NASA Technical Reports Server (NTRS)
Frisbee, Joseph H., Jr.
2015-01-01
Upper bounds on high speed satellite collision probability, P (sub c), have been investigated. Previous methods assume an individual position error covariance matrix is available for each object. The two matrices being combined into a single, relative position error covariance matrix. Components of the combined error covariance are then varied to obtain a maximum P (sub c). If error covariance information for only one of the two objects was available, either some default shape has been used or nothing could be done. An alternative is presented that uses the known covariance information along with a critical value of the missing covariance to obtain an approximate but useful P (sub c) upper bound. There are various avenues along which an upper bound on the high speed satellite collision probability has been pursued. Typically, for the collision plane representation of the high speed collision probability problem, the predicted miss position in the collision plane is assumed fixed. Then the shape (aspect ratio of ellipse), the size (scaling of standard deviations) or the orientation (rotation of ellipse principal axes) of the combined position error ellipse is varied to obtain a maximum P (sub c). Regardless as to the exact details of the approach, previously presented methods all assume that an individual position error covariance matrix is available for each object and the two are combined into a single, relative position error covariance matrix. This combined position error covariance matrix is then modified according to the chosen scheme to arrive at a maximum P (sub c). But what if error covariance information for one of the two objects is not available? When error covariance information for one of the objects is not available the analyst has commonly defaulted to the situation in which only the relative miss position and velocity are known without any corresponding state error covariance information. The various usual methods of finding a maximum P (sub c) do no good because the analyst defaults to no knowledge of the combined, relative position error covariance matrix. It is reasonable to think, given an assumption of no covariance information, an analyst might still attempt to determine the error covariance matrix that results in an upper bound on the P (sub c). Without some guidance on limits to the shape, size and orientation of the unknown covariance matrix, the limiting case is a degenerate ellipse lying along the relative miss vector in the collision plane. Unless the miss position is exceptionally large or the at-risk object is exceptionally small, this method results in a maximum P (sub c) too large to be of practical use. For example, assuming that the miss distance is equal to the current ISS alert volume along-track (+ or -) distance of 25 kilometers and that the at-risk area has a 70 meter radius. The maximum (degenerate ellipse) P (sub c) is about 0.00136. At 40 kilometers, the maximum P (sub c) would be 0.00085 which is still almost an order of magnitude larger than the ISS maneuver threshold of 0.0001. In fact, a miss distance of almost 340 kilometers is necessary to reduce the maximum P (sub c) associated with this degenerate ellipse to the ISS maneuver threshold value. Such a result is frequently of no practical value to the analyst. Some improvement may be made with respect to this problem by realizing that while the position error covariance matrix of one of the objects (usually the debris object) may not be known the position error covariance matrix of the other object (usually the asset) is almost always available. Making use of the position error covariance information for the one object provides an improvement in finding a maximum P (sub c) which, in some cases, may offer real utility. The equations to be used are presented and their use discussed.
NASA Astrophysics Data System (ADS)
Zhang, Min; Wang, Wen; Xiang, Kui; Lu, Keqing; Fan, Zongwei
2015-02-01
This paper describes a novel cylindrical capacitive sensor (CCS) to measure the spindle five degree-of-freedom (DOF) motion errors. The operating principle and mathematical models of the CCS are presented. Using Ansoft Maxwell software to calculate the different capacitances in different configurations, structural parameters of end face electrode are then investigated. Radial, axial and tilt motions are also simulated by making comparisons with the given displacements and the simulation values respectively. It could be found that the proposed CCS has a high accuracy for measuring radial motion error when the average eccentricity is about 15 μm. Besides, the maximum relative error of axial displacement is 1.3% when the axial motion is within [0.7, 1.3] mm, and the maximum relative error of the tilt displacement is 1.6% as rotor tilts around a single axis within [-0.6, 0.6]°. Finally, the feasibility of the CCS for measuring five DOF motion errors is verified through simulation and analysis.
Navigator alignment using radar scan
Doerry, Armin W.; Marquette, Brandeis
2016-04-05
The various technologies presented herein relate to the determination of and correction of heading error of platform. Knowledge of at least one of a maximum Doppler frequency or a minimum Doppler bandwidth pertaining to a plurality of radar echoes can be utilized to facilitate correction of the heading error. Heading error can occur as a result of component drift. In an ideal situation, a boresight direction of an antenna or the front of an aircraft will have associated therewith at least one of a maximum Doppler frequency or a minimum Doppler bandwidth. As the boresight direction of the antenna strays from a direction of travel at least one of the maximum Doppler frequency or a minimum Doppler bandwidth will shift away, either left or right, from the ideal situation.
NASA Technical Reports Server (NTRS)
Boland, J. S., III
1973-01-01
The derivation of an approximate error characteristic equation describing the transient system error response is given, along with a procedure for selecting adaptive gain parameters so as to relate to the transient error response. A detailed example of the application and implementation of these methods for a space shuttle type vehicle is included. An extension of the characteristic equation technique is used to provide an estimate of the magnitude of the maximum system error and an estimate of the time of occurrence of this maximum after a plant parameter disturbance. Techniques for relaxing certain stability requirements and the conditions under which this can be done and still guarantee asymptotic stability of the system error are discussed. Such conditions are possible because the Lyapunov methods used in the stability derivation allow for overconstraining a problem in the process of insuring stability.
A Comparison of Three Multivariate Models for Estimating Test Battery Reliability.
ERIC Educational Resources Information Center
Wood, Terry M.; Safrit, Margaret J.
1987-01-01
A comparison of three multivariate models (canonical reliability model, maximum generalizability model, canonical correlation model) for estimating test battery reliability indicated that the maximum generalizability model showed the least degree of bias, smallest errors in estimation, and the greatest relative efficiency across all experimental…
Error analysis of speed of sound reconstruction in ultrasound limited angle transmission tomography.
Jintamethasawat, Rungroj; Lee, Won-Mean; Carson, Paul L; Hooi, Fong Ming; Fowlkes, J Brian; Goodsitt, Mitchell M; Sampson, Richard; Wenisch, Thomas F; Wei, Siyuan; Zhou, Jian; Chakrabarti, Chaitali; Kripfgans, Oliver D
2018-04-07
We have investigated limited angle transmission tomography to estimate speed of sound (SOS) distributions for breast cancer detection. That requires both accurate delineations of major tissues, in this case by segmentation of prior B-mode images, and calibration of the relative positions of the opposed transducers. Experimental sensitivity evaluation of the reconstructions with respect to segmentation and calibration errors is difficult with our current system. Therefore, parametric studies of SOS errors in our bent-ray reconstructions were simulated. They included mis-segmentation of an object of interest or a nearby object, and miscalibration of relative transducer positions in 3D. Close correspondence of reconstruction accuracy was verified in the simplest case, a cylindrical object in homogeneous background with induced segmentation and calibration inaccuracies. Simulated mis-segmentation in object size and lateral location produced maximum SOS errors of 6.3% within 10 mm diameter change and 9.1% within 5 mm shift, respectively. Modest errors in assumed transducer separation produced the maximum SOS error from miscalibrations (57.3% within 5 mm shift), still, correction of this type of error can easily be achieved in the clinic. This study should aid in designing adequate transducer mounts and calibration procedures, and in specification of B-mode image quality and segmentation algorithms for limited angle transmission tomography relying on ray tracing algorithms. Copyright © 2018 Elsevier B.V. All rights reserved.
Can, Seda; van de Schoot, Rens; Hox, Joop
2015-06-01
Because variables may be correlated in the social and behavioral sciences, multicollinearity might be problematic. This study investigates the effect of collinearity manipulated in within and between levels of a two-level confirmatory factor analysis by Monte Carlo simulation. Furthermore, the influence of the size of the intraclass correlation coefficient (ICC) and estimation method; maximum likelihood estimation with robust chi-squares and standard errors and Bayesian estimation, on the convergence rate are investigated. The other variables of interest were rate of inadmissible solutions and the relative parameter and standard error bias on the between level. The results showed that inadmissible solutions were obtained when there was between level collinearity and the estimation method was maximum likelihood. In the within level multicollinearity condition, all of the solutions were admissible but the bias values were higher compared with the between level collinearity condition. Bayesian estimation appeared to be robust in obtaining admissible parameters but the relative bias was higher than for maximum likelihood estimation. Finally, as expected, high ICC produced less biased results compared to medium ICC conditions.
Makeyev, Oleksandr; Joe, Cody; Lee, Colin; Besio, Walter G
2017-07-01
Concentric ring electrodes have shown promise in non-invasive electrophysiological measurement demonstrating their superiority to conventional disc electrodes, in particular, in accuracy of Laplacian estimation. Recently, we have proposed novel variable inter-ring distances concentric ring electrodes. Analytic and finite element method modeling results for linearly increasing distances electrode configurations suggested they may decrease the truncation error resulting in more accurate Laplacian estimates compared to currently used constant inter-ring distances configurations. This study assesses statistical significance of Laplacian estimation accuracy improvement due to novel variable inter-ring distances concentric ring electrodes. Full factorial design of analysis of variance was used with one categorical and two numerical factors: the inter-ring distances, the electrode diameter, and the number of concentric rings in the electrode. The response variables were the Relative Error and the Maximum Error of Laplacian estimation computed using a finite element method model for each of the combinations of levels of three factors. Effects of the main factors and their interactions on Relative Error and Maximum Error were assessed and the obtained results suggest that all three factors have statistically significant effects in the model confirming the potential of using inter-ring distances as a means of improving accuracy of Laplacian estimation.
Synopsis of timing measurement techniques used in telecommunications
NASA Technical Reports Server (NTRS)
Zampetti, George
1993-01-01
Historically, Maximum Time Interval Error (MTIE) and Maximum Relative Time Interval Error (MRTIE) have been the main measurement techniques used to characterize timing performance in telecommunications networks. Recently, a new measurement technique, Time Variance (TVAR) has gained acceptance in the North American (ANSI) standards body. TVAR was developed in concurrence with NIST to address certain inadequacies in the MTIE approach. The advantages and disadvantages of each of these approaches are described. Real measurement examples are presented to illustrate the critical issues in actual telecommunication applications. Finally, a new MTIE measurement is proposed (ZTIE) that complements TVAR. Together, TVAR and ZTIE provide a very good characterization of network timing.
Prata, Ademir A; Santos, Jane M; Timchenko, Victoria; Reis, Neyval C; Stuetz, Richard M
2017-11-01
Emission models are widely applied tools for estimating atmospheric emissions from wastewater treatment plants (WWTPs). The friction velocity u ∗ is a key variable for the modelling of emissions from passive liquid surfaces in WWTPs. This work evaluated different parametrisations of u ∗ for passive liquid surfaces at the scale of WWTP units, which present relatively small fetches, based on available wind friction and wave data measured at wind-wave tanks (fetches spanning from approximately 3 to 100 m, and wind speeds from 2 to 17 m s -1 ). The empirical correlation by Smith (1980; J. Phys. Oceanogr. 10, 709-726), which has been frequently adopted in air emission models (despite the fact that it was originally derived for the ocean) presented a general tendency to overestimate u ∗ , with significant (although not extreme) relative errors (mean and maximum errors of 13.5% and 36.6%, respectively); the use of Charnock's relation, with Charnock constant 0.010, performed in a very similar manner (mean and maximum errors of 13.3% and 37.8%, respectively). Better estimates of u ∗ were achieved by parametrisations based on the significant wave steepness. Simplified correlations between the wind drag and the non-dimensional fetch were obtained. An approach was devised, comprising the use of Charnock's relation (with Charnock constant 0.010) and of these simplified correlations, depending on the ranges of frequency of the peak waves, fetch and wind speed. The proposed approach predicted u ∗ with improved accuracy (mean, maximum and 95%-percentile relative errors of 6.6%, 16.7% and 13.9%, respectively), besides being able to incorporate the influence of the fetch in the wind drag, thus taking into account the size of the tanks in the WWTPs. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rahmat, R. F.; Nasution, F. R.; Seniman; Syahputra, M. F.; Sitompul, O. S.
2018-02-01
Weather is condition of air in a certain region at a relatively short period of time, measured with various parameters such as; temperature, air preasure, wind velocity, humidity and another phenomenons in the atmosphere. In fact, extreme weather due to global warming would lead to drought, flood, hurricane and other forms of weather occasion, which directly affects social andeconomic activities. Hence, a forecasting technique is to predict weather with distinctive output, particullary mapping process based on GIS with information about current weather status in certain cordinates of each region with capability to forecast for seven days afterward. Data used in this research are retrieved in real time from the server openweathermap and BMKG. In order to obtain a low error rate and high accuracy of forecasting, the authors use Bayesian Model Averaging (BMA) method. The result shows that the BMA method has good accuracy. Forecasting error value is calculated by mean square error shows (MSE). The error value emerges at minumum temperature rated at 0.28 and maximum temperature rated at 0.15. Meanwhile, the error value of minimum humidity rates at 0.38 and the error value of maximum humidity rates at 0.04. Afterall, the forecasting error rate of wind speed is at 0.076. The lower the forecasting error rate, the more optimized the accuracy is.
Collinear Latent Variables in Multilevel Confirmatory Factor Analysis
van de Schoot, Rens; Hox, Joop
2014-01-01
Because variables may be correlated in the social and behavioral sciences, multicollinearity might be problematic. This study investigates the effect of collinearity manipulated in within and between levels of a two-level confirmatory factor analysis by Monte Carlo simulation. Furthermore, the influence of the size of the intraclass correlation coefficient (ICC) and estimation method; maximum likelihood estimation with robust chi-squares and standard errors and Bayesian estimation, on the convergence rate are investigated. The other variables of interest were rate of inadmissible solutions and the relative parameter and standard error bias on the between level. The results showed that inadmissible solutions were obtained when there was between level collinearity and the estimation method was maximum likelihood. In the within level multicollinearity condition, all of the solutions were admissible but the bias values were higher compared with the between level collinearity condition. Bayesian estimation appeared to be robust in obtaining admissible parameters but the relative bias was higher than for maximum likelihood estimation. Finally, as expected, high ICC produced less biased results compared to medium ICC conditions. PMID:29795827
McMahon, Ryan; Papiez, Lech; Rangaraj, Dharanipathy
2007-08-01
An algorithm is presented that allows for the control of multileaf collimation (MLC) leaves based entirely on real-time calculations of the intensity delivered over the target. The algorithm is capable of efficiently correcting generalized delivery errors without requiring the interruption of delivery (self-correcting trajectories), where a generalized delivery error represents anything that causes a discrepancy between the delivered and intended intensity profiles. The intensity actually delivered over the target is continually compared to its intended value. For each pair of leaves, these comparisons are used to guide the control of the following leaf and keep this discrepancy below a user-specified value. To demonstrate the basic principles of the algorithm, results of corrected delivery are shown for a leading leaf positional error during dynamic-MLC (DMLC) IMRT delivery over a rigid moving target. It is then shown that, with slight modifications, the algorithm can be used to track moving targets in real time. The primary results of this article indicate that the algorithm is capable of accurately delivering DMLC IMRT over a rigid moving target whose motion is (1) completely unknown prior to delivery and (2) not faster than the maximum MLC leaf velocity over extended periods of time. These capabilities are demonstrated for clinically derived intensity profiles and actual tumor motion data, including situations when the target moves in some instances faster than the maximum admissible MLC leaf velocity. The results show that using the algorithm while calculating the delivered intensity every 50 ms will provide a good level of accuracy when delivering IMRT over a rigid moving target translating along the direction of MLC leaf travel. When the maximum velocities of the MLC leaves and target were 4 and 4.2 cm/s, respectively, the resulting error in the two intensity profiles used was 0.1 +/- 3.1% and -0.5 +/- 2.8% relative to the maximum of the intensity profiles. For the same target motion, the error was shown to increase rapidly as (1) the maximum MLC leaf velocity was reduced below 75% of the maximum target velocity and (2) the system response time was increased.
The CO2 laser frequency stability measurements
NASA Technical Reports Server (NTRS)
Johnson, E. H., Jr.
1973-01-01
Carbon dioxide laser frequency stability data are considered for a receiver design that relates to maximum Doppler frequency and its rate of change. Results show that an adequate margin exists in terms of data acquisition, Doppler tracking, and bit error rate as they relate to laser stability and transmitter power.
Estimation of viscous dissipation in nanodroplet impact and spreading
NASA Astrophysics Data System (ADS)
Li, Xin-Hao; Zhang, Xiang-Xiong; Chen, Min
2015-05-01
The developments in nanocoating and nanospray technology have resulted in the increasing importance of the impact of micro-/nanoscale liquid droplets on solid surface. In this paper, the impact of a nanodroplet on a flat solid surface is examined using molecular dynamics simulations. The impact velocity ranges from 58 m/s to 1044 m/s, in accordance with the Weber number ranging from 0.62 to 200.02 and the Reynolds number ranging from 0.89 to 16.14. The obtained maximum spreading factors are compared with previous models in the literature. The predicted results from the previous models largely deviate from our simulation results, with mean relative errors up to 58.12%. The estimated viscous dissipation is refined to present a modified theoretical model, which reduces the mean relative error to 15.12% in predicting the maximum spreading factor for cases of nanodroplet impact.
Zhang, Tangtang; Wen, Jun; van der Velde, Rogier; Meng, Xianhong; Li, Zhenchao; Liu, Yuanyong; Liu, Rong
2008-01-01
The total atmospheric water vapor content (TAWV) and land surface temperature (LST) play important roles in meteorology, hydrology, ecology and some other disciplines. In this paper, the ENVISAT/AATSR (The Advanced Along-Track Scanning Radiometer) thermal data are used to estimate the TAWV and LST over the Loess Plateau in China by using a practical split window algorithm. The distribution of the TAWV is accord with that of the MODIS TAWV products, which indicates that the estimation of the total atmospheric water vapor content is reliable. Validations of the LST by comparing with the ground measurements indicate that the maximum absolute derivation, the maximum relative error and the average relative error is 4.0K, 11.8% and 5.0% respectively, which shows that the retrievals are believable; this algorithm can provide a new way to estimate the LST from AATSR data. PMID:27879795
Proprioceptive deficit in patients with complete tearing of the anterior cruciate ligament.
Godinho, Pedro; Nicoliche, Eduardo; Cossich, Victor; de Sousa, Eduardo Branco; Velasques, Bruna; Salles, José Inácio
2014-01-01
To investigate the existence of proprioceptive deficits between the injured limb and the uninjured (i.e. contralateral normal) limb, in individuals who suffered complete tearing of the anterior cruciate ligament (ACL), using a strength reproduction test. Sixteen patients with complete tearing of the ACL participated in the study. A voluntary maximum isometric strength test was performed, with reproduction of the muscle strength in the limb with complete tearing of the ACL and the healthy contralateral limb, with the knee flexed at 60°. The meta-intensity was used for the procedure of 20% of the voluntary maximum isometric strength. The proprioceptive performance was determined by means of absolute error, variable error and constant error values. Significant differences were found between the control group and ACL group for the variables of absolute error (p = 0.05) and constant error (p = 0.01). No difference was found in relation to variable error (p = 0.83). Our data corroborate the hypothesis that there is a proprioceptive deficit in subjects with complete tearing of the ACL in an injured limb, in comparison with the uninjured limb, during evaluation of the sense of strength. This deficit can be explained in terms of partial or total loss of the mechanoreceptors of the ACL.
Simulation of water-table aquifers using specified saturated thickness
Sheets, Rodney A.; Hill, Mary C.; Haitjema, Henk M.; Provost, Alden M.; Masterson, John P.
2014-01-01
Simulating groundwater flow in a water-table (unconfined) aquifer can be difficult because the saturated thickness available for flow depends on model-calculated hydraulic heads. It is often possible to realize substantial time savings and still obtain accurate head and flow solutions by specifying an approximate saturated thickness a priori, thus linearizing this aspect of the model. This specified-thickness approximation often relies on the use of the “confined” option in numerical models, which has led to confusion and criticism of the method. This article reviews the theoretical basis for the specified-thickness approximation, derives an error analysis for relatively ideal problems, and illustrates the utility of the approximation with a complex test problem. In the transient version of our complex test problem, the specified-thickness approximation produced maximum errors in computed drawdown of about 4% of initial aquifer saturated thickness even when maximum drawdowns were nearly 20% of initial saturated thickness. In the final steady-state version, the approximation produced maximum errors in computed drawdown of about 20% of initial aquifer saturated thickness (mean errors of about 5%) when maximum drawdowns were about 35% of initial saturated thickness. In early phases of model development, such as during initial model calibration efforts, the specified-thickness approximation can be a very effective tool to facilitate convergence. The reduced execution time and increased stability obtained through the approximation can be especially useful when many model runs are required, such as during inverse model calibration, sensitivity and uncertainty analyses, multimodel analysis, and development of optimal resource management scenarios.
NASA Astrophysics Data System (ADS)
Dong, Sheng; Chi, Kun; Zhang, Qiyi; Zhang, Xiangdong
2012-03-01
Compared with traditional real-time forecasting, this paper proposes a Grey Markov Model (GMM) to forecast the maximum water levels at hydrological stations in the estuary area. The GMM combines the Grey System and Markov theory into a higher precision model. The GMM takes advantage of the Grey System to predict the trend values and uses the Markov theory to forecast fluctuation values, and thus gives forecast results involving two aspects of information. The procedure for forecasting annul maximum water levels with the GMM contains five main steps: 1) establish the GM (1, 1) model based on the data series; 2) estimate the trend values; 3) establish a Markov Model based on relative error series; 4) modify the relative errors caused in step 2, and then obtain the relative errors of the second order estimation; 5) compare the results with measured data and estimate the accuracy. The historical water level records (from 1960 to 1992) at Yuqiao Hydrological Station in the estuary area of the Haihe River near Tianjin, China are utilized to calibrate and verify the proposed model according to the above steps. Every 25 years' data are regarded as a hydro-sequence. Eight groups of simulated results show reasonable agreement between the predicted values and the measured data. The GMM is also applied to the 10 other hydrological stations in the same estuary. The forecast results for all of the hydrological stations are good or acceptable. The feasibility and effectiveness of this new forecasting model have been proved in this paper.
Adsorption Isotherms and Surface Reaction Kinetics
ERIC Educational Resources Information Center
Lobo, L. S.; Bernardo, C. A.
1974-01-01
Explains an error that occurs in calculating the conditions for a maximum value of a rate expression for a bimolecular reaction. The rate expression is derived using the Langmuir adsorption isotherm to relate gas pressures and corresponding surface coverages. (GS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Heng, E-mail: hengli@mdanderson.org; Zhu, X. Ronald; Zhang, Xiaodong
Purpose: To develop and validate a novel delivery strategy for reducing the respiratory motion–induced dose uncertainty of spot-scanning proton therapy. Methods and Materials: The spot delivery sequence was optimized to reduce dose uncertainty. The effectiveness of the delivery sequence optimization was evaluated using measurements and patient simulation. One hundred ninety-one 2-dimensional measurements using different delivery sequences of a single-layer uniform pattern were obtained with a detector array on a 1-dimensional moving platform. Intensity modulated proton therapy plans were generated for 10 lung cancer patients, and dose uncertainties for different delivery sequences were evaluated by simulation. Results: Without delivery sequence optimization,more » the maximum absolute dose error can be up to 97.2% in a single measurement, whereas the optimized delivery sequence results in a maximum absolute dose error of ≤11.8%. In patient simulation, the optimized delivery sequence reduces the mean of fractional maximum absolute dose error compared with the regular delivery sequence by 3.3% to 10.6% (32.5-68.0% relative reduction) for different patients. Conclusions: Optimizing the delivery sequence can reduce dose uncertainty due to respiratory motion in spot-scanning proton therapy, assuming the 4-dimensional CT is a true representation of the patients' breathing patterns.« less
NASA Technical Reports Server (NTRS)
Frisbee, Joseph H., Jr.
2015-01-01
Upper bounds on high speed satellite collision probability, PC †, have been investigated. Previous methods assume an individual position error covariance matrix is available for each object. The two matrices being combined into a single, relative position error covariance matrix. Components of the combined error covariance are then varied to obtain a maximum PC. If error covariance information for only one of the two objects was available, either some default shape has been used or nothing could be done. An alternative is presented that uses the known covariance information along with a critical value of the missing covariance to obtain an approximate but potentially useful Pc upper bound.
Chen, Chieh-Fan; Ho, Wen-Hsien; Chou, Huei-Yin; Yang, Shu-Mei; Chen, I-Te; Shi, Hon-Yi
2011-01-01
This study analyzed meteorological, clinical and economic factors in terms of their effects on monthly ED revenue and visitor volume. Monthly data from January 1, 2005 to September 30, 2009 were analyzed. Spearman correlation and cross-correlation analyses were performed to identify the correlation between each independent variable, ED revenue, and visitor volume. Autoregressive integrated moving average (ARIMA) model was used to quantify the relationship between each independent variable, ED revenue, and visitor volume. The accuracies were evaluated by comparing model forecasts to actual values with mean absolute percentage of error. Sensitivity of prediction errors to model training time was also evaluated. The ARIMA models indicated that mean maximum temperature, relative humidity, rainfall, non-trauma, and trauma visits may correlate positively with ED revenue, but mean minimum temperature may correlate negatively with ED revenue. Moreover, mean minimum temperature and stock market index fluctuation may correlate positively with trauma visitor volume. Mean maximum temperature, relative humidity and stock market index fluctuation may correlate positively with non-trauma visitor volume. Mean maximum temperature and relative humidity may correlate positively with pediatric visitor volume, but mean minimum temperature may correlate negatively with pediatric visitor volume. The model also performed well in forecasting revenue and visitor volume. PMID:22203886
Chen, Chieh-Fan; Ho, Wen-Hsien; Chou, Huei-Yin; Yang, Shu-Mei; Chen, I-Te; Shi, Hon-Yi
2011-01-01
This study analyzed meteorological, clinical and economic factors in terms of their effects on monthly ED revenue and visitor volume. Monthly data from January 1, 2005 to September 30, 2009 were analyzed. Spearman correlation and cross-correlation analyses were performed to identify the correlation between each independent variable, ED revenue, and visitor volume. Autoregressive integrated moving average (ARIMA) model was used to quantify the relationship between each independent variable, ED revenue, and visitor volume. The accuracies were evaluated by comparing model forecasts to actual values with mean absolute percentage of error. Sensitivity of prediction errors to model training time was also evaluated. The ARIMA models indicated that mean maximum temperature, relative humidity, rainfall, non-trauma, and trauma visits may correlate positively with ED revenue, but mean minimum temperature may correlate negatively with ED revenue. Moreover, mean minimum temperature and stock market index fluctuation may correlate positively with trauma visitor volume. Mean maximum temperature, relative humidity and stock market index fluctuation may correlate positively with non-trauma visitor volume. Mean maximum temperature and relative humidity may correlate positively with pediatric visitor volume, but mean minimum temperature may correlate negatively with pediatric visitor volume. The model also performed well in forecasting revenue and visitor volume.
Bootstrap Standard Errors for Maximum Likelihood Ability Estimates When Item Parameters Are Unknown
ERIC Educational Resources Information Center
Patton, Jeffrey M.; Cheng, Ying; Yuan, Ke-Hai; Diao, Qi
2014-01-01
When item parameter estimates are used to estimate the ability parameter in item response models, the standard error (SE) of the ability estimate must be corrected to reflect the error carried over from item calibration. For maximum likelihood (ML) ability estimates, a corrected asymptotic SE is available, but it requires a long test and the…
NASA Astrophysics Data System (ADS)
Liu, Fei; Xu, Guanghua; Zhang, Qing; Liang, Lin; Liu, Dan
2015-11-01
As one of the Geometrical Product Specifications that are widely applied in industrial manufacturing and measurement, sphericity error can synthetically scale a 3D structure and reflects the machining quality of a spherical workpiece. Following increasing demands in the high motion performance of spherical parts, sphericity error is becoming an indispensable component in the evaluation of form error. However, the evaluation of sphericity error is still considered to be a complex mathematical issue, and the related research studies on the development of available models are lacking. In this paper, an intersecting chord method is first proposed to solve the minimum circumscribed sphere and maximum inscribed sphere evaluations of sphericity error. This new modelling method leverages chord relationships to replace the characteristic points, thereby significantly reducing the computational complexity and improving the computational efficiency. Using the intersecting chords to generate a virtual centre, the reference sphere in two concentric spheres is simplified as a space intersecting structure. The position of the virtual centre on the space intersecting structure is determined by characteristic chords, which may reduce the deviation between the virtual centre and the centre of the reference sphere. In addition,two experiments are used to verify the effectiveness of the proposed method with real datasets from the Cartesian coordinates. The results indicate that the estimated errors are in perfect agreement with those of the published methods. Meanwhile, the computational efficiency is improved. For the evaluation of the sphericity error, the use of high performance computing is a remarkable change.
Delay compensation - Its effect in reducing sampling errors in Fourier spectroscopy
NASA Technical Reports Server (NTRS)
Zachor, A. S.; Aaronson, S. M.
1979-01-01
An approximate formula is derived for the spectrum ghosts caused by periodic drive speed variations in a Michelson interferometer. The solution represents the case of fringe-controlled sampling and is applicable when the reference fringes are delayed to compensate for the delay introduced by the electrical filter in the signal channel. Numerical results are worked out for several common low-pass filters. It is shown that the maximum relative ghost amplitude over the range of frequencies corresponding to the lower half of the filter band is typically 20 times smaller than the relative zero-to-peak velocity error, when delayed sampling is used. In the lowest quarter of the filter band it is more than 100 times smaller than the relative velocity error. These values are ten and forty times smaller, respectively, than they would be without delay compensation if the filter is a 6-pole Butterworth.
Genetic mapping in the presence of genotyping errors.
Cartwright, Dustin A; Troggio, Michela; Velasco, Riccardo; Gutin, Alexander
2007-08-01
Genetic maps are built using the genotypes of many related individuals. Genotyping errors in these data sets can distort genetic maps, especially by inflating the distances. We have extended the traditional likelihood model used for genetic mapping to include the possibility of genotyping errors. Each individual marker is assigned an error rate, which is inferred from the data, just as the genetic distances are. We have developed a software package, called TMAP, which uses this model to find maximum-likelihood maps for phase-known pedigrees. We have tested our methods using a data set in Vitis and on simulated data and confirmed that our method dramatically reduces the inflationary effect caused by increasing the number of markers and leads to more accurate orders.
Genetic Mapping in the Presence of Genotyping Errors
Cartwright, Dustin A.; Troggio, Michela; Velasco, Riccardo; Gutin, Alexander
2007-01-01
Genetic maps are built using the genotypes of many related individuals. Genotyping errors in these data sets can distort genetic maps, especially by inflating the distances. We have extended the traditional likelihood model used for genetic mapping to include the possibility of genotyping errors. Each individual marker is assigned an error rate, which is inferred from the data, just as the genetic distances are. We have developed a software package, called TMAP, which uses this model to find maximum-likelihood maps for phase-known pedigrees. We have tested our methods using a data set in Vitis and on simulated data and confirmed that our method dramatically reduces the inflationary effect caused by increasing the number of markers and leads to more accurate orders. PMID:17277374
1993-03-01
source for this estimate of eight rounds per BMP target. According to analyst Donna Quirido, AMSAA does not provide or support any such estimate (30...engagement or in the case of. the Bradley, stabilization inaccuracies. According to Helgert: These errors give rise to aim-wander, a term that derives from...the same area. (6:14_5) The resulting approximation to the truncated normal integral has a maximum relative error of 0.0075. Using Polya -Williams, an
Manikandan, A.; Biplab, Sarkar; David, Perianayagam A.; Holla, R.; Vivek, T. R.; Sujatha, N.
2011-01-01
For high dose rate (HDR) brachytherapy, independent treatment verification is needed to ensure that the treatment is performed as per prescription. This study demonstrates dosimetric quality assurance of the HDR brachytherapy using a commercially available two-dimensional ion chamber array called IMatriXX, which has a detector separation of 0.7619 cm. The reference isodose length, step size, and source dwell positional accuracy were verified. A total of 24 dwell positions, which were verified for positional accuracy gave a total error (systematic and random) of –0.45 mm, with a standard deviation of 1.01 mm and maximum error of 1.8 mm. Using a step size of 5 mm, reference isodose length (the length of 100% isodose line) was verified for single and multiple catheters of same and different source loadings. An error ≤1 mm was measured in 57% of tests analyzed. Step size verification for 2, 3, 4, and 5 cm was performed and 70% of the step size errors were below 1 mm, with maximum of 1.2 mm. The step size ≤1 cm could not be verified by the IMatriXX as it could not resolve the peaks in dose profile. PMID:21897562
LETTERS AND COMMENTS: Note on the 'log formulae' for pendulum motion valid for any amplitude
NASA Astrophysics Data System (ADS)
Qing-Xin, Yuan; Pei, Ding
2010-01-01
In this note, we present an improved approximation to the solution of Lima (2008 Eur. J. Phys. 29 1091), which decreases the maximum relative error from 0.6% to 0.084% in evaluating the exact pendulum period.
NASA Technical Reports Server (NTRS)
Lei, Ning; Chiang, Kwo-Fu; Oudrari, Hassan; Xiong, Xiaoxiong
2011-01-01
Optical sensors aboard Earth orbiting satellites such as the next generation Visible/Infrared Imager/Radiometer Suite (VIIRS) assume that the sensors radiometric response in the Reflective Solar Bands (RSB) is described by a quadratic polynomial, in relating the aperture spectral radiance to the sensor Digital Number (DN) readout. For VIIRS Flight Unit 1, the coefficients are to be determined before launch by an attenuation method, although the linear coefficient will be further determined on-orbit through observing the Solar Diffuser. In determining the quadratic polynomial coefficients by the attenuation method, a Maximum Likelihood approach is applied in carrying out the least-squares procedure. Crucial to the Maximum Likelihood least-squares procedure is the computation of the weight. The weight not only has a contribution from the noise of the sensor s digital count, with an important contribution from digitization error, but also is affected heavily by the mathematical expression used to predict the value of the dependent variable, because both the independent and the dependent variables contain random noise. In addition, model errors have a major impact on the uncertainties of the coefficients. The Maximum Likelihood approach demonstrates the inadequacy of the attenuation method model with a quadratic polynomial for the retrieved spectral radiance. We show that using the inadequate model dramatically increases the uncertainties of the coefficients. We compute the coefficient values and their uncertainties, considering both measurement and model errors.
Achieving unequal error protection with convolutional codes
NASA Technical Reports Server (NTRS)
Mills, D. G.; Costello, D. J., Jr.; Palazzo, R., Jr.
1994-01-01
This paper examines the unequal error protection capabilities of convolutional codes. Both time-invariant and periodically time-varying convolutional encoders are examined. The effective free distance vector is defined and is shown to be useful in determining the unequal error protection (UEP) capabilities of convolutional codes. A modified transfer function is used to determine an upper bound on the bit error probabilities for individual input bit positions in a convolutional encoder. The bound is heavily dependent on the individual effective free distance of the input bit position. A bound relating two individual effective free distances is presented. The bound is a useful tool in determining the maximum possible disparity in individual effective free distances of encoders of specified rate and memory distribution. The unequal error protection capabilities of convolutional encoders of several rates and memory distributions are determined and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardcastle, N; Booth, J; Caillet, V
Purpose: To assess endo-bronchial electromagnetic beacon insertion and to quantify the geometric accuracy of using beacons as a surrogate for tumour motion in real-time multileaf collimator (MLC) tracking of lung tumours. Methods: The LIGHT SABR trial is a world-first clinical trial in which the MLC leaves move with lung tumours in real time on a standard linear accelerator. Tracking is performed based on implanted electromagnetic beacons (CalypsoTM, Varian Medical Systems, USA) as a surrogate for tumour motion. Five patients have been treated and have each had three beacons implanted endo-bronchially under fluoroscopic guidance. The centre of mass (C.O.M) has beenmore » used to adapt the MLC in real-time. The geometric error in using the beacon C.O.M as a surrogate for tumour motion was measured by measuring the tumour and beacon C.O.M in all phases of the respiratory cycle of a 4DCT. The surrogacy error was defined as the difference in beacon and tumour C.O.M relative to the reference phase (maximum exhale). Results: All five patients have had three beacons successfully implanted with no migration between simulation and end of treatment. Beacon placement relative to tumour C.O.M varied from 14 to 74 mm and in one patient spanned two lobes. Surrogacy error was measured in each patient on the simulation 4DCT and ranged from 0 to 3 mm. Surrogacy error as measured on 4DCT was subject to artefacts in mid-ventilation phases. Surrogacy error was a function of breathing phase and was typically larger at maximum inhale. Conclusion: Beacon placement and thus surrogacy error is a major component of geometric uncertainty in MLC tracking of lung tumours. Surrogacy error must be measured on each patient and incorporated into margin calculation. Reduction of surrogacy error is limited by airway anatomy, however should be taken into consideration when performing beacon insertion and planning. This research is funded by Varian Medical Systems via a collaborative research agreement.« less
NASA Astrophysics Data System (ADS)
Hurter, F.; Maier, O.
2013-11-01
We reconstruct atmospheric wet refractivity profiles for the western part of Switzerland with a least-squares collocation approach from data sets of (a) zenith path delays that are a byproduct of the GPS (global positioning system) processing, (b) ground meteorological measurements, (c) wet refractivity profiles from radio occultations whose tangent points lie within the study area, and (d) radiosonde measurements. Wet refractivity is a parameter partly describing the propagation of electromagnetic waves and depends on the atmospheric parameters temperature and water vapour pressure. In addition, we have measurements of a lower V-band microwave radiometer at Payerne. It delivers temperature profiles at high temporal resolution, especially in the range from ground to 3000 m a.g.l., though vertical information content decreases with height. The temperature profiles together with the collocated wet refractivity profiles provide near-continuous dew point temperature or relative humidity profiles at Payerne for the study period from 2009 to 2011. In the validation of the humidity profiles, we adopt a two-step procedure. We first investigate the reconstruction quality of the wet refractivity profiles at the location of Payerne by comparing them to wet refractivity profiles computed from radiosonde profiles available for that location. We also assess the individual contributions of the data sets to the reconstruction quality and demonstrate a clear benefit from the data combination. Secondly, the accuracy of the conversion from wet refractivity to dew point temperature and relative humidity profiles with the radiometer temperature profiles is examined, comparing them also to radiosonde profiles. For the least-squares collocation solution combining GPS and ground meteorological measurements, we achieve the following error figures with respect to the radiosonde reference: maximum median offset of relative refractivity error is -16% and quartiles are 5% to 40% for the lower troposphere. We further added 189 radio occultations that met our requirements. They mostly improved the accuracy in the upper troposphere. Maximum median offsets have decreased from 120% relative error to 44% at 8 km height. Dew point temperature profiles after the conversion with radiometer temperatures compare to radiosonde profiles as to: absolute dew point temperature errors in the lower troposphere have a maximum median offset of -2 K and maximum quartiles of 4.5 K. For relative humidity, we get a maximum mean offset of 7.3%, with standard deviations of 12-20%. The methodology presented allows us to reconstruct humidity profiles at any location where temperature profiles, but no atmospheric humidity measurements other than from GPS are available. Additional data sets of wet refractivity are shown to be easily integrated into the framework and strongly aid the reconstruction. Since the used data sets are all operational and available in near-realtime, we envisage the methodology of this paper to be a tool for nowcasting of clouds and rain and to understand processes in the boundary layer and at its top.
NASA Technical Reports Server (NTRS)
Gentry, R. C.; Rodgers, E.; Steranka, J.; Shenk, W. E.
1978-01-01
A regression technique was developed to forecast 24 hour changes of the maximum winds for weak (maximum winds less than or equal to 65 Kt) and strong (maximum winds greater than 65 Kt) tropical cyclones by utilizing satellite measured equivalent blackbody temperatures around the storm alone and together with the changes in maximum winds during the preceding 24 hours and the current maximum winds. Independent testing of these regression equations shows that the mean errors made by the equations are lower than the errors in forecasts made by the peristence techniques.
Relation of sound intensity and accuracy of localization.
Farrimond, T
1989-08-01
Tests were carried out on 17 subjects to determine the accuracy of monaural sound localization when the head is not free to turn toward the sound source. Maximum accuracy of localization for a constant-volume sound source coincided with the position for maximum perceived intensity of the sound in the front quadrant. There was a tendency for sounds to be perceived more often as coming from a position directly toward the ear. That is, for sounds in the front quadrant, errors of localization tended to be predominantly clockwise (i.e., biased toward a line directly facing the ear). Errors for sounds occurring in the rear quadrant tended to be anticlockwise. The pinna's differential effect on sound intensity between front and rear quadrants would assist in identifying the direction of movement of objects, for example an insect, passing the ear.
NASA Astrophysics Data System (ADS)
Hillman, B. R.; Marchand, R.; Ackerman, T. P.
2016-12-01
Satellite instrument simulators have emerged as a means to reduce errors in model evaluation by producing simulated or psuedo-retrievals from model fields, which account for limitations in the satellite retrieval process. Because of the mismatch in resolved scales between satellite retrievals and large-scale models, model cloud fields must first be downscaled to scales consistent with satellite retrievals. This downscaling is analogous to that required for model radiative transfer calculations. The assumption is often made in both model radiative transfer codes and satellite simulators that the unresolved clouds follow maximum-random overlap with horizontally homogeneous cloud condensate amounts. We examine errors in simulated MISR and CloudSat retrievals that arise due to these assumptions by applying the MISR and CloudSat simulators to cloud resolving model (CRM) output generated by the Super-parameterized Community Atmosphere Model (SP-CAM). Errors are quantified by comparing simulated retrievals performed directly on the CRM fields with those simulated by first averaging the CRM fields to approximately 2-degree resolution, applying a "subcolumn generator" to regenerate psuedo-resolved cloud and precipitation condensate fields, and then applying the MISR and CloudSat simulators on the regenerated condensate fields. We show that errors due to both assumptions of maximum-random overlap and homogeneous condensate are significant (relative to uncertainties in the observations and other simulator limitations). The treatment of precipitation is particularly problematic for CloudSat-simulated radar reflectivity. We introduce an improved subcolumn generator for use with the simulators, and show that these errors can be greatly reduced by replacing the maximum-random overlap assumption with the more realistic generalized overlap and incorporating a simple parameterization of subgrid-scale cloud and precipitation condensate heterogeneity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. SAND2016-7485 A
NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc
1998-01-01
In a coded communication system with equiprobable signaling, MLD minimizes the word error probability and delivers the most likely codeword associated with the corresponding received sequence. This decoding has two drawbacks. First, minimization of the word error probability is not equivalent to minimization of the bit error probability. Therefore, MLD becomes suboptimum with respect to the bit error probability. Second, MLD delivers a hard-decision estimate of the received sequence, so that information is lost between the input and output of the ML decoder. This information is important in coded schemes where the decoded sequence is further processed, such as concatenated coding schemes, multi-stage and iterative decoding schemes. In this chapter, we first present a decoding algorithm which both minimizes bit error probability, and provides the corresponding soft information at the output of the decoder. This algorithm is referred to as the MAP (maximum aposteriori probability) decoding algorithm.
Graf, Alexandra C; Bauer, Peter
2011-06-30
We calculate the maximum type 1 error rate of the pre-planned conventional fixed sample size test for comparing the means of independent normal distributions (with common known variance) which can be yielded when sample size and allocation rate to the treatment arms can be modified in an interim analysis. Thereby it is assumed that the experimenter fully exploits knowledge of the unblinded interim estimates of the treatment effects in order to maximize the conditional type 1 error rate. The 'worst-case' strategies require knowledge of the unknown common treatment effect under the null hypothesis. Although this is a rather hypothetical scenario it may be approached in practice when using a standard control treatment for which precise estimates are available from historical data. The maximum inflation of the type 1 error rate is substantially larger than derived by Proschan and Hunsberger (Biometrics 1995; 51:1315-1324) for design modifications applying balanced samples before and after the interim analysis. Corresponding upper limits for the maximum type 1 error rate are calculated for a number of situations arising from practical considerations (e.g. restricting the maximum sample size, not allowing sample size to decrease, allowing only increase in the sample size in the experimental treatment). The application is discussed for a motivating example. Copyright © 2011 John Wiley & Sons, Ltd.
Multipath induced errors in meteorological Doppler/interferometer location systems
NASA Technical Reports Server (NTRS)
Wallace, R. G.
1984-01-01
One application of an RF interferometer aboard a low-orbiting spacecraft to determine the location of ground-based transmitters is in tracking high-altitude balloons for meteorological studies. A source of error in this application is reflection of the signal from the sea surface. Through propagating and signal analysis, the magnitude of the reflection-induced error in both Doppler frequency measurements and interferometer phase measurements was estimated. The theory of diffuse scattering from random surfaces was applied to obtain the power spectral density of the reflected signal. The processing of the combined direct and reflected signals was then analyzed to find the statistics of the measurement error. It was found that the error varies greatly during the satellite overpass and attains its maximum value at closest approach. The maximum values of interferometer phase error and Doppler frequency error found for the system configuration considered were comparable to thermal noise-induced error.
Floating-point system quantization errors in digital control systems
NASA Technical Reports Server (NTRS)
Phillips, C. L.
1973-01-01
The results are reported of research into the effects on system operation of signal quantization in a digital control system. The investigation considered digital controllers (filters) operating in floating-point arithmetic in either open-loop or closed-loop systems. An error analysis technique is developed, and is implemented by a digital computer program that is based on a digital simulation of the system. As an output the program gives the programing form required for minimum system quantization errors (either maximum of rms errors), and the maximum and rms errors that appear in the system output for a given bit configuration. The program can be integrated into existing digital simulations of a system.
Tests for detecting overdispersion in models with measurement error in covariates.
Yang, Yingsi; Wong, Man Yu
2015-11-30
Measurement error in covariates can affect the accuracy in count data modeling and analysis. In overdispersion identification, the true mean-variance relationship can be obscured under the influence of measurement error in covariates. In this paper, we propose three tests for detecting overdispersion when covariates are measured with error: a modified score test and two score tests based on the proposed approximate likelihood and quasi-likelihood, respectively. The proposed approximate likelihood is derived under the classical measurement error model, and the resulting approximate maximum likelihood estimator is shown to have superior efficiency. Simulation results also show that the score test based on approximate likelihood outperforms the test based on quasi-likelihood and other alternatives in terms of empirical power. By analyzing a real dataset containing the health-related quality-of-life measurements of a particular group of patients, we demonstrate the importance of the proposed methods by showing that the analyses with and without measurement error correction yield significantly different results. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Piersol, Allan G.
1991-01-01
Analytical expressions have been derived to describe the mean square error in the estimation of the maximum rms value computed from a step-wise (or running) time average of a nonstationary random signal. These analytical expressions have been applied to the problem of selecting the optimum averaging times that will minimize the total mean square errors in estimates of the maximum sound pressure levels measured inside the Titan IV payload fairing (PLF) and the Space Shuttle payload bay (PLB) during lift-off. Based on evaluations of typical Titan IV and Space Shuttle launch data, it has been determined that the optimum averaging times for computing the maximum levels are (1) T (sub o) = 1.14 sec for the maximum overall level, and T(sub oi) = 4.88 f (sub i) (exp -0.2) sec for the maximum 1/3 octave band levels inside the Titan IV PLF, and (2) T (sub o) = 1.65 sec for the maximum overall level, and T (sub oi) = 7.10 f (sub i) (exp -0.2) sec for the maximum 1/3 octave band levels inside the Space Shuttle PLB, where f (sub i) is the 1/3 octave band center frequency. However, the results for both vehicles indicate that the total rms error in the maximum level estimates will be within 25 percent the minimum error for all averaging times within plus or minus 50 percent of the optimum averaging time, so a precise selection of the exact optimum averaging time is not critical. Based on these results, linear averaging times (T) are recommended for computing the maximum sound pressure level during lift-off.
Tarrab, Leticia; Garcia, Carlos M.; Cantero, Mariano I.; Oberg, Kevin
2012-01-01
This work presents a systematic analysis quantifying the role of the presence of turbulence fluctuations on uncertainties (random errors) of acoustic Doppler current profiler (ADCP) discharge measurements from moving platforms. Data sets of three-dimensional flow velocities with high temporal and spatial resolution were generated from direct numerical simulation (DNS) of turbulent open channel flow. Dimensionless functions relating parameters quantifying the uncertainty in discharge measurements due to flow turbulence (relative variance and relative maximum random error) to sampling configuration were developed from the DNS simulations and then validated with field-scale discharge measurements. The validated functions were used to evaluate the role of the presence of flow turbulence fluctuations on uncertainties in ADCP discharge measurements. The results of this work indicate that random errors due to the flow turbulence are significant when: (a) a low number of transects is used for a discharge measurement, and (b) measurements are made in shallow rivers using high boat velocity (short time for the boat to cross a flow turbulence structure).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, P
Purpose: To determine causal factors related to high frame definition error when treating GK patients using a pre-planning workflow. Methods: 160 cases were retrospectively reviewed. All patients received treatment using a pre-planning workflow whereby stereotactic coordinates are determined from a CT scan acquired after framing using a fiducial box. The planning software automatically detects the fiducials and compares their location to expected values based on the rigid design of the fiducial system. Any difference is reported as mean and maximum frame definition error. The manufacturer recommends these values be less than 1.0 mm and 1.5 mm. In this study, framemore » definition error was analyzed in comparison with a variety of factors including which neurosurgeon/oncologist/physicist was involved with the procedure, number of post used during framing (3 or 4), type of lesion, and which CT scanner was utilized for acquisition. An analysis of variance (ANOVA) approach was used to statistically evaluate the data and determine causal factors related to instances of high frame definition error. Results: Two factors were identified as significant: number of post (p=0.0003) and CT scanner (p=0.0001). Further analysis showed that one of the four scanners was significantly different than the others. This diagnostic scanner was identified as an older model with localization lasers not tightly calibrated. The average value for maximum frame definition error using this scanner was 1.48 mm (4 posts) and 1.75 mm (3 posts). For the other scanners this value was 1.13 mm (4 posts) and 1.40 mm (3 posts). Conclusion: In utilizing a pre-planning workflow the choice of CT scanner matters. Any scanner utilized for GK should undergo routine QA at a level appropriate for radiation oncology. In terms of 3 vs 4 post, it is hypothesized that three posts provide less stability during CT acquisition. This will be tested in future work.« less
Shimansky, Y P
2011-05-01
It is well known from numerous studies that perception can be significantly affected by intended action in many everyday situations, indicating that perception and related decision-making is not a simple, one-way sequence, but a complex iterative cognitive process. However, the underlying functional mechanisms are yet unclear. Based on an optimality approach, a quantitative computational model of one such mechanism has been developed in this study. It is assumed in the model that significant uncertainty about task-related parameters of the environment results in parameter estimation errors and an optimal control system should minimize the cost of such errors in terms of the optimality criterion. It is demonstrated that, if the cost of a parameter estimation error is significantly asymmetrical with respect to error direction, the tendency to minimize error cost creates a systematic deviation of the optimal parameter estimate from its maximum likelihood value. Consequently, optimization of parameter estimate and optimization of control action cannot be performed separately from each other under parameter uncertainty combined with asymmetry of estimation error cost, thus making the certainty equivalence principle non-applicable under those conditions. A hypothesis that not only the action, but also perception itself is biased by the above deviation of parameter estimate is supported by ample experimental evidence. The results provide important insights into the cognitive mechanisms of interaction between sensory perception and planning an action under realistic conditions. Implications for understanding related functional mechanisms of optimal control in the CNS are discussed.
Correcting for sequencing error in maximum likelihood phylogeny inference.
Kuhner, Mary K; McGill, James
2014-11-04
Accurate phylogenies are critical to taxonomy as well as studies of speciation processes and other evolutionary patterns. Accurate branch lengths in phylogenies are critical for dating and rate measurements. Such accuracy may be jeopardized by unacknowledged sequencing error. We use simulated data to test a correction for DNA sequencing error in maximum likelihood phylogeny inference. Over a wide range of data polymorphism and true error rate, we found that correcting for sequencing error improves recovery of the branch lengths, even if the assumed error rate is up to twice the true error rate. Low error rates have little effect on recovery of the topology. When error is high, correction improves topological inference; however, when error is extremely high, using an assumed error rate greater than the true error rate leads to poor recovery of both topology and branch lengths. The error correction approach tested here was proposed in 2004 but has not been widely used, perhaps because researchers do not want to commit to an estimate of the error rate. This study shows that correction with an approximate error rate is generally preferable to ignoring the issue. Copyright © 2014 Kuhner and McGill.
Kamneva, Olga K; Rosenberg, Noah A
2017-01-01
Hybridization events generate reticulate species relationships, giving rise to species networks rather than species trees. We report a comparative study of consensus, maximum parsimony, and maximum likelihood methods of species network reconstruction using gene trees simulated assuming a known species history. We evaluate the role of the divergence time between species involved in a hybridization event, the relative contributions of the hybridizing species, and the error in gene tree estimation. When gene tree discordance is mostly due to hybridization and not due to incomplete lineage sorting (ILS), most of the methods can detect even highly skewed hybridization events between highly divergent species. For recent divergences between hybridizing species, when the influence of ILS is sufficiently high, likelihood methods outperform parsimony and consensus methods, which erroneously identify extra hybridizations. The more sophisticated likelihood methods, however, are affected by gene tree errors to a greater extent than are consensus and parsimony. PMID:28469378
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pražnikar, Jure; University of Primorska,; Turk, Dušan, E-mail: dusan.turk@ijs.si
2014-12-01
The maximum-likelihood free-kick target, which calculates model error estimates from the work set and a randomly displaced model, proved superior in the accuracy and consistency of refinement of crystal structures compared with the maximum-likelihood cross-validation target, which calculates error estimates from the test set and the unperturbed model. The refinement of a molecular model is a computational procedure by which the atomic model is fitted to the diffraction data. The commonly used target in the refinement of macromolecular structures is the maximum-likelihood (ML) function, which relies on the assessment of model errors. The current ML functions rely on cross-validation. Theymore » utilize phase-error estimates that are calculated from a small fraction of diffraction data, called the test set, that are not used to fit the model. An approach has been developed that uses the work set to calculate the phase-error estimates in the ML refinement from simulating the model errors via the random displacement of atomic coordinates. It is called ML free-kick refinement as it uses the ML formulation of the target function and is based on the idea of freeing the model from the model bias imposed by the chemical energy restraints used in refinement. This approach for the calculation of error estimates is superior to the cross-validation approach: it reduces the phase error and increases the accuracy of molecular models, is more robust, provides clearer maps and may use a smaller portion of data for the test set for the calculation of R{sub free} or may leave it out completely.« less
Dosimetric Characteristics of Wedged Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidhu, N.P.S.; Breitman, Karen
2015-01-15
The beam characteristics of the wedged fields in the nonwedged planes (planes normal to the wedged planes) were studied for 6 MV and 15 MV x-ray beams. A method was proposed for determining the maximum field length of a wedged field that can be used in the nonwedged plane without introducing undesirable alterations in the dose distributions of these fields. The method requires very few measurements. The relative wedge factors of 6 MV and 15 MV X-rays were determined for wedge filters of nominal wedge angles of 15°, 30°, 45°, and 60° as a function of depth and field size.more » For a 6 MV beam the relative wedge factors determined for a field size of 10 × 10 cm{sup 2} for 30°, 45°, and 60° wedge filters can be used for various field sizes ranging from 4 cm{sup 2} to 20 cm{sup 2} (except for the 60° wedge for which the maximum field size that can be used is 15 × 20 cm{sup 2}) without introducing errors in the dosimetric calculations of more than 0.5% for depths up to 20 cm and 1% for depths up to 30 cm. For the 15° wedge filter the relative wedge factor for a field size of 10 × 10 cm{sup 2} can be used over the same range of field sizes by introducing slightly higher error, 0.5% for depths up to 10 cm and 1% for depths up to 30 cm. For a 15 MV beam the maximum magnitude of the relative wedge factors for 45° and 60° lead wedges is of the order of 1%, and it is not important clinically to apply a correction of that magnitude. For a 15 MV beam the relative wedge factors determined for a field size of 6 × 6 cm{sup 2} for the 15° and 30° steel wedges can be used over a range of field sizes from 4 cm{sup 2} to 20 cm{sup 2} without causing dosimetric errors greater than 0.5% for depths up to 10 cm.« less
Comparison of HRV parameters derived from photoplethysmography and electrocardiography signals.
Jeyhani, Vala; Mahdiani, Shadi; Peltokangas, Mikko; Vehkaoja, Antti
2015-01-01
Heart rate variability (HRV) has become a useful tool in analysis of cardiovascular system in both research and clinical fields. HRV has been also used in other applications such as stress level estimation in wearable devices. HRV is normally obtained from ECG as the time interval of two successive R waves. Recently PPG has been proposed as an alternative for ECG in HRV analysis to overcome some difficulties in measurement of ECG. In addition, PPG-HRV is also used in some commercial devices such as modern optical wrist-worn heart rate monitors. However, some researches have shown that PPG is not a surrogate for heart rate variability analysis. In this work, HRV analysis was applied on beat-to-beat intervals obtained from ECG and PPG in 19 healthy male subjects. Some important HRV parameters were calculated from PPG-HRV and ECG-HRV. Maximum of PPG and its second derivative were considered as two methods for obtaining the beat-to-beat signals from PPG and the results were compared with those achieved from ECG-HRV. Our results show that the smallest error happens in SDNN and SD2 with relative error of 2.46% and 2%, respectively. The most affected parameter is pNN50 with relative error of 29.89%. In addition, in our trial, using the maximum of PPG gave better results than its second derivative.
NASA Technical Reports Server (NTRS)
Holms, A. G.
1980-01-01
Population model coefficients were chosen to simulate a saturated 2 to the 4th fixed-effects experiment having an unfavorable distribution of relative values. Using random number studies, deletion strategies were compared that were based on the F-distribution, on an order statistics distribution of Cochran's, and on a combination of the two. The strategies were compared under the criterion of minimizing the maximum prediction error, wherever it occurred, among the two-level factorial points. The strategies were evaluated for each of the conditions of 0, 1, 2, 3, 4, 5, or 6 center points. Three classes of strategies were identified as being appropriate, depending on the extent of the experimenter's prior knowledge. In almost every case the best strategy was found to be unique according to the number of center points. Among the three classes of strategies, a security regret class of strategy was demonstrated as being widely useful in that over a range of coefficients of variation from 4 to 65%, the maximum predictive error was never increased by more than 12% over what it would have been if the best strategy had been used for the particular coefficient of variation. The relative efficiency of the experiment, when using the security regret strategy, was examined as a function of the number of center points, and was found to be best when the design used one center point.
NASA Astrophysics Data System (ADS)
Wu, Wei; Xu, An-Ding; Liu, Hong-Bin
2015-01-01
Climate data in gridded format are critical for understanding climate change and its impact on eco-environment. The aim of the current study is to develop spatial databases for three climate variables (maximum, minimum temperatures, and relative humidity) over a large region with complex topography in southwestern China. Five widely used approaches including inverse distance weighting, ordinary kriging, universal kriging, co-kriging, and thin-plate smoothing spline were tested. Root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) showed that thin-plate smoothing spline with latitude, longitude, and elevation outperformed other models. Average RMSE, MAE, and MAPE of the best models were 1.16 °C, 0.74 °C, and 7.38 % for maximum temperature; 0.826 °C, 0.58 °C, and 6.41 % for minimum temperature; and 3.44, 2.28, and 3.21 % for relative humidity, respectively. Spatial datasets of annual and monthly climate variables with 1-km resolution covering the period 1961-2010 were then obtained using the best performance methods. Comparative study showed that the current outcomes were in well agreement with public datasets. Based on the gridded datasets, changes in temperature variables were investigated across the study area. Future study might be needed to capture the uncertainty induced by environmental conditions through remote sensing and knowledge-based methods.
NASA Astrophysics Data System (ADS)
Mehdizadeh, Saeid; Behmanesh, Javad; Khalili, Keivan
2016-08-01
In the present research, three artificial intelligence methods including Gene Expression Programming (GEP), Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) as well as, 48 empirical equations (10, 12 and 26 equations were temperature-based, sunshine-based and meteorological parameters-based, respectively) were used to estimate daily solar radiation in Kerman, Iran in the period of 1992-2009. To develop the GEP, ANN and ANFIS models, depending on the used empirical equations, various combinations of minimum air temperature, maximum air temperature, mean air temperature, extraterrestrial radiation, actual sunshine duration, maximum possible sunshine duration, sunshine duration ratio, relative humidity and precipitation were considered as inputs in the mentioned intelligent methods. To compare the accuracy of empirical equations and intelligent models, root mean square error (RMSE), mean absolute error (MAE), mean absolute relative error (MARE) and determination coefficient (R2) indices were used. The results showed that in general, sunshine-based and meteorological parameters-based scenarios in ANN and ANFIS models presented high accuracy than mentioned empirical equations. Moreover, the most accurate method in the studied region was ANN11 scenario with five inputs. The values of RMSE, MAE, MARE and R2 indices for the mentioned model were 1.850 MJ m-2 day-1, 1.184 MJ m-2 day-1, 9.58% and 0.935, respectively.
Application of CCG Sensors to a High-Temperature Structure Subjected to Thermo-Mechanical Load.
Xie, Weihua; Meng, Songhe; Jin, Hua; Du, Chong; Wang, Libin; Peng, Tao; Scarpa, Fabrizio; Xu, Chenghai
2016-10-13
This paper presents a simple methodology to perform a high temperature coupled thermo-mechanical test using ultra-high temperature ceramic material specimens (UHTCs), which are equipped with chemical composition gratings sensors (CCGs). The methodology also considers the presence of coupled loading within the response provided by the CCG sensors. The theoretical strain of the UHTCs specimens calculated with this technique shows a maximum relative error of 2.15% between the analytical and experimental data. To further verify the validity of the results from the tests, a Finite Element (FE) model has been developed to simulate the temperature, stress and strain fields within the UHTC structure equipped with the CCG. The results show that the compressive stress exceeds the material strength at the bonding area, and this originates a failure by fracture of the supporting structure in the hot environment. The results related to the strain fields show that the relative error with the experimental data decrease with an increase of temperature. The relative error is less than 15% when the temperature is higher than 200 °C, and only 6.71% at 695 °C.
NASA Astrophysics Data System (ADS)
Xiong, Qiufen; Hu, Jianglin
2013-05-01
The minimum/maximum (Min/Max) temperature in the Yangtze River valley is decomposed into the climatic mean and anomaly component. A spatial interpolation is developed which combines the 3D thin-plate spline scheme for climatological mean and the 2D Barnes scheme for the anomaly component to create a daily Min/Max temperature dataset. The climatic mean field is obtained by the 3D thin-plate spline scheme because the relationship between the decreases in Min/Max temperature with elevation is robust and reliable on a long time-scale. The characteristics of the anomaly field tend to be related to elevation variation weakly, and the anomaly component is adequately analyzed by the 2D Barnes procedure, which is computationally efficient and readily tunable. With this hybridized interpolation method, a daily Min/Max temperature dataset that covers the domain from 99°E to 123°E and from 24°N to 36°N with 0.1° longitudinal and latitudinal resolution is obtained by utilizing daily Min/Max temperature data from three kinds of station observations, which are national reference climatological stations, the basic meteorological observing stations and the ordinary meteorological observing stations in 15 provinces and municipalities in the Yangtze River valley from 1971 to 2005. The error estimation of the gridded dataset is assessed by examining cross-validation statistics. The results show that the statistics of daily Min/Max temperature interpolation not only have high correlation coefficient (0.99) and interpolation efficiency (0.98), but also the mean bias error is 0.00 °C. For the maximum temperature, the root mean square error is 1.1 °C and the mean absolute error is 0.85 °C. For the minimum temperature, the root mean square error is 0.89 °C and the mean absolute error is 0.67 °C. Thus, the new dataset provides the distribution of Min/Max temperature over the Yangtze River valley with realistic, successive gridded data with 0.1° × 0.1° spatial resolution and daily temporal scale. The primary factors influencing the dataset precision are elevation and terrain complexity. In general, the gridded dataset has a relatively high precision in plains and flatlands and a relatively low precision in mountainous areas.
NASA Astrophysics Data System (ADS)
Li, Xiongwei; Wang, Zhe; Lui, Siu-Lung; Fu, Yangting; Li, Zheng; Liu, Jianming; Ni, Weidou
2013-10-01
A bottleneck of the wide commercial application of laser-induced breakdown spectroscopy (LIBS) technology is its relatively high measurement uncertainty. A partial least squares (PLS) based normalization method was proposed to improve pulse-to-pulse measurement precision for LIBS based on our previous spectrum standardization method. The proposed model utilized multi-line spectral information of the measured element and characterized the signal fluctuations due to the variation of plasma characteristic parameters (plasma temperature, electron number density, and total number density) for signal uncertainty reduction. The model was validated by the application of copper concentration prediction in 29 brass alloy samples. The results demonstrated an improvement on both measurement precision and accuracy over the generally applied normalization as well as our previously proposed simplified spectrum standardization method. The average relative standard deviation (RSD), average of the standard error (error bar), the coefficient of determination (R2), the root-mean-square error of prediction (RMSEP), and average value of the maximum relative error (MRE) were 1.80%, 0.23%, 0.992, 1.30%, and 5.23%, respectively, while those for the generally applied spectral area normalization were 3.72%, 0.71%, 0.973, 1.98%, and 14.92%, respectively.
Coordinated design of coding and modulation systems
NASA Technical Reports Server (NTRS)
Massey, J. L.
1976-01-01
Work on partial unit memory codes continued; it was shown that for a given virtual state complexity, the maximum free distance over the class of all convolutional codes is achieved within the class of unit memory codes. The effect of phase-lock loop (PLL) tracking error on coding system performance was studied by using the channel cut-off rate as the measure of quality of a modulation system. Optimum modulation signal sets for a non-white Gaussian channel considered an heuristic selection rule based on a water-filling argument. The use of error correcting codes to perform data compression by the technique of syndrome source coding was researched and a weight-and-error-locations scheme was developed that is closely related to LDSC coding.
An Investigation of the Standard Errors of Expected A Posteriori Ability Estimates.
ERIC Educational Resources Information Center
De Ayala, R. J.; And Others
Expected a posteriori has a number of advantages over maximum likelihood estimation or maximum a posteriori (MAP) estimation methods. These include ability estimates (thetas) for all response patterns, less regression towards the mean than MAP ability estimates, and a lower average squared error. R. D. Bock and R. J. Mislevy (1982) state that the…
Bartlett, Jonathan W; Keogh, Ruth H
2018-06-01
Bayesian approaches for handling covariate measurement error are well established and yet arguably are still relatively little used by researchers. For some this is likely due to unfamiliarity or disagreement with the Bayesian inferential paradigm. For others a contributory factor is the inability of standard statistical packages to perform such Bayesian analyses. In this paper, we first give an overview of the Bayesian approach to handling covariate measurement error, and contrast it with regression calibration, arguably the most commonly adopted approach. We then argue why the Bayesian approach has a number of statistical advantages compared to regression calibration and demonstrate that implementing the Bayesian approach is usually quite feasible for the analyst. Next, we describe the closely related maximum likelihood and multiple imputation approaches and explain why we believe the Bayesian approach to generally be preferable. We then empirically compare the frequentist properties of regression calibration and the Bayesian approach through simulation studies. The flexibility of the Bayesian approach to handle both measurement error and missing data is then illustrated through an analysis of data from the Third National Health and Nutrition Examination Survey.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobb, Eric, E-mail: eclobb2@gmail.com
2014-04-01
The dosimetric effect of errors in patient position is studied on-phantom as a function of simulated bolus thickness to assess the need for bolus utilization in scalp radiotherapy with tomotherapy. A treatment plan is generated on a cylindrical phantom, mimicking a radiotherapy technique for the scalp utilizing primarily tangential beamlets. A planning target volume with embedded scalplike clinical target volumes (CTVs) is planned to a uniform dose of 200 cGy. Translational errors in phantom position are introduced in 1-mm increments and dose is recomputed from the original sinogram. For each error the maximum dose, minimum dose, clinical target dose homogeneitymore » index (HI), and dose-volume histogram (DVH) are presented for simulated bolus thicknesses from 0 to 10 mm. Baseline HI values for all bolus thicknesses were in the 5.5 to 7.0 range, increasing to a maximum of 18.0 to 30.5 for the largest positioning errors when 0 to 2 mm of bolus is used. Utilizing 5 mm of bolus resulted in a maximum HI value of 9.5 for the largest positioning errors. Using 0 to 2 mm of bolus resulted in minimum and maximum dose values of 85% to 94% and 118% to 125% of the prescription dose, respectively. When using 5 mm of bolus these values were 98.5% and 109.5%. DVHs showed minimal changes in CTV dose coverage when using 5 mm of bolus, even for the largest positioning errors. CTV dose homogeneity becomes increasingly sensitive to errors in patient position as bolus thickness decreases when treating the scalp with primarily tangential beamlets. Performing a radial expansion of the scalp CTV into 5 mm of bolus material minimizes dosimetric sensitivity to errors in patient position as large as 5 mm and is therefore recommended.« less
A crowdsourcing workflow for extracting chemical-induced disease relations from free text
Li, Tong Shu; Bravo, Àlex; Furlong, Laura I.; Good, Benjamin M.; Su, Andrew I.
2016-01-01
Relations between chemicals and diseases are one of the most queried biomedical interactions. Although expert manual curation is the standard method for extracting these relations from the literature, it is expensive and impractical to apply to large numbers of documents, and therefore alternative methods are required. We describe here a crowdsourcing workflow for extracting chemical-induced disease relations from free text as part of the BioCreative V Chemical Disease Relation challenge. Five non-expert workers on the CrowdFlower platform were shown each potential chemical-induced disease relation highlighted in the original source text and asked to make binary judgments about whether the text supported the relation. Worker responses were aggregated through voting, and relations receiving four or more votes were predicted as true. On the official evaluation dataset of 500 PubMed abstracts, the crowd attained a 0.505 F-score (0.475 precision, 0.540 recall), with a maximum theoretical recall of 0.751 due to errors with named entity recognition. The total crowdsourcing cost was $1290.67 ($2.58 per abstract) and took a total of 7 h. A qualitative error analysis revealed that 46.66% of sampled errors were due to task limitations and gold standard errors, indicating that performance can still be improved. All code and results are publicly available at https://github.com/SuLab/crowd_cid_relex Database URL: https://github.com/SuLab/crowd_cid_relex PMID:27087308
ERIC Educational Resources Information Center
Song, Xin-Yuan; Lee, Sik-Yum
2006-01-01
Structural equation models are widely appreciated in social-psychological research and other behavioral research to model relations between latent constructs and manifest variables and to control for measurement error. Most applications of SEMs are based on fully observed continuous normal data and models with a linear structural equation.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petyuk, Vladislav A.; Mayampurath, Anoop M.; Monroe, Matthew E.
2009-12-16
Hybrid two-stage mass spectrometers capable of both highly accurate mass measurement and MS/MS fragmentation have become widely available in recent years and have allowed for sig-nificantly better discrimination between true and false MS/MS pep-tide identifications by applying relatively narrow windows for maxi-mum allowable deviations for parent ion mass measurements. To fully gain the advantage of highly accurate parent ion mass meas-urements, it is important to limit systematic mass measurement errors. The DtaRefinery software tool can correct systematic errors in parent ion masses by reading a set of fragmentation spectra, searching for MS/MS peptide identifications, then fitting a model that canmore » estimate systematic errors, and removing them. This results in a new fragmentation spectrum file with updated parent ion masses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damato, Antonio L., E-mail: adamato@lroc.harvard.edu; Viswanathan, Akila N.; Don, Sarah M.
2014-10-15
Purpose: To investigate the use of a system using electromagnetic tracking (EMT), post-processing and an error-detection algorithm for detecting errors and resolving uncertainties in high-dose-rate brachytherapy catheter digitization for treatment planning. Methods: EMT was used to localize 15 catheters inserted into a phantom using a stepwise acquisition technique. Five distinct acquisition experiments were performed. Noise associated with the acquisition was calculated. The dwell location configuration was extracted from the EMT data. A CT scan of the phantom was performed, and five distinct catheter digitization sessions were performed. No a priori registration of the CT scan coordinate system with the EMTmore » coordinate system was performed. CT-based digitization was automatically extracted from the brachytherapy plan DICOM files (CT), and rigid registration was performed between EMT and CT dwell positions. EMT registration error was characterized in terms of the mean and maximum distance between corresponding EMT and CT dwell positions per catheter. An algorithm for error detection and identification was presented. Three types of errors were systematically simulated: swap of two catheter numbers, partial swap of catheter number identification for parts of the catheters (mix), and catheter-tip shift. Error-detection sensitivity (number of simulated scenarios correctly identified as containing an error/number of simulated scenarios containing an error) and specificity (number of scenarios correctly identified as not containing errors/number of correct scenarios) were calculated. Catheter identification sensitivity (number of catheters correctly identified as erroneous across all scenarios/number of erroneous catheters across all scenarios) and specificity (number of catheters correctly identified as correct across all scenarios/number of correct catheters across all scenarios) were calculated. The mean detected and identified shift was calculated. Results: The maximum noise ±1 standard deviation associated with the EMT acquisitions was 1.0 ± 0.1 mm, and the mean noise was 0.6 ± 0.1 mm. Registration of all the EMT and CT dwell positions was associated with a mean catheter error of 0.6 ± 0.2 mm, a maximum catheter error of 0.9 ± 0.4 mm, a mean dwell error of 1.0 ± 0.3 mm, and a maximum dwell error of 1.3 ± 0.7 mm. Error detection and catheter identification sensitivity and specificity of 100% were observed for swap, mix and shift (≥2.6 mm for error detection; ≥2.7 mm for catheter identification) errors. A mean detected shift of 1.8 ± 0.4 mm and a mean identified shift of 1.9 ± 0.4 mm were observed. Conclusions: Registration of the EMT dwell positions to the CT dwell positions was possible with a residual mean error per catheter of 0.6 ± 0.2 mm and a maximum error for any dwell of 1.3 ± 0.7 mm. These low residual registration errors show that quality assurance of the general characteristics of the catheters and of possible errors affecting one specific dwell position is possible. The sensitivity and specificity of the catheter digitization verification algorithm was 100% for swap and mix errors and for shifts ≥2.6 mm. On average, shifts ≥1.8 mm were detected, and shifts ≥1.9 mm were detected and identified.« less
Aquatic habitat mapping with an acoustic doppler current profiler: Considerations for data quality
Gaeuman, David; Jacobson, Robert B.
