative data were used to estimate the cumulative radiation exposure and lifetime cancer risk per patient. The present study included 53 patients with a mean follow-up of 5.7 years. The overall median and maximum estimated effective radiation dose in the neonatal period was 5521.4 μSv/patient and 66638.6 μSv/patient, respectively. This correlates to a median and maximum estimated cumulative lifetime cancer mortality risk of 1:1530 and 1:130, respectively. Hence, radiation exposure in the neonatal period increased the cumulative cancer mortality risk a median of 130-fold and a maximum of 1575-fold in EA survivors. Children with EA are exposed to significant amounts of radiation and an increased estimated cumulative cancer mortality risk. Efforts should be made to eliminate superfluous imaging.
Belderbos, José S A; De Jaeger, Katrien; Heemsbergen, Wilma D; Seppenwoolde, Yvette; Baas, Paul; Boersma, Liesbeth J; Lebesque, Joos V
2003-02-01
To evaluate the feasibility of dose escalation in non-small cell lung cancer (NSCLC) using three-dimensional conformal radiation therapy. The main eligibility criteria of the trial were: pathologically proven inoperable NSCLC, ECOG performance status
Analysis of low-dose radiation shield effectiveness of multi-gate polymeric sheets
NASA Astrophysics Data System (ADS)
Kim, S. C.; Lee, H. K.; Cho, J. H.
2014-07-01
Computed tomography (CT) uses a high dose of radiation to create images of the body. As patients are exposed to radiation during a CT scan, the use of shielding materials becomes essential in CT scanning. This study was focused on the radiation shielding materials used for patients during a CT scan. In this study, sheets were manufactured to shield the eyes and the thyroid, the most sensitive parts of the body, against radiation exposure during a CT scan. These sheets are manufactured using silicone polymers, barium sulfate (BaSO4) and tungsten, with the aim of making these sheets equally or more effective in radiation shielding and more cost-effective than lead sheets. The use of barium sulfate drew more attention than tungsten due to its higher cost-effectiveness. The barium sulfate sheets were coated to form a multigate structure by applying the maximum charge rate during the agitator and subsequent mixing processes and creating multilayered structures on the surface. To measure radiation shielding effectiveness, the radiation dose was measured around both eyes and the thyroid gland using sheets in three different thicknesses (1, 2 and 3 mm). Among the 1 and 2 mm sheets, the Pb sheets exhibited greater effectiveness in radiation shielding around both eyes, but the W sheets were more effective in radiation shielding around the thyroid gland. In the 3 mm sheets, the Pb sheet also attenuated a higher amount of radiation around both eyes while the W sheet was more effective around the thyroid gland. In conclusion, the sheets made from barium sulfate and tungsten proved highly effective in shielding against low-dose radiation in CT scans without causing ill-health effects, unlike lead.
Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Makhdoumi, Yasha; Taheri, Mojtaba; Homaee Shandiz, Fatemeh; Zahed Anaraki, Siavash; Soleimani Meigooni, Ali
2012-01-01
The aim of this work is to evaluate rectal and bladder dose for the patients treated for gynecological cancers. The GZP6 high dose rate brachytherapy system has been recently introduced to a number of radiation therapy departments in Iran, for treatment of various tumor sites such as cervix and vagina. Our analysis was based on dose measurements for 40 insertions in 28 patients, treated by a GZP6 unit between June 2009 and November 2010. Treatments consisted of combined teletherapy and intracavitary brachytherapy. In vivo dosimetry was performed with TLD-400 chips and TLD-100 microcubes in the rectum and bladder. The average of maximum rectal and bladder dose values were found to be 7.62 Gy (range 1.72-18.55 Gy) and 5.17 Gy (range 0.72-15.85 Gy), respectively. It has been recommended by the ICRU that the maximum dose to the rectum and bladder in intracavitary treatment of vaginal or cervical cancer should be lower than 80% of the prescribed dose to point A in the Manchester system. In this study, of the total number of 40 insertions, maximum rectal dose in 29 insertions (72.5% of treatment sessions) and maximum bladder dose in 18 insertions (45% of treatments sessions) were higher than 80% of the prescribed dose to the point of dose prescription. In vivo dosimetry for patients undergoing treatment by GZP6 brachytherapy system can be used for evaluation of the quality of brachytherapy treatments by this system. This information could be used as a base for developing the strategy for treatment of patients treated with GZP6 system.
Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Makhdoumi, Yasha; Taheri, Mojtaba; Homaee Shandiz, Fatemeh; Zahed Anaraki, Siavash; Soleimani Meigooni, Ali
2012-01-01
Aim The aim of this work is to evaluate rectal and bladder dose for the patients treated for gynecological cancers. Background The GZP6 high dose rate brachytherapy system has been recently introduced to a number of radiation therapy departments in Iran, for treatment of various tumor sites such as cervix and vagina. Materials and methods Our analysis was based on dose measurements for 40 insertions in 28 patients, treated by a GZP6 unit between June 2009 and November 2010. Treatments consisted of combined teletherapy and intracavitary brachytherapy. In vivo dosimetry was performed with TLD-400 chips and TLD-100 microcubes in the rectum and bladder. Results The average of maximum rectal and bladder dose values were found to be 7.62 Gy (range 1.72–18.55 Gy) and 5.17 Gy (range 0.72–15.85 Gy), respectively. It has been recommended by the ICRU that the maximum dose to the rectum and bladder in intracavitary treatment of vaginal or cervical cancer should be lower than 80% of the prescribed dose to point A in the Manchester system. In this study, of the total number of 40 insertions, maximum rectal dose in 29 insertions (72.5% of treatment sessions) and maximum bladder dose in 18 insertions (45% of treatments sessions) were higher than 80% of the prescribed dose to the point of dose prescription. Conclusion In vivo dosimetry for patients undergoing treatment by GZP6 brachytherapy system can be used for evaluation of the quality of brachytherapy treatments by this system. This information could be used as a base for developing the strategy for treatment of patients treated with GZP6 system. PMID:24377037
Ramalingam, Saravana; Mohd, Suhaili; Samsuddin, Sharifah Mazni; Min, N G Wuey; Yusof, Norimah; Mansor, Azura
2015-12-01
Bone allografts have been used widely to fill up essential void in orthopaedic surgeries. The benefit of using allografts to replace and reconstruct musculoskeletal injuries, fractures or disease has obtained overwhelming acceptance from orthopaedic surgeons worldwide. However, bacterial infection and disease transmission through bone allograft transplantation have always been a significant issue. Sterilization by radiation is an effective method to eliminate unwanted microorganisms thus assist in preventing life threatening allograft associated infections. Femoral heads procured from living donors and long bones (femur and tibia) procured from cadaveric donors were sterilized at 25 kGy in compliance with international standard ISO 11137. According to quality requirements, all records of bone banking were evaluated annually. This retrospective study was carried out on annual evaluation of radiation records from 1998 until 2012. The minimum doses absorbed by the bones were ranging from 25.3 to 38.2 kGy while the absorbed maximum doses were from 25.4 to 42.3 kGy. All the bones supplied by our UMMC Bone Bank were sterile at the required minimum dose of 25 kGy. Our analysis on dose variation showed that the dose uniformity ratios in 37 irradiated boxes of 31 radiation batches were in the range of 1.003-1.251, which indicated the doses were well distributed.
Cosmic Radiation Exposure of Future Hypersonic Flight Missions.
Koops, L
2017-06-15
Cosmic radiation exposure in air traffic grows with flight altitude, geographical latitude and flight time. For future high-speed intercontinental point-to-point travel, the trade-off between reduced flight time and enhanced dose rate at higher flight altitudes is investigated. Various representative (partly) hypersonic cruise missions are considered and in dependence on solar activity the integral route dose is calculated for envisaged flight profiles and trajectories. Our results are compared to those for corresponding air connections served by present day subsonic airliners. During solar maximum, we find a significant reduction in route dose for all considered high-speed missions compared to the subsonic reference. However, during solar minimum, comparable or somewhat larger doses result on transpolar trajectories with (partly) hypersonic cruise at Mach 5. Both solar activity and routing are hence found to determine, whether passengers can profit from shorter flight times in terms of radiation exposure, despite of altitude-induced higher dose rates. Yet, aircrews with fixed number of block hours are always subject to larger annual doses, which in the considered cases take values up to five times the reference. We comment on the implications of our results for route planning and aviation decision-making in the absence of radiation shielding solutions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lata, M; Prasad, J; Singh, S; Kumar, R; Singh, L; Chaudhary, P; Arora, R; Chawla, R; Tyagi, S; Soni, N L; Sagar, R K; Devi, M; Sharma, R K; Puri, S C; Tripathi, R P
2009-01-01
The current study has concentrated on assessment of the radioprotective potential of REC-2001, a semi-purified fraction of rhizomes of Podophyllum hexandrum, in Swiss albino Strain 'A' mice exposed to 10 Gy whole-body gamma radiation. Animals were treated with 10 and 15 mg/kg b wt (i.p.) of REC-2001 1h prior to exposure to a lethal dose of gamma-radiation (10 Gy) and observed upto 30 days. For analysis of maximum tolerable dose (MTD), LD(50) and acute toxic dose, different concentrations of the extract were administered to animals and their mortality and morbidity status was observed upto 72 h and one week, respectively. Dose reduction factor (DRF) was determined by exposing REC-2001 pre-treated mice to supra-lethal doses of gamma-radiation. Endogenous spleen colony forming units (CFU), DNA strand breaks in thymocytes (alkaline halo assay) and lipid degradation was studied to understand the mechanism of radioprotection. A single dose of REC-2001 (10 and 15 mg/kg b wt i.p.) exhibited >90% survival in the pre-treated irradiated group versus no survival in radiation control group. Single doses of upto 75 mg/kg b wt (i.p.) did not cause any mortality (MTD) in mice. REC-2001, a dose of 90 mg/kg b wt, resulted in 50% mortality (LD(50)), while the LD(100) was 115 mg/kg b wt REC-2001 exhibited a DRF of 1.62. CFU counts in the REC-2001 treated group were found significantly high (5.33/spleen) as compared to controls. Exposure of thymocytes to 10 Gy radiation resulted in increased halo diameter (45+/-3 microm) in comparison to untreated controls (8+/-1 microm). REC-2001 administration (500 microg/ml) decreased the halo diameter to 15+/-2 microm. Radiation-induced lipid degradation was also inhibited by REC-2001. The present study has revealed that REC-2001 is a promising radioprotective fraction that can be effectively used against lethal doses of gamma-radiation after further investigations in higher animal models.
Conceptus radiation dose and risk from chest screen-film radiography.
Damilakis, John; Perisinakis, Kostas; Prassopoulos, Panos; Dimovasili, Evangelia; Varveris, Haralambos; Gourtsoyiannis, Nicholas
2003-02-01
The objectives of the present study were to (a) estimate the conceptus radiation dose and risks for pregnant women undergoing posteroanterior and anteroposterior (AP) chest radiographs, (b) study the conceptus dose as a function of chest thickness of the patient undergoing chest radiograph, and (c) investigate the possibility of a conceptus to receive a dose of more than 10 mGy, the level above which specific measurements of conceptus doses may be necessary. Thermoluminescent dosimeters were used for dose measurements in anthropomorphic phantoms simulating pregnancy at the three trimesters of gestation. The effect of chest thickness on conceptus dose and risk was studied by adding slabs of lucite on the anterior and posterior surface of the phantom chest. The conceptus risk for radiation-induced childhood fatal cancer and hereditary effects was calculated based on appropriate risk factors. The average AP chest dimension (d(a)) was estimated for 51 women of childbearing age from chest CT examinations. The value of d(a) was estimated to be 22.3 cm (17.4-27.2 cm). The calculated maximum conceptus dose was 107 x 10(-3) mGy for AP chest radiographs performed during the third trimester of pregnancy with maternal chest thickness of 27.2 cm. This calculation was based on dose data obtained from measurements in the phantoms and d(a) estimated from the patient group. The corresponding average excess of childhood cancer was 10.7 per million patients. The risk for hereditary effects was 1.1 per million births. Radiation dose for a conceptus increases exponentially as chest thickness increases. The conceptus dose at the third trimester is higher than that of the second and first trimesters. The results of the current study suggest that chest radiographs carried out in women at any time during gestation will result in a negligible increase in risk of radiation-induced harmful effects to the unborn child. After a properly performed maternal chest X-ray, there is no need for individual conceptus dose estimations.
Mahadevan, Anand; Sampson, Carrie; LaRosa, Salvatore; Floyd, Scott R; Wong, Eric T; Uhlmann, Erik J; Sengupta, Soma; Kasper, Ekkehard M
2015-11-26
Whole brain radiation therapy (WBRT) is widely used for the treatment of brain metastases. Cognitive decline and alopecia are recognized adverse effects of WBRT. Recently hippocampus sparing whole brain radiation therapy (HS-WBRT) has been shown to reduce the incidence of memory loss. In this study, we found that multi-field intensity modulated radiation therapy (IMRT), with strict constraints to the brain parenchyma and to the hippocampus, reduces follicular scalp dose and prevents alopecia. Suitable patients befitting the inclusion criteria of the RTOG 0933 trial received Hippocampus sparing whole brain radiation. On follow up, they were noticed to have full scalp hair preservation. 5 mm thickness of follicle bearing scalp in the radiation field was outlined in the planning CT scans. Conventional opposed lateral WBRT radiation fields were applied to these patient-specific image sets and planned with the same nominal dose of 30 Gy in 10 fractions. The mean and maximum dose to follicle bearing skin and Dose Volume Histogram (DVH) data were analyzed for conventional and HS-WBRT. Paired t-test was used to compare the means. All six patients had fully preserved scalp hair and remained clinically cognitively intact 1-3 months after HS-WBRT. Compared to conventional WBRT, in addition to the intended sparing of the Hippocampus, HS-WBRT delivered significantly lower mean dose (22.42 cGy vs. 16.33 cGy, p < 0.0001), V24 (9 cc vs. 44 cc, p < 0.0000) and V30 (9 cc vs. 0.096 cc, p = 0.0106) to follicle hair bearing scalp and prevented alopecia. There were no recurrences in the Hippocampus area. HS-WBRT, with an 11-field set up as described, while attempting to conserve hippocampus radiation and maintain radiation dose to brain inadvertently spares follicle-bearing scalp and prevents alopecia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holliday, Emma B.; Esmaeli, Bita; Pinckard, Jamie
Purpose: Postoperative radiation is often indicated in the treatment of malignant epithelial tumors of the orbit and ocular adnexa. We present details of radiation technique and toxicity data after orbit-sparing surgery followed by adjuvant proton radiation therapy. Methods and Materials: Twenty patients underwent orbit-sparing surgery followed by proton therapy for newly diagnosed malignant epithelial tumors of the lacrimal gland (n=7), lacrimal sac/nasolacrimal duct (n=10), or eyelid (n=3). Tumor characteristics, treatment details, and visual outcomes were obtained from medical records. Acute and chronic toxicity were prospectively scored using Common Terminology Criteria for Adverse Events version 4.0. Results: The median radiation dosemore » was 60 Gy(RBE) (relative biological effectiveness; [range 50-70 Gy]); 11 patients received concurrent chemotherapy. Dose to ipsilateral anterior optic structures was reduced in 13 patients by having them gaze away from the target during treatment. At a median follow-up time of 27.1 months (range 2.6-77.2 months), no patient had experienced local recurrence; 1 had regional and 1 had distant recurrence. Three patients developed chronic grade 3 epiphora, and 3 developed grade 3 exposure keratopathy. Four patients experienced a decrease in visual acuity from baseline but maintained vision sufficient to perform all activities of daily living without difficulty. Patients with grade ≥3 chronic ocular toxicity had higher maximum dose to the ipsilateral cornea (median 46.3 Gy[RBE], range 36.6-52.7 Gy[RBE] vs median 37.4 Gy[RBE], range 9.0-47.3 Gy(RBE); P=.017). Conclusions: Orbit-sparing surgery for epithelial tumors of the orbit and ocular adnexa followed by proton therapy successfully achieved disease control and was well tolerated. No patient required orbital exenteration or enucleation. Chronic grade 3 toxicity was associated with high maximum dose to the cornea. An eye-deviation technique can be used to limit the maximum corneal dose to <35 Gy(RBE).« less
Phase I Trial and Pharmacokinetic Study of Lexatumumab in Pediatric Patients With Solid Tumors
Merchant, Melinda S.; Geller, James I.; Baird, Kristin; Chou, Alexander J.; Galli, Susana; Charles, Ava; Amaoko, Martha; Rhee, Eunice H.; Price, Anita; Wexler, Leonard H.; Meyers, Paul A.; Widemann, Brigitte C.; Tsokos, Maria; Mackall, Crystal L.
2012-01-01
Purpose Lexatumumab is an agonistic, fully human monoclonal antibody against tumor necrosis factor–related apoptosis-inducing ligand receptor 2 with preclinical evidence of activity in pediatric solid tumors. Patients and Methods This phase I dose-escalation study examined the safety, tolerability, pharmacokinetics, and immunogenicity of lexatumumab at doses up to, but not exceeding, the adult maximum-tolerated dose (3, 5, 8, and 10 mg/kg), administered once every 2 weeks to patients age ≤ 21 years with recurrent or progressive solid tumors. Results Twenty-four patients received a total of 56 cycles of lexatumumab over all four planned dose levels. One patient had grade 2 pericarditis consistent with radiation recall, and one patient developed grade 3 pneumonia with hypoxia during the second cycle. Five patients experienced stable disease for three to 24 cycles. No patients experienced complete or partial response, but several showed evidence of antitumor activity, including one patient with recurrent progressive osteosarcoma who experienced resolution of clinical symptoms and positron emission tomography activity, ongoing more than 1 year off therapy. One patient with hepatoblastoma showed a dramatic biomarker response. Conclusion Pediatric patients tolerate 10 mg/kg of lexatumumab administered once every 14 days, the maximum-tolerated dose identified in adults. The drug seems to mediate some clinical activity in pediatric solid tumors and may work with radiation to enhance antitumor effects. PMID:23071222
Study of scattered radiation during fluoroscopy in hip surgery*
Lesyuk, Oksana; Sousa, Patrick Emmanuel; Rodrigues, Sónia Isabel do Espirito Santo; Abrantes, António Fernando; de Almeida, Rui Pedro Pereira; Pinheiro, João Pedro; Azevedo, Kevin Barros; Ribeiro, Luís Pedro Vieira
2016-01-01
Objective To measure the scattered radiation dose at different positions simulating hip surgery. Materials and Methods We simulated fluoroscopy-assisted hip surgery in order to study the distribution of scattered radiation in the operating room. To simulate the patient, we used a anthropomorphic whole-body phantom, and we used an X-ray-specific detector to quantify the radiation. Radiographs were obtained with a mobile C-arm X-ray system in continuous scan mode, with the tube at 0º (configuration 1) or 90º (configuration 2). The operating parameters employed (voltage, current, and exposure time) were determined by a statistical analysis based on the observation of orthopedic surgical procedures involving the hip. Results For all measurements, higher exposures were observed in configuration 2. In the measurements obtained as a function of height, the maximum dose rates observed were 1.167 (± 0.023) µSv/s and 2.278 (± 0.023) µSv/s in configurations 1 and 2, respectively, corresponding to the chest level of health care professionals within the operating room. Proximal to the patient, the maximum values were recorded in the position occupied by the surgeon. Conclusion We can conclude that, in the scenario under study, health care professionals workers are exposed to low levels of radiation, and that those levels can be reduced through the use of personal protective equipment. PMID:27777477
Lifetimes and spatio-temporal response of protein crystals in intense X-ray microbeams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warkentin, Matthew A.; Atakisi, Hakan; Hopkins, Jesse B.
Serial synchrotron-based crystallography using intense microfocused X-ray beams, fast-framing detectors and protein microcrystals held at 300 K promises to expand the range of accessible structural targets and to increase overall structure-pipeline throughputs. To explore the nature and consequences of X-ray radiation damage under microbeam illumination, the time-, dose- and temperature-dependent evolution of crystal diffraction have been measured with maximum dose rates of 50 MGy s −1 . At all temperatures and dose rates, the integrated diffraction intensity for a fixed crystal orientation shows non-exponential decays with dose. Non-exponential decays are a consequence of non-uniform illumination and the resulting spatial evolution of diffracted intensitymore » within the illuminated crystal volume. To quantify radiation-damage lifetimes and the damage state of diffracting crystal regions, a revised diffraction-weighted dose (DWD) is defined and it is shown that for Gaussian beams the DWD becomes nearly independent of actual dose at large doses. An apparent delayed onset of radiation damage seen in some intensity–dose curves is in fact a consequence of damage. Intensity fluctuations at high dose rates may arise from the impulsive release of gaseous damage products. Accounting for these effects, data collection at the highest dose rates increases crystal radiation lifetimes near 300 K (but not at 100 K) by a factor of ∼1.5–2 compared with those observed at conventional dose rates. Improved quantification and modeling of the complex spatio-temporal evolution of protein microcrystal diffraction in intense microbeams will enable more efficient data collection, and will be essential in improving the accuracy of structure factors and structural models.« less
Lifetimes and spatio-temporal response of protein crystals in intense X-ray microbeams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warkentin, Matthew A.; Atakisi, Hakan; Hopkins, Jesse B.
Serial synchrotron-based crystallography using intense microfocused X-ray beams, fast-framing detectors and protein microcrystals held at 300 K promises to expand the range of accessible structural targets and to increase overall structure-pipeline throughputs. To explore the nature and consequences of X-ray radiation damage under microbeam illumination, the time-, dose- and temperature-dependent evolution of crystal diffraction have been measured with maximum dose rates of 50 MGy s –1. At all temperatures and dose rates, the integrated diffraction intensity for a fixed crystal orientation shows non-exponential decays with dose. Non-exponential decays are a consequence of non-uniform illumination and the resulting spatial evolution ofmore » diffracted intensity within the illuminated crystal volume. To quantify radiation-damage lifetimes and the damage state of diffracting crystal regions, a revised diffraction-weighted dose (DWD) is defined and it is shown that for Gaussian beams the DWD becomes nearly independent of actual dose at large doses. An apparent delayed onset of radiation damage seen in some intensity–dose curves is in fact a consequence of damage. Intensity fluctuations at high dose rates may arise from the impulsive release of gaseous damage products. Accounting for these effects, data collection at the highest dose rates increases crystal radiation lifetimes near 300 K (but not at 100 K) by a factor of ~1.5–2 compared with those observed at conventional dose rates. As a result, improved quantification and modeling of the complex spatio-temporal evolution of protein microcrystal diffraction in intense microbeams will enable more efficient data collection, and will be essential in improving the accuracy of structure factors and structural models.« less
Lifetimes and spatio-temporal response of protein crystals in intense X-ray microbeams
Warkentin, Matthew A.; Atakisi, Hakan; Hopkins, Jesse B.; ...
2017-10-13
Serial synchrotron-based crystallography using intense microfocused X-ray beams, fast-framing detectors and protein microcrystals held at 300 K promises to expand the range of accessible structural targets and to increase overall structure-pipeline throughputs. To explore the nature and consequences of X-ray radiation damage under microbeam illumination, the time-, dose- and temperature-dependent evolution of crystal diffraction have been measured with maximum dose rates of 50 MGy s –1. At all temperatures and dose rates, the integrated diffraction intensity for a fixed crystal orientation shows non-exponential decays with dose. Non-exponential decays are a consequence of non-uniform illumination and the resulting spatial evolution ofmore » diffracted intensity within the illuminated crystal volume. To quantify radiation-damage lifetimes and the damage state of diffracting crystal regions, a revised diffraction-weighted dose (DWD) is defined and it is shown that for Gaussian beams the DWD becomes nearly independent of actual dose at large doses. An apparent delayed onset of radiation damage seen in some intensity–dose curves is in fact a consequence of damage. Intensity fluctuations at high dose rates may arise from the impulsive release of gaseous damage products. Accounting for these effects, data collection at the highest dose rates increases crystal radiation lifetimes near 300 K (but not at 100 K) by a factor of ~1.5–2 compared with those observed at conventional dose rates. As a result, improved quantification and modeling of the complex spatio-temporal evolution of protein microcrystal diffraction in intense microbeams will enable more efficient data collection, and will be essential in improving the accuracy of structure factors and structural models.« less
Lifetimes and spatio-temporal response of protein crystals in intense X-ray microbeams
Warkentin, Matthew A.; Atakisi, Hakan; Hopkins, Jesse B.; ...
2017-10-13
Serial synchrotron-based crystallography using intense microfocused X-ray beams, fast-framing detectors and protein microcrystals held at 300 K promises to expand the range of accessible structural targets and to increase overall structure-pipeline throughputs. To explore the nature and consequences of X-ray radiation damage under microbeam illumination, the time-, dose- and temperature-dependent evolution of crystal diffraction have been measured with maximum dose rates of 50 MGy s −1 . At all temperatures and dose rates, the integrated diffraction intensity for a fixed crystal orientation shows non-exponential decays with dose. Non-exponential decays are a consequence of non-uniform illumination and the resulting spatial evolution of diffracted intensitymore » within the illuminated crystal volume. To quantify radiation-damage lifetimes and the damage state of diffracting crystal regions, a revised diffraction-weighted dose (DWD) is defined and it is shown that for Gaussian beams the DWD becomes nearly independent of actual dose at large doses. An apparent delayed onset of radiation damage seen in some intensity–dose curves is in fact a consequence of damage. Intensity fluctuations at high dose rates may arise from the impulsive release of gaseous damage products. Accounting for these effects, data collection at the highest dose rates increases crystal radiation lifetimes near 300 K (but not at 100 K) by a factor of ∼1.5–2 compared with those observed at conventional dose rates. Improved quantification and modeling of the complex spatio-temporal evolution of protein microcrystal diffraction in intense microbeams will enable more efficient data collection, and will be essential in improving the accuracy of structure factors and structural models.« less
Mars surface radiation exposure for solar maximum conditions and 1989 solar proton events
NASA Technical Reports Server (NTRS)
Simonsen, Lisa C.; Nealy, John E.
1992-01-01
The Langley heavy-ion/nucleon transport code, HZETRN, and the high-energy nucleon transport code, BRYNTRN, are used to predict the propagation of galactic cosmic rays (GCR's) and solar flare protons through the carbon dioxide atmosphere of Mars. Particle fluences and the resulting doses are estimated on the surface of Mars for GCR's during solar maximum conditions and the Aug., Sep., and Oct. 1989 solar proton events. These results extend previously calculated surface estimates for GCR's at solar minimum conditions and the Feb. 1956, Nov. 1960, and Aug. 1972 solar proton events. Surface doses are estimated with both a low-density and a high-density carbon dioxide model of the atmosphere for altitudes of 0, 4, 8, and 12 km above the surface. A solar modulation function is incorporated to estimate the GCR dose variation between solar minimum and maximum conditions over the 11-year solar cycle. By using current Mars mission scenarios, doses to the skin, eye, and blood-forming organs are predicted for short- and long-duration stay times on the Martian surface throughout the solar cycle.
Wong, J H D; Fuduli, I; Carolan, M; Petasecca, M; Lerch, M L F; Perevertaylo, V L; Metcalfe, P; Rosenfeld, A B
2012-05-01
Intensity modulated radiation therapy (IMRT) utilizes the technology of multileaf collimators to deliver highly modulated and complex radiation treatment. Dosimetric verification of the IMRT treatment requires the verification of the delivered dose distribution. Two dimensional ion chamber or diode arrays are gaining popularity as a dosimeter of choice due to their real time feedback compared to film dosimetry. This paper describes the characterization of a novel 2D diode array, which has been named the "magic plate" (MP). It was designed to function as a 2D transmission detector as well as a planar detector for dose distribution measurements in a solid water phantom for the dosimetric verification of IMRT treatment delivery. The prototype MP is an 11 × 11 detector array based on thin (50 μm) epitaxial diode technology mounted on a 0.6 mm thick Kapton substrate using a proprietary "drop-in" technology developed by the Centre for Medical Radiation Physics, University of Wollongong. A full characterization of the detector was performed, including radiation damage study, dose per pulse effect, percent depth dose comparison with CC13 ion chamber and build up characteristics with a parallel plane ion chamber measurements, dose linearity, energy response and angular response. Postirradiated magic plate diodes showed a reproducibility of 2.1%. The MP dose per pulse response decreased at higher dose rates while at lower dose rates the MP appears to be dose rate independent. The depth dose measurement of the MP agrees with ion chamber depth dose measurements to within 0.7% while dose linearity was excellent. MP showed angular response dependency due to the anisotropy of the silicon diode with the maximum variation in angular response of 10.8% at gantry angle 180°. Angular dependence was within 3.5% for the gantry angles ± 75°. The field size dependence of the MP at isocenter agrees with ion chamber measurement to within 1.1%. In the beam perturbation study, the surface dose increased by 12.1% for a 30 × 30 cm(2) field size at the source to detector distance (SDD) of 80 cm whilst the transmission for the MP was 99%. The radiation response of the magic plate was successfully characterized. The array of epitaxial silicon based detectors with "drop-in" packaging showed properties suitable to be used as a simplified multipurpose and nonperturbing 2D radiation detector for radiation therapy dosimetric verification.
Conditioning of the 4 Curies Radium-226 Sealed Radiation Source in Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Punnachaiya, M.; Sawangsri, T.; Wanabongse, P.
This paper describes the conditioning of the 4 curies Radium-226 (Ra-226) sealed radiation source using as a teletherapy unit for cancer treatment in Thailand. The conditioning was under the International Atomic Energy Agency (IAEA) supervision and budgetary supports, comprised of 6 operational steps: the surface dose rate and actual dimension of radium unit measurements, the appropriate lead shielding design with IAEA approval, confirmation of radioactive contamination before conditioning (smear test and radon gas leakage test), transfer of radium source unit into the designed shielding, confirmation of radioactive contamination and dose rate measurement after conditioning, and transportation of Ra-226 conditioning wastemore » package to OAP interim waste storage. The Ra-226 unit was taken out of OAP temporary waste storage for the surface dose rate and the actual dimension measurements behind the 12 inches thick heavy concrete shielding. The maximum measured surface dose rate was 70 R/hr. The special lead container was designed according to its surface dose rate along the source unit which the maximum permissible dose limit for surface dose rate of waste package after conditioning at 2 mSv/hr was applied. The IAEA approved container had total weight of 2.4 ton. After the confirmation of radioactive contamination, Ra-226 source unit was transferred and loaded in the designed lead shielding within 2 minutes. The results of smear test before and after conditioning including radon gas leakage test revealed that there was no radioactive contamination. After conditioning, the surface dose rate measured on the top, bottom were 15,10 mR/hr and varied from 6 - 50 mR/hr around lead container. The Ra-226 conditioning waste package was safely transported to store in OAP interim waste storage. Total working time including the time consumed for radon gas leakage test was 3.5 hours. The total radiation dose received by 16 operators, were ranged from 1 - 69.84 {mu}Sv and the operational team completed the conditioning safely within the effective dose limit for occupational exposure of 50 mSv/year (200 {mu}Sv/day). (authors)« less
Engineering design constraints of the lunar surface environment
NASA Technical Reports Server (NTRS)
Morrison, D. A.
1992-01-01
Living and working on the lunar surface will be difficult. Design of habitats, machines, tools, and operational scenarios in order to allow maximum flexibility in human activity will require paying attention to certain constraints imposed by conditions at the surface and the characteristics of lunar material. Primary design drivers for habitat, crew health and safety, and crew equipment are: ionizing radiation, the meteoroid flux, and the thermal environment. Secondary constraints for engineering derive from: the physical and chemical properties of lunar surface materials, rock distributions and regolith thicknesses, topography, electromagnetic properties, and seismicity. Protection from ionizing radiation is essential for crew health and safety. The total dose acquired by a crew member will be the sum of the dose acquired during EVA time (when shielding will be least) plus the dose acquired during time spent in the habitat (when shielding will be maximum). Minimizing the dose acquired in the habitat extends the time allowable for EVA's before a dose limit is reached. Habitat shielding is enabling, and higher precision in predicting secondary fluxes produced in shielding material would be desirable. Means for minimizing dose during a solar flare event while on extended EVA will be essential. Early warning of the onset of flare activity (at least a half-hour is feasible) will dictate the time available to take mitigating steps. Warning capability affects design of rovers (or rover tools) and site layout. Uncertainty in solar flare timing is a design constraint that points to the need for quickly accessible or constructible safe havens.
Engineering design constraints of the lunar surface environment
NASA Astrophysics Data System (ADS)
Morrison, D. A.
1992-02-01
Living and working on the lunar surface will be difficult. Design of habitats, machines, tools, and operational scenarios in order to allow maximum flexibility in human activity will require paying attention to certain constraints imposed by conditions at the surface and the characteristics of lunar material. Primary design drivers for habitat, crew health and safety, and crew equipment are: ionizing radiation, the meteoroid flux, and the thermal environment. Secondary constraints for engineering derive from: the physical and chemical properties of lunar surface materials, rock distributions and regolith thicknesses, topography, electromagnetic properties, and seismicity. Protection from ionizing radiation is essential for crew health and safety. The total dose acquired by a crew member will be the sum of the dose acquired during EVA time (when shielding will be least) plus the dose acquired during time spent in the habitat (when shielding will be maximum). Minimizing the dose acquired in the habitat extends the time allowable for EVA's before a dose limit is reached. Habitat shielding is enabling, and higher precision in predicting secondary fluxes produced in shielding material would be desirable. Means for minimizing dose during a solar flare event while on extended EVA will be essential. Early warning of the onset of flare activity (at least a half-hour is feasible) will dictate the time available to take mitigating steps. Warning capability affects design of rovers (or rover tools) and site layout. Uncertainty in solar flare timing is a design constraint that points to the need for quickly accessible or constructible safe havens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hepel, Jaroslaw T., E-mail: jhepel@lifespan.org; Department of Radiation Oncology, Tufts Medical Center, Tufts University, Boston, Massachusetts; Leonard, Kara Lynne
Purpose: Stereotactic body radiation therapy (SBRT) boost to primary and nodal disease after chemoradiation has potential to improve outcomes for advanced non-small cell lung cancer (NSCLC). A dose escalation study was initiated to evaluate the maximum tolerated dose (MTD). Methods and Materials: Eligible patients received chemoradiation to a dose of 50.4 Gy in 28 fractions and had primary and nodal volumes appropriate for SBRT boost (<120 cc and <60 cc, respectively). SBRT was delivered in 2 fractions after chemoradiation. Dose was escalated from 16 to 28 Gy in 2 Gy/fraction increments, resulting in 4 dose cohorts. MTD was defined when ≥2 of 6 patients permore » cohort experienced any treatment-related grade 3 to 5 toxicity within 4 weeks of treatment or the maximum dose was reached. Late toxicity, disease control, and survival were also evaluated. Results: Twelve patients (3 per dose level) underwent treatment. All treatment plans met predetermined dose-volume constraints. The mean age was 64 years. Most patients had stage III disease (92%) and were medically inoperable (92%). The maximum dose level was reached with no grade 3 to 5 acute toxicities. At a median follow-up time of 16 months, 1-year local-regional control (LRC) was 78%. LRC was 50% at <24 Gy and 100% at ≥24 Gy (P=.02). Overall survival at 1 year was 67%. Late toxicity (grade 3-5) was seen in only 1 patient who experienced fatal bronchopulmonary hemorrhage (grade 5). There were no predetermined dose constraints for the proximal bronchial-vascular tree (PBV) in this study. This patient's 4-cc PBV dose was substantially higher than that received by other patients in all 4 cohorts and was associated with the toxicity observed: 20.3 Gy (P<.05) and 73.5 Gy (P=.07) for SBRT boost and total treatment, respectively. Conclusions: SBRT boost to both primary and nodal disease after chemoradiation is feasible and well tolerated. Local control rates are encouraging, especially at doses ≥24 Gy in 2 fractions. Toxicity at the PBV is a concern but potentially can be avoided with strict dose-volume constraints.« less
Radiation Dose-Volume Effects in the Stomach and Small Bowel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavanagh, Brian D., E-mail: Brian.Kavanagh@ucdenver.ed; Pan, Charlie C.; Dawson, Laura A.
2010-03-01
Published data suggest that the risk of moderately severe (>=Grade 3) radiation-induced acute small-bowel toxicity can be predicted with a threshold model whereby for a given dose level, D, if the volume receiving that dose or greater (VD) exceeds a threshold quantity, the risk of toxicity escalates. Estimates of VD depend on the means of structure segmenting (e.g., V15 = 120 cc if individual bowel loops are outlined or V45 = 195 cc if entire peritoneal potential space of bowel is outlined). A similar predictive model of acute toxicity is not available for stomach. Late small-bowel/stomach toxicity is likely relatedmore » to maximum dose and/or volume threshold parameters qualitatively similar to those related to acute toxicity risk. Concurrent chemotherapy has been associated with a higher risk of acute toxicity, and a history of abdominal surgery has been associated with a higher risk of late toxicity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Jeffrey M.; Handorf, Elizabeth A.; Price, Robert A.
A small decrease in testosterone level has been documented after prostate irradiation, possibly owing to the incidental dose to the testes. Testicular doses from prostate external beam radiation plans with either intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT) were calculated to investigate any difference. Testicles were contoured for 16 patients being treated for localized prostate cancer. For each patient, 2 plans were created: 1 with IMRT and 1 with VMAT. No specific attempt was made to reduce testicular dose. Minimum, maximum, and mean doses to the testicles were recorded for each plan. Of the 16 patients, 4 receivedmore » a total dose of 7800 cGy to the prostate alone, 7 received 8000 cGy to the prostate alone, and 5 received 8000 cGy to the prostate and pelvic lymph nodes. The mean (range) of testicular dose with an IMRT plan was 54.7 cGy (21.1 to 91.9) and 59.0 cGy (25.1 to 93.4) with a VMAT plan. In 12 cases, the mean VMAT dose was higher than the mean IMRT dose, with a mean difference of 4.3 cGy (p = 0.019). There was a small but statistically significant increase in mean testicular dose delivered by VMAT compared with IMRT. Despite this, it unlikely that there is a clinically meaningful difference in testicular doses from either modality.« less
What and how can affect the exploration of Mars
NASA Astrophysics Data System (ADS)
Vidmachenko, A. P.; Morozhenko, A. V.
2017-05-01
Going to Mars, astronauts are deprived of the protection of the magnetic field. And for 15 months of flight to Mars and back astronaut will receive maximum permissible for his entire career, a dose of radiation of 1 sievert. And when powerful flash can occur on the sun, the dose of radiation will grow by an order of magnitude and can even kill the crew. The radiation background in the orbit of Mars is more than 2.2 times higher than the radiation background at the Earth's orbital station. The smallest toxic dust on Mars is also can interfere with the colonization of Mars. This dust contains a large number of toxic compounds such as perchlorates, minerals of gypsum, compounds of chromium, fine-grained salts of silicic acid, etc. The listed above factors make forced to think seriously about the possibility of organizing a Mars mission, even in the distant future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feister, Uwe; Meyer, Gabriele; Kirst, Ulrich
2013-05-10
Seamen working on vessels that go along tropical and subtropical routes are at risk to receive high doses of solar erythemal radiation. Due to small solar zenith angles and low ozone values, UV index and erythemal dose are much higher than at mid-and high latitudes. UV index values at tropical and subtropical Oceans can exceed UVI = 20, which is more than double of typical mid-latitude UV index values. Daily erythemal dose can exceed the 30-fold of typical midlatitude winter values. Measurements of erythemal exposure of different body parts on seamen have been performed along 4 routes of merchant vessels.more » The data base has been extended by two years of continuous solar irradiance measurements taken on the mast top of RV METEOR. Radiative transfer model calculations for clear sky along the ship routes have been performed that use satellite-based input for ozone and aerosols to provide maximum erythemal irradiance and dose. The whole data base is intended to be used to derive individual erythemal exposure of seamen during work-time.« less
Gudowska, I; Brahme, A; Andreo, P; Gudowski, W; Kierkegaard, J
1999-09-01
The absorbed dose due to photonuclear reactions in soft tissue, lung, breast, adipose tissue and cortical bone has been evaluated for a scanned bremsstrahlung beam of end point 50 MeV from a racetrack accelerator. The Monte Carlo code MCNP4B was used to determine the photon source spectrum from the bremsstrahlung target and to simulate the transport of photons through the treatment head and the patient. Photonuclear particle production in tissue was calculated numerically using the energy distributions of photons derived from the Monte Carlo simulations. The transport of photoneutrons in the patient and the photoneutron absorbed dose to tissue were determined using MCNP4B; the absorbed dose due to charged photonuclear particles was calculated numerically assuming total energy absorption in tissue voxels of 1 cm3. The photonuclear absorbed dose to soft tissue, lung, breast and adipose tissue is about (0.11-0.12)+/-0.05% of the maximum photon dose at a depth of 5.5 cm. The absorbed dose to cortical bone is about 45% larger than that to soft tissue. If the contributions from all photoparticles (n, p, 3He and 4He particles and recoils of the residual nuclei) produced in the soft tissue and the accelerator, and from positron radiation and gammas due to induced radioactivity and excited states of the nuclei, are taken into account the total photonuclear absorbed dose delivered to soft tissue is about 0.15+/-0.08% of the maximum photon dose. It has been estimated that the RBE of the photon beam of 50 MV acceleration potential is approximately 2% higher than that of conventional 60Co radiation.
Zargan, S.; Ghafarian, P.; Shabestani Monfared, A.; Sharafi, A.A.; Bakhshayeshkaram, M.; Ay, M.R.
2017-01-01
Background: PET/CT imaging using [18F]-FDG is utilized in clinical oncology for tumor detecting, staging and responding to therapy procedures. Essential consideration must be taken for radiation staff due to high gamma radiation in PET/CT and cyclotron center. The aim of this study was to assess the staff exposure regarding whole body and organ dose and to evaluate environment dose in PET/CT and cyclotron center. Materials and Methods: 80 patients participated in this study. Thermoluminescence, electronic personal dosimeter and Geiger-Muller dosimeter were also utilized for measurement purpose. Results: The mean annual equivalent organ dose for scanning operator with regard to lens of eyes, thyroid, breast and finger according to mean±SD value, were 0.262±0.044, 0.256±0.046, 0.257±0.040 and 0.316±0.118, respectively. The maximum and minimum estimated annual whole body doses were observed for injector and the chemist group with values of (3.98±0.021) mSv/yr and (1.64±0.014) mSv/yr, respectively. The observed dose rates were 5.67 µSv/h in uptake room at the distance of 0.5 meter from the patient whereas the value 4.94 and 3.08 µSv/h were recorded close to patient’s head in PET/CT room and 3.5 meter from the reception desk. Conclusion: In this study, the injector staff and scanning operator received the first high level and second high level of radiation. This study confirmed that low levels of radiation dose were received by all radiation staff during PET/CT procedure using 18F-FDG due to efficient shielding and using trained radiation staff in PET/CT and cyclotron center of Masih Daneshvari hospital. PMID:28451574
Gamma radiation effects on physical properties of parchment documents: Assessment of Dmax
NASA Astrophysics Data System (ADS)
Nunes, Inês; Mesquita, Nuno; Cabo Verde, Sandra; João Trigo, Maria; Ferreira, Armando; Manuela Carolino, Maria; Portugal, António; Luísa Botelho, Maria
2012-12-01
Parchments are important documents that give testimony for History; therefore these materials should be respected and preserved. Considering incremental biodeterioration problems that have to be faced daily, the Archive of the University of Coimbra (AUC) is involved in different scientific projects in order to evaluate and determine new methods for document decontamination and preservation. The aim of this study was to evaluate gamma radiation effects on the colour and texture of the AUC parchment documents. The assessment of these effects was used to estimate the maximum gamma radiation dose (Dmax) that could guarantee parchment documents' decontamination treatment, without significant alteration of their physical properties. Parchment samples were exposed to gamma radiation doses ranging from 10 to 30 kGy. The texture and colour of samples were assessed before and after the irradiation procedure, using a texture analyser and an electronic colorimeter. Hardness and springiness were determined based on texture spectra. Lightness (L*), Chroma (C), greenness vs. redness (a*) and yellowness vs. blueness (b*) values were obtained from colorimetric measures. Results indicate no significant effects of gamma radiation on the texture and colour of parchment for the studied doses.
"Edge-on" MOSkin detector for stereotactic beam measurement and verification.
Jong, Wei Loong; Ung, Ngie Min; Vannyat, Ath; Jamalludin, Zulaikha; Rosenfeld, Anatoly; Wong, Jeannie Hsiu Ding
2017-01-01
Dosimetry in small radiation field is challenging and complicated because of dose volume averaging and beam perturbations in a detector. We evaluated the suitability of the "Edge-on" MOSkin (MOSFET) detector in small radiation field measurement. We also tested the feasibility for dosimetric verification in stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT). "Edge-on" MOSkin detector was calibrated and the reproducibility and linearity were determined. Lateral dose profiles and output factors were measured using the "Edge-on" MOSkin detector, ionization chamber, SRS diode and EBT2 film. Dosimetric verification was carried out on two SRS and five SRT plans. In dose profile measurements, the "Edge-on" MOSkin measurements concurred with EBT2 film measurements. It showed full width at half maximum of the dose profile with average difference of 0.11mm and penumbral width with difference of ±0.2mm for all SRS cones as compared to EBT2 film measurement. For output factor measurements, a 1.1% difference was observed between the "Edge-on" MOSkin detector and EBT2 film for 4mm SRS cone. The "Edge-on" MOSkin detector provided reproducible measurements for dose verification in real-time. The measured doses concurred with the calculated dose for SRS (within 1%) and SRT (within 3%). A set of output correction factors for the "Edge-on" MOSkin detector for small radiation fields were derived from EBT2 film measurement and presented. This study showed that the "Edge-on" MOSkin detector is a suitable tool for dose verification in small radiation field. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Katrina, E-mail: Trinabena23@gmail.com; Lenards, Nishele; Holson, Janice
The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient's neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to themore » hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient's data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.« less
Bakhshandeh, Mohsen; Hashemi, Bijan; Mahdavi, Seied Rabi Mehdi; Nikoofar, Alireza; Vasheghani, Maryam; Kazemnejad, Anoshirvan
2013-02-01
To determine the dose-response relationship of the thyroid for radiation-induced hypothyroidism in head-and-neck radiation therapy, according to 6 normal tissue complication probability models, and to find the best-fit parameters of the models. Sixty-five patients treated with primary or postoperative radiation therapy for various cancers in the head-and-neck region were prospectively evaluated. Patient serum samples (tri-iodothyronine, thyroxine, thyroid-stimulating hormone [TSH], free tri-iodothyronine, and free thyroxine) were measured before and at regular time intervals until 1 year after the completion of radiation therapy. Dose-volume histograms (DVHs) of the patients' thyroid gland were derived from their computed tomography (CT)-based treatment planning data. Hypothyroidism was defined as increased TSH (subclinical hypothyroidism) or increased TSH in combination with decreased free thyroxine and thyroxine (clinical hypothyroidism). Thyroid DVHs were converted to 2 Gy/fraction equivalent doses using the linear-quadratic formula with α/β = 3 Gy. The evaluated models included the following: Lyman with the DVH reduced to the equivalent uniform dose (EUD), known as LEUD; Logit-EUD; mean dose; relative seriality; individual critical volume; and population critical volume models. The parameters of the models were obtained by fitting the patients' data using a maximum likelihood analysis method. The goodness of fit of the models was determined by the 2-sample Kolmogorov-Smirnov test. Ranking of the models was made according to Akaike's information criterion. Twenty-nine patients (44.6%) experienced hypothyroidism. None of the models was rejected according to the evaluation of the goodness of fit. The mean dose model was ranked as the best model on the basis of its Akaike's information criterion value. The D(50) estimated from the models was approximately 44 Gy. The implemented normal tissue complication probability models showed a parallel architecture for the thyroid. The mean dose model can be used as the best model to describe the dose-response relationship for hypothyroidism complication. Copyright © 2013 Elsevier Inc. All rights reserved.
Chan, Ho Sze; Konijnenberg, Mark W; Daniels, Tamara; Nysus, Monique; Makvandi, Mehran; de Blois, Erik; Breeman, Wouter A; Atcher, Robert W; de Jong, Marion; Norenberg, Jeffrey P
2016-12-01
Targeted alpha therapy (TAT) offers advantages over current β-emitting conjugates for peptide receptor radionuclide therapy (PRRT) of neuroendocrine tumors. PRRT with 177 Lu-DOTATATE or 90 Y-DOTATOC has shown dose-limiting nephrotoxicity due to radiopeptide retention in the proximal tubules. Pharmacological protection can reduce renal uptake of radiopeptides, e.g., positively charged amino acids, to saturate in the proximal tubules, thereby enabling higher radioactivity to be safely administered. The aim of this preclinical study was to evaluate the therapeutic effect of 213 Bi-DOTATATE with and without renal protection using L-lysine in mice. Tumor uptake and kinetics as a function of injected mass of peptide (range 0.03-3 nmol) were investigated using 111 In-DOTATATE. These results allowed estimation of the mean radiation absorbed tumor dose for 213 Bi-DOTATATE. Pharmacokinetics and dosimetry of 213 Bi-DOTATATE was determined in mice, in combination with renal protection. A dose escalation study with 213 Bi-DOTATATE was performed to determine the maximum tolerated dose (MTD) with and without pre-administration of L-lysine as for renal protection. Neutrophil gelatinase-associated lipocalin (NGAL) served as renal biomarker to determine kidney injury. The maximum mean radiation absorbed tumor dose occurred at 0.03 nmol and the minimum at 3 nmol. Similar mean radiation absorbed tumor doses were determined for 0.1 and 0.3 nmol with a mean radiation absorbed dose of approximately 0.5 Gy/MBq 213 Bi-DOTATATE. The optimal mass of injected peptide was found to be 0.3 nmol. Tumor uptake was similar for 111 In-DOTATATE and 213 Bi-DOTATATE at 0.3 nmol peptide. Lysine reduced the renal uptake of 213 Bi-DOTATATE by 50% with no effect on the tumor uptake. The MTD was <13.0 ± 1.6 MBq in absence of L-lysine and 21.7 ± 1.9 MBq with L-lysine renal protection, both imparting an LD 50 mean renal radiation absorbed dose of 20 Gy. A correlation was found between the amount of injected radioactivity and NGAL levels. The therapeutic potential of 213 Bi-DOTATATE was illustrated by significantly decreased tumor burden and improved overall survival. Renal protection with L-lysine immediately prior to TAT with 213 Bi-DOTATATE prolonged survival providing substantial evidence for pharmacological nephron blockade to mitigate nephrotoxicity.
Effect of gamma radiation on native endolithic microorganisms from a radioactive waste deposit site.
Pitonzo, B J; Amy, P S; Rudin, M
1999-07-01
A time-course experiment was conducted to evaluate the effects of gamma radiation on the indigenous microbiota present in rock obtained from Yucca Mountain, Nevada Test Site. Microcosms were constructed by placing pulverized Yucca Mountain rock in polystyrene cylinders. Continuous exposure (96 h) at a dose rate of 1.63 Gy/min was used to mimic the near-field environment surrounding waste canisters. The expected maximum surface dose rate from one unbreached canister designed to contain spent nuclear fuels is 0.06 Gy/min. Considering the current repository packing design, multiple canisters within one vault, the cumulative dose rate may well approach that used in this experiment. The microbial communities were characterized after receiving cumulative doses of 0, 0.098, 0. 58, 2.33, 4.67, 7.01 and 9.34 kGy. Radiation-resistant microorganisms in the pulverized rock became viable but nonculturable (VBNC) after a cumulative dose of 2.33 kGy. VBNC microorganisms lose the ability to grow on media on which they have routinely been cultured in response to the environmental stress imposed (i.e. radiation) but can be detected throughout the time course using direct fluorescence microscopy techniques. Two representative exopolysaccharide-producing isolates from Yucca Mountain were exposed to the same radiation regimen in sand microcosms. One isolate was much more radiation-resistant than the other, but both had greater resistance than the general microbial community based on culturable counts. However, when respiring cell counts (VBNC) were compared after irradiation, the results would indicate much more radiation resistance of the individual isolates and the microbial community in general. These results have significant implications for underground storage of nuclear waste as they indicate that indigenous microorganisms are capable of surviving gamma irradiation in a VBNC state.
Lundstedt, Dan; Gustafsson, Magnus; Steineck, Gunnar; Sundberg, Agnetha; Wilderäng, Ulrica; Holmberg, Erik; Johansson, Karl-Axel; Karlsson, Per
2015-06-01
To identify volume and dose predictors of paresthesia after irradiation of the brachial plexus among women treated for breast cancer. The women had breast surgery with axillary dissection, followed by radiation therapy with (n=192) or without irradiation (n=509) of the supraclavicular lymph nodes (SCLNs). The breast area was treated to 50 Gy in 2.0-Gy fractions, and 192 of the women also had 46 to 50 Gy to the SCLNs. We delineated the brachial plexus on 3-dimensional dose-planning computerized tomography. Three to eight years after radiation therapy the women answered a questionnaire. Irradiated volumes and doses were calculated and related to the occurrence of paresthesia in the hand. After treatment with axillary dissection with radiation therapy to the SCLNs 20% of the women reported paresthesia, compared with 13% after axillary dissection without radiation therapy, resulting in a relative risk (RR) of 1.47 (95% confidence interval [CI] 1.02-2.11). Paresthesia was reported by 25% after radiation therapy to the SCLNs with a V40 Gy ≥ 13.5 cm(3), compared with 13% without radiation therapy, RR 1.83 (95% CI 1.13-2.95). Women having a maximum dose to the brachial plexus of ≥55.0 Gy had a 25% occurrence of paresthesia, with RR 1.86 (95% CI 0.68-5.07, not significant). Our results indicate that there is a correlation between larger irradiated volumes of the brachial plexus and an increased risk of reported paresthesia among women treated for breast cancer. Copyright © 2015 Elsevier Inc. All rights reserved.
The small-animal radiation research platform (SARRP): dosimetry of a focused lens system.
Deng, Hua; Kennedy, Christopher W; Armour, Elwood; Tryggestad, Erik; Ford, Eric; McNutt, Todd; Jiang, Licai; Wong, John
2007-05-21
A small animal radiation platform equipped with on-board cone-beam CT and conformal irradiation capabilities is being constructed for translational research. To achieve highly localized dose delivery, an x-ray lens is used to focus the broad beam from a 225 kVp x-ray tube down to a beam with a full width half maximum (FWHM) of approximately 1.5 mm in the energy range 40-80 keV. Here, we report on the dosimetric characteristics of the focused beam from the x-ray lens subsystem for high-resolution dose delivery. Using the metric of the average dose within a 1.5 mm diameter area, the dose rates at a source-to-surface distance (SSD) of 34 cm are 259 and 172 cGy min(-1) at 6 mm and 2 cm depths, respectively, with an estimated uncertainty of +/-5%. The per cent depth dose is approximately 56% at 2 cm depth for a beam at 34 cm SSD.
NASA Astrophysics Data System (ADS)
Berger, Thomas; Burmeister, Sönke; Matthiä, Daniel; Przybyla, Bartos; Reitz, Günther; Bilski, Pawel; Hajek, Michael; Sihver, Lembit; Szabo, Julianna; Ambrozova, Iva; Vanhavere, Filip; Gaza, Ramona; Semones, Edward; Yukihara, Eduardo G.; Benton, Eric R.; Uchihori, Yukio; Kodaira, Satoshi; Kitamura, Hisashi; Boehme, Matthias
2017-03-01
The natural radiation environment in Low Earth Orbit (LEO) differs significantly in composition and energy from that found on Earth. The space radiation field consists of high energetic protons and heavier ions from Galactic Cosmic Radiation (GCR), as well as of protons and electrons trapped in the Earth's radiation belts (Van Allen belts). Protons and some heavier particles ejected in occasional Solar Particle Events (SPEs) might in addition contribute to the radiation exposure in LEO. All sources of radiation are modulated by the solar cycle. During solar maximum conditions SPEs occur more frequently with higher particle intensities. Since the radiation exposure in LEO exceeds exposure limits for radiation workers on Earth, the radiation exposure in space has been recognized as a main health concern for humans in space missions from the beginning of the space age on. Monitoring of the radiation environment is therefore an inevitable task in human spaceflight. Since mission profiles are always different and each spacecraft provides different shielding distributions, modifying the radiation environment measurements needs to be done for each mission. The experiments "Dose Distribution within the ISS (DOSIS)" (2009-2011) and "Dose Distribution within the ISS 3D (DOSIS 3D)" (2012-onwards) onboard the Columbus Laboratory of the International Space Station (ISS) use a detector suite consisting of two silicon detector telescopes (DOSimetry TELescope = DOSTEL) and passive radiation detector packages (PDP) and are designed for the determination of the temporal and spatial variation of the radiation environment. With the DOSTEL instruments' changes of the radiation composition and the related exposure levels in dependence of the solar cycle, the altitude of the ISS and the influence of attitude changes of the ISS during Space Shuttle dockings inside the Columbus Laboratory have been monitored. The absorbed doses measured at the end of May 2016 reached up to 286 μGy/day with dose equivalent values of 647 μSv/day.
Effect of gamma radiation on dielectric and mechanical properties of modified fluoroplastic PTFE
NASA Astrophysics Data System (ADS)
Romanov, Boris; Kostromin, Valeriy; Bedenko, Sergey; Knyshev, Vladimir; Mukhnurov, Ilya; Matias, Rodrigo Roman
2018-03-01
The influence of gamma radiation on dielectric and mechanical characteristics of modified fluoroplast PTFE-4 MBK is considered in this paper. The material was exposed to Gamma-ray source GU-200 (Joint-stock company «Research Institute of Instruments», Lytkarino, Russia). The results of the research have shown that the relative permittivity and the tangent of the dielectric loss angle of PTFE-4 MBK samples at doses 4.105-1.106 Gy monotonically increase by 2.9 and 9.4%, respectively, compared to un-exposed material. The research of the mechanical properties of PTFE-4 MBK showed a maximum stress of up to 13.8 MPa and a maximum strain of 252% at doses of 8.104 Gy. It has been demonstrated that modified PTFE-4 MBK has good dielectric characteristics and withstanding high mechanical stress. We propose to use the results of the research for choosing cables and wiring location used in nuclear and space industry.
Public exposure due to external gamma background radiation in boundary areas of Iran.
Pooya, S M Hosseini; Dashtipour, M R; Enferadi, A; Orouji, T
2015-09-01
A monitoring program in boundary areas of a country is an appropriate way to indicate the level of public exposure. In this research, gamma background radiation was measured using TL dosimeters at 12 boundary areas as well as in the capital city of Iran during the period 2010 to 2011. The measurements were carried out in semi-annual time intervals from January to June and July to December in each year. The maximum average dose equivalent value measured was approximately 70 μSv/month for Tehran city. Also, the average dose values obtained were less than 40 μSv/month for all the cities located at the sea level except that of high level natural radiation area of Ramsar, and more than 55 μSv/month for the higher elevation cities. The public exposure due to ambient gamma dose equivalent in Iran is within the levels reported by UNSCEAR. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yu, Tong; Gao, Jun; Liu, Zhi-Min; Zhang, Qi-Feng; Liu, Yong; Jiang, Ling; Peng, Yun
2017-01-01
Background: Contrast dose and radiation dose reduction in computerized tomography (CT) scan for adult has been explored successfully, but there have been few studies on the application of low-concentration contrast in pediatric abdominal CT examinations. This was a feasibility study on the use of dual-energy spectral imaging and adaptive statistical iterative reconstruction (ASiR) for the reduction of radiation dose and iodine contrast dose in pediatric abdominal CT patients with solid tumors. Methods: Forty-five patients with solid tumors who had initial CT (Group B) and follow-up CT (Group A) after chemotherapy were enrolled. The initial diagnostic CT scan (Group B) was performed using the standard two-phase enhanced CT with 320 mgI/ml concentration contrast, and the follow-up scan (Group A) was performed using a single-phase enhanced CT at 45 s after the beginning of the 270 mgI/ml contrast injection using spectral mode. Forty percent ASiR was used for the images in Group B and monochromatic images with energy levels ≥60 keV in Group A. In addition, filtered back-projection (FBP) reconstruction was used for monochromatic images <60 keV in Group A. The total radiation dose, total iodine load, contrast injection speed, and maximum injection pressure were compared between the two groups. The 40 keV and 60 keV spectral CT images of Group A were compared with the images of Group B to evaluate overall image quality. Results: The total radiation dose, total iodine load, injection speed, and maximum injection pressure for Group A were decreased by 19%, 15%, 34.4%, and 18.3%, respectively. The optimal energy level in spectral CT for displaying the abdominal vessels was 40 keV. At this level, the CT values in the abdominal aorta and its three branches, the portal vein and its two branches, and the inferior vena cava were all greater than 340 hounsfield unit (HU). The abdominal organs of Groups A and B had similar degrees of absolute and relative enhancement (t = 0.36 and −1.716 for liver, −0.153 and −1.546 for pancreas, and 2.427 and 0.866 for renal cortex, all P > 0.05). Signal-to-noise ratio of the abdominal organs was significantly lower in Group A than in Group B (t = −8.11 for liver, −7.83 for pancreas, and −5.38 for renal cortex, all P < 0.05). However, the subjective scores for the 40 keV (FBP) and 60 keV (40% ASiR) spectral CT images determined by two radiologists were all >3, indicating clinically acceptable image quality. Conclusions: Single-phase, dual-energy spectral CT used for children with solid abdominal tumors can reduce contrast dose and radiation dose and can also maintain clinically acceptable image quality. PMID:28345547
Yu, Tong; Gao, Jun; Liu, Zhi-Min; Zhang, Qi-Feng; Liu, Yong; Jiang, Ling; Peng, Yun
2017-04-05
Contrast dose and radiation dose reduction in computerized tomography (CT) scan for adult has been explored successfully, but there have been few studies on the application of low-concentration contrast in pediatric abdominal CT examinations. This was a feasibility study on the use of dual-energy spectral imaging and adaptive statistical iterative reconstruction (ASiR) for the reduction of radiation dose and iodine contrast dose in pediatric abdominal CT patients with solid tumors. Forty-five patients with solid tumors who had initial CT (Group B) and follow-up CT (Group A) after chemotherapy were enrolled. The initial diagnostic CT scan (Group B) was performed using the standard two-phase enhanced CT with 320 mgI/ml concentration contrast, and the follow-up scan (Group A) was performed using a single-phase enhanced CT at 45 s after the beginning of the 270 mgI/ml contrast injection using spectral mode. Forty percent ASiR was used for the images in Group B and monochromatic images with energy levels ≥60 keV in Group A. In addition, filtered back-projection (FBP) reconstruction was used for monochromatic images <60 keV in Group A. The total radiation dose, total iodine load, contrast injection speed, and maximum injection pressure were compared between the two groups. The 40 keV and 60 keV spectral CT images of Group A were compared with the images of Group B to evaluate overall image quality. The total radiation dose, total iodine load, injection speed, and maximum injection pressure for Group A were decreased by 19%, 15%, 34.4%, and 18.3%, respectively. The optimal energy level in spectral CT for displaying the abdominal vessels was 40 keV. At this level, the CT values in the abdominal aorta and its three branches, the portal vein and its two branches, and the inferior vena cava were all greater than 340 hounsfield unit (HU). The abdominal organs of Groups A and B had similar degrees of absolute and relative enhancement (t = 0.36 and -1.716 for liver, -0.153 and -1.546 for pancreas, and 2.427 and 0.866 for renal cortex, all P> 0.05). Signal-to-noise ratio of the abdominal organs was significantly lower in Group A than in Group B (t = -8.11 for liver, -7.83 for pancreas, and -5.38 for renal cortex, all P< 0.05). However, the subjective scores for the 40 keV (FBP) and 60 keV (40% ASiR) spectral CT images determined by two radiologists were all> 3, indicating clinically acceptable image quality. Single-phase, dual-energy spectral CT used for children with solid abdominal tumors can reduce contrast dose and radiation dose and can also maintain clinically acceptable image quality.
Sood, Sumit; Pokhrel, Damodar; McClinton, Christopher; Lominska, Christopher; Badkul, Rajeev; Jiang, Hongyu; Wang, Fen
2017-01-01
A prospective clinical trial, Radiation Therapy Oncology Group (RTOG) 0933, has demonstrated that whole brain radiotherapy (WBRT) using conformal radiation delivery technique with hippocampal avoidance is associated with less memory complications. Further sparing of other organs at risk (OARs) including the scalp, ear canals, cochleae, and parotid glands could be associated with reductions in additional toxicities for patients treated with WBRT. We investigated the feasibility of WBRT using volumetric-modulated arc therapy (VMAT) to spare the hippocampi and the aforementioned OARs. Ten patients previously treated with nonconformal WBRT (NC-WBRT) using opposed lateral beams were retrospectively re-planned using VMAT with hippocampal sparing according to the RTOG 0933 protocol. The OARs (scalp, auditory canals, cochleae, and parotid glands) were considered as dose-constrained structures. VMAT plans were generated for a prescription dose of 30 Gy in 10 fractions. Comparison of the dosimetric parameters achieved by VMAT and NC-WBRT plans was performed using paired t-tests using upper bound p-value of < 0.001. Average beam on time and monitor units (MUs) delivered to the patients on VMAT were compared with those obtained with NC-WBRT. All VMAT plans met RTOG 0933 dosimetric criteria including the dose to hippocampi of 100% of the volume (D 100% ) of 8.4 ± 0.3 Gy and maximum dose of 15.6 ± 0.4 Gy, respectively. A statistically significant dose reduction (p < 0.001) to all OARs was achieved. The mean and maximum scalp doses were reduced by an average of 9 Gy (32%) and 2 Gy (6%), respectively. The mean and maximum doses to the auditory canals were reduced from 29.5 ± 0.5 Gy and 31.0 ± 0.4 Gy with NC-WBRT, to 21.8 ± 1.6 Gy (26%) and 27.4 ± 1.4 Gy (12%) with VMAT. VMAT also reduced mean and maximum doses to the cochlea by an average of 4 Gy (13%) and 2 Gy (6%), respectively. The parotid glands mean and maximum doses with VMAT were 4.4 ± 1.9 Gy and 15.7 ± 5.0 Gy, compared to 12.8 ± 4.9 Gy and 30.6 ± 0.5 Gy with NC-WBRT, respectively. The average dose reduction of mean and maximum of parotid glands from VMAT were 65% and 50%, respectively. The average beam on time and MUs were 2.3minutes and 719 on VMAT, and 0.7 minutes and 350 on NC-WBRT. This study demonstrated the feasibility of WBRT using VMAT to not only spare the hippocampi, but also significantly reduce dose to OARs. These advantages of VMAT could potentially decrease the toxicities associated with NC-WBRT and improve patients' quality of life, especially for patients with favorable prognosis receiving WBRT or patients receiving prophylactic cranial irradiation (PCI). Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Small, Katherine; Kelly, Chris; Beldham-Collins, Rachael
A comparative study was conducted comparing the difference between (1) conformal radiotherapy (CRT) to the whole breast with sequential boost excision cavity plans and (2) intensity-modulated radiation therapy (IMRT) to the whole breast with simultaneously integrated boost to the excision cavity. The computed tomography (CT) data sets of 25 breast cancer patients were used and the results analysed to determine if either planning method produced superior plans. CT data sets from 25 past breast cancer patients were planned using (1) CRT prescribed to 50 Gy in 25 fractions (Fx) to the whole-breast planning target volume (PTV) and 10 Gy inmore » 5Fx to the excision cavity and (2) IMRT prescribed to 60 Gy in 25Fx, with 60 Gy delivered to the excision cavity PTV and 50 Gy delivered to the whole-breast PTV, treated simultaneously. In total, 50 plans were created, with each plan evaluated by PTV coverage using conformity indices, plan maximum dose, lung dose, and heart maximum dose for patients with left-side lesions. CRT plans delivered the lowest plan maximum doses in 56% of cases (average CRT = 6314.34 cGy, IMRT = 6371.52 cGy). They also delivered the lowest mean lung dose in 68% of cases (average CRT = 1206.64 cGy, IMRT = 1288.37 cGy) and V20 in 88% of cases (average CRT = 20.03%, IMRT = 21.73%) and V30 doses in 92% of cases (average CRT = 16.82%, IMRT = 17.97%). IMRT created more conformal plans, using both conformity index and conformation number, in every instance, and lower heart maximum doses in 78.6% of cases (average CRT = 5295.26 cGy, IMRT = 5209.87 cGy). IMRT plans produced superior dose conformity and shorter treatment duration, but a slightly higher planning maximum and increased lung doses. IMRT plans are also faster to treat on a daily basis, with shorter fractionation.« less
NASA Astrophysics Data System (ADS)
Lai, Priscilla; Cai, Zhongli; Pignol, Jean-Philippe; Lechtman, Eli; Mashouf, Shahram; Lu, Yijie; Winnik, Mitchell A.; Jaffray, David A.; Reilly, Raymond M.
2017-11-01
Permanent seed implantation (PSI) brachytherapy is a highly conformal form of radiation therapy but is challenged with dose inhomogeneity due to its utilization of low energy radiation sources. Gold nanoparticles (AuNP) conjugated with electron emitting radionuclides have recently been developed as a novel form of brachytherapy and can aid in homogenizing dose through physical distribution of radiolabeled AuNP when injected intratumorally (IT) in suspension. However, the distribution is unpredictable and precise placement of many injections would be difficult. Previously, we reported the design of a nanoparticle depot (NPD) that can be implanted using PSI techniques and which facilitates controlled release of AuNP. We report here the 3D dose distribution resulting from a NPD incorporating AuNP labeled with electron emitters (90Y, 177Lu, 111In) of different energies using Monte Carlo based voxel level dosimetry. The MCNP5 Monte Carlo radiation transport code was used to assess differences in dose distribution from simulated NPD and conventional brachytherapy sources, positioned in breast tissue simulating material. We further compare these dose distributions in mice bearing subcutaneous human breast cancer xenografts implanted with 177Lu-AuNP NPD, or injected IT with 177Lu-AuNP in suspension. The radioactivity distributions were derived from registered SPECT/CT images and time-dependent dose was estimated. Results demonstrated that the dose distribution from NPD reduced the maximum dose 3-fold when compared to conventional seeds. For simulated NPD, as well as NPD implanted in vivo, 90Y delivered the most homogeneous dose distribution. The tumor radioactivity in mice IT injected with 177Lu-AuNP redistributed while radioactivity in the NPD remained confined to the implant site. The dose distribution from radiolabeled AuNP NPD were predictable and concentric in contrast to IT injected radiolabeled AuNP, which provided irregular and temporally variant dose distributions. The use of NPD may serve as an intermediate between PSI and radiation delivered by radiolabeled AuNP by providing a controlled method to improve delivery of prescribed doses as well as homogenize dose from low penetrating electron sources.
Fung, Mitchell; Bowsher, John G; Van Citters, Douglas W
2018-06-01
Ultra-high molecular weight polyethylene (UHMWPE) is the current gold standard for bearing materials used in total joint arthroplasty. High-dose radiation is commonly used to crosslink UHMWPE, thereby improving its wear resistance. A subsequent remelting step eliminates trapped residual free radicals to promote oxidative stability on the shelf, and to prevent material degradation over the long term. Assessment of clinically retrieved, highly crosslinked UHMWPE devices shows signs of unanticipated oxidation occurring in vivo, despite the absence of free radicals prior to implantation. These findings warrant further investigation into possible factors impacting this phenomenon along with its clinical implications. The overall objective of this work is to quantify the influence of irradiation dose and source on UHMWPE's oxidative stability, along with the effects of oxidation on the ultimate mechanical properties, including strength, ductility, and toughness. The results showed a strong positive correlation between maximum oxidation and initial transvinylene content. Critical oxidation levels in the context of mechanical property loss were determined for e-beam and gamma treatments at various radiation doses. Further, it was shown that critical oxidation was more dependent on radiation dose and less dependent on source. If in vivo oxidation persists in these devices, this can potentially lead to mechanical failure (e.g. fatigue damage) as observed in terminally gamma-sterilized devices. Copyright © 2018 Elsevier Ltd. All rights reserved.
Environmental Impact From Accelerator Operation at SLAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, James C
1999-03-22
Environmental impacts from electron accelerator operations at the Stanford Linear Accelerator Center, which is located near populated areas, are illustrated by using examples of three different accelerator facilities: the low power (a few watts) SSRL, the high power (a few kilowatts) PEP-II, and the 50-kW SLC. Three types of major impacts are discussed: (1) off-site doses from skyshine radiation, mainly neutrons, (2) off-site doses from radioactive air emission, mainly {sup 13}N, and (3) radioactivities, mainly {sup 3}H, produced in the groundwater. It was found that, from SSRL operation, the skyshine radiation result in a MEI (Maximum Exposed Individual) of 0.3more » {mu}Sv/y while a conservative calculation using CAP88 showed a MEI of 0.36 {mu}Sv/y from radioactive air releases. The calculated MEI doses due to future PEP-II operation are 30 {mu}Sv/y from skyshine radiation and 2 {mu}Sv/y from air releases. The population doses due to radioactive air emission are 0.5 person-mSv from SSRL and 12 person-mSv from PEP-II. Because of the stronger decrease of skyshine dose as the distance increases, the population dose from skyshine radiation are smaller than that from air release. The third environmental impact, tritium activity produced in the groundwater, was also demonstrated to be acceptable from both the well water measurements and the FLUKA calculations for the worst case of the SLC high-power dump.« less
Didona, Annamaria; Lancellotta, Valentina; Zucchetti, Claudio; Panizza, Bianca Moira; Frattegiani, Alessandro; Iacco, Martina; Di Pilato, Anna Concetta; Saldi, Simonetta; Aristei, Cynthia
2018-01-01
Intensity-modulated radiotherapy (IMRT) improves dose distribution in head and neck (HN) radiation therapy. Volumetric-modulated arc therapy (VMAT), a new form of IMRT, delivers radiation in single or multiple arcs, varying dose rates (VDR-VMAT) and gantry speeds, has gained considerable attention. Constant dose rate VMAT (CDR-VMAT) associated with a fixed gantry speed does not require a dedicated linear accelerator like VDR-VMAT. The present study explored the feasibility, efficiency and delivery accuracy of CDR-VMAT, by comparing it with IMRT and VDR-VMAT in treatment planning for HN cancer. Step and shoot IMRT (SS-IMRT), CDR-VMAT and VDR-VMAT plans were created for 15 HN cancer patients and were generated by Pinnacle 3 TPS (v 9.8) using 6 MV photon energy. Three PTVs were defined to receive respectively prescribed doses of 66 Gy, 60 Gy and 54 Gy, in 30 fractions. Organs at risk (OARs) included the mandible, spinal cord, brain stem, parotids, salivary glands, esophagus, larynx and thyroid. SS-IMRT plans were based on 7 co-planar beams at fixed gantry angles. CDR-VMAT and VDR-VMAT plans, generated by the SmartArc module, used a 2-arc technique: one clockwise from 182° to 178° and the other one anti-clockwise from 178° to 182°. Comparison parameters included dose distribution to PTVs ( D mean , D 2% , D 50% , D 95% , D 98% and Homogeneity Index), maximum or mean doses to OARs, specific dose-volume data, the monitor units and treatment delivery times. Compared with SS-IMRT, CDR-VMAT significantly reduced the maximum doses to PTV1 and PTV2 and significantly improved all PTV3 parameters, except D 98% and D 95% . It significantly spared parotid and submandibular glands and was associated with a lower D mean to the larynx. Compared with VDR-VMAT, CDR-VMAT was linked to a significantly better D mean , to the PTV3 but results were worse for the parotids, left submandibular gland, esophagus and mandible. Furthermore, the D mean to the larynx was also worse. Compared with SS-IMRT and VDR-VMAT, CDR-VMAT was associated with higher average monitor unit values and significantly shorter average delivery times. CDR-VMAT appeared to be a valid option in Radiation Therapy Centers that lack a dedicated linear accelerator for volumetric arc therapy with variable dose-rates and gantry velocities, and are unwilling or unable to sanction major expenditure at present but want to adopt volumetric techniques.
Mortality among mound workers exposed to polonium-210 and other sources of radiation, 1944-1979.
Boice, John D; Cohen, Sarah S; Mumma, Michael T; Ellis, Elizabeth Dupree; Cragle, Donna L; Eckerman, Keith F; Wallace, Phillip W; Chadda, Bandana; Sonderman, Jennifer S; Wiggs, Laurie D; Richter, Bonnie S; Leggett, Richard W
2014-02-01
Polonium-210 is a naturally occurring radioactive element that decays by emitting an alpha particle. It is in the air we breathe and also a component of tobacco smoke. Polonium-210 is used as an anti-static device in printing presses and gained widespread notoriety in 2006 after the poisoning and subsequent death of a Russian citizen in London. More is known about the lethal effects of polonium-210 at high doses than about late effects from low doses. Cancer mortality was examined among 7,270 workers at the Mound nuclear facility near Dayton, OH where polonium-210 was used (1944-1972) in combination with beryllium as a source of neutrons for triggering nuclear weapons. Other exposures included external gamma radiation and to a lesser extent plutonium-238, tritium and neutrons. Vital status and cause of death was determined through 2009. Standardized mortality ratios (SMRs) were computed for comparisons with the general population. Lifetime occupational doses from all places of employment were sought and incorporated into the analysis. Over 200,000 urine samples were analyzed to estimate radiation doses to body organs from polonium and other internally deposited radionuclides. Cox proportional hazards models were used to evaluate dose-response relationships for specific organs and tissues. Vital status was determined for 98.7% of the workers of which 3,681 had died compared with 4,073.9 expected (SMR 0.90; 95% CI 0.88-0.93). The mean dose from external radiation was 26.1 mSv (maximum 939.1 mSv) and the mean lung dose from external and internal radiation combined was 100.1 mSv (maximum 17.5 Sv). Among the 4,977 radiation workers, all cancers taken together (SMR 0.86; 95% CI 0.79-0.93), lung cancer (SMR 0.85; 95% CI 0.74-0.98), and other types of cancer were not significantly elevated. Cox regression analysis revealed a significant positive dose-response trend for esophageal cancer [relative risk (RR) and 95% confidence interval at 100 mSv of 1.54 (1.15-2.07)] and a negative dose-response trend for liver cancer [RR (95% CI) at 100 mSv of 0.55 (0.23-1.32)]. For lung cancer the RR at 100 mSv was 1.00 (95% CI 0.97-1.04) and for all leukemias other than chronic lymphocytic leukemia (CLL) it was 1.04 (95% CI 0.63-1.71). There was no evidence that heart disease was associated with exposures [RR at 100 mSv of 1.06 (0.95-1.18)]. Assuming a relative biological effectiveness factor of either 10 or 20 for polonium and plutonium alpha particle emissions had little effect on the dose-response analyses. Polonium was the largest contributor to lung dose, and a relative risk of 1.04 for lung cancer at 100 mSv could be excluded with 95% confidence. A dose related increase in cancer of the esophagus was consistent with a radiation etiology but based on small numbers. A dose-related decrease in liver cancer suggests the presence of other modifying factors of risk and adds caution to interpretations. The absence of a detectable increase in total cancer deaths and lung cancer in particular associated with occupational exposures to polonium (mean lung dose 159.8 mSv), and to plutonium to a lesser extent (mean lung dose 13.7 mSv), is noteworthy but based on small numbers. Larger combined studies of U.S. workers are needed to clarify radiation risks following prolonged exposures and radionuclide intakes.
Mortality Among Mound Workers Exposed to Polonium-210 and Other Sources of Radiation, 1944–1979
Boice, John D.; Cohen, Sarah S.; Mumma, Michael T.; ...
2014-02-14
Polonium-210 is a naturally occurring radioactive element that decays by emitting an alpha particle. It is in the air we breathe and also a component of tobacco smoke. Polonium-210 is used as an anti-static device in printing presses and gained widespread notoriety in 2006 after the poisoning and subsequent death of a Russian citizen in London. More is known about the lethal effects of polonium-210 at high doses than about late effects from low doses. In this paper, cancer mortality was examined among 7,270 workers at the Mound nuclear facility near Dayton, OH where polonium-210 was used (1944–1972) in combinationmore » with beryllium as a source of neutrons for triggering nuclear weapons. Other exposures included external gamma radiation and to a lesser extent plutonium-238, tritium and neutrons. Vital status and cause of death was determined through 2009. Standardized mortality ratios (SMRs) were computed for comparisons with the general population. Lifetime occupational doses from all places of employment were sought and incorporated into the analysis. Over 200,000 urine samples were analyzed to estimate radiation doses to body organs from polonium and other internally deposited radionuclides. Cox proportional hazards models were used to evaluate dose-response relationships for specific organs and tissues. Vital status was determined for 98.7% of the workers of which 3,681 had died compared with 4,073.9 expected (SMR 0.90; 95% CI 0.88–0.93). The mean dose from external radiation was 26.1 mSv (maximum 939.1 mSv) and the mean lung dose from external and internal radiation combined was 100.1 mSv (maximum 17.5 Sv). Among the 4,977 radiation workers, all cancers taken together (SMR 0.86; 95% CI 0.79–0.93), lung cancer (SMR 0.85; 95% CI 0.74–0.98), and other types of cancer were not significantly elevated. Cox regression analysis revealed a significant positive dose-response trend for esophageal cancer [relative risk (RR) and 95% confidence interval at 100 mSv of 1.54 (1.15–2.07)] and a negative dose-response trend for liver cancer [RR (95% CI) at 100 mSv of 0.55 (0.23–1.32)]. For lung cancer the RR at 100 mSv was 1.00 (95% CI 0.97–1.04) and for all leukemias other than chronic lymphocytic leukemia (CLL) it was 1.04 (95% CI 0.63–1.71). There was no evidence that heart disease was associated with exposures [RR at 100 mSv of 1.06 (0.95–1.18)]. Assuming a relative biological effectiveness factor of either 10 or 20 for polonium and plutonium alpha particle emissions had little effect on the dose-response analyses. Polonium was the largest contributor to lung dose, and a relative risk of 1.04 for lung cancer at 100 mSv could be excluded with 95% confidence. A dose related increase in cancer of the esophagus was consistent with a radiation etiology but based on small numbers. A dose-related decrease in liver cancer suggests the presence of other modifying factors of risk and adds caution to interpretations. The absence of a detectable increase in total cancer deaths and lung cancer in particular associated with occupational exposures to polonium (mean lung dose 159.8 mSv), and to plutonium to a lesser extent (mean lung dose 13.7 mSv), is noteworthy but based on small numbers. Finally, larger combined studies of U.S. workers are needed to clarify radiation risks following prolonged exposures and radionuclide intakes.« less
Mortality Among Mound Workers Exposed to Polonium-210 and Other Sources of Radiation, 1944–1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boice, John D.; Cohen, Sarah S.; Mumma, Michael T.
Polonium-210 is a naturally occurring radioactive element that decays by emitting an alpha particle. It is in the air we breathe and also a component of tobacco smoke. Polonium-210 is used as an anti-static device in printing presses and gained widespread notoriety in 2006 after the poisoning and subsequent death of a Russian citizen in London. More is known about the lethal effects of polonium-210 at high doses than about late effects from low doses. In this paper, cancer mortality was examined among 7,270 workers at the Mound nuclear facility near Dayton, OH where polonium-210 was used (1944–1972) in combinationmore » with beryllium as a source of neutrons for triggering nuclear weapons. Other exposures included external gamma radiation and to a lesser extent plutonium-238, tritium and neutrons. Vital status and cause of death was determined through 2009. Standardized mortality ratios (SMRs) were computed for comparisons with the general population. Lifetime occupational doses from all places of employment were sought and incorporated into the analysis. Over 200,000 urine samples were analyzed to estimate radiation doses to body organs from polonium and other internally deposited radionuclides. Cox proportional hazards models were used to evaluate dose-response relationships for specific organs and tissues. Vital status was determined for 98.7% of the workers of which 3,681 had died compared with 4,073.9 expected (SMR 0.90; 95% CI 0.88–0.93). The mean dose from external radiation was 26.1 mSv (maximum 939.1 mSv) and the mean lung dose from external and internal radiation combined was 100.1 mSv (maximum 17.5 Sv). Among the 4,977 radiation workers, all cancers taken together (SMR 0.86; 95% CI 0.79–0.93), lung cancer (SMR 0.85; 95% CI 0.74–0.98), and other types of cancer were not significantly elevated. Cox regression analysis revealed a significant positive dose-response trend for esophageal cancer [relative risk (RR) and 95% confidence interval at 100 mSv of 1.54 (1.15–2.07)] and a negative dose-response trend for liver cancer [RR (95% CI) at 100 mSv of 0.55 (0.23–1.32)]. For lung cancer the RR at 100 mSv was 1.00 (95% CI 0.97–1.04) and for all leukemias other than chronic lymphocytic leukemia (CLL) it was 1.04 (95% CI 0.63–1.71). There was no evidence that heart disease was associated with exposures [RR at 100 mSv of 1.06 (0.95–1.18)]. Assuming a relative biological effectiveness factor of either 10 or 20 for polonium and plutonium alpha particle emissions had little effect on the dose-response analyses. Polonium was the largest contributor to lung dose, and a relative risk of 1.04 for lung cancer at 100 mSv could be excluded with 95% confidence. A dose related increase in cancer of the esophagus was consistent with a radiation etiology but based on small numbers. A dose-related decrease in liver cancer suggests the presence of other modifying factors of risk and adds caution to interpretations. The absence of a detectable increase in total cancer deaths and lung cancer in particular associated with occupational exposures to polonium (mean lung dose 159.8 mSv), and to plutonium to a lesser extent (mean lung dose 13.7 mSv), is noteworthy but based on small numbers. Finally, larger combined studies of U.S. workers are needed to clarify radiation risks following prolonged exposures and radionuclide intakes.« less
A U.S. Multicenter Study of Recorded Occupational Radiation Badge Doses in Nuclear Medicine.
Villoing, Daphnée; Yoder, R Craig; Passmore, Christopher; Bernier, Marie-Odile; Kitahara, Cari M
2018-05-01
Purpose To summarize occupational badge doses recorded for a sample of U.S. nuclear medicine technologists. Materials and Methods Nine large U.S. medical institutions identified 208 former and current nuclear medicine technologists certified after 1979 and linked these individuals to historic badge dose records maintained by a commercial dosimetry company (Landauer), yielding a total of 2618 annual dose records. The distributions of annual and cumulative occupational doses were described by using summary statistics. Results Between 1992 and 2015, the median annual personal dose equivalent per nuclear medicine technologist was 2.18 mSv (interquartile range [IQR], 1.25-3.47 mSv; mean, 2.69 mSv). Median annual personal dose equivalents remained relatively constant over this period (range, 1.40-3.30 mSv), while maximum values generally increased over time (from 8.00 mSv in 1992 to 13.9 mSv in 2015). The median cumulative personal dose equivalent was 32.9 mSv (IQR, 18.1-65.5 mSv; mean, 51.4 mSv) for 45 technologists who had complete information and remained employed through 2015. Conclusion Occupational radiation doses were well below the established occupational limits and were consistent with those observed for nuclear medicine technologists worldwide and were greater than those observed for nuclear and general medical workers in the United States These results should be informative for radiation monitoring and safety efforts in nuclear medicine departments. © RSNA, 2018 Online supplemental material is available for this article.
Radiation exposure in interventional radiology
NASA Astrophysics Data System (ADS)
Pinto, N. G. V.; Braz, D.; Vallim, M. A.; Filho, L. G. P.; Azevedo, F. S.; Barroso, R. C.; Lopes, R. T.
2007-09-01
The aim of this study is to evaluate dose values in patients and staff involved in some interventional radiology procedures. Doses have been measured using thermoluminescent dosemeters for single procedures (such as renal and cerebral arteriography, transjungular intrahepatic portasystemic shunt (TIPS) and chemoembolization). The magnitude of doses through the hands of interventional radiologists has been studied. Dose levels were evaluated in three points for patients (eye, thyroid and gonads). The dose-area product (DAP) was also investigated using a Diamentor (PTW-M2). The dose in extremities was estimated for a professional who generally performed one TIPS, two chemoembolizations, two cerebral arteriographies and two renal arteriographies in a week. The estimated annual radiation dose was converted to effective dose as suggested by the 453-MS/Brazil norm The annual dose values were 137.25 mSv for doctors, 40.27 mSv for nurses and 51.95 mSv for auxiliary doctors, and all these annual dose values are below the limit established. The maximum values of the dose obtained for patients were 6.91, 10.92 and 15.34 mGy close to eye, thyroid and gonads, respectively. The DAP values were evaluated for patients in the same interventional radiology procedures. The dose and DAP values obtained are in agreement with values encountered in the literature.
Ferris, Matthew J; Zhong, Jim; Switchenko, Jeffrey M; Higgins, Kristin A; Cassidy, Richard J; McDonald, Mark W; Eaton, Bree R; Patel, Kirtesh R; Steuer, Conor E; Baddour, H Michael; Miller, Andrew H; Bruner, Deborah W; Xiao, Canhua; Beitler, Jonathan J
2018-01-01
Radiation (RT) dose to the central nervous system (CNS) has been implicated as a contributor to treatment-related fatigue in head and neck cancer (HNC) patients undergoing radiation therapy (RT). This study evaluates the association of RT dose to CNS structures with patient-reported (PRO) fatigue scores in a population of HNC patients. At pre-RT (baseline), 6th week of RT, and 1-month post-RT time points, Multidimensional Fatigue Inventory (MFI-20) scores were prospectively obtained from 124 patients undergoing definitive treatment for HNC. Medulla, pons, midbrain, total brainstem, cerebellum, posterior fossa, and pituitary dosimetry were evaluated using summary statistics and dose-volume histograms, and associations with MFI-20 scores were analyzed. Maximum dose (Dmax) to the brainstem and medulla was significantly associated with MFI-20 scores at 6th week of RT and 1-month post-RT time points, after controlling for baseline scores (p<0.05). Each 1Gy increase in medulla Dmax resulted in an increase in total MFI-20 score over baseline of 0.30 (p=0.026), and 0.25 (p=0.037), at the 6th week of RT and 1-month post-RT, respectively. Each 1Gy increase in brainstem Dmax resulted in an increase in total MFI-20 score over baseline of 0.30 (p=0.027), and 0.25 (p=0.037) at the 6th week of RT, 1-month post-RT, respectively. Statistically significant associations were not found between dosimetry for the other CNS structures and MFI-20 scores. In this analysis of PRO fatigue scores from a population of patients undergoing definitive RT for HNC, maximum dose to the brainstem and medulla was associated with a significantly increased risk of acute patient fatigue. Copyright © 2017 Elsevier B.V. All rights reserved.
Dosimetric comparison of peripheral NSCLC SBRT using Acuros XB and AAA calculation algorithms.
Ong, Chloe C H; Ang, Khong Wei; Soh, Roger C X; Tin, Kah Ming; Yap, Jerome H H; Lee, James C L; Bragg, Christopher M
2017-01-01
There is a concern for dose calculation in highly heterogenous environments such as the thorax region. This study compares the quality of treatment plans of peripheral non-small cell lung cancer (NSCLC) stereotactic body radiation therapy (SBRT) using 2 calculation algorithms, namely, Eclipse Anisotropic Analytical Algorithm (AAA) and Acuros External Beam (AXB), for 3-dimensional conformal radiation therapy (3DCRT) and volumetric-modulated arc therapy (VMAT). Four-dimensional computed tomography (4DCT) data from 20 anonymized patients were studied using Varian Eclipse planning system, AXB, and AAA version 10.0.28. A 3DCRT plan and a VMAT plan were generated using AAA and AXB with constant plan parameters for each patient. The prescription and dose constraints were benchmarked against Radiation Therapy Oncology Group (RTOG) 0915 protocol. Planning parameters of the plan were compared statistically using Mann-Whitney U tests. Results showed that 3DCRT and VMAT plans have a lower target coverage up to 8% when calculated using AXB as compared with AAA. The conformity index (CI) for AXB plans was 4.7% lower than AAA plans, but was closer to unity, which indicated better target conformity. AXB produced plans with global maximum doses which were, on average, 2% hotter than AAA plans. Both 3DCRT and VMAT plans were able to achieve D95%. VMAT plans were shown to be more conformal (CI = 1.01) and were at least 3.2% and 1.5% lower in terms of PTV maximum and mean dose, respectively. There was no statistically significant difference for doses received by organs at risk (OARs) regardless of calculation algorithms and treatment techniques. In general, the difference in tissue modeling for AXB and AAA algorithm is responsible for the dose distribution between the AXB and the AAA algorithms. The AXB VMAT plans could be used to benefit patients receiving peripheral NSCLC SBRT. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinnaiyan, Prakash, E-mail: prakash.chinnaiyan@moffitt.org; Won, Minhee; Wen, Patrick Y.
Purpose: To determine the safety of the mammalian target of rapamycin inhibitor everolimus (RAD001) administered daily with concurrent radiation and temozolomide in newly diagnosed glioblastoma patients. Methods and Materials: Everolimus was administered daily with concurrent radiation (60 Gy in 30 fractions) and temozolomide (75 mg/m{sup 2} per day). Everolimus was escalated from 2.5 mg/d (dose level 1) to 5 mg/d (dose level 2) to 10 mg/d (dose level 3). Adjuvant temozolomide was delivered at 150 to 200 mg/m{sup 2} on days 1 to 5, every 28 days, for up to 12 cycles, with concurrent everolimus at the previously established dailymore » dose of 10 mg/d. Dose escalation continued if a dose level produced dose-limiting toxicities (DLTs) in fewer than 3 of the first 6 evaluable patients. Results: Between October 28, 2010, and July 2, 2012, the Radiation Therapy Oncology Group 0913 protocol initially registered a total of 35 patients, with 25 patients successfully meeting enrollment criteria receiving the drug and evaluable for toxicity. Everolimus was successfully escalated to the predetermined maximum tolerated dose of 10 mg/d. Two of the first 6 eligible patients had a DLT at each dose level. DLTs included gait disturbance, febrile neutropenia, rash, fatigue, thrombocytopenia, hypoxia, ear pain, headache, and mucositis. Other common toxicities were grade 1 or 2 hypercholesterolemia and hypertriglyceridemia. At the time of analysis, there was 1 death reported, which was attributed to tumor progression. Conclusions: Daily oral everolimus (10 mg) combined with both concurrent radiation and temozolomide followed by adjuvant temozolomide is well tolerated, with an acceptable toxicity profile. A randomized phase 2 clinical trial with mandatory correlative biomarker analysis is currently under way, designed to both determine the efficacy of this regimen and identify molecular determinants of response.« less
FDG-PET Assessment of the Effect of Head and Neck Radiotherapy on Parotid Gland Glucose Metabolism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roach, Michael C.; Turkington, Timothy G.; Department of Biomedical Engineering, Duke University Medical Center, Duke University, Durham, NC
Purpose: Functional imaging with [F-18]-fluorodeoxyglucose positron emission tomography (FDG-PET) provides the opportunity to define the physiology of the major salivary glands before and after radiation therapy. The goal of this retrospective study was to identify the radiation dose-response relationship of parotid gland glucose metabolism in patients with head and neck squamous cell carcinoma (HNSCC). Materials and Methods: Forty-nine adults with HNSCC were identified who had curative intent intensity-modulated radiation therapy (IMRT) and FDG-PET imaging before and after treatment. Using a graphical user interface, contours were delineated for the parotid glands on axial CT slices while all authors were blinded tomore » paired PET slices. Average and maximal standard uptake values (SUV) were measured within these anatomic regions. Changes in SUV and volume after radiation therapy were correlated with parotid gland dose-volume histograms from IMRT plans. Results: The average parotid gland volume was 30.7 mL and contracted 3.9 {+-} 1.9% with every increase of 10 Gy in mean dose (p = 0.04). However, within the first 3 months after treatment, there was a uniform reduction of 16.5% {+-} 7.3% regardless of dose. The average SUV{sub mean} of the glands was 1.63 {+-} 0.48 pretreatment and declined by 5.2% {+-} 2.5% for every increase of 10 Gy in mean dose (p = 0.04). The average SUV{sub max} was 4.07 {+-} 2.85 pretreatment and decreased in a sigmoid manner with mean dose. A threshold of 32 Gy for mean dose existed, after which SUV{sub max} declined rapidly. Conclusion: Radiation dose responses of the parotid glands can be measured by integrated CT/FDG-PET scans. Retrospective analysis showed sigmoidal declines in the maximum metabolism but linear declines in the average metabolism of the glands with dose. Future studies should correlate this decline in FDG uptake with saliva production to improve treatment planning.« less
Yirmibeşoğlu Erkal, Eda; Karabey, Sinan; Karabey, Ayşegül; Hayran, Mutlu; Erkal, Haldun Şükrü
2015-07-15
The aim of this study was to evaluate the impact of variations in pelvic dimensions on the dose delivered to the target volumes and the organs at risk (OARs) in patients with high-risk prostate cancer (PCa) to be treated with whole pelvic radiation therapy (WPRT) in an attempt to define the hostile pelvis in terms of intensity modulated radiation therapy (IMRT). In 45 men with high-risk PCa to be treated with WPRT, the target volumes and the OARs were delineated, the dose constraints for the OARs were defined, and treatment plans were generated according to the Radiation Therapy Oncology Group 0924 protocol. Six dimensions to reflect the depth, width, and height of the bony pelvis were measured, and 2 indexes were calculated from the planning computed tomographic scans. The minimum dose (Dmin), maximum dose (Dmax), and mean dose (Dmean) for the target volumes and OARs and the partial volumes of each of these structures receiving a specified dose (VD) were calculated from the dose-volume histograms (DVHs). The data from the DVHs were correlated with the pelvic dimensions and indexes. According to an overall hostility score (OHS) calculation, 25 patients were grouped as having a hospitable pelvis and 20 as having a hostile pelvis. Regarding the OHS grouping, the DVHs for the bladder, bowel bag, left femoral head, and right femoral head differed in favor of the hospitable pelvis group, and the DVHs for the rectum differed for a range of lower doses in favor of the hospitable pelvis group. Pelvimetry might be used as a guide to define the challenging anatomy or the hostile pelvis in terms of treatment planning for IMRT in patients with high-risk PCa to be treated with WPRT. Copyright © 2015 Elsevier Inc. All rights reserved.
The study of N-isopropylacrylamide gel dosimeter doped iodinated contrast agents
NASA Astrophysics Data System (ADS)
Chang, Y. J.; Hsieh, L. L.; Liu, M. H.; Liu, J. S.; Hsieh, B. T.
2013-06-01
Low toxicity of N-isopropylacrylamide (NIPAM) dosimeter was doped with clinical iodinated contrast medium agents(Iobitridol (Xenetix® 350) and organically bound iodine (Conray® 60) as radiation sensitizers; The suitable gel dosimeter preparation formula in this research was 5 w/w% gelatin, 5 w/w% N-isopropylacrylamide, 3 w/w% N,N-methylene-bis-acrylamide, and 5 mM Tetrakis phosphonium chloride. The spiral CT was irradiator, and 120 kVp was the operating tube voltage. The maximum radiation dose was 0.6 Gy, and optical CT was the gel measurement device used. The results showed SERs with the addition of radiosensitizers were 10.70 (Xenetix® 350) and 9.67 (Conray® 60), respectively. Thus, the polymerized gel dosimeter could be used in the efficacy evaluation of low-energy and low-radiation dose.
Wang, L; Xing, L; Le, Q
2012-06-01
In H&N cancer patients, the development of oral mucositis is related closely to the radiation dose to the oral cavity. It is generally presumed that the existence of metallic dental implants makes it worse due to the scattering effect of the metal. This study investigates the effects of the dental implants on radiation doses to PTV, tongue mucosa, and other structures for IMRT H&N cancer patients by Monte Carlo (MC) dose calculations. Two H&N cancer patients who have dental implant and are treated by IMRT technique are selected for the purpose. The BEAMnrc/DOSXYZnrc MC codes are employed for the CT-image based dose calculations. The radiation sources are the validated Varian phase-space files for 6MV linac beams. The CT image artifacts caused by the dental fillings are replaced by tissue material. Two sets of MC calculations for each patient are performed at a calculation statistics of 1%: one treats all dental implants as bones, the other substitutes the implants by metal of either titanium or gold with correct density. Doses in PTV and various tissue structures are compared for the two scenarios. With titanium implant, there is no significant difference in doses to PTV and tongue mucosa from that when treating implant as bone. With gold implant, the mean dose to PTV is slightly lowered by 1%; the mean dose to tongue mucosa is reduced by less than 0.5%, although the maximum dose is increased by 5%. The scattering dose from titanium implants is not of concern for H&N patients irradiated by 6MV IMRT beams. For gold implants, the scattering dose to tongue mucosa is not as severe as presumed; and the dose to PTV could be slightly compromised due to the attenuation effect of the metal. This work was supported in part by Varian Medical Systems. © 2012 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gay, H; Dyk, P; Mullen, D
Purpose: Patients with head and neck cancer who undergo radiotherapy often experience several undesirable side-effects, including xerostomia, trismus, and pain in the head and neck area, but little is know about the dose-volume predictors of such pain. We investigated the association between radiation dose and both throat and esophagus pain during radiotherapy. Methods: We analyzed 124 head and neck patients who received radiotherapy at the Washington University School of Medicine in Saint Louis. For these patients, weekly PROs were recorded, including 16 pain and anatomical location questions. In addition, 17 observational symptoms were recorded. Patients were asked to describe theirmore » pain at each site according to a four-level scale: none (0), mild (1), moderate (2), and severe (3). We explored the association between throat pain and the mean dose received in oral cavity and between esophageal pain and the mean dose received in the esophagus. The severity of pain was determined by the difference between the baseline (week 1) pain score and the maximum pain score during treatment. The baseline pain score was defined as the first available pain score before receiving 10 Gy because radiotherapy pain originates later during treatment. Dose-volume metrics were extracted from treatment plans using CERR. To evaluate the correlation between pain and radiation dose, Spearman's correlation coefficient (Rs) was used. Results: The associations between throat pain and the mean dose to the oral cavity, and between esophagus pain and the mean dose to the esophagus, were both statistically significant, with Rs=0.320 (p=0.003) and Rs=0.424 (p<0.0001), respectively. Mean dose, for each structure, was a better predictor of pain than total integral dose. Conclusion: We demonstrated that pain during radiotherapy in head and neck patients highly correlates with the dose delivered. We will further investigate the association between other pain locations and relevant normal tissue dose characteristics.« less
THE FEATURES OF THE COURSE OF CERTAIN VIRUS INFECTIONS AGAINST A BACKGROUND OF RADIATION AFFLICTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remezov, P.I.
1960-01-01
Since the combination of radiation sickness with virus infections complicates diagnosis of the etiology of the infectious process, the course of various infections (lymphocytic choriomeningitis, acute multiple encephalomyelitis influenza, tick-borne encephalitis, etc.) was studied in white mice subjected to a single daily 500, 400, 300, 200, 100, 50, or 10 r dose (or 0.33 r twice weekly) of x-radiation for more than 6 months. Six hours before or 6 hours, 7, 21, and 90 days after irradiation the mice were infected cerebrally, per nos, per os, or subcutaneously with virus in a dose of LD/sub 50/ or more. A studymore » was also made of the course of virus infection as affected by a combination of unfavorable factors, such as irradiation plus chilling and exhaustion. After infection, the clinical symptoms and virological characteristics of the disease were studied. The resultant data are of practical value in diagnosing virus infections complicated by the action of ionizing radiation on the body. A detailed description of the results is given. It was found that ionizing radiation greatly altered the clinical and virological picture of virus infections. Even comparatively small doses (300, 200, 100 r, and less) reduced the mice's resistance to many viruses. The course of the virus infection in an irradiated animal depended both on the radiation dose and the time that had elapsed between irradiation and infection. The greatest drop in the animals' resistance to virus was noted during maximum development of their reaction to radiation. Within 3 to 3.5 months after irradiation their resistance returns to normal. Chronic irradiation, even in such small doses as 10 r, also reduced resistance to viruses. In this case the degree of the drop in resistance was directly proportional to the total radiation dose. Prolonged irradiation of mice twice weekly in doses of 0.33 r revealed no deviations in the clinical or virologn-cal characteristics of the virus infections, but the mortality rate was always higher than in non-irradiated animals. (OTS)« less
Colodro, Juan Fernando Mata; Berná, Alfredo Serna; Puchades, Vicente Puchades; Amores, David Ramos; Baños, Miguel Alcaraz
2017-01-01
The aim of this work is to verify the use of radiochromic film in the quality assurance (QA) of volumetric-modulated arc therapy (VMAT) lung stereotactic body radiation therapy (SBRT) plans and compare the results with those obtained using an ion chamber array. QA was performed for 14 plans using a two-dimensional-array seven29 and EBT3 film. Dose values per session ranged between 7.5 Gy and 18 Gy. The multichannel method was used to obtain a dose map for film. The results obtained were compared with treatment planning system calculated profiles through gamma analysis. Passing criteria were 3%/3 mm, 2%/2 mm and 3%/1.5 mm with maximum and local dose (LD) normalization. Mean gamma passing rate (GPR) (percentage of points presenting a gamma function value of <1) was obtained and compared. Calibration curves were obtained for each color channel within the dose range 0-16 Gy. Mean GPR values for film were >98.9% for all criteria when normalizing per maximum dose. When using LD, normalization was >92.7%. GPR values for the array were lower for all criteria; this difference being statistically significant when normalizing at LD, reaching 12% for the 3%/1.5 mm criterion. Both detectors provide satisfactory results for the QA of plans for VMAT lung SBRT. The film provided greater mean GPR values, afforded greater spatial resolution and was more efficient overall.
Colodro, Juan Fernando Mata; Berná, Alfredo Serna; Puchades, Vicente Puchades; Amores, David Ramos; Baños, Miguel Alcaraz
2017-01-01
Introduction: The aim of this work is to verify the use of radiochromic film in the quality assurance (QA) of volumetric-modulated arc therapy (VMAT) lung stereotactic body radiation therapy (SBRT) plans and compare the results with those obtained using an ion chamber array. Materials and Methods: QA was performed for 14 plans using a two-dimensional-array seven29 and EBT3 film. Dose values per session ranged between 7.5 Gy and 18 Gy. The multichannel method was used to obtain a dose map for film. Results: The results obtained were compared with treatment planning system calculated profiles through gamma analysis. Passing criteria were 3%/3 mm, 2%/2 mm and 3%/1.5 mm with maximum and local dose (LD) normalization. Mean gamma passing rate (GPR) (percentage of points presenting a gamma function value of <1) was obtained and compared. Calibration curves were obtained for each color channel within the dose range 0–16 Gy. Mean GPR values for film were >98.9% for all criteria when normalizing per maximum dose. When using LD, normalization was >92.7%. GPR values for the array were lower for all criteria; this difference being statistically significant when normalizing at LD, reaching 12% for the 3%/1.5 mm criterion. Conclusion: Both detectors provide satisfactory results for the QA of plans for VMAT lung SBRT. The film provided greater mean GPR values, afforded greater spatial resolution and was more efficient overall. PMID:28974858
Imprinted genes and transpositions: epigenomic targets for low dose radiation effects. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jirtle, Randy L.
2012-10-11
The overall hypothesis of this grant application is that low dose ionizing radiation (LDIR) elicits adaptive responses in part by causing heritable DNA methylation changes in the epigenome. This novel postulate was tested by determining if the level of DNA methylation at the Agouti viable yellow (A{sup vy}) metastable locus is altered, in a dose-dependent manner, by low dose radiation exposure (<10 cGy) during early gestation. This information is particularly important to ascertain given the increased use of CT scans in disease diagnosis, increased number of people predicted to live and work in space, and the present concern about radiologicalmore » terrorism. We showed for the first time that LDIR significantly increased DNA methylation at the A{sup vy} locus in a sex-specific manner (p=0.004). Average DNA methylation was significantly increased in male offspring exposed to doses between 0.7 cGy and 7.6 cGy with maximum effects at 1.4 cGy and 3.0 cGy (p<0.01). Offspring coat color was concomitantly shifted towards pseudoagouti (p<0.01). Maternal dietary antioxidant supplementation mitigated both the DNA methylation changes and coat color shift in the irradiated offspring (p<0.05). Thus, LDIR exposure during gestation elicits epigenetic alterations that lead to positive adaptive phenotypic changes that are negated with antioxidants, indicating they are mediated in part by oxidative stress. These findings provide evidence that in the isogenic Avy mouse model epigenetic alterations resulting from LDIR play a role in radiation hormesis, bringing into question the assumption that every dose of radiation is harmful. Our findings not only have significant implications concerning the mechanism of hormesis, but they also emphasize the potential importance of this phenomenon in determining human risk at low radiation doses. Since the epigenetic regulation of genes varies markedly between species, the effect of LDIR on other epigenetically labile genes (e.g. imprinted genes) in animals and humans needs to be defined.« less
Brady, Samuel L; Moore, Bria M; Yee, Brian S; Kaufman, Robert A
2014-01-01
To determine a comprehensive method for the implementation of adaptive statistical iterative reconstruction (ASIR) for maximal radiation dose reduction in pediatric computed tomography (CT) without changing the magnitude of noise in the reconstructed image or the contrast-to-noise ratio (CNR) in the patient. The institutional review board waived the need to obtain informed consent for this HIPAA-compliant quality analysis. Chest and abdominopelvic CT images obtained before ASIR implementation (183 patient examinations; mean patient age, 8.8 years ± 6.2 [standard deviation]; range, 1 month to 27 years) were analyzed for image noise and CNR. These measurements were used in conjunction with noise models derived from anthropomorphic phantoms to establish new beam current-modulated CT parameters to implement 40% ASIR at 120 and 100 kVp without changing noise texture or magnitude. Image noise was assessed in images obtained after ASIR implementation (492 patient examinations; mean patient age, 7.6 years ± 5.4; range, 2 months to 28 years) the same way it was assessed in the pre-ASIR analysis. Dose reduction was determined by comparing size-specific dose estimates in the pre- and post-ASIR patient cohorts. Data were analyzed with paired t tests. With 40% ASIR implementation, the average relative dose reduction for chest CT was 39% (2.7/4.4 mGy), with a maximum reduction of 72% (5.3/18.8 mGy). The average relative dose reduction for abdominopelvic CT was 29% (4.8/6.8 mGy), with a maximum reduction of 64% (7.6/20.9 mGy). Beam current modulation was unnecessary for patients weighing 40 kg or less. The difference between 0% and 40% ASIR noise magnitude was less than 1 HU, with statistically nonsignificant increases in patient CNR at 100 kVp of 8% (15.3/14.2; P = .41) for chest CT and 13% (7.8/6.8; P = .40) for abdominopelvic CT. Radiation dose reduction at pediatric CT was achieved when 40% ASIR was implemented as a dose reduction tool only; no net change to the magnitude of noise in the reconstructed image or the patient CNR occurred. © RSNA, 2013.