2005-01-01
When mounted on a boat or other moving platform, acoustic Doppler current profilers (ADCPs) can be used to map a wide range of ecologically significant phenomena, including measures of fluid shear, turbulence, vorticity, and near-bed sediment transport. However, the instrument movement necessary for mapping applications can generate significant errors, many of which have not been inadequately described. This report focuses on the mechanisms by which moving-platform errors are generated, and quantifies their magnitudes under typical habitat-mapping conditions. The potential for velocity errors caused by mis-alignment of the instrument?s internal compass are widely recognized, but has not previously been quantified for moving instruments. Numerical analyses show that even relatively minor compass mis-alignments can produce significant velocity errors, depending on the ratio of absolute instrument velocity to the target velocity and on the relative directions of instrument and target motion. A maximum absolute instrument velocity of about 1 m/s is recommended for most mapping applications. Lower velocities are appropriate when making bed velocity measurements, an emerging application that makes use of ADCP bottom-tracking to measure the velocity of sediment particles at the bed. The mechanisms by which heterogeneities in the flow velocity field generate horizontal velocities errors are also quantified, and some basic limitations in the effectiveness of standard error-detection criteria for identifying these errors are described. Bed velocity measurements may be particularly vulnerable to errors caused by spatial variability in the sediment transport field.
Examining impulse-variability in overarm throwing.
Urbin, M A; Stodden, David; Boros, Rhonda; Shannon, David
2012-01-01
The purpose of this study was to examine variability in overarm throwing velocity and spatial output error at various percentages of maximum to test the prediction of an inverted-U function as predicted by impulse-variability theory and a speed-accuracy trade-off as predicted by Fitts' Law Thirty subjects (16 skilled, 14 unskilled) were instructed to throw a tennis ball at seven percentages of their maximum velocity (40-100%) in random order (9 trials per condition) at a target 30 feet away. Throwing velocity was measured with a radar gun and interpreted as an index of overall systemic power output. Within-subject throwing velocity variability was examined using within-subjects repeated-measures ANOVAs (7 repeated conditions) with built-in polynomial contrasts. Spatial error was analyzed using mixed model regression. Results indicated a quadratic fit with variability in throwing velocity increasing from 40% up to 60%, where it peaked, and then decreasing at each subsequent interval to maximum (p < .001, η2 = .555). There was no linear relationship between speed and accuracy. Overall, these data support the notion of an inverted-U function in overarm throwing velocity variability as both skilled and unskilled subjects approach maximum effort. However, these data do not support the notion of a speed-accuracy trade-off. The consistent demonstration of an inverted-U function associated with systemic power output variability indicates an enhanced capability to regulate aspects of force production and relative timing between segments as individuals approach maximum effort, even in a complex ballistic skill.
An online detection system for aggregate sizes and shapes based on digital image processing
NASA Astrophysics Data System (ADS)
Yang, Jianhong; Chen, Sijia
2017-02-01
Traditional aggregate size measuring methods are time-consuming, taxing, and do not deliver online measurements. A new online detection system for determining aggregate size and shape based on a digital camera with a charge-coupled device, and subsequent digital image processing, have been developed to overcome these problems. The system captures images of aggregates while falling and flat lying. Using these data, the particle size and shape distribution can be obtained in real time. Here, we calibrate this method using standard globules. Our experiments show that the maximum particle size distribution error was only 3 wt%, while the maximum particle shape distribution error was only 2 wt% for data derived from falling aggregates, having good dispersion. In contrast, the data for flat-lying aggregates had a maximum particle size distribution error of 12 wt%, and a maximum particle shape distribution error of 10 wt%; their accuracy was clearly lower than for falling aggregates. However, they performed well for single-graded aggregates, and did not require a dispersion device. Our system is low-cost and easy to install. It can successfully achieve online detection of aggregate size and shape with good reliability, and it has great potential for aggregate quality assurance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Able, CM; Baydush, AH; Nguyen, C
Purpose: To determine the effectiveness of SPC analysis for a model predictive maintenance process that uses accelerator generated parameter and performance data contained in trajectory log files. Methods: Each trajectory file is decoded and a total of 131 axes positions are recorded (collimator jaw position, gantry angle, each MLC, etc.). This raw data is processed and either axis positions are extracted at critical points during the delivery or positional change over time is used to determine axis velocity. The focus of our analysis is the accuracy, reproducibility and fidelity of each axis. A reference positional trace of the gantry andmore » each MLC is used as a motion baseline for cross correlation (CC) analysis. A total of 494 parameters (482 MLC related) were analyzed using Individual and Moving Range (I/MR) charts. The chart limits were calculated using a hybrid technique that included the use of the standard 3σ limits and parameter/system specifications. Synthetic errors/changes were introduced to determine the initial effectiveness of I/MR charts in detecting relevant changes in operating parameters. The magnitude of the synthetic errors/changes was based on: TG-142 and published analysis of VMAT delivery accuracy. Results: All errors introduced were detected. Synthetic positional errors of 2mm for collimator jaw and MLC carriage exceeded the chart limits. Gantry speed and each MLC speed are analyzed at two different points in the delivery. Simulated Gantry speed error (0.2 deg/sec) and MLC speed error (0.1 cm/sec) exceeded the speed chart limits. Gantry position error of 0.2 deg was detected by the CC maximum value charts. The MLC position error of 0.1 cm was detected by the CC maximum value location charts for every MLC. Conclusion: SPC I/MR evaluation of trajectory log file parameters may be effective in providing an early warning of performance degradation or component failure for medical accelerator systems.« less
Bayesian logistic regression approaches to predict incorrect DRG assignment.
Suleiman, Mani; Demirhan, Haydar; Boyd, Leanne; Girosi, Federico; Aksakalli, Vural
2018-05-07
Episodes of care involving similar diagnoses and treatments and requiring similar levels of resource utilisation are grouped to the same Diagnosis-Related Group (DRG). In jurisdictions which implement DRG based payment systems, DRGs are a major determinant of funding for inpatient care. Hence, service providers often dedicate auditing staff to the task of checking that episodes have been coded to the correct DRG. The use of statistical models to estimate an episode's probability of DRG error can significantly improve the efficiency of clinical coding audits. This study implements Bayesian logistic regression models with weakly informative prior distributions to estimate the likelihood that episodes require a DRG revision, comparing these models with each other and to classical maximum likelihood estimates. All Bayesian approaches had more stable model parameters than maximum likelihood. The best performing Bayesian model improved overall classification per- formance by 6% compared to maximum likelihood, with a 34% gain compared to random classification, respectively. We found that the original DRG, coder and the day of coding all have a significant effect on the likelihood of DRG error. Use of Bayesian approaches has improved model parameter stability and classification accuracy. This method has already lead to improved audit efficiency in an operational capacity.
Fast maximum likelihood estimation using continuous-time neural point process models.
Lepage, Kyle Q; MacDonald, Christopher J
2015-06-01
A recent report estimates that the number of simultaneously recorded neurons is growing exponentially. A commonly employed statistical paradigm using discrete-time point process models of neural activity involves the computation of a maximum-likelihood estimate. The time to computate this estimate, per neuron, is proportional to the number of bins in a finely spaced discretization of time. By using continuous-time models of neural activity and the optimally efficient Gaussian quadrature, memory requirements and computation times are dramatically decreased in the commonly encountered situation where the number of parameters p is much less than the number of time-bins n. In this regime, with q equal to the quadrature order, memory requirements are decreased from O(np) to O(qp), and the number of floating-point operations are decreased from O(np(2)) to O(qp(2)). Accuracy of the proposed estimates is assessed based upon physiological consideration, error bounds, and mathematical results describing the relation between numerical integration error and numerical error affecting both parameter estimates and the observed Fisher information. A check is provided which is used to adapt the order of numerical integration. The procedure is verified in simulation and for hippocampal recordings. It is found that in 95 % of hippocampal recordings a q of 60 yields numerical error negligible with respect to parameter estimate standard error. Statistical inference using the proposed methodology is a fast and convenient alternative to statistical inference performed using a discrete-time point process model of neural activity. It enables the employment of the statistical methodology available with discrete-time inference, but is faster, uses less memory, and avoids any error due to discretization.
A Model of Self-Monitoring Blood Glucose Measurement Error.
Vettoretti, Martina; Facchinetti, Andrea; Sparacino, Giovanni; Cobelli, Claudio
2017-07-01
A reliable model of the probability density function (PDF) of self-monitoring of blood glucose (SMBG) measurement error would be important for several applications in diabetes, like testing in silico insulin therapies. In the literature, the PDF of SMBG error is usually described by a Gaussian function, whose symmetry and simplicity are unable to properly describe the variability of experimental data. Here, we propose a new methodology to derive more realistic models of SMBG error PDF. The blood glucose range is divided into zones where error (absolute or relative) presents a constant standard deviation (SD). In each zone, a suitable PDF model is fitted by maximum-likelihood to experimental data. Model validation is performed by goodness-of-fit tests. The method is tested on two databases collected by the One Touch Ultra 2 (OTU2; Lifescan Inc, Milpitas, CA) and the Bayer Contour Next USB (BCN; Bayer HealthCare LLC, Diabetes Care, Whippany, NJ). In both cases, skew-normal and exponential models are used to describe the distribution of errors and outliers, respectively. Two zones were identified: zone 1 with constant SD absolute error; zone 2 with constant SD relative error. Goodness-of-fit tests confirmed that identified PDF models are valid and superior to Gaussian models used so far in the literature. The proposed methodology allows to derive realistic models of SMBG error PDF. These models can be used in several investigations of present interest in the scientific community, for example, to perform in silico clinical trials to compare SMBG-based with nonadjunctive CGM-based insulin treatments.
Identification of dynamic systems, theory and formulation
NASA Technical Reports Server (NTRS)
Maine, R. E.; Iliff, K. W.
1985-01-01
The problem of estimating parameters of dynamic systems is addressed in order to present the theoretical basis of system identification and parameter estimation in a manner that is complete and rigorous, yet understandable with minimal prerequisites. Maximum likelihood and related estimators are highlighted. The approach used requires familiarity with calculus, linear algebra, and probability, but does not require knowledge of stochastic processes or functional analysis. The treatment emphasizes unification of the various areas in estimation in dynamic systems is treated as a direct outgrowth of the static system theory. Topics covered include basic concepts and definitions; numerical optimization methods; probability; statistical estimators; estimation in static systems; stochastic processes; state estimation in dynamic systems; output error, filter error, and equation error methods of parameter estimation in dynamic systems, and the accuracy of the estimates.
Correlation of clinical predictions and surgical results in maxillary superior repositioning.
Tabrizi, Reza; Zamiri, Barbad; Kazemi, Hamidreza
2014-05-01
This is a prospective study to evaluate the accuracy of clinical predictions related to surgical results in subjects who underwent maxillary superior repositioning without anterior-posterior movement. Surgeons' predictions according to clinical (tooth show at rest and at the maximum smile) and cephalometric evaluation were documented for the amount of maxillary superior repositioning. Overcorrection or undercorrection was documented for every subject 1 year after the operations. Receiver operating characteristic curve test was used to find a cutoff point in prediction errors and to determine positive predictive value (PPV) and negative predictive value. Forty subjects (14 males and 26 females) were studied. Results showed a significant difference between changes in the tooth show at rest and at the maximum smile line before and after surgery. Analysis of the data demonstrated no correlation between the predictive data and the surgical results. The incidence of undercorrection (25%) was more common than overcorrection (7.5%). The cutoff point for errors in predictions was 5 mm for tooth show at rest and 15 mm at the maximum smile. When the amount of the presurgical tooth show at rest was more than 5 mm, 50.5% of clinical predictions did not match the clinical results (PPV), and 75% of clinical predictions showed the same results when the tooth show was less than 5 mm (negative predictive value). When the amount of presurgical tooth shown in the maximum smile line was more than 15 mm, 75% of clinical predictions did not match with clinical results (PPV), and 25% of the predictions had the same results because the tooth show at the maximum smile was lower than 15 mm. Clinical predictions according to the tooth show at rest and at the maximum smile have a poor correlation with clinical results in maxillary superior repositioning for vertical maxillary excess. The risk of errors in predictions increased when the amount of superior repositioning of the maxilla increased. Generally, surgeons have a tendency to undercorrect rather than overcorrect, although clinical prediction is an original guideline for surgeons, and it may be associated with variable clinical results.
Regional application of multi-layer artificial neural networks in 3-D ionosphere tomography
NASA Astrophysics Data System (ADS)
Ghaffari Razin, Mir Reza; Voosoghi, Behzad
2016-08-01
Tomography is a very cost-effective method to study physical properties of the ionosphere. In this paper, residual minimization training neural network (RMTNN) is used in voxel-based tomography to reconstruct of 3-D ionosphere electron density with high spatial resolution. For numerical experiments, observations collected at 37 GPS stations from Iranian permanent GPS network (IPGN) are used. A smoothed TEC approach was used for absolute STEC recovery. To improve the vertical resolution, empirical orthogonal functions (EOFs) obtained from international reference ionosphere 2012 (IRI-2012) used as object function in training neural network. Ionosonde observations is used for validate reliability of the proposed method. Minimum relative error for RMTNN is 1.64% and maximum relative error is 15.61%. Also root mean square error (RMSE) of 0.17 × 1011 (electrons/m3) is computed for RMTNN which is less than RMSE of IRI2012. The results show that RMTNN has higher accuracy and compiles speed than other ionosphere reconstruction methods.
Waltemeyer, Scott D.
2008-01-01
Estimates of the magnitude and frequency of peak discharges are necessary for the reliable design of bridges, culverts, and open-channel hydraulic analysis, and for flood-hazard mapping in New Mexico and surrounding areas. The U.S. Geological Survey, in cooperation with the New Mexico Department of Transportation, updated estimates of peak-discharge magnitude for gaging stations in the region and updated regional equations for estimation of peak discharge and frequency at ungaged sites. Equations were developed for estimating the magnitude of peak discharges for recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years at ungaged sites by use of data collected through 2004 for 293 gaging stations on unregulated streams that have 10 or more years of record. Peak discharges for selected recurrence intervals were determined at gaging stations by fitting observed data to a log-Pearson Type III distribution with adjustments for a low-discharge threshold and a zero skew coefficient. A low-discharge threshold was applied to frequency analysis of 140 of the 293 gaging stations. This application provides an improved fit of the log-Pearson Type III frequency distribution. Use of the low-discharge threshold generally eliminated the peak discharge by having a recurrence interval of less than 1.4 years in the probability-density function. Within each of the nine regions, logarithms of the maximum peak discharges for selected recurrence intervals were related to logarithms of basin and climatic characteristics by using stepwise ordinary least-squares regression techniques for exploratory data analysis. Generalized least-squares regression techniques, an improved regression procedure that accounts for time and spatial sampling errors, then were applied to the same data used in the ordinary least-squares regression analyses. The average standard error of prediction, which includes average sampling error and average standard error of regression, ranged from 38 to 93 percent (mean value is 62, and median value is 59) for the 100-year flood. The 1996 investigation standard error of prediction for the flood regions ranged from 41 to 96 percent (mean value is 67, and median value is 68) for the 100-year flood that was analyzed by using generalized least-squares regression analysis. Overall, the equations based on generalized least-squares regression techniques are more reliable than those in the 1996 report because of the increased length of record and improved geographic information system (GIS) method to determine basin and climatic characteristics. Flood-frequency estimates can be made for ungaged sites upstream or downstream from gaging stations by using a method that transfers flood-frequency data at the gaging station to the ungaged site by using a drainage-area ratio adjustment equation. The peak discharge for a given recurrence interval at the gaging station, drainage-area ratio, and the drainage-area exponent from the regional regression equation of the respective region is used to transfer the peak discharge for the recurrence interval to the ungaged site. Maximum observed peak discharge as related to drainage area was determined for New Mexico. Extreme events are commonly used in the design and appraisal of bridge crossings and other structures. Bridge-scour evaluations are commonly made by using the 500-year peak discharge for these appraisals. Peak-discharge data collected at 293 gaging stations and 367 miscellaneous sites were used to develop a maximum peak-discharge relation as an alternative method of estimating peak discharge of an extreme event such as a maximum probable flood.
Impact of spot charge inaccuracies in IMPT treatments.
Kraan, Aafke C; Depauw, Nicolas; Clasie, Ben; Giunta, Marina; Madden, Tom; Kooy, Hanne M
2017-08-01
Spot charge is one parameter of pencil-beam scanning dose delivery system whose accuracy is typically high but whose required value has not been investigated. In this work we quantify the dose impact of spot charge inaccuracies on the dose distribution in patients. Knowing the effect of charge errors is relevant for conventional proton machines, as well as for new generation proton machines, where ensuring accurate charge may be challenging. Through perturbation of spot charge in treatment plans for seven patients and a phantom, we evaluated the dose impact of absolute (up to 5× 10 6 protons) and relative (up to 30%) charge errors. We investigated the dependence on beam width by studying scenarios with small, medium and large beam sizes. Treatment plan statistics included the Γ passing rate, dose-volume-histograms and dose differences. The allowable absolute charge error for small spot plans was about 2× 10 6 protons. Larger limits would be allowed if larger spots were used. For relative errors, the maximum allowable error size for small, medium and large spots was about 13%, 8% and 6% for small, medium and large spots, respectively. Dose distributions turned out to be surprisingly robust against random spot charge perturbation. Our study suggests that ensuring spot charge errors as small as 1-2% as is commonly aimed at in conventional proton therapy machines, is clinically not strictly needed. © 2017 American Association of Physicists in Medicine.
The Infrared Hubble Diagram of Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Krisciunas, Kevin
Photometry of Type Ia supernovae reveals that these objects are standardizable candles in optical passbands - the peak luminosities are related to the rate of decline after maximum light. In the near-infrared bands, there is essentially a characteristic brightness at maximum light for each photometric band. Thus, in the near-infrared they are better than standardizable candles; they are essentially standard candles. Their absolute magnitudes are known to ±0.15 magnitude or better. The infrared observations have the extra advantage that interstellar extinction by dust along the line of sight is a factor of 3-10 smaller than in the optical B- and V -bands. The size of any systematic errors in the infrared extinction corrections typically become smaller than the photometric errors of the observations. Thus, we can obtain distances to the hosts of Type Ia supernovae to ±8 % or better. This is particularly useful for extragalactic astronomy and precise measurements of the dark energy component of the universe.
Application of CCG Sensors to a High-Temperature Structure Subjected to Thermo-Mechanical Load
Xie, Weihua; Meng, Songhe; Jin, Hua; Du, Chong; Wang, Libin; Peng, Tao; Scarpa, Fabrizio; Xu, Chenghai
2016-01-01
This paper presents a simple methodology to perform a high temperature coupled thermo-mechanical test using ultra-high temperature ceramic material specimens (UHTCs), which are equipped with chemical composition gratings sensors (CCGs). The methodology also considers the presence of coupled loading within the response provided by the CCG sensors. The theoretical strain of the UHTCs specimens calculated with this technique shows a maximum relative error of 2.15% between the analytical and experimental data. To further verify the validity of the results from the tests, a Finite Element (FE) model has been developed to simulate the temperature, stress and strain fields within the UHTC structure equipped with the CCG. The results show that the compressive stress exceeds the material strength at the bonding area, and this originates a failure by fracture of the supporting structure in the hot environment. The results related to the strain fields show that the relative error with the experimental data decrease with an increase of temperature. The relative error is less than 15% when the temperature is higher than 200 °C, and only 6.71% at 695 °C. PMID:27754356
Influence of Joint Angle on EMG-Torque Model During Constant-Posture, Torque-Varying Contractions.
Liu, Pu; Liu, Lukai; Clancy, Edward A
2015-11-01
Relating the electromyogram (EMG) to joint torque is useful in various application areas, including prosthesis control, ergonomics and clinical biomechanics. Limited study has related EMG to torque across varied joint angles, particularly when subjects performed force-varying contractions or when optimized modeling methods were utilized. We related the biceps-triceps surface EMG of 22 subjects to elbow torque at six joint angles (spanning 60° to 135°) during constant-posture, torque-varying contractions. Three nonlinear EMG σ -torque models, advanced EMG amplitude (EMG σ ) estimation processors (i.e., whitened, multiple-channel) and the duration of data used to train models were investigated. When EMG-torque models were formed separately for each of the six distinct joint angles, a minimum "gold standard" error of 4.01±1.2% MVC(F90) resulted (i.e., error relative to maximum voluntary contraction at 90° flexion). This model structure, however, did not directly facilitate interpolation across angles. The best model which did so achieved a statistically equivalent error of 4.06±1.2% MVC(F90). Results demonstrated that advanced EMG σ processors lead to improved joint torque estimation as do longer model training durations.
The relationship between somatic and cognitive-affective depression symptoms and error-related ERP’s
Bridwell, David A.; Steele, Vaughn R.; Maurer, J. Michael; Kiehl, Kent A.; Calhoun, Vince D.
2014-01-01
Background The symptoms that contribute to the clinical diagnosis of depression likely emerge from, or are related to, underlying cognitive deficits. To understand this relationship further, we examined the relationship between self-reported somatic and cognitive-affective Beck’s Depression Inventory-II (BDI-II) symptoms and aspects of cognitive control reflected in error event-related potential (ERP) responses. Methods Task and assessment data were analyzed within 51 individuals. The group contained a broad distribution of depressive symptoms, as assessed by BDI-II scores. ERP’s were collected following error responses within a go/no-go task. Individual error ERP amplitudes were estimated by conducting group independent component analysis (ICA) on the electroencephalographic (EEG) time series and analyzing the individual reconstructed source epochs. Source error amplitudes were correlated with the subset of BDI-II scores representing somatic and cognitive-affective symptoms. Results We demonstrate a negative relationship between somatic depression symptoms (i.e. fatigue or loss of energy) (after regressing out cognitive-affective scores, age and IQ) and the central-parietal ERP response that peaks at 359 ms. The peak amplitudes within this ERP response were not significantly related to cognitive-affective symptom severity (after regressing out the somatic symptom scores, age, and IQ). Limitations These findings were obtained within a population of female adults from a maximum-security correctional facility. Thus, additional research is required to verify that they generalize to the broad population. Conclusions These results suggest that individuals with greater somatic depression symptoms demonstrate a reduced awareness of behavioral errors, and help clarify the relationship between clinical measures of self-reported depression symptoms and cognitive control. PMID:25451400
The relationship between somatic and cognitive-affective depression symptoms and error-related ERPs.
Bridwell, David A; Steele, Vaughn R; Maurer, J Michael; Kiehl, Kent A; Calhoun, Vince D
2015-02-01
The symptoms that contribute to the clinical diagnosis of depression likely emerge from, or are related to, underlying cognitive deficits. To understand this relationship further, we examined the relationship between self-reported somatic and cognitive-affective Beck'sDepression Inventory-II (BDI-II) symptoms and aspects of cognitive control reflected in error event-related potential (ERP) responses. Task and assessment data were analyzed within 51 individuals. The group contained a broad distribution of depressive symptoms, as assessed by BDI-II scores. ERPs were collected following error responses within a go/no-go task. Individual error ERP amplitudes were estimated by conducting group independent component analysis (ICA) on the electroencephalographic (EEG) time series and analyzing the individual reconstructed source epochs. Source error amplitudes were correlated with the subset of BDI-II scores representing somatic and cognitive-affective symptoms. We demonstrate a negative relationship between somatic depression symptoms (i.e. fatigue or loss of energy) (after regressing out cognitive-affective scores, age and IQ) and the central-parietal ERP response that peaks at 359 ms. The peak amplitudes within this ERP response were not significantly related to cognitive-affective symptom severity (after regressing out the somatic symptom scores, age, and IQ). These findings were obtained within a population of female adults from a maximum-security correctional facility. Thus, additional research is required to verify that they generalize to the broad population. These results suggest that individuals with greater somatic depression symptoms demonstrate a reduced awareness of behavioral errors, and help clarify the relationship between clinical measures of self-reported depression symptoms and cognitive control. Copyright © 2014 Elsevier B.V. All rights reserved.
He, Xin; Frey, Eric C
2006-08-01
Previously, we have developed a decision model for three-class receiver operating characteristic (ROC) analysis based on decision theory. The proposed decision model maximizes the expected decision utility under the assumption that incorrect decisions have equal utilities under the same hypothesis (equal error utility assumption). This assumption reduced the dimensionality of the "general" three-class ROC analysis and provided a practical figure-of-merit to evaluate the three-class task performance. However, it also limits the generality of the resulting model because the equal error utility assumption will not apply for all clinical three-class decision tasks. The goal of this study was to investigate the optimality of the proposed three-class decision model with respect to several other decision criteria. In particular, besides the maximum expected utility (MEU) criterion used in the previous study, we investigated the maximum-correctness (MC) (or minimum-error), maximum likelihood (ML), and Nyman-Pearson (N-P) criteria. We found that by making assumptions for both MEU and N-P criteria, all decision criteria lead to the previously-proposed three-class decision model. As a result, this model maximizes the expected utility under the equal error utility assumption, maximizes the probability of making correct decisions, satisfies the N-P criterion in the sense that it maximizes the sensitivity of one class given the sensitivities of the other two classes, and the resulting ROC surface contains the maximum likelihood decision operating point. While the proposed three-class ROC analysis model is not optimal in the general sense due to the use of the equal error utility assumption, the range of criteria for which it is optimal increases its applicability for evaluating and comparing a range of diagnostic systems.
NASA Technical Reports Server (NTRS)
Del Genio, Anthony; Chen, Yonghua; Kim, Daehyun; Yao, Mao-Sung
2015-01-01
We have identified several errors in the calculations that were performed to create Fig. 3 of Del Genio et al. (2012). These errors affect the composite evolution of precipitation and column water vapor versus lag relative to the Madden-Julian oscillation (MJO) peak presented in that figure. The precipitation and column water vapor data for the April and November 2009 MJO events were composited incorrectly because the date of the MJO peak at a given longitude was assigned to the incorrect longitude band. In addition, the precipitation data for all MJO events were first accumulated daily and the daily accumulations averaged at each lag to create the composite, rather than the averaging of instantaneous values that was used for other composite figures in the paper. One poorly sampled day in the west Pacific therefore biases the composite precipitation in that region at several lags after the MJO peak. Finally, a 4-day running mean was mistakenly applied to the precipitation and column water vapor data rather than the intended 5-day running mean. The results of the corrections are that an anomalous west Pacific precipitation maximum510 days after the MJO peak is removed and the maximum in west Pacific precipitation one pentad before the MJO peak is now more evident; there is now a clear maximum in precipitation for the entire warm pool one pentad before the MJO peak; west Pacific column water vapor now varies more strongly as a function of lag relative to the peak; and precipitation, and to a lesser extent column water vapor, in general vary more smoothly with time. The corrections do not affect any other parts of the paper nor do they change the scientific conclusions we reached. The 4-day running mean error also affects Figs. 1 and 2 therein, with almost imperceptible impacts that do not affect any results or necessitate major changes to the text.
Barteselli, Giulio; Bartsch, Dirk-Uwe; Viola, Francesco; Mojana, Francesca; Pellegrini, Marco; Hartmann, Kathrin I; Benatti, Eleonora; Leicht, Simon; Ratiglia, Roberto; Staurenghi, Giovanni; Weinreb, Robert N; Freeman, William R
2013-09-01
To evaluate temporal changes and predictors of accuracy in the alignment between simultaneous near-infrared image and optical coherence tomography (OCT) scan on the Heidelberg Spectralis using a model eye. Laboratory investigation. After calibrating the device, 6 sites performed weekly testing of the alignment for 12 weeks using a model eye. The maximum error was compared with multiple variables to evaluate predictors of inaccurate alignment. Variables included the number of weekly scanned patients, total number of OCT scans and B-scans performed, room temperature and its variation, and working time of the scanning laser. A 4-week extension study was subsequently performed to analyze short-term changes in the alignment. The average maximum error in the alignment was 15 ± 6 μm; the greatest error was 35 μm. The error increased significantly at week 1 (P = .01), specifically after the second imaging study (P < .05); reached a maximum after the eighth patient (P < .001); and then varied randomly over time. Predictors for inaccurate alignment were temperature variation and scans per patient (P < .001). For each 1 unit of increase in temperature variation, the estimated increase in maximum error was 1.26 μm. For the average number of scans per patient, each increase of 1 unit increased the error by 0.34 μm. Overall, the accuracy of the Heidelberg Spectralis was excellent. The greatest error happened in the first week after calibration, and specifically after the second imaging study. To improve the accuracy, room temperature should be kept stable and unnecessary scans should be avoided. The alignment of the device does not need to be checked on a regular basis in the clinical setting, but it should be checked after every other patient for more precise research purposes. Published by Elsevier Inc.
An analysis of annual maximum streamflows in Terengganu, Malaysia using TL-moments approach
NASA Astrophysics Data System (ADS)
Ahmad, Ummi Nadiah; Shabri, Ani; Zakaria, Zahrahtul Amani
2013-02-01
TL-moments approach has been used in an analysis to determine the best-fitting distributions to represent the annual series of maximum streamflow data over 12 stations in Terengganu, Malaysia. The TL-moments with different trimming values are used to estimate the parameter of the selected distributions namely: generalized pareto (GPA), generalized logistic, and generalized extreme value distribution. The influence of TL-moments on estimated probability distribution functions are examined by evaluating the relative root mean square error and relative bias of quantile estimates through Monte Carlo simulations. The boxplot is used to show the location of the median and the dispersion of the data, which helps in reaching the decisive conclusions. For most of the cases, the results show that TL-moments with one smallest value was trimmed from the conceptual sample (TL-moments (1,0)), of GPA distribution was the most appropriate in majority of the stations for describing the annual maximum streamflow series in Terengganu, Malaysia.
The Impact of Truth Surrogate Variance on Quality Assessment/Assurance in Wind Tunnel Testing
NASA Technical Reports Server (NTRS)
DeLoach, Richard
2016-01-01
Minimum data volume requirements for wind tunnel testing are reviewed and shown to depend on error tolerance, response model complexity, random error variance in the measurement environment, and maximum acceptable levels of inference error risk. Distinctions are made between such related concepts as quality assurance and quality assessment in response surface modeling, as well as between precision and accuracy. Earlier research on the scaling of wind tunnel tests is extended to account for variance in the truth surrogates used at confirmation sites in the design space to validate proposed response models. A model adequacy metric is presented that represents the fraction of the design space within which model predictions can be expected to satisfy prescribed quality specifications. The impact of inference error on the assessment of response model residuals is reviewed. The number of sites where reasonably well-fitted response models actually predict inadequately is shown to be considerably less than the number of sites where residuals are out of tolerance. The significance of such inference error effects on common response model assessment strategies is examined.
Bayesian learning for spatial filtering in an EEG-based brain-computer interface.
Zhang, Haihong; Yang, Huijuan; Guan, Cuntai
2013-07-01
Spatial filtering for EEG feature extraction and classification is an important tool in brain-computer interface. However, there is generally no established theory that links spatial filtering directly to Bayes classification error. To address this issue, this paper proposes and studies a Bayesian analysis theory for spatial filtering in relation to Bayes error. Following the maximum entropy principle, we introduce a gamma probability model for describing single-trial EEG power features. We then formulate and analyze the theoretical relationship between Bayes classification error and the so-called Rayleigh quotient, which is a function of spatial filters and basically measures the ratio in power features between two classes. This paper also reports our extensive study that examines the theory and its use in classification, using three publicly available EEG data sets and state-of-the-art spatial filtering techniques and various classifiers. Specifically, we validate the positive relationship between Bayes error and Rayleigh quotient in real EEG power features. Finally, we demonstrate that the Bayes error can be practically reduced by applying a new spatial filter with lower Rayleigh quotient.
Short-Block Protograph-Based LDPC Codes
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Dolinar, Samuel; Jones, Christopher
2010-01-01
Short-block low-density parity-check (LDPC) codes of a special type are intended to be especially well suited for potential applications that include transmission of command and control data, cellular telephony, data communications in wireless local area networks, and satellite data communications. [In general, LDPC codes belong to a class of error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels.] The codes of the present special type exhibit low error floors, low bit and frame error rates, and low latency (in comparison with related prior codes). These codes also achieve low maximum rate of undetected errors over all signal-to-noise ratios, without requiring the use of cyclic redundancy checks, which would significantly increase the overhead for short blocks. These codes have protograph representations; this is advantageous in that, for reasons that exceed the scope of this article, the applicability of protograph representations makes it possible to design highspeed iterative decoders that utilize belief- propagation algorithms.
Analysis of Performance of Stereoscopic-Vision Software
NASA Technical Reports Server (NTRS)
Kim, Won; Ansar, Adnan; Steele, Robert; Steinke, Robert
2007-01-01
A team of JPL researchers has analyzed stereoscopic vision software and produced a document describing its performance. This software is of the type used in maneuvering exploratory robotic vehicles on Martian terrain. The software in question utilizes correlations between portions of the images recorded by two electronic cameras to compute stereoscopic disparities, which, in conjunction with camera models, are used in computing distances to terrain points to be included in constructing a three-dimensional model of the terrain. The analysis included effects of correlation- window size, a pyramidal image down-sampling scheme, vertical misalignment, focus, maximum disparity, stereo baseline, and range ripples. Contributions of sub-pixel interpolation, vertical misalignment, and foreshortening to stereo correlation error were examined theoretically and experimentally. It was found that camera-calibration inaccuracy contributes to both down-range and cross-range error but stereo correlation error affects only the down-range error. Experimental data for quantifying the stereo disparity error were obtained by use of reflective metrological targets taped to corners of bricks placed at known positions relative to the cameras. For the particular 1,024-by-768-pixel cameras of the system analyzed, the standard deviation of the down-range disparity error was found to be 0.32 pixel.
Cotter, Christopher; Turcotte, Julie Catherine; Crawford, Bruce; Sharp, Gregory; Mah'D, Mufeed
2015-01-01
This work aims at three goals: first, to define a set of statistical parameters and plan structures for a 3D pretreatment thoracic and prostate intensity‐modulated radiation therapy (IMRT) quality assurance (QA) protocol; secondly, to test if the 3D QA protocol is able to detect certain clinical errors; and third, to compare the 3D QA method with QA performed with single ion chamber and 2D gamma test in detecting those errors. The 3D QA protocol measurements were performed on 13 prostate and 25 thoracic IMRT patients using IBA's COMPASS system. For each treatment planning structure included in the protocol, the following statistical parameters were evaluated: average absolute dose difference (AADD), percent structure volume with absolute dose difference greater than 6% (ADD6), and 3D gamma test. To test the 3D QA protocol error sensitivity, two prostate and two thoracic step‐and‐shoot IMRT patients were investigated. Errors introduced to each of the treatment plans included energy switched from 6 MV to 10 MV, multileaf collimator (MLC) leaf errors, linac jaws errors, monitor unit (MU) errors, MLC and gantry angle errors, and detector shift errors. QA was performed on each plan using a single ion chamber and 2D array of ion chambers for 2D and 3D QA. Based on the measurements performed, we established a uniform set of tolerance levels to determine if QA passes for each IMRT treatment plan structure: maximum allowed AADD is 6%; maximum 4% of any structure volume can be with ADD6 greater than 6%, and maximum 4% of any structure volume may fail 3D gamma test with test parameters 3%/3 mm DTA. Out of the three QA methods tested the single ion chamber performed the worst by detecting 4 out of 18 introduced errors, 2D QA detected 11 out of 18 errors, and 3D QA detected 14 out of 18 errors. PACS number: 87.56.Fc PMID:26699299
Error analysis of 3D-PTV through unsteady interfaces
NASA Astrophysics Data System (ADS)
Akutina, Yulia; Mydlarski, Laurent; Gaskin, Susan; Eiff, Olivier
2018-03-01
The feasibility of stereoscopic flow measurements through an unsteady optical interface is investigated. Position errors produced by a wavy optical surface are determined analytically, as are the optimal viewing angles of the cameras to minimize such errors. Two methods of measuring the resulting velocity errors are proposed. These methods are applied to 3D particle tracking velocimetry (3D-PTV) data obtained through the free surface of a water flow within a cavity adjacent to a shallow channel. The experiments were performed using two sets of conditions, one having no strong surface perturbations, and the other exhibiting surface gravity waves. In the latter case, the amplitude of the gravity waves was 6% of the water depth, resulting in water surface inclinations of about 0.2°. (The water depth is used herein as a relevant length scale, because the measurements are performed in the entire water column. In a more general case, the relevant scale is the maximum distance from the interface to the measurement plane, H, which here is the same as the water depth.) It was found that the contribution of the waves to the overall measurement error is low. The absolute position errors of the system were moderate (1.2% of H). However, given that the velocity is calculated from the relative displacement of a particle between two frames, the errors in the measured water velocities were reasonably small, because the error in the velocity is the relative position error over the average displacement distance. The relative position error was measured to be 0.04% of H, resulting in small velocity errors of 0.3% of the free-stream velocity (equivalent to 1.1% of the average velocity in the domain). It is concluded that even though the absolute positions to which the velocity vectors are assigned is distorted by the unsteady interface, the magnitude of the velocity vectors themselves remains accurate as long as the waves are slowly varying (have low curvature). The stronger the disturbances on the interface are (high amplitude, short wave length), the smaller is the distance from the interface at which the measurements can be performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X; Yang, F
Purpose: Knowing MLC leaf positioning error over the course of treatment would be valuable for treatment planning, QA design, and patient safety. The objective of the current study was to quantify the MLC positioning accuracy for VMAT delivery of head and neck treatment plans. Methods: A total of 837 MLC log files were collected from 14 head and neck cancer patients undergoing full arc VMAT treatment on one Varian Trilogy machine. The actual and planned leaf gaps were extracted from the retrieved MLC log files. For a given patient, the leaf gap error percentage (LGEP), defined as the ratio ofmore » the actual leaf gap over the planned, was evaluated for each leaf pair at all the gantry angles recorded over the course of the treatment. Statistics describing the distribution of the largest LGEP (LLGEP) of the 60 leaf pairs including the maximum, minimum, mean, Kurtosis, and skewness were evaluated. Results: For the 14 studied patients, their PTV located at tonsil, base of tongue, larynx, supraglottis, nasal cavity, and thyroid gland with volume ranging from 72.0 cm{sup 3} to 602.0 cm{sup 3}. The identified LLGEP differed between patients. It ranged from 183.9% to 457.7% with a mean of 368.6%. For the majority of the patients, the LLGEP distributions peaked at non-zero positions and showed no obvious dependence on gantry rotations. Kurtosis and skewness, with minimum/maximum of 66.6/217.9 and 6.5/12.6, respectively, suggested relatively more peaked while right-skewed leaf error distribution pattern. Conclusion: The results indicate pattern of MLC leaf gap error differs between patients of lesion located at similar anatomic site. Understanding the systemic mechanisms underlying these observed error patterns necessitates examining more patient-specific plan parameters in a large patient cohort setting.« less
Little, Mark P; Kwon, Deukwoo; Zablotska, Lydia B; Brenner, Alina V; Cahoon, Elizabeth K; Rozhko, Alexander V; Polyanskaya, Olga N; Minenko, Victor F; Golovanov, Ivan; Bouville, André; Drozdovitch, Vladimir
2015-01-01
The excess incidence of thyroid cancer in Ukraine and Belarus observed a few years after the Chernobyl accident is considered to be largely the result of 131I released from the reactor. Although the Belarus thyroid cancer prevalence data has been previously analyzed, no account was taken of dose measurement error. We examined dose-response patterns in a thyroid screening prevalence cohort of 11,732 persons aged under 18 at the time of the accident, diagnosed during 1996-2004, who had direct thyroid 131I activity measurement, and were resident in the most radio-actively contaminated regions of Belarus. Three methods of dose-error correction (regression calibration, Monte Carlo maximum likelihood, Bayesian Markov Chain Monte Carlo) were applied. There was a statistically significant (p<0.001) increasing dose-response for prevalent thyroid cancer, irrespective of regression-adjustment method used. Without adjustment for dose errors the excess odds ratio was 1.51 Gy- (95% CI 0.53, 3.86), which was reduced by 13% when regression-calibration adjustment was used, 1.31 Gy- (95% CI 0.47, 3.31). A Monte Carlo maximum likelihood method yielded an excess odds ratio of 1.48 Gy- (95% CI 0.53, 3.87), about 2% lower than the unadjusted analysis. The Bayesian method yielded a maximum posterior excess odds ratio of 1.16 Gy- (95% BCI 0.20, 4.32), 23% lower than the unadjusted analysis. There were borderline significant (p = 0.053-0.078) indications of downward curvature in the dose response, depending on the adjustment methods used. There were also borderline significant (p = 0.102) modifying effects of gender on the radiation dose trend, but no significant modifying effects of age at time of accident, or age at screening as modifiers of dose response (p>0.2). In summary, the relatively small contribution of unshared classical dose error in the current study results in comparatively modest effects on the regression parameters.
NASA Technical Reports Server (NTRS)
Gracey, William; Jewel, Joseph W., Jr.; Carpenter, Gene T.
1960-01-01
The overall errors of the service altimeter installations of a variety of civil transport, military, and general-aviation airplanes have been experimentally determined during normal landing-approach and take-off operations. The average height above the runway at which the data were obtained was about 280 feet for the landings and about 440 feet for the take-offs. An analysis of the data obtained from 196 airplanes during 415 landing approaches and from 70 airplanes during 152 take-offs showed that: 1. The overall error of the altimeter installations in the landing- approach condition had a probable value (50 percent probability) of +/- 36 feet and a maximum probable value (99.7 percent probability) of +/- 159 feet with a bias of +10 feet. 2. The overall error in the take-off condition had a probable value of +/- 47 feet and a maximum probable value of +/- 207 feet with a bias of -33 feet. 3. The overall errors of the military airplanes were generally larger than those of the civil transports in both the landing-approach and take-off conditions. In the landing-approach condition the probable error and the maximum probable error of the military airplanes were +/- 43 and +/- 189 feet, respectively, with a bias of +15 feet, whereas those for the civil transports were +/- 22 and +/- 96 feet, respectively, with a bias of +1 foot. 4. The bias values of the error distributions (+10 feet for the landings and -33 feet for the take-offs) appear to represent a measure of the hysteresis characteristics (after effect and recovery) and friction of the instrument and the pressure lag of the tubing-instrument system.
Lee, Sheila; McMullen, D.; Brown, G. L.; Stokes, A. R.
1965-01-01
1. A theoretical analysis of the errors in multicomponent spectrophotometric analysis of nucleoside mixtures, by a least-squares procedure, has been made to obtain an expression for the error coefficient, relating the error in calculated concentration to the error in extinction measurements. 2. The error coefficients, which depend only on the `library' of spectra used to fit the experimental curves, have been computed for a number of `libraries' containing the following nucleosides found in s-RNA: adenosine, guanosine, cytidine, uridine, 5-ribosyluracil, 7-methylguanosine, 6-dimethylaminopurine riboside, 6-methylaminopurine riboside and thymine riboside. 3. The error coefficients have been used to determine the best conditions for maximum accuracy in the determination of the compositions of nucleoside mixtures. 4. Experimental determinations of the compositions of nucleoside mixtures have been made and the errors found to be consistent with those predicted by the theoretical analysis. 5. It has been demonstrated that, with certain precautions, the multicomponent spectrophotometric method described is suitable as a basis for automatic nucleotide-composition analysis of oligonucleotides containing nine nucleotides. Used in conjunction with continuous chromatography and flow chemical techniques, this method can be applied to the study of the sequence of s-RNA. PMID:14346087
Voltage mode electronically tunable full-wave rectifier
NASA Astrophysics Data System (ADS)
Petrović, Predrag B.; Vesković, Milan; Đukić, Slobodan
2017-01-01
The paper presents a new realization of bipolar full-wave rectifier of input sinusoidal signals, employing one MO-CCCII (multiple output current controlled current conveyor), a zero-crossing detector (ZCD), and one resistor connected to fixed potential. The circuit provides the operating frequency up to 10 MHz with increased linearity and precision in processing of input voltage signal, with a very low harmonic distortion. The errors related to the signal processing and errors bound were investigated and provided in the paper. The PSpice simulations are depicted and agree well with the theoretical anticipation. The maximum power consumption of the converter is approximately 2.83 mW, at ±1.2 V supply voltages.
Analytic approximations to the modon dispersion relation. [in oceanography
NASA Technical Reports Server (NTRS)
Boyd, J. P.
1981-01-01
Three explicit analytic approximations are given to the modon dispersion relation developed by Flierl et al. (1980) to describe Gulf Stream rings and related phenomena in the oceans and atmosphere. The solutions are in the form of k(q), and are developed in the form of a power series in q for small q, an inverse power series in 1/q for large q, and a two-point Pade approximant. The low order Pade approximant is shown to yield a solution for the dispersion relation with a maximum relative error for the lowest branch of the function equal to one in 700 in the q interval zero to infinity.
Maximum likelihood convolutional decoding (MCD) performance due to system losses
NASA Technical Reports Server (NTRS)
Webster, L.
1976-01-01
A model for predicting the computational performance of a maximum likelihood convolutional decoder (MCD) operating in a noisy carrier reference environment is described. This model is used to develop a subroutine that will be utilized by the Telemetry Analysis Program to compute the MCD bit error rate. When this computational model is averaged over noisy reference phase errors using a high-rate interpolation scheme, the results are found to agree quite favorably with experimental measurements.
On the error probability of general tree and trellis codes with applications to sequential decoding
NASA Technical Reports Server (NTRS)
Johannesson, R.
1973-01-01
An upper bound on the average error probability for maximum-likelihood decoding of the ensemble of random binary tree codes is derived and shown to be independent of the length of the tree. An upper bound on the average error probability for maximum-likelihood decoding of the ensemble of random L-branch binary trellis codes of rate R = 1/n is derived which separates the effects of the tail length T and the memory length M of the code. It is shown that the bound is independent of the length L of the information sequence. This implication is investigated by computer simulations of sequential decoding utilizing the stack algorithm. These simulations confirm the implication and further suggest an empirical formula for the true undetected decoding error probability with sequential decoding.
Experimental study on an FBG strain sensor
NASA Astrophysics Data System (ADS)
Liu, Hong-lin; Zhu, Zheng-wei; Zheng, Yong; Liu, Bang; Xiao, Feng
2018-01-01
Landslides and other geological disasters occur frequently and often cause high financial and humanitarian cost. The real-time, early-warning monitoring of landslides has important significance in reducing casualties and property losses. In this paper, by taking the high initial precision and high sensitivity advantage of FBG, an FBG strain sensor is designed combining FBGs with inclinometer. The sensor was regarded as a cantilever beam with one end fixed. According to the anisotropic material properties of the inclinometer, a theoretical formula between the FBG wavelength and the deflection of the sensor was established using the elastic mechanics principle. Accuracy of the formula established had been verified through laboratory calibration testing and model slope monitoring experiments. The displacement of landslide could be calculated by the established theoretical formula using the changing values of FBG central wavelength obtained by the demodulation instrument remotely. Results showed that the maximum error at different heights was 9.09%; the average of the maximum error was 6.35%, and its corresponding variance was 2.12; the minimum error was 4.18%; the average of the minimum error was 5.99%, and its corresponding variance was 0.50. The maximum error of the theoretical and the measured displacement decrease gradually, and the variance of the error also decreases gradually. This indicates that the theoretical results are more and more reliable. It also shows that the sensor and the theoretical formula established in this paper can be used for remote, real-time, high precision and early warning monitoring of the slope.
Shape reconstruction of irregular bodies with multiple complementary data sources
NASA Astrophysics Data System (ADS)
Kaasalainen, M.; Viikinkoski, M.
2012-07-01
We discuss inversion methods for shape reconstruction with complementary data sources. The current main sources are photometry, adaptive optics or other images, occultation timings, and interferometry, and the procedure can readily be extended to include range-Doppler radar and thermal infrared data as well. We introduce the octantoid, a generally applicable shape support that can be automatically used for surface types encountered in planetary research, including strongly nonconvex or non-starlike shapes. We present models of Kleopatra and Hermione from multimodal data as examples of this approach. An important concept in this approach is the optimal weighting of the various data modes. We define the maximum compatibility estimate, a multimodal generalization of the maximum likelihood estimate, for this purpose. We also present a specific version of the procedure for asteroid flyby missions, with which one can reconstruct the complete shape of the target by using the flyby-based map of a part of the surface together with other available data. Finally, we show that the relative volume error of a shape solution is usually approximately equal to the relative shape error rather than its multiple. Our algorithms are trivially parallelizable, so running the code on a CUDA-enabled graphics processing unit is some two orders of magnitude faster than the usual single-processor mode.
A new open-loop fiber optic gyro error compensation method based on angular velocity error modeling.
Zhang, Yanshun; Guo, Yajing; Li, Chunyu; Wang, Yixin; Wang, Zhanqing
2015-02-27
With the open-loop fiber optic gyro (OFOG) model, output voltage and angular velocity can effectively compensate OFOG errors. However, the model cannot reflect the characteristics of OFOG errors well when it comes to pretty large dynamic angular velocities. This paper puts forward a modeling scheme with OFOG output voltage u and temperature T as the input variables and angular velocity error Δω as the output variable. Firstly, the angular velocity error Δω is extracted from OFOG output signals, and then the output voltage u, temperature T and angular velocity error Δω are used as the learning samples to train a Radial-Basis-Function (RBF) neural network model. Then the nonlinear mapping model over T, u and Δω is established and thus Δω can be calculated automatically to compensate OFOG errors according to T and u. The results of the experiments show that the established model can be used to compensate the nonlinear OFOG errors. The maximum, the minimum and the mean square error of OFOG angular velocity are decreased by 97.0%, 97.1% and 96.5% relative to their initial values, respectively. Compared with the direct modeling of gyro angular velocity, which we researched before, the experimental results of the compensating method proposed in this paper are further reduced by 1.6%, 1.4% and 1.42%, respectively, so the performance of this method is better than that of the direct modeling for gyro angular velocity.
A New Open-Loop Fiber Optic Gyro Error Compensation Method Based on Angular Velocity Error Modeling
Zhang, Yanshun; Guo, Yajing; Li, Chunyu; Wang, Yixin; Wang, Zhanqing
2015-01-01
With the open-loop fiber optic gyro (OFOG) model, output voltage and angular velocity can effectively compensate OFOG errors. However, the model cannot reflect the characteristics of OFOG errors well when it comes to pretty large dynamic angular velocities. This paper puts forward a modeling scheme with OFOG output voltage u and temperature T as the input variables and angular velocity error Δω as the output variable. Firstly, the angular velocity error Δω is extracted from OFOG output signals, and then the output voltage u, temperature T and angular velocity error Δω are used as the learning samples to train a Radial-Basis-Function (RBF) neural network model. Then the nonlinear mapping model over T, u and Δω is established and thus Δω can be calculated automatically to compensate OFOG errors according to T and u. The results of the experiments show that the established model can be used to compensate the nonlinear OFOG errors. The maximum, the minimum and the mean square error of OFOG angular velocity are decreased by 97.0%, 97.1% and 96.5% relative to their initial values, respectively. Compared with the direct modeling of gyro angular velocity, which we researched before, the experimental results of the compensating method proposed in this paper are further reduced by 1.6%, 1.4% and 1.2%, respectively, so the performance of this method is better than that of the direct modeling for gyro angular velocity. PMID:25734642
Single molecule sequencing-guided scaffolding and correction of draft assemblies.
Zhu, Shenglong; Chen, Danny Z; Emrich, Scott J
2017-12-06
Although single molecule sequencing is still improving, the lengths of the generated sequences are inevitably an advantage in genome assembly. Prior work that utilizes long reads to conduct genome assembly has mostly focused on correcting sequencing errors and improving contiguity of de novo assemblies. We propose a disassembling-reassembling approach for both correcting structural errors in the draft assembly and scaffolding a target assembly based on error-corrected single molecule sequences. To achieve this goal, we formulate a maximum alternating path cover problem. We prove that this problem is NP-hard, and solve it by a 2-approximation algorithm. Our experimental results show that our approach can improve the structural correctness of target assemblies in the cost of some contiguity, even with smaller amounts of long reads. In addition, our reassembling process can also serve as a competitive scaffolder relative to well-established assembly benchmarks.
Cossich, Victor; Mallrich, Frédéric; Titonelli, Victor; de Sousa, Eduardo Branco; Velasques, Bruna; Salles, José Inácio
2014-01-01
To ascertain whether the proprioceptive deficit in the sense of joint position continues to be present when patients with a limb presenting a deficient anterior cruciate ligament (ACL) are assessed by testing their active reproduction of joint position, in comparison with the contralateral limb. Twenty patients with unilateral ACL tearing participated in the study. Their active reproduction of joint position in the limb with the deficient ACL and in the healthy contralateral limb was tested. Meta-positions of 20% and 50% of the maximum joint range of motion were used. Proprioceptive performance was determined through the values of the absolute error, variable error and constant error. Significant differences in absolute error were found at both of the positions evaluated, and in constant error at 50% of the maximum joint range of motion. When evaluated in terms of absolute error, the proprioceptive deficit continues to be present even when an active evaluation of the sense of joint position is made. Consequently, this sense involves activity of both intramuscular and tendon receptors.
A novel artificial fish swarm algorithm for recalibration of fiber optic gyroscope error parameters.
Gao, Yanbin; Guan, Lianwu; Wang, Tingjun; Sun, Yunlong
2015-05-05
The artificial fish swarm algorithm (AFSA) is one of the state-of-the-art swarm intelligent techniques, which is widely utilized for optimization purposes. Fiber optic gyroscope (FOG) error parameters such as scale factors, biases and misalignment errors are relatively unstable, especially with the environmental disturbances and the aging of fiber coils. These uncalibrated error parameters are the main reasons that the precision of FOG-based strapdown inertial navigation system (SINS) degraded. This research is mainly on the application of a novel artificial fish swarm algorithm (NAFSA) on FOG error coefficients recalibration/identification. First, the NAFSA avoided the demerits (e.g., lack of using artificial fishes' pervious experiences, lack of existing balance between exploration and exploitation, and high computational cost) of the standard AFSA during the optimization process. To solve these weak points, functional behaviors and the overall procedures of AFSA have been improved with some parameters eliminated and several supplementary parameters added. Second, a hybrid FOG error coefficients recalibration algorithm has been proposed based on NAFSA and Monte Carlo simulation (MCS) approaches. This combination leads to maximum utilization of the involved approaches for FOG error coefficients recalibration. After that, the NAFSA is verified with simulation and experiments and its priorities are compared with that of the conventional calibration method and optimal AFSA. Results demonstrate high efficiency of the NAFSA on FOG error coefficients recalibration.
Bit Error Probability for Maximum Likelihood Decoding of Linear Block Codes
NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc P. C.; Rhee, Dojun
1996-01-01
In this paper, the bit error probability P(sub b) for maximum likelihood decoding of binary linear codes is investigated. The contribution of each information bit to P(sub b) is considered. For randomly generated codes, it is shown that the conventional approximation at high SNR P(sub b) is approximately equal to (d(sub H)/N)P(sub s), where P(sub s) represents the block error probability, holds for systematic encoding only. Also systematic encoding provides the minimum P(sub b) when the inverse mapping corresponding to the generator matrix of the code is used to retrieve the information sequence. The bit error performances corresponding to other generator matrix forms are also evaluated. Although derived for codes with a generator matrix randomly generated, these results are shown to provide good approximations for codes used in practice. Finally, for decoding methods which require a generator matrix with a particular structure such as trellis decoding or algebraic-based soft decision decoding, equivalent schemes that reduce the bit error probability are discussed.
Synergies in Astrometry: Predicting Navigational Error of Visual Binary Stars
NASA Astrophysics Data System (ADS)
Gessner Stewart, Susan
2015-08-01
Celestial navigation can employ a number of bright stars which are in binary systems. Often these are unresolved, appearing as a single, center-of-light object. A number of these systems are, however, in wide systems which could introduce a margin of error in the navigation solution if not handled properly. To illustrate the importance of good orbital solutions for binary systems - as well as good astrometry in general - the relationship between the center-of-light versus individual catalog position of celestial bodies and the error in terrestrial position derived via celestial navigation is demonstrated. From the list of navigational binary stars, fourteen such binary systems with at least 3.0 arcseconds apparent separation are explored. Maximum navigational error is estimated under the assumption that the bright star in the pair is observed at maximum separation, but the center-of-light is employed in the navigational solution. The relationships between navigational error and separation, orbital periods, and observers' latitude are discussed.
Molina, Sergio L; Stodden, David F
2018-04-01
This study examined variability in throwing speed and spatial error to test the prediction of an inverted-U function (i.e., impulse-variability [IV] theory) and the speed-accuracy trade-off. Forty-five 9- to 11-year-old children were instructed to throw at a specified percentage of maximum speed (45%, 65%, 85%, and 100%) and hit the wall target. Results indicated no statistically significant differences in variable error across the target conditions (p = .72), failing to support the inverted-U hypothesis. Spatial accuracy results indicated no statistically significant differences with mean radial error (p = .18), centroid radial error (p = .13), and bivariate variable error (p = .08) also failing to support the speed-accuracy trade-off in overarm throwing. As neither throwing performance variability nor accuracy changed across percentages of maximum speed in this sample of children as well as in a previous adult sample, current policy and practices of practitioners may need to be reevaluated.
Assessment of Spectral Doppler in Preclinical Ultrasound Using a Small-Size Rotating Phantom
Yang, Xin; Sun, Chao; Anderson, Tom; Moran, Carmel M.; Hadoke, Patrick W.F.; Gray, Gillian A.; Hoskins, Peter R.
2013-01-01
Preclinical ultrasound scanners are used to measure blood flow in small animals, but the potential errors in blood velocity measurements have not been quantified. This investigation rectifies this omission through the design and use of phantoms and evaluation of measurement errors for a preclinical ultrasound system (Vevo 770, Visualsonics, Toronto, ON, Canada). A ray model of geometric spectral broadening was used to predict velocity errors. A small-scale rotating phantom, made from tissue-mimicking material, was developed. True and Doppler-measured maximum velocities of the moving targets were compared over a range of angles from 10° to 80°. Results indicate that the maximum velocity was overestimated by up to 158% by spectral Doppler. There was good agreement (<10%) between theoretical velocity errors and measured errors for beam-target angles of 50°–80°. However, for angles of 10°–40°, the agreement was not as good (>50%). The phantom is capable of validating the performance of blood velocity measurement in preclinical ultrasound. PMID:23711503
A Systematic Approach for Model-Based Aircraft Engine Performance Estimation
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Garg, Sanjay
2010-01-01
A requirement for effective aircraft engine performance estimation is the ability to account for engine degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. This paper presents a linear point design methodology for minimizing the degradation-induced error in model-based aircraft engine performance estimation applications. The technique specifically focuses on the underdetermined estimation problem, where there are more unknown health parameters than available sensor measurements. A condition for Kalman filter-based estimation is that the number of health parameters estimated cannot exceed the number of sensed measurements. In this paper, the estimated health parameter vector will be replaced by a reduced order tuner vector whose dimension is equivalent to the sensed measurement vector. The reduced order tuner vector is systematically selected to minimize the theoretical mean squared estimation error of a maximum a posteriori estimator formulation. This paper derives theoretical estimation errors at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the estimation accuracy achieved through conventional maximum a posteriori and Kalman filter estimation approaches. Maximum a posteriori estimation results demonstrate that reduced order tuning parameter vectors can be found that approximate the accuracy of estimating all health parameters directly. Kalman filter estimation results based on the same reduced order tuning parameter vectors demonstrate that significantly improved estimation accuracy can be achieved over the conventional approach of selecting a subset of health parameters to serve as the tuner vector. However, additional development is necessary to fully extend the methodology to Kalman filter-based estimation applications.
Zhang, Wei; Regterschot, G Ruben H; Wahle, Fabian; Geraedts, Hilde; Baldus, Heribert; Zijlstra, Wiebren
2014-01-01
Falls result in substantial disability, morbidity, and mortality among older people. Early detection of fall risks and timely intervention can prevent falls and injuries due to falls. Simple field tests, such as repeated chair rise, are used in clinical assessment of fall risks in older people. Development of on-body sensors introduces potential beneficial alternatives for traditional clinical methods. In this article, we present a pendant sensor based chair rise detection and analysis algorithm for fall risk assessment in older people. The recall and the precision of the transfer detection were 85% and 87% in standard protocol, and 61% and 89% in daily life activities. Estimation errors of chair rise performance indicators: duration, maximum acceleration, peak power and maximum jerk were tested in over 800 transfers. Median estimation error in transfer peak power ranged from 1.9% to 4.6% in various tests. Among all the performance indicators, maximum acceleration had the lowest median estimation error of 0% and duration had the highest median estimation error of 24% over all tests. The developed algorithm might be feasible for continuous fall risk assessment in older people.
Parameter Estimation for Thurstone Choice Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vojnovic, Milan; Yun, Seyoung
We consider the estimation accuracy of individual strength parameters of a Thurstone choice model when each input observation consists of a choice of one item from a set of two or more items (so called top-1 lists). This model accommodates the well-known choice models such as the Luce choice model for comparison sets of two or more items and the Bradley-Terry model for pair comparisons. We provide a tight characterization of the mean squared error of the maximum likelihood parameter estimator. We also provide similar characterizations for parameter estimators defined by a rank-breaking method, which amounts to deducing one ormore » more pair comparisons from a comparison of two or more items, assuming independence of these pair comparisons, and maximizing a likelihood function derived under these assumptions. We also consider a related binary classification problem where each individual parameter takes value from a set of two possible values and the goal is to correctly classify all items within a prescribed classification error. The results of this paper shed light on how the parameter estimation accuracy depends on given Thurstone choice model and the structure of comparison sets. In particular, we found that for unbiased input comparison sets of a given cardinality, when in expectation each comparison set of given cardinality occurs the same number of times, for a broad class of Thurstone choice models, the mean squared error decreases with the cardinality of comparison sets, but only marginally according to a diminishing returns relation. On the other hand, we found that there exist Thurstone choice models for which the mean squared error of the maximum likelihood parameter estimator can decrease much faster with the cardinality of comparison sets. We report empirical evaluation of some claims and key parameters revealed by theory using both synthetic and real-world input data from some popular sport competitions and online labor platforms.« less
Validation of the Kp Geomagnetic Index Forecast at CCMC
NASA Astrophysics Data System (ADS)
Frechette, B. P.; Mays, M. L.
2017-12-01
The Community Coordinated Modeling Center (CCMC) Space Weather Research Center (SWRC) sub-team provides space weather services to NASA robotic mission operators and science campaigns and prototypes new models, forecasting techniques, and procedures. The Kp index is a measure of geomagnetic disturbances for space weather in the magnetosphere such as geomagnetic storms and substorms. In this study, we performed validation on the Newell et al. (2007) Kp prediction equation from December 2010 to July 2017. The purpose of this research is to understand the Kp forecast performance because it's critical for NASA missions to have confidence in the space weather forecast. This research was done by computing the Kp error for each forecast (average, minimum, maximum) and each synoptic period. Then to quantify forecast performance we computed the mean error, mean absolute error, root mean square error, multiplicative bias and correlation coefficient. A contingency table was made for each forecast and skill scores were computed. The results are compared to the perfect score and reference forecast skill score. In conclusion, the skill score and error results show that the minimum of the predicted Kp over each synoptic period from the Newell et al. (2007) Kp prediction equation performed better than the maximum or average of the prediction. However, persistence (reference forecast) outperformed all of the Kp forecasts (minimum, maximum, and average). Overall, the Newell Kp prediction still predicts within a range of 1, even though persistence beats it.
CORRECTION OF THE INERTIAL EFFECT RESULTING FROM A PLATE MOVING UNDER LOW FRICTION CONDITIONS
Yang, Feng; Pai, Yi-Chung
2007-01-01
The purpose of the present study was to develop a set of equations that can be employed to remove the inertial effect introduced by the movable platform upon which a person stands during a slip induced in gait; this allows the real ground reaction force (GRF) and its center of pressure (COP) to be determined. Analyses were also performed to determine how sensitive the COP offsets were to the changes of the parameters in the equation that affected the correction of the inertial effect. In addition, the results were verified empirically using a low friction movable platform together with a stationary object, a pendulum, and human subjects during a slip induced during gait. Our analyses revealed that the amount of correction required for the inertial effect due to the movable component is affected by its mass and its center of mass (COM) position, acceleration, the friction coefficient, and the landing position of the foot relative to the COM. The maximum error in the horizontal component of the GRF was close to 0.09 body weight during the recovery from a slip in walking. When uncorrected, the maximum error in the COP measurement could reach as much as 4 cm. Finally, these errors were magnified in the joint moment computation and propagated proximally, ranging from 0.2 to 1.0 Nm/body mass from the ankle to the hip. PMID:17306274
Fast scattering simulation tool for multi-energy x-ray imaging
NASA Astrophysics Data System (ADS)
Sossin, A.; Tabary, J.; Rebuffel, V.; Létang, J. M.; Freud, N.; Verger, L.
2015-12-01
A combination of Monte Carlo (MC) and deterministic approaches was employed as a means of creating a simulation tool capable of providing energy resolved x-ray primary and scatter images within a reasonable time interval. Libraries of Sindbad, a previously developed x-ray simulation software, were used in the development. The scatter simulation capabilities of the tool were validated through simulation with the aid of GATE and through experimentation by using a spectrometric CdTe detector. A simple cylindrical phantom with cavities and an aluminum insert was used. Cross-validation with GATE showed good agreement with a global spatial error of 1.5% and a maximum scatter spectrum error of around 6%. Experimental validation also supported the accuracy of the simulations obtained from the developed software with a global spatial error of 1.8% and a maximum error of around 8.5% in the scatter spectra.
Examining Impulse-Variability in Kicking.
Chappell, Andrew; Molina, Sergio L; McKibben, Jonathon; Stodden, David F
2016-07-01
This study examined variability in kicking speed and spatial accuracy to test the impulse-variability theory prediction of an inverted-U function and the speed-accuracy trade-off. Twenty-eight 18- to 25-year-old adults kicked a playground ball at various percentages (50-100%) of their maximum speed at a wall target. Speed variability and spatial error were analyzed using repeated-measures ANOVA with built-in polynomial contrasts. Results indicated a significant inverse linear trajectory for speed variability (p < .001, η2= .345) where 50% and 60% maximum speed had significantly higher variability than the 100% condition. A significant quadratic fit was found for spatial error scores of mean radial error (p < .0001, η2 = .474) and subject-centroid radial error (p < .0001, η2 = .453). Findings suggest variability and accuracy of multijoint, ballistic skill performance may not follow the general principles of impulse-variability theory or the speed-accuracy trade-off.
Enhanced Pedestrian Navigation Based on Course Angle Error Estimation Using Cascaded Kalman Filters
Park, Chan Gook
2018-01-01
An enhanced pedestrian dead reckoning (PDR) based navigation algorithm, which uses two cascaded Kalman filters (TCKF) for the estimation of course angle and navigation errors, is proposed. The proposed algorithm uses a foot-mounted inertial measurement unit (IMU), waist-mounted magnetic sensors, and a zero velocity update (ZUPT) based inertial navigation technique with TCKF. The first stage filter estimates the course angle error of a human, which is closely related to the heading error of the IMU. In order to obtain the course measurements, the filter uses magnetic sensors and a position-trace based course angle. For preventing magnetic disturbance from contaminating the estimation, the magnetic sensors are attached to the waistband. Because the course angle error is mainly due to the heading error of the IMU, and the characteristic error of the heading angle is highly dependent on that of the course angle, the estimated course angle error is used as a measurement for estimating the heading error in the second stage filter. At the second stage, an inertial navigation system-extended Kalman filter-ZUPT (INS-EKF-ZUPT) method is adopted. As the heading error is estimated directly by using course-angle error measurements, the estimation accuracy for the heading and yaw gyro bias can be enhanced, compared with the ZUPT-only case, which eventually enhances the position accuracy more efficiently. The performance enhancements are verified via experiments, and the way-point position error for the proposed method is compared with those for the ZUPT-only case and with other cases that use ZUPT and various types of magnetic heading measurements. The results show that the position errors are reduced by a maximum of 90% compared with the conventional ZUPT based PDR algorithms. PMID:29690539
Comparing interval estimates for small sample ordinal CFA models
Natesan, Prathiba
2015-01-01
Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading. Therefore, editors and policymakers should continue to emphasize the inclusion of interval estimates in research. PMID:26579002
Decomposition of Sources of Errors in Seasonal Streamflow Forecasting over the U.S. Sunbelt
NASA Technical Reports Server (NTRS)
Mazrooei, Amirhossein; Sinah, Tusshar; Sankarasubramanian, A.; Kumar, Sujay V.; Peters-Lidard, Christa D.
2015-01-01
Seasonal streamflow forecasts, contingent on climate information, can be utilized to ensure water supply for multiple uses including municipal demands, hydroelectric power generation, and for planning agricultural operations. However, uncertainties in the streamflow forecasts pose significant challenges in their utilization in real-time operations. In this study, we systematically decompose various sources of errors in developing seasonal streamflow forecasts from two Land Surface Models (LSMs) (Noah3.2 and CLM2), which are forced with downscaled and disaggregated climate forecasts. In particular, the study quantifies the relative contributions of the sources of errors from LSMs, climate forecasts, and downscaling/disaggregation techniques in developing seasonal streamflow forecast. For this purpose, three month ahead seasonal precipitation forecasts from the ECHAM4.5 general circulation model (GCM) were statistically downscaled from 2.8deg to 1/8deg spatial resolution using principal component regression (PCR) and then temporally disaggregated from monthly to daily time step using kernel-nearest neighbor (K-NN) approach. For other climatic forcings, excluding precipitation, we considered the North American Land Data Assimilation System version 2 (NLDAS-2) hourly climatology over the years 1979 to 2010. Then the selected LSMs were forced with precipitation forecasts and NLDAS-2 hourly climatology to develop retrospective seasonal streamflow forecasts over a period of 20 years (1991-2010). Finally, the performance of LSMs in forecasting streamflow under different schemes was analyzed to quantify the relative contribution of various sources of errors in developing seasonal streamflow forecast. Our results indicate that the most dominant source of errors during winter and fall seasons is the errors due to ECHAM4.5 precipitation forecasts, while temporal disaggregation scheme contributes to maximum errors during summer season.
Comparing interval estimates for small sample ordinal CFA models.
Natesan, Prathiba
2015-01-01
Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading. Therefore, editors and policymakers should continue to emphasize the inclusion of interval estimates in research.
Error quantification of osteometric data in forensic anthropology.
Langley, Natalie R; Meadows Jantz, Lee; McNulty, Shauna; Maijanen, Heli; Ousley, Stephen D; Jantz, Richard L
2018-06-01
This study evaluates the reliability of osteometric data commonly used in forensic case analyses, with specific reference to the measurements in Data Collection Procedures 2.0 (DCP 2.0). Four observers took a set of 99 measurements four times on a sample of 50 skeletons (each measurement was taken 200 times by each observer). Two-way mixed ANOVAs and repeated measures ANOVAs with pairwise comparisons were used to examine interobserver (between-subjects) and intraobserver (within-subjects) variability. Relative technical error of measurement (TEM) was calculated for measurements with significant ANOVA results to examine the error among a single observer repeating a measurement multiple times (e.g. repeatability or intraobserver error), as well as the variability between multiple observers (interobserver error). Two general trends emerged from these analyses: (1) maximum lengths and breadths have the lowest error across the board (TEM<0.5), and (2) maximum and minimum diameters at midshaft are more reliable than their positionally-dependent counterparts (i.e. sagittal, vertical, transverse, dorso-volar). Therefore, maxima and minima are specified for all midshaft measurements in DCP 2.0. Twenty-two measurements were flagged for excessive variability (either interobserver, intraobserver, or both); 15 of these measurements were part of the standard set of measurements in Data Collection Procedures for Forensic Skeletal Material, 3rd edition. Each measurement was examined carefully to determine the likely source of the error (e.g. data input, instrumentation, observer's method, or measurement definition). For several measurements (e.g. anterior sacral breadth, distal epiphyseal breadth of the tibia) only one observer differed significantly from the remaining observers, indicating a likely problem with the measurement definition as interpreted by that observer; these definitions were clarified in DCP 2.0 to eliminate this confusion. Other measurements were taken from landmarks that are difficult to locate consistently (e.g. pubis length, ischium length); these measurements were omitted from DCP 2.0. This manual is available for free download online (https://fac.utk.edu/wp-content/uploads/2016/03/DCP20_webversion.pdf), along with an accompanying instructional video (https://www.youtube.com/watch?v=BtkLFl3vim4). Copyright © 2018 Elsevier B.V. All rights reserved.
MRI-guided prostate focal laser ablation therapy using a mechatronic needle guidance system
NASA Astrophysics Data System (ADS)
Cepek, Jeremy; Lindner, Uri; Ghai, Sangeet; Davidson, Sean R. H.; Trachtenberg, John; Fenster, Aaron
2014-03-01
Focal therapy of localized prostate cancer is receiving increased attention due to its potential for providing effective cancer control in select patients with minimal treatment-related side effects. Magnetic resonance imaging (MRI)-guided focal laser ablation (FLA) therapy is an attractive modality for such an approach. In FLA therapy, accurate placement of laser fibers is critical to ensuring that the full target volume is ablated. In practice, error in needle placement is invariably present due to pre- to intra-procedure image registration error, needle deflection, prostate motion, and variability in interventionalist skill. In addition, some of these sources of error are difficult to control, since the available workspace and patient positions are restricted within a clinical MRI bore. In an attempt to take full advantage of the utility of intraprocedure MRI, while minimizing error in needle placement, we developed an MRI-compatible mechatronic system for guiding needles to the prostate for FLA therapy. The system has been used to place interstitial catheters for MRI-guided FLA therapy in eight subjects in an ongoing Phase I/II clinical trial. Data from these cases has provided quantification of the level of uncertainty in needle placement error. To relate needle placement error to clinical outcome, we developed a model for predicting the probability of achieving complete focal target ablation for a family of parameterized treatment plans. Results from this work have enabled the specification of evidence-based selection criteria for the maximum target size that can be confidently ablated using this technique, and quantify the benefit that may be gained with improvements in needle placement accuracy.
A channel dynamics model for real-time flood forecasting
Hoos, Anne B.; Koussis, Antonis D.; Beale, Guy O.
1989-01-01
A new channel dynamics scheme (alternative system predictor in real time (ASPIRE)), designed specifically for real-time river flow forecasting, is introduced to reduce uncertainty in the forecast. ASPIRE is a storage routing model that limits the influence of catchment model forecast errors to the downstream station closest to the catchment. Comparisons with the Muskingum routing scheme in field tests suggest that the ASPIRE scheme can provide more accurate forecasts, probably because discharge observations are used to a maximum advantage and routing reaches (and model errors in each reach) are uncoupled. Using ASPIRE in conjunction with the Kalman filter did not improve forecast accuracy relative to a deterministic updating procedure. Theoretical analysis suggests that this is due to a large process noise to measurement noise ratio.