Radiation exposure in the moon environment
NASA Astrophysics Data System (ADS)
Reitz, Guenther; Berger, Thomas; Matthiae, Daniel
2012-12-01
During a stay on the moon humans are exposed to elevated radiation levels due to the lack of substantial atmospheric and magnetic shielding compared to the Earth's surface. The absence of magnetic and atmospheric shielding allows cosmic rays of all energies to impinge on the lunar surface. Beside the continuous exposure to galactic cosmic rays (GCR), which increases the risk of cancer mortality, exposure through particles emitted in sudden nonpredictable solar particle events (SPE) may occur. SPEs show an enormous variability in particle flux and energy spectra and have the potential to expose space crew to life threatening doses. On Earth, the contribution to the annual terrestrial dose of natural ionizing radiation of 2.4 mSv by cosmic radiation is about 1/6, whereas the annual exposure caused by GCR on the lunar surface is roughly 380 mSv (solar minimum) and 110 mSv (solar maximum). The analysis of worst case scenarios has indicated that SPE may lead to an exposure of about 1 Sv. The only efficient measure to reduce radiation exposure is the provision of radiation shelters. Measurements on the lunar surface performed during the Apollo missions cover only a small energy band for thermal neutrons and are not sufficient to estimate the exposure. Very recently some data were added by the Radiation Dose Monitoring (RADOM) instrument operated during the Indian Chandrayaan Mission and the Cosmic Ray Telescope (CRaTER) instrument of the NASA LRO (Lunar Reconnaisance Orbiter) mission. These measurements need to be complemented by surface measurements. Models and simulations that exist describe the approximate radiation exposure in space and on the lunar surface. The knowledge on the radiation exposure at the lunar surface is exclusively based on calculations applying radiation transport codes in combination with environmental models. Own calculations are presented using Monte-Carlo simulations to calculate the radiation environment on the moon and organ doses on the surface of the moon for an astronaut in an EVA suit and are compared with measurements. Since it is necessary to verify/validate such calculations with measurement on the lunar surface, a description is given of a radiation detector for future detailed surface measurements. This device is proposed for the ESA Lunar Lander Mission and is capable to characterize the radiation field concerning particle fluencies, dose rates and energy transfer spectra for ionizing particles and to measure the dose contribution of secondary neutrons.
Radiological protection for pregnant women at a large academic medical Cancer Center.
Chu, Bae; Miodownik, Daniel; Williamson, Matthew J; Gao, Yiming; St Germain, Jean; Dauer, Lawrence T
2017-11-01
Most radiation protection programs, regulations and guidance apply specific restrictions to the occupational exposure of pregnant workers. The aim of this study was to compile data from the declared pregnant woman (DPW) radiation protection program over more than 5years at a large, high-volume, comprehensive oncology academic/medical institution and to evaluate for effectiveness against existing regulations and guidance. A retrospective review was performed of the data collected as part of the DPW radiation protection program from January 2010 through May 2016, including the number of declared pregnancies, worker category, personal and fetal dosimetry monitoring measurements, workplace modifications, as well as the monthly and total recorded badge results during the entire pregnancy. 245 pregnancies were declared. The mean monthly fetal radiation dosimetry result was 0.009mSv with a median of 0.005mSv and a maximum of 0.39mSv. The mean total dose over the entire pregnancy was estimated to be 0.08mSv with a median of 0.05mSv and a maximum of 0.89mSv. Only 8 (3.2%) of the 245 declared pregnancies required that workplace modifications be implemented for the worker. The implementation of a declared pregnancy and fetal assessment program, careful planning, an understanding of the risks, and minimization of radiation dose by employing appropriate radiation safety measures as needed, can allow medical staff to perform procedures and normal activities without incurring significant risks to the conceptus, or significant interruptions of job activities for most medical workers. Copyright © 2017. Published by Elsevier Ltd.
Simulation of Earth-Moon-Mars Environments for the Assessment of Organ Doses
NASA Astrophysics Data System (ADS)
Kim, M. Y.; Schwadron, N. A.; Townsend, L.; Cucinotta, F. A.
2010-12-01
Space radiation environments for historically large solar particle events (SPE) and galactic cosmic rays (GCR) at solar minimum and solar maximum are simulated in order to characterize exposures to radio-sensitive organs for missions to low-Earth orbit (LEO), moon, and Mars. Primary and secondary particles for SPE and GCR are transported through the respective atmosphere of Earth or Mars, space vehicle, and astronaut’s body tissues using the HZETRN/QMSFRG computer code. In LEO, exposures are reduced compared to deep space because particles are deflected by the Earth’s magnetic field and absorbed by the solid body of the Earth. Geomagnetic transmission function as a function of altitude was applied for the particle flux of charged particles, and the shift of the organ exposures to higher velocity or lower stopping powers compared to those in deep space was analyzed. In the transport through Mars atmosphere, a vertical distribution of atmospheric thickness was calculated from the temperature and pressure data of Mars Global Surveyor, and the directional cosine distribution was implemented to describe the spherically distributed atmospheric distance along the slant path at each altitude. The resultant directional shielding by Mars atmosphere at solar minimum and solar maximum was used for the particle flux simulation at various altitudes on the Martian surface. Finally, atmospheric shielding was coupled with vehicle and body shielding for organ dose estimates. We made predictions of radiation dose equivalents and evaluated acute symptoms at LEO, moon, and Mars at solar minimum and solar maximum.
Ma, Hong-Bing; Di, Zheng-Li; Wen, Jiao; Ke, Yue; Sun, Xiaodong; Ren, Juan
2015-02-01
Esophageal squamous cell carcinoma is increasingly treated with trimodality therapy. The objective of this Phase I/II clinical study is to assess the efficacy and safety of neoadjuvant radiochemotherapy with docetaxel and cisplatin and radiotherapy in patients with esophagectomy for locally advanced squamous cell carcinoma of the esophagus with neoadjuvant chemoradiotherapy. Patients with esophageal squamous cell carcinoma received radiochemotherapy (50 Gy/25 fractions during Weeks 1-5) using a three-dimensional conformal radiation therapy or intensity-modulated radiation therapy technique together with weekly docetaxel (20 mg/m(2) at dose levels 1 and 2, 25 mg/m(2) at dose level 3 on Weeks 1-5) and cisplatin (30 mg/m(2) at dose level 1, 40 mg/m(2) at dose levels 2 and 3 on Weeks 1-5) from January 2009 to December 2011. The dose-limiting toxicities and maximum tolerated dose were the primary endpoints and overall response rate and progression-free survival were the secondary endpoints. Over this timeframe, a total of 49 patients completed trimodality therapy. Thirteen patients were treated at dose level 1, 21 patients at dose level 2 and 15 patients at dose level 3.The maximum tolerated dose for docetaxel was 20 mg/m(2) and cisplatin 40 mg/m(2). The complete response or partial response was observed in 26.5% (13/49) of patients. Thirty-four patients (69.4%) were treated with neoadjuvant radiochemotherapy followed by surgical resection. The median progression-free survival and median overall survival for all patients (n = 49) were 8 and 17.2 months, respectively. The median overall survival was 27.5 months for patients treated at dose level 2. Neoadjuvant radiochemotherapy with docetaxel 20 mg/m(2) and cisplatin 40 mg/m(2) was effective and tolerable induction regimen in patients with esophageal tumors. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Boufouss, El Hafed; Francis, Laurent A; Kilchytska, Valeriya; Gérard, Pierre; Simon, Pascal; Flandre, Denis
2013-12-13
This paper presents an ultra-low power CMOS voltage reference circuit which is robust under biomedical extreme conditions, such as high temperature and high total ionized dose (TID) radiation. To achieve such performances, the voltage reference is designed in a suitable 130 nm Silicon-on-Insulator (SOI) industrial technology and is optimized to work in the subthreshold regime of the transistors. The design simulations have been performed over the temperature range of -40-200 °C and for different process corners. Robustness to radiation was simulated using custom model parameters including TID effects, such as mobilities and threshold voltages degradation. The proposed circuit has been tested up to high total radiation dose, i.e., 1 Mrad (Si) performed at three different temperatures (room temperature, 100 °C and 200 °C). The maximum drift of the reference voltage V(REF) depends on the considered temperature and on radiation dose; however, it remains lower than 10% of the mean value of 1.5 V. The typical power dissipation at 2.5 V supply voltage is about 20 μW at room temperature and only 75 μW at a high temperature of 200 °C. To understand the effects caused by the combination of high total ionizing dose and temperature on such voltage reference, the threshold voltages of the used SOI MOSFETs were extracted under different conditions. The evolution of V(REF) and power consumption with temperature and radiation dose can then be explained in terms of the different balance between fixed oxide charge and interface states build-up. The total occupied area including pad-ring is less than 0.09 mm2.
Lee, Katrina; Lenards, Nishele; Holson, Janice
2016-01-01
The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient׳s neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient׳s data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landau, David B., E-mail: david.landau@kcl.ac.uk; Hughes, Laura; Baker, Angela
2016-08-01
Purpose: To report toxicity and early survival data for IDEAL-CRT, a trial of dose-escalated concurrent chemoradiotherapy (CRT) for non-small cell lung cancer. Patients and Methods: Patients received tumor doses of 63 to 73 Gy in 30 once-daily fractions over 6 weeks with 2 concurrent cycles of cisplatin and vinorelbine. They were assigned to 1 of 2 groups according to esophageal dose. In group 1, tumor doses were determined by an experimental constraint on maximum esophageal dose, which was escalated following a 6 + 6 design from 65 Gy through 68 Gy to 71 Gy, allowing an esophageal maximum tolerated dose to be determined from early and late toxicities. Tumormore » doses for group 2 patients were determined by other tissue constraints, often lung. Overall survival, progression-free survival, tumor response, and toxicity were evaluated for both groups combined. Results: Eight centers recruited 84 patients: 13, 12, and 10, respectively, in the 65-Gy, 68-Gy, and 71-Gy cohorts of group 1; and 49 in group 2. The mean prescribed tumor dose was 67.7 Gy. Five grade 3 esophagitis and 3 grade 3 pneumonitis events were observed across both groups. After 1 fatal esophageal perforation in the 71-Gy cohort, 68 Gy was declared the esophageal maximum tolerated dose. With a median follow-up of 35 months, median overall survival was 36.9 months, and overall survival and progression-free survival were 87.8% and 72.0%, respectively, at 1 year and 68.0% and 48.5% at 2 years. Conclusions: IDEAL-CRT achieved significant treatment intensification with acceptable toxicity and promising survival. The isotoxic design allowed the esophageal maximum tolerated dose to be identified from relatively few patients.« less
NASA Astrophysics Data System (ADS)
Wong, Man Hoi; Takeyama, Akinori; Makino, Takahiro; Ohshima, Takeshi; Sasaki, Kohei; Kuramata, Akito; Yamakoshi, Shigenobu; Higashiwaki, Masataka
2018-01-01
The effects of ionizing radiation on β-Ga2O3 metal-oxide-semiconductor field-effect transistors (MOSFETs) were investigated. A gamma-ray tolerance as high as 1.6 MGy(SiO2) was demonstrated for the bulk Ga2O3 channel by virtue of weak radiation effects on the MOSFETs' output current and threshold voltage. The MOSFETs remained functional with insignificant hysteresis in their transfer characteristics after exposure to the maximum cumulative dose. Despite the intrinsic radiation hardness of Ga2O3, radiation-induced gate leakage and drain current dispersion ascribed respectively to dielectric damage and interface charge trapping were found to limit the overall radiation hardness of these devices.
NASA Astrophysics Data System (ADS)
Nagamatsu, Aiko; Tolochek, Raisa; Shurshakov, Vyacheslav; Nikolaev, Igor; Tawara, Hiroko; Kitajo, Keiichi; Shimada, Ken
The measurement of radiation environmental parameters in space is essential to support radiation risk assessments for astronauts and establish a benchmark for space radiation models for present and future human space activities. Since Japanese Experiment Module ‘KIBO’ was attached to the International Space Station (ISS) in 2008, we have been performing continuous space radiation dosimetery using a PADLES (Passive Dosimeter for Life-Science Experiments in Space) consisting of CR-39 PNTDs (Plastic Nuclear track detectors) and TLD-MSOs (Mg2SiO4:Tb) for various space experiments onboard the ‘KIBO’ part of the ISS. The MATROSHKA-R experiments aims to verify of dose distributions in a human body during space flight. The phantom consists of tissue equivalent material covered by a poncho jacket with 32 pockets on the surface. 20 container rods with dosimeters can be struck into the spherical phantom. Its diameter is 370 mm and it is 32 kg in weight. The first experiment onboard the KIBO at Forward No.2 area (JPM1F2 Rack2) was conducted over 114 days from 21 May to 12 September 2012 (the installation schedule inside the phantom) on the way to solar cycle 24th upward curve. 16 PADLES packages were deployed into 16 poncho pockets on the surface of the spherical phantom. Another 12 PADLES packages were deployed inside 4 rods (3 packages per rod in the outer, middle and inner side). Area monitoring in the KIBO was conducted in the same period (Area PADLES series #8 from 15 May to 16 September, 2012). Absorbed doses were measured at 17 area monitoring points in the KIBO and 28 locations (16 packages in poncho pockets and 12 inside 4 rods) in the phantom. The maximum value measured with the PADLES in the poncho pockets on the surface of the spherical phantom facing the outer wall was 0.43 mGy/day and the minimum value measured with the PADLES in the poncho pockets on the surface of the spherical phantom facing the KIBO interior was 0.30 mGy/day. The maximum absorbed doses measured inside rods was 0.28 mGy/day and the minimum value was 0.19 mGy/day. This indicates doses measured from the dosimeters placed in the outer side of each rod are relatively high compared to the doses placed in the center of rod. At this time, we also would like to show the preliminary results of comparative study between measured and Simulated Radiation Doses using the Particle and Heavy Ion Transport code System (PHITS) calculations with well developed shielding model of the KIBO and numerical spherical phantom inside.
Hachiya, Misao; Akashi, Makoto
2016-09-01
A huge earthquake struck the northeast coast of the main island of Japan on 11 March 2011 triggering an extremely large tsunami to hit the area. The earthquake and tsunami caused serious damage to the Fukushima nuclear power plants (NPPs) of Tokyo Electric Power Company (TEPCO), resulting in large amounts of radioactive materials being released into the environment. The major nuclides released were (131)I, (134)Cs and (137)Cs. The deposition of these radioactive materials on land resulted in a high ambient dose of radiation around the NPPs, especially within a 20-km radius. Dose assessments based on behavior survey and ambient dose rates revealed that external doses to most residents were lower than 5 mSv, with the maximum dose being 25 mSv. It was fortunate that no workers from the NPPs required treatment from the viewpoint of deterministic effects of radiation. However, a lack of exact knowledge of radiation and its effects prevented the system for medical care and transportation of contaminated personnel from functioning. After the accident, demands or requests for training courses have been increasing. We have learned from the response to this disaster that basic knowledge of radiation and its effects is extremely important for not only professionals such as health care providers but also for other professionals including teachers. © World Health Organisation 2016. All rights reserved. The World Health Organization has granted Oxford University Press permission for the reproduction of this article.
NASA Astrophysics Data System (ADS)
Ishikawa, Tetsuo; Yasumura, Seiji; Ozasa, Kotaro; Kobashi, Gen; Yasuda, Hiroshi; Miyazaki, Makoto; Akahane, Keiichi; Yonai, Shunsuke; Ohtsuru, Akira; Sakai, Akira; Sakata, Ritsu; Kamiya, Kenji; Abe, Masafumi
2015-08-01
The Fukushima Health Management Survey (including the Basic Survey for external dose estimation and four detailed surveys) was launched after the Fukushima Dai-ichi Nuclear Power Plant accident. The Basic Survey consists of a questionnaire that asks Fukushima Prefecture residents about their behavior in the first four months after the accident; and responses to the questionnaire have been returned from many residents. The individual external doses are estimated by using digitized behavior data and a computer program that included daily gamma ray dose rate maps drawn after the accident. The individual external doses of 421,394 residents for the first four months (excluding radiation workers) had a distribution as follows: 62.0%, <1 mSv 94.0%, <2 mSv 99.4%, <3 mSv. The arithmetic mean and maximum for the individual external doses were 0.8 and 25 mSv, respectively. While most dose estimation studies were based on typical scenarios of evacuation and time spent inside/outside, the Basic Survey estimated doses considering individually different personal behaviors. Thus, doses for some individuals who did not follow typical scenarios could be revealed. Even considering such extreme cases, the estimated external doses were generally low and no discernible increased incidence of radiation-related health effects is expected.
Ishikawa, Tetsuo; Yasumura, Seiji; Ozasa, Kotaro; Kobashi, Gen; Yasuda, Hiroshi; Miyazaki, Makoto; Akahane, Keiichi; Yonai, Shunsuke; Ohtsuru, Akira; Sakai, Akira; Sakata, Ritsu; Kamiya, Kenji; Abe, Masafumi
2015-01-01
The Fukushima Health Management Survey (including the Basic Survey for external dose estimation and four detailed surveys) was launched after the Fukushima Dai-ichi Nuclear Power Plant accident. The Basic Survey consists of a questionnaire that asks Fukushima Prefecture residents about their behavior in the first four months after the accident; and responses to the questionnaire have been returned from many residents. The individual external doses are estimated by using digitized behavior data and a computer program that included daily gamma ray dose rate maps drawn after the accident. The individual external doses of 421,394 residents for the first four months (excluding radiation workers) had a distribution as follows: 62.0%, <1 mSv; 94.0%, <2 mSv; 99.4%, <3 mSv. The arithmetic mean and maximum for the individual external doses were 0.8 and 25 mSv, respectively. While most dose estimation studies were based on typical scenarios of evacuation and time spent inside/outside, the Basic Survey estimated doses considering individually different personal behaviors. Thus, doses for some individuals who did not follow typical scenarios could be revealed. Even considering such extreme cases, the estimated external doses were generally low and no discernible increased incidence of radiation-related health effects is expected. PMID:26239643
NASA Astrophysics Data System (ADS)
Alawiah, A.; Intan, A. M.; Bauk, S.; Abdul-Rashid, H. A.; Yusoff, Z.; Mokhtar, M. R.; Wan Abdullah, W. S.; Mat Sharif, K. A.; Mahdiraji, G. A.; Mahamd Adikan, F. R.; Tamchek, N.; Noor, N. M.; Bradley, D. A.
2013-05-01
Thermoluminescence (TL) flat optical fibers (FF) have been proposed as radiation sensor in medical dosimetry for both diagnostic and radiotherapy applications. A flat optical fiber with nominal dimensions of (3.226 × 3.417 × 0.980) mm3 contains pure silica SiO2 was selected for this research. The FF was annealed at 400°C for 1 h before irradiated. Kinetic parameters and dosimetric glow curve of TL response were studied in FF with respect to electron irradiation of 6 MeV, 15 MeV and 21 MeV using linear accelerator (LINAC) in the dose range of 2.0-10.0 Gy. The TL response was read using a TLD reader Harshaw Model 3500. The Time-Temperature-Profile (TTP) of the reader used includes; initial preheat temperature of 80°C, maximum readout temperature is 400°C and the heating rate of 30°Cs-1. The proposed FF shows excellent linear radiation response behavior within the clinical relevant dose range for all of these energies, good reproducibility, independence of radiation energy, independence of dose rate and exhibits a very low thermal fading. From these results, the proposed FF can be used as radiation dosimeter and favorably compares with the widely used of LiF:MgTi dosimeter in medical radiotherapy application.
NASA Astrophysics Data System (ADS)
Meier, Matthias M.; Hubiak, Melina
2010-05-01
In radiation protection, the Q-factor has been defined to describe the biological effectiveness of the energy deposition or absorbed dose to humans in the mixed radiation fields at aviation altitudes. This particular radiation field is generated by the interactions of primary cosmic particles with the atoms of the constituents of the Earth’s atmosphere. Thus the intensity, characterized by the ambient dose equivalent rate H∗(10), depends on the flight altitude and the energy spectra of the particles, mainly protons and alpha particles, impinging on the atmosphere. These charged cosmic projectiles are deflected both by the interplanetary and the Earth’s magnetic field such that the corresponding energy spectra are modulated by these fields. The solar minimum is a time period of particular interest since the interplanetary magnetic field is weakest within the 11-year solar cycle and the dose rates at aviation altitudes reach their maximum due to the reduced shielding of galactic cosmic radiation. For this reason, the German Aerospace Center (DLR) performed repeated dosimetric on-board measurements in cooperation with several German airlines during the past solar minimum from March 2006 to August 2008. The Q-factors measured with a TEPC range from 1.98 at the equator to 2.60 in the polar region.
Calais, Phillipe J
2017-03-20
Shortly after treatment with 7200 MBq of 131 I, a thyroid cancer patient died and was subsequently cremated. Calculations of the atmospheric emissions of 131 I from the crematorium flue were performed using a standard atmospheric pollution Gaussian Plume Dispersal model. Estimates of whole-body and thyroid dose of those potentially exposed were made using OLINDA/EXM dosimetry software. Under the meteorological conditions prevalent at the time of the cremation, and depending on the actual release rate of the 131 I, the Western Australian legal limit of 3.7 Bqm -3 for atmospheric emissions of 131 I may have been exceeded for distances of up to 440 and 1610 m downwind of the crematorium chimney, with the maximum concentration being between 33 and 392 Bqm -3 . Assuming 16% of the inhaled 131 I was taken up in the thyroid with the balance in the remainder of the body, the radiation dose to maximally exposed individuals was calculated to be approximately 17.7 μSv to the thyroid and 0.04 μSv to the whole-body. Despite the maximum allowable atmospheric 131 I concentration of 3.7 Bqm -3 being exceeded, as the number of people immediately downwind of the crematorium flue in the high concentration zones was very low, and considering the relatively high tolerable dose to the thyroid, the radiation dose to people was probably not a problem in this case. The local limit of 1000 MBq of 131 I for the cremation of a deceased patient is reasonable, but with adequate precautions could be significantly increased without any harmful effects to people or the environment.
Inada, Satoshi; Masuda, Takanori; Maruyama, Naoya; Yamashita, Yukari; Sato, Tomoyasu; Imada, Naoyuki
2016-01-01
To evaluate the image quality and effect of radiation dose reduction by setting for computed tomography automatic exposure control system (CT-AEC) in computed tomographic angiography (CTA) of lower extremity artery. Two methods of setting were compared for CT-AEC [conventional and contrast-to-noise ratio (CNR) methods]. Conventional method was set noise index (NI): 14and tube current threshold: 10-750 mA. CNR method was set NI: 18, minimum tube current: (X+Y)/2 mA (X, Y: maximum X (Y)-axis tube current value of leg in NI: 14), and maximum tube current: 750 mA. The image quality was evaluated by CNR, and radiation dose reduction was evaluated by dose-length-product (DLP). In conventional method, mean CNRs for pelvis, femur, and leg were 19.9±4.8, 20.4±5.4, and 16.2±4.3, respectively. There was a significant difference between the CNRs of pelvis and leg (P<0.001), and between femur and leg (P<0.001). In CNR method, mean CNRs for pelvis, femur, and leg were 15.2±3.3, 15.3±3.2, and 15.3±3.1, respectively; no significant difference between pelvis, femur, and leg (P=0.973) in CNR method was observed. Mean DLPs were 1457±434 mGy⋅cm in conventional method, and 1049±434 mGy·cm in CNR method. There was a significant difference in the DLPs of conventional method and CNR method (P<0.001). CNR method gave equal CNRs for pelvis, femur, and leg, and was beneficial for radiation dose reduction in CTA of lower extremity artery.
A detailed evaluation of TomoDirect 3DCRT planning for whole-breast radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fields, Emma C.; Rabinovitch, Rachel; Ryan, Nicole E.
2013-01-01
The goal of this work was to develop planning strategies for whole-breast radiotherapy (WBRT) using TomoDirect three-dimensional conformal radiation therapy (TD-3DCRT) and to compare TD-3DCRT with conventional 3DCRT and TD intensity-modulated radiation therapy (TD-IMRT) to evaluate differences in WBRT plan quality. Computed tomography (CT) images of 10 women were used to generate 150 WBRT plans, varying in target structures, field width (FW), pitch, and number of beams. Effects on target and external maximum doses (EMD), organ-at-risk (OAR) doses, and treatment time were assessed for each parameter to establish an optimal planning technique. Using this technique, TD-3DCRT plans were generated andmore » compared with TD-IMRT and standard 3DCRT plans. FW 5.0 cm with pitch = 0.250 cm significantly decreased EMD without increasing lung V20 Gy. Increasing number of beams from 2 to 6 and using an additional breast planning structure decreased EMD though increased lung V20 Gy. Changes in pitch had minimal effect on plan metrics. TD-3DCRT plans were subsequently generated using FW 5.0 cm, pitch = 0.250 cm, and 2 beams, with additional beams or planning structures added to decrease EMD when necessary. TD-3DCRT and TD-IMRT significantly decreased target maximum dose compared to standard 3DCRT. FW 5.0 cm with 2 to 6 beams or novel planning structures or both allow for TD-3DCRT WBRT plans with excellent target coverage and OAR doses. TD-3DCRT plans are comparable to plans generated using TD-IMRT and provide an alternative to conventional 3DCRT for WBRT.« less
Nolte, R; Mühlbradt, K-H; Meulders, J P; Stephan, G; Haney, M; Schmid, E
2005-12-01
The production of dicentric chromosomes in human lymphocytes by high-energy neutron radiation was studied using a quasi-monoenergetic 60 MeV neutron beam. The average yield coefficient [see text] of the linear dose-response relationship for dicentric chromosomes was measured to be (0.146+/-0.016) Gy-1. This confirms our earlier observations that above 400 keV, the yield of dicentric chromosomes decreases with increasing neutron energy. Using the linear-quadratic dose-response relationship for dicentric chromosomes established in blood of the same donor for 60Co gamma-rays as a reference radiation, an average maximum low-dose RBE (RBEM) of 14+/-4 for 60 MeV quasi-monoenergetic neutrons with a dose-weighted average energy [see text] of 41.0 MeV is obtained. A correction procedure was applied, to account for the low-energy continuum of the quasi-monoenergetic spectral neutron distribution, and the yield coefficient alpha for 60 MeV neutrons was determined from the measured average yield coefficient [see text]. For alpha, a value of (0.115+/-0.026) Gy-1 was obtained corresponding to an RBEM of 11+/-4. The present experiments extend earlier investigations with monoenergetic neutrons to higher energies.
MPC and ALI: their basis and their comparison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, W.E. Jr.; Watson, E.C.
Radiation protection regulations in the United States have evolved from the recommendations of the International Commission on Radiological Protection (ICRP) and the National Council on Radiation Protection and Measurements (NCRP). In 1959, the ICRP issued Publication 2 which contained specific recommendations on dose rate limits, permissible body burdens, metabolic data for radionuclides, and maximum permissible concentrations (MPC) in air or water. Over the next 20 years, new information became available concerning the effects of radiation, the uptake and retention of radionuclides, and the radioactive decay schemes of parent radionuclides. To include this newer information, the ICRP issued Publication 30 inmore » 1978 to supersede Publication 2. One of the secondary limits defined in Publication 30 is the annual limit of intake (ALI). Radionuclide specific ALI values are intended to replace MPC values in determining whether or not ambient air and water concentrations are sufficiently low to maintain the dose to workers within accepted dose rate limits. In this paper, we discuss the derivation of MPC and ALI values, compare inhalation committed dose equivalent factors derived from ICRP Publications 2 and 30, and discuss the practical implications of using either MPC or ALI in determining compliance with occupational exposure limits. 6 references.« less
NASA Astrophysics Data System (ADS)
Redon, Christophe; Dickey, Jennifer; Bonner, William; Sedelnikova, Olga
Ionizing radiation (IR) exposure is inevitable. In addition to exposure from cosmic rays, the sun and radioactive substances, modern society has created new sources of radiation exposure such as space and high altitude journeys, X-ray diagnostics, radiological treatments and the increasing threat of radiobiological terrorism. For these reasons, a reliable, reproducible and sensitive assessment of dose and time exposure to IR is essential. We developed a minimally invasive diagnostic test for IR exposure based on detection of a phosphorylated variant of histone H2AX (gamma-H2AX), which occurs specifically at sites of DNA double-strand breaks (DSBs). The phosphorylation of thousands of H2AX molecules forms a gamma-H2AX focus in the chromatin flanking the DSB site that can be detected in situ. We analyzed gamma- H2AX focus formation in both directly irradiated cells as well as in un-irradiated "bystanders" in close contact with irradiated cells. In order to insure minimal invasiveness, we examined commercially available artificial skin models as a surrogate for human skin biopsies as well as peripheral blood lymphocytes. In human skin models, cells in a thin plane were microbeamirradiated and gamma-H2AX formation was measured both in irradiated and in distal bystander cells over time. In irradiated cells DSB formation reached a maximum at 15-30 minutes post- IR and then declined within several hours; all cells were affected. In marked contrast, the incidence of DSBs in bystander cells reached a maximum by 12-48 hours post-irradiation, gradually decreasing over the 7 day time course. At the maxima, 40-60% of bystander cells were affected. Similarly, we analyzed blood samples exposed to IR ex vivo at doses ranging from 0.02 to 3 Gy. The amount of DNA damage was linear in respect to radiation dose and independent of the age or sex of the blood donor. The method is highly reproducible and highly sensitive. In directly irradiated cells, the number of gamma-H2AX foci peaked 30 min after irradiation and then declined at a relatively steady pace as the cell repaired the DNA damage. Radiation effects were still detectable after 48 hrs for doses greater than 1 Gy and remained linear to initial dose. Activated bystander lymphocytes cultured with media from irradiated lymphocytes exhibited a two-fold increased damage response as seen by gamma- H2AX formation. The effect reached a maximum 3 hrs post-exposure and was retained for over 24 hrs. Thus, detection of gamma-H2AX formation to determine DNA damage in a minimally invasive skin test and a non-invasive blood test could be useful and promising tools to analyze direct and indirect effects of radiation exposure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayo, Charles, E-mail: charles.mayo@umassmemorial.or; Yorke, Ellen; Merchant, Thomas E.
Publications relating brainstem radiation toxicity to quantitative dose and dose-volume measures derived from three-dimensional treatment planning were reviewed. Despite the clinical importance of brainstem toxicity, most studies reporting brainstem effects after irradiation have fewer than 100 patients. There is limited evidence relating toxicity to small volumes receiving doses above 60-64 Gy using conventional fractionation and no definitive criteria regarding more subtle dose-volume effects or effects after hypofractionated treatment. On the basis of the available data, the entire brainstem may be treated to 54 Gy using conventional fractionation using photons with limited risk of severe or permanent neurological effects. Smaller volumesmore » of the brainstem (1-10 mL) may be irradiated to maximum doses of 59 Gy for dose fractions <=2 Gy; however, the risk appears to increase markedly at doses >64 Gy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niedzielski, Joshua S., E-mail: jsniedzielski@mdanderson.org; University of Texas Houston Graduate School of Biomedical Science, Houston, Texas; Yang, Jinzhong
Purpose: We sought to investigate the ability of mid-treatment {sup 18}F-fluorodeoxyglucose positron emission tomography (PET) studies to objectively and spatially quantify esophageal injury in vivo from radiation therapy for non-small cell lung cancer. Methods and Materials: This retrospective study was approved by the local institutional review board, with written informed consent obtained before enrollment. We normalized {sup 18}F-fluorodeoxyglucose PET uptake to each patient's low-irradiated region (<5 Gy) of the esophagus, as a radiation response measure. Spatially localized metrics of normalized uptake (normalized standard uptake value [nSUV]) were derived for 79 patients undergoing concurrent chemoradiation therapy for non-small cell lung cancer. We usedmore » nSUV metrics to classify esophagitis grade at the time of the PET study, as well as maximum severity by treatment completion, according to National Cancer Institute Common Terminology Criteria for Adverse Events, using multivariate least absolute shrinkage and selection operator (LASSO) logistic regression and repeated 3-fold cross validation (training, validation, and test folds). This 3-fold cross-validation LASSO model procedure was used to predict toxicity progression from 43 asymptomatic patients during the PET study. Dose-volume metrics were also tested in both the multivariate classification and the symptom progression prediction analyses. Classification performance was quantified with the area under the curve (AUC) from receiver operating characteristic analysis on the test set from the 3-fold analyses. Results: Statistical analysis showed increasing nSUV is related to esophagitis severity. Axial-averaged maximum nSUV for 1 esophageal slice and esophageal length with at least 40% of axial-averaged nSUV both had AUCs of 0.85 for classifying grade 2 or higher esophagitis at the time of the PET study and AUCs of 0.91 and 0.92, respectively, for maximum grade 2 or higher by treatment completion. Symptom progression was predicted with an AUC of 0.75. Dose metrics performed poorly at classifying esophagitis (AUC of 0.52, grade 2 or higher mid treatment) or predicting symptom progression (AUC of 0.67). Conclusions: Normalized uptake can objectively, locally, and noninvasively quantify esophagitis during radiation therapy and predict eventual symptoms from asymptomatic patients. Normalized uptake may provide patient-specific dose-response information not discernible from dose.« less
Niedzielski, Joshua S; Yang, Jinzhong; Liao, Zhongxing; Gomez, Daniel R; Stingo, Francesco; Mohan, Radhe; Martel, Mary K; Briere, Tina M; Court, Laurence E
2016-11-01
We sought to investigate the ability of mid-treatment (18)F-fluorodeoxyglucose positron emission tomography (PET) studies to objectively and spatially quantify esophageal injury in vivo from radiation therapy for non-small cell lung cancer. This retrospective study was approved by the local institutional review board, with written informed consent obtained before enrollment. We normalized (18)F-fluorodeoxyglucose PET uptake to each patient's low-irradiated region (<5 Gy) of the esophagus, as a radiation response measure. Spatially localized metrics of normalized uptake (normalized standard uptake value [nSUV]) were derived for 79 patients undergoing concurrent chemoradiation therapy for non-small cell lung cancer. We used nSUV metrics to classify esophagitis grade at the time of the PET study, as well as maximum severity by treatment completion, according to National Cancer Institute Common Terminology Criteria for Adverse Events, using multivariate least absolute shrinkage and selection operator (LASSO) logistic regression and repeated 3-fold cross validation (training, validation, and test folds). This 3-fold cross-validation LASSO model procedure was used to predict toxicity progression from 43 asymptomatic patients during the PET study. Dose-volume metrics were also tested in both the multivariate classification and the symptom progression prediction analyses. Classification performance was quantified with the area under the curve (AUC) from receiver operating characteristic analysis on the test set from the 3-fold analyses. Statistical analysis showed increasing nSUV is related to esophagitis severity. Axial-averaged maximum nSUV for 1 esophageal slice and esophageal length with at least 40% of axial-averaged nSUV both had AUCs of 0.85 for classifying grade 2 or higher esophagitis at the time of the PET study and AUCs of 0.91 and 0.92, respectively, for maximum grade 2 or higher by treatment completion. Symptom progression was predicted with an AUC of 0.75. Dose metrics performed poorly at classifying esophagitis (AUC of 0.52, grade 2 or higher mid treatment) or predicting symptom progression (AUC of 0.67). Normalized uptake can objectively, locally, and noninvasively quantify esophagitis during radiation therapy and predict eventual symptoms from asymptomatic patients. Normalized uptake may provide patient-specific dose-response information not discernible from dose. Copyright © 2016 Elsevier Inc. All rights reserved.
VMAT testing for an Elekta accelerator
Sweeney, Larry E.; Marshall, Edward I.; Mahendra, Saikanth
2012-01-01
Volumetric‐modulated arc therapy (VMAT) has been shown to be able to deliver plans equivalent to intensity‐modulated radiation therapy (IMRT) in a fraction of the treatment time. This improvement is important for patient immobilization/ localization compliance due to comfort and treatment duration, as well as patient throughput. Previous authors have suggested commissioning methods for this modality. Here, we extend the methods reported for the Varian RapidArc system (which tested individual system components) to the Elekta linear accelerator, using custom files built using the Elekta iComCAT software. We also extend the method reported for VMAT commissioning of the Elekta accelerator by verifying maximum values of parameters (gantry speed, multileaf collimator (MLC) speed, and backup jaw speed), investigating: 1) beam profiles as a function of dose rate during an arc, 2) over/under dosing due to MLC reversals, and 3) over/under dosing at changing dose rate junctions. Equations for construction of the iComCAT files are given. Results indicate that the beam profile for lower dose rates varies less than 3% from that of the maximum dose rate, with no difference during an arc. The gantry, MLC, and backup jaw maximum speed are internally consistent. The monitor unit chamber is stable over the MUs and gantry movement conditions expected. MLC movement and position during VMAT delivery are within IMRT tolerances. Dose rate, gantry speed, and MLC speed are accurately controlled. Over/under dosing at junctions of MLC reversals or dose rate changes are within clinical acceptability. PACS numbers: 87.55.de, 87.55.Qr, 87.56.bd PMID:22402389
Wang, Hesheng; Chandarana, Hersh; Block, Kai Tobias; Vahle, Thomas; Fenchel, Matthias; Das, Indra J
2017-06-26
Interest in MR-only treatment planning for radiation therapy is growing rapidly with the emergence of integrated MRI/linear accelerator technology. The purpose of this study was to evaluate the feasibility of using synthetic CT images generated from conventional Dixon-based MRI scans for radiation treatment planning of lung cancer. Eleven patients who underwent whole-body PET/MR imaging following a PET/CT exam were randomly selected from an ongoing prospective IRB-approved study. Attenuation maps derived from the Dixon MR Images and atlas-based method was used to create CT data (synCT). Treatment planning for radiation treatment of lung cancer was optimized on the synCT and subsequently copied to the registered CT (planCT) for dose calculation. Planning target volumes (PTVs) with three sizes and four different locations in the lung were planned for irradiation. The dose-volume metrics comparison and 3D gamma analysis were performed to assess agreement between the synCT and CT calculated dose distributions. Mean differences between PTV doses on synCT and CT across all the plans were -0.1% ± 0.4%, 0.1% ± 0.5%, and 0.4% ± 0.5% for D95, D98 and D100, respectively. Difference in dose between the two datasets for organs at risk (OARs) had average differences of -0.14 ± 0.07 Gy, 0.0% ± 0.1%, and -0.1% ± 0.2% for maximum spinal cord, lung V20, and heart V40 respectively. In patient groups based on tumor size and location, no significant differences were observed in the PTV and OARs dose-volume metrics (p > 0.05), except for the maximum spinal-cord dose when the target volumes were located at the lung apex (p = 0.001). Gamma analysis revealed a pass rate of 99.3% ± 1.1% for 2%/2 mm (dose difference/distance to agreement) acceptance criteria in every plan. The synCT generated from Dixon-based MRI allows for dose calculation of comparable accuracy to the standard CT for lung cancer treatment planning. The dosimetric agreement between synCT and CT calculated doses warrants further development of a MR-only workflow for radiotherapy of lung cancer.
Novel, full 3D scintillation dosimetry using a static plenoptic camera.
Goulet, Mathieu; Rilling, Madison; Gingras, Luc; Beddar, Sam; Beaulieu, Luc; Archambault, Louis
2014-08-01
Patient-specific quality assurance (QA) of dynamic radiotherapy delivery would gain from being performed using a 3D dosimeter. However, 3D dosimeters, such as gels, have many disadvantages limiting to quality assurance, such as tedious read-out procedures and poor reproducibility. The purpose of this work is to develop and validate a novel type of high resolution 3D dosimeter based on the real-time light acquisition of a plastic scintillator volume using a plenoptic camera. This dosimeter would allow for the QA of dynamic radiation therapy techniques such as intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT). A Raytrix R5 plenoptic camera was used to image a 10 × 10 × 10 cm(3) EJ-260 plastic scintillator embedded inside an acrylic phantom at a rate of one acquisition per second. The scintillator volume was irradiated with both an IMRT and VMAT treatment plan on a Clinac iX linear accelerator. The 3D light distribution emitted by the scintillator volume was reconstructed at a 2 mm resolution in all dimensions by back-projecting the light collected by each pixel of the light-field camera using an iterative reconstruction algorithm. The latter was constrained by a beam's eye view projection of the incident dose acquired using the portal imager integrated with the linac and by physical consideration of the dose behavior as a function of depth in the phantom. The absolute dose difference between the reconstructed 3D dose and the expected dose calculated using the treatment planning software Pinnacle(3) was on average below 1.5% of the maximum dose for both integrated IMRT and VMAT deliveries, and below 3% for each individual IMRT incidences. Dose agreement between the reconstructed 3D dose and a radiochromic film acquisition in the same experimental phantom was on average within 2.1% and 1.2% of the maximum recorded dose for the IMRT and VMAT delivery, respectively. Using plenoptic camera technology, the authors were able to perform millimeter resolution, water-equivalent dosimetry of an IMRT and VMAT plan over a whole 3D volume. Since no moving parts are required in the dosimeter, the incident dose distribution can be acquired as a function of time, thus enabling the validation of static and dynamic radiation delivery with photons, electrons, and heavier ions.
Novel, full 3D scintillation dosimetry using a static plenoptic camera
Goulet, Mathieu; Rilling, Madison; Gingras, Luc; Beddar, Sam; Beaulieu, Luc; Archambault, Louis
2014-01-01
Purpose: Patient-specific quality assurance (QA) of dynamic radiotherapy delivery would gain from being performed using a 3D dosimeter. However, 3D dosimeters, such as gels, have many disadvantages limiting to quality assurance, such as tedious read-out procedures and poor reproducibility. The purpose of this work is to develop and validate a novel type of high resolution 3D dosimeter based on the real-time light acquisition of a plastic scintillator volume using a plenoptic camera. This dosimeter would allow for the QA of dynamic radiation therapy techniques such as intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT). Methods: A Raytrix R5 plenoptic camera was used to image a 10 × 10 × 10 cm3 EJ-260 plastic scintillator embedded inside an acrylic phantom at a rate of one acquisition per second. The scintillator volume was irradiated with both an IMRT and VMAT treatment plan on a Clinac iX linear accelerator. The 3D light distribution emitted by the scintillator volume was reconstructed at a 2 mm resolution in all dimensions by back-projecting the light collected by each pixel of the light-field camera using an iterative reconstruction algorithm. The latter was constrained by a beam's eye view projection of the incident dose acquired using the portal imager integrated with the linac and by physical consideration of the dose behavior as a function of depth in the phantom. Results: The absolute dose difference between the reconstructed 3D dose and the expected dose calculated using the treatment planning software Pinnacle3 was on average below 1.5% of the maximum dose for both integrated IMRT and VMAT deliveries, and below 3% for each individual IMRT incidences. Dose agreement between the reconstructed 3D dose and a radiochromic film acquisition in the same experimental phantom was on average within 2.1% and 1.2% of the maximum recorded dose for the IMRT and VMAT delivery, respectively. Conclusions: Using plenoptic camera technology, the authors were able to perform millimeter resolution, water-equivalent dosimetry of an IMRT and VMAT plan over a whole 3D volume. Since no moving parts are required in the dosimeter, the incident dose distribution can be acquired as a function of time, thus enabling the validation of static and dynamic radiation delivery with photons, electrons, and heavier ions. PMID:25086549
The impact of different dose response parameters on biologically optimized IMRT in breast cancer
NASA Astrophysics Data System (ADS)
Costa Ferreira, Brigida; Mavroidis, Panayiotis; Adamus-Górka, Magdalena; Svensson, Roger; Lind, Bengt K.
2008-05-01
The full potential of biologically optimized radiation therapy can only be maximized with the prediction of individual patient radiosensitivity prior to treatment. Unfortunately, the available biological parameters, derived from clinical trials, reflect an average radiosensitivity of the examined populations. In the present study, a breast cancer patient of stage I II with positive lymph nodes was chosen in order to analyse the effect of the variation of individual radiosensitivity on the optimal dose distribution. Thus, deviations from the average biological parameters, describing tumour, heart and lung response, were introduced covering the range of patient radiosensitivity reported in the literature. Two treatment configurations of three and seven biologically optimized intensity-modulated beams were employed. The different dose distributions were analysed using biological and physical parameters such as the complication-free tumour control probability (P+), the biologically effective uniform dose (\\bar{\\bar{D}} ), dose volume histograms, mean doses, standard deviations, maximum and minimum doses. In the three-beam plan, the difference in P+ between the optimal dose distribution (when the individual patient radiosensitivity is known) and the reference dose distribution, which is optimal for the average patient biology, ranges up to 13.9% when varying the radiosensitivity of the target volume, up to 0.9% when varying the radiosensitivity of the heart and up to 1.3% when varying the radiosensitivity of the lung. Similarly, in the seven-beam plan, the differences in P+ are up to 13.1% for the target, up to 1.6% for the heart and up to 0.9% for the left lung. When the radiosensitivity of the most important tissues in breast cancer radiation therapy was simultaneously changed, the maximum gain in outcome was as high as 7.7%. The impact of the dose response uncertainties on the treatment outcome was clinically insignificant for the majority of the simulated patients. However, the jump from generalized to individualized radiation therapy may significantly increase the therapeutic window for patients with extreme radio sensitivity or radioresistance, provided that these are identified. Even for radiosensitive patients a simple treatment technique is sufficient to maximize the outcome, since no significant benefits were obtained with a more complex technique using seven intensity-modulated beams portals.
PCP METHODOLOGY FOR DETERMINING DOSE RATES FOR SMALL GRAM QUANTITIES IN SHIPPING PACKAGINGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nathan, S.
The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials, are significantly less hazardous than large amounts of the same materials. This study describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package compliant with 10 CFR Part 71 external radiation level limits regulations. These regulations require packaging for the shipment of radioactive materials perform, under both normal and accident conditions, the essential functions of material containment, subcriticality, and maintain external radiation levels within regulatory limits.more » 10 CFR 71.33(b)(1)(2)&(3) state radioactive and fissile materials must be identified and their maximum quantity, chemical and physical forms be included in an application. Furthermore, the U.S. Federal Regulations require application contain an evaluation demonstrating the package (i.e., the packaging and its contents) satisfies the external radiation standards for all packages (10 CFR 71.31(2), 71.35(a), & 71.47). By placing the contents in a He leak-tight containment vessel, and limiting the mass to ensure subcriticality, the first two essential functions are readily met. Some isotopes emit sufficiently strong photon radiation that small amounts of material can yield a large external dose rate. Quantifying of the dose rate for a proposed content is a challenging issue for the SGQ approach. It is essential to quantify external radiation levels from several common gamma and neutron sources that can be safely placed in a specific packaging, to ensure compliance with federal regulations. The Packaging Certification Program (PCP) Methodology for Determining Dose Rate for Small Gram Quantities in Shipping Packagings described in this report provides bounding mass limits for a set of proposed SGQ isotopes. Methodology calculations were performed to estimate external radiation levels for the 9977 shipping package using the MCNP radiation transport code to develop a set of response multipliers (Green's functions) for 'dose per particle' for each neutron and photon spectral group. The source spectrum for each isotope generated using the ORIGEN-S and RASTA computer codes was folded with the response multipliers to generate the dose rate per gram of each isotope in the 9977 shipping package and its associated shielded containers. The maximum amount of a single isotope that could be shipped within the regulatory limits contained in 10 CFR 71.47 for dose rate at the surface of the package is determined. If a package contains a mixture of isotopes, the acceptability for shipment can be determined by a sum of fractions approach. Furthermore, the results of this analysis can be easily extended to additional radioisotopes by simply evaluating the neutron and/or photon spectra of those isotopes and folding the spectral data with the Green's functions provided.« less
NASA Astrophysics Data System (ADS)
Abba, Habu Tela; Hassan, Wan Muhamad Saridan Wan; Saleh, Muneer Aziz; Aliyu, Abubakar Sadiq; Ramli, Ahmad Termizi
2017-11-01
In- situ measurement of terrestrial gamma radiation dose rates (TGRD) was conducted in northern zone of Jos Plateau and a statistical relationship between the TGRD and the underlying geological formations was investigated. The TGRD rates in all the measurements ranged from 40 to 1265 nGy h-1 with a mean value of 250 nGy h-1. The maximum TGDR was recorded on geological type G8 (Younger Granites) at Bisitchi, and the lowest TGDR was recorded on G6 (Basaltic rocks) at Gabia. One way analysis of variance (ANOVA) statistical test was used to compared the data. Significantly, the results of this study inferred a strong relationship between TGRD levels with geological structures of a place. An isodose map was plotted to represent exposure rates due to TGRD. The results of this investigation could be useful for multiple public interest such as evaluating public dose for the area.
Castelli, Joel; Simon, Antoine; Louvel, Guillaume; Henry, Olivier; Chajon, Enrique; Nassef, Mohamed; Haigron, Pascal; Cazoulat, Guillaume; Ospina, Juan David; Jegoux, Franck; Benezery, Karen; de Crevoisier, Renaud
2015-01-09
Large anatomical variations occur during the course of intensity-modulated radiation therapy (IMRT) for locally advanced head and neck cancer (LAHNC). The risks are therefore a parotid glands (PG) overdose and a xerostomia increase. The purposes of the study were to estimate: - the PG overdose and the xerostomia risk increase during a "standard" IMRT (IMRTstd); - the benefits of an adaptive IMRT (ART) with weekly replanning to spare the PGs and limit the risk of xerostomia. Fifteen patients received radical IMRT (70 Gy) for LAHNC. Weekly CTs were used to estimate the dose distributions delivered during the treatment, corresponding either to the initial planning (IMRTstd) or to weekly replanning (ART). PGs dose were recalculated at the fraction, from the weekly CTs. PG cumulated doses were then estimated using deformable image registration. The following PG doses were compared: pre-treatment planned dose, per-treatment IMRTstd and ART. The corresponding estimated risks of xerostomia were also compared. Correlations between anatomical markers and dose differences were searched. Compared to the initial planning, a PG overdose was observed during IMRTstd for 59% of the PGs, with an average increase of 3.7 Gy (10.0 Gy maximum) for the mean dose, and of 8.2% (23.9% maximum) for the risk of xerostomia. Compared to the initial planning, weekly replanning reduced the PG mean dose for all the patients (p<0.05). In the overirradiated PG group, weekly replanning reduced the mean dose by 5.1 Gy (12.2 Gy maximum) and the absolute risk of xerostomia by 11% (p<0.01) (30% maximum). The PG overdose and the dosimetric benefit of replanning increased with the tumor shrinkage and the neck thickness reduction (p<0.001). During the course of LAHNC IMRT, around 60% of the PGs are overdosed of 4 Gy. Weekly replanning decreased the PG mean dose by 5 Gy, and therefore by 11% the xerostomia risk.
NASA Technical Reports Server (NTRS)
Zhou, Dazhuang; Gaza, R.; Roed, Y.; Semones, E.; Lee, K.; Steenburgh, R.; Johnson, S.; Flanders, J.; Zapp, N.
2010-01-01
Radiation field of particles in low Earth orbit (LEO) is mainly composed of galactic cosmic rays (GCR), solar energetic particles and particles in SAA (South Atlantic Anomaly). GCR are modulated by solar activity, at the period of solar minimum activity, GCR intensity is at maximum and the main contributor for space radiation is GCR. At present for space radiation measurements conducted by JSC (Johnson Space Center) SRAG (Space Radiation Analysis Group), the preferred active dosimeter sensitive to all LET (Linear Energy Transfer) is the tissue equivalent proportional counter (TEPC); the preferred passive dosimeters are thermoluminescence dosimeters (TLDs) and optically stimulated luminescence dosimeters (OSLDs) sensitive to low LET as well as CR-39 plastic nuclear track detectors (PNTDs) sensitive to high LET. For the method using passive dosimeters, radiation quantities for all LET can be obtained by combining radiation results measured with TLDs/OSLDs and CR-39 PNTDs. TEPC, TLDs/OSLDs and CR-39 detectors were used to measure the radiation field for the ISS (International Space Station) - Expedition 18-19/ULF2 space mission which was conducted from 15 November 2008 to 31 July 2009 - near the period of the recent solar minimum activity. LET spectra (differential and integral fluence, absorbed dose and dose equivalent) and radiation quantities were measured for positions TEPC, TESS (Temporary Sleeping Station, inside the polyethylene lined sleep station), SM-P 327 and 442 (Service Module - Panel 327 and 442). This paper presents radiation LET spectra measured with TEPC and CR-39 PNTDs and radiation dose measured with TLDs/OSLDs as well as the radiation quantities combined from results measured with passive dosimeters.
Chu, Bae P.; Horan, Christopher; Basu, Ellen; Dauer, Lawrence; Williamson, Matthew; Carrasquillo, Jorge A.; Pandit-Taskar, Neeta; Modak, Shakeel
2015-01-01
Background Although 131I-metaiodobenzylguanidine therapy (131I-MIBG) is increasingly used for children with high-risk neuroblastoma, a paucity of lead-lined rooms limits its wider use. We implemented radiation safety procedures to comply with New York City Department of Health and Mental Hygiene regulations for therapeutic radioisotopes and administered 131I-MIBG using rolling lead shields. Procedure Patients received 0.67GBq (18mCi)/kg/dose 131I-MIBG on an IRB-approved protocol (NCT00107289). Radiation safety procedures included private room with installation of rolling lead shields to maintain area dose rates ≤0.02mSv/h outside the room, patient isolation until dose rate <0.07mSv/h at 1m and retention of a urinary catheter with collection of urine in lead boxes. Parents were permitted in the patient’s room behind lead shields, trained in radiation safety principles and given real-time radiation monitors. Results Records on 16 131I-MIBG infusions among 10 patients (age 2–11 years) were reviewed. Mean ± standard deviation 131I-MIBG administered was 17.67±11.14 (range: 6.11–40.59) GBq. Mean maximum dose rates outside treatment rooms were 0.013±0.008 mSv/hr. Median time-to-discharge was 3 days post-131I-MIBG. Exposure of medical staff and parents was below regulatory limits. Cumulative whole-body dose received by the physician, nurse and radiation safety officer during treatment was 0.098±0.058, 0.056±0.045, 0.055±0.050 mSv respectively. Cumulative exposure to parents was 0.978±0.579mSv. Estimated annual radiation exposure for inpatient nurses was 0.096±0.034mSv/nurse. Thyroid bioassay scans on all medical personnel were
Licheng, Jiang; Yidong, Fan; Ping, Wang; Keqiang, Yan; Xueting, Wang; Yingchen, Zhang; Lei, Gao; Jiyang, Ding; Zhonghua, Xu
2014-01-01
Background & objectives: With the ethical concern about the dose of CT scan and wide use of CT in protocol of suspected renal colic, more attention has been paid to low dose CT. The aim of the present study was to make a comparison of unenhanced low-dose spiral CT localization with unenhanced standard-dose spiral CT in patients with upper urinary tract calculi for minimally invasive percutaneous nephrolithotomy (MPCNL) treatment. Methods: Twenty eight patients with ureter and renal calculus, preparing to take MPCNL, underwent both abdominal low-dose CT (25 mAs) and standard-dose CT (100 mAs). Low-dose CT and standard-dose CT were independently evaluated for the characterization of renal/ureteral calculi, perirenal adjacent organs, blood vessels, indirect signs of renal or ureteral calculus (renal enlargement, pyeloureteral dilatation), and the indices of localization (percutaneous puncture angulation and depth) used in the MPCNL procedure. Results: In all 28 patients, low-dose CT was 100 per cent coincidence 100 per cent sensitive and 100 per cent specific for depicting the location of the renal and ureteral calculus, renal enlargement, pyeloureteral dilatation, adjacent organs, and the presumptive puncture point and a 96.3 per cent coincidence 96 per cent sensitivity and 93 per cent specificity for blood vessel signs within the renal sinus, and with an obvious lower radiation exposure for patients when compared to standard-dose CT (P<0.05). The indices of puncture depth, puncture angulation, and maximum calculus transverse diameter on the axial surface showed no significant difference between the two doses of CT scans, with a significant variation in calculus visualization slice numbers (P<0.05). Interpretation & conclusions: Our findings show that unenhanced low-dose CT achieves a sensitivity and accuracy similar to that of standard-dose CT in assessing the localization of renal ureteral calculus and adjacent organs conditions and identifying the maximum calculus transverse diameter on the axial surface, percutaneous puncture depth, and angulation in patients, with a significant lower radiation exposure, who are to be treated by MPCNL, and can be used as an alternative localization method. PMID:24820832
Licheng, Jiang; Yidong, Fan; Ping, Wang; Keqiang, Yan; Xueting, Wang; Yingchen, Zhang; Lei, Gao; Jiyang, Ding; Zhonghua, Xu
2014-03-01
With the ethical concern about the dose of CT scan and wide use of CT in protocol of suspected renal colic, more attention has been paid to low dose CT. The aim of the present study was to make a comparison of unenhanced low-dose spiral CT localization with unenhanced standard-dose spiral CT in patients with upper urinary tract calculi for minimally invasive percutaneous nephrolithotomy (MPCNL) treatment. Twenty eight patients with ureter and renal calculus, preparing to take MPCNL, underwent both abdominal low-dose CT (25 mAs) and standard-dose CT (100 mAs). Low-dose CT and standard-dose CT were independently evaluated for the characterization of renal/ureteral calculi, perirenal adjacent organs, blood vessels, indirect signs of renal or ureteral calculus (renal enlargement, pyeloureteral dilatation), and the indices of localization (percutaneous puncture angulation and depth) used in the MPCNL procedure. In all 28 patients, low-dose CT was 100 per cent coincidence 100 per cent sensitive and 100 per cent specific for depicting the location of the renal and ureteral calculus, renal enlargement, pyeloureteral dilatation, adjacent organs, and the presumptive puncture point and a 96.3 per cent coincidence 96 per cent sensitivity and 93 per cent specificity for blood vessel signs within the renal sinus, and with an obvious lower radiation exposure for patients when compared to standard-dose CT (P<0.05). The indices of puncture depth, puncture angulation, and maximum calculus transverse diameter on the axial surface showed no significant difference between the two doses of CT scans, with a significant variation in calculus visualization slice numbers (P<0.05). Our findings show that unenhanced low-dose CT achieves a sensitivity and accuracy similar to that of standard-dose CT in assessing the localization of renal ureteral calculus and adjacent organs conditions and identifying the maximum calculus transverse diameter on the axial surface, percutaneous puncture depth, and angulation in patients, with a significant lower radiation exposure, who are to be treated by MPCNL, and can be used as an alternative localization method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundstedt, Dan, E-mail: dan.lundstedt@gu.se; Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg; Gustafsson, Magnus
Purpose: To identify volume and dose predictors of paresthesia after irradiation of the brachial plexus among women treated for breast cancer. Methods and Materials: The women had breast surgery with axillary dissection, followed by radiation therapy with (n=192) or without irradiation (n=509) of the supraclavicular lymph nodes (SCLNs). The breast area was treated to 50 Gy in 2.0-Gy fractions, and 192 of the women also had 46 to 50 Gy to the SCLNs. We delineated the brachial plexus on 3-dimensional dose-planning computerized tomography. Three to eight years after radiation therapy the women answered a questionnaire. Irradiated volumes and doses were calculated andmore » related to the occurrence of paresthesia in the hand. Results: After treatment with axillary dissection with radiation therapy to the SCLNs 20% of the women reported paresthesia, compared with 13% after axillary dissection without radiation therapy, resulting in a relative risk (RR) of 1.47 (95% confidence interval [CI] 1.02-2.11). Paresthesia was reported by 25% after radiation therapy to the SCLNs with a V{sub 40} {sub Gy} ≥ 13.5 cm{sup 3}, compared with 13% without radiation therapy, RR 1.83 (95% CI 1.13-2.95). Women having a maximum dose to the brachial plexus of ≥55.0 Gy had a 25% occurrence of paresthesia, with RR 1.86 (95% CI 0.68-5.07, not significant). Conclusion: Our results indicate that there is a correlation between larger irradiated volumes of the brachial plexus and an increased risk of reported paresthesia among women treated for breast cancer.« less
Radiation protection for human missions to the Moon and Mars
NASA Technical Reports Server (NTRS)
Simonsen, Lisa C.; Nealy, John E.
1991-01-01
Radiation protection assessments are performed for advanced Lunar and Mars manned missions. The Langley cosmic ray transport code and the nucleon transport code are used to quantify the transport and attenuation of galactic cosmic rays and solar proton flares through various shielding media. Galactic cosmic radiation at solar maximum and minimum, as well as various flare scenarios are considered. Propagation data for water, aluminum, liquid hydrogen, lithium hydride, lead, and lunar and Martian regolith (soil) are included. Shield thickness and shield mass estimates required to maintain incurred doses below 30 day and annual limits (as set for Space Station Freedom and used as a guide for space exploration) are determined for simple geometry transfer vehicles. On the surface of Mars, dose estimates are presented for crews with their only protection being the carbon dioxide atmosphere and for crews protected by shielding provided by Martian regolith for a candidate habitat.
Chang, Amy T Y; Hung, Albert W M; Cheung, Fion W K; Lee, Michael C H; Chan, Oscar S H; Philips, Helen; Cheng, Yung-Tang; Ng, Wai-Tong
2016-07-01
Intensity modulated radiation therapy (IMRT) is widely used to achieve a highly conformal dose and improve treatment outcome. However, plan quality and planning time are institute and planner dependent, and no standardized tool exists to recognize an optimal plan. RapidPlan, a knowledge-based algorithm, can generate constraints to assist optimization and produce high-quality IMRT plans. This report evaluated the quality and efficiency of using RapidPlan in nasopharyngeal carcinoma (NPC) IMRT planning. RapidPlan was configured using 79 radical IMRT plans for NPC; 20 consecutive NPC patients indicated for radical radiation therapy between October 2014 and May 2015 were then recruited to assess its performance. The ability of RapidPlan to produce acceptable plans was evaluated. For plans that could not achieve clinical acceptance, manual touch-up was performed. The IMRT plans produced without RapidPlan (manual plans) and with RapidPlan (RP-2 plans, including those with manual touch-up) were compared in terms of dosimetric quality and planning efficiency. RapidPlan by itself could produce clinically acceptable plans for 9 of the 20 patients; manual touch-up increased the number of acceptable plans (RP-2 plans) to 19. The target dose coverage and conformity were very similar. No difference was found in the maximum dose to the brainstem and optic chiasm. RP-2 plans delivered a higher maximum dose to the spinal cord (46.4 Gy vs 43.9 Gy, P=.002) but a lower dose to the parotid (mean dose to right parotid, 37.3 Gy vs 45.4 Gy; left, 34.4 Gy vs 43.1 Gy; P<.001) and the right cochlea (mean dose, 48.6 Gy vs 52.6 Gy; P=.02). The total planning time for RP-2 plans was significantly less than that for manual plans (64 minutes vs 295 minutes, P<.001). This study shows that RapidPlan can significantly improve planning efficiency and produce quality IMRT plans for NPC patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Bacchim Neto, Fernando Antonio; Alves, Allan Felipe Fattori; Mascarenhas, Yvone Maria; Nicolucci, Patrícia; Pina, Diana Rodrigues de
2016-08-01
To perform a complete evaluation on radiation doses, received by primary and assistant medical staff, while performing different vascular interventional radiology procedures. We evaluated dose received in different body regions during three categories of vascular procedures: lower limb angiography (Angiography), lower limb percutaneous transluminal angioplasty (Angioplasty) and stent graft placement for abdominal aortic aneurysm treatment (A. A. A. Treatment). We positioned the dosimeters near the eye lens, thyroid, chest, abdomen, hands, and feet of the interventional physicians. Equivalent dose was compared with annual dose limits for workers in order to determine the maximum number of procedures per year that each physician could perform. We assessed 90 procedures. We found the highest equivalent doses in the A. A. A. Treatment, in which 90% of the evaluations indicated at least one region receiving more than 1mSv per procedure. Angioplasty was the only procedural modality that provided statistically different doses for different professionals, which is an important aspect on regards to radiological protection strategies. In comparison with the dose limits, the most critical region in all procedures was the eye lens. Since each body region of the interventionist is exposed to different radiation levels, dose distribution measurements are essential for radiological protection strategies. These results indicate that dosimeters placed in abdomen instead of chest may represent more accurately the whole body doses received by the medical staff. Additional dosimeters and a stationary shield for the eye lens are strongly recommended. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Radiation-induced grafting of acrylic acid onto polypropylene film and its biodegradability
NASA Astrophysics Data System (ADS)
Mandal, Dev K.; Bhunia, Haripada; Bajpai, Pramod K.; Chaudhari, C. V.; Dubey, K. A.; Varshney, L.
2016-06-01
Polypropylene based commodity polyolefins are widely used in packaging, manufacturing, electrical, pharmaceutical and other applications. The aim of the present work is to study the effect of grafting of acrylic acid on the biodegradability of acrylic acid grafted polypropylene. The effect of different conditions showed that grafting percentage increased with increase in monomer concentration, radiation dose and inhibitor concentration but decreased with increase in radiation dose rate. The maximum grafting of 159.4% could be achieved at optimum conditions. The structure of grafted polypropylene films at different degree of grafting was characterized by EDS, FTIR, TGA, DSC, SEM and XRD. EDS studies showed that the increase in acrylic acid grafting percentage increased the hydrophilicity of the grafted films. FTIR studies indicated the presence of acrylic acid on the surface of polypropylene film. TGA studies revealed that thermal stability decreased with increase in grafting percentage. DSC studies showed that melting temperature and crystallinity of the grafted polypropylene films lower than polypropylene film. SEM studies indicated that increase in acrylic acid grafting percentage increased the wrinkles in the grafted films. The maximum biodegradability could be achieved to 6.85% for 90.5% grafting. This suggested that microorganisms present in the compost could biodegrade acrylic acid grafted polypropylene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakhshandeh, Mohsen; Hashemi, Bijan, E-mail: bhashemi@modares.ac.ir; Mahdavi, Seied Rabi Mehdi
Purpose: To determine the dose-response relationship of the thyroid for radiation-induced hypothyroidism in head-and-neck radiation therapy, according to 6 normal tissue complication probability models, and to find the best-fit parameters of the models. Methods and Materials: Sixty-five patients treated with primary or postoperative radiation therapy for various cancers in the head-and-neck region were prospectively evaluated. Patient serum samples (tri-iodothyronine, thyroxine, thyroid-stimulating hormone [TSH], free tri-iodothyronine, and free thyroxine) were measured before and at regular time intervals until 1 year after the completion of radiation therapy. Dose-volume histograms (DVHs) of the patients' thyroid gland were derived from their computed tomography (CT)-basedmore » treatment planning data. Hypothyroidism was defined as increased TSH (subclinical hypothyroidism) or increased TSH in combination with decreased free thyroxine and thyroxine (clinical hypothyroidism). Thyroid DVHs were converted to 2 Gy/fraction equivalent doses using the linear-quadratic formula with {alpha}/{beta} = 3 Gy. The evaluated models included the following: Lyman with the DVH reduced to the equivalent uniform dose (EUD), known as LEUD; Logit-EUD; mean dose; relative seriality; individual critical volume; and population critical volume models. The parameters of the models were obtained by fitting the patients' data using a maximum likelihood analysis method. The goodness of fit of the models was determined by the 2-sample Kolmogorov-Smirnov test. Ranking of the models was made according to Akaike's information criterion. Results: Twenty-nine patients (44.6%) experienced hypothyroidism. None of the models was rejected according to the evaluation of the goodness of fit. The mean dose model was ranked as the best model on the basis of its Akaike's information criterion value. The D{sub 50} estimated from the models was approximately 44 Gy. Conclusions: The implemented normal tissue complication probability models showed a parallel architecture for the thyroid. The mean dose model can be used as the best model to describe the dose-response relationship for hypothyroidism complication.« less
Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, L.H.; McCormick, J.B.; Johnson, K.M.
1982-10-01
Because of the cumbersome conditions experienced in a maximum containment laboratory, methods for inactivating highly pathogenic viruses were investigated. The infectivity of Lassa, Marburg, and Ebola viruses was inactivated without altering the immunological activity after radiation with /sup 60/Co gamma rays. At 4 degrees C, Lassa virus was the most difficult to inactivate with a rate of 5.3 X 10(-6) log 50% tissue culture infective dose per rad of /sup 60/Co radiation, as compared with 6.8 X 10(-6) log 50% tissue culture infective dose per rad for Ebola virus and 8.4 X 10(-6) log 50% tissue culture infective dose permore » rad for Marburg virus. Experimental inactivation curves, as well as curves giving the total radiation needed to inactivate a given concentration of any of the three viruses, are presented. We found this method of inactivation to be superior to UV light or beta-propiolactone inactivation and now routinely use it for preparation of material for protein-chemistry studies or for preparation of immunological reagents.« less
Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, L.H.; McCormick, J.B.; Johnson, K.M.
1982-10-01
Because of the cumbersome conditions experienced in a maximum containment laboratory, methods for inactivating highly pathogenic viruses were investigated. The infectivity of Lassa, Marburg, and Ebola viruses was inactivated without altering the immunological activity after radiation with /sup 60/CO gamma rays. At 4 degrees C, Lassa virus was the most difficult to inactivate with a rate of 5.3 X 10(-6) log 50% tissue culture infective dose per rad of /sup 60/CO radiation, as compared with 6.8 X 10(-6) log 50% tissue culture infective dose per rad for Ebola virus and 8.4 X 10(-6) log 50% tissue culture infective dose permore » rad for Marburg virus. Experimental inactivation curves, as well as curves giving the total radiation needed to inactivate a given concentration of any of the three viruses, are presented. The authors found this method of inactivation to be superior to UV light or beta-propiolactone inactivation and now routinely use it for preparation of material for protein-chemistry studies or for preparation of immunological reagents.« less
Radiation sensitive indicator based on tetrabromophenol blue dyed poly(vinyl alcohol)
NASA Astrophysics Data System (ADS)
Beshir, W. B.
2013-05-01
Radiation sensitive indicators based on dyed polyvinyl alcohol (PVA) containing acid- sensitive dye (tetrabromophenol blue, TBPB) and chloral hydrate (CCl3·CH·(OH)2, 2,2,2-trichloroethane-1,1-diol) have been developed. These plastic film dosimeters undergo color change from blue (the alkaline form of TBPB) to yellow (the acidic form of TBPB), indicating acid formation. The concentration of radiation formed acids in the films containing different concentrations of chloral hydrate was calculated at different doses. These films can be used as dosimeters for food irradiation applications where the maximum of the useful dose ranges are between 1 and 8 kGy depending on chloral hydrate concentration in the film. The films have the advantage of negligible humidity effects on response in the intermediate range of relative humidity from 0 to 70% as good post irradiation stability when stored in the dark at room temperature. The overall combined uncertainty (at 2σ) associated with measurement of response (ΔA mm-1) at 623 nm for dose range 1-8 kGy is 4.53%.
Chen, Tuo; Tang, Xiaobin; Chen, Feida; Ni, Minxuan; Huang, Hai; Zhang, Yun; Chen, Da
2017-06-26
Radiation shielding of high-energy electrons is critical for successful space missions. However, conventional passive shielding systems exhibit several limitations, such as heavy configuration, poor shielding ability, and strong secondary bremsstrahlung radiation. In this work, an aluminum/vacuum multilayer structure was proposed based on the electron return effects induced by magnetic field. The shielding property of several configurations was evaluated by using the Monte Carlo method. Results showed that multilayer systems presented improved shielding ability to electrons, and less secondary x-ray transmissions than those of conventional systems. Moreover, the influences of magnetic flux density and number of layers on the shielding property of multilayer systems were investigated using a female Chinese hybrid reference phantom based on cumulative dose. In the case of two aluminum layers, the cumulative dose in a phantom gradually decreased with increasing magnetic flux density. The maximum decline rate was found within 0.4-1 Tesla. With increasing layers of configuration, the cumulative dose decreased and the shielding ability improved. This research provides effective shielding measures for future space radiation protection in high-energy electron environments.
Poberskaia, V A; Dement'eva, O I
1997-01-01
Children exposed to low-dose radiation are often treated in sanatoria with mineral baths. Of the latter balneoprocedures widely practiced are sodium chloride (SC) baths with mineralization 20-30 g/l. Mineralization 40 g/l is less frequently used. To specify changes in the function of cardiovascular system induced by SC baths of different concentration (40 versus 20 g/l) 131 senior schoolchildren exposed to low-dose radiation or other environmental pollutants were examined both after a single balneological procedure and after the course treatment (maximum 10 procedures). The baths lasted 8-15 min at water temperature 36-38 OC in a day intervals. The response was assessed by ECG, tetrapolar chest rheography, bicycle exercise. All the children had cardiovascular disorders of non-rheumatic origin. Therapeutic effect was more pronounced after baths with SC concentration 40 g/l. These baths are recommended for improvement of vegetative regulation of the heart, correction of hemodynamic defects. Baths with mineralization 20 g/l are better in upgrading function of the autonomic nervous system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Halabi, Hani; Paetzold, Peter; Sharp, Gregory C.
2015-07-15
Purpose: Severe (Radiation Therapy Oncology Group [RTOG] grade 3 or greater) esophagitis generally occurs in 15% to 25% of non–small cell lung cancer (NSCLC) patients undergoing concurrent chemotherapy and radiation therapy (CCRT), which may result in treatment breaks that compromise local tumor control and pose a barrier to dose escalation. Here, we report a novel contralateral esophagus-sparing technique (CEST) that uses intensity modulated radiation therapy (IMRT) to reduce the incidence of severe esophagitis. Methods and Materials: We reviewed consecutive patients with thoracic malignancies undergoing curative CCRT in whom CEST was used. The esophageal wall contralateral (CE) to the tumor wasmore » contoured as an avoidance structure, and IMRT was used to guide a rapid dose falloff gradient beyond the target volume in close proximity to the esophagus. Esophagitis was recorded based on the RTOG acute toxicity grading system. Results: We identified 20 consecutive patients treated with CCRT of at least 63 Gy in whom there was gross tumor within 1 cm of the esophagus. The median radiation dose was 70.2 Gy (range, 63-72.15 Gy). In all patients, ≥99% of the planning and internal target volumes was covered by ≥90% and 100% of prescription dose, respectively. Strikingly, no patient experienced grade ≥3 esophagitis (95% confidence limits, 0%-16%) despite the high total doses delivered. The median maximum dose, V45, and V55 of the CE were 60.7 Gy, 2.1 cc, and 0.4 cc, respectively, indicating effective esophagus cross-section sparing by CEST. Conclusion: We report a simple yet effective method to avoid exposing the entire esophagus cross-section to high doses. By using proposed CE dose constraints of V45 <2.5 cc and V55 <0.5 cc, CEST may improve the esophagus toxicity profile in thoracic cancer patients receiving CCRT even at doses above the standard 60- to 63-Gy levels. Prospective testing of CEST is warranted.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben-Josef, Edgar, E-mail: edgar.ben-josef@uphs.upenn.edu; Schipper, Mathew; Francis, Isaac R.
2012-12-01
Purpose: Local failure in unresectable pancreatic cancer may contribute to death. We hypothesized that intensification of local therapy would improve local control and survival. The objectives were to determine the maximum tolerated radiation dose delivered by intensity modulated radiation with fixed-dose rate gemcitabine (FDR-G), freedom from local progression (FFLP), and overall survival (OS). Methods and Materials: Eligibility included pathologic confirmation of adenocarcinoma, radiographically unresectable, performance status of 0-2, absolute neutrophil count of {>=}1500/mm{sup 3}, platelets {>=}100,000/mm{sup 3}, creatinine <2 mg/dL, bilirubin <3 mg/dL, and alanine aminotransferase/aspartate aminotransferase {<=}2.5 Multiplication-Sign upper limit of normal. FDR-G (1000 mg/m{sup 2}/100 min intravenously) wasmore » given on days -22 and -15, 1, 8, 22, and 29. Intensity modulated radiation started on day 1. Dose levels were escalated from 50-60 Gy in 25 fractions. Dose-limiting toxicity was defined as gastrointestinal toxicity grade (G) {>=}3, neutropenic fever, or deterioration in performance status to {>=}3 between day 1 and 126. Dose level was assigned using TITE-CRM (Time-to-Event Continual Reassessment Method) with the target dose-limiting toxicity (DLT) rate set to 0.25. Results: Fifty patients were accrued. DLTs were observed in 11 patients: G3/4 anorexia, nausea, vomiting, and/or dehydration (7); duodenal bleed (3); duodenal perforation (1). The recommended dose is 55 Gy, producing a probability of DLT of 0.24. The 2-year FFLP is 59% (95% confidence interval [CI]: 32-79). Median and 2-year overall survival are 14.8 months (95% CI: 12.6-22.2) and 30% (95% CI 17-45). Twelve patients underwent resection (10 R0, 2 R1) and survived a median of 32 months. Conclusions: High-dose radiation therapy with concurrent FDR-G can be delivered safely. The encouraging efficacy data suggest that outcome may be improved in unresectable patients through intensification of local therapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robitaille, H.A.
1983-09-01
The M-744 APFSDS anti-tank round contains a depleted-uranium penetrator of 3.4 kgram mass. Since depleted uranium is naturally radioactive, the storage of a substantial number of these rounds inside a Leopard C-1 main battle tank creates a gamma radiation field within the vehicle. Gamma-ray exposure rates have been measured using a sodium-iodide spectrometer at each of the four crew-member locations and for two turret orientations, with 59 rounds stowed in the vehicle. In all cases the measured gamma-ray dose rates were less than a maximum of 0.17 millirad per hour observed at the loader's position. Assuming the loader spent anmore » entire week (168 hours) at his station, his integrated dose would amount to 29 mRad - approximately a factor of 4 lower than the maximum currently allowed by Canadian Forces regulations. It is therefore concluded that the M774 round does not represent a significant gamma radiation hazard to Leopard C1 crewmembers.« less
Optimization of the temporal pattern of radiation: An IMRT based study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altman, Michael B.; Chmura, Steven J.; Deasy, Joseph O.
Purpose: To investigate how the temporal pattern of dose applied during a single-intensity modulated radiation therapy (IMRT) fraction can be arranged to maximize or minimize cell kill. Methods and Materials: Using the linear-quadratic repair-time model and a simplified IMRT delivery pattern model, the surviving fraction of cells for a single fraction was calculated for all permutations of the dose delivery pattern for an array of clinically based IMRT cases. Maximization of cell kill was achieved by concentrating the highest doses in the middle of a fraction, while minimization was achieved by spreading the highest doses between the beginning and end.more » The percent difference between maximum and minimum cell kill (%Diff{sub min/max}) and the difference between maximum and minimum total doses normalized to 2 Gy/fx ({delta}NTD{sub 2Gy}) was calculated for varying fraction durations (T), {alpha}/{beta} ratios, and doses/fx. Results: %Diff{sub min/max} and {delta}NTD{sub 2Gy} both increased with increasing T and with decreasing {alpha}/{beta}. The largest increases occurred with dose/fx. With {alpha}/{beta} = 3 Gy and 30 min/fx, %Diff{sub min/max} ranged from 2.7-5.3% for 2 Gy/fx to 48.6-74.1% for 10 Gy/fx, whereas {delta}NTD{sub 2Gy} ranged from 1.2 Gy-2.4 Gy for 30 fractions of 2 Gy/fx to 2.3-4.8 Gy for 2 fractions of 10.84 Gy/fx. Using {alpha}/{beta} = 1.5 Gy, an analysis of prostate hypofractionation schemes yielded differences in clinical outcome based on the pattern of applied dose ranging from 3.2%-6.1% of the treated population. Conclusions: Rearrangement of the temporal pattern of dose for a single IMRT fraction could be used to optimize cell kill and to directly, though modestly, affect treatment outcome.« less
Effects of the Effect of Ultra High Frequency Mobile Phone Radiation on Human Health.
Moradi, Mosa; Naghdi, Nasrollah; Hemmati, Hamidreza; Asadi-Samani, Majid; Bahmani, Mahmoud
2016-05-01
Public and occupational exposure to electromagnetic fields due to the growing trend of electronic devices may cause adverse effects on human health. This paper describes the risk of mutation and sexual trauma and infertility in masculine sexual cell by mobile phone radiations. In this study, we measured the emitted dose from a radiofrequency device, such as switching high voltage at different frequencies using a scintillation detector. The switching high voltage power supply (HVPS) was built for the Single Photon Emission Computed Tomography (SPECT) system. For radiation dosimetry, we used an ALNOR scintillator that can measure gamma radiation. The simulation was performed by MATLAB software, and data from the International Commission on Non-Ionizing Radiation Protection (ICNIRP) were used to verify the simulation. We investigated the risks that result from the waves, according to a report by International Commission on Non Ionizing Radiation Protection (ICNIRP), to every organ of the body is defined by the beam and electromagnetic radiation from this electronic device on people. The results showed that the maximum personal dose over a 15-min period working at the mentioned HVPS did not exceed 0.31 μSV/h (with an aluminum shield). So, according to other sources of radiation, continuous working time of the system should not be more than 10 hours. Finally, a characteristic curve for secure working with modules at different frequencies was reported. The RF input signal to the body for maximum penetration depth (δ) and electromagnetic energy absorption rate (SAR) of biological tissue were obtained for each tissue. The results of this study and International Commission of Non Ionization Radiation Protection (ICNIRP) reports showed the people who spend more than 50 minutes a day using a cell phone could have early dementia or other thermal damage due to the burning of glucose in the brain.
Effect of Ultra High Frequency Mobile Phone Radiation on Human Health
Moradi, Mosa; Naghdi, Nasrollah; Hemmati, Hamidreza; Asadi-Samani, Majid; Bahmani, Mahmoud
2016-01-01
Introduction Public and occupational exposure to electromagnetic fields due to the growing trend of electronic devices may cause adverse effects on human health. This paper describes the risk of mutation and sexual trauma and infertility in masculine sexual cell by mobile phone radiations. Methods In this study, we measured the emitted dose from a radiofrequency device, such as switching high voltage at different frequencies using a scintillation detector. The switching high voltage power supply (HVPS) was built for the Single Photon Emission Computed Tomography (SPECT) system. For radiation dosimetry, we used an ALNOR scintillator that can measure gamma radiation. The simulation was performed by MATLAB software, and data from the International Commission on Non-Ionizing Radiation Protection (ICNIRP) were used to verify the simulation. Results We investigated the risks that result from the waves, according to a report by International Commission on Non Ionizing Radiation Protection (ICNIRP), to every organ of the body is defined by the beam and electromagnetic radiation from this electronic device on people. The results showed that the maximum personal dose over a 15-min period working at the mentioned HVPS did not exceed 0.31 μSV/h (with an aluminum shield). So, according to other sources of radiation, continuous working time of the system should not be more than 10 hours. Finally, a characteristic curve for secure working with modules at different frequencies was reported. The RF input signal to the body for maximum penetration depth (δ) and electromagnetic energy absorption rate (SAR) of biological tissue were obtained for each tissue. Conclusion The results of this study and International Commission of Non Ionization Radiation Protection (ICNIRP) reports showed the people who spend more than 50 minutes a day using a cell phone could have early dementia or other thermal damage due to the burning of glucose in the brain. PMID:27382458
Al-Jundi, J; Ulanovsky, A; Pröhl, G
2009-10-01
The use of building materials containing naturally occurring radionuclides as (40)K, (232)Th, and (238)U and their progeny results in external exposures of the residents of such buildings. In the present study, indoor dose rates for a typical Jordan concrete room are calculated using Monte Carlo method. Uniform chemical composition of the walls, floor and ceiling as well as uniform mass concentrations of the radionuclides in walls, floor and ceiling are assumed. Using activity concentrations of natural radionuclides typical for the Jordan houses and assuming them to be in secular equilibrium with their progeny, the maximum annual effective doses are estimated to be 0.16, 0.12 and 0.22 mSv a(-1) for (40)K, (232)Th- and (238)U-series, respectively. In a total, the maximum annual effective indoor dose due to external gamma-radiation is 0.50 mSv a(-1). Additionally, organ dose coefficients are calculated for all organs considered in ICRP Publication 74. Breast, skin and eye lenses have the maximum equivalent dose rate values due to indoor exposures caused by the natural radionuclides, while equivalent dose rates for uterus, colon (LLI) and small intestine are found to be the smallest. More specifically, organ dose rates (nSv a(-1)per Bq kg(-1)) vary from 0.044 to 0.060 for (40)K, from 0.44 to 0.60 for radionuclides from (238)U-series and from 0.60 to 0.81 for radionuclides from (232)Th-series. The obtained organ and effective dose conversion coefficients can be conveniently used in practical dose assessment tasks for the rooms of similar geometry and varying activity concentrations and local-specific occupancy factors.
Micronucleus induction in Vicia faba roots. Part 2. Biological effects of neutrons below 1 cGy.
Marshall, I; Bianchi, M
1983-08-01
A dose-effect relationship has been established for high-energy neutrons (maximum energy 600 MeV) within a dose range of 0.2 to 80 cGy and for low-energy neutrons produced by a 252Cf source (mean energy 2.35 MeV) for doses between 0.2 and 5 cGy. The frequency of micronuclei was found to increase linearly with dose. The relative biological effectiveness (r.b.e) values calculated using 60Co radiation as a reference were, in the high-dose region, 4.7 +/- 0.4 and 11.8 +/- 1.3 for the high- and low-energy neutrons, respectively. At doses below 1 cGy constant values of 25.4 +/- 4.4 and 63.7 +/- 12 were reached for the respective neutron energies.
NASA Astrophysics Data System (ADS)
Muñoz, P.; García-Cortés, I.; Sánchez, F. J.; Moroño, A.; Malo, M.; Hodgson, E. R.
2017-09-01
Radiation damage to flow channel insert (FCI) materials is an important issue for the concept of dual-coolant blanket development in future fusion devices. Silicon Carbide (SiC) is one of the most suitable materials for FCI. Because of the severe radiation environment and exposure to tritium during operation it is of fundamental importance to study hydrogen isotope trapping and release in these materials. Here the trapping, detrapping, and diffusion of deuterium implanted into SiC is studied in correlation with pre- and post-damage induced under different conditions. For this, SiC samples are pre-damaged with 50 keV Ne+ ions at different temperatures (20, 200, 450, 700 °C) to different damage doses (1, 3.6, 7 dpa). Next, deuterium is introduced into the samples at 450 °C by ion implantation at 7 keV. The implanted deuterium retained in the sample is analysed using secondary ion mass spectrometry (SIMS) and thermo-stimulated desorption (TSD) measurements. The results indicate that with increasing neon damage dose, the maximum deuterium desorption occurs at higher temperatures. In contrast, when increasing neon implantation temperature for a fixed dose, the maximum deuterium desorption release temperature decreases. It is interpreted that the neon bombardment produces thermally stable traps for hydrogen isotopes and the stability of this damage increases with neon pre-implantation dose. A decrease of the trapping of implanted deuterium is also observed to occur due to damage recovery by thermal annealing during pre-implantation at the higher temperatures. Finally, direct particle bombardment induced deuterium release is also observed.
Sachdev, Sean; Refaat, Tamer; Bacchus, Ian D; Sathiaseelan, Vythialinga; Mittal, Bharat B
2017-08-01
Radiation-induced hypothyroidism affects a significant number of patients with head-and-neck squamous cell cancer (HNSCC). We examined detailed dosimetric and clinical parameters to better determine the risk of hypothyroidism in euthyroid HNSCC patients treated with intensity-modulated radiation therapy (IMRT). From 2006 to 2010, 75 clinically euthyroid patients with HNSCC were treated with sequential IMRT. The cohort included 59 men and 16 females with a median age of 55 years (range, 30 to 89 y) who were treated to a median dose of 70 Gy (range, 60 to 75 Gy) with concurrent chemotherapy in nearly all (95%) cases. Detailed thyroid dosimetric parameters including maximum dose, mean dose, and other parameters (eg, V50-percent volume receiving at least 50 Gy) were obtained. Freedom from hypothyroidism was evaluated using the Kaplan-Meier method. Univariate and multivariate analyses were conducted using Cox regression. After a median follow-up period of 50 months, 25 patients (33%) became hypothyroid. On univariate analysis, thyroid V50 was highly correlated with developing hypothyroidism (P=0.035). Other dosimetric paramaters including mean thyroid dose (P=0.11) and maximum thyroid dose (P=0.39) did not reach statistical significance. On multivariate analysis incorporating patient, tumor, and treatment variables, V50 remained highly statistically significant (P=0.037). Regardless of other factors, for V50>60%, the odds ratio of developing hypothyroidism was 6.76 (P=0.002). In HNSCC patients treated with IMRT, thyroid V50 highly predicts the risk of developing hypothyroidism. V50>60% puts patients at a significantly higher risk of becoming hypothyroid. This can be a useful dose constraint to consider during treatment planning.
Radiation experiments on Cosmos 2044: K-7-41, parts A, B, C, D, E
NASA Technical Reports Server (NTRS)
Frank, A. L.; Benton, E. V.; Benton, E. R.; Dudkin, V. E.; Marenny, A. M.
1990-01-01
The Cosmos 2044 biosatellite mission offered the opportunity for radiation measurements under conditions which are seldom available (an inclination of 82.3 deg and attitude of 294 x 216 km). Measurements were made on the outside of the spacecraft under near-zero shielding conditions. Also, this mission was the first in which active temperature recorders (the ATR-4) were flown to record the temperature profiles of detector stacks. Measurements made on this mission provide a comparison and test for modeling of depth doses and LET spectra for orbital parameters previously unavailable. Tissue absorbed doses from 3480 rad (252 rad/d) down to 0.115 rad (8.33 mrad/d) were measured at different depths (0.0146 and 3.20 g/sq cm, respectively) with averaged TLD readings. The LET spectra yielded maximum and minimum values of integral flux of 27.3 x 10(exp -4) and 3.05 x 10(exp -4)/sq cm/s/sr, of dose rate of 7.01 and 1.20 mrad/d, and of dose equivalent rate of 53.8 and 11.6 mrem/d, for LET(sub infinity)-H2O is greater than or equal to 4 keV/micron. Neutron measurements yielded 0.018 mrem/d in the thermal region, 0.25 mrem/d in the resonance region and 3.3 mrem/d in the high energy region. The TLD depth dose and LET spectra were compared with calculations from the modeling codes. The agreement is good but some further refinements are in order. In comparing measurements on Cosmos 2044 with those from previous Cosmos missions (orbital inclinations of 62.8 deg) there is a greater spread (maximum to minimum) in depth doses and an increased contribution from GCRs, and higher LET particles, in the heavy particle fluxes.
Experiment K-7-41: Radiation Experiments on Cosmos 2044
NASA Technical Reports Server (NTRS)
Benton, E. V.; Benton, E. R.; Frank, A. L.; Dudkin, V. E.; Marenny, A. M.; Kovalev, E. E.
1994-01-01
The Cosmos 2044 biosatellite mission offered the opportunity for radiation measurements under conditions which are seldom available (an inclination of 82.3 degrees and altitude of 294 x 216 km). Measurements were made on the outside of the spacecraft under near-zero shielding conditions. Also, this mission was the first in which active temperature recorders (the ATR-4) were flown to record the temperature profiles of detector stacks. Measurements made on this mission provide a comparison and test for modeling of depth doses and LET spectra for orbital parameters previously unavailable. Tissue absorbed doses from 3480 rad (252 rad/d) down to 0.115 rad (8.33 mrad/d) were measured at different depths (0.0146 and 3.20 g/sq. cm, respectively) with averaged TLD readings. The LET spectra yielded maximum and minimum values of integral flux of 27.3 x 10-4 and 3.05 x 10(exp -4) cm(exp -2).s(exp -1).sr(exp -4) of dose rate of 7.01 and 1.20 mrad/d, and of dose equivalent rate of 53.8 and 11.6 mrem/d, for LET(infinity).H2O is greater than or equal to 4 keV/micro-m. Neutron measurements yielded 0.018 mremld in the thermal region, 0.25 mrem/d in the resonance region and 3.3 mrem/d in the high energy region. The TLD depth dose and LET spectra have been compared with calculations from the modeling codes. The agreement is good but some further refinements are in order. In comparing measurements on Cosmos 2044 with those from previous Cosmos missions (orbital inclinations of 62.8 degrees) there is a greater spread (maximum to minimum) in depth doses and an increased contribution from GCR's, and higher LET particles, in the heavy particle fluxes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
VanAntwerp, April E.; Raymond, Sarah M., E-mail: raymons9@ccf.org; Addington, Mark C.
2011-10-01
The aim of this study was to evaluate radiation dose for organs at risk (OAR) within the cranium, thorax, and pelvis from megavoltage cone-beam computed tomography (MV-CBCT). Using a clinical treatment planning system, CBCT doses were calculated from 60 patient datasets using 27.4 x 27.4 cm{sup 2} field size and 200{sup o} arc length. The body mass indices (BMIs) for these patients range from 17.2-48.4 kg/m{sup 2}. A total of 60 CBCT plans were created and calculated with heterogeneity corrections, with monitor units (MU) that varied from 8, 4, and 2 MU per plan. The isocenters of these plans weremore » placed at defined anatomical structures. The maximum dose, dose to the isocenter, and mean dose to the selected critical organs were analyzed. The study found that maximum and isocenter doses were weakly associated with BMI, but linearly associated with the total MU. Average maximum/isocenter doses in the cranium were 10.0 ({+-} 0.18)/7.0 ({+-} 0.08) cGy, 5.0 ({+-} 0.09)/3.5 ({+-} 0.05) cGy, and 2.5 ({+-} .04)/1.8 ({+-} 0.05) cGy for 8, 4, and 2 MU, respectively. Similar trends but slightly larger maximum/isocenter doses were found in the thoracic and pelvic regions. For the cranial region, the average mean doses with a total of 8 MU to the eye, lens, and brain were 9.7 ({+-} 0.12) cGy, 9.1 ({+-} 0.16) cGy, and 7.2 ({+-} 0.10) cGy, respectively. For the thoracic region, the average mean doses to the lung, heart, and spinal cord were 6.6 ({+-} 0.05) cGy, 6.9 ({+-} 1.2) cGy, and 4.7 ({+-} 0.8) cGy, respectively. For the pelvic region, the average mean dose to the femoral heads was 6.4 ({+-} 1.1) cGy. The MV-CBCT doses were linearly associated with the total MU but weakly dependent on patients' BMIs. Daily MV-CBCT has a cumulative effect on the total body dose and critical organs, which should be carefully considered for clinical impacts.« less
Kimura, Tomoki; Nagata, Yasushi; Harada, Hideyuki; Hayashi, Shinya; Matsuo, Yukinori; Takanaka, Tsuyoshi; Kokubo, Masaki; Takayama, Kenji; Onishi, Hiroshi; Hirakawa, Koichi; Shioyama, Yoshiyuki; Ehara, Takeshi
2017-10-01
To investigate the maximum tolerated dose (MTD) and recommended dose (RD) of stereotactic body radiation therapy (SBRT) for centrally located stage IA non-small cell lung cancer (NSCLC). Five dose levels, ranging from of 52 to 68 Gy in eight fractions, were determined; the treatment protocol began at 60 Gy (level 3). Each dose level included 10 patients. Levels 1-2 were indicated if more than four patients exhibited dose-limiting toxicity (DLT), which was defined as an occurrence of a grade 3 (or worse) adverse effect within 12 months after SBRT initiation. MTD was defined as the lowest dose level at which more than four patients exhibited DLT. Ten patients were enrolled in the level 3 study. One patient was considered unsuitable because of severe emphysema. Therefore, nine patients were evaluated and no patient exhibited DLT. The level 3 results indicated that we should proceed to level 4 (64 Gy). However, due to the difficulty involved in meeting the dose constraints, further dose escalation was not feasible and the MTD was found to be 60 Gy. The RD of SBRT for centrally located stage IA NSCLC was 60 Gy in eight fractions.
NASA Technical Reports Server (NTRS)
Plaza-Rosado, Heriberto
1991-01-01
Thermal neutron activation analyses were carried out for various space systems components to determine gamma radiation dose rates and food radiation contamination levels. The space systems components selected were those for which previous radiation studies existed. These include manned space vehicle radiation shielding, liquid hydrogen propellant tanks for a Mars mission, and a food supply used as space vehicle radiation shielding. The computational method used is based on the fast neutron distribution generated by the BRYNTRN and HZETRN transport codes for Galactic Cosmic Rays (GCR) at solar minimum conditions and intense solar flares in space systems components. The gamma dose rates for soft tissue are calculated for water and aluminum space vehicle slab shields considering volumetric source self-attenuation and exponential buildup factors. In the case of the lunar habitat with regolith shielding, a completely exposed spherical habitat was assumed for mathematical convenience and conservative calculations. Activation analysis of the food supply used as radiation shielding is presented for four selected nutrients: potassium, calcium, sodium, and phosphorus. Radioactive isotopes that could represent a health hazard if ingested are identified and their concentrations are identified. For nutrients soluble in water, it was found that all induced radioactivity was below the accepted maximum permissible concentrations.
NASA Astrophysics Data System (ADS)
Plaza-Rosado, Heriberto
1991-09-01
Thermal neutron activation analyses were carried out for various space systems components to determine gamma radiation dose rates and food radiation contamination levels. The space systems components selected were those for which previous radiation studies existed. These include manned space vehicle radiation shielding, liquid hydrogen propellant tanks for a Mars mission, and a food supply used as space vehicle radiation shielding. The computational method used is based on the fast neutron distribution generated by the BRYNTRN and HZETRN transport codes for Galactic Cosmic Rays (GCR) at solar minimum conditions and intense solar flares in space systems components. The gamma dose rates for soft tissue are calculated for water and aluminum space vehicle slab shields considering volumetric source self-attenuation and exponential buildup factors. In the case of the lunar habitat with regolith shielding, a completely exposed spherical habitat was assumed for mathematical convenience and conservative calculations. Activation analysis of the food supply used as radiation shielding is presented for four selected nutrients: potassium, calcium, sodium, and phosphorus. Radioactive isotopes that could represent a health hazard if ingested are identified and their concentrations are identified. For nutrients soluble in water, it was found that all induced radioactivity was below the accepted maximum permissible concentrations.
Prasad, Monika; Gupta, Ritu; Patthi, Basavaraj; Singla, Ashish; Pandita, Venisha; Kumar, Jishnu Krishna; Malhi, Ravneet; Vashishtha, Vaibhav
2016-07-01
The safety of diagnostic imaging during pregnancy is an important aspect for all clinicians. Pregnant women often do not receive proper dental care as the dentists are not aware of low diagnostic radiation doses involved in dental radiation. To assess awareness of radiation risks on pregnant women among dentists of Ghaziabad city. A total of 268 practicing dentists in Ghaziabad were selected for a questionnaire based cross-sectional study. Data consisted of 18 questions which assessed the knowledge, attitude and practice of dental professionals regarding radiation risks on pregnant women. The questionnaire was distributed and collected personally by the principal investigator. Data was analyzed by Mann Whitney U test and chi-square test. The level of significance was set at p ≤ 0.05. The results showed that the dentists who had attended continuing dental education program had increased level of knowledge regarding radiation effects among pregnant women as compared to the dentists who had not attended continuing dental education programs (p<0.05). Among them who had attended continuing dental education programs 93.3% were aware of the safe dose of radiation and 62% were aware of threshold radiation doses of pregnancy termination. On the contrary there was no significant difference in the knowledge, attitude and practice scores regarding radiation risks on pregnant women based on their academic qualification (p≥0.05). The level of knowledge among dentists was found to be satisfactory, this outcome shows that continuing dental education regarding radiation protection principles and its risks on pregnant women is required to ensure maximum safety both for clinician as well as pregnant women.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gossman, Michael S., E-mail: mgossman@tsrcc.com; Comprehensive Heart and Vascular Associates, Heart and Vascular Center, Ashland, KY; Medtronic, Inc., External Research Program, Mounds View, MN
2011-01-01
The medical community is advocating for progressive improvement in the design of implantable cardioverter-defibrillators and implantable pacemakers to accommodate elevations in dose limitation criteria. With advancement already made for magnetic resonance imaging compatibility in some, a greater need is present to inform the radiation oncologist and medical physicist regarding treatment planning beam profile changes when such devices are in the field of a therapeutic radiation beam. Treatment plan modeling was conducted to simulate effects induced by Medtronic, Inc.-manufactured devices on therapeutic radiation beams. As a continuation of grant-supported research, we show that radial and transverse open beam profiles of amore » medical accelerator were altered when compared with profiles resulting when implantable pacemakers and cardioverter-defibrillators are placed directly in the beam. Results are markedly different between the 2 devices in the axial plane and the sagittal planes. Vast differences are also presented for the therapeutic beams at 6-MV and 18-MV x-ray energies. Maximum changes in percentage depth dose are observed for the implantable cardioverter-defibrillator as 9.3% at 6 MV and 10.1% at 18 MV, with worst distance to agreement of isodose lines at 2.3 cm and 1.3 cm, respectively. For the implantable pacemaker, the maximum changes in percentage depth dose were observed as 10.7% at 6 MV and 6.9% at 18 MV, with worst distance to agreement of isodose lines at 2.5 cm and 1.9 cm, respectively. No differences were discernible for the defibrillation leads and the pacing lead.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Den, Robert B., E-mail: robert.den@jeffersonhospital.org; Kamrava, Mitchell; Sheng, Zhi
2013-02-01
Purpose: Despite recent advances in the management of high-grade and recurrent gliomas, survival remains poor. Antiangiogenic therapy has been shown to be efficacious in the treatment of high-grade gliomas both in preclinical models and in clinical trials. We sought to determine the safety and maximum tolerated dose of sorafenib when combined with both radiation and temozolomide in the primary setting or radiation alone in the recurrent setting. Methods and Materials: This was a preclinical study and an open-label phase I dose escalation trial. Multiple glioma cell lines were analyzed for viability after treatment with radiation, temozolomide, or sorafenib or combinationsmore » of them. For patients with primary disease, sorafenib was given concurrently with temozolomide (75 mg/m{sup 2}) and 60 Gy radiation, for 30 days after completion of radiation. For patients with recurrent disease, sorafenib was combined with a hypofractionated course of radiation (35 Gy in 10 fractions). Results: Cell viability was significantly reduced with the combination of radiation, temozolomide, and sorafenib or radiation and sorafenib. Eighteen patients (11 in the primary cohort, 7 in the recurrent cohort) were enrolled onto this trial approved by the institutional review board. All patients completed the planned course of radiation therapy. The most common toxicities were hematologic, fatigue, and rash. There were 18 grade 3 or higher toxicities. The median overall survival was 18 months for the entire population. Conclusions: Sorafenib can be safely combined with radiation and temozolomide in patients with high-grade glioma and with radiation alone in patients with recurrent glioma. The recommended phase II dose of sorafenib is 200 mg twice daily when combined with temozolomide and radiation and 400 mg with radiation alone. To our knowledge, this is the first publication of concurrent sorafenib with radiation monotherapy or combined with radiation and temozolomide.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Y; Hwang, Y; Tsai, H
2015-06-15
Purpose: Scoliotic patients underwent a lot of radiologic examinations during the control and treatment periods. This study used the PCXMC program to calculate the effective dose of the patients and assess the radiation cancer risks. Methods: Seventy five scoliotic patients were examined using CR or DR systems during the control and treatment periods in Chang Gung Memorial Hospital. The technical factors were recorded for each patient during his/her control and treatment period. The entrance surface dose was measured using thermoluminence dosimeters and derived from technical factors and irradiated geometry. The effective dose of patients and relative radiation cancer risks weremore » calculated by the PCXMC program. All required information regarding patient age and sex, the x-ray spectra, and the tube voltage and current were registered. The radiation risk were estimated using the model developed by the BEIR VII committee (2006). Results: The effective doses of full spine radiography with anteroposterior and lateral projections were 0.626 mSv for patients using DR systems, and 0.483mSv for patients using CR systems, respectively. The dose using DR system was 29.6% higher than those using CR system. The maximum organ dose was observed in the breast for both projections in all the systems. The risk of exposure—induced cancer death (REID) of patients for DR and CR systems were 0.009% and 0.007%, respectively. Conclusion: The risk estimates were regarded with healthy skepticism, placed more emphasis on the magnitude of the risk. The effective doses estimated in this study could be served as a reference for radiologists and technologists and demonstrate the necessity to optimize patient protection for full spine radiography though the effective doses are not at the level to induce deterministic effects and not significant in the stochastic effect. This study was supported by the grants from the Chang Gung Memorial Hospital (CMRPD1D0421)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yirmibeşoğlu Erkal, Eda, E-mail: eyirmibesoglu@yahoo.com; Karabey, Sinan; Karabey, Ayşegül
2015-07-15
Purpose: The aim of this study was to evaluate the impact of variations in pelvic dimensions on the dose delivered to the target volumes and the organs at risk (OARs) in patients with high-risk prostate cancer (PCa) to be treated with whole pelvic radiation therapy (WPRT) in an attempt to define the hostile pelvis in terms of intensity modulated radiation therapy (IMRT). Methods and Materials: In 45 men with high-risk PCa to be treated with WPRT, the target volumes and the OARs were delineated, the dose constraints for the OARs were defined, and treatment plans were generated according to themore » Radiation Therapy Oncology Group 0924 protocol. Six dimensions to reflect the depth, width, and height of the bony pelvis were measured, and 2 indexes were calculated from the planning computed tomographic scans. The minimum dose (D{sub min}), maximum dose (D{sub max}), and mean dose (D{sub mean}) for the target volumes and OARs and the partial volumes of each of these structures receiving a specified dose (V{sub D}) were calculated from the dose-volume histograms (DVHs). The data from the DVHs were correlated with the pelvic dimensions and indexes. Results: According to an overall hostility score (OHS) calculation, 25 patients were grouped as having a hospitable pelvis and 20 as having a hostile pelvis. Regarding the OHS grouping, the DVHs for the bladder, bowel bag, left femoral head, and right femoral head differed in favor of the hospitable pelvis group, and the DVHs for the rectum differed for a range of lower doses in favor of the hospitable pelvis group. Conclusions: Pelvimetry might be used as a guide to define the challenging anatomy or the hostile pelvis in terms of treatment planning for IMRT in patients with high-risk PCa to be treated with WPRT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmid, Gebhard; Schmitz, Alexander; Borchardt, Dieter
The objective of this study was to compare the effective radiation dose of perineural and epidural injections of the lumbar spine under computed tomography (CT) or fluoroscopic guidance with respect to dose-reduced protocols. We assessed the radiation dose with an Alderson Rando phantom at the lumbar segment L4/5 using 29 thermoluminescence dosimeters. Based on our clinical experience, 4-10 CT scans and 1-min fluoroscopy are appropriate. Effective doses were calculated for CT for a routine lumbar spine protocol and for maximum dose reduction; as well as for fluoroscopy in a continuous and a pulsed mode (3-15 pulses/s). Effective doses under CTmore » guidance were 1.51 mSv for 4 scans and 3.53 mSv for 10 scans using a standard protocol and 0.22 mSv and 0.43 mSv for the low-dose protocol. In continuous mode, the effective doses ranged from 0.43 to 1.25 mSv for 1-3 min of fluoroscopy. Using 1 min of pulsed fluoroscopy, the effective dose was less than 0.1 mSv for 3 pulses/s. A consequent low-dose CT protocol reduces the effective dose compared to a standard lumbar spine protocol by more than 85%. The latter dose might be expected when applying about 1 min of continuous fluoroscopy for guidance. A pulsed mode further reduces the effective dose of fluoroscopy by 80-90%.« less
Funama, Yoshinori; Taguchi, Katsuyuki; Utsunomiya, Daisuke; Oda, Seitaro; Murasaki, Hiroo; Yamashita, Yasuyuki; Awai, Kazuo
2012-01-01
The purpose of our study was to acquire dose profiles at critical organs of lung and breast regions using optically stimulated luminescence (OSL) dosimeters; assess the actual radiation dose delivered at retrospective and prospective computed tomography coronary angiography (CTCA). Using a chest CT phantom we applied a prospectively-gated step-and-shoot- and a retrospectively-gated helical mode on a 64-detector row CT scanner. Retrospective scan mode was used with and without electrocardiogram (ECG) based tube current modulation. OSL dosimeters were used to measure dose profiles. In the both scan modes we acquired dose profiles and determined the mean and maximum dose in left lung and in left breast regions. In prospective mode, the mean dose was 21.53 mGy in left lung- and 23.59 mGy in left breast region. With respect to the retrospective mode, the mean dose with tube current modulation was 38.63 mGy for left lung- and 46.02 mGy for left breast region, i.e. 0.56 and 0.55 times lower than the mean dose without modulation. The OSL dosimeter is useful for measurement of the actual radiation dose along z-axis at lung and breast regions in the prospective and the retrospective CTCA. Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Dose Calculations for [131I] Meta-Iodobenzylguanidine-Induced Bystander Effects
Gow, M. D.; Seymour, C. B.; Boyd, M.; Mairs, R. J.; Prestiwch, W. V.; Mothersill, C. E.