NASA Astrophysics Data System (ADS)
Hu, Xiaoqian; Tao, Jinxu; Ye, Zhongfu; Qiu, Bensheng; Xu, Jinzhang
2018-05-01
In order to solve the problem of medical image segmentation, a wavelet neural network medical image segmentation algorithm based on combined maximum entropy criterion is proposed. Firstly, we use bee colony algorithm to optimize the network parameters of wavelet neural network, get the parameters of network structure, initial weights and threshold values, and so on, we can quickly converge to higher precision when training, and avoid to falling into relative extremum; then the optimal number of iterations is obtained by calculating the maximum entropy of the segmented image, so as to achieve the automatic and accurate segmentation effect. Medical image segmentation experiments show that the proposed algorithm can reduce sample training time effectively and improve convergence precision, and segmentation effect is more accurate and effective than traditional BP neural network (back propagation neural network : a multilayer feed forward neural network which trained according to the error backward propagation algorithm.
Backus Effect on a Perpendicular Errors in Harmonic Models of Real vs. Synthetic Data
NASA Technical Reports Server (NTRS)
Voorhies, C. V.; Santana, J.; Sabaka, T.
1999-01-01
Measurements of geomagnetic scalar intensity on a thin spherical shell alone are not enough to separate internal from external source fields; moreover, such scalar data are not enough for accurate modeling of the vector field from internal sources because of unmodeled fields and small data errors. Spherical harmonic models of the geomagnetic potential fitted to scalar data alone therefore suffer from well-understood Backus effect and perpendicular errors. Curiously, errors in some models of simulated 'data' are very much less than those in models of real data. We analyze select Magsat vector and scalar measurements separately to illustrate Backus effect and perpendicular errors in models of real scalar data. By using a model to synthesize 'data' at the observation points, and by adding various types of 'noise', we illustrate such errors in models of synthetic 'data'. Perpendicular errors prove quite sensitive to the maximum degree in the spherical harmonic expansion of the potential field model fitted to the scalar data. Small errors in models of synthetic 'data' are found to be an artifact of matched truncation levels. For example, consider scalar synthetic 'data' computed from a degree 14 model. A degree 14 model fitted to such synthetic 'data' yields negligible error, but amplifies 4 nT (rmss) added noise into a 60 nT error (rmss); however, a degree 12 model fitted to the noisy 'data' suffers a 492 nT error (rmms through degree 12). Geomagnetic measurements remain unaware of model truncation, so the small errors indicated by some simulations cannot be realized in practice. Errors in models fitted to scalar data alone approach 1000 nT (rmss) and several thousand nT (maximum).
Fiyadh, Seef Saadi; AlSaadi, Mohammed Abdulhakim; AlOmar, Mohamed Khalid; Fayaed, Sabah Saadi; Hama, Ako R; Bee, Sharifah; El-Shafie, Ahmed
2017-11-01
The main challenge in the lead removal simulation is the behaviour of non-linearity relationships between the process parameters. The conventional modelling technique usually deals with this problem by a linear method. The substitute modelling technique is an artificial neural network (ANN) system, and it is selected to reflect the non-linearity in the interaction among the variables in the function. Herein, synthesized deep eutectic solvents were used as a functionalized agent with carbon nanotubes as adsorbents of Pb 2+ . Different parameters were used in the adsorption study including pH (2.7 to 7), adsorbent dosage (5 to 20 mg), contact time (3 to 900 min) and Pb 2+ initial concentration (3 to 60 mg/l). The number of experimental trials to feed and train the system was 158 runs conveyed in laboratory scale. Two ANN types were designed in this work, the feed-forward back-propagation and layer recurrent; both methods are compared based on their predictive proficiency in terms of the mean square error (MSE), root mean square error, relative root mean square error, mean absolute percentage error and determination coefficient (R 2 ) based on the testing dataset. The ANN model of lead removal was subjected to accuracy determination and the results showed R 2 of 0.9956 with MSE of 1.66 × 10 -4 . The maximum relative error is 14.93% for the feed-forward back-propagation neural network model.
NASA Technical Reports Server (NTRS)
Goodrich, John W.
2017-01-01
This paper presents results from numerical experiments for controlling the error caused by a damping layer boundary treatment when simulating the propagation of an acoustic signal from a continuous pressure source. The computations are with the 2D Linearized Euler Equations (LEE) for both a uniform mean flow and a steady parallel jet. The numerical experiments are with algorithms that are third, fifth, seventh and ninth order accurate in space and time. The numerical domain is enclosed in a damping layer boundary treatment. The damping is implemented in a time accurate manner, with simple polynomial damping profiles of second, fourth, sixth and eighth power. At the outer boundaries of the damping layer the propagating solution is uniformly set to zero. The complete boundary treatment is remarkably simple and intrinsically independant from the dimension of the spatial domain. The reported results show the relative effect on the error from the boundary treatment by varying the damping layer width, damping profile power, damping amplitude, propagtion time, grid resolution and algorithm order. The issue that is being addressed is not the accuracy of the numerical solution when compared to a mathematical solution, but the effect of the complete boundary treatment on the numerical solution, and to what degree the error in the numerical solution from the complete boundary treatment can be controlled. We report maximum relative absolute errors from just the boundary treatment that range from O[10-2] to O[10-7].
Student Errors in Fractions and Possible Causes of These Errors
ERIC Educational Resources Information Center
Aksoy, Nuri Can; Yazlik, Derya Ozlem
2017-01-01
In this study, it was aimed to determine the errors and misunderstandings of 5th and 6th grade middle school students in fractions and operations with fractions. For this purpose, the case study model, which is a qualitative research design, was used in the research. In the study, maximum diversity sampling, which is a purposeful sampling method,…
Translation fidelity coevolves with longevity.
Ke, Zhonghe; Mallik, Pramit; Johnson, Adam B; Luna, Facundo; Nevo, Eviatar; Zhang, Zhengdong D; Gladyshev, Vadim N; Seluanov, Andrei; Gorbunova, Vera
2017-10-01
Whether errors in protein synthesis play a role in aging has been a subject of intense debate. It has been suggested that rare mistakes in protein synthesis in young organisms may result in errors in the protein synthesis machinery, eventually leading to an increasing cascade of errors as organisms age. Studies that followed generally failed to identify a dramatic increase in translation errors with aging. However, whether translation fidelity plays a role in aging remained an open question. To address this issue, we examined the relationship between translation fidelity and maximum lifespan across 17 rodent species with diverse lifespans. To measure translation fidelity, we utilized sensitive luciferase-based reporter constructs with mutations in an amino acid residue critical to luciferase activity, wherein misincorporation of amino acids at this mutated codon re-activated the luciferase. The frequency of amino acid misincorporation at the first and second codon positions showed strong negative correlation with maximum lifespan. This correlation remained significant after phylogenetic correction, indicating that translation fidelity coevolves with longevity. These results give new life to the role of protein synthesis errors in aging: Although the error rate may not significantly change with age, the basal rate of translation errors is important in defining lifespan across mammals. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
1991-03-01
Target Temperature as a Function of the Py erot Temperature ........ .... ............. 13 2.4 Emitter Temperature as a Functio of th Liode Target...Temperatm .. ........................ 14 2.5 Experimental Calibration Data and Polynomial Fit for ASTAR-811C Diode ... . ......... . ...... 18 2.6 Actual...12.2152(V) - 0.0099 (5.2) Maximum error a 0.0093% C) TR = 420 K P = 4.5541(V)3 - 23.58 18 (V)2 + 18.1602(V) + 0.002 (5.3) Maximum error =.1.632% d) TR = 450
Error Estimates of the Ares I Computed Turbulent Ascent Longitudinal Aerodynamic Analysis
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.; Ghaffari, Farhad
2012-01-01
Numerical predictions of the longitudinal aerodynamic characteristics for the Ares I class of vehicles, along with the associated error estimate derived from an iterative convergence grid refinement, are presented. Computational results are based on an unstructured grid, Reynolds-averaged Navier-Stokes analysis. The validity of the approach to compute the associated error estimates, derived from a base grid to an extrapolated infinite-size grid, was first demonstrated on a sub-scaled wind tunnel model at representative ascent flow conditions for which the experimental data existed. Such analysis at the transonic flow conditions revealed a maximum deviation of about 23% between the computed longitudinal aerodynamic coefficients with the base grid and the measured data across the entire roll angles. This maximum deviation from the wind tunnel data was associated with the computed normal force coefficient at the transonic flow condition and was reduced to approximately 16% based on the infinite-size grid. However, all the computed aerodynamic coefficients with the base grid at the supersonic flow conditions showed a maximum deviation of only about 8% with that level being improved to approximately 5% for the infinite-size grid. The results and the error estimates based on the established procedure are also presented for the flight flow conditions.
Water quality management using statistical analysis and time-series prediction model
NASA Astrophysics Data System (ADS)
Parmar, Kulwinder Singh; Bhardwaj, Rashmi
2014-12-01
This paper deals with water quality management using statistical analysis and time-series prediction model. The monthly variation of water quality standards has been used to compare statistical mean, median, mode, standard deviation, kurtosis, skewness, coefficient of variation at Yamuna River. Model validated using R-squared, root mean square error, mean absolute percentage error, maximum absolute percentage error, mean absolute error, maximum absolute error, normalized Bayesian information criterion, Ljung-Box analysis, predicted value and confidence limits. Using auto regressive integrated moving average model, future water quality parameters values have been estimated. It is observed that predictive model is useful at 95 % confidence limits and curve is platykurtic for potential of hydrogen (pH), free ammonia, total Kjeldahl nitrogen, dissolved oxygen, water temperature (WT); leptokurtic for chemical oxygen demand, biochemical oxygen demand. Also, it is observed that predicted series is close to the original series which provides a perfect fit. All parameters except pH and WT cross the prescribed limits of the World Health Organization /United States Environmental Protection Agency, and thus water is not fit for drinking, agriculture and industrial use.
A Modified MinMax k-Means Algorithm Based on PSO.
Wang, Xiaoyan; Bai, Yanping
The MinMax k -means algorithm is widely used to tackle the effect of bad initialization by minimizing the maximum intraclustering errors. Two parameters, including the exponent parameter and memory parameter, are involved in the executive process. Since different parameters have different clustering errors, it is crucial to choose appropriate parameters. In the original algorithm, a practical framework is given. Such framework extends the MinMax k -means to automatically adapt the exponent parameter to the data set. It has been believed that if the maximum exponent parameter has been set, then the programme can reach the lowest intraclustering errors. However, our experiments show that this is not always correct. In this paper, we modified the MinMax k -means algorithm by PSO to determine the proper values of parameters which can subject the algorithm to attain the lowest clustering errors. The proposed clustering method is tested on some favorite data sets in several different initial situations and is compared to the k -means algorithm and the original MinMax k -means algorithm. The experimental results indicate that our proposed algorithm can reach the lowest clustering errors automatically.
Adaptive color halftoning for minimum perceived error using the blue noise mask
NASA Astrophysics Data System (ADS)
Yu, Qing; Parker, Kevin J.
1997-04-01
Color halftoning using a conventional screen requires careful selection of screen angles to avoid Moire patterns. An obvious advantage of halftoning using a blue noise mask (BNM) is that there are no conventional screen angle or Moire patterns produced. However, a simple strategy of employing the same BNM on all color planes is unacceptable in case where a small registration error can cause objectionable color shifts. In a previous paper by Yao and Parker, strategies were presented for shifting or inverting the BNM as well as using mutually exclusive BNMs for different color planes. In this paper, the above schemes will be studied in CIE-LAB color space in terms of root mean square error and variance for luminance channel and chrominance channel respectively. We will demonstrate that the dot-on-dot scheme results in minimum chrominance error, but maximum luminance error and the 4-mask scheme results in minimum luminance error but maximum chrominance error, while the shift scheme falls in between. Based on this study, we proposed a new adaptive color halftoning algorithm that takes colorimetric color reproduction into account by applying 2-mutually exclusive BNMs on two different color planes and applying an adaptive scheme on other planes to reduce color error. We will show that by having one adaptive color channel, we obtain increased flexibility to manipulate the output so as to reduce colorimetric error while permitting customization to specific printing hardware.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boehnke, E McKenzie; DeMarco, J; Steers, J
2016-06-15
Purpose: To examine both the IQM’s sensitivity and false positive rate to varying MLC errors. By balancing these two characteristics, an optimal tolerance value can be derived. Methods: An un-modified SBRT Liver IMRT plan containing 7 fields was randomly selected as a representative clinical case. The active MLC positions for all fields were perturbed randomly from a square distribution of varying width (±1mm to ±5mm). These unmodified and modified plans were measured multiple times each by the IQM (a large area ion chamber mounted to a TrueBeam linac head). Measurements were analyzed relative to the initial, unmodified measurement. IQM readingsmore » are analyzed as a function of control points. In order to examine sensitivity to errors along a field’s delivery, each measured field was divided into 5 groups of control points, and the maximum error in each group was recorded. Since the plans have known errors, we compared how well the IQM is able to differentiate between unmodified and error plans. ROC curves and logistic regression were used to analyze this, independent of thresholds. Results: A likelihood-ratio Chi-square test showed that the IQM could significantly predict whether a plan had MLC errors, with the exception of the beginning and ending control points. Upon further examination, we determined there was ramp-up occurring at the beginning of delivery. Once the linac AFC was tuned, the subsequent measurements (relative to a new baseline) showed significant (p <0.005) abilities to predict MLC errors. Using the area under the curve, we show the IQM’s ability to detect errors increases with increasing MLC error (Spearman’s Rho=0.8056, p<0.0001). The optimal IQM count thresholds from the ROC curves are ±3%, ±2%, and ±7% for the beginning, middle 3, and end segments, respectively. Conclusion: The IQM has proven to be able to detect not only MLC errors, but also differences in beam tuning (ramp-up). Partially supported by the Susan Scott Foundation.« less
SEPARABLE FACTOR ANALYSIS WITH APPLICATIONS TO MORTALITY DATA
Fosdick, Bailey K.; Hoff, Peter D.
2014-01-01
Human mortality data sets can be expressed as multiway data arrays, the dimensions of which correspond to categories by which mortality rates are reported, such as age, sex, country and year. Regression models for such data typically assume an independent error distribution or an error model that allows for dependence along at most one or two dimensions of the data array. However, failing to account for other dependencies can lead to inefficient estimates of regression parameters, inaccurate standard errors and poor predictions. An alternative to assuming independent errors is to allow for dependence along each dimension of the array using a separable covariance model. However, the number of parameters in this model increases rapidly with the dimensions of the array and, for many arrays, maximum likelihood estimates of the covariance parameters do not exist. In this paper, we propose a submodel of the separable covariance model that estimates the covariance matrix for each dimension as having factor analytic structure. This model can be viewed as an extension of factor analysis to array-valued data, as it uses a factor model to estimate the covariance along each dimension of the array. We discuss properties of this model as they relate to ordinary factor analysis, describe maximum likelihood and Bayesian estimation methods, and provide a likelihood ratio testing procedure for selecting the factor model ranks. We apply this methodology to the analysis of data from the Human Mortality Database, and show in a cross-validation experiment how it outperforms simpler methods. Additionally, we use this model to impute mortality rates for countries that have no mortality data for several years. Unlike other approaches, our methodology is able to estimate similarities between the mortality rates of countries, time periods and sexes, and use this information to assist with the imputations. PMID:25489353
Gibson, Eli; Fenster, Aaron; Ward, Aaron D
2013-10-01
Novel imaging modalities are pushing the boundaries of what is possible in medical imaging, but their signal properties are not always well understood. The evaluation of these novel imaging modalities is critical to achieving their research and clinical potential. Image registration of novel modalities to accepted reference standard modalities is an important part of characterizing the modalities and elucidating the effect of underlying focal disease on the imaging signal. The strengths of the conclusions drawn from these analyses are limited by statistical power. Based on the observation that in this context, statistical power depends in part on uncertainty arising from registration error, we derive a power calculation formula relating registration error, number of subjects, and the minimum detectable difference between normal and pathologic regions on imaging, for an imaging validation study design that accommodates signal correlations within image regions. Monte Carlo simulations were used to evaluate the derived models and test the strength of their assumptions, showing that the model yielded predictions of the power, the number of subjects, and the minimum detectable difference of simulated experiments accurate to within a maximum error of 1% when the assumptions of the derivation were met, and characterizing sensitivities of the model to violations of the assumptions. The use of these formulae is illustrated through a calculation of the number of subjects required for a case study, modeled closely after a prostate cancer imaging validation study currently taking place at our institution. The power calculation formulae address three central questions in the design of imaging validation studies: (1) What is the maximum acceptable registration error? (2) How many subjects are needed? (3) What is the minimum detectable difference between normal and pathologic image regions? Copyright © 2013 Elsevier B.V. All rights reserved.
Optimized Finite-Difference Coefficients for Hydroacoustic Modeling
NASA Astrophysics Data System (ADS)
Preston, L. A.
2014-12-01
Responsible utilization of marine renewable energy sources through the use of current energy converter (CEC) and wave energy converter (WEC) devices requires an understanding of the noise generation and propagation from these systems in the marine environment. Acoustic noise produced by rotating turbines, for example, could adversely affect marine animals and human-related marine activities if not properly understood and mitigated. We are utilizing a 3-D finite-difference acoustic simulation code developed at Sandia that can accurately propagate noise in the complex bathymetry in the near-shore to open ocean environment. As part of our efforts to improve computation efficiency in the large, high-resolution domains required in this project, we investigate the effects of using optimized finite-difference coefficients on the accuracy of the simulations. We compare accuracy and runtime of various finite-difference coefficients optimized via criteria such as maximum numerical phase speed error, maximum numerical group speed error, and L-1 and L-2 norms of weighted numerical group and phase speed errors over a given spectral bandwidth. We find that those coefficients optimized for L-1 and L-2 norms are superior in accuracy to those based on maximal error and can produce runtimes of 10% of the baseline case, which uses Taylor Series finite-difference coefficients at the Courant time step limit. We will present comparisons of the results for the various cases evaluated as well as recommendations for utilization of the cases studied. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
The Significance of the Record Length in Flood Frequency Analysis
NASA Astrophysics Data System (ADS)
Senarath, S. U.
2013-12-01
Of all of the potential natural hazards, flood is the most costly in many regions of the world. For example, floods cause over a third of Europe's average annual catastrophe losses and affect about two thirds of the people impacted by natural catastrophes. Increased attention is being paid to determining flow estimates associated with pre-specified return periods so that flood-prone areas can be adequately protected against floods of particular magnitudes or return periods. Flood frequency analysis, which is conducted by using an appropriate probability density function that fits the observed annual maximum flow data, is frequently used for obtaining these flow estimates. Consequently, flood frequency analysis plays an integral role in determining the flood risk in flood prone watersheds. A long annual maximum flow record is vital for obtaining accurate estimates of discharges associated with high return period flows. However, in many areas of the world, flood frequency analysis is conducted with limited flow data or short annual maximum flow records. These inevitably lead to flow estimates that are subject to error. This is especially the case with high return period flow estimates. In this study, several statistical techniques are used to identify errors caused by short annual maximum flow records. The flow estimates used in the error analysis are obtained by fitting a log-Pearson III distribution to the flood time-series. These errors can then be used to better evaluate the return period flows in data limited streams. The study findings, therefore, have important implications for hydrologists, water resources engineers and floodplain managers.
NASA Astrophysics Data System (ADS)
Zhao, Xiuliang; Cheng, Yong; Wang, Limei; Ji, Shaobo
2017-03-01
Accurate combustion parameters are the foundations of effective closed-loop control of engine combustion process. Some combustion parameters, including the start of combustion, the location of peak pressure, the maximum pressure rise rate and its location, can be identified from the engine block vibration signals. These signals often include non-combustion related contributions, which limit the prompt acquisition of the combustion parameters computationally. The main component in these non-combustion related contributions is considered to be caused by the reciprocating inertia force excitation (RIFE) of engine crank train. A mathematical model is established to describe the response of the RIFE. The parameters of the model are recognized with a pattern recognition algorithm, and the response of the RIFE is predicted and then the related contributions are removed from the measured vibration velocity signals. The combustion parameters are extracted from the feature points of the renovated vibration velocity signals. There are angle deviations between the feature points in the vibration velocity signals and those in the cylinder pressure signals. For the start of combustion, a system bias is adopted to correct the deviation and the error bound of the predicted parameters is within 1.1°. To predict the location of the maximum pressure rise rate and the location of the peak pressure, algorithms based on the proportion of high frequency components in the vibration velocity signals are introduced. Tests results show that the two parameters are able to be predicted within 0.7° and 0.8° error bound respectively. The increase from the knee point preceding the peak value point to the peak value in the vibration velocity signals is used to predict the value of the maximum pressure rise rate. Finally, a monitoring frame work is inferred to realize the combustion parameters prediction. Satisfactory prediction for combustion parameters in successive cycles is achieved, which validates the proposed methods.
Online pretreatment verification of high-dose rate brachytherapy using an imaging panel
NASA Astrophysics Data System (ADS)
Fonseca, Gabriel P.; Podesta, Mark; Bellezzo, Murillo; Van den Bosch, Michiel R.; Lutgens, Ludy; Vanneste, Ben G. L.; Voncken, Robert; Van Limbergen, Evert J.; Reniers, Brigitte; Verhaegen, Frank
2017-07-01
Brachytherapy is employed to treat a wide variety of cancers. However, an accurate treatment verification method is currently not available. This study describes a pre-treatment verification system that uses an imaging panel (IP) to verify important aspects of the treatment plan. A detailed modelling of the IP was only possible with an extensive calibration performed using a robotic arm. Irradiations were performed with a high dose rate (HDR) 192Ir source within a water phantom. An empirical fit was applied to measure the distance between the source and the detector so 3D Cartesian coordinates of the dwell positions can be obtained using a single panel. The IP acquires 7.14 fps to verify the dwell times, dwell positions and air kerma strength (Sk). A gynecological applicator was used to create a treatment plan that was registered with a CT image of the water phantom used during the experiments for verification purposes. Errors (shifts, exchanged connections and wrong dwell times) were simulated to verify the proposed verification system. Cartesian source positions (panel measurement plane) have a standard deviation of about 0.02 cm. The measured distance between the source and the panel (z-coordinate) have a standard deviation up to 0.16 cm and maximum absolute error of ≈0.6 cm if the signal is close to sensitive limit of the panel. The average response of the panel is very linear with Sk. Therefore, Sk measurements can be performed with relatively small errors. The measured dwell times show a maximum error of 0.2 s which is consistent with the acquisition rate of the panel. All simulated errors were clearly identified by the proposed system. The use of IPs is not common in brachytherapy, however, it provides considerable advantages. It was demonstrated that the IP can accurately measure Sk, dwell times and dwell positions.
Online pretreatment verification of high-dose rate brachytherapy using an imaging panel.
Fonseca, Gabriel P; Podesta, Mark; Bellezzo, Murillo; Van den Bosch, Michiel R; Lutgens, Ludy; Vanneste, Ben G L; Voncken, Robert; Van Limbergen, Evert J; Reniers, Brigitte; Verhaegen, Frank
2017-07-07
Brachytherapy is employed to treat a wide variety of cancers. However, an accurate treatment verification method is currently not available. This study describes a pre-treatment verification system that uses an imaging panel (IP) to verify important aspects of the treatment plan. A detailed modelling of the IP was only possible with an extensive calibration performed using a robotic arm. Irradiations were performed with a high dose rate (HDR) 192 Ir source within a water phantom. An empirical fit was applied to measure the distance between the source and the detector so 3D Cartesian coordinates of the dwell positions can be obtained using a single panel. The IP acquires 7.14 fps to verify the dwell times, dwell positions and air kerma strength (Sk). A gynecological applicator was used to create a treatment plan that was registered with a CT image of the water phantom used during the experiments for verification purposes. Errors (shifts, exchanged connections and wrong dwell times) were simulated to verify the proposed verification system. Cartesian source positions (panel measurement plane) have a standard deviation of about 0.02 cm. The measured distance between the source and the panel (z-coordinate) have a standard deviation up to 0.16 cm and maximum absolute error of ≈0.6 cm if the signal is close to sensitive limit of the panel. The average response of the panel is very linear with Sk. Therefore, Sk measurements can be performed with relatively small errors. The measured dwell times show a maximum error of 0.2 s which is consistent with the acquisition rate of the panel. All simulated errors were clearly identified by the proposed system. The use of IPs is not common in brachytherapy, however, it provides considerable advantages. It was demonstrated that the IP can accurately measure Sk, dwell times and dwell positions.
Pennation angle dependency in skeletal muscle tissue doppler strain in dynamic contractions.
Lindberg, Frida; Öhberg, Fredrik; Granåsen, Gabriel; Brodin, Lars-Åke; Grönlund, Christer
2011-07-01
Tissue velocity imaging (TVI) is a Doppler based ultrasound technique that can be used to study regional deformation in skeletal muscle tissue. The aim of this study was to develop a biomechanical model to describe the TVI strain's dependency on the pennation angle. We demonstrate its impact as the subsequent strain measurement error using dynamic elbow contractions from the medial and the lateral part of biceps brachii at two different loadings; 5% and 25% of maximum voluntary contraction (MVC). The estimated pennation angles were on average about 4° in extended position and increased to a maximal of 13° in flexed elbow position. The corresponding relative angular error spread from around 7% up to around 40%. To accurately apply TVI on skeletal muscles, the error due to angle changes should be compensated for. As a suggestion, this could be done according to the presented model. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Li-wei; Ye, Xin; Fang, Wei; He, Zhen-lei; Yi, Xiao-long; Wang, Yu-peng
2017-11-01
Hyper-spectral imaging spectrometer has high spatial and spectral resolution. Its radiometric calibration needs the knowledge of the sources used with high spectral resolution. In order to satisfy the requirement of source, an on-orbit radiometric calibration method is designed in this paper. This chain is based on the spectral inversion accuracy of the calibration light source. We compile the genetic algorithm progress which is used to optimize the channel design of the transfer radiometer and consider the degradation of the halogen lamp, thus realizing the high accuracy inversion of spectral curve in the whole working time. The experimental results show the average root mean squared error is 0.396%, the maximum root mean squared error is 0.448%, and the relative errors at all wavelengths are within 1% in the spectral range from 500 nm to 900 nm during 100 h operating time. The design lays a foundation for the high accuracy calibration of imaging spectrometer.
Dynamic Programming and Error Estimates for Stochastic Control Problems with Maximum Cost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bokanowski, Olivier, E-mail: boka@math.jussieu.fr; Picarelli, Athena, E-mail: athena.picarelli@inria.fr; Zidani, Hasnaa, E-mail: hasnaa.zidani@ensta.fr
2015-02-15
This work is concerned with stochastic optimal control for a running maximum cost. A direct approach based on dynamic programming techniques is studied leading to the characterization of the value function as the unique viscosity solution of a second order Hamilton–Jacobi–Bellman (HJB) equation with an oblique derivative boundary condition. A general numerical scheme is proposed and a convergence result is provided. Error estimates are obtained for the semi-Lagrangian scheme. These results can apply to the case of lookback options in finance. Moreover, optimal control problems with maximum cost arise in the characterization of the reachable sets for a system ofmore » controlled stochastic differential equations. Some numerical simulations on examples of reachable analysis are included to illustrate our approach.« less
Wang, Yanjun; Li, Haoyu; Liu, Xingbin; Zhang, Yuhui; Xie, Ronghua; Huang, Chunhui; Hu, Jinhai; Deng, Gang
2016-10-14
First, the measuring principle, the weight function, and the magnetic field of the novel downhole inserted electromagnetic flowmeter (EMF) are described. Second, the basic design of the EMF is described. Third, the dynamic experiments of two EMFs in oil-water two-phase flow are carried out. The experimental errors are analyzed in detail. The experimental results show that the maximum absolute value of the full-scale errors is better than 5%, the total flowrate is 5-60 m³/d, and the water-cut is higher than 60%. The maximum absolute value of the full-scale errors is better than 7%, the total flowrate is 2-60 m³/d, and the water-cut is higher than 70%. Finally, onsite experiments in high-water-cut oil-producing wells are conducted, and the possible reasons for the errors in the onsite experiments are analyzed. It is found that the EMF can provide an effective technology for measuring downhole oil-water two-phase flow.
Wang, Yanjun; Li, Haoyu; Liu, Xingbin; Zhang, Yuhui; Xie, Ronghua; Huang, Chunhui; Hu, Jinhai; Deng, Gang
2016-01-01
First, the measuring principle, the weight function, and the magnetic field of the novel downhole inserted electromagnetic flowmeter (EMF) are described. Second, the basic design of the EMF is described. Third, the dynamic experiments of two EMFs in oil-water two-phase flow are carried out. The experimental errors are analyzed in detail. The experimental results show that the maximum absolute value of the full-scale errors is better than 5%, the total flowrate is 5–60 m3/d, and the water-cut is higher than 60%. The maximum absolute value of the full-scale errors is better than 7%, the total flowrate is 2–60 m3/d, and the water-cut is higher than 70%. Finally, onsite experiments in high-water-cut oil-producing wells are conducted, and the possible reasons for the errors in the onsite experiments are analyzed. It is found that the EMF can provide an effective technology for measuring downhole oil-water two-phase flow. PMID:27754412
Practical considerations for a second-order directional hearing aid microphone system
NASA Astrophysics Data System (ADS)
Thompson, Stephen C.
2003-04-01
First-order directional microphone systems for hearing aids have been available for several years. Such a system uses two microphones and has a theoretical maximum free-field directivity index (DI) of 6.0 dB. A second-order microphone system using three microphones could provide a theoretical increase in free-field DI to 9.5 dB. These theoretical maximum DI values assume that the microphones have exactly matched sensitivities at all frequencies of interest. In practice, the individual microphones in the hearing aid always have slightly different sensitivities. For the small microphone separation necessary to fit in a hearing aid, these sensitivity matching errors degrade the directivity from the theoretical values, especially at low frequencies. This paper shows that, for first-order systems the directivity degradation due to sensitivity errors is relatively small. However, for second-order systems with practical microphone sensitivity matching specifications, the directivity degradation below 1 kHz is not tolerable. A hybrid order directive system is proposed that uses first-order processing at low frequencies and second-order directive processing at higher frequencies. This hybrid system is suggested as an alternative that could provide improved directivity index in the frequency regions that are important to speech intelligibility.
Chen, Li; Gao, Shuang; Zhang, Hui; Sun, Yanling; Ma, Zhenxing; Vedal, Sverre; Mao, Jian; Bai, Zhipeng
2018-05-03
Concentrations of particulate matter with aerodynamic diameter <2.5 μm (PM 2.5 ) are relatively high in China. Estimation of PM 2.5 exposure is complex because PM 2.5 exhibits complex spatiotemporal patterns. To improve the validity of exposure predictions, several methods have been developed and applied worldwide. A hybrid approach combining a land use regression (LUR) model and Bayesian Maximum Entropy (BME) interpolation of the LUR space-time residuals were developed to estimate the PM 2.5 concentrations on a national scale in China. This hybrid model could potentially provide more valid predictions than a commonly-used LUR model. The LUR/BME model had good performance characteristics, with R 2 = 0.82 and root mean square error (RMSE) of 4.6 μg/m 3 . Prediction errors of the LUR/BME model were reduced by incorporating soft data accounting for data uncertainty, with the R 2 increasing by 6%. The performance of LUR/BME is better than OK/BME. The LUR/BME model is the most accurate fine spatial scale PM 2.5 model developed to date for China. Copyright © 2018. Published by Elsevier Ltd.
Methods for accurate estimation of net discharge in a tidal channel
Simpson, M.R.; Bland, R.
2000-01-01
Accurate estimates of net residual discharge in tidally affected rivers and estuaries are possible because of recently developed ultrasonic discharge measurement techniques. Previous discharge estimates using conventional mechanical current meters and methods based on stage/discharge relations or water slope measurements often yielded errors that were as great as or greater than the computed residual discharge. Ultrasonic measurement methods consist of: 1) the use of ultrasonic instruments for the measurement of a representative 'index' velocity used for in situ estimation of mean water velocity and 2) the use of the acoustic Doppler current discharge measurement system to calibrate the index velocity measurement data. Methods used to calibrate (rate) the index velocity to the channel velocity measured using the Acoustic Doppler Current Profiler are the most critical factors affecting the accuracy of net discharge estimation. The index velocity first must be related to mean channel velocity and then used to calculate instantaneous channel discharge. Finally, discharge is low-pass filtered to remove the effects of the tides. An ultrasonic velocity meter discharge-measurement site in a tidally affected region of the Sacramento-San Joaquin Rivers was used to study the accuracy of the index velocity calibration procedure. Calibration data consisting of ultrasonic velocity meter index velocity and concurrent acoustic Doppler discharge measurement data were collected during three time periods. Two sets of data were collected during a spring tide (monthly maximum tidal current) and one of data collected during a neap tide (monthly minimum tidal current). The relative magnitude of instrumental errors, acoustic Doppler discharge measurement errors, and calibration errors were evaluated. Calibration error was found to be the most significant source of error in estimating net discharge. Using a comprehensive calibration method, net discharge estimates developed from the three sets of calibration data differed by less than an average of 4 cubic meters per second, or less than 0.5% of a typical peak tidal discharge rate of 750 cubic meters per second.
Characterizing error distributions for MISR and MODIS optical depth data
NASA Astrophysics Data System (ADS)
Paradise, S.; Braverman, A.; Kahn, R.; Wilson, B.
2008-12-01
The Multi-angle Imaging SpectroRadiometer (MISR) and Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's EOS satellites collect massive, long term data records on aerosol amounts and particle properties. MISR and MODIS have different but complementary sampling characteristics. In order to realize maximum scientific benefit from these data, the nature of their error distributions must be quantified and understood so that discrepancies between them can be rectified and their information combined in the most beneficial way. By 'error' we mean all sources of discrepancies between the true value of the quantity of interest and the measured value, including instrument measurement errors, artifacts of retrieval algorithms, and differential spatial and temporal sampling characteristics. Previously in [Paradise et al., Fall AGU 2007: A12A-05] we presented a unified, global analysis and comparison of MISR and MODIS measurement biases and variances over lives of the missions. We used AErosol RObotic NETwork (AERONET) data as ground truth and evaluated MISR and MODIS optical depth distributions relative to AERONET using simple linear regression. However, AERONET data are themselves instrumental measurements subject to sources of uncertainty. In this talk, we discuss results from an improved analysis of MISR and MODIS error distributions that uses errors-in-variables regression, accounting for uncertainties in both the dependent and independent variables. We demonstrate on optical depth data, but the method is generally applicable to other aerosol properties as well.
NASA Technical Reports Server (NTRS)
Battin, R. H.; Croopnick, S. R.; Edwards, J. A.
1977-01-01
The formulation of a recursive maximum likelihood navigation system employing reference position and velocity vectors as state variables is presented. Convenient forms of the required variational equations of motion are developed together with an explicit form of the associated state transition matrix needed to refer measurement data from the measurement time to the epoch time. Computational advantages accrue from this design in that the usual forward extrapolation of the covariance matrix of estimation errors can be avoided without incurring unacceptable system errors. Simulation data for earth orbiting satellites are provided to substantiate this assertion.
NASA Astrophysics Data System (ADS)
Lobit, P.; López Pérez, L.; Lhomme, J. P.; Gómez Tagle, A.
2017-07-01
This study evaluates the dew point method (Allen et al. 1998) to estimate atmospheric vapor pressure from minimum temperature, and proposes an improved model to estimate it from maximum and minimum temperature. Both methods were evaluated on 786 weather stations in Mexico. The dew point method induced positive bias in dry areas but also negative bias in coastal areas, and its average root mean square error for all evaluated stations was 0.38 kPa. The improved model assumed a bi-linear relation between estimated vapor pressure deficit (difference between saturated vapor pressure at minimum and average temperature) and measured vapor pressure deficit. The parameters of these relations were estimated from historical annual median values of relative humidity. This model removed bias and allowed for a root mean square error of 0.31 kPa. When no historical measurements of relative humidity were available, empirical relations were proposed to estimate it from latitude and altitude, with only a slight degradation on the model accuracy (RMSE = 0.33 kPa, bias = -0.07 kPa). The applicability of the method to other environments is discussed.
Improved simulation of aerosol, cloud, and density measurements by shuttle lidar
NASA Technical Reports Server (NTRS)
Russell, P. B.; Morley, B. M.; Livingston, J. M.; Grams, G. W.; Patterson, E. W.
1981-01-01
Data retrievals are simulated for a Nd:YAG lidar suitable for early flight on the space shuttle. Maximum assumed vertical and horizontal resolutions are 0.1 and 100 km, respectively, in the boundary layer, increasing to 2 and 2000 km in the mesosphere. Aerosol and cloud retrievals are simulated using 1.06 and 0.53 microns wavelengths independently. Error sources include signal measurement, conventional density information, atmospheric transmission, and lidar calibration. By day, tenuous clouds and Saharan and boundary layer aerosols are retrieved at both wavelengths. By night, these constituents are retrieved, plus upper tropospheric, stratospheric, and mesospheric aerosols and noctilucent clouds. Density, temperature, and improved aerosol and cloud retrievals are simulated by combining signals at 0.35, 1.06, and 0.53 microns. Particlate contamination limits the technique to the cloud free upper troposphere and above. Error bars automatically show effect of this contamination, as well as errors in absolute density nonmalization, reference temperature or pressure, and the sources listed above. For nonvolcanic conditions, relative density profiles have rms errors of 0.54 to 2% in the upper troposphere and stratosphere. Temperature profiles have rms errors of 1.2 to 2.5 K and can define the tropopause to 0.5 km and higher wave structures to 1 or 2 km.
An Interlaboratory Comparison of Dosimetry for a Multi-institutional Radiobiological
Seed, TM; Xiao, S; Manley, N; Nikolich-Zugich, J; Pugh, J; van den Brink, M; Hirabayashi, Y; Yasutomo, K; Iwama, A; Koyasu, S; Shterev, I; Sempowski, G; Macchiarini, F; Nakachi, K; Kunugi, KC; Hammer, CG; DeWerd, LA
2016-01-01
Purpose An interlaboratory comparison of radiation dosimetry was conducted to determine the accuracy of doses being used experimentally for animal exposures within a large multi-institutional research project. The background and approach to this effort are described and discussed in terms of basic findings, problems and solutions. Methods Dosimetry tests were carried out utilizing optically stimulated luminescence (OSL) dosimeters embedded midline into mouse carcasses and thermal luminescence dosimeters (TLD) embedded midline into acrylic phantoms. Results The effort demonstrated that the majority (4/7) of the laboratories was able to deliver sufficiently accurate exposures having maximum dosing errors of ≤ 5%. Comparable rates of ‘dosimetric compliance’ were noted between OSL- and TLD-based tests. Data analysis showed a highly linear relationship between ‘measured’ and ‘target’ doses, with errors falling largely between 0–20%. Outliers were most notable for OSL-based tests, while multiple tests by ‘non-compliant’ laboratories using orthovoltage x-rays contributed heavily to the wide variation in dosing errors. Conclusions For the dosimetrically non-compliant laboratories, the relatively high rates of dosing errors were problematic, potentially compromising the quality of ongoing radiobiological research. This dosimetry effort proved to be instructive in establishing rigorous reviews of basic dosimetry protocols ensuring that dosing errors were minimized. PMID:26857121
Seed, Thomas M; Xiao, Shiyun; Manley, Nancy; Nikolich-Zugich, Janko; Pugh, Jason; Van den Brink, Marcel; Hirabayashi, Yoko; Yasutomo, Koji; Iwama, Atsushi; Koyasu, Shigeo; Shterev, Ivo; Sempowski, Gregory; Macchiarini, Francesca; Nakachi, Kei; Kunugi, Keith C; Hammer, Clifford G; Dewerd, Lawrence A
2016-01-01
An interlaboratory comparison of radiation dosimetry was conducted to determine the accuracy of doses being used experimentally for animal exposures within a large multi-institutional research project. The background and approach to this effort are described and discussed in terms of basic findings, problems and solutions. Dosimetry tests were carried out utilizing optically stimulated luminescence (OSL) dosimeters embedded midline into mouse carcasses and thermal luminescence dosimeters (TLD) embedded midline into acrylic phantoms. The effort demonstrated that the majority (4/7) of the laboratories was able to deliver sufficiently accurate exposures having maximum dosing errors of ≤5%. Comparable rates of 'dosimetric compliance' were noted between OSL- and TLD-based tests. Data analysis showed a highly linear relationship between 'measured' and 'target' doses, with errors falling largely between 0 and 20%. Outliers were most notable for OSL-based tests, while multiple tests by 'non-compliant' laboratories using orthovoltage X-rays contributed heavily to the wide variation in dosing errors. For the dosimetrically non-compliant laboratories, the relatively high rates of dosing errors were problematic, potentially compromising the quality of ongoing radiobiological research. This dosimetry effort proved to be instructive in establishing rigorous reviews of basic dosimetry protocols ensuring that dosing errors were minimized.
History, Epidemic Evolution, and Model Burn-In for a Network of Annual Invasion: Soybean Rust.
Sanatkar, M R; Scoglio, C; Natarajan, B; Isard, S A; Garrett, K A
2015-07-01
Ecological history may be an important driver of epidemics and disease emergence. We evaluated the role of history and two related concepts, the evolution of epidemics and the burn-in period required for fitting a model to epidemic observations, for the U.S. soybean rust epidemic (caused by Phakopsora pachyrhizi). This disease allows evaluation of replicate epidemics because the pathogen reinvades the United States each year. We used a new maximum likelihood estimation approach for fitting the network model based on observed U.S. epidemics. We evaluated the model burn-in period by comparing model fit based on each combination of other years of observation. When the miss error rates were weighted by 0.9 and false alarm error rates by 0.1, the mean error rate did decline, for most years, as more years were used to construct models. Models based on observations in years closer in time to the season being estimated gave lower miss error rates for later epidemic years. The weighted mean error rate was lower in backcasting than in forecasting, reflecting how the epidemic had evolved. Ongoing epidemic evolution, and potential model failure, can occur because of changes in climate, host resistance and spatial patterns, or pathogen evolution.
Evaluating the technique of using inhalation device in COPD and bronchial asthma patients.
Arora, Piyush; Kumar, Lokender; Vohra, Vikram; Sarin, Rohit; Jaiswal, Anand; Puri, M M; Rathee, Deepti; Chakraborty, Pitambar
2014-07-01
In asthma management, poor handling of inhalation devices and wrong inhalation technique are associated with decreased medication delivery and poor disease control. The key to overcome the drawbacks in inhalation technique is to make patients familiar with issues related to correct use and performance of these medical devices. The objective of this study was to evaluate and analyse technique of use of the inhalation device used by patients of COPD and Bronchial Asthma. A total of 300 cases of BA or COPD patients using different types of inhalation devices were included in this observational study. Data were captured using a proforma and were analysed using SPSS version 15.0. Out of total 300 enrolled patients, 247 (82.3%) made at least one error. Maximum errors observed in subjects using MDI (94.3%), followed by DPI (82.3%), MDI with Spacer (78%) while Nebulizer users (70%) made least number of errors (p = 0.005). Illiterate patients showed 95.2% error while post-graduate and professionals showed 33.3%. This difference was statistically significant (p < 0.001). Self-educated patients committed 100% error, while those trained by a doctor made 56.3% error. Majority of patients using inhalation devices made errors while using the device. Proper education to patients on correct usage may not only improve control of the symptoms of the disease but might also allow dose reduction in long term. Copyright © 2014 Elsevier Ltd. All rights reserved.
Onuk, A. Emre; Akcakaya, Murat; Bardhan, Jaydeep P.; Erdogmus, Deniz; Brooks, Dana H.; Makowski, Lee
2015-01-01
In this paper, we describe a model for maximum likelihood estimation (MLE) of the relative abundances of different conformations of a protein in a heterogeneous mixture from small angle X-ray scattering (SAXS) intensities. To consider cases where the solution includes intermediate or unknown conformations, we develop a subset selection method based on k-means clustering and the Cramér-Rao bound on the mixture coefficient estimation error to find a sparse basis set that represents the space spanned by the measured SAXS intensities of the known conformations of a protein. Then, using the selected basis set and the assumptions on the model for the intensity measurements, we show that the MLE model can be expressed as a constrained convex optimization problem. Employing the adenylate kinase (ADK) protein and its known conformations as an example, and using Monte Carlo simulations, we demonstrate the performance of the proposed estimation scheme. Here, although we use 45 crystallographically determined experimental structures and we could generate many more using, for instance, molecular dynamics calculations, the clustering technique indicates that the data cannot support the determination of relative abundances for more than 5 conformations. The estimation of this maximum number of conformations is intrinsic to the methodology we have used here. PMID:26924916
Measurement Model Specification Error in LISREL Structural Equation Models.
ERIC Educational Resources Information Center
Baldwin, Beatrice; Lomax, Richard
This LISREL study examines the robustness of the maximum likelihood estimates under varying degrees of measurement model misspecification. A true model containing five latent variables (two endogenous and three exogenous) and two indicator variables per latent variable was used. Measurement model misspecification considered included errors of…
Evaluation of three coding schemes designed for improved data communication
NASA Technical Reports Server (NTRS)
Snelsire, R. W.
1974-01-01
Three coding schemes designed for improved data communication are evaluated. Four block codes are evaluated relative to a quality function, which is a function of both the amount of data rejected and the error rate. The Viterbi maximum likelihood decoding algorithm as a decoding procedure is reviewed. This evaluation is obtained by simulating the system on a digital computer. Short constraint length rate 1/2 quick-look codes are studied, and their performance is compared to general nonsystematic codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herberger, Sarah M.; Boring, Ronald L.
Abstract Objectives: This paper discusses the differences between classical human reliability analysis (HRA) dependence and the full spectrum of probabilistic dependence. Positive influence suggests an error increases the likelihood of subsequent errors or success increases the likelihood of subsequent success. Currently the typical method for dependence in HRA implements the Technique for Human Error Rate Prediction (THERP) positive dependence equations. This assumes that the dependence between two human failure events varies at discrete levels between zero and complete dependence (as defined by THERP). Dependence in THERP does not consistently span dependence values between 0 and 1. In contrast, probabilistic dependencemore » employs Bayes Law, and addresses a continuous range of dependence. Methods: Using the laws of probability, complete dependence and maximum positive dependence do not always agree. Maximum dependence is when two events overlap to their fullest amount. Maximum negative dependence is the smallest amount that two events can overlap. When the minimum probability of two events overlapping is less than independence, negative dependence occurs. For example, negative dependence is when an operator fails to actuate Pump A, thereby increasing his or her chance of actuating Pump B. The initial error actually increases the chance of subsequent success. Results: Comparing THERP and probability theory yields different results in certain scenarios; with the latter addressing negative dependence. Given that most human failure events are rare, the minimum overlap is typically 0. And when the second event is smaller than the first event the max dependence is less than 1, as defined by Bayes Law. As such alternative dependence equations are provided along with a look-up table defining the maximum and maximum negative dependence given the probability of two events. Conclusions: THERP dependence has been used ubiquitously for decades, and has provided approximations of the dependencies between two events. Since its inception, computational abilities have increased exponentially, and alternative approaches that follow the laws of probability dependence need to be implemented. These new approaches need to consider negative dependence and identify when THERP output is not appropriate.« less
Cunha, A C; da Veiga, A M A; Masterson, D; Mattos, C T; Nojima, L I; Nojima, M C G; Maia, L C
2017-12-01
The aim of this systematic review and meta-analysis was to investigate how parameters related to geometry influence the clinical performance of orthodontic mini-implants (MIs). Systematic searches were performed in electronic databases including MEDLINE, Scopus, Web of Science, Virtual Health Library, and Cochrane Library and reference lists up to March 2016. Eligibility criteria comprised clinical studies involving patients who received MIs for orthodontic anchorage, with data for categories of MI dimension, shape, and thread design and insertion site, and evaluated by assessment of primary and secondary stability. Study selection, data extraction, quality assessment, and a meta-analysis were carried out. Twenty-seven studies were included in the qualitative synthesis: five randomized, eight prospective, and 14 retrospective clinical studies. One study with a serious risk of bias was later excluded. Medium and short MIs (1.4-1.9mm diameter and 5-8mm length) presented the highest success rates (0.87, 95% CI 0.80-0.92). A maximum insertion torque of 13.28Ncm (standard error 0.34) was observed for tapered self-drilling MIs in the mandible, whereas cylindrical MIs in the maxilla presented a maximum removal torque of 10.01Ncm (standard error 0.17). Moderate evidence indicates that the clinical performance of MIs is influenced by implant geometry parameters and is also related to properties of the insertion site. However, further research is necessary to support these associations. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Pazó, Jose A.; Granada, Enrique; Saavedra, Ángeles; Eguía, Pablo; Collazo, Joaquín
2010-01-01
The objective of this study was to develop a methodology for the determination of the maximum sampling error and confidence intervals of thermal properties obtained from thermogravimetric analysis (TG), including moisture, volatile matter, fixed carbon and ash content. The sampling procedure of the TG analysis was of particular interest and was conducted with care. The results of the present study were compared to those of a prompt analysis, and a correlation between the mean values and maximum sampling errors of the methods were not observed. In general, low and acceptable levels of uncertainty and error were obtained, demonstrating that the properties evaluated by TG analysis were representative of the overall fuel composition. The accurate determination of the thermal properties of biomass with precise confidence intervals is of particular interest in energetic biomass applications. PMID:20717532
Żebrowska, Magdalena; Posch, Martin; Magirr, Dominic
2016-05-30
Consider a parallel group trial for the comparison of an experimental treatment to a control, where the second-stage sample size may depend on the blinded primary endpoint data as well as on additional blinded data from a secondary endpoint. For the setting of normally distributed endpoints, we demonstrate that this may lead to an inflation of the type I error rate if the null hypothesis holds for the primary but not the secondary endpoint. We derive upper bounds for the inflation of the type I error rate, both for trials that employ random allocation and for those that use block randomization. We illustrate the worst-case sample size reassessment rule in a case study. For both randomization strategies, the maximum type I error rate increases with the effect size in the secondary endpoint and the correlation between endpoints. The maximum inflation increases with smaller block sizes if information on the block size is used in the reassessment rule. Based on our findings, we do not question the well-established use of blinded sample size reassessment methods with nuisance parameter estimates computed from the blinded interim data of the primary endpoint. However, we demonstrate that the type I error rate control of these methods relies on the application of specific, binding, pre-planned and fully algorithmic sample size reassessment rules and does not extend to general or unplanned sample size adjustments based on blinded data. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
THE TWO-WAVELENGTH METHOD OF MICROSPECTROPHOTOMETRY
Mendelsohn, Mortimer L.
1961-01-01
In connection with the potential development of automatic two-wavelength microspectrophotometry, a new version of the two-wavelength method has been formulated. Unlike its predecessors, the Ornstein and Patau versions, the new method varies the area of the photometric field seeking to maximize a relationship between distributional errors at the two wavelengths. Stating this distributional error relationship in conventional photometric terms, the conditions at the maximum are defined by taking the first derivative with respect to field size and setting it equal to zero. This operation supplies two equations; one relates the transmittances at the two wavelengths, and a second states the relative amount of chromophore in the field in terms of transmittance at one wavelength. With the first equation to drive a servomechanism which sets the appropriate field size, the desired answer can then be obtained directly and continuously from the second equation. The result is identical in theory with those of the earlier methods, but the technique is more suitable for electronic computing. PMID:14472536
On the application of photogrammetry to the fitting of jawbone-anchored bridges.
Strid, K G
1985-01-01
Misfit between a jawbone-anchored bridge and the abutments in the patient's jaw may result in, for example, fixture fracture. To achieve improved alignment, the bridge base could be prepared in a numerically-controlled tooling machine using measured abutment coordinates as primary data. For each abutment, the measured values must comprise the coordinates of a reference surface as well as the spatial orientation of the fixture/abutment longitudinal axis. Stereophotogrammetry was assumed to be the measuring method of choice. To assess its potentials, a lower-jaw model with accurately positioned signals was stereophotographed and the films were measured in a stereocomparator. Model-space coordinates, computed from the image coordinates, were compared to the known signal coordinates. The root-mean-square error in position was determined to 0.03-0.08 mm, the maximum individual error amounting to 0.12 mm, whereas the r. m. s. error in axis direction was found to be 0.5-1.5 degrees with a maximum individual error of 1.8 degrees. These errors are of the same order as can be achieved by careful impression techniques. The method could be useful, but because of its complexity, stereophotogrammetry is not recommended as a standard procedure.
A Modified MinMax k-Means Algorithm Based on PSO
2016-01-01
The MinMax k-means algorithm is widely used to tackle the effect of bad initialization by minimizing the maximum intraclustering errors. Two parameters, including the exponent parameter and memory parameter, are involved in the executive process. Since different parameters have different clustering errors, it is crucial to choose appropriate parameters. In the original algorithm, a practical framework is given. Such framework extends the MinMax k-means to automatically adapt the exponent parameter to the data set. It has been believed that if the maximum exponent parameter has been set, then the programme can reach the lowest intraclustering errors. However, our experiments show that this is not always correct. In this paper, we modified the MinMax k-means algorithm by PSO to determine the proper values of parameters which can subject the algorithm to attain the lowest clustering errors. The proposed clustering method is tested on some favorite data sets in several different initial situations and is compared to the k-means algorithm and the original MinMax k-means algorithm. The experimental results indicate that our proposed algorithm can reach the lowest clustering errors automatically. PMID:27656201
da Cunha, Antonio Ribeiro
2015-05-01
This study aimed to assess measurements of temperature and relative humidity obtained with HOBO a data logger, under various conditions of exposure to solar radiation, comparing them with those obtained through the use of a temperature/relative humidity probe and a copper-constantan thermocouple psychrometer, which are considered the standards for obtaining such measurements. Data were collected over a 6-day period (from 25 March to 1 April, 2010), during which the equipment was monitored continuously and simultaneously. We employed the following combinations of equipment and conditions: a HOBO data logger in full sunlight; a HOBO data logger shielded within a white plastic cup with windows for air circulation; a HOBO data logger shielded within a gill-type shelter (multi-plate prototype plastic); a copper-constantan thermocouple psychrometer exposed to natural ventilation and protected from sunlight; and a temperature/relative humidity probe under a commercial, multi-plate radiation shield. Comparisons between the measurements obtained with the various devices were made on the basis of statistical indicators: linear regression, with coefficient of determination; index of agreement; maximum absolute error; and mean absolute error. The prototype multi-plate shelter (gill-type) used in order to protect the HOBO data logger was found to provide the best protection against the effects of solar radiation on measurements of temperature and relative humidity. The precision and accuracy of a device that measures temperature and relative humidity depend on an efficient shelter that minimizes the interference caused by solar radiation, thereby avoiding erroneous analysis of the data obtained.
Determinants of Standard Errors of MLEs in Confirmatory Factor Analysis
ERIC Educational Resources Information Center
Yuan, Ke-Hai; Cheng, Ying; Zhang, Wei
2010-01-01
This paper studies changes of standard errors (SE) of the normal-distribution-based maximum likelihood estimates (MLE) for confirmatory factor models as model parameters vary. Using logical analysis, simplified formulas and numerical verification, monotonic relationships between SEs and factor loadings as well as unique variances are found.…
Output Error Analysis of Planar 2-DOF Five-bar Mechanism
NASA Astrophysics Data System (ADS)
Niu, Kejia; Wang, Jun; Ting, Kwun-Lon; Tao, Fen; Cheng, Qunchao; Wang, Quan; Zhang, Kaiyang
2018-03-01
Aiming at the mechanism error caused by clearance of planar 2-DOF Five-bar motion pair, the method of equivalent joint clearance of kinematic pair to virtual link is applied. The structural error model of revolute joint clearance is established based on the N-bar rotation laws and the concept of joint rotation space, The influence of the clearance of the moving pair is studied on the output error of the mechanis. and the calculation method and basis of the maximum error are given. The error rotation space of the mechanism under the influence of joint clearance is obtained. The results show that this method can accurately calculate the joint space error rotation space, which provides a new way to analyze the planar parallel mechanism error caused by joint space.
Using weighted power mean for equivalent square estimation.
Zhou, Sumin; Wu, Qiuwen; Li, Xiaobo; Ma, Rongtao; Zheng, Dandan; Wang, Shuo; Zhang, Mutian; Li, Sicong; Lei, Yu; Fan, Qiyong; Hyun, Megan; Diener, Tyler; Enke, Charles
2017-11-01
Equivalent Square (ES) enables the calculation of many radiation quantities for rectangular treatment fields, based only on measurements from square fields. While it is widely applied in radiotherapy, its accuracy, especially for extremely elongated fields, still leaves room for improvement. In this study, we introduce a novel explicit ES formula based on Weighted Power Mean (WPM) function and compare its performance with the Sterling formula and Vadash/Bjärngard's formula. The proposed WPM formula is ESWPMa,b=waα+1-wbα1/α for a rectangular photon field with sides a and b. The formula performance was evaluated by three methods: standard deviation of model fitting residual error, maximum relative model prediction error, and model's Akaike Information Criterion (AIC). Testing datasets included the ES table from British Journal of Radiology (BJR), photon output factors (S cp ) from the Varian TrueBeam Representative Beam Data (Med Phys. 2012;39:6981-7018), and published S cp data for Varian TrueBeam Edge (J Appl Clin Med Phys. 2015;16:125-148). For the BJR dataset, the best-fit parameter value α = -1.25 achieved a 20% reduction in standard deviation in ES estimation residual error compared with the two established formulae. For the two Varian datasets, employing WPM reduced the maximum relative error from 3.5% (Sterling) or 2% (Vadash/Bjärngard) to 0.7% for open field sizes ranging from 3 cm to 40 cm, and the reduction was even more prominent for 1 cm field sizes on Edge (J Appl Clin Med Phys. 2015;16:125-148). The AIC value of the WPM formula was consistently lower than its counterparts from the traditional formulae on photon output factors, most prominent on very elongated small fields. The WPM formula outperformed the traditional formulae on three testing datasets. With increasing utilization of very elongated, small rectangular fields in modern radiotherapy, improved photon output factor estimation is expected by adopting the WPM formula in treatment planning and secondary MU check. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Final acceptance testing of the LSST monolithic primary/tertiary mirror
NASA Astrophysics Data System (ADS)
Tuell, Michael T.; Burge, James H.; Cuerden, Brian; Gressler, William; Martin, Hubert M.; West, Steven C.; Zhao, Chunyu
2014-07-01
The Large Synoptic Survey Telescope (LSST) is a three-mirror wide-field survey telescope with the primary and tertiary mirrors on one monolithic substrate1. This substrate is made of Ohara E6 borosilicate glass in a honeycomb sandwich, spin cast at the Steward Observatory Mirror Lab at The University of Arizona2. Each surface is aspheric, with the specification in terms of conic constant error, maximum active bending forces and finally a structure function specification on the residual errors3. There are high-order deformation terms, but with no tolerance, any error is considered as a surface error and is included in the structure function. The radii of curvature are very different, requiring two independent test stations, each with instantaneous phase-shifting interferometers with null correctors. The primary null corrector is a standard two-element Offner null lens. The tertiary null corrector is a phase-etched computer-generated hologram (CGH). This paper details the two optical systems and their tolerances, showing that the uncertainty in measuring the figure is a small fraction of the structure function specification. Additional metrology includes the radii of curvature, optical axis locations, and relative surface tilts. The methods for measuring these will also be described along with their tolerances.
Seasonal Differences in Spatial Scales of Chlorophyll-A Concentration in Lake TAIHU,CHINA
NASA Astrophysics Data System (ADS)
Bao, Y.; Tian, Q.; Sun, S.; Wei, H.; Tian, J.
2012-08-01
Spatial distribution of chlorophyll-a (chla) concentration in Lake Taihu is non-uniform and seasonal variability. Chla concentration retrieval algorithms were separately established using measured data and remote sensing images (HJ-1 CCD and MODIS data) in October 2010, March 2011, and September 2011. Then parameters of semi- variance were calculated on the scale of 30m, 250m and 500m for analyzing spatial heterogeneity in different seasons. Finally, based on the definitions of Lumped chla (chlaL) and Distributed chla (chlaD), seasonal model of chla concentration scale error was built. The results indicated that: spatial distribution of chla concentration in spring was more uniform. In summer and autumn, chla concentration in the north of the lake such as Meiliang Bay and Zhushan Bay was higher than that in the south of Lake Taihu. Chla concentration on different scales showed the similar structure in the same season, while it had different structure in different seasons. And inversion chla concentration from MODIS 500m had a greater scale error. The spatial scale error changed with seasons. It was higher in summer and autumn than that in spring. The maximum relative error can achieve 23%.
Sové, Richard J; Drakos, Nicole E; Fraser, Graham M; Ellis, Christopher G
2018-05-25
Red blood cell oxygen saturation is an important indicator of oxygen supply to tissues in the body. Oxygen saturation can be measured by taking advantage of spectroscopic properties of hemoglobin. When this technique is applied to transmission microscopy, the calculation of saturation requires determination of incident light intensity at each pixel occupied by the red blood cell; this value is often approximated from a sequence of images as the maximum intensity over time. This method often fails when the red blood cells are moving too slowly, or if hematocrit is too large since there is not a large enough gap between the cells to accurately calculate the incident intensity value. A new method of approximating incident light intensity is proposed using digital inpainting. This novel approach estimates incident light intensity with an average percent error of approximately 3%, which exceeds the accuracy of the maximum intensity based method in most cases. The error in incident light intensity corresponds to a maximum error of approximately 2% saturation. Therefore, though this new method is computationally more demanding than the traditional technique, it can be used in cases where the maximum intensity-based method fails (e.g. stationary cells), or when higher accuracy is required. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Maximum likelihood phase-retrieval algorithm: applications.
Nahrstedt, D A; Southwell, W H
1984-12-01
The maximum likelihood estimator approach is shown to be effective in determining the wave front aberration in systems involving laser and flow field diagnostics and optical testing. The robustness of the algorithm enables convergence even in cases of severe wave front error and real, nonsymmetrical, obscured amplitude distributions.
Green-Ampt approximations: A comprehensive analysis
NASA Astrophysics Data System (ADS)
Ali, Shakir; Islam, Adlul; Mishra, P. K.; Sikka, Alok K.
2016-04-01
Green-Ampt (GA) model and its modifications are widely used for simulating infiltration process. Several explicit approximate solutions to the implicit GA model have been developed with varying degree of accuracy. In this study, performance of nine explicit approximations to the GA model is compared with the implicit GA model using the published data for broad range of soil classes and infiltration time. The explicit GA models considered are Li et al. (1976) (LI), Stone et al. (1994) (ST), Salvucci and Entekhabi (1994) (SE), Parlange et al. (2002) (PA), Barry et al. (2005) (BA), Swamee et al. (2012) (SW), Ali et al. (2013) (AL), Almedeij and Esen (2014) (AE), and Vatankhah (2015) (VA). Six statistical indicators (e.g., percent relative error, maximum absolute percent relative error, average absolute percent relative errors, percent bias, index of agreement, and Nash-Sutcliffe efficiency) and relative computer computation time are used for assessing the model performance. Models are ranked based on the overall performance index (OPI). The BA model is found to be the most accurate followed by the PA and VA models for variety of soil classes and infiltration periods. The AE, SW, SE, and LI model also performed comparatively better. Based on the overall performance index, the explicit models are ranked as BA > PA > VA > LI > AE > SE > SW > ST > AL. Results of this study will be helpful in selection of accurate and simple explicit approximate GA models for solving variety of hydrological problems.
Maximum likelihood estimation for Cox's regression model under nested case-control sampling.
Scheike, Thomas H; Juul, Anders
2004-04-01
Nested case-control sampling is designed to reduce the costs of large cohort studies. It is important to estimate the parameters of interest as efficiently as possible. We present a new maximum likelihood estimator (MLE) for nested case-control sampling in the context of Cox's proportional hazards model. The MLE is computed by the EM-algorithm, which is easy to implement in the proportional hazards setting. Standard errors are estimated by a numerical profile likelihood approach based on EM aided differentiation. The work was motivated by a nested case-control study that hypothesized that insulin-like growth factor I was associated with ischemic heart disease. The study was based on a population of 3784 Danes and 231 cases of ischemic heart disease where controls were matched on age and gender. We illustrate the use of the MLE for these data and show how the maximum likelihood framework can be used to obtain information additional to the relative risk estimates of covariates.
NASA Technical Reports Server (NTRS)
Denton, R.; Sonnerup, B. U. O.; Swisdak, M.; Birn, J.; Drake, J. F.; Heese, M.
2012-01-01
When analyzing data from an array of spacecraft (such as Cluster or MMS) crossing a site of magnetic reconnection, it is desirable to be able to accurately determine the orientation of the reconnection site. If the reconnection is quasi-two dimensional, there are three key directions, the direction of maximum inhomogeneity (the direction across the reconnection site), the direction of the reconnecting component of the magnetic field, and the direction of rough invariance (the "out of plane" direction). Using simulated spacecraft observations of magnetic reconnection in the geomagnetic tail, we extend our previous tests of the direction-finding method developed by Shi et al. (2005) and the method to determine the structure velocity relative to the spacecraft Vstr. These methods require data from four proximate spacecraft. We add artificial noise and calibration errors to the simulation fields, and then use the perturbed gradient of the magnetic field B and perturbed time derivative dB/dt, as described by Denton et al. (2010). Three new simulations are examined: a weakly three-dimensional, i.e., quasi-two-dimensional, MHD simulation without a guide field, a quasi-two-dimensional MHD simulation with a guide field, and a two-dimensional full dynamics kinetic simulation with inherent noise so that the apparent minimum gradient was not exactly zero, even without added artificial errors. We also examined variations of the spacecraft trajectory for the kinetic simulation. The accuracy of the directions found varied depending on the simulation and spacecraft trajectory, but all the directions could be found within about 10 for all cases. Various aspects of the method were examined, including how to choose averaging intervals and the best intervals for determining the directions and velocity. For the kinetic simulation, we also investigated in detail how the errors in the inferred gradient directions from the unmodified Shi et al. method (using the unperturbed gradient) depended on the amplitude of the calibration errors. For an accuracy of 3 for the maximum gradient direction, the calibration errors could be as large as 3% of reconnection magnetic field, while for the same accuracy for the minimum gradient direction, the calibration errors could only be as large as 0.03% of the reconnection magnetic field. These results suggest that the maximum gradient direction can normally be determined by the unmodified Shi et al. method, while the modified method or some other method must be used to accurately determine the minimum gradient direction. The structure velocity was found with magnitude accurate to 2% and direction accurate to within 5%.
Vafaeian, B; Le, L H; Tran, T N H T; El-Rich, M; El-Bialy, T; Adeeb, S
2016-05-01
The present study investigated the accuracy of micro-scale finite element modeling for simulating broadband ultrasound propagation in water-saturated trabecular bone-mimicking phantoms. To this end, five commercially manufactured aluminum foam samples as trabecular bone-mimicking phantoms were utilized for ultrasonic immersion through-transmission experiments. Based on micro-computed tomography images of the same physical samples, three-dimensional high-resolution computational samples were generated to be implemented in the micro-scale finite element models. The finite element models employed the standard Galerkin finite element method (FEM) in time domain to simulate the ultrasonic experiments. The numerical simulations did not include energy dissipative mechanisms of ultrasonic attenuation; however, they expectedly simulated reflection, refraction, scattering, and wave mode conversion. The accuracy of the finite element simulations were evaluated by comparing the simulated ultrasonic attenuation and velocity with the experimental data. The maximum and the average relative errors between the experimental and simulated attenuation coefficients in the frequency range of 0.6-1.4 MHz were 17% and 6% respectively. Moreover, the simulations closely predicted the time-of-flight based velocities and the phase velocities of ultrasound with maximum relative errors of 20 m/s and 11 m/s respectively. The results of this study strongly suggest that micro-scale finite element modeling can effectively simulate broadband ultrasound propagation in water-saturated trabecular bone-mimicking structures. Copyright © 2016 Elsevier B.V. All rights reserved.
Design and Implementation of an Intrinsically Safe Liquid-Level Sensor Using Coaxial Cable
Jin, Baoquan; Liu, Xin; Bai, Qing; Wang, Dong; Wang, Yu
2015-01-01
Real-time detection of liquid level in complex environments has always been a knotty issue. In this paper, an intrinsically safe liquid-level sensor system for flammable and explosive environments is designed and implemented. The poly vinyl chloride (PVC) coaxial cable is chosen as the sensing element and the measuring mechanism is analyzed. Then, the capacitance-to-voltage conversion circuit is designed and the expected output signal is achieved by adopting parameter optimization. Furthermore, the experimental platform of the liquid-level sensor system is constructed, which involves the entire process of measuring, converting, filtering, processing, visualizing and communicating. Additionally, the system is designed with characteristics of intrinsic safety by limiting the energy of the circuit to avoid or restrain the thermal effects and sparks. Finally, the approach of the piecewise linearization is adopted in order to improve the measuring accuracy by matching the appropriate calibration points. The test results demonstrate that over the measurement range of 1.0 m, the maximum nonlinearity error is 0.8% full-scale span (FSS), the maximum repeatability error is 0.5% FSS, and the maximum hysteresis error is reduced from 0.7% FSS to 0.5% FSS by applying software compensation algorithms. PMID:26029949
Design and implementation of an intrinsically safe liquid-level sensor using coaxial cable.
Jin, Baoquan; Liu, Xin; Bai, Qing; Wang, Dong; Wang, Yu
2015-05-28
Real-time detection of liquid level in complex environments has always been a knotty issue. In this paper, an intrinsically safe liquid-level sensor system for flammable and explosive environments is designed and implemented. The poly vinyl chloride (PVC) coaxial cable is chosen as the sensing element and the measuring mechanism is analyzed. Then, the capacitance-to-voltage conversion circuit is designed and the expected output signal is achieved by adopting parameter optimization. Furthermore, the experimental platform of the liquid-level sensor system is constructed, which involves the entire process of measuring, converting, filtering, processing, visualizing and communicating. Additionally, the system is designed with characteristics of intrinsic safety by limiting the energy of the circuit to avoid or restrain the thermal effects and sparks. Finally, the approach of the piecewise linearization is adopted in order to improve the measuring accuracy by matching the appropriate calibration points. The test results demonstrate that over the measurement range of 1.0 m, the maximum nonlinearity error is 0.8% full-scale span (FSS), the maximum repeatability error is 0.5% FSS, and the maximum hysteresis error is reduced from 0.7% FSS to 0.5% FSS by applying software compensation algorithms.
A novel simultaneous streak and framing camera without principle errors
NASA Astrophysics Data System (ADS)
Jingzhen, L.; Fengshan, S.; Ningwen, L.; Xiangdong, G.; Bin, H.; Qingyang, W.; Hongyi, C.; Yi, C.; Xiaowei, L.
2018-02-01
A novel simultaneous streak and framing camera with continuous access, the perfect information of which is far more important for the exact interpretation and precise evaluation of many detonation events and shockwave phenomena, has been developed. The camera with the maximum imaging frequency of 2 × 106 fps and the maximum scanning velocity of 16.3 mm/μs has fine imaging properties which are the eigen resolution of over 40 lp/mm in the temporal direction and over 60 lp/mm in the spatial direction and the framing frequency principle error of zero for framing record, and the maximum time resolving power of 8 ns and the scanning velocity nonuniformity of 0.136%~-0.277% for streak record. The test data have verified the performance of the camera quantitatively. This camera, simultaneously gained frames and streak with parallax-free and identical time base, is characterized by the plane optical system at oblique incidence different from space system, the innovative camera obscura without principle errors, and the high velocity motor driven beryllium-like rotating mirror, made of high strength aluminum alloy with cellular lateral structure. Experiments demonstrate that the camera is very useful and reliable to take high quality pictures of the detonation events.
An EM Algorithm for Maximum Likelihood Estimation of Process Factor Analysis Models
ERIC Educational Resources Information Center
Lee, Taehun
2010-01-01
In this dissertation, an Expectation-Maximization (EM) algorithm is developed and implemented to obtain maximum likelihood estimates of the parameters and the associated standard error estimates characterizing temporal flows for the latent variable time series following stationary vector ARMA processes, as well as the parameters defining the…
Detector Sampling of Optical/IR Spectra: How Many Pixels per FWHM?