2014-01-01
Targeted radiotherapy is a potentially useful treatment for some cancers and may be potentiated by bystander effects. However, without estimation of absorbed dose, it is difficult to compare the effects with conventional external radiation treatment. Methods: Using the Vynckier – Wambersie dose point kernel, a model for dose rate evaluation was created allowing for calculation of absorbed dose values to two cell lines transfected with the noradrenaline transporter (NAT) gene and treated with [131I]MIBG. Results: The mean doses required to decrease surviving fractions of UVW/NAT and EJ138/NAT cells, which received medium from [131I]MIBG-treated cells, to 25 – 30% were 1.6 and 1.7 Gy respectively. The maximum mean dose rates achieved during [131I]MIBG treatment were 0.09 – 0.75 Gy/h for UVW/NAT and 0.07 – 0.78 Gy/h for EJ138/NAT. These were significantly lower than the external beam gamma radiation dose rate of 15 Gy/h. In the case of control lines which were incapable of [131I]MIBG uptake the mean absorbed doses following radiopharmaceutical were 0.03 – 0.23 Gy for UVW and 0.03 – 0.32 Gy for EJ138. Conclusion: [131I]MIBG treatment for ICCM production elicited a bystander dose-response profile similar to that generated by external beam gamma irradiation but with significantly greater cell death. PMID:24659931
Kubo, Nobuteru; Saitoh, Jun-Ichi; Shimada, Hirofumi; Shirai, Katsuyuki; Kawamura, Hidemasa; Ohno, Tatsuya; Nakano, Takashi
2016-09-01
The present study compared the dose-volume histograms of patients with Stage IIIA non-small cell lung cancer (NSCLC) treated with carbon ion radiotherapy with those of patients treated with X-ray radiotherapy. Patients with Stage IIIA NSCLC (n = 10 patients for each approach) were enrolled. Both radiotherapy plans were calculated with the same targets and organs at risk on the same CT. The treatment plan for the prophylactic lymph node and primary tumor (PTV1) delivered 40 Gy for X-ray radiotherapy and 40 Gy (relative biological effectiveness; RBE) for carbon ion radiotherapy. The total doses for the primary tumor and clinically positive lymph nodes (PTV2) were 60 Gy for X-ray radiotherapy and 60 Gy (RBE) for carbon ion radiotherapy. The homogeneity indexes for PTV1 and PTV2 were superior for carbon ion radiotherapy in comparison with X-ray radiotherapy (PTV1, 0.57 vs 0.65, P = 0.009; PTV2, 0.07 vs 0.16, P = 0.005). The normal lung mean dose, V5, V10 and V20 for carbon ion radiotherapy were 7.7 Gy (RBE), 21.4%, 19.7% and 17.0%, respectively, whereas the corresponding doses for X-ray radiotherapy were 11.9 Gy, 34.9%, 26.6% and 20.8%, respectively. Maximum spinal cord dose, esophageal maximum dose and V50, and bone V10, V30 and V50 were lower with carbon ion radiotherapy than with X-ray radiotherapy. The present study indicates that carbon ion radiotherapy provides a more homogeneous target dose and a lower dose to organs at risk than X-ray radiotherapy for Stage IIIA non-small cell lung cancer. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, K; Tran, A; Yu, V
Purpose: Thinning of the cerebral cortex has been observed in patients treated with fractionated partial brain radiation therapy and may contribute to cognitive decline following treatment. The extent of this thinning is dose-dependent, and was shown comparable to that of neurodegenerative diseases such as Alzheimer’s disease at one year post-therapy. This study investigates whether 4π radiotherapy can enable better sparing of the cortex and other critical structures when compared to conventional clinical IMRT plans. Methods: Clinical cortex-sparing IMRT plans for 15 high-grade glioma patients were included in this study. 4π radiotherapy plans were created for each patient with 20 intensity-modulatedmore » non-coplanar fields selected with a greedy column-generation optimization. All plans were normalized to deliver 100% of the prescribed dose to 95% of the planning target volume (PTV). The mean and maximum dose to the cerebral cortex and other organs at risk (OARs) were compared for the two plan types, as well as the conformity index (CI), homogeneity index (HI), and 50% dose spillage volume (R50). Results: The 4π plans significantly reduced the mean cortex dose by an average of 16% (range 6% to 27%) compared to the clinical plans. The mean dose to every other OAR compared was also reduced by 15% to 43%, with statistically significant reductions to the brainstem, chiasm, eyes, optic nerves, subcortical whit, and hippocampus. The average maximum doses were also reduced for 10/12 OARs. The R50 was significantly reduced with the 4π plans (>14%) and the homogeneity index was significantly improved. Conclusion: 4π enables significant sparing of the cerebral cortex when treating high-grade gliomas with fractionated partial brain radiation therapy, potentially reducing the risk of harmful dose-dependent cortical thinning. NIH R43CA183390, NIH R01CA188300, Varian Medical Systems.« less
SU-E-T-37: A GPU-Based Pencil Beam Algorithm for Dose Calculations in Proton Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalantzis, G; Leventouri, T; Tachibana, H
Purpose: Recent developments in radiation therapy have been focused on applications of charged particles, especially protons. Over the years several dose calculation methods have been proposed in proton therapy. A common characteristic of all these methods is their extensive computational burden. In the current study we present for the first time, to our best knowledge, a GPU-based PBA for proton dose calculations in Matlab. Methods: In the current study we employed an analytical expression for the protons depth dose distribution. The central-axis term is taken from the broad-beam central-axis depth dose in water modified by an inverse square correction whilemore » the distribution of the off-axis term was considered Gaussian. The serial code was implemented in MATLAB and was launched on a desktop with a quad core Intel Xeon X5550 at 2.67GHz with 8 GB of RAM. For the parallelization on the GPU, the parallel computing toolbox was employed and the code was launched on a GTX 770 with Kepler architecture. The performance comparison was established on the speedup factors. Results: The performance of the GPU code was evaluated for three different energies: low (50 MeV), medium (100 MeV) and high (150 MeV). Four square fields were selected for each energy, and the dose calculations were performed with both the serial and parallel codes for a homogeneous water phantom with size 300×300×300 mm3. The resolution of the PBs was set to 1.0 mm. The maximum speedup of ∼127 was achieved for the highest energy and the largest field size. Conclusion: A GPU-based PB algorithm for proton dose calculations in Matlab was presented. A maximum speedup of ∼127 was achieved. Future directions of the current work include extension of our method for dose calculation in heterogeneous phantoms.« less
Long-term mortality and cancer risk in irradiated rhesus monkeys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, D.H.
1991-05-01
Continuous, 24-year observations on a group of 358 rhesus monkeys reveal that life shortening from exposure to protons in the energy range encountered in the Van Allen belts and solar proton events is influenced primarily by the dose rather than by the energy of radiation. Life shortening in groups exposed to similar surface doses of 138- to 2300-MeV and 32- to 55-MeV protons are not significantly different, but the low-energy protons are associated with more deaths in the early years, while the high-energy protons contribute more to mortality in later years. In males, the most significant cause of life shorteningmore » is nonleukemia cancers. In females, radiation increased the risk of endometriosis (an abnormal proliferation of the lining of the uterus) which resulted in significant mortality in the years before early detection and treatment methods were employed. Animals exposed to 55-MeV protons had a high incidence of malignant brain tumors with latent periods ranging from 13 months to 20 years. The first fatal cancer among nonirradiated controls occurred 18 years after the study began. Analysis of the dose-response data supports the 1989 guidelines of the NCRP for maximum permissible radiation exposures in astronauts (NCRP, Guidance on Radiation Received in Space Activities, Report No. 98, National Council on Radiation Protection and Measurements, Bethesda, MD, 1989).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujii, K; UCLA School of Medicine, Los Angeles, CA; McMillan, K
2015-06-15
Purpose: The aim of this study is to evaluate the difference in radiation doses from adult Brain-Neck CT angiography (CTA) between two CT scanners. Methods: We collected CT dose index data (CTDIvol, DLP) from adult Brain-Neck CTA performed with two CT scanners (Sensation 64 (S64) and Definition AS (AS), Siemens Healthcare) performed at two of our facilities from Jan 1st to Dec 31th, 2014. X-ray dose management software (Radmetrics, Bayer Healthcare) was used to mine these data. All exams were performed with Tube Current Modulation (Care Dose 4D), tube voltage of 120 kVp, quality reference mAs of 300, beam collimationmore » of 64*0.6 mm. The rotation time was set to 0.5 sec for S64 and 1.0 sec for AS. We also scanned an anthropomorphic skull and chest phantom under routine Brain-Neck CTA protocol with the two scanners and extracted the tube current values from the raw projection data. Results: The mean CTDIvol and DLP in Brain-Neck CTA was 72 mGy and 2554 mGy*cm for AS, which was substantially larger than the mean values of 46 mGy and 1699 mGy*cm for S64. The maximum tube current was 583 mA for most cases on the S64 while the maximum was 666 mA for AS even though the rotation time set for AS was 1.0 sec. Measurements obtained with the anthropomorphic phantom showed that the tube current reached 583 mA at the shoulder region for S64 while it reached to 666 mA for AS. Conclusion: The results of this study showed that substantially different CT doses can Result from Brain-Neck CTA protocols even when similar scanners and similar settings are used. Though both scanners have a similar maximum mA rating, differences in mA were observed through the shoulders, resulting in substantially different CTDIvol values.« less
Epigenetic Analysis of Heavy-ion Radiation Induced Bystander Effects in Mice
NASA Astrophysics Data System (ADS)
Zhang, Meng; Sun, Yeqing; Cui, Changna; Xue, Bei
Abstract: Radiation-induced bystander effect was defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic and proteomics plays significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male Balb/c and C57BL mice were exposed head-only to 40, 200, 2000mGy dose of (12) C heavy-ion radiation, while the rest of the animal body was shielded. Directly radiation organ ear and the distant organ liver were detected on 1h, 6h, 12h and 24h after radiation, respectively. Methylation-sensitive amplification polymorphism (MSAP) was used to monitor the level of polymorphic genomic DNA methylation changed with dose and time effects. The results show that heavy-ion irradiated mouse head could induce genomic DNA methylation changes significantly in both the directly radiation organ ear and the distant organ liver. The percent of DNA methylation changes were time-dependent and tissue-specific. Demethylation polymorphism rate was highest separately at 1 h in 200 mGy and 6 h in 2000 mGy after irradiation. The global DNA methylation changes tended to occur in the CG sites. The results illustrated that genomic methylation changes of heavy ion radiation-induced bystander effect in liver could be obvious 1 h after radiation and achieved the maximum at 6 h, while the changes could recover gradually at 12 h. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in both directly radiation organ ear and distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo.
Deconvolution Method on OSL Curves from ZrO2 Irradiated by Beta and UV Radiations
NASA Astrophysics Data System (ADS)
Rivera, T.; Kitis, G.; Azorín, J.; Furetta, C.
This paper reports the optically stimulated luminescent (OSL) response of ZrO2 to beta and ultraviolet radiations in order to investigate the potential use of this material as a radiation dosimeter. The experimentally obtained OSL decay curves were analyzed using the computerized curve de-convolution (CCD) method. It was found that the OSL curve structure, for the short (practical) illumination time used, consists of three first order components. The individual OSL dose response behavior of each component was found. The values of the time at the OSL peak maximum and the decay constant of each component were also estimated.
Outpatient radioiodine therapy for thyroid cancer: a safe nuclear medicine procedure.
Willegaignon, José; Sapienza, Marcelo; Ono, Carla; Watanabe, Tomoco; Guimarães, Maria Inês; Gutterres, Ricardo; Marechal, Maria Helena; Buchpiguel, Carlos
2011-06-01
To evaluate the dosimetric effect of outpatient radioiodine therapy for thyroid cancer in members of a patient's family and their living environment, when using iodine-131 doses reaching 7.4 GBq. The following parameters were thus defined: (a) whole-body radiation doses to caregivers, (b) the production of contaminated solid waste, and (c) radiation potential and surface contamination within patients' living quarters. In total, 100 patients were treated on an outpatient basis, taking into consideration their acceptable living conditions, interests, and willingness to comply with medical and radiation safety guidelines. Both the caregivers and the radiation dose potentiality inside patients' residences were monitored by using thermoluminescent dosimeters. Surface contamination and contaminated solid wastes were identified and measured with a Geiger-Müller detector. A total of 90 monitored individuals received a mean dose of 0.27 (±0.28) mSv, and the maximum dose registered was 1.6 mSv. The mean value for the potential dose within all living quarters was 0.31 (±0.34) mSv, and the mean value per monitored surface was 5.58 Bq/cm(2) for all the 1659 points measured. The overall production of contaminated solid wastes was at a low level, being about 3 times less than the exemption level indicated by the International Atomic Energy Agency. This study indicates that the treatment of thyroid cancer by applying radioiodine activities up to 7.4 GBq, on an outpatient basis, is a safe procedure, especially when supervised by qualified professionals. This alternative therapy should be a topic for careful discussion considering the high potential for reducing costs in healthcare and improving patient acceptance.
Wooten, H Omar; Green, Olga; Yang, Min; DeWees, Todd; Kashani, Rojano; Olsen, Jeff; Michalski, Jeff; Yang, Deshan; Tanderup, Kari; Hu, Yanle; Li, H Harold; Mutic, Sasa
2015-07-15
This work describes a commercial treatment planning system, its technical features, and its capabilities for creating (60)Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. The ViewRay treatment planning system (Oakwood Village, OH) was used to create (60)Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated by attending physicians and approved for treatment. The (60)Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses and heterogeneity indices (HI) for planning target volumes (PTVs) and maximum, mean, and dose-volume histogram (DVH) values for OARs. All (60)Co IMRT plans achieved PTV coverage and OAR sparing that were similar to linac plans. PTV conformity for (60)Co was within <1% and 3% of linac plans for 100% and 95% prescription reference isodoses, respectively, and heterogeneity was on average 4% greater. Comparisons of OAR mean dose showed generally better sparing with linac plans in the low-dose range <20 Gy, but comparable sparing for organs with mean doses >20 Gy. The mean doses for all (60)Co plan OARs were within clinical tolerances. A commercial (60)Co MR-IGRT device can produce highly conformal IMRT treatment plans similar in quality to linac IMRT for a variety of disease sites. Additional work is in progress to evaluate the clinical benefit of other novel features of this MR-IGRT system. Copyright © 2015 Elsevier Inc. All rights reserved.
Rao, B S S; Shanbhoge, R; Rao, B N; Adiga, S K; Upadhya, D; Aithal, B K; Kumar, M R S
2009-04-01
This study presents the findings of free radical scavenging and antigenotoxic effect of hydroalcoholic extract of Cymbopogon citratus (CCE). The CCE at a concentration of 60 microg/mL resulted in a significant scavenging ability of 2,2-diphenyl-2-picryl hydrazyl (DPPH; (85%), 2,2-azinobis (3-ethyl benzothiazoline-6-sulphonic acid) (ABTS; 77%), hydroxyl (70%), superoxide (76%), nitric oxide (78%) free radicals generated using in vitro and also a moderate anti-lipid peroxidative effect (57%). Further, the radiation-induced antigenotoxic potential of CCE was assessed in Chinese hamster lung fibroblast cells (V79) using micronucleus assay. The CCE resulted in a dose-dependent decrease in the yield of radiation-induced micronuclei, with a maximum effect at 125 microg/mL CCE for 1 h before 2 Gy of radiation. Similarly, there was a significant (P < 0.05-0.0001) decrease in percentage of micronuclei when V79 cells were treated with optimal dose of CCE (125 microg/mL) before exposure to different doses of gamma radiation, that is, 0.5-4 Gy, compared with radiation alone groups. The results of the micronucleus study indicated antigenotoxic effect demonstrating the radioprotective potential of CCE and, which may partly due to its and antioxidant capacity as it presented its ability to scavenge various free radicals in vitro and anti-lipid peroxidative potential.
Liu, Yue-E; Lin, Qiang; Meng, Fan-Jie; Chen, Xue-Ji; Ren, Xiao-Cang; Cao, Bin; Wang, Na; Zong, Jie; Peng, Yu; Ku, Ya-Jun; Chen, Yan
2013-08-11
Increasing the radiotherapy dose can result in improved local control for non-small-cell lung cancer (NSCLC) and can thereby improve survival. Accelerated hypofractionated radiotherapy can expose tumors to a high dose of radiation in a short period of time, but the optimal treatment regimen remains unclear. The purpose of this study was to evaluate the feasibility of utilizing high-dose accelerated hypofractionated three-dimensional conformal radiotherapy (at 3 Gy/fraction) with concurrent vinorelbine (NVB) and carboplatin (CBP) chemotherapy for the treatment of local advanced NSCLC. Untreated patients with unresectable stage IIIA/IIIB NSCLC or patients with a recurrence of NSCLC received accelerated hypofractionated three-dimensional conformal radiotherapy. The total dose was greater than or equal to 60 Gy. The accelerated hypofractionated radiotherapy was conducted once daily at 3 Gy/fraction with 5 fractions per week, and the radiotherapy was completed in 5 weeks. In addition to radiotherapy, the patients also received at least 1 cycle of a concurrent two-drug chemotherapy regimen of NVB and CBP. A total of 26 patients (19 previously untreated cases and 7 cases of recurrent disease) received 60Gy-75Gy radiotherapy with concurrent chemotherapy. All of the patients underwent evaluations for toxicity and preliminary therapeutic efficacy. There were no treatment-related deaths within the entire patient group. The major acute adverse reactions were radiation esophagitis (88.5%) and radiation pneumonitis (42.3%). The percentages of grade III acute radiation esophagitis and grade III radiation pneumonitis were 15.4% and 7.7%, respectively. Hematological toxicities were common and did not significantly affect the implementation of chemoradiotherapy after supportive treatment. Two patients received high dose of 75 Gy had grade III late esophageal toxicity, and none had grade IV and above. Grade III and above late lung toxicity did not occur. High-dose accelerated hypofractionated three-dimensional conformal radiotherapy with a dose of 60 Gy or greater with concurrent NVB and CBP chemotherapy might be feasible. However esophagus toxicity needs special attention. A phase I trial is recommended to obtain the maximum tolerated radiation dose of accelerated hypofractionated radiotherapy with concurrent chemotherapy.
2013-01-01
Background Increasing the radiotherapy dose can result in improved local control for non-small-cell lung cancer (NSCLC) and can thereby improve survival. Accelerated hypofractionated radiotherapy can expose tumors to a high dose of radiation in a short period of time, but the optimal treatment regimen remains unclear. The purpose of this study was to evaluate the feasibility of utilizing high-dose accelerated hypofractionated three-dimensional conformal radiotherapy (at 3 Gy/fraction) with concurrent vinorelbine (NVB) and carboplatin (CBP) chemotherapy for the treatment of local advanced NSCLC. Methods Untreated patients with unresectable stage IIIA/IIIB NSCLC or patients with a recurrence of NSCLC received accelerated hypofractionated three-dimensional conformal radiotherapy. The total dose was greater than or equal to 60 Gy. The accelerated hypofractionated radiotherapy was conducted once daily at 3 Gy/fraction with 5 fractions per week, and the radiotherapy was completed in 5 weeks. In addition to radiotherapy, the patients also received at least 1 cycle of a concurrent two-drug chemotherapy regimen of NVB and CBP. Results A total of 26 patients (19 previously untreated cases and 7 cases of recurrent disease) received 60Gy-75Gy radiotherapy with concurrent chemotherapy. All of the patients underwent evaluations for toxicity and preliminary therapeutic efficacy. There were no treatment-related deaths within the entire patient group. The major acute adverse reactions were radiation esophagitis (88.5%) and radiation pneumonitis (42.3%). The percentages of grade III acute radiation esophagitis and grade III radiation pneumonitis were 15.4% and 7.7%, respectively. Hematological toxicities were common and did not significantly affect the implementation of chemoradiotherapy after supportive treatment. Two patients received high dose of 75 Gy had grade III late esophageal toxicity, and none had grade IV and above. Grade III and above late lung toxicity did not occur. Conclusion High-dose accelerated hypofractionated three-dimensional conformal radiotherapy with a dose of 60 Gy or greater with concurrent NVB and CBP chemotherapy might be feasible. However esophagus toxicity needs special attention. A phase I trial is recommended to obtain the maximum tolerated radiation dose of accelerated hypofractionated radiotherapy with concurrent chemotherapy. PMID:23937855
Brady, Samuel L.; Moore, Bria M.; Yee, Brian S.; Kaufman, Robert A.
2015-01-01
Purpose To determine a comprehensive method for the implementation of adaptive statistical iterative reconstruction (ASIR) for maximal radiation dose reduction in pediatric computed tomography (CT) without changing the magnitude of noise in the reconstructed image or the contrast-to-noise ratio (CNR) in the patient. Materials and Methods The institutional review board waived the need to obtain informed consent for this HIPAA-compliant quality analysis. Chest and abdominopelvic CT images obtained before ASIR implementation (183 patient examinations; mean patient age, 8.8 years ± 6.2 [standard deviation]; range, 1 month to 27 years) were analyzed for image noise and CNR. These measurements were used in conjunction with noise models derived from anthropomorphic phantoms to establish new beam current–modulated CT parameters to implement 40% ASIR at 120 and 100 kVp without changing noise texture or magnitude. Image noise was assessed in images obtained after ASIR implementation (492 patient examinations; mean patient age, 7.6 years ± 5.4; range, 2 months to 28 years) the same way it was assessed in the pre-ASIR analysis. Dose reduction was determined by comparing size-specific dose estimates in the pre- and post-ASIR patient cohorts. Data were analyzed with paired t tests. Results With 40% ASIR implementation, the average relative dose reduction for chest CT was 39% (2.7/4.4 mGy), with a maximum reduction of 72% (5.3/18.8 mGy). The average relative dose reduction for abdominopelvic CT was 29% (4.8/6.8 mGy), with a maximum reduction of 64% (7.6/20.9 mGy). Beam current modulation was unnecessary for patients weighing 40 kg or less. The difference between 0% and 40% ASIR noise magnitude was less than 1 HU, with statistically nonsignificant increases in patient CNR at 100 kVp of 8% (15.3/14.2; P = .41) for chest CT and 13% (7.8/6.8; P = .40) for abdominopelvic CT. Conclusion Radiation dose reduction at pediatric CT was achieved when 40% ASIR was implemented as a dose reduction tool only; no net change to the magnitude of noise in the reconstructed image or the patient CNR occurred. PMID:23901128
Misdaq, M A; Touti, R
2012-03-01
Olive oil is traditionally refined and widely consumed by Moroccan rural populations. Uranium (238U), thorium (232Th), radon (222Rn), and thoron (220Rn) contents were measured in various locally produced olive oil samples collected in rural areas of Morocco. These radionuclides were also measured inside various bottled virgin olive oils consumed by the Moroccan populations. CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs) were used. Annual committed effective doses due to 238U, 232Th, and 222Rn from the ingestion of olive oil by the members of the general public were determined. The maximum total committed effective dose due to 238U, 232Th, and 222Rn from the ingestion of olive oil by adult members of Moroccan rural populations was found equal to 5.9 µSv y-1. The influence of pollution due to building material dusts and phosphates on the radiation dose to workers from the ingestion of olive oil was investigated, and it was found that the maximum total committed effective dose due to 238U, 232Th, and 222Rn was on the order of 0.22 mSy y-1. Committed effective doses to skin due to 238U, 232Th, and 222Rn from the application of olive oil masks by rural women were evaluated. The maximum total committed effective dose to skin due to 238U, 232Th, and 222Rn was found equal to 0.07 mSy y-1 cm-2.
Mediate gamma radiation effects on some packaged food items
NASA Astrophysics Data System (ADS)
Inamura, Patricia Y.; Uehara, Vanessa B.; Teixeira, Christian A. H. M.; del Mastro, Nelida L.
2012-08-01
For most of prepackaged foods a 10 kGy radiation dose is considered the maximum dose needed; however, the commercially available and practically accepted packaging materials must be suitable for such application. This work describes the application of ionizing radiation on several packaged food items, using 5 dehydrated food items, 5 ready-to-eat meals and 5 ready-to-eat food items irradiated in a 60Co gamma source with a 3 kGy dose. The quality evaluation of the irradiated samples was performed 2 and 8 months after irradiation. Microbiological analysis (bacteria, fungus and yeast load) was performed. The sensory characteristics were established for appearance, aroma, texture and flavor attributes were also established. From these data, the acceptability of all irradiated items was obtained. All ready-to-eat food items assayed like manioc flour, some pâtés and blocks of raw brown sugar and most of ready-to-eat meals like sausages and chicken with legumes were considered acceptable for microbial and sensory characteristics. On the other hand, the dehydrated food items chosen for this study, such as dehydrated bacon potatoes or pea soups were not accepted by the sensory analysis. A careful dose choice and special irradiation conditions must be used in order to achieve sensory acceptability needed for the commercialization of specific irradiated food items.
NASA Astrophysics Data System (ADS)
Chen, Ho-Hsing; Wu, Jay; Chuang, Keh-Shih; Kuo, Hsiang-Chi
2007-07-01
Intensity-modulated radiation therapy (IMRT) utilizes nonuniform beam profile to deliver precise radiation doses to a tumor while minimizing radiation exposure to surrounding normal tissues. However, the problem of intrafraction organ motion distorts the dose distribution and leads to significant dosimetric errors. In this research, we applied an aperture adaptive technique with a visual guiding system to toggle the problem of respiratory motion. A homemade computer program showing a cyclic moving pattern was projected onto the ceiling to visually help patients adjust their respiratory patterns. Once the respiratory motion becomes regular, the leaf sequence can be synchronized with the target motion. An oscillator was employed to simulate the patient's breathing pattern. Two simple fields and one IMRT field were measured to verify the accuracy. Preliminary results showed that after appropriate training, the amplitude and duration of volunteer's breathing can be well controlled by the visual guiding system. The sharp dose gradient at the edge of the radiation fields was successfully restored. The maximum dosimetric error in the IMRT field was significantly decreased from 63% to 3%. We conclude that the aperture adaptive technique with the visual guiding system can be an inexpensive and feasible alternative without compromising delivery efficiency in clinical practice.
NASA Astrophysics Data System (ADS)
Keall, Paul; Arief, Isti; Shamas, Sofia; Weiss, Elisabeth; Castle, Steven
2008-05-01
Whole brain radiation therapy (WBRT) is the standard treatment for patients with brain metastases, and is often used in conjunction with stereotactic radiotherapy for patients with a limited number of brain metastases, as well as prophylactic cranial irradiation. The use of open fields (conventionally used for WBRT) leads to higher doses to the brain periphery if dose is prescribed to the brain center at the largest lateral radius. These dose variations potentially compromise treatment efficacy and translate to increased side effects. The goal of this research was to design and construct a 3D 'brain wedge' to compensate dose heterogeneities in WBRT. Radiation transport theory was invoked to calculate the desired shape of a wedge to achieve a uniform dose distribution at the sagittal plane for an ellipsoid irradiated medium. The calculations yielded a smooth 3D wedge design to account for the missing tissue at the peripheral areas of the brain. A wedge was machined based on the calculation results. Three ellipsoid phantoms, spanning the mean and ± two standard deviations from the mean cranial dimensions were constructed, representing 95% of the adult population. Film was placed at the sagittal plane for each of the three phantoms and irradiated with 6 MV photons, with the wedge in place. Sagittal plane isodose plots for the three phantoms demonstrated the feasibility of this wedge to create a homogeneous distribution with similar results observed for the three phantom sizes, indicating that a single wedge may be sufficient to cover 95% of the adult population. The sagittal dose is a reasonable estimate of the off-axis dose for whole brain radiation therapy. Comparing the dose with and without the wedge the average minimum dose was higher (90% versus 86%), the maximum dose was lower (107% versus 113%) and the dose variation was lower (one standard deviation 2.7% versus 4.6%). In summary, a simple and effective 3D wedge for whole brain radiotherapy has been developed. The wedge gives a more uniform dose distribution than commonly used techniques. Further development and shape optimization may be necessary prior to clinical implementation.
Takada, Kenta; Sato, Tatsuhiko; Kumada, Hiroaki; Koketsu, Junichi; Takei, Hideyuki; Sakurai, Hideyuki; Sakae, Takeji
2018-01-01
The microdosimetric kinetic model (MKM) is widely used for estimating relative biological effectiveness (RBE)-weighted doses for various radiotherapies because it can determine the surviving fraction of irradiated cells based on only the lineal energy distribution, and it is independent of the radiation type and ion species. However, the applicability of the method to proton therapy has not yet been investigated thoroughly. In this study, we validated the RBE-weighted dose calculated by the MKM in tandem with the Monte Carlo code PHITS for proton therapy by considering the complete simulation geometry of the clinical proton beam line. The physical dose, lineal energy distribution, and RBE-weighted dose for a 155 MeV mono-energetic and spread-out Bragg peak (SOBP) beam of 60 mm width were evaluated. In estimating the physical dose, the calculated depth dose distribution by irradiating the mono-energetic beam using PHITS was consistent with the data measured by a diode detector. A maximum difference of 3.1% in the depth distribution was observed for the SOBP beam. In the RBE-weighted dose validation, the calculated lineal energy distributions generally agreed well with the published measurement data. The calculated and measured RBE-weighted doses were in excellent agreement, except at the Bragg peak region of the mono-energetic beam, where the calculation overestimated the measured data by ~15%. This research has provided a computational microdosimetric approach based on a combination of PHITS and MKM for typical clinical proton beams. The developed RBE-estimator function has potential application in the treatment planning system for various radiotherapies. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hickey, Ryan; Mulcahy, Mary F.; Lewandowski, Robert J.
Purpose: Radiosensitizing chemotherapy improves the outcomes in comparison with radiation alone for gastrointestinal cancers. The delivery of radiation therapy with yttrium90 ({sup 90}Y) radioembolization, in combination with the radiosensitizing chemotherapeutic agent capecitabine, provides the opportunity to enhance the effects of radiation on hepatic malignancies. This phase 1 study sought to determine the maximum tolerated dose (MTD) of {sup 90}Y plus capecitabine in patients with cholangiocarcinoma or liver metastases confined to the liver. Methods and Materials: Patients were given initial treatment at full-dose capecitabine during days 1 to 14 of a 21-day cycle. At days 1 to 7 of the secondmore » cycle, whole-liver {sup 90}Y was given at the test dose, after which time capecitabine was continued. Dose-limiting toxicity (DLT) was determined 6 weeks after {sup 90}Y infusion. If a DLT was not observed, the {sup 90}Y dose was escalated. The planned dose cohorts were 110, 130, 150, and 170 Gy. The primary endpoint was to determine the MTD of {sup 90}Y with full-dose capecitabine. Results: Sixteen patients were treated according to the study protocol. Two patients experienced DLTs. Nine patients required capecitabine dose reduction as a result of toxicities attributable to capecitabine alone. The criteria for establishing {sup 90}Y MTD were not met, indicating an MTD of >170 Gy. Conclusion: The MTD of {sup 90}Y delivered in conjunction with capecitabine in the setting of intrahepatic cholangiocarcinoma or metastatic disease confined to the liver exceeds 170 Gy. This is the highest {sup 90}Y dose reported to date and has important implications on combined therapy with the radiosensitizing oral chemotherapeutic capecitabine. Further studies are under way.« less
Iridium-Knife: Another knife in radiation oncology.
Milickovic, Natasa; Tselis, Nikolaos; Karagiannis, Efstratios; Ferentinos, Konstantinos; Zamboglou, Nikolaos
Intratarget dose escalation with superior conformity is a defining feature of three-dimensional (3D) iridium-192 ( 192 Ir) high-dose-rate (HDR) brachytherapy (BRT). In this study, we analyzed the dosimetric characteristics of interstitial 192 Ir HDR BRT for intrathoracic and cerebral malignancies. We examined the dose gradient sharpness of HDR BRT compared with that of linear accelerator-based stereotactic radiosurgery and stereotactic body radiation therapy, usually called X-Knife, to demonstrate that it may as well be called a Knife. Treatment plans for 10 patients with recurrent glioblastoma multiforme or intrathoracic malignancies, five of each entity, treated with X-Knife (stereotactic radiosurgery for glioblastoma multiforme and stereotactic body radiation therapy for intrathoracic malignancies) were replanned for simulated HDR BRT. For 3D BRT planning, we used identical structure sets and dose prescription as for the X-Knife planning. The indices for qualitative treatment plan analysis encompassed planning target volume coverage, conformity, dose falloff gradient, and the maximum dose-volume limits to different organs at risk. Volume coverage in HDR plans was comparable to that calculated for X-Knife plans with no statistically significant difference in terms of conformity. The dose falloff gradient-sharpness-of the HDR plans was considerably steeper compared with the X-Knife plans. Both 3D 192 Ir HDR BRT and X-Knife are effective means for intratarget dose escalation with HDR BRT achieving at least equal conformity and a steeper dose falloff at the target volume margin. In this sense, it can reasonably be argued that 3D 192 Ir HDR BRT deserves also to be called a Knife, namely Iridium-Knife. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Monzen, Hajime; Kubo, Kazuki; Tamura, Mikoto; Hayakawa, Masaru; Nishimura, Yasumasa
2017-05-01
We developed a novel low-radiation-absorbent lok-bar (HM-bar) that is used to secure the immobilizers to the couch. The aim of this study was to investigate the X-ray scattering and absorption properties of the HM-bar in computed tomography (CT) simulation and radiotherapy dose delivery using the Varian Exact™ lok-bar (VL-bar) as a benchmark. CT images were obtained with or without lok-bar, and then each image was visually evaluated for artifacts. The attenuation rates for each lok-bar were measured using a farmer-type ionization chamber (PTW30013) and the I'mRT phantom (IBA Dosimetry GmbH). Measurement points were between gantry angles of 110 and 180°. The treatment apparatus was a NovalisTx (Brainlab AG); X-ray energies were set at 6 MV and 10 MV. In the presence of each lok-bar, the radiation dose was measured in accordance with 10 volumetric modulated arc therapy-stereotactic body radiation therapy (VMAT-SBRT) plans for lung cancer. Artifacts were seldom observed in the CT scans of the HM-bar. The attenuation rate of each lok-bar was higher when the X-ray energy was set at 6 MV than at 10 MV. The highest attenuation rate in the VL-bar was observed at a gantry angle of 112°; the rates were 22.4% at 6 MV and 19.3% at 10 MV. Similarly, the highest attenuation rate for the HM-bar was also observed at a gantry angle of 112°; the rates were 12.2% and 10.1% at 6 MV and 10 MV, respectively. When the VL-bar was evaluated, the isocenter dose of the VMAT-SBRT plans was attenuated by 2.6% as a maximum case. In the case of the HM-bar, the maximum attenuation was 1.4%. In the measurements of each VMAT-SBRT plan, the difference of the dose attenuation rate between the VL-bar and HM-bar was approximately 1%. The HM-bar could be used to minimize the occurrence of artifacts and provide good images in CT scans regarding radiotherapy planning and dose calculation. It can be used for patient therapy at hospitals to provide accurate dose delivery because of its low X-ray scattering and absorption characteristics. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Estimates of internal-dose equivalent from inhalation and ingestion of selected radionuclides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunning, D.E.
1982-01-01
This report presents internal radiation dose conversion factors for radionuclides of interest in environmental assessments of nuclear fuel cycles. This volume provides an updated summary of estimates of committed dose equivalent for radionuclides considered in three previous Oak Ridge National Laboratory (ORNL) reports. Intakes by inhalation and ingestion are considered. The International Commission on Radiological Protection (ICRP) Task Group Lung Model has been used to simulate the deposition and retention of particulate matter in the respiratory tract. Results corresponding to activity median aerodynamic diameters (AMAD) of 0.3, 1.0, and 5.0 ..mu..m are given. The gastorintestinal (GI) tract has been representedmore » by a four-segment catenary model with exponential transfer of radioactivity from one segment to the next. Retention of radionuclides in systemic organs is characterized by linear combinations of decaying exponential functions, recommended in ICRP Publication 30. The first-year annual dose rate, maximum annual dose rate, and fifty-year dose commitment per microcurie intake of each radionuclide is given for selected target organs and the effective dose equivalent. These estimates include contributions from specified source organs plus the systemic activity residing in the rest of the body; cross irradiation due to penetrating radiations has been incorporated into these estimates. 15 references.« less
The radiation dose from a proposed measurement of arsenic and selenium in human skin
NASA Astrophysics Data System (ADS)
Gherase, Mihai R.; Mader, Joanna E.; Fleming, David E. B.
2010-09-01
Dose measurements following 10 min irradiations with a portable x-ray fluorescence spectrometer composed of a miniature x-ray tube and a silicon PiN diode detector were performed using thermoluminescent dosimeters consisting of LiF:Mg,Ti chips of 3 mm diameter and 0.4 mm thickness. The table-top setup of the spectrometer was used for all measurements. The setup included a stainless steel lid which served as a radiation shield. Two rectangular polyethylene skin/soft tissue phantoms with two cylindrical plaster of Paris bone phantoms were used to study the effect of x-ray beam attenuation and backscatter on the measured dose. Eight different irradiation experiments were performed. The average dose rate values measured with TLD chips within a 1 × 1 cm2 area were between 4.8 and 12.8 mGy min-1. The equivalent dose for a 1 × 1 cm2 skin area was estimated to be 13.2 mSv. The maximum measured dose rate values with a single TLD chip were between 7.5 and 25.1 mGy min-1. The effective dose corresponding to a proposed arsenic/selenium skin measurement was estimated to be 0.13 µSv for a 2 min irradiation.
Method for simulating dose reduction in digital mammography using the Anscombe transformation.
Borges, Lucas R; Oliveira, Helder C R de; Nunes, Polyana F; Bakic, Predrag R; Maidment, Andrew D A; Vieira, Marcelo A C
2016-06-01
This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtained by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe transformation. NNPS, PS, and local noise metrics confirm that this method is capable of precisely simulating various dose reductions.
Assessment of the Influence of the RaD-X Balloon Payload on the Onboard Radiation Detectors
NASA Technical Reports Server (NTRS)
Gronoff, Guilluame; Mertens, Christopher J.; Norman, Ryan B.; Straume, Tore; Lusby, Terry C.
2016-01-01
The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission, launched on 25 September 2015, provided dosimetric measurements above the Pfotzer maximum. The goal of taking these measurements is to improve aviation radiation models by providing a characterization of cosmic ray primaries, which are the source of radiation exposure at aviation altitudes. The RaD-X science payload consists of four instruments. The main science instrument is a tissue-equivalent proportional counter (TEPC). The other instruments consisted of three solid state silicon dosimeters: Liulin, Teledyne total ionizing dose (TID) and RaySure detectors. The instruments were housed in an aluminum structure protected by a foam cover. The structure partially shielded the detectors from cosmic rays but also created secondary particles, modifying the ambient radiation environment observed by the instruments. Therefore, it is necessary to account for the influence of the payload structure on the measured doses. In this paper, we present the results of modeling the effect of the balloon payload on the radiation detector measurements using a Geant-4 (GEometry ANd Tracking) application. Payload structure correction factors derived for the TEPC, Liulin, and TID instruments are provided as a function of altitude. Overall, the payload corrections are no more than a 7% effect on the radiation environment measurements.
Cancer Mortality Following Radiotherapy for Benign Gynecologic Disorders
Sakata, Ritsu; Kleinerman, Ruth A.; Mabuchi, Kiyohiko; Stovall, Marilyn; Smith, Susan A.; Weathers, Rita; Wactawski-Wende, Jean; Cookfair, Diane L.; Boice, John D.; Inskip, Peter D.
2012-01-01
The purpose of this study is to quantify cancer mortality in relationship to organ-specific radiation dose among women irradiated for benign gynecologic disorders. Included in this study are 12,955 women treated for benign gynecologic disorders at hospitals in the Northeastern U.S. between 1925 and 1965; 9,770 women treated by radiation and 3,186 women treated by other methods. The average age at treatment was 45.9 years (range, 13–88 years), and the average follow-up period was 30.1 years (maximum, 69.9 years). Radiation doses to organs and active bone marrow were reconstructed by medical physicists using original radiotherapy records. The highest doses were received by the uterine cervix (median, 120 Gy) and uterine corpus (median, 34 Gy), followed by the bladder, rectum and colon (median, 1.7–7.2 Gy), with other abdominal organs receiving median doses ≤1 Gy and organs in the chest and head receiving doses <0.1 Gy. Standardized mortality rate ratios relative to the general U.S. population were calculated. Radiation-related risks were estimated in internal analyses using Poisson regression models. Mortality was significantly elevated among irradiated women for cancers of the uterine corpus, ovary, bladder, rectum, colon and brain, as well as for leukemia (exclusive of chronic lymphocytic leukemia) but not for cancer of the cervix, Hodgkin or non-Hodgkin lymphoma, multiple myeloma, or chronic lymphocytic leukemia. Evidence of a dose-response was seen for cancers of the ovary [excess relative risk (ERR) 0.31/Gy, P < 0.001], bladder (ERR = 0.21/Gy, P = 0.02) and rectum (ERR = 0.23/Gy, P = 0.05) and suggested for colon (ERR = 0.09/Gy, P = 0.10), but not for cancers of the uterine corpus or brain nor for non-chronic lymphocytic leukemia. Relative risks of mortality due to cancers of the stomach, pancreas, liver and kidney were close to 1.0, with no evidence of dose-response over the range of 0–1.5 Gy. Breast cancer was not significantly associated with dose to the breast or ovary. Mortality due to cancers of heavily irradiated organs remained elevated up to 40 years after irradiation. Significantly elevated radiation-related risk was seen for cancers of organs proximal to the radiation source or fields (bladder, rectum and ovary), as well as for non-chronic lymphocytic leukemia. Our results corroborate those from previous studies that suggest that cells of the uterine cervix and lymphopoietic system are relatively resistant to the carcinogenic effects of radiation. Studies of women irradiated for benign gynecologic disorders, together with studies of women treated with higher doses of radiation for uterine cancers, provide quantitative information on cancer risks associated with a broad range of pelvic radiation exposures. PMID:22856888
Solar UV-A and UV-B radiation fluxes at two Alpine stations at different altitudes
NASA Astrophysics Data System (ADS)
Blumthaler, M.; Ambach, W.; Rehwald, W.
1992-03-01
Daily totals of UV-A and UV-B radiation fluxes and global radiation were measured since 1981 at Jungfraujoch (3576 m) a.s.l.) and in Innsbruck (577 m a.s.l.) in their seasonal course. The altitude effect of annual totals yields 19%/1000 m (UV-B), 11%/1000 m (UV-A) and 9%/1000 m (global radiation) with reference to Innsbruck station. The ratio of the daily totals of UV-B/global radiation shows a significant seasonal course with the maximum in summer, whereas the ratio of the daily totals of UV-A/global radiation shows no significant seasonal variation. The biological effective doses of erythema reaction, delayed tanning and immediate tanning by UV-A and UV-B radiant exposure are reported in the seasonal course at Jungfraujoch and in Innsbruck.
Dosimetric comparison of photon and proton treatment techniques for chondrosarcoma of thoracic spine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Poonam, E-mail: yadav@humonc.wisc.edu; Department of Medical Physics, University of Wisconsin, Madison, WI; University of Wisconsin Riverview Cancer Center, Wisconsin Rapids, WI
2013-10-01
Chondrosarcomas are relatively radiotherapy resistant, and also delivering high radiation doses is not feasible owing to anatomic constraints. In this study, the feasibility of helical tomotherapy for treatment of chondrosarcoma of thoracic spine is explored and compared with other available photon and proton radiotherapy techniques in the clinical setting. A patient was treated for high-grade chondrosarcoma of the thoracic spine using tomotherapy. Retrospectively, the tomotherapy plan was compared with intensity-modulated radiation therapy, dynamic arc photon therapy, and proton therapy. Two primary comparisons were made: (1) comparison of normal tissue sparing with comparable target volume coverage (plan-1), and (2) comparison ofmore » target volume coverage with a constrained maximum dose to the cord center (plan-2). With constrained target volume coverage, proton plans were found to yield lower mean doses for all organs at risk (spinal cord, esophagus, heart, and both lungs). Tomotherapy planning resulted in the lowest mean dose to all organs at risk amongst photon-based methods. For cord dose constrained plans, the static-field intensity-modulated radiation therapy and dynamic arc plans resulted target underdosing in 20% and 12% of planning target volume2 volumes, respectively, whereas both proton and tomotherapy plans provided clinically acceptable target volume coverage with no portion of planning target volume2 receiving less than 90% of the prescribed dose. Tomotherapy plans are comparable to proton plans and produce superior results compared with other photon modalities. This feasibility study suggests that tomotherapy is an attractive alternative to proton radiotherapy for delivering high doses to lesions in the thoracic spine.« less
Wood, Tim J; Moore, Craig S; Horsfield, Carl J; Saunderson, John R; Beavis, Andrew W
2015-01-01
The purpose of this study was to develop size-based radiotherapy kilovoltage cone beam CT (CBCT) protocols for the pelvis. Image noise was measured in an elliptical phantom of varying size for a range of exposure factors. Based on a previously defined "small pelvis" reference patient and CBCT protocol, appropriate exposure factors for small, medium, large and extra-large patients were derived which approximate the image noise behaviour observed on a Philips CT scanner (Philips Medical Systems, Best, Netherlands) with automatic exposure control (AEC). Selection criteria, based on maximum tube current-time product per rotation selected during the radiotherapy treatment planning scan, were derived based on an audit of patient size. It has been demonstrated that 110 kVp yields acceptable image noise for reduced patient dose in pelvic CBCT scans of small, medium and large patients, when compared with manufacturer's default settings (125 kVp). Conversely, extra-large patients require increased exposure factors to give acceptable images. 57% of patients in the local population now receive much lower radiation doses, whereas 13% require higher doses (but now yield acceptable images). The implementation of size-based exposure protocols has significantly reduced radiation dose to the majority of patients with no negative impact on image quality. Increased doses are required on the largest patients to give adequate image quality. The development of size-based CBCT protocols that use the planning CT scan (with AEC) to determine which protocol is appropriate ensures adequate image quality whilst minimizing patient radiation dose.
Design and "As Flown" Radiation Environments for Materials in Low Earth Orbits
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Altstatt, Richard L.; McWilliams, Brett; Koontz, Steven L.
2006-01-01
The design estimate for the materials for the International Space Station (ISS) specified in SSP 30512 was a conservative estimate. The environment dose was over estimated. The materials originally qualified for approximately 10-15 years are anticipated to be acceptable for periods of up to 20-30 years based on SSP-30512 or 40-60 years based on 2x SSP-30512. This viewgraph presentation shows charts and graphs that review the altitude, the solar minimum and maximum, and the radiation exposure of other satellite, among other graphics.
NASA Astrophysics Data System (ADS)
Verma, Sneha; Liu, Joseph; Deshpande, Ruchi; DeMarco, John; Liu, Brent J.
2017-03-01
The primary goal in radiation therapy is to target the tumor with the maximum possible radiation dose while limiting the radiation exposure of the surrounding healthy tissues. However, in order to achieve an optimized treatment plan, many constraints, such as gender, age, tumor type, location, etc. need to be considered. The location of the malignant tumor with respect to the vital organs is another possible important factor for treatment planning process which can be quantified as a feature making it easier to analyze its effects. Incorporation of such features into the patient's medical history could provide additional knowledge that could lead to better treatment outcomes. To show the value of features such as relative locations of tumors and surrounding organs, the data is first processed in order to calculate the features and formulate a feature matrix. Then these feature are matched with retrospective cases with similar features to provide the clinician with insight on delivered dose in similar cases from past. This process provides a range of doses that can be delivered to the patient while limiting the radiation exposure of surrounding organs based on similar retrospective cases. As the number of patients increase, there will be an increase in computations needed for feature extraction as well as an increase in the workload for the physician to find the perfect dose amount. In order to show how such algorithms can be integrated we designed and developed a system with a streamlined workflow and interface as prototype for the clinician to test and explore. Integration of the tumor location feature with the clinician's experience and training could play a vital role in designing new treatment algorithms and better outcomes. Last year, we presented how multi-institutional data into a decision support system is incorporated. This year the presentation is focused on the interface and demonstration of the working prototype of informatics system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Cheng-Bo; Department of Oncology, Shengjing Hospital of China Medical University, Shenyang; Wang, Wei-Li
2014-06-01
Purpose: To investigate whether high-dose radiation to the pulmonary artery (PA) affects overall survival (OS) in patients with non-small cell lung cancer (NSCLC). Methods and Materials: Patients with medically inoperable/unresectable NSCLC treated with definitive radiation therapy in prospective studies were eligible for this study. Pulmonary artery involvement was defined on the basis of pretreatment chest CT and positron emission tomography/CT fusion. Pulmonary artery was contoured according to the Radiation Therapy Oncology Group protocol 1106 atlas, and dose-volume histograms were generated. Results: A total of 100 patients with a minimum follow-up of 1 year for surviving patients were enrolled: 82.0% underwent concurrentmore » chemoradiation therapy. Radiation dose ranged from 60 to 85.5 Gy in 30-37 fractions. Patients with PA invasion of grade ≤2, 3, 4, and 5 had 1-year OS and median survival of 67% and 25.4 months (95% confidence interval [CI] 15.7-35.1), 62% and 22.2 months (95% CI 5.8-38.6), 90% and 35.8 months (95% CI 28.4-43.2), and 50% and 7.0 months, respectively (P=.601). Two of the 4 patients with grade 5 PA invasion died suddenly from massive hemorrhage at 3 and 4.5 months after completion of radiation therapy. Maximum and mean doses to PA were not significantly associated with OS. The V45, V50, V55, and V60 of PA were correlated significantly with a worse OS (P<.05). Patients with V45 >70% or V60 >37% had significantly worse OS (13.3 vs 37.9 months, P<.001, and 13.8 vs 37.9 months, P=.04, respectively). Conclusions: Grade 5 PA invasion and PA volume receiving more than 45-60 Gy may be associated with inferior OS in patients with advanced NSCLC treated with concurrent chemoradiation.« less
Phase I Study of Daily Irinotecan as a Radiation Sensitizer for Locally Advanced Pancreatic Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fouchardiere, Christelle de la, E-mail: delafo@lyon.fnclcc.f; Negrier, Sylvie; Labrosse, Hugues
2010-06-01
Purpose: The study aimed to determine the maximum tolerated dose of daily irinotecan given with concomitant radiotherapy in patients with locally advanced adenocarcinoma of the pancreas. Methods and Materials: Between September 2000 and March 2008, 36 patients with histologically proven unresectable pancreas adenocarcinoma were studied prospectively. Irinotecan was administered daily, 1 to 2 h before irradiation. Doses were started at 6 mg/m{sup 2} per day and then escalated by increments of 2 mg/m{sup 2} every 3 patients. Radiotherapy was administered in 2-Gy fractions, 5 fractions per week, up to a total dose of 50 Gy to the tumor volume. Inoperabilitymore » was confirmed by a surgeon involved in a multidisciplinary team. All images and responses were centrally reviewed by radiologists. Results: Thirty-six patients were enrolled over a period of 8 years through eight dose levels (6 mg/m{sup 2} to 20 mg/m{sup 2} per day). The maximum tolerated dose was determined to be 18 mg/m{sup 2} per day. The dose-limiting toxicities were nausea/vomiting, diarrhea, anorexia, dehydration, and hypokalemia. The median survival time was 12.6 months with a median follow-up of 53.8 months. The median progression-free survival time was 6.5 months, and 4 patients (11.4%) with very good responses could undergo surgery. Conclusions: The maximum tolerated dose of irinotecan is 18 mg/m{sup 2} per day for 5 weeks. Dose-limiting toxicities are mainly gastrointestinal. Even though efficacy was not the aim of this study, the results are very promising, with a median survival time of 12.6 months.« less
Estimation of external dose by car-borne survey in Kerala, India.
Hosoda, Masahiro; Tokonami, Shinji; Omori, Yasutaka; Sahoo, Sarata Kumar; Akiba, Suminori; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Nair, Raghu Ram; Jayalekshmi, Padmavathy Amma; Sebastian, Paul; Iwaoka, Kazuki; Akata, Naofumi; Kudo, Hiromi
2015-01-01
A car-borne survey was carried out in Kerala, India to estimate external dose. Measurements were made with a 3-in × 3-in NaI(Tl) scintillation spectrometer from September 23 to 27, 2013. The routes were selected from 12 Panchayats in Karunagappally Taluk which were classified into high level, mid-level and low level high background radiation (HBR) areas. A heterogeneous distribution of air kerma rates was seen in the dose rate distribution map. The maximum air kerma rate, 2.1 μGy/h, was observed on a beach sand surface. 232Th activity concentration for the beach sand was higher than that for soil and grass surfaces, and the range of activity concentration was estimated to be 0.7-2.3 kBq/kg. The contribution of 232Th to air kerma rate was over 70% at the measurement points with values larger than 0.34 μGy/h. The maximum value of the annual effective dose in Karunagappally Taluk was observed around coastal areas, and it was estimated to be 13 mSv/y. More than 30% of all the annual effective doses obtained in this survey exceeded 1 mSv/y.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, G; Guo, Y; Yin, Y
Purpose: To study the contour and dosimetric feature of organs at risk (OARs) applying magnetic resonance imaging (MRI) images in intensity modulated radiation therapy (IMRT) of nasopharyngeal carcinoma (NPC) compared to computed tomography (CT) images. Methods: 35 NPC patients was selected into this trail. CT simulation with non-contrast and contrast enhanced scan, MRI simulation with non-contrast and contrast enhanced T1, T2 and diffusion weighted imaging were achieved sequentially. And the OARs were contoured on the CT and MRI images after rigid registration respectively. 9 beams IMRT plan with equal division angle were designed for every patients, and the prescription dosemore » for tumor target was set as 72Gy (2.4Gy/ fration). The boundary display, volume and dose-volume indices of each organ were compared between on MRI and CT images. Results: Compared to CT, MRI showed clearer boundary of brainstem, spinal cord, the deep lobe of Parotid gland and the optical nerve in canal. MRI images increase the volume of lens, optical nerve, while reducing the volume of eye slightly, and the maximum dose of lens, the mean dose of eyes and optical raised in different percentage, while there was no statistical differences were found. The left and right parotid volume on MRI increased by 7.07%, 8.13%, and the mean dose raised by 14.95% (4.01Gy), 18.76% (4.95Gy) with statistical significant difference (p<0.05). The brainstem volume reduced by 9.33% (p<0.05), and the dose of 0.1cm3 volume (D0.1cm3) reduced by mean 8.46% (4.32Gy), and D0.1cm3 of spinal cord increased by 1.5Gy on MRI. Conclusion: It is credible to evaluate the radiation dose of lens, eye and the spinal cord, while it should be necessary to evaluate the dose of brainstem, parotid and the optical nerve applying MRI images sometime, it will be more meaningful for these organs with high risk of radiation injury.« less
Finger doses for staff handling radiopharmaceuticals in nuclear medicine.
Pant, Gauri S; Sharma, Sanjay K; Rath, Gaura K
2006-09-01
Radiation doses to the fingers of occupational workers handling 99mTc-labeled compounds and 131I for diagnostic and therapeutic procedures in nuclear medicine were measured by thermoluminescence dosimetry. The doses were measured at the base of the ring finger and the index finger of both hands in 2 groups of workers. Group 1 (7 workers) handled 99mTc-labeled radiopharmaceuticals, and group 2 (6 workers) handled 131I for diagnosis and therapy. Radiation doses to the fingertips of 3 workers also were measured. Two were from group 1, and 1 was from group 2. The doses to the base of the fingers for the radiopharmacy staff and physicians from group 1 were observed to be 17+/-7.5 (mean+/-SD) and 13.4+/-6.5 microSv/GBq, respectively. Similarly, the dose to the base of the fingers for the 3 physicians in group 2 was estimated to be 82.0+/-13.8 microSv/GBq. Finger doses for the technologists in both groups could not be calculated per unit of activity because they did not handle the radiopharmaceuticals directly. Their doses were reported in millisieverts that accumulated in 1 wk. The doses to the fingertips of the radiopharmacy worker and the physician in group 1 were 74.3+/-19.8 and 53.5+/-21.9 microSv/GBq, respectively. The dose to the fingertips of the physician in group 2 was 469.9+/-267 microSv/GBq. The radiation doses to the fingers of nuclear medicine staff at our center were measured. The maximum expected annual dose to the extremities appeared to be less than the annual limit (500 mSv/y), except for a physician who handled large quantities of 131I for treatment. Because all of these workers are on rotation and do not constantly handle radioactivity throughout the year, the doses to the base of the fingers or the fingertips should not exceed the prescribed annual limit of 500 mSv.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, M; Lee, S; Suh, T
Purpose: This study investigates the effects of different kinds and designs of commercialized breast implants on the dose distributions in breast cancer radiotherapy under a variety of conditions. Methods: The dose for the clinical conventional tangential irradiation, Intensity Modulated Radiation Therapy (IMRT), volumetric modulated arc therapy (VMAT) breast plans was measured using radiochromic films and stimulated luminescence dosimeter (OSLD). The radiochromic film was used as an integrating dosimeter, while the OSLDs were used for real-time dosimetry to isolate the contribution of dose from individual segment. The films were placed at various slices in the Rando phantom and between the bodymore » and breast surface OSLDs were used to measure skin dose at 18 positions spaced on the two (right/left) breast. The implant breast was placed on the left side and the phantom breast was remained on the right side. Each treatment technique was performed on different size of the breasts and different shape of the breast implant. The PTV dose was prescribed 50.4 Gy and V47.88≥95%. Results: In different shapes of the breast implant, because of the shadow formed extensive around the breast implant, dose variation was relatively higher that of prescribed dose. As the PTV was delineated on the whole breast, maximum 5% dose error and average 3% difference was observed averagely. VMAT techniques largely decrease the contiguous hot spot in the skin by an average of 25% compared with IMRT. The both IMRT and VMAT techniques resulted in lower doses to normal critical structures than tangential plans for nearly all dose analyzation. Conclusion: Compared to the other technique, IMRT reduced radiation dose exposure to normal tissues and maintained reasonable target homogeneity and for the same target coverage, VMAT can reduce the skin dose in all the regions of the body.« less
Misdaq, M A; Chaouqi, A; Ouguidi, J; Touti, R; Mortassim, A
2015-06-01
Mechanic workers are exposed to exhaust fumes when controlling vehicle engines in motion inside repair shops. To assess radiation doses due to radon short-lived progeny from the inhalation of exhaust fumes by mechanic workers, concentrations of these radionuclides were measured in petrol (gasoline) and gas-oil exhaust fumes by evaluating mean critical angles of etching of the CR-39 and LR-115 type II SSNTDs for alpha particles emitted by the radon and thoron decay series. Committed effective doses due to ²¹⁸Po and ²¹⁴Po short-lived radon decay products from the inhalation of petrol and gas-oil exhaust fumes by workers were evaluated. A maximum value of 1.35 mSv y⁻¹ due to radon short-lived decay products from the inhalation of gas-oil exhaust fumes by mechanic workers was found, which is lower than the (3-10 mSv y⁻¹) dose limit interval for workers.
Radiation measurements on the Mir Orbital Station.
Badhwar, G D; Atwell, W; Reitz, G; Beaujean, R; Heinrich, W
2002-10-01
Radiation measurements made onboard the MIR Orbital Station have spanned nearly a decade and covered two solar cycles, including one of the largest solar particle events, one of the largest magnetic storms, and a mean solar radio flux level reaching 250 x 10(4) Jansky that has been observed in the last 40 years. The cosmonaut absorbed dose rates varied from about 450 microGy day-1 during solar minimum to approximately half this value during the last solar maximum. There is a factor of about two in dose rate within a given module, and a similar variation from module to module. The average radiation quality factor during solar minimum, using the ICRP-26 definition, was about 2.4. The drift of the South Atlantic Anomaly was measured to be 6.0 +/- 0.5 degrees W, and 1.6 +/- 0.5 degrees N. These measurements are of direct applicability to the International Space Station. This paper represents a comprehensive review of Mir Space Station radiation data available from a variety of sources. c2002 Elsevier Science Ltd. All rights reserved.
Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study
NASA Astrophysics Data System (ADS)
Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk
2014-12-01
Three alpha particles are emitted from the point of reaction between a proton and boron. The alpha particles are effective in inducing the death of a tumor cell. After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton's maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here, we show that the effectiveness of the proton boron fusion therapy was verified using Monte Carlo simulations. We found that a dramatic increase by more than half of the proton's maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton's maximum dose point was located within the boron uptake region. In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopwood, L.E.; Davies, B.M.; Moulder, J.E.
1990-09-01
RIF-1 tumors contain a small number of cells (1 to 100 per 10(6) cells) that are resistant to 5-fluorouracil, methotrexate, or adriamycin. The frequency of drug-resistant cells among individual untreated tumors is highly variable. Radiation, delivered in vivo at doses of 3 to 12 Gy, increases the frequency of methotrexate- and 5-fluorouracil-resistant cells, but not the frequency of adriamycin-resistant cells. The magnitude of induction of 5-fluorouracil and methotrexate resistance shows a complex dependence on the radiation dose and on the interval between irradiation and assessment of drug resistance. For a dose of 3 Gy, induced 5-fluorouracil and methotrexate resistance ismore » seen only after an interval of 5 to 7 days, whereas for a dose of 12 Gy, high levels of induced resistance are observed 1 to 3 days after irradiation. The maximum absolute risk for induction of resistance is 4 per 10(4) cells per Gy for methotrexate, and 3 per 10(6) cells per Gy for 5-fluorouracil. These results indicate that tumor hypoxia may play a role in the increased levels of drug resistance seen after irradiation, and that both genetic and environmental factors may influence radiation-induction of drug resistance. These studies provide essential data for models of the development of tumor drug resistance, and imply that some of the drug resistance seen when chemotherapy follows radiotherapy may be caused by radiation-induced drug resistance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie Tianwu; Liu Qian; Zaidi, Habib
2012-03-15
Purpose: Rats have been widely used in radionuclide therapy research for the treatment of hepatocellular carcinoma (HCC). This has created the need to assess rat liver absorbed radiation dose. In most dose estimation studies, the rat liver is considered as a homogeneous integrated target organ with a tissue composition assumed to be similar to that of human liver tissue. However, the rat liver is composed of several lobes having different anatomical and chemical characteristics. To assess the overall impact on rat liver dose calculation, the authors use a new voxel-based rat model with identified suborgan regions of the liver. Methods:more » The liver in the original cryosectional color images was manually segmented into seven individual lobes and subsequently integrated into a voxel-based computational rat model. Photon and electron particle transport was simulated using the MCNPX Monte Carlo code to calculate absorbed fractions and S-values for {sup 90}Y, {sup 131}I, {sup 166}Ho, and {sup 188}Re for the seven liver lobes. The effect of chemical composition on organ-specific absorbed dose was investigated by changing the chemical composition of the voxel filling liver material. Radionuclide-specific absorbed doses at the voxel level were further assessed for a small spherical hepatic tumor. Results: The self-absorbed dose for different liver lobes varied depending on their respective masses. A maximum difference of 3.5% was observed for the liver self-absorbed fraction between rat and human tissues for photon energies below 100 keV. {sup 166}Ho and {sup 188}Re produce a uniformly distributed high dose in the tumor and relatively low absorbed dose for surrounding tissues. Conclusions: The authors evaluated rat liver radiation doses from various radionuclides used in HCC treatments using a realistic computational rat model. This work contributes to a better understanding of all aspects influencing radiation transport in organ-specific radiation dose evaluation for preclinical therapy studies, from tissue composition to organ morphology and activity distribution.« less
Hasegawa, Hiroaki; Mihara, Yoshiyuki; Ino, Kenji; Sato, Jiro
2014-11-01
The purpose of this study was to evaluate the radiation dose reduction to patients and radiologists in computed tomography (CT) guided examinations for the thoracic region using CT fluoroscopy. Image quality evaluation of the real-time filtered back-projection (RT-FBP) images and the real-time adaptive iterative dose reduction (RT-AIDR) images was carried out on noise and artifacts that were considered to affect the CT fluoroscopy. The image standard deviation was improved in the fluoroscopy setting with less than 30 mA on 120 kV. With regard to the evaluation of artifact visibility and the amount generated by the needle attached to the chest phantom, there was no significant difference between the RT-FBP images with 120 kV, 20 mA and the RT-AIDR images with low-dose conditions (greater than 80 kV, 30 mA and less than 120 kV, 20 mA). The results suggest that it is possible to reduce the radiation dose by approximately 34% at the maximum using RT-AIDR while maintaining image quality equivalent to the RT-FBP images with 120 V, 20 mA.
Dosimetric evaluation of a MOSFET detector for clinical application in photon therapy.
Kohno, Ryosuke; Hirano, Eriko; Nishio, Teiji; Miyagishi, Tomoko; Goka, Tomonori; Kawashima, Mitsuhiko; Ogino, Takashi
2008-01-01
Dosimetric characteristics of a metal oxide-silicon semiconductor field effect transistor (MOSFET) detector are studied with megavoltage photon beams for patient dose verification. The major advantages of this detector are its size, which makes it a point dosimeter, and its ease of use. In order to use the MOSFET detector for dose verification of intensity-modulated radiation therapy (IMRT) and in-vivo dosimetry for radiation therapy, we need to evaluate the dosimetric properties of the MOSFET detector. Therefore, we investigated the reproducibility, dose-rate effect, accumulated-dose effect, angular dependence, and accuracy in tissue-maximum ratio measurements. Then, as it takes about 20 min in actual IMRT for the patient, we evaluated fading effect of MOSFET response. When the MOSFETs were read-out 20 min after irradiation, we observed a fading effect of 0.9% with 0.9% standard error of the mean. Further, we applied the MOSFET to the measurement of small field total scatter factor. The MOSFET for dose measurements of small field sizes was better than the reference pinpoint chamber with vertical direction. In conclusion, we assessed the accuracy, reliability, and usefulness of the MOSFET detector in clinical applications such as pinpoint absolute dosimetry for small fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camingue, Pamela; Christian, Rochelle; Ng, Davin
The purpose of this study was to compare 4 different external beam radiation therapy treatment techniques for the treatment of T1-2, N0, M0 glottic cancers: traditional lateral beams with wedges (3D), 5-field intensity-modulated radiation therapy (IMRT), volumetric modulated arc therapy (VMAT), and proton therapy. Treatment plans in each technique were created for 10 patients using consistent planning parameters. The photon treatment plans were optimized using Philips Pinnacle{sub 3} v.9 and the IMRT and VMAT plans used the Direct Machine Parameter Optimization algorithm. The proton treatment plans were optimized using Varian Eclipse Proton v.8.9. The prescription used for each plan wasmore » 63 Gy in 28 fractions. The contours for spinal cord, right carotid artery, left carotid artery, and normal tissue were created with respect to the patient's bony anatomy so that proper comparisons of doses could be made with respect to volume. An example of the different isodose distributions will be shown. The data collection for comparison purposes includes: clinical treatment volume coverage, dose to spinal cord, dose to carotid arteries, and dose to normal tissue. Data comparisons will be displayed graphically showing the maximum, mean, median, and ranges of doses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Kaichao; Hu, Lin-wen; Newton, Thomas
2017-05-01
The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. At 6 MW, it delivers neutron flux and energy spectrum comparable to light water reactor (LWR) power reactors in a compact core using highly enriched uranium (HEU) fuel. In the framework of nonproliferation policy, the international community aims to minimize the use of HEU in civilian facilities. Within this context, research and test reactors have started a program to convert HEU fuel to low enriched uranium (LEU) fuel. A new type of LEU fuel basedmore » on a high density alloy of uranium and molybdenum (U-10Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MITR. The current study focuses on the impacts of MITR Maximum Hypothetical Accident (MHA), which is also the Design Basis Accident (DBA), with LEU fuel. The MHA for the MITR is postulated to be a coolant flow blockage in the fuel element that contains the hottest fuel plate. It is assumed that the entire active portion of five fuel plates melts. The analysis shows that, within a 2-h period and by considering all the possible radiation sources and dose pathways, the overall off-site dose is 302.1 mrem (1 rem ¼ 0.01 Sv) Total Effective Dose Equivalent (TEDE) at 8 m exclusion area boundary (EAB) and a higher dose of 392.8 mrem TEDE is found at 21 m EAB. In all cases the dose remains below the 500 mrem total TEDE limit goal based on NUREG-1537 guidelines.« less
NASA Technical Reports Server (NTRS)
Wilson, Thomas L.; Lodhi, M. A. K.; Diaz, Abel B.
2005-01-01
No simple algorithm seems to exist for calculating proton fluxes and lifetimes in the Earth's inner, trapped radiation belt throughout the solar cycle. Most models of the inner trapped belt in use depend upon AP8 which only describes the radiation environment at solar maximum and solar minimum in Cycle 20. One exception is NOAAPRO which incorporates flight data from the TIROS/NOAA polar orbiting spacecraft. The present study discloses yet another, simple formulation for approximating proton fluxes at any time in a given solar cycle, in particular between solar maximum and solar minimum. It is derived from AP8 using a regression algorithm technique from nuclear physics. From flux and its time integral fluence, one can then approximate dose rate and its time integral dose. It has already been published in this journal that the absorbed dose rate, D, in the trapped belts exhibits a power law relationship, D = A(rho)(sup -n), where A is a constant, rho is the atmospheric density, and the index n is weakly dependent upon shielding. However, that method does not work for flux and fluence. Instead, we extend this idea by showing that the power law approximation for flux J is actually bivariant in energy E as well as density rho. The resulting relation is J(E,rho)approx.(sum of)A(E(sup n))rho(sup -n), with A itself a power law in E. This provides another method for calculating approximate proton flux and lifetime at any time in the solar cycle. These in turn can be used to predict the associated dose and dose rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brent, R.L.
Many professionals are unfamiliar with radiation biology or the quantitative nature of the risks. Frequently, microwave, ultrasound, and ionizing radiation risks are confused. Although it is impossible to prove no risk for any environmental hazard, it appears that exposure to microwave radiation below the maximal permissible levels present no measurable risk to the embryo. Ultrasound exposure from diagnostic ultrasonographic imaging equipment also is quite innocuous. It is true that continued surveillance and research into potential risks of these low-level exposures should continue, but at present ultrasound not only improves obstetric care but also reduces the necessity of diagnostic x-ray procedures.more » In the field of ionizing radiation, we have as good a comprehension of the biologic effects and the quantitative maximum risks as of any other environmental hazard. Although the animal and human data support the conclusion that no increases in the incidence of gross congenital malformations, intrauterine growth retardation, or abortion will occur with exposures less than 5 rad, that does not mean that there are definitely no risks to the embryo exposed to lower doses of radiation. Whether there exists a linear or exponential dose-response relationship or a threshold exposure for genetic, carcinogenic, cell-depleting, and life-shortening effects has not been determined. In establishing maximum permissible levels for the embryo at low exposures, refer to Tables 4, 5, 6, 8, and 9. It is obvious that the risks of 1-rad or 5-rad acute exposure are far below the spontaneous risks of the developing embryo because 15 per cent of human embryos abort, 2.7 to 3.0 per cent of human embryos have major malformations, 4 per cent have intrauterine growth retardation, and 8 to 10 per cent have early- or late-onset genetic disease. 98 references.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J; Kim, J; Park, S
Purpose: To investigate exposure outside the treatment field when treating breast cancer with tri-Co-60 magnetic resonance (MR) image guided radiation therapy (IGRT) system. Methods: A total of 7 patients who treated with accelerated partial breast irradiation (APBI) technique were selected prospectively for this study (prescription dose = 38.5 Gy in 10 fractions). Every patient treated with two plans, one was an initial plan and the other was an adaptive plan generated after finishing 5 fractions (a total of 14 plans). Every plan was calculated with and without magnetic field in the treatment planning system. The EBT3 films were attached onmore » the front and the back of 1 cm bolus, and then it was placed on the patient body vertically to cover patient’s jaw and shoulder. After measurements, the maximum point dose and the mean dose of whole area of EBT3 film were acquired. Results: In the treatment plan with magnetic field, low dose stream outside the patient body was observed, almost reaching the patient’s jaw or shoulder, while it was not observed without magnetic field. The average values of the measured maximum and mean doses at the front of bolus were 30.1 ± 11.1 cGy (7.8% of the daily dose) and 14.7 ± 3.3 cGy (3.8%), respectively. At the back of bolus, those values were 6.0 ± 1.9 cGy (1.6%) and 5.1 ± 1.6 cGy (1.3%), respectively. The largest maximum dose at the front was 54.2 cGy (14.1%) while it was 20.7 cGy (5.4%) at the back. The average decrease of the maximum dose by the bolus was 24.0 ± 11.0 cGy. Conclusion: Due to magnetic field, dose stream outside the patient body can be generated during breast cancer treatment with the tri-Co-60 MR-IGRT system. Since this dose stream irradiated skin outside the treatment field, it should be shielded. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015R1C1A1A01054192).« less
Khawar, Ambreen; Eppard, Elisabeth; Sinnes, Jean Phlippe; Roesch, Frank; Ahmadzadehfar, Hojjat; Kürpig, Stefan; Meisenheimer, Michael; Gaertner, Florian C; Essler, Markus; Bundschuh, Ralph A
2018-04-23
In vivo pharmacokinetic analysis of [Sc]Sc-PSMA-617 was used to determine the normal organ-absorbed doses that may result from therapeutic activity of [Lu]Lu-PSMA-617 and to predict the maximum permissible activity of [Lu]Lu-PSMA-617 for patients with metastatic castration-resistant prostate carcinoma. Pharmacokinetics of [Sc]Sc-PSMA-617 was evaluated in 5 patients with metastatic castration-resistant prostate carcinoma using dynamic PET/CT, followed by 3 static PET/CT acquisitions and blood sample collection over 19.5 hours, as well as urine sample collection at 2 time points. Total activity measured in source organs by PET imaging, as well as counts per milliliter measured in blood and urine samples, was decay corrected back to the time of injection using the half-life of Sc. Afterward, forward decay correction using the half-life of Lu was performed, extrapolating the pharmacokinetics of [Sc]Sc-PSMA-617 to that of [Lu]Lu-PSMA-617. Source organs residence times and organ-absorbed doses for [Lu]Lu-PSMA-617 were calculated using OLINDA/EXM software. Bone marrow self-dose was determined with indirect blood-based method, and urinary bladder contents residence time was estimated by trapezoidal approximation. The maximum permissible activity of [Lu]Lu-PSMA-617 was calculated for each patient considering external beam radiotherapy toxicity limits for radiation absorbed doses to kidneys, bone marrow, salivary glands, and whole body. The predicted mean organ-absorbed doses were highest in the kidneys (0.44 mSv/MBq), followed by the salivary glands (0.23 mSv/MBq). The maximum permissible activity was highly variable among patients; limited by whole body-absorbed dose (1 patient), marrow-absorbed dose (1 patient), and kidney-absorbed dose (3 patients). [Sc]Sc-PSMA-617 PET/CT imaging is feasible and allows theoretical extrapolation of the pharmacokinetics of [Sc]Sc-PSMA-617 to that of [Lu]Lu-PSMA-617, with the intent of predicting normal organ-absorbed doses and maximum permissible activity in patients scheduled for therapy with [Lu]Lu-PSMA-617.
NASA Astrophysics Data System (ADS)
Abed Gatea, Mezher; Ahmed, Anwar A.; jundee kadhum, Saad; Ali, Hasan Mohammed; Hussein Muheisn, Abbas
2018-05-01
The Safety Assessment Framework (SAFRAN) software has implemented here for radiological safety analysis; to verify that the dose acceptance criteria and safety goals are met with a high degree of confidence for dismantling of Tammuz-2 reactor core at Al-tuwaitha nuclear site. The activities characterizing, dismantling and packaging were practiced to manage the generated radioactive waste. Dose to the worker was considered an endpoint-scenario while dose to the public has neglected due to that Tammuz-2 facility is located in a restricted zone and 30m berm surrounded Al-tuwaitha site. Safety assessment for dismantling worker endpoint-scenario based on maximum external dose at component position level in the reactor pool and internal dose via airborne activity while, for characterizing and packaging worker endpoints scenarios have been done via external dose only because no evidence for airborne radioactivity hazards outside the reactor pool. The in-situ measurements approved that reactor core components are radiologically activated by Co-60 radioisotope. SAFRAN results showed that the maximum received dose for workers are (1.85, 0.64 and 1.3mSv/y) for activities dismantling, characterizing and packaging of reactor core components respectively. Hence, the radiological hazards remain below the low level hazard and within the acceptable annual dose for workers in radiation field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Amy T.Y., E-mail: changty@ha.org.hk; Hung, Albert W.M.; Cheung, Fion W.K.
Purpose: Intensity modulated radiation therapy (IMRT) is widely used to achieve a highly conformal dose and improve treatment outcome. However, plan quality and planning time are institute and planner dependent, and no standardized tool exists to recognize an optimal plan. RapidPlan, a knowledge-based algorithm, can generate constraints to assist optimization and produce high-quality IMRT plans. This report evaluated the quality and efficiency of using RapidPlan in nasopharyngeal carcinoma (NPC) IMRT planning. Methods and Materials: RapidPlan was configured using 79 radical IMRT plans for NPC; 20 consecutive NPC patients indicated for radical radiation therapy between October 2014 and May 2015 weremore » then recruited to assess its performance. The ability of RapidPlan to produce acceptable plans was evaluated. For plans that could not achieve clinical acceptance, manual touch-up was performed. The IMRT plans produced without RapidPlan (manual plans) and with RapidPlan (RP-2 plans, including those with manual touch-up) were compared in terms of dosimetric quality and planning efficiency. Results: RapidPlan by itself could produce clinically acceptable plans for 9 of the 20 patients; manual touch-up increased the number of acceptable plans (RP-2 plans) to 19. The target dose coverage and conformity were very similar. No difference was found in the maximum dose to the brainstem and optic chiasm. RP-2 plans delivered a higher maximum dose to the spinal cord (46.4 Gy vs 43.9 Gy, P=.002) but a lower dose to the parotid (mean dose to right parotid, 37.3 Gy vs 45.4 Gy; left, 34.4 Gy vs 43.1 Gy; P<.001) and the right cochlea (mean dose, 48.6 Gy vs 52.6 Gy; P=.02). The total planning time for RP-2 plans was significantly less than that for manual plans (64 minutes vs 295 minutes, P<.001). Conclusions: This study shows that RapidPlan can significantly improve planning efficiency and produce quality IMRT plans for NPC patients.« less
Microarray analysis of miRNA expression profiles following whole body irradiation in a mouse model.
Aryankalayil, Molykutty J; Chopra, Sunita; Makinde, Adeola; Eke, Iris; Levin, Joel; Shankavaram, Uma; MacMillan, Laurel; Vanpouille-Box, Claire; Demaria, Sandra; Coleman, C Norman
2018-06-19
Accidental exposure to life-threatening radiation in a nuclear event is a major concern; there is an enormous need for identifying biomarkers for radiation biodosimetry to triage populations and treat critically exposed individuals. To identify dose-differentiating miRNA signatures from whole blood samples of whole body irradiated mice. Mice were whole body irradiated with X-rays (2 Gy-15 Gy); blood was collected at various time-points post-exposure; total RNA was isolated; miRNA microarrays were performed; miRNAs differentially expressed in irradiated vs. unirradiated controls were identified; feature extraction and classification models were applied to predict dose-differentiating miRNA signature. We observed a time and dose responsive alteration in the expression levels of miRNAs. Maximum number of miRNAs were altered at 24-h and 48-h time-points post-irradiation. A 23-miRNA signature was identified using feature selection algorithms and classifier models. An inverse correlation in the expression level changes of miR-17 members, and their targets were observed in whole body irradiated mice and non-human primates. Whole blood-based miRNA expression signatures might be used for predicting radiation exposures in a mass casualty nuclear incident.
Roach, Benjamin D.; Williams, Neil J.; Duncan, Nathan C.; ...
2014-12-01
We show in this work that the solvent used in the Next Generation Caustic-Side Solvent Extraction (NGS) process can withstand a radiation dose well in excess of the dose it would receive in multiple years of treating legacy salt waste at the US Department of Energy Savannah River Site. The solvent was subjected to a maximum of 50 kGy of gamma radiation while in dynamic contact with each of the aqueous phases of the current NGS process, namely SRS-15 (a highly caustic waste simulant), sodium hydroxide scrub solution (0.025 M), and boric acid strip solution (0.01 M). Bench-top testing ofmore » irradiated solvent confirmed that irradiation has inconsequential impact on the extraction, scrubbing, and stripping performance of the solvent up to 13 times the estimated 0.73 kGy/y annual absorbed dose. Lastly, stripping performance is the most sensitive step to radiation, deteriorating more due to buildup of p-sec-butylphenol (SBP) and possibly other proton-ionizable products than to degradation of the guanidine suppressor, as shown by chemical analyses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roach, Benjamin D.; Williams, Neil J.; Duncan, Nathan C.
We show in this work that the solvent used in the Next Generation Caustic-Side Solvent Extraction (NGS) process can withstand a radiation dose well in excess of the dose it would receive in multiple years of treating legacy salt waste at the US Department of Energy Savannah River Site. The solvent was subjected to a maximum of 50 kGy of gamma radiation while in dynamic contact with each of the aqueous phases of the current NGS process, namely SRS-15 (a highly caustic waste simulant), sodium hydroxide scrub solution (0.025 M), and boric acid strip solution (0.01 M). Bench-top testing ofmore » irradiated solvent confirmed that irradiation has inconsequential impact on the extraction, scrubbing, and stripping performance of the solvent up to 13 times the estimated 0.73 kGy/y annual absorbed dose. Lastly, stripping performance is the most sensitive step to radiation, deteriorating more due to buildup of p-sec-butylphenol (SBP) and possibly other proton-ionizable products than to degradation of the guanidine suppressor, as shown by chemical analyses.« less
Five-Year Outcomes of High-Dose Single-Fraction Spinal Stereotactic Radiosurgery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moussazadeh, Nelson; Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, New York; Lis, Eric
Purpose: To characterize local tumor control and toxicity risk in very long-term survivors (>5 years) after high-dose spinal image guided, intensity modulated radiation therapy delivered as single-dose stereotactic radiosurgery (SRS). Previously published spinal SRS outcome analyses have included a heterogeneous population of cancer patients, mostly with short survival. This is the first study reporting the long-term tumor control and toxicity profiles after high-dose single-fraction spinal SRS. Methods and Materials: The study population included all patients treated from June 2004 to July 2009 with single-fraction spinal SRS (dose 24 Gy) who had survived at least 5 years after treatment. The endpoints examined included diseasemore » progression, surgical or radiation retreatment, in-field fracture development, and radiation-associated toxicity, scored using the Radiation Therapy Oncology Group radiation morbidity scoring criteria and the Common Terminology Criteria for Adverse Events, version 4.0. Local control and fracture development were assessed using Kaplan-Meier analysis. Results: Of 278 patients, 31 (11.1%), with 36 segments treated for spinal tumors, survived at least 5 years after treatment and were followed up radiographically and clinically for a median of 6.1 years (maximum 102 months). The histopathologic findings for the 5-year survivors included radiation-resistant metastases in 58%, radiation-sensitive metastases in 22%, and primary bone tumors in 19%. In this selected cohort, 3 treatment failures occurred at a median of 48.6 months, including 2 recurrences in the radiation field and 1 patient with demonstrated progression at the treatment margins. Ten lesions (27.8%) were associated with acute grade 1 cutaneous or gastrointestinal toxicity. Delayed toxicity ≥3 months after treatment included 8 cases (22.2%) of mild neuropathy, 2 (5.6%) of gastrointestinal discomfort, 8 (22.2%) of dermatitides, and 3 (8.3%) of myalgias/myositis. Thirteen treated levels (36.1%) in 12 patients demonstrated progressive vertebral body collapse or endplate fractures at a median of 25.7 months (range 11.6-76.0), of which 5 (14%) became symptomatic and subsequently required percutaneous cement augmentation or surgery. Conclusions: In the longest-term series to date, high-dose single-fraction spinal SRS retained an excellent safety profile among long-term survivors (>5 years)« less
Sustainably Sourced, Thermally Resistant, Radiation Hard Biopolymer
NASA Technical Reports Server (NTRS)
Pugel, Diane
2011-01-01
This material represents a breakthrough in the production, manufacturing, and application of thermal protection system (TPS) materials and radiation shielding, as this represents the first effort to develop a non-metallic, non-ceramic, biomaterial-based, sustainable TPS with the capability to also act as radiation shielding. Until now, the standing philosophy for radiation shielding involved carrying the shielding at liftoff or utilizing onboard water sources. This shielding material could be grown onboard and applied as needed prior to different radiation landscapes (commonly seen during missions involving gravitational assists). The material is a bioplastic material. Bioplastics are any combination of a biopolymer and a plasticizer. In this case, the biopolymer is a starch-based material and a commonly accessible plasticizer. Starch molecules are composed of two major polymers: amylase and amylopectin. The biopolymer phenolic compounds are common to the ablative thermal protection system family of materials. With similar constituents come similar chemical ablation processes, with the potential to have comparable, if not better, ablation characteristics. It can also be used as a flame-resistant barrier for commercial applications in buildings, homes, cars, and heater firewall material. The biopolymer is observed to undergo chemical transformations (oxidative and structural degradation) at radiation doses that are 1,000 times the maximum dose of an unmanned mission (10-25 Mrad), indicating that it would be a viable candidate for robust radiation shielding. As a comparison, the total integrated radiation dose for a three-year manned mission to Mars is 0.1 krad, far below the radiation limit at which starch molecules degrade. For electron radiation, the biopolymer starches show minimal deterioration when exposed to energies greater than 180 keV. This flame-resistant, thermal-insulating material is non-hazardous and may be sustainably sourced. It poses no hazardous waste threats during its lifecycle. The material composition is radiation-tolerant up to megarad doses, indicating its use as a radiation shielding material. It is lightweight, non-metallic, and able to be mechanically densified, permitting a tunable gradient of thermal and radiation protection as needed. The dual-use (thermal and radiation shielding), sustainable nature of this material makes it suitable for both industrial applications as a sustainable/green building material, and for space applications as thermal protection material and radiation shield.
NASA Astrophysics Data System (ADS)
Tengku Kamarul Bahri, T. N. H.; Wagiran, H.; Hussin, R.; Saeed, M. A.; Hossain, I.; Ali, H.
2014-10-01
Germanium doped calcium borate glasses are investigated in term of thermoluminescence properties to seek their possibility to use as glass radiation dosimeter. The samples were exposed to 6 MV, and 10 MV photon beams in a dose range of 0.5-4.0 Gy. There is a single and broad thermoluminescence glow curve that exhibits its maximum intensity at about 300 °C. Linear dose response behavior has been found in this dose range for the both photon energies. Effective atomic number, TL sensitivity, and reproducibility have also been studied. It is found that the sensitivity of germanium doped sample at 6 MV is only 1.28% and it is superior to the sensitivity at 10 MV. The reproducibility of germanium doped sample is good with a percentage of relative error less than 10%. The results indicate that this glass has a potential to be used as a radiation dosimetry, especially for application in radiotherapy.
Background radiation and individual dosimetry in the costal area of Tamil Nadu, India.
Matsuda, Naoki; Brahmanandhan, G M; Yoshida, Masahiro; Takamura, Noboru; Suyama, Akihiko; Koguchi, Yasuhiro; Juto, Norimichi; Raj, Y Lenin; Winsley, Godwin; Selvasekarapandian, S
2011-07-01
South coast of India is known as the high-level background radiation area (HBRA) mainly due to beach sands that contain natural radionuclides as components of the mineral monazite. The rich deposit of monazite is unevenly distributed along the coastal belt of Tamil Nadu and Kerala. An HBRA site that laid in 2×7 m along the sea was found in the beach of Chinnavillai, Tamil Nadu, where the maximum ambient dose equivalent reached as high as 162.7 mSv y(-1). From the sands collected at the HBRA spot, the high-purity germanium semi-conductor detector identified six nuclides of thorium series, four nuclides of uranium series and two nuclides belonging to actinium series. The highest radioactivity observed was 43.7 Bq g(-1) of Th-228. The individual dose of five inhabitants in Chinnavillai, as measured by the radiophotoluminescence glass dosimetry system, demonstrated the average dose of 7.17 mSv y(-1) ranging from 2.79 to 14.17 mSv y(-1).
NASA Astrophysics Data System (ADS)
Goiffon, Vincent; Rolando, Sébastien; Corbière, Franck; Rizzolo, Serena; Chabane, Aziouz; Girard, Sylvain; Baer, Jérémy; Estribeau, Magali; Magnan, Pierre; Paillet, Philippe; Van Uffelen, Marco; Mont Casellas, Laura; Scott, Robin; Gaillardin, Marc; Marcandella, Claude; Marcelot, Olivier; Allanche, Timothé
2017-01-01
The Total Ionizing Dose (TID) hardness of digital color Camera-on-a-Chip (CoC) building blocks is explored in the Multi-MGy range using 60Co gamma-ray irradiations. The performances of the following CoC subcomponents are studied: radiation hardened (RH) pixel and photodiode designs, RH readout chain, Color Filter Arrays (CFA) and column RH Analog-to-Digital Converters (ADC). Several radiation hardness improvements are reported (on the readout chain and on dark current). CFAs and ADCs degradations appear to be very weak at the maximum TID of 6 MGy(SiO2), 600 Mrad. In the end, this study demonstrates the feasibility of a MGy rad-hard CMOS color digital camera-on-a-chip, illustrated by a color image captured after 6 MGy(SiO2) with no obvious degradation. An original dark current reduction mechanism in irradiated CMOS Image Sensors is also reported and discussed.
Long-term mortality and cancer risk in irradiated rhesus monkeys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, D.H.
1989-01-01
Lifetime observations on a group of 358 rhesus monkeys indicate that life expectancy loss from exposure to protons in the energy range encountered in the Van Allen belts and solar proton events is influenced primarily by the dose rather than by the energy of radiation. After 24 years, life expectancy losses from similar surface doses of low-LET (138-2300 MeV) and high-LET (32-55 MeV) protons are not significantly different, but the high-LET protons are associated with more deaths in the early years, while the low-LET protons contribute more to mortality in later years. In males, the most significant cause of lifemore » shortening is nonleukemia cancers. In females, radiation increased the risk of endometriosis (an abnormal proliferation of the lining of the uterus) which resulted in significant mortality in the years before early detection and treatment methods were employed. The findings support the 1989 guidelines of the NCRP for maximum permissible radiation exposures in astronauts.« less
ESR dosimetry study of population in the vicinity of the Semipalatinsk Nuclear Test Site
Zhumadilov, Kassym; Ivannikov, Alexander; Stepanenko, Valeriy; Zharlyganova, Dinara; Toyoda, Shin; Zhumadilov, Zhaxybay; Hoshi, Masaharu
2013-01-01
A tooth enamel electron spin resonance (ESR) dosimetry study was carried out with the purpose of obtaining the individual absorbed radiation doses of population from settlements in the Semipalatinsk region of Kazakhstan, which was exposed to radioactive fallout traces from nuclear explosions in the Semipalatinsk Nuclear Test Site and Lop Nor test base, China. Most of the settlements are located near the central axis of radioactive fallout trace from the most contaminating surface nuclear test, which was conducted on 29 August 1949, with the maximum detected excess dose being 430 ± 93 mGy. A maximum dose of 268 ± 79 mGy was determined from the settlements located close to radioactive fallout trace resulting from surface nuclear tests on 24 August 1956 (Ust-Kamenogorsk, Znamenka, Shemonaikha, Glubokoe, Tavriya and Gagarino). An accidental dose of 56 ± 42 mGy was found in Kurchatov city residents located close to fallout trace after the nuclear test on 7 August 1962. This method was applied to human tooth enamel to obtain individual absorbed doses of residents of the Makanchi, Urdzhar and Taskesken settlements located near the Kazakhstan–Chinese border due to the influence of nuclear tests (1964–1981) at Lop Nor. The highest dose was 123 ± 32 mGy. PMID:23404205
ESR dosimetry study of population in the vicinity of the Semipalatinsk Nuclear Test Site.
Zhumadilov, Kassym; Ivannikov, Alexander; Stepanenko, Valeriy; Zharlyganova, Dinara; Toyoda, Shin; Zhumadilov, Zhaxybay; Hoshi, Masaharu
2013-07-01
A tooth enamel electron spin resonance (ESR) dosimetry study was carried out with the purpose of obtaining the individual absorbed radiation doses of population from settlements in the Semipalatinsk region of Kazakhstan, which was exposed to radioactive fallout traces from nuclear explosions in the Semipalatinsk Nuclear Test Site and Lop Nor test base, China. Most of the settlements are located near the central axis of radioactive fallout trace from the most contaminating surface nuclear test, which was conducted on 29 August 1949, with the maximum detected excess dose being 430 ± 93 mGy. A maximum dose of 268 ± 79 mGy was determined from the settlements located close to radioactive fallout trace resulting from surface nuclear tests on 24 August 1956 (Ust-Kamenogorsk, Znamenka, Shemonaikha, Glubokoe, Tavriya and Gagarino). An accidental dose of 56 ± 42 mGy was found in Kurchatov city residents located close to fallout trace after the nuclear test on 7 August 1962. This method was applied to human tooth enamel to obtain individual absorbed doses of residents of the Makanchi, Urdzhar and Taskesken settlements located near the Kazakhstan-Chinese border due to the influence of nuclear tests (1964-1981) at Lop Nor. The highest dose was 123 ± 32 mGy.
Radiation-Induced Second Cancer Risk Estimates From Radionuclide Therapy
NASA Astrophysics Data System (ADS)
Bednarz, Bryan; Besemer, Abigail
2017-09-01
The use of radionuclide therapy in the clinical setting is expected to increase significantly over the next decade. There is an important need to understand the radiation-induced second cancer risk associated with these procedures. In this study the radiation-induced cancer risk in five radionuclide therapy patients was investigated. These patients underwent serial SPECT imaging scans following injection as part of a clinical trial testing the efficacy of a 131Iodine-labeled radiopharmaceutical. Using these datasets the committed absorbed doses to multiple sensitive structures were calculated using RAPID, which is a novel Monte Carlo-based 3D dosimetry platform developed for personalized dosimetry. The excess relative risk (ERR) for radiation-induced cancer in these structures was then derived from these dose estimates following the recommendations set forth in the BEIR VII report. The radiation-induced leukemia ERR was highest among all sites considered reaching a maximum value of approximately 4.5. The radiation-induced cancer risk in the kidneys, liver and spleen ranged between 0.3 and 1.3. The lifetime attributable risks (LARs) were also calculated, which ranged from 30 to 1700 cancers per 100,000 persons and were highest for leukemia and the liver for both males and females followed by radiation-induced spleen and kidney cancer. The risks associated with radionuclide therapy are similar to the risk associated with external beam radiation therapy.
Kataoka, Tomoko; Kiyota, Naomi; Shimada, Takanobu; Funakoshi, Yohei; Chayahara, Naoko; Toyoda, Masanori; Fujiwara, Yutaka; Nibu, Ken-Ichi; Komori, Takahide; Sasaki, Ryohei; Mukohara, Toru; Minami, Hironobu
2016-12-01
Radiation-induced mucositis (RIM) in chemoradiotherapy (CRT) for head and neck cancer (HNC) causes severe pain and worsens CRT compliance, QOL and outcome. Following retrospective reports, we conducted a randomized trial of the safety and efficacy of gabapentin for RIM-associated pain during CRT. HNC patients (pts) receiving CRT were randomized to standard pain control (SPC) with acetaminophen and opioids, or SPC plus gabapentin (SPC+G). Gabapentin was maintained at 900mg/day for 4 weeks after CRT. Primary endpoint was maximum visual analogue scale (VAS) score during CRT, and secondary endpoints were total opioid dose, changes in QOL (EORTC QLQ-C30 and QLQ-HN 35) from baseline to 4 weeks after CRT, and adverse events. Twenty-two eligible Stage III or IV pts were randomly assigned to SPC or SPC+G (n=11 each). Twelve were treated in a locally advanced setting and 10 in a postoperative setting. Median maximum VAS scores, median total dose of opioids at maximum VAS and total dose of opioids at 4 weeks after CRT tended to be higher in the SPC+G arm (47 in SPC vs. 74 in SPC+G, p=0.517; 215mg vs. 745.3mg, p=0.880; and 1260mg vs. 1537.5mg, p=0.9438, respectively), without significance. QOL analysis showed significantly worse scores in the SPC+G arm for weight gain (p=0.005). Adverse events related to gabapentin were manageable. This pilot study is the first prospective randomized trial of gabapentin for RIM-related pain. Gabapentin had no apparent beneficial effect. Further research into agents for RIM-related pain is warranted. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woody, Neil M.; Videtic, Gregory M.M.; Stephans, Kevin L.
Purpose: Recent studies with two fractionation schemes predicted that the volume of chest wall receiving >30 Gy (V30) correlated with chest wall pain after stereotactic body radiation therapy (SBRT) to the lung. This study developed a predictive model of chest wall pain incorporating radiobiologic effects, using clinical data from four distinct SBRT fractionation schemes. Methods and Materials: 102 SBRT patients were treated with four different fractionations: 60 Gy in three fractions, 50 Gy in five fractions, 48 Gy in four fractions, and 50 Gy in 10 fractions. To account for radiobiologic effects, a modified equivalent uniform dose (mEUD) model calculatedmore » the dose to the chest wall with volume weighting. For comparison, V30 and maximum point dose were also reported. Using univariable logistic regression, the association of radiation dose and clinical variables with chest wall pain was assessed by uncertainty coefficient (U) and C statistic (C) of receiver operator curve. The significant associations from the univariable model were verified with a multivariable model. Results: 106 lesions in 102 patients with a mean age of 72 were included, with a mean of 25.5 (range, 12-55) months of follow-up. Twenty patients reported chest wall pain at a mean time of 8.1 (95% confidence interval, 6.3-9.8) months after treatment. The mEUD models, V30, and maximum point dose were significant predictors of chest wall pain (p < 0.0005). mEUD improved prediction of chest wall pain compared with V30 (C = 0.79 vs. 0.77 and U = 0.16 vs. 0.11). The mEUD with moderate weighting (a = 5) better predicted chest wall pain than did mEUD without weighting (a = 1) (C = 0.79 vs. 0.77 and U = 0.16 vs. 0.14). Body mass index (BMI) was significantly associated with chest wall pain (p = 0.008). On multivariable analysis, mEUD and BMI remained significant predictors of chest wall pain (p = 0.0003 and 0.03, respectively). Conclusion: mEUD with moderate weighting better predicted chest wall pain than did V30, indicating that a small chest wall volume receiving a high radiation dose is responsible for chest wall pain. Independently of dose to the chest wall, BMI also correlated with chest wall pain.« less
Sun, Gang; Ding, Juan; Lu, Yang; Li, Min; Li, Li; Li, Guo-ying; Zhang, Xu-ping
2012-03-01
The aim of this study was to prospectively assess the effect of low-tube voltage (80 kVp) 320-detector row volume computed tomographic (CT) angiography (L-VCTA) in the detection of intracranial aneurysms, with three-dimensional (3D) spin digital subtraction angiography (DSA) as the gold standard. Forty-eight patients with clinically suspected subarachnoid hemorrhages were divided into two groups. One group underwent L-VCTA and DSA, while the other group underwent conventional-tube voltage (120 kVp) volume CT angiography (C-VCTA) and DSA. Vascular enhancement, image quality, detection accuracy of aneurysms, and radiation dose were compared between the two groups. For objective image quality, the L-VCTA group had higher mean vessel attenuation, correlated with higher image noise and lower signal-to-noise ratio, than the C-VCTA group. For subjective image quality, there were no significant differences between the two groups regarding scores for arterial enhancement, depiction of small arterial detail, interference of venous structures, and overall image quality scores. The mean effective dose for the L-VCTA group was significantly lower than for the C-VCTA group (0.56 ± 0.25 vs 1.84 ± 0.002 mSv), with a reduction of radiation dose of 69.73%. With 3D DSA as the reference standard, the sensitivity, specificity, and accuracy in the L-VCTA and C-VCTA groups were 94.12%, 100%, 94.4% and 100%, 100%, and 100%, respectively. In both groups, there were significant correlations for maximum aneurysm diameter measurements between volume CT angiography and 3D DSA; no statistical difference in the mean maximum diameter of each aneurysm was measured between volume CT angiography and 3D DSA. L-VCTA is helpful in detecting intracranial aneurysms, with results similar to those of 3D DSA, but at a lower radiation dose than C-VCTA. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.
Variation of radiation level and radionuclide enrichment in high background area.
Shetty, P K; Narayana, Y
2010-12-01
Significantly high radiation level and radionuclide concentration along Quilon beach area of coastal Kerala have been reported by several investigators. Detailed gamma radiation level survey was carried out using a portable scintillometer. Detailed studies on radionuclides concentration in different environmental matrices of high background areas were undertaken in the coastal areas of Karunagapalli, Kayankulam, Chavara, Neendakara and Kollam to study the distribution and enrichment of the radionuclides in the region. The absorbed gamma dose rates in air in high background area are in the range 43-17,400nGyh⁻¹. Gamma radiation level is found to be maximum at a distance of 20m from the sea waterline in all beaches. The soil samples collected from different locations were analysed for primordial radionuclides by gamma spectrometry. The activity of primordial radionuclides was determined for the different size fractions of soil to study the enrichment pattern. The highest activity of (232)Th and (226)Ra was found to be enriched in 125-63μ size fraction. The preferential accumulation of (40)K was found in <63μ fraction. The minimum (232)Th activity was 30.2Bqkg⁻¹, found in 1000-500μ particle size fraction at Kollam and maximum activity of 3250.4Bqkg⁻¹ was observed in grains of size 125-63μ at Neendakara. The lowest (226)Ra activity observed was 33.9Bqkg⁻¹ at Neendakara in grains of size 1000-500μ and the highest activity observed was 482.6Bqkg⁻¹ in grains of size 125-63μ in Neendakara. The highest (40)K activity found was 1923Bqkg⁻¹ in grains of size <63μ for a sample collected from Neendakara. A good correlation was observed between computed dose and measured dose in air. The correlation between (232)Th and (226)Ra was also moderately high. The results of these investigations are presented and discussed in this paper. Copyright © 2010 Elsevier Ltd. All rights reserved.
Radiation-induced mitotic and meiotic aneuploidy in the yeast Saccharomyces cerevisiae.
Parry, J M; Sharp, D; Tippins, R S; Parry, E M
1979-06-01
A number of genetic systems are described which in yeast may be used to monitor the induction of chromosome aneuploidy during both mitotic and meiotic cell division. Using these systems we have been able to demonstrate the induction of both monosomic and trisomic cells in mitotically dividing cells and disomic spores in meiotically dividing cells after both UV light and X-ray exposure. The frequency of UV-light-induced monosomic colonies were reduced by post-treatment with photoreactivity light and both UV-light- and X-ray-induced monosomic colonies were reduced by liquid holding post-treatment under non-nutrient conditions. Both responses indicate an involvement of DNA-repair mechanisms in the removal of lesions which may lead to monosomy in yeast. This was further confirmed by the response of an excision-defective yeast strain which showed considerably increased sensitivity to the induction of monosomic colonies by UV-light treatment at low doses. Yeast cultures irradiated at different stages of growth showed variation in their responses to both UV-light and X-rays, cells at the exponential phase of growth show maximum sensitivity to the induction of monosomic colonies at low doses whereas stationary phase cultures showed maximum induction of monosomic colonies at high does. The frequencies of X-ray-induced chromosome aneuploidy during meiosis leading to the production of disomic spores was shown to be dependent upon the stage of meiosis at which the yeast cells were exposed to radiation. Cells which had proceeded beyond the DNA synthetic stage of meiosis were shown to produce disomic spores at considerably lower radiation doses than those cells which had only recently been inoculated into sporulation medium. The results obtained suggest that the yeast sustem may be suitable for the study of sensitivities of the various stages of meiotic cell division to the induction of chromosome aneuploidy after radiation exposure.
Radiation damage and sensitization effects on thermoluminescence of LiF:Mg,Ti (TLD-700)
NASA Astrophysics Data System (ADS)
Farag, M. A.; Sadek, A. M.; Shousha, Hany. A.; El-Hagg, A. A.; Atta, M. R.; Kitis, G.
2017-09-01
The radiation damage effects and enhancement the thermoluminescence (TL) efficiency of LiF:Mg,Ti (TLD-700)dosimeters via sensitization method were discussed. Attempts to eliminate the effects of damage and sensitization were made using different types of annealing processes. The results showed that after irradiating the dosimeters with dose > 250 Gy of 60Co gamma source, damage effects were observed. The sensitivity of the total area under the curve was decreased by a factor of ∼0.5 after irradiation at a pre-test dose of 2 kGy. However, the effects of radiation damage on each glow-peak are different. The glow-peak 2 was the only peak that was not affected by the high-dose irradiation. It has been shown that the degree of the radiation damage effect is related to the maximum dose-response function, f(D)max of the glow-peak. In general, significant radiation damage effects were observed for the glow-peaks of high f(D)max . Post-irradiation anneal at 280 °C for 30 min causes dramatic effects on the shape of the glow-curve and as well as on the sensitivity of the dosimeters. An increasing by a factor of ∼35 in the sensitivity of the total area under the curve was observed at a pre-test dose of 2 kGy. Improving the sensitivity of peak 7 by a factor of∼22 was the dominant factor in increasing the sensitivity of the dosimeters. On the other hand, an increasing by factors of ∼2.5 and ∼4 was found for peaks 2 and 5 respectively. On the other hand, a decreasing by a factor ∼0.5 was observed for peaks 3 and 4. At pre-test dose levels >250 Gy, a very strange and high intensity tail was observed in the high-temperature region of the glow-curves. The readout anneal was not enough to remove this tail. While, the furnace anneal could eliminate the sensitization effects but not the radiation damage effects on the sensitivity of the dosimeters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markovic, M; Stathakis, S; Jurkovic, I
Purpose The aim for the study was to compare intrinsic characteristics of the nine detectors and evaluate their performance in non-equilibrium radiation dosimetry. Methods The intrinsic characteristics of the nine detectors that were evaluated are based on the composition and size of the active volume, operating voltage, initial recombination of the collected charge, temperature, the effective cross section of the detectors. The shortterm stability and collection efficiency has been investigated. The minimum radiation detection sensitivity and detectors leakage current has been measured. The sensitivity to changes in energy spectrum as well as change in incident beam angles were measured anmore » analyzed. Results The short-term stability of the measurements within every detector showed consistency in the measured values with the highest value of the standard deviation of the mean not exceeding 0.5%. Air ion chamber detectors showed minimum sensitivity to change in incident beam angles while diode detectors underestimated measurements up to 16%. Comparing the slope of the tangents for detector’s sensitivity curve, diode detectors illustrate more sensitivity to change in photon spectrum than ion chamber detectors. The change in radiation detection sensitivity with increase in dose delivered has been observed for semiconductor detectors with maximum deviation 0.01% for doses between 1 Gy and 10 Gy. Leakage current has been mainly influenced by bias voltage (ion chamber detectors) and room light intensity (diode detectors). With dose per pulse varying from 1.47E−4 to 5.1E−4 Gy/pulse the maximum change in collection efficiency was 1.4% for the air ion chambers up to 8% for liquid filled ion chamber. Conclusion Broad range of measurements performed showed all the detectors susceptible to some limitations and while they are suitable for use in broad scope of applications, careful selection has to be made for particular range of measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahimi, Asal, E-mail: asal.rahimi@utsouthwestern.edu; Thomas, Kimberly; Spangler, Ann
Purpose: To evaluate the tolerability of a dose-escalated 5-fraction stereotactic body radiation therapy for partial-breast irradiation (S-PBI) in treating early-stage breast cancer after partial mastectomy; the primary objective was to escalate dose utilizing a robotic stereotactic radiation system treating the lumpectomy cavity without exceeding the maximum tolerated dose. Methods and Materials: Eligible patients included those with ductal carcinoma in situ or invasive nonlobular epithelial histologies and stage 0, I, or II, with tumor size <3 cm. Patients and physicians completed baseline and subsequent cosmesis outcome questionnaires. Starting dose was 30 Gy in 5 fractions and was escalated by 2.5 Gy total for each cohortmore » to 40 Gy. Results: In all, 75 patients were enrolled, with a median age of 62 years. Median follow-up for 5 cohorts was 49.9, 42.5, 25.7, 20.3, and 13.5 months, respectively. Only 3 grade 3 toxicities were experienced. There was 1 dose-limiting toxicity in the overall cohort. Ten patients experienced palpable fat necrosis (4 of which were symptomatic). Physicians scored cosmesis as excellent or good in 95.9%, 100%, 96.7%, and 100% at baseline and 6, 12, and 24 months after S-PBI, whereas patients scored the same periods as 86.5%, 97.1%, 95.1%, and 95.3%, respectively. The disagreement rates between MDs and patients during those periods were 9.4%, 2.9%, 1.6%, and 4.7%, respectively. There have been no recurrences or distant metastases. Conclusion: Dose was escalated to the target dose of 40 Gy in 5 fractions, with the occurrence of only 1 dose-limiting toxicity. Patients felt cosmetic results improved within the first year after surgery and stereotactic body radiation therapy. Our results show minimal toxicity with excellent cosmesis; however, further follow-up is warranted in future studies. This study is the first to show the safety, tolerability, feasibility, and cosmesis results of a 5-fraction dose-escalated S-PBI treatment for early-stage breast cancer in the adjuvant setting.« less
Price, Ryan G; Apisarnthanarax, Smith; Schaub, Stephanie K; Nyflot, Matthew J; Chapman, Tobias R; Matesan, Manuela; Vesselle, Hubert J; Bowen, Stephen R
2018-06-19
We report on patient-specific quantitative changes in longitudinal sulfur colloid SPECT/CT as a function of regional radiation dose distributions to normal liver in a cohort of hepatocellular carcinoma patients. Dose-response thresholds and slopes varied with baseline liver function metrics, and extreme values were found in patients with fatal hepatotoxicity. Dose-response modeling of normal liver in individual HCC patients has potential to characterize in vivo radiosensitivity, identify high risk subgroups, and personalize treatment planning dose constraints. Hepatotoxicity risk in hepatocellular carcinoma (HCC) patients is modulated by radiation dose delivered to normal liver tissue, but reported dose-response data are limited. Our prior work established baseline [ 99m Tc]sulfur colloid (SC) SPECT/CT liver function imaging biomarkers that predict clinical outcomes. We conducted a proof-of-concept investigation with longitudinal SC SPECT/CT to characterize patient-specific radiation dose-response relationships as surrogates for liver radiosensitivity. SC SPECT/CT images of 15 HCC patients with variable Child-Pugh status (8 CP-A, 7 CP-B/C) were acquired in treatment position prior to and 1 month (nominal) after SBRT (n=6) or proton therapy (n=9). Localized rigid registrations between pre/post-treatment CT to planning CT scans were performed, and transformations were applied to pre/post-treatment SC SPECT images. Radiotherapy doses were converted to EQD2 α/β=3 and Gy (RBE), and binned in 5 GyEQD2 increments within tumor-subtracted livers. Mean dose and percent change (%ΔSC) between pre- and post-treatment SPECT uptake, normalized to regions receiving < 5 GyEQD2, were calculated in each binned dose region. Dose-response data were parameterized by sigmoid functions (double exponential) consisting of maximum reduction (%ΔSC max ), dose midpoint (D mid ), and dose-response slope (α mid ) parameters. Individual patient sigmoid dose-response curves had high goodness-of-fit (median R 2 = 0.96, range 0.76-0.99). Large inter-patient variability was observed, with median (range) in %ΔSC max of 44% (20-75%), D mid of 13 Gy (4-27 GyEQD2), and α mid of 0.11 GyEQD2 -1 (0.04-0.29 GyEQD2 -1 ), respectively. Eight of 15 patients had %ΔSC max = 20-45%, while 7/15 had %ΔSC max = 60-75%, with subgroups made up of variable baseline liver function status and radiation treatment modality. Fatal hepatotoxicity occurred in patients (2/15) with low TLF (< 0.12) and low D mid (< 7 GyEQD2). Longitudinal SC SPECT/CT imaging revealed patient-specific variations in dose-response, and may identify patients with poor baseline liver function and increased sensitivity to radiation therapy. Validation of this regional liver dose-response modeling concept as a surrogate for patient-specific radiosensitivity has potential to guide HCC therapy regimen selection and planning constraints. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yan, Yue; Yang, Jinzhong; Beddar, Sam; Ibbott, Geoffrey; Wen, Zhifei; Court, Laurence E.; Hwang, Ken-Pin; Kadbi, Mo; Krishnan, Sunil; Fuller, Clifton D.; Frank, Steven J.; Yang, James; Balter, Peter; Kudchadker, Rajat J.; Wang, Jihong
2018-04-01
We developed a novel technique to study the impact of geometric distortion of magnetic resonance imaging (MRI) on intensity-modulated radiation therapy treatment planning. The measured 3D datasets of residual geometric distortion (a 1.5 T MRI component of an MRI linear accelerator system) was fitted with a second-order polynomial model to map the spatial dependence of geometric distortions. Then the geometric distortion model was applied to computed tomography (CT) image and structure data to simulate the distortion of MRI data and structures. Fourteen CT-based treatment plans were selected from patients treated for gastrointestinal, genitourinary, thoracic, head and neck, or spinal tumors. Plans based on the distorted CT and structure data were generated (as the distorted plans). Dose deviations of the distorted plans were calculated and compared with the original plans to study the dosimetric impact of MRI distortion. The MRI geometric distortion led to notable dose deviations in five of the 14 patients, causing loss of target coverage of up to 3.68% and dose deviations to organs at risk in three patients, increasing the mean dose to the chest wall by up to 6.19 Gy in a gastrointestinal patient, and increases the maximum dose to the lung by 5.17 Gy in a thoracic patient.