NASA Astrophysics Data System (ADS)
Robertson, J. Gordon
2017-08-01
Most optical and IR spectra are now acquired using detectors with finite-width pixels in a square array. Each pixel records the received intensity integrated over its own area, and pixels are separated by the array pitch. This paper examines the effects of such pixellation, using computed simulations to illustrate the effects which most concern the astronomer end-user. It is shown that coarse sampling increases the random noise errors in wavelength by typically 10-20 % at 2 pixels per Full Width at Half Maximum, but with wide variation depending on the functional form of the instrumental Line Spread Function (i.e. the instrumental response to a monochromatic input) and on the pixel phase. If line widths are determined, they are even more strongly affected at low sampling frequencies. However, the noise in fitted peak amplitudes is minimally affected by pixellation, with increases less than about 5%. Pixellation has a substantial but complex effect on the ability to see a relative minimum between two closely spaced peaks (or relative maximum between two absorption lines). The consistent scale of resolving power presented by Robertson to overcome the inadequacy of the Full Width at Half Maximum as a resolution measure is here extended to cover pixellated spectra. The systematic bias errors in wavelength introduced by pixellation, independent of signal/noise ratio, are examined. While they may be negligible for smooth well-sampled symmetric Line Spread Functions, they are very sensitive to asymmetry and high spatial frequency sub-structure. The Modulation Transfer Function for sampled data is shown to give a useful indication of the extent of improperly sampled signal in an Line Spread Function. The common maxim that 2 pixels per Full Width at Half Maximum is the Nyquist limit is incorrect and most Line Spread Functions will exhibit some aliasing at this sample frequency. While 2 pixels per Full Width at Half Maximum is nevertheless often an acceptable minimum for moderate signal/noise work, it is preferable to carry out simulations for any actual or proposed Line Spread Function to find the effects of various sampling frequencies. Where spectrograph end-users have a choice of sampling frequencies, through on-chip binning and/or spectrograph configurations, it is desirable that the instrument user manual should include an examination of the effects of the various choices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chengqiang, L; Yin, Y; Chen, L
Purpose: To investigate the impact of MLC position errors on simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) for patients with nasopharyngeal carcinoma. Methods: To compare the dosimetric differences between the simulated plans and the clinical plans, ten patients with locally advanced NPC treated with SIB-IMRT were enrolled in this study. All plans were calculated with an inverse planning system (Pinnacle3, Philips Medical System{sub )}. Random errors −2mm to 2mm{sub )},shift errors{sub (} 2mm,1mm and 0.5mm) and systematic extension/ contraction errors (±2mm, ±1mm and ±0.5mm) of the MLC leaf position were introduced respectively into the original plans to create the simulated plans.more » Dosimetry factors were compared between the original and the simulated plans. Results: The dosimetric impact of the random and system shift errors of MLC position was insignificant within 2mm, the maximum changes in D95% of PGTV,PTV1,PTV2 were-0.92±0.51%,1.00±0.24% and 0.62±0.17%, the maximum changes in the D0.1cc of spinal cord and brainstem were 1.90±2.80% and −1.78±1.42%, the maximum changes in the Dmean of parotids were1.36±1.23% and −2.25±2.04%.However,the impact of MLC extension or contraction errors was found significant. For 2mm leaf extension errors, the average changes in D95% of PGTV,PTV1,PTV2 were 4.31±0.67%,4.29±0.65% and 4.79±0.82%, the averaged value of the D0.1cc to spinal cord and brainstem were increased by 7.39±5.25% and 6.32±2.28%,the averaged value of the mean dose to left and right parotid were increased by 12.75±2.02%,13.39±2.17% respectively. Conclusion: The dosimetric effect was insignificant for random MLC leaf position errors up to 2mm. There was a high sensitivity to dose distribution for MLC extension or contraction errors.We should pay attention to the anatomic changes in target organs and anatomical structures during the course,individual radiotherapy was recommended to ensure adaptive doses.« less
NASA Technical Reports Server (NTRS)
Haas, Evan; DeLuccia, Frank
2016-01-01
In evaluating GOES-R Advanced Baseline Imager (ABI) image navigation quality, upsampled sub-images of ABI images are translated against downsampled Landsat 8 images of localized, high contrast earth scenes to determine the translations in the East-West and North-South directions that provide maximum correlation. The native Landsat resolution is much finer than that of ABI, and Landsat navigation accuracy is much better than ABI required navigation accuracy and expected performance. Therefore, Landsat images are considered to provide ground truth for comparison with ABI images, and the translations of ABI sub-images that produce maximum correlation with Landsat localized images are interpreted as ABI navigation errors. The measured local navigation errors from registration of numerous sub-images with the Landsat images are averaged to provide a statistically reliable measurement of the overall navigation error of the ABI image. The dispersion of the local navigation errors is also of great interest, since ABI navigation requirements are specified as bounds on the 99.73rd percentile of the magnitudes of per pixel navigation errors. However, the measurement uncertainty inherent in the use of image registration techniques tends to broaden the dispersion in measured local navigation errors, masking the true navigation performance of the ABI system. We have devised a novel and simple method for estimating the magnitude of the measurement uncertainty in registration error for any pair of images of the same earth scene. We use these measurement uncertainty estimates to filter out the higher quality measurements of local navigation error for inclusion in statistics. In so doing, we substantially reduce the dispersion in measured local navigation errors, thereby better approximating the true navigation performance of the ABI system.
Accuracy assessment of high-rate GPS measurements for seismology
NASA Astrophysics Data System (ADS)
Elosegui, P.; Davis, J. L.; Ekström, G.
2007-12-01
Analysis of GPS measurements with a controlled laboratory system, built to simulate the ground motions caused by tectonic earthquakes and other transient geophysical signals such as glacial earthquakes, enables us to assess the technique of high-rate GPS. The root-mean-square (rms) position error of this system when undergoing realistic simulated seismic motions is 0.05~mm, with maximum position errors of 0.1~mm, thus providing "ground truth" GPS displacements. We have acquired an extensive set of high-rate GPS measurements while inducing seismic motions on a GPS antenna mounted on this system with a temporal spectrum similar to real seismic events. We found that, for a particular 15-min-long test event, the rms error of the 1-Hz GPS position estimates was 2.5~mm, with maximum position errors of 10~mm, and the error spectrum of the GPS estimates was approximately flicker noise. These results may however represent a best-case scenario since they were obtained over a short (~10~m) baseline, thereby greatly mitigating baseline-dependent errors, and when the number and distribution of satellites on the sky was good. For example, we have determined that the rms error can increase by a factor of 2--3 as the GPS constellation changes throughout the day, with an average value of 3.5~mm for eight identical, hourly-spaced, consecutive test events. The rms error also increases with increasing baseline, as one would expect, with an average rms error for a ~1400~km baseline of 9~mm. We will present an assessment of the accuracy of high-rate GPS based on these measurements, discuss the implications of this study for seismology, and describe new applications in glaciology.
An introduction of component fusion extend Kalman filtering method
NASA Astrophysics Data System (ADS)
Geng, Yue; Lei, Xusheng
2018-05-01
In this paper, the Component Fusion Extend Kalman Filtering (CFEKF) algorithm is proposed. Assuming each component of error propagation are independent with Gaussian distribution. The CFEKF can be obtained through the maximum likelihood of propagation error, which can adjust the state transition matrix and the measured matrix adaptively. With minimize linearization error, CFEKF can an effectively improve the estimation accuracy of nonlinear system state. The computation of CFEKF is similar to EKF which is easy for application.
Huo, Ju; Zhang, Guiyang; Yang, Ming
2018-04-20
This paper is concerned with the anisotropic and non-identical gray distribution of feature points clinging to the curved surface, upon which a high precision and uncertainty-resistance algorithm for pose estimation is proposed. Weighted contribution of uncertainty to the objective function of feature points measuring error is analyzed. Then a novel error objective function based on the spatial collinear error is constructed by transforming the uncertainty into a covariance-weighted matrix, which is suitable for the practical applications. Further, the optimized generalized orthogonal iterative (GOI) algorithm is utilized for iterative solutions such that it avoids the poor convergence and significantly resists the uncertainty. Hence, the optimized GOI algorithm extends the field-of-view applications and improves the accuracy and robustness of the measuring results by the redundant information. Finally, simulation and practical experiments show that the maximum error of re-projection image coordinates of the target is less than 0.110 pixels. Within the space 3000 mm×3000 mm×4000 mm, the maximum estimation errors of static and dynamic measurement for rocket nozzle motion are superior to 0.065° and 0.128°, respectively. Results verify the high accuracy and uncertainty attenuation performance of the proposed approach and should therefore have potential for engineering applications.
Quality assurance of dynamic parameters in volumetric modulated arc therapy.
Manikandan, A; Sarkar, B; Holla, R; Vivek, T R; Sujatha, N
2012-07-01
The purpose of this study was to demonstrate quality assurance checks for accuracy of gantry speed and position, dose rate and multileaf collimator (MLC) speed and position for a volumetric modulated arc treatment (VMAT) modality (Synergy S; Elekta, Stockholm, Sweden), and to check that all the necessary variables and parameters were synchronous. Three tests (for gantry position-dose delivery synchronisation, gantry speed-dose delivery synchronisation and MLC leaf speed and positions) were performed. The average error in gantry position was 0.5° and the average difference was 3 MU for a linear and a parabolic relationship between gantry position and delivered dose. In the third part of this test (sawtooth variation), the maximum difference was 9.3 MU, with a gantry position difference of 1.2°. In the sweeping field method test, a linear relationship was observed between recorded doses and distance from the central axis, as expected. In the open field method, errors were encountered at the beginning and at the end of the delivery arc, termed the "beginning" and "end" errors. For MLC position verification, the maximum error was -2.46 mm and the mean error was 0.0153 ±0.4668 mm, and 3.4% of leaves analysed showed errors of >±1 mm. This experiment demonstrates that the variables and parameters of the Synergy S are synchronous and that the system is suitable for delivering VMAT using a dynamic MLC.
Multiple symbol partially coherent detection of MPSK
NASA Technical Reports Server (NTRS)
Simon, M. K.; Divsalar, D.
1992-01-01
It is shown that by using the known (or estimated) value of carrier tracking loop signal to noise ratio (SNR) in the decision metric, it is possible to improve the error probability performance of a partially coherent multiple phase-shift-keying (MPSK) system relative to that corresponding to the commonly used ideal coherent decision rule. Using a maximum-likeihood approach, an optimum decision metric is derived and shown to take the form of a weighted sum of the ideal coherent decision metric (i.e., correlation) and the noncoherent decision metric which is optimum for differential detection of MPSK. The performance of a receiver based on this optimum decision rule is derived and shown to provide continued improvement with increasing length of observation interval (data symbol sequence length). Unfortunately, increasing the observation length does not eliminate the error floor associated with the finite loop SNR. Nevertheless, in the limit of infinite observation length, the average error probability performance approaches the algebraic sum of the error floor and the performance of ideal coherent detection, i.e., at any error probability above the error floor, there is no degradation due to the partial coherence. It is shown that this limiting behavior is virtually achievable with practical size observation lengths. Furthermore, the performance is quite insensitive to mismatch between the estimate of loop SNR (e.g., obtained from measurement) fed to the decision metric and its true value. These results may be of use in low-cost Earth-orbiting or deep-space missions employing coded modulations.
[Research on lateral shearing interferometer for field monitoring of natural gas pipeline leak].
Zhang, Xue-Feng; Gao, Yu-Bin
2012-09-01
Aimed at the mechanical scanning spectroscopy equipment with poor anti-interference and anti-jamming ability, which affects the accuracy of its natural gas pipeline leak detection in the wild, a new type of lateral shearing interferometer system was designed. The system uses a beam splitter to get optical path difference by a mechanical scanning part, and it cancel the introduction of external vibration interference through the linkage between the two beam splitterw. The interference intensity of interference fringes produced was calculated, and analysis of a rotating beam splitter corresponds to the angle of the optical path difference function, solving for the maximum angle of the forward rotation and reverse rotation, which is the maximum optical path range. Experiments using the gas tank deflated simulated natural gas pipeline leak process, in the interference conditions, and the test data of the type WQF530 spectrometer and the new type of lateral shearing interferometer system were comparedt. The experimental results show that the relative error of both systems is about 1% in indoor conditions without interference. However, in interference environment, the error of WQF530 type spectrometer becomes larger, more than 10%, but the error of the new type of lateral shearing interferometer system is still below 5%. The detection accuracy of the type WQF530 spectrometer decreased significantly due to the environment. Therefore, the seismic design of the system can effectively offset power deviation and half-width increases of center wavelength caused by external interference, and compared to conventional mechanical scanning interferometer devices the new system is more suitable for field detection.
NASA Technical Reports Server (NTRS)
Chittineni, C. B.
1979-01-01
The problem of estimating label imperfections and the use of the estimation in identifying mislabeled patterns is presented. Expressions for the maximum likelihood estimates of classification errors and a priori probabilities are derived from the classification of a set of labeled patterns. Expressions also are given for the asymptotic variances of probability of correct classification and proportions. Simple models are developed for imperfections in the labels and for classification errors and are used in the formulation of a maximum likelihood estimation scheme. Schemes are presented for the identification of mislabeled patterns in terms of threshold on the discriminant functions for both two-class and multiclass cases. Expressions are derived for the probability that the imperfect label identification scheme will result in a wrong decision and are used in computing thresholds. The results of practical applications of these techniques in the processing of remotely sensed multispectral data are presented.
Retinal Image Quality During Accommodation
López-Gil, N.; Martin, J.; Liu, T.; Bradley, A.; Díaz-Muñoz, D.; Thibos, L.
2013-01-01
Purpose We asked if retinal image quality is maximum during accommodation, or sub-optimal due to accommodative error, when subjects perform an acuity task. Methods Subjects viewed a monochromatic (552nm), high-contrast letter target placed at various viewing distances. Wavefront aberrations of the accommodating eye were measured near the endpoint of an acuity staircase paradigm. Refractive state, defined as the optimum target vergence for maximising retinal image quality, was computed by through-focus wavefront analysis to find the power of the virtual correcting lens that maximizes visual Strehl ratio. Results Despite changes in ocular aberrations and pupil size during binocular viewing, retinal image quality and visual acuity typically remain high for all target vergences. When accommodative errors lead to sub-optimal retinal image quality, acuity and measured image quality both decline. However, the effect of accommodation errors of on visual acuity are mitigated by pupillary constriction associated with accommodation and binocular convergence and also to binocular summation of dissimilar retinal image blur. Under monocular viewing conditions some subjects displayed significant accommodative lag that reduced visual performance, an effect that was exacerbated by pharmacological dilation of the pupil. Conclusions Spurious measurement of accommodative error can be avoided when the image quality metric used to determine refractive state is compatible with the focusing criteria used by the visual system to control accommodation. Real focusing errors of the accommodating eye do not necessarily produce a reliably measurable loss of image quality or clinically significant loss of visual performance, probably because of increased depth-of-focus due to pupil constriction. When retinal image quality is close to maximum achievable (given the eye’s higher-order aberrations), acuity is also near maximum. A combination of accommodative lag, reduced image quality, and reduced visual function may be a useful sign for diagnosing functionally-significant accommodative errors indicating the need for therapeutic intervention. PMID:23786386
Retinal image quality during accommodation.
López-Gil, Norberto; Martin, Jesson; Liu, Tao; Bradley, Arthur; Díaz-Muñoz, David; Thibos, Larry N
2013-07-01
We asked if retinal image quality is maximum during accommodation, or sub-optimal due to accommodative error, when subjects perform an acuity task. Subjects viewed a monochromatic (552 nm), high-contrast letter target placed at various viewing distances. Wavefront aberrations of the accommodating eye were measured near the endpoint of an acuity staircase paradigm. Refractive state, defined as the optimum target vergence for maximising retinal image quality, was computed by through-focus wavefront analysis to find the power of the virtual correcting lens that maximizes visual Strehl ratio. Despite changes in ocular aberrations and pupil size during binocular viewing, retinal image quality and visual acuity typically remain high for all target vergences. When accommodative errors lead to sub-optimal retinal image quality, acuity and measured image quality both decline. However, the effect of accommodation errors of on visual acuity are mitigated by pupillary constriction associated with accommodation and binocular convergence and also to binocular summation of dissimilar retinal image blur. Under monocular viewing conditions some subjects displayed significant accommodative lag that reduced visual performance, an effect that was exacerbated by pharmacological dilation of the pupil. Spurious measurement of accommodative error can be avoided when the image quality metric used to determine refractive state is compatible with the focusing criteria used by the visual system to control accommodation. Real focusing errors of the accommodating eye do not necessarily produce a reliably measurable loss of image quality or clinically significant loss of visual performance, probably because of increased depth-of-focus due to pupil constriction. When retinal image quality is close to maximum achievable (given the eye's higher-order aberrations), acuity is also near maximum. A combination of accommodative lag, reduced image quality, and reduced visual function may be a useful sign for diagnosing functionally-significant accommodative errors indicating the need for therapeutic intervention. © 2013 The Authors Ophthalmic & Physiological Optics © 2013 The College of Optometrists.
NASA Technical Reports Server (NTRS)
Redemann, Jens; Russell, Philip B.; Hamill, Patrick
2001-01-01
Atmospheric aerosols frequently contain hygroscopic sulfate species and black carbon (soot) inclusions. In this paper we report results of a modeling study to determine the change in aerosol absorption due to increases in ambient relative humidity (RH), for three common sulfate species, assuming that the soot mass fraction is present as a single concentric core within each particle. Because of the lack of detailed knowledge about various input parameters to models describing internally mixed aerosol particle optics, we focus on results that were aimed at determining the maximum effect that particle humidification may have on aerosol light absorption. In the wavelength range from 450 to 750 nm, maximum absorption humidification factors (ratio of wet to 'dry=30% RH' absorption) for single aerosol particles are found to be as large as 1.75 when the RH changes from 30 to 99.5%. Upon lesser humidification from 30 to 80% RH, absorption humidification for single particles is only as much as 1.2, even for the most favorable combination of initial ('dry') soot mass fraction and particle size. Integrated over monomodal lognormal particle size distributions, maximum absorption humidification factors range between 1.07 and 1.15 for humidification from 30 to 80% and between 1.1 and 1.35 for humidification from 30 to 95% RH for all species considered. The largest humidification factors at a wavelength of 450 nm are obtained for 'dry' particle size distributions that peak at a radius of 0.05 microns, while the absorption humidification factors at 700 nm are largest for 'dry' size distributions that are dominated by particles in the radius range of 0.06 to 0.08 microns. Single-scattering albedo estimates at ambient conditions are often based on absorption measurements at low RH (approx. 30%) and the assumption that aerosol absorption does not change upon humidification (i.e., absorption humidification equal to unity). Our modeling study suggests that this assumption alone can introduce absolute errors in estimates of the midvisible single-scattering albedo of up to 0.05 for realistic dry particle size distributions. Our study also indicates that this error increases with increasing wavelength. The potential errors in aerosol single-scattering albedo derived here are comparable in magnitude and in addition to uncertainties in single-scattering albedo estimates that are based on measurements of aerosol light absorption and scattering.
Yi, Dong-Hoon; Lee, Tae-Jae; Cho, Dong-Il Dan
2018-01-10
In this paper, a new localization system utilizing afocal optical flow sensor (AOFS) based sensor fusion for indoor service robots in low luminance and slippery environment is proposed, where conventional localization systems do not perform well. To accurately estimate the moving distance of a robot in a slippery environment, the robot was equipped with an AOFS along with two conventional wheel encoders. To estimate the orientation of the robot, we adopted a forward-viewing mono-camera and a gyroscope. In a very low luminance environment, it is hard to conduct conventional feature extraction and matching for localization. Instead, the interior space structure from an image and robot orientation was assessed. To enhance the appearance of image boundary, rolling guidance filter was applied after the histogram equalization. The proposed system was developed to be operable on a low-cost processor and implemented on a consumer robot. Experiments were conducted in low illumination condition of 0.1 lx and carpeted environment. The robot moved for 20 times in a 1.5 × 2.0 m square trajectory. When only wheel encoders and a gyroscope were used for robot localization, the maximum position error was 10.3 m and the maximum orientation error was 15.4°. Using the proposed system, the maximum position error and orientation error were found as 0.8 m and within 1.0°, respectively.
Yi, Dong-Hoon; Lee, Tae-Jae; Cho, Dong-Il “Dan”
2018-01-01
In this paper, a new localization system utilizing afocal optical flow sensor (AOFS) based sensor fusion for indoor service robots in low luminance and slippery environment is proposed, where conventional localization systems do not perform well. To accurately estimate the moving distance of a robot in a slippery environment, the robot was equipped with an AOFS along with two conventional wheel encoders. To estimate the orientation of the robot, we adopted a forward-viewing mono-camera and a gyroscope. In a very low luminance environment, it is hard to conduct conventional feature extraction and matching for localization. Instead, the interior space structure from an image and robot orientation was assessed. To enhance the appearance of image boundary, rolling guidance filter was applied after the histogram equalization. The proposed system was developed to be operable on a low-cost processor and implemented on a consumer robot. Experiments were conducted in low illumination condition of 0.1 lx and carpeted environment. The robot moved for 20 times in a 1.5 × 2.0 m square trajectory. When only wheel encoders and a gyroscope were used for robot localization, the maximum position error was 10.3 m and the maximum orientation error was 15.4°. Using the proposed system, the maximum position error and orientation error were found as 0.8 m and within 1.0°, respectively. PMID:29320414
NASA Technical Reports Server (NTRS)
Tsaoussi, Lucia S.; Koblinsky, Chester J.
1994-01-01
In order to facilitate the use of satellite-derived sea surface topography and velocity oceanographic models, methodology is presented for deriving the total error covariance and its geographic distribution from TOPEX/POSEIDON measurements. The model is formulated using a parametric model fit to the altimeter range observations. The topography and velocity modeled with spherical harmonic expansions whose coefficients are found through optimal adjustment to the altimeter range residuals using Bayesian statistics. All other parameters, including the orbit, geoid, surface models, and range corrections are provided as unadjusted parameters. The maximum likelihood estimates and errors are derived from the probability density function of the altimeter range residuals conditioned with a priori information. Estimates of model errors for the unadjusted parameters are obtained from the TOPEX/POSEIDON postlaunch verification results and the error covariances for the orbit and the geoid, except for the ocean tides. The error in the ocean tides is modeled, first, as the difference between two global tide models and, second, as the correction to the present tide model, the correction derived from the TOPEX/POSEIDON data. A formal error covariance propagation scheme is used to derive the total error. Our global total error estimate for the TOPEX/POSEIDON topography relative to the geoid for one 10-day period is found tio be 11 cm RMS. When the error in the geoid is removed, thereby providing an estimate of the time dependent error, the uncertainty in the topography is 3.5 cm root mean square (RMS). This level of accuracy is consistent with direct comparisons of TOPEX/POSEIDON altimeter heights with tide gauge measurements at 28 stations. In addition, the error correlation length scales are derived globally in both east-west and north-south directions, which should prove useful for data assimilation. The largest error correlation length scales are found in the tropics. Errors in the velocity field are smallest in midlatitude regions. For both variables the largest errors caused by uncertainty in the geoid. More accurate representations of the geoid await a dedicated geopotential satellite mission. Substantial improvements in the accuracy of ocean tide models are expected in the very near future from research with TOPEX/POSEIDON data.
Maradzike, Elvis; Gidofalvi, Gergely; Turney, Justin M; Schaefer, Henry F; DePrince, A Eugene
2017-09-12
Analytic energy gradients are presented for a variational two-electron reduced-density-matrix (2-RDM)-driven complete active space self-consistent field (CASSCF) method. The active-space 2-RDM is determined using a semidefinite programing (SDP) algorithm built upon an augmented Lagrangian formalism. Expressions for analytic gradients are simplified by the fact that the Lagrangian is stationary with respect to variations in both the primal and the dual solutions to the SDP problem. Orbital response contributions to the gradient are identical to those that arise in conventional CASSCF methods in which the electronic structure of the active space is described by a full configuration interaction (CI) wave function. We explore the relative performance of variational 2-RDM (v2RDM)- and CI-driven CASSCF for the equilibrium geometries of 20 small molecules. When enforcing two-particle N-representability conditions, full-valence v2RDM-CASSCF-optimized bond lengths display a mean unsigned error of 0.0060 Å and a maximum unsigned error of 0.0265 Å, relative to those obtained from full-valence CI-CASSCF. When enforcing partial three-particle N-representability conditions, the mean and maximum unsigned errors are reduced to only 0.0006 and 0.0054 Å, respectively. For these same molecules, full-valence v2RDM-CASSCF bond lengths computed in the cc-pVQZ basis set deviate from experimentally determined ones on average by 0.017 and 0.011 Å when enforcing two- and three-particle conditions, respectively, whereas CI-CASSCF displays an average deviation of 0.010 Å. The v2RDM-CASSCF approach with two-particle conditions is also applied to the equilibrium geometry of pentacene; optimized bond lengths deviate from those derived from experiment, on average, by 0.015 Å when using a cc-pVDZ basis set and a (22e,22o) active space.
Initializing a Mesoscale Boundary-Layer Model with Radiosonde Observations
NASA Astrophysics Data System (ADS)
Berri, Guillermo J.; Bertossa, Germán
2018-01-01
A mesoscale boundary-layer model is used to simulate low-level regional wind fields over the La Plata River of South America, a region characterized by a strong daily cycle of land-river surface-temperature contrast and low-level circulations of sea-land breeze type. The initial and boundary conditions are defined from a limited number of local observations and the upper boundary condition is taken from the only radiosonde observations available in the region. The study considers 14 different upper boundary conditions defined from the radiosonde data at standard levels, significant levels, level of the inversion base and interpolated levels at fixed heights, all of them within the first 1500 m. The period of analysis is 1994-2008 during which eight daily observations from 13 weather stations of the region are used to validate the 24-h surface-wind forecast. The model errors are defined as the root-mean-square of relative error in wind-direction frequency distribution and mean wind speed per wind sector. Wind-direction errors are greater than wind-speed errors and show significant dispersion among the different upper boundary conditions, not present in wind speed, revealing a sensitivity to the initialization method. The wind-direction errors show a well-defined daily cycle, not evident in wind speed, with the minimum at noon and the maximum at dusk, but no systematic deterioration with time. The errors grow with the height of the upper boundary condition level, in particular wind direction, and double the errors obtained when the upper boundary condition is defined from the lower levels. The conclusion is that defining the model upper boundary condition from radiosonde data closer to the ground minimizes the low-level wind-field errors throughout the region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damato, AL; Bhagwat, MS; Buzurovic, I
Purpose: To investigate the use of a system using EM tracking, postprocessing and error-detection algorithms for measuring brachytherapy catheter locations and for detecting errors and resolving uncertainties in treatment-planning catheter digitization. Methods: An EM tracker was used to localize 13 catheters in a clinical surface applicator (A) and 15 catheters inserted into a phantom (B). Two pairs of catheters in (B) crossed paths at a distance <2 mm, producing an undistinguishable catheter artifact in that location. EM data was post-processed for noise reduction and reformatted to provide the dwell location configuration. CT-based digitization was automatically extracted from the brachytherapy planmore » DICOM files (CT). EM dwell digitization error was characterized in terms of the average and maximum distance between corresponding EM and CT dwells per catheter. The error detection rate (detected errors / all errors) was calculated for 3 types of errors: swap of two catheter numbers; incorrect catheter number identification superior to the closest position between two catheters (mix); and catheter-tip shift. Results: The averages ± 1 standard deviation of the average and maximum registration error per catheter were 1.9±0.7 mm and 3.0±1.1 mm for (A) and 1.6±0.6 mm and 2.7±0.8 mm for (B). The error detection rate was 100% (A and B) for swap errors, mix errors, and shift >4.5 mm (A) and >5.5 mm (B); errors were detected for shifts on average >2.0 mm (A) and >2.4 mm (B). Both mix errors associated with undistinguishable catheter artifacts were detected and at least one of the involved catheters was identified. Conclusion: We demonstrated the use of an EM tracking system for localization of brachytherapy catheters, detection of digitization errors and resolution of undistinguishable catheter artifacts. Automatic digitization may be possible with a registration between the imaging and the EM frame of reference. Research funded by the Kaye Family Award 2012.« less
NASA Astrophysics Data System (ADS)
Zhou, Quanlin; Oldenburg, Curtis M.; Rutqvist, Jonny; Birkholzer, Jens T.
2017-11-01
There are two types of analytical solutions of temperature/concentration in and heat/mass transfer through boundaries of regularly shaped 1-D, 2-D, and 3-D blocks. These infinite-series solutions with either error functions or exponentials exhibit highly irregular but complementary convergence at different dimensionless times, td. In this paper, approximate solutions were developed by combining the error-function-series solutions for early times and the exponential-series solutions for late times and by using time partitioning at the switchover time, td0. The combined solutions contain either the leading term of both series for normal-accuracy approximations (with less than 0.003 relative error) or the first two terms for high-accuracy approximations (with less than 10-7 relative error) for 1-D isotropic (spheres, cylinders, slabs) and 2-D/3-D rectangular blocks (squares, cubes, rectangles, and rectangular parallelepipeds). This rapid and uniform convergence for rectangular blocks was achieved by employing the same time partitioning with individual dimensionless times for different directions and the product of their combined 1-D slab solutions. The switchover dimensionless time was determined to minimize the maximum approximation errors. Furthermore, the analytical solutions of first-order heat/mass flux for 2-D/3-D rectangular blocks were derived for normal-accuracy approximations. These flux equations contain the early-time solution with a three-term polynomial in √td and the late-time solution with the limited-term exponentials for rectangular blocks. The heat/mass flux equations and the combined temperature/concentration solutions form the ultimate kernel for fast simulations of multirate and multidimensional heat/mass transfer in porous/fractured media with millions of low-permeability blocks of varying shapes and sizes.
Estimation of the uncertainty of a climate model using an ensemble simulation
NASA Astrophysics Data System (ADS)
Barth, A.; Mathiot, P.; Goosse, H.
2012-04-01
The atmospheric forcings play an important role in the study of the ocean and sea-ice dynamics of the Southern Ocean. Error in the atmospheric forcings will inevitably result in uncertain model results. The sensitivity of the model results to errors in the atmospheric forcings are studied with ensemble simulations using multivariate perturbations of the atmospheric forcing fields. The numerical ocean model used is the NEMO-LIM in a global configuration with an horizontal resolution of 2°. NCEP reanalyses are used to provide air temperature and wind data to force the ocean model over the last 50 years. A climatological mean is used to prescribe relative humidity, cloud cover and precipitation. In a first step, the model results is compared with OSTIA SST and OSI SAF sea ice concentration of the southern hemisphere. The seasonal behavior of the RMS difference and bias in SST and ice concentration is highlighted as well as the regions with relatively high RMS errors and biases such as the Antarctic Circumpolar Current and near the ice-edge. Ensemble simulations are performed to statistically characterize the model error due to uncertainties in the atmospheric forcings. Such information is a crucial element for future data assimilation experiments. Ensemble simulations are performed with perturbed air temperature and wind forcings. A Fourier decomposition of the NCEP wind vectors and air temperature for 2007 is used to generate ensemble perturbations. The perturbations are scaled such that the resulting ensemble spread matches approximately the RMS differences between the satellite SST and sea ice concentration. The ensemble spread and covariance are analyzed for the minimum and maximum sea ice extent. It is shown that errors in the atmospheric forcings can extend to several hundred meters in depth near the Antarctic Circumpolar Current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Quanlin; Oldenburg, Curtis M.; Rutqvist, Jonny
There are two types of analytical solutions of temperature/concentration in and heat/mass transfer through boundaries of regularly shaped 1D, 2D, and 3D blocks. These infinite-series solutions with either error functions or exponentials exhibit highly irregular but complementary convergence at different dimensionless times, t d0. In this paper, approximate solutions were developed by combining the error-function-series solutions for early times and the exponential-series solutions for late times and by using time partitioning at the switchover time, t d0. The combined solutions contain either the leading term of both series for normal-accuracy approximations (with less than 0.003 relative error) or the firstmore » two terms for high-accuracy approximations (with less than 10-7 relative error) for 1D isotropic (spheres, cylinders, slabs) and 2D/3D rectangular blocks (squares, cubes, rectangles, and rectangular parallelepipeds). This rapid and uniform convergence for rectangular blocks was achieved by employing the same time partitioning with individual dimensionless times for different directions and the product of their combined 1D slab solutions. The switchover dimensionless time was determined to minimize the maximum approximation errors. Furthermore, the analytical solutions of first-order heat/mass flux for 2D/3D rectangular blocks were derived for normal-accuracy approximations. These flux equations contain the early-time solution with a three-term polynomial in √td and the late-time solution with the limited-term exponentials for rectangular blocks. The heat/mass flux equations and the combined temperature/concentration solutions form the ultimate kernel for fast simulations of multirate and multidimensional heat/mass transfer in porous/fractured media with millions of low-permeability blocks of varying shapes and sizes.« less
Zhou, Quanlin; Oldenburg, Curtis M.; Rutqvist, Jonny; ...
2017-10-24
There are two types of analytical solutions of temperature/concentration in and heat/mass transfer through boundaries of regularly shaped 1D, 2D, and 3D blocks. These infinite-series solutions with either error functions or exponentials exhibit highly irregular but complementary convergence at different dimensionless times, t d0. In this paper, approximate solutions were developed by combining the error-function-series solutions for early times and the exponential-series solutions for late times and by using time partitioning at the switchover time, t d0. The combined solutions contain either the leading term of both series for normal-accuracy approximations (with less than 0.003 relative error) or the firstmore » two terms for high-accuracy approximations (with less than 10-7 relative error) for 1D isotropic (spheres, cylinders, slabs) and 2D/3D rectangular blocks (squares, cubes, rectangles, and rectangular parallelepipeds). This rapid and uniform convergence for rectangular blocks was achieved by employing the same time partitioning with individual dimensionless times for different directions and the product of their combined 1D slab solutions. The switchover dimensionless time was determined to minimize the maximum approximation errors. Furthermore, the analytical solutions of first-order heat/mass flux for 2D/3D rectangular blocks were derived for normal-accuracy approximations. These flux equations contain the early-time solution with a three-term polynomial in √td and the late-time solution with the limited-term exponentials for rectangular blocks. The heat/mass flux equations and the combined temperature/concentration solutions form the ultimate kernel for fast simulations of multirate and multidimensional heat/mass transfer in porous/fractured media with millions of low-permeability blocks of varying shapes and sizes.« less
Li, Mengshan; Zhang, Huaijing; Chen, Bingsheng; Wu, Yan; Guan, Lixin
2018-03-05
The pKa value of drugs is an important parameter in drug design and pharmacology. In this paper, an improved particle swarm optimization (PSO) algorithm was proposed based on the population entropy diversity. In the improved algorithm, when the population entropy was higher than the set maximum threshold, the convergence strategy was adopted; when the population entropy was lower than the set minimum threshold the divergence strategy was adopted; when the population entropy was between the maximum and minimum threshold, the self-adaptive adjustment strategy was maintained. The improved PSO algorithm was applied in the training of radial basis function artificial neural network (RBF ANN) model and the selection of molecular descriptors. A quantitative structure-activity relationship model based on RBF ANN trained by the improved PSO algorithm was proposed to predict the pKa values of 74 kinds of neutral and basic drugs and then validated by another database containing 20 molecules. The validation results showed that the model had a good prediction performance. The absolute average relative error, root mean square error, and squared correlation coefficient were 0.3105, 0.0411, and 0.9685, respectively. The model can be used as a reference for exploring other quantitative structure-activity relationships.
Iino, Yoichi; Kojima, Takeji
2012-08-01
This study investigated the validity of the top-down approach of inverse dynamics analysis in fast and large rotational movements of the trunk about three orthogonal axes of the pelvis for nine male collegiate students. The maximum angles of the upper trunk relative to the pelvis were approximately 47°, 49°, 32°, and 55° for lateral bending, flexion, extension, and axial rotation, respectively, with maximum angular velocities of 209°/s, 201°/s, 145°/s, and 288°/s, respectively. The pelvic moments about the axes during the movements were determined using the top-down and bottom-up approaches of inverse dynamics and compared between the two approaches. Three body segment inertial parameter sets were estimated using anthropometric data sets (Ae et al., Biomechanism 11, 1992; De Leva, J Biomech, 1996; Dumas et al., J Biomech, 2007). The root-mean-square errors of the moments and the absolute errors of the peaks of the moments were generally smaller than 10 N·m. The results suggest that the pelvic moment in motions involving fast and large trunk movements can be determined with a certain level of validity using the top-down approach in which the trunk is modeled as two or three rigid-link segments.
Concept for tremor compensation for a handheld OCT-laryngoscope
NASA Astrophysics Data System (ADS)
Donner, Sabine; Deutsch, Stefanie; Bleeker, Sebastian; Ripken, Tammo; Krüger, Alexander
2013-06-01
Optical coherence tomography (OCT) is a non-invasive imaging technique which can create optical tissue sections, enabling diagnosis of vocal cord tissue. To take full advantage from the non-contact imaging technique, OCT was adapted to an indirect laryngoscope to work on awake patients. Using OCT in a handheld diagnostic device the challenges of rapid working distance adjustment and tracking of axial motion arise. The optical focus of the endoscopic sample arm and the reference-arm length can be adjusted in a range of 40 mm to 90 mm. Automatic working distance adjustment is based on image analysis of OCT B-scans which identifies off depth images as well as position errors. The movable focal plane and reference plane are used to adjust working distance to match the sample depth and stabilise the sample in the desired axial position of the OCT scans. The autofocus adjusts the working distance within maximum 2.7 seconds for the maximum initial displacement of 40 mm. The amplitude of hand tremor during 60 s handheld scanning was reduced to 50 % and it was shown that the image stabilisation keeps the position error below 0.5 mm. Fast automatic working distance adjustment is crucial to minimise the duration of the diagnostic procedure. The image stabilisation compensates relative axial movements during handheld scanning.
NASA Astrophysics Data System (ADS)
Richter, J.; Mayer, J.; Weigand, B.
2018-02-01
Non-resonant laser-induced thermal acoustics (LITA) was applied to measure Mach number, temperature and turbulence level along the centerline of a transonic nozzle flow. The accuracy of the measurement results was systematically studied regarding misalignment of the interrogation beam and frequency analysis of the LITA signals. 2D steady-state Reynolds-averaged Navier-Stokes (RANS) simulations were performed for reference. The simulations were conducted using ANSYS CFX 18 employing the shear-stress transport turbulence model. Post-processing of the LITA signals is performed by applying a discrete Fourier transformation (DFT) to determine the beat frequencies. It is shown that the systematical error of the DFT, which depends on the number of oscillations, signal chirp, and damping rate, is less than 1.5% for our experiments resulting in an average error of 1.9% for Mach number. Further, the maximum calibration error is investigated for a worst-case scenario involving maximum in situ readjustment of the interrogation beam within the limits of constructive interference. It is shown that the signal intensity becomes zero if the interrogation angle is altered by 2%. This, together with the accuracy of frequency analysis, results in an error of about 5.4% for temperature throughout the nozzle. Comparison with numerical results shows good agreement within the error bars.
Force-Time Entropy of Isometric Impulse.
Hsieh, Tsung-Yu; Newell, Karl M
2016-01-01
The relation between force and temporal variability in discrete impulse production has been viewed as independent (R. A. Schmidt, H. Zelaznik, B. Hawkins, J. S. Frank, & J. T. Quinn, 1979 ) or dependent on the rate of force (L. G. Carlton & K. M. Newell, 1993 ). Two experiments in an isometric single finger force task investigated the joint force-time entropy with (a) fixed time to peak force and different percentages of force level and (b) fixed percentage of force level and different times to peak force. The results showed that the peak force variability increased either with the increment of force level or through a shorter time to peak force that also reduced timing error variability. The peak force entropy and entropy of time to peak force increased on the respective dimension as the parameter conditions approached either maximum force or a minimum rate of force production. The findings show that force error and timing error are dependent but complementary when considered in the same framework with the joint force-time entropy at a minimum in the middle parameter range of discrete impulse.
NASA Technical Reports Server (NTRS)
Doggett, Leroy E.; Schaefer, Bradley E.
1994-01-01
We report the results of five Moonwatches, in which more than 2000 observers throughout North America attempted to sight the thin lunar crescent. For each Moonwatch we were able to determine the position of the Lunar Date Line (LDL), the line along which a normal observer has a 50% probability of spotting the Moon. The observational LDLs were then compared with predicted LDLs derived from crescent visibility prediction algorithms. We find that ancient and medieval rules are higly unreliable. More recent empirical criteria, based on the relative altitude and azimuth of the Moon at the time of sunset, have a reasonable accuracy, with the best specific formulation being due to Yallop. The modern theoretical model by Schaefer (based on the physiology of the human eye and the local observing conditions) is found to have the least systematic error, the least average error, and the least maximum error of all models tested. Analysis of the observations also provided information about atmospheric, optical and human factors that affect the observations. We show that observational lunar calendars have a natural bias to begin early.
Expected versus Observed Information in SEM with Incomplete Normal and Nonnormal Data
ERIC Educational Resources Information Center
Savalei, Victoria
2010-01-01
Maximum likelihood is the most common estimation method in structural equation modeling. Standard errors for maximum likelihood estimates are obtained from the associated information matrix, which can be estimated from the sample using either expected or observed information. It is known that, with complete data, estimates based on observed or…
An optimized ensemble local mean decomposition method for fault detection of mechanical components
NASA Astrophysics Data System (ADS)
Zhang, Chao; Li, Zhixiong; Hu, Chao; Chen, Shuai; Wang, Jianguo; Zhang, Xiaogang
2017-03-01
Mechanical transmission systems have been widely adopted in most of industrial applications, and issues related to the maintenance of these systems have attracted considerable attention in the past few decades. The recently developed ensemble local mean decomposition (ELMD) method shows satisfactory performance in fault detection of mechanical components for preventing catastrophic failures and reducing maintenance costs. However, the performance of ELMD often heavily depends on proper selection of its model parameters. To this end, this paper proposes an optimized ensemble local mean decomposition (OELMD) method to determinate an optimum set of ELMD parameters for vibration signal analysis. In OELMD, an error index termed the relative root-mean-square error (Relative RMSE) is used to evaluate the decomposition performance of ELMD with a certain amplitude of the added white noise. Once a maximum Relative RMSE, corresponding to an optimal noise amplitude, is determined, OELMD then identifies optimal noise bandwidth and ensemble number based on the Relative RMSE and signal-to-noise ratio (SNR), respectively. Thus, all three critical parameters of ELMD (i.e. noise amplitude and bandwidth, and ensemble number) are optimized by OELMD. The effectiveness of OELMD was evaluated using experimental vibration signals measured from three different mechanical components (i.e. the rolling bearing, gear and diesel engine) under faulty operation conditions.
NASA Astrophysics Data System (ADS)
Cooney, Tom; Mosonyi, Milán; Wilde, Mark M.
2016-06-01
This paper studies the difficulty of discriminating between an arbitrary quantum channel and a "replacer" channel that discards its input and replaces it with a fixed state. The results obtained here generalize those known in the theory of quantum hypothesis testing for binary state discrimination. We show that, in this particular setting, the most general adaptive discrimination strategies provide no asymptotic advantage over non-adaptive tensor-power strategies. This conclusion follows by proving a quantum Stein's lemma for this channel discrimination setting, showing that a constant bound on the Type I error leads to the Type II error decreasing to zero exponentially quickly at a rate determined by the maximum relative entropy registered between the channels. The strong converse part of the lemma states that any attempt to make the Type II error decay to zero at a rate faster than the channel relative entropy implies that the Type I error necessarily converges to one. We then refine this latter result by identifying the optimal strong converse exponent for this task. As a consequence of these results, we can establish a strong converse theorem for the quantum-feedback-assisted capacity of a channel, sharpening a result due to Bowen. Furthermore, our channel discrimination result demonstrates the asymptotic optimality of a non-adaptive tensor-power strategy in the setting of quantum illumination, as was used in prior work on the topic. The sandwiched Rényi relative entropy is a key tool in our analysis. Finally, by combining our results with recent results of Hayashi and Tomamichel, we find a novel operational interpretation of the mutual information of a quantum channel {mathcal{N}} as the optimal Type II error exponent when discriminating between a large number of independent instances of {mathcal{N}} and an arbitrary "worst-case" replacer channel chosen from the set of all replacer channels.
Automatic Detection of Preposition Errors in Learner Writing
ERIC Educational Resources Information Center
De Felice, Rachele; Pulman, Stephen
2009-01-01
In this article, we present an approach to the automatic correction of preposition errors in L2 English. Our system, based on a maximum entropy classifier, achieves average precision of 42% and recall of 35% on this task. The discussion of results obtained on correct and incorrect data aims to establish what characteristics of L2 writing prove…
Land use surveys by means of automatic interpretation of LANDSAT system data
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Lombardo, M. A.; Novo, E. M. L. D.; Niero, M.; Foresti, C.
1981-01-01
Analyses for seven land-use classes are presented. The classes are: urban area, industrial area, bare soil, cultivated area, pastureland, reforestation, and natural vegetation. The automatic classification of LANDSAT MSS data using a maximum likelihood algorithm shows a 39% average error of emission and a 3.45 error of commission for the seven classes.
Nonparametric probability density estimation by optimization theoretic techniques
NASA Technical Reports Server (NTRS)
Scott, D. W.
1976-01-01
Two nonparametric probability density estimators are considered. The first is the kernel estimator. The problem of choosing the kernel scaling factor based solely on a random sample is addressed. An interactive mode is discussed and an algorithm proposed to choose the scaling factor automatically. The second nonparametric probability estimate uses penalty function techniques with the maximum likelihood criterion. A discrete maximum penalized likelihood estimator is proposed and is shown to be consistent in the mean square error. A numerical implementation technique for the discrete solution is discussed and examples displayed. An extensive simulation study compares the integrated mean square error of the discrete and kernel estimators. The robustness of the discrete estimator is demonstrated graphically.
Extending the impulse response in order to reduce errors due to impulse noise and signal fading
NASA Technical Reports Server (NTRS)
Webb, Joseph A.; Rolls, Andrew J.; Sirisena, H. R.
1988-01-01
A finite impulse response (FIR) digital smearing filter was designed to produce maximum intersymbol interference and maximum extension of the impulse response of the signal in a noiseless binary channel. A matched FIR desmearing filter at the receiver then reduced the intersymbol interference to zero. Signal fades were simulated by means of 100 percent signal blockage in the channel. Smearing and desmearing filters of length 256, 512, and 1024 were used for these simulations. Results indicate that impulse response extension by means of bit smearing appears to be a useful technique for correcting errors due to impulse noise or signal fading in a binary channel.
A dual-phantom system for validation of velocity measurements in stenosis models under steady flow.
Blake, James R; Easson, William J; Hoskins, Peter R
2009-09-01
A dual-phantom system is developed for validation of velocity measurements in stenosis models. Pairs of phantoms with identical geometry and flow conditions are manufactured, one for ultrasound and one for particle image velocimetry (PIV). The PIV model is made from silicone rubber, and a new PIV fluid is made that matches the refractive index of 1.41 of silicone. Dynamic scaling was performed to correct for the increased viscosity of the PIV fluid compared with that of the ultrasound blood mimic. The degree of stenosis in the models pairs agreed to less than 1%. The velocities in the laminar flow region up to the peak velocity location agreed to within 15%, and the difference could be explained by errors in ultrasound velocity estimation. At low flow rates and in mild stenoses, good agreement was observed in the distal flow fields, excepting the maximum velocities. At high flow rates, there was considerable difference in velocities in the poststenosis flow field (maximum centreline differences of 30%), which would seem to represent real differences in hydrodynamic behavior between the two models. Sources of error included: variation of viscosity because of temperature (random error, which could account for differences of up to 7%); ultrasound velocity estimation errors (systematic errors); and geometry effects in each model, particularly because of imperfect connectors and corners (systematic errors, potentially affecting the inlet length and flow stability). The current system is best placed to investigate measurement errors in the laminar flow region rather than the poststenosis turbulent flow region.
NASA Astrophysics Data System (ADS)
Zhao, Chen-Guang; Tan, Jiu-Bin; Liu, Tao
2010-09-01
The mechanism of a non-polarizing beam splitter (NPBS) with asymmetrical transfer coefficients causing the rotation of polarization direction is explained in principle, and the measurement nonlinear error caused by NPBS is analyzed based on Jones matrix theory. Theoretical calculations show that the nonlinear error changes periodically, and the error period and peak values increase with the deviation between transmissivities of p-polarization and s-polarization states. When the transmissivity of p-polarization is 53% and that of s-polarization is 48%, the maximum error reaches 2.7 nm. The imperfection of NPBS is one of the main error sources in simultaneous phase-shifting polarization interferometer, and its influence can not be neglected in the nanoscale ultra-precision measurement.
NASA Technical Reports Server (NTRS)
Yatheendradas, Soni; Narapusetty, Balachandrudu; Peters-Lidard, Christa; Funk, Christopher; Verdin, James
2014-01-01
A previous study analyzed errors in the numerical calculation of actual crop evapotranspiration (ET(sub a)) under soil water stress. Assuming no irrigation or precipitation, it constructed equations for ET(sub a) over limited soil-water ranges in a root zone drying out due to evapotranspiration. It then used a single crop-soil composite to provide recommendations about the appropriate usage of numerical methods under different values of the time step and the maximum crop evapotranspiration (ET(sub c)). This comment reformulates those ET(sub a) equations for applicability over the full range of soil water values, revealing a dependence of the relative error in numerical ET(sub a) on the initial soil water that was not seen in the previous study. It is shown that the recommendations based on a single crop-soil composite can be invalid for other crop-soil composites. Finally, a consideration of the numerical error in the time-cumulative value of ET(sub a) is discussed besides the existing consideration of that error over individual time steps as done in the previous study. This cumulative ET(sub a) is more relevant to the final crop yield.
NASA Astrophysics Data System (ADS)
Singh, Sarvesh Kumar; Kumar, Pramod; Rani, Raj; Turbelin, Grégory
2017-04-01
The study highlights a theoretical comparison and various interpretations of a recent inversion technique, called renormalization, developed for the reconstruction of unknown tracer emissions from their measured concentrations. The comparative interpretations are presented in relation to the other inversion techniques based on principle of regularization, Bayesian, minimum norm, maximum entropy on mean, and model resolution optimization. It is shown that the renormalization technique can be interpreted in a similar manner to other techniques, with a practical choice of a priori information and error statistics, while eliminating the need of additional constraints. The study shows that the proposed weight matrix and weighted Gram matrix offer a suitable deterministic choice to the background error and measurement covariance matrices, respectively, in the absence of statistical knowledge about background and measurement errors. The technique is advantageous since it (i) utilizes weights representing a priori information apparent to the monitoring network, (ii) avoids dependence on background source estimates, (iii) improves on alternative choices for the error statistics, (iv) overcomes the colocalization problem in a natural manner, and (v) provides an optimally resolved source reconstruction. A comparative illustration of source retrieval is made by using the real measurements from a continuous point release conducted in Fusion Field Trials, Dugway Proving Ground, Utah.
Investigation of scene identification algorithms for radiation budget measurements
NASA Technical Reports Server (NTRS)
Diekmann, F. J.
1986-01-01
The computation of Earth radiation budget from satellite measurements requires the identification of the scene in order to select spectral factors and bidirectional models. A scene identification procedure is developed for AVHRR SW and LW data by using two radiative transfer models. These AVHRR GAC pixels are then attached to corresponding ERBE pixels and the results are sorted into scene identification probability matrices. These scene intercomparisons show that there generally is a higher tendency for underestimation of cloudiness over ocean at high cloud amounts, e.g., mostly cloudy instead of overcast, partly cloudy instead of mostly cloudy, for the ERBE relative to the AVHRR results. Reasons for this are explained. Preliminary estimates of the errors of exitances due to scene misidentification demonstrates the high dependency on the probability matrices. While the longwave error can generally be neglected the shortwave deviations have reached maximum values of more than 12% of the respective exitances.
Does target viewing time influence perceived reachability?
Gabbard, Carl; Ammar, Diala
2007-09-01
This study examined the influence of target viewing time on perceived (estimates of) reachability. Right-handed participants were asked to judge the simulated reachability of midline targets using their dominant limb in viewing conditions of 150 ms, 500 ms, 1 s and 2 s. Responses were compared to actual maximum reach. In reference to percent error, interestingly, the 150 ms condition revealed the least error at peripersonal targets and the most inaccuracy with distal (extrapersonal) targets. This condition was also distinct with a significant overestimation bias -- a common observation in earlier studies. However, with increasing viewing time this bias was reduced. These data provide evidence that 150 ms is effective for estimating reach within one's general peripersonal workspace. However, with judgments distal from that point, more time enhanced accuracy, with 500 ms and 1 s being optimal. Overall results are discussed relative to perceptual effectiveness in programming reaching movements.
Measurement of the length of pedestrian crossings and detection of traffic lights from image data
NASA Astrophysics Data System (ADS)
Shioyama, Tadayoshi; Wu, Haiyuan; Nakamura, Naoki; Kitawaki, Suguru
2002-09-01
This paper proposes a method for measurement of the length of a pedestrian crossing and for the detection of traffic lights from image data observed with a single camera. The length of a crossing is measured from image data of white lines painted on the road at a crossing by using projective geometry. Furthermore, the state of the traffic lights, green (go signal) or red (stop signal), is detected by extracting candidates for the traffic light region with colour similarity and selecting a true traffic light from them using affine moment invariants. From the experimental results, the length of a crossing is measured with an accuracy such that the maximum relative error of measured length is less than 5% and the rms error is 0.38 m. A traffic light is efficiently detected by selecting a true traffic light region with an affine moment invariant.
NASA Astrophysics Data System (ADS)
Gentilucci, Matteo
2017-04-01
The end of flowering date (BBCH 69) is an important phenological stage for grapevine (Vitis Vinifera L.), in fact up to this date the growth is focused on the plant and gradually passes on the berries through fruit set. The aim of this study is to perform a model to predict the date of the end of flowering (BBCH69) for some grapevine varieties. This research carried out using three cultivars of grapevine (Maceratino, Montepulciano, Sangiovese) in three different locations (Macerata, Morrovalle and Potenza Picena), places of an equal number of wine farms for the time interval between 2006 and 2013. In order to have reliable temperatures for each location, the data of 6 weather stations near these farms have been interpolated using cokriging methods with elevation as independent variable. The procedure to predict the end of flowering date starts with an investigation of cardinal temperatures typical of each grapevine cultivar. In fact the analysis is characterized by four temperature thresholds (cardinals): minimum activity temperature (TCmin = below this temperature there is no growth for the plant), lower optimal temperature (TLopt = above this temperature there is maximum growth), upper optimal temperature (TUopt = below this temperature there is maximum growth) and maximum activity temperature (TC max = above this temperature there is no growth). Thus this model take into consideration maximum, mean and minimum daily temperatures of each location, relating them with the four above mentioned cultivar temperature thresholds. In this way it has been obtained some possible cases (32) corresponding to as many equations, depending on the position of temperatures compared with the thresholds, in order to calculate the amount of growing degree units (GDU) for each day. Several iterative tests (about 1000 for each cultivar) have been performed, changing the values of temperature thresholds and GDU in order to find the best possible combination which minimizes error between observed and predicted days from budburst to end of flowering. It has been assessed the minimization of error for the predicted dates compared with real ones, calculating some statistical indexes as root mean square error, mean absolute error and coefficient of variation. The procedure led to the identification of four cardinal temperatures and the amount of GDU for each cultivar between BBCH01 (budburst) and BBCH69 (end of flowering). In conclusion, this research has achieved some goals such as the plant response to temperature (same cardinal temperatures for Maceratino and Sangiovese but higher ones for Montepulciano), the interval ranging of growing degree units (from 35 to 38) and the differences between observed and predicted days (ranged from 2 to 3.5), for each grape varieties.
Determining the effect of grain size and maximum induction upon coercive field of electrical steels
NASA Astrophysics Data System (ADS)
Landgraf, Fernando José Gomes; da Silveira, João Ricardo Filipini; Rodrigues-Jr., Daniel
2011-10-01
Although theoretical models have already been proposed, experimental data is still lacking to quantify the influence of grain size upon coercivity of electrical steels. Some authors consider a linear inverse proportionality, while others suggest a square root inverse proportionality. Results also differ with regard to the slope of the reciprocal of grain size-coercive field relation for a given material. This paper discusses two aspects of the problem: the maximum induction used for determining coercive force and the possible effect of lurking variables such as the grain size distribution breadth and crystallographic texture. Electrical steel sheets containing 0.7% Si, 0.3% Al and 24 ppm C were cold-rolled and annealed in order to produce different grain sizes (ranging from 20 to 150 μm). Coercive field was measured along the rolling direction and found to depend linearly on reciprocal of grain size with a slope of approximately 0.9 (A/m)mm at 1.0 T induction. A general relation for coercive field as a function of grain size and maximum induction was established, yielding an average absolute error below 4%. Through measurement of B50 and image analysis of micrographs, the effects of crystallographic texture and grain size distribution breadth were qualitatively discussed.
NASA Technical Reports Server (NTRS)
Pierson, W. J.
1982-01-01
The scatterometer on the National Oceanic Satellite System (NOSS) is studied by means of Monte Carlo techniques so as to determine the effect of two additional antennas for alias (or ambiguity) removal by means of an objective criteria technique and a normalized maximum likelihood estimator. Cells nominally 10 km by 10 km, 10 km by 50 km, and 50 km by 50 km are simulated for winds of 4, 8, 12 and 24 m/s and incidence angles of 29, 39, 47, and 53.5 deg for 15 deg changes in direction. The normalized maximum likelihood estimate (MLE) is correct a large part of the time, but the objective criterion technique is recommended as a reserve, and more quickly computed, procedure. Both methods for alias removal depend on the differences in the present model function at upwind and downwind. For 10 km by 10 km cells, it is found that the MLE method introduces a correlation between wind speed errors and aspect angle (wind direction) errors that can be as high as 0.8 or 0.9 and that the wind direction errors are unacceptably large, compared to those obtained for the SASS for similar assumptions.
Pieters, Thomas A; Conner, Christopher R; Tandon, Nitin
2013-05-01
Precise localization of subdural electrodes (SDEs) is essential for the interpretation of data from intracranial electrocorticography recordings. Blood and fluid accumulation underneath the craniotomy flap leads to a nonlinear deformation of the brain surface and of the SDE array on postoperative CT scans and adversely impacts the accurate localization of electrodes located underneath the craniotomy. Older methods that localize electrodes based on their identification on a postimplantation CT scan with coregistration to a preimplantation MR image can result in significant problems with accuracy of the electrode localization. The authors report 3 novel methods that rely on the creation of a set of 3D mesh models to depict the pial surface and a smoothed pial envelope. Two of these new methods are designed to localize electrodes, and they are compared with 6 methods currently in use to determine their relative accuracy and reliability. The first method involves manually localizing each electrode using digital photographs obtained at surgery. This is highly accurate, but requires time intensive, operator-dependent input. The second uses 4 electrodes localized manually in conjunction with an automated, recursive partitioning technique to localize the entire electrode array. The authors evaluated the accuracy of previously published methods by applying the methods to their data and comparing them against the photograph-based localization. Finally, the authors further enhanced the usability of these methods by using automatic parcellation techniques to assign anatomical labels to individual electrodes as well as by generating an inflated cortical surface model while still preserving electrode locations relative to the cortical anatomy. The recursive grid partitioning had the least error compared with older methods (672 electrodes, 6.4-mm maximum electrode error, 2.0-mm mean error, p < 10(-18)). The maximum errors derived using prior methods of localization ranged from 8.2 to 11.7 mm for an individual electrode, with mean errors ranging between 2.9 and 4.1 mm depending on the method used. The authors also noted a larger error in all methods that used CT scans alone to localize electrodes compared with those that used both postoperative CT and postoperative MRI. The large mean errors reported with these methods are liable to affect intermodal data comparisons (for example, with functional mapping techniques) and may impact surgical decision making. The authors have presented several aspects of using new techniques to visualize electrodes implanted for localizing epilepsy. The ability to use automated labeling schemas to denote which gyrus a particular electrode overlies is potentially of great utility in planning resections and in corroborating the results of extraoperative stimulation mapping. Dilation of the pial mesh model provides, for the first time, a sense of the cortical surface not sampled by the electrode, and the potential roles this "electrophysiologically hidden" cortex may play in both eloquent function and seizure onset.
NASA Astrophysics Data System (ADS)
Xiong, Zhi; Zhu, J. G.; Xue, B.; Ye, Sh. H.; Xiong, Y.
2013-10-01
As a novel network coordinate measurement system based on multi-directional positioning, workspace Measurement and Positioning System (wMPS) has outstanding advantages of good parallelism, wide measurement range and high measurement accuracy, which makes it to be the research hotspots and important development direction in the field of large-scale measurement. Since station deployment has a significant impact on the measurement range and accuracy, and also restricts the use-cost, the optimization method of station deployment was researched in this paper. Firstly, positioning error model was established. Then focusing on the small network consisted of three stations, the typical deployments and error distribution characteristics were studied. Finally, through measuring the simulated fuselage using typical deployments at the industrial spot and comparing the results with Laser Tracker, some conclusions are obtained. The comparison results show that under existing prototype conditions, I_3 typical deployment of which three stations are distributed in a straight line has an average error of 0.30 mm and the maximum error is 0.50 mm in the range of 12 m. Meanwhile, C_3 typical deployment of which three stations are uniformly distributed in the half-circumference of an circle has an average error of 0.17 mm and the maximum error is 0.28 mm. Obviously, C_3 typical deployment has a higher control effect on precision than I_3 type. The research work provides effective theoretical support for global measurement network optimization in the future work.
Quality assurance of dynamic parameters in volumetric modulated arc therapy
Manikandan, A; Sarkar, B; Holla, R; Vivek, T R; Sujatha, N
2012-01-01
Objectives The purpose of this study was to demonstrate quality assurance checks for accuracy of gantry speed and position, dose rate and multileaf collimator (MLC) speed and position for a volumetric modulated arc treatment (VMAT) modality (Synergy® S; Elekta, Stockholm, Sweden), and to check that all the necessary variables and parameters were synchronous. Methods Three tests (for gantry position–dose delivery synchronisation, gantry speed–dose delivery synchronisation and MLC leaf speed and positions) were performed. Results The average error in gantry position was 0.5° and the average difference was 3 MU for a linear and a parabolic relationship between gantry position and delivered dose. In the third part of this test (sawtooth variation), the maximum difference was 9.3 MU, with a gantry position difference of 1.2°. In the sweeping field method test, a linear relationship was observed between recorded doses and distance from the central axis, as expected. In the open field method, errors were encountered at the beginning and at the end of the delivery arc, termed the “beginning” and “end” errors. For MLC position verification, the maximum error was −2.46 mm and the mean error was 0.0153 ±0.4668 mm, and 3.4% of leaves analysed showed errors of >±1 mm. Conclusion This experiment demonstrates that the variables and parameters of the Synergy® S are synchronous and that the system is suitable for delivering VMAT using a dynamic MLC. PMID:22745206
Development of Bio-impedance Analyzer (BIA) for Body Fat Calculation
NASA Astrophysics Data System (ADS)
Riyadi, Munawar A.; Nugraha, A.; Santoso, M. B.; Septaditya, D.; Prakoso, T.
2017-04-01
Common weight scales cannot assess body composition or determine fat mass and fat-fress mass that make up the body weight. This research propose bio-impedance analysis (BIA) tool capable to body composition assessment. This tool uses four electrodes, two of which are used for 50 kHz sine wave current flow to the body and the rest are used to measure the voltage produced by the body for impedance analysis. Parameters such as height, weight, age, and gender are provided individually. These parameters together with impedance measurements are then in the process to produce a body fat percentage. The experimental result shows impressive repeatability for successive measurements (stdev ≤ 0.25% fat mass). Moreover, result on the hand to hand node scheme reveals average absolute difference of total subjects between two analyzer tools of 0.48% (fat mass) with maximum absolute discrepancy of 1.22% (fat mass). On the other hand, the relative error normalized to Omron’s HBF-306 as comparison tool reveals less than 2% relative error. As a result, the system performance offers good evaluation tool for fat mass in the body.
NASA Astrophysics Data System (ADS)
Khademian, Amir; Abdollahipour, Hamed; Bagherpour, Raheb; Faramarzi, Lohrasb
2017-10-01
In addition to the numerous planning and executive challenges, underground excavation in urban areas is always followed by certain destructive effects especially on the ground surface; ground settlement is the most important of these effects for which estimation there exist different empirical, analytical and numerical methods. Since geotechnical models are associated with considerable model uncertainty, this study characterized the model uncertainty of settlement estimation models through a systematic comparison between model predictions and past performance data derived from instrumentation. To do so, the amount of surface settlement induced by excavation of the Qom subway tunnel was estimated via empirical (Peck), analytical (Loganathan and Poulos) and numerical (FDM) methods; the resulting maximum settlement value of each model were 1.86, 2.02 and 1.52 cm, respectively. The comparison of these predicted amounts with the actual data from instrumentation was employed to specify the uncertainty of each model. The numerical model outcomes, with a relative error of 3.8%, best matched the reality and the analytical method, with a relative error of 27.8%, yielded the highest level of model uncertainty.
NASA Astrophysics Data System (ADS)
van der Wal, Wouter; IJpelaar, Thijs
2017-09-01
Models for glacial isostatic adjustment (GIA) routinely include the effects of meltwater redistribution and changes in topography and coastlines. Since the sediment transport related to the dynamics of ice sheets may be comparable to that of sea level rise in terms of surface pressure, the loading effect of sediment deposition could cause measurable ongoing viscous readjustment. Here, we study the loading effect of glacially induced sediment redistribution (GISR) related to the Weichselian ice sheet in Fennoscandia and the Barents Sea. The surface loading effect and its effect on the gravitational potential is modeled by including changes in sediment thickness in the sea level equation following the method of Dalca et al. (2013). Sediment displacement estimates are estimated in two different ways: (i) from a compilation of studies on local features (trough mouth fans, large-scale failures, and basin flux) and (ii) from output of a coupled ice-sediment model. To account for uncertainty in Earth's rheology, three viscosity profiles are used. It is found that sediment transport can lead to changes in relative sea level of up to 2 m in the last 6000 years and larger effects occurring earlier in the deglaciation. This magnitude is below the error level of most of the relative sea level data because those data are sparse and errors increase with length of time before present. The effect on present-day uplift rates reaches a few tenths of millimeters per year in large parts of Norway and Sweden, which is around the measurement error of long-term GNSS (global navigation satellite system) monitoring networks. The maximum effect on present-day gravity rates as measured by the GRACE (Gravity Recovery and Climate Experiment) satellite mission is up to tenths of microgal per year, which is larger than the measurement error but below other error sources. Since GISR causes systematic uplift in most of mainland Scandinavia, including GISR in GIA models would improve the interpretation of GNSS and GRACE observations there.
Solar Tracking Error Analysis of Fresnel Reflector
Zheng, Jiantao; Yan, Junjie; Pei, Jie; Liu, Guanjie
2014-01-01
Depending on the rotational structure of Fresnel reflector, the rotation angle of the mirror was deduced under the eccentric condition. By analyzing the influence of the sun tracking rotation angle error caused by main factors, the change rule and extent of the influence were revealed. It is concluded that the tracking errors caused by the difference between the rotation axis and true north meridian, at noon, were maximum under certain conditions and reduced at morning and afternoon gradually. The tracking error caused by other deviations such as rotating eccentric, latitude, and solar altitude was positive at morning, negative at afternoon, and zero at a certain moment of noon. PMID:24895664
Application of parameter estimation to highly unstable aircraft
NASA Technical Reports Server (NTRS)
Maine, R. E.; Murray, J. E.
1986-01-01
This paper discusses the application of parameter estimation to highly unstable aircraft. It includes a discussion of the problems in applying the output error method to such aircraft and demonstrates that the filter error method eliminates these problems. The paper shows that the maximum likelihood estimator with no process noise does not reduce to the output error method when the system is unstable. It also proposes and demonstrates an ad hoc method that is similar in form to the filter error method, but applicable to nonlinear problems. Flight data from the X-29 forward-swept-wing demonstrator is used to illustrate the problems and methods discussed.
Application of parameter estimation to highly unstable aircraft
NASA Technical Reports Server (NTRS)
Maine, R. E.; Murray, J. E.
1986-01-01
The application of parameter estimation to highly unstable aircraft is discussed. Included are a discussion of the problems in applying the output error method to such aircraft and demonstrates that the filter error method eliminates these problems. The paper shows that the maximum likelihood estimator with no process noise does not reduce to the output error method when the system is unstable. It also proposes and demonstrates an ad hoc method that is similar in form to the filter error method, but applicable to nonlinear problems. Flight data from the X-29 forward-swept-wing demonstrator is used to illustrate the problems and methods discussed.
• LTV can be used to characterize free phase PCE architecture in 2-D flow chambers without using a dye. • Results to date suggest that error in PCE detection using LTV can be less than 10% if the imaging system is optimized. • Mass balance calculations show a maximum error of 9...
Quantifying precision of in situ length and weight measurements of fish
Gutreuter, S.; Krzoska, D.J.
1994-01-01
We estimated and compared errors in field-made (in situ) measurements of lengths and weights of fish. We made three measurements of length and weight on each of 33 common carp Cyprinus carpio, and on each of a total of 34 bluegills Lepomis macrochirus and black crappies Pomoxis nigromaculatus. Maximum total lengths of all fish were measured to the nearest 1 mm on a conventional measuring board. The bluegills and black crappies (85–282 mm maximum total length) were weighed to the nearest 1 g on a 1,000-g spring-loaded scale. The common carp (415–600 mm maximum total length) were weighed to the nearest 0.05 kg on a 20-kg spring-loaded scale. We present a statistical model for comparison of coefficients of variation of length (Cl ) and weight (Cw ). Expected Cl was near zero and constant across mean length, indicating that length can be measured with good precision in the field. Expected Cw decreased with increasing mean length, and was larger than expected Cl by 5.8 to over 100 times for the bluegills and black crappies, and by 3 to over 20 times for the common carp. Unrecognized in situ weighing errors bias the apparent content of unique information in weight, which is the information not explained by either length or measurement error. We recommend procedures to circumvent effects of weighing errors, including elimination of unnecessary weighing from routine monitoring programs. In situ weighing must be conducted with greater care than is common if the content of unique and nontrivial information in weight is to be correctly identified.
Volumetric breast density measurement: sensitivity analysis of a relative physics approach
Lau, Susie; Abdul Aziz, Yang Faridah
2016-01-01
Objective: To investigate the sensitivity and robustness of a volumetric breast density (VBD) measurement system to errors in the imaging physics parameters including compressed breast thickness (CBT), tube voltage (kVp), filter thickness, tube current-exposure time product (mAs), detector gain, detector offset and image noise. Methods: 3317 raw digital mammograms were processed with Volpara® (Matakina Technology Ltd, Wellington, New Zealand) to obtain fibroglandular tissue volume (FGV), breast volume (BV) and VBD. Errors in parameters including CBT, kVp, filter thickness and mAs were simulated by varying them in the Digital Imaging and Communications in Medicine (DICOM) tags of the images up to ±10% of the original values. Errors in detector gain and offset were simulated by varying them in the Volpara configuration file up to ±10% from their default values. For image noise, Gaussian noise was generated and introduced into the original images. Results: Errors in filter thickness, mAs, detector gain and offset had limited effects on FGV, BV and VBD. Significant effects in VBD were observed when CBT, kVp, detector offset and image noise were varied (p < 0.0001). Maximum shifts in the mean (1.2%) and median (1.1%) VBD of the study population occurred when CBT was varied. Conclusion: Volpara was robust to expected clinical variations, with errors in most investigated parameters giving limited changes in results, although extreme variations in CBT and kVp could lead to greater errors. Advances in knowledge: Despite Volpara's robustness, rigorous quality control is essential to keep the parameter errors within reasonable bounds. Volpara appears robust within those bounds, albeit for more advanced applications such as tracking density change over time, it remains to be seen how accurate the measures need to be. PMID:27452264
Volumetric breast density measurement: sensitivity analysis of a relative physics approach.
Lau, Susie; Ng, Kwan Hoong; Abdul Aziz, Yang Faridah
2016-10-01
To investigate the sensitivity and robustness of a volumetric breast density (VBD) measurement system to errors in the imaging physics parameters including compressed breast thickness (CBT), tube voltage (kVp), filter thickness, tube current-exposure time product (mAs), detector gain, detector offset and image noise. 3317 raw digital mammograms were processed with Volpara(®) (Matakina Technology Ltd, Wellington, New Zealand) to obtain fibroglandular tissue volume (FGV), breast volume (BV) and VBD. Errors in parameters including CBT, kVp, filter thickness and mAs were simulated by varying them in the Digital Imaging and Communications in Medicine (DICOM) tags of the images up to ±10% of the original values. Errors in detector gain and offset were simulated by varying them in the Volpara configuration file up to ±10% from their default values. For image noise, Gaussian noise was generated and introduced into the original images. Errors in filter thickness, mAs, detector gain and offset had limited effects on FGV, BV and VBD. Significant effects in VBD were observed when CBT, kVp, detector offset and image noise were varied (p < 0.0001). Maximum shifts in the mean (1.2%) and median (1.1%) VBD of the study population occurred when CBT was varied. Volpara was robust to expected clinical variations, with errors in most investigated parameters giving limited changes in results, although extreme variations in CBT and kVp could lead to greater errors. Despite Volpara's robustness, rigorous quality control is essential to keep the parameter errors within reasonable bounds. Volpara appears robust within those bounds, albeit for more advanced applications such as tracking density change over time, it remains to be seen how accurate the measures need to be.
Software for Quantifying and Simulating Microsatellite Genotyping Error
Johnson, Paul C.D.; Haydon, Daniel T.
2007-01-01
Microsatellite genetic marker data are exploited in a variety of fields, including forensics, gene mapping, kinship inference and population genetics. In all of these fields, inference can be thwarted by failure to quantify and account for data errors, and kinship inference in particular can benefit from separating errors into two distinct classes: allelic dropout and false alleles. Pedant is MS Windows software for estimating locus-specific maximum likelihood rates of these two classes of error. Estimation is based on comparison of duplicate error-prone genotypes: neither reference genotypes nor pedigree data are required. Other functions include: plotting of error rate estimates and confidence intervals; simulations for performing power analysis and for testing the robustness of error rate estimates to violation of the underlying assumptions; and estimation of expected heterozygosity, which is a required input. The program, documentation and source code are available from http://www.stats.gla.ac.uk/~paulj/pedant.html. PMID:20066126
Space charge enhanced plasma gradient effects on satellite electric field measurements
NASA Technical Reports Server (NTRS)
Diebold, Dan; Hershkowitz, Noah; Dekock, J.; Intrator, T.; Hsieh, M-K.
1991-01-01
It has been recognized that plasma gradients can cause error in magnetospheric electric field measurements made by double probes. Space charge enhanced Plasma Gradient Induced Error (PGIE) is discussed in general terms, presenting the results of a laboratory experiment designed to demonstrate this error, and deriving a simple expression that quantifies this error. Experimental conditions were not identical to magnetospheric conditions, although efforts were made to insure the relevant physics applied to both cases. The experimental data demonstrate some of the possible errors in electric field measurements made by strongly emitting probes due to space charge effects in the presence of plasma gradients. Probe errors in space and laboratory conditions are discussed, as well as experimental error. In the final section, theoretical aspects are examined and an expression is derived for the maximum steady state space charge enhanced PGIE taken by two identical current biased probes.
Robust Methods for Moderation Analysis with a Two-Level Regression Model.
Yang, Miao; Yuan, Ke-Hai
2016-01-01
Moderation analysis has many applications in social sciences. Most widely used estimation methods for moderation analysis assume that errors are normally distributed and homoscedastic. When these assumptions are not met, the results from a classical moderation analysis can be misleading. For more reliable moderation analysis, this article proposes two robust methods with a two-level regression model when the predictors do not contain measurement error. One method is based on maximum likelihood with Student's t distribution and the other is based on M-estimators with Huber-type weights. An algorithm for obtaining the robust estimators is developed. Consistent estimates of standard errors of the robust estimators are provided. The robust approaches are compared against normal-distribution-based maximum likelihood (NML) with respect to power and accuracy of parameter estimates through a simulation study. Results show that the robust approaches outperform NML under various distributional conditions. Application of the robust methods is illustrated through a real data example. An R program is developed and documented to facilitate the application of the robust methods.
Streamflow simulation studies of the Hillsborough, Alafia, and Anclote Rivers, west-central Florida
Turner, J.F.
1979-01-01
A modified version of the Georgia Tech Watershed Model was applied for the purpose of flow simulation in three large river basins of west-central Florida. Calibrations were evaluated by comparing the following synthesized and observed data: annual hydrographs for the 1959, 1960, 1973 and 1974 water years, flood hydrographs (maximum daily discharge and flood volume), and long-term annual flood-peak discharges (1950-72). Annual hydrographs, excluding the 1973 water year, were compared using average absolute error in annual runoff and daily flows and correlation coefficients of monthly and daily flows. Correlations coefficients for simulated and observed maximum daily discharges and flood volumes used for calibrating range from 0.91 to 0.98 and average standard errors of estimate range from 18 to 45 percent. Correlation coefficients for simulated and observed annual flood-peak discharges range from 0.60 to 0.74 and average standard errors of estimate range from 33 to 44 percent. (Woodard-USGS)
Empirically Calibrated Asteroseismic Masses and Radii for Red Giants in the Kepler Fields
NASA Astrophysics Data System (ADS)
Pinsonneault, Marc; Elsworth, Yvonne; Silva Aguirre, Victor; Chaplin, William J.; Garcia, Rafael A.; Hekker, Saskia; Holtzman, Jon; Huber, Daniel; Johnson, Jennifer; Kallinger, Thomas; Mosser, Benoit; Mathur, Savita; Serenelli, Aldo; Shetrone, Matthew; Stello, Dennis; Tayar, Jamie; Zinn, Joel; APOGEE Team, KASC Team, APOKASC Team
2018-01-01
We report on the joint asteroseismic and spectroscopic properties of a sample of 6048 evolved stars in the fields originally observed by the Kepler satellite. We use APOGEE spectroscopic data taken from Data Release 13 of the Sloan Digital Sky Survey, combined with asteroseismic data analyzed by members of the Kepler Asteroseismic Science Consortium. With high statistical significance, the different pipelines do not have relative zero points that are the same as the solar values, and red clump stars do not have the same empirical relative zero points as red giants. We employ theoretically motivated corrections to the scaling relation for the large frequency spacing, and adjust the zero point of the frequency of maximum power scaling relation to be consistent with masses and radii for members of star clusters. The scatter in calibrator masses is consistent with our error estimation. Systematic and random mass errors are explicitly separated and identified. The measurement scatter, and random uncertainties, are three times larger for red giants where one or more technique failed to return a value than for targets where all five methods could do so, and this is a substantial fraction of the sample (20% of red giants and 25% of red clump stars). Overall trends and future prospects are discussed.
Camp, Charles H.; Lee, Young Jong; Cicerone, Marcus T.
2017-01-01
Coherent anti-Stokes Raman scattering (CARS) microspectroscopy has demonstrated significant potential for biological and materials imaging. To date, however, the primary mechanism of disseminating CARS spectroscopic information is through pseudocolor imagery, which explicitly neglects a vast majority of the hyperspectral data. Furthermore, current paradigms in CARS spectral processing do not lend themselves to quantitative sample-to-sample comparability. The primary limitation stems from the need to accurately measure the so-called nonresonant background (NRB) that is used to extract the chemically-sensitive Raman information from the raw spectra. Measurement of the NRB on a pixel-by-pixel basis is a nontrivial task; thus, reference NRB from glass or water are typically utilized, resulting in error between the actual and estimated amplitude and phase. In this manuscript, we present a new methodology for extracting the Raman spectral features that significantly suppresses these errors through phase detrending and scaling. Classic methods of error-correction, such as baseline detrending, are demonstrated to be inaccurate and to simply mask the underlying errors. The theoretical justification is presented by re-developing the theory of phase retrieval via the Kramers-Kronig relation, and we demonstrate that these results are also applicable to maximum entropy method-based phase retrieval. This new error-correction approach is experimentally applied to glycerol spectra and tissue images, demonstrating marked consistency between spectra obtained using different NRB estimates, and between spectra obtained on different instruments. Additionally, in order to facilitate implementation of these approaches, we have made many of the tools described herein available free for download. PMID:28819335
de Beer, Alex G F; Samson, Jean-Sebastièn; Hua, Wei; Huang, Zishuai; Chen, Xiangke; Allen, Heather C; Roke, Sylvie
2011-12-14
We present a direct comparison of phase sensitive sum-frequency generation experiments with phase reconstruction obtained by the maximum entropy method. We show that both methods lead to the same complex spectrum. Furthermore, we discuss the strengths and weaknesses of each of these methods, analyzing possible sources of experimental and analytical errors. A simulation program for maximum entropy phase reconstruction is available at: http://lbp.epfl.ch/. © 2011 American Institute of Physics
Fukuyama, Atsushi; Isoda, Haruo; Morita, Kento; Mori, Marika; Watanabe, Tomoya; Ishiguro, Kenta; Komori, Yoshiaki; Kosugi, Takafumi
2017-01-01
Introduction: We aim to elucidate the effect of spatial resolution of three-dimensional cine phase contrast magnetic resonance (3D cine PC MR) imaging on the accuracy of the blood flow analysis, and examine the optimal setting for spatial resolution using flow phantoms. Materials and Methods: The flow phantom has five types of acrylic pipes that represent human blood vessels (inner diameters: 15, 12, 9, 6, and 3 mm). The pipes were fixed with 1% agarose containing 0.025 mol/L gadolinium contrast agent. A blood-mimicking fluid with human blood property values was circulated through the pipes at a steady flow. Magnetic resonance (MR) images (three-directional phase images with speed information and magnitude images for information of shape) were acquired using the 3-Tesla MR system and receiving coil. Temporal changes in spatially-averaged velocity and maximum velocity were calculated using hemodynamic analysis software. We calculated the error rates of the flow velocities based on the volume flow rates measured with a flowmeter and examined measurement accuracy. Results: When the acrylic pipe was the size of the thoracicoabdominal or cervical artery and the ratio of pixel size for the pipe was set at 30% or lower, spatially-averaged velocity measurements were highly accurate. When the pixel size ratio was set at 10% or lower, maximum velocity could be measured with high accuracy. It was difficult to accurately measure maximum velocity of the 3-mm pipe, which was the size of an intracranial major artery, but the error for spatially-averaged velocity was 20% or less. Conclusions: Flow velocity measurement accuracy of 3D cine PC MR imaging for pipes with inner sizes equivalent to vessels in the cervical and thoracicoabdominal arteries is good. The flow velocity accuracy for the pipe with a 3-mm-diameter that is equivalent to major intracranial arteries is poor for maximum velocity, but it is relatively good for spatially-averaged velocity. PMID:28132996
Schwertner, Debora Soccal; Oliveira, Raul; Mazo, Giovana Zarpellon; Gioda, Fabiane Rosa; Kelber, Christian Roberto; Swarowsky, Alessandra
2016-05-04
Several posture evaluation devices have been used to detect deviations of the vertebral column. However it has been observed that the instruments present measurement errors related to the equipment, environment or measurement protocol. This study aimed to build, validate, analyze the reliability and describe a measurement protocol for the use of the Posture Evaluation Rotating Platform System (SPGAP, Brazilian abbreviation). The posture evaluation system comprises a Posture Evaluation Rotating Platform, video camera, calibration support and measurement software. Two pilot studies were carried out with 102 elderly individuals (average age 69 years old, SD = ±7.3) to establish a protocol for SPGAP, controlling the measurement errors related to the environment, equipment and the person under evaluation. Content validation was completed with input from judges with expertise in posture measurement. The variation coefficient method was used to validate the measurement by the instrument of an object with known dimensions. Finally, reliability was established using repeated measurements of the known object. Expert content judges gave the system excellent ratings for content validity (mean 9.4 out of 10; SD 1.13). The measurement of an object with known dimensions indicated excellent validity (all measurement errors <1 %) and test-retest reliability. A total of 26 images were needed to stabilize the system. Participants in the pilot studies indicated that they felt comfortable throughout the assessment. The use of only one image can offer measurements that underestimate or overestimate the reality. To verify the images of objects with known dimensions the values for the width and height were, respectively, CV 0.88 (width) and 2.33 (height), SD 0.22 (width) and 0.35 (height), minimum and maximum values 24.83-25.2 (width) and 14.56 - 15.75 (height). In the analysis of different images (similar) of an individual, greater discrepancies were observed in the values found. The cervical index, for example, presented minimum and maximum values of 15.38 and 37.5, a coefficient of variation of 0.29 and a standard deviation of 6.78. The SPGAP was shown to be a valid and reliable instrument for the quantitative analysis of body posture with applicability and clinical use, since it managed to reduce several measurement errors, amongst which parallax distortion.
NASA Astrophysics Data System (ADS)
Hwang, Eunju; Kim, Kyung Jae; Roijers, Frank; Choi, Bong Dae
In the centralized polling mode in IEEE 802.16e, a base station (BS) polls mobile stations (MSs) for bandwidth reservation in one of three polling modes; unicast, multicast, or broadcast pollings. In unicast polling, the BS polls each individual MS to allow to transmit a bandwidth request packet. This paper presents an analytical model for the unicast polling of bandwidth request in IEEE 802.16e networks over Gilbert-Elliot error channel. We derive the probability distribution for the delay of bandwidth requests due to wireless transmission errors and find the loss probability of request packets due to finite retransmission attempts. By using the delay distribution and the loss probability, we optimize the number of polling slots within a frame and the maximum retransmission number while satisfying QoS on the total loss probability which combines two losses: packet loss due to the excess of maximum retransmission and delay outage loss due to the maximum tolerable delay bound. In addition, we obtain the utilization of polling slots, which is defined as the ratio of the number of polling slots used for the MS's successful transmission to the total number of polling slots used by the MS over a long run time. Analysis results are shown to well match with simulation results. Numerical results give examples of the optimal number of polling slots within a frame and the optimal maximum retransmission number depending on delay bounds, the number of MSs, and the channel conditions.
Kumar, Saurabh; Amrutur, Bharadwaj; Asokan, Sundarrajan
2018-02-01
Fiber Bragg Grating (FBG) sensors have become popular for applications related to structural health monitoring, biomedical engineering, and robotics. However, for successful large scale adoption, FBG interrogation systems are as important as sensor characteristics. Apart from accuracy, the required number of FBG sensors per fiber and the distance between the device in which the sensors are used and the interrogation system also influence the selection of the interrogation technique. For several measurement devices developed for applications in biomedical engineering and robotics, only a few sensors per fiber are required and the device is close to the interrogation system. For these applications, interrogation systems based on InGaAs linear detector arrays provide a good choice. However, their resolution is dependent on the algorithms used for curve fitting. In this work, a detailed analysis of the choice of algorithm using the Gaussian approximation for the FBG spectrum and the number of pixels used for curve fitting on the errors is provided. The points where the maximum errors occur have been identified. All comparisons for wavelength shift detection have been made against another interrogation system based on the tunable swept laser. It has been shown that maximum errors occur when the wavelength shift is such that one new pixel is included for curve fitting. It has also been shown that an algorithm with lower computation cost compared to the more popular methods using iterative non-linear least squares estimation can be used without leading to the loss of accuracy. The algorithm has been implemented on embedded hardware, and a speed-up of approximately six times has been observed.
NASA Astrophysics Data System (ADS)
Kumar, Saurabh; Amrutur, Bharadwaj; Asokan, Sundarrajan
2018-02-01
Fiber Bragg Grating (FBG) sensors have become popular for applications related to structural health monitoring, biomedical engineering, and robotics. However, for successful large scale adoption, FBG interrogation systems are as important as sensor characteristics. Apart from accuracy, the required number of FBG sensors per fiber and the distance between the device in which the sensors are used and the interrogation system also influence the selection of the interrogation technique. For several measurement devices developed for applications in biomedical engineering and robotics, only a few sensors per fiber are required and the device is close to the interrogation system. For these applications, interrogation systems based on InGaAs linear detector arrays provide a good choice. However, their resolution is dependent on the algorithms used for curve fitting. In this work, a detailed analysis of the choice of algorithm using the Gaussian approximation for the FBG spectrum and the number of pixels used for curve fitting on the errors is provided. The points where the maximum errors occur have been identified. All comparisons for wavelength shift detection have been made against another interrogation system based on the tunable swept laser. It has been shown that maximum errors occur when the wavelength shift is such that one new pixel is included for curve fitting. It has also been shown that an algorithm with lower computation cost compared to the more popular methods using iterative non-linear least squares estimation can be used without leading to the loss of accuracy. The algorithm has been implemented on embedded hardware, and a speed-up of approximately six times has been observed.
Kesselmeier, Miriam; Lorenzo Bermejo, Justo
2017-11-01
Logistic regression is the most common technique used for genetic case-control association studies. A disadvantage of standard maximum likelihood estimators of the genotype relative risk (GRR) is their strong dependence on outlier subjects, for example, patients diagnosed at unusually young age. Robust methods are available to constrain outlier influence, but they are scarcely used in genetic studies. This article provides a non-intimidating introduction to robust logistic regression, and investigates its benefits and limitations in genetic association studies. We applied the bounded Huber and extended the R package 'robustbase' with the re-descending Hampel functions to down-weight outlier influence. Computer simulations were carried out to assess the type I error rate, mean squared error (MSE) and statistical power according to major characteristics of the genetic study and investigated markers. Simulations were complemented with the analysis of real data. Both standard and robust estimation controlled type I error rates. Standard logistic regression showed the highest power but standard GRR estimates also showed the largest bias and MSE, in particular for associated rare and recessive variants. For illustration, a recessive variant with a true GRR=6.32 and a minor allele frequency=0.05 investigated in a 1000 case/1000 control study by standard logistic regression resulted in power=0.60 and MSE=16.5. The corresponding figures for Huber-based estimation were power=0.51 and MSE=0.53. Overall, Hampel- and Huber-based GRR estimates did not differ much. Robust logistic regression may represent a valuable alternative to standard maximum likelihood estimation when the focus lies on risk prediction rather than identification of susceptibility variants. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Mehdizadeh, Saeid; Behmanesh, Javad; Khalili, Keivan
2017-07-01
Soil temperature (T s) and its thermal regime are the most important factors in plant growth, biological activities, and water movement in soil. Due to scarcity of the T s data, estimation of soil temperature is an important issue in different fields of sciences. The main objective of the present study is to investigate the accuracy of multivariate adaptive regression splines (MARS) and support vector machine (SVM) methods for estimating the T s. For this aim, the monthly mean data of the T s (at depths of 5, 10, 50, and 100 cm) and meteorological parameters of 30 synoptic stations in Iran were utilized. To develop the MARS and SVM models, various combinations of minimum, maximum, and mean air temperatures (T min, T max, T); actual and maximum possible sunshine duration; sunshine duration ratio (n, N, n/N); actual, net, and extraterrestrial solar radiation data (R s, R n, R a); precipitation (P); relative humidity (RH); wind speed at 2 m height (u 2); and water vapor pressure (Vp) were used as input variables. Three error statistics including root-mean-square-error (RMSE), mean absolute error (MAE), and determination coefficient (R 2) were used to check the performance of MARS and SVM models. The results indicated that the MARS was superior to the SVM at different depths. In the test and validation phases, the most accurate estimations for the MARS were obtained at the depth of 10 cm for T max, T min, T inputs (RMSE = 0.71 °C, MAE = 0.54 °C, and R 2 = 0.995) and for RH, V p, P, and u 2 inputs (RMSE = 0.80 °C, MAE = 0.61 °C, and R 2 = 0.996), respectively.
Validation of Globsnow-2 Snow Water Equivalent Over Eastern Canada
NASA Technical Reports Server (NTRS)
Larue, Fanny; Royer, Alain; De Seve, Danielle; Langlois, Alexandre; Roy, Alexandre R.; Brucker, Ludovic
2017-01-01
In Qubec, Eastern Canada, snowmelt runoff contributes more than 30% of the annual energy reserve for hydroelectricity production, and uncertainties in annual maximum snow water equivalent (SWE) over the region are one of the main constraints for improved hydrological forecasting. Current satellite-based methods for mapping SWE over Qubec's main hydropower basins do not meet Hydro-Qubec operational requirements for SWE accuracies with less than 15% error. This paper assesses the accuracy of the GlobSnow-2 (GS-2) SWE product, which combines microwave satellite data and in situ measurements, for hydrological applications in Qubec. GS-2 SWE values for a 30-year period (1980 to 2009) were compared with space- and time-matched values from a comprehensive dataset of in situ SWE measurements (a total of 38,990 observations in Eastern Canada). The root mean square error (RMSE) of the GS-2 SWE product is 94.1+/- 20.3 mm, corresponding to an overall relative percentage error (RPE) of 35.9%. The main sources of uncertainty are wet and deep snow conditions (when SWE is higher than 150 mm), and forest cover type. However, compared to a typical stand-alone brightness temperature channel difference algorithm, the assimilation of surface information in the GS-2 algorithm clearly improves SWE accuracy by reducing the RPE by about 30%. Comparison of trends in annual mean and maximum SWE between surface observations and GS-2 over 1980-2009 showed agreement for increasing trends over southern Qubec, but less agreement on the sign and magnitude of trends over northern Qubec. Extended at a continental scale, the GS-2 SWE trends highlight a strong regional variability.
A time-space domain stereo finite difference method for 3D scalar wave propagation
NASA Astrophysics Data System (ADS)
Chen, Yushu; Yang, Guangwen; Ma, Xiao; He, Conghui; Song, Guojie
2016-11-01
The time-space domain finite difference methods reduce numerical dispersion effectively by minimizing the error in the joint time-space domain. However, their interpolating coefficients are related with the Courant numbers, leading to significantly extra time costs for loading the coefficients consecutively according to velocity in heterogeneous models. In the present study, we develop a time-space domain stereo finite difference (TSSFD) method for 3D scalar wave equation. The method propagates both the displacements and their gradients simultaneously to keep more information of the wavefields, and minimizes the maximum phase velocity error directly using constant interpolation coefficients for different Courant numbers. We obtain the optimal constant coefficients by combining the truncated Taylor series approximation and the time-space domain optimization, and adjust the coefficients to improve the stability condition. Subsequent investigation shows that the TSSFD can suppress numerical dispersion effectively with high computational efficiency. The maximum phase velocity error of the TSSFD is just 3.09% even with only 2 sampling points per minimum wavelength when the Courant number is 0.4. Numerical experiments show that to generate wavefields with no visible numerical dispersion, the computational efficiency of the TSSFD is 576.9%, 193.5%, 699.0%, and 191.6% of those of the 4th-order and 8th-order Lax-Wendroff correction (LWC) method, the 4th-order staggered grid method (SG), and the 8th-order optimal finite difference method (OFD), respectively. Meanwhile, the TSSFD is compatible to the unsplit convolutional perfectly matched layer (CPML) boundary condition for absorbing artificial boundaries. The efficiency and capability to handle complex velocity models make it an attractive tool in imaging methods such as acoustic reverse time migration (RTM).
Varughese, J K; Wentzel-Larsen, T; Vassbotn, F; Moen, G; Lund-Johansen, M
2010-04-01
In this volumetric study of the vestibular schwannoma, we evaluated the accuracy and reliability of several approximation methods that are in use, and determined the minimum volume difference that needs to be measured for it to be attributable to an actual difference rather than a retest error. We also found empirical proportionality coefficients for the different methods. DESIGN/SETTING AND PARTICIPANTS: Methodological study with investigation of three different VS measurement methods compared to a reference method that was based on serial slice volume estimates. These volume estimates were based on: (i) one single diameter, (ii) three orthogonal diameters or (iii) the maximal slice area. Altogether 252 T1-weighted MRI images with gadolinium contrast, from 139 VS patients, were examined. The retest errors, in terms of relative percentages, were determined by undertaking repeated measurements on 63 scans for each method. Intraclass correlation coefficients were used to assess the agreement between each of the approximation methods and the reference method. The tendency for approximation methods to systematically overestimate/underestimate different-sized tumours was also assessed, with the help of Bland-Altman plots. The most commonly used approximation method, the maximum diameter, was the least reliable measurement method and has inherent weaknesses that need to be considered. This includes greater retest errors than area-based measurements (25% and 15%, respectively), and that it was the only approximation method that could not easily be converted into volumetric units. Area-based measurements can furthermore be more reliable for smaller volume differences than diameter-based measurements. All our findings suggest that the maximum diameter should not be used as an approximation method. We propose the use of measurement modalities that take into account growth in multiple dimensions instead.
Maximum Likelihood Time-of-Arrival Estimation of Optical Pulses via Photon-Counting Photodetectors
NASA Technical Reports Server (NTRS)
Erkmen, Baris I.; Moision, Bruce E.
2010-01-01
Many optical imaging, ranging, and communications systems rely on the estimation of the arrival time of an optical pulse. Recently, such systems have been increasingly employing photon-counting photodetector technology, which changes the statistics of the observed photocurrent. This requires time-of-arrival estimators to be developed and their performances characterized. The statistics of the output of an ideal photodetector, which are well modeled as a Poisson point process, were considered. An analytical model was developed for the mean-square error of the maximum likelihood (ML) estimator, demonstrating two phenomena that cause deviations from the minimum achievable error at low signal power. An approximation was derived to the threshold at which the ML estimator essentially fails to provide better than a random guess of the pulse arrival time. Comparing the analytic model performance predictions to those obtained via simulations, it was verified that the model accurately predicts the ML performance over all regimes considered. There is little prior art that attempts to understand the fundamental limitations to time-of-arrival estimation from Poisson statistics. This work establishes both a simple mathematical description of the error behavior, and the associated physical processes that yield this behavior. Previous work on mean-square error characterization for ML estimators has predominantly focused on additive Gaussian noise. This work demonstrates that the discrete nature of the Poisson noise process leads to a distinctly different error behavior.
1951-05-01
prccedur&:s to be of hipn accuracy. Ambij;uity of subject responizes due to overlap of entries on tU,, record sheets vas negligible. Handwriting ...experimental variables on reading errors us carried out by analysis of variance methods. For this purpose it was convenient to consider different classes...on any scale - an error ofY one numbered division. For this reason, the result. of the analysis of variance of the /10’s errors by dial types may
Generation of a crowned pinion tooth surface by a surface of revolution
NASA Technical Reports Server (NTRS)
Litvin, F. L.; Zhang, J.; Handschuh, R. F.
1988-01-01
A method of generating crowned pinion tooth surfaces using a surface of revolution is developed. The crowned pinion meshes with a regular involute gear and has a prescribed parabolic type of transmission errors when the gears operate in the aligned mode. When the gears are misaligned the transmission error remains parabolic with the maximum level still remaining very small (less than 0.34 arc sec for the numerical examples). Tooth contact analysis (TCA) is used to simulate the conditions of meshing, determine the transmission error, and determine the bearing contact.
Type Ia supernovae as standard candles
NASA Technical Reports Server (NTRS)
Branch, David; Miller, Douglas L.
1993-01-01
The distribution of absolute blue magnitudes among Type Ia supernovae (SNs Ia) is studied. Supernovae were used with well determined apparent magnitudes at maximum light and parent galaxies with relative distances determined by the Tully-Fisher or Dn - sigma techniques. The mean absolute blue magnitude is given and the observational dispersion is only sigma(MB) 0.36, comparable to the expected combined errors in distance, apparent magnitude, and extinction. The mean (B-V) color at maximum light is 0.03 +/- 0.04, with a dispersion sigma(B-V) = 0.20. The Cepheid-based distance to IC 4182, the parent galaxy of the normal and unextinguished Type Ia SN 1937C, leads to a Hubble constant of H(0) + 51 +/- 12 km/s Mpc. The existence of a few SNs Ia that appear to have been reddened and dimmed by dust in their parent galaxies does not seriously compromise the use of SNs Ia as distance indicators.
Climate Change and Its Impact on the Yield of Major Food Crops: Evidence from Pakistan
Ali, Sajjad; Liu, Ying; Ishaq, Muhammad; Shah, Tariq; Abdullah; Ilyas, Aasir; Din, Izhar Ud
2017-01-01
Pakistan is vulnerable to climate change, and extreme climatic conditions are threatening food security. This study examines the effects of climate change (e.g., maximum temperature, minimum temperature, rainfall, relative humidity, and the sunshine) on the major crops of Pakistan (e.g., wheat, rice, maize, and sugarcane). The methods of feasible generalized least square (FGLS) and heteroscedasticity and autocorrelation (HAC) consistent standard error were employed using time series data for the period 1989 to 2015. The results of the study reveal that maximum temperature adversely affects wheat production, while the effect of minimum temperature is positive and significant for all crops. Rainfall effect towards the yield of a selected crop is negative, except for wheat. To cope with and mitigate the adverse effects of climate change, there is a need for the development of heat- and drought-resistant high-yielding varieties to ensure food security in the country. PMID:28538704
Tracker implementation for the orbiter Ku-band communications antenna
NASA Technical Reports Server (NTRS)
Rudnicki, J. F.; Lindsey, J. F.
1976-01-01
Possible implementations and recommendations for the Space Shuttle Ku-Band integrated communications/radar antenna tracking system were evaluated. Communication aspects involving the Tracking Data Relay Satellite (TDRS)/Orbiter Ku-Band link are emphasized. Detailed analysis of antenna sizes, gains and signal-to-noise ratios shows the desirability of using maximum size 36-inch diameter dish and a triple channel monopulse. The use of the original baselined 20 inch dish is found to result in excessive acquisition time since the despread signal would be used in the tracking loop. An evaluation of scan procedures which includes vehicle dynamics, designation error, time for acquisition and probability of acquisition shows that the conical scan is preferred since the time for lock-on for relatively slow look angle rates will be significantly shorter than the raster scan. Significant improvement in spherical coverage may be obtained by reorienting the antenna gimbal to obtain maximum blockage overlap.
Numerical Experimentation with Maximum Likelihood Identification in Static Distributed Systems
NASA Technical Reports Server (NTRS)
Scheid, R. E., Jr.; Rodriguez, G.
1985-01-01
Many important issues in the control of large space structures are intimately related to the fundamental problem of parameter identification. One might also ask how well this identification process can be carried out in the presence of noisy data since no sensor system is perfect. With these considerations in mind the algorithms herein are designed to treat both the case of uncertainties in the modeling and uncertainties in the data. The analytical aspects of maximum likelihood identification are considered in some detail in another paper. The questions relevant to the implementation of these schemes are dealt with, particularly as they apply to models of large space structures. The emphasis is on the influence of the infinite dimensional character of the problem on finite dimensional implementations of the algorithms. Those areas of current and future analysis are highlighted which indicate the interplay between error analysis and possible truncations of the state and parameter spaces.
Climate Change and Its Impact on the Yield of Major Food Crops: Evidence from Pakistan.
Ali, Sajjad; Liu, Ying; Ishaq, Muhammad; Shah, Tariq; Abdullah; Ilyas, Aasir; Din, Izhar Ud
2017-05-24
Pakistan is vulnerable to climate change, and extreme climatic conditions are threatening food security. This study examines the effects of climate change (e.g., maximum temperature, minimum temperature, rainfall, relative humidity, and the sunshine) on the major crops of Pakistan (e.g., wheat, rice, maize, and sugarcane). The methods of feasible generalized least square (FGLS) and heteroscedasticity and autocorrelation (HAC) consistent standard error were employed using time series data for the period 1989 to 2015. The results of the study reveal that maximum temperature adversely affects wheat production, while the effect of minimum temperature is positive and significant for all crops. Rainfall effect towards the yield of a selected crop is negative, except for wheat. To cope with and mitigate the adverse effects of climate change, there is a need for the development of heat- and drought-resistant high-yielding varieties to ensure food security in the country.
Park, Sangsoo; Spirduso, Waneen; Eakin, Tim; Abraham, Lawrence
2018-01-01
The authors investigated how varying the required low-level forces and the direction of force change affect accuracy and variability of force production in a cyclic isometric pinch force tracking task. Eighteen healthy right-handed adult volunteers performed the tracking task over 3 different force ranges. Root mean square error and coefficient of variation were higher at lower force levels and during minimum reversals compared with maximum reversals. Overall, the thumb showed greater root mean square error and coefficient of variation scores than did the index finger during maximum reversals, but not during minimum reversals. The observed impaired performance during minimum reversals might originate from history-dependent mechanisms of force production and highly coupled 2-digit performance.
NASA Astrophysics Data System (ADS)
Kojima, Yohei; Takeda, Kazuaki; Adachi, Fumiyuki
Frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can provide better downlink bit error rate (BER) performance of direct sequence code division multiple access (DS-CDMA) than the conventional rake combining in a frequency-selective fading channel. FDE requires accurate channel estimation. In this paper, we propose a new 2-step maximum likelihood channel estimation (MLCE) for DS-CDMA with FDE in a very slow frequency-selective fading environment. The 1st step uses the conventional pilot-assisted MMSE-CE and the 2nd step carries out the MLCE using decision feedback from the 1st step. The BER performance improvement achieved by 2-step MLCE over pilot assisted MMSE-CE is confirmed by computer simulation.
NASA Astrophysics Data System (ADS)
Liu, Zhigang; Song, Wenguang; Kochan, Orest; Mykyichuk, Mykola; Jun, Su
2017-07-01
The method of theoretical analysis of temperature ranges for the maximum manifestation of the error due to acquired thermoelectric inhomogeneity of thermocouple legs is proposed in this paper. The drift function of the reference function of a type K thermocouples in a ceramic insulation, that consisted of 1.2 mm diameter thermoelements after their exposure to 800°C for 10 000 h in an oxidizing atmosphere (air), is analyzed. The method takes into account various operating conditions to determine the optimal conditions for studying inhomogeneous thermocouples. The method can be applied for other types of thermocouples when taking into account their specific characteristics and the conditions that they have been exposed to.
NASA Astrophysics Data System (ADS)
Devaraju, B.; Weigelt, M.; Mueller, J.
2017-12-01
In order to suppress the impact of aliasing errors on the standard monthly GRACE gravity-field solutions, co-estimating sub-monthly (daily/two-day) low-degree solutions has been suggested as a solution. The maximum degree of the low-degree solutions is chosen via the Colombo-Nyquist rule of thumb. However, it is now established that the sampling of satellites puts a restriction on the maximum estimable order and not the degree - modified Colombo-Nyquist rule. Therefore, in this contribution, we co-estimate low-order sub-monthly solutions, and compare and contrast them with the low-degree sub-monthly solutions. We also investigate their efficacies in dealing with aliasing errors.
Higher-order ionospheric error at Arecibo, Millstone, and Jicamarca
NASA Astrophysics Data System (ADS)
Matteo, N. A.; Morton, Y. T.
2010-12-01
The ionosphere is a dominant source of Global Positioning System receiver range measurement error. Although dual-frequency receivers can eliminate the first-order ionospheric error, most second- and third-order errors remain in the range measurements. Higher-order ionospheric error is a function of both electron density distribution and the magnetic field vector along the GPS signal propagation path. This paper expands previous efforts by combining incoherent scatter radar (ISR) electron density measurements, the International Reference Ionosphere model, exponential decay extensions of electron densities, the International Geomagnetic Reference Field, and total electron content maps to compute higher-order error at ISRs in Arecibo, Puerto Rico; Jicamarca, Peru; and Millstone Hill, Massachusetts. Diurnal patterns, dependency on signal direction, seasonal variation, and geomagnetic activity dependency are analyzed. Higher-order error is largest at Arecibo with code phase maxima circa 7 cm for low-elevation southern signals. The maximum variation of the error over all angles of arrival is circa 8 cm.
Zhao, Wei; Cella, Massimo; Della Pasqua, Oscar; Burger, David; Jacqz-Aigrain, Evelyne
2012-01-01
AIMS To develop a population pharmacokinetic model for abacavir in HIV-infected infants and toddlers, which will be used to describe both once and twice daily pharmacokinetic profiles, identify covariates that explain variability and propose optimal time points to optimize the area under the concentration–time curve (AUC) targeted dosage and individualize therapy. METHODS The pharmacokinetics of abacavir was described with plasma concentrations from 23 patients using nonlinear mixed-effects modelling (NONMEM) software. A two-compartment model with first-order absorption and elimination was developed. The final model was validated using bootstrap, visual predictive check and normalized prediction distribution errors. The Bayesian estimator was validated using the cross-validation and simulation–estimation method. RESULTS The typical population pharmacokinetic parameters and relative standard errors (RSE) were apparent systemic clearance (CL) 13.4 l h−1 (RSE 6.3%), apparent central volume of distribution 4.94 l (RSE 28.7%), apparent peripheral volume of distribution 8.12 l (RSE14.2%), apparent intercompartment clearance 1.25 l h−1 (RSE 16.9%) and absorption rate constant 0.758 h−1 (RSE 5.8%). The covariate analysis identified weight as the individual factor influencing the apparent oral clearance: CL = 13.4 × (weight/12)1.14. The maximum a posteriori probability Bayesian estimator, based on three concentrations measured at 0, 1 or 2, and 3 h after drug intake allowed predicting individual AUC0–t. CONCLUSIONS The population pharmacokinetic model developed for abacavir in HIV-infected infants and toddlers accurately described both once and twice daily pharmacokinetic profiles. The maximum a posteriori probability Bayesian estimator of AUC0–t was developed from the final model and can be used routinely to optimize individual dosing. PMID:21988586
NASA Astrophysics Data System (ADS)
Lee, J.; Matson, D. M.
2014-10-01
This paper describes the prediction of mass evaporation of at% alloys during thermophysical property measurements using the electrostatic levitator at NASA Marshall Space Flight Center in Huntsville, AL. The final mass, final composition, and activity of individual component are considered in the calculation of mass evaporation. The predicted reduction in mass and variation in composition are validated with six ESL samples which underwent different thermal cycles. The predicted mass evaporation and composition shift show good agreement with experiments with the maximum relative errors of 4.8 % and 1.7 %, respectively.
A Comparative Analysis of Three Monocular Passive Ranging Methods on Real Infrared Sequences
NASA Astrophysics Data System (ADS)
Bondžulić, Boban P.; Mitrović, Srđan T.; Barbarić, Žarko P.; Andrić, Milenko S.
2013-09-01
Three monocular passive ranging methods are analyzed and tested on the real infrared sequences. The first method exploits scale changes of an object in successive frames, while other two use Beer-Lambert's Law. Ranging methods are evaluated by comparing with simultaneously obtained reference data at the test site. Research is addressed on scenarios where multiple sensor views or active measurements are not possible. The results show that these methods for range estimation can provide the fidelity required for object tracking. Maximum values of relative distance estimation errors in near-ideal conditions are less than 8%.
Improved model of the retardance in citric acid coated ferrofluids using stepwise regression
NASA Astrophysics Data System (ADS)
Lin, J. F.; Qiu, X. R.
2017-06-01
Citric acid (CA) coated Fe3O4 ferrofluids (FFs) have been conducted for biomedical application. The magneto-optical retardance of CA coated FFs was measured by a Stokes polarimeter. Optimization and multiple regression of retardance in FFs were executed by Taguchi method and Microsoft Excel previously, and the F value of regression model was large enough. However, the model executed by Excel was not systematic. Instead we adopted the stepwise regression to model the retardance of CA coated FFs. From the results of stepwise regression by MATLAB, the developed model had highly predictable ability owing to F of 2.55897e+7 and correlation coefficient of one. The average absolute error of predicted retardances to measured retardances was just 0.0044%. Using the genetic algorithm (GA) in MATLAB, the optimized parametric combination was determined as [4.709 0.12 39.998 70.006] corresponding to the pH of suspension, molar ratio of CA to Fe3O4, CA volume, and coating temperature. The maximum retardance was found as 31.712°, close to that obtained by evolutionary solver in Excel and a relative error of -0.013%. Above all, the stepwise regression method was successfully used to model the retardance of CA coated FFs, and the maximum global retardance was determined by the use of GA.
NASA Astrophysics Data System (ADS)
Wu, Kang-Hung; Su, Ching-Lun; Chu, Yen-Hsyang
2015-03-01
In this article, we use the International Reference Ionosphere (IRI) model to simulate temporal and spatial distributions of global E region electron densities retrieved by the FORMOSAT-3/COSMIC satellites by means of GPS radio occultation (RO) technique. Despite regional discrepancies in the magnitudes of the E region electron density, the IRI model simulations can, on the whole, describe the COSMIC measurements in quality and quantity. On the basis of global ionosonde network and the IRI model, the retrieval errors of the global COSMIC-measured E region peak electron density (NmE) from July 2006 to July 2011 are examined and simulated. The COSMIC measurement and the IRI model simulation both reveal that the magnitudes of the percentage error (PE) and root mean-square-error (RMSE) of the relative RO retrieval errors of the NmE values are dependent on local time (LT) and geomagnetic latitude, with minimum in the early morning and at high latitudes and maximum in the afternoon and at middle latitudes. In addition, the seasonal variation of PE and RMSE values seems to be latitude dependent. After removing the IRI model-simulated GPS RO retrieval errors from the original COSMIC measurements, the average values of the annual and monthly mean percentage errors of the RO retrieval errors of the COSMIC-measured E region electron density are, respectively, substantially reduced by a factor of about 2.95 and 3.35, and the corresponding root-mean-square errors show averaged decreases of 15.6% and 15.4%, respectively. It is found that, with this process, the largest reduction in the PE and RMSE of the COSMIC-measured NmE occurs at the equatorial anomaly latitudes 10°N-30°N in the afternoon from 14 to 18 LT, with a factor of 25 and 2, respectively. Statistics show that the residual errors that remained in the corrected COSMIC-measured NmE vary in a range of -20% to 38%, which are comparable to or larger than the percentage errors of the IRI-predicted NmE fluctuating in a range of -6.5% to 20%.
Verification of National Weather Service spot forecasts using surface observations
NASA Astrophysics Data System (ADS)
Lammers, Matthew Robert
Software has been developed to evaluate National Weather Service spot forecasts issued to support prescribed burns and early-stage wildfires. Fire management officials request spot forecasts from National Weather Service Weather Forecast Offices to provide detailed guidance as to atmospheric conditions in the vicinity of planned prescribed burns as well as wildfires that do not have incident meteorologists on site. This open source software with online display capabilities is used to examine an extensive set of spot forecasts of maximum temperature, minimum relative humidity, and maximum wind speed from April 2009 through November 2013 nationwide. The forecast values are compared to the closest available surface observations at stations installed primarily for fire weather and aviation applications. The accuracy of the spot forecasts is compared to those available from the National Digital Forecast Database (NDFD). Spot forecasts for selected prescribed burns and wildfires are used to illustrate issues associated with the verification procedures. Cumulative statistics for National Weather Service County Warning Areas and for the nation are presented. Basic error and accuracy metrics for all available spot forecasts and the entire nation indicate that the skill of the spot forecasts is higher than that available from the NDFD, with the greatest improvement for maximum temperature and the least improvement for maximum wind speed.
Uncertainties in estimating heart doses from 2D-tangential breast cancer radiotherapy.
Lorenzen, Ebbe L; Brink, Carsten; Taylor, Carolyn W; Darby, Sarah C; Ewertz, Marianne
2016-04-01
We evaluated the accuracy of three methods of estimating radiation dose to the heart from two-dimensional tangential radiotherapy for breast cancer, as used in Denmark during 1982-2002. Three tangential radiotherapy regimens were reconstructed using CT-based planning scans for 40 patients with left-sided and 10 with right-sided breast cancer. Setup errors and organ motion were simulated using estimated uncertainties. For left-sided patients, mean heart dose was related to maximum heart distance in the medial field. For left-sided breast cancer, mean heart dose estimated from individual CT-scans varied from <1Gy to >8Gy, and maximum dose from 5 to 50Gy for all three regimens, so that estimates based only on regimen had substantial uncertainty. When maximum heart distance was taken into account, the uncertainty was reduced and was comparable to the uncertainty of estimates based on individual CT-scans. For right-sided breast cancer patients, mean heart dose based on individual CT-scans was always <1Gy and maximum dose always <5Gy for all three regimens. The use of stored individual simulator films provides a method for estimating heart doses in left-tangential radiotherapy for breast cancer that is almost as accurate as estimates based on individual CT-scans. Copyright © 2016. Published by Elsevier Ireland Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Juan; Beltran, Chris J., E-mail: beltran.chris@mayo.edu; Herman, Michael G.
Purpose: To quantitatively and systematically assess dosimetric effects induced by spot positioning error as a function of spot spacing (SS) on intensity-modulated proton therapy (IMPT) plan quality and to facilitate evaluation of safety tolerance limits on spot position. Methods: Spot position errors (PE) ranging from 1 to 2 mm were simulated. Simple plans were created on a water phantom, and IMPT plans were calculated on two pediatric patients with a brain tumor of 28 and 3 cc, respectively, using a commercial planning system. For the phantom, a uniform dose was delivered to targets located at different depths from 10 tomore » 20 cm with various field sizes from 2{sup 2} to 15{sup 2} cm{sup 2}. Two nominal spot sizes, 4.0 and 6.6 mm of 1 σ in water at isocenter, were used for treatment planning. The SS ranged from 0.5 σ to 1.5 σ, which is 2–6 mm for the small spot size and 3.3–9.9 mm for the large spot size. Various perturbation scenarios of a single spot error and systematic and random multiple spot errors were studied. To quantify the dosimetric effects, percent dose error (PDE) depth profiles and the value of percent dose error at the maximum dose difference (PDE [ΔDmax]) were used for evaluation. Results: A pair of hot and cold spots was created per spot shift. PDE[ΔDmax] is found to be a complex function of PE, SS, spot size, depth, and global spot distribution that can be well defined in simple models. For volumetric targets, the PDE [ΔDmax] is not noticeably affected by the change of field size or target volume within the studied ranges. In general, reducing SS decreased the dose error. For the facility studied, given a single spot error with a PE of 1.2 mm and for both spot sizes, a SS of 1σ resulted in a 2% maximum dose error; a SS larger than 1.25 σ substantially increased the dose error and its sensitivity to PE. A similar trend was observed in multiple spot errors (both systematic and random errors). Systematic PE can lead to noticeable hot spots along the field edges, which may be near critical structures. However, random PE showed minimal dose error. Conclusions: Dose error dependence for PE was quantitatively and systematically characterized and an analytic tool was built to simulate systematic and random errors for patient-specific IMPT. This information facilitates the determination of facility specific spot position error thresholds.« less
Evaluation of glued-diaphragm fibre optic pressure sensors in a shock tube
NASA Astrophysics Data System (ADS)
Sharifian, S. Ahmad; Buttsworth, David R.
2007-02-01
Glued-diaphragm fibre optic pressure sensors that utilize standard telecommunications components which are based on Fabry-Perot interferometry are appealing in a number of respects. Principally, they have high spatial and temporal resolution and are low in cost. These features potentially make them well suited to operation in extreme environments produced in short-duration high-enthalpy wind tunnel facilities where spatial and temporal resolution are essential, but attrition rates for sensors are typically very high. The sensors we consider utilize a zirconia ferrule substrate and a thin copper foil which are bonded together using an adhesive. The sensors show a fast response and can measure fluctuations with a frequency up to 250 kHz. The sensors also have a high spatial resolution on the order of 0.1 mm. However, with the interrogation and calibration processes adopted in this work, apparent errors of up to 30% of the maximum pressure have been observed. Such errors are primarily caused by mechanical hysteresis and adhesive viscoelasticity. If a dynamic calibration is adopted, the maximum measurement error can be limited to about 10% of the maximum pressure. However, a better approach is to eliminate the adhesive from the construction process or design the diaphragm and substrate in a way that does not require the adhesive to carry a significant fraction of the mechanical loading.
Cost-effectiveness of the stream-gaging program in New Jersey
Schopp, R.D.; Ulery, R.L.
1984-01-01
The results of a study of the cost-effectiveness of the stream-gaging program in New Jersey are documented. This study is part of a 5-year nationwide analysis undertaken by the U.S. Geological Survey to define and document the most cost-effective means of furnishing streamflow information. This report identifies the principal uses of the data and relates those uses to funding sources, applies, at selected stations, alternative less costly methods (that is flow routing, regression analysis) for furnishing the data, and defines a strategy for operating the program which minimizes uncertainty in the streamflow data for specific operating budgets. Uncertainty in streamflow data is primarily a function of the percentage of missing record and the frequency of discharge measurements. In this report, 101 continuous stream gages and 73 crest-stage or stage-only gages are analyzed. A minimum budget of $548,000 is required to operate the present stream-gaging program in New Jersey with an average standard error of 27.6 percent. The maximum budget analyzed was $650,000, which resulted in an average standard error of 17.8 percent. The 1983 budget of $569,000 resulted in a standard error of 24.9 percent under present operating policy. (USGS)
Adaptive Offset Correction for Intracortical Brain Computer Interfaces
Homer, Mark L.; Perge, János A.; Black, Michael J.; Harrison, Matthew T.; Cash, Sydney S.; Hochberg, Leigh R.
2014-01-01
Intracortical brain computer interfaces (iBCIs) decode intended movement from neural activity for the control of external devices such as a robotic arm. Standard approaches include a calibration phase to estimate decoding parameters. During iBCI operation, the statistical properties of the neural activity can depart from those observed during calibration, sometimes hindering a user’s ability to control the iBCI. To address this problem, we adaptively correct the offset terms within a Kalman filter decoder via penalized maximum likelihood estimation. The approach can handle rapid shifts in neural signal behavior (on the order of seconds) and requires no knowledge of the intended movement. The algorithm, called MOCA, was tested using simulated neural activity and evaluated retrospectively using data collected from two people with tetraplegia operating an iBCI. In 19 clinical research test cases, where a nonadaptive Kalman filter yielded relatively high decoding errors, MOCA significantly reduced these errors (10.6 ±10.1%; p<0.05, pairwise t-test). MOCA did not significantly change the error in the remaining 23 cases where a nonadaptive Kalman filter already performed well. These results suggest that MOCA provides more robust decoding than the standard Kalman filter for iBCIs. PMID:24196868
Adaptive offset correction for intracortical brain-computer interfaces.
Homer, Mark L; Perge, Janos A; Black, Michael J; Harrison, Matthew T; Cash, Sydney S; Hochberg, Leigh R
2014-03-01
Intracortical brain-computer interfaces (iBCIs) decode intended movement from neural activity for the control of external devices such as a robotic arm. Standard approaches include a calibration phase to estimate decoding parameters. During iBCI operation, the statistical properties of the neural activity can depart from those observed during calibration, sometimes hindering a user's ability to control the iBCI. To address this problem, we adaptively correct the offset terms within a Kalman filter decoder via penalized maximum likelihood estimation. The approach can handle rapid shifts in neural signal behavior (on the order of seconds) and requires no knowledge of the intended movement. The algorithm, called multiple offset correction algorithm (MOCA), was tested using simulated neural activity and evaluated retrospectively using data collected from two people with tetraplegia operating an iBCI. In 19 clinical research test cases, where a nonadaptive Kalman filter yielded relatively high decoding errors, MOCA significantly reduced these errors ( 10.6 ± 10.1% ; p < 0.05, pairwise t-test). MOCA did not significantly change the error in the remaining 23 cases where a nonadaptive Kalman filter already performed well. These results suggest that MOCA provides more robust decoding than the standard Kalman filter for iBCIs.
Target thrust measurement for applied-field magnetoplasmadynamic thruster
NASA Astrophysics Data System (ADS)
Wang, B.; Yang, W.; Tang, H.; Li, Z.; Kitaeva, A.; Chen, Z.; Cao, J.; Herdrich, G.; Zhang, K.
2018-07-01
In this paper, we present a flat target thrust stand which is designed to measure the thrust of a steady-state applied-field magnetoplasmadynamic thruster (AF-MPDT). In our experiments we varied target-thruster distances and target size to analyze their influence on the target thrust measurement results. The obtained thrust-distance curves increase to local maximum and then decreases with the increasing distance, which means that the plume of the AF-MPDT can still accelerate outside the thruster exit. The peak positions are related to the target sizes: larger targets can make the peak positions further from the thruster and decrease the measurement errors. To further improve the reliability of measurement results, a thermal equilibrium assumption combined with Knudsen’s cosine law is adapted to analyze the error caused by the back stream of plume particles. Under the assumption, the error caused by particle backflow is no more than 3.6% and the largest difference between the measured thrust and the theoretical thrust is 14%. Moreover, it was verified that target thrust measurement can disturb the working of the AF-MPD thruster, and the influence on the thrust measurement result is no more than 1% in our experiment.
Guede-Fernandez, F; Ferrer-Mileo, V; Ramos-Castro, J; Fernandez-Chimeno, M; Garcia-Gonzalez, M A
2015-01-01
The aim of this paper is to present a smartphone based system for real-time pulse-to-pulse (PP) interval time series acquisition by frame-to-frame camera image processing. The developed smartphone application acquires image frames from built-in rear-camera at the maximum available rate (30 Hz) and the smartphone GPU has been used by Renderscript API for high performance frame-by-frame image acquisition and computing in order to obtain PPG signal and PP interval time series. The relative error of mean heart rate is negligible. In addition, measurement posture and the employed smartphone model influences on the beat-to-beat error measurement of heart rate and HRV indices have been analyzed. Then, the standard deviation of the beat-to-beat error (SDE) was 7.81 ± 3.81 ms in the worst case. Furthermore, in supine measurement posture, significant device influence on the SDE has been found and the SDE is lower with Samsung S5 than Motorola X. This study can be applied to analyze the reliability of different smartphone models for HRV assessment from real-time Android camera frames processing.
Heading Estimation for Pedestrian Dead Reckoning Based on Robust Adaptive Kalman Filtering.
Wu, Dongjin; Xia, Linyuan; Geng, Jijun
2018-06-19
Pedestrian dead reckoning (PDR) using smart phone-embedded micro-electro-mechanical system (MEMS) sensors plays a key role in ubiquitous localization indoors and outdoors. However, as a relative localization method, it suffers from the problem of error accumulation which prevents it from long term independent running. Heading estimation error is one of the main location error sources, and therefore, in order to improve the location tracking performance of the PDR method in complex environments, an approach based on robust adaptive Kalman filtering (RAKF) for estimating accurate headings is proposed. In our approach, outputs from gyroscope, accelerometer, and magnetometer sensors are fused using the solution of Kalman filtering (KF) that the heading measurements derived from accelerations and magnetic field data are used to correct the states integrated from angular rates. In order to identify and control measurement outliers, a maximum likelihood-type estimator (M-estimator)-based model is used. Moreover, an adaptive factor is applied to resist the negative effects of state model disturbances. Extensive experiments under static and dynamic conditions were conducted in indoor environments. The experimental results demonstrate the proposed approach provides more accurate heading estimates and supports more robust and dynamic adaptive location tracking, compared with methods based on conventional KF.
Han, Miaomiao; Guo, Zhirong; Liu, Haifeng; Li, Qinghua
2018-05-01
Tomographic Gamma Scanning (TGS) is a method used for the nondestructive assay of radioactive wastes. In TGS, the actual irregular edge voxels are regarded as regular cubic voxels in the traditional treatment method. In this study, in order to improve the performance of TGS, a novel edge treatment method is proposed that considers the actual shapes of these voxels. The two different edge voxel treatment methods were compared by computing the pixel-level relative errors and normalized mean square errors (NMSEs) between the reconstructed transmission images and the ideal images. Both methods were coupled with two different interative algorithms comprising Algebraic Reconstruction Technique (ART) with a non-negativity constraint and Maximum Likelihood Expectation Maximization (MLEM). The results demonstrated that the traditional method for edge voxel treatment can introduce significant error and that the real irregular edge voxel treatment method can improve the performance of TGS by obtaining better transmission reconstruction images. With the real irregular edge voxel treatment method, MLEM algorithm and ART algorithm can be comparable when assaying homogenous matrices, but MLEM algorithm is superior to ART algorithm when assaying heterogeneous matrices. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kotchenova, Svetlana Y; Vermote, Eric F
2007-07-10
This is the second part of the validation effort of the recently developed vector version of the 6S (Second Simulation of a Satellite Signal in the Solar Spectrum) radiative transfer code (6SV1), primarily used for the calculation of look-up tables in the Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric correction algorithm. The 6SV1 code was tested against a Monte Carlo code and Coulson's tabulated values for molecular and aerosol atmospheres bounded by different Lambertian and anisotropic surfaces. The code was also tested in scalar mode against the scalar code SHARM to resolve the previous 6S accuracy issues in the case of an anisotropic surface. All test cases were characterized by good agreement between the 6SV1 and the other codes: The overall relative error did not exceed 0.8%. The study also showed that ignoring the effects of radiation polarization in the atmosphere led to large errors in the simulated top-of-atmosphere reflectances: The maximum observed error was approximately 7.2% for both Lambertian and anisotropic surfaces.
NASA Astrophysics Data System (ADS)
Kotchenova, Svetlana Y.; Vermote, Eric F.
2007-07-01
This is the second part of the validation effort of the recently developed vector version of the 6S (Second Simulation of a Satellite Signal in the Solar Spectrum) radiative transfer code (6SV1), primarily used for the calculation of look-up tables in the Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric correction algorithm. The 6SV1 code was tested against a Monte Carlo code and Coulson's tabulated values for molecular and aerosol atmospheres bounded by different Lambertian and anisotropic surfaces. The code was also tested in scalar mode against the scalar code SHARM to resolve the previous 6S accuracy issues in the case of an anisotropic surface. All test cases were characterized by good agreement between the 6SV1 and the other codes: The overall relative error did not exceed 0.8%. The study also showed that ignoring the effects of radiation polarization in the atmosphere led to large errors in the simulated top-of-atmosphere reflectances: The maximum observed error was approximately 7.2% for both Lambertian and anisotropic surfaces.
Geoid determination in the coastal areas of the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Song, HongZhi
Coastal areas of the Gulf of Mexico are important for many reasons. This part of the United States provides vital coastal habitats for many marine species; the area has seen-ever increasing human settlement along the coast, ever increasing infrastructure for marine transportation of the nation's imports and exports through Gulf ports, and ever increasing recreational users of coastal resources. These important uses associated with the Gulf coast are subject to dynamic environmental and physical changes including: coastal erosion (Gulf-wide rates of 25 square miles per year), tropical storm surges, coastal subsidence, and global sea level rise. Coastal land subsidence is a major component of relative sea level rise along the coast of the Gulf of Mexico. These dynamic coastal changes should be evident in changes to the geoid along the coast. The geoid is the equipotential gravity surface of the earth, which the best fits the global mean sea level. The geoid is not only been seen as the most natural shape of the Earth, but also it serves as the reference surface for most of the height systems. By using satellites (GRACE mission) scientists have been able to measure the large scale geoid for the Earth. A small scale geoid model is required to monitor local events such as flooding, for example, flooding created by storm surges from hurricanes such as Katrina (2005), Rita (2005), and Ike (2008). The overall purpose of this study is to evaluate the accuracy of the local coastal geoid. The more precise geoid will enable to improve coastal flooding predictions, and will enable more cost effective and accurate measurement of coastal topography using global navigation satellite systems (GNSS). The main objective of this study is to devise mathematical models and computational methods to achieve the best possible precision for evaluation of the geoid in the coastal areas of the Gulf of Mexico. More specifically, the numerical objectives of this study are 1) to obtain a continuous map of gravity anomalies and a continuous map of gravity by using spatial interpolation methods and to evaluate errors; 2) to solve the Laplace boundary value problem and evaluate errors; 3) to evaluate precision of the local geoid by using geospatial statistical tools and numerical techniques. This dissertation investigates modeling of the geoid, especially the gravimetric equipotential surface that approximates mean sea level, in the coastal areas of the Gulf of Mexico as well as errors in the geoid determination. The document begins with Chapter 1 which introduces the study of this dissertation. Different models of kriging are used to determine the precision of the geoid based on the free-air gravity anomalies data supplied by United States Naval Research Laboratory and the airborne gravity data provided by the U.S. National Geodetic Survey, which can be found in Chapters 2 and 3. Research in Chapters 2 shows that more precise evaluation of errors in gravity anomalies can be achieved by using different models of kriging. Results from Chapters 2 and 3 show that ordinary kriging with the stable semivariogram model provide better predictions. Research results from Chapter 3 provide estimation of maximum possible errors in the calculation of the geoid undulation. The dissertation also investigates behavior of gravity equipotential surfaces around coastal lines and its impact on the geoid evaluation. Chapters 4 and 5 are about evaluation of errors in the Dirichlet problem for calculation of gravity potential with uncertain boundary and boundary values has been achieved by solving the Laplace equation by means of separation of variables. Research has provided a theoretical model in Chapter 4 to estimate very small changes in gravimetric potential relative to the coast. Maximum possible error in the solution of Direchlet problem is determined in Chapter 5. Maximum possible error depends on the errors of boundary values and the precision of the boundary itself. Chapter 6 describes a novel approach to sea level rise modeling. Factor analysis is used to analyze local and global sea level rise and relationships between changing sea levels, currents, and the shape of the Earth. Results of factor analysis from Chapter 6 show that the elevation of sea level relates to the geoid and ocean circulation. Chapter 7 describes the relationship between the geoid and wetlands modeling. Research in Chapter 7 shows that the predicted continuous elevation map obtained through the ordinary stable kriging was sufficiently precise and fairly reliable. Chapter 7 is an exploratory chapter, and the ideas of this chapter will help the future research.
Etzel, C J; Shete, S; Beasley, T M; Fernandez, J R; Allison, D B; Amos, C I
2003-01-01
Non-normality of the phenotypic distribution can affect power to detect quantitative trait loci in sib pair studies. Previously, we observed that Winsorizing the sib pair phenotypes increased the power of quantitative trait locus (QTL) detection for both Haseman-Elston (HE) least-squares tests [Hum Hered 2002;53:59-67] and maximum likelihood-based variance components (MLVC) analysis [Behav Genet (in press)]. Winsorizing the phenotypes led to a slight increase in type 1 error in H-E tests and a slight decrease in type I error for MLVC analysis. Herein, we considered transforming the sib pair phenotypes using the Box-Cox family of transformations. Data were simulated for normal and non-normal (skewed and kurtic) distributions. Phenotypic values were replaced by Box-Cox transformed values. Twenty thousand replications were performed for three H-E tests of linkage and the likelihood ratio test (LRT), the Wald test and other robust versions based on the MLVC method. We calculated the relative nominal inflation rate as the ratio of observed empirical type 1 error divided by the set alpha level (5, 1 and 0.1% alpha levels). MLVC tests applied to non-normal data had inflated type I errors (rate ratio greater than 1.0), which were controlled best by Box-Cox transformation and to a lesser degree by Winsorizing. For example, for non-transformed, skewed phenotypes (derived from a chi2 distribution with 2 degrees of freedom), the rates of empirical type 1 error with respect to set alpha level=0.01 were 0.80, 4.35 and 7.33 for the original H-E test, LRT and Wald test, respectively. For the same alpha level=0.01, these rates were 1.12, 3.095 and 4.088 after Winsorizing and 0.723, 1.195 and 1.905 after Box-Cox transformation. Winsorizing reduced inflated error rates for the leptokurtic distribution (derived from a Laplace distribution with mean 0 and variance 8). Further, power (adjusted for empirical type 1 error) at the 0.01 alpha level ranged from 4.7 to 17.3% across all tests using the non-transformed, skewed phenotypes, from 7.5 to 20.1% after Winsorizing and from 12.6 to 33.2% after Box-Cox transformation. Likewise, power (adjusted for empirical type 1 error) using leptokurtic phenotypes at the 0.01 alpha level ranged from 4.4 to 12.5% across all tests with no transformation, from 7 to 19.2% after Winsorizing and from 4.5 to 13.8% after Box-Cox transformation. Thus the Box-Cox transformation apparently provided the best type 1 error control and maximal power among the procedures we considered for analyzing a non-normal, skewed distribution (chi2) while Winzorizing worked best for the non-normal, kurtic distribution (Laplace). We repeated the same simulations using a larger sample size (200 sib pairs) and found similar results. Copyright 2003 S. Karger AG, Basel
A hybrid SVM-FFA method for prediction of monthly mean global solar radiation
NASA Astrophysics Data System (ADS)
Shamshirband, Shahaboddin; Mohammadi, Kasra; Tong, Chong Wen; Zamani, Mazdak; Motamedi, Shervin; Ch, Sudheer
2016-07-01
In this study, a hybrid support vector machine-firefly optimization algorithm (SVM-FFA) model is proposed to estimate monthly mean horizontal global solar radiation (HGSR). The merit of SVM-FFA is assessed statistically by comparing its performance with three previously used approaches. Using each approach and long-term measured HGSR, three models are calibrated by considering different sets of meteorological parameters measured for Bandar Abbass situated in Iran. It is found that the model (3) utilizing the combination of relative sunshine duration, difference between maximum and minimum temperatures, relative humidity, water vapor pressure, average temperature, and extraterrestrial solar radiation shows superior performance based upon all approaches. Moreover, the extraterrestrial radiation is introduced as a significant parameter to accurately estimate the global solar radiation. The survey results reveal that the developed SVM-FFA approach is greatly capable to provide favorable predictions with significantly higher precision than other examined techniques. For the SVM-FFA (3), the statistical indicators of mean absolute percentage error (MAPE), root mean square error (RMSE), relative root mean square error (RRMSE), and coefficient of determination ( R 2) are 3.3252 %, 0.1859 kWh/m2, 3.7350 %, and 0.9737, respectively which according to the RRMSE has an excellent performance. As a more evaluation of SVM-FFA (3), the ratio of estimated to measured values is computed and found that 47 out of 48 months considered as testing data fall between 0.90 and 1.10. Also, by performing a further verification, it is concluded that SVM-FFA (3) offers absolute superiority over the empirical models using relatively similar input parameters. In a nutshell, the hybrid SVM-FFA approach would be considered highly efficient to estimate the HGSR.
Development of multiple-eye PIV using mirror array
NASA Astrophysics Data System (ADS)
Maekawa, Akiyoshi; Sakakibara, Jun
2018-06-01
In order to reduce particle image velocimetry measurement error, we manufactured an ellipsoidal polyhedral mirror and placed it between a camera and flow target to capture n images of identical particles from n (=80 maximum) different directions. The 3D particle positions were determined from the ensemble average of n C2 intersecting points of a pair of line-of-sight back-projected points from a particle found in any combination of two images in the n images. The method was then applied to a rigid-body rotating flow and a turbulent pipe flow. In the former measurement, bias error and random error fell in a range of ±0.02 pixels and 0.02–0.05 pixels, respectively; additionally, random error decreased in proportion to . In the latter measurement, in which the measured value was compared to direct numerical simulation, bias error was reduced and random error also decreased in proportion to .
Lod scores for gene mapping in the presence of marker map uncertainty.
Stringham, H M; Boehnke, M
2001-07-01
Multipoint lod scores are typically calculated for a grid of locus positions, moving the putative disease locus across a fixed map of genetic markers. Changing the order of a set of markers and/or the distances between the markers can make a substantial difference in the resulting lod score curve and the location and height of its maximum. The typical approach of using the best maximum likelihood marker map is not easily justified if other marker orders are nearly as likely and give substantially different lod score curves. To deal with this problem, we propose three weighted multipoint lod score statistics that make use of information from all plausible marker orders. In each of these statistics, the information conditional on a particular marker order is included in a weighted sum, with weight equal to the posterior probability of that order. We evaluate the type 1 error rate and power of these three statistics on the basis of results from simulated data, and compare these results to those obtained using the best maximum likelihood map and the map with the true marker order. We find that the lod score based on a weighted sum of maximum likelihoods improves on using only the best maximum likelihood map, having a type 1 error rate and power closest to that of using the true marker order in the simulation scenarios we considered. Copyright 2001 Wiley-Liss, Inc.
Computer calculated dose in paediatric prescribing.
Kirk, Richard C; Li-Meng Goh, Denise; Packia, Jeya; Min Kam, Huey; Ong, Benjamin K C
2005-01-01
Medication errors are an important cause of hospital-based morbidity and mortality. However, only a few medication error studies have been conducted in children. These have mainly quantified errors in the inpatient setting; there is very little data available on paediatric outpatient and emergency department medication errors and none on discharge medication. This deficiency is of concern because medication errors are more common in children and it has been suggested that the risk of an adverse drug event as a consequence of a medication error is higher in children than in adults. The aims of this study were to assess the rate of medication errors in predominantly ambulatory paediatric patients and the effect of computer calculated doses on medication error rates of two commonly prescribed drugs. This was a prospective cohort study performed in a paediatric unit in a university teaching hospital between March 2003 and August 2003. The hospital's existing computer clinical decision support system was modified so that doctors could choose the traditional prescription method or the enhanced method of computer calculated dose when prescribing paracetamol (acetaminophen) or promethazine. All prescriptions issued to children (<16 years of age) at the outpatient clinic, emergency department and at discharge from the inpatient service were analysed. A medication error was defined as to have occurred if there was an underdose (below the agreed value), an overdose (above the agreed value), no frequency of administration specified, no dose given or excessive total daily dose. The medication error rates and the factors influencing medication error rates were determined using SPSS version 12. From March to August 2003, 4281 prescriptions were issued. Seven prescriptions (0.16%) were excluded, hence 4274 prescriptions were analysed. Most prescriptions were issued by paediatricians (including neonatologists and paediatric surgeons) and/or junior doctors. The error rate in the children's emergency department was 15.7%, for outpatients was 21.5% and for discharge medication was 23.6%. Most errors were the result of an underdose (64%; 536/833). The computer calculated dose error rate was 12.6% compared with the traditional prescription error rate of 28.2%. Logistical regression analysis showed that computer calculated dose was an important and independent variable influencing the error rate (adjusted relative risk = 0.436, 95% CI 0.336, 0.520, p < 0.001). Other important independent variables were seniority and paediatric training of the person prescribing and the type of drug prescribed. Medication error, especially underdose, is common in outpatient, emergency department and discharge prescriptions. Computer calculated doses can significantly reduce errors, but other risk factors have to be concurrently addressed to achieve maximum benefit.
CFD Modelling of Bore Erosion in Two-Stage Light Gas Guns
NASA Technical Reports Server (NTRS)
Bogdanoff, D. W.
1998-01-01
A well-validated quasi-one-dimensional computational fluid dynamics (CFD) code for the analysis of the internal ballistics of two-stage light gas guns is modified to explicitly calculate the ablation of steel from the gun bore and the incorporation of the ablated wall material into the hydrogen working cas. The modified code is used to model 45 shots made with the NASA Ames 0.5 inch light gas gun over an extremely wide variety of gun operating conditions. Good agreement is found between the experimental and theoretical piston velocities (maximum errors of +/-2% to +/-6%) and maximum powder pressures (maximum errors of +/-10% with good igniters). Overall, the agreement between the experimental and numerically calculated gun erosion values (within a factor of 2) was judged to be reasonably good, considering the complexity of the processes modelled. Experimental muzzle velocities agree very well (maximum errors of 0.5-0.7 km/sec) with theoretical muzzle velocities calculated with loading of the hydrogen gas with the ablated barrel wall material. Comparison of results for pump tube volumes of 100%, 60% and 40% of an initial benchmark value show that, at the higher muzzle velocities, operation at 40% pump tube volume produces much lower hydrogen loading and gun erosion and substantially lower maximum pressures in the gun. Large muzzle velocity gains (2.4-5.4 km/sec) are predicted upon driving the gun harder (that is, upon using, higher powder loads and/or lower hydrogen fill pressures) when hydrogen loading is neglected; much smaller muzzle velocity gains (1.1-2.2 km/sec) are predicted when hydrogen loading is taken into account. These smaller predicted velocity gains agree well with those achieved in practice. CFD snapshots of the hydrogen mass fraction, density and pressure of the in-bore medium are presented for a very erosive shot.
Data Analysis & Statistical Methods for Command File Errors
NASA Technical Reports Server (NTRS)
Meshkat, Leila; Waggoner, Bruce; Bryant, Larry
2014-01-01
This paper explains current work on modeling for managing the risk of command file errors. It is focused on analyzing actual data from a JPL spaceflight mission to build models for evaluating and predicting error rates as a function of several key variables. We constructed a rich dataset by considering the number of errors, the number of files radiated, including the number commands and blocks in each file, as well as subjective estimates of workload and operational novelty. We have assessed these data using different curve fitting and distribution fitting techniques, such as multiple regression analysis, and maximum likelihood estimation to see how much of the variability in the error rates can be explained with these. We have also used goodness of fit testing strategies and principal component analysis to further assess our data. Finally, we constructed a model of expected error rates based on the what these statistics bore out as critical drivers to the error rate. This model allows project management to evaluate the error rate against a theoretically expected rate as well as anticipate future error rates.
Closed-loop carrier phase synchronization techniques motivated by likelihood functions
NASA Technical Reports Server (NTRS)
Tsou, H.; Hinedi, S.; Simon, M.
1994-01-01
This article reexamines the notion of closed-loop carrier phase synchronization motivated by the theory of maximum a posteriori phase estimation with emphasis on the development of new structures based on both maximum-likelihood and average-likelihood functions. The criterion of performance used for comparison of all the closed-loop structures discussed is the mean-squared phase error for a fixed-loop bandwidth.
Wavefront error budget and optical manufacturing tolerance analysis for 1.8m telescope system
NASA Astrophysics Data System (ADS)
Wei, Kai; Zhang, Xuejun; Xian, Hao; Rao, Changhui; Zhang, Yudong
2010-05-01
We present the wavefront error budget and optical manufacturing tolerance analysis for 1.8m telescope. The error budget accounts for aberrations induced by optical design residual, manufacturing error, mounting effects, and misalignments. The initial error budget has been generated from the top-down. There will also be an ongoing effort to track the errors from the bottom-up. This will aid in identifying critical areas of concern. The resolution of conflicts will involve a continual process of review and comparison of the top-down and bottom-up approaches, modifying both as needed to meet the top level requirements in the end. As we all know, the adaptive optical system will correct for some of the telescope system imperfections but it cannot be assumed that all errors will be corrected. Therefore, two kinds of error budgets will be presented, one is non-AO top-down error budget and the other is with-AO system error budget. The main advantage of the method is that at the same time it describes the final performance of the telescope, and gives to the optical manufacturer the maximum freedom to define and possibly modify its own manufacturing error budget.
Analysis of the “naming game” with learning errors in communications
NASA Astrophysics Data System (ADS)
Lou, Yang; Chen, Guanrong
2015-07-01
Naming game simulates the process of naming an objective by a population of agents organized in a certain communication network. By pair-wise iterative interactions, the population reaches consensus asymptotically. We study naming game with communication errors during pair-wise conversations, with error rates in a uniform probability distribution. First, a model of naming game with learning errors in communications (NGLE) is proposed. Then, a strategy for agents to prevent learning errors is suggested. To that end, three typical topologies of communication networks, namely random-graph, small-world and scale-free networks, are employed to investigate the effects of various learning errors. Simulation results on these models show that 1) learning errors slightly affect the convergence speed but distinctively increase the requirement for memory of each agent during lexicon propagation; 2) the maximum number of different words held by the population increases linearly as the error rate increases; 3) without applying any strategy to eliminate learning errors, there is a threshold of the learning errors which impairs the convergence. The new findings may help to better understand the role of learning errors in naming game as well as in human language development from a network science perspective.
Analysis of the "naming game" with learning errors in communications.
Lou, Yang; Chen, Guanrong
2015-07-16
Naming game simulates the process of naming an objective by a population of agents organized in a certain communication network. By pair-wise iterative interactions, the population reaches consensus asymptotically. We study naming game with communication errors during pair-wise conversations, with error rates in a uniform probability distribution. First, a model of naming game with learning errors in communications (NGLE) is proposed. Then, a strategy for agents to prevent learning errors is suggested. To that end, three typical topologies of communication networks, namely random-graph, small-world and scale-free networks, are employed to investigate the effects of various learning errors. Simulation results on these models show that 1) learning errors slightly affect the convergence speed but distinctively increase the requirement for memory of each agent during lexicon propagation; 2) the maximum number of different words held by the population increases linearly as the error rate increases; 3) without applying any strategy to eliminate learning errors, there is a threshold of the learning errors which impairs the convergence. The new findings may help to better understand the role of learning errors in naming game as well as in human language development from a network science perspective.
Circuit-level optimisation of a:Si TFT-based AMOLED pixel circuits for maximum hold current
NASA Astrophysics Data System (ADS)
Foroughi, Aidin; Mehrpoo, Mohammadreza; Ashtiani, Shahin J.
2013-11-01
Design of AMOLED pixel circuits has manifold constraints and trade-offs which provides incentive for circuit designers to seek optimal solutions for different objectives. In this article, we present a discussion on the viability of an optimal solution to achieve the maximum hold current. A compact formula for component sizing in a conventional 2T1C pixel is, therefore, derived. Compared to SPICE simulation results, for several pixel sizes, our predicted optimum sizing yields maximum currents with errors less than 0.4%.
Hyvärinen, A
1985-01-01
The main purpose of the present study was to describe the statistical behaviour of daily analytical errors in the dimensions of place and time, providing a statistical basis for realistic estimates of the analytical error, and hence allowing the importance of the error and the relative contributions of its different sources to be re-evaluated. The observation material consists of creatinine and glucose results for control sera measured in daily routine quality control in five laboratories for a period of one year. The observation data were processed and computed by means of an automated data processing system. Graphic representations of time series of daily observations, as well as their means and dispersion limits when grouped over various time intervals, were investigated. For partition of the total variation several two-way analyses of variance were done with laboratory and various time classifications as factors. Pooled sets of observations were tested for normality of distribution and for consistency of variances, and the distribution characteristics of error variation in different categories of place and time were compared. Errors were found from the time series to vary typically between days. Due to irregular fluctuations in general and particular seasonal effects in creatinine, stable estimates of means or of dispersions for errors in individual laboratories could not be easily obtained over short periods of time but only from data sets pooled over long intervals (preferably at least one year). Pooled estimates of proportions of intralaboratory variation were relatively low (less than 33%) when the variation was pooled within days. However, when the variation was pooled over longer intervals this proportion increased considerably, even to a maximum of 89-98% (95-98% in each method category) when an outlying laboratory in glucose was omitted, with a concomitant decrease in the interaction component (representing laboratory-dependent variation with time). This indicates that a substantial part of the variation comes from intralaboratory variation with time rather than from constant interlaboratory differences. Normality and consistency of statistical distributions were best achieved in the long-term intralaboratory sets of the data, under which conditions the statistical estimates of error variability were also most characteristic of the individual laboratories rather than necessarily being similar to one another. Mixing of data from different laboratories may give heterogeneous and nonparametric distributions and hence is not advisable.(ABSTRACT TRUNCATED AT 400 WORDS)
Cost effectiveness of the U.S. Geological Survey's stream-gaging program in Wisconsin
Walker, J.F.; Osen, L.L.; Hughes, P.E.
1987-01-01
A minimum budget of $510,000 is required to operate the program; a budget less than this does not permit proper service and maintenance of the gaging stations. At this minimum budget, the theoretical average standard error of instantaneous discharge is 14.4%. The maximum budget analyzed was $650,000 and resulted in an average standard of error of instantaneous discharge of 7.2%.