Effect of Ex Vivo Ionizing Radiation on Static and Fatigue Properties of Mouse Vertebral Bodies
NASA Technical Reports Server (NTRS)
Emerzian, Shannon R.; Pendleton, Megan M.; Li, Alfred; Liu, Jennifer W.; Alwood, Joshua S.; O’Connell, Grace D.; Keaveny, Tony M.
2018-01-01
For a variety of medical and scientific reasons, human bones can be exposed to a wide range of ionizing radiation levels. In vivo radiation therapy (0.05 kGy) is used in cancer treatment, and ex vivo irradiation (25-35 kGy) is used to sterilize bone allografts. Ionizing radiation in these applications has been shown to increase risk of fracture, decrease bone quality and degrade collagen integrity. Past studies have investigated the deleterious effects of radiation on cortical or trabecular bone specimens individually, but to date no studies have examined whole bones containing both cortical and trabecular tissue. Furthermore, a clear relationship between the dose and the mechanical and biochemical response of bone's extracellular matrix has yet to be established for doses ranging from cancer therapy to allograft sterilization (0.05-35 kGy). To gain insight into these issues, we conducted an ex vivo radiation study to investigate non-cellular (i.e. matrix) effects of ionizing radiation dose on vertebral whole bone mechanical properties, over a range of radiation doses (0.05-35 kGy), with a focus on any radiation-induced changes in collagen. With underlying mechanisms of action in mind, we hypothesized that any induced reductions in mechanical properties would be associated with changes in collagen integrity. METHODS: 20-week old female mice were euthanized and the lumbar spine was dissected using IACUC approved protocols. The lumbar vertebrae (L1- S1) were extracted from the spine via cuts through adjacent intervertebral discs, and the endplates, posterior processes, surrounding musculature, and soft tissues were removed (approx. 1.5mm diameter, approx. 2mm height). Specimens were randomly assigned to one of five groups for ex vivo radiation exposure: x-ray irradiation at 0.05, 1, 17, or 35 kGy, or a 0 kGy control. Following irradiation, the vertebrae were imaged using microcomputed tomography (micro-CT) and then subjected to either monotonic compressive loading to failure or uniform cyclic compressive loading. During cyclic testing, samples were loaded in force control to a force level that corresponded to a strain of 0.46%, as determined in advance by a linearly elastic micro-CT-based finite element analysis for each specimen. Tests were stopped at imminent fracture, defined as a rapid increase in strain. The main outcome for the monotonic test was the strength (maximum force); for cyclic testing it was the fatigue life (log of the number of cycles of loading at imminent failure). A fluorometric assay was used on the S1 vertebrae to measure the number of non-enzymatic collagen crosslinks[4]. A one-way ANOVA was performed on mechanical properties and collagen crosslinks; means were compared with controls using Dunnett's method, with a Tukey-Kramer post-hoc analysis when significance was found (p < or = 0.05). RESULTS: Compared to the unirradiated control group, the concentration of non-enzymatic collagen crosslinks was significantly increased for all irradiated groups (p < 0.0001), and being higher by at least 50% (Figure 1a). By contrast, the radiation effects on the collagen were only evident at the higher doses. For irradiation exposures of 17 kGy or more, strength decreased substantially as the radiation level was increased, but no effect was evident below 17 kGy (Figure 1b). There was no significant change in the stiffness or maximum displacement for any radiation dose (p>0.05). The finite element analysis prescribed force level for cyclic loading exceeded the measured (monotonic) strength of the 17 and 35 kGy irradiated groups (mean +/- SD, 20.6 +/- 5.6 N; 13.2 +/- 3.7 N, respectively) and therefore these groups were eliminated from the fatigue study. The fatigue life for the 0.05 and 1 kGy groups were similar to each other and were not statistically significantly different from the control group (Figure 1c).
Radiation equivalent dose simulations for long-term interplanetary flights
NASA Astrophysics Data System (ADS)
Dobynde, M. I.; Drozdov, A.; Shprits, Y. Y.
2016-12-01
Cosmic particle radiation is a limiting factor for the human interplanetary flights. The unmanned flights inside heliosphere and human flights inside of magnetosphere tend to become a routine procedure, whereas there have been only few shot term human flights out of it (Apollo missions 1969-1972) with maximum duration less than a month. Long-term human flights set much higher requirements to the radiation shielding, primarily because of long exposition to cosmic radiation. Inside the helosphere there are two main sources of cosmic radiation: galactic cosmic rays (GCR) and soalr particle events (SPE). GCR come from the outside of heliosphere forming a background of overall radiation that affects the spacecraft. The intensity of GCR is varied according to solar activity, increasing with solar activity decrease and backward, with the modulation time (time between nearest maxima) of 11 yeas. SPE are shot term events, comparing to GCR modulation time, but particle fluxes are much more higher. The probability of SPE increases with the increase of solar activity. Time dependences of the intensity of these two components encourage looking for a time window of flight, when intensity and effect of GCR and SPE would be minimized. Combining GEANT4 Monte Carlo simulations with time dependent model of GCR spectra and data on SPE spectra we show the time dependence of the radiation dose in an anthropomorphic human phantom inside the shielding capsule. Different types of particles affect differently on the human providing more or less harm to the tissues. We use quality factors to recalculate absorbed dose into biological equivalent dose, which give more information about risks for astronaut's health. Incident particles provide a large amount of secondary particles while propagating through the shielding capsule. We try to find an optimal combination of shielding material and thickness, that will effectively decrease the incident particle energy, at the same time minimizing flow of secondary induced particles and minimizing most harmful particle types flows.
Yashavarddhan, M H; Shukla, Sandeep K; Srivastava, Nitya N; Suar, Mrutyunjay; Dutta, Sangeeta; Kalita, Bhargab; Ranjan, Rajiv; Singh, Abhinav; Bajaj, Sania; Gupta, Manju L
2016-07-01
DNA damage can be assessed by the quantitation of γH2AX foci that form at DSB sites. This study examines the generation and persistence of γH2AX foci, variability in foci size after acute and fractionated radiation exposure, and the effect of pretreatment with a safe radioprotective formulation termed G-003M on foci generation and persistence. G-003M contains a combination of podophyllotoxin and rutin hydrate, and was administered intramuscularly to rabbits 1 hr prior to Co(60) gamma irradiation. Rabbits were assigned to one of the following treatment groups: untreated, G-003M alone, irradiated (single dose 8 Gy, fractionated 2 Gy/day for 4 days or single dose 2 Gy) or G-003M preadministration followed by radiation exposure. Foci continuously persisted for a week in peripheral blood mononuclear cells of rabbits exposed to a single 8 Gy dose. However, the number of foci gradually decreased after reaching a maximum at 1 h. In rabbits exposed to fractionated radiation, foci detected 1 hr after the final exposure were significantly larger (P < 0.001) than in rabbits exposed to a single 8 Gy dose, but disappeared completely after 24 h. In both groups, foci reappeared on days 11-15 in terminally ill animals. G-003M pretreatment significantly (P < 0.05) attenuated the formation of γH2AX foci in all irradiated rabbits. This study reveals that γH2AX focus assessment could be used to confirm radiation exposure, that focus size reflects the type of radiation exposure (acute or fractionated), that the re-appearance of foci is a strong indicator of imminent death in animals, and that G-003M provides protection against radiation. Environ. Mol. Mutagen. 57:455-468, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Sasaki, Masao S; Endo, Satoru; Hoshi, Masaharu; Nomura, Taisei
2016-11-01
The calculated risk of cancer in humans due to radiation exposure is based primarily on long-term follow-up studies, e.g. the life-span study (LSS) on atomic bomb (A-bomb) survivors in Hiroshima and Nagasaki. Since A-bomb radiation consists of a mixture of γ-rays and neutrons, it is essential that the relative biological effectiveness (RBE) of neutrons is adequately evaluated if a study is to serve as a reference for cancer risk. However, the relatively small neutron component hampered the direct estimation of RBE in LSS data. To circumvent this problem, several strategies have been attempted, including dose-independent constant RBE, dose-dependent variable RBE, and dependence on the degrees of dominance of intermingled γ-rays. By surveying the available literature, we tested the chromosomal RBE of neutrons as the biological endpoint for its equivalence to the microdosimetric quantities obtained using a tissue-equivalent proportional counter (TEPC) in various neutron fields. The radiation weighting factor, or quality factor, Q n , of neutrons as expressed in terms of the energy dependence of the maximum RBE, RBE m , was consistent with that predicted by the TEPC data, indicating that the chromosomally measured RBE was independent of the magnitude of coexisting γ-rays. The obtained neutron RBE, which varied with neutron dose, was confirmed to be the most adequate RBE system in terms of agreement with the cancer incidence in A-bomb survivors, using chromosome aberrations as surrogate markers. With this RBE system, the cancer risk in A-bomb survivors as expressed in unit dose of reference radiation is equally compatible with Hiroshima and Nagasaki cities, and may be potentially applicable in other cases of human radiation exposure. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Natural radioactivity investigation in Dam sediments of northeast Algeria using gamma spectroscopy
NASA Astrophysics Data System (ADS)
Benrachi, Fatima; Bouhila, Ghania; Saadi, Asma; Ramdhane, Mourad
2017-09-01
Current research paper intends to estimate the natural radioactivity levels in sediments samples collected from Beni Haroun Dam in the northeast Algeria, using high resolution HPGe detector. The mean activity concentrations values measured for the radionuclides 232Th, 226Ra and 40K are 18.9 ± 1.9, 37.3 ± 2.7 and 149.9 ± 5.5 Bq/kg, respectively. The 137Cs anthropogenic radionuclide has been observed with maximum activity concentration value of 0.8 ± 0.4 Bq/kg, which is considered an insignificant amount. In order to assess the radiological threat of gamma radiations emitted by these radionuclides on the health of the population, absorbed dose rate, annual effective dose equivalent and radiation hazard indices were had been calculated. The obtained values are compared with the world wide average ones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jeanette; Qureshi, Muhammad M.; Kovalchuk, Nataliya
The aim of the study was to determine tumor characteristics that predict higher planned radiation (RT) dose to the cochlea in patients with head and neck cancer (HNC) treated with intensity-modulated radiotherapy (IMRT). From 2004 to 2012, 99 patients with HNC underwent definitive IMRT to a median dose of 69.96 Gy in 33 fractions, with the right and left cochlea-vestibular apparatus contoured for IMRT optimization as avoidance structures. If disease involvement was adjacent to the cochlea, preference was given to tumor coverage by prescription dose. Descriptive statistics were calculated for dose-volume histogram planning data, and mean planning dose to themore » cochlea (from left or right cochlea, receiving the greater amount of RT dose) was correlated to primary site and tumor stage. Mean (standard deviation) cochlear volume was 1.0 (0.60) cm{sup 3} with maximum and mean planned doses of 31.9 (17.5) Gy and 22.1 (13.7) Gy, respectively. Mean planned dose (Gy) to cochlea by tumor site was as follows: oral cavity (18.6, 14.4), oropharynx (21.7, 9.1), nasopharynx (36.3, 10.4), hypopharynx (14.9, 7.1), larynx (2.1, 0.62), others including the parotid gland, temporal bone, and paranasal sinus (33.6, 24.0), and unknown primary (25.6, 6.7). Average mean planned dose (Gy) to the cochlea in T0-T2 and T3-T4 disease was 22.0 and 29.2 Gy, respectively (p = 0.019). By site, a significant difference was noted for nasopharynx and others (31.6 and 50.7, p = 0.012) but not for oropharynx, oral cavity, and hypopharynx. Advanced T category predicted for higher mean cochlear dose, particularly for nasopharyngeal, parotid gland, temporal bone, and paranasal sinus HNC sites.« less
Radiotherapy Dose Perturbation of Esophageal Stents Examined in an Experimental Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atwood, Todd F.; Hsu, Annie; Ogara, Maydeen M.
2012-04-01
Purpose: To investigate the radiotherapy dose perturbations caused by esophageal stents in patients undergoing external beam treatments for esophageal cancer. Methods and Materials: Four esophageal stents were examined (three metallic stents: WallFlex, Ultraflex, and Alveolus; one nonmetallic stent with limited radiopaque markers for visualization: Polyflex). All experiments were performed in a liquid water phantom with a custom acrylic stent holder. Radiochromic film was used to measure the dose distributions adjacent to the stents at locations proximal and distal to the radiation source. The stents were placed in an air-filled cavity to simulate the esophagus. Treatment plans were created and deliveredmore » for photon energies of 6 and 15 MV, and data analysis was performed on uniform regions of interest, according to the size and geometric placement of the films, to quantify the dose perturbations. Results: The three metallic stents produced the largest dose perturbations with distinct patterns of 'hot' spots (increased dose) measured proximal to the radiation source (up to 15.4%) and both 'cold' (decreased dose) and hot spots measured distal to the radiation source (range, -6.1%-5.8%). The polymeric Polyflex stent produced similar dose perturbations when the radiopaque markers were examined (range, -7.6%-15.4%). However, when the radiopaque markers were excluded from the analysis, the Polyflex stent produced significantly smaller dose perturbations, with maximum hot spots of 7.3% and cold spots of -3.2%. Conclusions: The dose perturbations caused by esophageal stents during the treatment of esophageal cancer using external beam radiotherapy should be understood. These perturbations will result in hot and cold spots in the esophageal mucosa, with varying magnitudes depending on the stent. The nonmetallic Polyflex stent appears to be the most suitable for patients undergoing radiotherapy, but further studies are necessary to determine the clinical significance of the dose perturbations.« less
Radiotherapy dose perturbation of esophageal stents examined in an experimental model.
Atwood, Todd F; Hsu, Annie; Ogara, Maydeen M; Luba, Daniel G; Tamler, Bradley J; Disario, James A; Maxim, Peter G
2012-04-01
To investigate the radiotherapy dose perturbations caused by esophageal stents in patients undergoing external beam treatments for esophageal cancer. Four esophageal stents were examined (three metallic stents: WallFlex, Ultraflex, and Alveolus; one nonmetallic stent with limited radiopaque markers for visualization: Polyflex). All experiments were performed in a liquid water phantom with a custom acrylic stent holder. Radiochromic film was used to measure the dose distributions adjacent to the stents at locations proximal and distal to the radiation source. The stents were placed in an air-filled cavity to simulate the esophagus. Treatment plans were created and delivered for photon energies of 6 and 15 MV, and data analysis was performed on uniform regions of interest, according to the size and geometric placement of the films, to quantify the dose perturbations. The three metallic stents produced the largest dose perturbations with distinct patterns of "hot" spots (increased dose) measured proximal to the radiation source (up to 15.4%) and both "cold" (decreased dose) and hot spots measured distal to the radiation source (range, -6.1%-5.8%). The polymeric Polyflex stent produced similar dose perturbations when the radiopaque markers were examined (range, -7.6%-15.4%). However, when the radiopaque markers were excluded from the analysis, the Polyflex stent produced significantly smaller dose perturbations, with maximum hot spots of 7.3% and cold spots of -3.2%. The dose perturbations caused by esophageal stents during the treatment of esophageal cancer using external beam radiotherapy should be understood. These perturbations will result in hot and cold spots in the esophageal mucosa, with varying magnitudes depending on the stent. The nonmetallic Polyflex stent appears to be the most suitable for patients undergoing radiotherapy, but further studies are necessary to determine the clinical significance of the dose perturbations. Copyright © 2012 Elsevier Inc. All rights reserved.
Cellular dosimetry calculations for Strontium-90 using Monte Carlo code PENELOPE.
Hocine, Nora; Farlay, Delphine; Boivin, Georges; Franck, Didier; Agarande, Michelle
2014-11-01
To improve risk assessments associated with chronic exposure to Strontium-90 (Sr-90), for both the environment and human health, it is necessary to know the energy distribution in specific cells or tissue. Monte Carlo (MC) simulation codes are extremely useful tools for calculating deposition energy. The present work was focused on the validation of the MC code PENetration and Energy LOss of Positrons and Electrons (PENELOPE) and the assessment of dose distribution to bone marrow cells from punctual Sr-90 source localized within the cortical bone part. S-values (absorbed dose per unit cumulated activity) calculations using Monte Carlo simulations were performed by using PENELOPE and Monte Carlo N-Particle eXtended (MCNPX). Cytoplasm, nucleus, cell surface, mouse femur bone and Sr-90 radiation source were simulated. Cells are assumed to be spherical with the radii of the cell and cell nucleus ranging from 2-10 μm. The Sr-90 source is assumed to be uniformly distributed in cell nucleus, cytoplasm and cell surface. The comparison of S-values calculated with PENELOPE to MCNPX results and the Medical Internal Radiation Dose (MIRD) values agreed very well since the relative deviations were less than 4.5%. The dose distribution to mouse bone marrow cells showed that the cells localized near the cortical part received the maximum dose. The MC code PENELOPE may prove useful for cellular dosimetry involving radiation transport through materials other than water, or for complex distributions of radionuclides and geometries.
NASA Technical Reports Server (NTRS)
Lin, Z. W.; Adams, J. H., Jr.
2006-01-01
The radiation hazard for astronauts from galactic cosmic rays is a major obstacle in long duration human space explorations. Space radiation transport codes have been developed to calculate radiation environment on missions to the Moon, Mars or beyond. We have studied how uncertainties in fragmentation cross sections at different energies affect the accuracy of predictions from such radiation transport. We find that, in deep space, cross sections between 0.3 and 0.85 GeV/u usually have the largest effect on dose-equivalent behind shielding in solar minimum GCR environments, and cross sections between 0.85 and 1.2 GeV/u have the largest effect in solar maximum GCR environments. At the International Space Station, cross sections at higher energies have the largest effect due to the geomagnetic cutoff.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonier, Marcus, E-mail: Marcus.Sonier@bccancer.bc.ca; Chu, William; Department of Radiation Oncology, University of Toronto, Toronto, ON
To develop a volumetric modulated arc therapy (VMAT) treatment planning solution in the treatment of primary renal cell carcinoma and oligometastatic adrenal lesions with stereotactic body radiation therapy. Single-arc VMAT plans (n = 5) were compared with clinically delivered step-and-shoot intensity-modulated radiotherapy (IMRT) with planning target volume coverage normalized between techniques. Target volume conformity, organ-at-risk (OAR) dose, treatment time, and monitor units were compared. A VMAT planning solution, created from a combination of arc settings and optimization constraints, auto-generated treatment plans in a single optimization. The treatment planning solution was evaluated on 15 consecutive patients receiving kidney and adrenal stereotacticmore » body radiation therapy. Treatment time was reduced from 13.0 ± 2.6 to 4.0 ± 0.9 minutes for IMRT and VMAT, respectively. The VMAT planning solution generated treatment plans with increased target homogeneity, improved 95% conformity index, and a reduced maximum point dose to nearby OARs but with increased intermediate dose to distant OARs. The conformity of the 95% isodose improved from 1.32 ± 0.39 to 1.12 ± 0.05 for IMRT and VMAT treatment plans, respectively. Evaluation of the planning solution showed clinically acceptable dose distributions for 13 of 15 cases with tight conformity of the prescription isodose to the planning target volume of 1.07 ± 0.04, delivering minimal dose to OARs. The introduction of a stereotactic body radiation therapy VMAT treatment planning solution improves the efficiency of planning and delivery time, producing treatment plans of comparable or superior quality to IMRT in the case of primary renal cell carcinoma and oligometastatic adrenal lesions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gernez-Rieux, C.; Bonte, G.; Gervois, M.
1962-06-01
An international survey made in 1958, with the Comite"s Nationaux de Lutte Antituberculeuse, provided a large body of information gathered from Austria, Belgium, Canada, Denmark, France, Great Britain, Japan, Netherlands, Rumania, Switzerland, and Spain, relating to radiation dosages in detection of tuberculosis. It was found that in these countries with the equipment and techniques in use at the time, radiography necessitated a radiation dose of 200- 640 mr as measured on the dorsal surface of the thorax, whereas fluoroscopic examination required doses ranging from 700 mr to 15 r, according to technique employed. Gonadal doses were negligible with radiography, andmore » the significant genetic dose for the entire population was estimated to be not over 80 mu r in one country where approximately 55 million photofluorographic examinations were made in 1958 in persons under 30 years old. The average bone marrow dose per inhabitant varied from 0.2 to 37 mr in the various countries. Plumonary fluoroscopy exposes the individual to greater somatic and gonadic radiation and, it is suggested, should be eliminated from antituberculosis programs. To reduce patient exposure during thoracic radiology, the following precautions are recommended by the Commission de la Radiologie de l'Union Internationale contre la Tuberculose: use of mirror camera: adoption of higher film sensitivity and iniproved development techniques; use of higher maximum kilovoltage; establishment of a screen focus distance at less than 1 m; filtration with 3 mm of aluminum; exposure time of less than 1/10 sec; use of beam-localizing diaphragm and, if necessary, of a lead apron. Chest roentgenography still remains the most effective means for detecting new cases and follow-up examination in tuberculosis, and with adequate safeguards to minimize patient radiation, exposure does not present undue hazards. (BBB)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haseeb, Syed Abdul; Ahmad, Syed Bilal; Mirza, Sika
Purpose: To assess the impact of radiation treatment delivery through patient inhomogeneities on the secondary barrier shielding requirements in IMRT treatments using Monte Carlo Simulations. Materials and Methods: Scatter factors were calculated at a distance of 1m from the center of a virtual phantom in Geant4.10.01. Phantom (30×30×30 cm{sup 3}) was inserted with lung (30×30×8 cm{sup 3}), stainless steel (5×5×5 cm{sup 3}) and aluminum (5×5×5 cm{sup 3}) to represent the inhomogeneities. Scatter factor was defined according to the NCRP-151 recommendations and was calculated for angles of 3° to 120° with respect to the beam’s central axis. A virtual radiation source,more » with energy sampled from a histogram representing 6 MV FFF beam, was used for irradiation with a field size of 15×15 cm{sup 2} and SSD of 100 cm. Results: Irradiation through the inhomogeneity affects the patient scattered dose. For high Z material inhomogeneities the scattered dose is reduced due to significant attenuation of the primary radiation. On the other hand if the inhomogeneity is a low Z material such as lung the scattered dose is higher by a maximum of 26%. The average increase in scatter factors for the lung phantom was 17% for angles between 3° and 63° compared to the homogeneous water phantom. Conclusions: In IMRT type treatments delivered through low density patient inhomogeneities (lung) the scattered dose increases significantly. Considering a large proportion of patients receiving radiation therapy for lung cancers the increase in the scattered dose should be incorporated in the shielding calculations for the secondary barriers.« less
Study of a non-diffusing radiochromic gel dosimeter for 3D radiation dose imaging
NASA Astrophysics Data System (ADS)
Marsden, Craig Michael
2000-12-01
This thesis investigates the potential of a new radiation gel dosimeter, based on nitro-blue tetrazolium (NBTZ) suspended in a gelatin mold. Unlike all Fricke based gel dosimeters this dosimeter does not suffer from diffusive loss of image stability. Images are obtained by an optical tomography method. Nitro blue tetrazolium is a common biological indicator that when irradiated in an aqueous medium undergoes reduction to a highly colored formazan, which has an absorbance maximum at 525nm. Tetrazolium is water soluble while the formazan product is insoluble. The formazan product sticks to the gelatin matrix and the dose image is maintained for three months. Methods to maximize the sensitivity of the system were evaluated. It was found that a chemical detergent, Triton X-100, in combination with sodium formate, increased the dosimeter sensitivity significantly. An initial G-value of formazan production for a dosimeter composed of 1mM NBTZ, gelatin, and water was on the order of 0.2. The addition of Triton and formate produced a G-value in excess of 5.0. The effects of NBTZ, triton, formate, and gel concentration were all investigated. All the gels provided linear dose vs. absorbance plots for doses from 0 to >100 Gy. It was determined that gel concentration had minimal if any effect on sensitivity. Sensitivity increased slightly with increasing NBTZ concentration. Triton and formate individually and together provided moderate to large increases in dosimeter sensitivity. The dosimeter described in this work can provide stable 3D radiation dose images for all modalities of radiation therapy equipment. Methods to increase sensitivity are developed and discussed.
Sasaki, Masao S.; Endo, Satoru; Hoshi, Masaharu; Nomura, Taisei
2016-01-01
The calculated risk of cancer in humans due to radiation exposure is based primarily on long-term follow-up studies, e.g. the life-span study (LSS) on atomic bomb (A-bomb) survivors in Hiroshima and Nagasaki. Since A-bomb radiation consists of a mixture of γ-rays and neutrons, it is essential that the relative biological effectiveness (RBE) of neutrons is adequately evaluated if a study is to serve as a reference for cancer risk. However, the relatively small neutron component hampered the direct estimation of RBE in LSS data. To circumvent this problem, several strategies have been attempted, including dose-independent constant RBE, dose-dependent variable RBE, and dependence on the degrees of dominance of intermingled γ-rays. By surveying the available literature, we tested the chromosomal RBE of neutrons as the biological endpoint for its equivalence to the microdosimetric quantities obtained using a tissue-equivalent proportional counter (TEPC) in various neutron fields. The radiation weighting factor, or quality factor, Qn, of neutrons as expressed in terms of the energy dependence of the maximum RBE, RBEm, was consistent with that predicted by the TEPC data, indicating that the chromosomally measured RBE was independent of the magnitude of coexisting γ-rays. The obtained neutron RBE, which varied with neutron dose, was confirmed to be the most adequate RBE system in terms of agreement with the cancer incidence in A-bomb survivors, using chromosome aberrations as surrogate markers. With this RBE system, the cancer risk in A-bomb survivors as expressed in unit dose of reference radiation is equally compatible with Hiroshima and Nagasaki cities, and may be potentially applicable in other cases of human radiation exposure. PMID:27614201
In vivo radioprotection by alpha-TMG: preliminary studies.
Satyamitra, M; Devi, P U; Murase, H; Kagiya, V T
2001-08-08
alpha-TMG is a novel water-soluble derivative of Vitamin E that has shown excellent antioxidant activity. The parent compound has demonstrated protection against radiation induced chromosomal damage in vivo. Hence, the preliminary experiments to determine the radioprotective activity of alpha-TMG were carried out in adult Swiss albino mice. Acute toxicity of the drug was studied taking 24h, 72 h and 30 day mortality after a single intraperitoneal injection of 500-2000 mg/kg body weight of the drug. The drug LD(50) for 24h and 72 h/30 day survival were found to be 1120 and 1000 mg/kg body weight, respectively. The optimum time of drug administration and drug dose-dependent effect on in vivo radiation protection of bone marrow chromosomes was studied in mice. Injection of 600 mg/kg of the drug 15 min before or within 5, 15 or 30min after 3Gy whole body gamma radiation resulted in a significant decrease in the aberrant metaphases percent at 24h post-irradiation; the maximum effect was seen when the drug was given immediately after irradiation. Injection of 200-800 mg/kg TMG within 5 min of irradiation with 3 Gy produced a significant dose-dependent reduction in the radiation induced percent aberrant metaphases and in the frequency of micronucleated erythrocytes at 24h after exposure, with a corresponding decrease in the different types of aberrations. The optimum dose for protection without drug toxicity was 600 mg/kg body weight. At this dose, TMG produced 70 and >60% reduction in the radiation induced percent aberrant metaphases and micronucleated erythrocytes, respectively. The high water solubility and effectiveness when administered post-irradiation favor TMG as a likely candidate for protection in case of accidental exposures.
HDPE/HA composites obtained in solution: Effect of the gamma radiation
NASA Astrophysics Data System (ADS)
Carmen, Albano; Arquímedes, Karam; Rosestela, Perera; Gema, González; Nohemy, Domínguez; Jeanette, González; Yanixia, Sánchez
2006-06-01
Radiation is employed to sterilize composite materials used in the biomedical field. Due to the changes induced by radiation onto polymeric materials, it is important to study variations in their melt flow index (MFI), as well as in their mechanical and thermal properties. In this work, those previous parameters were determined in composites obtained via solution of a high-density polyethylene (HDPE) in decalin, with different amounts of hydroxyapatite (HA), varying from 10 to 30 parts per hundred, after being exposed to gamma radiation at absorbed doses between 25 and 100 kGy. After the irradiation, the MFI of HDPE dissolved in decalin and precipitated afterwards and without filler increased from 6 to 24 g/10 min at the highest absorbed doses. This behavior was also observed in composites with 10 pph of HA, being the increase less pronounced, specifically in the range between 50 and 100 kGy. Composites with 20 and 30 pph of HA showed a maximum MFI value at 50 kGy, which decreased at higher doses. This implies that the filler begin to exert an influence because it does not melt at the test temperature and consequently, it does not flow. It was observed that Young's modulus increased with HA addition due to rigidity of the ceramic filler. Radiation did not significantly affect this tensile property. On the other hand, the tensile strength did not show significant variations at the different doses but the filler content did affect this property improving it. Finally, elongation at break showed a drastic decrease with filler addition. When the thermal behavior was studied it was noticed that crystallization and melting temperatures remained unchanged. Instead, crystallinity degree slightly increased in the composites, and a little decrease was obtained when they were irradiated.
Santos Armentia, E; Tardáguila de la Fuente, G; Castellón Plaza, D; Delgado Sánchez-Gracián, C; Prada González, R; Fernández Fernández, L; Tardáguila Montero, F
2014-01-01
To study the differences in vascular image quality, bone subtraction, and dose of radiation of dual energy CT angiography of the supraaortic trunks using different tube voltages. We reviewed the CT angiograms of the supraaortic trunks in 46 patients acquired with a 128-slice dual source CT scanner using two voltage protocols (80/140 kV and 100/140 kV). The "head bone removal" tool was used for postprocessing. We divided the arteries into 15 segments. In each segment, we evaluated the image quality of the vessels and the effectiveness of bone removal in multiplanar reconstructions (MPR) and in maximum intensity projections (MIP) with each protocol, analyzing the trabecular and cortical bones separately. We also evaluated the dose of radiation received. Of the 46 patients, 13 were studied using 80/140 kV and 33 with 100/140 kV. There were no significant differences between the two groups in age or sex. Image quality in four segments was better in the group examined with 100/140 kV. Cortical bone removal in MPR and MIP and trabecular bone removal in MIP were also better in the group examined with 100/140 kV. The dose of radiation received was significantly higher in the group examined with 100/140 kV (1.16 mSv with 80/140 kV vs. 1.59 mSv with 100/140 kV). Using 100/140 kV increases the dose of radiation but improves the quality of the study of arterial segments and bone subtraction. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.
NASA Astrophysics Data System (ADS)
Walb, M. C.; Black, P. J.; Payne, V. S.; Munley, M. T.; Willey, J. S.
2015-07-01
Exposure to the spaceflight environment has long been known to be a health challenge concerning many body systems. Both microgravity and/or ionizing radiation can cause acute and chronic effects in multiple body systems. The hind limb unloaded (HLU) rodent model is a ground-based analogue for microgravity that can be used to simulate and study the combined biologic effects of reduced loading with spaceflight radiation exposure. However, studies delivering radiation to rodents during periods of HLU are rare. Herein we report the development of an irradiation protocol using a clinical linear accelerator that can be used with hind limb unloaded, unanesthetized rodents that is capable of being performed at most academic medical centers. A 30.5 cm × 30.5 cm × 40.6 cm rectangular chamber was constructed out of polymethyl methacrylate (PMMA) sheets (0.64 cm thickness). Five centimeters of water-equivalent material were placed outside of two PMMA inserts on either side of the rodent that permitted the desired radiation dose buildup (electronic equilibrium) and helped to achieve a flatter dose profile. Perforated aluminum strips permitted the suspension dowel to be placed at varying heights depending on the rodent size. Radiation was delivered using a medical linear accelerator at an accelerating potential of 10 MV. A calibrated PTW Farmer ionization chamber, wrapped in appropriately thick tissue-equivalent bolus material to simulate the volume of the rodent, was used to verify a uniform dose distribution at various regions of the chamber. The dosimetry measurements confirmed variances typically within 3%, with maximum variance <10% indicated through optically stimulated luminescent dosimeter (OSLD) measurements, thus delivering reliable spaceflight-relevant total body doses and ensuring a uniform dose regardless of its location within the chamber. Due to the relative abundance of LINACs at academic medical centers and the reliability of their dosimetry properties, this method may find great utility in the implementation of future ground-based studies that examine the combined spaceflight challenges of reduced loading and radiation while using the HLU rodent model.
Operational surface UV radiation product from GOME-2 and AVHRR/3 data
NASA Astrophysics Data System (ADS)
Kujanpää, J.; Kalakoski, N.
2015-05-01
The surface ultraviolet (UV) radiation product, version 1.20, generated operationally in the framework of the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) is described. The product is based on the total ozone column derived from the measurements of the second Global Ozone Monitoring Experiment (GOME-2) instrument aboard EUMETSAT's polar orbiting meteorological operational (Metop) satellites. The input total ozone product is generated by the German Aerospace Center (DLR) also within the O3M SAF framework. Polar orbiting satellites provide global coverage but infrequent sampling of the diurnal cloud cover. The diurnal variation of the surface UV radiation is extremely strong due to modulation by solar elevation and rapidly changing cloud cover. At the minimum, one sample of the cloud cover in the morning and another in the afternoon are needed to derive daily maximum and daily integrated surface UV radiation quantities. This is achieved by retrieving cloud optical depth from the channel 1 reflectance of the third Advanced Very High Resolution Radiometer (AVHRR/3) instrument aboard both Metop in the morning orbit (daytime descending node around 09:30 LT) and Polar Orbiting Environmental Satellites (POES) of the National Oceanic and Atmospheric Administration (NOAA) in the afternoon orbit (daytime ascending node around 14:30 LT). In addition, more overpasses are used at high latitudes where the swaths of consecutive orbits overlap. The input satellite data are received from EUMETSAT's Multicast Distribution System (EUMETCast) using commercial telecommunication satellites for broadcasting the data to the user community. The surface UV product includes daily maximum dose rates and integrated daily doses with different biological weighting functions, integrated UVB and UVA radiation, solar noon UV Index and daily maximum photolysis frequencies of ozone and nitrogen dioxide at the surface level. The quantities are computed in a 0.5° × 0.5° regular latitude-longitude grid and stored as daily files in the hierarchical data format (HDF5) within two weeks from sensing. The product files are archived in the O3M SAF distributed archive and can be ordered via the EUMETSAT Data Centre.
Melchert, Corinna; Kovács, György
2016-01-01
Purpose This study aims to compare the dosimetric data of local tumor's bed dose escalation (boost) with photon beams (external beam radiation therapy – EBRT) versus high-dose-rate interstitial brachytherapy (HDR-BT) after breast-conserving treatment in women with early-stage breast cancer. Material and methods We analyzed the treatment planning data of 136 irradiated patients, treated between 2006 and 2013, who underwent breast-conserving surgery and adjuvant whole breast irradiation (WBI; 50.4 Gy) and boost (HDR-BT: 10 Gy in one fraction [n = 36]; EBRT: 10 Gy in five fractions [n = 100]). Organs at risk (OAR; heart, ipsilateral lung, skin, most exposed rib segment) were delineated. Dosimetric parameters were calculated with the aid of dose-volume histograms (DVH). A non-parametric test was performed to compare the two different boost forms. Results There was no difference for left-sided cancers regarding the maximum dose to the heart (HDR-BT 29.8% vs. EBRT 29.95%, p = 0.34). The maximum doses to the other OAR were significantly lower for HDR-BT (Dmax lung 47.12% vs. 87.7%, p < 0.01; rib 61.17% vs. 98.5%, p < 0.01; skin 57.1% vs. 94.75%, p < 0.01; in the case of right-sided breast irradiation, dose of the heart 6.00% vs. 16.75%, p < 0.01). Conclusions Compared to EBRT, local dose escalation with HDR-BT presented a significant dose reduction to the investigated OAR. Only left-sided irradiation showed no difference regarding the maximum dose to the heart. Reducing irradiation exposure to OAR could result in a reduction of long-term side effects. Therefore, from a dosimetric point of view, an interstitial boost complementary to WBI via EBRT seems to be more advantageous in the adjuvant radiotherapy of breast cancer. PMID:27648082
NASA Astrophysics Data System (ADS)
Sharma, Kanika; Bahl, Shaila; Singh, Birendra; Kumar, Pratik; Lochab, S. P.; Pandey, Anant
2018-04-01
BaSO4:Eu nanophosphor is delicately optimized by varying the concentration of the impurity element and compared to the commercially available thermoluminescent dosimeter (TLD) LiF:Mg,Ti (TLD-100) and by extension also to CaSO4:Dy (TLD-900) so as to achieve its maximum thermoluminescence (TL) sensitivity. Further, the energy dependence property of this barite nanophosphor is also explored at length by exposing the phosphor with 1.25 MeV of Co-60, 0.662 MeV of Cs-137, 85 MeV and 65 MeV of Carbon ion beams. Various batches of the phosphor at hand (with impurity concentrations being 0.05, 0.10, 0.20, 0.50 and 1.00 mol%) are prepared by the chemical co-precipitation method out of which BaSO4:Eu with 0.20 mol% Eu exhibits the maximum TL sensitivity. Further, the optimized nanophosphor exhibits a whopping 28.52 times higher TL sensitivity than the commercially available TLD-100 and 1.426 times higher sensitivity than TLD-900, a noteworthy linear response curve for an exceptionally wide range of doses i.e. 10 Gy to 2 kGy and a simple glow curve structure. Furthermore, when the newly optimized nanophosphor is exposed with two different energies of gamma radiations, namely 1.25 MeV of Co-60 (dose range- 10-300 Gy) and 0.662 MeV of Cs-137 (dose range- 1-300 Gy), it is observed that the shape and structure of the glow curves remain remarkably similar for different energies of radiation while the TL response curve shows little to no variation. When exposed to different energies of carbon ion beam BaSO4:Eu displays energy independence at lower doses i.e. from 6.059 to 14.497 kGy. Finally, even though energy independence is lost at higher doses, the material shows high sensitivity to higher energy (85 MeV) of carbon beam compared to the lower energy (65 MeV of C6+) and saturation is apparent only after 121.199 kGy. Therefore the present nanophosphor displays potential as an energy independent TLD.
Usmani, Muhammad Nauman; Takegawa, Hideki; Takashina, Masaaki; Numasaki, Hodaka; Suga, Masaki; Anetai, Yusuke; Kurosu, Keita; Koizumi, Masahiko; Teshima, Teruki
2014-11-01
Technical developments in radiotherapy (RT) have created a need for systematic quality assurance (QA) to ensure that clinical institutions deliver prescribed radiation doses consistent with the requirements of clinical protocols. For QA, an ideal dose verification system should be independent of the treatment-planning system (TPS). This paper describes the development and reproducibility evaluation of a Monte Carlo (MC)-based standard LINAC model as a preliminary requirement for independent verification of dose distributions. The BEAMnrc MC code is used for characterization of the 6-, 10- and 15-MV photon beams for a wide range of field sizes. The modeling of the LINAC head components is based on the specifications provided by the manufacturer. MC dose distributions are tuned to match Varian Golden Beam Data (GBD). For reproducibility evaluation, calculated beam data is compared with beam data measured at individual institutions. For all energies and field sizes, the MC and GBD agreed to within 1.0% for percentage depth doses (PDDs), 1.5% for beam profiles and 1.2% for total scatter factors (Scps.). Reproducibility evaluation showed that the maximum average local differences were 1.3% and 2.5% for PDDs and beam profiles, respectively. MC and institutions' mean Scps agreed to within 2.0%. An MC-based standard LINAC model developed to independently verify dose distributions for QA of multi-institutional clinical trials and routine clinical practice has proven to be highly accurate and reproducible and can thus help ensure that prescribed doses delivered are consistent with the requirements of clinical protocols. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Moore, Craig S; Horsfield, Carl J; Saunderson, John R; Beavis, Andrew W
2015-01-01
Objective: The purpose of this study was to develop size-based radiotherapy kilovoltage cone beam CT (CBCT) protocols for the pelvis. Methods: Image noise was measured in an elliptical phantom of varying size for a range of exposure factors. Based on a previously defined “small pelvis” reference patient and CBCT protocol, appropriate exposure factors for small, medium, large and extra-large patients were derived which approximate the image noise behaviour observed on a Philips CT scanner (Philips Medical Systems, Best, Netherlands) with automatic exposure control (AEC). Selection criteria, based on maximum tube current–time product per rotation selected during the radiotherapy treatment planning scan, were derived based on an audit of patient size. Results: It has been demonstrated that 110 kVp yields acceptable image noise for reduced patient dose in pelvic CBCT scans of small, medium and large patients, when compared with manufacturer's default settings (125 kVp). Conversely, extra-large patients require increased exposure factors to give acceptable images. 57% of patients in the local population now receive much lower radiation doses, whereas 13% require higher doses (but now yield acceptable images). Conclusion: The implementation of size-based exposure protocols has significantly reduced radiation dose to the majority of patients with no negative impact on image quality. Increased doses are required on the largest patients to give adequate image quality. Advances in knowledge: The development of size-based CBCT protocols that use the planning CT scan (with AEC) to determine which protocol is appropriate ensures adequate image quality whilst minimizing patient radiation dose. PMID:26419892
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kastrati, Labinot, E-mail: labinotkastrati82@gmail.com; Nafezi, Gazmend, E-mail: gazmend-nafezi@hotmail.com; Shehi, Gëzim, E-mail: gezimshehi@yahoo.com
2016-03-25
The Ionising irradiations used mostly in the treatment of tumoral diseases are: X, γ, β and e irradiations. The discussion will be about radiations, produced in accelerators, with photon energy 6 MV and 15 MV and electron energy from 5 MeV to 15 MeV. Due to the differences between γ and β radiations, their absorbtion in living tissues will be different. It is important to know, the absorption performance before and after the electronic equilibrium. For these purposes, we’ve use the function of dose gradient, for irradiations γ and β. It represents the velocity of dose change as a function of depthmore » in tissue. From skin to maximum dose value, the increase of G-function is more accentuated for γ-rays than for β-particles, while after that the G-function decreasing is less sharp for γ-rays, while for β-particles, it is almost promptly. This fact allow us to use in radiotherapy, not only γ-rays but β-particles, too. The lasts, represents, a much more efficient tool, especially in terms of radiation protection, of health adjacent tissues and organs. Finally, we’ll to discus, about the advantages in terms of radiation protection of both, γ-rays and β-particles used in radiotherapy.« less
Characteristics of trapped proton anisotropy at Space Station Freedom altitudes
NASA Technical Reports Server (NTRS)
Armstrong, T. W.; Colborn, B. L.; Watts, J. W.
1990-01-01
The ionizing radiation dose for spacecraft in low-Earth orbit (LEO) is produced mainly by protons trapped in the Earth's magnetic field. Current data bases describing this trapped radiation environment assume the protons to have an isotropic angular distribution, although the fluxes are actually highly anisotropic in LEO. The general nature of this directionality is understood theoretically and has been observed by several satellites. The anisotropy of the trapped proton exposure has not been an important practical consideration for most previous LEO missions because the random spacecraft orientation during passage through the radiation belt 'averages out' the anisotropy. Thus, in spite of the actual exposure anisotropy, cumulative radiation effects over many orbits can be predicted as if the environment were isotropic when the spacecraft orientation is variable during exposure. However, Space Station Freedom will be gravity gradient stabilized to reduce drag, and, due to this fixed orientation, the cumulative incident proton flux will remain anisotropic. The anisotropy could potentially influence several aspects of Space Station design and operation, such as the appropriate location for radiation sensitive components and experiments, location of workstations and sleeping quarters, and the design and placement of radiation monitors. Also, on-board mass could possible be utilized to counteract the anisotropy effects and reduce the dose exposure. Until recently only omnidirectional data bases for the trapped proton environment were available. However, a method to predict orbit-average, angular dependent ('vector') trapped proton flux spectra has been developed from the standard omnidirectional trapped proton data bases. This method was used to characterize the trapped proton anisotropy for the Space Station orbit (28.5 degree inclination, circular) in terms of its dependence on altitude, solar cycle modulation (solar minimum vs. solar maximum), shielding thickness, and radiation effect (silicon rad and rem dose).
NASA Astrophysics Data System (ADS)
Shurshakov, Vyacheslav; Nikolaev, Igor; Kartsev, Ivan; Tolochek, Raisa; Lyagushin, Vladimir
The tissue-equivalent spherical phantom (32 kg mass, 35 cm diameter and 10 cm central spherical cave) made in Russia has been used on board the ISS in Matroshka-R experiment for more than 10 years. Both passive and active space radiation detectors can be located inside the phantom and on its surface. Due to the specially chosen phantom shape and size, the chord length distributions of the detector locations are attributed to self-shielding properties of the critical organs in a human body. Originally the spherical phantom was installed in the star board crew cabin of the ISS Service Module, then in the Piers-1, MIM-2, and MIM-1 modules of the ISS Russian segment, and finally in JAXA Kibo module. Total duration of the detector exposure is more than 2000 days in 9 sessions of the space experiment. In the first phase of the experiment with the spherical phantom the dose measurements were realized with only passive detectors (thermoluminescent and solid state track detectors). The detectors are placed inside the phantom along the axes of 20 containers and on the phantom outer surface in 32 pockets of the phantom jacket. After each session the passive detectors are returned to the ground. The results obtained show the dose difference on the phantom surface as much as a factor of 2, the highest dose being usually observed close to the outer wall of the compartment, and the lowest dose being in the opposite location along the phantom diameter. However, because of the ISS module shielding properties an inverse dose distribution in a human body can be observed when the dose rate maximum is closer to the geometrical center of the module. Maximum dose rate measured in the phantom is obviously due to the action of two radiation sources, namely, galactic cosmic rays (GCR) and Earth’ radiation belts. Minimum dose rate is produced mainly by the strongly penetrating GCR particles and is mostly observed behind more than 5 g/cm2 tissue shielding. Critical organ doses, mean-tissue and effective doses of a crew member in the ISS compartments are also estimated with the spherical phantom data. The estimated effective dose rate is found to be from 10 % to 15 % lower than the averaged dose on the phantom surface as dependent on the attitude of the critical organs. If compared with the anthropomorphic phantom Rando used inside and outside the ISS earlier, the Matroshka-R space experiment spherical phantom has lower mass, smaller size, and requires less crew time for the detector installation/retrieval; its tissue-equivalent properties are closer to the standard human body tissue than the Rando-phantom material. New sessions with the two tissue-equivalent phantoms are of great interest. Development of modified passive and active detector sets is in progress for the future ISS expeditions. Both the spherical and Rando-type phantoms proved their effectiveness to measure the critical organ doses and effective doses in-flight and if supplied with modernized dosimeters can be recommended for future exploratory manned missions to monitor continuously the crew exposure to space radiation.
Effect of beam channel plugging on the outcome of gamma knife radiosurgery for trigeminal neuralgia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massager, Nicolas; Nissim, Ouzi; Murata, Noriko
2006-07-15
Purpose: We studied the influence of using plugs for brainstem protection during gamma knife radiosurgery (GKR) of trigeminal neuralgia (TN), with special emphasis on irradiation doses delivered to the trigeminal nerve, pain outcomes, and incidence of trigeminal dysfunction. Methods and Materials: A GKR procedure for TN using an anterior cisternal target and a maximum dose of 90 Gy was performed in 109 patients. For 49 patients, customized beam channel blocking (plugs) were used to reduce the dose delivered to the brainstem. We measured the mean and integrated radiation doses delivered to the trigeminal nerve and the clinical course of patientsmore » treated with and without plugs. Results: We found that blocking increases the length of trigeminal nerve exposed to high-dose radiation, resulting in a significantly higher mean dose to the trigeminal nerve. Significantly more of the patients with blocking achieved excellent pain outcomes (84% vs. 62%), but with higher incidences of moderate and bothersome trigeminal nerve dysfunction (37% mild/10% bothersome with plugs vs. 30% mild/2% bothersome without). Conclusions: The use of plugs to protect the brainstem during GKR treatment for TN increases the dose of irradiation delivered to the intracisternal trigeminal nerve root and is associated with an important increase in the incidence of trigeminal nerve dysfunction. Therefore, beam channel blocking should be avoided for 90 Gy-GKR of TN.« less
Solar cosmic ray hazard to interplanetary and earth-orbital space travel
NASA Technical Reports Server (NTRS)
Yucker, W. R.
1972-01-01
A statistical treatment of the radiation hazards to astronauts due to solar cosmic ray protons is reported to determine shielding requirements for solar proton events. More recent data are incorporated into the present analysis in order to improve the accuracy of the predicted mission fluence and dose. The effects of the finite data sample are discussed. Mission fluence and dose versus shield thickness data are presented for mission lengths up to 3 years during periods of maximum and minimum solar activity; these correspond to various levels of confidence that the predicted hazard will not be exceeded.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, T; Chapman, C; Lawrence, T
2015-06-15
Purpose: To develop an automated and scalable approach and identify temporal, spatial and dosimetric patterns of radiation damage of white matter (WM) fibers following partial brain irradiation. Methods: An automated and scalable approach was developed to extract DTI features of 22 major WM fibers from 33 patients with low-grade/benign tumors treated by radiation therapy (RT). DTI scans of the patients were performed pre-RT, 3- and 6-week during RT, and 1, 6 and 18 months after RT. The automated tractography analysis was applied to 198 datasets as: (1) intra-subject registration of longitudinal DTI, (2) spatial normalization of individual-patient DTI to themore » Johns Hopkins WM Atlas, (3) automatic fiber tracking regulated by the WM Atlas, and (4) segmentation of WM into 22 major tract profiles. Longitudinal percentage changes in fractional anisotropy (FA), and mean, axial and radial diffusivity (MD/AD/RD) of each tract from pre-RT were quantified and correlated to 95%, 90% and 80% percentiles of doses and mean doses received by the tract. Heatmaps were used to identify clusters of significant correlation and reveal temporal, spatial and dosimetric signatures of WM damage. A multivariate linear regression was further carried out to determine influence of clinical factors. Results: Of 22 tracts, AD/MD changes in 12 tracts had significant correlation with doses, especially at 6 and 18 months post-RT, indicating progressive radiation damage after RT. Most interestingly, the DTI-index changes in the elongated tracts were associated with received maximum doses, suggesting a serial-structure behavior; while short association fibers were affected by mean doses, indicating a parallel-structure response. Conclusion: Using an automated DTI-tractography analysis of whole brain WM fibers, we reveal complex radiation damage patterns of WM fibers. Damage in WM fibers that play an important role in the neural network could be associated with late neurocognitive function declines after brain irradiation. NIH NS064973.« less
Willegaignon, José; Braga, Luis F E F; Sapienza, Marcelo T; Coura-Filho, George B; Cardona, Marissa A R; Alves, Carlos E R; Gutterres, Ricardo F; Buchpiguel, Carlos A
2016-05-01
This study aimed to establish a concise method for determining a diagnostic reference level (DRL) for adult and pediatric nuclear medicine patients on the basis of diagnostic procedures and administered radioisotope as a means of controlling medical exposure. A screening was carried out in all Brazilian Nuclear Medicine Service (NMS) establishments to support this study by collecting the average activities administered during adult diagnostic procedures and the rules applied to adjust these according to the patient's age and body mass. Percentile 75 was used in all the activities administered as a means of establishing DRL for adult patients, with additional correction factors for pediatric patients. Radiation doses from nuclear medicine procedures on the basis of average administered activity were calculated for all diagnostic exams. A total of 107 NMSs in Brazil agreed to participate in the project. From the 64 nuclear medicine procedures studied, bone, kidney, and parathyroid scans were found to be used in more than 85% of all the NMSs analyzed. There was a large disparity among the activities administered, when applying the same procedures, this reaching, in some cases, more than 20 times between the lowest and the highest. Diagnostic exams based on Ga, Tl, and I radioisotopes proved to be the major exams administering radiation doses to patients. On introducing the DRL concept into clinical routine, the minimum reduction in radiation doses received by patients was about 15%, the maximum was 95%, and the average was 50% compared with the previously reported administered activities. Variability in the available diagnostic procedures as well as in the amount of activities administered within the same procedure was appreciable not only in Brazil, but worldwide. Global efforts are needed to establish a concise DRL that can be applied in adult and pediatric nuclear medicine procedures as the application of DRL in clinical routine has been proven to be an important tool for controlling and reducing radiation doses received by patients in medical exposure.
Tolerance of cranial nerves of the cavernous sinus to radiosurgery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tishler, R.B.; Loeffler, J.S.; Alexander, E. III
1993-09-20
Stereotactic radiosurgery is becoming a more accepted treatment option for benign, deep seated intracranial lesions. However, little is known about the effects of large single fractions of radiation on cranial nerves. This study was undertaken to assess the effect of radiosurgery on the cranial nerves of the cavernous sinus. The authors examined the tolerance of cranial nerves (II-VI) following radiosurgery for 62 patients (42/62 with meningiomas) treated for lesions within or near the cavernous sinus. Twenty-nine patients were treated with a modified 6 MV linear accelerator (Joint Center for Radiation Therapy) and 33 were treated with the Gamma Knife (Universitymore » of Pittsburgh). Three-dimensional treatment plans were retrospectively reviewed and maximum doses were calculated for the cavernous sinus and the optic nerve and chiasm. Median follow-up was 19 months (range 3-49). New cranial neuropathies developed in 12 patients from 3-41 months following radiosurgery. Four of these complications involved injury to the optic system and 8 (3/8 transient) were the result of injury to the sensory or motor nerves of the cavernous sinus. There was no clear relationship between the maximum dose to the cavernous sinus and the development of complications for cranial nerves III-VI over the dose range used (1000-4000 cGy). For the optic apparatus, there was a significantly increased incidence of complications with dose. Four of 17 patients (24%) receiving greater than 800 cGy to any part of the optic apparatus developed visual complications compared with 0/35 who received less than 800 cGy (p = 0.009). Radiosurgery using tumor-controlling doses of up to 4000 cGy appears to be a relatively safe technique in treating lesions within or near the sensory and motor nerves (III-VI) of the cavernous sinus. The dose to the optic apparatus should be limited to under 800 cGy. 21 refs., 4 tabs.« less
Dosimetric impact of an air passage on intraluminal brachytherapy for bronchus cancer.