Estimation of perspective errors in 2D2C-PIV measurements for 3D concentrated vortices
NASA Astrophysics Data System (ADS)
Ma, Bao-Feng; Jiang, Hong-Gang
2018-06-01
Two-dimensional planar PIV (2D2C) is still extensively employed in flow measurement owing to its availability and reliability, although more advanced PIVs have been developed. It has long been recognized that there exist perspective errors in velocity fields when employing the 2D2C PIV to measure three-dimensional (3D) flows, the magnitude of which depends on out-of-plane velocity and geometric layouts of the PIV. For a variety of vortex flows, however, the results are commonly represented by vorticity fields, instead of velocity fields. The present study indicates that the perspective error in vorticity fields relies on gradients of the out-of-plane velocity along a measurement plane, instead of the out-of-plane velocity itself. More importantly, an estimation approach to the perspective error in 3D vortex measurements was proposed based on a theoretical vortex model and an analysis on physical characteristics of the vortices, in which the gradient of out-of-plane velocity is uniquely determined by the ratio of the maximum out-of-plane velocity to maximum swirling velocity of the vortex; meanwhile, the ratio has upper limits for naturally formed vortices. Therefore, if the ratio is imposed with the upper limits, the perspective error will only rely on the geometric layouts of PIV that are known in practical measurements. Using this approach, the upper limits of perspective errors of a concentrated vortex can be estimated for vorticity and other characteristic quantities of the vortex. In addition, the study indicates that the perspective errors in vortex location, vortex strength, and vortex radius can be all zero for axisymmetric vortices if they are calculated by proper methods. The dynamic mode decomposition on an oscillatory vortex indicates that the perspective errors of each DMD mode are also only dependent on the gradient of out-of-plane velocity if the modes are represented by vorticity.
Small Scale Mass Flow Plug Calibration
NASA Technical Reports Server (NTRS)
Sasson, Jonathan
2015-01-01
A simple control volume model has been developed to calculate the discharge coefficient through a mass flow plug (MFP) and validated with a calibration experiment. The maximum error of the model in the operating region of the MFP is 0.54%. The model uses the MFP geometry and operating pressure and temperature to couple continuity, momentum, energy, an equation of state, and wall shear. Effects of boundary layer growth and the reduction in cross-sectional flow area are calculated using an in- integral method. A CFD calibration is shown to be of lower accuracy with a maximum error of 1.35%, and slower by a factor of 100. Effects of total pressure distortion are taken into account in the experiment. Distortion creates a loss in flow rate and can be characterized by two different distortion descriptors.
Development of advanced techniques for rotorcraft state estimation and parameter identification
NASA Technical Reports Server (NTRS)
Hall, W. E., Jr.; Bohn, J. G.; Vincent, J. H.
1980-01-01
An integrated methodology for rotorcraft system identification consists of rotorcraft mathematical modeling, three distinct data processing steps, and a technique for designing inputs to improve the identifiability of the data. These elements are as follows: (1) a Kalman filter smoother algorithm which estimates states and sensor errors from error corrupted data. Gust time histories and statistics may also be estimated; (2) a model structure estimation algorithm for isolating a model which adequately explains the data; (3) a maximum likelihood algorithm for estimating the parameters and estimates for the variance of these estimates; and (4) an input design algorithm, based on a maximum likelihood approach, which provides inputs to improve the accuracy of parameter estimates. Each step is discussed with examples to both flight and simulated data cases.
Heimes, F.J.; Ferrigno, C.F.; Gutentag, E.D.; Lucky, R.R.; Stephens, D.M.; Weeks, J.B.
1987-01-01
The relation between pumpage and change in storage was evaluated for most of a three-county area in southwestern Nebraska from 1975 through 1983. Initial comparison of the 1975-83 pumpage with change in storage in the study area indicated that the 1 ,042,300 acre-ft of change in storage was only about 30% of the 3,425,000 acre-ft of pumpage. An evaluation of the data used to calculate pumpage and change in storage indicated that there was a relatively large potential for error in estimates of specific yield. As a result, minimum and maximum values of specific yield were estimated and used to recalculate change in storage. Estimates also were derived for the minimum and maximum amounts of recharge that could occur as a result of cultivation practices. The minimum and maximum estimates for specific yield and for recharge from cultivation practices were used to compute a range of values for the potential amount of additional recharge that occurred as a result of irrigation. The minimum and maximum amounts of recharge that could be caused by irrigation in the study area were 953,200 acre-ft (28% of pumpage) and 2,611,200 acre-ft (76% of pumpage), respectively. These values indicate that a substantial percentage of the water pumped from the aquifer is resupplied to storage in the aquifer as a result of a combination of irrigation return flow and enhanced recharge from precipitation that results from cultivation and irrigation practices. (Author 's abstract)
Cost-effectiveness of the Federal stream-gaging program in Virginia
Carpenter, D.H.
1985-01-01
Data uses and funding sources were identified for the 77 continuous stream gages currently being operated in Virginia by the U.S. Geological Survey with a budget of $446,000. Two stream gages were identified as not being used sufficiently to warrant continuing their operation. Operation of these stations should be considered for discontinuation. Data collected at two other stations were identified as having uses primarily related to short-term studies; these stations should also be considered for discontinuation at the end of the data collection phases of the studies. The remaining 73 stations should be kept in the program for the foreseeable future. The current policy for operation of the 77-station program requires a budget of $446,000/yr. The average standard error of estimation of streamflow records is 10.1%. It was shown that this overall level of accuracy at the 77 sites could be maintained with a budget of $430,500 if resources were redistributed among the gages. A minimum budget of $428,500 is required to operate the 77-gage program; a smaller budget would not permit proper service and maintenance of the gages and recorders. At the minimum budget, with optimized operation, the average standard error would be 10.4%. The maximum budget analyzed was $650,000, which resulted in an average standard error of 5.5%. The study indicates that a major component of error is caused by lost or missing data. If perfect equipment were available, the standard error for the current program and budget could be reduced to 7.6%. This also can be interpreted to mean that the streamflow data have a standard error of this magnitude during times when the equipment is operating properly. (Author 's abstract)
Anatomy of emotion: a 3D study of facial mimicry.
Ferrario, V F; Sforza, C
2007-01-01
Alterations in facial motion severely impair the quality of life and social interaction of patients, and an objective grading of facial function is necessary. A method for the non-invasive detection of 3D facial movements was developed. Sequences of six standardized facial movements (maximum smile; free smile; surprise with closed mouth; surprise with open mouth; right side eye closure; left side eye closure) were recorded in 20 healthy young adults (10 men, 10 women) using an optoelectronic motion analyzer. For each subject, 21 cutaneous landmarks were identified by 2-mm reflective markers, and their 3D movements during each facial animation were computed. Three repetitions of each expression were recorded (within-session error), and four separate sessions were used (between-session error). To assess the within-session error, the technical error of the measurement (random error, TEM) was computed separately for each sex, movement and landmark. To assess the between-session repeatability, the standard deviation among the mean displacements of each landmark (four independent sessions) was computed for each movement. TEM for the single landmarks ranged between 0.3 and 9.42 mm (intrasession error). The sex- and movement-related differences were statistically significant (two-way analysis of variance, p=0.003 for sex comparison, p=0.009 for the six movements, p<0.001 for the sex x movement interaction). Among four different (independent) sessions, the left eye closure had the worst repeatability, the right eye closure had the best one; the differences among various movements were statistically significant (one-way analysis of variance, p=0.041). In conclusion, the current protocol demonstrated a sufficient repeatability for a future clinical application. Great care should be taken to assure a consistent marker positioning in all the subjects.
Differential detection in quadrature-quadrature phase shift keying (Q2PSK) systems
NASA Astrophysics Data System (ADS)
El-Ghandour, Osama M.; Saha, Debabrata
1991-05-01
A generalized quadrature-quadrature phase shift keying (Q2PSK) signaling format is considered for differential encoding and differential detection. Performance in the presence of additive white Gaussian noise (AWGN) is analyzed. Symbol error rate is found to be approximately twice the symbol error rate in a quaternary DPSK system operating at the same Eb/N0. However, the bandwidth efficiency of differential Q2PSK is substantially higher than that of quaternary DPSK. When the error is due to AWGN, the ratio of double error rate to single error rate can be very high, and the ratio may approach zero at high SNR. To improve error rate, differential detection through maximum-likelihood decoding based on multiple or N symbol observations is considered. If N and SNR are large this decoding gives a 3-dB advantage in error rate over conventional N = 2 differential detection, fully recovering the energy loss (as compared to coherent detection) if the observation is extended to a large number of symbol durations.
SU-E-T-613: Dosimetric Consequences of Systematic MLC Leaf Positioning Errors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kathuria, K; Siebers, J
2014-06-01
Purpose: The purpose of this study is to determine the dosimetric consequences of systematic MLC leaf positioning errors for clinical IMRT patient plans so as to establish detection tolerances for quality assurance programs. Materials and Methods: Dosimetric consequences were simulated by extracting mlc delivery instructions from the TPS, altering the file by the specified error, reloading the delivery instructions into the TPS, recomputing dose, and extracting dose-volume metrics for one head-andneck and one prostate patient. Machine error was simulated by offsetting MLC leaves in Pinnacle in a systematic way. Three different algorithms were followed for these systematic offsets, and aremore » as follows: a systematic sequential one-leaf offset (one leaf offset in one segment per beam), a systematic uniform one-leaf offset (same one leaf offset per segment per beam) and a systematic offset of a given number of leaves picked uniformly at random from a given number of segments (5 out of 10 total). Dose to the PTV and normal tissue was simulated. Results: A systematic 5 mm offset of 1 leaf for all delivery segments of all beams resulted in a maximum PTV D98 deviation of 1%. Results showed very low dose error in all reasonably possible machine configurations, rare or otherwise, which could be simulated. Very low error in dose to PTV and OARs was shown in all possible cases of one leaf per beam per segment being offset (<1%), or that of only one leaf per beam being offset (<.2%). The errors resulting from a high number of adjacent leaves (maximum of 5 out of 60 total leaf-pairs) being simultaneously offset in many (5) of the control points (total 10–18 in all beams) per beam, in both the PTV and the OARs analyzed, were similarly low (<2–3%). Conclusions: The above results show that patient shifts and anatomical changes are the main source of errors in dose delivered, not machine delivery. These two sources of error are “visually complementary” and uncorrelated (albeit not additive in the final error) and one can easily incorporate error resulting from machine delivery in an error model based purely on tumor motion.« less
Delanghe, Joris R; Cobbaert, Christa; Galteau, Marie-Madeleine; Harmoinen, Aimo; Jansen, Rob; Kruse, Rolf; Laitinen, Päivi; Thienpont, Linda M; Wuyts, Birgitte; Weykamp, Cas; Panteghini, Mauro
2008-01-01
The European In Vitro Diagnostics (IVD) directive requires traceability to reference methods and materials of analytes. It is a task of the profession to verify the trueness of results and IVD compatibility. The results of a trueness verification study by the European Communities Confederation of Clinical Chemistry (EC4) working group on creatinine standardization are described, in which 189 European laboratories analyzed serum creatinine in a commutable serum-based material, using analytical systems from seven companies. Values were targeted using isotope dilution gas chromatography/mass spectrometry. Results were tested on their compliance to a set of three criteria: trueness, i.e., no significant bias relative to the target value, between-laboratory variation and within-laboratory variation relative to the maximum allowable error. For the lower and intermediate level, values differed significantly from the target value in the Jaffe and the dry chemistry methods. At the high level, dry chemistry yielded higher results. Between-laboratory coefficients of variation ranged from 4.37% to 8.74%. Total error budget was mainly consumed by the bias. Non-compensated Jaffe methods largely exceeded the total error budget. Best results were obtained for the enzymatic method. The dry chemistry method consumed a large part of its error budget due to calibration bias. Despite the European IVD directive and the growing needs for creatinine standardization, an unacceptable inter-laboratory variation was observed, which was mainly due to calibration differences. The calibration variation has major clinical consequences, in particular in pediatrics, where reference ranges for serum and plasma creatinine are low, and in the estimation of glomerular filtration rate.
NASA Astrophysics Data System (ADS)
Wang, Tianyuan; Ishihara, Takeaki; Kono, Atsushi; Yoshida, Naoki; Akasaka, Hiroaki; Mukumoto, Naritoshi; Yada, Ryuichi; Ejima, Yasuo; Yoshida, Kenji; Miyawaki, Daisuke; Kakutani, Kenichiro; Nishida, Kotaro; Negi, Noriyuki; Minami, Toshiaki; Aoyama, Yuuichi; Takahashi, Satoru; Sasaki, Ryohei
2017-08-01
The objective of the present study was the determination of the potential dosimetric benefits of using metal-artefact-suppressed dual-energy computed tomography (DECT) images for cases involving pedicle screw implants in spinal sites. A heterogeneous spinal phantom was designed for the investigation of the dosimetric effect of the pedicle-screw-related artefacts. The dosimetric comparisons were first performed using a conventional two-directional opposed (AP-PA) plan, and then a volumetric modulated arc therapy (VMAT) plan, which are both used for the treatment of spinal metastases in our institution. The results of Acuros® XB dose-to-medium (Dm) and dose-to-water (Dw) calculations using different imaging options were compared with experimental measurements including the chamber and film dosimetries in the spinal phantom. A dual-energy composition image with a weight factor of -0.2 and a dual-energy monochromatic image (DEMI) with an energy level of 180 keV were found to have superior abilities for artefact suppression. The Dm calculations revealed greater dosimetric effects of the pedicle screw-related artefacts compared to the Dw calculations. The results of conventional single-energy computed tomography showed that, although the pedicle screws were made from low-Z titanium alloy, the metal artefacts still have dosimetric effects, namely, an average (maximum) Dm error of 4.4% (5.6%) inside the spinal cord for a complex VMAT treatment plan. Our findings indicate that metal-artefact suppression using the proposed DECT (DEMI) approach is promising for improving the dosimetric accuracy near the implants and inside the spinal cord (average (maximum) Dm error of 1.1% (2.0%)).
PRECISE TULLY-FISHER RELATIONS WITHOUT GALAXY INCLINATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obreschkow, D.; Meyer, M.
2013-11-10
Power-law relations between tracers of baryonic mass and rotational velocities of disk galaxies, so-called Tully-Fisher relations (TFRs), offer a wealth of applications in galaxy evolution and cosmology. However, measurements of rotational velocities require galaxy inclinations, which are difficult to measure, thus limiting the range of TFR studies. This work introduces a maximum likelihood estimation (MLE) method for recovering the TFR in galaxy samples with limited or no information on inclinations. The robustness and accuracy of this method is demonstrated using virtual and real galaxy samples. Intriguingly, the MLE reliably recovers the TFR of all test samples, even without using anymore » inclination measurements—that is, assuming a random sin i-distribution for galaxy inclinations. Explicitly, this 'inclination-free MLE' recovers the three TFR parameters (zero-point, slope, scatter) with statistical errors only about 1.5 times larger than the best estimates based on perfectly known galaxy inclinations with zero uncertainty. Thus, given realistic uncertainties, the inclination-free MLE is highly competitive. If inclination measurements have mean errors larger than 10°, it is better not to use any inclinations than to consider the inclination measurements to be exact. The inclination-free MLE opens interesting perspectives for future H I surveys by the Square Kilometer Array and its pathfinders.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pogson, E; Liverpool and Macarthur Cancer Therapy Centres, Liverpool, NSW; Ingham Institute for Applied Medical Research, Sydney, NSW
Purpose: To quantify the impact of differing magnitudes of simulated linear accelerator errors on the dose to the target volume and organs at risk for nasopharynx VMAT. Methods: Ten nasopharynx cancer patients were retrospectively replanned twice with one full arc VMAT by two institutions. Treatment uncertainties (gantry angle and collimator in degrees, MLC field size and MLC shifts in mm) were introduced into these plans at increments of 5,2,1,−1,−2 and −5. This was completed using an in-house Python script within Pinnacle3 and analysed using 3DVH and MatLab. The mean and maximum dose were calculated for the Planning Target Volume (PTV1),more » parotids, brainstem, and spinal cord and then compared to the original baseline plan. The D1cc was also calculated for the spinal cord and brainstem. Patient average results were compared across institutions. Results: Introduced gantry angle errors had the smallest effect of dose, no tolerances were exceeded for one institution, and the second institutions VMAT plans were only exceeded for gantry angle of ±5° affecting different sided parotids by 14–18%. PTV1, brainstem and spinal cord tolerances were exceeded for collimator angles of ±5 degrees, MLC shifts and MLC field sizes of ±1 and beyond, at the first institution. At the second institution, sensitivity to errors was marginally higher for some errors including the collimator error producing doses exceeding tolerances above ±2 degrees, and marginally lower with tolerances exceeded above MLC shifts of ±2. The largest differences occur with MLC field sizes, with both institutions reporting exceeded tolerances, for all introduced errors (±1 and beyond). Conclusion: The plan robustness for VMAT nasopharynx plans has been demonstrated. Gantry errors have the least impact on patient doses, however MLC field sizes exceed tolerances even with relatively low introduced errors and also produce the largest errors. This was consistent across both departments. The authors acknowledge funding support from the NSW Cancer Council.« less
NASA Astrophysics Data System (ADS)
O'Connell, Dylan; Thomas, David H.; Lamb, James M.; Lewis, John H.; Dou, Tai; Sieren, Jered P.; Saylor, Melissa; Hofmann, Christian; Hoffman, Eric A.; Lee, Percy P.; Low, Daniel A.
2018-02-01
To determine if the parameters relating lung tissue displacement to a breathing surrogate signal in a previously published respiratory motion model vary with the rate of breathing during image acquisition. An anesthetized pig was imaged using multiple fast helical scans to sample the breathing cycle with simultaneous surrogate monitoring. Three datasets were collected while the animal was mechanically ventilated with different respiratory rates: 12 bpm (breaths per minute), 17 bpm, and 24 bpm. Three sets of motion model parameters describing the correspondences between surrogate signals and tissue displacements were determined. The model error was calculated individually for each dataset, as well asfor pairs of parameters and surrogate signals from different experiments. The values of one model parameter, a vector field denoted α which related tissue displacement to surrogate amplitude, determined for each experiment were compared. The mean model error of the three datasets was 1.00 ± 0.36 mm with a 95th percentile value of 1.69 mm. The mean error computed from all combinations of parameters and surrogate signals from different datasets was 1.14 ± 0.42 mm with a 95th percentile of 1.95 mm. The mean difference in α over all pairs of experiments was 4.7% ± 5.4%, and the 95th percentile was 16.8%. The mean angle between pairs of α was 5.0 ± 4.0 degrees, with a 95th percentile of 13.2 mm. The motion model parameters were largely unaffected by changes in the breathing rate during image acquisition. The mean error associated with mismatched sets of parameters and surrogate signals was 0.14 mm greater than the error achieved when using parameters and surrogate signals acquired with the same breathing rate, while maximum respiratory motion was 23.23 mm on average.
A Nonlinear Calibration Algorithm Based on Harmonic Decomposition for Two-Axis Fluxgate Sensors
Liu, Shibin
2018-01-01
Nonlinearity is a prominent limitation to the calibration performance for two-axis fluxgate sensors. In this paper, a novel nonlinear calibration algorithm taking into account the nonlinearity of errors is proposed. In order to establish the nonlinear calibration model, the combined effort of all time-invariant errors is analyzed in detail, and then harmonic decomposition method is utilized to estimate the compensation coefficients. Meanwhile, the proposed nonlinear calibration algorithm is validated and compared with a classical calibration algorithm by experiments. The experimental results show that, after the nonlinear calibration, the maximum deviation of magnetic field magnitude is decreased from 1302 nT to 30 nT, which is smaller than 81 nT after the classical calibration. Furthermore, for the two-axis fluxgate sensor used as magnetic compass, the maximum error of heading is corrected from 1.86° to 0.07°, which is approximately 11% in contrast with 0.62° after the classical calibration. The results suggest an effective way to improve the calibration performance of two-axis fluxgate sensors. PMID:29789448
NASA Astrophysics Data System (ADS)
Omatsu, N.; Otsuka, Y.; Shiokawa, K.; Saito, S.
2013-12-01
In recent years, GPS has been utilized for navigation system for airplanes. Propagation delays in the ionosphere due to total electron content (TEC) between GPS satellite and receiver cause large positioning errors. In precision measurement using GPS, the ionospheric delay correction is generally conducted using both GPS L1 and L2 frequencies. However, L2 frequency is not internationally accepted as air navigation band, so it is not available for positioning directly in air navigation. In air navigation, not only positioning accuracy but safety is important, so augmentation systems are required to ensure the safety. Augmentation systems such as the satellite-based augmentation system (SBAS) or the ground-based augmentation system (GBAS) are being developed and some of them are already in operation. GBAS is available in a relatively narrow area around airports. In general, it corrects for the combined effects of multiple sources of positioning errors simultaneously, including satellite clock and orbital information errors, ionospheric delay errors, and tropospheric delay errors, using the differential corrections broadcast by GBAS ground station. However, if the spatial ionospheric delay gradient exists in the area, correction errors remain even after correction by GBAS. It must be a threat to GBAS. In this study, we use the GPS data provided by the Geographical Survey Institute in Japan. From the GPS data, TEC is obtained every 30 seconds. We select 4 observation points from 24.4 to 35.6 degrees north latitude in Japan, and analyze TEC data of these points from 2001 to 2011. Then we reveal dependences of Rate of TEC change Index (ROTI) on latitude, season, and solar activity statistically. ROTI is the root-mean-square deviation of time subtraction of TEC within 5 minutes. In the result, it is the midnight of the spring and the summer of the solar maximum in the point of 26.4 degrees north latitude that the value of ROTI becomes the largest. We think it is caused by plasma bubbles, and the maximum value of ROTI is about 6 TECU/min. Since it is thought that ROTI is an index representing the spatial ionospheric delay gradient, we can evaluate the effect of spatial ionospheric delay gradient to GBAS. In addition, we will discuss azimuth angle dependence of ROTI. We have found that ROTI tends to be high when the GPS satellites are seen westward. Initial analysis results in Indonesia show a similar feature. This feature could arise from the westward tilt of the plasma bubbles with altitude. More detailed results will be reported in this presentation.
Energy dissipation of slot-type flip buckets
NASA Astrophysics Data System (ADS)
Wu, Jian-hua; Li, Shu-fang; Ma, Fei
2018-03-01
The energy dissipation is a key index in the evaluation of energy dissipation elements. In the present work, a flip bucket with a slot, called the slot-type flip bucket, is theoretically and experimentally investigated by the method of estimating the energy dissipation. The theoretical analysis shows that, in order to have the energy dissipation, it is necessary to determine the sequent flow depth h 1 and the flow speed V 1 at the corresponding position through the flow depth h 2 after the hydraulic jump. The relative flow depth h 2 / h 。 is a function of the approach flow Froude number Fr 。, the relative slot width b/B 。, and the relative slot angle θ/β. The expression for estimating the energy dissipation is developed, and the maximum error is not larger than 9.21%.
Energy dissipation of slot-type flip buckets
NASA Astrophysics Data System (ADS)
Wu, Jian-hua; Li, Shu-fang; Ma, Fei
2018-04-01
The energy dissipation is a key index in the evaluation of energy dissipation elements. In the present work, a flip bucket with a slot, called the slot-type flip bucket, is theoretically and experimentally investigated by the method of estimating the energy dissipation. The theoretical analysis shows that, in order to have the energy dissipation, it is necessary to determine the sequent flow depth h 1 and the flow speed V 1 at the corresponding position through the flow depth h 2 after the hydraulic jump. The relative flow depth h 2 / h o is a function of the approach flow Froude number Fr o, the relative slot width b/ B o, and the relative slot angle θ/ β. The expression for estimating the energy dissipation is developed, and the maximum error is not larger than 9.21%.
On the effect of surface emissivity on temperature retrievals. [for meteorology
NASA Technical Reports Server (NTRS)
Kornfield, J.; Susskind, J.
1977-01-01
The paper is concerned with errors in temperature retrieval caused by incorrectly assuming that surface emissivity is equal to unity. An error equation that applies to present-day atmospheric temperature sounders is derived, and the bias errors resulting from various emissivity discrepancies are calculated. A model of downward flux is presented and used to determine the effective downward flux. In the 3.7-micron region of the spectrum, emissivities of 0.6 to 0.9 have been observed over land. At a surface temperature of 290 K, if the true emissivity is 0.6 and unit emissivity is assumed, the error would be approximately 11 C. In the 11-micron region, the maximum deviation of the surface emissivity from unity was 0.05.
NASA Technical Reports Server (NTRS)
Keller, M. (Principal Investigator)
1975-01-01
The author has identified the following significant results. Inherent errors in using nonmetric Skylab photography and office-identified photo control made it necessary to perform numerous block adjustment solutions involving different combinations of control and weights. The final block adjustment was executed holding to 14 of the office-identified photo control points. Solution accuracy was evaluated by comparing the analytically computed ground positions of the withheld photo control points with their known ground positions and also by determining the standard errors of these points from variance values. A horizontal position RMS error of 15 meters was attained. The maximum observed error in position at a control point was 25 meters.
Non-destructive investigation of thermoplastic reinforced composites
Hassen, Ahmed; Taheri, Hossein; Vaidya, Uday
2016-05-09
This paper studies various manufacturing defects in glass fiber/Polypropylene (PP) composite parts and their methods of detection. Foreign Object Inclusion (FOI) of different shapes, sizes, and materials were placed in a glass fiber/PP panel made by compression molding. The paper aims to characterize the fiber orientation and fiber related defects such as fiber waviness in the composite specimen. Comprehensive investigation for different Non Destructive Evaluation (NDE) techniques, namely X-ray radiography and Ultrasonic Testing (UT) techniques to trace and characterize the embedded defects and the composite texture are presented. Conventional X-ray radiography successfully identified the fiber orientation in two dimension (2-D)more » plane; however, information for the sample depth was not captured. The radiography techniques showed low relative errors for the defect size measurements (maximum error was below 9.5%) when compared to the ultrasonic techniques. Ultrasonic techniques were able to map all the embedded artificial defects. Phase Array (PA) ultrasonic technique was able to precisely locate the FOI in the glass fiber/PP specimen. Nerveless, the shape and size of the defects were not accurately determined due to the high signal attenuation and distortion characteristics of the E-glass fiber.« less
Casing pipe damage detection with optical fiber sensors: a case study in oil well constructions
NASA Astrophysics Data System (ADS)
Zhou, Zhi; He, Jianping; Huang, Minghua; He, Jun; Ou, Jinping; Chen, Genda
2010-04-01
Casing pipes in oil well constructions may suddenly buckle inward as their inside and outside hydrostatic pressure difference increases. For the safety of construction workers and the steady development of oil industries, it is critically important to measure the stress state of a casing pipe. This study develops a rugged, real-time monitoring, and warning system that combines the distributed Brillouin Scattering Time Domain Reflectometry (BOTDR) and the discrete fiber Bragg grating (FBG) measurement. The BOTDR optical fiber sensors were embedded with no optical fiber splice joints in a fiber reinforced polymer (FRP) rebar and the FBG sensors were wrapped in epoxy resins and glass clothes, both installed during the segmental construction of casing pipes. In-situ tests indicate that the proposed sensing system and installation technique can survive the downhole driving process of casing pipes, withstand a harsh service environment, and remain in tact with the casing pipes for compatible strain measurements. The relative error of the measured strains between the distributed and discrete sensors is less than 12%. The FBG sensors successfully measured the maximum horizontal principal stress with a relative error of 6.7% in comparison with a cross multi-pole array acoustic instrument.
Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir
2016-10-14
A piezo-resistive pressure sensor is made of silicon, the nature of which is considerably influenced by ambient temperature. The effect of temperature should be eliminated during the working period in expectation of linear output. To deal with this issue, an approach consists of a hybrid kernel Least Squares Support Vector Machine (LSSVM) optimized by a chaotic ions motion algorithm presented. To achieve the learning and generalization for excellent performance, a hybrid kernel function, constructed by a local kernel as Radial Basis Function (RBF) kernel, and a global kernel as polynomial kernel is incorporated into the Least Squares Support Vector Machine. The chaotic ions motion algorithm is introduced to find the best hyper-parameters of the Least Squares Support Vector Machine. The temperature data from a calibration experiment is conducted to validate the proposed method. With attention on algorithm robustness and engineering applications, the compensation result shows the proposed scheme outperforms other compared methods on several performance measures as maximum absolute relative error, minimum absolute relative error mean and variance of the averaged value on fifty runs. Furthermore, the proposed temperature compensation approach lays a foundation for more extensive research.
ERIC Educational Resources Information Center
Molenaar, Peter C. M.; Nesselroade, John R.
1998-01-01
Pseudo-Maximum Likelihood (p-ML) and Asymptotically Distribution Free (ADF) estimation methods for estimating dynamic factor model parameters within a covariance structure framework were compared through a Monte Carlo simulation. Both methods appear to give consistent model parameter estimates, but only ADF gives standard errors and chi-square…
Graf, Alexandra C; Bauer, Peter; Glimm, Ekkehard; Koenig, Franz
2014-07-01
Sample size modifications in the interim analyses of an adaptive design can inflate the type 1 error rate, if test statistics and critical boundaries are used in the final analysis as if no modification had been made. While this is already true for designs with an overall change of the sample size in a balanced treatment-control comparison, the inflation can be much larger if in addition a modification of allocation ratios is allowed as well. In this paper, we investigate adaptive designs with several treatment arms compared to a single common control group. Regarding modifications, we consider treatment arm selection as well as modifications of overall sample size and allocation ratios. The inflation is quantified for two approaches: a naive procedure that ignores not only all modifications, but also the multiplicity issue arising from the many-to-one comparison, and a Dunnett procedure that ignores modifications, but adjusts for the initially started multiple treatments. The maximum inflation of the type 1 error rate for such types of design can be calculated by searching for the "worst case" scenarios, that are sample size adaptation rules in the interim analysis that lead to the largest conditional type 1 error rate in any point of the sample space. To show the most extreme inflation, we initially assume unconstrained second stage sample size modifications leading to a large inflation of the type 1 error rate. Furthermore, we investigate the inflation when putting constraints on the second stage sample sizes. It turns out that, for example fixing the sample size of the control group, leads to designs controlling the type 1 error rate. © 2014 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Integrated Data and Control Level Fault Tolerance Techniques for Signal Processing Computer Design
1990-09-01
TOLERANCE TECHNIQUES FOR SIGNAL PROCESSING COMPUTER DESIGN G. Robert Redinbo I. INTRODUCTION High-speed signal processing is an important application of...techniques and mathematical approaches will be expanded later to the situation where hardware errors and roundoff and quantization noise affect all...detect errors equal in number to the degree of g(X), the maximum permitted by the Singleton bound [13]. Real cyclic codes, primarily applicable to
A simplified model of a mechanical cooling tower with both a fill pack and a coil
NASA Astrophysics Data System (ADS)
Van Riet, Freek; Steenackers, Gunther; Verhaert, Ivan
2017-11-01
Cooling accounts for a large amount of the global primary energy consumption in buildings and industrial processes. A substantial part of this cooling demand is produced by mechanical cooling towers. Simulations benefit the sizing and integration of cooling towers in overall cooling networks. However, for these simulations fast-to-calculate and easy-to-parametrize models are required. In this paper, a new model is developed for a mechanical draught cooling tower with both a cooling coil and a fill pack. The model needs manufacturers' performance data at only three operational states (at varying air and water flow rates) to be parametrized. The model predicts the cooled, outgoing water temperature. These predictions were compared with experimental data for a wide range of operational states. The model was able to predict the temperature with a maximum absolute error of 0.59°C. The relative error of cooling capacity was mostly between ±5%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
CHERTKOV, MICHAEL; STEPANOV, MIKHAIL
2007-01-10
The authors discuss performance of Low-Density-Parity-Check (LDPC) codes decoded by Linear Programming (LP) decoding at moderate and large Signal-to-Noise-Ratios (SNR). Frame-Error-Rate (FER) dependence on SNR and the noise space landscape of the coding/decoding scheme are analyzed by a combination of the previously introduced instanton/pseudo-codeword-search method and a new 'dendro' trick. To reduce complexity of the LP decoding for a code with high-degree checks, {ge} 5, they introduce its dendro-LDPC counterpart, that is the code performing identifically to the original one under Maximum-A-Posteriori (MAP) decoding but having reduced (down to three) check connectivity degree. Analyzing number of popular LDPC codes andmore » their dendro versions performing over the Additive-White-Gaussian-Noise (AWGN) channel, they observed two qualitatively different regimes: (i) error-floor sets early, at relatively low SNR, and (ii) FER decays with SNR increase faster at moderate SNR than at the largest SNR. They explain these regimes in terms of the pseudo-codeword spectra of the codes.« less
Method of resolving radio phase ambiguity in satellite orbit determination
NASA Technical Reports Server (NTRS)
Councelman, Charles C., III; Abbot, Richard I.
1989-01-01
For satellite orbit determination, the most accurate observable available today is microwave radio phase, which can be differenced between observing stations and between satellites to cancel both transmitter- and receiver-related errors. For maximum accuracy, the integer cycle ambiguities of the doubly differenced observations must be resolved. To perform this ambiguity resolution, a bootstrapping strategy is proposed. This strategy requires the tracking stations to have a wide ranging progression of spacings. By conventional 'integrated Doppler' processing of the observations from the most widely spaced stations, the orbits are determined well enough to permit resolution of the ambiguities for the most closely spaced stations. The resolution of these ambiguities reduces the uncertainty of the orbit determination enough to enable ambiguity resolution for more widely spaced stations, which further reduces the orbital uncertainty. In a test of this strategy with six tracking stations, both the formal and the true errors of determining Global Positioning System satellite orbits were reduced by a factor of 2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabitsch, W.B.
1997-07-01
Asymmetries of bilaterally symmetrical morphological traits in workers of the ant Formica pratensis Retzius were compared at sites with different levels of metal contamination and between mature and pre-mature colonies. Statistical analyses of the right-minus-left differences revealed that their distributions fit assumptions of fluctuating asymmetry (FA). No direct asymmetry or antisymmetry were present. Mean measurement error accounts for a third of the variation, but the maximum measurement error was 65%. Although significant differences of FA in ants were observed, the inconsistent results render uncovering a clear pattern difficult. Lead, cadmium, and zinc concentrations in the ants decreased with the distancemore » from the contamination source, but no relation was found between FA and the heavy metal levels. Ants from the premature colonies were more asymmetrical than those from mature colonies but accumulated less metals. The use of asymmetry measures in ecotoxicology and biomonitoring is criticized, but should remain widely applicable if statistical assumptions are complemented by genetic and historical data.« less
Neural Modeling of Fuzzy Controllers for Maximum Power Point Tracking in Photovoltaic Energy Systems
NASA Astrophysics Data System (ADS)
Lopez-Guede, Jose Manuel; Ramos-Hernanz, Josean; Altın, Necmi; Ozdemir, Saban; Kurt, Erol; Azkune, Gorka
2018-06-01
One field in which electronic materials have an important role is energy generation, especially within the scope of photovoltaic energy. This paper deals with one of the most relevant enabling technologies within that scope, i.e, the algorithms for maximum power point tracking implemented in the direct current to direct current converters and its modeling through artificial neural networks (ANNs). More specifically, as a proof of concept, we have addressed the problem of modeling a fuzzy logic controller that has shown its performance in previous works, and more specifically the dimensionless duty cycle signal that controls a quadratic boost converter. We achieved a very accurate model since the obtained medium squared error is 3.47 × 10-6, the maximum error is 16.32 × 10-3 and the regression coefficient R is 0.99992, all for the test dataset. This neural implementation has obvious advantages such as a higher fault tolerance and a simpler implementation, dispensing with all the complex elements needed to run a fuzzy controller (fuzzifier, defuzzifier, inference engine and knowledge base) because, ultimately, ANNs are sums and products.
Viterbi equalization for long-distance, high-speed underwater laser communication
NASA Astrophysics Data System (ADS)
Hu, Siqi; Mi, Le; Zhou, Tianhua; Chen, Weibiao
2017-07-01
In long-distance, high-speed underwater laser communication, because of the strong absorption and scattering processes, the laser pulse is stretched with the increase in communication distance and the decrease in water clarity. The maximum communication bandwidth is limited by laser-pulse stretching. Improving the communication rate increases the intersymbol interference (ISI). To reduce the effect of ISI, the Viterbi equalization (VE) algorithm is used to estimate the maximum-likelihood receiving sequence. The Monte Carlo method is used to simulate the stretching of the received laser pulse and the maximum communication rate at a wavelength of 532 nm in Jerlov IB and Jerlov II water channels with communication distances of 80, 100, and 130 m, respectively. The high-data rate communication performance for the VE and hard-decision algorithms is compared. The simulation results show that the VE algorithm can be used to reduce the ISI by selecting the minimum error path. The trade-off between the high-data rate communication performance and minor bit-error rate performance loss makes VE a promising option for applications in long-distance, high-speed underwater laser communication systems.
Thresholding Based on Maximum Weighted Object Correlation for Rail Defect Detection
NASA Astrophysics Data System (ADS)
Li, Qingyong; Huang, Yaping; Liang, Zhengping; Luo, Siwei
Automatic thresholding is an important technique for rail defect detection, but traditional methods are not competent enough to fit the characteristics of this application. This paper proposes the Maximum Weighted Object Correlation (MWOC) thresholding method, fitting the features that rail images are unimodal and defect proportion is small. MWOC selects a threshold by optimizing the product of object correlation and the weight term that expresses the proportion of thresholded defects. Our experimental results demonstrate that MWOC achieves misclassification error of 0.85%, and outperforms the other well-established thresholding methods, including Otsu, maximum correlation thresholding, maximum entropy thresholding and valley-emphasis method, for the application of rail defect detection.
The Applicability of Confidence Intervals of Quantiles for the Generalized Logistic Distribution
NASA Astrophysics Data System (ADS)
Shin, H.; Heo, J.; Kim, T.; Jung, Y.
2007-12-01
The generalized logistic (GL) distribution has been widely used for frequency analysis. However, there is a little study related to the confidence intervals that indicate the prediction accuracy of distribution for the GL distribution. In this paper, the estimation of the confidence intervals of quantiles for the GL distribution is presented based on the method of moments (MOM), maximum likelihood (ML), and probability weighted moments (PWM) and the asymptotic variances of each quantile estimator are derived as functions of the sample sizes, return periods, and parameters. Monte Carlo simulation experiments are also performed to verify the applicability of the derived confidence intervals of quantile. As the results, the relative bias (RBIAS) and relative root mean square error (RRMSE) of the confidence intervals generally increase as return period increases and reverse as sample size increases. And PWM for estimating the confidence intervals performs better than the other methods in terms of RRMSE when the data is almost symmetric while ML shows the smallest RBIAS and RRMSE when the data is more skewed and sample size is moderately large. The GL model was applied to fit the distribution of annual maximum rainfall data. The results show that there are little differences in the estimated quantiles between ML and PWM while distinct differences in MOM.
Methods for estimating magnitude and frequency of floods in Montana based on data through 1983
Omang, R.J.; Parrett, Charles; Hull, J.A.
1986-01-01
Equations are presented for estimating flood magnitudes for ungaged sites in Montana based on data through 1983. The State was divided into eight regions based on hydrologic conditions, and separate multiple regression equations were developed for each region. These equations relate annual flood magnitudes and frequencies to basin characteristics and are applicable only to natural flow streams. In three of the regions, equations also were developed relating flood magnitudes and frequencies to basin characteristics and channel geometry measurements. The standard errors of estimate for an exceedance probability of 1% ranged from 39% to 87%. Techniques are described for estimating annual flood magnitude and flood frequency information at ungaged sites based on data from gaged sites on the same stream. Included are curves relating flood frequency information to drainage area for eight major streams in the State. Maximum known flood magnitudes in Montana are compared with estimated 1 %-chance flood magnitudes and with maximum known floods in the United States. Values of flood magnitudes for selected exceedance probabilities and values of significant basin characteristics and channel geometry measurements for all gaging stations used in the analysis are tabulated. Included are 375 stations in Montana and 28 nearby stations in Canada and adjoining States. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Wang, J.; Shi, M.; Zheng, P.; Xue, Sh.; Peng, R.
2018-03-01
Laser-induced breakdown spectroscopy has been applied for the quantitative analysis of Ca, Mg, and K in the roots of Angelica pubescens Maxim. f. biserrata Shan et Yuan used in traditional Chinese medicine. Ca II 317.993 nm, Mg I 517.268 nm, and K I 769.896 nm spectral lines have been chosen to set up calibration models for the analysis using the external standard and artificial neural network methods. The linear correlation coefficients of the predicted concentrations versus the standard concentrations of six samples determined by the artificial neural network method are 0.9896, 0.9945, and 0.9911 for Ca, Mg, and K, respectively, which are better than for the external standard method. The artificial neural network method also gives better performance comparing with the external standard method for the average and maximum relative errors, average relative standard deviations, and most maximum relative standard deviations of the predicted concentrations of Ca, Mg, and K in the six samples. Finally, it is proved that the artificial neural network method gives better performance compared to the external standard method for the quantitative analysis of Ca, Mg, and K in the roots of Angelica pubescens.
Laser damage metrology in biaxial nonlinear crystals using different test beams
NASA Astrophysics Data System (ADS)
Hildenbrand, Anne; Wagner, Frank R.; Akhouayri, Hassan; Natoli, Jean-Yves; Commandre, Mireille
2008-01-01
Laser damage measurements in nonlinear optical crystals, in particular in biaxial crystals, may be influenced by several effects proper to these materials or greatly enhanced in these materials. Before discussion of these effects, we address the topic of error bar determination for probability measurements. Error bars for the damage probabilities are important because nonlinear crystals are often small and expensive, thus only few sites are used for a single damage probability measurement. We present the mathematical basics and a flow diagram for the numerical calculation of error bars for probability measurements that correspond to a chosen confidence level. Effects that possibly modify the maximum intensity in a biaxial nonlinear crystal are: focusing aberration, walk-off and self-focusing. Depending on focusing conditions, propagation direction, polarization of the light and the position of the focus point in the crystal, strong aberrations may change the beam profile and drastically decrease the maximum intensity in the crystal. A correction factor for this effect is proposed, but quantitative corrections are not possible without taking into account the experimental beam profile after the focusing lens. The characteristics of walk-off and self-focusing have quickly been reviewed for the sake of completeness of this article. Finally, parasitic second harmonic generation may influence the laser damage behavior of crystals. The important point for laser damage measurements is that the amount of externally observed SHG after the crystal does not correspond to the maximum amount of second harmonic light inside the crystal.
NASA Astrophysics Data System (ADS)
M, H. Moghtader Dindarlu; M Kavosh, Tehrani; H, Saghafifar; A, Maleki
2015-12-01
In this paper, according to the temperature and strain distribution obtained by considering the Gaussian pump profile and dependence of physical properties on temperature, we derive an analytical model for refractive index variations of the diode side-pumped Nd:YAG laser rod. Then we evaluate this model by numerical solution and our maximum relative errors are 5% and 10% for variations caused by thermo-optical and thermo-mechanical effects; respectively. Finally, we present an analytical model for calculating the focal length of the thermal lens and spherical aberration. This model is evaluated by experimental results.
A method for calibration of Soleil-Babinet compensator using a spectrophotometer
NASA Astrophysics Data System (ADS)
Wang, Jun; Chen, Lei; Li, Bo; Shi, Lili; Luo, Ting
2010-06-01
A method using a spectrophotometer for calibrating Soleil-Babinet compensator is proposed. It is based on the spectroscopic method which utilizes the relation between transmittance and wavelength to obtain retardation. By placing a multiple order half wave plate behind the Soleil-Babinet compensator, zero-order retardation can be measured, which is difficult to accomplish by spectroscopic method. In the experiment, the retardations of the compensator in the range 0- λ are measured. It is demonstrated that the precision of retardation is 0.45 nm at the position 0 and λ while the maximum error is less than 1 nm between the two positions.
Maximum-likelihood block detection of noncoherent continuous phase modulation
NASA Technical Reports Server (NTRS)
Simon, Marvin K.; Divsalar, Dariush
1993-01-01
This paper examines maximum-likelihood block detection of uncoded full response CPM over an additive white Gaussian noise (AWGN) channel. Both the maximum-likelihood metrics and the bit error probability performances of the associated detection algorithms are considered. The special and popular case of minimum-shift-keying (MSK) corresponding to h = 0.5 and constant amplitude frequency pulse is treated separately. The many new receiver structures that result from this investigation can be compared to the traditional ones that have been used in the past both from the standpoint of simplicity of implementation and optimality of performance.
Solar maximum mission fine pointing sun sensor dawn and dusk errors flight data and model analysis
NASA Technical Reports Server (NTRS)
Kulp, D. R.
1988-01-01
SMM flight system control errors occurring at spacecraft dawn and dusk are analyzed. The errors are associated with the fine pointing sun sensor (FPSS), which is a primary component of the SMM attitude control system. It is shown that the source of the FPSS dawn/dusk distortion is the incomplete masking of sunlight reflected off the earth by the optical baffle covering the FPSS sensor heads onboard the SMM during periods of orbit dawn and dusk. For the most part, the modeled behavior of the FPSS under dawn and dusk lighting conditions matches the observed behavior in the SMM flight data.
NASA Technical Reports Server (NTRS)
Litvin, F. L.; Handschuh, R. F.; Zhang, J.
1988-01-01
A method for generation of crowned pinion tooth surfaces using a surface of revolution is developed. The crowned pinion meshes with a regular involute gear and has a prescribed parabolic type of transmission errors when the gears operate in the aligned mode. When the gears are misaligned the transmission error remains parabolic with the maximum level still remaining very small (less than 0.34 arc second for the numerical examples). Tooth Contact Analysis (TCA) is used to simulate the conditions of meshing, determine the transmission error, and the bearing contact.
NASA Technical Reports Server (NTRS)
Klein, V.
1979-01-01
Two identification methods, the equation error method and the output error method, are used to estimate stability and control parameter values from flight data for a low-wing, single-engine, general aviation airplane. The estimated parameters from both methods are in very good agreement primarily because of sufficient accuracy of measured data. The estimated static parameters also agree with the results from steady flights. The effect of power different input forms are demonstrated. Examination of all results available gives the best values of estimated parameters and specifies their accuracies.
Soft-decision decoding techniques for linear block codes and their error performance analysis
NASA Technical Reports Server (NTRS)
Lin, Shu
1996-01-01
The first paper presents a new minimum-weight trellis-based soft-decision iterative decoding algorithm for binary linear block codes. The second paper derives an upper bound on the probability of block error for multilevel concatenated codes (MLCC). The bound evaluates difference in performance for different decompositions of some codes. The third paper investigates the bit error probability code for maximum likelihood decoding of binary linear codes. The fourth and final paper included in this report is concerns itself with the construction of multilevel concatenated block modulation codes using a multilevel concatenation scheme for the frequency non-selective Rayleigh fading channel.
Rothmann, Mark
2005-01-01
When testing the equality of means from two different populations, a t-test or large sample normal test tend to be performed. For these tests, when the sample size or design for the second sample is dependent on the results of the first sample, the type I error probability is altered for each specific possibility in the null hypothesis. We will examine the impact on the type I error probabilities for two confidence interval procedures and procedures using test statistics when the design for the second sample or experiment is dependent on the results from the first sample or experiment (or series of experiments). Ways for controlling a desired maximum type I error probability or a desired type I error rate will be discussed. Results are applied to the setting of noninferiority comparisons in active controlled trials where the use of a placebo is unethical.
Simba, Kenneth Renny; Bui, Ba Dinh; Msukwa, Mathew Renny; Uchiyama, Naoki
2018-04-01
In feed drive systems, particularly machine tools, a contour error is more significant than the individual axial tracking errors from the view point of enhancing precision in manufacturing and production systems. The contour error must be within the permissible tolerance of given products. In machining complex or sharp-corner products, large contour errors occur mainly owing to discontinuous trajectories and the existence of nonlinear uncertainties. Therefore, it is indispensable to design robust controllers that can enhance the tracking ability of feed drive systems. In this study, an iterative learning contouring controller consisting of a classical Proportional-Derivative (PD) controller and disturbance observer is proposed. The proposed controller was evaluated experimentally by using a typical sharp-corner trajectory, and its performance was compared with that of conventional controllers. The results revealed that the maximum contour error can be reduced by about 37% on average. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Motion-induced phase error estimation and correction in 3D diffusion tensor imaging.
Van, Anh T; Hernando, Diego; Sutton, Bradley P
2011-11-01
A multishot data acquisition strategy is one way to mitigate B0 distortion and T2∗ blurring for high-resolution diffusion-weighted magnetic resonance imaging experiments. However, different object motions that take place during different shots cause phase inconsistencies in the data, leading to significant image artifacts. This work proposes a maximum likelihood estimation and k-space correction of motion-induced phase errors in 3D multishot diffusion tensor imaging. The proposed error estimation is robust, unbiased, and approaches the Cramer-Rao lower bound. For rigid body motion, the proposed correction effectively removes motion-induced phase errors regardless of the k-space trajectory used and gives comparable performance to the more computationally expensive 3D iterative nonlinear phase error correction method. The method has been extended to handle multichannel data collected using phased-array coils. Simulation and in vivo data are shown to demonstrate the performance of the method.
Error of the slanted edge method for measuring the modulation transfer function of imaging systems.
Xie, Xufen; Fan, Hongda; Wang, Hongyuan; Wang, Zebin; Zou, Nianyu
2018-03-01
The slanted edge method is a basic approach for measuring the modulation transfer function (MTF) of imaging systems; however, its measurement accuracy is limited in practice. Theoretical analysis of the slanted edge MTF measurement method performed in this paper reveals that inappropriate edge angles and random noise reduce this accuracy. The error caused by edge angles is analyzed using sampling and reconstruction theory. Furthermore, an error model combining noise and edge angles is proposed. We verify the analyses and model with respect to (i) the edge angle, (ii) a statistical analysis of the measurement error, (iii) the full width at half-maximum of a point spread function, and (iv) the error model. The experimental results verify the theoretical findings. This research can be referential for applications of the slanted edge MTF measurement method.
NASA Astrophysics Data System (ADS)
Xu, Yadong; Serre, Marc L.; Reyes, Jeanette M.; Vizuete, William
2017-10-01
We have developed a Bayesian Maximum Entropy (BME) framework that integrates observations from a surface monitoring network and predictions from a Chemical Transport Model (CTM) to create improved exposure estimates that can be resolved into any spatial and temporal resolution. The flexibility of the framework allows for input of data in any choice of time scales and CTM predictions of any spatial resolution with varying associated degrees of estimation error and cost in terms of implementation and computation. This study quantifies the impact on exposure estimation error due to these choices by first comparing estimations errors when BME relied on ozone concentration data either as an hourly average, the daily maximum 8-h average (DM8A), or the daily 24-h average (D24A). Our analysis found that the use of DM8A and D24A data, although less computationally intensive, reduced estimation error more when compared to the use of hourly data. This was primarily due to the poorer CTM model performance in the hourly average predicted ozone. Our second analysis compared spatial variability and estimation errors when BME relied on CTM predictions with a grid cell resolution of 12 × 12 km2 versus a coarser resolution of 36 × 36 km2. Our analysis found that integrating the finer grid resolution CTM predictions not only reduced estimation error, but also increased the spatial variability in daily ozone estimates by 5 times. This improvement was due to the improved spatial gradients and model performance found in the finer resolved CTM simulation. The integration of observational and model predictions that is permitted in a BME framework continues to be a powerful approach for improving exposure estimates of ambient air pollution. The results of this analysis demonstrate the importance of also understanding model performance variability and its implications on exposure error.
Kukush, Alexander; Shklyar, Sergiy; Masiuk, Sergii; Likhtarov, Illya; Kovgan, Lina; Carroll, Raymond J; Bouville, Andre
2011-02-16
With a binary response Y, the dose-response model under consideration is logistic in flavor with pr(Y=1 | D) = R (1+R)(-1), R = λ(0) + EAR D, where λ(0) is the baseline incidence rate and EAR is the excess absolute risk per gray. The calculated thyroid dose of a person i is expressed as Dimes=fiQi(mes)/Mi(mes). Here, Qi(mes) is the measured content of radioiodine in the thyroid gland of person i at time t(mes), Mi(mes) is the estimate of the thyroid mass, and f(i) is the normalizing multiplier. The Q(i) and M(i) are measured with multiplicative errors Vi(Q) and ViM, so that Qi(mes)=Qi(tr)Vi(Q) (this is classical measurement error model) and Mi(tr)=Mi(mes)Vi(M) (this is Berkson measurement error model). Here, Qi(tr) is the true content of radioactivity in the thyroid gland, and Mi(tr) is the true value of the thyroid mass. The error in f(i) is much smaller than the errors in ( Qi(mes), Mi(mes)) and ignored in the analysis. By means of Parametric Full Maximum Likelihood and Regression Calibration (under the assumption that the data set of true doses has lognormal distribution), Nonparametric Full Maximum Likelihood, Nonparametric Regression Calibration, and by properly tuned SIMEX method we study the influence of measurement errors in thyroid dose on the estimates of λ(0) and EAR. The simulation study is presented based on a real sample from the epidemiological studies. The doses were reconstructed in the framework of the Ukrainian-American project on the investigation of Post-Chernobyl thyroid cancers in Ukraine, and the underlying subpolulation was artificially enlarged in order to increase the statistical power. The true risk parameters were given by the values to earlier epidemiological studies, and then the binary response was simulated according to the dose-response model.
Auto-tracking system for human lumbar motion analysis.
Sui, Fuge; Zhang, Da; Lam, Shing Chun Benny; Zhao, Lifeng; Wang, Dongjun; Bi, Zhenggang; Hu, Yong
2011-01-01
Previous lumbar motion analyses suggest the usefulness of quantitatively characterizing spine motion. However, the application of such measurements is still limited by the lack of user-friendly automatic spine motion analysis systems. This paper describes an automatic analysis system to measure lumbar spine disorders that consists of a spine motion guidance device, an X-ray imaging modality to acquire digitized video fluoroscopy (DVF) sequences and an automated tracking module with a graphical user interface (GUI). DVF sequences of the lumbar spine are recorded during flexion-extension under a guidance device. The automatic tracking software utilizing a particle filter locates the vertebra-of-interest in every frame of the sequence, and the tracking result is displayed on the GUI. Kinematic parameters are also extracted from the tracking results for motion analysis. We observed that, in a bone model test, the maximum fiducial error was 3.7%, and the maximum repeatability error in translation and rotation was 1.2% and 2.6%, respectively. In our simulated DVF sequence study, the automatic tracking was not successful when the noise intensity was greater than 0.50. In a noisy situation, the maximal difference was 1.3 mm in translation and 1° in the rotation angle. The errors were calculated in translation (fiducial error: 2.4%, repeatability error: 0.5%) and in the rotation angle (fiducial error: 1.0%, repeatability error: 0.7%). However, the automatic tracking software could successfully track simulated sequences contaminated by noise at a density ≤ 0.5 with very high accuracy, providing good reliability and robustness. A clinical trial with 10 healthy subjects and 2 lumbar spondylolisthesis patients were enrolled in this study. The measurement with auto-tacking of DVF provided some information not seen in the conventional X-ray. The results proposed the potential use of the proposed system for clinical applications.
Generalized site occupancy models allowing for false positive and false negative errors
Royle, J. Andrew; Link, W.A.
2006-01-01
Site occupancy models have been developed that allow for imperfect species detection or ?false negative? observations. Such models have become widely adopted in surveys of many taxa. The most fundamental assumption underlying these models is that ?false positive? errors are not possible. That is, one cannot detect a species where it does not occur. However, such errors are possible in many sampling situations for a number of reasons, and even low false positive error rates can induce extreme bias in estimates of site occupancy when they are not accounted for. In this paper, we develop a model for site occupancy that allows for both false negative and false positive error rates. This model can be represented as a two-component finite mixture model and can be easily fitted using freely available software. We provide an analysis of avian survey data using the proposed model and present results of a brief simulation study evaluating the performance of the maximum-likelihood estimator and the naive estimator in the presence of false positive errors.
Maximum likelihood estimation in calibrating a stereo camera setup.
Muijtjens, A M; Roos, J M; Arts, T; Hasman, A
1999-02-01
Motion and deformation of the cardiac wall may be measured by following the positions of implanted radiopaque markers in three dimensions, using two x-ray cameras simultaneously. Regularly, calibration of the position measurement system is obtained by registration of the images of a calibration object, containing 10-20 radiopaque markers at known positions. Unfortunately, an accidental change of the position of a camera after calibration requires complete recalibration. Alternatively, redundant information in the measured image positions of stereo pairs can be used for calibration. Thus, a separate calibration procedure can be avoided. In the current study a model is developed that describes the geometry of the camera setup by five dimensionless parameters. Maximum Likelihood (ML) estimates of these parameters were obtained in an error analysis. It is shown that the ML estimates can be found by application of a nonlinear least squares procedure. Compared to the standard unweighted least squares procedure, the ML method resulted in more accurate estimates without noticeable bias. The accuracy of the ML method was investigated in relation to the object aperture. The reconstruction problem appeared well conditioned as long as the object aperture is larger than 0.1 rad. The angle between the two viewing directions appeared to be the parameter that was most likely to cause major inaccuracies in the reconstruction of the 3-D positions of the markers. Hence, attempts to improve the robustness of the method should primarily focus on reduction of the error in this parameter.
A new compression format for fiber tracking datasets.
Presseau, Caroline; Jodoin, Pierre-Marc; Houde, Jean-Christophe; Descoteaux, Maxime
2015-04-01
A single diffusion MRI streamline fiber tracking dataset may contain hundreds of thousands, and often millions of streamlines and can take up to several gigabytes of memory. This amount of data is not only heavy to compute, but also difficult to visualize and hard to store on disk (especially when dealing with a collection of brains). These problems call for a fiber-specific compression format that simplifies its manipulation. As of today, no fiber compression format has yet been adopted and the need for it is now becoming an issue for future connectomics research. In this work, we propose a new compression format, .zfib, for streamline tractography datasets reconstructed from diffusion magnetic resonance imaging (dMRI). Tracts contain a large amount of redundant information and are relatively smooth. Hence, they are highly compressible. The proposed method is a processing pipeline containing a linearization, a quantization and an encoding step. Our pipeline is tested and validated under a wide range of DTI and HARDI tractography configurations (step size, streamline number, deterministic and probabilistic tracking) and compression options. Similar to JPEG, the user has one parameter to select: a worst-case maximum tolerance error in millimeter (mm). Overall, we find a compression factor of more than 96% for a maximum error of 0.1mm without any perceptual change or change of diffusion statistics (mean fractional anisotropy and mean diffusivity) along bundles. This opens new opportunities for connectomics and tractometry applications. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Webb, Mathew A.; Hall, Andrew; Kidd, Darren; Minansy, Budiman
2016-05-01
Assessment of local spatial climatic variability is important in the planning of planting locations for horticultural crops. This study investigated three regression-based calibration methods (i.e. traditional versus two optimized methods) to relate short-term 12-month data series from 170 temperature loggers and 4 weather station sites with data series from nearby long-term Australian Bureau of Meteorology climate stations. The techniques trialled to interpolate climatic temperature variables, such as frost risk, growing degree days (GDDs) and chill hours, were regression kriging (RK), regression trees (RTs) and random forests (RFs). All three calibration methods produced accurate results, with the RK-based calibration method delivering the most accurate validation measures: coefficients of determination ( R 2) of 0.92, 0.97 and 0.95 and root-mean-square errors of 1.30, 0.80 and 1.31 °C, for daily minimum, daily maximum and hourly temperatures, respectively. Compared with the traditional method of calibration using direct linear regression between short-term and long-term stations, the RK-based calibration method improved R 2 and reduced root-mean-square error (RMSE) by at least 5 % and 0.47 °C for daily minimum temperature, 1 % and 0.23 °C for daily maximum temperature and 3 % and 0.33 °C for hourly temperature. Spatial modelling indicated insignificant differences between the interpolation methods, with the RK technique tending to be the slightly better method due to the high degree of spatial autocorrelation between logger sites.
NASA Astrophysics Data System (ADS)
Giday, Nigussie M.; Katamzi-Joseph, Zama T.
2018-02-01
This study investigates the performance of a tomographic algorithm, Multi-Instrument and Data Analysis System (MIDAS), during an extended period of 4-14 March 2012, containing moderate and strong geomagnetic storms conditions, over an understudied and data scarce Eastern African longitude sector. Nonetheless, a relatively better distribution of Global Navigation Satellite Systems stations exists along a narrow longitude sector between 30°E and 44°E and latitude range of 30°S and 36°N that spans the equatorial, middle-, and low-latitude ionosphere. Then results are compared with independent global models such as International Reference Ionosphere 2012 (IRI-2012) and global ionosphere map (GIM). MIDAS performance was better than that of the IRI-2012 and GIM models in terms of capturing the diurnal trends as well as the short temporal total electron content (TEC) structures, with least root-mean-square errors (RMSEs). Overall, MIDAS results showed better agreement with the observation vertical TEC (VTEC) with computed maximum correlation coefficient (r) of 0.99 and minimum root-mean-square error (RMSE) of 2.91 TEC unit (1 TECU = 1,016 el m-2 over all the test stations and the validation days. Conversely, for the IRI-2012 and GIM TEC estimates, the corresponding maximum computed r values were 0.93 and 0.99, respectively, while the minimum RMSEs were 13.03 TECU and 6.52 TECU, respectively, for all the test stations and the validation days.
Energy dependence of SEP electron and proton onset times
NASA Astrophysics Data System (ADS)
Xie, H.; Mäkelä, P.; Gopalswamy, N.; St. Cyr, O. C.
2016-07-01
We study the large solar energetic particle (SEP) events that were detected by GOES in the >10 MeV energy channel during December 2006 to March 2014. We derive and compare solar particle release (SPR) times for the 0.25-10.4 MeV electrons and 10-100 MeV protons for the 28 SEP events. In the study, the electron SPR times are derived with the time-shifting analysis (TSA) and the proton SPR times are derived using both the TSA and the velocity dispersion analysis (VDA). Electron anisotropies are computed to evaluate the amount of scattering for the events under study. Our main results include (1) near-relativistic electrons and high-energy protons are released at the same time within 8 min for most (16 of 23) SEP events. (2)There exists a good correlation between electron and proton acceleration, peak intensity, and intensity time profiles. (3) The TSA SPR times for 90.5 MeV and 57.4 MeV protons have maximum errors of 6 min and 10 min compared to the proton VDA release times, respectively, while the maximum error for 15.4 MeV protons can reach to 32 min. (4) For 7 low-intensity events of the 23, large delays occurred for 6.5 MeV electrons and 90.5 MeV protons relative to 0.5 MeV electrons. Whether these delays are due to times needed for the evolving shock to be strengthened or due to particle transport effects remains unsolved.
Parametric Modulation of Error-Related ERP Components by the Magnitude of Visuo-Motor Mismatch
ERIC Educational Resources Information Center
Vocat, Roland; Pourtois, Gilles; Vuilleumier, Patrik
2011-01-01
Errors generate typical brain responses, characterized by two successive event-related potentials (ERP) following incorrect action: the error-related negativity (ERN) and the positivity error (Pe). However, it is unclear whether these error-related responses are sensitive to the magnitude of the error, or instead show all-or-none effects. We…
Liu, Zun-lei; Yuan, Xing-wei; Yang, Lin-lin; Yan, Li-ping; Zhang, Hui; Cheng, Jia-hua
2015-02-01
Multiple hypotheses are available to explain recruitment rate. Model selection methods can be used to identify the best model that supports a particular hypothesis. However, using a single model for estimating recruitment success is often inadequate for overexploited population because of high model uncertainty. In this study, stock-recruitment data of small yellow croaker in the East China Sea collected from fishery dependent and independent surveys between 1992 and 2012 were used to examine density-dependent effects on recruitment success. Model selection methods based on frequentist (AIC, maximum adjusted R2 and P-values) and Bayesian (Bayesian model averaging, BMA) methods were applied to identify the relationship between recruitment and environment conditions. Interannual variability of the East China Sea environment was indicated by sea surface temperature ( SST) , meridional wind stress (MWS), zonal wind stress (ZWS), sea surface pressure (SPP) and runoff of Changjiang River ( RCR). Mean absolute error, mean squared predictive error and continuous ranked probability score were calculated to evaluate the predictive performance of recruitment success. The results showed that models structures were not consistent based on three kinds of model selection methods, predictive variables of models were spawning abundance and MWS by AIC, spawning abundance by P-values, spawning abundance, MWS and RCR by maximum adjusted R2. The recruitment success decreased linearly with stock abundance (P < 0.01), suggesting overcompensation effect in the recruitment success might be due to cannibalism or food competition. Meridional wind intensity showed marginally significant and positive effects on the recruitment success (P = 0.06), while runoff of Changjiang River showed a marginally negative effect (P = 0.07). Based on mean absolute error and continuous ranked probability score, predictive error associated with models obtained from BMA was the smallest amongst different approaches, while that from models selected based on the P-value of the independent variables was the highest. However, mean squared predictive error from models selected based on the maximum adjusted R2 was highest. We found that BMA method could improve the prediction of recruitment success, derive more accurate prediction interval and quantitatively evaluate model uncertainty.
Two statistics for evaluating parameter identifiability and error reduction
Doherty, John; Hunt, Randall J.
2009-01-01
Two statistics are presented that can be used to rank input parameters utilized by a model in terms of their relative identifiability based on a given or possible future calibration dataset. Identifiability is defined here as the capability of model calibration to constrain parameters used by a model. Both statistics require that the sensitivity of each model parameter be calculated for each model output for which there are actual or presumed field measurements. Singular value decomposition (SVD) of the weighted sensitivity matrix is then undertaken to quantify the relation between the parameters and observations that, in turn, allows selection of calibration solution and null spaces spanned by unit orthogonal vectors. The first statistic presented, "parameter identifiability", is quantitatively defined as the direction cosine between a parameter and its projection onto the calibration solution space. This varies between zero and one, with zero indicating complete non-identifiability and one indicating complete identifiability. The second statistic, "relative error reduction", indicates the extent to which the calibration process reduces error in estimation of a parameter from its pre-calibration level where its value must be assigned purely on the basis of prior expert knowledge. This is more sophisticated than identifiability, in that it takes greater account of the noise associated with the calibration dataset. Like identifiability, it has a maximum value of one (which can only be achieved if there is no measurement noise). Conceptually it can fall to zero; and even below zero if a calibration problem is poorly posed. An example, based on a coupled groundwater/surface-water model, is included that demonstrates the utility of the statistics. ?? 2009 Elsevier B.V.
Kim, Kyungsoo; Lim, Sung-Ho; Lee, Jaeseok; Kang, Won-Seok; Moon, Cheil; Choi, Ji-Woong
2016-01-01
Electroencephalograms (EEGs) measure a brain signal that contains abundant information about the human brain function and health. For this reason, recent clinical brain research and brain computer interface (BCI) studies use EEG signals in many applications. Due to the significant noise in EEG traces, signal processing to enhance the signal to noise power ratio (SNR) is necessary for EEG analysis, especially for non-invasive EEG. A typical method to improve the SNR is averaging many trials of event related potential (ERP) signal that represents a brain’s response to a particular stimulus or a task. The averaging, however, is very sensitive to variable delays. In this study, we propose two time delay estimation (TDE) schemes based on a joint maximum likelihood (ML) criterion to compensate the uncertain delays which may be different in each trial. We evaluate the performance for different types of signals such as random, deterministic, and real EEG signals. The results show that the proposed schemes provide better performance than other conventional schemes employing averaged signal as a reference, e.g., up to 4 dB gain at the expected delay error of 10°. PMID:27322267
The Limits of Coding with Joint Constraints on Detected and Undetected Error Rates
NASA Technical Reports Server (NTRS)
Dolinar, Sam; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush
2008-01-01
We develop a remarkably tight upper bound on the performance of a parameterized family of bounded angle maximum-likelihood (BA-ML) incomplete decoders. The new bound for this class of incomplete decoders is calculated from the code's weight enumerator, and is an extension of Poltyrev-type bounds developed for complete ML decoders. This bound can also be applied to bound the average performance of random code ensembles in terms of an ensemble average weight enumerator. We also formulate conditions defining a parameterized family of optimal incomplete decoders, defined to minimize both the total codeword error probability and the undetected error probability for any fixed capability of the decoder to detect errors. We illustrate the gap between optimal and BA-ML incomplete decoding via simulation of a small code.
Cryptographic robustness of a quantum cryptography system using phase-time coding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molotkov, S. N.
2008-01-15
A cryptographic analysis is presented of a new quantum key distribution protocol using phase-time coding. An upper bound is obtained for the error rate that guarantees secure key distribution. It is shown that the maximum tolerable error rate for this protocol depends on the counting rate in the control time slot. When no counts are detected in the control time slot, the protocol guarantees secure key distribution if the bit error rate in the sifted key does not exceed 50%. This protocol partially discriminates between errors due to system defects (e.g., imbalance of a fiber-optic interferometer) and eavesdropping. In themore » absence of eavesdropping, the counts detected in the control time slot are not caused by interferometer imbalance, which reduces the requirements for interferometer stability.« less
Gender recognition from vocal source
NASA Astrophysics Data System (ADS)
Sorokin, V. N.; Makarov, I. S.
2008-07-01
Efficiency of automatic recognition of male and female voices based on solving the inverse problem for glottis area dynamics and for waveform of the glottal airflow volume velocity pulse is studied. The inverse problem is regularized through the use of analytical models of the voice excitation pulse and of the dynamics of the glottis area, as well as the model of one-dimensional glottal airflow. Parameters of these models and spectral parameters of the volume velocity pulse are considered. The following parameters are found to be most promising: the instant of maximum glottis area, the maximum derivative of the area, the slope of the spectrum of the glottal airflow volume velocity pulse, the amplitude ratios of harmonics of this spectrum, and the pitch. On the plane of the first two main components in the space of these parameters, an almost twofold decrease in the classification error relative to that for the pitch alone is attained. The male voice recognition probability is found to be 94.7%, and the female voice recognition probability is 95.9%.
[Spectrum simulation based on data derived from red tide].
Liu, Zhen-Yu; Cui, Ting-Wei; Yue, Jie; Jiang, Tao; Cao, Wen-Xi; Ma, Yi
2011-11-01
The present paper utilizes the absorption data of red tide water measured during the growing and dying course to retrieve imaginary part of the index of refraction based on Mie theory, carries out the simulation and analysis of average absorption efficiency factors, average backscattering efficiency factors and scattering phase function. The analysis of the simulation shows that Mie theory can be used to reproduce the absorption property of Chaetoceros socialis with an average error of 11%; the average backscattering efficiency factors depend on the value of absorption whose maximum value corresponds to the wavelength range from 400 to 700 nanometer; the average backscattering efficiency factors showed a maximum value on 17th with a low value during the outbreak of red tide and the minimum on 21th; the total scattering, weakly depending on the absorption, is proportional to the size parameters which represent the relative size of cell diameter with respect to the wavelength, while the angle scattering intensity is inversely proportional to wavelength.
Reliability and validity of two isometric squat tests.
Blazevich, Anthony J; Gill, Nicholas; Newton, Robert U
2002-05-01
The purpose of the present study was first to examine the reliability of isometric squat (IS) and isometric forward hack squat (IFHS) tests to determine if repeated measures on the same subjects yielded reliable results. The second purpose was to examine the relation between isometric and dynamic measures of strength to assess validity. Fourteen male subjects performed maximal IS and IFHS tests on 2 occasions and 1 repetition maximum (1-RM) free-weight squat and forward hack squat (FHS) tests on 1 occasion. The 2 tests were found to be highly reliable (intraclass correlation coefficient [ICC](IS) = 0.97 and ICC(IFHS) = 1.00). There was a strong relation between average IS and 1-RM squat performance, and between IFHS and 1-RM FHS performance (r(squat) = 0.77, r(FHS) = 0.76; p < 0.01), but a weak relation between squat and FHS test performances (r < 0.55). There was also no difference between observed 1-RM values and those predicted by our regression equations. Errors in predicting 1-RM performance were in the order of 8.5% (standard error of the estimate [SEE] = 13.8 kg) and 7.3% (SEE = 19.4 kg) for IS and IFHS respectively. Correlations between isometric and 1-RM tests were not of sufficient size to indicate high validity of the isometric tests. Together the results suggest that IS and IFHS tests could detect small differences in multijoint isometric strength between subjects, or performance changes over time, and that the scores in the isometric tests are well related to 1-RM performance. However, there was a small error when predicting 1-RM performance from isometric performance, and these tests have not been shown to discriminate between small changes in dynamic strength. The weak relation between squat and FHS test performance can be attributed to differences in the movement patterns of the tests
TU-EF-304-04: A Heart Motion Model for Proton Scanned Beam Chest Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, B; Kiely, J Blanco; Lin, L
Purpose: To model fast-moving heart surface motion as a function of cardiac-phase in order to compensate for the lack of cardiac-gating in evaluating accurate dose to coronary structures. Methods: Ten subjects were prospectively imaged with a breath-hold, cardiac-gated MRI protocol to determine heart surface motion. Radial and planar views of the heart were resampled into a 3-dimensional volume representing one heartbeat. A multi-resolution optical flow deformable image registration algorithm determined tissue displacement during the cardiac-cycle. The surface of the heart was modeled as a thin membrane comprised of voxels perpendicular to a pencil beam scanning (PBS) beam. The membrane’s out-of-planemore » spatial displacement was modeled as a harmonic function with Lame’s equations. Model accuracy was assessed with the root mean squared error (RMSE). The model was applied to a cohort of six chest wall irradiation patients with PBS plans generated on phase-sorted 4DCT. Respiratory motion was separated from the cardiac motion with a previously published technique. Volumetric dose painting was simulated and dose accumulated to validate plan robustness (target coverage variation accepted within 2%). Maximum and mean heart surface dose assessed the dosimetric impact of heart and coronary artery motion. Results: Average and maximum heart surface displacements were 2.54±0.35mm and 3.6mm from the end-diastole phase to the end-systole cardiac-phase respectively. An average RMSE of 0.11±0.04 showed the model to be accurate. Observed errors were greatest between the circumflex artery and mitral valve level of the heart anatomy. Heart surface displacements correspond to a 3.6±1.0% and 5.1±2.3% dosimetric impact on the maximum and mean heart surface DVH indicators respectively. Conclusion: Although heart surface motion parallel to beam’s direction was substantial, its maximum dosimetric impact was 5.1±2.3%. Since PBS delivers low doses to coronary structures relative to photon radiotherapy, it is unknown whether this variation would be clinically significant for late effects.« less
Applying Intelligent Algorithms to Automate the Identification of Error Factors.