Okamoto, Hiroyuki; Wakita, Akihisa; Nakamura, Satoshi; Nishioka, Shie; Aikawa, Ako; Kato, Toru; Abe, Yoshihisa; Kobayashi, Kazuma; Inaba, Koji; Murakami, Naoya; Itami, Jun
2016-11-01
The brachytherapy dose calculations used in treatment planning systems (TPSs) have conventionally been performed assuming homogeneous water. Using measurements and a Monte Carlo simulation, we evaluated the dosimetric impact of an air passage on brachytherapy for bronchus cancer. To obtain the geometrical characteristics of an air passage, we analyzed the anatomical information from CT images of patients who underwent intraluminal brachytherapy using a high-dose-rate 192 Ir source (MicroSelectron V2r®, Nucletron). Using an ionization chamber, we developed a measurement system capable of measuring the peripheral dose with or without an air cavity surrounding the catheter. Air cavities of five different radii (0.3, 0.5, 0.75, 1.25 and 1.5 cm) were modeled by cylindrical tubes surrounding the catheter. A Monte Carlo code (GEANT4) was also used to evaluate the dosimetric impact of the air cavity. Compared with dose calculations in homogeneous water, the measurements and GEANT4 indicated a maximum overdose of 5-8% near the surface of the air cavity (with the maximum radius of 1.5 cm). Conversely, they indicated a minimum overdose of ~1% in the region 3-5 cm from the cavity surface for the smallest radius of 0.3 cm. The dosimetric impact depended on the size and the distance of the air passage, as well as the length of the treatment region. Based on dose calculations in water, the TPS for intraluminal brachytherapy for bronchus cancer had an unexpected overdose of 3-5% for a mean radius of 0.75 cm. This study indicates the need for improvement in dose calculation accuracy with respect to intraluminal brachytherapy for bronchus cancer. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toosi, T Bahreyni; Mianaei, F Khorshidi; Ghorbani, M
Purpose: The aim of the current study is to compare EBT and EBT3 RadioChromic films in dosimetry of radiotherapy fields for treatment of parotid cancer. Methods: The calibrations of EBT and EBT3 films were performed with the same setups for doses ranging from 0.2 Gy to 5 Gy using 6 MV photon beam of a Siemens Primus linac. These films were scanned in color mode (RGB) by a Microtek (1000XL) scanner and the red color channel data was extracted. Treatment planning for parotid cancer radiation therapy was performed on a RANDO phantom. Skin dose was measured at different points inmore » the right anterior oblique (RAO) and right posterior oblique (RPO) fields by EBT and EBT3 films. Results: Dosimetry was performed with the same conditions for the two film types for calibration and in-phantom in parotid cancer radiotherapy. The measured net optical density (NOD) in EBT film was in some extent higher than that from EBT3 film. The minimum difference between these two films under calibration conditions was about 2.9% (for 0.2 Gy). However, the maximum difference was 35.5% (for 0.5 Gy). In the therapeutic fields of parotid cancer radiotherapy at different points, the measured dose from EBT film was higher than the EBT3 film. In these fields the minimum and maximum measured dose differences were 16.0% and 25.5%, respectively. Conclusion: With the same irradiation and reading conditions, EBT film demonstrates higher NOD than the EBT3 film. This effect may be related to the higher sensitivity of EBT film over EBT3 film. However, the obtained dose differences between these two films in low dose range can be due to the differences in fitting functions applied following the calibration process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aydogan, Bulent; Mundt, Arno J.; Department of Radiation Oncology, University of Illinois at Chicago, Chicago, IL
2006-05-01
Purpose: To evaluate the role of intensity-modulated radiation treatment (IMRT) as an alternative to high-dose-rate (HDR) brachytherapy in the treatment of the vagina in postoperative early endometrial cancer patients after surgery. Methods and Materials: Planning computed tomography (CT) scans of 10 patients previously treated with HDR were used in this study. In all cases, a dose of 700 cGy/fraction was prescribed at a distance of 0.5 cm from the cylinder surface. The same CT scans were then used in IMRT planning. In this paradigm, the vaginal cylinder represents a component of a hypothetical immobilization system that would be indexed tomore » the linac treatment table. Results: Our study showed that IMRT provided relatively lower rectal doses than HDR when treatment was prescribed at a distance of 0.5 cm away from the cylinder surface. Maximum rectal doses were lower with IMRT compared with HDR (average: 89.0% vs. 142.6%, respectively, p < 0.05). Moreover, the mean rectal dose was lower in IMRT plans compared with HDR plans with treatment prescribed either to the surface (average: 14.8% vs. 21.4%, respectively, p < 0.05) or to 0.5 cm (average: 19.6% vs. 33.5%, respectively, p < 0.05). IMRT plans had planning target volume (PTV) coverage comparable with HDR (average PTV minimum for treatment prescribed to 0.5 cm: 93.9% vs. 92.1%, p = 0.71, respectively) with less inhomogeneity (average PTV maximum: 110.8% vs. 381.6%, p < 0.05). Conclusion: Our dosimetric analysis suggests that when used in conjunction with a suitable immobilization system, IMRT may provide an alternative to HDR brachytherapy in women with early endometrial cancer after hysterectomy. However, more studies are needed to evaluate the clinical merit of the IMRT in these patients.« less
NASA Astrophysics Data System (ADS)
Park, Hae-Jin; Suh, Tae-Suk; Park, Ji-Yeon; Lee, Jeong-Woo; Kim, Mi-Hwa; Oh, Young-Taek; Chun, Mison; Noh, O. Kyu; Suh, Susie
2013-06-01
The dosimetric effects of variable grid size and angular increment were systematically evaluated in the measured dose distributions of dynamic conformal arc therapy (DCAT) for lung stereotactic body radiation therapy (SBRT). Dose variations with different grid sizes (2, 3, and 4 mm) and angular increments (2, 4, 6, and 10°) for spherical planning target volumes (PTVs) were verified in a thorax phantom by using EBT2 films. Although the doses for identical PTVs were predicted for the different grid sizes, the dose discrepancy was evaluated using one measured dose distribution with the gamma tool because the beam was delivered in the same set-up for DCAT. The dosimetric effect of the angular increment was verified by comparing the measured dose area histograms of organs at risk (OARs) at each angular increment. When the difference in the OAR doses is higher than the uncertainty of the film dosimetry, the error is regarded as the angular increment effect in discretely calculated doses. In the results, even when a 2-mm grid size was used with an elaborate dose calculation, 4-mm grid size led to a higher gamma pass ratio due to underdosage, a steep-dose descent gradient, and lower estimated PTV doses caused by the smoothing effect in the calculated dose distribution. An undulating dose distribution and a difference in the maximum contralateral lung dose of up to 14% were observed in dose calculation using a 10° angular increment. The DCAT can be effectively applied for an approximately spherical PTV in a relatively uniform geometry, which is less affected by inhomogeneous materials and differences in the beam path length.
Pasternack, Jordan B.; Howell, Roger W.
2012-01-01
The temporal variations in absorbed dose rates to organs and tissues in the body are very large in diagnostic and therapeutic nuclear medicine. The response of biological endpoints of relevance to radiation safety and therapeutic efficacy are generally modulated by dose rate. Therefore, it is important to understand how the complex dose rate patterns encountered in nuclear medicine impact relevant biological responses. Accordingly, a graphical user interface (GUI) was created to control a cesium-137 irradiator to deliver such dose rate patterns. Methods Visual Basic 6.0 was used to create a user-friendly GUI to control the dose rate by varying the thickness of a mercury attenuator. The GUI facilitates the delivery of a number of dose rate patterns including constant, exponential increase or decrease, and multi-component exponential. Extensive visual feedback is provided by the GUI during both the planning and delivery stages. Results The GUI controlled irradiator can achieve a maximum dose rate of 40 cGy/hr and a minimum dose rate of 0.01 cGy/hr. Addition of machined lead blocks can be used to further reduce the minimum dose rate to 0.0001 cGy/hr. Measured dose rate patterns differed from programmed dose rate patterns in total dose by 3.2% to 8.4%. Conclusion The GUI controlled irradiator is able to accurately create dose rate patterns encountered in nuclear medicine and other related fields. This makes it an invaluable tool for studying the effects of chronic constant and variable low dose rates on biological tissues in the contexts of both radiation protection and clinical administration of internal radionuclides. PMID:23265668
Pasternack, Jordan B; Howell, Roger W
2013-02-01
The temporal variations in absorbed dose rates to organs and tissues in the body are very large in diagnostic and therapeutic nuclear medicine. The response of biological endpoints of relevance to radiation safety and therapeutic efficacy is generally modulated by dose rate. Therefore, it is important to understand how the complex dose rate patterns encountered in nuclear medicine impact relevant biological responses. Accordingly, a graphical user interface (GUI) was created to control a cesium-137 irradiator to deliver such dose rate patterns. Visual Basic 6.0 was used to create a user-friendly GUI to control the dose rate by varying the thickness of a mercury attenuator. The GUI facilitates the delivery of a number of dose rate patterns including constant, exponential increase or decrease, and multi-component exponential. Extensive visual feedback is provided by the GUI during both the planning and delivery stages. The GUI controlled irradiator can achieve a maximum dose rate of 40 cGy/h and a minimum dose rate of 0.01 cGy/h. Addition of machined lead blocks can be used to further reduce the minimum dose rate to 0.0001 cGy/h. Measured dose rate patterns differed from programmed dose rate patterns in total dose by 3.2% to 8.4%. The GUI controlled irradiator is able to accurately create dose rate patterns encountered in nuclear medicine and other related fields. This makes it an invaluable tool for studying the effects of chronic constant and variable low dose rates on biological tissues in the contexts of both radiation protection and clinical administration of internal radionuclides. Copyright © 2013 Elsevier Inc. All rights reserved.
An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy
Howells, M. R.; Beetz, T.; Chapman, H. N.; ...
2008-11-17
X-ray diffraction microscopy (XDM) is a new form of x-ray imaging that is being practiced at several third-generation synchrotron-radiation x-ray facilities. Nine years have elapsed since the technique was first introduced and it has made rapid progress in demonstrating high-resolution three-dimensional imaging and promises few-nm resolution with much larger samples than can be imaged in the transmission electron microscope. Both life- and materials-science applications of XDM are intended, and it is expected that the principal limitation to resolution will be radiation damage for life science and the coherent power of available x-ray sources for material science. In this paper wemore » address the question of the role of radiation damage. We use a statistical analysis based on the so-called "dose fractionation theorem" of Hegerl and Hoppe to calculate the dose needed to make an image of a single life-science sample by XDM with a given resolution. We find that for simply-shaped objects the needed dose scales with the inverse fourth power of the resolution and present experimental evidence to support this finding. To determine the maximum tolerable dose we have assembled a number of data taken from the literature plus some measurements of our own which cover ranges of resolution that are not well covered otherwise. The conclusion of this study is that, based on the natural contrast between protein and water and "Rose-criterion" image quality, one should be able to image a frozen-hydrated biological sample using XDM at a resolution of about 10 nm.« less
NASA Astrophysics Data System (ADS)
Hsu, Fang-Yuh; Hsu, Shih-Ming; Chao, Jiunn-Hsing
2017-11-01
The subject of this study is the on-site visits and inspections of facilities commissioned by the Atomic Energy Council (AEC) in Taiwan. This research was conducted to evaluate the possible dose and dose rate of cabinet-type X-ray equipment with nominal voltages of 30-150 kV and open-beam (portable or handheld) equipment, taking both normal operation and possibly abnormal operation conditions into account. Doses and dose rates were measured using a plastic scintillation survey meter and an electronic personal dosimeter. In total, 401 X-ray machines were inspected, including 139 units with nominal voltages of 30-50 kV X-ray equipment, 140 units with nominal voltages of 50-150 kV, and 122 open-beam (portable or handheld) X-ray equipment. The investigated doses for radiation workers and non-radiation workers operating cabinet-type X-ray equipment under normal safety conditions were all at the background dose level. Several investigated dose rates at the position of 10 cm away from the surface of open-beam (portable or handheld) X-ray equipment were very high, such X-ray machines are used by aeronautical police for the detection of suspected explosives, radiation workers are far away (at least 10 m away) from the X-ray machine during its operation. The doses per operation in X-ray equipment with a 30-50 kV nominal voltage were less than 1 mSv in all cases of abnormal use. Some doses were higher than 1 mSv per operation for X-ray equipment of 50-150 kV nominal voltage X-ray. The maximum dose rates at the beam exit have a very wide range, mostly less than 100 μSv/s and the largest value is about 3.92 mSv/s for open-beam (portable or handheld) X-ray devices. The risk induced by operating X-ray devices with nominal voltages of 30-50 kV is extremely low. The 11.5 mSv dose due to one operation at nominal voltage of 50-150 kV X-ray device is equivalent to the exposure of taking 575 chest X-rays. In the abnormal use of open-beam (portable or handheld) X-ray equipment, the effective dose of 3.92 mSv/s is equivalent to taking 196 chest radiographs within 1 s. This work assessed the annual doses (equivalent and effective doses) and risks of X-ray operator staff as reasonably as possible. The results of this research are helpful to the AEC (competent authority of ionization radiation) to improve the management and perform the safe control of X-ray equipment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirlik, G; D’Souza, W; Zhang, H
2016-06-15
Purpose: To present a novel multi-criteria optimization (MCO) solution approach that generates treatment plans with deliverable apertures using column generation. Methods: We demonstrate our method with 10 locally advanced head-and-neck cancer cases retrospectively. In our MCO formulation, we defined an objective function for each structure in the treatment volume. This resulted in 9 objective functions, including 3 distinct objectives for primary target volume, high-risk and low-risk target volumes, 5 objectives for each of the organs-at-risk (OARs) (two parotid glands, spinal cord, brain stem and oral cavity), and one for the non-target non-OAR normal tissue. Conditional value-at-risk (CVaR) constraints were utilizedmore » to ensure at least certain fraction of the target volumes receiving the prescription doses. To directly generate deliverable plans, column generation algorithm was embedded within our MCO approach for aperture shape generation. Final dose distributions for all plans were generated using a Monte Carlo kernel-superposition dose calculation. We compared the MCO plans with the clinical plans, which were created by clinicians. Results: At least 95% target coverage was achieved by both MCO plans and clinical plans. However, the average conformity indices of clinical plans and the MCO plans were 1.95 and 1.35, respectively (31% reduction, p<0.01). Compared to the conventional clinical plan, the proposed MCO method achieved average reductions in left parotid mean dose of 5% (p=0.06), right parotid mean dose of 18% (p<0.01), oral cavity mean dose of 21% (p=0.03), spinal cord maximum dose of 20% (p<0.01), brain stem maximum dose of 61% (p<0.01), and normal tissue maximum dose of 5% (p<0.01), respectively. Conclusion: We demonstrated that the proposed MCO method was able to obtain deliverable IMRT treatment plans while achieving significant improvements in dosimetric plan quality.« less
Little, Mark P; Kwon, Deukwoo; Zablotska, Lydia B; Brenner, Alina V; Cahoon, Elizabeth K; Rozhko, Alexander V; Polyanskaya, Olga N; Minenko, Victor F; Golovanov, Ivan; Bouville, André; Drozdovitch, Vladimir
2015-01-01
The excess incidence of thyroid cancer in Ukraine and Belarus observed a few years after the Chernobyl accident is considered to be largely the result of 131I released from the reactor. Although the Belarus thyroid cancer prevalence data has been previously analyzed, no account was taken of dose measurement error. We examined dose-response patterns in a thyroid screening prevalence cohort of 11,732 persons aged under 18 at the time of the accident, diagnosed during 1996-2004, who had direct thyroid 131I activity measurement, and were resident in the most radio-actively contaminated regions of Belarus. Three methods of dose-error correction (regression calibration, Monte Carlo maximum likelihood, Bayesian Markov Chain Monte Carlo) were applied. There was a statistically significant (p<0.001) increasing dose-response for prevalent thyroid cancer, irrespective of regression-adjustment method used. Without adjustment for dose errors the excess odds ratio was 1.51 Gy- (95% CI 0.53, 3.86), which was reduced by 13% when regression-calibration adjustment was used, 1.31 Gy- (95% CI 0.47, 3.31). A Monte Carlo maximum likelihood method yielded an excess odds ratio of 1.48 Gy- (95% CI 0.53, 3.87), about 2% lower than the unadjusted analysis. The Bayesian method yielded a maximum posterior excess odds ratio of 1.16 Gy- (95% BCI 0.20, 4.32), 23% lower than the unadjusted analysis. There were borderline significant (p = 0.053-0.078) indications of downward curvature in the dose response, depending on the adjustment methods used. There were also borderline significant (p = 0.102) modifying effects of gender on the radiation dose trend, but no significant modifying effects of age at time of accident, or age at screening as modifiers of dose response (p>0.2). In summary, the relatively small contribution of unshared classical dose error in the current study results in comparatively modest effects on the regression parameters.
Clinical radiobiology of stage T2-T3 bladder cancer.
Majewski, Wojciech; Maciejewski, Boguslaw; Majewski, Stanislaw; Suwinski, Rafal; Miszczyk, Leszek; Tarnawski, Rafal
2004-09-01
To evaluate the relationship between total radiation dose and overall treatment time (OTT) with the treatment outcome, with adjustment for selected clinical factors, in patients with Stage T2-T3 bladder cancer treated with curative radiotherapy (RT). The analysis was based on 480 patients with Stage T2-T3 bladder cancer who were treated at the Center of Oncology in Gliwice between 1975 and 1995. The mean total radiation dose was 65.5 Gy, and the mean OTT was 51 days. In 261 patients (54%), planned and unplanned gaps occurred during RT. Four fractionation schedules were used: (1) conventional fractionation (once daily, 1.8-2.5 Gy/fraction); (2) protracted fractionation (pelvic RT, once daily, 1.6-1.7 Gy/fraction, boost RT, once daily, 2.0 Gy/fraction); (3) accelerated hyperfractionated boost (pelvic RT, once daily, 2.0 Gy/fraction; boost RT, twice daily, 1.3-1.4 Gy/fraction); and (4) accelerated hyperfractionation (pelvic and boost RT, twice daily, 1.2-1.5 Gy/fraction). In all fractionation schedules, the total radiation dose was similar (average 65.5 Gy), but the OTT was different (mean 53 days for conventional fractionation, 62 days for protracted fractionation, 45 days for accelerated hyperfractionated boost, and 41 days for accelerated hyperfractionation). A Cox proportional hazard model and maximum likelihood logistic model were used to evaluate the relationship between the treatment-related parameters (total radiation dose, dose per fraction, and OTT) and clinical factors (clinical T stage, hemoglobin level and bladder capacity before RT) and treatment outcome. With a median follow-up of 76 months, the actuarial 5-year local control rate was 47%, and the overall survival rate was 40%. The logistic analysis, which included the total dose, OTT, and T stage, revealed that all of these factors were significantly related to tumor control probability (p = 0.021 for total radiation dose, p = 0.038 for OTT, and p = 0.00068 for T stage). A multivariate Cox model, which included the treatment-related parameters and other clinical factors, revealed that the hemoglobin level and bladder capacity before RT and T-stage were statistically significant factors determining local control and overall survival. The total radiation dose was of borderline statistical significance for overall survival (p = 0.087), and OTT did not reach statistical significance. The results of our study showed that the treatment outcome after RT for bladder cancer depends mainly on clinical factors: hemoglobin level and bladder capacity before RT, and clinical T stage. An increase in the total radiation dose seemed to be associated with a better treatment outcome. The effect of the OTT was difficult to define, because it was influenced by other prognostic factors.
Method for simulating dose reduction in digital mammography using the Anscombe transformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borges, Lucas R., E-mail: lucas.rodrigues.borges@usp.br; Oliveira, Helder C. R. de; Nunes, Polyana F.
2016-06-15
Purpose: This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. Methods: The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtainedmore » by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. Results: The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. Conclusions: A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe transformation. NNPS, PS, and local noise metrics confirm that this method is capable of precisely simulating various dose reductions.« less
Method for simulating dose reduction in digital mammography using the Anscombe transformation
Borges, Lucas R.; de Oliveira, Helder C. R.; Nunes, Polyana F.; Bakic, Predrag R.; Maidment, Andrew D. A.; Vieira, Marcelo A. C.
2016-01-01
Purpose: This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. Methods: The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtained by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. Results: The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. Conclusions: A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe transformation. NNPS, PS, and local noise metrics confirm that this method is capable of precisely simulating various dose reductions. PMID:27277017
Radiation Safety System for SPIDER Neutral Beam Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandri, S.; Poggi, C.; Coniglio, A.
2011-12-13
SPIDER (Source for Production of Ion of Deuterium Extracted from RF Plasma only) and MITICA (Megavolt ITER Injector Concept Advanced) are the ITER neutral beam injector (NBI) testing facilities of the PRIMA (Padova Research Injector Megavolt Accelerated) Center. Both injectors accelerate negative deuterium ions with a maximum energy of 1 MeV for MITICA and 100 keV for SPIDER with a maximum beam current of 40 A for both experiments. The SPIDER facility is classified in Italy as a particle accelerator. At present, the design of the radiation safety system for the facility has been completed and the relevant reports havemore » been presented to the Italian regulatory authorities. Before SPIDER can operate, approval must be obtained from the Italian Regulatory Authority Board (IRAB) following a detailed licensing process. In the present work, the main project information and criteria for the SPIDER injector source are reported together with the analysis of hypothetical accidental situations and safety issues considerations. Neutron and photon nuclear analysis is presented, along with special shielding solutions designed to meet Italian regulatory dose limits. The contribution of activated corrosion products (ACP) to external exposure of workers has also been assessed. Nuclear analysis indicates that the photon contribution to worker external exposure is negligible, and the neutron dose can be considered by far the main radiation protection issue. Our results confirm that the injector has no important radiological impact on the population living around the facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scorby, John C.; Hickman, David; Hudson, Becka
This report documents the experimental conditions and final results for the performance testing of the Y-12 Criticality Accident Alarm System (CAAS) detectors at the Godiva IV Burst Reactor at the National Criticality Experimental Research Center (NCERC) at the Nevada National Security Site (NNSS). The testing followed a previously issued test plan and was conducted during the week of July 17, 2017, with completion on Thursday July 20. The test subjected CAAS detectors supplied by Y-12 to very intense and short duration mixed neutron and gamma radiation fields to establish compliance to maximum radiation and minimum pulse width requirements. ANSI/ANS- 8.3.1997more » states that the “system shall be sufficiently robust as to actuate an alarm signal when exposed to the maximum radiation expected”, which has been defined at Y-12, in Documented Safety Analyses (DSAs), to be a dose rate of 10 Rad/s. ANSI/ANS-8.3.1997 further states that “alarm actuation shall occur as a result of a minimum duration transient” which may be assumed to be 1 msec. The pulse widths and dose rates provided by each burst during the test exceeded those requirements. The CAAS detectors all provided an immediate alarm signal and remained operable after the bursts establishing compliance to the requirements and fitness for re-deployment at Y-12.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bjarnason, T A; Department of Radiology, University of British Columbia, Vancouver; Yang, C J
2014-08-15
Measuring the CT collimation width and assessing the shape of the overall profile is a relatively straightforward quality control (QC) measure that impacts both image quality and patient dose, and is often required at acceptance and routine testing. Most CT facilities have access to computed radiography (CR) systems, so performing CT collimation profile assessments using CR plates requires no additional equipment. Previous studies have shown how to effectively use CR plates to measure the radiation profile width. However, a major limitation of the previous work is that the full dynamic range of CR detector plates are not used, since themore » CR processing technology reduces the dynamic range of the DICOM output to 2{sup 10}, requiring the sensitivity and latitude settings of CR reader to be adjusted to prevent clipping of the CT profile data. Such adjustments to CR readers unnecessarily complicate the QC procedure. These clipping artefacts hinder the ability to accurately assess CT collimation width because the full-width at half maximum value of the penumbras are not properly determined if the maximum dose of the profile is not available. Furthermore, any inconsistencies in the radiation profile shape are lost if the profile plateau is clipped off. In this work we developed an opensource Matlab script for straightforward CT profile width measurements using raw CR data that also allows assessment of the profile shape without clipping, and applied this approach during CT QC.« less
Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk, E-mail: suhsanta@catholic.ac.kr
2014-12-01
Three alpha particles are emitted from the point of reaction between a proton and boron. The alpha particles are effective in inducing the death of a tumor cell. After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton's maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here, we show that the effectiveness of the proton boron fusion therapymore » was verified using Monte Carlo simulations. We found that a dramatic increase by more than half of the proton's maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton's maximum dose point was located within the boron uptake region. In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.« less
Roelofs, Erik; Engelsman, Martijn; Rasch, Coen; Persoon, Lucas; Qamhiyeh, Sima; de Ruysscher, Dirk; Verhaegen, Frank; Pijls-Johannesma, Madelon; Lambin, Philippe
2012-01-01
This multicentric in silico trial compares photon and proton radiotherapy for non-small cell lung cancer patients. The hypothesis is that proton radiotherapy decreases the dose and the volume of irradiated normal tissues even when escalating to the maximum tolerable dose of one or more of the organs at risk (OAR). Twenty-five patients, stage IA-IIIB, were prospectively included. On 4D F18-labeled fluorodeoxyglucose-positron emission tomography-computed tomography scans, the gross tumor, clinical and planning target volumes, and OAR were delineated. Three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiotherapy (IMRT) photon and passive scattered conformal proton therapy (PSPT) plans were created to give 70 Gy to the tumor in 35 fractions. Dose (de-)escalation was performed by rescaling to the maximum tolerable dose. Protons resulted in the lowest dose to the OAR, while keeping the dose to the target at 70 Gy. The integral dose (ID) was higher for 3DCRT (59%) and IMRT (43%) than for PSPT. The mean lung dose reduced from 18.9 Gy for 3DCRT and 16.4 Gy for IMRT to 13.5 Gy for PSPT. For 10 patients, escalation to 87 Gy was possible for all 3 modalities. The mean lung dose and ID were 40 and 65% higher for photons than for protons, respectively. The treatment planning results of the Radiation Oncology Collaborative Comparison trial show a reduction of ID and the dose to the OAR when treating with protons instead of photons, even with dose escalation. This shows that PSPT is able to give a high tumor dose, while keeping the OAR dose lower than with the photon modalities.
The total ozone and UV solar radiation over Stara Zagora, Bulgaria
NASA Astrophysics Data System (ADS)
Mendeva, B. D.; Gogosheva, Ts. N.; Petkov, B. H.; Krastev, D. G.
The results from direct ground-based solar UV irradiance measurements and the total ozone content (TOC) over Stara Zagora (42° 25'N, 25° 37'E), Bulgaria are presented. During the period 1999-2003 the TOC data show seasonal variations, typical for the middle latitudes - maximum in the spring and minimum in the autumn. The comparison between TOC ground-based data and Global Ozone Monitoring Experiment (GOME) satellite-borne ones shows a seasonal dependence of the differences between them. A strong negative relationship between the total ozone and the 305 nm wavelength irradiance was found. The dependence between the two variables is significant ( r = -0.62 ± 0.18) at 98% confidence level. The direct sun UV doses for some specific biological effects (erythema and eyes) are obtained. The estimation of the radiation amplification factor RAF shows that the ozone reduction by 1% increases the erythemal dose by 2.3%. The eye-damaging doses are more influenced by the TOC changes and in this case RAF = -2.7%. The amount of these biological doses depended on the solar altitude over the horizon. This dependence was not so strong when the total ozone content in the atmosphere was lower.
Field size dependent mapping of medical linear accelerator radiation leakage
NASA Astrophysics Data System (ADS)
Vũ Bezin, Jérémi; Veres, Attila; Lefkopoulos, Dimitri; Chavaudra, Jean; Deutsch, Eric; de Vathaire, Florent; Diallo, Ibrahima
2015-03-01
The purpose of this study was to investigate the suitability of a graphics library based model for the assessment of linear accelerator radiation leakage. Transmission through the shielding elements was evaluated using the build-up factor corrected exponential attenuation law and the contribution from the electron guide was estimated using the approximation of a linear isotropic radioactive source. Model parameters were estimated by a fitting series of thermoluminescent dosimeter leakage measurements, achieved up to 100 cm from the beam central axis along three directions. The distribution of leakage data at the patient plane reflected the architecture of the shielding elements. Thus, the maximum leakage dose was found under the collimator when only one jaw shielded the primary beam and was about 0.08% of the dose at isocentre. Overall, we observe that the main contributor to leakage dose according to our model was the electron beam guide. Concerning the discrepancies between the measurements used to calibrate the model and the calculations from the model, the average difference was about 7%. Finally, graphics library modelling is a readily and suitable way to estimate leakage dose distribution on a personal computer. Such data could be useful for dosimetric evaluations in late effect studies.
Changes in quality, liking, and purchase intent of irradiated fresh-cut spinach during storage.
Fan, Xuetong; Sokorai, Kimberly J B
2011-08-01
The use of ionizing radiation to enhance microbial safety of fresh spinach at a maximum dose of 4 kGy has been approved by the U.S. Food and Drug Administration (FDA). However, whether spinach can tolerate those high doses of radiation is unclear. Therefore, this study was conducted to investigate the effects of irradiation and storage on quality, liking, and purchase intent of fresh-cut spinach. The oxygen radical absorbance capacity values and total phenolic content were not consistently affected by irradiation. However, the ascorbic acid content of irradiated sample decreased rapidly during storage, resulting in these samples being lower in ascorbic acid content than controls after 7 and 14 d of storage at 4 °C. Sensory evaluation by a 50-member panel revealed that purchase intent and ratings for liking of appearance, aroma, texture, flavor, and overall were not affected by irradiation at doses up to 2 kGy. Therefore, irradiation at doses up to 2 kGy may be used to enhance microbial safety without affecting consumer acceptance or overall antioxidant values of irradiated spinach. Journal of Food Science © 2011 Institute of Food Technologists® No claim to original US government works.
NASA Astrophysics Data System (ADS)
Teixeira, Bruna S.; Garcia, Rafael H. L.; Takinami, Patricia Y. I.; del Mastro, Nelida L.
2018-01-01
The objective of this work was to evaluate the effect of irradiation treatment on physicochemical properties of three natural polymers, i.e. native potato and corn starches and a typical Brazilian product, cassava starch modified through fermentation -sour cassava- and also to prepare composite hydrocolloid films based on them. Starches were irradiated in a 60Co irradiation chamber in doses up to 15 kGy, dose rate about 1 kGy/h. Differences were found in granule size distribution upon irradiation, mainly for corn and cassava starch but radiation did not cause significant changes in granule morphology. The viscosity of the potato, corn and cassava starches hydrogels decreased as a function of absorbed dose. Comparing non-irradiated and irradiated starches, changes in the Fourier transform infrared (FTIR) spectra in the 2000-1500 cm-1 region for potato and corn starches were observed but not for the cassava starch. Maximum rupture force of the starch-based films was affected differently for each starch type; color analysis showed that doses of 15 kGy promoted a slight rise in the parameter b* (yellow color) while the parameter L* (lightness) was not significantly affected; X-ray diffraction patterns remained almost unchanged by irradiation.
Gamma radiation influence on technological characteristics of wheat flour
NASA Astrophysics Data System (ADS)
Teixeira, Christian A. H. M.; Inamura, Patricia Y.; Uehara, Vanessa B.; Mastro, Nelida L. d.
2012-08-01
This study aimed at determining the influence of gamma radiation on technological characteristics of wheat (Triticum sativum) flour and physical properties of pan breads made with this flour. The bread formulation included wheat flour, water, milk, salt, sugar, yeast and butter. The α-amylase activity of wheat flour irradiated with 1, 3 and 9 kGy in a Gammacell 220 (AECL), one day, five days and one month after irradiation was evaluated. Deformation force, height and weight of breads prepared with the irradiated flour were also determined. The enzymatic activity increased—reduction of falling number time—as radiation dose increased, their values being 397 s (0 kGy), 388 s (1 kGy), 343 s (3 kGy) and 293 s (9 kGy) respectively, remaining almost constant over the period of one month. Pan breads prepared with irradiated wheat flour showed increased weight. Texture analysis showed that bread made of irradiated flour presented an increase in maximum deformation force. The results indicate that wheat flour ionizing radiation processing may confer increased enzymatic activity on bread making and depending on the irradiation dose, an increase in weight, height and deformation force parameters of pan breads made of it.
Validation and uncertainty analysis of a pre-treatment 2D dose prediction model
NASA Astrophysics Data System (ADS)
Baeza, Jose A.; Wolfs, Cecile J. A.; Nijsten, Sebastiaan M. J. J. G.; Verhaegen, Frank
2018-02-01
Independent verification of complex treatment delivery with megavolt photon beam radiotherapy (RT) has been effectively used to detect and prevent errors. This work presents the validation and uncertainty analysis of a model that predicts 2D portal dose images (PDIs) without a patient or phantom in the beam. The prediction model is based on an exponential point dose model with separable primary and secondary photon fluence components. The model includes a scatter kernel, off-axis ratio map, transmission values and penumbra kernels for beam-delimiting components. These parameters were derived through a model fitting procedure supplied with point dose and dose profile measurements of radiation fields. The model was validated against a treatment planning system (TPS; Eclipse) and radiochromic film measurements for complex clinical scenarios, including volumetric modulated arc therapy (VMAT). Confidence limits on fitted model parameters were calculated based on simulated measurements. A sensitivity analysis was performed to evaluate the effect of the parameter uncertainties on the model output. For the maximum uncertainty, the maximum deviating measurement sets were propagated through the fitting procedure and the model. The overall uncertainty was assessed using all simulated measurements. The validation of the prediction model against the TPS and the film showed a good agreement, with on average 90.8% and 90.5% of pixels passing a (2%,2 mm) global gamma analysis respectively, with a low dose threshold of 10%. The maximum and overall uncertainty of the model is dependent on the type of clinical plan used as input. The results can be used to study the robustness of the model. A model for predicting accurate 2D pre-treatment PDIs in complex RT scenarios can be used clinically and its uncertainties can be taken into account.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wooten, H. Omar, E-mail: hwooten@radonc.wustl.edu; Green, Olga; Yang, Min
2015-07-15
Purpose: This work describes a commercial treatment planning system, its technical features, and its capabilities for creating {sup 60}Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. Methods and Materials: The ViewRay treatment planning system (Oakwood Village, OH) was used to create {sup 60}Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated bymore » attending physicians and approved for treatment. The {sup 60}Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses and heterogeneity indices (HI) for planning target volumes (PTVs) and maximum, mean, and dose-volume histogram (DVH) values for OARs. Results: All {sup 60}Co IMRT plans achieved PTV coverage and OAR sparing that were similar to linac plans. PTV conformity for {sup 60}Co was within <1% and 3% of linac plans for 100% and 95% prescription reference isodoses, respectively, and heterogeneity was on average 4% greater. Comparisons of OAR mean dose showed generally better sparing with linac plans in the low-dose range <20 Gy, but comparable sparing for organs with mean doses >20 Gy. The mean doses for all {sup 60}Co plan OARs were within clinical tolerances. Conclusions: A commercial {sup 60}Co MR-IGRT device can produce highly conformal IMRT treatment plans similar in quality to linac IMRT for a variety of disease sites. Additional work is in progress to evaluate the clinical benefit of other novel features of this MR-IGRT system.« less
Radiation Doses to Hanford Workers from Natural Potassium-40
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strom, Daniel J.; Lynch, Timothy P.; Weier, Dennis R.
2009-02-01
The chemical element potassium is an essential mineral in people and is subject to homeostatic regulation. Natural potassium comprises three isotopes, 39K, 40K, and 41K. Potassium-40 is radioactive, with a half life of 1.248 billion years. In most transitions, it emits a β particle with a maximum energy of 0.560 MeV, and sometimes a gamma photon of 1.461 MeV. Because it is ubiquitous, 40K produces radiation dose to all human beings. This report contains the results of new measurements of 40K in 248 adult females and 2,037 adult males performed at the Department of Energy Hanford Site in 2006 andmore » 2007. Potassium concentrations diminish with age, are generally lower in women than in men, and decrease with body mass index (BMI). The average annual effective dose from 40K in the body is 0.149 mSv y -1 for men and 0.123 mSv y -1 women respectively. Averaged over both men and women, the average effective dose per year is 0.136 mSv y -1. Calculated effective doses range from 0.069 to 0.243 mSv y -1 for adult males, and 0.067 to 0.203 mSv y -1 for adult females, a roughly three-fold variation for each gender. The need for dosimetric phantoms with a greater variety of BMI values should be investigated. From our data, it cannot be determined whether the potassium concentration in muscle in people with large BMI values differs from that in people with small BMI values. Similarly, it would be important to know the potassium concentration in other soft tissues, since much of the radiation dose is due to beta radiation, in which the source and target tissues are the same. These uncertainties should be evaluated to determine their consequences for dosimetry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maraldo, Maja V., E-mail: dra.maraldo@gmail.com; Dabaja, Bouthaina S.; Filippi, Andrea R.
Purpose: Early-stage Hodgkin lymphoma (HL) is a rare disease, and the location of lymphoma varies considerably between patients. Here, we evaluate the variability of radiation therapy (RT) plans among 5 International Lymphoma Radiation Oncology Group (ILROG) centers with regard to beam arrangements, planning parameters, and estimated doses to the critical organs at risk (OARs). Methods: Ten patients with stage I-II classic HL with masses of different sizes and locations were selected. On the basis of the clinical information, 5 ILROG centers were asked to create RT plans to a prescribed dose of 30.6 Gy. A postchemotherapy computed tomography scan with precontouredmore » clinical target volume (CTV) and OARs was provided for each patient. The treatment technique and planning methods were chosen according to each center's best practice in 2013. Results: Seven patients had mediastinal disease, 2 had axillary disease, and 1 had disease in the neck only. The median age at diagnosis was 34 years (range, 21-74 years), and 5 patients were male. Of the resulting 50 treatment plans, 15 were planned with volumetric modulated arc therapy (1-4 arcs), 16 with intensity modulated RT (3-9 fields), and 19 with 3-dimensional conformal RT (2-4 fields). The variations in CTV-to-planning target volume margins (5-15 mm), maximum tolerated dose (31.4-40 Gy), and plan conformity (conformity index 0-3.6) were significant. However, estimated doses to OARs were comparable between centers for each patient. Conclusions: RT planning for HL is challenging because of the heterogeneity in size and location of disease and, additionally, to the variation in choice of treatment techniques and field arrangements. Adopting ILROG guidelines and implementing universal dose objectives could further standardize treatment techniques and contribute to lowering the dose to the surrounding OARs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferro, Marica; Chiesa, Silvia; Macchia, Gabriella, E-mail: gmacchia@rm.unicatt.it
Purpose: To investigate the maximum tolerated dose of intensity modulated radiation therapy simultaneous integrated boost whole-brain radiation therapy for palliative treatment of patients with <5 brain metastases using a standard linear accelerator. Materials and Methods: The whole brain plus 3-mm margin was defined as the planning target volume (PTV{sub wb}), whereas each brain metastasis, defined as the contrast-enhancing tumor on MRI T1 scans, plus a 3-mm isotropic margin, was defined as metastases PTV (PTV{sub m}). Radiation therapy was delivered in 10 daily fractions (2 weeks). Only the dose to PTV{sub m} was progressively increased in the patient cohorts (35 Gy, 40 Gy, 45 Gy, 50 Gy),more » whereas the PTV{sub wb} was always treated with 30 Gy (3 Gy per fraction) in all patients. The dose-limiting toxicity was evaluated providing that 3 months of follow-up had occurred after the treatment of a 6-patient cohort. Results: Thirty patients were enrolled in the study (dose PTV{sub m}: 35 Gy, 8 patients; 40 Gy, 6 patients; 45 Gy, 6 patients; 50 Gy, 10 patients). The number of treated brain metastases was 1 in 18 patients, 2 in 5 patients, 3 in 6 patients, and 4 in 1 patient. Three patients experienced dose-limiting toxicity: 1 patient at dose level 2 presented grade 3 (G3) skin toxicity; 1 patient at dose level 4 presented G3 neurologic toxicity; and 1 patient at the same level showed brain hemorrhage. Most patients showed G1 to 2 acute toxicity, in most cases skin (n=19) or neurologic (n=10). Twenty-seven were evaluable for response: 6 (22%) stable disease, 18 (67%) partial response, and 3 (11%) complete response. Median survival and 1-year overall survival were 12 months and 53%, respectively. No patient showed late toxicity. Conclusions: In this first prospective trial on the use of intensity modulated radiation therapy simultaneous integrated boost delivered with a standard linear accelerator in patients with brain oligometastases, a boost dose up to 50 Gy in 10 fractions was tolerable according to the study design.« less
Bolívar, J P; García-Tenorio, R; Mosqueda, F; Gázquez, M J; López-Coto, I; Adame, J A; Vaca, F
2013-03-01
In order to fill a gap in the open literature, occupational exposures and activity concentrations have been assessed in two NORM industrial plants, located in the south-west of Spain, devoted to the production of mono-ammonium phosphate (MAP) and di-ammonium phosphate (DAP) fertilisers. The annual effective doses received by the workers from these plants are clearly below 1 mSv yr(-1) and the contribution due to external radiation is similar to that due to inhalation. The contribution to the maximum effective doses due to inhalation of particulate matter has been estimated to be about 0.12 mSv yr(-1), while the (222)Rn concentrations inside the plants are of no concern. Consequently, no additional actions or radiological protection measures need to be taken to decrease the natural radiation received by the workers in these facilities.
Vasin, M V; Ushakov, I B; Kovtun, V Yu; Semenova, L A; Koroleva, L V; Galkin, A A; Afanas'ev, R V
2014-04-01
We studied the effect of long-term administration of melatonin to male C57Bl/6 mice starting from day 3 after whole-body γ-irradiation (9.5-10.0 Gy, 7.7-17.1 cGy/min). It was found that replacement of drinking water with melatonin solution (5 mg/liter) did not reduce the amount of fluid intake throughout the period of acute radiation injury. The daily dose of melatonin was 0.9-1.2 mg/kg body weight (this parameter was lower at the peak of the disease and increased during the recovery stage). Melatonin by more than 20% (p<0.05) improved survival of mice exposed to γ-irradiation in a dose of LD97/30, reduced leukopenia during the stage of acute manifestations of the disease and maximum mortality, and increased blood leukocyte count by 40% (p<0.05) by day 12 after irradiation.
RADIATION POISONING OF DOCTORS AND NURSING PERSONNEL IN GYNECOLOGICAL RADIATION THERAPY (in German)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leetz, H.; Masch, F.; Mohr, H.
Because Curietherapy in general, and the treatment of gynecological carcinomas in particular, represents a bottle-neck as to the observance of regulations for adequate protection of the personnel against irradiation burns, the actual conditions in a heavily frequented major hospital are described on the strength of personal experiences. The ray load of the personnel in typical, frequently recurring working processes, such as preparation and application, as well as during regular nursing at the sick-bed, is analyzed. Under present conditions it is difficult to keep within the admissible. weekly maximum doses whenever radium work exceeds a certain amount. Additional protective measures ofmore » various kinds, among which periodical relevant schooling of the stab proved particularly effective, were unavoidable and shall also be continued in the future in order to obtain a further decrease in the actual individual doses. (auth)« less
Dose calculations using MARS for Bremsstrahlung beam stops and collimators in APS beamline stations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooling, J.; Accelerator Systems Division
The Monte Carlo radiation transport code MARS is used to model the generation of gas bremsstrahlung (GB) radiation from 7-GeV electrons which scatter from residual gas atoms in undulator straight sections within the Advanced Photon Source (APS) storage ring. Additionally, MARS is employed to model the interactions of the GB radiation with components along the x-ray beamlines and then determine the expected radiation dose-rates that result. In this manner, MARS can be used to assess the adequacy of existing shielding or the specifications for new shielding when required. The GB radiation generated in the 'thin-target' of an ID straight sectionmore » will consist only of photons in a 1/E-distribution up to the full energy of the stored electron beam. Using this analytical model, the predicted GB power for a typical APS 15.38-m insertion device (ID) straight section is 4.59 x 10{sup -7} W/nTorr/mA, assuming a background gas composed of air (Z{sub eff} = 7.31) at room temperature (293K). The total GB power provides a useful benchmark for comparisons between analytical and numerical approaches. We find good agreement between MARS and analytical estimates for total GB power. The extended straight section 'target' creates a radial profile of GB, which is highly peaked centered on the electron beam. The GB distribution reflects the size of the electron beam that creates the radiation. Optimizing the performance of MARS in terms of CPU time per incident trajectory requires the use of a relatively short, high-density gas target (air); in this report, the target density is {rho}L = 2.89 x 10{sup -2} g/cm{sup 2} over a length of 24 cm. MARS results are compared with the contact dose levels reported in TB-20, which used EGS4 for radiation transport simulations. Maximum dose-rates in 1 cc of tissue phantom form the initial basis for comparison. MARS and EGS4 results are approximately the same for maximum 1-cc dose-rates and attenuation in the photon-dominated regions; for thicker targets, however, the dose-rate no longer depends only on photon attenuation, as photoneutrons (PNs) begin to dominate. The GB radiation-induced photoneutron measurements from four different metals (Fe, Cu, W, and Pb) are compared with MARS predictions. The simulated dose-rates for beamline 6-ID are approximately 3-5 times larger than the measured values, whereas those for beamline 11-ID are much closer. Given the uncertainty in local values of pressure and Z, the degree of agreement between MARS and the PN measurements is good. MARS simulations of GB-induced radiation in and around the FOE show the importance of using actual pressure and gas composition (Z{sub eff}) to obtain accurate PN dose. For a beam current of 300 mA, extrapolating pressure data measured in previously published studies predicts an average background gas pressure of 27 nTorr. An average atomic number of Z{sub eff} = 4.0 is obtained from the same studies. In addition, models of copper masks presently in use at the APS are included. Simulations show that inclusion of exit masks make significant differences in both the radiation spatial distribution within the FOE, as well as the peak intensity. Two studies have been conducted with MARS to assess shielding requirements. First, dose levels in contact with the outside wall of the FOE are examined when GB radiation strikes Pb or W beam stops of varying transverse size within the FOE. Four separate phantom regions are utilized to measure the dose, two at beam elevation and two at the horizontal beam position. The first two phantoms are used for scoring FOE dose along the outside and back walls, horizontally; the second two collect dose on the roof and vertically on the back wall. In all cases, the beam stop depth is maintained at 30 cm. Inclusion of front end (FE) exit masks typically cause a 1-2 order-of-magnitude increase in the dose-rates relative to the case with no masks. Masks place secondary bremsstrahlung sources inside the FOE, and therefore they must be shielded appropriately. The MARS model does not fully account for all shielding present in the hutches; localized shielding is employed in individual hutches. Typically, a collimator, placed downstream of the FE exit masks, mitigates the possible increase in dose. Regarding beam stop transverse size, a modest reduction in dose on the back wall is noted as the stop dimension (square cross section) is increased from 12 cm to 24 cm. In the second study, the thickness of Pb required to shield against the GB extremal ray is determined. In this study, we are interested in finding the thickness of material necessary to add at the edge of a stop to adequately block GB radiation; therefore, we look at the case of no masks in order to have a well-defined GB beam edge. Simulations show the separation between the extremal ray and the edge of the shielding should be 2R{sub m}, where R{sub m} is the Moliere radius.« less
Preliminary results on the photo-transferred thermoluminescence from Ge-doped SiO2 optical fiber
NASA Astrophysics Data System (ADS)
Zulkepely, Nurul Najua; Amin, Yusoff Mohd; Md Nor, Roslan; Bradley, D. A.; Maah, Mohd Jamil; Mat Nawi, Siti Nurasiah; Wahib, Nur Fadira
2015-12-01
A study is made of photo-transferred thermoluminescence (PTTL), the TL being induced by transferring charge carriers from deeper to more superficial traps through energetic light exposure. Potential applications include dose reassessment in radiation dosimetry and also as a useful tool for dating. With incomplete emptying of deep traps following first readout, subsequent UV exposure is shown to lead to charge transfer to more shallow traps. Using Ge-doped SiO2 optical fibers exposed to 60Co gamma rays, the PTTL from the medium has been characterized in terms of the stimulation provided by exposure to a UV lamp and duration of exposure, maximum read-out temperature and pre-gamma irradiation dose. Ge-doped SiO2 optical fibers of flat cross-sectional shape have been used in this study. The efficiency of dose reassessment was compared to that of the highly popular phosphor-based TL detector TLD-100. Results show the maximum temperature of readout to have no measurable effect on the PTTL signal. For doses from 20 to 500 cGy, the method is shown to be effective using a UV lamp of wavelength 254 nm, also being indicative of potential application for doses on either side of the range currently investigated. A study was also made of the effect of UV exposure time on PTTL, seeking to determine the greatest accessible sensitivity and lowest measurable dose.
Assessment of simulated high-dose partial-body irradiation by PCC-R assay.
Romero, Ivonne; García, Omar; Lamadrid, Ana I; Gregoire, Eric; González, Jorge E; Morales, Wilfredo; Martin, Cécile; Barquinero, Joan-Francesc; Voisin, Philippe
2013-09-01
The estimation of the dose and the irradiated fraction of the body is important information in the primary medical response in case of a radiological accident. The PCC-R assay has been developed for high-dose estimations, but little attention has been given to its applicability for partial-body irradiations. In the present work we estimated the doses and the percentage of the irradiated fraction in simulated partial-body radiation exposures at high doses using the PCC-R assay. Peripheral whole blood of three healthy donors was exposed to doses from 0-20 Gy, with ⁶⁰Co gamma radiation. To simulate partial body irradiations, irradiated and non-irradiated blood was mixed to obtain proportions of irradiated blood from 10-90%. Lymphocyte cultures were treated with Colcemid and Calyculin-A before harvest. Conventional and triage scores were performed for each dose, proportion of irradiated blood and donor. The Papworth's u test was used to evaluate the PCC-R distribution per cell. A dose-response relationship was fitted according to the maximum likelihood method using the frequencies of PCC-R obtained from 100% irradiated blood. The dose to the partially irradiated blood was estimated using the Contaminated Poisson method. A new D₀ value of 10.9 Gy was calculated and used to estimate the initial fraction of irradiated cells. The results presented here indicate that by PCC-R it is possible to distinguish between simulated partial- and whole-body irradiations by the u-test, and to accurately estimate the dose from 10-20 Gy, and the initial fraction of irradiated cells in the interval from 10-90%.
Bingham, Derek; Bérard, Philippe; Birchall, Alan; Bull, Richard; Cardis, Elisabeth; Challeton-de Vathaire, Cécile; Grellier, James; Hurtgen, Christian; Puncher, Matthew; Riddell, Anthony; Thierry-Chef, Isabelle
2017-05-01
The Alpha-Risk study required the reconstruction of doses to lung and red bone marrow for lung cancer and leukaemia cases and their matched controls from cohorts of nuclear workers in the UK, France and Belgium. The dosimetrists and epidemiologists agreed requirements regarding the bioassay data, biokinetic and dosimetric models and dose assessment software to be used and doses to be reported. The best values to use for uncertainties on the monitoring data, setting of exposure regimes and characteristics of the exposure material, including lung solubility, were the responsibility of the dosimetrist responsible for each cohort. Among 1721 subjects, the median absorbed dose to the lung from alpha radiations was 2.1 mGy, with a maximum dose of 316 mGy. The lung doses calculated reflect the higher levels of exposure seen among workers in the early years of the nuclear industry compared to today. © Crown copyright 2016.
LDEF: Dosimetric measurement results (AO 138-7 experiment)
NASA Technical Reports Server (NTRS)
Bourrieau, J.
1993-01-01
One of the objectives of the AO 138-7 experiment on board the Long Duration Exposure Facility (LDEF) was a total dose measurement with Thermo Luminescent Detectors (TLD 100). Two identical packages, both of them including five TLD's inside various aluminum shields, are exposed to the space environment in order to obtain the absorbed dose profile. Radiation fluence received during the total mission length was computed, taking into account the trapped particles (AE8 and AP8 models during solar maximum and minimum periods) and the cosmic rays; due to the magnetospheric shielding the solar proton fluences are negligible on the LDEF orbit. The total dose induced by these radiations inside a semi infinite plane shield of aluminum are computed with the radiation transport codes available at DERTS. The dose profile obtained is in good agreement with the evaluation by E.V. Benton. TLD readings are performed after flight; due to the mission duration increase a post flight calibration was necessary in order to cover the range of the in flight induced dose. The results obtained, similar (plus or minus 30 percent) for both packages, are compared with the dose profile computation. For thick shields it seems that the measurements exceed the forecast (about 40 percent). That can be due to a cosmic ray and trapped proton contributions coming from the backside (assumed as perfectly shielded by the LDEF structure in the computation), or to an underestimate of the proton or cosmic ray fluences. A fine structural shielding analysis should be necessary in order to determine the origin of this slight discrepancy between forecast and in flight measurements. For the less shielded dosimeters, mainly exposed to the trapped electron flux, a slight overestimation of the dose (less than 40 percent) appears. Due to the dispersion of the TLD's response, this cannot be confirmed. In practice these results obtained on board LDEF, with less than a factor 1.4 between measurements and forecast, reinforce the validity of the computation methods and models used for the long term evaluation of the radiation levels (flux and dose) encountered in space on low inclination and altitude Earth orbits.
LDEF: Dosimetric measurement results (AO 138-7 experiment)
NASA Astrophysics Data System (ADS)
Bourrieau, J.
1993-04-01
One of the objectives of the AO 138-7 experiment on board the Long Duration Exposure Facility (LDEF) was a total dose measurement with Thermo Luminescent Detectors (TLD 100). Two identical packages, both of them including five TLD's inside various aluminum shields, are exposed to the space environment in order to obtain the absorbed dose profile. Radiation fluence received during the total mission length was computed, taking into account the trapped particles (AE8 and AP8 models during solar maximum and minimum periods) and the cosmic rays; due to the magnetospheric shielding the solar proton fluences are negligible on the LDEF orbit. The total dose induced by these radiations inside a semi infinite plane shield of aluminum are computed with the radiation transport codes available at DERTS. The dose profile obtained is in good agreement with the evaluation by E.V. Benton. TLD readings are performed after flight; due to the mission duration increase a post flight calibration was necessary in order to cover the range of the in flight induced dose. The results obtained, similar (plus or minus 30 percent) for both packages, are compared with the dose profile computation. For thick shields it seems that the measurements exceed the forecast (about 40 percent). That can be due to a cosmic ray and trapped proton contributions coming from the backside (assumed as perfectly shielded by the LDEF structure in the computation), or to an underestimate of the proton or cosmic ray fluences. A fine structural shielding analysis should be necessary in order to determine the origin of this slight discrepancy between forecast and in flight measurements. For the less shielded dosimeters, mainly exposed to the trapped electron flux, a slight overestimation of the dose (less than 40 percent) appears. Due to the dispersion of the TLD's response, this cannot be confirmed. In practice these results obtained on board LDEF, with less than a factor 1.4 between measurements and forecast, reinforce the validity of the computation methods and models used for the long term evaluation of the radiation levels (flux and dose) encountered in space on low inclination and altitude Earth orbits.
Ultraviolet radiation effects on the infrared damage rate of a thermal control coating
NASA Technical Reports Server (NTRS)
Bass, J. A.
1972-01-01
The effects of ultraviolet radiation on the infrared reflectance of ZnO silicone white thermal coatings were investigated. Narrow band ultraviolet radiation for wavelengths in the 2200A to 3500A range by a monochromator and a high pressure, 150-W Eimac xenon lamp. The sample was irradiated while in a vacuum of at least 0.000001 torr, and infrared reflectance was measured in situ with a spectroreflectometer at 19,500A. Reflectance degradation was studied as a function of wavelength, time, intensity, and dose. Damage was wavelength dependent at constant exposure, but no maximum was evident above the shortest wavelength investigated here. The degradation rate at constant intensity was an exponential function of time and varies with intensity.