Jin, Haizhe; Qu, Qingxing; Munechika, Masahiko; Sano, Masataka; Kajihara, Chisato; Duffy, Vincent G; Chen, Han
2018-05-03
Medical errors are the manifestation of the defects occurring in medical processes. Extracting and identifying defects as medical error factors from these processes are an effective approach to prevent medical errors. However, it is a difficult and time-consuming task and requires an analyst with a professional medical background. The issues of identifying a method to extract medical error factors and reduce the extraction difficulty need to be resolved. In this research, a systematic methodology to extract and identify error factors in the medical administration process was proposed. The design of the error report, extraction of the error factors, and identification of the error factors were analyzed. Based on 624 medical error cases across four medical institutes in both Japan and China, 19 error-related items and their levels were extracted. After which, they were closely related to 12 error factors. The relational model between the error-related items and error factors was established based on a genetic algorithm (GA)-back-propagation neural network (BPNN) model. Additionally, compared to GA-BPNN, BPNN, partial least squares regression and support vector regression, GA-BPNN exhibited a higher overall prediction accuracy, being able to promptly identify the error factors from the error-related items. The combination of "error-related items, their different levels, and the GA-BPNN model" was proposed as an error-factor identification technology, which could automatically identify medical error factors.
Enumerating Sparse Organisms in Ships’ Ballast Water: Why Counting to 10 Is Not So Easy
2011-01-01
To reduce ballast water-borne aquatic invasions worldwide, the International Maritime Organization and United States Coast Guard have each proposed discharge standards specifying maximum concentrations of living biota that may be released in ships’ ballast water (BW), but these regulations still lack guidance for standardized type approval and compliance testing of treatment systems. Verifying whether BW meets a discharge standard poses significant challenges. Properly treated BW will contain extremely sparse numbers of live organisms, and robust estimates of rare events require extensive sampling efforts. A balance of analytical rigor and practicality is essential to determine the volume of BW that can be reasonably sampled and processed, yet yield accurate live counts. We applied statistical modeling to a range of sample volumes, plankton concentrations, and regulatory scenarios (i.e., levels of type I and type II errors), and calculated the statistical power of each combination to detect noncompliant discharge concentrations. The model expressly addresses the roles of sampling error, BW volume, and burden of proof on the detection of noncompliant discharges in order to establish a rigorous lower limit of sampling volume. The potential effects of recovery errors (i.e., incomplete recovery and detection of live biota) in relation to sample volume are also discussed. PMID:21434685
2014-01-01
Background The Italian code of medical deontology recently approved stipulates that physicians have the duty to inform the patient of each unwanted event and its causes, and to identify, report and evaluate adverse events and errors. Thus the obligation to supply information continues to widen, in some way extending beyond the doctor-patient relationship to become an essential tool for improving the quality of professional services. Discussion The new deontological precepts intersect two areas in which the figure of the physician is paramount. On the one hand is the need for maximum integrity towards the patient, in the name of the doctor’s own, and the other’s (the patient’s) dignity and liberty; on the other is the physician’s developing role in the strategies of the health system to achieve efficacy, quality, reliability and efficiency, to reduce errors and adverse events and to manage clinical risk. Summary In Italy, due to guidelines issued by the Ministry of Health and to the new code of medical deontology, the role of physicians becomes a part of a complex strategy of risk management based on a system focused approach in which increasing transparency regarding adverse outcomes and full disclosure of health- related negative events represent a key factor. PMID:25023339
Artificial Intelligence Techniques for Predicting and Mapping Daily Pan Evaporation
NASA Astrophysics Data System (ADS)
Arunkumar, R.; Jothiprakash, V.; Sharma, Kirty
2017-09-01
In this study, Artificial Intelligence techniques such as Artificial Neural Network (ANN), Model Tree (MT) and Genetic Programming (GP) are used to develop daily pan evaporation time-series (TS) prediction and cause-effect (CE) mapping models. Ten years of observed daily meteorological data such as maximum temperature, minimum temperature, relative humidity, sunshine hours, dew point temperature and pan evaporation are used for developing the models. For each technique, several models are developed by changing the number of inputs and other model parameters. The performance of each model is evaluated using standard statistical measures such as Mean Square Error, Mean Absolute Error, Normalized Mean Square Error and correlation coefficient (R). The results showed that daily TS-GP (4) model predicted better with a correlation coefficient of 0.959 than other TS models. Among various CE models, CE-ANN (6-10-1) resulted better than MT and GP models with a correlation coefficient of 0.881. Because of the complex non-linear inter-relationship among various meteorological variables, CE mapping models could not achieve the performance of TS models. From this study, it was found that GP performs better for recognizing single pattern (time series modelling), whereas ANN is better for modelling multiple patterns (cause-effect modelling) in the data.
Turillazzi, Emanuela; Neri, Margherita
2014-07-15
The Italian code of medical deontology recently approved stipulates that physicians have the duty to inform the patient of each unwanted event and its causes, and to identify, report and evaluate adverse events and errors. Thus the obligation to supply information continues to widen, in some way extending beyond the doctor-patient relationship to become an essential tool for improving the quality of professional services. The new deontological precepts intersect two areas in which the figure of the physician is paramount. On the one hand is the need for maximum integrity towards the patient, in the name of the doctor's own, and the other's (the patient's) dignity and liberty; on the other is the physician's developing role in the strategies of the health system to achieve efficacy, quality, reliability and efficiency, to reduce errors and adverse events and to manage clinical risk. In Italy, due to guidelines issued by the Ministry of Health and to the new code of medical deontology, the role of physicians becomes a part of a complex strategy of risk management based on a system focused approach in which increasing transparency regarding adverse outcomes and full disclosure of health- related negative events represent a key factor.
Enumerating sparse organisms in ships' ballast water: why counting to 10 is not so easy.
Miller, A Whitman; Frazier, Melanie; Smith, George E; Perry, Elgin S; Ruiz, Gregory M; Tamburri, Mario N
2011-04-15
To reduce ballast water-borne aquatic invasions worldwide, the International Maritime Organization and United States Coast Guard have each proposed discharge standards specifying maximum concentrations of living biota that may be released in ships' ballast water (BW), but these regulations still lack guidance for standardized type approval and compliance testing of treatment systems. Verifying whether BW meets a discharge standard poses significant challenges. Properly treated BW will contain extremely sparse numbers of live organisms, and robust estimates of rare events require extensive sampling efforts. A balance of analytical rigor and practicality is essential to determine the volume of BW that can be reasonably sampled and processed, yet yield accurate live counts. We applied statistical modeling to a range of sample volumes, plankton concentrations, and regulatory scenarios (i.e., levels of type I and type II errors), and calculated the statistical power of each combination to detect noncompliant discharge concentrations. The model expressly addresses the roles of sampling error, BW volume, and burden of proof on the detection of noncompliant discharges in order to establish a rigorous lower limit of sampling volume. The potential effects of recovery errors (i.e., incomplete recovery and detection of live biota) in relation to sample volume are also discussed.
Spatial uncertainty of a geoid undulation model in Guayaquil, Ecuador
NASA Astrophysics Data System (ADS)
Chicaiza, E. G.; Leiva, C. A.; Arranz, J. J.; Buenańo, X. E.
2017-06-01
Geostatistics is a discipline that deals with the statistical analysis of regionalized variables. In this case study, geostatistics is used to estimate geoid undulation in the rural area of Guayaquil town in Ecuador. The geostatistical approach was chosen because the estimation error of prediction map is getting. Open source statistical software R and mainly geoR, gstat and RGeostats libraries were used. Exploratory data analysis (EDA), trend and structural analysis were carried out. An automatic model fitting by Iterative Least Squares and other fitting procedures were employed to fit the variogram. Finally, Kriging using gravity anomaly of Bouguer as external drift and Universal Kriging were used to get a detailed map of geoid undulation. The estimation uncertainty was reached in the interval [-0.5; +0.5] m for errors and a maximum estimation standard deviation of 2 mm in relation with the method of interpolation applied. The error distribution of the geoid undulation map obtained in this study provides a better result than Earth gravitational models publicly available for the study area according the comparison with independent validation points. The main goal of this paper is to confirm the feasibility to use geoid undulations from Global Navigation Satellite Systems and leveling field measurements and geostatistical techniques methods in order to use them in high-accuracy engineering projects.
NASA Astrophysics Data System (ADS)
Liu, Yang; Pu, Huangsheng; Zhang, Xi; Li, Baojuan; Liang, Zhengrong; Lu, Hongbing
2017-03-01
Arterial spin labeling (ASL) provides a noninvasive measurement of cerebral blood flow (CBF). Due to relatively low spatial resolution, the accuracy of CBF measurement is affected by the partial volume (PV) effect. To obtain accurate CBF estimation, the contribution of each tissue type in the mixture is desirable. In general, this can be obtained according to the registration of ASL and structural image in current ASL studies. This approach can obtain probability of each tissue type inside each voxel, but it also introduces error, which include error of registration algorithm and imaging itself error in scanning of ASL and structural image. Therefore, estimation of mixture percentage directly from ASL data is greatly needed. Under the assumption that ASL signal followed the Gaussian distribution and each tissue type is independent, a maximum a posteriori expectation-maximization (MAP-EM) approach was formulated to estimate the contribution of each tissue type to the observed perfusion signal at each voxel. Considering the sensitivity of MAP-EM to the initialization, an approximately accurate initialization was obtain using 3D Fuzzy c-means method. Our preliminary results demonstrated that the GM and WM pattern across the perfusion image can be sufficiently visualized by the voxel-wise tissue mixtures, which may be promising for the diagnosis of various brain diseases.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-12
...This final rule approves state implementation plan (SIP) revisions submitted by the State of California on June 15, 2004 and February 3, 2009, relating to reformulated gasoline (RFG) and diesel fuel sold or supplied as motor vehicle fuels in California. The revisions relating to RFG include California Phase 3 RFG (CaRFG3) regulations, correction of errors and streamlined requirements for compliance with and enforcement of the CaRFG3 standards, and an update to the State's predictive model to mitigate permeation emissions associated with the use of ethanol as a fuel additive. The revisions relating to diesel fuel include test methods for determining the aromatic hydrocarbon content in diesel fuel and reductions in the maximum allowable sulfur content for motor vehicle diesel fuel. The effect of today's action is to make these revisions federally enforceable as part of the California SIP.
Alterations in Error-Related Brain Activity and Post-Error Behavior over Time
ERIC Educational Resources Information Center
Themanson, Jason R.; Rosen, Peter J.; Pontifex, Matthew B.; Hillman, Charles H.; McAuley, Edward
2012-01-01
This study examines the relation between the error-related negativity (ERN) and post-error behavior over time in healthy young adults (N = 61). Event-related brain potentials were collected during two sessions of an identical flanker task. Results indicated changes in ERN and post-error accuracy were related across task sessions, with more…
Error-related brain activity and error awareness in an error classification paradigm.
Di Gregorio, Francesco; Steinhauser, Marco; Maier, Martin E
2016-10-01
Error-related brain activity has been linked to error detection enabling adaptive behavioral adjustments. However, it is still unclear which role error awareness plays in this process. Here, we show that the error-related negativity (Ne/ERN), an event-related potential reflecting early error monitoring, is dissociable from the degree of error awareness. Participants responded to a target while ignoring two different incongruent distractors. After responding, they indicated whether they had committed an error, and if so, whether they had responded to one or to the other distractor. This error classification paradigm allowed distinguishing partially aware errors, (i.e., errors that were noticed but misclassified) and fully aware errors (i.e., errors that were correctly classified). The Ne/ERN was larger for partially aware errors than for fully aware errors. Whereas this speaks against the idea that the Ne/ERN foreshadows the degree of error awareness, it confirms the prediction of a computational model, which relates the Ne/ERN to post-response conflict. This model predicts that stronger distractor processing - a prerequisite of error classification in our paradigm - leads to lower post-response conflict and thus a smaller Ne/ERN. This implies that the relationship between Ne/ERN and error awareness depends on how error awareness is related to response conflict in a specific task. Our results further indicate that the Ne/ERN but not the degree of error awareness determines adaptive performance adjustments. Taken together, we conclude that the Ne/ERN is dissociable from error awareness and foreshadows adaptive performance adjustments. Our results suggest that the relationship between the Ne/ERN and error awareness is correlative and mediated by response conflict. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noel, Camille E.; Gutti, VeeraRajesh; Bosch, Walter
Purpose: To quantify the potential impact of the Integrating the Healthcare Enterprise–Radiation Oncology Quality Assurance with Plan Veto (QAPV) on patient safety of external beam radiation therapy (RT) operations. Methods and Materials: An institutional database of events (errors and near-misses) was used to evaluate the ability of QAPV to prevent clinically observed events. We analyzed reported events that were related to Digital Imaging and Communications in Medicine RT plan parameter inconsistencies between the intended treatment (on the treatment planning system) and the delivered treatment (on the treatment machine). Critical Digital Imaging and Communications in Medicine RT plan parameters were identified.more » Each event was scored for importance using the Failure Mode and Effects Analysis methodology. Potential error occurrence (frequency) was derived according to the collected event data, along with the potential event severity, and the probability of detection with and without the theoretical implementation of the QAPV plan comparison check. Failure Mode and Effects Analysis Risk Priority Numbers (RPNs) with and without QAPV were compared to quantify the potential benefit of clinical implementation of QAPV. Results: The implementation of QAPV could reduce the RPN values for 15 of 22 (71%) of evaluated parameters, with an overall average reduction in RPN of 68 (range, 0-216). For the 6 high-risk parameters (>200), the average reduction in RPN value was 163 (range, 108-216). The RPN value reduction for the intermediate-risk (200 > RPN > 100) parameters was (0-140). With QAPV, the largest RPN value for “Beam Meterset” was reduced from 324 to 108. The maximum reduction in RPN value was for Beam Meterset (216, 66.7%), whereas the maximum percentage reduction was for Cumulative Meterset Weight (80, 88.9%). Conclusion: This analysis quantifies the value of the Integrating the Healthcare Enterprise–Radiation Oncology QAPV implementation in clinical workflow. We demonstrate that although QAPV does not provide a comprehensive solution for error prevention in RT, it can have a significant impact on a subset of the most severe clinically observed events.« less
On the angular variation of thermal infrared emissivity of inorganic soils
NASA Astrophysics Data System (ADS)
GarcíA-Santos, Vicente; Valor, Enric; Caselles, Vicente; ÁNgeles Burgos, M.; Coll, CéSar
2012-10-01
Land surface temperature (LST), a key parameter for many environmental studies, can be most readily estimated by using thermal infrared (TIR) sensors onboard satellites. Accurate LST are contingent upon simultaneously accurate estimates of land surface emissivity (ɛ), which depend on sensor viewing angle and the anisotropy of optical and structural properties of surfaces. In the case of inorganic bare soils (IBS), there are still few data that quantify emissivity angular effects. The present work deals with the angular variation of TIR emissivity for twelve IBS types, representative of nine of the twelve soil textures found on Earth according to United States Department of Agriculture classification. Emissivity was measured with a maximum error of ±0.01, in several spectral ranges within the atmospheric window 7.7-14.3 μm, at different zenithal (θ) and azimuthal (φ) angles. Results showed that ɛ of all IBS studied is almost azimuthally isotropic, and also zenithally up to θ = 40°, from which ɛ values decrease with the increase of θ. This decrease is most pronounced in sandy IBS which is rich in quartz reaching a maximum difference from nadir of +0.101 at θ = 70°. On the other hand, clayey IBS did not show a significant decrease of ɛ up to θ= 60°. A parameterization of the relative-to-nadir emissivity in terms ofθ and sand and clay percentage was established. Finally, the impact of ignoring ɛangular effects on the retrievals of LST, using split-window-type algorithms, and of outgoing longwave radiation, was analyzed. Results showed systematic errors ranging between ±0.4 K to ±1.3 K for atmospheres with water vapor values lower than 4 cm in the case of LST, and errors between 2%-8%, in the estimation of different terms of the surface energy balance.
NASA Technical Reports Server (NTRS)
Pierson, W. J., Jr.
1984-01-01
Backscatter measurements at upwind and crosswind are simulated for five incidence angles by means of the SASS-1 model function. The effects of communication noise and attitude errors are simulated by Monte Carlo methods, and the winds are recovered by both the Sum of Square (SOS) algorithm and a Maximum Likelihood Estimater (MLE). The SOS algorithm is shown to fail for light enough winds at all incidence angles and to fail to show areas of calm because backscatter estimates that were negative or that produced incorrect values of K sub p greater than one were discarded. The MLE performs well for all input backscatter estimates and returns calm when both are negative. The use of the SOS algorithm is shown to have introduced errors in the SASS-1 model function that, in part, cancel out the errors that result from using it, but that also cause disagreement with other data sources such as the AAFE circle flight data at light winds. Implications for future scatterometer systems are given.
A Note on a Sampling Theorem for Functions over GF(q)n Domain
NASA Astrophysics Data System (ADS)
Ukita, Yoshifumi; Saito, Tomohiko; Matsushima, Toshiyasu; Hirasawa, Shigeichi
In digital signal processing, the sampling theorem states that any real valued function ƒ can be reconstructed from a sequence of values of ƒ that are discretely sampled with a frequency at least twice as high as the maximum frequency of the spectrum of ƒ. This theorem can also be applied to functions over finite domain. Then, the range of frequencies of ƒ can be expressed in more detail by using a bounded set instead of the maximum frequency. A function whose range of frequencies is confined to a bounded set is referred to as bandlimited function. And a sampling theorem for bandlimited functions over Boolean domain has been obtained. Here, it is important to obtain a sampling theorem for bandlimited functions not only over Boolean domain (GF(q)n domain) but also over GF(q)n domain, where q is a prime power and GF(q) is Galois field of order q. For example, in experimental designs, although the model can be expressed as a linear combination of the Fourier basis functions and the levels of each factor can be represented by GF(q)n, the number of levels often take a value greater than two. However, the sampling theorem for bandlimited functions over GF(q)n domain has not been obtained. On the other hand, the sampling points are closely related to the codewords of a linear code. However, the relation between the parity check matrix of a linear code and any distinct error vectors has not been obtained, although it is necessary for understanding the meaning of the sampling theorem for bandlimited functions. In this paper, we generalize the sampling theorem for bandlimited functions over Boolean domain to a sampling theorem for bandlimited functions over GF(q)n domain. We also present a theorem for the relation between the parity check matrix of a linear code and any distinct error vectors. Lastly, we clarify the relation between the sampling theorem for functions over GF(q)n domain and linear codes.
Sampling for compliance with USDA Forest Service guidelines using information derived from LIDAR
Bogdan M. Strimbu; Daniel Cooke; Samuel Strozier
2015-01-01
Forest resources are traditionally assessed using field measurements. The USDA Forest Service developed a series of guidelines for planning and executing the measurements, specifically the significance level and maximum allowed sampling error.
Wire-positioning algorithm for coreless Hall array sensors in current measurement
NASA Astrophysics Data System (ADS)
Chen, Wenli; Zhang, Huaiqing; Chen, Lin; Gu, Shanyun
2018-05-01
This paper presents a scheme of circular-arrayed, coreless Hall-effect current transformers. It can satisfy the demands of wide dynamic range and bandwidth current in the distribution system, as well as the demand of AC and DC simultaneous measurements. In order to improve the signal to noise ratio (SNR) of the sensor, a wire-positioning algorithm is proposed, which can improve the measurement accuracy based on the post-processing of measurement data. The simulation results demonstrate that the maximum errors are 70%, 6.1% and 0.95% corresponding to Ampère’s circuital method, approximate positioning algorithm and precise positioning algorithm, respectively. It is obvious that the accuracy of the positioning algorithm is significantly improved when compared with that of the Ampère’s circuital method. The maximum error of the positioning algorithm is smaller in the experiment.
E-ELT M5 field stabilisation unit scale 1 demonstrator design and performances evaluation
NASA Astrophysics Data System (ADS)
Casalta, J. M.; Barriga, J.; Ariño, J.; Mercader, J.; San Andrés, M.; Serra, J.; Kjelberg, I.; Hubin, N.; Jochum, L.; Vernet, E.; Dimmler, M.; Müller, M.
2010-07-01
The M5 Field stabilization Unit (M5FU) for European Extremely Large Telescope (E-ELT) is a fast correcting optical system that shall provide tip-tilt corrections for the telescope dynamic pointing errors and the effect of atmospheric tiptilt and wind disturbances. A M5FU scale 1 demonstrator (M5FU1D) is being built to assess the feasibility of the key elements (actuators, sensors, mirror, mirror interfaces) and the real-time control algorithm. The strict constraints (e.g. tip-tilt control frequency range 100Hz, 3m ellipse mirror size, mirror first Eigen frequency 300Hz, maximum tip/tilt range +/- 30 arcsec, maximum tiptilt error < 40 marcsec) have been a big challenge for developing the M5FU Conceptual Design and its scale 1 demonstrator. The paper summarises the proposed design for the final unit and demonstrator and the measured performances compared to the applicable specifications.
A spacecraft attitude and articulation control system design for the Comet Halley intercept mission
NASA Technical Reports Server (NTRS)
Key, R. W.
1981-01-01
An attitude and articulation control system design for the Comet Halley 1986 intercept mission is presented. A spacecraft dynamics model consisting of five hinge-connected rigid bodies is used to analyze the spacecraft attitude and articulation control system performance. Inertial and optical information are combined to generate scan platform pointing commands. The comprehensive spacecraft model has been developed into a digital computer simulation program, which provides performance characteristics and insight pertaining to the control and dynamics of a Halley Intercept spacecraft. It is shown that scan platform pointing error has a maximum value of 1.8 milliradians during the four minute closest approach interval. It is also shown that the jitter or scan platform pointing rate error would have a maximum value of 2.5 milliradians/second for the nominal 1000 km closest approach distance trajectory and associated environment model.
Ground and Flight Testing for Aircraft Guidance and Control,
1984-12-01
almost rigid structure (Figure 3). It is equipped with control surfa- - S ces (inner flaps, outer flaps, elevator) which are driven by fast acting...extremely fast -response actuators com- bined with a full fly-by-wire/light system is envisaged. The technology for doing this is not yet available today...6.6 late S Standard deviation 23.7 (77.8) 6.5 12.0 *Maximum error 51.5 (169) high 12.9 fast 29.0 late *The values of these errors were judged by the
On the Discriminant Analysis in the 2-Populations Case
NASA Astrophysics Data System (ADS)
Rublík, František
2008-01-01
The empirical Bayes Gaussian rule, which in the normal case yields good values of the probability of total error, may yield high values of the maximum probability error. From this point of view the presented modified version of the classification rule of Broffitt, Randles and Hogg appears to be superior. The modification included in this paper is termed as a WR method, and the choice of its weights is discussed. The mentioned methods are also compared with the K nearest neighbours classification rule.
2013-01-01
are calculated from coherently -detected fields, e.g., coherent Doppler lidar . Our CRB results reveal that the best-case mean-square error scales as 1...1088 (2001). 7. K. Asaka, Y. Hirano, K. Tatsumi, K. Kasahara, and T. Tajime, “A pseudo-random frequency modulation continuous wave coherent lidar using...multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29, 2170–2180 (2007). 11. T. J. Karr, “Atmospheric phase error in coherent laser radar
Talar dome detection and its geometric approximation in CT: Sphere, cylinder or bi-truncated cone?
Huang, Junbin; Liu, He; Wang, Defeng; Griffith, James F; Shi, Lin
2017-04-01
The purpose of our study is to give a relatively objective definition of talar dome and its shape approximations to sphere (SPH), cylinder (CLD) and bi-truncated cone (BTC). The "talar dome" is well-defined with the improved Dijkstra's algorithm, considering the Euclidean distance and surface curvature. The geometric similarity between talar dome and ideal shapes, namely SPH, CLD and BTC, is quantified. 50 unilateral CT datasets from 50 subjects with no pathological morphometry of tali were included in the experiments and statistical analyses were carried out based on the approximation error. The similarity between talar dome and BTC was more prominent, with smaller mean, standard deviation, maximum and median of the approximation error (0.36±0.07mm, 0.32±0.06mm, 2.24±0.47mm and 0.28±0.06mm) compare with fitting to SPH and CLD. In addition, there were significant differences between the fitting error of each pair of models in terms of the 4 measurements (p-values<0.05). The linear regression analyses demonstrated high correlation between CLD and BTC approximations (R 2 =0.55 for median, R 2 >0.7 for others). Color maps representing fitting error indicated that fitting error mainly occurred on the marginal regions of talar dome for SPH and CLD fittings, while that of BTC was small for the whole talar dome. The successful restoration of ankle functions in displacement surgery highly depends on the comprehensive understanding of the talus. The talar dome surface could be well-defined in a computational way and compared to SPH and CLD, the talar dome reflects outstanding similarity with BTC. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Valle, G.; Dell'Omodarme, M.; Prada Moroni, P. G.; Degl'Innocenti, S.
2018-01-01
Aims: We aim to perform a theoretical evaluation of the impact of the mass loss indetermination on asteroseismic grid based estimates of masses, radii, and ages of stars in the red giant branch (RGB) phase. Methods: We adopted the SCEPtER pipeline on a grid spanning the mass range [0.8; 1.8] M⊙. As observational constraints, we adopted the star effective temperatures, the metallicity [Fe/H], the average large frequency spacing Δν, and the frequency of maximum oscillation power νmax. The mass loss was modelled following a Reimers parametrization with the two different efficiencies η = 0.4 and η = 0.8. Results: In the RGB phase, the average random relative error (owing only to observational uncertainty) on mass and age estimates is about 8% and 30% respectively. The bias in mass and age estimates caused by the adoption of a wrong mass loss parameter in the recovery is minor for the vast majority of the RGB evolution. The biases get larger only after the RGB bump. In the last 2.5% of the RGB lifetime the error on the mass determination reaches 6.5% becoming larger than the random error component in this evolutionary phase. The error on the age estimate amounts to 9%, that is, equal to the random error uncertainty. These results are independent of the stellar metallicity [Fe/H] in the explored range. Conclusions: Asteroseismic-based estimates of stellar mass, radius, and age in the RGB phase can be considered mass loss independent within the range (η ∈ [0.0,0.8]) as long as the target is in an evolutionary phase preceding the RGB bump.
Land Surface Temperature Measurements form EOS MODIS Data
NASA Technical Reports Server (NTRS)
Wan, Zhengming
1996-01-01
We have developed a physics-based land-surface temperature (LST) algorithm for simultaneously retrieving surface band-averaged emissivities and temperatures from day/night pairs of MODIS (Moderate Resolution Imaging Spectroradiometer) data in seven thermal infrared bands. The set of 14 nonlinear equations in the algorithm is solved with the statistical regression method and the least-squares fit method. This new LST algorithm was tested with simulated MODIS data for 80 sets of band-averaged emissivities calculated from published spectral data of terrestrial materials in wide ranges of atmospheric and surface temperature conditions. Comprehensive sensitivity and error analysis has been made to evaluate the performance of the new LST algorithm and its dependence on variations in surface emissivity and temperature, upon atmospheric conditions, as well as the noise-equivalent temperature difference (NE(Delta)T) and calibration accuracy specifications of the MODIS instrument. In cases with a systematic calibration error of 0.5%, the standard deviations of errors in retrieved surface daytime and nighttime temperatures fall between 0.4-0.5 K over a wide range of surface temperatures for mid-latitude summer conditions. The standard deviations of errors in retrieved emissivities in bands 31 and 32 (in the 10-12.5 micrometer IR spectral window region) are 0.009, and the maximum error in retrieved LST values falls between 2-3 K. Several issues related to the day/night LST algorithm (uncertainties in the day/night registration and in surface emissivity changes caused by dew occurrence, and the cloud cover) have been investigated. The LST algorithms have been validated with MODIS Airborne Simulator (MAS) dada and ground-based measurement data in two field campaigns conducted in Railroad Valley playa, NV in 1995 and 1996. The MODIS LST version 1 software has been delivered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Zongtang; Both, Johan; Li, Shenggang
The heats of formation and the normalized clustering energies (NCEs) for the group 4 and group 6 transition metal oxide (TMO) trimers and tetramers have been calculated by the Feller-Peterson-Dixon (FPD) method. The heats of formation predicted by the FPD method do not differ much from those previously derived from the NCEs at the CCSD(T)/aT level except for the CrO3 nanoclusters. New and improved heats of formation for Cr3O9 and Cr4O12 were obtained using PW91 orbitals instead of Hartree-Fock (HF) orbitals. Diffuse functions are necessary to predict accurate heats of formation. The fluoride affinities (FAs) are calculated with the CCSD(T)more » method. The relative energies (REs) of different isomers, NCEs, electron affinities (EAs), and FAs of (MO2)n ( M = Ti, Zr, Hf, n = 1 – 4 ) and (MO3)n ( M = Cr, Mo, W, n = 1 – 3) clusters have been benchmarked with 55 exchange-correlation DFT functionals including both pure and hybrid types. The absolute errors of the DFT results are mostly less than ±10 kcal/mol for the NCEs and the EAs, and less than ±15 kcal/mol for the FAs. Hybrid functionals usually perform better than the pure functionals for the REs and NCEs. The performance of the two types of functionals in predicting EAs and FAs is comparable. The B1B95 and PBE1PBE functionals provide reliable energetic properties for most isomers. Long range corrected pure functionals usually give poor FAs. The standard deviation of the absolute error is always close to the mean errors and the probability distributions of the DFT errors are often not Gaussian (normal). The breadth of the distribution of errors and the maximum probability are dependent on the energy property and the isomer.« less
Smith, S. Jerrod; Lewis, Jason M.; Graves, Grant M.
2015-09-28
Generalized-least-squares multiple-linear regression analysis was used to formulate regression relations between peak-streamflow frequency statistics and basin characteristics. Contributing drainage area was the only basin characteristic determined to be statistically significant for all percentage of annual exceedance probabilities and was the only basin characteristic used in regional regression equations for estimating peak-streamflow frequency statistics on unregulated streams in and near the Oklahoma Panhandle. The regression model pseudo-coefficient of determination, converted to percent, for the Oklahoma Panhandle regional regression equations ranged from about 38 to 63 percent. The standard errors of prediction and the standard model errors for the Oklahoma Panhandle regional regression equations ranged from about 84 to 148 percent and from about 76 to 138 percent, respectively. These errors were comparable to those reported for regional peak-streamflow frequency regression equations for the High Plains areas of Texas and Colorado. The root mean square errors for the Oklahoma Panhandle regional regression equations (ranging from 3,170 to 92,000 cubic feet per second) were less than the root mean square errors for the Oklahoma statewide regression equations (ranging from 18,900 to 412,000 cubic feet per second); therefore, the Oklahoma Panhandle regional regression equations produce more accurate peak-streamflow statistic estimates for the irrigated period of record in the Oklahoma Panhandle than do the Oklahoma statewide regression equations. The regression equations developed in this report are applicable to streams that are not substantially affected by regulation, impoundment, or surface-water withdrawals. These regression equations are intended for use for stream sites with contributing drainage areas less than or equal to about 2,060 square miles, the maximum value for the independent variable used in the regression analysis.
Design and performance evaluation of a master controller for endovascular catheterization.
Guo, Jin; Guo, Shuxiang; Tamiya, Takashi; Hirata, Hideyuki; Ishihara, Hidenori
2016-01-01
It is difficult to manipulate a flexible catheter to target a position within a patient's complicated and delicate vessels. However, few researchers focused on the controller designs with much consideration of the natural catheter manipulation skills obtained from manual catheterization. Also, the existing catheter motion measurement methods probably lead to the difficulties in designing the force feedback device. Additionally, the commercially available systems are too expensive which makes them cost prohibitive to most hospitals. This paper presents a simple and cost-effective master controller for endovascular catheterization that can allow the interventionalists to apply the conventional pull, push and twist of the catheter used in current practice. A catheter-sensing unit (used to measure the motion of the catheter) and a force feedback unit (used to provide a sense of resistance force) are both presented. A camera was used to allow a contactless measurement avoiding additional friction, and the force feedback in the axial direction was provided by the magnetic force generated between the permanent magnets and the powered coil. Performance evaluation of the controller was evaluated by first conducting comparison experiments to quantify the accuracy of the catheter-sensing unit, and then conducting several experiments to evaluate the force feedback unit. From the experimental results, the minimum and the maximum errors of translational displacement were 0.003 mm (0.01 %) and 0.425 mm (1.06 %), respectively. The average error was 0.113 mm (0.28 %). In terms of rotational angles, the minimum and the maximum errors were 0.39°(0.33 %) and 7.2°(6 %), respectively. The average error was 3.61°(3.01 %). The force resolution was approximately 25 mN and a maximum current of 3A generated an approximately 1.5 N force. Based on analysis of requirements and state-of-the-art computer-assisted and robot-assisted training systems for endovascular catheterization, a new master controller with force feedback interface was proposed to maintain the natural endovascular catheterization skills of the interventionalists.
Zou, Yun; Han, Qing; Weng, Xisheng; Zou, Yongwei; Yang, Yingying; Zhang, Kesong; Yang, Kerong; Xu, Xiaolin; Wang, Chenyu; Qin, Yanguo; Wang, Jincheng
2018-01-01
Abstract Recently, clinical application of 3D printed model was increasing. However, there was no systemic study for confirming the precision and reliability of 3D printed model. Some senior clinical doctors mistrusted its reliability in clinical application. The purpose of this study was to evaluate the precision and reliability of stereolithography appearance (SLA) 3D printed model. Some related parameters were selected to research the reliability of SLA 3D printed model. The computed tomography (CT) data of bone/prosthesis and model were collected and 3D reconstructed. Some anatomical parameters were measured and statistical analysis was performed; the intraclass correlation coefficient (ICC) was used to was used to evaluate the similarity between the model and real bone/prosthesis. the absolute difference (mm) and relative difference (%) were conducted. For prosthesis model, the 3-dimensional error was measured. There was no significant difference in the anatomical parameters except max height (MH) of long bone. All the ICCs were greater than 0.990. The maximum absolute and relative difference were 0.45 mm and 1.10%; The 3-dimensional error analysis showed that positive/minus distance were 0.273 mm/0.237 mm. The application of SLA 3D printed model in diagnosis and treatment process of complex orthopedic disease was reliable and precise. PMID:29419675
Zou, Yun; Han, Qing; Weng, Xisheng; Zou, Yongwei; Yang, Yingying; Zhang, Kesong; Yang, Kerong; Xu, Xiaolin; Wang, Chenyu; Qin, Yanguo; Wang, Jincheng
2018-02-01
Recently, clinical application of 3D printed model was increasing. However, there was no systemic study for confirming the precision and reliability of 3D printed model. Some senior clinical doctors mistrusted its reliability in clinical application. The purpose of this study was to evaluate the precision and reliability of stereolithography appearance (SLA) 3D printed model.Some related parameters were selected to research the reliability of SLA 3D printed model. The computed tomography (CT) data of bone/prosthesis and model were collected and 3D reconstructed. Some anatomical parameters were measured and statistical analysis was performed; the intraclass correlation coefficient (ICC) was used to was used to evaluate the similarity between the model and real bone/prosthesis. the absolute difference (mm) and relative difference (%) were conducted. For prosthesis model, the 3-dimensional error was measured.There was no significant difference in the anatomical parameters except max height (MH) of long bone. All the ICCs were greater than 0.990. The maximum absolute and relative difference were 0.45 mm and 1.10%; The 3-dimensional error analysis showed that positive/minus distance were 0.273 mm/0.237 mm.The application of SLA 3D printed model in diagnosis and treatment process of complex orthopedic disease was reliable and precise.
Determining relative error bounds for the CVBEM
Hromadka, T.V.
1985-01-01
The Complex Variable Boundary Element Methods provides a measure of relative error which can be utilized to subsequently reduce the error or provide information for further modeling analysis. By maximizing the relative error norm on each boundary element, a bound on the total relative error for each boundary element can be evaluated. This bound can be utilized to test CVBEM convergence, to analyze the effects of additional boundary nodal points in reducing the modeling error, and to evaluate the sensitivity of resulting modeling error within a boundary element from the error produced in another boundary element as a function of geometric distance. ?? 1985.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Sen; Li, Guangjun; Wang, Maojie
The purpose of this study was to investigate the effect of multileaf collimator (MLC) leaf position, collimator rotation angle, and accelerator gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma. To compare dosimetric differences between the simulating plans and the clinical plans with evaluation parameters, 6 patients with nasopharyngeal carcinoma were selected for simulation of systematic and random MLC leaf position errors, collimator rotation angle errors, and accelerator gantry rotation angle errors. There was a high sensitivity to dose distribution for systematic MLC leaf position errors in response to field size. When the systematic MLC position errors weremore » 0.5, 1, and 2 mm, respectively, the maximum values of the mean dose deviation, observed in parotid glands, were 4.63%, 8.69%, and 18.32%, respectively. The dosimetric effect was comparatively small for systematic MLC shift errors. For random MLC errors up to 2 mm and collimator and gantry rotation angle errors up to 0.5°, the dosimetric effect was negligible. We suggest that quality control be regularly conducted for MLC leaves, so as to ensure that systematic MLC leaf position errors are within 0.5 mm. Because the dosimetric effect of 0.5° collimator and gantry rotation angle errors is negligible, it can be concluded that setting a proper threshold for allowed errors of collimator and gantry rotation angle may increase treatment efficacy and reduce treatment time.« less
NASA Technical Reports Server (NTRS)
Barth, Timothy J.
2014-01-01
This workshop presentation discusses the design and implementation of numerical methods for the quantification of statistical uncertainty, including a-posteriori error bounds, for output quantities computed using CFD methods. Hydrodynamic realizations often contain numerical error arising from finite-dimensional approximation (e.g. numerical methods using grids, basis functions, particles) and statistical uncertainty arising from incomplete information and/or statistical characterization of model parameters and random fields. The first task at hand is to derive formal error bounds for statistics given realizations containing finite-dimensional numerical error [1]. The error in computed output statistics contains contributions from both realization error and the error resulting from the calculation of statistics integrals using a numerical method. A second task is to devise computable a-posteriori error bounds by numerically approximating all terms arising in the error bound estimates. For the same reason that CFD calculations including error bounds but omitting uncertainty modeling are only of limited value, CFD calculations including uncertainty modeling but omitting error bounds are only of limited value. To gain maximum value from CFD calculations, a general software package for uncertainty quantification with quantified error bounds has been developed at NASA. The package provides implementations for a suite of numerical methods used in uncertainty quantification: Dense tensorization basis methods [3] and a subscale recovery variant [1] for non-smooth data, Sparse tensorization methods[2] utilizing node-nested hierarchies, Sampling methods[4] for high-dimensional random variable spaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, M; Chetty, I; Zhong, H
2014-06-01
Purpose: Tumor control probability (TCP) calculated with accumulated radiation doses may help design appropriate treatment margins. Image registration errors, however, may compromise the calculated TCP. The purpose of this study is to develop benchmark CT images to quantify registration-induced errors in the accumulated doses and their corresponding TCP. Methods: 4DCT images were registered from end-inhale (EI) to end-exhale (EE) using a “demons” algorithm. The demons DVFs were corrected by an FEM model to get realistic deformation fields. The FEM DVFs were used to warp the EI images to create the FEM-simulated images. The two images combined with the FEM DVFmore » formed a benchmark model. Maximum intensity projection (MIP) images, created from the EI and simulated images, were used to develop IMRT plans. Two plans with 3 and 5 mm margins were developed for each patient. With these plans, radiation doses were recalculated on the simulated images and warped back to the EI images using the FEM DVFs to get the accumulated doses. The Elastix software was used to register the FEM-simulated images to the EI images. TCPs calculated with the Elastix-accumulated doses were compared with those generated by the FEM to get the TCP error of the Elastix registrations. Results: For six lung patients, the mean Elastix registration error ranged from 0.93 to 1.98 mm. Their relative dose errors in PTV were between 0.28% and 6.8% for 3mm margin plans, and between 0.29% and 6.3% for 5mm-margin plans. As the PTV margin reduced from 5 to 3 mm, the mean TCP error of the Elastix-reconstructed doses increased from 2.0% to 2.9%, and the mean NTCP errors decreased from 1.2% to 1.1%. Conclusion: Patient-specific benchmark images can be used to evaluate the impact of registration errors on the computed TCPs, and may help select appropriate PTV margins for lung SBRT patients.« less
On Inertial Body Tracking in the Presence of Model Calibration Errors
Miezal, Markus; Taetz, Bertram; Bleser, Gabriele
2016-01-01
In inertial body tracking, the human body is commonly represented as a biomechanical model consisting of rigid segments with known lengths and connecting joints. The model state is then estimated via sensor fusion methods based on data from attached inertial measurement units (IMUs). This requires the relative poses of the IMUs w.r.t. the segments—the IMU-to-segment calibrations, subsequently called I2S calibrations—to be known. Since calibration methods based on static poses, movements and manual measurements are still the most widely used, potentially large human-induced calibration errors have to be expected. This work compares three newly developed/adapted extended Kalman filter (EKF) and optimization-based sensor fusion methods with an existing EKF-based method w.r.t. their segment orientation estimation accuracy in the presence of model calibration errors with and without using magnetometer information. While the existing EKF-based method uses a segment-centered kinematic chain biomechanical model and a constant angular acceleration motion model, the newly developed/adapted methods are all based on a free segments model, where each segment is represented with six degrees of freedom in the global frame. Moreover, these methods differ in the assumed motion model (constant angular acceleration, constant angular velocity, inertial data as control input), the state representation (segment-centered, IMU-centered) and the estimation method (EKF, sliding window optimization). In addition to the free segments representation, the optimization-based method also represents each IMU with six degrees of freedom in the global frame. In the evaluation on simulated and real data from a three segment model (an arm), the optimization-based method showed the smallest mean errors, standard deviations and maximum errors throughout all tests. It also showed the lowest dependency on magnetometer information and motion agility. Moreover, it was insensitive w.r.t. I2S position and segment length errors in the tested ranges. Errors in the I2S orientations were, however, linearly propagated into the estimated segment orientations. In the absence of magnetic disturbances, severe model calibration errors and fast motion changes, the newly developed IMU centered EKF-based method yielded comparable results with lower computational complexity. PMID:27455266
NASA Technical Reports Server (NTRS)
Mccallister, R. D.; Crawford, J. J.
1981-01-01
It is pointed out that the NASA 30/20 GHz program will place in geosynchronous orbit a technically advanced communication satellite which can process time-division multiple access (TDMA) information bursts with a data throughput in excess of 4 GBPS. To guarantee acceptable data quality during periods of signal attenuation it will be necessary to provide a significant forward error correction (FEC) capability. Convolutional decoding (utilizing the maximum-likelihood techniques) was identified as the most attractive FEC strategy. Design trade-offs regarding a maximum-likelihood convolutional decoder (MCD) in a single-chip CMOS implementation are discussed.
Modeling methodology for MLS range navigation system errors using flight test data
NASA Technical Reports Server (NTRS)
Karmali, M. S.; Phatak, A. V.
1982-01-01
Flight test data was used to develop a methodology for modeling MLS range navigation system errors. The data used corresponded to the constant velocity and glideslope approach segment of a helicopter landing trajectory. The MLS range measurement was assumed to consist of low frequency and random high frequency components. The random high frequency component was extracted from the MLS range measurements. This was done by appropriate filtering of the range residual generated from a linearization of the range profile for the final approach segment. This range navigation system error was then modeled as an autoregressive moving average (ARMA) process. Maximum likelihood techniques were used to identify the parameters of the ARMA process.
NASA Technical Reports Server (NTRS)
Grauer, Jared A.; Morelli, Eugene A.
2013-01-01
A nonlinear simulation of the NASA Generic Transport Model was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of dynamic models identified from flight data. Measurements from a typical system identification maneuver were systematically and progressively deteriorated and then used to estimate stability and control derivatives within a Monte Carlo analysis. Based on the results, recommendations were provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using other flight conditions, parameter estimation methods, and a full-scale F-16 nonlinear aircraft simulation were compared with these recommendations.
Intra-arterial pressure measurement in neonates: dynamic response requirements.
van Genderingen, H R; Gevers, M; Hack, W W
1995-02-01
A computer simulation of a catheter manometer system was used to quantify measurement errors in neonatal blood pressure parameters. Accurate intra-arterial pressure recordings of 21 critically ill newborns were fed into this simulated system. The dynamic characteristics, natural frequency and damping coefficient, were varied from 2.5 to 60 Hz and from 0.1 to 1.4, respectively. As a result, errors in systolic, diastolic and pulse arterial pressure were obtained as a function of natural frequency and damping coefficient. Iso-error curves for 2%, 5% and 10% were constructed. Using these curves, the maximum inaccuracy of any neonatal catheter manometer system can be determined and used in the clinical setting.
Attitude error response of structures to actuator/sensor noise
NASA Technical Reports Server (NTRS)
Balakrishnan, A. V.
1991-01-01
Explicit closed-form formulas are presented for the RMS attitude-error response to sensor and actuator noise for co-located actuators/sensors as a function of both control-gain parameters and structure parameters. The main point of departure is the use of continuum models. In particular the anisotropic Timoshenko model is used for lattice trusses typified by the NASA EPS Structure Model and the Evolutionary Model. One conclusion is that the maximum attainable improvement in the attitude error varying either structure parameters or control gains is 3 dB for the axial and torsion modes, the bending being essentially insensitive. The results are similar whether the Bernoulli model or the anisotropic Timoshenko model is used.
NASA Astrophysics Data System (ADS)
Bucha, Blažej; Janák, Juraj
2013-07-01
We present a novel graphical user interface program GrafLab (GRAvity Field LABoratory) for spherical harmonic synthesis (SHS) created in MATLAB®. This program allows to comfortably compute 38 various functionals of the geopotential up to ultra-high degrees and orders of spherical harmonic expansion. For the most difficult part of the SHS, namely the evaluation of the fully normalized associated Legendre functions (fnALFs), we used three different approaches according to required maximum degree: (i) the standard forward column method (up to maximum degree 1800, in some cases up to degree 2190); (ii) the modified forward column method combined with Horner's scheme (up to maximum degree 2700); (iii) the extended-range arithmetic (up to an arbitrary maximum degree). For the maximum degree 2190, the SHS with fnALFs evaluated using the extended-range arithmetic approach takes only approximately 2-3 times longer than its standard arithmetic counterpart, i.e. the standard forward column method. In the GrafLab, the functionals of the geopotential can be evaluated on a regular grid or point-wise, while the input coordinates can either be read from a data file or entered manually. For the computation on a regular grid we decided to apply the lumped coefficients approach due to significant time-efficiency of this method. Furthermore, if a full variance-covariances matrix of spherical harmonic coefficients is available, it is possible to compute the commission errors of the functionals. When computing on a regular grid, the output functionals or their commission errors may be depicted on a map using automatically selected cartographic projection.
Lennernäs, B; Edgren, M; Nilsson, S
1999-01-01
The purpose of this study was to evaluate the precision of a sensor and to ascertain the maximum distance between the sensor and the magnet, in a magnetic positioning system for external beam radiotherapy using a trained artificial intelligence neural network for position determination. Magnetic positioning for radiotherapy, previously described by Lennernäs and Nilsson, is a functional technique, but it is time consuming. The sensors are large and the distance between the sensor and the magnetic implant is limited to short distances. This paper presents a new technique for positioning, using an artificial intelligence neural network, which was trained to position the magnetic implant with at least 0.5 mm resolution in X and Y dimensions. The possibility of using the system for determination in the Z dimension, that is the distance between the magnet and the sensor, was also investigated. After training, this system positioned the magnet with a mean error of maximum 0.15 mm in all dimensions and up to 13 mm from the sensor. Of 400 test positions, 8 determinations had an error larger than 0.5 mm, maximum 0.55 mm. A position was determined in approximately 0.01 s.
NASA Astrophysics Data System (ADS)
Kotchasarn, Chirawat; Saengudomlert, Poompat
We investigate the problem of joint transmitter and receiver power allocation with the minimax mean square error (MSE) criterion for uplink transmissions in a multi-carrier code division multiple access (MC-CDMA) system. The objective of power allocation is to minimize the maximum MSE among all users each of which has limited transmit power. This problem is a nonlinear optimization problem. Using the Lagrange multiplier method, we derive the Karush-Kuhn-Tucker (KKT) conditions which are necessary for a power allocation to be optimal. Numerical results indicate that, compared to the minimum total MSE criterion, the minimax MSE criterion yields a higher total MSE but provides a fairer treatment across the users. The advantages of the minimax MSE criterion are more evident when we consider the bit error rate (BER) estimates. Numerical results show that the minimax MSE criterion yields a lower maximum BER and a lower average BER. We also observe that, with the minimax MSE criterion, some users do not transmit at full power. For comparison, with the minimum total MSE criterion, all users transmit at full power. In addition, we investigate robust joint transmitter and receiver power allocation where the channel state information (CSI) is not perfect. The CSI error is assumed to be unknown but bounded by a deterministic value. This problem is formulated as a semidefinite programming (SDP) problem with bilinear matrix inequality (BMI) constraints. Numerical results show that, with imperfect CSI, the minimax MSE criterion also outperforms the minimum total MSE criterion in terms of the maximum and average BERs.
Comparison of three-dimensional parameters of Halo CMEs using three cone models
NASA Astrophysics Data System (ADS)
Na, H.; Moon, Y.; Jang, S.; Lee, K.
2012-12-01
Halo coronal mass ejections (HCMEs) are a major cause of geomagnetic storms and their three dimensional structures are important for space weather. In this study, we compare three cone models: an elliptical cone model, an ice-cream cone model, and an asymmetric cone model. These models allow us to determine the three dimensional parameters of HCMEs such as radial speed, angular width, and the angle (γ) between sky plane and cone axis. We compare these parameters obtained from three models using 62 well-observed HCMEs observed by SOHO/LASCO from 2001 to 2002. Then we obtain the root mean square error (RMS error) between maximum measured projection speeds and their calculated projection speeds from the cone models. As a result, we find that the radial speeds obtained from the models are well correlated with one another (R > 0.84). The correlation coefficients between angular widths are ranges from 0.04 to 0.53 and those between γ values are from -0.15 to 0.47, which are much smaller than expected. The reason may be due to different assumptions and methods. The RMS errors between the maximum measured projection speeds and the maximum estimated projection speeds of the elliptical cone model, the ice-cream cone model, and the asymmetric cone model are 213 km/s, 254 km/s, and 267 km/s, respectively. And we obtain the correlation coefficients between the location from the models and the flare location (R > 0.75). Finally, we discuss strengths and weaknesses of these models in terms of space weather application.
NASA Technical Reports Server (NTRS)
Grauer, Jared A.; Morelli, Eugene A.
2013-01-01
The NASA Generic Transport Model (GTM) nonlinear simulation was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of identified parameters in mathematical models describing the flight dynamics and determined from flight data. Measurements from a typical flight condition and system identification maneuver were systematically and progressively deteriorated by introducing noise, resolution errors, and bias errors. The data were then used to estimate nondimensional stability and control derivatives within a Monte Carlo simulation. Based on these results, recommendations are provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using additional flight conditions and parameter estimation methods, as well as a nonlinear flight simulation of the General Dynamics F-16 aircraft, were compared with these recommendations
ERIC Educational Resources Information Center
Molina, M. I.
2000-01-01
Mathematically explains why the range of a projectile is most insensitive to aiming errors when the initial angle is close to 45 degrees, whereas other observables such as maximum height or flight time are most insensitive for near-vertical launching conditions. (WRM)
Optimization of traffic data collection for specific pavement design applications.
DOT National Transportation Integrated Search
2006-05-01
The objective of this study is to establish the minimum traffic data collection effort required for pavement design applications satisfying a maximum acceptable error under a prescribed confidence level. The approach consists of simulating the traffi...
A Review of System Identification Methods Applied to Aircraft
NASA Technical Reports Server (NTRS)
Klein, V.
1983-01-01
Airplane identification, equation error method, maximum likelihood method, parameter estimation in frequency domain, extended Kalman filter, aircraft equations of motion, aerodynamic model equations, criteria for the selection of a parsimonious model, and online aircraft identification are addressed.
NASA Astrophysics Data System (ADS)
Ampil, L. J. Y.; Yao, J. G.; Lagrosas, N.; Lorenzo, G. R. H.; Simpas, J.
2017-12-01
The Global Precipitation Measurement (GPM) mission is a group of satellites that provides global observations of precipitation. Satellite-based observations act as an alternative if ground-based measurements are inadequate or unavailable. Data provided by satellites however must be validated for this data to be reliable and used effectively. In this study, the Integrated Multisatellite Retrievals for GPM (IMERG) Final Run v3 half-hourly product is validated by comparing against interpolated ground measurements derived from sixteen ground stations in Metro Manila. The area considered in this study is the region 14.4° - 14.8° latitude and 120.9° - 121.2° longitude, subdivided into twelve 0.1° x 0.1° grid squares. Satellite data from June 1 - August 31, 2014 with the data aggregated to 1-day temporal resolution are used in this study. The satellite data is directly compared to measurements from individual ground stations to determine the effect of the interpolation by contrast against the comparison of satellite data and interpolated measurements. The comparisons are calculated by taking a fractional root-mean-square error (F-RMSE) between two datasets. The results show that interpolation improves errors compared to using raw station data except during days with very small amounts of rainfall. F-RMSE reaches extreme values of up to 654 without a rainfall threshold. A rainfall threshold is inferred to remove extreme error values and make the distribution of F-RMSE more consistent. Results show that the rainfall threshold varies slightly per month. The threshold for June is inferred to be 0.5 mm, reducing the maximum F-RMSE to 9.78, while the threshold for July and August is inferred to be 0.1 mm, reducing the maximum F-RMSE to 4.8 and 10.7, respectively. The maximum F-RMSE is reduced further as the threshold is increased. Maximum F-RMSE is reduced to 3.06 when a rainfall threshold of 10 mm is applied over the entire duration of JJA. These results indicate that IMERG performs well for moderate to high intensity rainfall and that the interpolation remains effective only when rainfall exceeds a certain threshold value. Over Metro Manila, an F-RMSE threshold of 0.5 mm indicated better correspondence between ground measured and satellite measured rainfall.
Amuse, M A; Kuchekar, S R; Mote, N A; Chavan, M B
1985-10-01
Tervalent gold was determined spectrophotometrically as its anionic 1:4 gold-thiol complex extracted into chloroform from aqueous acidic medium (1.5M sulphuric acid) in the presence of tri-iso-octylamine. The complex exhibits maximum absorption at 480 nm (molar absorptivity 4.60 x 10(3) l.mole(-1).cm(-1)) and Beer's law is obeyed in the concentration range 5-50 microg of gold(III) per ml. The relative standard deviation and relative error, calculated from ten determinations of solutions containing 15 microg of gold(III) per ml were 1.0% and 0.8%. The method is simple, selective and reproducible. It permits separation of gold(III) from associated elements and its determination in synthetic mixtures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molotkov, S. N., E-mail: sergei.molotkov@gmail.com
2012-12-15
Any key-generation session contains a finite number of quantum-state messages, and it is there-fore important to understand the fundamental restrictions imposed on the minimal length of a string required to obtain a secret key with a specified length. The entropy uncertainty relations for smooth min and max entropies considerably simplify and shorten the proof of security. A proof of security of quantum key distribution with phase-temporal encryption is presented. This protocol provides the maximum critical error compared to other protocols up to which secure key distribution is guaranteed. In addition, unlike other basic protocols (of the BB84 type), which aremore » vulnerable with respect to an attack by 'blinding' of avalanche photodetectors, this protocol is stable with respect to such an attack and guarantees key security.« less
The Effect of Ultrapolish on a Transonic Axial Rotor
NASA Technical Reports Server (NTRS)
Roberts, William B.; Thorp, Scott; Prahst, Patricia S.; Strazisar, Anthony
2005-01-01
Back-to-back testing has been done using NASA fan rotor 67 in the Glenn Research Center W8 Axial Compressor Test Facility. The rotor was baseline tested with a normal industrial RMS surface finish of 0.5-0.6 m (20-24 microinches) at 60, 80 and 100% of design speed. At design speed the tip relative Mach number was 1.38. The blades were then removed from the facility and ultrapolished to a surface finish of 0.125 m (5 microinch) or less and retested. At 100% speed near the design point, the ultrapolished blades showed approximately 0.3 - 0.5% increase in adiabatic efficiency. The difference was greater near maximum flow. Due to increased relative measurement error at 60 and 80% speed, the performance difference between the normal and ultrapolished blades was indeterminate at these speeds.
Error studies of Halbach Magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, S.
2017-03-02
These error studies were done on the Halbach magnets for the CBETA “First Girder” as described in note [CBETA001]. The CBETA magnets have since changed slightly to the lattice in [CBETA009]. However, this is not a large enough change to significantly affect the results here. The QF and BD arc FFAG magnets are considered. For each assumed set of error distributions and each ideal magnet, 100 random magnets with errors are generated. These are then run through an automated version of the iron wire multipole cancellation algorithm. The maximum wire diameter allowed is 0.063” as in the proof-of-principle magnets. Initially,more » 32 wires (2 per Halbach wedge) are tried, then if this does not achieve 1e-4 level accuracy in the simulation, 48 and then 64 wires. By “1e-4 accuracy”, it is meant the FOM defined by √(Σ n≥sextupole a n 2+b n 2) is less than 1 unit, where the multipoles are taken at the maximum nominal beam radius, R=23mm for these magnets. The algorithm initially uses 20 convergence interations. If 64 wires does not achieve 1e-4 accuracy, this is increased to 50 iterations to check for slow converging cases. There are also classifications for magnets that do not achieve 1e-4 but do achieve 1e-3 (FOM ≤ 10 units). This is technically within the spec discussed in the Jan 30, 2017 review; however, there will be errors in practical shimming not dealt with in the simulation, so it is preferable to do much better than the spec in the simulation.« less
Ye, Xin; Garikapati, Venu M.; You, Daehyun; ...
2017-11-08
Most multinomial choice models (e.g., the multinomial logit model) adopted in practice assume an extreme-value Gumbel distribution for the random components (error terms) of utility functions. This distributional assumption offers a closed-form likelihood expression when the utility maximization principle is applied to model choice behaviors. As a result, model coefficients can be easily estimated using the standard maximum likelihood estimation method. However, maximum likelihood estimators are consistent and efficient only if distributional assumptions on the random error terms are valid. It is therefore critical to test the validity of underlying distributional assumptions on the error terms that form the basismore » of parameter estimation and policy evaluation. In this paper, a practical yet statistically rigorous method is proposed to test the validity of the distributional assumption on the random components of utility functions in both the multinomial logit (MNL) model and multiple discrete-continuous extreme value (MDCEV) model. Based on a semi-nonparametric approach, a closed-form likelihood function that nests the MNL or MDCEV model being tested is derived. The proposed method allows traditional likelihood ratio tests to be used to test violations of the standard Gumbel distribution assumption. Simulation experiments are conducted to demonstrate that the proposed test yields acceptable Type-I and Type-II error probabilities at commonly available sample sizes. The test is then applied to three real-world discrete and discrete-continuous choice models. For all three models, the proposed test rejects the validity of the standard Gumbel distribution in most utility functions, calling for the development of robust choice models that overcome adverse effects of violations of distributional assumptions on the error terms in random utility functions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Xin; Garikapati, Venu M.; You, Daehyun
Most multinomial choice models (e.g., the multinomial logit model) adopted in practice assume an extreme-value Gumbel distribution for the random components (error terms) of utility functions. This distributional assumption offers a closed-form likelihood expression when the utility maximization principle is applied to model choice behaviors. As a result, model coefficients can be easily estimated using the standard maximum likelihood estimation method. However, maximum likelihood estimators are consistent and efficient only if distributional assumptions on the random error terms are valid. It is therefore critical to test the validity of underlying distributional assumptions on the error terms that form the basismore » of parameter estimation and policy evaluation. In this paper, a practical yet statistically rigorous method is proposed to test the validity of the distributional assumption on the random components of utility functions in both the multinomial logit (MNL) model and multiple discrete-continuous extreme value (MDCEV) model. Based on a semi-nonparametric approach, a closed-form likelihood function that nests the MNL or MDCEV model being tested is derived. The proposed method allows traditional likelihood ratio tests to be used to test violations of the standard Gumbel distribution assumption. Simulation experiments are conducted to demonstrate that the proposed test yields acceptable Type-I and Type-II error probabilities at commonly available sample sizes. The test is then applied to three real-world discrete and discrete-continuous choice models. For all three models, the proposed test rejects the validity of the standard Gumbel distribution in most utility functions, calling for the development of robust choice models that overcome adverse effects of violations of distributional assumptions on the error terms in random utility functions.« less
An, Lihua; Fung, Karen Y; Krewski, Daniel
2010-09-01
Spontaneous adverse event reporting systems are widely used to identify adverse reactions to drugs following their introduction into the marketplace. In this article, a James-Stein type shrinkage estimation strategy was developed in a Bayesian logistic regression model to analyze pharmacovigilance data. This method is effective in detecting signals as it combines information and borrows strength across medically related adverse events. Computer simulation demonstrated that the shrinkage estimator is uniformly better than the maximum likelihood estimator in terms of mean squared error. This method was used to investigate the possible association of a series of diabetic drugs and the risk of cardiovascular events using data from the Canada Vigilance Online Database.
NASA Technical Reports Server (NTRS)
Kanning, G.; Cicolani, L. S.; Schmidt, S. F.
1983-01-01
Translational state estimation in terminal area operations, using a set of commonly available position, air data, and acceleration sensors, is described. Kalman filtering is applied to obtain maximum estimation accuracy from the sensors but feasibility in real-time computations requires a variety of approximations and devices aimed at minimizing the required computation time with only negligible loss of accuracy. Accuracy behavior throughout the terminal area, its relation to sensor accuracy, its effect on trajectory tracking errors and control activity in an automatic flight control system, and its adequacy in terms of existing criteria for various terminal area operations are examined. The principal investigative tool is a simulation of the system.
Problems with the Baade-Wesselink method
NASA Technical Reports Server (NTRS)
Bohm-Vitense, E.; Garnavich, P.; Lawler, M.; Mena-Werth, J.; Morgan, S.
1989-01-01
The discrepancy noted in radii obtained by the Baade-Wesselink method when different colors are used to determine the effective temperatures is explored. The discrepancy is found to be due to an inconsistency in the applied temperature-color calibrations. The assumption of the maximum likelihood method that beta (the effective temperature + 0.1 times the bolometric correction) is a linear function of the color is valid for the B-V and V-I colors, but not for the V-R colors. It is suggested that the errors introduced by the nonlinearity in the relation between beta and the V-R colors will produce radii which are too large. The radii derived from the V-B colors appear to be too small.
Coupling efficiency of laser beam to multimode fiber
NASA Astrophysics Data System (ADS)
Niu, Jinfu; Xu, Jianqiu
2007-06-01
The coupling efficiency of laser beam to multimode fiber is given by geometrical optics, and the relation between the maximum coupling efficiency and the beam propagation factor M2 is analyzed. An equivalent factor MF2 for the multimode fiber is introduced to characterize the fiber coupling capability. The coupling efficiency of laser beam to multimode fiber is calculated in respect of the ratio M2/MF2 by the overlapping integral theory. The optimal coupling efficiency can be roughly estimated by the ratio of M2 to MF2 but with a large error range. The deviation comes from the lacks of information on the detail of phase and intensity profile in the beam factor M2.
A comparison of three approaches to non-stationary flood frequency analysis
NASA Astrophysics Data System (ADS)
Debele, S. E.; Strupczewski, W. G.; Bogdanowicz, E.
2017-08-01
Non-stationary flood frequency analysis (FFA) is applied to statistical analysis of seasonal flow maxima from Polish and Norwegian catchments. Three non-stationary estimation methods, namely, maximum likelihood (ML), two stage (WLS/TS) and GAMLSS (generalized additive model for location, scale and shape parameters), are compared in the context of capturing the effect of non-stationarity on the estimation of time-dependent moments and design quantiles. The use of a multimodel approach is recommended, to reduce the errors due to the model misspecification in the magnitude of quantiles. The results of calculations based on observed seasonal daily flow maxima and computer simulation experiments showed that GAMLSS gave the best results with respect to the relative bias and root mean square error in the estimates of trend in the standard deviation and the constant shape parameter, while WLS/TS provided better accuracy in the estimates of trend in the mean value. Within three compared methods the WLS/TS method is recommended to deal with non-stationarity in short time series. Some practical aspects of the GAMLSS package application are also presented. The detailed discussion of general issues related to consequences of climate change in the FFA is presented in the second part of the article entitled "Around and about an application of the GAMLSS package in non-stationary flood frequency analysis".
A Canopy Density Model for Planar Orchard Target Detection Based on Ultrasonic Sensors
Li, Hanzhe; Zhai, Changyuan; Weckler, Paul; Wang, Ning; Yang, Shuo; Zhang, Bo
2016-01-01
Orchard target-oriented variable rate spraying is an effective method to reduce pesticide drift and excessive residues. To accomplish this task, the orchard targets’ characteristic information is needed to control liquid flow rate and airflow rate. One of the most important characteristics is the canopy density. In order to establish the canopy density model for a planar orchard target which is indispensable for canopy density calculation, a target density detection testing system was developed based on an ultrasonic sensor. A time-domain energy analysis method was employed to analyze the ultrasonic signal. Orthogonal regression central composite experiments were designed and conducted using man-made canopies of known density with three or four layers of leaves. Two model equations were obtained, of which the model for the canopies with four layers was found to be the most reliable. A verification test was conducted with different layers at the same density values and detecting distances. The test results showed that the relative errors of model density values and actual values of five, four, three and two layers of leaves were acceptable, while the maximum relative errors were 17.68%, 25.64%, 21.33% and 29.92%, respectively. It also suggested the model equation with four layers had a good applicability with different layers which increased with adjacent layers. PMID:28029132
Applicability of AgMERRA Forcing Dataset to Fill Gaps in Historical in-situ Meteorological Data
NASA Astrophysics Data System (ADS)
Bannayan, M.; Lashkari, A.; Zare, H.; Asadi, S.; Salehnia, N.
2015-12-01
Integrated assessment studies of food production systems use crop models to simulate the effects of climate and socio-economic changes on food security. Climate forcing data is one of those key inputs of crop models. This study evaluated the performance of AgMERRA climate forcing dataset to fill gaps in historical in-situ meteorological data for different climatic regions of Iran. AgMERRA dataset intercompared with in- situ observational dataset for daily maximum and minimum temperature and precipitation during 1980-2010 periods via Root Mean Square error (RMSE), Mean Absolute Error (MAE) and Mean Bias Error (MBE) for 17 stations in four climatic regions included humid and moderate, cold, dry and arid, hot and humid. Moreover, probability distribution function and cumulative distribution function compared between model and observed data. The results of measures of agreement between AgMERRA data and observed data demonstrated that there are small errors in model data for all stations. Except for stations which are located in cold regions, model data in the other stations illustrated under-prediction for daily maximum temperature and precipitation. However, it was not significant. In addition, probability distribution function and cumulative distribution function showed the same trend for all stations between model and observed data. Therefore, the reliability of AgMERRA dataset is high to fill gaps in historical observations in different climatic regions of Iran as well as it could be applied as a basis for future climate scenarios.
NASA Astrophysics Data System (ADS)
Jiménez, César; Carbonel, Carlos; Rojas, Joel
2018-04-01
We have implemented a numerical procedure to forecast the parameters of a tsunami, such as the arrival time of the front of the first wave and the maximum wave height in real and virtual tidal stations along the Peruvian coast, with this purpose a database of pre-computed synthetic tsunami waveforms (or Green functions) was obtained from numerical simulation of seismic unit sources (dimension: 50 × 50 km2) for subduction zones from southern Chile to northern Mexico. A bathymetry resolution of 30 arc-sec (approximately 927 m) was used. The resulting tsunami waveform is obtained from the superposition of synthetic waveforms corresponding to several seismic unit sources contained within the tsunami source geometry. The numerical procedure was applied to the Chilean tsunami of April 1, 2014. The results show a very good correlation for stations with wave amplitude greater than 1 m, in the case of the Arica tide station an error (from the maximum height of the observed and simulated waveform) of 3.5% was obtained, for Callao station the error was 12% and the largest error was in Chimbote with 53.5%, however, due to the low amplitude of the Chimbote wave (<1 m), the overestimated error, in this case, is not important for evacuation purposes. The aim of the present research is tsunami early warning, where speed is required rather than accuracy, so the results should be taken as preliminary.
NASA Astrophysics Data System (ADS)
Jiménez, César; Carbonel, Carlos; Rojas, Joel
2017-09-01
We have implemented a numerical procedure to forecast the parameters of a tsunami, such as the arrival time of the front of the first wave and the maximum wave height in real and virtual tidal stations along the Peruvian coast, with this purpose a database of pre-computed synthetic tsunami waveforms (or Green functions) was obtained from numerical simulation of seismic unit sources (dimension: 50 × 50 km2) for subduction zones from southern Chile to northern Mexico. A bathymetry resolution of 30 arc-sec (approximately 927 m) was used. The resulting tsunami waveform is obtained from the superposition of synthetic waveforms corresponding to several seismic unit sources contained within the tsunami source geometry. The numerical procedure was applied to the Chilean tsunami of April 1, 2014. The results show a very good correlation for stations with wave amplitude greater than 1 m, in the case of the Arica tide station an error (from the maximum height of the observed and simulated waveform) of 3.5% was obtained, for Callao station the error was 12% and the largest error was in Chimbote with 53.5%, however, due to the low amplitude of the Chimbote wave (<1 m), the overestimated error, in this case, is not important for evacuation purposes. The aim of the present research is tsunami early warning, where speed is required rather than accuracy, so the results should be taken as preliminary.
Neural evidence for enhanced error detection in major depressive disorder.
Chiu, Pearl H; Deldin, Patricia J
2007-04-01
Anomalies in error processing have been implicated in the etiology and maintenance of major depressive disorder. In particular, depressed individuals exhibit heightened sensitivity to error-related information and negative environmental cues, along with reduced responsivity to positive reinforcers. The authors examined the neural activation associated with error processing in individuals diagnosed with and without major depression and the sensitivity of these processes to modulation by monetary task contingencies. The error-related negativity and error-related positivity components of the event-related potential were used to characterize error monitoring in individuals with major depressive disorder and the degree to which these processes are sensitive to modulation by monetary reinforcement. Nondepressed comparison subjects (N=17) and depressed individuals (N=18) performed a flanker task under two external motivation conditions (i.e., monetary reward for correct responses and monetary loss for incorrect responses) and a nonmonetary condition. After each response, accuracy feedback was provided. The error-related negativity component assessed the degree of anomaly in initial error detection, and the error positivity component indexed recognition of errors. Across all conditions, the depressed participants exhibited greater amplitude of the error-related negativity component, relative to the comparison subjects, and equivalent error positivity amplitude. In addition, the two groups showed differential modulation by task incentives in both components. These data implicate exaggerated early error-detection processes in the etiology and maintenance of major depressive disorder. Such processes may then recruit excessive neural and cognitive resources that manifest as symptoms of depression.
Samaranayake, N R; Cheung, S T D; Chui, W C M; Cheung, B M Y
2012-12-01
Healthcare technology is meant to reduce medication errors. The objective of this study was to assess unintended errors related to technologies in the medication use process. Medication incidents reported from 2006 to 2010 in a main tertiary care hospital were analysed by a pharmacist and technology-related errors were identified. Technology-related errors were further classified as socio-technical errors and device errors. This analysis was conducted using data from medication incident reports which may represent only a small proportion of medication errors that actually takes place in a hospital. Hence, interpretation of results must be tentative. 1538 medication incidents were reported. 17.1% of all incidents were technology-related, of which only 1.9% were device errors, whereas most were socio-technical errors (98.1%). Of these, 61.2% were linked to computerised prescription order entry, 23.2% to bar-coded patient identification labels, 7.2% to infusion pumps, 6.8% to computer-aided dispensing label generation and 1.5% to other technologies. The immediate causes for technology-related errors included, poor interface between user and computer (68.1%), improper procedures or rule violations (22.1%), poor interface between user and infusion pump (4.9%), technical defects (1.9%) and others (3.0%). In 11.4% of the technology-related incidents, the error was detected after the drug had been administered. A considerable proportion of all incidents were technology-related. Most errors were due to socio-technical issues. Unintended and unanticipated errors may happen when using technologies. Therefore, when using technologies, system improvement, awareness, training and monitoring are needed to minimise medication errors. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Stochastic control system parameter identifiability
NASA Technical Reports Server (NTRS)
Lee, C. H.; Herget, C. J.
1975-01-01
The parameter identification problem of general discrete time, nonlinear, multiple input/multiple output dynamic systems with Gaussian white distributed measurement errors is considered. The knowledge of the system parameterization was assumed to be known. Concepts of local parameter identifiability and local constrained maximum likelihood parameter identifiability were established. A set of sufficient conditions for the existence of a region of parameter identifiability was derived. A computation procedure employing interval arithmetic was provided for finding the regions of parameter identifiability. If the vector of the true parameters is locally constrained maximum likelihood (CML) identifiable, then with probability one, the vector of true parameters is a unique maximal point of the maximum likelihood function in the region of parameter identifiability and the constrained maximum likelihood estimation sequence will converge to the vector of true parameters.
Failure analysis and modeling of a multicomputer system. M.S. Thesis
NASA Technical Reports Server (NTRS)
Subramani, Sujatha Srinivasan
1990-01-01
This thesis describes the results of an extensive measurement-based analysis of real error data collected from a 7-machine DEC VaxCluster multicomputer system. In addition to evaluating basic system error and failure characteristics, we develop reward models to analyze the impact of failures and errors on the system. The results show that, although 98 percent of errors in the shared resources recover, they result in 48 percent of all system failures. The analysis of rewards shows that the expected reward rate for the VaxCluster decreases to 0.5 in 100 days for a 3 out of 7 model, which is well over a 100 times that for a 7-out-of-7 model. A comparison of the reward rates for a range of k-out-of-n models indicates that the maximum increase in reward rate (0.25) occurs in going from the 6-out-of-7 model to the 5-out-of-7 model. The analysis also shows that software errors have the lowest reward (0.2 vs. 0.91 for network errors). The large loss in reward rate for software errors is due to the fact that a large proportion (94 percent) of software errors lead to failure. In comparison, the high reward rate for network errors is due to fast recovery from a majority of these errors (median recovery duration is 0 seconds).
More on the decoder error probability for Reed-Solomon codes
NASA Technical Reports Server (NTRS)
Cheung, K.-M.
1987-01-01
The decoder error probability for Reed-Solomon codes (more generally, linear maximum distance separable codes) is examined. McEliece and Swanson offered an upper bound on P sub E (u), the decoder error probability given that u symbol errors occurs. This upper bound is slightly greater than Q, the probability that a completely random error pattern will cause decoder error. By using a combinatoric technique, the principle of inclusion and exclusion, an exact formula for P sub E (u) is derived. The P sub e (u) for the (255, 223) Reed-Solomon Code used by NASA, and for the (31,15) Reed-Solomon code (JTIDS code), are calculated using the exact formula, and the P sub E (u)'s are observed to approach the Q's of the codes rapidly as u gets larger. An upper bound for the expression is derived, and is shown to decrease nearly exponentially as u increases. This proves analytically that P sub E (u) indeed approaches Q as u becomes large, and some laws of large numbers come into play.
Liu, Xiaoming; Fu, Yun-Xin; Maxwell, Taylor J.; Boerwinkle, Eric
2010-01-01
It is known that sequencing error can bias estimation of evolutionary or population genetic parameters. This problem is more prominent in deep resequencing studies because of their large sample size n, and a higher probability of error at each nucleotide site. We propose a new method based on the composite likelihood of the observed SNP configurations to infer population mutation rate θ = 4Neμ, population exponential growth rate R, and error rate ɛ, simultaneously. Using simulation, we show the combined effects of the parameters, θ, n, ɛ, and R on the accuracy of parameter estimation. We compared our maximum composite likelihood estimator (MCLE) of θ with other θ estimators that take into account the error. The results show the MCLE performs well when the sample size is large or the error rate is high. Using parametric bootstrap, composite likelihood can also be used as a statistic for testing the model goodness-of-fit of the observed DNA sequences. The MCLE method is applied to sequence data on the ANGPTL4 gene in 1832 African American and 1045 European American individuals. PMID:19952140
An affordable cuff-less blood pressure estimation solution.
Jain, Monika; Kumar, Niranjan; Deb, Sujay
2016-08-01
This paper presents a cuff-less hypertension pre-screening device that non-invasively monitors the Blood Pressure (BP) and Heart Rate (HR) continuously. The proposed device simultaneously records two clinically significant and highly correlated biomedical signals, viz., Electrocardiogram (ECG) and Photoplethysmogram (PPG). The device provides a common data acquisition platform that can interface with PC/laptop, Smart phone/tablet and Raspberry-pi etc. The hardware stores and processes the recorded ECG and PPG in order to extract the real-time BP and HR using kernel regression approach. The BP and HR estimation error is measured in terms of normalized mean square error, Error Standard Deviation (ESD) and Mean Absolute Error (MAE), with respect to a clinically proven digital BP monitor (OMRON HBP1300). The computed error falls under the maximum standard allowable error mentioned by Association for the Advancement of Medical Instrumentation; MAE <; 5 mmHg and ESD <; 8mmHg. The results are validated using two-tailed dependent sample t-test also. The proposed device is a portable low-cost home and clinic bases solution for continuous health monitoring.
Visual error augmentation enhances learning in three dimensions.
Sharp, Ian; Huang, Felix; Patton, James
2011-09-02
Because recent preliminary evidence points to the use of Error augmentation (EA) for motor learning enhancements, we visually enhanced deviations from a straight line path while subjects practiced a sensorimotor reversal task, similar to laparoscopic surgery. Our study asked 10 healthy subjects in two groups to perform targeted reaching in a simulated virtual reality environment, where the transformation of the hand position matrix was a complete reversal--rotated 180 degrees about an arbitrary axis (hence 2 of the 3 coordinates are reversed). Our data showed that after 500 practice trials, error-augmented-trained subjects reached the desired targets more quickly and with lower error (differences of 0.4 seconds and 0.5 cm Maximum Perpendicular Trajectory deviation) when compared to the control group. Furthermore, the manner in which subjects practiced was influenced by the error augmentation, resulting in more continuous motions for this group and smaller errors. Even with the extreme sensory discordance of a reversal, these data further support that distorted reality can promote more complete adaptation/learning when compared to regular training. Lastly, upon removing the flip all subjects quickly returned to baseline rapidly within 6 trials.
Modeling the leaf angle dynamics in rice plant.
Zhang, Yonghui; Tang, Liang; Liu, Xiaojun; Liu, Leilei; Cao, Weixing; Zhu, Yan
2017-01-01
The leaf angle between stem and sheath (SSA) is an important rice morphological trait. The objective of this study was to develop and validate a dynamic SSA model under different nitrogen (N) rates for selected rice cultivars. The time-course data of SSA were collected in three years, and a dynamic SSA model was developed for different main stem leaf ranks under different N rates for two selected rice cultivars. SSA increased with tiller age. The SSA of the same leaf rank increased with increase in N rate. The maximum SSA increased with leaf rank from the first to the third leaf, then decreased from the third to the final leaf. The relationship between the maximum SSA and leaf rank on main stem could be described with a linear piecewise function. The change of SSA with thermal time (TT) was described by a logistic equation. A variety parameter (the maximum SSA of the 3rd leaf on main stem) and a nitrogen factor were introduced to quantify the effect of cultivar and N rate on SSA. The model was validated against data collected from both pot and field experiments. The relative root mean square error (RRMSE) was 11.56% and 14.05%, respectively. The resulting models could be used for virtual rice plant modeling and plant-type design.
Crausman, R S; Ferguson, G; Irvin, C G; Make, B; Newell, J D
1995-06-01
We assessed the value of quantitative high-resolution computed tomography (CT) as a diagnostic and prognostic tool in smoking-related emphysema. We performed an inception cohort study of 14 patients referred with emphysema. The diagnosis of emphysema was based on a compatible history, physical examination, chest radiograph, CT scan of the lung, and pulmonary physiologic evaluation. As a group, those who underwent exercise testing were hyperinflated (percentage predicted total lung capacity +/- standard error of the mean = 133 +/- 9%), and there was evidence of air trapping (percentage predicted respiratory volume = 318 +/- 31%) and airflow limitation (forced expiratory volume in 1 sec [FEV1] = 40 +/- 7%). The exercise performance of the group was severely limited (maximum achievable workload = 43 +/- 6%) and was characterized by prominent ventilatory, gas exchange, and pulmonary vascular abnormalities. The quantitative CT index was markedly elevated in all patients (76 +/- 9; n = 14; normal < 4). There were correlations between this quantitative CT index and measures of airflow limitation (FEV1 r2 = .34, p = 09; FEV1/forced vital capacity r2 = .46, p = .04) and between maximum workload achieved (r2 = .93, p = .0001) and maximum oxygen utilization (r2 = .83, p = .0007). Quantitative chest CT assessment of disease severity is correlated with the degree of airflow limitation and exercise impairment in pulmonary emphysema.
Guedes, R.M.C.; Calliari, L.J.; Holland, K.T.; Plant, N.G.; Pereira, P.S.; Alves, F.N.A.
2011-01-01
Time-exposure intensity (averaged) images are commonly used to locate the nearshore sandbar position (xb), based on the cross-shore locations of maximum pixel intensity (xi) of the bright bands in the images. It is not known, however, how the breaking patterns seen in Variance images (i.e. those created through standard deviation of pixel intensity over time) are related to the sandbar locations. We investigated the suitability of both Time-exposure and Variance images for sandbar detection within a multiple bar system on the southern coast of Brazil, and verified the relation between wave breaking patterns, observed as bands of high intensity in these images and cross-shore profiles of modeled wave energy dissipation (xD). Not only is Time-exposure maximum pixel intensity location (xi-Ti) well related to xb, but also to the maximum pixel intensity location of Variance images (xi-Va), although the latter was typically located 15m offshore of the former. In addition, xi-Va was observed to be better associated with xD even though xi-Ti is commonly assumed as maximum wave energy dissipation. Significant wave height (Hs) and water level (??) were observed to affect the two types of images in a similar way, with an increase in both Hs and ?? resulting in xi shifting offshore. This ??-induced xi variability has an opposite behavior to what is described in the literature, and is likely an indirect effect of higher waves breaking farther offshore during periods of storm surges. Multiple regression models performed on xi, Hs and ?? allowed the reduction of the residual errors between xb and xi, yielding accurate estimates with most residuals less than 10m. Additionally, it was found that the sandbar position was best estimated using xi-Ti (xi-Va) when xb was located shoreward (seaward) of its mean position, for both the first and the second bar. Although it is unknown whether this is an indirect hydrodynamic effect or is indeed related to the morphology, we found that this behavior can be explored to optimize sandbar estimation using video imagery, even in the absence of hydrodynamic data. ?? 2011 Elsevier B.V..
Age-related differences in finger force control are characterized by reduced force production.
Vieluf, Solveig; Godde, Ben; Reuter, Eva-Maria; Voelcker-Rehage, Claudia
2013-01-01
It has been repeatedly shown that precise finger force control declines with age. The tasks and evaluation parameters used to reveal age-related differences vary between studies. In order to examine effects of task characteristics, young adults (18-25 years) and late middle-aged adults (55-65 years) performed precision grip tasks with varying speed and force requirements. Different outcome variables were used to evaluate age-related differences. Age-related differences were confirmed for performance accuracy (TWR) and variability (relative root mean square error, rRMSE). The task characteristics, however, influenced accuracy and variability in both age groups: Force modulation performance at higher speed was poorer than at lower speed and at fixed force levels than at force levels adjusted to the individual maximum forces. This effect tended to be stronger for older participants for the rRMSE. A curve fit confirmed the age-related differences for both spatial force tracking parameters (amplitude and intercept) and for one temporal parameter (phase shift), but not for the temporal parameter frequency. Additionally, matching the timing parameters of the sine wave seemed to be more important than matching the spatial parameters in both young adults and late middle-aged adults. However, the effect was stronger for the group of late middle-aged, even though maximum voluntary contraction was not significantly different between groups. Our data indicate that changes in the processing of fine motor control tasks with increasing age are caused by difficulties of late middle-aged adults to produce a predefined amount of force in a short time.
Wilberg, Dale E.; Stolp, Bernard J.
2005-01-01
This report contains the results of an October 2001 seepage investigation conducted along a reach of the Escalante River in Utah extending from the U.S. Geological Survey streamflow-gaging station near Escalante to the mouth of Stevens Canyon. Discharge was measured at 16 individual sites along 15 consecutive reaches. Total reach length was about 86 miles. A reconnaissance-level sampling of water for tritium and chlorofluorcarbons was also done. In addition, hydrologic and water-quality data previously collected and published by the U.S. Geological Survey for the 2,020-square-mile Escalante River drainage basin was compiled and is presented in 12 tables. These data were collected from 64 surface-water sites and 28 springs from 1909 to 2002.None of the 15 consecutive reaches along the Escalante River had a measured loss or gain that exceeded the measurement error. All discharge measurements taken during the seepage investigation were assigned a qualitative rating of accuracy that ranged from 5 percent to greater than 8 percent of the actual flow. Summing the potential error for each measurement and dividing by the maximum of either the upstream discharge and any tributary inflow, or the downstream discharge, determined the normalized error for a reach. This was compared to the computed loss or gain that also was normalized to the maximum discharge. A loss or gain for a specified reach is considered significant when the loss or gain (normalized percentage difference) is greater than the measurement error (normalized percentage error). The percentage difference and percentage error were normalized to allow comparison between reaches with different amounts of discharge.The plate that accompanies the report is 36" by 40" and can be printed in 16 tiles, 8.5 by 11 inches. An index for the tiles is located on the lower left-hand side of the plate. Using Adobe Acrobat, the plate can be viewed independent of the report; all Acrobat functions are available.
Characterization of the International Linear Collider damping ring optics
NASA Astrophysics Data System (ADS)
Shanks, J.; Rubin, D. L.; Sagan, D.
2014-10-01
A method is presented for characterizing the emittance dilution and dynamic aperture for an arbitrary closed lattice that includes guide field magnet errors, multipole errors and misalignments. This method, developed and tested at the Cornell Electron Storage Ring Test Accelerator (CesrTA), has been applied to the damping ring lattice for the International Linear Collider (ILC). The effectiveness of beam based emittance tuning is limited by beam position monitor (BPM) measurement errors, number of corrector magnets and their placement, and correction algorithm. The specifications for damping ring magnet alignment, multipole errors, number of BPMs, and precision in BPM measurements are shown to be consistent with the required emittances and dynamic aperture. The methodology is then used to determine the minimum number of position monitors that is required to achieve the emittance targets, and how that minimum depends on the location of the BPMs. Similarly, the maximum tolerable multipole errors are evaluated. Finally, the robustness of each BPM configuration with respect to random failures is explored.
Propagation of angular errors in two-axis rotation systems
NASA Astrophysics Data System (ADS)
Torrington, Geoffrey K.
2003-10-01
Two-Axis Rotation Systems, or "goniometers," are used in diverse applications including telescope pointing, automotive headlamp testing, and display testing. There are three basic configurations in which a goniometer can be built depending on the orientation and order of the stages. Each configuration has a governing set of equations which convert motion between the system "native" coordinates to other base systems, such as direction cosines, optical field angles, or spherical-polar coordinates. In their simplest form, these equations neglect errors present in real systems. In this paper, a statistical treatment of error source propagation is developed which uses only tolerance data, such as can be obtained from the system mechanical drawings prior to fabrication. It is shown that certain error sources are fully correctable, partially correctable, or uncorrectable, depending upon the goniometer configuration and zeroing technique. The system error budget can be described by a root-sum-of-squares technique with weighting factors describing the sensitivity of each error source. This paper tabulates weighting factors at 67% (k=1) and 95% (k=2) confidence for various levels of maximum travel for each goniometer configuration. As a practical example, this paper works through an error budget used for the procurement of a system at Sandia National Laboratories.
Prediction of transmission distortion for wireless video communication: analysis.
Chen, Zhifeng; Wu, Dapeng
2012-03-01
Transmitting video over wireless is a challenging problem since video may be seriously distorted due to packet errors caused by wireless channels. The capability of predicting transmission distortion (i.e., video distortion caused by packet errors) can assist in designing video encoding and transmission schemes that achieve maximum video quality or minimum end-to-end video distortion. This paper is aimed at deriving formulas for predicting transmission distortion. The contribution of this paper is twofold. First, we identify the governing law that describes how the transmission distortion process evolves over time and analytically derive the transmission distortion formula as a closed-form function of video frame statistics, channel error statistics, and system parameters. Second, we identify, for the first time, two important properties of transmission distortion. The first property is that the clipping noise, which is produced by nonlinear clipping, causes decay of propagated error. The second property is that the correlation between motion-vector concealment error and propagated error is negative and has dominant impact on transmission distortion, compared with other correlations. Due to these two properties and elegant error/distortion decomposition, our formula provides not only more accurate prediction but also lower complexity than the existing methods.
Error-related negativities elicited by monetary loss and cues that predict loss.
Dunning, Jonathan P; Hajcak, Greg
2007-11-19
Event-related potential studies have reported error-related negativity following both error commission and feedback indicating errors or monetary loss. The present study examined whether error-related negativities could be elicited by a predictive cue presented prior to both the decision and subsequent feedback in a gambling task. Participants were presented with a cue that indicated the probability of reward on the upcoming trial (0, 50, and 100%). Results showed a negative deflection in the event-related potential in response to loss cues compared with win cues; this waveform shared a similar latency and morphology with the traditional feedback error-related negativity.
Interplanetary Trajectories, Encke Method (ITEM)
NASA Technical Reports Server (NTRS)
Whitlock, F. H.; Wolfe, H.; Lefton, L.; Levine, N.
1972-01-01
Modified program has been developed using improved variation of Encke method which avoids accumulation of round-off errors and avoids numerical ambiguities arising from near-circular orbits of low inclination. Variety of interplanetary trajectory problems can be computed with maximum accuracy and efficiency.
SU-C-9A-01: Parameter Optimization in Adaptive Region-Growing for Tumor Segmentation in PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, S; Huazhong University of Science and Technology, Wuhan, Hubei; Xue, M
Purpose: To design a reliable method to determine the optimal parameter in the adaptive region-growing (ARG) algorithm for tumor segmentation in PET. Methods: The ARG uses an adaptive similarity criterion m - fσ ≤ I-PET ≤ m + fσ, so that a neighboring voxel is appended to the region based on its similarity to the current region. When increasing the relaxing factor f (f ≥ 0), the resulting volumes monotonically increased with a sharp increase when the region just grew into the background. The optimal f that separates the tumor from the background is defined as the first point withmore » the local maximum curvature on an Error function fitted to the f-volume curve. The ARG was tested on a tumor segmentation Benchmark that includes ten lung cancer patients with 3D pathologic tumor volume as ground truth. For comparison, the widely used 42% and 50% SUVmax thresholding, Otsu optimal thresholding, Active Contours (AC), Geodesic Active Contours (GAC), and Graph Cuts (GC) methods were tested. The dice similarity index (DSI), volume error (VE), and maximum axis length error (MALE) were calculated to evaluate the segmentation accuracy. Results: The ARG provided the highest accuracy among all tested methods. Specifically, the ARG has an average DSI, VE, and MALE of 0.71, 0.29, and 0.16, respectively, better than the absolute 42% thresholding (DSI=0.67, VE= 0.57, and MALE=0.23), the relative 42% thresholding (DSI=0.62, VE= 0.41, and MALE=0.23), the absolute 50% thresholding (DSI=0.62, VE=0.48, and MALE=0.21), the relative 50% thresholding (DSI=0.48, VE=0.54, and MALE=0.26), OTSU (DSI=0.44, VE=0.63, and MALE=0.30), AC (DSI=0.46, VE= 0.85, and MALE=0.47), GAC (DSI=0.40, VE= 0.85, and MALE=0.46) and GC (DSI=0.66, VE= 0.54, and MALE=0.21) methods. Conclusions: The results suggest that the proposed method reliably identified the optimal relaxing factor in ARG for tumor segmentation in PET. This work was supported in part by National Cancer Institute Grant R01 CA172638; The dataset is provided by AAPM TG211.« less
Vertical Corner Feature Based Precise Vehicle Localization Using 3D LIDAR in Urban Area
Im, Jun-Hyuck; Im, Sung-Hyuck; Jee, Gyu-In
2016-01-01
Tall buildings are concentrated in urban areas. The outer walls of buildings are vertically erected to the ground and almost flat. Therefore, the vertical corners that meet the vertical planes are present everywhere in urban areas. These corners act as convenient landmarks, which can be extracted by using the light detection and ranging (LIDAR) sensor. A vertical corner feature based precise vehicle localization method is proposed in this paper and implemented using 3D LIDAR (Velodyne HDL-32E). The vehicle motion is predicted by accumulating the pose increment output from the iterative closest point (ICP) algorithm based on the geometric relations between the scan data of the 3D LIDAR. The vertical corner is extracted using the proposed corner extraction method. The vehicle position is then corrected by matching the prebuilt corner map with the extracted corner. The experiment was carried out in the Gangnam area of Seoul, South Korea. In the experimental results, the maximum horizontal position error is about 0.46 m and the 2D Root Mean Square (RMS) horizontal error is about 0.138 m. PMID:27517936
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Scheid, R. E., Jr.
1986-01-01
This paper outlines methods for modeling, identification and estimation for static determination of flexible structures. The shape estimation schemes are based on structural models specified by (possibly interconnected) elliptic partial differential equations. The identification techniques provide approximate knowledge of parameters in elliptic systems. The techniques are based on the method of maximum-likelihood that finds parameter values such that the likelihood functional associated with the system model is maximized. The estimation methods are obtained by means of a function-space approach that seeks to obtain the conditional mean of the state given the data and a white noise characterization of model errors. The solutions are obtained in a batch-processing mode in which all the data is processed simultaneously. After methods for computing the optimal estimates are developed, an analysis of the second-order statistics of the estimates and of the related estimation error is conducted. In addition to outlining the above theoretical results, the paper presents typical flexible structure simulations illustrating performance of the shape determination methods.
Analyzing Software Requirements Errors in Safety-Critical, Embedded Systems
NASA Technical Reports Server (NTRS)
Lutz, Robyn R.
1993-01-01
This paper analyzes the root causes of safety-related software errors in safety-critical, embedded systems. The results show that software errors identified as potentially hazardous to the system tend to be produced by different error mechanisms than non- safety-related software errors. Safety-related software errors are shown to arise most commonly from (1) discrepancies between the documented requirements specifications and the requirements needed for correct functioning of the system and (2) misunderstandings of the software's interface with the rest of the system. The paper uses these results to identify methods by which requirements errors can be prevented. The goal is to reduce safety-related software errors and to enhance the safety of complex, embedded systems.
Gregorini, P; Galli, J; Romera, A J; Levy, G; Macdonald, K A; Fernandez, H H; Beukes, P C
2014-07-01
The DairyNZ whole-farm model (WFM; DairyNZ, Hamilton, New Zealand) consists of a framework that links component models for animal, pastures, crops, and soils. The model was developed to assist with analysis and design of pasture-based farm systems. New (this work) and revised (e.g., cow, pasture, crops) component models can be added to the WFM, keeping the model flexible and up to date. Nevertheless, the WFM does not account for plant-animal relationships determining herbage-depletion dynamics. The user has to preset the maximum allowable level of herbage depletion [i.e., postgrazing herbage mass (residuals)] throughout the year. Because residuals have a direct effect on herbage regrowth, the WFM in its current form does not dynamically simulate the effect of grazing pressure on herbage depletion and consequent effect on herbage regrowth. The management of grazing pressure is a key component of pasture-based dairy systems. Thus, the main objective of the present work was to develop a new version of the WFM able to predict residuals, and thereby simulate related effects of grazing pressure dynamically at the farm scale. This objective was accomplished by incorporating a new component model into the WFM. This model represents plant-animal relationships, for example sward structure and herbage intake rate, and resulting level of herbage depletion. The sensitivity of the new version of the WFM was evaluated and then the new WFM was tested against an experimental data set previously used to evaluate the WFM and to illustrate the adequacy and improvement of the model development. Key outputs variables of the new version pertinent to this work (milk production, herbage dry matter intake, intake rate, harvesting efficiency, and residuals) responded acceptably to a range of input variables. The relative prediction errors for monthly and mean annual residual predictions were 20 and 5%, respectively. Monthly predictions of residuals had a line bias (1.5%), with a proportion of square root of mean square prediction error (RMSPE) due to random error of 97.5%. Predicted monthly herbage growth rates had a line bias of 2%, a proportion of RMSPE due to random error of 96%, and a concordance correlation coefficient of 0.87. Annual herbage production was predicted with an RMSPE of 531 (kg of herbage dry matter/ha per year), a line bias of 11%, a proportion of RMSPE due to random error of 80%, and relative prediction errors of 2%. Annual herbage dry matter intake per cow and hectare, both per year, were predicted with RMSPE, relative prediction error, and concordance correlation coefficient of 169 and 692kg of dry matter, 3 and 4%, and 0.91 and 0.87, respectively. These results indicate that predictions of the new WFM are relatively accurate and precise, with a conclusion that incorporating a plant-animal relationship model into the WFM allows for dynamic predictions of residuals and more realistic simulations of the effect of grazing pressure on herbage production and intake at the farm level without the intervention from the user. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Prasad, Ramendra; Deo, Ravinesh C.; Li, Yan; Maraseni, Tek
2017-11-01
Forecasting streamflow is vital for strategically planning, utilizing and redistributing water resources. In this paper, a wavelet-hybrid artificial neural network (ANN) model integrated with iterative input selection (IIS) algorithm (IIS-W-ANN) is evaluated for its statistical preciseness in forecasting monthly streamflow, and it is then benchmarked against M5 Tree model. To develop hybrid IIS-W-ANN model, a global predictor matrix is constructed for three local hydrological sites (Richmond, Gwydir, and Darling River) in Australia's agricultural (Murray-Darling) Basin. Model inputs comprised of statistically significant lagged combination of streamflow water level, are supplemented by meteorological data (i.e., precipitation, maximum and minimum temperature, mean solar radiation, vapor pressure and evaporation) as the potential model inputs. To establish robust forecasting models, iterative input selection (IIS) algorithm is applied to screen the best data from the predictor matrix and is integrated with the non-decimated maximum overlap discrete wavelet transform (MODWT) applied on the IIS-selected variables. This resolved the frequencies contained in predictor data while constructing a wavelet-hybrid (i.e., IIS-W-ANN and IIS-W-M5 Tree) model. Forecasting ability of IIS-W-ANN is evaluated via correlation coefficient (r), Willmott's Index (WI), Nash-Sutcliffe Efficiency (ENS), root-mean-square-error (RMSE), and mean absolute error (MAE), including the percentage RMSE and MAE. While ANN models are seen to outperform M5 Tree executed for all hydrological sites, the IIS variable selector was efficient in determining the appropriate predictors, as stipulated by the better performance of the IIS coupled (ANN and M5 Tree) models relative to the models without IIS. When IIS-coupled models are integrated with MODWT, the wavelet-hybrid IIS-W-ANN and IIS-W-M5 Tree are seen to attain significantly accurate performance relative to their standalone counterparts. Importantly, IIS-W-ANN model accuracy outweighs IIS-ANN, as evidenced by a larger r and WI (by 7.5% and 3.8%, respectively) and a lower RMSE (by 21.3%). In comparison to the IIS-W-M5 Tree model, IIS-W-ANN model yielded larger values of WI = 0.936-0.979 and ENS = 0.770-0.920. Correspondingly, the errors (RMSE and MAE) ranged from 0.162-0.487 m and 0.139-0.390 m, respectively, with relative errors, RRMSE = (15.65-21.00) % and MAPE = (14.79-20.78) %. Distinct geographic signature is evident where the most and least accurately forecasted streamflow data is attained for the Gwydir and Darling River, respectively. Conclusively, this study advocates the efficacy of iterative input selection, allowing the proper screening of model predictors, and subsequently, its integration with MODWT resulting in enhanced performance of the models applied in streamflow forecasting.
Dasgupta, Subhashish; Banerjee, Rupak K; Hariharan, Prasanna; Myers, Matthew R
2011-02-01
Experimental studies of thermal effects in high-intensity focused ultrasound (HIFU) procedures are often performed with the aid of fine wire thermocouples positioned within tissue phantoms. Thermocouple measurements are subject to several types of error which must be accounted for before reliable inferences can be made on the basis of the measurements. Thermocouple artifact due to viscous heating is one source of error. A second is the uncertainty regarding the position of the beam relative to the target location or the thermocouple junction, due to the error in positioning the beam at the junction. This paper presents a method for determining the location of the beam relative to a fixed pair of thermocouples. The localization technique reduces the uncertainty introduced by positioning errors associated with very narrow HIFU beams. The technique is presented in the context of an investigation into the effect of blood flow through large vessels on the efficacy of HIFU procedures targeted near the vessel. Application of the beam localization method allowed conclusions regarding the effects of blood flow to be drawn from previously inconclusive (because of localization uncertainties) data. Comparison of the position-adjusted transient temperature profiles for flow rates of 0 and 400ml/min showed that blood flow can reduce temperature elevations by more than 10%, when the HIFU focus is within a 2mm distance from the vessel wall. At acoustic power levels of 17.3 and 24.8W there is a 20- to 70-fold decrease in thermal dose due to the convective cooling effect of blood flow, implying a shrinkage in lesion size. The beam-localization technique also revealed the level of thermocouple artifact as a function of sonication time, providing investigators with an indication of the quality of thermocouple data for a given exposure time. The maximum artifact was found to be double the measured temperature rise, during initial few seconds of sonication. Copyright © 2010 Elsevier B.V. All rights reserved.
An Improved Method of Heterogeneity Compensation for the Convolution / Superposition Algorithm
NASA Astrophysics Data System (ADS)
Jacques, Robert; McNutt, Todd
2014-03-01
Purpose: To improve the accuracy of convolution/superposition (C/S) in heterogeneous material by developing a new algorithm: heterogeneity compensated superposition (HCS). Methods: C/S has proven to be a good estimator of the dose deposited in a homogeneous volume. However, near heterogeneities electron disequilibrium occurs, leading to the faster fall-off and re-buildup of dose. We propose to filter the actual patient density in a position and direction sensitive manner, allowing the dose deposited near interfaces to be increased or decreased relative to C/S. We implemented the effective density function as a multivariate first-order recursive filter and incorporated it into GPU-accelerated, multi-energetic C/S implementation. We compared HCS against C/S using the ICCR 2000 Monte-Carlo accuracy benchmark, 23 similar accuracy benchmarks and 5 patient cases. Results: Multi-energetic HCS increased the dosimetric accuracy for the vast majority of voxels; in many cases near Monte-Carlo results were achieved. We defined the per-voxel error, %|mm, as the minimum of the distance to agreement in mm and the dosimetric percentage error relative to the maximum MC dose. HCS improved the average mean error by 0.79 %|mm for the patient volumes; reducing the average mean error from 1.93 %|mm to 1.14 %|mm. Very low densities (i.e. < 0.1 g / cm3) remained problematic, but may be solvable with a better filter function. Conclusions: HCS improved upon C/S's density scaled heterogeneity correction with a position and direction sensitive density filter. This method significantly improved the accuracy of the GPU based algorithm reaching the accuracy levels of Monte Carlo based methods with performance in a few tenths of seconds per beam. Acknowledgement: Funding for this research was provided by the NSF Cooperative Agreement EEC9731748, Elekta / IMPAC Medical Systems, Inc. and the Johns Hopkins University. James Satterthwaite provided the Monte Carlo benchmark simulations.
NASA Astrophysics Data System (ADS)
Rieke-Zapp, D.; Tecklenburg, W.; Peipe, J.; Hastedt, H.; Haig, Claudia
Recent tests on the geometric stability of several digital cameras that were not designed for photogrammetric applications have shown that the accomplished accuracies in object space are either limited or that the accuracy potential is not exploited to the fullest extent. A total of 72 calibrations were calculated with four different software products for eleven digital camera models with different hardware setups, some with mechanical fixation of one or more parts. The calibration procedure was chosen in accord to a German guideline for evaluation of optical 3D measuring systems [VDI/VDE, VDI/VDE 2634 Part 1, 2002. Optical 3D Measuring Systems-Imaging Systems with Point-by-point Probing. Beuth Verlag, Berlin]. All images were taken with ringflashes which was considered a standard method for close-range photogrammetry. In cases where the flash was mounted to the lens, the force exerted on the lens tube and the camera mount greatly reduced the accomplished accuracy. Mounting the ringflash to the camera instead resulted in a large improvement of accuracy in object space. For standard calibration best accuracies in object space were accomplished with a Canon EOS 5D and a 35 mm Canon lens where the focusing tube was fixed with epoxy (47 μm maximum absolute length measurement error in object space). The fixation of the Canon lens was fairly easy and inexpensive resulting in a sevenfold increase in accuracy compared with the same lens type without modification. A similar accuracy was accomplished with a Nikon D3 when mounting the ringflash to the camera instead of the lens (52 μm maximum absolute length measurement error in object space). Parameterisation of geometric instabilities by introduction of an image variant interior orientation in the calibration process improved results for most cameras. In this case, a modified Alpa 12 WA yielded the best results (29 μm maximum absolute length measurement error in object space). Extending the parameter model with FiBun software to model not only an image variant interior orientation, but also deformations in the sensor domain of the cameras, showed significant improvements only for a small group of cameras. The Nikon D3 camera yielded the best overall accuracy (25 μm maximum absolute length measurement error in object space) with this calibration procedure indicating at the same time the presence of image invariant error in the sensor domain. Overall, calibration results showed that digital cameras can be applied for an accurate photogrammetric survey and that only a little effort was sufficient to greatly improve the accuracy potential of digital cameras.
Prediction of conformationally dependent atomic multipole moments in carbohydrates
Cardamone, Salvatore
2015-01-01
The conformational flexibility of carbohydrates is challenging within the field of computational chemistry. This flexibility causes the electron density to change, which leads to fluctuating atomic multipole moments. Quantum Chemical Topology (QCT) allows for the partitioning of an “atom in a molecule,” thus localizing electron density to finite atomic domains, which permits the unambiguous evaluation of atomic multipole moments. By selecting an ensemble of physically realistic conformers of a chemical system, one evaluates the various multipole moments at defined points in configuration space. The subsequent implementation of the machine learning method kriging delivers the evaluation of an analytical function, which smoothly interpolates between these points. This allows for the prediction of atomic multipole moments at new points in conformational space, not trained for but within prediction range. In this work, we demonstrate that the carbohydrates erythrose and threose are amenable to the above methodology. We investigate how kriging models respond when the training ensemble incorporating multiple energy minima and their environment in conformational space. Additionally, we evaluate the gains in predictive capacity of our models as the size of the training ensemble increases. We believe this approach to be entirely novel within the field of carbohydrates. For a modest training set size of 600, more than 90% of the external test configurations have an error in the total (predicted) electrostatic energy (relative to ab initio) of maximum 1 kJ mol−1 for open chains and just over 90% an error of maximum 4 kJ mol−1 for rings. © 2015 Wiley Periodicals, Inc. PMID:26547500
Prediction of conformationally dependent atomic multipole moments in carbohydrates.
Cardamone, Salvatore; Popelier, Paul L A
2015-12-15
The conformational flexibility of carbohydrates is challenging within the field of computational chemistry. This flexibility causes the electron density to change, which leads to fluctuating atomic multipole moments. Quantum Chemical Topology (QCT) allows for the partitioning of an "atom in a molecule," thus localizing electron density to finite atomic domains, which permits the unambiguous evaluation of atomic multipole moments. By selecting an ensemble of physically realistic conformers of a chemical system, one evaluates the various multipole moments at defined points in configuration space. The subsequent implementation of the machine learning method kriging delivers the evaluation of an analytical function, which smoothly interpolates between these points. This allows for the prediction of atomic multipole moments at new points in conformational space, not trained for but within prediction range. In this work, we demonstrate that the carbohydrates erythrose and threose are amenable to the above methodology. We investigate how kriging models respond when the training ensemble incorporating multiple energy minima and their environment in conformational space. Additionally, we evaluate the gains in predictive capacity of our models as the size of the training ensemble increases. We believe this approach to be entirely novel within the field of carbohydrates. For a modest training set size of 600, more than 90% of the external test configurations have an error in the total (predicted) electrostatic energy (relative to ab initio) of maximum 1 kJ mol(-1) for open chains and just over 90% an error of maximum 4 kJ mol(-1) for rings. © 2015 Wiley Periodicals, Inc.
A protocol for monitoring soft tissue motion under compression garments during drop landings.
Mills, Chris; Scurr, Joanna; Wood, Louise
2011-06-03
This study used a single-subject design to establish a valid and reliable protocol for monitoring soft tissue motion under compression garments during drop landings. One male participant performed six 40 cm drop landings onto a force platform, in three compression conditions (none, medium high). Five reflective markers placed on the thigh under the compression garment and five over the garment were filmed using two cameras (1000 Hz). Following manual digitisation, marker coordinates were reconstructed and their resultant displacements and maximum change in separation distance between skin and garment markers were calculated. To determine reliability of marker application, 35 markers were attached to the thigh over the high compression garment and filmed. Markers were then removed and re-applied on three occasions; marker separation and distance to thigh centre of gravity were calculated. Results showed similar ground reaction forces during landing trials. Significant reductions in the maximum change in separation distance between markers from no compression to high compression landings were reported. Typical errors in marker movement under and over the garment were 0.1mm in medium and high compression landings. Re-application of markers showed mean typical errors of 1mm in marker separation and <3mm relative to thigh centre of gravity. This paper presents a novel protocol that demonstrates sufficient sensitivity to detect reductions in soft tissue motion during landings in high compression garments compared to no compression. Additionally, markers placed under or over the garment demonstrate low variance in movement, and the protocol reports good reliability in marker re-application. Copyright © 2011 Elsevier Ltd. All rights reserved.
Grabowski, Patrick; Wilson, John; Walker, Alyssa; Enz, Dan; Wang, Sijian
2017-01-01
Demonstrate implementation, safety and feasibility of multimodal, impairment-based physical therapy (PT) combining vestibular/oculomotor and cervical rehabilitation with sub-symptom threshold exercise for the treatment of patients with post-concussion syndrome (PCS). University hospital outpatient sports medicine facility. Twenty-five patients (12-20 years old) meeting World Health Organization criteria for PCS following sport-related concussion referred for supervised PT consisting of sub-symptom cardiovascular exercise, vestibular/oculomotor and cervical spine rehabilitation. Retrospective cohort. Post-Concussion Symptom Scale (PCSS) total score, maximum symptom-free heart rate (SFHR) during graded exercise testing (GXT), GXT duration, balance error scoring system (BESS) score, and number of adverse events. Patients demonstrated a statistically significant decreasing trend (p < 0.01) for total PCSS scores (pre-PT M = 18.2 (SD = 14.2), post-PT M = 9.1 (SD = 10.8), n = 25). Maximum SFHR achieved on GXT increased 23% (p < 0.01, n = 14), and BESS errors decreased 52% (p < 0.01, n = 13). Two patients reported mild symptom exacerbation with aerobic exercise at home, attenuated by adjustment of the home exercise program. Multimodal, impairment-based PT is safe and associated with diminishing PCS symptoms. This establishes feasibility for future clinical trials to determine viable treatment approaches to reduce symptoms and improve function while avoiding negative repercussions of physical inactivity and premature return to full activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Study of boundary-layer transition using transonic cone Preston tube data
NASA Technical Reports Server (NTRS)
Reed, T. D.; Abu-Mostafa, A.
1982-01-01
Laminar layer Preston tube data on a sharp nose, ten degree cone obtained in the Ames 11 ft TWT and in flight tests are analyzed. During analyses of the laminar-boundary layer data, errors were discovered in both the wind tunnel and the flight data. A correction procedure for errors in the flight data is recommended which forces the flight data to exhibit some of the orderly characteristics of the wind tunnel data. From corrected wind tunnel data, a correlation is developed between Preston tube pressures and the corresponding values of theoretical laminar skin friction. Because of the uncertainty in correcting the flight data, a correlation for the unmodified data is developed, and, in addition, three other correlations are developed based on different correction procedures. Each of these correlations are used in conjunction with the wind tunnel correlation to define effective freestream unit Reynolds numbers for the 11 ft TWT over a Mach number range of 0.30 to 0.95. The maximum effective Reynolds numbers are approximately 6.5% higher than the normal values. These maximum values occur between freestream Mach numbers of 0.60 and 0.80. Smaller values are found outside this Mach number range. These results indicate wind tunnel noise affects the average laminar skin friction much less than it affects boundary layer transition. Data on the onset, extent, and end of boundary layer transition are summarized. Application of a procedure for studying the relative effects of varying nose radius on a ten degree cone at supercritical speeds indicates that increasing nose radius promotes boundary layer transition and separation of laminar boundary layers.
Optimal interpolation analysis of leaf area index using MODIS data
Gu, Yingxin; Belair, Stephane; Mahfouf, Jean-Francois; Deblonde, Godelieve
2006-01-01
A simple data analysis technique for vegetation leaf area index (LAI) using Moderate Resolution Imaging Spectroradiometer (MODIS) data is presented. The objective is to generate LAI data that is appropriate for numerical weather prediction. A series of techniques and procedures which includes data quality control, time-series data smoothing, and simple data analysis is applied. The LAI analysis is an optimal combination of the MODIS observations and derived climatology, depending on their associated errors σo and σc. The “best estimate” LAI is derived from a simple three-point smoothing technique combined with a selection of maximum LAI (after data quality control) values to ensure a higher quality. The LAI climatology is a time smoothed mean value of the “best estimate” LAI during the years of 2002–2004. The observation error is obtained by comparing the MODIS observed LAI with the “best estimate” of the LAI, and the climatological error is obtained by comparing the “best estimate” of LAI with the climatological LAI value. The LAI analysis is the result of a weighting between these two errors. Demonstration of the method described in this paper is presented for the 15-km grid of Meteorological Service of Canada (MSC)'s regional version of the numerical weather prediction model. The final LAI analyses have a relatively smooth temporal evolution, which makes them more appropriate for environmental prediction than the original MODIS LAI observation data. They are also more realistic than the LAI data currently used operationally at the MSC which is based on land-cover databases.
Alonso-Carné, Jorge; García-Martín, Alberto; Estrada-Peña, Agustin
2013-11-01
The modelling of habitat suitability for parasites is a growing area of research due to its association with climate change and ensuing shifts in the distribution of infectious diseases. Such models depend on remote sensing data and require accurate, high-resolution temperature measurements. The temperature is critical for accurate estimation of development rates and potential habitat ranges for a given parasite. The MODIS sensors aboard the Aqua and Terra satellites provide high-resolution temperature data for remote sensing applications. This paper describes comparative analysis of MODIS-derived temperatures relative to ground records of surface temperature in the western Palaearctic. The results show that MODIS overestimated maximum temperature values and underestimated minimum temperatures by up to 5-6 °C. The combined use of both Aqua and Terra datasets provided the most accurate temperature estimates around latitude 35-44° N, with an overestimation during spring-summer months and an underestimation in autumn-winter. Errors in temperature estimation were associated with specific ecological regions within the target area as well as technical limitations in the temporal and orbital coverage of the satellites (e.g. sensor limitations and satellite transit times). We estimated error propagation of temperature uncertainties in parasite habitat suitability models by comparing outcomes of published models. Error estimates reached 36% of annual respective measurements depending on the model used. Our analysis demonstrates the importance of adequate image processing and points out the limitations of MODIS temperature data as inputs into predictive models concerning parasite lifecycles.
Assimilation of Freeze - Thaw Observations into the NASA Catchment Land Surface Model
NASA Technical Reports Server (NTRS)
Farhadi, Leila; Reichle, Rolf H.; DeLannoy, Gabrielle J. M.; Kimball, John S.
2014-01-01
The land surface freeze-thaw (F-T) state plays a key role in the hydrological and carbon cycles and thus affects water and energy exchanges and vegetation productivity at the land surface. In this study, we developed an F-T assimilation algorithm for the NASA Goddard Earth Observing System, version 5 (GEOS-5) modeling and assimilation framework. The algorithm includes a newly developed observation operator that diagnoses the landscape F-T state in the GEOS-5 Catchment land surface model. The F-T analysis is a rule-based approach that adjusts Catchment model state variables in response to binary F-T observations, while also considering forecast and observation errors. A regional observing system simulation experiment was conducted using synthetically generated F-T observations. The assimilation of perfect (error-free) F-T observations reduced the root-mean-square errors (RMSE) of surface temperature and soil temperature by 0.206 C and 0.061 C, respectively, when compared to model estimates (equivalent to a relative RMSE reduction of 6.7 percent and 3.1 percent, respectively). For a maximum classification error (CEmax) of 10 percent in the synthetic F-T observations, the F-T assimilation reduced the RMSE of surface temperature and soil temperature by 0.178 C and 0.036 C, respectively. For CEmax=20 percent, the F-T assimilation still reduces the RMSE of model surface temperature estimates by 0.149 C but yields no improvement over the model soil temperature estimates. The F-T assimilation scheme is being developed to exploit planned operational F-T products from the NASA Soil Moisture Active Passive (SMAP) mission.
Pencil beam proton radiography using a multilayer ionization chamber
NASA Astrophysics Data System (ADS)
Farace, Paolo; Righetto, Roberto; Meijers, Arturs
2016-06-01
A pencil beam proton radiography (PR) method, using a commercial multilayer ionization chamber (MLIC) integrated with a treatment planning system (TPS) was developed. A Giraffe (IBA Dosimetry) MLIC (±0.5 mm accuracy) was used to obtain pencil beam PR by delivering spots uniformly positioned at a 5.0 mm distance in a 9 × 9 square of spots. PRs of an electron-density (with tissue-equivalent inserts) phantom and a head phantom were acquired. The integral depth dose (IDD) curves of the delivered spots were computed by the TPS in a volume of water simulating the MLIC, and virtually added to the CT at the exit side of the phantoms. For each spot, measured and calculated IDD were overlapped in order to compute a map of range errors. On the head-phantom, the maximum dose from PR acquisition was estimated. Additionally, on the head phantom the impact on the range errors map was estimated in case of a 1 mm position misalignment. In the electron-density phantom, range errors were within 1 mm in the soft-tissue rods, but greater in the dense-rod. In the head-phantom the range errors were -0.9 ± 2.7 mm on the whole map and within 1 mm in the brain area. On both phantoms greater errors were observed at inhomogeneity interfaces, due to sensitivity to small misalignment, and inaccurate TPS dose computation. The effect of the 1 mm misalignment was clearly visible on the range error map and produced an increased spread of range errors (-1.0 ± 3.8 mm on the whole map). The dose to the patient for such PR acquisitions would be acceptable as the maximum dose to the head phantom was <2cGyE. By the described 2D method, allowing to discriminate misalignments, range verification can be performed in selected areas to implement an in vivo quality assurance program.
Pencil beam proton radiography using a multilayer ionization chamber.
Farace, Paolo; Righetto, Roberto; Meijers, Arturs
2016-06-07
A pencil beam proton radiography (PR) method, using a commercial multilayer ionization chamber (MLIC) integrated with a treatment planning system (TPS) was developed. A Giraffe (IBA Dosimetry) MLIC (±0.5 mm accuracy) was used to obtain pencil beam PR by delivering spots uniformly positioned at a 5.0 mm distance in a 9 × 9 square of spots. PRs of an electron-density (with tissue-equivalent inserts) phantom and a head phantom were acquired. The integral depth dose (IDD) curves of the delivered spots were computed by the TPS in a volume of water simulating the MLIC, and virtually added to the CT at the exit side of the phantoms. For each spot, measured and calculated IDD were overlapped in order to compute a map of range errors. On the head-phantom, the maximum dose from PR acquisition was estimated. Additionally, on the head phantom the impact on the range errors map was estimated in case of a 1 mm position misalignment. In the electron-density phantom, range errors were within 1 mm in the soft-tissue rods, but greater in the dense-rod. In the head-phantom the range errors were -0.9 ± 2.7 mm on the whole map and within 1 mm in the brain area. On both phantoms greater errors were observed at inhomogeneity interfaces, due to sensitivity to small misalignment, and inaccurate TPS dose computation. The effect of the 1 mm misalignment was clearly visible on the range error map and produced an increased spread of range errors (-1.0 ± 3.8 mm on the whole map). The dose to the patient for such PR acquisitions would be acceptable as the maximum dose to the head phantom was <2cGyE. By the described 2D method, allowing to discriminate misalignments, range verification can be performed in selected areas to implement an in vivo quality assurance program.
Shariat, Mohammad Hassan; Gazor, Saeed; Redfearn, Damian
2016-08-01
In this paper, we study the problem of the cardiac conduction velocity (CCV) estimation for the sequential intracardiac mapping. We assume that the intracardiac electrograms of several cardiac sites are sequentially recorded, their activation times (ATs) are extracted, and the corresponding wavefronts are specified. The locations of the mapping catheter's electrodes and the ATs of the wavefronts are used here for the CCV estimation. We assume that the extracted ATs include some estimation errors, which we model with zero-mean white Gaussian noise values with known variances. Assuming stable planar wavefront propagation, we derive the maximum likelihood CCV estimator, when the synchronization times between various recording sites are unknown. We analytically evaluate the performance of the CCV estimator and provide its mean square estimation error. Our simulation results confirm the accuracy of the proposed method and the error analysis of the proposed CCV estimator.
A two-dimensional, finite-difference model of the high plains aquifer in southern South Dakota
Kolm, K.E.; Case, H. L.
1983-01-01
The High Plains aquifer is the principal source of water for irrigation, industry, municipalities, and domestic use in south-central South Dakota. The aquifer, composed of upper sandstone units of the Arikaree Formation, and the overlying Ogallala and Sand Hills Formations, was simulated using a two-dimensional, finite-difference computer model. The maximum difference between simulated and measured potentiometric heads was less than 60 feet (1- to 4-percent error). Two-thirds of the simulated potentiometric heads were within 26 feet of the measured values (3-percent error). The estimated saturated thickness, computed from simulated potentiometric heads, was within 25-percent error of the known saturated thickness for 95 percent of the study area. (USGS)
Corenman, Donald S; Strauch, Eric L; Dornan, Grant J; Otterstrom, Eric; Zalepa King, Lisa
2017-09-01
Advancements in surgical navigation technology coupled with 3-dimensional (3D) radiographic data have significantly enhanced the accuracy and efficiency of spinal fusion implant placement. Increased usage of such technology has led to rising concerns regarding maintenance of the sterile field, as makeshift drape systems are fraught with breaches thus presenting increased risk of surgical site infections (SSIs). A clinical need exists for a sterile draping solution with these techniques. Our objective was to quantify expected accuracy error associated with 2MM and 4MM thickness Sterile-Z Patient Drape ® using Medtronic O-Arm ® Surgical Imaging with StealthStation ® S7 ® Navigation System. Camera distance to reference frame was investigated for contribution to accuracy error. A testing jig was placed on the radiolucent table and the Medtronic passive reference frame was attached to jig. The StealthStation ® S7 ® navigation camera was placed at various distances from testing jig and the geometry error of reference frame was captured for three different drape configurations: no drape, 2MM drape and 4MM drape. The O-Arm ® gantry location and StealthStation ® S7 ® camera position was maintained and seven 3D acquisitions for each of drape configurations were measured. Data was analyzed by a two-factor analysis of variance (ANOVA) and Bonferroni comparisons were used to assess the independent effects of camera angle and drape on accuracy error. Median (and maximum) measurement accuracy error was higher for the 2MM than for the 4MM drape for each camera distance. The most extreme error observed (4.6 mm) occurred when using the 2MM and the 'far' camera distance. The 4MM drape was found to induce an accuracy error of 0.11 mm (95% confidence interval, 0.06-0.15; P<0.001) relative to the no drape testing, regardless of camera distance. Medium camera distance produced lower accuracy error than either the close (additional 0.08 mm error; 95% CI, 0-0.15; P=0.035) or far (additional 0.21mm error; 95% CI, 0.13-0.28; P<0.001) camera distances, regardless of whether a drape was used. In comparison to the 'no drape' condition, the accuracy error of 0.11 mm when using a 4MM film drape is minimal and clinically insignificant.
Lossless Brownian Information Engine
NASA Astrophysics Data System (ADS)
Paneru, Govind; Lee, Dong Yun; Tlusty, Tsvi; Pak, Hyuk Kyu
2018-01-01
We report on a lossless information engine that converts nearly all available information from an error-free feedback protocol into mechanical work. Combining high-precision detection at a resolution of 1 nm with ultrafast feedback control, the engine is tuned to extract the maximum work from information on the position of a Brownian particle. We show that the work produced by the engine achieves a bound set by a generalized second law of thermodynamics, demonstrating for the first time the sharpness of this bound. We validate a generalized Jarzynski equality for error-free feedback-controlled information engines.
Lossless Brownian Information Engine.
Paneru, Govind; Lee, Dong Yun; Tlusty, Tsvi; Pak, Hyuk Kyu
2018-01-12
We report on a lossless information engine that converts nearly all available information from an error-free feedback protocol into mechanical work. Combining high-precision detection at a resolution of 1 nm with ultrafast feedback control, the engine is tuned to extract the maximum work from information on the position of a Brownian particle. We show that the work produced by the engine achieves a bound set by a generalized second law of thermodynamics, demonstrating for the first time the sharpness of this bound. We validate a generalized Jarzynski equality for error-free feedback-controlled information engines.
A Bayesian approach to parameter and reliability estimation in the Poisson distribution.
NASA Technical Reports Server (NTRS)
Canavos, G. C.
1972-01-01
For life testing procedures, a Bayesian analysis is developed with respect to a random intensity parameter in the Poisson distribution. Bayes estimators are derived for the Poisson parameter and the reliability function based on uniform and gamma prior distributions of that parameter. A Monte Carlo procedure is implemented to make possible an empirical mean-squared error comparison between Bayes and existing minimum variance unbiased, as well as maximum likelihood, estimators. As expected, the Bayes estimators have mean-squared errors that are appreciably smaller than those of the other two.
Overview of ATMT and Analysis of Subphase IIB
1977-12-01
relationships among maximum gunner error and target, vehicle motion. 1 INC LAS SI I F D I II TechidTfa-F ’•-RpoiTLTR-:7- 77 becemboer 1977 Directorate of...of- si ght interruptions, s ijrii i cant. difficulties weri etrcuo (t’red early in the effort to dioitize the anal uj iunnonr error dtta from thi s...and is classified SECRET. h. Phone I si •Jiu, ry. (I) The purpose of the Pha,ne I effort was to identify an array of co(.ddidate Lafneuvern ho b u.,ed
Group-sequential three-arm noninferiority clinical trial designs
Ochiai, Toshimitsu; Hamasaki, Toshimitsu; Evans, Scott R.; Asakura, Koko; Ohno, Yuko
2016-01-01
We discuss group-sequential three-arm noninferiority clinical trial designs that include active and placebo controls for evaluating both assay sensitivity and noninferiority. We extend two existing approaches, the fixed margin and fraction approaches, into a group-sequential setting with two decision-making frameworks. We investigate the operating characteristics including power, Type I error rate, maximum and expected sample sizes, as design factors vary. In addition, we discuss sample size recalculation and its’ impact on the power and Type I error rate via a simulation study. PMID:26892481
Clark, Jeremy S C; Kaczmarczyk, Mariusz; Mongiało, Zbigniew; Ignaczak, Paweł; Czajkowski, Andrzej A; Klęsk, Przemysław; Ciechanowicz, Andrzej
2013-08-01
Gompertz-related distributions have dominated mortality studies for 187 years. However, nonrelated distributions also fit well to mortality data. These compete with the Gompertz and Gompertz-Makeham data when applied to data with varying extents of truncation, with no consensus as to preference. In contrast, Gaussian-related distributions are rarely applied, despite the fact that Lexis in 1879 suggested that the normal distribution itself fits well to the right of the mode. Study aims were therefore to compare skew-t fits to Human Mortality Database data, with Gompertz-nested distributions, by implementing maximum likelihood estimation functions (mle2, R package bbmle; coding given). Results showed skew-t fits obtained lower Bayesian information criterion values than Gompertz-nested distributions, applied to low-mortality country data, including 1711 and 1810 cohorts. As Gaussian-related distributions have now been found to have almost universal application to error theory, one conclusion could be that a Gaussian-related distribution might replace Gompertz-related distributions as the basis for mortality studies.
Estimation After a Group Sequential Trial.
Milanzi, Elasma; Molenberghs, Geert; Alonso, Ariel; Kenward, Michael G; Tsiatis, Anastasios A; Davidian, Marie; Verbeke, Geert
2015-10-01
Group sequential trials are one important instance of studies for which the sample size is not fixed a priori but rather takes one of a finite set of pre-specified values, dependent on the observed data. Much work has been devoted to the inferential consequences of this design feature. Molenberghs et al (2012) and Milanzi et al (2012) reviewed and extended the existing literature, focusing on a collection of seemingly disparate, but related, settings, namely completely random sample sizes, group sequential studies with deterministic and random stopping rules, incomplete data, and random cluster sizes. They showed that the ordinary sample average is a viable option for estimation following a group sequential trial, for a wide class of stopping rules and for random outcomes with a distribution in the exponential family. Their results are somewhat surprising in the sense that the sample average is not optimal, and further, there does not exist an optimal, or even, unbiased linear estimator. However, the sample average is asymptotically unbiased, both conditionally upon the observed sample size as well as marginalized over it. By exploiting ignorability they showed that the sample average is the conventional maximum likelihood estimator. They also showed that a conditional maximum likelihood estimator is finite sample unbiased, but is less efficient than the sample average and has the larger mean squared error. Asymptotically, the sample average and the conditional maximum likelihood estimator are equivalent. This previous work is restricted, however, to the situation in which the the random sample size can take only two values, N = n or N = 2 n . In this paper, we consider the more practically useful setting of sample sizes in a the finite set { n 1 , n 2 , …, n L }. It is shown that the sample average is then a justifiable estimator , in the sense that it follows from joint likelihood estimation, and it is consistent and asymptotically unbiased. We also show why simulations can give the false impression of bias in the sample average when considered conditional upon the sample size. The consequence is that no corrections need to be made to estimators following sequential trials. When small-sample bias is of concern, the conditional likelihood estimator provides a relatively straightforward modification to the sample average. Finally, it is shown that classical likelihood-based standard errors and confidence intervals can be applied, obviating the need for technical corrections.
Peri, Elisabetta; Ambrosini, Emilia; Colombo, Vera Maria; van de Ruit, Mark; Grey, Michael J; Monticone, Marco; Ferriero, Giorgio; Pedrocchi, Alessandra; Ferrigno, Giancarlo; Ferrante, Simona
2017-01-01
The clinical use of Transcranial Magnetic Stimulation (TMS) as a technique to assess corticospinal excitability is limited by the time for data acquisition and the measurement variability. This study aimed at evaluating the reliability of Stimulus-Response (SR) curves acquired with a recently proposed rapid protocol on tibialis anterior muscle of healthy older adults. Twenty-four neurologically-intact adults (age:55-75 years) were recruited for this test-retest study. During each session, six SR curves, 3 at rest and 3 during isometric muscle contractions at 5% of maximum voluntary contraction (MVC), were acquired. Motor Evoked Potentials (MEPs) were normalized to the maximum peripherally evoked response; the coil position and orientation were monitored with an optical tracking system. Intra- and inter-session reliability of motor threshold (MT), area under the curve (AURC), MEPmax, stimulation intensity at which the MEP is mid-way between MEPmax and MEPmin (I50), slope in I50, MEP latency, and silent period (SP) were assessed in terms of Standard Error of Measurement (SEM), relative SEM, Minimum Detectable Change (MDC), and Intraclass Correlation Coefficient (ICC). The relative SEM was ≤10% for MT, I50, latency and SP both at rest and 5%MVC, while it ranged between 11% and 37% for AURC, MEPmax, and slope. MDC values were overall quite large; e.g., MT required a change of 12%MSO at rest and 10%MSO at 5%MVC to be considered a real change. Inter-sessions ICC were >0.6 for all measures but slope at rest and MEPmax and latency at 5%MVC. Measures derived from SR curves acquired in <4 minutes are affected by similar measurement errors to those found with long-lasting protocols, suggesting that the rapid method is at least as reliable as the traditional methods. As specifically designed to include older adults, this study provides normative data for future studies involving older neurological patients (e.g. stroke survivors).
Upper Limb Asymmetry in the Sense of Effort Is Dependent on Force Level
Mitchell, Mark; Martin, Bernard J.; Adamo, Diane E.
2017-01-01
Previous studies have shown that asymmetries in upper limb sensorimotor function are dependent on the source of sensory and motor information, hand preference and differences in hand strength. Further, the utilization of sensory and motor information and the mode of control of force may differ between the right hand/left hemisphere and left hand/right hemisphere systems. To more clearly understand the unique contribution of hand strength and intrinsic differences to the control of grasp force, we investigated hand/hemisphere differences when the source of force information was encoded at two different force levels corresponding to a 20 and 70% maximum voluntary contraction or the right and left hand of each participant. Eleven, adult males who demonstrated a stronger right than left maximum grasp force were requested to match a right or left hand 20 or 70% maximal voluntary contraction reference force with the opposite hand. During the matching task, visual feedback corresponding to the production of the reference force was available and then removed when the contralateral hand performed the match. The matching relative force error was significantly different between hands for the 70% MVC reference force but not for the 20% MVC reference force. Directional asymmetries, quantified as the matching force constant error, showed right hand overshoots and left undershoots were force dependent and primarily due to greater undershoots when matching with the left hand the right hand reference force. Findings further suggest that the interaction between internal sources of information, such as efferent copy and proprioception, as well as hand strength differences appear to be hand/hemisphere system dependent. Investigations of force matching tasks under conditions whereby force level is varied and visual feedback of the reference force is available provides critical baseline information for building effective interventions for asymmetric (stroke-related, Parkinson’s Disease) and symmetric (Amyotrophic Lateral Sclerosis) upper limb recovery of neurological conditions where the various sources of sensory – motor information have been significantly altered by the disease process. PMID:28491047
Upper Limb Asymmetry in the Sense of Effort Is Dependent on Force Level.
Mitchell, Mark; Martin, Bernard J; Adamo, Diane E
2017-01-01
Previous studies have shown that asymmetries in upper limb sensorimotor function are dependent on the source of sensory and motor information, hand preference and differences in hand strength. Further, the utilization of sensory and motor information and the mode of control of force may differ between the right hand/left hemisphere and left hand/right hemisphere systems. To more clearly understand the unique contribution of hand strength and intrinsic differences to the control of grasp force, we investigated hand/hemisphere differences when the source of force information was encoded at two different force levels corresponding to a 20 and 70% maximum voluntary contraction or the right and left hand of each participant. Eleven, adult males who demonstrated a stronger right than left maximum grasp force were requested to match a right or left hand 20 or 70% maximal voluntary contraction reference force with the opposite hand. During the matching task, visual feedback corresponding to the production of the reference force was available and then removed when the contralateral hand performed the match. The matching relative force error was significantly different between hands for the 70% MVC reference force but not for the 20% MVC reference force. Directional asymmetries, quantified as the matching force constant error, showed right hand overshoots and left undershoots were force dependent and primarily due to greater undershoots when matching with the left hand the right hand reference force. Findings further suggest that the interaction between internal sources of information, such as efferent copy and proprioception, as well as hand strength differences appear to be hand/hemisphere system dependent. Investigations of force matching tasks under conditions whereby force level is varied and visual feedback of the reference force is available provides critical baseline information for building effective interventions for asymmetric (stroke-related, Parkinson's Disease) and symmetric (Amyotrophic Lateral Sclerosis) upper limb recovery of neurological conditions where the various sources of sensory - motor information have been significantly altered by the disease process.
Restricting resident work hours: the good, the bad, and the ugly.
Peets, Adam; Ayas, Najib T
2012-03-01
Inadequate sleep and long work hours are long-standing traditions in the medical profession, and work schedules are especially intense in resident physicians. However, it has been increasingly recognized that the extreme hours commonly worked by residents may have substantial occupational and patient safety consequences. Largely because of these concerns, new regulations related to resident work hours came into effect July 2011, in the United States. Residents in their first year of training are now restricted to a maximum shift length of 16 hrs, with residents in subsequent years restricted to a maximum of 24 hrs. The purpose of this review is to summarize the literature regarding resident work hours in the intensive care unit, focusing on the potential positive and negative impacts of work hour limits. The authors electronically searched MEDLINE, manually searched reference lists from retrieved articles, and reviewed their own personal databases for articles relevant to resident work hour limits. To function well, humans, including physicians, require adequate sleep. Resident work hour limits will likely reduce the incidence of fatigue-related medical errors and improve resident safety and quality of life. However, a reduction in work hours may not represent the panacea for patient safety given the potential for increased errors because of discontinuity. Furthermore, there may be other substantial negative impacts, including reduced clinical exposure, erosion of professionalism, and inadequate preparation for independent practice. Costs of implementation are likely to be substantial. Currently, there is fairly limited evidence available, and a more in-depth understanding of this complex topic is required to design a residency experience that will provide the next generation of physicians the best compromise between education, experience, and quality patient care. In the end, the primary goal of the postgraduate medical education system must be to ensure the creation of healthy physicians who can provide excellent clinical care in this complex interdisciplinary medical industry and who will have long fulfilling careers providing this outstanding care to their patients.
NASA Technical Reports Server (NTRS)
Koshak, William J.
2010-01-01
This viewgraph presentation describes the significant progress made in the flash-type discrimination algorithm development. The contents include: 1) Highlights of Progress for GLM-R3 Flash-Type discrimination Algorithm Development; 2) Maximum Group Area (MGA) Data; 3) Retrieval Errors from Simulations; and 4) Preliminary Global-scale Retrieval.
Maximum entropy approach to statistical inference for an ocean acoustic waveguide.
Knobles, D P; Sagers, J D; Koch, R A
2012-02-01
A conditional probability distribution suitable for estimating the statistical properties of ocean seabed parameter values inferred from acoustic measurements is derived from a maximum entropy principle. The specification of the expectation value for an error function constrains the maximization of an entropy functional. This constraint determines the sensitivity factor (β) to the error function of the resulting probability distribution, which is a canonical form that provides a conservative estimate of the uncertainty of the parameter values. From the conditional distribution, marginal distributions for individual parameters can be determined from integration over the other parameters. The approach is an alternative to obtaining the posterior probability distribution without an intermediary determination of the likelihood function followed by an application of Bayes' rule. In this paper the expectation value that specifies the constraint is determined from the values of the error function for the model solutions obtained from a sparse number of data samples. The method is applied to ocean acoustic measurements taken on the New Jersey continental shelf. The marginal probability distribution for the values of the sound speed ratio at the surface of the seabed and the source levels of a towed source are examined for different geoacoustic model representations. © 2012 Acoustical Society of America
Mapping health outcome measures from a stroke registry to EQ-5D weights.
Ghatnekar, Ola; Eriksson, Marie; Glader, Eva-Lotta
2013-03-07
To map health outcome related variables from a national register, not part of any validated instrument, with EQ-5D weights among stroke patients. We used two cross-sectional data sets including patient characteristics, outcome variables and EQ-5D weights from the national Swedish stroke register. Three regression techniques were used on the estimation set (n=272): ordinary least squares (OLS), Tobit, and censored least absolute deviation (CLAD). The regression coefficients for "dressing", "toileting", "mobility", "mood", "general health" and "proxy-responders" were applied to the validation set (n=272), and the performance was analysed with mean absolute error (MAE) and mean square error (MSE). The number of statistically significant coefficients varied by model, but all models generated consistent coefficients in terms of sign. Mean utility was underestimated in all models (least in OLS) and with lower variation (least in OLS) compared to the observed. The maximum attainable EQ-5D weight ranged from 0.90 (OLS) to 1.00 (Tobit and CLAD). Health states with utility weights <0.5 had greater errors than those with weights ≥ 0.5 (P<0.01). This study indicates that it is possible to map non-validated health outcome measures from a stroke register into preference-based utilities to study the development of stroke care over time, and to compare with other conditions in terms of utility.
Voss, Frank D.; Curran, Christopher A.; Mastin, Mark C.
2008-01-01
A mechanistic water-temperature model was constructed by the U.S. Geological Survey for use by the Bureau of Reclamation for studying the effect of potential water management decisions on water temperature in the Yakima River between Roza and Prosser, Washington. Flow and water temperature data for model input were obtained from the Bureau of Reclamation Hydromet database and from measurements collected by the U.S. Geological Survey during field trips in autumn 2005. Shading data for the model were collected by the U.S. Geological Survey in autumn 2006. The model was calibrated with data collected from April 1 through October 31, 2005, and tested with data collected from April 1 through October 31, 2006. Sensitivity analysis results showed that for the parameters tested, daily maximum water temperature was most sensitive to changes in air temperature and solar radiation. Root mean squared error for the five sites used for model calibration ranged from 1.3 to 1.9 degrees Celsius (?C) and mean error ranged from ?1.3 to 1.6?C. The root mean squared error for the five sites used for testing simulation ranged from 1.6 to 2.2?C and mean error ranged from 0.1 to 1.3?C. The accuracy of the stream temperatures estimated by the model is limited by four errors (model error, data error, parameter error, and user error).
Load Sharing Behavior of Star Gearing Reducer for Geared Turbofan Engine
NASA Astrophysics Data System (ADS)
Mo, Shuai; Zhang, Yidu; Wu, Qiong; Wang, Feiming; Matsumura, Shigeki; Houjoh, Haruo
2017-07-01
Load sharing behavior is very important for power-split gearing system, star gearing reducer as a new type and special transmission system can be used in many industry fields. However, there is few literature regarding the key multiple-split load sharing issue in main gearbox used in new type geared turbofan engine. Further mechanism analysis are made on load sharing behavior among star gears of star gearing reducer for geared turbofan engine. Comprehensive meshing error analysis are conducted on eccentricity error, gear thickness error, base pitch error, assembly error, and bearing error of star gearing reducer respectively. Floating meshing error resulting from meshing clearance variation caused by the simultaneous floating of sun gear and annular gear are taken into account. A refined mathematical model for load sharing coefficient calculation is established in consideration of different meshing stiffness and supporting stiffness for components. The regular curves of load sharing coefficient under the influence of interactions, single action and single variation of various component errors are obtained. The accurate sensitivity of load sharing coefficient toward different errors is mastered. The load sharing coefficient of star gearing reducer is 1.033 and the maximum meshing force in gear tooth is about 3010 N. This paper provides scientific theory evidences for optimal parameter design and proper tolerance distribution in advanced development and manufacturing process, so as to achieve optimal effects in economy and technology.
Guaranteed convergence of the Hough transform
NASA Astrophysics Data System (ADS)
Soffer, Menashe; Kiryati, Nahum
1995-01-01
The straight-line Hough Transform using normal parameterization with a continuous voting kernel is considered. It transforms the colinearity detection problem to a problem of finding the global maximum of a two dimensional function above a domain in the parameter space. The principle is similar to robust regression using fixed scale M-estimation. Unlike standard M-estimation procedures the Hough Transform does not rely on a good initial estimate of the line parameters: The global optimization problem is approached by exhaustive search on a grid that is usually as fine as computationally feasible. The global maximum of a general function above a bounded domain cannot be found by a finite number of function evaluations. Only if sufficient a-priori knowledge about the smoothness of the objective function is available, convergence to the global maximum can be guaranteed. The extraction of a-priori information and its efficient use are the main challenges in real global optimization problems. The global optimization problem in the Hough Transform is essentially how fine should the parameter space quantization be in order not to miss the true maximum. More than thirty years after Hough patented the basic algorithm, the problem is still essentially open. In this paper an attempt is made to identify a-priori information on the smoothness of the objective (Hough) function and to introduce sufficient conditions for the convergence of the Hough Transform to the global maximum. An image model with several application dependent parameters is defined. Edge point location errors as well as background noise are accounted for. Minimal parameter space quantization intervals that guarantee convergence are obtained. Focusing policies for multi-resolution Hough algorithms are developed. Theoretical support for bottom- up processing is provided. Due to the randomness of errors and noise, convergence guarantees are probabilistic.
Simultaneous maximum a posteriori longitudinal PET image reconstruction
NASA Astrophysics Data System (ADS)
Ellis, Sam; Reader, Andrew J.
2017-09-01
Positron emission tomography (PET) is frequently used to monitor functional changes that occur over extended time scales, for example in longitudinal oncology PET protocols that include routine clinical follow-up scans to assess the efficacy of a course of treatment. In these contexts PET datasets are currently reconstructed into images using single-dataset reconstruction methods. Inspired by recently proposed joint PET-MR reconstruction methods, we propose to reconstruct longitudinal datasets simultaneously by using a joint penalty term in order to exploit the high degree of similarity between longitudinal images. We achieved this by penalising voxel-wise differences between pairs of longitudinal PET images in a one-step-late maximum a posteriori (MAP) fashion, resulting in the MAP simultaneous longitudinal reconstruction (SLR) method. The proposed method reduced reconstruction errors and visually improved images relative to standard maximum likelihood expectation-maximisation (ML-EM) in simulated 2D longitudinal brain tumour scans. In reconstructions of split real 3D data with inserted simulated tumours, noise across images reconstructed with MAP-SLR was reduced to levels equivalent to doubling the number of detected counts when using ML-EM. Furthermore, quantification of tumour activities was largely preserved over a variety of longitudinal tumour changes, including changes in size and activity, with larger changes inducing larger biases relative to standard ML-EM reconstructions. Similar improvements were observed for a range of counts levels, demonstrating the robustness of the method when used with a single penalty strength. The results suggest that longitudinal regularisation is a simple but effective method of improving reconstructed PET images without using resolution degrading priors.
NASA Technical Reports Server (NTRS)
da Silva, Arlindo; Redder, Christopher
2010-01-01
MERRA is a NASA reanalysis for the satellite era using a major new version of the Goddard Earth Observing System Data Assimilation System Version 5 (GEOS-5). The project focuses on historical analyses of the hydrological cycle on a broad range of weather and climate time scales and places the NASA EOS suite of observations in a climate context. The characterization of uncertainty in reanalysis fields is a commonly requested feature by users of such data. While intercomparison with reference data sets is common practice for ascertaining the realism of the datasets, such studies typically are restricted to long term climatological statistics and seldom provide state dependent measures of the uncertainties involved. In principle, variational data assimilation algorithms have the ability of producing error estimates for the analysis variables (typically surface pressure, winds, temperature, moisture and ozone) consistent with the assumed background and observation error statistics. However, these "perceived error estimates" are expensive to obtain and are limited by the somewhat simplistic errors assumed in the algorithm. The observation minus forecast residuals (innovations) by-product of any assimilation system constitutes a powerful tool for estimating the systematic and random errors in the analysis fields. Unfortunately, such data is usually not readily available with reanalysis products, often requiring the tedious decoding of large datasets and not so-user friendly file formats. With MERRA we have introduced a gridded version of the observations/innovations used in the assimilation process, using the same grid and data formats as the regular datasets. Such dataset empowers the user with the ability of conveniently performing observing system related analysis and error estimates. The scope of this dataset will be briefly described. We will present a systematic analysis of MERRA innovation time series for the conventional observing system, including maximum-likelihood estimates of background and observation errors, as well as global bias estimates. Starting with the joint PDF of innovations and analysis increments at observation locations we propose a technique for diagnosing bias among the observing systems, and document how these contextual biases have evolved during the satellite era covered by MERRA.
NASA Astrophysics Data System (ADS)
da Silva, A.; Redder, C. R.
2010-12-01
MERRA is a NASA reanalysis for the satellite era using a major new version of the Goddard Earth Observing System Data Assimilation System Version 5 (GEOS-5). The Project focuses on historical analyses of the hydrological cycle on a broad range of weather and climate time scales and places the NASA EOS suite of observations in a climate context. The characterization of uncertainty in reanalysis fields is a commonly requested feature by users of such data. While intercomparison with reference data sets is common practice for ascertaining the realism of the datasets, such studies typically are restricted to long term climatological statistics and seldom provide state dependent measures of the uncertainties involved. In principle, variational data assimilation algorithms have the ability of producing error estimates for the analysis variables (typically surface pressure, winds, temperature, moisture and ozone) consistent with the assumed background and observation error statistics. However, these "perceived error estimates" are expensive to obtain and are limited by the somewhat simplistic errors assumed in the algorithm. The observation minus forecast residuals (innovations) by-product of any assimilation system constitutes a powerful tool for estimating the systematic and random errors in the analysis fields. Unfortunately, such data is usually not readily available with reanalysis products, often requiring the tedious decoding of large datasets and not so-user friendly file formats. With MERRA we have introduced a gridded version of the observations/innovations used in the assimilation process, using the same grid and data formats as the regular datasets. Such dataset empowers the user with the ability of conveniently performing observing system related analysis and error estimates. The scope of this dataset will be briefly described. We will present a systematic analysis of MERRA innovation time series for the conventional observing system, including maximum-likelihood estimates of background and observation errors, as well as global bias estimates. Starting with the joint PDF of innovations and analysis increments at observation locations we propose a technique for diagnosing bias among the observing systems, and document how these contextual biases have evolved during the satellite era covered by MERRA.